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Preface

The problem of finding numerical approximations to the zeros and
extrema of functions, using hand computation, has a long history. 1In
the last few years, considerable progress has been made in the development
of algorithms suitable for use on a digital camputer. The aim of this
work is to suggest improvements to same of these algorithms, extend the
mathematical theory behind them, and describe some new algorithms for
approximating local and global minima. The unifying thread is that all
the algorithms consid_ered depend entirely on sequential function
evaluations: no evaluations of derivatives are required. Such algorithms
are very useful if derivatives are difficult to evaluate, and this is
often true in practical problems.

I am greatly indebted to Professors G. E. Forsythe and G. H. Golub
for their advice and encouragement during my stsey at Stanford, and for
their guidance of my resegrch. Thanks are due to them and to the other
members of my reading committee, Professors J. G. Herriot, F. W. Dorr
and C. B. Moler, for their careful reading of various drafts, and for
many helpful suggestions.

Several people have contributed to this work. I would particularly
like to thank Dr. T. J. Rivlin for suggesting how to find bounds on
polyncmials (Chapter 6), and Dr. J. H. Wilkinson for introducing me to
Dekker's algorithm (Chapter 4). Also, thanks to Professor F. Dorr and
Dr. I. Sobel for their help in testing some of the algorithms, to

Michael Malcolm, Michael Saunders and Alan George for many interesting
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discussions, and to Phyllis Winkler for her fast and accurate typing.
I am grateful for the influence of my teachers V. Grenness, H. Smith,
Drs. D. Faulkner and E. Strzelecki, Professors G. Preston, A Miller,
Z. Janko, R. Floyd, D. Knuth, and M. Schiffer, and those mentinned above.
Deepest thanks to my wife Erin for her careful proof-reading,
and help in obtaining some of the numerical results, testing the
algorithms, plotting graphs, and in many other ways.
Finally, I wish to thank the Commonwealth Scientific and Industrial
Research Organization, Australia, for its generous support during my
stay at Stanlord.

This work is dedicated %o Oscar and Nancy, sine quis non.
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1.1

1. Introduction

It Consider the problem of finding an approximate zero or minimui oI

a function of one real veriable, using 11mited-precision arithmetic on a
sequential digital computer. The function f may not be differentiable,
[ or the derivative f* may be difficult to compute, so & method which

uses only computed values of f 1is desirable. Since an evaluation of

f may be very expensive in terms of computer time, a good method should

e i

guarantee to find a correct solution, to within some prescribed tolerance,

caemar

using only .a small number of function evaluations. Hence, we study

algorithms which depend on evaluating f at a small number of points,

and for which certain desirable properties are guaranteed, even in the
presence of rounding errors.

| Q Slow, safe algorithms are seldam preferred in practice to fast

algorithms which may occasionally fail. Thus, we want algorithms which
are guaranteed to succeed in a reasonsble time even for the most "difficult"

functione, yet are as fast as cammonly used algorithms for "easy"

A AT

functions. For example, bisection is a safe method for finding a zero
of a function which changes sign .in a given interval, but from our point
of view it is not an acceptable method, because it is just as slow for
any function, no matter how well behaved, as it is in the worst possible
case (ignoring the possibility that an exact zero may occasionally be

' found by chance). As a contrasting example, consider the method of
successive linear interpolation, which converges superlinearly to a
simple zert.a of a Cl ﬁmc;tion, provided that the initial approximation
is good and roﬁnding errors are unimportant. This method is not

acceptable either, for, in practice, we may nave no way of knowing in

S e
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1.1

advance if the zero is simple, if the initial approximation is sufficiently

good to ensure convergence, or what the effect of rounding errors will be.

In Chapter 4 we describe an.algorithm which, by combining some of
the desirable features of bisection and successive linear interpolation,
does come close to satisfying our requirements: it is guaranteed to
converge (i.e., halt) after a reasonably small number of function

evaluations, and the rate of convergencé for well-behaved functions

B . e N

is so fast that a less reliable algorithm is unlikely to be preferred

on grounds of speed.

An analogous algorithm, which finds a local minimum of a function

of one variatle by a combination of golden section search and successive

i

parabolic interpolation, is described in Chapter 5. This algoritim
fails to completely satisfy one of our requirements: in certain

applications where repeated one-dimensional minimizations are required,

and where accuracy is not very important, a faster (though less relieble) 3
method is preferable. One such application, finding local minima of i
functions oi' several variables without calculating derivatives, is

discussed in Chapter 7. Note that, wherever we consider minima, we

could equally well consider maxima.

Most algorithms for minimizing a nonlinear function of one or more i

variables find, at best, a local minimum. For & function with several

local minima, there is no guarantee that the local minimum found is the
global (i.e., true or lowest) minimum. Since it is the global minimum
which is of interest in most applications, this is a serious practical

disadvantage of most minimization algorithms, and our algorithm given

e

in Chapter 5 is no exception. The usual remedy is to try several

S e
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different starting points and, perhaps, vary some of the parameters of
the minimization procedure, in the hope that the lowest local minimum
found is the globel minimum. This approach is inefficient, as the same
local minimum may be found several times, and it is also unreliable, for,
no matter how many starting points are tried, it is impossible to te
quite sure that the global minimum has been found.

In Chapter 6 we discuss the problem of finding the global minimum
to within a prescribed tolerance. It is possible to give an algorithm
for solving this problem, provided that a little & priori information
about the function to be minimized is known. We describe an efficient
algorithm, applicable if an upper bound on f" is known, and we show
how this algorithm can be uvsed recursively to find the global minimum
of a function of several variables. Unfortunately, because the amount
of computation involved increases exponentially with the i.amber of
variables, this is practically useful only for functions of less than
four variables. For functions of more variables, we still have to
resort to the unreliable "trial and error" method, unless special
information about the function to be minimized is available.

Thus, we are led to consider practical methods for finding local
(unconstrained) minima of functions of several variables. As before, we
consider methods which depend on evaluating the function at a small
number of points. Unfortunately, without imposing very strict conditions
on the functions to be minimized, it is not possible to guarantee that
an n-dimensional minimization algorithm produces results which are correct
to within some prescribed tonlerance, or that the effect of rounding errors

has completely been taken into account. We have to be satisfied with

Ll
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algorithms which nearly always give correct results for the functions
likely to arise in practical applications.

As suggested by the length of our bibliography, there has recently
been considerable interest in the unconstrained minimization problem.
Thus, we can hardly expect to find a good method which is completely
unrelated to the known ones. 1In Chapter 7 we take one of the better
methods which does not use derivatives, that of Powell (1964), and modify
it to try to overcome some of the difficulties observed in
the literature. Numerical tests suggest that our proposed method is
faster than Powell's or’ ginal method, and just as reliable. It also
compares quite well with a different method proposed by Stewart (1967),
at least for functions of less than ten variables. (We have no numerical
results for non-quadratic functions of more than ten variables.)

ALGOL implementations of all the above algorithms are given. Most
testing was done with ALGOL W (Wirth and Hoare (1966)) on IBM 360/67 and
360/91 computers. As ALGOL W is not widely used, we give ALGOL €0
procedures (Naur (1963)), except for the n-dimensional minimization
algorithm. FORTRAN subroutines for the one-dimensional zero-finding
and local minimization algorithms are also available.

To recapitulate, we describe algorithms, and give ALGOL procecdures,
for solving the following problems efficiently, using only function (not

derivative) eveluations:

1. Finding a zero of a function of one variable if an interval in which
the function changes sign is given;
2. Finding a local minimum of a function of one variable, defined on a

given interval;

[y
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1.2

- Finding, to within a prescribed tolerance, the global minimum of
a function of one or more variables, given upper bounds on the
second derivatives;

4. Finding a local minimum of a function of several variables.

For the first three algorithms, rigorous bounds on the error and the
number of function evaluations required are established, taking the
effect of rounding errors into account. Some results concerning the
order of convergence of the first two algorithms, and preliminary

results on interpolation and divided differences, are also of interest.

2.  Summary
In this section we summarize the main results of the following

chapters. A more detailed discussion is given at the appropriate
places in each chapter. This summary is intended to serve as a guide
to the reader who is interested in some of our results, but not in
others. To assist such a reader, an attempt has been made to keep each

chapter as self-contained as possible.

c er 2

In Chapter 2 we collect some results on Taylor series, Lagrangian
interpolation, and divided differences. Most of these results cre needed
in Chapter 3, and the casual reader might prefer to skip Chapter 2 and
refer back to it when necessary. Some of the results are similar to

classical ones, but instead of assuming that f has n+tl continuous



1.2

(n)

derivatives, we only assume that £ is Lipschitz continuous, and
the term f(n+l)(§) in the classical results is replaced by a number

bounded in absolute value by a Lipschitz constant. For exémple,

Lemmas 2.3.1, 2.3.2, 2.4.1, and 2.5.1 are of this nature. Since a

H
:

Lipschitz continuous runction is differentiable almost everywhere,
these results are not surprising, although they have not been found in

the literature, except where references are given. (Sometimes Lipschitz

conditions are imposed on the derivatives of functions of several

variables: see, for example, Armijo (1966) and McCormick (1969).) The

Sraid s A v

proofs are mostly similar to those for the classical results.
Theorem 2.6.1 is a slight generalization of some results of

Ralston (1963, 1965) on differentiating the error in Lagrangian

interpclation. It is included both for its independent interest, and
because it may be used to prove a slightly weaker form of Lemma 3.6.1

for the important case q =2 . (A similar proof is sketched in 1

Kowalik and Osborne (1968).) !
An interesting result of Chapter 2 is Theorem 2.6.2, which gives (]
an expression for the derivative of the error in Lagrangian interpolation ! +
1 at the points of interpolation. A well-known weaker result is that the
l} conclusion of Theorem 2.6.2 holds if f has n+l continuous derivatives,
| but Theorem 2.6.2 shows that it is sufficient for f to have n

a contimious derivatives.

[ Theorem 2.5.1, which gives an expansion of divided differences, may
be regarded as a generalization of Taylor's theorem. It is used several
times in Chapter 3: for example, see ‘neorem 3.4.1 and Lemma 3.6.1.

}L Theorem 2.5.1 is useful for the analysis of interpolation processes
b

L




= = — = e o = AP
e — ) ]

——
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vhenever the coefficients of the interpolation polynomials can conveniently

be expressed in terms of divided differences.

Chapter 3

In Chapter 3 we prove some theorems which provide a theoretical
foundation for the algorithms described in Chapters 4 and 5. 1In
particular, we show when the algorithms will converge superlinearly,
and whaat the order (i.e., rate) of convergence will be. Of course, for
these results the effect of rounding errors is ignored. The reader
whose main interest is the practical applications of our results might
omit Chapter 3, except for the numerical examples (Section 3.9) and the
summary (Section 3.10).

So that results concerning successive linear interpolation for
finding zeros (used in Chapter 4), and successive parabolic interpolation
for finding turning points (used in Chapter 5), can be given together,
we consider a more general process for finding a zero of f(q-l) , for
any fixed q > 1 . Successive linear interpolation and successive
parabolic interpolation are just the special cases q =1 and q =2 .
Another case which is of some practical interest is8 q = 3 , for finding
inflexion points. As the proofs for general q are essentially no more
difficult than for q = 2 , most of our results are for general gq .

For the applications in Chapters 4 and 5, the most important
results are Theorem 3.4.1, which gives caditions under which convergence
is superlinear, and Theorem 3.5.1, which shows when the order is at least
1.618... (for q =1) or 1.324... (for q =2) . These numbers are

well-known, but our assumptions about the differentiability of f are




1.2
weaker than those of previous authors, e.g., Ostrowski (1966) and
Jarratt (1967, 1968).

From a mathematical point of view, the most interesting result
of Chapter 5 is Theorem 3.7.1. AThe result for q =1 1is given in
Ostrowski (1966), except for our slightly weaker assumption about the
smoothness of f . For q = 2, our result that convergence to { with
order at least 1.378... 1is possible, even if 1(5)(§) £ 0, appears to
be new. Jarratt (1967) and Kowalik and Osborne (1968) assume that

%1 - ¢
ii—lflco Tt - o, (2.1)

and then, from Lemma 3.6.1, the order of convergence is 1.32h... .

However, even for such a simple function as
£(x) = 2% + x° 3 (2.2)

there are starting points x, , x;, and x, such that (2.1) fails to
hold, and then the order may be at least 1.37L... . We should point
out that this exceptional case is unlikely to occur: an interesting
conjecture is that the set of starting pcints for which it occurs has
measure Zzero.

The practical conclusion to be drawn from Theorem 3.7.1 is that,
if convergence is to be accelerated, then the result of Lemma 3.6.1
should be used. In Section 3.8 we give one of the many ways in which
this may be done. Finally, some numerical examples illustrating both the

accelerated and unaccelerated processes are given in Section 3.9.

g i el
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1.2
Chapter L

In Chapter L we describe an algorithm for finding a zero of a
function which changes sign in a given interval. The algorithm is
based on a combination of successive linear interpolation and bisection,
in much the same way as "Dekker's algorithm" (van Wijngaarden, Zonneveld
and Dijkstra (1963), Wilkinson (1967), Peters and Wilkinson (1969),
Dekker (1969)). Our algorithm never converges much slower than bisection,
whereas Dekker's algorithm may converge extremely slowly in certain cases.
(Examples are given in Section L4.2.)

It is well-known that bisection is the optimal algoritnm, in a
minimax sense, for finding zeros of runctions which change sign in an
interval. (We only consider sequential algorithms: see Robbins (1952),
Wilde (196L) and Section 4.5.) The motivation for both our algorithm and
Dekker's is that bisection is not optimal if the class of allowabie
functions is suitably restricted. For example, it is not optimal for
convex functions (Bellman and Dreyfus (1962), Gross and Johnson (1959)),
or for C1 functions with simple zeros.

Both our algorithm and Dekker's exhibit superlinear convergence to
a simple zero of a Cl function, for eventually only linear interpolations
are performed, and the theorems of Chapter 3 are spplicable. Thus,
convergence is usually much faster than for bisection. Our algorithm
incorporates inverse quadratic interpolation as well as linear interpolation,
so it is often slightly faster than Dekker's algorithm on well-behaved

functions {see Section L.k4).

10




1.2
Chapter 5

An algorithm for finding a local minimum of a function of one
variable is described in Chapter 5. The algorithm combines golden
section search (Bellman (1957), Kiefer (1953), Wilde (1964), Witzgall
(1969)) and successive parabolic interpolation (the case q = 2 of the
process analysed in Chapter 3), in the same way as bisection and successive
linear interpolation are combined in the zero-fimiing algorithm of
Chapter l:. Convergence in a reasonable number of function evaluations
is guaranteed (see Section 5.5), and, for a 02 function with positive
curvature at the minimum, the results of Chapter 3 show that convergence
is superlinear, if we ignore rounding errors and suppose that the minimum
is at an interior point of the interval. Other algorithms given in the
literature either fail to have these two desirable properties, or, when
convergence is strictly superlinear, the order of convergence is less
than for our algorithm (see Sections 5.4 and 5.5).

In Sections 5.2 and 5.3 we consider the effect of rounding errors.
Section 5.2 contains an analysis of the limitations, imposed by rounding
errors, on the attainable accuracy of any algorithm which is based
entireiy on function evaluations, and this section should te studied
by the reader who intends to use the ALGOL procedure given in Section 5.8.

If f is unimodal, then our algorithm will find the unique minimum,
provided there are no rounding errors. To study the effect of rounding
errors, we define " S-unimodal" functions. A unimodal function is $-unimodal
for all % >0 , but a computed apprcximation to a unimodal function can
not be unimodal: it will be S-unimodal for some positive & , depending

on the function and on the precision of computation. (6 - O as the

11
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| precision increases indefinitely.) We prove some theorems about &-unimodal
functions, and give a bound for the error in the approximate minimum found
by our algoritlm when applied tn a 8-unimodal function. 1In this way we

i can justify the use of our algerithm ’» the presence of iounding errors,

and account for their effect. Our motivation is rather similar to that

of Richman {1968) in developing the €-calculus, but we are not concerned

with properties that hold as € - C . The reader who is not very

» interested in the effect of rounding errors might prefer to skip

; Section 5.3.

Chapter 6

In Chapter 6 we consider the problem of finding an approximation
to the global minimum of a function f , defined on a finite interval,
" if same a priori information about f is known. This interesting problem

i does not seem to have received much attention, although there have been

[ some empirical investigations, e.g., see Magee (1960). In Section 6.1,

we show why some & priori information is necessary, and discuss same of
: the possibilities. In the remainder of the chapter we restrict our
attention to the case where an upper bound on f" 1is known.

An algorithm for global minimization of a function of one variable,
applicable when such an upper bound on the second derivative is known, is
described in Section 6.3. The basic idea of this algorithm is used by
Rivlin (1970) to find bounds on a polynomial in a given interval. We
pay particular attention to the problem of giving guaranteed bounds in
the presence of rounding errors, and the casual reader may find the

details in the last half of Section 6.3 rather indigestible.
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In Section 6.4, we try to obtain some insight into the behaviour
of our algorithm by considering some tractable special cases. Then, in
Sections 6.5 and 6.6, we show that no algorithm which uses only function
evaluations and an upper bound on f" could be much faster than our
algorithm. Finally, a generalization to functions of several variables
is given in Section 6.8. The conditions on f are much weaker than
unimodality (Newman (1965)). The generalization is not practically useful
for functicns of more than three variables, and it is an open question

whether a significantly better algorithm is possible.

Chapter 7

In Chapter 7 we describe a modification of Powell's (196k4) algorithm
for finding a local minimum of a function of several variables, without
calculating derivatives. The modification is designed to ensure
quadratic convergence, and to avoid the difficulties with Powell's
criterion for accepting new search directions.

First, a brief introduction to the problem and a survey of the
recent literatureare given in Section 7.1l. The effect of rounding errors
on the limiting accuracy attainable is discussed in Section 7.2. Powell's
algorithm is deseribed in Section 7.3, and our main modification is given
in Section 7.4. The idea cf the modification (finding the principal axes
of an approximating quadra%ic form) is not new: for example, it is used
by Greenstadt (1967) in his quasi-Newton method. Unlike Greenstadt,
though, we do not use an explicit approximation to the Hessian matrix.
An interesting feature of our modification is that it is posible to avoid
squaring the condition number of the eigenvalue problem by using a singular

value decomposition: see Section 7.4 for the details.

13




1.2

"In Sections 7.5 and 7.6 we describe some additional features of our
algorithm; Then, in Section T.7, we give the results of some numerical
experiments, and compare our method with those of Powell (1964), Davier:,
Swann and Campey (Swann (1964)), and Stewart (1967). For the camparison
we have used numerical results obtained by Fletcher (1965) and Stewart
(1967) . The numerical results suggest that our algorithm is competitive
with the currently used algorithms which do not require the user to
campute derivatives, although it is difficult to reach a definite
conclusion without more practical experience.

Finally, we give a bibliography of the recenf literature on
nonlinear minimization, with the emphasis being on methods for solving

unconstrained problems.
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Some Useful Results cn Taylor Series, Divided Differences,
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2.1

1 Introduction

In this chapter we collect some results which are needed in Chapters
3 and 6. The reader who is mainly interested in the practical applications
described in Chapters 4 to 7 might prefer to skip this chapter, except for
Section 2, and refer back to it when necessary.

Classical expressions for the error in truncated Taylor series and
Lagrangian interpolation often involve a term f(n+1)(§) , where £ is an
unknown point in some interval. For such expressions to be valid, f must
have nt+l derivatives. Several of the results of this chapter give
expressions which are velid if f(n) satisfies a (possibly one-sided)

. Lipschitz condition. In these results, the term f(n+l)(§) is replaced
by a number which is bounded by a Lipschitz constant. It seems unlikely
that these results are new, but they have not been found in the literature
except where references are given.

The results of Chapter 3 depend heavily on Theorem 5.1, which gives
an expansion of the divided difference f[xo, ,xn] (see Section 2) near
the origin. This theorem, and the less cumbersome Corollary 5.1, are
useful for the analysis of interpclation processes, for the coefficients
of the interpolating polynomials can be expressed in terms of divided
differences (see Chapter 3).

Finally, in Section 6, we extend some results of Ralston (1963) on
the derivative of the error term in Lagrangian interpolation. These
results are relevant to Chapter 3, although they are given mainly for
their independent interest. Perhaps the most interesting result is
Theorem 6.2, which shows that, if we are only concerned with the points
of interpolation, then we can differentiate the classical expression for
the error (equation (6.4)), regarding the term f(n)(g(x)) as consiant.

16
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This is well-known if f has n+l continuous derivatives, but Theorem 6.2

shows that it is sufficient for f to have n continuous derivatives.

2. Notation &nd definitions

Throughout this chapter [e,b] ic & nonempty, finite, closed
interval, and f is a real-valued function defined on [a,b] . n is

a nonnegative integer, M a nonnegative real number, and @ a number

in (0,1] .

Definitions

The modulus of continuity w(f;%) of f (in [a,b]) is defined by

w(f;s) =  sup  |£(x) -£(3)| (2.1)
x,ye[a,b]
|x-y| <8

for all 8 >0 .

