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CHAPTER 1

INTRODUCTION

1. Aims of the Thesis

Our main goal in this thesis is a detailed study of the implementation

of finite element methods for solving linear elliptic partial differential

equations in two dimensions. Our study is restricted to problems which

can be formulated as finding the stationary values of a quadratic integral

over a given class of functions. Thus, we consider inhomogeneous second order

elliptic boundary value problems in the plane which are either formulated

as least squares problems or can be placed in variational form. In the

text we consider equations with variable coefficients and problems

involving boundary integrals, although the Fortran code we actually

L ipresent can handle a less general class of integrals. However;, the

majority of the program would remain unchanged for more general p-oblems.

Our viewpoint will not be that of a person who wishes to solve a

I specific problem. Instead, we will adopt the attitude of one who must

provide a general program which is efficient, easy to use, and applicable

to a reasonably large subclass of two dimensional linear elliptic boundary

value problems. Thus, the capability of handling odd-shaped domains and

general (non-Dirichlet) boundary conditions in a uniform manner will be

important. Our study will include the problems of mesh generation and

the solution of the sparse systems of finite element equations, as well

as the actual generation of those equations.

Li



We will also be interested in the performance of finite element

methods (for our chosen class of problems). We will evaluate them by
a.

comparing numerical solutions to selected problems obtained by different

numerical methods, including among others, finite difference methods. We

will also compare different finite element methods; that is, finite

element methods using different bases. Our results should offer some

evidence as to which numerical technique is best, although the question

of what we mean by "best" is indeed very complex. Obviously, if we choose

our problems carefully, almost any method can be made to look best. If

we have a specific problem that must be solved many times, then it may

very well be worthwhile to find the best method for that particular

problem (even though the method is applicable to a rather small class

of problems, and therefore unsuitable for the purposes we have set down

above). For our purposes, the following questions will be of more or

less equal importance in evaluating and comparing numerical methods:

(a) What accuracy is achieved for a given amount of computation?

(b) What storage is required?

(c) Does the method rely on domain shape? (For example, does it

only apply for square domains, or rectangular polygons?)

(d) Does -the method utilize a special technique which requires some L
information known only to an expert in the field? If so, can

the technique be integrated into the program so that the ama'eaur L
user can use the technique unassisted?

L
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(e) How generaly applicable is the method? For example, must the

coefficients of the differential operator be constants or be

restricted in some other way? Are normal derivative or mixed

boundary conditions easily handled?

Obviously, whether some or all of these considerations are important.

depends upon individual needs and circumstances, but from our viewpoint

of designing a general purpose program, we would like to use a method

which yields a satisfactory response to all of them. Our aim is to show

that finite element methods are very strong candidates.

Many of the comparisons of numerical methods which appear in the

literature are made in the context of solving a specific problem, and

the comparisons are often made on the basis of (a) and perhaps (b), with

much less emphasis (perhaps only acknowledgement) of differences in (c),

3 (d), and (e). Given the high cost of program development and the

diminishing cost of computing power and hardware, we feel these latter

considerations deserve more attention than they normally receive. Our

emphasis in this thesis will be on a methodb general utility rather than

on its ability to solve any particular problem "better" than it has

been solved before. Hence, many of our conclusions will be of a

qualitative rather than quantitative nature. Nevertheless, we feel

such results are important and useful. A zeview of the thesis and a

summary of our results are found in Section 1.5.

Throughout the text "section nl.n2 " will mean section n 2 of

i . chapter n1 . Equations, f-gures and tables in section n2 will be numbered

(n 2 ..1),(n 2 .2), ... , and references in chepter nI t figure (n2.n3) also

in chapter n1 will just be n2 .n; references to figure (n 2 .n) appearing

in another chapter would be written (nl.n2 .n 3 )

3I:



2. The Variational Principle and a Brief Discussion of Ritz Methods

For many boundary value probleras of even order it is possible to

conctruct an integral I[v] which can be formed for all functions

lying in a certain class V and which takes on a minimum for precisely

the function urV which satisfies the boundary value problem. This is

called the variational formulation of the problem, and usually corresponds

to minimizing the energy of a physical system. The differential equation

of the boundary value problem is the Euler-Lagrange equation obtained by

imposing the condition that the first variation of T[v] vanish [C2].

For example, let R be a two dimensional region bounded by a

piecewise smocth curve R • Consider the problem

f IR

(2.1) u x+ u~ yy f in R,>

The sou = g on 6P.

The solution of (2.1)-(2.2) minimizes the Ikunclc n

(2.3) I(y] = fS(v 2+ v 2+ 2tv)dx dy

where vcV , the class of functions in C(R U R) with first derivatives

in L,(R) and satisfying (2.2) [C2].

The Ritz procedure for finding an approximate solution to (2.1)-(2.2) ii

is as follows: Let VN c V be a finite dimensional subspace of V

spaed by the functions i , i = l2 ,...,N • Our aim is tc obtain

L

1~1
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IN

an alproximation vbou"y minimizing I[v] for veVN .Writing

F

where a T  k = ,, ... ,) are real nubers to be determined, we use

(2.41) in (2.5) to obtain the quadratic function

(25) v E 1 x , x *, , *j.Y 1d d

+ 2 * dx dy

(2.6) A ij - (,i~x~j,x+ *,,j,y)d d
R

and

(2.7) b,= f dxdy

R

Using the important fact that A is symmetric, we obtain the system of

equations Aa = -b which determines the coefficients a ix. (2.4)

yielding the minimizing v eV . Under appropriate bypotnees, V U

as N -c [K3]. The importance of the finite element method is that

it allows us to construct * i.'s which satisf-y these hypotheses and which

also have attractive computational properties. This is taken up in the

next section.

5
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Note 'that. for our chosen class of problems, it will always be

possible to arrange that the coefficient matrix of the linear system

we must solve is symmetric, since oAa = 1 2==

A A , where A is obviously symmetric.

L

L
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3. Essential Characteristics of Finite Element Methods

The term "finite element" appears to have originated in the early

*i 1950's with structural engineers who regarded ionventional structures

as composed of a number of separate ?lements interconnected at node points.

The concept was extended to continuous problems such as plate bending and

steady-state temperature distribution, where the elements are merely

subdivisions of the domain of the problem with adjacent elements having

a common vertex or common side. The most common element shapes are

triangles and rectangles. Our attention will be devoted almost exclusively

to triangular elements in this thesis, primarily because odd shaped

domains can be more easily divided into triangles than rectangles.

Finite element methods are Ritz methods which use basis functions

having small support; that is, Ritz methods which make use of a so-called

"local basis". In Chapter 3 we will discuss the actual procedure. At

this point we simply observe that finite element methods make use of

trial functions v (see Section 1.2) having the form

(5 .1) NN

where

N(a) v is a piecewise polynomial on R U R

(b) v is a polynomial on each element.

(c) each basis functicn k is associated with a node point lying on a

vertex, side, or interior of an element, and is non-zero only on

elements containing tha node. This property is depicted below:

L

i L.
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Figure 3.1-a Figure 3.1-b

Support of *k associated Support of *k associated

with a corner (vertex) node. with a side node.

Figure 3.1-c

Support of * k

associated with an

interior node.

More than one basis function may be associated with a particular node, L_.

and because of the way the basis functions are chosen, the nodal

parameters %k associated with each 'k turn out to be the value or

N
the value of a derivative of v at the corresponding node point. The

choice of these nodal parameters is done on the basis of (1) the number

of degrees of freedom vN has on each element and (2) the continuity

L
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requirements of v . Indeed, a common practice is not to consider the

basis functions, but instead, to choose the parameters so as to uniquely

characterize the polynomial on each element and at the same time to

attain a desired degree of continuity across interelement boundaries.

N
For example, consider piecewise linear polynomials, for which v

Nis a linear function on each triangle. The trial solution v can be

uniquely characterized by its value at any three noncollineer points. By

choosing these three parameters at the vertices, we can guarantee continuity

along interelement boundaries. We would indicate this subspace by the

element stencil

v

, or just

V V

II
LJ It is fairly easy to see that this amounts to using a "pyramid

function" at each vertex node, as depicted below:

U

i! 9
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Figure 3.2 Pyramid Function k associated with node k

Some other common stencils associated respectively with quadratic and

cubic polynomials are

v, v v

V rx 'vy Vvx 'vy

Quadratic C abic

Note that in the last example, three basis functions will be associated

with each corner node, and the function associated with the interior node

will be non-zero only on the triangle containing the node. A (non-exhaustive)

list of stencils can be found in Appendix A.

10
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Piecewise polynomials derived in this way are sometimes referred

to as interpolation polynomials, since they are characterized by the

values (and perhaps derivative values) that they assme at the node

values. Note, however, that in our application the piecewise polynomial

will not (usually) interpolate the solut.on of our boundary value problem.

We will not consider the important matiematical question of whlen

N __(and how fast) v - u as N - co We will simply make some observations

and refer to relevant sources in the literature:

(i) Because each basis function vanishes over most of the domain, the

linear system that is generated is sparse. Strang [95] emphasizes this

by stating that "by a suitable choice of the trial functions ... the

Galerkin equations... turn out to be difference equations". Whether we

call them finite element or finite difference equations is largely a matter

of taste; we prefer the former, and reserve the term "finite difference"

for those methods based on divided difference approximations. For

polynomial basis functions of low degree the two approaches sometimes yield

the same equations. Our distinction is made on the method of derivation

rather than the end result.

(ii) The value of finite element methods will obviously depend upon

how well the trial functions can approximate the true solution of our

boundary value problem. This problem has been studied for general

elliptic operators and tensor product alyproximating spaces in (B8,s6,sI]

and in references contained therein. We will briefly discuss tie

practical advantages and disadvantages of these spaces in Section 1.4.

L Bramble and ZIlzal [B12], Zl~mal [Z4,Z5], leneck [Zl], Goal [G2],

}l



and others have proved convergence of the method and presented bounds

for various elliptic operators and piecewise polynomials on triangles.

Qualitative],y, their results say that if the approximating subspace is

admissible, and the true solution u is "smooth enough", then an

increase in d (the degree of the piecewise polynomial) induces an

equivalent decrease in the error bound. That is, the error bounds are

of the form

2 i 2

Nl l _ hd~l-q i l~

where lull = x ID U1 i = (ii l_< .=

1 i< 2 1 2 2 and

D1 _ _ U u . Here h is the max-um length of any triangle side in
6x 1Z y

the mesh, and C is a constant which depends upon the sharpest angle in

the mesh and the polynomial basis (element) being employed. For specific

details, the reader is referred to the papers mentioned above.

(iii) The condition of the finite element linear system which we

obtain will obviously depend upon our choice of *Is . Indeed, one of L
the problems of using the Ritz technique has been the numerical

instability of the discrete problem, caused by choosing almost linearly

dependent trial functions. Intuitively, we would anticipate that such

problems would be much less troublesome for the finite element method

because the majority of the 's will be orthogonal (by virtue of having

disjoint support). Strang and Fix [S6] study this problem in depth for

12



uniform meshes by examining the condition number H(G) = JIG11 JIGh-l 1

of the Gram matrix, whose entries are the inner products of the basis

I elements They conclude that all the usual piecewise polynomial

trial fumctions yield a stable basis, where stability means that H(G)

remains bounded as h - 0 . They show that the condition of the

coefficient matrix A obtained from the application of the finite

element method (using a stable basis) to a uniformly elliptic operator

of order 2m is of the form Ch- 2 m , where h is the mesh width and C-

depends on the choice of the basis. This result is of practical

2 significance; for a given problem it says that as long as we use a stable

basis, the condition of the coefficient matrix does not deteriorate as

we increase the degree of our polynomials. Note that these results only

Iapply for uniform meshes, and it is not knon how detrimental severe

grading of the mesh may be to the condition of the matrix A

13



4. Tensor Product Spaces

Suppose D1 = [0,1] is divided up into a uniform mesh with grid

points (ih, i = Ol,2,...,n) and assume we have a basis

(i(x) , i = 0,1,2,...,n) on [0,1] , where each i is non-zero on

the interval [i-phi+ph] , with p small. Now consider the domain

D2 = [0,1] X [0,1] , covered by a square mesh with grid points

((ihjh) , i = 0,1,2,.. .n, j = O,2,2,...,n ) . To construct a tensor

product basis on D2 we form the functions 4r. =  i ( )
i,j = 0,1,2,...,n . The trial function v N2 = (n+l)2 , is

then given by

n

!'j=O ai

The main advantage to this approach is that it is possible to

obtain a relatively smooth approximation with only moderate N , since

if fi *Ee[Dl1 ] , i = 0,1,...,n , then *ij e e[D2 ] , ij = 1,...,n .

This is often done by taking a spline basis for the *'s . For

N 2example, we can have v EO (D2) by using the cubic spline basis [SI]. For

a specific degree of smoothness, the number of parameters (unknowns)

k
in the problem increases as n for k dimensions. Of course, the

reason for these properties is the fact that the interelement boundaries

[which are h by h squares] are constrained to lie along coordinate

axes, and this brings us to the major disadvantage cf this method of

basis construction.

Because our eleiucnts are squares [or perhaps rectangles -- it is

easy to scale the basis functions], our domain must be restricted to be

'14
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the union of rectangles. Furthermore, it is virtually impossible to

grade (i.e., subdivide) the net "locally". If a fine mesh is desired

in a region of the damain, then it must be made fine in an interval in

each coordinate, even though we only desire the fine mesh in the

intersection of these intervals. It is fairly easy to conceive of

realistic problems which would force the grid to be almost unifomly

fine.

However, there is same reason for optimism regarding this geometrical

problem; Bramble and Schatz [B111 and Babuska [Bl] have analyzed some

methods that. do not require that the basis functions satisfy any boundary

conditions. The basic idea is to imbed the given domain R with

boundary bR in a larger domain R' D R , with the basis functions

satisf'ing homogeneous boundary conditions on the boundary of R'

LI A boundary integral on R scaled by h "7 , 0<7 <ao (where h is

the mesh width), is added to a least squares formulation of the problem.

The boundary integral is designed so that its minimum occurs when the

approximate solution satisfies the boundary conditions on aR . As would
t-1

be expected, their error estimates depend upon the smoothness of the

boundary data amd the solution. They show that 7 = 3 is optimal in

some situations.

We have not pursued this avenue of investigation in this thesis

because the approach we use to generate uur basis functions allows us

to fairly easily satisfy boundary conditions.

I ( 15



5. Review of the Thesis and Summary of Conclusions

As our title implies, the emphasis in this thesis is on implementation,

and such a study leads to interesting practical probleas which are seldom

discussed in papers on finite element methods. Engineering articles on finite

element methods are often devoted to discussing the virtues of particular

elements for solving specific problems. Mathematical papers, on the other

hand, are usually concerned primarily with rates of convergence of various

finite element spaces. We feel our work lies between these two extremes;

we are concerned with the actual implementation of finite element methods and

how they compare in practice with other methods for solving elliptic boundary

value problems.

In Chapter 2 we examine the problem of generation and storage of

two-dimensional triangular meshes. We begin by reviewing previous work

on automatic mesh generation. We then present a semi-automatic procedure

for triangulation of a domai;1. The method requires the user to provide a

gross triangulation of the domain, reflecting any desired grading. The

mesh is then refined by any specified factor by the program. We feel

this compromise solution, although not particulaxly elegant) is important

for several reasons: (a) the required input for most domains is small,

(b) the method can easily be adapted for use with graphical display

equipment), (c) curved boundaries can be incorporated easily,

(d) the net can be graded under control of the user, and (e) inter-element

boundaries can be forced to lie in specific positions (along lines of

material discontinuity, for example).

Chapter 2 also contains a description of a completely

automatic domain triangulator. Although the algorithm cannot be considered

a finished product, we have included it because we feel it represents a

promising approach to automatic triangulation. It is applicable to

16



* arbitrary simply connected domains and is designed to produce graded

nets where appropiiate. Some examples of meshes produced by the algorithm

are presented and some further areas of research are suggested.

The final section of Chapter 2 contains an efficient storage scheme

to represent arbitrary triangular meshes. Using this scheme along with

some results obtained in Chapter 4., we compare the storage required for

the mesh to the number of non-zero elements in the coefficient matrix.

We show that except for piecewise linear polynomials, the storage

required for the mesh is small compared to that required for just the

non-zero elements in the coefficient matrix. We conclude that the

mesh storage will seldom be an important factor in overall

storage requirements in the application of finite element methods.

Chapter 3 deals in detail with the actual generation of the finite

element equations. The process consists of two phases. The first is the

computation of the stiffness matrices which express our integral over

U keach element in terms of the nodal parameters used to characterize it.

The second phase consists of assembling these matrices into a single
SIi

large system and eliminating those parameters whose values are already

specified by boundary conditions. For the first phase we describe

one method for generating coefficients of the equations on each triangle.

We justify our use of the approach over others by demonstrating where

much of the canputation and manipulation of the basis functions can be

carried out symbolically) thus avoiding use of numerical (or hand)

integration and/or differentiation. Section 3.4 deals with the assembly

of the equations. Boundary conditions which involve derivative

parameters cause annoying implementation problems if the boundary is not

parallel to the x or y axis, since relations between several parameters

17
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must sometimes be satisfied. We discuss two alternate metbods of

handling these problems ;'d compare the implementation of each.

A study of sparse matrix methods is the s-u:bject of Chapter 4,

with particular emphasis on the type of matrices arising from finite

element methods. We introduce the concept of the profile of a matrix

and distinguish between graph methods, profile methods and band methods.

We present arguments and experimental evidence supporting the use of

profile methods.

In Section 4.5 we compare several ordering algorithms applied to

matrices arising from different finite element bases. These experimentr

show the following: (a) profile methods can be significantly better

than band methods, in terms of both storage requirements and operation

counts; (in Sections .1 and 4.2 we show that they will never be worse

than band methods.) (b) the "reverse Cuthill-McKee" ordering (our

terminology), which we have discovered compares very favorably with

other methods tested; (c) comparison of times required to produce the

reverse Cuthill-McKee ordering with some of the times required for the

entire finite element solution (reported in Chapter 5) suggests that the

use of the algorithm is relatively inexpensive. We feel that such

information is extremely important. It is often contended by experienced

users that automatic ordering is unnecessary because they can produce

an ordering empirically that is close to optimal. This may very well be

true, but not all users are experienced, and more important, one must

still devise a way of communicating the desired ordering to the computer.

We have shown that this largely clerical process can best be

L
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left to the computer. The code for doing the ordering appears as part

/ 'of pase] 1 in-Appendix B.

Also in Chapter 4, we derive formulas for the density of finite

element matrices for general elements and arbitrary triangular and

quadrilateral meshes with holes. Such results are impritant in managing

storage, since we can allocate storage for the matrix as soon as the

mesh and element to be used are knoim.

Chapter 5 contains results of several numerical experiments.

t The chapter contains numerical solutions to the L-shaped membrane

eigenvalue problem, rhombical membrane eigenvalue problems, and a

hollow square Dirichlet problem. Oar comparisons are

between different finite element methods as well as between finite

element methods and their competitors. These experiments showed the

-. following:

(a) Efficiency in general increased with increasing degree of piecewise

polynomial. This was true in all three examples, and because the

solutions ranged from very smooth ones to ones with singularities

in their first derivatives, we feel this information is significant.

(b) Finite difference methods compared rather unfavorably with our

finite element solutions. Even for the problem where special fast

L._ direct methods for solving the difference equations could be

utilized [B15,G1], our finite element solutions appeared preferable.

(c) Several methods for finding eigenvalues yielded more accurate numbers

than finite element methods (involving roughly the same cost), and

also produced bounds. However, these methods use techniques which

- utilize a special feature of the equation or of the domain, and are

19



difficult to implement in a general code. Again we emphasize that

we are not saying these methods are inferior; we are simply

saying that they are less suitable than finite element methods as

the core of a general boundary value problem solver.

Appendix A contains a list of some typical elements. Some of these

are referred to throughout the text.

Appendix B contains a listing of the Fortran code we have developed

for solving a class of linear elliptic boundary value problems. We have

segmented the code into modules, each one designed to carry out a specific

task or set of tasks. The modules execute in sequence, with information

passing from one to the next via external storage media which can be disk,

d=n or tape. Our reasons for segmenting our code and attempting to

keep each segment itself modular are (a) to ease maintenance and/or

modification of the code, (b) to allow ',he program to be run on

smaller machines than the one we used, and (c) to facilitate documentation

and understanding of the code by localizing specific functions. Specific

details of the functions of each segment are found in comments in the

code itself.

20 .
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CHATER 2

GENERATION AND STORAGE OF TWO-D vMSIONAL TRIANGULAR MESHES

1. Introduction

The first step in most numerical methods for solving partial

differential equation problems is that of discretizing the domain in

question. In our case, the problem consists of dividing our given

domain R into disjoint triangles whose union is R U 3R , with adjacent

tirangles having a common side. If R has curved boundaries, we will

admit "curvilinear" triangles having one curved side in the triangulation

near the boundary. Figure 1.1 is an example of such a triangulation.

Figure 1.1

Manual genert ±on of a triangulation of R is an extremely tedious

job. A completely automatic triangulation procedure, on the other hand,

while obviously desirable,' is complicated and difficult to implement with

any degree of flexibility. In Section 2 we review the literature on

two-dimensional triangulation and in Sections 3 and 4 we present two

new methods for triangulation of two dimensional domains. The method

described in Section 5 is a semi-automatic scheme, while the one in
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Section 4 is almost completely automatic. Section 5 contains a

description of an efficient scheme for storing a representation of an

arbitrary two-dimensional triangular mesh.

Once we have a suitable triangulation of the domain, we are faced

with the problem of numbering the nodes (more precisely, the parameters

associated with the nodes) in order to reduce the computation and/or

storage requirements for the solution of the algebraic system. Although

it is possible to defer any ordering (and then actually order the

parameters rather than the nodes), the problem will be considerably

larger if each node has more than one parameter associated with it.

Since all the parameters associated with a particular node are connected

in the same way to other parameters as well as all being connected to

each other, little is lost by ordering the nodes. Many good ordering

algorithms require work proportional to the number of nodes multiplied

by the square of the number of neighbours each node has, so substantial

savings can be achieved by ordering at this stage. We defer discussion

of these algorithms and the criteria used to reduce storage and computational

requirements until Chapter 4, although again we emphasize that they should

be applied at this stage. L

17
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2. Review of Previous Work on Mesh Generation

Mesh generation is a difficult part of a boundary value

problem-solver to automate, and even the most generally applicable programs

require substantial human assistance, especially in describing the boundary 6R

In most boundary value problems the solution is not uniform in character over

the domain. Often it is fairly smooth over most of R , and varies rapidly

only over a small part of the domain, perhaps near a corner. For this reason

it should be convenient, if desired, to indicate areas of the domain R where

the grid can be coarse and areas where it should be fine. This grading

capability could provide substantial saving.. in storage requirements and

computer time.

For practical reasons finite difference programs have tended not to

provide for the grading of nets. This is due largely to the ease with which

one can store a regular rectangular net in a conventional two-dimensional

array and the severe storage management problems which immediately result

when one departs from such a scheme. In the regular case, actual coordinates
LI

do not even have to be stored, which is a persuasive argument for using a

regular net. Also, truncation error bounds for some difference operators

are much better fur regular nets, and the determination of the coefficients

for the difference operator is usually much easier (a prime consideration if

an iterative scheme is being used and the coefficients are being computed each

time they are needed). Thus, finite difference programs usually make use of

uniform meshes, or meshes which are uniform in various parts of the region.

Boundary points that result when 6R intersects the mesh at a point other

than a node point are treated by using well-known interpolation formulas.

(These special boundary points may cause storage problems even when the

simple two-dimensional array storage method is used; see Forsythe and Wasow

[V5, pp. 361-63] for a discussion.) If the boundary is curved, it may be
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rather awkward to find the correct formula to preserve the order of

accuracy. In this context, the actual mesh generation is not a difficult

problem. The problems arise where the boundary (which can have more or

less arbitrary shape) intersects the regular mesh. Cryer [C3] treats this

entire problem in considerable detail, and we will not discuss it hxrther

here.

The mesh generation question with regard to finite elements has a

somewhat different flavor. In this case, grading the mesh is essentially

without cost provided we are going to store the node coordinates anyway.

It is often stated that irregular nets are expensive to use because the

coordinates of each net point must be stored, and for finite difference

methods this objection is valid. [For example, suppose we are solving

Laplace's equation on the unit square. Using a uniform n by n grid, the
2

required storage is about n , assuming we are going to solve the equations

using SOR. By comparison, if our mesh is irregular, we must remember the

coordinates of each of the n2 nodes. Then we would need a total of 3n 2

words of storage, and if we want to avoid recalculation of the coefficients

of the difference operator at each iteration (which will no longer all be

the same), we will need 8n 2 words of storage.] However, for finite element L
methods, the number of node points will ordinarily be considerably fewer than

the number of parameters since each node will usually have derivative as

well as function-value parameters associated with it. As the degree of

the basis functions increases, the storage required for the nodes quickly

becomes small compared with that required for the coefficient matrix. This

point is taken up in Section 5 of this chapter.
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We will now review some methods appearing in the literature which have

dealt with this triangulation problem.

Cheung and Pedro [C4] have written a program that generates a

triangulation using the following general scheme. The domain is divided

by one family of straight lines (which do not intersect in the domain but

are not necessarily parallel) or arcs of circles (not necessarily concentric)

or both. Each line is further divided into a number of divisions to

yield node points. The node points on adjacent lines are then joined in a

zig-zag manner to form triangles. The number of divisions in adjacent

lines can only differ by one -- a hindrance if pronounced grading of the

net is desired. This restriction can also lead to triangles with very

sharp angles.

No attempt appears to be made to automatically achieve a nodal

lj numbering yielding a small bandwidth; instead manual "supervision" has to

be exercised at various stages. The only attempt to avoid or remove small

Li angles is done when forming two triangles from a quadrilateral; the lengths

of the diagonals are computed and the shorter is used to form the triangles.

(This can be disastrous; consider the quadrilateral (-1,O), (0,-2), (1,O),

(0,E) where c is positive but vel small.)

Frederick, Wong, and Edge [F7] present a two-stage, semi-automatic

method for triangulating a two-dimensional domain. The first stage consists

of manually plotting the boundary of the domain and the node points (in the

order designed to minimize or at least reduce the bandwidth of the resulting

linear system) on an electromagnetic graph-tracing table. The coordinates

25
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of the points are automatically punched on cards which then serve as

input to a computer program that generates the triangles. There are a

number of poten'mial drawbacks to this approach. The first is that for

odd-shaped domains it is surprisingly difficult to number the nodes

empirically so as to achieve a small bandwidth, especially if the net is

graded rather severely. As we saall see in Chapter 4, bandwidth is not

necessarily a very good criterion alyway, and to number the nodes empirically

to achieve other (more satisfactory) criteria can be even more difficult.

Secondly, without actually drawing in the triangles as you go along it is

hard to decide where the next node woLuld be placed. If the triangles are

to be drawn, very little more manual effort would be necessary to tabulate

their espective nodes, thus eliminating the computer program completely.

As the authors point out, however, the computer-based part of the procedure

eliminates the clerical errors which would inevitably result from tabulation

by humans. Although it is unfortunate that special-purpose equipment is

required, the basic procedure is very appealing. It is easy to see how

the same basic idea could be implemented in an interactive way by using a

cathode ray display with a light pen. All the above objections could be

eliminated if an automatic ordering scheme (such as one of those discussed L
in Chapter 4) were included in the implementation.

Barfield [B41 proposes a method based on a conformal mapping of the L
boundary of a closed two-dimensional region onto the perimeter of a

rectangular polygon in which is inscribed an orthogonal rectilinear grid. 1-
The method consists essentially of finding the function which conformally

maps the given domain R onto the polygon, and then using the inverse of

the mapping so determined to find the image of the orthogonal grid in the t
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polygon. The method obviously generates rectangles rather than triangles,

so that each rectangle would have to be subdivided to obtain a triangulation

of R . While the method is indeed very elegant, considerable care appears

to be necessary to avoid distortion, and "long, slender" squares yield very

poor triangles. Als% the work involved in computing the mapping may be

substantial.

Winslow [w5] proposes a method of mesh generation which consists

essentially of solving an elliptic boundary-value problem using finite

difference methods. The mesh lines are regarded as two intersecting sets

of equipotentials, each set satisfying Laplace's equation in the interior

of the given two-dimensional domain R . "Bounia.r conditions" are

determined by where the lines are required to intersect the boundary S

H Because of the well-known averaging feature of harmonic functions, the

generated mesh varies smoothly over the entire domain, its relative grading

being determined by the density of the points of intersection on S (i.e.,

Uthe boundary conditions). Triangular and quadrilateral grids can be

generated using the method. Although the examples reported are very nice,

they are for an extremely simple domain, and Winslow does not discuss the

problem of how to concisely describe a general domain to the program

(assuming that the program has the facility for handling one), and how to

easily input the boundary conditions (the ends of the potential lines). As

with most partial differential equation problems, the above tasks and the

associated data management problems are difficult to implement in general;

once done, the generation of the equations and their solutions are relatively

straightforward, even though they may require considerable computer time.

t He concedes that the method does not always work satisfactorily near re-

entrant corners, with node points outside the domain sometimes being

[V produced.
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Reid and Turner [Ri] use the following scheme to generate nearly regular

meshes. A regular equilateral triangular mesh is placed over the domain R

so that R is inside the mesh boundary. Points where triangle sides

intersect the boundary are called "boundary points", and node points of the

mesh closer than h/2 to a boundary point are moved to the boundary point

in such a way as to guarantee the monotonicity of the resulting finite

element coefficient matrix. [A matrix is said to be monotone if it

is non-singular and all elements of its inverse are non-negative. ) They

consider only piecewise-linear polynomials. The node points and their

incident edges which remain outside R after the relocation process is
V.

complete are then discarded, yielding a mesh on R which is regular

except near the boundary. The authors' assumption appears to be that 6R

has no corners, and this restriction on R simplifies the node relocation

considerably. Corners in R must necessarily end up as vertices in the

triangulation, so the presence of corners imposes further restrictions on

the relocation of nodes. It seems clear that we would want h to be of

the same order of magnitude as (or smaller than) the shortest arc in 6R

in order to avoid generating triangles with sharp angles. Such a

requirement could force the mesh to be finer than otherwise necessary. This

scheme obviously assumes that the user desires a regular mesh, and this

may not always be true.

Kamel and Eisenstein [KI] present a mesh generation scheme that is also

based on a regular mesh. The user supplies the boandary 6R as a sequence

of arcs subdivided by nodes. First the authors find the "best" regular

mesh having the same number of boundary nodes as the given boundary 6R.

Here "best" means "closest to circular shaped." Their program begins at

a node of a regular mesh and successively annexes rings of triangles (the last
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ring may only be partially annexed) until the number of boundary nodes

in the mesh equals the number of nodes on 6R . This determines the

number and relative positions of the triangles for the mesh. The

correct number of nodes are then placed inside R and the mesh is then

smoothed by applying several passes on the interior nodes, using the

formula

(2.1) x. A / 1/(xi) •

The authors caution that their procedure does not work well if the input

boundary has nodes with abrupt changes in spacing, or if the domain shape

is too complex. They imply that interaction with the algorithm using a

! i graphics terminal is an advisable, if not necessarypart of using their

method.

I2
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3. A Serei-Automatic Mesh Generation Scheme

Ideally, a mesh generation procedure should have the capability of

grading the net (i.e., making the net finer in selected areas of the domain)

on the basis of information supplied by the user. This immediately raises

the question of how a desired grading can be easily transmitted to the

program. Also, sometimes the "material" in the domain varies abruptly

from one region to another, and it may be desirable that triangle interfaces

coincide with material interfaces to allow discontinuities in derivatives.

This requirement would obviously complicate a completely automatic

triangulation procedure by imposing constraints on some of the node

positions.

With these considerations in mind we have arrived at the following

compromise. The user must supply a very gross triangulation of the domain,

reflecting the desired grading of the net, and with triangle boundaries lying

in any desired position. This removes bcth of the problems raised above.

The large triangles can then be subdivided by the computer in the obvious

manner. If in addition the program has the capability of subdividing

triangles having one curved side, the amount of input for most domains can

be kept small.

The algorit m used to subdivide each input triangle is very simple.
L.

For some integer k , depending on how fine a final mesh is required, each

triangle side is evenly divided into k segments by k-1 nodes.

Nodes of consecutive sides are joined by parallel lines yielding 
k2

triangles, each congruent to the original large one. This has the

advantage that no sharp angles are generated; the smallest angle in the

original triant~alation is the same as the smallest in the final triangulation.
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For "curvilinear" triangles (having one curved side) the algorithm is

similar. Suppose we have the following triangle (Fig. 3.1-a) which we

must refine by a factor of eight (Fig. 3.1-b).

A A

IC C

B B

Fig. 3.1-a Fig. 3.1-b

Seven node points are generated on each of the straight lines AB , BC ,

and AC as described above. The seven node points on the curve BC are

then obtained by finding (approximately) the points of intersection of the

curve with lines perpendicular to the straight line BC and passing through

the node points on it. The node points on AB and AC are each joined to

the node points on the curve as in Fig. 3.1-b by straight lines, and their

points of intersection are then used to form the triangles.
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Below is aL example of the procedure:

Figure 3.2-a. Input Domain. Gross triangulation indicated by

dashed lines.

(i

I-

1[.

Figure 3.2-b. Ikmuin subdi.vided by a factor of 4. I
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This approach to mesh generation could very conveniently be adapted

to use with an interactive display system. The fact that the user has

control of the mesh while not being obliged to provide large amounts of

input is particularly attractive in this regard.
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. ~An Automatic Two-Dimens:lonal Domain Triangulator

In this section we p.esent a scheme for automatically triangulating

a two-dimensional domain. Unlike the fully automatic schemes discussed

in Section 2.2, this method does not utilize a regular mesh; in fact, it

specifically is designed to allow for the construction of graded nets. It

can be used for general simply connected domains, as the examples appearing

later will demonstrate.

The basic strategy of the method is as follows. The user is required

to supply the initial boundary as a sequence of arcs, along with a simple

rule indicating how each arc is to be subdivided. The sequence of arcs

must form a closed loop, so for now we assume R has no holes. We then

have an "initial boundary" consisting of a sequence of nodes connected by

straight lines. We then proceed to annihilate R by successively

removing triangles from R , as depicted in Figure 4.1. As each triangle

is removed, we obtain a new "current boundary". This boundary, along

with some associated information can be conveniently stored as a two-way

linked list. Our goal is to cover (or annihilate) R with as few

triangles as possible consistent with the requirements that the mesh vary

smoothly and have no sharp angles or long sides. For example, for a unit

square domain with each side divided into segments of length 0.01 , we L
would like the generated mesh to be composed largely of triangles which

are close to equilateral triangles having sides of length 0.01 .

We will employ two methods of forming triangles. The first, which

we will refer to as "trimming", is depicted by (i), (iii), (iv) and (vi)

in Figure 4.1. The second i.ethod of generating triangles requires the

generation of a node in R , as shown by (ii) and (v) in Fipare 4.1. We
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will refer to this method as "notching".

First we discuss the generation of nodes. Consider the diagram

below

P - a2  - •
"'"al/ P 5

P, c P
b!

L.

p Lb22 b

P3

Figure 4.2

Let I be the average distance between consecutive nodes in the

initial boundary 3R . Then P is the point on the bisector of angle

P2 PP which approximately iainimizes

(4.l) (P)= Ic-b21 + Ic-b5 l + yfla!-b + -+ a2 b + [ Ial- I + ja41,I

where

4

= L. /4
and o[

The first two terms are designed to make the (potential) triangles

close to equilateral. The third term has a smoothing influence on the
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lengths of the arcs of the current boundary, and the last term attempts to

* make the lengths of the arcs of the current boundary converge to £ . If

either or both of the neighboring vertices bave angles less than 5Tr/ 6 ,

the same procedure is performed at these vertices, yielding two or three

nodes. Their centroid is chosen as the trial node.

Now that we have a method for generating interior nodes, we can now

describe the algorithm. In words it is as follows:

Step 1.

For each vertex on the current boundary having interior angle a

less than or equal to u/3 , form a triangle by trimming and remove it

from R , as depicted below.

b 4a

P 3

Figure 4.3

St ep 2.

Find any consecutive vertices both having interior angles a1  and

a2 less than 5n/ 6 . If none are found, proceed to step 3. Otherwise,

choose the pair with the minimumn value of Ia1 - 2v/31 + Ia2 - 2n/31 ,

and generate an interior node P as described above. We then have a
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situation such as one of these below:

a, P a2 6

P1 bb PP

(. b c--- b

(a)2b 
25

P 3 3 '4

Figure 4.T

it is obvious what we should do in Figure (14.h-a), but in Figure(i.l-b), L I
it is debatable whether we should trim triangle P3 P14P5 ,o oc

triangle PP P. (followed presumably by two trims of rnotch LPP
and PP4P5 .) Let d1 = an-~l d d2 = I)3-P51 , where IPi-P.9 [,
is the distance between points P. and P. . Let

1 3
S= tbldlb 4 ,bs) S2 = 1bb 2 ,d2 ,b 5} and S3 = bl, ala 2 ,bs . Let

vI  v2 and v3 be the average value of the members in S1 , S2  and S3

respectively. N~ow define wI , w2  and w3  by

36
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W -(1bl-v11 + 1dl -vl + 1b4-vlj + lb

w2 = (Ib-v21 + lb2-v21 + Id2 -v2 1 + lb -v2l)/4v2

3  (Ibl-v1 + 1al-,51 + 1a2-v31 + lb5-v31)/4v,

Let wk =minw 1,w2j . Then if k = 1[21 , >w , and angle
,PPP4 [P3P4Ps} is less than or equal to T/2 , the mrn

P2P3P4h P . Otherise not3h triangle PP. P Then go to

step 1.

Find any vertex having interior angle a < Tr/2 . If there are none,

go to step It. Otherwise compute an interior node corresponding to the

vertex as indicated below.

Ii: P

1 b 1.\

I P

393P3

Sf U Figure 4.5
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4?

- Let d, = IP2 -P41 and d,= IP-P31 Define v4 , v 5 , w4  and w5

by

v4  (b + d3 + b4 ) /5 ,

v 5 . (bl+a/+a 2 +b 4)/ ,

w= (lbl-vhl + Id3 -vhI + Ib --v1/5v4

w -(1bl-v 51 + 1al-v5 ' + a2-b51 + 1b4-v5 1)

if w1  w then trim triangler
nP2P3P 5 and go to step 1. Otherwise

repeat step 3 until a successful trim is achieved or until all the vertices

have been tested. If no trim can be made, proceed to step 4.

step 4i.

Let V and 12 be the smallest and Jargest distances between

consecutive nodes in the current boundary. We then do the following

(4a) Set Y = 1 +  (2- I)

1(4b) Of those nodes on the current boundary having at least one of

its incident bunldary arcs less than or equal to y , choose the node

having tue smallest angle a

(c) If a <T , generate a node, as in Figure h.2, notch a triangle

(either PP2P3  or PP3P4) and go to step 1.

Otherwise, go to (4d).

(4d) If Y = 2 stop (we have failed). Otherwise, set y + - (2
12

and go to (4b).
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Remarks:

(1) The parameter 7 in step 4 was found to be necessary to force the

program to consider first those areas of the domain to be covered by a

relatively fine mesh. The averaging effect built into the node generator

combined with this restriction on the lengths of the arcs considered first

tends to fill in the domain near' the short boundary arcs first; the size of

the triangles increases with distance from the boundary.

(2) Steps 1, 2 and 3 are designed to remove any "protrusions" from the

current domain. Their overall effect is to make the current boundary

convex or near convex.

(3) An interesting and potentially better method for generating nodes

might be to allow P (Fig-are 4.2) to lie anywhere in tne current domain,

rather than restrict it to lie on the bisector of the angle P2 P3P 4

A.L Minimizing Y(P) would be considerably more complicated, but migbt be

i justified if triangulations with many fewer triangles resulted.

-(4) In all cases where a node is generated, we check to see if it lies

in the current doma 4 p by using an algorith described in [N2], and before

forming any triangle wie check to make sure no nodes lie inside the triangle.

Thus, our algorithm is "fail safe"; if it terminates successfully, it

has generated a legal triangulation.

(5) As we mentioned above, the current boundary can best be stored as a

linked list, so that deletions and insertions can be carried out with

little data rearrangement. To reduce computation, the lengths of each

boundary arc and -the sine and cosine of each interior angle were also
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retained in conjunction with the linked list. These quantities were

compted once by the routines "trim" and "notch" which actually modify

the current boundary, and were then available as needed by steps 1-4.

Other quantities might also have been retained.

(6) Figare 5.10 demonstrates the use of the algorithm when the domain

has a hole in it. We simply provide a "boundary arc" cutting through the

domain, joinirg the outer boundary to the inner one. The fact that the

closed loop forming the boundary overlaps itself and in some parts does

not really correspond to a boundary at all does not effect the algorithm.

The smoothing program (discussed below) does not move node points lying on

these psealdo boundary arcs; hence, this device can be used to force some

inter-element boundaries to lie tn specified positions. In Section 2.3

we explained why this might sometimes be desirable.

Below are several examples of domain triangalations. The output

of the algorithm described above has been smoothed by carrying out three

or four sweeps of the interior (non-boundary) nodes using formula (2.1).

The nodes on the curved portions of the boundary were obtained in the

same manner as described in Section 2.3.

As we implied in remark 4 above, more sophisticated methods of node

generation and trim/notch strategies might yield "better" triangulations,

and such investigations are potentially fruitful topics of further research.

It is even difficult to define precisely what we mean by a good graded mesh.