If f has a continuous n-th derivative on [a,b] , then we write

feCn[a,b] . If, in addition, f(n) eLipM @'y 3. By
(n), Q
w(f''/;8) < MB® (2.2)

for al1 & > 0 , then we write feICn[a,b;M,a], (This notation is not
standard, but it is convenient if we want to mention the constants M
and a explicitly.) If feIC™[a,b;M,1] then we write simply
feI.Cn[a.,b;M] .

If Xgseees K 8TE distinct points in [a,b] , then IP(f;xO,...,xn)
is the Lagrangian interpolation polynomial, i.e., the unique polymomial
of degree n or less which coincides with f a*% xo, ...,xn . The

17




e = —

N

2'2

divided difference f[xo, ...,xn] is defined by

f(x.)
- J . (2.3)

X.-X,
)L (x5 - %)

it

(There are many other notations: see for example, Milne (1949),

f[xo’o.o’xn] =

-

Milne-Thomson (1933), and Traub (1964).) Note that, although we suppose
for simplicity that XyreeesX ~are distinct, nearly all the results given

here and in Chapter 3 hold if same of Xor e e eaXy coincide. (We then have
Hermite interpolation and confluent divided differences: see Traub (1964). )
For the statement of these results, the word "distinct" is enclosed in

parentheses.

Newton's ldentities

For future reference, we note the following useful identities (see
Cauchy (1840), Isaacson and Keller (1966), or Traub (1964)). The first
is often used as the definition of the divided difference f[xo, o ,xn] 5
vhile the second gives an explicit representation of the interpolating

polynomial and .remainder.

v
and, for n > 1,
f[x ,.--,X ] -f[x ,...,X ]
: 0 n-1 1 n R
. f[)‘o,...,xn] _— x - x L] (2.&)
! 0 n
}
’ t
| 2. If P =IPfix,, ...,xn) , then
§ L
.% ( n
f f(x) == P(x) + TT (x -xi) . f[xo, ...,xn,x] . (2.5)
\_ i=0
" 18
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and i {
P(x) = f[xo] + (x -xo)f[xo,xl] +...
+ (x—XO)...(X-Xn_l)f[XO,...,Xn] . (2-6) F
3. Truncated Taylor series 1
In this section we give some forms of Taylor®s theorem. Lemma 3.1
is needed in Chapter 6, and applies if f(n) satisfies a one-sided :1
Lipschitz condition.
Lema 3.1 |
Suppose that feC"[0,b] for some b >0 , and that there is a g
constant M such that, for all ye([O,b], S
() _ olm) ; |
£(y) -7 (0) < My (3.1) 1
Then, for all x¢{0,b] , 2
j
n o r (r) n+l i
£(x) = 3 T £0(0) + m(x) (3.2) !
r=0 ' (n+1)? !
!
where !
m(x) <M . (3.3) ,’
Remarks
The proof is by induction on n , and is omitted. The corresponding
two-sided result is immediate, and is generalized in Lemma 3.2 below. 1In
Lema 3.2, fractional factorials are defined in the usuel way, so
(n+a)tfat = (1+@)(2+q)...(n+q) . (3.4)
19
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2.3
Lemma 5.2
i feICn[a,b;M,a] and X,y e [a,b] , then
n r
OKI G o) () o ey m )/ ()t (3.5)
r=
where
Im(x,y)l <M . (3.6)
Remarks

The result is trivial if n =0, and for n >1 it follows from

Taylor's theorem with the integral form for the remainder, using the

integral
x L0 n-1
t(x-t n+Q
Io (()r:-l)ﬁ at = x7 2 at/(na)! (3.7)
for x >0 .

Note that the bound (3.6) is sharp, as can be seen from the example

£(x) =%, (3.8)

with y =0 and M= (n+a)!/a! . Since, for n>1,

nt < (ma)tfat , (3.9)
the bound obtained from the classical result

n-1

) - Ll ) L) )y (5.10)
r

for some ¢ between x and y , is not sharp.

20
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4. Lagrangian interpolation

The following lemma, used in Chapter €, gives a one-sided bound on

the error in Lagrangian interpolation, if f(n) satisfies a one-sided

Lipschitz condition. Thus, it corresponds to Lemma 53.1. The corresponding

two-sided result follows from Theorem 3 of Baker (1970), but the proof
given here is simpler, and similar to the usual proof of the classical
result that, if feCn+l[a,b] , then m(x) = f(n+l)(§(x)) , for some

¢(x) el(a,b] . (See, for example, Isaacson and Keller (1966), pg. 190.)

Lemma 4.1

Suppose that fe Cn[a,b] ; X e

(ayb] ; F = IP(f3x.,...,x ) ; and, for all x,ye(a,b] with x>y,
0 n

sesX  are (distinct) points in

™ - ™) < Mx-y) (4.1)

Then, for all xe([a,b],

2 = 2 +( TT <x-xr)) o (1.2)

where

m(x) < M . (4.3)

Proof

Suppose that n >0 and x # x. foramy r =0,...,n, for
otherwise the result is trisial. Let

n

wx) =TT (x-x) (1)
r=0

and write

21
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2.5
f(x) = P(x) +w(x)S(x) . (k.5)

Regarding x as fixed, define
F(z) = £(z) -P(2z) -w(z)s(x) (4.6)

for zela,b] .

Thus FeC’la,b] , and F(z) vanishes at the n+2 distinct points

TR

XyXyyooosX - Applying Rolle's theorem n times shows that there are

==

two distinct points ¢ (a,b) , such that

EO’gl
P () = r® () -0 . (47)
Differentiating (L.6) n times gives

F(n)(z) = f(n)(z) - (n+l)is(x)z+c(x) , (4.8)

where c¢(x) is independent of z . Thus, fram (4.7),

e ) - £ (e))
9" h

) (k.9)

r so the result follows from condition (k4.1).

5. Divided differences

Lemma 5.1 and Theorem 5.1 are needed in Chapter 3. The first part
of Lemma 5.1 follows immediately from Lemma 4.1 and the identity (2.5)
(we state the two-sided result for variety), while the second part is
well-known, and follows similarly. Theorem 5.1 is more interesting, and

most of the results of Chapter > depend on it. It may be regarded as a

generalization of Taylor's theorem (the special case n = 0) .

22
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2.5
Lemma 5.J

Suppose that feIC"[a,b;M] and that x,...,x are (distinct)

0

points in [a,b] . Then ' .

ntl

f[xo,...,xm_l] =mn/(nl)i , (5.1) |

where !

lm| < M . (5.2) !
Furthermore, if feC™ 1[a,b] , then |
i

{

m = £ () " (5.3) |

for some ¢ ¢[a,b] .

Theorem 2.1 ‘

Suppose that k,n >0 ; fecmk[a,b] ; a<0; b>0; and

Xgr+eesX ~ &TE (distinct) points in [a,b] . Then

(n) (n+l)
T 0 f

Aaca K

Z f(n+k)
' S I e Fa |
OSrlSres...SrkSn ;
(5.14)
where '
i
1 ntk nt
R =i ) e, oex (29 (e _)-28) ()]
0<r.<r,<...<r, <n "1 K 1777k
l1-"2~- k- |
(5.5) |
for some & in the interval spanned by x_ ,...,x and O . H
s SOOI S o r r
1 k 1 k |
i
23 %
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Corollary 5.1
If, in Theorem 5.1,
5 = max |xr| q (5.6)
r=0,...,n
then
k ,
e} ntk
Rl < 2 w(el™Fgy (5.7)

LY

Proof of Theorem 5.1

The result for k = 0 is immediate from the second part of Lemma 5.1,

so suppose that k > 0 . Take points Yor =+ 2¥, which are distinct, and

distinct from XgpeeesX - Then

f[xo: . --)xn] - f[YO: .o -:Yn]

n
= rz=:o {f[xo: ""xr’yr+l’ '--;Yn] = f[xO’ ""xr-l’yr’ “"yn]}
(5.8)
n
= rz=:0 (xr-yr)f[XO’“"xr’yr""’yn] » (5.9)

by the identity (2.4).

We may suppose, by induction on k , that the theorem holds if k
is replaced by k-1 and n by ntl . Use this result to expand each
term in (5.9), and consider the limit as Yoo ooy tend to 0 . By
the second part of Lemma 5.1, f[yo,...,yn] tends to f(n)(o)/n! , 80
the result follows. (Strictly, to show the existence of the points

¢ » we must add to the inductive hypothesis the result that
rl, L ’ rk ‘

£(mK) (¢

) is a continuous function of X_ ,...,x_ .)
r T

k ol Ty

24
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2.6

Corollary 5.1 is immediate, once we note that there are exactly

(n+k)!

T terms in the sum (5.5).

6. Differentiating the error

The two theorems in this section are concerned with differentiating
the error term for Lagrangian interpolation. These theorems are not

needed later, but are included for their independent interest, and also

because they may be used to give alt. mative proofs of some of the results
of Chapter 3 (see Kowalik and Osborne (1968), pp. 18-20).

Theorem 6.1 is given by Ralston (1963, 1965) if feCn+l[a,b] . We
state the result under the siightly weaker assumption that f ¢ ICn[a,b;M]
for some M : the only difference in the conclusion is that Ralston's
term f(n+l)(‘n(x)) is replaced by m{x) , where |m(x)| <M . The proof
is similar to that given by Ralston (1963), and is also similar to the proof
of Lemma 6.2 below, so it is omitted.

Theorem 6.2 gives an expression for the derivative of the error at ’
the points of interpolation. If feICn[a,b;M] then the result follows
immediately from Theorem 6.1, but Theorem 6.2 shows that f cc™a,b] is

sufficient. This result may be of some independent interest. 4

Theorem 6.1

Suppose that n > 1 ; fe1c™a,b;M] 5 x are (distinct)

O’
points in [a,b] ; w(x) = (x-xo)...(x-xn_l) ; P=IP(f;xO,...,xn_l) 3

'.'x
’“n-1

—_— e e

and f(x) = P(x)+ R(x) . Then there are functions ¢&: [a,b] — [a,b]

and m: [a,b] - [-M,M] , such that

25
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2.6
: 1 f(n)(g(x)) is a continuous function of xe[a,b] (although E&(x)
is not necessarily continuous);
2. m(x) is continuous on [a,b] , except possibly at XgpeeesX 3
3. for all xecla,b] ,
R(x) = w(x)£(™ (¢ (x)) /nt (6.1)

and

R*(x) = wt(x) 2 (£(x))/nt + w(x)m(x)/ (1)t ; (6.2)

and

e AL x;éxr for r

0,...,!1-1 ) then

m(x)
n+l

£+ (4(x))

. (6.3)

Theorem 6.2

Suppose that n > 1 ; fec™a,b] 3 x yeeesXy are (distinct)

0 -1

points in [a,b] ; w(x) = (x-xo)...(x-xn_l) ; P = IP(f;xo,...,xn_l) 3

and f(x) = P(x)+R(x) . Then there is a function £: [a,b] - [a,b] ,
. (

such that f"n)(g(x)) is a continuous function of xe[a,b] ; for all

xe[a,b] ,
R(x) = w(x)e™ (e(x))/mt (6.4)
and, for r = 0ye..,n-1,

R (x) = (x )2 (6(x ))/mt . (6.5)

Before proving Theorem 6.2, we need soOme leinas. Noter the similarity

between Lemma 6.2 and Theorem 6.1.

Lemma 6.1

Suppose that n >1 ; feCn[a,b] 3 XyyeeesX,  are distinct points

in [a,b] ; P = IP(f;xO,...,xn) 3
26
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A= max If(n)(x)| s (6.6)
xela,b]
ard,
8 = max ‘X. -X, . (6'7)
o<i<j<n Y

Then, for all xela,b],

n
£(x) = P(x) +(TT (x-x,) |S(x) , (6-8)
r=0
where
5| < gor - (6.9)
Proof

If % =x for some r = 0,...,n , then we can take S(x) =0 .

Otherwise, by the identity (2.5),

Bi(x) = F[xo,...,xn,x] . (€.10)
Write X 41 for x , and reorder Xyreeos¥pg (if necessary) so that,
if the reordered points are xé, ""xr'ﬁl s then

Xy - X4 = max |x! - x3| > 8 . (6.11)

0<i<j<ntl
From (6.10) ard the identity (2.4),

f[X('), .;.,X;l] - f[Xi, ...,X;1+l]

S(x) = T ) (6.12)
XO B xn+l
so, by Lemms 5.1,
300 = Se) = £ (er) (6.13)
n.(xO - xn+l)
27




2.6

for some & and &' in [a,b] . In view of (6.6) and (6.11), the

result follows.

Lemma 6.2
Suppose that n > 2 ; feCn[a.,b] 3 XgyeeesX o are distinct

points in [a,b] ; A = max |f(n)(x)|; S = max |xi-x_|
xe[a,b] 0<i<j<n e

.
b

Pn = Ip(f;xo, o ',xn-l) ; Wn(X) = (X-XO) s e .(x-xn_l) ; a-!ld
£(x) = P (x) +R(x) . Then there is & function &: [a,b] - [a,b] such

that, for all xe[a,b], f(n)(g(x)) is a continuous function of x ,

R(x) = w (0™ (5()/nt (6.14)

|R* (x) -wg(X)f(n)(E(x))/n!\ < —m (6.15)

and, if xfxr for r =0,...,0-1, then

12 ™y < 2. (6.16)

Proof
Let X, be a point in [a,b] , distinct fram x and XopeeesX g
For k=n or nt+l , define
P, = IP(f;xO,...,xk_l) (6.17)
and
wk(x) = (x-xo)...(x-xk_l) . (6.18)

By the classical result corresponding to Lemma L.l, there is a function

¢ such that (6.1k) holds. Suppose, until further notice, that x # X,
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2.6
for r =0,...,n . Then, from (6.14) and the identity

k-1 f(xr)wk(x)

Pk(X) = S (x_x;ngxr) ’ (6.19)
we have
f(n) (t(x))  f£(x) _ n-1 f(xr)
n! - wnixs = (x-xr)wx'l(xr) (6.20)

Since the right side of (6.20) is continuously differentiable at x , so

is the left side, and

H
—~
=
L
—~
v
~~
»
~
~
1

nl f(x
%({{(%) "L (x—xr)ejr;l(xr) - e
Define S(x,xh) by
£(x) =B, (x) + v ()S(x,x) . (6.22)
Since

wn(xn) : i = =n ;

w! (x) = (6.23)
L2 VR (xr-xn)w;l(xr) 2 1 =0y0..,n=2 ,

equation (6.19) gives

P, q(x) n-1 £(x_) f(xn)
wm,l(XS - rz=:o (x-xr) (xr-xn)w;l(xr) + (x_xnywn(xn) ’ (6.24)
s0
£f(x) _ f(xn)
wn(x) wn(xn) n-1 f(xr)
S(x’xn) = X - Xn + rgo (x_xI) (xn_Xr)w;l(xr) . (6.25)
29
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2.6
As x -Xx, the rght side of (6.25) tends to the right side of (6.21).

Thus, there exists

1

d .(n)
lim S(%,X) =<7 5 £\ (8 (%)) (6.26)

X_ -X
n
and, fram the definition (6.22) and Lemma 6.1, this proves (6.16). Now,
by differentiating the right side of (6.14) by parts, we see that (6.15)

holds, in fact

W ()£ (5(0) + w_(x) & (™) (&)

R'(X) = n! )

(6.27)

provided that x £ x,, for r=0,...,u-1 . Consider (6.27) near one

of the points X, T= 0y.s.yn-1 . R'(x) is continuous at S

wn(xr) =0, wx'x(xr) #£0, and, by (6.16), % f(n)(g(x)) is bounded
for x £ x. - Thus f(n)(g(x)) has, at worst, a removable discontinuity
at X, and, by the continuity of f(n)(g) as a function of ¢ ,

a suitable redefinition of §(xr) will ensure that f(n)( E(x)) is a

continuous function of x , and that

R (x) = w ()™M (g(x))/mt . (6.28)

This completes the proof of the lemma.

Proof of Theorem 6.2

If n >2 then the result follows immediately fraom Lemma 6.2. If
n =1, chocse E(x) so that §(xo) = x, and, for x # Xo
f(x) - f(xo)

X-XO

fr(&(x)) =

Then f£'(&(x)) is a continuous function of xe[a,b] , and, as

EY




2.6

R(x) = f£(x) -f(xo) and w(x) = X=Xy it is easy to see that

equations (6.4) and (6.5) are satisfied. Thus, the theorem holds for

all n>1.




Chapter 3.

The Use of Successive Interpolation for Finding Simple

Zeros of a Function and its Derivatives
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1. Introduction

Suppose that q >1 and fqu-l[a,b] . Given (distinct) points

xo, LN 4

way: |if xo, seeyX

.,xq in [a,b] , a sequence (xn) may be defined in the following

ntq are already defined, let Pn = IP(f;xn, . "’xn+q)

be the g-th degree polynomial which coincides with f at xn, S ”xn+q 5

and choose xn+q+l so that

P(‘l'l) (x

e n+q+l) =0 . (1.1)

>
s

Under certain conditions the sequence (xn) is well-defined bx/(l.l),
Ve

lies in [a,b] , and converges toa zero { of f(q'l) . Ir’this chapter

we give sufficient conditions for convergence, and estimate the asymptotic
rate of convergence, making various assumptions about the differentiability
of f .

Since P is a polynomial of degree q , (1.1) is a linear equation

in If

Xrgtl
f[xn,...,xmq] £0 , (1.2)

then Lemma 3.1 shows that the unique solution is

flx IOETPS ]
X -1 i pYe - [ n+1’ ’ n+q‘\ (1.3)
n+q+l q & n+i f[xn, ...,xrl+ ] j ’ \

and this might be used as an alternative definition. From Section 4 on,

our assumptions ensure that X yeeorX are sufficiently close to a

ntq
simple zero { of f(q'l) , 80 (1.2) holds. In Section 3, the assumption
that f(Q)(c) #£ 0 1is unnecessary: all that is required is that xn+q+1
is a (not necessarily unique) solution of (1.1).

The cases of most practical interest are q =1, 2and 3. For q =1,

our successive interpolation process reduces to the familiar method of

33
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successive linear interpolation for finding & zero of f , and some of our
results are well-known (see Collatz (1964), Householder (1971), Ortega and
Rheinboldt (1970), Ostrowski (1966), Schroder (1870), Traub (1964, 1967)
etc.). For q =2, we have a process of successive parabolic interpolation
for finding a turning point, and, for q = 3 , a process for finding an
inflexion point. These two cases are discussed separately by Jarratt (1967,
1968), who assumes that f is a.nalytic near ¢ . By using (1.3) and
Thecrem 2.5.1, we show that much milder assumptions on the smoothness of f
suffice (see Theorems 4.1, 5.1 and 7.1). Also, most of our results hold
for any q > 1, and the proofs are no more difficult than those for the

special cases g =2 and q =3 .

Some simplifying assumptions

Practical algorithms for finding zeros and extrema, nsing the results
of this chapter, are discussed in Chapters 4 and 5. Until then we ignore
the problem of rounding errors, and usually suppose that the initial
approximations Xy ...,xq are sufficiently good.

For the sake of simplicity, we assume that any g+l consecutive

points Koo ,xn+q are distinet. (This is always true in the applications
described in Chapters 4 and 5.) Thus, P 1is just the Lagrange
interpolation polynomial, and the results of Chapter 2 are applicable.

As in Chapter 2, the assumption of distinct points is not necessary, and
the same results hold without this assumption if Pn is the appropriate

Hermite interpolation polynomial.

3L
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3.1

A preview of the results

The definition of "order of convergence" is discussed in Section 2,
and in Section 3 we show taat, if a sequence (xn) satisfies (1.1) and
converges to { , then f(q-l)(;) =0 (Theorem 3.1).

In Sections 4 to 7, we consider the rate of convergence to a simple

(q-1) , making increasingly stronger assumptions about the

zero { of f
smoothness of f . For practical applications, the most important result
is probably Theorem 4.1, which shows that convergence is superlinear if
fec? and the starting values are sufficiently good. As in similar results
for Newton's method (Collatz (196%), Kantorovich and Akilov (1959),
Ortega (1968), Ortega and Rheinboldt (1970) etc.), it is possible to say
precisely what "sufficiently good" means. Theorem 5.1 is an easy
consequence of Theorem 4.1 and the theary of linear difference equations
(Norlund (1954)), and gives a lower bound on the order of convergence if
f(q) is Lipschitz continuous.
The question of when the order of convergence is equal to the lower
bound given by Theorem 5.1 is the subject of Sections 6 and 7. Although
the resnlts are interesting, they are not of much practical importance,
for in practical problems it is merely a pleasant surprise if the iterative
process converges faster than expected! Thus, the reader whose main
interest is practical applications might prefer to skip Sections 6 and 7
(and also Theorem 3.1), except for Lemma 6.1.