It depends on the relative importance of (a) sharp angles (b) the total

number of triangles (c) the smoothness of variation of the mesh, and

perhaps other factors. It would be nice also to be able to a priori

guarantee certain desirable characteristics of the generated mesh in terms

of characteristics of the initial boundary.
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Figure 4..10

145



me for Finite Element Meshes and Associated Bound Data

As we have tried to emphasize in the preceding sections, the finite

element mesh ill probably not be regular; thus the storage scheme for

it must be general. In this sectiun we present a scheme for storing

general finite element meshes, and show that for most elements, the

required storage is small compared to the storage required to store the

non-zero elements of the coefficient matrix.

We shalL see in Chapter 3 that the procedure for generating the finite

element equations is carried out element-by-element; therefore, it is

beneficial to be able to retrieve the node coordinates for each triangle

easily. On the other hand, we do not want to store copies of the node

coordinates for each trianglebecause many or all of the nodes belong to

more than one triangle. Another point is that we really only need to

remember the vertices of the triangles in the mesh; node coordinates on

the sides and in the interior of the triangle can be generated as needed,

provided we have a formula for generating them.

For definiteness, suppose our mesh has V vertices, S triangle

sides, N triangles, and H holes in it. The number of interior sides

{verticesl and boundary sides (verticesl will be denoted by SI(VI and 0B{V
IBtVB)

respectively. In [El] the following relations between these mesh parameters

are proved.

(5.1) N= (S 2 = VB+ 2VI - 2(H-l)

Fur a typical mesh having S >> S V V and small H theI B' VI ~B~a ml ~h

the relations (5.1) yield
1

(5.2) v = - Nm
V



and
3

(5.3) S N

To aid in describing the scheme we are about to present, consider

the figure below, where the domain has been covered by "3-10" elements

(see Appendix A for details). The nodes are numbered sequentially,

beginning with the vertex nodes, followed by the arc-midpoint nodes (see

below), followed by the nodes on the sides and interiors of the triangles.

A node with tag k is understood to have coordinates (Y. k) . The

circled n1ubers are boundary reference numbers which are associated with

the corresponding triangle sides. Later, boundary conditions can be

assigned with respect to these numbers. The arc-midpoint nodes tagged

6 and 7 are generated ard allowed for in the storage scheme so that some

form of interpolation along the boundary can be subsequently done. See

Z1mal [ Z6] for one such possibility, where quadratic interpolation is used.

A4

220

1 21 22 2 23 2h 3

Figure 5.1

The storage scheme is depicted schematically below. Note that the pointers

for each triangle are listed in a counterclockwise manner, in order of
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vertices, sides, and interior. Suppose the vertices are numbered

(xlyl) , (x 2 ,Y2 ) and (x 3 ,y ) We adopt the convention that the i-th

side of the triangle is the one with endpoints (xiYi) , (xk,Yk)

where k = (i+l) mod 3

pointer will ordinarily require fewer bits than a node coordinate

or a coefficient of an equation. For example, on an IBM 360 eomputer,

pointers may conveniently be stored in two bytes (a half-word) whereas a

coordinate would require four or eight bytes. In general, we will denote

this ratio by (a < 1) . Ignoring the storage required for the

boundary table (since we assume SB << S , then the amount of storage

required for the mesh is approximately

(5.4) yM = amNA + 2V (O+l)NA

where m is the number of nodes associated with each element.

Let nV , nS and n, be the number of parameters associated,

respectively, with vertex nodes, the node(s) on each triangle side (not

including the endpoints), and the interior of each triangle. For example,

element3-D would yield n = 1 , n = 2 , and n = 1 . We now want to

show L hat VM is usually small compared to the number NA of non-zero
M Z

elements in the coefficient matrix A In Section 4.6 we show that

' al(V-3) + 72(s+3-2V)

(1 ) T (using (5.2) and (5.3))

where 71  and a2  depend on nV , nS , and n.,
.18
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Pointer List Node Coordinates

21

Triangle No. 1 22 Y32•15 x4 Y4

_9 5 y 5

22 x6 Y6

4x7 Y7

Triangle No. 2 17
20
19
15
10

2

Triangle No. 3 2

13
18
17

12

triangle number- 1 1 2 3

boundary reference number -1 3 2 1 2

pointer to arc-midpoint 0 6 0 7
(if side is curved)0 6 o 0 7

triangle side 1 3 2 1 2

Boune qry Data Table

Figure 5.2
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The following table serves to make our point.

01l+02 1.. -m 1

Element+ a] v2 2 2 1 3

1-3 535 7/ 2 5/2 4

2-6 27 19 23 5/2 3 4 7

3-4 64 37 50.5 2 7/3 3 5

3-10 84 69 76.5 14/4 13/3 6 11

.- 6 161 106 133.5 5/2 3 4 7

4-15 200 176 188 19/4 6 9/2 16

5-6 272 139 205.5 5/2 3 4 7

5-21 405 370 387.5 25/4 8 23/2 22

+See Appendix A for a description of the elements.

Table 5.1

Thus for all but piecewise linear polynomials, VM << 14 even

when c = 1 . If a direct method is being used to solve the generated L.
systr-, the storage required foe the decomposition will be much more than

N z so that YM becomes rather insignificant in comparison to overall

storage requirements. Our conclusion is that the use of an irregular

rather than regular mesh for finite elemL methods does not in general

cause an important increase in storage requirements.

In future chapters we will often need the dimension of A , the

nunber of parameters (unknowns) in our problem. Using (5.2), (5.3), and
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the definition of V , S , nV , nS and nI above, we have

(5.6) N n nvV+ nsS + nN.

1 " n N
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CHATTER 3

GENIERATION OF FINITE ELEMENT EQUATIONS

1. Introduction

In this chapter we discuss in detail the corsputation involved in the

generation of the finite element equations. The general procedure with

minor variations appears rather frequently it, engineering articles

(usually with regard to a specific problem and element); Zlamal [ Z5] has

also described the procedure, again for a specific situation. Felippa

and Clough [Fl] give an excellent summary of the generation process

although they give few details. Unfortunately, we feel that too little

emphasis is devoted to carefully identifying which of its several sub-tasks

are independent of others, and which ones are dependent only on particular

components of the problem being solved. For example, is a specific

computation dependent only on the characteristics of the piecewise polynomial,

and independent of the differential operator and the boundary conditiors?

How much of the computation can be salvaged if only part of the problem is

cnanged and how can that amount be maximized for a given change? Answers

to questions such as these are important in the design and implementation

of efficient programs. In this chapter we identify these various sub-tasks

and indicate which parts of the generation procedure can be isolated as

separate modules. The equation generation phase is itself inherently

modular, even though in its entirety it is usually regarded as the second

of three stages in the application of the finite element method. The

first phase is the mesh generation, and the third is the solution of theLenerated algebraic system.
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As we stated in Chapter 1, the finite element method is a Ritz-

Galerkin method wherp the trial functions have small support. That is, I
the approximate solution is represented in terms of a local basis.

Generation of such a basis for rectangular domains is fairly straight-

forward, as we described in Section 1.4. However, for domains of 1
arbitrary shape, where it is not convenient or possible to restrict the

support of the basis functions to rectangles, a different approach is

necessary, and is provided by t'te use of so-called interpolation polynomials -J
[Fl, Z11. The construction of such polynomials and their relationship to

the local basis is the subject of Section 2.

Once we have the basis for our approximate solution v(x,y) , the

next step is to carry out i;r~e integrations required to obtain the coefficients " V
of the linear system, as described in Chapter 1, Section 2. We emphasize

that the computational procedure is considerably different from the formal

description appearing in Chapter 1. The integrations required to determine

the coefficients are carried out element-by-element, and the actual basis

functions are not (explicitly) generated at all. This computation, where

the equations are actually generated, is the subject of Section 3.

The last part of the generation procedure is usually referred to as

assembly of the ecuations, or just "assembly", and is the subject of I
Section 4. Suppose our (linear) elliptic boundary value problem is cast in

a variational formi with a functional I [ v] that we wish to minimize with

respect to the parameters of v . The result of the element-by-element

process described in Section 3 is a set of small quadratic functions, each

one representing a contribution to I [v] of a particular subdomain (element)

of the domain R . These small functions have some parameters in common,
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and the process of combining these -a'nctions into a single large one is

the task referred to as "assembly". The elimination of parameters whose

values are determined by boundary conditions is also done at this stage.
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2. Construction of Tnterpolating Polynomials

In this section we describe the construction of interpolating polynomials

on triangles. However, the procedure and many of our remarks apply for a

general polygon. Let R be a simply or multiply connected domain in

the (x,y) plane with piecewise linear boundary 6R . Zlo'.mal [Z6] has

described a method for removing this restriction on 6R . We assume R

has been triangulated into N triangles, with &djacent triangles having

either a common vertex or a common side and with the union of the closed

triangles equal to RU 6R • An example of a domain triangulated in this

way appears below.

RR
,

L

Figure 2.1
L

Our aim is to construct a piecewise polynomial of degree d onil

RU R . To do this we assume that on each triangle TV CR U 6R p,

v(x,y) is a polynomial pV(x,y) of degree d . We impose the conditions L
that p\' and p Y 3n neighboring triangles have common values and/or
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derivatives at node points lying on their common boundary. We begin by

studying the choice of parameters necessary to have v(x,y) of class

C(o) • This probl rn has also been considered in [H2] for general

polygons, and we give a special case of their arguments below.

Consider the figure below, depicting two adjacent triangles T ant

YT having conmon boundary L . Directions tangent and normal to L will
8 v

be denoted respectively by s and n . Thus (Q1 ) is the derivative

of v normal to L evaluated at Q1 The notation v(s) will mean the

function v evaluated at the point Q + s(Q-Q)

1

Ti  T 7

:LI L

~Y

[T

Figure 2.2

Suppose we require that A

(2.1) Dpv(Qi) -- Drpy(q.) , i -1,2, 1• < ,

where r ( IT 2 ) , 'rJ ='i+r2 , and Dv = . Then
S21 

2 Then,x y

~kv6k

(2.2) - - , i 1,2 , < Po s~k  k  
-
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which implies v(s) will be continuous along L if

(2.3) d+l1 2(P+ 1) [
If (2.3) is satisfied, - is a polynomial of degree

nk

d-k in s , having d-k+l coefficients. Thus we require d-k+l

kconditions of agreement between eP and 'kP along L if k
3n k  6n k  6n k i7

is to be continuous along L . The conditions (2.2) imply

6j V(Q) ~ 7 ~I
(2.4) . i =1,2 , j< O-k,

(2.h) n 3n3

imposing 2(0-k+l) conditions. Therefore, we need d-k+l-2(0-k+l) =

2(+1l)-k-2(0-k+l) k more conditions of agreement imposed on

k and . Carrying out the samra arguments for k = 1,2,...

6n n~

and summing implies we need a(o+l)/2 additional "normal derivative"

parameters situated at nodes along L if v is to be of class C( )

along L . Using the fact that the number of coefficie.its -n a general L
d-th degree polynomial in two variables is n= (d+11 d+2)/2 yields

the inequality L

(25) (d+l)(d+2) (P2 + a(0+1))

where the term (P+i)(+2) is the number of derivatives DTv L I "

2
The factor 3 appears because a triangle has 3 sides and 3 vertices. The L
inequality (2.5) yields the conditions

(2.) P(+l) > 3(o+I) and d = 2+1.
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Surplus degrees of freedom in the polynomial can be associated with nodes

in the interior of the triangle. For approximation properties of these

piecewise polynomials see [Zl,Z4,Z5].

The conditions (2.6) imply, in particular, that we require d to be

at least 5 [9) for v to be in C( 1 ) [C(2)I . Note that this applies

only to the polynomials described above. A common technique used to reduce

the number of parameters in the problem is to restrict the polynomial of

degree d on each triangle to be of degree d-k , k > 0 in parts of the

triangle. For example, Goal [G2] begins with the 3-4 element (Appendix A)

and by a suitable modification forces the normal derivative to each side

of the triangle to vary linearly along the boundary. Agreement in value

and first derivatives at the vertices Q1 and Z2 guarantees continuity 'I
L in the first derivatives along L . Zienkiewicz [Z3] and Clough and Tocher

[Cl] also present techniques for achieving the same goal. Irons [-1]

describes a method for constructing a quartic element generating a

piecewise polynomial subspace v EC Bell [B6] describes a method

for eliminating the side parameters on the 5-6 element by imposing the

L condition that the derivative of the polynomial normal to each triangle

side be a cubic rather than a quartic. Zl~mal [Z6 ] uses a similar technique

to eliminate the centroid parameter from element 3-4.

We will refer to elements of the type just described as deficient

elements, to distinguish them from elemF ts which are polynomials of a

particular degree over the whole triangle. We have restriced our

studies in this thesis to non-deficient elements. (An explanation

appears at the end of this section.)
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We now turn o the actubl construction of interpolating polynomials.

Let the number of nodes associated with each triangle be m = 3(m +)+m,

where m. > 0 is the number of nodes on each triangle side (not including

the endpoints), and let m I > 0 be the number of nodes in the interior

of each triangle. We denote the total number of nodes in the domain by

M , and the coordinates of the nodes by Qi = (xi.yi) I i 1)2 ... M

The indices of the nodes of triangle T will be denoted by vlv 2 ,...m V

with the vertex nodes coming first in counterclockwise order, followed by

the side iodes also in counterclockwise order, followed by the interior

nodes (in no specific order). When m S > 0 we assume that the side nodes

evenly sub-divide the triangle sides. Triangle TV Is depicted in

Figure 2.3 below.

Triangle TV V2

V 3

Figure 2.3
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To simplify the notaoion in the sequel, we will assume that v. = i

We begin by expressing pv(x.,y) in the form

n

V ((d)

where (d is the n -dimensional column vector whose elements are thed
monomial terms of the general d-th degree polynomial in two variables.

We assume that the terms appear in order of non-decreasing degree, and in

increasing powers of y for consecutive terms of the same degree. For

example,

()T
xy,,(,y ,x x yxyy )

The superscript d will not usually be included explicitly. The vector

a %) contains the cccfficients of p, and V and ( d) refer to the

k-th components of ceY and p (d) respectively.

Now our goal is to represent p on T in terms of its nodal

parameters. For example, if d = 1 (nd = 3) , p can be uniquely

characterized by its values at the vertices of TV • If p iL a cubic

polynomial (nd = 10) , one way to characterize it is by the parameters

DTV (Gi) , i = 1,2, I and where Q4 is at the

centroid of T . Note that both of these characterizations assure

continuity across inerelement boundaries, as predicted by the theory

presented in the first part of this section.

We denote the rumber of parameters associated with node i by

and the vector of those parameters by q " Its j-th element will be

denoted by qi, j The parameters associated with pv(xy) ordered aE

6ojL



indicated by Figure 2.3, are then given by

(.) qT T T T

Now suppose L. is a column vector of length pi whose elements are

linear functionals designed to produce the parameters associated with

node i when it is applied to v . For example, the vertex nodes for

the cubic polynomial discussed above would have associated vector

functionals of the form

* (2.10) L,,[f1 f (Q)

fy'Q 1/

Such an operator applied to a j-dimensional vector is understood to

operate term by term; a column vector would yield a pij -dimensional

column vector, a row vector would produce a pi by j matrix. Defining

LV by

~L
(2.11) Zl- 1 ( 3 , ,. .

we have immediately the identity

(2-12) £'rv] = q" . :I:

Using (2.7) along with the fact that v is p' on TV , we can

rewrite (2.12) as a matrix equation involving (7 and q

(2.13) qV= ZV[LV]

:£[T 1 ,,

C V aV
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a
As we stated in Section 3.2, we are restricting our basis to be

[U polynomirls of a specific degree on each element (non-deficient elements)
J m

so we assume that nd = PI CV will be non-singular provided our
2=i

node points are distinct and our parameters associated with each node

point are linearly independent.

Using (2.13) in (2.7) yields

T T -T
(2.14) pV(x,y) =aV = qV C V q

V V
giving the polynomial on T in terms of the parameters which we have

chosen to characterize it. Here the notation CV means (CV T

Consider again the cubic example discussed above on triangle TV

having vertices Qi = (xi.,y) i = 1-,2,3, and centroid Q4  (x4 ,y,)

Thus u. = 3 i = 1,2 3 , and = . Then qV is

T
(2.15) qV (vl, vl, x vi, y, v2, v2,x, v2 ,y v, v3.,x , v3,yV)

where v i t  denotes the first partial derivative ol v with respect to

t at the point Q = (xi.Yi) The matrix CV is

22 35 2 2 Y11 xX y xly1 yo 1 x1y1  y 1 x.LJ. -

2 2
0 1 0 2~x y50 x,2x 1 yl y1

0 0 1 0 x1  2y, 0 2 2xy 32
01 0 1  1  Y1 5y
x2 2 2 2 x2 5

2  Y2 2  x2Y2  y 2  X2 x2Y2  x2 Y2  y2

0 0 1 0 x3  2y3 o x 3y2 3 y

2 2 5 2 2
x4  y4  x4 x4y4  y4  x4y4  x4 y4 4
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We can write (2.14) in the form

nd d -T d

(2.16) p'V(xy) = qk E C( vT k Ek=1 (j=l =1q

m Pi
i~ qi, (X Y)

j- 1 ,j=l

where *k4j is associated with the j-th parameter of node k . The 's

are often referred to as coordinate functions in the engineering literature,

and are the members of the local basis in terms of which v(xy) is being

represented. It is easy to verify that 4k vanishes on the boundary L
of the union of the triangles to which node k belongs, provided the

nodal parameters have been chosen to guarantee continuity across interelement

boundaries. The function *k'j is defined to be zero outside the region.

kj M

There will obviously be N = E Pk parameters and corresponding

basis functions in the representation of v on R

The procedure we have described for generating the basis functions is

in a sense quite general. The generation of the matrix CV can be

isolated in a subroutine, and the only required input is

(i) the degree d of the polynomial,

(ii) the node coordinates (or a formula for generating them),

(iii) the nodal parameters.

Item (ii) is supplied by the mesh, while (i) and (iii) can be specified by

the user. Each row of CV is obtained by evaluating the components of (

at the corresponding node cocrdinate (perhaps after differentiating them,

if the corresponding parameter is a derivative parameter). Observe that

the matrix terms are sinple monomial terms of the form x i £ 2 l > 2 0•
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Differentiation of them can be easily done symbolically, with obvious

computational advantages. Furthermore, ertries in each row will have

common factors of the form x. and y f , 2 > 0 . Thus, the generation
1 1

of CV can be implemented in an efficient as well as general way.

Provided we choose linearly independent parameters equal in number

to (d+l)(d+2)/2, the matrix CV will be non-singular and we can obtain the basis
-T

functions on TV in the factored form *V = [Cv q] Having pv(x,y)i

in the form (2.14) is particularly convenient for our intended applications.

Anticipating the next section, observe that on triangle TV the following

equation holds

-T
(2.17) D'p)(x,y) qVC V D'p

where the differential operator D' operates term by term on . Thus,

if the basis functions are derived in this factored form, derivatives of

tne trial function v can be easily obtai-ied symbolically. Furthermore,

for two differential operators DT and Da0 expressions of the form

D p'(x,y)D pVIx,y) become

T -1 -T

(2.18) q C [,'rq4D(p)T]CV qV

and again the matrix in the square brackets can be obtained syn, ol.caLy.

Its terms ere monomial terms of the form x y f 1'12 -> 0.

Note that the ease with which we can manipulate the basis functions

depends upon being able to express each basis (coordinate) function as a

linear combination of monomials. For some deficient elements this is

not possible, and differentiation and integration of the coordinate

functions must be done numerically [HI] and/or carried out by hand and
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I
programmed explicitly. This would not be particularly disadvantageous

for a special program designed to solve a specific class of :moblems. Li
Also, in a production setting, many of the computations involving the

functions can be done once and the results stored in a library. However,

from our point of view of designing a general a.urpose program we have

favored the use of non-deficient elements, which guarantee the invertibility

of CV and the representation of the basis functions as linear combinations

of monomial terms.

[
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3. Generation of the Equations

This section describes the actual calculation of the finite element

equations once we have an expression for our piecewise polynomial as

discussed in the previous section. Suppose our problem is cast in a

variational form, and we wish to minimize a functional I[v] = IR[v]+I6R[V]

with respect to the parameters of v , where

2 2 2
(3.1) I~v]=S(a v+a v v +a V + aa v ) + x 51IR[1VX 2 xy Y 4v+Y

I

= 2(3.2) IR -v] (a 6v +a7 v)dsLI aR

and v is restricted to satisfy a linear bolmdary condition of the form

(3-3) a 8 v 9+n a1oVs = a ll on R

Here a., i = 1,2,...,ll are functions of x and y, and v n  and vs

are the (inward) normal derivative and (counter-clockwise) tangential

derivative of v on R

Our interest here is in the implementation; consequently, we wi~l

not concern ourselves with the range of boundary value problems that can

be covered by the above form, or relations and/or smoothness that the

functions a. , j -,2,...,ll and v must possess in order for the

problem to be correctly formulated. Also, we do not mean to imply that

the procedure to be dcscribed applies only to the above functional. It

will be clear that the construction applies to 4ther quairatic integrands

(involving derivatives of higher order, for example).