Ta Section 8, we consider the interesting problem of accelerating the
rate of convergence, and Theorem 8.1 shows how this may be done. We make
use of Lemma 6.1, which gives a recurrence relation for the error in

successive approximations to { , and is a generalization of results of

Ostrowski (1966) and Jarratt (1967, 1968).
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3.2

Finally, in Section 9 the theoretical results are illustrated by
some numerical examples, and a brief summary of the main theorems is
given in Section 10. The reader may find it worthwhile to zlance at

this summary occasionally in order to see the pattern of the results.

2. The definition of order

Suppose that lim x = { - There are many reascnable definitions
n-—ow

of the "order of convergence" of the sequence (xn) . For example, we
could say that the order of convergence is p if any one of (2.1) to (2.h4)

holds:

-8
1mkﬁl———| = K>0 , (2.1)
n-o |xn-§|p

log|x,,, - ¢
nl.h: Toglx -¢] =~ P 7 e
1/n
lim(-log|x - ¢l = p , (2.3)
n—w
lim inf(-log|xn - §|)l/n = p . (2.4)
n—ow

These conditions are in decreasing order of strength, i.e.,
(2.1) o (2.2) o (2.3) o (2.4), and none of them are equivaient. (2.1) is
used by Ostrowski (1966), Jarratt (1967) and Traub (1964, 1967), while

(2.2) is used by Wall (1956), Tornheim (1964) and Jarratt (1968). Voigl (1969)
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3.2

and Ortega and Rheinboldt (1970) give some more possibilities (for
example, we may take the supremum of p such that the limit K in (2.1)
exists and is zero, or the infimum of p such that X is infinite). See
also Schroder (1870). For our purpeses it is convenient to use (2.1) and

(2.4), so we make the following definitionms. | h

Definition 2.1

I S

We say X - { with strong order p and asymptotic constant K
if x - { as n - » and {2.1) holds.
We say X, - § with wet - order o if X, = £ as n - o and 1

(2.4) holds. (If X = > for all sufficiently large n then we say

that x - § with weak order o .)

Definition 2.2

Let

¢ = lim sup |xn - §|l/n . (2.5)

n-ow

We say x - { sublincarly (or less than linearly) if x - { eand

c=1. We say xn—~§ linearly if 0 <c¢ <1 . We say xn~§
superlinearly if ¢ = 0 . We say x, - ! strictly superlinearly if

xn—o§ with weak order p > 1 . 1

Examples {

Some remarks and examples may help tc clarify the definitions. If
p>1 and x = exp(-p")(L+0(1)) as n — o , then x, = O with strong
order p and asymptotic constant 1 . If g >1 and X o= exp(-gn)(z r (-1)"

1569) then X, - 0 with weak order g5 , put not with any strong order, for the
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3.3
limit in (2.1) does not exist if p = g , is zero if p <¢g , and is
infinite if p > g . Thus, convergence with strong order p implies
convergence with weak order p , but not conversely.

If the limit in (2.1) or (2.4) exists, and X -8, then ¢ >1.
If the limit (2.1) exists with p =1, and X -+, then K<1

(K < 1 for linear convergence, and K = 1 for sublinear convergence).

Examples cf sublinear, linear,

1 -n -n
X ==, 2 n
n n ) )

superlinear, and strictly superlinear
B
, and 2

convergence are respectively.

3.

Convergence to a zerc

In this = “°n we show that, if the sequence (xn) defined by (1.1)

f(q'l)

converges, ti .. it must converge to a zero of , assuming only

that fqu-J'[a,b] . First, we need a lemma which gives a relation

between the points X ""xn+q+l 5
Lemma 3.1
1f xn’xml""’xn+q are (distinct) poirts in [a,b] , and xn+q+l
satisfies (1.1), then
q-1
(i}z‘o(xmi xn+q+l))f[xn" R +q] = filoel ;0L n+q-l] (3.1
Preof
By the identity (2.2.6),
b = ] - 1 r o0 0
P (x) = flx ]+ (x-x ) €lx ox ]
/ .
+ \x-xn) . "(x-xmq-l) f[xn, - .,xmq] , (3.2)

SO

T e
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PO (x) - (1) tislx, .. ]

11
- s (%4

*Xreg-1

i--x))f[xn,...,x 1} . (3.3)

n+q

("

Thus, the result follows from (1.1).

Theorem 5.1

Suppose that fe;Cq-l[a,b] ;5 that a sequence (xn) satisfying
(1.1) is defined (see Section 1) in [a,b] ; and that there exists
lim x_ =08 . Then f(q'l)(g) 0.

n-w O
Proof

Suppose, by way of contradiction, that
) fo . (3.1)

For 0 <r <q , the identity (2.2.4) shows that

(x -x . )flx

n+r n+q n, oo.’xn+q] = f[xn’ooa,xn+q-l] o’

] . (3.5)

LI B x * 80
PUX = oo e (i en Ry

Thus, from Lemma 3.1,

-1
*ntr " ¥n+q T Mo,r (it-o Ry 'xn+q+1) ’ (5.6)

where

. f[xn""’xn+r-l’xn+r+l’""xn+q] s
M, r T frxn,... ] * -

’xn+q-l

Both divided differences in (2.7) tend to f(q-l)(g)/(q-l)! as n - o ,

s0 there is no loss of generali'y in assuming that the denaminator

392
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3.3

f[xn,...,x is nonzero for all n (on the assumption (3.4)),

n+q-1]

and we have

lim un
n-—ow

L=0 - (3.8)

2

Summing (3.6) over r = 0y...,q-1 and rearranging terms gives

=]
where
1- ¥
r=0 ",

and, by (3.8), there is no loss of generality in assuming that the
denominator in (3.10) is nonzero for all n >0 . From (3.6), with

r = q-1, and (3.9), we have

nrq-1 " *nrq T u'n(xrr~l-q"xn+q+l) 4 (5.11)
where

My = Bpgatn (3.12)
The repeated application of (3.11) gives

X1 % = uoul...un(xn+q-xn+q+l) 5 (3.15)

and, by (3.8), (3.10) and (3.12), kW -0 as n -, g0 the right
side of (3.13) tends to zero a8 n — » . This contradicts the assumption
that Xy-1 # x, » 80 (3.4) must be false, and the proof is complete. (If
we do not wish to assume that any gq+1 consecutive points X 3eeerX

nt+q
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3.k
are distinct, then we may argue as follows: on the assumption (3.4),
the right side of (3.1) is nonzero for all sufficiently large n , and

thus at least two consecutive points from xn, Jenel; are distinct.

xn+ qtl

Taking these two points in place of xq-l and xq » we get a contradiction

in the same way as from (3.13).)

L.  Superlinear convergence

If f has one more continuous derivative than required in
Theorem 3.1, then Theorem 4.1 shows that convergence to a simple zero
of f(q-l) is superlinear, in the sense of Definition 2.2, provided the
starting values are sufficiently good. The theorem makes precise what
vwe mean by "sufficiently good". (In equation (4.1), w is the modulus
of continuity: see Section 2.2.) Convergence to a multiple zc¢ro of
f(q-l) is not usually superlinear, even if q = 1 (see Section L4.2),
and Theorem 3.1 above is the only theorem in this chapter for which we
do not need to assume that the zero is simple. Thus, there is no reason
to expect that the algorithms described in Chapters 4 and 5 will converge

any faster than linearly to multiple zeros of f(q°l) .

Theorem 4.1

Suppose that fqu[a,b] ; Lela,b] xo,...,xq are (distinct)

points in [a,b] ; 8, = max [x;-t] ; ela-D ey -0 ;
i=0,...,q
[§-60,§+60] c {e,b] ; and

w(tWis) < 2Dy . (4.2)

L1
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3oh
Then a sequence (xn) is uniquely defined by (1.1), and x, - ¢

superlinearly a8 n -+« . Furthermore, if, for n >0,

i ’n T 10y n1) v ¢ (-
and
n = (e Vs y/1e @y (k.3)

; then the sequence (Sn) is monotonic decreasing, and

5 (4.b)

mqtl = Mdnel

Proof

} Without loss of generality, assume that § = 0 . Let Sn and A

T

be as in the statement of the theorem (equations (4.2) and (4.3)).
Since f(q-l)(o) =0, Corollary 2.5.1 to Theorem 2.5.1 (with

k=1, n=q-1) gives

| f[xl,...,xq] = (iil xi)f(‘n(o)/q'.ml 3 (4.5)

.

| where

IRy | <z @) /(-1 (1.5)
if

| SN izl.;nz.n.(.,q|xi| S By (4.7)
| Sinilarly,

: . U -l
, xgr--erig] = 8 ey - Ll (4.8)

L2




3.4
where
8, | Sw(f(q);ao)”f(q)(o)l =)/3 < /3 (4.9)
80
R
|R3| = ‘F%z\ < a2 < e (k.10)

(Note that the assumption (4.1) ensures that f[xo, ...,xq] £0 )

From (4.5), (L4.8), and Lemma 3.1 (with x. and X, interchanged),

0]
q £( () q (D (o) b1t
- = + .
Where
i £(9) (o) 5
R, = R5(1=1 xi) 3 + Rl(l+ RB) (4.12)
From (4.6), (4.7) and (4.10), equation (k.12) gives f
|r,| < — + = ; (4.13)
L = 2.(q-1)! 2.(q-1)!
\'\
so, from (k.3) and (4.7),
, ;
L,
ml < o (1.24)
Now, fram (k.11), we have
Ixpal < a8t - (4.15)
By the assumption (L.1), Ao < 1, so xq+l lies in {a,by , 61 and M
are well-defined, bl =6' < 63 c }‘l < M , and

by
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3.h
lxq+l| < ?\051 (4.16)
In the same way, we see that 80 > 61 = 52 > e,
l>)\02)\12)\22... » and, for n >0,
lxn+q+l| S )\n8n+l * (h"l'z)
Thus, the inequality (L4.4) holds, and it only remains to show that
x -0 superlinearly. From (4.4) and the above,
) € Mo g Ih 3) <)\k6 (k.18)
kq+l = "0%q (k-l)g"1 =" "1’
and ), <1 by assumption (k.1), so 8, +0 & n ~wo . Thus, by
the continuity of f(Q) and the definition (L4.3), )‘n -0 as n +o .
Take any € >0 . For all sufficiently large n ,
Ay, S, (4.19)
so, from (L4.4),
1/n
lim sup 8 /7 < € . (4.20)
n-o
As € 1is arbitrarily small, this shows that
lim |xn|l/n 14m 850 - o . (b.21)
n-w n-w 0
Thus, X, £ = 0 superlinearly, and the proof is complete.
Remarks
The proof of Theorem L.l shows that, for n >0, Ixn+q+l- ;\ is
no greater than the second-largest of |xrl - §|, coog ‘xn+q - §| . Thus, if

Lh




3-5
q =1, the sequence (Ixrl - CI) is monotonic decreasing, except perhaps
for the first term. 1In fact, the proof shows that, for g =1 and

n>1,

d
L};—_ﬂl 0O as n-o (k.22)

(provided X #£¢t) . This is a common definition of "superlinear
convergence", stronger than our Definition 2.2.

If q >2, the sequence (|xn -t|) need not be eventually
monctonic decreasing: monotonicity would follow from strong superlinear
convergence with order greater than 1 , but more conditions are necessary

to ensure this sort of convergence (see Sections 6 and 7).

5. Strict superlinear convergence

Assuming slightly more than in Theorem k4.1, Theorem 5.1 shows that
convergence to a simple zero of f(q-l) is strictly superlinear,
according to Definition 2.2. Before stating the theorem, we define some

constants Bq o and 7q 5 which are needed here and in Sections 6 and 7.
) b

Definition 5.1

For ¢ >1 and a >0, let the roots of

P Ay (5.2}
o(1) ; ; (0) (1) (a)
be for i =20,... with |u > > el >
q’ ’ ’ 29 ‘ q,Cl‘ = |uq,a| > = ‘uq’al
Then the constants Bq,a and 7q,a are defined by
(0) (1)
and
By,q = 1ug,al Te,a = 1¥gal

[ —— -
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Since the case a = 1 often occurs, we write simply Bq for
and for >
Pg,1 7q 7q,1
Remarks

ﬁq o is just the positive real root of (5.1), and it is easy to
)

see that, for 0 <a <1,

2 1
(1+a)29' < g < (1+a)? . (5.2)
q,Q
We are only interested in the constants 7y c when a=1. If
J
@ =1 and q >2 then there are exactly two complex conjugate roots
of (5.1) with modulus 7q . If gq=1 or 2 then 7 <1, but, for
qQ > 3,
L€y, < .
q Bq
This may be proved by applying the Lehmer-Schur test to show that, for
suitable € >0 , exactly q-2 roots of
xq+l=x+l (55)

lie in the circle |x| < 1+€ . The details are omitted, for all cases

of practical interest are covered by Table 5.1, which gives B and '/q

to 12 decimal places for q =1,...,10 . The table was computed by

finding all roots of (5.3) with the program of Jenkins (1969), and thc
entries are the correctly rounded values of Bq and 7q if Jenkin's

a posteriori error bounds are correct.

L6
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Table 5.1:

=

O OO ~N O W,

I‘ 10

See Definition 5.1 and the remarks

the constants

The constants Bq

Py

1.618033988750
1.32k7179572k45
1.220744084606
1.167303978261
1.13k724138L02
1.112775684279
1.096981557799
1.085070245491
1.075766066087

1.068297188921

Py

and
7‘1

and
7q

L7

for q = 1(1)10 to 12D

0.618033988750

0.868836961833
1.063336938821
1.0990003151k46
1.099174913506
1.091953305766
1.083743696285
1.076133134033
1.069448852721
1.06366693840L4

above for a description of
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3.5
Theorem 5.1
Suppese that feI_Cq[a,b;M,a] (see Section 2.2); e (a,b) ;

f(q-l)(g) =0 ; and f(Q)(C) £0. If x x_ are (distinct and)

O,-n., q

sufficiently close to { , then a sequence (xn) is uniquely defined

by (1.1), and x, - £ with weak order at least 8_ o » the positive
Qs

real root of xq+l = x+Q .
Remark
If 8, = max |Xi -t| , then, from Theorem k.1, Xos+eer Xy
i=0,...5q

are "sufficiently close" to § if 50 <fl-a, 50 <b-{, and

My < 12D )|

If these conditions are satisfied, then an upper bound on Ixn - §|

foilows from equation (5.10) below.

Proof of Theorem 5.1

For n >0, let

1

5 =  max ,xnﬂ_-n .

e
i1=0,...,q

Suppose that X2 ...,xq are so close to { that the conditions
mentioned in the remark noove are satisfied. Then Theorem 4.l shows

that (ﬁn) is monotonic decreasing to zero, and

oM Q

® < & &
ntq+l -~ !fhs(gﬂ n n+l

If eventually 5n = 0 , then the result follows inmediately: Dby

with weak order « . Hence, suppose that

ve

our definition, x, -

43
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&, £0 for all n >0 (and thus, from (5.6), M >0 ). Let

M |/«

5.7)
(@ ¢) (

= -log®

n

(not the same A, @&s in Theorem L.1). TFrom condition (5.4) and the fact

that (8n) is monotonic decreasing, 0 < )‘O < )‘l < )\2 < ..., and, from

equation " 3),
Migrl 2 A Ty (5:9)
Since Bq,oz > 1, we have

2 %8s (5.9)

for n=20,...,q . Thus, from (5.8) and the definition of Bq o ° the
)

Lo

inequality (5.9) holds for all n >0, by induction on n . Hence, for

ell n >0,
R _ _ n-q 1 SM
log |xn ¢| > -Log 5, 2 Xy Bq,a + 5 log W (5.10)
Since \g >0 and B > 1, equation (5.10) shows that
q,Q
lim inf (-log |x_ - §|)1/n > B (5.11)
n - q’a 2 7

n—o

vhich caapletes the proof.
Note that, in the important case « = 1 , there is a simple proof of
Theorem 5.1 which does not depend on Theorems 2.5.1 and 4.1. Also, this

proof shows that, instead of (5.4), the condition

aw, < 22 @) (5.12)

49
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ie sufficient. The ilea is this: by applying Rolle's Theorem q-1
times, we s<e that Plgq-l) (x) coincides with f at points En and §I'l
say, with |§n- ¢ < & and IgI'l -t < 8! = the second largest of

|xn-§|,...,|xn+q-§| . Thus, from Lemma 2.4.1,
ey < Lwsr . (5.12)

On the other hand, equations (1.1) and (3.3) show that

p(2-1)(¢)

X = c - e )

(5.1k)

50 we can bound |x - §| » and then the result follows in much the

nrgrl

same way as above.

6. The exact order of convergence

Theorem 5.1 gives conditions under which X, - ! with weak order at

least Bq . It is natural to ask if the order is exactly Bq . In general,
this is true, but some conditions are necessary to ensure that the rate

of convergence is not too fast: for example, the successive linear
interpolation process (q = 1) converges to a simple zero { with weak
order at least 2 (> B, = 1.618 ...) if it happens that f"({) = 0, for
then linear interpolation is more accurate than would normally be expected.
Theorem 6.1 gives sufficient conditions for the order to be exactly Bq 5
Apart fram the conéition f(q+l)(§) #£ 0, it is necessary to impose some
conditions on the initial points Xyp oo ,xq. (Tese extra conditions are

superfluous if q = 1 : see Section 7 .)

50
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Before proving Theorem .1, we need two lemmas. Temma 6.2 is
concerned with the solution of a certain difference equation, and is
closely related to Thecrem 12.1 of Ostrowski (1996). (The lemma could
easily be generalized, bu* we only nced the result stat d.) Lemma 6.1
gives a recurrernce relation for the error X, -{ . Specisal cases of this

3)
lemma have been given by Ostrowski (1966) and Jarratt (19€7, 1968). )

Ostrowski essentially gives the case q =1, and Jarratt gives weaker
results for q =2 and q = 3., (our bound on the remainder R is
L)
sharper than Jarratt's, and we do not assume that f is analytic.) 1In

Section 8, we shiow how the result of Lemma 6.1 may be used to accelerate

convergence of the sequence (xn) .

Lemma 6.1

Suppose that f‘qu+1[a,b] ; Lela,b] ; f(q'l)(g) =0 &
f(Q)(g) £0 ; xn""’xn+q are (distinct) points in [a,b] ; and
gl satisfies equation (1.1). Let & be the largest of
|xn-§|,...,|xn+q-§| ; and 6& the second largest. Then

f(q+l)('-) u . !
xn+q+1- q(q+1)f(q (;) 0<1<i<q (xn+i = g)(}‘n+j -3) + Rn ’ i {
(6.1)
where
R = o(anar'l[an+w(f(q+l) ;sn)]) (6.2)

as & -0 .
n

Proof

L Without loss of generality, assume that n =0 and § = O . Rearrange

4 51 '
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Xop e esXy s if necessary, so that |xo| < |xl| < vos £ |xq| . From
Lemma 3.1,
-1
q-xq+lf[xo’ .o o,xq] = (i‘{_:‘o xi) f[xo, .o .,Xq] - f[xo, .o .,Xq_l] . (6.5)

Thus, as f(q'l)(o) =0 £ f(Q)(O) , Theorem 2.5.1 gives

(q)( )
1 fq! 0 (l+rl)

q.xq+
- (;ZO xi) (Ti_l + (igo Xi)’ —(-q:iﬁ—l + I‘2)
ST R e (T xSt e
(6.1)
where
|z, | '——ﬁ——(f(q) %) (8,) (6.5)
< = 0(8 9 )
rl - lf q (°)| 0
el < owie(@Dse0)/ar = o(s (e se.)) (6-6)
i (q+1)
2 +1
8! w(£' T 581)
Il s 2y - 0T 5en)) (6.7)
as 50 -0
The right side of (6.h4) is just
(m+1)
£ 0
(051§35q %) @Dt T (6.8)



3.6

where

Im | < asglrol+ Iyl = ol pgu(e( T s )

as 60 - 0 , so the result follows.
Remarks

Fram the bounds on rl,

(6.9)

cesT) it is easy to derive an explicit

bourd on |Rn} for sufficiently small & . For our purposes, though,

the relation (6.2) is adequate. A simple corollary of (6.2) is that,

ir £(@*1) e Lip, G , then

R =otl%s
n n

&)

n

as 5 -0 .
n

Lemma 6.2

Suppose that }\n-ohn as n -+ o, and, for n >0,

>‘n+q+l A
where
n
k = 0(s")

as n - w , s a constant. I8 7q <8 < Bq then

N, = c.a:+ o(s")

a8 n -« , and if k = o(s") as n - then

A, = C'B: + o(s")

23

(6.10)

(6.11)

(6.12)

(6.13)

(6.1%)
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as n o, If O_§s<7q then

n v n
Ny = CB 0(n .7q) (6.15)

as n - o , where

0 if q=1 ,
v = (6.16)
1 if 9>1 ,

and ¢ 1is a nonnegative constant.

Proof
The restriction \u2| <1 1in Theorem 12.1 of Ostrowski (1966) is
unnecessary, for we can chcose any X with ‘ue‘ <N< Iul\ and
consider kn/)\n s instead of >\n s in Ostrowski's proof. Thus, in view
of the remarks after Definition 5.1, (%.1%) and (6.15) follow from
Ostrowski's Theorem 12.1. (6.14) does not follow directly in the same
way, but the proof of Ostrowski's Theorem 12.1 goes through, assuming
k = o(sn) instead of k = O(sn) , and giving a result from which (6.1k4)
foilows. The only difficulty is in proving the modified form of

Ostrowski's Lemma 12.1, but this follows from the Toeplitz lemma: if

X -0, |¢] <1, and 2, =k +k _

n
s 00 + =
n + ko.ﬁ , then z 0 as

16
n - o (see Ortega and Rheinboldt (1970), pg. 399).

Theorem 6.1
suppose feC¥a,0] 5 Ce (a,b) ; f(q'l)(C) =0 § f(Q)(C) AN

and f(q+l)(§) £0. 1If |x0-§| is sufficiently small,

|xi-l -t > h‘xi - ¢l (6.17)

Sk
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fOI‘ i = l,2,o-s,q » &nd

Ix - ¢l 2 6lK(x -0 (x -] > o, | (6.18)

(q+1)
f §§2
K = ’ (6°19)
a(ar) £ Y (2)

then a sequence (xn) is uniquely defined by (1.l1), and x - § with
weak order exactly aq . In fact, if @ =1 or 2 then X - with

g -1
strong order Bq and asymvtotic constant |K| * , and if q >3 then

-loglxn -t = c.B: + O(n.yg) (6.20)

as n -« , for some positive constant c .

Remarks
Condition (6.17) ensures that Xgo + 2%y approach { sufficiently
fast, while (6.18) makes sure that they do not approach { too fast.
These conditions could be weakened, but Theorem 7.1l shows that some such
conditions are necessary if q >2 . If q =1 then the conditions
are superfluous: see Corollary T7.l.
Equation (6.20) implies that (2.2) holds with p = Bq , but (2.1)

does not necessarily hold, for 7q >1 I 9> »

Proof of Thecrem 6.1

Let y = {K(x - 8| - (6.21)

From the assumptions (6.17) and (6.18) we have, at leest for n =0,

25
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Yoriel 2 hyn‘!-i (6.22)
for i =1,2y...5q0 , and

yn+q > 6ynyn+l > 0 . (6.23)

We shull show that (6.22) and (6.23) hold for all n >0 . Suppose, as
inductive hypothesis, that they hold for all n <m . Then, by taking
|xo - §| sufficiently small (independent of m) , we may suppose that {he

remainder Rn of Lemma 6.1 satisfies

Ik | < ilgynynﬂ (6.21)
for al). n <m . Thus, fram Lemma 6.1,
Vmtqrl S ymyml(lﬂl; + h% + fg* fl;+ cee t 1—13)
%ymymﬂ. y (6.25)
From (6.23) with, n =m , this gives
Ymq 2 hquﬂ (6.26)
Similarly,
Ymtqrl 2 Y Fmey (L = TlI - h—22 - ff - flI 2 - %)
=5 ey | (6.21)
> 6V Yo (6.28)

Also, from (6.27), Ymrqrl

From (6.26) and (6.28), we see that (6.22) and (6.23) hold for n = m+l ,

>0 , so the right side of (5.28) is positive.

so they hold for a1l n >0 , by induction. Thus (6.25) and (6.27) hold

for all m >C .

st
=g
i
L]
L
—y
-y
—
—

—
—




Let

>
1l

-log yn (6'29)

NS R (6.30)

From (6.25) and (6.27),

k| _ log2 , (6.31)
so we may apply Lemma 6.2 with s =1 . If q >3 then 7q>l, so

n n
N, = c.ﬁq+0(n.7q) (6.32)

as n -»o . From Theorem 5.1, ¢ >0 , so the result for q > 3 follows.
If 9q=1 or 2 then 7q<l, so
r

N, = c-B + 0(1) (6.33)
as n -« . From (6.29), (6.30), (6.33) and Lemma 6.1, we now see that

N o(1) (6.3h)
as n - o, 80, by equation (6.14) with s =1,

u

A = c.Bg + o(1) (5.35)

as n -o . Thus, there exists

Y.

m 2L . g (6.36)
n-w Bq
n

so the result follows fror equation (6.21). (Note that, if f(q+l) € LipM a
for any M and & >0 , then (6.34) may be replaced by k = o(s") for

any s >0, so (6.15) nolds, and

o1
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3.7

T Stronger results for q =1 and 2

In this section we restrict ocur attention to the two cases of the
greatest practical interest, q =1 (successive linear interpolation)
and q = 2 (successive parabolic interpolation for finding an extreme
point). Corollary 7.1 shows that the conditions {6.17) and (6.18) of

Theorem 6.1 are unnecessary if q =1 .

Corollary 7.1
Suppose that q = 1 ; feCz[a,b] ; Ce(a,b) 3 f£(8) =0

£1(8) A0 ;and M) 0. If x;,x; and { are distinct and

‘ 0
sufficiently close together, then a sequence (xn) is uniquely defined
by (1.1), and x - { with strong order B, = % (1+/5) and asymptotic
e (t)|P1t
constant \gf' \ a8 n - o .
Proof
From Lemma 6.1,
f"( *
Xy-8 = serrd (%o - ) (% - 8)(1+0(1)) (7.1)

as max(\xo-§|, |x1-§]) - O . Thus, Theorem 6.1 is applicable to the

' ] | - £ $
sequence (xn) s Where XL =X 410 provided X and xl are sufficiently

close to ¢ .

5
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Remarks
Ostrowski (1966) gives Corollary 7.l with the stronger assumption

that feCj[a,b] . He also shows that, if fecj[a,b] and the

conditions of Corollary 7.1l are satisfied, then

x5 - ¢ )Pt
e & g

‘ ;|Bl - 1 - 5 0(72) (7.2)
x -

28 n - » . As we remarked at the end of the proof of Theorem 6.1, the
relation (7.2) holds provided that feme[a,b;M,a] ior some M and «
(see equation (6.37)). For an even weaker condition, see (7.7) and (7.8)
below.

The following thecrem removes the rather artificial restrictions
(6.17) and (6.18) of Theorem 6.1, if f(q*l) is Lipschitz continuous
and q =1 or 2 . The proof does not extend to q >3 , because it
depends on the assumption that 7q < 1, which is only true for g =1

and q = 2 (see Table 5.1).

Theorem 7.1
Suppose that q =1 or 2 ; fecY a,b;M) 5 Le(ayb) ;

£@D(ey -0 ; ana #(0) gy £O0 . If Xgr++es%,  are (distinct and)
sufficiently close to { , then a sequence (xn) is uniquely defined

by (1.1), aad either

l: X - 5 with strong order Bq and asymptotic constant

| d=De) By
latar) 2@ 2)

sy in fact



%4y - 8 ) @D ) |Bgt + 0(ndL ;0 (7.3)
-t la@ns@w :
as n -» o (recall that B, ~1.618, B, ~1.325, 7. ~0.618,
12 2 = 1=

and 7220.869) 3

X, - { with weak ourder at least 2 if q =1, or

1
(2—}@)3 ~ 1.378 if gq=2.

Remarks

If q =1 then, by Corollary 7.1, case 2 of Theorem 7.l is
possible only if f"({) = 0 (or if one of x, and x; coincides with ¢§ ,
when the weak order is o ).

If q =2 then case 2 is possible, although unlikely, even if
f(j)(g) £ 0 and x £¢ for all n . All that is necessary is that
the terms in relation (7.28) repeatedly nearly cancel out. Jarratt (1967)
and Kowalik and Osborne (1968) assume that such cancellation will eventually
die out, so the order will be B, - The conditions (6.17) and (6.18)
are sufficient for this to be true, but without same such conditions there

is a remote possibility that cancellation will continue indefinitely.

Tor example, with f(x) = 2x3~'0'x2 s there are starting values x, , X

0 1

and x2 such that

X, ~ exp(-2")
and (7.%)

o - .ol
.‘;2n+l ~ exp( ? ) )

60
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s0 X, -+ =0 with veak order /2 . Similarly, if

y =:§L(5+/'5') - 2.618 ...,

then there are starting values such that

xan ~ exp("'yn) ) R
Xy ~ e@(-(-1)7")

and >
Xambp ™ —exp(~(7-1)7™ 1) )

1/3

80 X - 0 with weak order 7y / =1.378 ... . The proof is omitted,

but the reader may easily verify that (7.4) and (7.6) are compatible

with Lemma 7.3 below (this depends on the relation 2y-1 = y(y-1)) .
For the sake of simplicity, we have not stated Theorem 7.1 in

the sharpest possitle form. I £ @*1)(¢) -0, then x_ - ¢ with

weak order at least » provided that f(q+l) € LipM a for

Bq, 1+a = Bq
some M and @ >0 . If f(q+l)(§) # 0, then the theorem holds

(7.5)

(7-6)

provided that £ qu+1[a,b] . Equation (7.3) may no longer hold, but if

there is an € > 0 such that
-E
w(eleD) ;8) = 0(|1og 5| /q)

as 8 - 0, then

(7.7)

f O(nq-lyg) if e>1),)
|x . - ¢ (a+1) B -1
—= - akd (9 i R e I AT ,>(7.8)
Ix. - ¢| 2 a(g+1) £' 1 (8) q
n O('yne) if e<1;
: J

as n - = . (A condition like (7.7) occurs in same variants of Jackson's

theorem: see Meinardus (1967).)
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3.7

Before proving Theorem 7.l, we need three rather technical lemmas.

Lemma 7.1
Suppose that, for n >0,

= t
X3 = XX tX Kt XX mnsian " (7-9)

where & is the largest of |x |, |x .| and ol » and 8! is

%
the second largest. If there is a positive constant L such that

ilﬁ.? x| >31x,| >9Ix,| >27|x;] » and
)5 (7.10)

for all n >0, then |x | >3] for all n >0 .

X |

Proof

As in the proof of Theorem 6.1, it follows by induction on n that

22 22
‘xn+3‘ 2 55 xnxn-!-l‘ s 5 |xmlxm2| 2 5|xnl-l+| ’ (7.11)

for all n >0 .

Lemma 7.2
If the conditions of Lemma 7.l are satisfied, then either xn =0

for all sufficiently large n , or
EY
B2

=, |

= 1+ 0(nyp)

as n - o .
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Proof

all n>0 .
kn =>\n+ -A

Lemma 7.1,

ag n - oo

Now, Lemma 6.2 with s < 7, &ives

a8 n - o , and the result follows from the definition of kn 3

Lemma 7.3
Suppose that (7.9) and (7.10) hold. Then there are constants K

and N (depending on L)

and

then

A.n-.+oo,so c>0.

k= O(exp{-c(B,-1)B

(tkis is not necessarily true in the proof of Theorem 6.1).

n ¢
)"n = CBZ + 0(!1721)

1>
n—

5=
v

nt3

n+h

nt5

If this is so, define A, -loglxn| and

From equation (7.11), is bounded, so

n+l '

Lemma 6.2 with 8 =1 gives M ch,a1 +0(1) a8 n -~ .

Thus, fram (7.9),

such that if, for some n >N,

‘xnl > n

i

+ xn+lxn+2(l + VB,n) -

m

If x #£ 0 for infinitely many n then, by Lemma 7.1, X £0 for

(7.12)

(7.13)

(7.1k)

(7.15)

(7.16)

(7.17)

(7.18)
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and

6 T x121x1r31+l(1+ Ve,nd * X ngl+1 Kop(1+ Vo o (7.19)
where

vyl < 3 (7.20)

Proof
The lemma follows by repeated use of the recurrence relation (7.9)

and the inequalities (7.10), (7.1%4) and (7.15).

Proof of Theorem 7.1

Without loss of generality assume that § = 0 . First suppose that
q=1. If f'(0) £ 0 then the theorem holds, by Corollary 7.1. If

'(0) = 0 then, by IL.emma 6.1,

2 T
X 4o = o(snan) (7.21)

as & -0, where B and &' are as in Lemma 6.1. If x. and x
n n n 0] 1

are sufficiently small, equation (7.21) implies that

5. = Ix| (7.22)
and
5y = ¥yl L
forall n>1. Thus x -0 as n -, and
2.2
%ol < A%|xx (7.2%)
6k
et £ ¥ ¥ ¥ ¢ ¢ 8 Y 0 X 4ow {
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for all n >0, where A is some positive constant. If some X = 0

then x = X = «vo =0, and we are finished (weak order o) .

n+1 nt+2

Otherwise, there is no loss of generality in assuming that
n
A\xn| < exp(-2")

for n=0 and n=1. From (7.24), equation (7.25) holds for all

n >0 , by induction on n . Thus, the weak order of convergence is at

least 2 , and the proof for q =1 1is complete.

From now on, suppose that q =2 . By Lemma 6.1,

. - 3 (o

2
n+3 (0 (xnx + O(Snsrz)

n+1 + xn+1xn+2 * xnxn+2)

z
as n -+ o . If f(J) (0) = 0 then the weak order of convergence is at

b}

least B2 o the positive real root of x” =x+2 , by & proot like
> -

that above for q =1, and the theorem holds as =52 Naere | s

P2
If f(j)(o) #£ 0, then we may as well suppose that

s
(0

by a change of scale, as in the proof of Theorem 6.1l. Thus, we must

study the interesting recurrence relation

2
= + A '
xn+3 ¥+l T Farr®neo * X n+2 * O(E)nﬁ'n) ’

and, by Theorem 5.1, we can assume that X - 0 with weak order at
least 62 .
First suppose that the-e is an infinite sequence N = (no,nl, sstol)

with the property that, for every i >0 and n = n. , either

65
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3.7
1: Niyp = D 2 (7.-29)
and
2 '
lmlxnxn+1| < |xn+2| < 2 xnxn+ll - (7.30)
or
2: iy = n+3 (7.51)
and
I .| < bnfx i, | (7.32)
n+2 nntl - *

If either (7.30) or (7.32) holds, then Lemma 7.3 is applicable for all
sufficiently large n = ni in the sequence N . To avoid confusion
with sutscripts, write m for Ny (so m=n+t2 or m3 ). If

n =n. 1is sufficiently large, and (7.29) and (7.30) hold, then

x| < 2xx | (7.33)
and, by Lemma 7.3,

ixm+l| < 2lxx o] - (7.3h)
If (7.31) and (7.32) hold then, similarly,

|xm| < 2|xnxn+l| (7.35)
and

0

%, 1] < MHxx | - (7.36)
Let

o) 2l | (7.37)
After a fixed n = ng in N , suppose that the next r > 1 elements

66
y i I




3.7
of N satisfy (7.31), and then the next s >1 satisfy (7.29). Then

repeated use of the inequalities (7.33) to (7.36) gives

X (Y1 3rros Y sprope)) S "‘“(yn’yn+1)q>(r’s) d (7.38)
where
L5+ 203+ /5 W5 -2 3 /5T
o(n8) = 2 LR ) + (LN (7.39)
s 1
¥{r,s) = ‘P(T:S)BNQS * (7.%0)

For fixed s >1, V¥(r,s) is a decreasing function of r , with limit
E
*.
2 W (3%/2) = inf  ¥(r,s) (7.41)

r,s>1

88 r - . Thus, X = 0 with weak order at least c¢ , so case 2 of
the theorem holds.

Now suppose that there is no infinite sequence N as above. By the
superlinear convergence of (xn) , Lemma 7.3 is applicable for infinitely
many n . Choose such an n (sufficiently large). There are only

three possibilities:

1. FEquation (7.30) holds;
2. Equation (7.32) holds; or

%. Neither (7.30) nor (7.32) holds, so
|xn+2| - N xnxn+1| ) (7.42)

In the first case, Lemma 7.3 shows that we can replace n by n+2 , and

continue with one of the three cases (it is crucial to note that Lemma 7.3 is
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still applicable). In the second case, Lemma 7.3 shows that we can
replace n by nt3 and continue. Since no infinite sequence N with
the above properties exists, the third case must eventually arise. Then,
from (7.42) and Lemma 7.3, we see that Lemma 7.2 is applicable to the

sequence (xl;l) , where xx;x = X

mn+3 By Lemma 7.2, (Xm) converges

with strong order B2 and asymptotic constent 1, and hence, so does (xn) A

In view of the assumption (7.27), this completes the proof.

8. Accelerating convergence

If a very accurate solution is required, and high-precisica evaluations
of f are expensive, then it may be worthwhile to try to increase tne
order of convergence of the successive approximations by some acceleration
technique. For example, we can use Lemma 6.1 to improve the current
approximation at each step of the iterative process. Jarratt (1967) suggests
one way of doing this if q = 2 , but the method which we are about to
describe seems easier to justify (see Theorem 8.1), and applies for
any q >1.

Suppose that x ,...,x are approximations to a simple zero §

0 qtl
of f(q-l) . For example, they could be the last q+2 approximations

generated by the successive interpolation process discussed above. We
may define xq+2,-xq+5,
are already dcfined, let Pn = IP(f;xn, : ..,xmq) , and

in the following way: if n >1 and

xo’ LN .’xn+q

choose Y, such that

Pr(lq-l)(yn) - o0 , (8.1)
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i.e., % is just the next approximation generated by our usual

interpolation process. From Lemma 5.1, Y, is given explicitly by

f[xn+l, s "xn+q])

f[xn, L .,Xn_'_q]

: (8.2)

nti

Instead of taking v, @s the next approximation x ntqtl ’ we use
Lemma 6.1 to compute a correction to N and take the corrected value

as the next approximation. Formally, we define x el by

Pt —yemeg® . ]
n-l ntq
x y. - 2 5 (8.3)
ntqtl n q.f[xn,...,xmq] n '’
where
R S TSI A (8.%)

0<i<j<q

For a justification of equations (8.3) and (8.4), see the proof of Theorem

8.1 below. This theorem shows that, under suitable conditions, the

sequence (xn) is well-defined, and { with weak order appreciably
greater than Bq » which is the usual order of convergence of the

unaccelerated process (see Sections 5 to 7). Note that there is very

little extra work involved in computing x from equetions (8.3)

n+qtl

and (8.4) if ¥, 1is computed via (8.2), for f[xn""’xn+q] and

f[ (except at the first iteration) will already be

Xy "xn-i-q-l]
known.

Before stating Theorem 8.1, we define some constants ﬁ:l which
take the place of the constants Bq (see Definition 5.1) if the

accelerated process is used.

et
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Definition 8.1

For 9 >1, F:l is the positive real root of

2L P ax+ 1 . (8.5)

Remarks

It is easy to see that ﬁ(‘l > ﬁq » and, corresponding to the bound

(5.2), we have
1 1

R AP gili< Bh (6.6)

TR x - { with weak order B > 1 then, by the definition of

order (see Section 2), for any € >0 we eventually have
n
-loglx - 8| > (B -¢) . (8.7)

Thus, the number of function evaluatias required to reduce |xn _d
below a very small positive tolerance is inversely proportional to 1log B8
(assuming that approximate equality holds in (8.7)), and the ratio

log B
Tog B’ suggests how much we gain by using the accelerated process,
q

rather than the unaccelerated process, if very high accuracy is required.

Fram the bounds (5.2) and (8.6),

log Bq
Qi Ve q
so there is & 37 percent saving for large q . Of ccurse, the only

practical interest is in small values of q , and in Table 8.1 the

log B
values of g8', B and ———-?' are given for q = 1,2,...,10 . The
q q log ﬁq

entries for Bc'l are correctly rounded to 12 decimal places, and the

2 e >
i Mot Wi T d e —

e —— — . i s

S N
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Table 8.1: The constants 5:1 for q = 1{1)10 to 12D

'r q By | By 1 log B, /1og Bc':
:- 1— ”1.83928675;211; ’ 1.5180 | 0.7897 ‘
.2 1.k65571231877 1.32k7 0.7357
' 3 1.324717957245 | 1.2207 0.7093
L) 1.249851588864 1.1673 0.69%6
I 1.203216033518 1.13k7 0.6832

6 1.171%21856385 1.1128 0.6757

7 1.148115k97353 1.0970 0.6702
8 1.13045957186k4 1.0851 0.6658

9 1.116575158368 1.0758 0.662%
llol 1_.1_0536732291;9”. 1.0683 ‘_ 0.5595 _j

See Definition 8.1, and the remarks above, for a description

log B
of the constants B& and the significance of the ratio Tog B!
q
The constants Bq are given to 12D in Table 5.1.
71
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3.8
other entries are given to 4 places (they are given for comparison
only: see Table 5.1 for the ﬁq to 12 places). The table suggests

that Bé = B, » and this is true, for X -x-x-1 = (xB-x-l)(x2+1) b

Theorem 8.1

Suppose that £ eIcT {a,bsM] 5 Le(ayp); £ () -0 ;

f(Q)(g) £0 ;and x.,...,% are (distinct) points in [a,b] . If

0 q+l

xo,...,xq+l are sufficiently close to § , thgn a sequence (xn) is
uniquely defined by equations (8.2) to (8.4), and X - { with weak

order at least B:l (see Definition 8.1) as. n —» o .