We begin by observing that Ilv] can be expressed as a sum of the

L
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contributions from each triangle TV c R U R • Thus we can write

N AN A
(3.4) I1v1 = f[Vj I IN V] IRV])

where IV[v] has the form (3.1) with the domain of integration replaced

by T V , and IVR[V] has the form (3.2) with the contour of integration

R replaced by 6RV , the part of TV lying on R . For TV with no

side on 6R IvR[v] is obviously zero and does not have to be

considered. The basic procedure is to obtain expressions for each term

of the summation (3.4) as functions of the parameters of v .

Consider first the telm Iv[v] corresponding to triangle TV

(3.5) IV[v]=c(av 2 +a v v +a V 2+a V 2 + a v) dxdy
R J x 2 xy 3 y 4 5

TV

Recall from Section 2 that our e-xpressi-n for p(x~y) on TV could be

written in the foin

and we observed in Section 3.2 that D pV= qVc - D , where the operator L
D operates on the column vector (p term by term. Substituting (3.6)

into (3.5), we obtain the following expression for the first four

(quadratic) terms of (3.5):

TI

(3.7) .V .V •~~~ap 4 d y C

Deferring treatment of the last term in (35) until later, suppose L.
TV has cne or more sides lying on 3R and denote that segment of R
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2'2Kby 8RV . Then we have

(3.8) kR~vI = V (a 6v + a7 v)ds
RR

and again using (3.6), we obtain the following quadratic iunction from

the first term in the integrand of (3.8):

T -
(3.9) 6W c fagqds CVqV~

We will denote the sum of the matrices in braces in (3.7) and (3.9)

by HV . The so-called stiffness matrix is then given by

-T -1
(3.10) A = C HC

T
and the quadratic terms of I[v] yield the function q% AVq.

Turning now to the linear terms in Tl[v] and IVR[V] we obtain

using exactly the same procedure, the expression

T -T1
(3.11) qV a y dxdy + j a7f ds

Denoting the vector in braces by wV , the linear terms in

v = "I[v] + IVRtv] yield

T -T T

(3.12) q C V wV =qV bV

where the vector by is usually referred to as a load vector by engineers.

Repeating the above proced ,e for each triangle TV , v = 1,2,...,NA '

we obtain finally
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N TT
(5.-15) I[v] (qV AV aV+ +qV bV)V

where we note th7.t there will be parameters qjV common to more than one

of the terms of the summation.

If we assume all our boundary conditions are natural (i.e., they are

satisfied automatically because of the design of the functional being

minimized), then (3.3) is null, andour approximate solution is obtained

by minimizing (3.1;) with respect to the qV's That is, we satisfy V
(5.14) (Av +AV qV+bV)= O

If v must satisfy some boundary conditions of the form (3.3), then

some of the q'vs are constrained to assume certain values or satisfy

certain relations. This entire assembly problem and incorporation of

boundary conditions is examined in the next section.

We now examine the details of implementation of the procedure outlined

in (3.6)-(3.12). To reduce the amount of computation that must be done

for each triangle, t is convenient to confine as much of the computation

as possible to a stanvrd canonical triangle T0 for which part of the

computation can be done once and for all. The savings that can be realized L
depend rather heavily on whether the coefficients of the functional ai

i = 1,2,...,7 are constants or veriable. Tie following scheme has bean V
described for particalar problem-element combinations by Z,1mal [Z5],

Dupuis and Goal [D31 and others. V
Let T0 have vertices (0,0), (1,0) and (0,1) . Then the linear L

transformation mapping T°  ( -r plane) onto TV (x-y plane) having
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{ vertices (xiyi) i = 12,3 is

(x I ti (3.15) (x (x + = +k9 J Q

Uy y 6Y1 -A Y31/ X

where Ax i ~- with the subscripts interpreted modulo 3. The

inverse mapping is then

/(3.16) -Y 3  x 1 ,

where IJI is the determinant of JV. Note that

(3.17) ff w(x.,y) dxdy = fw(x(t) ,y(q)) I J*VI dt d
TV T

L'ow define the quantities q ,p , ar.- C on To (in the t-q plane)

in exactly the same way as their counterparts were defined in the x-y

plane. For example,

(3-18) T (3) = (1, , 2ti, 2 ;t 2, -, q2, )3) .

Using (3.16) and (3.17), the integrals (3.5) and (3.8) can be

expressed in the form

(3.19) vf 2 + g~w) IJIdtdq

and

(3.2o ) (g~w2 + g )IJVds
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where w( ,q) = v(x( ,),y(t,q)) , and the g? I's will depend not only

on their respective a i Is, but also upon the mapping and the other terms

in the functional. The contour integral (3.20) is understood to apply

only to the part of T°  corresponding to Rv . Again it is convenient

to collect the linear and quadratic terms together. Carrying out the above

procedure for the quadratic terms in (3.19) and (3.20) we obtain

(521 -T -~T f (g -T gV -T IV gV T + gV-
(3.21) qC-r ( (g1l g3 4 p)JIdtd

+ f(gV T ~jV)ds) C- q6 C q

1-I

The expression in braces in (3.21) is the - counterpart of the

matrix HV defined above, and we denote it by HV . Then the -

counterpart of AV is given by

(3.22) H C -T v -i

The linear terms of (3.19)-(3.20) yield

(5.25) qT~Tr gp tlJVl dr + f g cp J~lds}

or

iT -- T~ -T
(3.24) C w q b

Finally, since we wish IV[v] to be expressed in terms of the

parameters in the x-y plane rather than the t- plane, we must apply

a transformation derived from (3.15) 'o AV and b . Specifically, using

71



(3.15), we can easily construct a block diagonal matrix K satisfying

(3.25) q=Kq'

from which we can get, by substitution of (3.25) into (3.22) and (3.24),

the following

T~ T~

(3.26) A' - Kv AK , b =--  bV

The following points are important in The implementation of the above.

(i) If the coefficients of the quadratic terms in the functional are

constants (or at least constant over each triangle), then the corresponding

g V 's will be constant over the triangles. Thus A can be expressed as

the sum of matrices of the form 71Gl+7,G2+73G3+74G4 where the G Is

are independent of v , (and thus need to be computed once), and yi =i(V )

For example, the first term would be

L

(3.27) gv Jvj C~-T jj p T -dI dr

The generation of the G. s can be doie very efficiently as follows.1

First we compate

(3.28) ~ij =f fj' Tdg d - ij!/ (i+j+2) 1

for all i and j less than t , where p depends upon d and the terms

in the functional. The components of the integral are then I , where~rlr 2

L.



rI  and r2  are simple integer functions. When gi% is not constant over
21

each triangle, numerical integration will probably be necessary to

evaluate the expressions in the braces in (3.21) and (5.23). Even in this

instance, having the basis functions in the form (2.14) is still very

convenient, since it allows us to ccmpute the integrand at the evaluation

points very efficiently. For example, consider evaluating the ij-th

component of the integrand of the first bracketed integral in (3.21) at

the point ( , ) . The function to be evaluated will have the form

-1- 2 2-1 f21 2l -2 1 2
(3.29) g1  4 -? 9 92 1£ 2 + gV +j ~ g V 2

li-"2 >  0

Assuming we have the basis functions in a convenient symbolic form,

thc evaluation of the integrand can be optimized considerably by precomputing
21-2 2-2

the common factor t 1 .

(ii) The matrix C and its LU decomposition need only be computed once,

since C is independent of V •

(iii) The computation done so far has been independent of the boundary

conditions (3.13). Thus a change in them would not require re-computation U
of the A V and bV , v - 1,2,..,N * Also note tbat changes in a5

and a 7  wculd not change A v =1 .
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(iv) Consider the calculation represented by (3.22), and denote nd

by n . Normally, one would expect the congruence transformation to

3 2,
require 2n + O(n I multiplicative operations, since we need to perform

2n back-solves, each requiring n + O(n) operations. We will show how

to reduce the computation to i n5 +O(n 2 ) under the assumption that H

is symmetric. [Equation (3.14) above implies that we only need A +AV ;

therefore, if 9 is not symmetric, we can compute -T

The following technique has also been used in [p12] in connection with

solving generalized eigenvalue problems.

K * Suppose we have the LU decomposition of CT. Then the basic

procedure is

(a) Solve LU W =HV

(b) Solve LU = WT

Consider step (a). Suppose we compute only the lower triangle of W ;

i.e., we do not complete the U-solve, so that W has the form \ 0

it is easy to show that now the calculation of W requires the following

number of multiplicative operations:

= n 2 n n3  n3 2

n 2  i2 2 3

-a = +=--+T + (n) = n +0O(n)

ii

Now consider step (b). We use the following notation to indicate partitions

T
of L U and C ,w here the upper left partition is k by k

L 7U

L
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We will denote the i-th column of AV by a. , its first k elements

k k
by a , and its last n-k elements by a. . The first i elements of

the i-th row of W will be denoted by w. . Then step (b) can be described1

as follows: For k = n,n-l,...,l compute

k k k k k'
L1 U 1 ak  wk - C2 a k

The first step yields the last row and coll.-mn of A ; the next step yields

tne remaining unknown parts of the (n-l)-st row and column and so on. Note

that at each stage the vector ak has already been computed by previous

steps. Here we use the fact that Lk Uk = C k The number of multiplicative
1 1 1*

operations )b required for step (b) is given by

n 2 n_ n3 2
i + i(n-i) = n i = +  (n

1~ i=l L

Thus, the total computation required for the congruence transformation

5 2 7
has been reduced from 2n"+ O (n2) to 0- + Ob= n3 + O (n2

Wheit the coefficients of the quadratic terms are constants, this

technique ill not be too important since the number of such congruence

transformations will be small. The computation of the G matrices

discussed above is initialization, and for NA >> nd , the work reqaired

for equation generation is essentially proportional to Nnd 2 However,

if one or more of the quadratic coefficients is variable, a congruence L
transi'xrmation must be done for each triangle, and using this technique

saves 5 n d N multiplicative operations.

The equation generation can be summarized as follows:

L
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E. St~ e1_ (Initialization)

(i) Compute C and its I decomposition.

(iL) If all the quadratic terms have constant coefficients then

compute the apropriate G matrices and store them.

Step 2

For each triangle T'  io the following:

(iii) Compute the mapping from To to TV and generate the quantities

P V and Ve

(iv) Generate A and b

(v) Apply the transformation K V to AV and bV to obtain AV

and bV

J

TI
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4. Assembly of the Equations

Having completed the procedure described in Section 3.3 for each 1
triangle, we have a system of the following form to solve: V

('.1A %- A+A V )qV+bv) ,

or V
N A

Combining the terms in (4.1), and renumbering the qIs and b. Vs from1

to N , we obtain the system

(4.2) Aq =b .L

As we pointed out in the previous section, if boundary (0onditions of

the form (3.3) are imposed, then some of the ele:ents of q will be

required to assume specific values or satisfy specific relations.

Suppose first that the boundary conditions only impose constraints on

single parameters, rather than specifying relations that must hold between

several parameters. Partitioning q into qI and q2 , equation (4.2) i
can be written in the form:

(4.3) (l(

A21 A22  q2  b2

Now if q2  must satisfy q2 = qO ,we can solve

(4.4) Allq = b I - Al2q2
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As Felippa and Clough [FlI point ot, in order to avoid rearranging

. ,we woild actia1l.v s1ve thp following system in snme permuted

form

We shall see in Chapter 4 that if we use "profile" methods, this practice

costs almost no storage or computation. We denote this system by

(4.6) A'q' b,

Now suppose further that the boundary conditions impose some general

linear constraints on the solution of (4.6). As an example, we appeal to

our cubic element 3-4 and the diagram below:

H y

x

Figure 4.1

86vSuppose the boundary condition - g(xy) is imposed along 6R

Then at the point Q ,we want to impose the condition (4.7) on the derivative

parameters at the node 1l
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(4.7) -V(N)sin a + v(QI) cos a = g(Ql) .

If our boundary conditions impose 2 such constraints (where

<< N in general), we can write them as an IxN matrix equation

(4.8) Qq' = c

The solution of (4.6) can be viewed as the point which minimizes the

quadratic function

(4.9) (q') -
iq -q'Tib •

Using the method of Lagrange multipliers to minimize (4.9) subject to the

constraints (4.8), we obtain the following system to solve

(4.10) (At QT)q ) b

where X is a vector of I Lagrange multipliers. The algorithm for V
solving (4.10) is

a) Solve AW = QT and compute Y = QW (and its LU decomposition) V
b) Solve Ay = b' U,

(4 .11) ii
c) Solve T . = Qy-c

d) Solve A'qt = b,--QTX I
At first sight this algorithm appears expensive, since 2+2 solutions L

of systems of the form (4.6) are involved. However, if the coefficients

in (3.3) are constants, Y remains constant for different boundary

conditions. Thu., in such circumstances, our problem may be solved using
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steps (b), (c) and (d) once the LU decomposi°cion of Y is available.

Another possibility for handling boundary conditions of the form

(4.7) is to modify the parameters of our problem. Applying the proper

orthogonal transformation to the stiffness matrices, we rotate the

deriatie paameers o gt vand v . The boundary condition then
derivative parameters to get v ad h onacniin the

n S

imposes a condition only on vn, and the variable can be eliminated in

the obvious way.

Which of the two approaches for handling derivative boundary

conditions is better? It is fairly clear that the latter approach will

generally require less computation, since the rotations which must be

applied are relatively inexpensive and each one saves a solution of the

system (4.6). For very large systems, the difference between the two

computations will be great. Furthermore, the relative difference between

the work required to decompose A' and that required for a back solution

is not as large for band systems as for dense systems, since the factor

is the bandwidth rather than N . Thus our remark above that A' need

only be decomposed once is not as important as you would expect.

In supoort of the first method of treating derivative boundacy

conditions is its simple and uniform implementation. The computation can

be isolated in one subroutine which generates the matrix Q • In contrast,

the second approach is very complicated. Corners having interior angles

which are not multiples of ir/2 may force us to apply non-orthogonal

transformations to the derivative parameters in order to handle boundary

conditions imposed on both incident edges. The fact ramains, however, that

such complexity pays off. For typical problems (and a one shot computation)

L the first approach can require twice as much ccmputation as the second.
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5. Inclusion of Singular Functions in the Basis

For some elliptic boundary-value problems, particularly in domains 1.

with re-entrant corners, the solutions may have unboundd. derivatives at

some of the corners, so they are hard to approximate by polynomials. A

successful approach due to Fix [F2] is to enrich the basis by adding

appropriate "singular" t*unctions that represent the solution accurately

near the corners.

Fix employed tensor product spaces rather than the interpolation method

for generating the finite-element equations (the distinction between the

two approaches was made in Chapter ") . Thus, once he had designed the

appropriate singular functions having small support, the inclusion of

them in the basis was straightforward. The extra terms were simply added

N
to the expansion l'or v

The inclusion of such singular functions is still possible with the

interpolation approach, but the procedure is not quite so obvious. Suppose

we wish to include one sin ular function '" in the basis, and assume

that '" / 0 on triangle TV . We will ignore the complication of the

V 0
mapping of* T onto the canonical triangle T . Using the notation we

developed in Section 1 of this chapter, we consider the computation

involving the following term on triangle T:

(5.1) fu 2dx dy .L

TV

We first note that the basis functions on TV under "normal" circumstances

are given by 'i , i = 1,-,3,...,m , where

-T
(5.2) *V~ = C V

i
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The approximation to u on TV is thus given by

Sv~ ~ =VC-T

(5.3) v(x,y) = qV *V = qVCV q,

Ii i
In this form it is clear how to add the singular function. Including the

singular function l* in the sum of (5-3) and going in reverse we have:

(5.4) v(x,y) = qV *V + q

T-

The expression for (5.1) is therefore

-T ~ ~ IF 11 1

T 1
In this particular example, the stiffness matrix for T') will be (n+l)

by (n+l) rather than n by n . The extension to more than one singular

function is clear.

I-
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CHAPTER 4

SOLUTION OF FINITE ELIEMENT EQUATIONS

1. !ntroductior. and Notation

In thi s chapter we will stady the storage -id solution of finite element

oystems of equations. As we pointed out in Chapter I, the N xN finite

element coefficient matrix A will in general be sparse; that is, many

[1
(perhaps most) of its elements will be zero. To say that a matrix is sparse,

with no further qualification, is not of much practical significance. What

is important is whether we can make use of its sparseness to reduce storage

and/or computation requirements in its subsequent processing; that is, we are

interested in whether the matrix has exploitable structure rather than just

its spazseness. One of our aims in this chapter will be to study the structure

of finite element equations and to show how such structure can be utilized.

In this connection we present some experiments comparing several ordering

i algorithms (i.e., algorithms which order or reorder the rows and columns

of A with the aim of reducing storage and computation requirements). We

'4 also present two efficient methods for storing sparse matrices.

We have confined our attention to direct methods for solving finite

element equations for the following reasons:

(1) Storage is becoming increasingly abundant, and one of the prime reasons

for using iterative methods is that they generally require much less storage

than direct methods. Computer memories are steadily becoming larger, the

capacity and performance of peripheral storage devices such as disks and

drums is improving rapidly, and large bulk core storage [F8] (which can be

viewed as a very fast peripheral storage device) is becoming common. The

use of virtual memory [Dl, M5] is another important Jevelopment. Under ideal

2)4conditions, the user is allowed to address a very large memory (§: 2 words

I8L



on the IBM 560/67) which need not exist physically but where addresses

are automatically mapped onto actual physical addresses during execution.

We do not mean to imply that storage is not an imrortant consideration in

the choice of methods; our contention is simply that the characteristics of

today's computer systems allow the solution of large linear systems with

direct methods.

(2) Finite element methods tend to yield denser systems of equations than Li

usual finite difference methods. Suppose the parameter qi, j is associated

with node i . Then there will usually be a non-zero entry in q. * s equation
1,j

for every parameter associated with every triangle containing node i • It
L1

is easy to see that higner degree polynomials must lead to denser systems,

because more parameters will be associated with each triangle. We discuss 1.
this subject in detail in Section 6 of this chapter. Since the amount of

computation per ite-ation for most iterative schemes is prujortional to the

number of non-zero elements in the matrix, this increased density increases

the solution time for iterative methods. [However, for fixed N

higher degree polynomials yield systems which require more computation L
for their direct solution also, so it is difficult to make precise

statements as to which methods require the least computation.] Fix and

Larsen [F31 have compared Gaussian elimination and successive over-

relaxation (SOR) for some special tensor-product spaces, and their analysis

and numerical experiments suggest that SOR is more efficient for some L
problems, if N is large enough. Their conclusions are based on the

assumption that the equations have only one right side, and in many practical 1<
situations, this is unlikely. Also, their analysis is based solely on {
operation counts. For tensor-product bases such an analysis is reasonable,

since the structure of the grid and the coefficient matrix can conveniently

L.



be stored in two-aimensional arrays. The data management is no more complex

than -hat resulting from using a five point difference operator on a regular

mesh. However, for an arbitrary triangular mesh, A will not have such

regular structure, and the calculation of a single component of the

residual vector may be relatively expensive. In general, A will be

symmetric and only its -upper or lower triangle will be stored; therefore,

in order to compute a single component of the residaal, we must be able

to access lines of elements in both rows and columns of the upper (or lower)

triangle o2 A . If the storage scheme is "row oriented", accessing elements

in a specific column may require scanning several rows, and visa versa for

column-oriented schemes. By contrast, elimination schemes can be conveniently

implemented so that they operate only on rows or only on columns. We discuss

this subject 4n detail later; our point is that data management can be

important in comparing methods.

(3) Finally, and perhaps most important, a rather large amount of practical

engineering experience indicates that direct methods are preferable to

iterative ones. The reasons for this include:

(i) Finite element systems (designed to yield a prescribed accuracy)

tend to have a considerably lower order N than systems resulting from

usual finite difference methods. This is due in part to the ease with

which we can grade the net (thus making efficient use of each degree

of freedom). Also, as we shall see in Chapte-' 5, increasing the degree

d of our piecewise polynomial allows us to deces .. E and still

obtain the prescribed accuracy.

(ii) Direct methods allow the use of iterative refinement [F4, W2],

which provides an estimate of the condition of the discrete problem and

the accuracy of the discrete solution. Such information is hard to
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II
obtain using iterative methods. Since we d~o not know the true (discrete)

solution, the error at each step of the iteration must be estimated on I.
the basis of such measurable quantities as the size of the residuals or

the size of the last correction vector. Unfortunately, small residuals

or small changes in successive iterates do not guarantee small errors in

the computed solution. By using direct methods, we also avoid the L

problem of finding a "good" over-relaxation parameter. v

(iii) Usually, more than one right side must be processed. The initial

cost of the decomposition, which represents the majority of the computation {
for the first solution, does not have to be repeated for succeeding

right sides.

11

The study of sparse matrix problems is a rapidly expanding field.