Proof
For n>1, 1t & be the largest of Ixn-§|,...,|xn+_q-§| ;
let 8;1 be the second-largest; and let

5, = max(s,|x_-4]) - _ - (8.9)

If y, is defined by equation (8.2), then Lemma 6.1 shows that

’4 2 ]
y -0 =K 051§35q (%05 =8 (05 =) + O(8.8)) (8.10)

as 5n - 0 , where

. (8.11)
a(e+1) £ (¢)

K =

In particular, (8.10) implies that
¥y = ¢ = O(Snsr'l) (8.12)

as F‘.‘-.o. Thus, for 0<i<Jj<q,
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(g ~¥) (5 =) = (5 =) (- D) +0(6%2) (8.13)

as b -0 .
“n
'If & is sufficiently small then, since f(q)(g) £ 0, we have

f[xn,...,x ] # 0, and, by Theorem 2.5.1,

n+q

Px ypeeerx . ] .
D-L Pdr - x+0(8) (8.1%)

q.f[in, .o "xn+q

as 5 -0 .
n

If s isasin (8.4), then (8.13) and (8.14) give

f[x F .,X ] A~
n-1 ntq” . . r _rY. ' .
TR ] T K osiz(’.j g Bt "Dy~ w 0G0 (815

as 8n - 0 . Thus, from (8.3) and (8.10),

Xyqr1 - = 0(B8.8). (8.16)

as Sn ~0 . This shows that, provided 5. is sufficiently small, the

1
sequence (xn) is uniquely defined, lies in [a,b] , and x - as
n-—-o.

From equation (8.16), there is a positive constant A such that,

for all n>1,

22
IXpqer = 8l S A8 380 (8.17)
and, if 61 is sufficiently small, then
n
-1og(A|xn-§|) > B"l (8.18)

for n =0,...,qt1 . From equation (8.17) and the definition of Bf'l , we

see that (8.18) holds for all n >0 , by induction on n . Thus
73




3.9 1
1im 1nf(-1og,|xn -t > By (8.19)

n--ow

i.e., the weak order of convergence is at least B('l » 80 the proof is

complete.

9. Some numerical examples

To illustrate the theoretical results obtained in Sections 4 to 8,

we give the following examples:

IS5 a =iy f(x)=x+x2+x3, Xp =2, X5 =13
2 9
2. q=2, f(x)=8+6x +)+X +5x f) x0—2, xl=l, X2=O-5;
- v 3, e, 2.5 _ -
3. aq=3, f(x)=21+L4ox+10x"+5x +3x’, X,=2, ¥ =1,
x2=0.5, x5=0.25;a.nd
2 L 5, .6
L, q=L4, f(x) =1+2x+hox"+5x +2x’+x , X, =2, x =1,
x2=0.5, X3=0.25, Xh=0.125.

In all these examples § = 0 , and the iterative process defined
by (1.1) converges, even though the initial values are not very close
to § . Apart fraa constant factors, the polynomials are obtained by
differentiating the last one (for q = 4) k-q times, so we are golving
the same problem in four different ways.

Table 9.1 gives the sequences (xn) produced by the successive
interpolation process, for the functions and starting values given above.
To illustrate the superlinear convergence, the entries are given until

20

lxnl <10 7, although such high precision would seldom be required in

practical problems. The table also gives the sequences (xr'l) produced

Th
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by the accelerated interpolation process described in Section 8, with

starting values x; =x, for i =0, ..e5qtl . As predicted by Theorem 8.1
and Table 8.1, the accelerated sequences converge appreciably faster than
the unaccelerated ones.

To verify relations (8.12) and (8.16), the table also gives

X

n
L S (9:1)
n-q n-q-1
end
xl
) = . ; (9:2) |

] 4 t
xn-qxn-q-lxn-q-2

when they are defined. With a few exceptions near the beginning of some
of the sequences, both (Ixn|) and (|xr'1|) are monotonic decreasing, so

r and r;l should be bounded. From Lemma 6.1, we expect that

(q+1)
lim r = - (S) ’ (9:3)
n-o q(g+1) £ (§) f
2 . s {
and this is Jjust m for our examples. Similarly, fram the i
proof of Theorem 8.1, we expect that
(a+2)
limrt = —2— (B (9.5) |

new q(qrl)(qr2)£$Y ()

. -6
and this is just (1) (32 . The results support these predictions.

Table 9.1 was computed on an IBM 360/91 computer, with 1h digit
truncated floating-point arithmetic to base 16. To minimize the effect
of rounding errors, we took advantage of the fact that n-th divided

differences of l,x,x2, ...,xn-l vanish identically when computing the

5
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divided differences in equations (8.2) and (8.3). Without this device,
it is not possible to reduce |xn| or |x1§1| to 10° without using
higher precision arithmetic, because of the effect of rounding errors
(except for q = 1) .

For q = 2, our example is the same as that used by Jarratt (1967),
and our results agree with his for n <9 . For n=10 and 11 our

results differ slightly, presumably because of rounding errors. The

example given by Jarratt (1968) for q = 3 has also been verified.
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3.9
Table 9.1:

=

r_._
()
(o))

ES\OGD\]O\U'I-F'\)II\)!—'O

X
n

2.000

1.000

7.273'-1
3.0807-1
1.983t-1
6.7271 -2
1.276t-2
8.543t L
1.090'-5
9.31k'-9
1.015'-13

2.000

1.000

5.000'-1
5.1627-1
2.681'-1
1.366%-1
6.9781-2

!

i

x!
n

2.000
1.000
T.275'-1
2.100°-1
4.389'-2

- -1.8L46'-3

9.4571.22 |

1.221t-5
1.035'-9

2.000

1.000

£.000'-1
5.1621-1
1.219'-1
3.271'-2
5.618'-3

N

©0.8523
i 0.9568

Numerical results for q =1, 2, 3 and L

O.5636g
0.5473
0.6851

; ~ 0.99%9
| 2.350"-17 |
| -2.9821-31

0.9998
1.0000 .
1.0000
1.0000

© 0.2581 ?

0.5362 %
0.5291

© 0.50k2

GREBowowwoaw+suwmprpo!

2.0531-2
4.5h71-3
6.15ht -4
3.6311-5
9.956" -7
7.6661 -9
1.215'-11
2.5481-15
3.104t-20
1.0321-26

C =3
v =3
1
-1

-3.8441-18

-2

363t-L
L484r-6
.325'-8
.728t-12

.0081-26

(i

. 0.5607 -
0.U772
- 0.4296

0.3890

0.3558
0.3430

0.3360
0.3339
0.3334
0.3333 |

rt
n

O.1u4h
0.287h -

-0.2755
-0.7178

-1.0455

~1.0066
-1.0039

0.1219

0.1786
-0.163h

- =0.1556

-0.21kk
-0.2625
-0.2477

-0.2518

L
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3.9
Table 9.1 (continued)
t ?
q n xn xn rn I‘n
3 0 2.000 2.000
1  1.000 1.000
2 5.000*-1 5.000'-1
: 3 2.500t-1 2.500'-1
f L 3,775t 3.775t-1 0.1887
: 5 1.814t-1 6.882'-2  0.3¢28 0.0688
: 6 8.57ht-2 1.567t=2 0.6860 0.1253
' 7 L.21ht-2 3.572'-3  0.4hé5 0.0757
‘ 8 2.268t-2 T.222'-4  0.3313 0.1112
9 5.580'-3 -3.9491-5  0,3588 -0.0970
10 1.2271-3 -3.54%7'-7  0.3395 -0.0921
11 2.347r-L -2.893'-9  0.2455 -0.0716
12 2.809'-5 8.630'-12  0.2219 -0.0847
13 1.443r-6 -1.067'-15 0.2105 -0.1055
1k 5.518!-8 L.009'-21 0.1917 -0.0989
15 1.16k4t-9 0.1766 -
16  7.021'-1z 0.1735
17 1.354 14 0.1703
18 1.077t-17 0.1677
19 1.365'-21 0.1670
L 0 . 2.000 2.000
1 . 1.000 1.000
2 | 5.000'-1 5.000t-1
3 . 2.500t-1 2.5001-1
L 1.250%-1 1.250'-1
5 | 2.8401-1 2.8L0'-1  0.1%0
6  1.258t.1 3.8871-2 0.2517 0.0389
7 5.4531 0 7.0301-3 0.4362 ' 0.0562 -
8 2.hg21.p 1.4611-3 0.7975 0.0935
9 1.274t -2 L. 48l 0.3588 0.0501
10 7.507t-3 1.168'-4 0.2101 : 0.08L46 |
1 1.564t-3 L. 33416 0.2279  -0.0558
12 3.227'-4 -2.390!-8 0.237%+  -0.0598
13 6.871t-5 -2.370'-10  0.2164  -0.0519
| 14 1.360t-5 -2.500'-12  0.1423  -0.0329
} 15 L.545t-6 © 9.027'-15 0.1316 -0.0bol ,
| 16 6.6591-8 -6.291'-19 0.1316 -0.0520
| 17  2.8141g 1.2k3'-24  0.1270  -0.0506
| 18 1.067'-10 - 0.11k2
| 19 2.207'-12 0.1050
| 20 1.073t-14 0.10k46
21 1.94hr-17 0.1040
; 22 3.069'-20 0.1022
} 23 { 2.3671.23 | 0-1005
:
|
r (C
b o -
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10. Summary

The main results of this chapter for q = 1 (successive linear inter-

polation for finding a zero) and q = 2 (successive parabolic interpolation

for finding a turning point) are summarized below.

Theorem 3.1

q =1: If feC and xn—o(,',then £f(§) =0 .

2: If £’ end x_~f, then £'(}) =0 .

q

Theorem 4.1
1

Q =1: If feC™, f£'() #0, and a good start, then superlinear convergence. ‘
q =2: If f€02 » (%) £0, and a good start, then superlinear convergence. ;
Ll
1
Theorem 5.1 :
q=1: If feICl » f£'(8) £0, and a good start, then weak order at z
leasf By, = 1.618 ... g
q =2: If fe1c? » f(t) £0, and a good start, then weak order at '
least B, = 1.324 ... }
Theorem 7.1 4
q=1: If :t‘eI.C2 > f£'(8) £#0, und a good start, then either strong L
order B, = 1.618... or weak order at least 2 .

q =2: If fem5 f"(§) # 0, and a good start, then either strong

-

1/3
1.324... or weak order at least (2%&) = 1.378...

f

order 62

Theorem 8.1

q = 1: If fem2 , f'(8) £0, and a good start, then the accelerated

sequence converges with weak order at least Bi = 1.839...
>
J

q = 2: If fell (§) £#0, and a good start, then the accelerated

sequence converges with weak order at least Bé = 1l.465...

19
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Chapter L.

An Algorithm with Guaranteed Convergence for Finding a

Zero of a Function
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L.1

1. Introduction

Let f be a real-valued function, defined on the interval [a,b] ,
with f(a)f(b) < C . £ need not be confinuous on [a,b] : for
example, f might be a limited-precision approximation to same continuous
functi.on (see Forsythe (1969)). We want to find an approximation E to
azero { of £, to within a given positive tolerance 25 , by evaluating
f at a small number of points. Of course, there may be no zero in [a,b]
if f 1is discontinuous, so we shall be satisfied if f takes both
nonnegative and nonpositive values in [E - 28, §+ 25] n [a,b] .

Clearly, such a E may always be found by bisection in about
loge[(b-a)/S] steps, and this is the best that we can do for arbitrary f .
In this chapter we describe an algorithm which is never much slower than
bisection (see Section 3), but which has the advantage of superlinear
convergence to a simple zero of a continuously differ.entiable function, if
the effect of rounding errors is negligible. This means that, in practice,
convergence is often much faster than for bisection (see Section L4).

There is no contradiction here: bisection is the optimal algorithm (in a
minimax sense) for the ciass of all functions which change sign on {a,b] .
but it is not optimal for other classes of functions: e.g., Cl functions
with simple zeros, or convex functions (see Gross and Johnson (1959),

Bellman and Dreyfus (1962), and Chernousko (197C)).

Dekker's algorithm

The algorithm described here is similar to one, which we call Dekker's
algorithm for short, variants of which have been given by van Wijngaarden,

Zonneveld and Dijkstra (1963), Wilkinson (1967), Peters and Wilkinson (1969),
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confusion if we omit subscripts. b is the best approximation so far

to {, & is the previous value of b , and { must lie between b
and ¢ . (Initially a =c .)

If f(b) = O then we are finished. The ALGOL procedure given by
Dekker (1969) does not recognize this case, and can take a large number of
small steps if f vanishes on an interval, which may happen because of
underflow. This occurred with f(x) = x° on an TBM 360 computer .

If f(b) £ 0, let m = (c-b)/2 . We prefer not to return with
g - % (btc) as soon as |m| < 26 , for if superlinear convergence has set
in then b , the most receant approximation, is protably a much better
approximetion to § than %‘-(b+c) is . Instead, we return with E =b
if |m| <& (so the error is no more than & if, as is often true, f is
nearly linear between b and c¢) , and otherwise interpolate or extrapolate
£ 1linearly between a and b , giving 8 new point 1i. (gee later for
inverse quadratic interpolation.) To avoid the possibility cf overflow
or division by zero, we find i as b+p/q , and the division is not
performed if 2|p| > 3|m.q| , for then i is not needed anyway. The
reason why the simpler criterion |p| > |m.q| is not used is explained
later. Since 0 < |f(b)| < |f(a)| (see later), we can safely campute

s = f(b)/f(a) , p =+(a-b)s, and q = +(1-8) .

i 4if i lies between 0 and b+g-m ("interpolation"),

Define b"
b+m otherwise ("bisection"),

b" if |b-b"! >5 ,
and bt =
Lb+6.sigv(m) otherwise (a "step of & ").

Dekker's algoritnm takes b' as the next point at which f is
evaluated, forms a new set fa,b.c} from the old set {b,c,b'} , and

continues. Unfortunately, it is easy to construct a function f for which
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4.2

steps of 5 are taken every time, so about (b-a)/& function evaluations

are required for convergence. For example, let

2x/ 8

2(x) = { -(22) 20

for atd <x<b,

for x = a, (2.1)

arbitrary for a <x < atd .
\ .

The first linear interpolation gives the point ©-5 , the next (an
extrapolation) gives b-25 , the next b-3% , and so on.

Even if steps of © are avoided, the asymptotic rate of ~onvergence
of successive linear interpolation may be very slow if f has a zero of
sufficiently high multiplicity. (Note that none of the theorems of |
Chapter 3, apai't from Theorem 3.3.1, apply for a multiple zero.) Suppose
that feC™eb], n>1, Le(ab), £(8) = £(5) = ... =22y 2o,
and f(n)(C) £0 (i.e., { is a root of multiplicity n>1). If
€E>0, (%—:—;—) €(eyl-¢) , and X, is sufficiently close to ¢,
then successive linear interpolation gives a sequence (xn) which converges

linearly to § . In fact, equation (3.2.1) holds with , =1 and

- (2]
K = Bni-l » where the constants Bq ~ 22/ (29+1) are defined in Definition
3.5.1. The proof is simple: if
y = xm+l - ; (902)
moox - 4 0

is the ratio of successive errors, then a Taylor series expansion of f

about { gives

gl B= y::-l
Yoey = (W)(l + 0(1)) (2.3)
m

es x - ! , provided Y, remains bounded away from 1 . Since the

8k
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h.2
iteration
Zm+l = 8(zm) ’ (2'1‘)
where
n-1
g(z) = _1_-z__n_ ’ (2.9)
l-2
-1
has fixed point =z = Bn-l , and
le*(z) | <1 (2.6)

for ze(0,1) , the result follows from Ostrowski (1966), Theorem 22.1.
An example for which convergence is sublinear (see Definition 3.2.2)
is
0 if x=0 ,
f(X) = -2 (2'7)
x.exp(-x ) if x fo0 , '
on an interval containing the origin. This is an extreme case, for f and

ell its derivatives vanish at the origin.(As a function of a complex

variable, f has an essential singularity at the origin,) If
o<xl<xo</2 3 (2.8)

then (xn) is a positive, monotonic decreasing sequence, and, by Theorem
3.3.1, its 1limit must be O . Thus, successive linear interpolation does
converge, but very slowly.

Some of the examples above are rather artificial, and unless an
extended exponent range is used (see later) we may be saved by underflow,

i.e., the algorithm may terminate with a "zero" as soon as underflow occurs.
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k,2
Even so, it is clear that convergence may occasionally be very slow {7
Dekker's algorithm 12 used,

Our main modification of Dekker's algorithm ensures that a bisection
is done &t lesst once in every 2.log2(|b-c| /&) consecutive steps.
The modificetion is this: let e be the value of p/q at the step before
the last one. If |e| <5 or |p/q| 2% |e| then we do a bisection,
otherwise we do either a bisection or an interpolation just as in Dekker's
elgorithm., Thus, |e| decreases by at least a factor of two on every
second step, and when |e| <& & bisection must be done. (After a

bisection we take e = m for the next step.) This is why our algorithm,

unlike Dekker's, is never much slower than bisection.

A simpler ides is to teke e as the value of p/q at the last step,
but practical 1.3s8ts show that thie slows down convergence for well-behaved
n E functions by causing unnecessary bisections. With the better choice of e,
our experience has been that convergence is always at least as fast &s

for Dekker's algorithm (see Section k).

Inverse quadratic interpolation

If the three current points a , b and c¢ are distinct, we can find

i the point 1 by inverse quadratic interpolation, i.e., fitting x as &
quadratic in y , instead of by linear interpolation using just a and b .
Experiments show that, for well-behaved functione,this device saves about
0.5 function evaluations per zero on the average (see Section L). Inverse
interpolation 18 used bLecauee with direct gquadratic interpolation we have

to sclve a quadratic equation for 1 , and there 1is the problem of which

root should be accepted. Cox (1970) gives another way of avoiding this

Bewrene
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4.2
problem: fit y as a function of the form p(x)/q(x) , where p and q
are polynomials and p has degree one. A third possibility is to use the
acceleration technique described in Section 3.8. (See also Ostrowski (1966),
Chapter 11.)

Care must be taken to aveid overflow or division by zero when computing
the new point i . Since b is the most recent approximation to the root ¢ ,
and a is the previous value of b , we do a bisection if |f(b)|>|f(a)]| .
Otherwise we have |f(b)| < |f(a)| < |f(c)| , so a safe way to find i is
to compute r, = f(a)/f(e) , r, = f(b)/£{c) , Ty = £(v)/£(a) ,
P = + T5((e-b)ry (r)-r,)-(b-2) (r)-1)) , and q = F (ry-1)(ry-2)(r5-1)
Then 1i = bi-p/q , but as before we do rot perform the division unless it
is safe to do so. (If a bisection ie to be done then i is not reeded
anyway.) When inverse quadratic interpolation is used it is natural to
accept the point i if it lies between D and c¢ and up to three-quarters
of the way from b teo c: consider the limiting case where the
interpolating parabola has a vertical tangent at ¢ and f(b) = -f(c) .
Thus, i will be rejected if 2|p| >3|(%52)-q| , which explains the

criterion discussed above.

The tolerance

As in Peters and Wilkinson (1959), the tolerance (28) is a
combination of a relative tolerance (4€) and an absolute tolerance (2t) .

At each step we take
5 =2¢elp|+t , (2.9)

where b is the current best approximation to § , € = macheps is

the relative machine precision (Bl-T for 1-digit truncated floating-point
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arithmetic with base B , and half this for rounded arithmetic), and t
is a positive absolute tolerance. Since & depends on b , which could
lie anywhere in the given interval, we should replace & by its positive
minimum over the interval in the upper bound for the number of function
evaluations required. In the ALGOL procedu_res the variable tol is used

for 8 .

The effect of rounding errors

The ALGOL procedures given in Section 6 have been written so that
rounding errors in the computation of i , m etc. can not prevent
convergence with the above choice of & . The number 2¢ in (2.9)
may be increased if a higher relative error is acceptable, but it should
not be decreased, for then rounding errors might prevent convergence.

The bound for lE - §| has to be increased slightly if we take
rounding errors into account. Suppose that, for floating-point numbers

x and y , the computed arithmetic operations satisfy

(2.10)

fl(xxy) = x.y(1+¢

1

and

fl(x+y) = x(1+ 62) +y(1+ 53) ) (2.11)

where |ei| <e for i=1,2,5 (see Wilkinson (1963)). Also suppose
that fl(|x|) = |x\ exactly, for any floating-point number x . The

algorithm camputes approximations

m = £1(0.5 x (c-b)) (2.12)
and

tol = £1(2 x € x |b]+t) (2.13)

88




P)

)

h.2

to m and tol , where { 1lies between b = t and c , and the algorithm

terminates only when
|m| < tol (2.14)

(unless f(b) =0, when £ = =b ). Our assumptions (2.10) and (2.11)

give
] >3 (le=b] = e(fpl+leD)(2-0) (2.15)
and, similarly,

tol < (2¢|b|+ 1;)(1+e)5 , (2.16)
so (2.14) implies that

le-b| < (550) (2e|v] + ) (1+e) + e(b]+ |e|) - (2.17)
since |§-4| < |c-b| and b =t , this gives

1E-¢| <éeft+2t , (2.18)

neglecting terms of order €t and 52|§| . Usually ihe error is less
than half this bound (see above).

Of course, it is the user's responsibility to consider the effect of
rounding errors in the computation of f . The ALGOL procedures only
guarantee to find a zero { of the computed function f to an accuracy
given by (2.18), and { may be nowhere near a root of the mathematically

defined function that the user is really interested in!
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Extended exponent range

In some applications the range of f may be larger than is allowed
for standard floating-point numbers. For example, f(x) wight be
det(A-xI) , where A is a matrix whose eizenvalues are to be found.

In Section 6 we give an ALGOL procedure (zero2) which accepts f(x)
represented as a pair (y(x),z(x)) , where f(x) = y(x).zz(x) (y real,

z integer). Thus, zero2 will accept functions in the same representation
as is assumed by Peters and Wilkinson (1969), although =zero2 does not
require that 1/16 < |y(x)| <1 or y(x) =0, and could be simplified

slightly if this assumption were made.

3. Couvergence properties

If the initial interval is [a,b] , assume that
b-a >8 (3.1)
and let
k = [ log,((b-a)/8 )] , (3.2)
where 5m is the minimum over [a,b] of the tolerance
8(x) = 2.macheps.|x|+t (3.3)

(see Section 2), and [ x | means the least integer y >x . By
assumption (3.1), k > 0. (If k = O, procedure zero takes only two
function evaluations.)

First consider the bisection process, .teminating when the

interval known to contain a zero has length < 26m (so the endpoint

90




4.3
minimizing |f| is probably within 8~ of the zero, and certainly
within 25m ). It is easy to see that this process terminates after

exactly k+l function evaluations unless, by good fortune, f happens

to vanish at one of the points of evaluation .

Now consider procedure zero or zero2. If k =1 then the procedure
terminates after 2 function evaluations, one at each end-point of the
initial interval, just like bisection. If k =2 then there are 2
initial evaluations, and after no more than 4 more evaluations a bisection
must be done, for the reason described in Section 2. After this bisection,
which requires one more function evaluation, the procedure must terminate.
Thus, at most 2+5 = 7 evaluations are required. Similarly, for k >1, i

the maximum number of function evaluations required is
D+ (5+T+9+ ...+ (2kt1)) = (k+1)°-2 . (3.4) ]

Since Dekker?!s algorithm may take up to 2k function evaluations (see

Section 2), this justifies the remarks made in Section 1. Also, although |

the upper bound (3.4) is attainable, it is clear that it is unlikely to

be attained except for very contrived examples, and in practical tests our 5

algorithm has never taken more than 3(k+l) function evaluations (see
Section 4). This justifies the claim that our algorithm is never much
slower than bisection.

Superlinear convergence

Ignoring the effect of rounding errors and the tolerance o , we see,

as in Dekker (1969), that the algorithm will eventually stop doing bisections

when it is approaching a simple zero § of a Cl function. Thus,
temporarily ignoring the improvement described in Section 2, the theourems

of Chapter 3 are applicable (with q = 1 ). In particular, convergence is
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superlinear, in the sense that lim sup ‘xn - §|l/ .0, provided f

n - o

is C' near the simple zero { (Theorem 3.4k.1). If f' is Lipschitz
continuous near { , then the weak order of convergence is at least
%(l+/§) = 1.618 ... (Theorem 3.5.1). For a summary of the other
results of Chapter 3, see Section 3.10.

If f* is Lipschitz continuous near the simple zeroc { , then, even
with the inverse parabolic interpolation modification described in Section 2 b
the weak order of convergence is still at least -215(l+/§) . The idea of
the proof is that, by Lemma 2.5.1, the curvature at { of the upproximating
parabolas is bounded, so the inequality (3.5.13) still holds for some M
(no longer the Lipschitz constant) and sufficiently small Bn 5

Thus, our procedure always converges in a reasonable number of
steps and, under the corditions mentioned above, convergence is superlinear
with order at least 1.618 ... . It is well-known that, since
(1.618. ..)2 = 2.618... > 2 , this compares favorably with Newton's method
if an eveluation of f' is as expensive as an evaluation of f . 1In
practice, convergence for well-behaved functions is fast, and the stopping
criterion is usually satisfied in a few steps once superlinear convergence

gets in.

Summary

The results of Sections 2 and 3 above may be summarized in the following
"theorem":

If a<b, ¢ =macheps >0, t>0, f is defined on [a,b] ,
f(a)f(b) <O , and arithmetic is exact, then the algorithm defined by

procedure zero (see Section 6) converges, and returns tefa,b] such that
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f changes sign in I, = [E-25, E+-26] N [a,b] , where & = 2€|E|-+t 5
and the number n of times that f 1is evaluated does not exceed
(k&l)e-e , where k 1is given by equation (3.2). Also, if fezCl[a,b]
has a unique simple zero { e (a,b) , then |§ -Ell/n - 0 as macheps

and t -0 . Finally, if arithmetic it approximate, but satisfies (2.10)

2 » then the algorithm still converges, and

and (2.11) with € <10°
returns E such that f changes sign in Iy, » Where &' = 1.01(35|§l+t) .

(The factor 1.01 takes care of terms of order ¢t and 52|§| .)

4., Practical tests

The ALGOL procedures zero (for standard floating-point numbers) and
zero2 (for floating-point with an extended exponent runge) have been
tested using ALGOL W (Wirth and Hoare (1966), Bauer, Becker and Graham (1968))
on an IBM 360/67 and a 360/91 with machine precision 16 . The number
of function evaluations for convergence has never been greater than three
times the number required for bisection, even for the functions mentioned
in Section 2, and for the functions given by (2.1) and (2.7) Dekker's
algorithm takes more than 106 function evaluations. Zero2 has been
tested extensively with eigenvalue routines, and in this application it
usually takes the same or one less functior. evaluation per eigenvalue than
Dekker's algorithm, and considerably less than bisection.

In Table 4.1, we give the number of function evaluations required

for convergence with procedure zero2 and functions x9 s x19 » fl(x) 5

and fz(x) , where
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Table 4.1: The number of function evaluations for convergence with

procedure zero2

N B

f(x) a b , - i E -t function evals.
9 z | | ’

x -1.0 +1.1 | 1'-9 4.99'-10 | 81

! | 5

x° -1.0 | +4.0 | 1'-20 ' k.ger-21 | 189 !
x19 -1.0 - +4.0 11-20 «  4.811-21 195 i
t | f i
£,(x) | 1.0 +4.0 1120 | 0 ' 33 !
B2 D R il Wi NS P

*
Ve

= 2.17'-4  and fl(E)

For a definition of fl ’ f2

=0

etc., and a discussion, see above.
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Table 4.2: Comparison of Dekker's procedure with procedure zero

" gl 1.05838256968867 & -io Nl 10 )
t ‘ 2 1.23995005360754 10 9
5 1.56239614 620727 z‘ 10 : 10
{ i 2,05025253169417 10 10
f 5 2.72832493649769 ' gl ' 10 '
6 | 3.61410919225782 11 10 |
: 7 L .71048321337581 | 10 10
8 6.00000000000000 9 9
9 7.44175272160161 10 9
| 10 8.97167724536908 10 | 10
11 10.5063081987721 10 0
12 11.0bg7h7h683058 10 9
13 13.2029707184829 : 10 9
1 1h7he635087655 | 10 9
R T

For a definition of hk » Iy and n, , see above. The Kk have a

% relative error of less than 5'-1k.
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b.5
For each eigenvalue, the tolerances for Dekker's procedyre and for procedure
zero were the same. (The tolerance was adjusted by the eigenvalue program
to ensure that the computed eigenvalues had a relative error of less

than 5.10'11‘L

.) Tests were run for several values of n, p, q and r :

tue table gives a typical set of results for n=15, p=7, q=T7/b4,

and r = 1/2 . To obtain the same accuracy with bisection, at least 40

function evaluations per eigenvalue would be required, so both our procedure

and ﬁekker's are at least four times as fast as bisection for this application.
Sume more experimental results are given in Chapter 5. (For an

illustration of the superlinear convergence, see the examples given in

Section 3.9.)

5. Conclusion

Our algérithm appears to be at least as fast as Dekker's on well-
behaved functions, and, unlike Dekker's, it is guaranteed to converge in s
reasonable number of steps for any function. The ALGOL procedures zero
and zero2 given in Section 6 have been written to avoid problems with
rounding errors or overflow, and floating-point und.rflow is not harmful
as long as the result is set to zero.

Before giving the ALGOL procedures zero and zero2, we briefly discuss

some wossible extensions.
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Cox's algorithm

A recent paper by Cox (1970) gives an algorithm which combines
bisection with interpolation, using both f and f' . This algorithm
may fail to converge in a reasonable number of steps in the same way
as Dekker's. A simple modification, exactly like the one that we have given
in Section 2 for Dekker's algorithm, will remedy this defect without

slowing the rate of convergence for well-behaved functions.

Parallel algorithms

In this cﬁapter we have considered only serial algorithms. it is
well-known (see, for example, Traub (1964)) that all serial methods which
use only function evaluations and Lagrangian interpolation polynomials
have weak order less than 2 , unless certain relations hold between the
derivatives of f at § . (Winograd has recently shown that no serial
method, using only function evaluetions, can have order greater than 2
for all analytic functions with simple zeros.) Thus, nothing much can be
gained by going beyond linear or quadratic interpolation. However,
Miranker (1959) has shown that, if a parallel computer is available, a
class of algorithms using Lagrangian interpolation polynamials gives
superlinear convergence with weak order greater than 2 under certain
conditions. Also, it is clearly possible to generalize the bisection
process to "(r+l)-section™ with advantage if a parallel camputer with r
independent processors is available. See, for example, Wilde (196L).
There does not appear to be any fundamental difficult, in cambining
generalized bisection with one of Mira.nker"s parallel algorithms so that

convergence in a reasonable number of steps is guaranteed for any function,
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and superlinear convergence with order greater than 2 is likely for

well-behaved functions.

Searching an ordered file

A problem which is commonly solved by & binary search (i.e., bisection)
method is that of locating an element in a large ordered file. The problem
may be formalized in the following way. Let S be a (finite or infinite)
totally ordered set, and @: S - R an order-preserving mapping from S
into the real numbers. Suppose that T = {to,tl, ...,tn} is a finite
subset of S , with to <tl < ouy & ’cn . Given ¢ e[w(to),qa(tn)] , We

may define a monotonic function f on ([O,n] by
£(x) = 9(t,) -c (5.1)

vhere xe[O,n] and i = rx - -;‘-.\ . Thus, finding an index i such

that q)(ti) = ¢ 1is equivalent to finding a zero of f in [O,n] , and

our zero-finding algorithm could be used instead of the usual bisection
elgorithm. It might be worthwhile to modify our algorithm slightly, so

as to take the discrete neture of the problem into account. A related
application of our algorithm is in finding the median (or other percentiles)

of a list of numbers, but there are faster ways of doing this.

6. ALGOL 60 procedures

The ALGOL procedures zerc (for standard floating-point numbers) and
zero2 (for floating-point with an extended exponent range) are given below.
For a description of the idea of the algerithm, see Section 2. Some

test cases and numerical results are described in Section L.
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Procedure zero

real procedure zero (a, b, macheps, t, f);

value a, b, macheps, t; real a, b, macheps, t;

real procedure f;

begin comment:

Zero returns a zero x of the function f in the given interval [a,b],
to within a tolerance 6.macheps.|x|+2.t, where macheps is the relative
machine precision and t is & positive tolerance. The procedure assumes
that f(a) and f(b) have different signs;
real ¢, d, e, fa, fb, fc, tol, m, p, q, r, 8;
fa := £f(a); fb := £(b);
int: ¢ :=a; fc :=fa; d :=e := b-a;

ext: if abs(fc) < abs(fb) then

begin a :=Db; b :=c; ¢ :=a;

fa := fb; fb := fe; fc := fa

end;
tol := 2 x macheps x abs(b) + t; m := 0.5 x (c-b);
if abs(m) > tol A fb # O then

begin comment: See if a bisection is forced;

if abs(e) < tol v abs(fa) < abs(fb) then d := e :=m else
begin 8 := ft/fa; if a = c then

begin comment: Linear interpolation;

Pp:=2xmxs; q:=1-8
end

else

begin camment: Inverse quadratic interpolation;
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q := fa/fe; r := fb/fte; !
p :=sx (2xmxqx (q-r) - (b-a) x (r-1));
q := (g-1) x (r-1) x (s-1) ;
end;
if p >0 then q := -q else p := -p;
8 t=g; & g=d;
if 2xp <3xmxq-abs(tolxq) A p < abs(0.5x sxq) then
d:=p/fqelsed :=e :=m b
end;
a :=b; fa := fb;
b := b+ (if abs(d) > tol then d else if m > O then
tol else -tol);
b := £(b);
go to if fb >0 = fc > ¢ then int else ext
end;
zero :=b
end zero;

Procedure zero?2

real procedure zero2 (a, b, macheps, t, f);

value a, b, macheps, t; real a, b, macheps, t; procedure f;

begin comment:

Zero2 finds a zero of the function f in the same way as procedure
zero, except that the procedure f(x,y,z) returns y (real) and z (integer)
so that §(x) = y.2%.  Thus underflow and overflow can be avoided with

a very large function range;
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real procedure pwr2 (x,n);

value x, n;

el =
e —

| I R U R W PR | PO

real x; integer n;

comment: The procedure is machine-dependent. It computes x.2" for

n <0, avoiding underflow in the intermediate results;
pwr2 := if n > -200 then x x2t n else

if n > -L0OO then (xx 21t (-200)) x 2t (n+200) else

if n > -600 then ({(xx21t (-200)) x 21t (-200)) x 2 t (n+L0O) else O;

integer ea, eb, ec;

real ¢, 4, e, fa, fb, fc, tol, m, p, q, r, s;
f(a,fa,ea); f(b,fb,eb);
int: ¢ :=a; fc :=fa; ec :=ea; d :=e := b-a;
ext: if (ec < eb A pwr2(abs(fc), ec-eb) < abs(fb))

v (ec > eb A pwr2(abs(fb), eb-ec) > abs(fc)) then

ey . .

L

X A

.

begin a :=Db; fa := fb; ea := eb;
b :=¢c; fb :=fc; eb := ecy
c :=a; fc :=Tfa; ec := ea
end;
tol := 2 x macheps x abs(b) +t; m := 0.5x (c-b);
if abs(m) > tol A fb £ 0 then
begin if abs(e) < tol v
(ea < eb A pwr2(abs(fa), ea-eb) < abs(fb)) v

(ea > eb A pwr2(abs(fb), eb-ea)

> abs(fa)) then

d := e :=m else
begin s := pwr2(fb, eb-ea)/fa; if a = ¢ then
begin p := 2xmxs; q := 1l-s end
else

begin q := pwr2(fa, ea-ec)/fc;




4.6

pwr2(fb, eb-ec)/fc;

r:

sx (2xmxqx(q-r) - (b-a) x (r-1));

(q-1) x (r-1) x (s-1)

P :

q :
end;
if p >0 then q := -q else p := -p; 8 :=¢€; e :=d;
if 2xp <3xmxq-abs(tolxq) A p < abs(0.5xsxq) then
d:=p/qelsed :=e :=m
end;
a :=b; fa := fb; ea := eb;
b := b+ [if abs(d) > tol then d else if m > 0 then
tol else -tol);
f(b, fb, eb);
go to if fb > 0 = fc > O then int else ext
end;
zero2 := b

end zero2;
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Chapter 5

An Algorithm with Guaranteed Convergence for Finding a

Minimum of a& Function of One Variable
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1. Introduction

A camon computational problem is finding an approximation to the i

<

minimum or maximum of a real-valued function f in some interval [a,b] . |
This problem may arise directly or indirectly. For example, many methods
for minimizing functions g(x) of several variables need to minimize

functions of one variable of the form
7(}‘-) = 8(xo i )"E) ’ (1.1) ‘ ]

where X, and s are fixed (a "one-dimensional search" from X, in

the direction 8 ). 1In this chapter, we give an algorithm which finds
an approiimate local minimum of f by evaluating f at a small number
of points. There is a clear analogy between this algorithm and the
algorithm described in Chapter L4 for root-finding (see Diagram L4.1).
Unless f is unimodal (Section 3), the local minimum may not be the global
minimum of £ in ([a,b] , and the problem of finding global minima is
left until Chapter 6.

The algorithm described in this chapter could be used to solve the
problem (1.1), but, for this application, it may be more econamical to
use special algorithms which make use of any extra information which is
available (e.g., estimates of the second derivative of 7 ), and which do
not attempt to find the minimum very accurately. This is discussed in
Chapter 7. Thus, a more likely practical use for our algorithm is to find *
accurate mirima of naturally arising functions of one variable.

In Section 2 we consider the effect of rounding errors on any

minimization algorithm based entirely on function evaluations. Unimodality

is defined in Section 3, and we also define "®-unimodality” in an attempt |
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to explain why methods like golden section search work even for functions
which are not quite unimodal (because of rounding errors in their
computation, for example). In Sections 4 and 5 we describe a minimization
algorithm analogous to the zero-finding algorithm of Chapter 4, and same
numerical results are given in Section 6. Finally, some possible extensions
are deccribed in Section 7, and an ALGOL 60 procedure is given in

Section 8.

Reduction to a zero-finding problem

If f is differentiable in [a,b] , a necessary condition for f

to have a local minimum at an interior point ue (a,b) is
f'(u) = 0 o (1.2

There is also the possibility that the minimum is at a or b : for
example, this is true if f' does not change sign on (a,b] . If we

are prepared to check for this possibility, one approach is to look for
zeros of f' . If f*' has different signs at a and bt , then the
algorithm of Chapter L4 might be used to approximate a point u satisfying
(1.2).

Since f' vanishes at any stationary point of f , it is possible
that the point found is & maximum, or even an inflexion point, rather than
a minimum. Thus, it is necessary to check whether the point found is a
true minimum, and continue the sea.ch in some way if it is not.

If it is difficult or impossible to compute f' directly, we could
approximate f' numerically (e.g., by finite differences), and search

for a zero of f' as above. However, a method which does not need f*
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5.1

seems more natural, and could be preferred for the following reasons:

l. It may be difficult to approximate f*' accurately hecause of
rounding errors;

2. A method which does not need f' may be more efficient (see below);
and

3. Whether f' can be camputed directly or nct, a method which avoids

difficultly with maxima and inflexion points is clearly desirable. 1

Jarratt's method ‘

Jarratt (1967) suggests a method, using successive parabolic H
interpolation, which is a special case of the iteration analyzed in J‘
Chapter 3. With arbitrery starting points Jarratt's method may diverge,
or converge to a maximum or inflexion point, but this need not be fatal if
the method is used in combination with a safe method such as golden section
search, in the same way &8, in Chapter 4, we used a cambination of
successive linear interpoiatior and bisection for finding a zero. Theorem
5.5.1 shows that, if f has a Lipschitz continuous second derivative which
is positive at an interio» minimum u , then Jarratt's me.hod gives {
superlinear convergence to u with weak order at least 32 = 1.3247... |
(see Definitions 3.2.1 and 3.5.1), provided the initial approximation is 4
good and rounding errors are negligible.

Let us campare Jarratt's method with one of the alternatives:
estimating f' by finite differences, and then using successive linear
interpolation to find a zero of f' . (This process may also diverge,

\ ) 3 n/%
or converge to a maximum.; Suppose tnat f"(u) >0 and I\')(u) F 0, to
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avoid exceptional cases (see Sections 3.6, 3.7 and 4.2). Since at least
two function evaluations are needed to estimate f' at ary point, and
V1.618... = 1.272... < 1.32h... , Jarratt's method has a slightly
higher order of convergence. (The comparison is similar to that between
Newton's method and successive linear interpolation if an evaluation of
f* is as expensive as an evaluation of f : see Golab (1966) or

Ostrcwski (1966).)

2. Fundamental limitations because of rounding errors

Suppose thot £« Ice[a,b;M] has a minimum at e (a,b) . Since

f*(u) = 0, Lenma 2.3.1 gives, for xe[a,b] ,

2 My 3
ey = o (x-p)T + 7 (x-0)7 (2.1)

N, ~

where |mx| <M, fo = f(p) , and fS = f"(u) . Because of rounding

errors, the best thet can be expected if single-precision floating-pcint

numbers are used is that the computed value fl(f(x)) of f£(x) satisfies

the (nearly attainable) bound

f1(£x) = £(x)(1+e,) (2.2)

where

legl < (2.3}

and € is the relative machine precision (see Section 4.2). The error
bound is unlikely to be as good as this unless f 1is a very simple

function, or is evaluated using double-precision, and then rounded or
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5.2
truncated to single-precision. |
Let & be the largest number such that, according to equations |

(2.2) and (2.3), it is possible that

f1(f(n+8)) < fy - (2.4) i

It is unreasonable to expect any minimization procedure, hased on
single-precision evaluations of f , to return an approximation ;1 to g
i with a guaranteed upper bound for |f1 -p| less than ® . This is |
so, regardless of whether the computed values of f are used directly,

as in Jarratt's method, or indirectly, as in the other method suggested

in Section 1. The reason is simply that the minimum of the computed

function fl(f(x)) may lie up to & from the minimum u of f(x) :

see Diagram 2.1.