(See Willoughby [W3], and the extensive references therein.) in the sequel,

we will assume A is a symmetric positive definite matrix. As we observed

in Chapter I, finite element methods for elliptic problems cast in a

variational form yield this type of matrix. Following Rose (R31 and Cuthill

and McKee [C5], A will be said to have bandwidth m if and only if L

a.. / 0 =*.i-j1 < m . Note that this differs from the usual definition of

bandwidth, which is defined in terms of m to be 2m+l . For any matrix W ,

we define the quantities f ] = min~jlwij 0) 1 i = 1,2,...,N , and
wedein N will denote the number

8W = i-f. Thus, m = maxA The number NN n
1 i i

of non-zero elements in W • L
Rose [R3] has given a detailed graph theoretic analysis of the Cholesky

decomposition algorithm. With Rose we define the graph G = (XE)

associated with A , where X and E are sets of nodes and edges,

respectively. Vertices correspond to rows of the matrix, and edges 1.

correspond to non-zero, off-diagonal elements of A If i > j and

L.
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Sai /- 0 , then vertex i is joined to vertex j by an edge. (We

then say that vertices i and j are adjacent.) The

degree of a vertex is the number of edges incident to it. An example

Sdemonstrating this notation appears below. An "X" indicates a non-zero

element, and a "0" indicates a zero element.

:1 0 X X0

X X X 0 X0

(1.1) A X 0 0 X 0 0 4

.. 0 X X 0 X
i oxoo x6

L.
The ordering of the equations induces a corresponding ordering of the

vertices of G . In general, we denote an ordering a on X

aa
(t1,2,3,...,N) -IX) by G . Denoting the set of vertices adjacent to

' vertex i by 7?, (tneighbours" of vertex i) , we can describe the

Cholesky decomposition of A into LL by a sequence of elimination

graphs [R3] G = GO,G1,G 2 ,...,GN_ 1 , where G. is obtained from

1G i 1 by deleting vertex i and its incident edges and adding edges so that

the vertices of 7?i are pairwise adjacent. Using our example above,

we have:

41: 5

The zero/non-zero structure of L is thus given by

L8
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x
x

x x x
(1.2) L x x x

x xx xx

The number of edges added during elimination is usually referred to as

the fill-in, and is simply the difference oetween LZ and the number of

non-zero elements in the lower triangle of A , including the diagonal. L.

Rose [R3] points out that the fill-in will be zero iff for all

N> i > j > k >O , (ai A 0 A Rik A O) = a jk A 0 . He shows that L must

have this property (if we ignore the occurrence of accidental zeros), and

calls matrices having this property perfect elimination matrices.

An element aij i > j will be said to lie in the profile of A

(a.. EPr(A)) if i < i . Hence a.. O a.. :Pr(A) , but

a.. EPr(A) A a.. / 0 • This is a simple but important generalization of the

concept of bandwidth. Observe that Pr(A) = Pr(L) . We will denote the L

number of elements in Pr(A) by IPr(A) I Thus A is sparse if

Pr(A) is significantly less than N 2  ue is NX wbibnwh,

NjL'~ ( +l) .
_ iL

Now the decomposition of A into IL] is unique; however,, the amount

of computation done to obtain L will depend on the structure of A , and L

how carefully we take advantage of it. Suppose A is NxN with bandwidth m

Then treating A as a dense band matrix, it is easy to show that the number
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of multiplicative operations required to canpute L is approximately
SNm(m+3) M3 ."bn

• m@ =  23- We will refer to the algorithm as the 'band
B 2 T

Cholesky (BC) decomposition algorithm".

of tSuppose now that F. < m for at least one i , and we take advantage

of this fact. The following theorem gives the number 9p of multiplicative

operations required to compute L , if we consider A and L as having

dense profiles.

Theorem 1.1

Let fA be as defined above. Then the number 9p of multiplicative

operations required to compute L is given by

A A

(1.3) N i-2 23.= E: 2
i=2

In addition, N square root operations and 9 p-N additions are required.

- ?

Proof:

Let us denote the elements of L by 2.. and consider the computation

of the i-th column of L • The element f is computed using the formula

i-l 2 1/2(1.4) Iii- aii - j

1

which requires .8. f multiplications,8 additions and a square

root operation. The elements 2. , k , are computed using

i-8
(1.5) -k Z: f% i W / i

ki ki J=q ik jf i
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I:

which requires 8i(5i+1)/2 multiplicative operations and 5i(6i-l)/2

additions. Summing over i yields (1.3). This method will be

referred to as the "profile Cholesky (PC) decomposition algorithm".

The following is obvious:

Proposition 1.1

For any ordering of A , we have GP<G B

Finally, suppose we are prepared to take advantage of every non-zero

element in A and L ; that is, we will operate only on those elements

which are actually changed by the elimination process. Let di be the
L.

degree of the i-th vertex in the elimination graph Gi 1 . Then we have

Theorem 1.2 (Rose [R3])

The number of multiplicative operations 9G required to compute L

is given by

N1 d i(di+3)
(1.6) E 2

j=l

N-1 d.(d.+1)
An additionsa N square root operations and 2 1 addition

i=l 2

operations are required.

The reader is referred to [R] for the proof of (1.6). This L
algorithm will be referred to as the "graph Cholesky (GC) decomposition

algorithm".

Now we must consider the tradeoff between the amount of computation and

storage requi'ed by the different algorithms and their relative complexity.

L
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Note that the graph theoretic analysis of elimination implicitly assumes that

we are prepared to take full advantage of the structure of A ; thus, for

these results to be relevant, we must employ a very sophisticated program,

~ i such as that of Gustafson et al [G3]. [In our 6 by 6 example above, we

must detect and make use of the fact that .242 = 0 .] Hence, for the GC

algorithm to be worthwhile, L must have a significant nunber of zero

elements within its profile, and it has been our experience that the L's

derived from finite element coefficient matrices do not have sparse profiles.

(See 2ection 4.5 for some numerical experiments in support of this claim.)

Therefore, we have confined our studies to the BC and PC algorithms. We

should emphasize that our decision is based only on empirical evidence;

just how dense Pr(L) must be over all orderings appears to be an open

question, aven for piecewise linear polynomials on a square regular right

utriangular mesh.
So, in summary, we have chosen for various reasons to limit our

Lattention to direct methods for solving finite element systems, and to

look at no more of the structure of the matrix than its profile.

Within this framework, our goals are to reduce storage, reduce computation,

and to simplify data management. These gnals compete with one another, and

the characteristics of the particular computer system (hardware and software)

will have considerable effect on which is most important.

Finally, in the sequel, the reader should keep in mind that fi ,

Pr(A) , B Q 9P and G are all f'unctions of the ordering a of A•

Thus comparisons between such quantities should be understood to mean

for the same U , unless specifically stated otherwise.
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2. Compact Storage Schemes for Sparse Matrices

As in the previous section, let us denote our sparse, symmetric,

positive definite coefficient matrix by A , with Cholesky factorization

L . When piecewise polynomials of degree > 1 are used, the matrix A

will be more dense than that resulting from usual finite differerce schemes,

Unfortunately, its profile is observed to become only slightly more dense

with increasing degree. Hence it is advantageous to store the matrix in a

compact manner to save storage. It is important to keep the organization

simple to al-low rapid row and/or column operations on the matrix. The

prime consideration is not whether we can randomly access a particular

element of the matrix efficiently but whether we can efficiently multiply

the matrix by a vector or multiply one of its rows by a vector.

As we have mentioned before, finite element coefficient matrices tend

to have a good deal less uniformity in structure than those arising from

traditional finite difference methods. Because of the likelihood of graded

nets and the possibility of associating more than one parameter with each

grid point, it is not convenient to design a storaee scheme based on the

geometry of the mesh in question. This is in contrast with most storage [
schemes for difference equations. V

Ideally, the number of storage units required to store the Nx h

symmetric coefficient matrix A should be equal to N0 , the number of

non-,zero elements in the lower triangle of A (Dicluding the diagonal).

While it is obviously possible to store A in N storage locations, the

problem is to find an efficient mapping function that allows us to easily

locate element a.. • In this section we describe two methods for efficienoly

storing a sparse symmetric matrix.
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Method 1. Let V be a vector defined by

( .=) . = [ij A 0) , i = 1,2, .. IN{ I j=l 1

N
Obviously, V NV.0=*N Let 0 . be define-d by

i1

(3.2) .= Vj V. i 1.=1.. P

The non-zero elements of the i-th row of the lower triangle of A are then

stored in contiguous locations of an array S of length N0  beginning at

S and ending at S . In an arrsay w , also of length No , the

corresponding distances of the elements from the diagonal are placed. Hence,

if -1 < P , , then S contains element a. i An example is
p :1 11P

'iseful in understanding the scheme. Consider the following 15x 15 matrix.

8 1

6 4 3
8 9 5

1 4 6 8

9 12 SYNIvRIC 10

(2.3) 4 8 2 2 14

2 4 16

2 3 3 19

1 6 8 22

8 9 9 25

4 4 7 27

L 9 6 2 30
6 8 32

5 2 2 35

7 44 38

U
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Here NO = 38 and the vectors S and. w are given by

8 0
6 1
4 0
8 1
9 0
1 2

4 ~ 1
6 0

( .4) S- 9 w= 3
12 0

4 5
8 3
1 1
2 0

At first glance, the overhead for this method appears prohibitively high

since each word stored requires an extra word to store its "offset" from

the diagonal. However, note that the elements of w will all be bounded

by m , the bandwidth of A . On the IBM 360, for example, the array w

can be declared as short integer (2 bytes = 16 bits), whereas the elements

of S may be 4 or 8 bytes long. If A is being stored in double precision,

the overhead is only about 25 percent, and the total storage required is

essentially proportional to No  To access a particular element a.

of A will require scanning i - elements of the array w . Since

the elements for i- < k < p, are ordered, a binary search can be

used, so the amount of work required to access element a.. would be

proportional to log 2( i- i 1 ) . Even for rather dense bands (resulting

from use of polynomials of high degree), this is very satisfactory. For

example, using quintic polynomials on a typical mesh, we would need to

access about 4 elements of w before finding a...

If storage is very scarce, a somewhat more efficient scheme is the

following:



1: Method 2. Let A and be as described above, and define the

vector bA  as in Section 4.1. Let A be stored in the array S as in

Method 1, but instead of defining the array w as in Method 1, let w
N

be a bit array of length (b A+ 1) . Define the vector V by
i i

i
~(2.5) F)'-A + 1) , i -= 1, 2,...N.

V j=l 1

Now define o by

(26 ' if a~~ i. /0 < <A ,

i-  10 if a. J

We again use the example (2.3) to aid in understanding the scheme.

The arrays V and w are given by

V T = (1, 3, 5, 8, 12, 18, 21, 26, 30, 36, Ito 46, 50, 56, 60), and

T T = (l I I ] 4 ]0] 0ll OolO lllol1 lO0 01000111)

row 12 3 4 5 6 7 8 9 10 11 12 13 14 15

Thus, the zero/non-zero structure of the i-th row of the lower triangle

* of A is stored in the segment of w begiming at w 1 and ending

at w,, The storage required to store A is thus

K (2.7) (No + 2N) words + [N bits.

Note that the storage required for jt and P becomes less significant

with increasing N and fixed N . The use of a bit array may cause some

program overhead (unless the machine is bit addressable), and since w is

not ordered, up to V- i-l elements of w will have to be examined to

95



retrieve element a.. (Note that i -i may be >> P -
mayb >i-

Although this method will undoubtedly require considerably niore program

overhead than method 1 to use, it uses extremely little unnecessary storage.

For example, using this method on an IBM 360 computer to store a dense

500 , 300 symmetric matrix in short precision requires less than 4 percent

mo-e storage than the usual method of storing a triangular matrix in a

one-dimensional array. The percentage overhead would be halved if the array

were beingstored in double precision.

Third]y, we present a method due to Jennings [Jl] which is applicable

when IPr(W) I ; N ; that is, when there are few zero elements within

Pr(W) . As we mentioned before, it has been our experience that the L's

derived from finite element coefficient matrices have this property.

Method 3 ("Profile Storage Scheme")

Let the lower triangle (including the diagonal) of A be stored

row by row in contiguous locations of a one-dimensional array S . Defining

the vector as in method 2 above, then element ai ? i > j is given

by Sp , where p = i -i+j . [Note that S now has the same zero/non-zero

configurat ion as o in method 2.]
L.

This method obviously applies equally well to storing lower triangular

matrices, and it is primarily for this reason that we present it. The

overhead for this storage scheme is only the storage required for 11 . To

store L , we need jPr(L) I+ N words. If A is stored in this manner,

the FC algorithm can be applied "in place" and no temporary storage is

necessary.

Finally, we mention the most cemmonly used method for storing band

matrices [Ml], which we will refer to as the "diagonal storage scheme" or

simply as method 4. The diagram below describes the storage layout:
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a2 1  a2 2

a31 a32 33

(2.8)

a ,1 a
i]. .in

SaNN-m N,N-I aN, N N x (m+!)

A

The required storage is (m+l)N , and in order for the method to be

efficient we should have m << N

The following observation is of practical interest:

Proposition 2,1

Let VB = (m+l)N and V. N IPr(L)I + N. Then for any ordering

of A, p <V B + N, and if i(m-i) > N, then V <V B .

Proof:

N
= N + !Pr(L)I = N + = (5i+i)

N
=N + . + N

N
=(N+I)m + N - (m-F)

i N

'h B + N (m- i )
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Thus, Proposition 2.1 says that for any ordering, the storage

required for method 3 cannot exceed that required for method 4 by more

than N words. In practical situations we have found that V is
P

always considerably less than V . See, for example, the experiments

in section 4.5 and the analysis in section 4.7. 1.
Note that there is only a very weak relationship between lPx(A)I

and m. All we can show is

(2.9) N + m < IPr(A)I < (m+l)N - m(m+l) / 2

Essentia.ly, (2.9) says that for a fixed m, IPr(A)l can vary by nearly

a factor of N.

98
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3. Node Ordering for a Small Bandwidth

The reasons most often presented for reducing the bandwidth of a

matrix are to reduce the storage and computation required to solve the

I associated linear system or eigenproblem. However, these reasons are valid

only if we plan to store and process the matrix as a dense band matrix. In

view of Prop. 1.1, Prop. 2.1 and (2.9), the only justification for ordering

to achieve a small bandwidth is to simplify data management. In this

section we discuss the reasons for bandwidth reduction and present some

algorithms for obtaining small bandwidth orderings. Note that the question

here is not whether we should use the BC or PC algorithms for a fixed

ordering c , but rather, when we should use m (instead of lPr(A)

or 9p) as a criterion (objective function) to minimize over all orderings

of A.

1To begin with, regardless of the ordering a of A , if A is symmetric

and positive definite, there sess to be no reason to use the BC rather than

the PC algorithm. We say this because V P < iB (usually), <pV 0 B, and the

computational overhead of the PC over the BC algorithm is negligible.

However, the linea2 system we vant to solve may not always be positive

definite; although elliptic problems will yield positive definite matrices,

many methods for solving the associated eigenproblem involve shifts of

u origin which destrcy the positive definiteness o2 the system being solved [W2].

When A is indefinite, partial pivoting is required to maintain numerical

stability, and the profile storage scheme is no longer applicable since we

are now computing PA = LU for some (a-priori) unknown N by N permutation

matrix P • The only storage scheme which is well adapted to partial

pivoting is method 4. For an Algol procedtire for computing the LU

decomposition of indefinite band matrices, see [Ml]. Thus, in this
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A.situation m = m is important, since we can only guarantee that

PA mAm < A and the combined storage requirement for L and U (using

the diagonal storage scheme of Section 4.2) is therefore (3m+l)N

The work of Bunch [B13] on stable decompositions of symmetric indefinite

systems may be important in this regard since a shift of origin does not

6estroy symmetry. We compute PAPT = DLT , where D is block diagonal

with 1 by 1 ani 2 by 2 blocks. Unfortunately, there does not appear

to be any way to bound m a-priori. Thus, to be competitive (with

the band UIT algorithm) with respect to storage [computation} we should

have m >N/6 [n > N/2/33 .

Another situation in which we might wish to have a small bandwidth is

when auxiliary storage must be used. Overlay versions of band decomposition

algorithms can be implemented most efficiently if km2  (1 < k < 3) storage

units of main memory are available. Hence, it is important to have m

small. Note that this does not preclude the possibility of using the PC

algorithm, if applicable. Having m small simply limits the number of

rows or columns we should have available at any given time.

If a matrix A can be stored in such a way that only its non-zero

elements need to be stored and considered in a residual calculation, it is

clear that bandwidth ordering makes no sense for iterative schemes that L
require only a residual calculation.

Obviously, a useful bandwidth reducer must consume less time than it L
saves the linear equation solver, or else significantly reduce the amount

of storage required. It will be relatively unimportant in practice whether

the minimum bandwidth is achieved, but we should get reasonably close to the

minimum bandwidth in an economical amount of time. Note that an easily

ascertained lower bound for the bandwidth (not necessarily attainable) can
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11
be obtained by finding [k/2] , where k is the largest munber of

non-zero elements in any row.

Two basic approaches to ordering for a small bandwidth are in current

use. They can be classed as direct (or one-pass) and iterative. The

direct schemes [R3, C5] usually work closely with the associated graph,
and proceed by successively removing (i.e., numbering) the nodes of the

graph according to some strategy based on the (usually local) structure

of the graph. The iterative schemes, on the other hand. assume a given

ordering and attempt to improve the ordering (again according to some

strategy) by finding appropriate row and/or column interchanges. Since

the direct methods only need a single staiting node to begin, while the

iterative schemes need an initial ordering, a reasorable procedure is to

use a direct method to obtain an initial orderine and then use a iterative

scheme to improve it. The problem of finding an initial starting nodc

is discussed in Section 5.

We now describe two popular direct methods for bandwidth ordering.

A. Spanning Tree Method (Cuthill and McKee [C5]).

1. Choose a starting node x, p and define Q = [xl.

2. For each noue in Q (in the order in which they are

numbered), number their unnumbered neighbors in order of

increasing degree.

3. Set Q [nodes assigned numbers in the last execution of

Step 21.

4. If i =0 , then stop; otherwise go to Step 2.
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The algorithm is equivalent to finding a spanning tree (rooted at the

initial node) of the graph G , hence the name. [A tree is a connected

graph with N nodes arid N-1 edges. A spanning tree of the graph G is

a subgraph of G which is a tree and contains all N nodes.]

The obvious advantage of this method is that it is very efficient.

The reiuired work is proportional to N times the average degree of the

vetices, and thus only increases linearly with N - Very good results are

obta4 ned, provided a good starting node is selected.

The minimum degree algorithm [R3] is similar to method A above L.

and is as follows:

B. Minimum Degree Algorithm L.

1. Set i = 1.

2. In the elimination graph Gi_ choose x. to be any

vertex satisfying

= min
yEX.i-i-I.o

where G (Xi_1 ,Ei_1 )

3. Set i = i+l <
4. If i > N , then stop; otherwise go to Step 2.

From a practical point of view this algorithm has little to offer

over Method A, and is obviously inferior with respect to the amount of

work that is required; N(N-l)/2 vertices must be tested. A practical

modification that drastically reduces the amount of work required, and

actually improves the results Dbtained as well, is to restrict the

candidates considered in Step 2 to those having at least one numbered neighbor.

Nevertheless, experience has shown that the Cuthill-McKee algorithm seldom
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I
produces a larger bandwidth than the minimum degree algorithm, and even

with the above modifications the latter requires substantially more work

than the former.

We now turn to iterative methods for reducing the bandwidth of a

matrix IR4, T31. Here it is more convenient to speak in matrix, rather

than graph-theoretic, terms. The differences among these iterative schemes

are largely matters of programming techniques rather than fundamental ideas.

The general idea follows: Assume we are given an initial ordering yielding

a bandwidth of m . Non-zero elements satisfying li-jl = m will be

referred to as edge elements. Since we are assuming that the matrix is

zero/non-zero symmetric, we will preserve the symmetry by interchanging

U" corresponding columns whenever rows are interchanged.

1. Set max = m

2. Try to interchange rows containing edge elements with rows not

containing edge elements so as to reduce the bandwidth, and

simultaneously interchange columns.

5. Re-compute m. If m <max , then set max = m and go to

Step 2.

4. If max is greater than or equal to its value when Step 4 was

last executed, then stop. Otherwise compute a vector v of N

values as follows:

N NSv i - jlaij A Ol E 1ai hO0
j=l j-l

Order the equations in increasing order of v , and order the

columns correspondingly. The first time this is done the bandwidth

may increase; after the first step repeat as long as the bandwidth

decreases. Re-compute m , set max = m , and go to Step 2.
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Step 4 has the effect of reordering the rows so that as nearly as

possible each row has The same number of non-zero elements on each side of

the diagonal element. It could be called the balanci sage. For matrices

that have a: imnerent band structure (as ours have), Step 4 does not have

much afect but for randomly sparse matrices Step 4 can improve the performance

of the reducer remarkably.

lo4.

[.

I

£2
£2
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4. Node Ordering to Reduce IPr(A)I

In the light of Prop. 1.1 and Prop. 2.1, it should be clear that if

A is symmetric and positive definite, a potentially profitable strategy

for ordering is to look for orderings which reduce 9 or jPr(A)

(= IPr(L)I)

The term "near opzimal" as it appears in the literature [R3,T3]

usually means near-optimal with respect to fill-in. Under our assumption

that Pr(L) - i-1Z , a near optimal ordering should "nearly" minimize

IPr(A) . [Since 9 is a more difficult function to work with, we

have not tried to look for orderings to reduce it. Tacitly, we have

assumed that an a yielding a small lPr(A) I wilE also yield an acceptable e
P

As with bandwidth ordering algorithms, there are direct and iterative

schemes for near-optimal ordering. In order to explain the first (direct)

method we define the deficiency D(xi) [R3] of a vertex x. in a

graph G by

(4.1) D(xi) = It(x,xk) IXj G7(xi) A XkC5(xi) A xj 0(Xk)]

Recall the construction of elimination graphs. It is easy to verify that if

D(xi) 0 , Gi = (Xi,Ei) is obtained from G i 1 = (XilJEi_l) by deletion

of x. and its incident edges; no edges are added. This provides the

motivation for the

A. Minimum Deficiency Algorithm [R3,T3]: Let Go = (XE) . Then

1. Set i = .

L 2. In the elimination graph G_ 1 , choose x. to be any1

L vertex such that

ID(x i )I min mm I(y) I
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where

- Gi_= (Xi_l,Ei) • V
3. Set i = i+l.

4. If i > N , stop; otherwise go to Step 2.

In this direct algorithm the next node to be numbered is the one that 1.
will introduce the fewest non-zero elements when it is eliminated. It is

obviously fairly expensive to find this node, since a deficiency test of a

node y involves j 7(Y)j-" I(y)+l) / 2 edge tests. Since the graph

usually must be stored as a bit matrix, and few machines are bit-addressable,

these tests may involve considerable overhead. As with the minimum degree "L~.

algorithm (Section 4.3) we have found that restricting the candidates in

Step 2 to those nodes that have at least one numbered neighbor does not

hurt the ordering produced by the minimum deficiency method, and this

restriction drastically reduces the amount of computation involved.

The following iterative scheme has been found to significantly reduce

lPr(A)j . Again we will revert to matrix notation. The vector fA is as

defined in Section 4.1. -

k B. Profile Reduction Algorithm.

.* NI Compute Q=i(i -fi)

2. Let the vector v be defined by 1I

N 
[=

v

3. For each row i having v. > 0 , examine those rows1

j = i+li+2,...,i+k for some (small) k > 0 , and determine

the number of words s.. of storage that can be saved by

2.3
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interchanging rows (and corresponding columns) i and j

If the maximum s.. is positive, interchange rows i and j

(and corresponding columns), adjusting the vector fA accordingly.

4. Compute = L(i- f) . If Q <Q then set 0, =Q and
ialK= L

go to Step 2; otherwise stop.

The actual search for the best interchange (Step 3) is by far the most

expensive parL of the algorithm, and in a practical situation only those

rows with v. greater than some threshold should be tested since the1

maximum possible gain in storage resulting from interchanging row i and

row j is s. < v. x (j-l) . A reasonable threshold seenis to be 3 or 4.

Good results have been obtained with the parameter k mentioned in Step 3

set to 5.
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5. Saare Experiments with Ordering Algorithms

The coefficient matrix A obtained from the finite element formulation

of a prob am tends to have considerably less uniformity in structure than

the matrix arising from a finite difference method applied to the same

problem. First, the node points of the finite element mesh may not all

play the same role, and as a result have different connectivities. Whether

a parameter is associated with a vertex, side or interior node and whether

there is more than one parameter associated with the node will greatly

affect the number of non-zero elements in its equation. Second, the

finite element mesh will very likely be graded, which also causes disorder

in the structure of A . I

Our aims in this section are

(a) to report on the performance of several ordering algorithms and

demonstrate the savings attainable by using profile instead of band

methods for storage and computation;

(b) to report on an intriguing and agreeable property of the reverse

Cuthill-McKee ordering (our terminology) which we have discovered.

That is, if the Cuthill-McKee algo':ithm numbers the nodes 1,2,...,N ,

th the crE Cuthill-McKee (RCM) ordering would be N,N-I,...,l

(c) to present some experimental evidence supporting our implicit assumption

that the profile of L " usually quite dense; i.e.,

Pr(L) I'-

We will make use of the f'ollowing labels for the different algorithms

and quantities in this section. Some of them are repeated in other sections.
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CM -- Cuthill-McKee

RCM -- Reverse Cuthill-McKee
Dim eInitial Ordering Algoritims~MDG -- Minimum Degree

MDF -- Minimum Deficiency

B2 -- Bandwidth Reduction
I mprovem ent -,A-'gor it has

PR - Profile Reduction I

BC -- Band Cholesky
PC Profile Cholesky Decomposition Algorithms

B BC
multiplicative operation count for the [) decomposition algorithm

1/ -- storage required to store a symmetric or lower triangularL"B
matrix using the band oriented method 4 (Section 4.2)

-- storage required to store a symmetric or lower triangular
matrix using the (profile) storage method 3 (Section 4.2)

PI ?(A) -- profile of the matrix A

. (Pr(A)) -- density of the profile of A

In order to keep the number and size of our tables at a level where the

information can be readily assimilated, we have eliminated the M-G algorithm

from consideration because we found it to be much inferior to the CM algorithm.

As we mentioned before, it is natural to use a direct ordering algorithm to

obtain an initial ordering for the iterative improvement schemes (BR or PR).

We have limited our studies to tbe ordevings provided by CM, CM-PR, RCM and

MDF. [The hyphen should be read as "followed by". ] The application of the

BR algorithm to the CM and RCE orderings reduced m by only one or two, and

so the results are not included. The application of the PR algorithm to the RCM

and MDF ordering resulted in only a small reduction in Pr(A) , and was also
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4.

not included. We have limited our studies to elements 1-5, 2-6 and 3-10

(see Appendix A), and to the three domains shown below:

Half-L Mesh Hollow-Square Mesh Inverted-T Mesh

Figure 5.1

For the experiments, the meshes were subdivided by various factors as

described in Section 2.3 in such a way that for a given domain each element

yielded the same N . The reported times are in seccnds for an IBM 360/91

computer. The values of 9 and V for each algorithm have been scaled by

the values for the CM ordering. The actual values for the CM ordering are

reported in parentheses. As before, we indicate the bandwidth by m

We made use of the geometry of the domain to choose an initial node

for the "initial ordering" algorithms. We arbitrarily picked a node from

one of the two most widely separated triangles in the domain. For "long,

straight" domains this will obviously work well, but for U-shaped domains,

for example, it could lead to a bad choice. One should have the capability

of forcing the algorithms to begin at a particular node in cases where the

above strategy cou.ld lead to an unfortunate choice. From a practical point

of view, designing and executing a sophisticated algorithm in order to search

for a good starting node would probably be more expensive than i-s ultimate

value would warrant.
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The results of the excerinents are contained in the following three

tables.

Matrix and Elimination Statistics for Several

Ordering Algorithms for the Half-L Domain

Element CM CM-PR RCM MDF

1-3

Time .183 1.5 .183 16.124

m 20 20 20 83

9B 1(50053) 1 1 13

N =241 1(37515) 1 .96 .91

B 1(5061) 1 1 6

NA 1585 V, 1(4,97) 1 .97 .95Z
.(Pr(A)) .231 .231 .236 .243

._(Pr (L)) 1.000 1.00 1.000 1.000

Fill-in 3043 3043 2950 284

2-6

Time .26 10.3 .26 20.83

m 42 48 42 52

9 1(196302) 1.27 1 1.47

B

N 241 9O 1(023342) .36 .36 .31

"'.(10363) 1.1 1 1.25

NA = 2581 V, 1(7013) .6! .19 .54

Z

.197 .328 .337 .61

.&(Pr(L)) .979 .979 .990 .996

Fill-in 5608 2805 2734 2484

3-10
Time .25 9.9 .25 27.24

m 63 81 63 8L,

9 B  ;i(406188) 1. 55 1 1.4

N =241 9 p 1(239873) .30 .21 .19

'(B ] ( 1 54 24 )  1.28 1 1.3
Z: 3793 Vp a (10Y(2) .58 49 .44

c (Pr (A)) .2O3 .3534 .428 .467f

&(Pr (L)) .979 .985 .990 .99,6

Fill-in 7707 36o6 2655 2 77

Table 5.1
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Matrix and Elimination Statistics for Several Ordering

Algorithms for the Hollow Square Domain

Element CM CM-PR RCM MDF

1-3

Time .17 1.79 .17 9.2

m 16 16 16 20

0 1(34776) 1 1 !. 5
BI

N = 252 p 1(26299) 1 .99 .95

(B 1(4284) 1 1 1.2
wA 1620 Vp 1(3598) 1 .99 .97
z

.B(Pr(A)) .272 .272 .273 .278

.&(Pr(L)) 1.000 1.000 1.000 1.000

Fill-in 2510 2505 2!,89 2421

2-6 V

Time .25 10.49 .23 18.3

m 36 46 36' 42

9B 2(155609) 1.56 1 1.32

N = 252 9p 1(95520) .35 .36 .33

VB 1(9324) 1.27 1 1.16

NA= 2628 V 1(6837) .60 .62 .59
zp

.&(Pr(A)) .219 .372 .362 .381

.&(Pr(L)) .982 .972 .991 .994

Fill-in 5029 2328 2493 2316

3-10

Time .32 1O.6 .32 25.1

m 71 78 71 63
@B j 1.17 1 .81

N : 252 p 1(252516) .31 .22 .19

1B (18144) 1.1o 1 .89

NA 7852 V 1(J.o25) .57 .49 .44
z Z

.&(Pcr(A)) .204 .367 .426 .465

.&(Pr(L)) .988 .988 .994 .996

Fill-in 7898 3468 2738 2345

Table 5.2
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Matrix and Elimination Statistics fur Several

Ordering Algorithms for the Inverted T Domain

Element CM CM-PR RCM iDF

1-3

Time .22 2.52 .22 9.32

m 20 20 20 35

9 l(63283) 1 1 2.82

N = 301 9p 1(31496) 1 .88 .74

VB  1(6321) 1 1 2.52

z- 1,,9 1(4258) 1 .95 .88z
'(Pr(A)) .280 .280 .296 .321

&(r (L1) 1.000 1.000 1.000 1.000

Fill-in 2852 2847 1886 2334

2-6

Time .30 12.36 .30 18.58

m 40 46 40 42
9B 1(230017) 1.3 1 1.1

N 301 p 1(103348) .34 .34 .28

YB 1(12341) 1.15 1 1.05

NA 2628 Vp 1(7422) .60 -59 .56
&(Pr(A)) .238 .406 .415 .441

.6(Pr(L)) .981 .983 .985 .994

Fill-in 5292 2414 2368 2130

3-10

Time .30 11.5 .30 22.2
m 57 72 57 65

1(441244) 1.52 1 1.26

N= 301 p (188422) .30 .23 .19

(B 1(17458) 1.26 1 1.14

N 4525 Vp 1(9887) .57 .51 .47
&'(Pr(A)) .252 .455 .515 .560

.&(Pr (L)) .981 .972 .821 •995

I Fill-in 6993 2737 1428 1881

Table 5.3
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The information in the above tables leads us to the following

conclusions:

(1) We appear to be fully just2 "ied in asmrming that L is almost dense.

[We have computed the fill-in for some random orderingj as well, and

although &(Pr(L)) was smaller for some other orderings, we observed
L. L.

that IPr(Ai)I < JPr(Aj)I = N < NZ , where A. is the matrix A-Z - I
.3 T

with some ordering a , and A. = L.L. In other words, reducing the

profile appears to reduce the fill-in.]

(2) The RCM algorithm seems to be easily the best algorithm. The ordering

not only supplies a near optimal bandwidth, but also yields a prfile almost

as good as the MDF algorithm, which is v'ohibitively expensive. ITh'.re are

several reasons why methods based on elimination graphs are expensive to

use. First, even if we restrict the candidates to be ordered first to

those having at least one numbered neighbor, the ntuber of candidates

tends to be quite large, particularly for elements with relatively many

nodes. Secondly, we not only must test edges of the graph, but we also

must usually add edges as new elimination graphs are formed. This addition

of edges requires computer time, and also increases the degree of the nodes

which are candidates or potential candidates for subsequent ordering. Since

the required" work for each step of the MDF algorithm is proportional to the

sum of the squares of the degrees of the nodes being tested, these added edges

can dramatica2ly increase the amount of work involved.]

The reason that the RCM ordering is superior to the CM order (profile-

wise) can be explained as follows. The CM algorithm tends to order the

neighbors of each node consecutively, and the non-zero elements of A thus

tend to be arranged in sequences in successive rows (columns) of the lower

(upper) triangle of A • This is just the reverse of what we want for a
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Fsmall profile; hence the discovery of the RCM ordering.

(3) It is very beneficial to use profile methods rather than band

methods. The following table, which can be obtained from the tables

above, brings out this point dramatically.

Domain I
a - Hollow Inverted

ElemSquare T

.72 .75 .441-315.82 .86 .64

26.21 .22 .1452-6
•43 .45 .35

3-10 13 .098 .097

S.2 j.28 .28

Table 5.4: Gp(RCM) / GB(RCM) and YP(RCM) / VB(RCM) for

N Each Element-Domain Combination.

(4) Although we make no claims about te programming of the ordering

algorithms (they could be improved by programming some of the bit-pushing

in machine language), the reported times are an accurate reflection of

relative numbers of edge tests (zero/non-zero tests) required by each

N algorithm. Hence, although the magnitudes of the times might be improved

by a more careful implementation, we would not expect their relative size

Lo change much.
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The Value of NA for Arbitrary Elements and Triangular or

Quadrilaterai Meshes

Suppose we have an arbitrary triangular mesh with NA triangles,

'B boundary vertices, and VI interior vetices. Let SB be the number

of triangle sides lying on the boundary and SI be the number of sides

lying in the interior of the mesh. Let H be the number of holes in the

mesh (domain).

In order to characterize the stencil, let nV , nS  and n be the

number of parameters associated respectively with vertex nodes, the node(s)

on each side, and the interior of eacn triangle. For example) element 3-10

(Appendix A) would yield nV = 1 , nS = 2 , and n, = 1 . As in Chapter 3,

we let n = 3(nV+nS) +nI 

Our aim in this section iL to obtain NA in terms of N SZ A VB B

nC , nS and nI . Our method of proof is similar to that in [El], where

the following relations between mesh parameters are proved.

(6.1) NA S (SV+2S BV + 2H-2

3 B B I

Consider the following typical mesh:

Figure 6.1
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Oux strategy is to successively remove triangles from the mesh in

s ac h a way as to leave all remaining triangles with at least one sid-,

inside the mesh. (Thus, triangles 1 or 2 in Figure 6.1 can be removed,

but 3 cannot.) As we remove triangles, we will count the number of non-zero

elements removed from A . We ignore those cases where elements are

accidentally zero because of the regular properties of the mesh and/or

the coefficients of the differential operator. We neel the following

Lemma 6.1

Let a triangle of type 1 (having two external sides) be removed from

the mesh. Then NA is reduced by
z

(6.2) a1  n2  ( 2n V)

Proof-

The total number of elements in A due to the interaction of
21 parameters associated with a triangle is n . However, not all the

connections are removed by the deletion of triangle 1; those correSponding

to parameters lying on the remaining side of triangle 1 (including its end

nodes) are not removed, and there are (n + 2nv 2 such non-zero elements.S

This proves the lemma.

Lemma 6.2

Let a triangle of type 2 be removed from the mesh. Then Nz  isz
reduced by

22

(6.3) a2 = 2n(ni+ns) - (nl+n,) + 2(n+n)2

17



Proof:

As in Lemma 6.1, we first note that the total contribution to z
2

from the connections of parameters in triangle 2 is n . However, two

of the triangle sides and their incident vertex remain in the mesh, so the

connections of their parameters must not be counted unless they correspond

to different remaining sides. The truth of (6.3) can be demonstrated by

assuming the equations in question are all grouped last in A and examining

Figure 6.2. The submatrices marked with an asterisk are the parts removed

from A (in the diagram below)

I i I I 66

MatrixA I I i--
I * parameters associated with the

internal vertex.

"sameters lying on an interior,
- -- - ieand

-- F],(it outside vertex/

I *| * I* I . parameters lying on the external
I I g 4 side and interior of triangle 2.

internal internal
vertex-- sid( 7

S2 - outside vertex
2 01
.'' . external side

Figure 6.2
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Summing the elements in the marked submatrices yields (6.3).

Now suppose the mesh has a hole in it. Eventually we will reach a

situation where the hole is bounded at one placp by a single side such as

depicted below.

ij

V side to be removed

Figure 6.3

Such a side will be referred to as a connecting side. We present the

following

Lemma 6.3

Let nV , n. and n, be as above. Then the reinovwl of a connecting

side from the mesh reduces NA byz
(6.4) n= n+ 4n nV + 2n

The proof is siilar to that employed in Lemma 6.2 and we omit it.

We can now prove the following
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Theorem 6.4

Let V , S and H be the number of vertices, sides and holes

respectively in a two dimensional triangular mesh. Let n , ' -2

and a3 be defined as above. Then NA is given by
z

(6.5) n2 + (v-3)a 1 + (S+3-H-2V)a 2 + H 3

Proof:

Suppose we reduce our mesh to a single triangle by successively

removing triangles of type 1 and type 2, (and. connecting sides if any),

leavirg A with n2 non-zero elements. In order to reduce the mesh

to one triangle we must remove V-3 triangles of type 1, since removal

of a type 2 triangle or a connecting side removes no vertex. Thus the

removal of type 1 triangles results in the reduction of Nz by al(V-3)

Now each hole will result in the occurrence of one connecting side being

removed during the reduction of the mesh, and this will reduce NA- bya H

These two forms of demolition account for the removal of 2(V-3)+H triangle

sides, and three sides remain in our final triangle. Hence, we must have [
removed S-3-2(V-3)-H triangles of type 1, accounting for a2 (S+3-2V-H)

non-zero elements. Sunning the above expressions yields (6.5). L
Using (6.1), NZ can be expressed in terms of other (perhaps more Ii

commonly available or easily obtainable) mesh parameters.

A similar analysis can be carried out for quadrilateral elements. If [
the mesh has no holes, there are three cases: u

L
L
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I j

\ I

Case 1 Case 2 Case 3

If N2 is the nu:nber of quadrilaterals in the mesh, we can obtain the

following expressions usirg the same tecnniques as we did for the

Utriangular -mesh:

NAZ n2
(6.6) : a 1 + a2 y2 + n 27. n

jwhere

a1 = n (2nv+ns)

02  n(nI+n +2ns) - (nI+nv+2ns) 2 +2(nv+n S) 2

a3 = n(nI + n) - (n, + n8S2 + 6(ns + nr) 2

n = 4(n+ns) + n,

and y1 ,2 and 73 are non-negative integers satisfying

271 + 2 = V-4

(6.7) 3Y1 + 272 + Y:3 = S-4

Y1 + Y 2 + Y 3 =  -

I1 12



The numbers ' ?2 and y3 are, respectively, the number of

instances of case 1, case 2 and case 3 encountered during the reduction

of the mesh. The coefficient matrix of (6.7) is singular, rc,flecting

the fact that there are alternate ways to demoish the mesh, resulting in

different values of y 1 ' Y2 and .3 * We can resolve the problem as
follows. First we observe that 3 =  -2a2 . Using (6.7') in (6.6), we

have

(6.8) cr=oy! + o2 (v-4-27l ) + a3 (2N -S+2+y l ) + 2

=y,(al-2a2 +a3 ) + a2 (v-4) + c5(2N -S+ 2) +n

= 2 (v-4.) + a3 (2N-S+ 2) + n2 .

If our mesh has H holes in it, and we rename the a3  of Lemma 6.3

as C4 equation (6.8) becomes

A 2(6.9) NA = a -4) + -S(2N-s+2+H) + - + n .

This information is important because it allows us to allocate the

exact amount of storage for the non-zero elements of A as soon as we

know the mesh and the characterization of the polynomial on each element.

It is also useful in checking that our mesh is consistent and our program

is working correctly.

The expressions we have derived allow us to obtain an estimate for

the density &(A) = N_/N 2 for finite element coefficient matrices. Using

(6.4) and (2.5.6), along with (2.5.2) and (2.5.3), we have [
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(6.10) O(A) -- 2
f(n, + ;7 n + . nslN~]

L r(nV,s,h)

where

(6.11) f'nV,nS,n1) 1 2
2(n + 1 nV + 3 nsl

L he average number of non-zero elements per row of the coefficient matrix
is obviously given by ("1+ - )/(n, + nV + 3 n.).

Some typical values of P and average number of non-zero elemen65 per row

L are tabulated below.

[1 Element £(nvn ) Average number of

non-zero elements
[____per row

1-3 14.00 7.00

1 2-6 5.75 11.50
1 3-4 8.08 20.20

3-10 3.78 17.00

4-6 6.59 29.67

4-15 2.94 23.5

5-6 10.15 45.67

5-21 2.48 31.00

j Table 6.1

I'
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7. Analysis of Storawe and Computational Requirements Cor a

Model Problem

In this section we obtain estimates of @B  9P 1 VB and Vp for

a particular mesh, in o,.der to demonstrate the savings attainable by using

profile methods rather than band methods. The mesh we consider is obtained

by subdividing a unit square into p small squares of side 1/p , and then

subdividing each small square into two right triangles. An example with

p 6 is given below.