L £1(f)
P

«

Diagram 2.1: The effect of rounding errors

P
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If fj >0, equations (2.1) to (2.4) give

2|f e
0 Md
o} > —Fr l-¢€¢-~ r<d . (2.5)
0 0
Thus, if p ;é 0 and the term e 1s negligible, an upper bound
0

for the relative error |L;&| could hardly be less than

and full single-precision accuracy in ﬁ is unlikely unless

| £, |
uefg

to full single-precision accuracy. (See also Pike, Hill, and James (1967))

is of order € or less, although f1(£(n)) may agree with f(u)

If f' has a simple analytic representation, then it may be easy to

compute f' accurately. For example, perhaps
F1(£1(x)) = £'(x(1+eN))(1+en) (2.6)

where |€}'(‘ <e¢ and ‘e;’c‘ < e, 80 we can expect to find a zero of f!'
with a relative error bounded by € (see Lancaster (1966) and Ostrowski
(1967b)). If (2.6) holds it might be worthwhile to use the algorithm
described in Chapter % to search for a zero of f' , or at least use it to
refine the approximation ﬁ given by a procedure using only evaluations
of f . However, this is not so if f' has to be approximated by
differences, for then (2.6) can not be expected tc hold.

Even if f(x) is a unimodal function, the computed approximation
f1(f(x)) will not be unimodal, because of rounding errors. Nc%e that
f1(f(x%)) must be constant over small intervals of real numbers x which

have the same floating-point approximation f1(x) . 1In the next section
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we define "S-unimodality" to circumvent this difficulty.

From now on, we consider the problem of approximating the minimum
of the camputed functicn, or, equivalently, we ignore rounding errors
in the computation of f . The user should bear in mind that the minimum
of the computed function may differ from the minimum that he is really
interested in by as much as ® (see equation (2.5) above). In particular,
there is no point in wasting function evaluations by finding the minimum
of the computed function to excessive accuracy, and our procedure localmin

(Section &) should not be called with the parameter "eps" much less than
21t e

R

5. Unimodality and d-unimodality

There are several different definitions of a unimodal function in the
literature. One source of confusion is that the definition may depend on
whether the function is supposed to have a unique minimum or a unique
maximum (we always consider mirima). Kowalik and Osborne (1968) say that
f is unimodal on [a,b] if f has only one (no more than one?) stationary
value on [a,b] . This definition has two disadvantages: first, it is
meaningless unless f is differentiable on [a,b] , but we would like to
say that |x| is unimodal on [-1,1] . Second, functions which have
inflexion points with a horizontal tangent are prohibited, but we would
like to say that f(x) = xé- 5xh+3x2 is unimodal on [-2,2] (here
fr{+1) = f"(+1) =0 ).

Wilde (1964) gives another definition: f is unimodal on [a,b] if,

for all x cla,b],
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X, <X, D (x2 <x o) f(xl) > f(xg)) A (xl >x ) f(xl) < f(xz)) ¢ (3.T)

*
where x is a point at which f attains its least value in {a,b] .

(We have reversed same of Wilde's inequalities as he considers maxima
rather than minima.) Wilde's definition does not assume differentiability,
or even continuity, but to verify that a function f satisfies (3.1) we
need to know the point x* (and such a point must exist). Hence, we
prefer the following definition, which is nearly equivalent to Wilde's
(see Lemma 3.1), but avoids any reference to the point x* . The
definition is not as complicated as it looks: it merely says that f can
not have a "hump" between any two points x. and x, in [a,b] . Two

0 2

*
possible configurations of the points x and x in (3.l1) and

0’ *1r %2
(3.2) are illustrated in Diagram 3.1.

Diagram 3.1: Unimodal functions
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Definition 3.1

f is unimodal on [a,b] if, for all Xor 5 and x2e[a,b] 5

X, <x, Ax, <x,> (f(x

I TR B o) SE(xy) o £(x)) < f(x;)) A

(£0x)) > 2(x)) > £(x;) > £lx))) (3.2)

Temma 3.1
»*
If a point x at which f attains its minimum in [a,b] exists,

then Wilde's definition of unimodality and Definition 3.1 are equivalent.

Proof
Suppose that f is unimodal according to Definition 3.1. 1If Xy < X,
* *
and x2<x , take xc') =xl, xi:xz, and xé =X o+ Since f attains
»*
its least value at x ,
*
£(xt) > £(x) = £(xy) (3.3)
80 equation (3.2) with primed variables gives
. t
f(xo) > f(xl) 5 (3.4)
and thus
£(x)) > £(x,) - {(3.5)
Similarly, if x, <x, and x, > % , equation (3.2) gives
f(xl) < f(x2) 8 (3.6)
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s, from (2.5) snd (5.6), equstion (%.1) nholds.

Comversely, suppose that (5.1) holds snd %o <%y <%y o It
t(xa) £ f'(xl) then thers are thres possivilities, depending on the
position of

1. iy :-x* «  ‘Tous, vy (3.1) ,

“"1) r:f(xz) ¢ (3.7)
v xsx* Take x'si(xnc) and x! = %
N 1 f Mt Baoe Bl € - Bt

Binse x < xf < xf , equation (%.1) with primed variables gives

£(xf) < 1(xy) (3.8)
86

£lxy) = £(x) £ £(x]) < £(xy) = £(x,) . (3.9)
24 xle:x‘ + Taks x{ »x, and xp - x, . BSince xi<xé<x*,

equation (7.1) gives f(xi‘) - f(xé) , contradicting the assumption that
f(no) Z f(xl) « MHenoe case 7 is impossible, and, by (%.7) and (3.9), we
always have f(xl) < f(xg) . Bimilarly, if f(xl) > f(xe) then

t'(xo) > f(xl) ; 80 equation (3.2) holds, and the proof is complete.

A eimple corollary of Lemma %.1 18 that, if f 41s continuous, then
Wilde's definition of unimodality and ours are equivalent. For arbitrary
f the derfinitions are not equivalert. For example,

lex if x<0 ,

f(x) = (3.10)
X if x>0
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*

is unimodal on [-1,1] by our definition, but not by Wilde's, for x

does not exist.

The folliowing theorem gives a simple characterization of unimodality.
There is no assumption that f is continuous.

function (e.g., xj) may have stationary points, the theorem shows that

Since a strictly monotonic

both our definition and Wilde's are essentially different fram Kowalik

and Osborne's, even if f is continuously differentiable.

this point is obvious, it is sometimes overlooked!

Theorem 3.1

f is unimodal on [e,b] (according to Definition 3.1) iff, for some

(unique) ue{a,b] , either f 1is strictly monotonic decreasing in

and strictly monotonic increasing in [u,b] , or f

decreasing in [a,p] and strictly monotonic increasing in (u,b] .

The theorem is a special case of Theorem 3.2 below, so the proof is

omitted. The following corollaries are immediate.

Corollary 3.1

(Although

See also Corollary 3.3.

[a,u)

is strictly monotonic

If f is unimodal on [a,b] , then f attains its least value at

most once on [a,b] . (If f attains its least value, then it must

attain it at the point u given by Theorem 2.1.)

corollary 3.0

If f 1is unimodal and continuous on

least value exactly once on f{a,b] .

[a,b! , then

f attains

its

.
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Corollary 3.3

If feCla,b] then f is unimodal iff, for some pela,b] ,
f' <0 almost everywhere on [a,u] and f' >0 almost everywhere

on [u,b] . (Note that f' may vanish at a finite number of points.)

Fibonacci and golden section search

If f is unimodal on ([a,b] , then the minimum of f (or, if
the minimum is not attained, the point p given by Theorem 3.1) can be
located to any desired accuracy by the well-known methods of Fibonacci
search or golden section search. The reader is referred to Wilde (1954)
for an excellent description of these methods. (See also Boothroyd
(1965a, b), Johnson (1955), Krolak (1968), Newman (1965), Pike and Pixner
(1967), and Witzgall (1969).) Care should be taken to ensure that the
coordinates of the points at which f is evaluated are computed in a
numerically stable way (see Overholt (19€5)). Fibonacci and golden section
search, as well as similar but less efficient methods, are based on the

following result, which shows how the interval known to contain u may

be reduced in size.

Corollary 3.4

Suppose that f is unimodal on [a,b] , u is the point given by

Theorem 3.1, and & <x; <x, <b . If f(xl) < f(xe) then u <x

and if f(xl) > f(xa) then u >x

2 2

l .
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2.3
Proof

- Thus, if

f(xl) < f(xe) then u <x

If x, <pu then, by Theorem 3.1, f(xl) > f(xe)

5 " The otlLer half follows similarly.
If the reader is prepared to ignore the problem of computing
"unimodal" functions using limjted-precision arithmetic, he may skip the

rest of this section.

d~-unimodality

As was pointed out at the end of Section 2, funciions computed using
limited-precision arithmetic will not be unimodal because of rounding
errors. Thus, the theoretical basis for Fibonacci search, golden section
search, and similar methods, is irrelevant, and it is not clear that these
methods will give even approximately correct results in the presence ot
rounding errors. To analyze this problem, we generalize the idee of
unimodality to d~unimodality. Intuitively, & is a nonnegative number
such that Fibonacci or golden section search will give correct results,
even though f 1is not necessarily unimodal (unless & = 0) , provided
that the distance between points at which f is evaluated is always
greater than & . The results of Section 2 indicate how large & is
likely to be in practice. (Our aim differs from that of Richmen (1968) in
defining the €-calculus, for ne is interested in properties that hold as
e =0 .) For anothexr approach to the problem of rounding errors, -ee
Overholt (1967).

In the remainder of this cection, ® 1is a fixed nonnegative number.
As well as 5-unimodality, we need to define &-monotonicity. If & =0

then &-unimodality and S-monotoni.ity redvze to unimodality (Definition 3.1)
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and monotonicity.

Definition 3.2

Iet I be an interval and f a real-valued functionon I . We

say that f is sirictly d-monotonic increasing on I 1if, for all

Xyr %, el ,
x,+5 < X, O f(xl) < f(xe) . (3.11)

As an abbreviation, we shall write simply " f is 5-t on I ".

Strictly 5-monotonic decreasing functions (abbreviated &-}) are defined

ir the obvious way.

Definition 3.3

l.et I be an interval and f a real-valued functionon I . We

say that f 1is d-unimodal on I if, for all Xy X)X, €l ,

. _ AL
Xt < X) A X3*B <X, D (‘(XO) < f(xl) :)fol) < f(xz))

A (f(xl) > f(x

U

o) D £(xg) > f(x)) - (5.12)

The following theorem gives a characterization of &-unimodal functione.

“+

t reduces to Theorem 7.1 if & =0 .

Theorem é;é

" is H-unimodal on [(&,b] iff there exists ue(a,b] such that
either t is &-} on la,u) and H=-t on [u,b], or £ is 5-4

on la,u] and nH-t on (m,b] . Furthermcre, if f is S-uninodal on

e A _ldnmdan .
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2.3

[a,b] , then there is a unique interval [pl,pe] c [a,b] such that

the points p with “.ie above properties are precisely the elements of

[Pl,ug] J and p'g Sul+5 *

Proof

Suppose | exists so that f is 5-f on [a,n) and &-t on [p,b] .
Take any Xo» X35 X, in [a,b] with x0+5 <% and xl+5 <x, . If
f(xo) < f(xl) then, since f is ®-4{ on [apu) , u< x, - As f is
8-t on [u,b) , it ‘ollows that f(xl) < f(‘"-a) . The other cases are
similar, so f is ©&-unimodal.

Conversely, suppose that f is 5-unimodal on [a,b] . Let

Ky = inf{xe(a,b] | f is 5-1 on [x,b]} , (3.13)
(s0 by < max(a,b-8)) , and .
My = sup{x¢[a,b] | f is 8-4 on [a,x]} , (3.14)
9
(so b > min(a+d,b)) .
Tt is immediate from the definitions (3.13) and (3.14) that f is |
5-t on (pl,b] and £ is 8-} on [a.,ue) . We shall show that L
T (3.15)
Suppose, by way of contradiction, that

This implies that by >a and o <b , so, from the definitions of Ky

and o there are points x' and x" with f
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My ¥
By < X" < | 3 < x' <oy, (3.17)

such that f is not %-t on [x',b] and f is not &-} on [a,x"] .

Thus, there are points y' , y", z', 2" in [a,b] such that

2™ <y" <x" <x'<y'<z2'-% , (3.18)

£(z") < £y, (3.19)
and

£(y') > £(z') . (5.20)
Let xo—z" x2=z',a.nd

yr it £(y') > £(y") ,
X, = (3.21)

= y" otherwise .

From relations (3.18) to (3.21), the points Xy X, and x, contradict
®-unimodality (ejuation(3.12)). Thus (3.16) is impossible, (3.15) must
hold, and [“1’”2] is nonempty.

Choose any W in [ul,ue] . From the definitions of By and u, ,
f is 5-{ on [a,u) and 5-t on (u,b] . Suppose, by way of contradiction,
that f is neither -} on [a,u] nor &-t on [u,b] . Then there

are points y, and y, in [a,b] such that

y2+8 <u< yl-5 s (3.22)
f(Yl) < f(u) , (3.23)
and
12C
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5.3
£(y,) < £() - (3.2h)

Thus, the points Yo o B and ¥y contradict the &-unimodality of f ,
so f is either 8-} on [a,pn] or 8-t on [p,b] . This completes
the proof of the first part of the theorem.

Finaily, by the definitions (3.13) and (3.1k), th= set of points u

satisfying the conditions of the theorem is precisely [pl,pe] . Since

£ is botk 5-t and 3-J on (ul,ue) » we have u, 5u1+6 , and the

proof is complete.

Remarks

The interval [“1’“2] depends on & . Suppose that f attains its
minimum in (a,b] at 1 . ¥y Theorem 3.2, f is &-t on (p.l,b]
and 5-} on [a,u2) , B0 He€ [p.2-8,|.11+5] , an interval of length at
most 25 .

As an example, consider
2 2
f(x) = x"+e.g(x) (2.25)

on [-1,1] , where g is any function (not necessarily continuous) with
le(x)l <1, and € >0 . Since f(x) is bounded above and below by the
unimodal functions ro+e and X°~E , we see that f is S-unimodal if

5 > JZ . In a practical case ¢ might be ‘a small multiple of) the
relative machine precision, and the fact that the least & for which f
is 5-unimodal is of order 51/2 , rather than € , is to be expected fram

the discussion in Section 2.
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5.4

two function evaluations giving Ij were at points separated by more
than 50 . The smallest such interval Ij has length no greater than
(2+f5)50 , SO

ln-p| < (5+/§)6O ~ 5.2268, . (3.26)

Thus, golden section search gives an approximation ﬁ which is nearly

as good as could be expected if we knew B8 This may be regarded as

0 °
a justification for using golden section (or Fibonacci) search to approximate
ninima of functions which, because of rounding errors, are only "approximately"

unimodali.

L.  An algorithm analogous to Dekker's algorithm

For finding a zero of a function f , the bisectior process has the
advantage that linear convergence is guaranteed, as the interval known to
contain a zero is halved at eech evaluation of f after the first.
However, if f 1is sufficiently smooth and we have a good initial
approximation to a simple zero, then a process with superlinear convergence
will be much faster than bisection. This is the motivation for the
algorithm, described in Chapter 4, which combines bisection and successive
linear interpolation in & way which retains the advantages of both.

There is a clear analogy between methods for finding a minimum and
for finding a zero. The Fibonacci and golden section search methods have
guaranteed linear convergence, and correspond to bisection. Processes
like succersive parapolic interpolation, which do not always converge, but

| under certain conditions coaverge superlinearly, correspond to successive
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linear interpolation. In this section we describe an algorithm which
cambines golden section search and successive parabolic interpclation
in a way which retains the advantages of both. The analogy with the

algorithm or Chapter 4 is illustrated in Diagram k4.1.

Zeros Extrema
Linear convergence Bisection — Golden section search
Superlinear convergence Successive linear «— Successive parabolic
interpolation interpolation

Diagram 4.1: The analogy between algorithms for
finding zeros and extrema

Many more or less "ad hoc" algorit'ms have been proposed for one-
dimensional minimization, particularly as components of n-dimensional
minimization algoritims. See Box, Davies and Swann (1969), Flaragan,
Vitale and Mendelsohn (1969), Fletcher and Reeves (1964), Jacoby,

Kowalik and Pizzo (1971), Kowalik and Osborne (1968), Pierre (1969),

Powell (1964), etc. The algorithm presented here might be regarded as

an unwarranted addition to this list, but it seems to us to be more

natural than these algorithms, which involve arbitrary prescriptions like

"if ... fails then halve the step-size and try again". Of course, our
algorithm is not quite free of arbitrary prescriptions either, so a more
objective criticism of the "ad hoc" algorithms is that for many of them
convergence to a local minimum in a reasonable number of function evaluations
can not be guaranteed, and, for the exceptions, the asymptotic rate of

convergence if f 1is sufficiently smooth is less than for our algorithm
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5.4
(see Section 5). Note that we do not claim that our algorithm is

suitable for use in an n-dimensional minimization procecure: an "ad hoc"

algorithm may be more efficient (see Sections 1 and 7.1).

A description of the algorithm

Here we give an outline which should make the main ideas of the
algorithm clear. For questions of detail the reader should refer to
Section 8, where the algorithm is described formally by the ALGOL 60
procedure localmin.

The algorithm finds an approximation to the minimum of a function f
defined on the interval [a,b] . Unless a is very close to b , f is
never evaluated at the endpoints a and b, so f need only be defined
on (a,b) , and i the minimum is actually at a or b then an interior
point distant no more than 2.tol fran a or b will be returned,
where tol is a tolerance (see equation (4.2) belcw). The minimum found
may be local, but non-global, unless f is &-unimodal for same & < tol .

At a typical step there are six significant points a , b, u, v, w,
and x , not all distinct. The positions of these points change during
the algorithm, but there should be no confusion if we omit subscripts.

Initially, (=,b) is the interval on which f is defined, and

vV=W=4L=8+ (Léﬁ)(b-a) . (h'l)
(The magic number 3-45 = 0.381966... is rather arbitrarily chosen so

2

that the first step is the same as for a golden scction search.)
At the start of a cycle (label "loop" of procedure localmin) the

points a,b,u, v, v, and x always serve as follows: &a local
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minimum lies in [(a&,b] ; of all the points at which £ has been evaluated,
X 1is the one with the least value of f , or the point of the most recent
evaluation if there is a tie; w 1is the point with thc next lowest value
of f ; v is the previous value of w ; and u 1is the Jast point at
which £ has been evaluated (undefined the first time). One possible

configuration is shown in Diagram k4.2.

B e et e

R e T

(

Diagram L.2: A possible configuration

As in prccedure zero (Chapter L), the tolerance is a combination of

a relative and an absolute tolerance. If

tol = eps.|x|+t , (4.2)

then the point x returned epproximates a minimum to an accuracy of
2.tol+5 < 3.tol , if f is 5-unimodal near x and % < tol . The
user must provide the positive parameters eps and t . In view of the
Aiscussion in Section 2, it is generally unreasonable to take eps much

1/2

less than ¢ , where € is the machine-precision (see Section 4.2).
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5.4

t should be positive ia case tne minimum is at 0 . It is possible that
the error may exceed 2.tol+5 because of the effect of rounding errcrs
in determining if the stopping criterion is satisfied, but the additional
error is of order slx\ s» which is negligible if tol 1is of order
el/2|x| or greater.

Let m = -;‘- (a+b) be the midpoint of the interval known to contain
the minimum. If |x-m| < 2.tol--§— (b-a) , i.e., if max(x-a, b-x) < 2.tol,
then the procedure terminates with x as the approximate position of the
minimum. Otherwise, numbers p ard gq {(q > 0) are computed so that
x+p/q is the turning point of the parabola passing through (v,f(v)) ,
(w,f(w)) , and (x,f(x)) .. If two or more of these points coincide, or if
the parabola degenerates to a straight line, then q =0 .

p and q are given by

p = +[ (x-v) 2(£(x) -£()) - (x-w) *(£(x)-£(+v)) ] (4.3)
=+ (x=v) (W) () { () £ v, w0, x ]+ LW, x1} (4.1)
and
q = 72( (x-v) (£(x) -£(W)) - (x-w) (£(x)-£(v)) ] (1.5)
= F2(x-v) (x-w) (w-v) £[v,.1,x] . (4.6)

From (4.4) and (4.6), the correction p/q should be small if x is close
to a minimum where the second derivative is positive, so the effect of
rounding errors in camputing p and q is minimized. (Golub and Smith
(1967) compute a corroction to —2]1(v+w) for the same reason.)