J\K..1..

F-re 7.1. Six by Six Regular Right Triangular Mesh

As in Section 4,.6, let nV , nS and n, denote the number of

parameters associated respectively with veitex nodes, the node(s) on each -

side, and the interior of each triangle. We number the nodes diagonal by
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diagonal, beginning at the lower left hand corner, and considering nodes

lying between consecutive diagonals as a row. For example, stencil 5-10

(Appendix A) would yield the numbering shown below:

29

/1

/ \2Z

12\2

.t>\,  \

13 \2

\7 15 ~2

AU :"s" ', \ rw

\o3, \ \ \ 2
ii ' \ 16 17 "2 "

12

tIt

\-5,J \10 io 21. ,28

raw 1 kk p row 2 'k /row 4

Figure 7.2
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As usual, we denote our symmetric positive definite coefficient matrix
by A , with Cholesky factorization LLT . Making use of (6.1), and

recalling the meaning of N VB , SB  and H , we can write

(7.1) N=nV(A VB H + + n ()+ nINA

where N is the dimension of A . For a p by p mesh such as

Figure 7.1, NA = 2p2  and SB = VB = 4p , yielding

(7.2) N = (n+ 3n S + 2n)p 2 + O(p) •

For this ordering, the bandwidth of A is given approximately by

(7.3) m (p+2 )nV + 3pnS + (2p-1)rL " (ry+ 3ns+ 2PnI)p

B P B PO B 2 3
= Thus) 9=-p2 and "B P- B • _

We now wish to obtain estimates for 1p and V . To simplify the

algebra, we assume nV = 1 , nS = nI = 0 (piecewis.. Linear polynomials).

We can then prove the following [j

Theorem 7.1

For a p x p regular rectangular grid, the coefficient matrix A

obtained using piecewise linear polynomials satisfies Ii
3

(7*'4) Prh'(A)I 2 + ip26 23

126 1



1Proof:
HConsider'.ng the first node point as diagonal 1, and recalling the

definition of o. (Section 4.1), we see that

A
5 = 0

A
2

5A 2 8A 25 -2, 54 2

3-4

8A 3 6A ~ 8

i A r L(r-)+ 2  < i < r(rl) + 1  < p

L Now for the main diagonal, A = pi - and for the diagonals above the1

main diagonal we can show that

(7.6) A  (r-1)(r-2) < < r(r-1) 3 < r < p+lN- ' 2 _ 1_ 2 -1, -

Using the formula IPr(A)j = N ( 5 A + 1) along with (7-5) and (7.6), we

have

lrr(A) I = i(i+2) +p(p+2) ++ i(i+1.)

p 2

2.3 + + + = + p 2 2

Thus, using the profile storage scheme rather than the band storage

scheme, we can save about one third of the storage for A or L . It is
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straightforward (but tedious) to show that for a general stencil;

(7*7) IPr'(A)I < 2

with pp B "

Recall that in Section 4.1 we showed that

A A.IN F) + 3) L
(7.8) .p'L 2

Again assuming nV = 1 and nS = n = 0 , we can prove the

following

Theorem 7.2 [
Let the EC algorithm be applied to A . Then the number o2

multiplicative operations required to comput- L is given by

(7.9) 9P= + 3pP+4 - p + 2p

Proof:

Using (7.8) along with (7.5) and (7.6), we have

1I2
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P i(i+l)(i+4) 2(p+2)(p+5) +____5
P 2 2 *l 2

p 3 + i2 + 7P2 
__ (i 3 +6i + 7i) + p

L ~ 2

1 p 4 +3p2+ - -P

Again, with some tedious algebra, we can show that

(7.10) Pi P

It is therefore, possible to halve the computation required to compute

L by using profile instead of band methods. Note that we did not prejudice

our comparison by ordering diagonally, since the bandwidth would be the

same if we numbered our nodes in the usual row by row fashion.

[1

I
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8. Miscellaneous Topics and Concluding Remarks

In this section we discuss several modifications of elimination methods

which are useful in various circumstances.

We begin by discussing a technique often referred to by engineers as

"static condensation" (SC), which can be employed to eliminate some of the

unknowns in (3.4.4) at the element level [Fl]. As we described in Chapter 1,

a basis function corresponding to an internal node of T is non-zero only

on T V . Hence, the corresponding parameter is connected only to parameters

associated with TV . Suppose we partition qV into ql and q2

where q2 corresponds to interior node parameters. We can write (3.4.1)

in the form

[V IV V(8.1) 1 B 1) j

jV BVVb
B21  B2 q2

where q2V is independent of T , V .Then (8.1) can be repolaced by

(8.2) by eliminating q:

BVBV-V V V V1
112 B22  2 1 q I  b1  L 22 2

In this way, the dimension of Al, (see Section 3.4) can be reduced by

NAnT . We can carry out a somewhat superficial analysis of the model

problem discussed in Section 4.g to show the savings possible by using this

technique To simplify the analysis we will consider the use of thd band

Cholesky algorith., and consider element 3-4. It is easy to show that

using fhe ordering of Section 4.7, the band width m is about 5p and L

the number of equations N is about 5p'- , yielding

(8.3) 
9B 125p4  

L
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F1
Now consider the corresponding quantities if we apply static condensation

and eliminate 2 .2 variables before assembly. The bandwidth m is now

pi2
only about 3p, and N !3 . Thus

(8) " 27P.

It is fairly easy to show that the number of multiplicative operations

required to eliminate the variables is

(8.5) 9 32p ,
S-

which means the tecbnique pays (in terms of multiplicative operations)

L for this particular element, problem, and solution method for all p . Of

course, its use might be justified for storage reasons alone, even if it

1did not reduce the computation.

H In general; 9SC is given by

32fl (8.6) [ -6-+ 3n (ni l)(nS+n V) + 9ni(nv+n) 2 N •

Another technique sometimes used in connection with solving finite

element equatio.s is the so-called frontal-solution method [12, K2 ]. The

basic strategy is to combine the assembly and decomposition of A by

aternating between the accumulation of coefficients of the equations (most

of the coefficients depend on more than one element) and the elimination.

A square submatrix of A (in some stage of reduction) is the only main

storage required. The matrix corresponds to "active" variables; that is,

variables which have not been eliminated and for which there are non-zero

coefficients in the equstions so far encountered. The subset of active

variables continuously changes as new elements are processed. The main

point that is usually made in favor of these schemes is that variables are
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eliminated as soon as possible, rather than in a predetermined order.

However, this flexibility is obtained at a rather high cost in programming

complexity, and the question of ordering has really only been moved a

level higher. The problem of optimal equation ordering has been replaced

by the problem of optimal order of element assembly. Our general impression

is that these methods will be most valuable when main storage is at a

high premium.
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CHAPTER 5

FINITE ELEMENT SOLUTIONS TO SOME SELEJTED PROBLEMS

1. Introduction

In this chapter we will present finite-element solutions to some

much-studied problems for which numerical solutions have been presented

in the literature. Our purpose is not necessarily to present more

accurate solutions than have been presented before, but rather to

[demonstrate that the finite element method enables us to obtain
comparatively good results efficiently and without resorting to special

LI
methods. We will provide evidence suggesting that the finite-element

method is not only desirable because of its flexibility regarding

irregular domains but is competitive or superior to common alternate

methods with respect to efficiency.

H The term efficiency is somewhat difficult to define q'iantitatively

since storage requirements, computer time, and manpower have different

relative costs in different situations. Loosely, efficiency will mean

"number of co:,rect digits per dollar".

I' We would like to emphasize that the finite-element solutions presented

in this chapter have been produced by a general program. No -.,e was mrde

of any sp (ial characteristics of the problems other than those an engineer

I would reasonably expect. For example, we graded the net small near the

re-entrant corner of the L-shaped membrane eigenvalue problems (Section 2,

1 this chapter), but we did not attempt to incorporate "singalar functions"

-into the basis [F2,F6].

Since we are using a Ritz procedure, our computed eigenvalues for

the problems below are upper bounds for the true eigenvalues.
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2. The L-Shaped Membrane Eigenvalue Problem

The L-shaped membrane eigenvalue problem has been studied by many

authors. For background materiel, see Forsythe and Wasow [F5] and Moler

[M3], and for various special computational methods, see Reid and Walsh

[R21, Fix [F2), Schwartz [1S7] and Fox, Henrici, and Moler [F61. The

domain R consists of the union of three unit squares, and we wish to

find the stationary values X (O <\% <k2 _<  < ... ) of the

fu-nctional:

u2+ u2 )d y 2 U
(2.1) Ilul= u / u dy

R R

where u = 0 on the botdary S

The interesting aspect of this problem is provided by the re-entrant

corner, which leads to unbounded derivatives of the fundamental eigen-

function in the neighborhood of the corner. Thus, the eigenfunction is

difficult to approximate by functions which do not txhibit a similar

behavior. The value XI = 9.63972 reported in [F6] is accurate to the

last digit, and we will use it for comparison.

Our first experiments make use of the following triangular mesh:
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I.

Figure 5.1

LWe are obviously making use of the symmetry of the l)rst eigenfunction

here and have graded the net appropriately near the corner. In the

tables below k is the factor by which the mesh of Figure 5.1 was

sub-divided. The eigenvalues we found using inverse iterati'r [W2] with

flan initial guess of 9.6 • The computed 1  is believed to be correct

to the last digit. Set-up tLae includes the time required to generate

' the mesh and order the nodes as well as the time required to generate

I i and assemble the equations. The missing times in the table were so small

that they were meaningless. All times are in seconds on an IBM 360/91.

1

L
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for piecewise linear functions

k Number of BSet-up Solution *
Equat ions Time Time 1 1

1 5 3 .33 -- 3.4003

2 22 6 .57 .05 1.0089

3 51 1P .62 .10 .4605

4 92 12 .93 .17 .264o

5 145 15 1.33 .30 .1718

6 210 18 2.34 .55 .1210
7 287 21 2.73 .90 .0901
8 376 24 3.53 1.28 .0699

Table 2.1
*

The rate of convergence of the ,computed kI to kI  as k - o is

obviouslyzr exceedingly slow.

The systems of linear equations involved in the inverse iteration

routine we solved using a band Gaussian elimination routine. The code

appears in Appendix B. It is interesting to note that the set-up time

dominates the solution time in all cases. This is due in part to the

characteristics of the IBM 360/91, which has a very fast floating-point

arithmetic unit and a look-ahead instruction stack. Both features tend

to make "number crunching" tasks, such as Gaussian e.Xination, proceed

rapidly and efficie u],m . The set-up 9:_jcedure, on the other hand, requires

considerable bookkeepilig and branching. ?rograms of this type do not

make effective use of the powerful machine features mentioned above.

Another reason for the relatively large set-up time is that we are using

low degree polynomials. The number of triangles to be processed (and

the associated overhead) is larger with respect to N than it would be

for quadratics, for example. Note, however, that the ratio
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(Set-up time)/(Solution time) is steadily (if slowly) decreasing.

Our second experiment again makes use of the mesh of Figure 5.1,

but we now use polynomials of higher degree to demonstrate how efficient

they can be. Table 2.2 contains results for polynomials of degrees .

through 6 ; in all cases the original mesh was used. Our inverse

iteration routine for these experiments used a sywmetric indefinite

equation solver using the pivoting algorithm of J. R. Bunch 1Bl3. The

code for this computation appears in Appendix B.

[%
l-X I for Piecewise Polynomials of Degrees 1 to 6

Degree Number of Bandwidth Set-up Solution l l
Equations Time Time 1 1

1 5 3 .53 -- 3.4003

2 22 11 .43 .1 .3720

3 51 24 .70 .25 .o16o

4 92 42 .87 .95 .0063

5 145 65 1.7 3.02 .0034

6 210 101 2.68 6.02 .0021

Table 2.,2

It is obvious that for this problem the use of polynomials of

degrea > 1 are considerably more effective than linear ones.

It is interesting to note that the °'l £btained using quintic
polynomials (Table 5.2) yielding 145 equations is comparable to the X*

obtained by Moler [M31 using finite .difference methods on a uniform mesh

with 1i = 1/100 (yielding ".5,000 equations). Our storage requirements

L3
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were virtually the same; we required 15385 words (including the storage

of A and B of the generalized eigenvalue problem Ax = %Bx ).

Moler's Fortran program, written specifically for this problem, took

about 12 minutes to execute on an IBM 7090. Thus there is a factor of

roughly 150 in execution times. The ratio of speeds of the arithmetic

units is about 100, while the effective memory speed ratio is about 10.

The ratio of times for other operations lie somewhere between these two

extremes. We feel we can safely say that the finite element method is

at least fully competitive with finite difference methods for this

problem.

it mas, of course, not necessary to use inverse iteration. We could

have used a method due to Peters and Wilkinson [P1] which essentially finds the

zeros of det(A-%B) . Although the running times would be considerably

larger than for inverse iteration, the required storage for our quintic

problem would be a total of 10,536 words (storage for A and B and sn

additional ((m+l) x (2m+l)) words for the determinant evaluation). Both

this method and inverse iteration can be used to find subdominant

eigenvalues, whereas the iriethod ased in Moler [M3] is apllicable only

for un end eigenvalue. To find subdominant eigenvalues using is technique

would require some form of deflation to render the dominant eigenvalues

equal to zero. To avoid making the coefficient matrix dense, the

deflation would have to be done implicitly which implies that the eigen-

vectors corresponding to dominant eigenvalues would have to be available.

We feel that the ability of the high order finite element methods to

obtain respectable i esults using only moderate numbers of parameters is

particularly important for eigenvalue problems because it enables us to
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apply well known, dependable methods for finding the eigenvalues of the

H discrete problem.

We again emphasize that we are not implying that finite element

Ii methods are the best ones to use for solving this particular problem.

[I Indeed, the method proposed by Fox. Henrici and Moler [F6] is probably

the best known method for finding the eigenvalues of the L-shaped

membrane. However, th.e use of such techniques requires information

which may only be .own to an expert in the field, and the utilization

of them in a general code is complicated.

I139
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3. Eigenvalues of Rhombical Domains

Bounds for the eigenvalues of rhombical domains have been obtained

by Moler [M4], Birkhoff and Fix [B7] and Stadter [S41. Moler obtains

his bounds using a method of particular solutions and Stadter obtains

bounds using the method of intermediate problems (S4]. In this section

we will show that with finite element formulations having relatively few L
parameters we can get close to or within the bounds produced by the methods

described in the above references.

The problem we considered is the equation (2.1) of Section 2 with U
a rhombical domain of side v and skew angle @ as indicated below:

y

xi
((, 0Ii

Figure 5.2
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Our first experiment takes no account of symmetry, and the results

1 are compared with some of the bounds presented by Moler [M4]. These

results are summarized in the table below. As before, k indicates the

factor by which the input mesh (indicated by the dashed line in Figure 5.2)

has been subdivided. N is the n'zfber of equations, m is the bandwidth

and d is the degree of the piecewise polynomials.

* The method emploved by Molca utilizes particular solutions to the

Laplacinn operator, and the 20 particular solutions used were carefully

chosen to agree with symmetries of the eigenfunction being approximated.L.i

Each bound calculation required about 20 seconds on an IBM 360/67. Our

-. calculations were done on an IBM 360/91. Our set-up times (for each

U example) and solution times (for each eigenvalue) have been included in

Table 3.1 for comparison purposes. The 360/67 and 360/91 have radically

U1 different design features and a comparison between the two machines is

difficult. The largest ratio of execution times this author has

[ 11 encountered between identical prcgrams run on the two machines is 15, and

n] that was for a verj special program. Usually the ratio is from three to

six and is almost always less than ten.

L
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Case 1: RhombicalMembranieEigenvalues: = 300

% _ x * Set-up and
, 34 Solution times

Moler's 2.51921 5.33333 7.24150 8.47510 20 sec per

Bounds 2.52606 5.53334 7.29028 8.50997 eigenvalue ona

kI=2, 360/67

N = 49, 2.52302 5.33341 7.26942 8.5047 .41

k=3,
m = 121,.1

N =121, 2.52284 5.33339 7.26653 8.49424 .69
m =43., .95
d=4

I k= 4, 13
N 22.52279 5.35134 7.26611 8.49374 36

j.m =65, C52933343.7

d=4

k 2,N 1 2.52284 5.35' 7.26651 8.49420 .N 81 1.2

m =5 5, .4
d5 _

Table 3.1
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- Case 2: Rhombical Membrane Eigenvalues: 9 =

*:ji

"3. 4

Moler's 2.01218 4.90575 5.15659 7.99206

Bounds 2.0l12i48 O 5.157 7.99394

N = 49,
m=22, 2.01232 4.90567 5.16407 8.00979

N = 121,

d 2.01226 4 4 5= .

N =81 ,
m 35 ,
md35, 2.01226 4.9040.8 5.15730 7.99851Iid = 5,

k=2

N = 196,
m =.69., 2.01225 4.90389 5.15705 7.99308d = 51

_k= Ik'3

Table 3.2

I
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Our first observation is that again the higher degree polynomials

appear to be more efficient. For example, in Case 1, using quintics

with N = 81 and m = 35 yields results as good as the quartic

example having N = 121 and m = 43 . For Case 2, the singularities

in the derivatives of the eigenfunctions near the corners are less

troublesome, and the value of the higher degree polynomials is less

pronounced, although still apparent. We point out that our numbers are

upper bounds to the true eigenvalues.

Moler's method is clearly superior if accurate upper and lower

bounds are required, or if approximations to many eigenvalues are desired.

However, his method may be expensive and/or difficult to apply to problems

whose operators do not have simple or easily generated families of

particular solutions.

Moler's results are for moderate values of G , and only for the

fixed membrane problem. We now wish to make some comparisons with the

results of Stadter [IS4] and Birkhoff and Fix [B7]. They report bounds

for 9 = 300 (150) 750 for the rhombus fixed at all edges, and Stadter

reports bounds for the rhombus fixed at two opposite edges and free on

the remaining two edges.

We begin with the fixed membrane problem. The bounds reported are

for eigenvalues corresponding to eigenfunctions which are symmetric with

respect to both diagonals. For purposes of comparison, we restricted

our first experiment correspondingly. Our domain is the hatched area

shown below: [

L
N L.
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y

11,

-x
9r9

Figure 3.1

j The boundary coiidition un = 0 is imposed along the boundary of

H the hatched region interior to the rhombus. This is easy to do since

it is a natural boundary condition.

In the discussion below XA  and XB are computed eigenvalues
n 

n
reported by Birkhoff and Fi . [D7]- The values A were obtained usingn

LI the Rayleigh-Ritz method with the approximating space spanned by the

affine transforms of the first 30 eigenfunctions of the square membrane.

The values XB were obtained using a second space of dimension 30 whichn

included special singular functions having the appropriate behaviour at

the corners. In both cases, only the even-even symmetry class was sought.

U, k %L, kThe eigenvalues %Un and n below are upper and lower boundsn n

supplied by the method of intermediate problems as applied to the

rombical membrane problem by Stadter [S4]. The superscript k indicates

the number of intermediate problems used, and is the size of the two (dense)

matrix eigenvalue problems which must be solved to obtain the bounds.

In [S4] Stadter reports bounds for k = 15 and Q = 30 (150) 750 , and

in [Wl] he reports bounds for k = 30 and 9 = 450

L
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The eigenvalues X2,k below are our finite element results forn

piecewise polynomials of degree I yielding k by k (band) eigenvalue

problems.

In Table 6 we compare XB I 5, 5 5 
, L,50 and %U,50 . For the

n n n n

following reasons, we feel it is fair to compare B with X5,55 even
n n

though the space which produced 0B  is only of dimension 30. First,
n

,1
Birkhoff and Fix report that 2- times as much ccmputer time was needed to

2

find the B's as the %A's for a given angle 9 . (We assume this increasen n
was caused by complications introduced by the incorporation of the singular

functions.) Second, our eigensystems have band structure, whereas theirs

are dense. A third somewhat qualitative reason might be termed the

"nuisance factor". All our finite element computations were done with a

general purpose program; no special modifications with regard to special

basis functions or geometry were necessary.

The time required to generate the finite element eigenproblem for

each angle on the IBM 360/91 was about 0.6 seconds. About 0.2 seconds

were required to find each eigenvalue using inverse iteration. By comparison,

2 minutes were required on an IBM 7094 to produce the XBs for a given 9 .n l

[Since it appears that the major portion of the time used was for the

generation of the eigenproblem rather than its solution, the fact that L
Birkhoff and Fix used a method yielding all the eigenvalues of the discrete

problem is relatively unimportant.] Roughly 4 secondn of IBM 360/91 time

was required to produce the upper and lower bounds (xU. 50  and %L' 50)n
for each angle using the method of intermediate problems. The results are

tabulated below for n = 1,2,...,6 and 9 = 3Q0 , 50 , 60e and 75 •
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Symmetric Eigenvalues for the Fixed Rhombical Domain

n XB L,50 %U O50
r, n n n

Case l: 0 = 3e

1 2.5228 2.5238 2.5224 2.5241

H 2 8. i939 8.5060 8.4916 8.5008

3 14.233 14.256 14.224 14.261

4 17.156 17.183 17.139 17.167

5 27.173 27.110 26.983 27.096

6 29.606 29.620 29.433 29.537

Case 2. = 450

1' 1 5.5210 3.5210 3.5201 3.5263

2 10.158 1.190 10.154 10.173
S3 18,785 18,864 l1E.737 18.802

4 22.115 22.15 22.095 22.214
5 30.153 30.289 29.785 29.942

6 39.663 39- 582 39.493 39.777

Case 3: Q = 60

I; 1 6.3238 6.3598 6.3217 6.3485

2 14.968 15.088 14.958 15.005

3 25.333 25.571 25.202 25.338

14 38.064 38.981 37.436 37.774

5 43.581 43.717 47,.480 44.013

6 5-4.267 56.379 51.883 52.575
0

Case 4: Q = 75

1 20.194 20.283 20.185 20.407

2 36.373 36.452 36.301 36.617

3 53.596 53.562 52.794 53.499

4 76.746 80.125 70.951 72.660

5 110.20 111.52 90.964 94.982

6 154.89 144.38 112.87 121.75L
Table 3.3
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We offer the following observations:

(1) The remarks of Birkhoff and Fix suggesting that their Rayleigh-Ritz

methods yield much more accurate upper bounds than the method of

intermediate problems seems to be barely justifiable. In [B71 their

comparisons of A  cnd X are against xU,15 for 9 = 300, 60°

and 750. For 9 = 4 the comparison is against %U)30  , and for
5 n

this case %A was a sharper upper bound in only half of the cases,n
and although B was better in all cases, it was only marginally

n

better in most of them.

(2) The upper bounds produced by the finite element method appear to be

fully competitive with the XBIs , and are appreciably better for the

n

lower eigenvalues.

(3) Experiments with polynomials of various degrees again indicate that

efficiency increases with increasing polynomial degree.

(4) Our finite element solutions made no use of

(a) information about the behavior of the solution near the corners

of the domain

(b) the fact that the domain is affinely equivalent to one in which

the eigenproblem can be sclved exactly.

We feel that these pdints are important because the utilization of

(a) appears to be awkward in t general implementation, ane (b) places a

rather severe restricticn on the application of the method of intermediate

problems.

We now turn briefly to the fixed-free rhombical membrane eigenvalue

problem. 'tadter [S41 e'estricted his attention to eigenvalues corresponding

to eigenfunctions symmetric with respect to the center of the rhombus. It
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was not convenient for us to restrict our problem correspondingly, so
4)1 5 and 4 l15

we solved the "full" problem. We report results for an 3

4 15 and 4,15 for the Fixed-Free Rhombical Membrane
1 3

%4,15 L, 15 .U,15 4)15 xL, 15 U,)15 1

1 1 1 3 3

30 l1,2343 1.1820 2.8550 4.9105 4.6585 5.1547

60 2.8550 2.5046 3.6533 7.6453 6.9881 9.5382

75 8.3400 6.8038 13.043 19.177 14.233 27.438

Again, with a moderate number of parameters we can easily improve

on the upper bounds produced by the method of intermediate problems.

i
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4. A Dirichlet Problem

We now consider finite element solutions to the following problem:

2 2
-u+ u = 0 on R F

(li..l .,.2

u =e cos y on S UT

Ts

zI.

The boundary S is a 1.28 x 1.28 square and T is a .25 x .25

square with lower left corners at (0,0) and (.5,.5) respectively.

The inp t mesh is indiceted by the dashed lines in the diagram above.

Experiments were run on an IBM 360/91.

Details of the various polynomials can be found in Appendix A. As

before, N indicates the number of finite element equations and k is

the factor by which the input mesh was subdivided. The profile Cholesky

algorithm and the RCM ordering (see Chapter 4) were employed in all

cases.

We begin by comparing different element/mesh combinations which

yielded roughly the same accuracy.
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i I

Operations
* Set-up Solution for Storage

Time Time Solution Error
Element N k (Seconds) (Seconds) X (10 + 3 )  x(lO- 5 ) L A

2-6 540 5 3.18 .53 154 1.86 10,544 3000

3-4 216 3 1.56 .22 37 1.28 3,099 1620

3-10 180 2 1.13 .13 28 1.63 2,425 1188

4-15 72 1 .65 .04 7 1.14 684 468

VTable 4.1

H ITable 4.1 demonstrates dramatically the value of using high degree

polynomials for solving this problem. Set-up times, solution times and

storage requirements decrease as the degree d of the polynomial

increases. Observe the striking decrease in the operations required to

solve the generated linear system.

U We now present some experiments using the initial mesh and varying

the degree.

I-

Operations
for

Set-up Solution Solution Storage

Element N Time Time (X 103) Error L A

3-10 36 *.482 -- 2 2.35(-4) 209 144

[ 4-15 72 .65 .04 6 1.14(-5) 684 468

5-21 120 1.10 .13 21 4.06(-7) 1692 1140

6-28 180 1.86 .20 53 1.16(-8) 3465 2340

Table 4.2
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Again the case for higher degree polynomials is apparent. Compare, for

example, the third entries in Tables 4.1 and 1.2. Their demands on

system resources are about the same, but the error for the quintic

is more than an order of magnitude less.

To compare the above results with what cald be expected using

finite diff-cence methods we solved the problem using the standard

five-point difference operator on a uniform square mesh with mesh width

of 1/100 . The solution was obtained using an imbedding approach [G1,B15]

which makes use of very fast direct methods for solving the discrete

Laplacian equations on a rectangular domain. The set-up time for this

procedure is large ( 25 seconds for our problem on the IM 360/91) and

consists of computing a qx q "capacitance matrix". In our problem

q = 100 and the computation of the capacitance matrix involves solving

q 127 x 127 rectangular problems. However, once this initialization is

done, we can obtain a solution to our given problem by solving 2 rectangular

problems and a dense q by q system of linear equations. Assuming that

we have computed and decomposed the capacitance matrix beforenand, we can

solve our problem in about .7 seconds. This latter "solution tii~le"

has been found to be superior to SOR or ADI solution times (by factors

of 5 to 8) for a number of typical problems [B13].

Thus, a (conservative) entry in Table 4.2 for finite differences

would be

N Solution Time Operations Error Storage

15,504 .7 106 7 .106 22000
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~fl Each solution of the 127 x 127 rectangular problem requires about

. seconds on the IBM 360/91. Thus, even asing the iterative scheme

L (based on fast direct methods) proposed by George [GI which avoids ,e

calculation of the capacitance matrix is unlikely to compare favorably

in overall time (solution and set-up time) with the last entry in

H~i Table 4.2. Anyway, an equally important consideration is storage

requirements, and the last entry in Table 4-.2 requires only 5805 words.

The observed error for the sixth degree polynomial was 1.16x lO - 8

kl compared to 7 x10 6 for the difference equations.

Again we should point out that there are still better ways to solve

7' this problem if we are prepared to take advantage of its p,rticular 2hara2 teI-

istics. Mjler (private communication) solved the problem by using a linear

U combination of particular solutions as a trial solution and determining thp

coefficients of the expansion by minimizing the two-norm of the error at a

Idiscret iet of points on the boundary SUT. The least squares solation of

a 26 x 15 problem was all that was required and the program was only a few

pages long; the error, however, was around 10 - 10 .

L
L

IL

I
IL
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Api-tiJ.Lx A: S ;:' Represent itive Triangular Elements

The labels on tne stencils below indicate the parameters associated

witi eazn nude. When no label appears, the function value v is to be

a 3L.A1d. Tne two-part hyphenated name refers respectively to the degree

,f t'ie pulynumial and th, nmber of nodes associated with the element.

Element Name Stencil

-3

2-6x i
V, V ,V

V,V v ,v
x y

3-10

L

-- V ,

V ,VV VxVY
x

4-6 vx y x Y
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Element Name Stencil
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n ')xn
5-6nn

V vyvxx vxy) yy vn x y xx xy yy

5-21

6-280 0

'4p



Appendix B: O/S 360 Fortran Code for Finite Element Methods

The codes in this appendix are all written in O/S 360 Fortran. There

are five separate programs whose relation is depicted in the following chart:

10

Please 1 Mesh generation and node ordering

Phase 2 Generation of stiffness matrices and

mass matrices or load vectors

I Assembly of equations and, if it is a

boundary value problem, its solution.
Otherwise, output generalized eigenvalue

problems.

Li
Solve Ax kBx using

inverse iteration with
ni(user band linear equationsymnmetri c indefiniteopinslvr

linear equation solver solver.
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'B

The transmission of data from one program to the next is clone via Fortran

units 1, 2 (and 3 if an eigenvalue problem must be solved). All data sets read

and written are sequential, so the program would work without alteration whether

the storage devices are disks, drums, or tape units. Only changes in the job

control language would be necessary.

'e program is set up to find the stationary values of Il[V] + 2 v] ana

Il[v]/J[v], where

I [V] = fclv + c v 2 + c v 2 dxdy,
1x 2 y 3R

I [v] = LX c4v dx dy,

R

J Rv] = ff v2 dxdyjJ R
Here cl, c2 , and c3 are constants, and c4 is a function supplied by the

U user in the subroutine FUNC. For further details and sample input see the

comments in the code of PHASE 2 and in Appendix C.

With minor changes in the mainline of PHASE 2, other terms can be included

inI1 and I2, and with somewhat more substantial changes variable coefficient

quadratic terms could be handled. Note that phases 1 and 3 would not need. to be

altered.

Piecewise polynomials of degree d (1 < d < 9) utilizing ( d2 ) value

and first-derivative parameters can be selected by the user and are automatically

generated by the program.

The choice of method for solving the generalized eigenvalue problem depends

L on the relative size of the number of equations and the bandwidth, as discussed

in section 4.3. Both programs assume that the initial shift (SHIFT) supplied

L by the user is a good one; the decomposition of A-SHIFT*B is done only once

Lat the beginning of the iteration.
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Appendix C: Sample Deck Set-ups and Runs.

The following pages contain deck set-ups and the output of the resulting

runs for a sample problem. The runs were made on an IBM 360/91 at the Stanford

Linear Accelerator Center. All the cards with "//" or "/*" in columns 1-2 are

OS/360 job control language cards, and do not change from problem to problem.

I Thus the actual required input is rather small. For information about the in-

put parameters, see the comments at the beginning of each of the program modules.

Extensive use is made of the namelist fEature of the IBM Fortran language to

avoid the rigidity of formatted input.

Object modules for Phase 1, Phase 2, and Phase 3 are contained in the data

sets PUB.JAG.POi, PUB.JAG.P02, and PUB.JAG.TMP, respectively.

The sample problem i3 the following:

I).x + u yy= 4 in (0,1) X (0,)

2 2
u = x + y on x = O0,l, 0 < y<,

y = yO'l, 0< x<l1.
The solution to this problem is u = x2 + y 2

The first run solves the problem using piecewise quadratics (element 2-6),

and the second run uses piecewise cubics (element 3-4). In both cases the

error in the parameters is at rounding error level, as is to be expected.

The final two pages of this Appendix contain a deck set-up for an eigen-

value problem. The deck listed is the one used to produce the quintic entry

in Table 5.2.2.
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Deck Set-up for Sample Problemi.

//JAGXXTST JOE 'JAG$CG',5i4,CLA'SS=E,REGION=3O0K-
//STP1 EXEC LOAPGO,PARt .G0='SIZE=28,Qnqq'
//GO.SYSLIN2 DD) DSNAtiE=PUB.JAG.PO1,DISP=OLO),UNIT=2314,

II VOLL'kE=SER=PUBOO1
//GO.FTOIFOO1 OD DSNAtE=JAGCG.OUT1,UNIT=SYSPA,PISP(EI!,PASS),

IISPACE=(CYL, (1, 1) RLSE)
I/GO.SYSIN DO *
&PARhS ND'IVS=2,NPS=1,NCEN=o,LAST=1,I3UG=0, &END
&POINTS PT(1)=(0,0), PT(2)=(1,0), PT(3)=(1,1),PT(4)=CO,1) &ENP
&TR IOOES=1,2,3, BND(1)=1, BND(2)=2 &END L

&TR NODES=1,3,4, BND(2)=3, BND(3)=1s, ENDTP.=T &END

IISTP2 EXEC LOAOGO,PARIk.GO='SIZE=288000'
//GO.SYSLIN2 DD DSNAME=PUB.JAG.P02,DISP=OLD,

II UNIT=23114,VOLUfl1E=SER=PUB003
//GO.FTO1FOO1 DO DSNAM',E=JAGCG.OUT1,OISP=(OLO,PASS),UNIT=SYSr-A
//GQ.FTO2FOO1 DO DSNAIIE=JAGCG.OUT2,DISP=(NEUI,PASS),UNIT=SYSDA,

II SPACE=(CYL,(21 1)1 RLSE)
//G"O.SYSIN OD) * PiPA MS BUG= ,IDU-=2 NC =1, ICP()=l NSP1)=, IS (1, )13

IRHS=2,UX2=1,(JY2=1,U2=0, IEIG0O &END

//STP3 EXEC FORTHLG
//LKED.JAGP03 DD DSNAfME=PUB. JAG. TVP,DI SP=0LD, UNI T=2314,

/1 VOLUPE=SER=PUBO0i
//L.KEO.SYSIN 00D
INCLUDE JAGP03

//GO.FTO1F1 00 DDSNA IE=dAGC,,'G.OUT1,UNIT=SYSDA,DISPC(OLD,DELETE)
//GO.FTO2FOO1 DD OSNAMiE=JAGCG.OUT2,UNIT=SYSPA,DISP=(OLD,DELETE)
//GQ.FT03FOO1 OD) CSNA IE=JAGCG.0UT3,UN1T=SYSDA,DISPCNtEW,,PASS),

1/ SPACE=(CYL,(1,1),RLSE)
//GOV.SYSIN Of) * IL'
&PARMS NBNDS=4,IPPINT=1,ISOL(1)=10, &END)
1 10
2 10[
3 10
4~ 10
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These cards and input solve the sample problem

using piece-wise cubics (element 3-l4). The output
fromr this run appears on the following pages.

II/JAGX~xTST JOB 'U.AG$CG%,54,CtASS=E,RECiONt=300K
//STP1 EXEC LOADGO,PARH.GO='StZE=2?S00O'
//GO.SYSLIN2 DO DSNAlKE=PUB. .AG.P01,DISP=O-D,(NIT=23141,

I II V0LUME=SER=PUBOO1
//GO.FT01F0O1 DD DSNAMiE=JAGCG.OUjT1,UNIT=SYSRA,D!S3P=(MIEU,PASS)),

II SPACE=(CYL,(1,1),RLSE)
//GO.SYSIN DP

FPARMCS NODIVS=3, NI'S0,NCEN=1, LAST= 1, 1IBUG=19, &END
&POINTS PT(I)=(0,0), PTC2)=(1,0),PTC3)=(1,1),PT(4)=(0,1) E-END
fTR NODES=1,2,3, 12IND(1=1, BN1P(2)=2 &ENP

t ~&TR NODES=1, 3,4i, BMD( 2)=3, BND( )=Ii, ENDTR=T AENP

IISTP2 EXEC LOADGC,PARM.G0'SIZE=288000'
//GO.SYSLIN2 DD DSNAE PUB. JAG. PO 2, DISP=OL-P,

/1UN IT= 23 1,VOL1f,:E=SER=P1JB0O3
//GC. FT01FOO1 DD DSNAtE=JACG.OUT1,DISP(OLP),PIASS),ULit =SYSDA
//GO.FTO2FOO1 DD DSNAIE=JAGCG.OUT2,DISP(Nr'_i,PI'SS),UI.'IT=SYSP,.A,

II SPACE=(CYL,(2,1),RLSE)
//GO.systrN DD

&PPRI-IS IBUG=0,IDEG=3,NCP3,ICP=1,2,3,
IIIHS=2,t X2 =l,UY2--l,t2O0,IEIG=0 HIND

//STP3 EXEC FORTHLG

//LKED. JAGP03 DR RSNIA1'E=PUP.JAG.Tk.P,DISPQI.-D,L'NIT=2314i,
t II VOLUI-,ESER='PUB001

//LKED.SYSIN DD
INCLUDE JAGPO3

//GC.FTO1FOO1 RD DSNAIE=JAGCG.OUT1,UNITSYSr)AJISP=(OL,,PELLETE)
//GO.FT0J2F0O1 OD DONAMVE=JAGCG.OUT2,UNIT=SYSRA,DISP=(OLD,DELETE)
//GO. FTO3FOO01 DO DSNA E=JAGCG.OUT3,UNIT=SYS)A,I)SP=IIE:, PASS),

// SPACE=(CYL,(1;4),RLSE)
//GO.SYSIN DRD

&PARf.S NBNDS= 4, 1PRI MT= 1, 1 OU(1) 10, 1s.2)=11, ISOU(3)1, EMl
1 10 11 11
2 10 11 11
3 10 11 11

4~ 10 11 11
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These cards and !nput produced the quintic entry in
table 5.2.2. Note that the object decks for the
inverse iteration code using Bunch's symmetric solver
are stored In the data set PUB.JAG.INV.Ti //JAGXXHL5 JOB 'JAG$CG',54,CLASS=E,REGION=300K
//STP1 EXEC LOADGO,PARV,.G0'1S1ZE=288000'
//GQ.SYSLiN2 DD DSNAME=PUB.JAG.PO1,DISP=OLD,UNIT=231i,

/1 VOLUME=SER=PUB001
//GO.FTO1FGO1 DD DSNAME=JAGCG.OUT1,UNIT=SYSDA,DISP=(NEWI,PASS),I

/1SPACE=( CYL, (1, 1), RLSE)
//GO.SYSIW DD *

&PARMS NDIVS=1, NPS=4, NCEN=6, LAST1, IBUG=O, &END

PT(5)=(1.3, .7), PTC6=(J.,.1), PT(7)=(.6, .6), PT(8)=(.9, .9),

PT(9)=(1.1,.9), PTC1O)=(1.2,1), PT(11)=(1,1) &END1], &TR NODES=1,2,7, BND(l)=1 &END
&TR NODES7,2,6 &END
&TR NODES6,2, 5, &END
&TR NODES2,3,5, BND(1)1l &END

4 &R NODES=3,4,5, BND(1)1l &END
&TR NODES=7,6,8 &END

~ Li&TR NODES=6,9,8 &END
&TR NODES=6,5,9 &END

Ii &R NODES8,9,11 &END
&TR MODES9,1,11, BND(2)1l &END
&TR NODES9,5,1O &END
&TR NODES5,4,1O, BND(2)1l, ENDTR=T &END

L //STP2 EXEC LQADGQ,PARM.GO'1S1ZE=2880OO'
//GO.SYSLIN2 DD DSNAME=PUB.JAG.P02,DISP=OLD,

/1 UNIT=231t4,VOLUESER=PUB003
//GO.FTO1FOO1 DD DSNAME=JAGCG.OUT1,DISP=(OLD,PASS),UNIT=SYSDA
i/GO.FTO2FOO1 DD DSNAME-JAGCG.OUT2,DISPC(NEW!,PASS),UNIT=SYSDA,

1/ SPACE=(CYL,(1,3i),RLSE)
L //GO.SYSIN DD *

&PARP4S IBUG=O, IDEG=5, NCP=1, ICP(1)1J, NSP(1)=1, NSP(2)=1,
nsp(3)1l, NSP(14)=1, ISP(1,1)1l, ISP(2,1)1I, ISPC3,1)1l,
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//STP3 EXEC FORTHLG
//LKED.JAGPO3 DO DSNAME= PUB. JAG. TMP, D ISP=OLP,UN IT=2314~,

II VOLUIIE=SER=PUBOO1
/ILKEO.SYSIN DOD 1
INCLUDE JAGPO3

//GO.FTO1FOO1 DD DSNAM1E=JAGCG.OUT1,UNIT=SYSDA,DISP=COLD,DELETF)
//GO.FTQ2FOO1 DD DSNAf4E=JAGCG.OUT2,UNIT=SYSDAOISP=(OLD,DELETE) [
//GO.FTO3FOO1 DD DSNAI14E=JAGCG.OUT3,UNIT=SYSPA,DISP=(NEWV,PASS),

/1 SPACE= (CYL, (1, 1), RLSE) I
//GO.SYSIN DD *
&PARNS NBNDS=1, IBUG=O &END

/1 5 1
IISTP5 EXEC FORTHLG
//LKED.JAGP4i DD DSNAME=PUB.JAG.INV,DISP=OLD,UINIT=2314,

//LED.YSN 0IIVOLUtME=SERPUBOO1 i
INCLUDE JAGP4

//GO.FTO2FOO1 DD DSNA1ME=JAGCG.OUT3,UNIT=SYSDA,DISP=(OLD,DELETE) E
//GO.SYSIN Of) *
&PARMS SHIFT=9.6 &END
&PARMS SHIFT=-1 &END v
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