As in procedure zerc, let e be the value of p/q at the second-last

cycle. If |e|l <tol, q =0, x+p/qaf(ab), or |p/al 2%|e| , then
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a "golden section" step is performed, i.e., the next value of u is

.-

(

-

(An optimal. choice in the limit:

6 c
(‘/_5_2'_1X+(5'_‘/:)a it x>m ,

Jo -

~

2

$

3 -J/5
2

1

Yx + ( Yo if x <m

2

(4.7)

ser Witzgall (1969).) Otherwise u

taken as x+'p/q (a "parabolic interpolation" step), excent that

the distances |u-x| ,

is evaluated a: the

u-a &and b-u must be st least tol .

new point u , the points a , b, v, w aixd x

are updated as necessary, and the cycle is repeated (the procedure

returns to the label "loop"). We see that f :s never evaluated at

is

Then £

two points closer together than tol , so d-unimodality for some & < tol

is enough to ensure that the global minimum is found to an accuracy of

2.tol+8% (see Theorem 3.3 and the following remarks).

Typically the algorithm terminates in the following way:

(or, symmetrically,

performed with the condition

X = b-tol

a+ tol) after a parabolic interpolation step has been

|u-x| > tol enforced. The next parabolic

interpolation point lies very close to x and b, so u 1is forced to

te x-tol . If f(u) > f(x) then » moves to u,

and the termination criterion is satisfied (see Diagram 4.3).

b-a

becomnes 2

two consecutive steps of tol are doane just before termination. If a

.tol ,

Note that

golden section search weredone whenever the last, rather than seccnd-last,

value of |p/q| was tol or less, then termination with two consecutive

steps of toi would be prevented, and unnecessary golden section steps

would be performed.
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v a X b

Diacram 4.3: A typical situation after termination

5. Convergence properties

There can not be more than about 2.log2((b-a)/tol) consecutive
parabolic interpclation steps (with the current a and b , and the
minimum of tol over the interval), for while parabolic interpolation
steps are being performed |p/q| decreases by a factor of at least two
on every second cycle of the algorithm, and when |e|‘5 tol a golden
section step is performed. (In this section, "about" means we are nct
distinguishing between a real number and its integer part.) A golden
section step does .ot necessarily decrease b-a significantly, e.g.,
if x =b-tol and f(u) < £f(x) , then b-a is only decreased by tol ,
b.. two golden section steps must decrease b-a by a factor of at least

ir /s
2

= 1.618... . As in Section 4.3, we see that convergence can not

require more thar about
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. b-a,\2
2K (1og, (3=2)) (5.1)
function evaluations, where

K = 1/1og2(-1—+—2/5)- T : (5.2)

By comparison, a golden section or Fibonacci search would require about

K-log, (£33) (5.3)

function evaluations, and a brute-force search atout 2b;21

The analogy with procedure zero of Chapter 4 should be clear, and
eggentially the same remarks apply here as were made in Chaptgr 4., 1In
practical tests convergence has never been more than 5 percent slower
than for a Fibonacci search (see Section 6).

In deriving (5.1) we have ignored the effect of rounding errors inside
the procedure, but it is easy to see (as in Section 4.2) that they can not
prevent con rergence if floating-point operations satisfy (4.2.10) and (4.2.11),

provided the parameter eps of procedure localmin is at least 2¢

Juperlinear convergence

If £ is 02 near an interior minimum p with f"(u) >0 , then
Theorem 3.4.1 shows that, while rounding errcrs are negligible, convergence
will be superlinear. Usually the algorithm stops doing golden secticn steps,
and eventually does only parabolic interpolation steps, with f(x) decreasing
at each step, until the tolerance comes into play just before termination.

This is certainly true if the successive parabolic interpclation process
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converges with strong order 52 = 1.3247... (sufficient zonditions for
this are given in Sections 3.6 and 5.7).

For most of the "ad hoc" methods given in the literature, convergence
with a guaranteéd error bound of order tol in the number of steps given
by (5.1) is not certain, and, even if convergence does occur, the order
is no greater than for our algorithm. For example, the algorithm of
Davies, Swann and Campey (see Box, Davies and Swann (1969)) evaluates f
at two or more points for each parabolic fit, so the order of convergence

is at most /Eé = 1.150... (excluding exceptional cases).

6. Practical tests

The ALGOL procedure localmin given in Section 8 has been tested using
ALGOL W (Wirth and Hoare (1966), Bauer, Becker and Graham (1968)) on an
IBM 360/67 and & 360/91 with a machine precision of 1670 | Although it
might be possible to contrive an example where the bound (5.1) con the
number of function evaluations is nearly attained, for our test cases
convergence never requires as many as 5 percent more function evaluations
than would be needed to guarantee the same accuracy using Fibonacci search.
In most practical cases superlinear convergence sets in after a few golden

section steps, ard the procedure is much faster than Fibonacci searcn.

As an example, in Table 6.1 we give the number of function evaluations:

required to find the minima of the function

20 2
£(x) = V. (21'g> | (6.1)
i=1\ x-1

This function has poles at x = 12,22,...,202 . Restricted to the open
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2 1oV 2 . cr s . . .
interval (i%,(i+1)°) for i = 1,2,...,19 it is unimodal (ignoring
rounding errors) with an interior minimum. The fourth column of Table 6.1
gives the number n of function evaluations required to find this

minimum By s using procedure localmin with eps = 16-7 and t = lO-:Lo

(so the error bound is less than 3.tol , where tol = 1677, |x| + 10710 )=

The last column of the table gives the number n, of function .

evaluations required to find the zero of

20 ] 2
£1(x) = -2.% %2-1-—337 (6.2)
X=1

i=1l

in the interval {12+10-9, (i+1)2 -10-9] , using procedure zero (Section
4.6) with macheps = 16" ana t = 10710 , So the guaranteed accuracy is
nearly the same as for localmin. Of course, in practical cases we would
seldom be lucky enough to have such a simple analytic expression for f' ,
so procedure zero could not easily be used to find minime of f in this
manner. Also, procedure zero could find & maximum rather than a minimum.
Table 6.1 shows that the number of function evaluations required by
procedure localmin campares favorably with the number required by procedure
zero. Both are much faster than Fibonacci search, which would require 45
function evaluations to find the minimum for i = 10 to the same accuracy.

For some numerical results illustrating the superlinear convergence

of the successive parabolic interpolation process, see Section 3.9.
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Table 6.1:

s

L AN

O 0 N O W\

10

w

1
1k
15
16

17
18

Comparison of procedures localmin and zero

My ;) ! n,o my

i i

3.0229153 3.6766090169 . 12 14
5.6837536 1.1118500100 11 8
11.2387017 1.2182217637 13 1k
19.6760001 2.1621103109 10 12
20.8282273 2.0322905193 . 11 12

41.9061162 3. 7583856477 i 1 1
55.9535958 L.3554103836 ' 10 11
71.9856656 4L.84B2959563 10 11
90.0088685 5.2587585%00 10 © 10
. 110.0265327 5.6036524295 10 10
132.0405517  5.8956037976 10 . 10

156.0521144 6.1438861542 ; 9 10
182.062060k  6.3550764593 ; 9 | 10 |
~ 210.0711010  6.5333662003 . 9 | 10 g
240.0800485 | 6.6803639849 | 9 | 10 |
272 .0902669 6.7938538365 l 9 10
3061051233 6.8634981055 , 9 10
342.136945k 6.8539024631 { 9 9
380.2687097 | 6.6008470481 j! 9 9 i

For a discussion and definition of the terms, see above.
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7. Conclusion

The algorithm given in this chapter has the same advantages as the
algorithm described in Chapter L for finding zeros: convergence in a
reasonable number of steps is guaranteed for any funct.on (see equation
(5.1)), and cn well-behaved functions convergence is superlinear, with
order at least 1.3247... , and thus much faster than Fibonacci search.
There is no contradiction here: Fibonacci search is the fastest method
for the worst possible function, but our algorithm is faster on a large
class of functions (including, for example, C2 functions with positive

second derivatives at interior minima).

A gimilar algor.thm using derivatives

We pointed out in Section 4.5 that bisection could be combined with
interpclation formulas which use both f and f' . We could combine
golden section search with an interpolation method using both f and f!
in a similar way. Davidon (1959) suggests fitting a cubic polynomial to
agree with f and f' at two points, and taking a turning point of the
cubic as the next approximation. (See also Johnson and Myers (1967).) This
method, which givec the possibility of superlinear convergence, could well
replace successive parabolic interpolatiorn (using f at three points) in
our algorithm if f' 1is easy to compute. If the cubic has no real turning
point, or if the turning point which is a local minimum lies outside the
interval known to contain a minimum of f , then we can resort to golden

section search.
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Parallel &lgorithms

So far we have considered only serial (i.e., sequential) algorithms
for finding minima. If a parallel computer ls available, more efficient
algorithms which take advantage of the parallelism are possible, just as
in the analogous zero-finding problem (see Section 4.5). Karp and
Miranker (1968) give a parallel search method which is a generalization of
Fibonacci search (and optimel in the same sense, if a sufficiently parallel
processor is available). Jee also Wilde (1954) and Avriel and Wilde {1966).
Miranker (1969) gives parallel methods for approximating the root of a
function, and these could be used to find a root of f' {or parallel
methods for finding a root of f' , using only evaluations of f , could
be used;. These parallel mcthods could be combined, in much the same way
as we have combined golden section search and successive parabolic
interpolation, to give a parallel method with guaranteed convergence,
and often superlinear convergence with a higher order than for our serial

method.

8.  An ALGOL 60 procedure

The ALGOL procedure localmin for finding a local minimum of a function
of one variable is given below. The algorithm and some numerical results

are described in Sections 4 to 6.

Procedure localnin

real procedure localmin (a, b, eps, t, f, X);

value a, b, eps, t; real a, b, eps, t, x; real procedure f;
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begin cament:

YA P M PR W

If the function f is defined in the interval (a,b), then localmin
finds an approximation x to the point at which f attains its minimum
(or the appropriate limit point), and returns the value of f at x.

t and eps define a tolerance tol = eps. |x|+t, and f is never evaluated
at two points closer together than tol. If f is S-unimodal (see
Definition 3.3), for some & < tol, then x approximates the giobal
minimum of f with an error of less than 3.tol (see Section 4). If

f is not 5-unimcdal on (a,b), then x may approximate a local, but
non-global, mininmm. eps should be no smaller than 2.macheps, and
preferably not much less than sqrt(macheps), where macheps is the
relative machine precision (Section 4.2). t should be positive. For
further details, see Section 2.

The metnod used is a combination of golden section search and
succession parabolic interpolation. Convergence is never much slcwer
than for a Fibonacci search (see Sections 5 and 6). If f has a continuous
second derivative which is positivé at the minimum (not at a or b) then,
ignoring rounding errors, convergence is superlinear, and usually the
order is at least 1.3247...;
realc, d, e, my p, q, T, tol, t2, u, v, w, fu, fv, fw, fx;

0.381966011250105151795413165634; comment: c¢ = (3 -sqrt(5))/2;

c

v :i=w:=x:=at+tcx(b-a); e :=0;
fv := fw := fx := £(x);

comment: Main loop;

loop: m := 0.5% (at+b);

tol := eps x abs(x)+t; t2 := 2 x tol;
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5.8
cament: Check stopping criterion;
if abs{x-m) > t2 - 0.5 x (b-a) then
beginp :=qg :=7r1 := 0;
if abs(e) > tol then

begin comment: Fit parabola;

r:= (x-w) X (fx-£v); q := (x-v) x (fz-fw);

p := (x-v) xq-(x-w) xr; q :=2x(q-r);
if q > O then p := -p else q := -q;
r:=e; e :=4d

end;

if abs(p) < abs(0.5xaxr) Ap > qx (a-x) A p <qx (b-x) then

begin comment: A "parabolic interpolation" step;

d :=p/a; u := x+d;
camment: f must not be evaluated too close to a or b;

if u-a < t2 v b-u < t2 then 4 := ifx<m then tol else -tol

end

else

begin comment: A "golden section" step;

e := (if x <m then b else a)-x; d :=cxe
end;

comment: f must not be evaluated too close to x;

u := x+ (if abs(d) > tol then d else if d > O then tol else -tol);

fu := £(u);
coment: Update a, b, v, w and x;

if fu < fx then
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begin if u < x then b := x else a := Xx;

vi=w; fvi=fw; w:=x; fw := fx; x :=u; fx := fu
end
F

else

begin if u < x then a :=u else b := u;

if fu <fw v w = x then 1
f
begin v :=w; fv := fw; w :=u; fw := fu end i

1

else_ijmsfvvv:xvv=wthen

: |
g

begin v := u; fv :

end
end;
&0 to loop

end;

localmin := fx

end localmin;




Chapter 6.

Global Minimization Given an Upper Bound on the

Second Derivative
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1. Introduction

Minimizaticm procedures like the one described in Chapter 5 can
only guarantee to find a local, not necessarily global, minimum of a
function feC[a,b] . If f happens to be unimodal then a local
minimum mus% be the global minimum in [a,b] , but in practical problems
it often happens that £ is not unimodal, or that unimodality is difficult
to prove. In this chapter we investigate the problem of finding a good
approximation to the global minimum, given weaker conditions on f than
unimodality. As usual, we consider methods whiclL depend on the sequential
eveluation of f at a finite number of points, and our aim is to reduce,
as far as possible, the number of function evaluations required to give
an answer which is guaranteed to be accurate to within some prescribed
tolerance.

In Sections 2 to 6 we describe an efficient algorithm for
approximating the global minimum of a function of one variable, given an
upper bound on the second derivative. There are many obvious applications
for this algorithm. For erample, when finding a poste.iori error bounds

for the approximate solution of elliptic pa.tial differential equations,

we may need to find the maximum of |f(x)| (For, Henrici and Moler (1967)).

Instead of working with |f(x)| , which may have discontinuous derivatives,

it is probably better to use the relation

max |t(x)| = -min(min(£(x)), min(-£(x))) . (1.1)
x x x

In Secticns 7 and 8 we show how to extend the method to functions of

several variables, and ALGOL 60 procedures are given in Section 10.
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Some fundamental limitations

If feCla,b] , let

9, = inf {f(x) | xe[a,01} , (1.2)

and

Hp = inf {xele,D] | £(x) = o.} - (1.3)

Even if f satisfies very stringent smoothness conditions, the problem
of finding u £ is improperly posed, in the sense that He is not a
continuous function of f (with the uniform topology on C[a,b] ).

For exampl>, consider
fﬁ(x) = cos(nx) - 8x (1.4)

on [-2,2] . If & >0 then e ~1l, but if & <uv then pf_:nl 5
so a very small change in f can cause a large change in He -
Instead of trying to approximate He » we should seek to approximate

Pp = f(uf) . Since
lpe-o, 1 < lif-el, (1.5)

for all f and g in C[e,b], 9, 1is a continuous function on C(a,b] , 80
the problem of finding (pf is properly posed. However, given t >0,

it is still impossible to find 9 such that

|5-q>f| <t . (1.6)

-

th a finite number N

+ of function evaluations, unleas we have same

a priori information about f .
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A priori conditions on f

If feCla,b] , the modulus of continuity w(f;5) is defined (as

in Section 2.2) by

w(f;d) = su |£(x) - £(y) |

|x-y| <8
x,yela,b]

for & >0 . Suppose that a function W(S) is given such that

lim w(3) =0 ,
& -0+

and
w(£;8) < W(5)

for a1l & >0 . Given t >0, choose & >0 sﬁch that
W(d) <t

(always possible by (1.8)), and evaluate f at points X3 ores X

[a,b] such that
max min |x-xi| <% .
xefa,b] 0<i<n

(2.7)

(1.8)

(1.9)

(1.10)

in

(1.11)

(For example, we might choose Xy = atd , xl = at35 , - X, = at55 , etc.)

If

min
OSiSn

Q= f(xi) )

then, from (1.7), (1.9), (1.10) and {1.11),

k2

(1.12)

(1.13)

4
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Thus, a quite weak condition on f , enabling us to approximate ¢ £
with a finite number of evaluations of f , is that we have a bound
w(s) , satisfying (1.8), on the modulus of continuity w(f;8) of f .

For example, if feCl[a,b]‘ ané
el < M, C(1.1%)

then we can take

W) =W . | | (1.15)

| Unfdrtunately', the procedure suggested above will be very slow if
t 1is small: in fact, about (b-a)M/(2t) function evaluations will be
required. In the worst case, though, it is impossible tc dc much better
than this without knowing more about f . To see thig, consider

minimizing & function which is known to be in the cla-és

{f_(x) = min (1.01t, M|x-c|) | ce(a,b]} . (1.16)
If

& =1.01t /M, (1.17)

and ¢ is computed from (1.12) for some set of points Xy

there is a choice of ce[a,b] for which @ fails to satisfy (1.13)

o oxe y G then
> 2 n) .

unless (1.11) holds, so at least [ (b-a)M/ (2.02t) | function evaluations
are required. 1In some cases less function evaluations will be required:

for example, if
£(x) = Mx , ' (1.18)

then it is enough to evaluate f at a and b . (See also Section 5.)
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Instead of having an a priori bound on ||f' |, we could have a

bound

1) < w (1.19)

on nf(r) Hw , for some r >1 . We show below that, with such a bound,
the maximum number of function evaluations required to find CB
satisfying (1.13) is of order (M/t)l/r :

The case r = 1 1is discussed above, so suppose r >2 , and let

i
T
n = (o “:T) r”ffg) . (1.20)
L cos(-é;)
S b-a Fe)
Define & = — , @&, =a+id for i =0,...;n (g0 8 = b) , and
, 1
[ cos((3-Dym/r)
i, ] i 2 1
cos(E n/r)
fOI’ i = 0,..-,1’1-1 a.nd j = l, oo-,r (80 ai,l = ai ) ai,r = ai+l) .
Let P, = IP(f;a, ,5-..,8, _) be the polynomial of degree r-1 which
i i1 i,r

coincides with f at 8y yse++»8; . . Then, Leamea 2.4.1 and the bound
J J

(1.19) show thet, for all xe[ai,a1+l] .

| £(x) -Pi(x)‘ < |(x-ai,1)...(x-ai,r)| M/rt . (1.22)

r
The right side of (1.22) is no greater than __6_1'}— Mr--i .
2 cos(é—;) rt2

and, by (1.20) and the choice of & , this is no greater than t/2 . Thus,
we need only find the minimum of each polynomial Pi(x) in [ai, ai+1]

to within a tolerance t/2 . This is easy if r = 2 , for then each

14y
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polynomial Pi(x) is linear. If r >2 then we can bound |Pg(x)|

in [ai’ai+l] , and epply the procedure for r = 2 to minimize Pi(x) .
(This idea for finding bounds on polynomials in an interval was suggested
by Rivlin (1970).) Because successive intervals [ai’ai.+l] are adjacent,
the number of function evaluations required to find (’f) satisfying (1.13)

does not exceed
N = (r-l)n+2 2 (1.25)

where n is given vy (1.20).

Since N is of order (M/t)l/r , the method described above is
not likely to be practical for small t unless r >2 . On the other
hand, in practical problems it is usually difrficult to obtain good bounds
on the third or higher derivatives of f (if they exist). Thus, in the
rest of this chapter we suppose that r =2 . It turns out that & one-

sided bound
'(x) <M (1.24)

is sufficient, instead of the two-sided bound (1.19). If f"(x) has a
physical interpretation (e.g., as an acceleration), then a bound of the

form (1.24) can sometimes be obtained fram physical considerations.

2. The basic theorems

The global minimization algorithm which is described in the next
section depends on the simple Theorems 2.1, 2.2 and &.3. Theorem 2.1 is
related to the maximum principle for elliptic difference operators, and

also to some results in Davis (1965). We assume that feCl[a,,b] , and
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f'(x) - £'(y) < Mx-y) ,

for all x,y in [a,b] with x>y . (Weaker conditions suffice:

(2.1)

see Section 7.) If feCQ[a,b] then the one-sided Lipschitz condition

(2.1) is equivalent to
f"(x) < M
for all xe[a,b] .

Theorem 2.1

Suppose (2.1) holds. Then, for all xe[a,b] ,

£(x) > (b'x)f(g)bta(x‘ai)f(b) - _;_- M(x-a) (b-x)

Proof
The proof is immediaie from Lemma 2.k.1.

Lemma 2.1

Suppose (2.1) holds and & <0 <b . Then

Proof

Applying Lemma 2.3.1 to f(-x) , we have
1= 2
f(a) < £(0) + af'(0) + 3 Ma”

s0 the result follows.
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6.2
Theorem 2.2
Suppose (2.1) holds, M >0, a<c <b, f(a) > f(c) , and

f'(c) =0 . Then

c-a>1fa’l_fc ) (2.6)
5

Proof

Applying Lemma 2.1 with a suitable translation of the origin gives

0=fr(c) < Hal=fe) Ly (2.7)
SO ‘
£a) - £(c) SzMc-a)° (2.8)

and the result follows.

Lemma 2.2
Suppose (2.1) holds, M>0 , and a <0 <b < -f'(0)/M . Then

fr(b) <O .

Proof
By condition (2.1},

£1(b) < £1(0)+Md , (2.9)

and, as

b < -fr(O)/M , (2.10)

the result follows.

k7




6.2
Theorem 2.3
Suppose (2.1) holds, M >0, a<ec<b, and
Y
. atc f(a)-f(c
¢ <x <min (b’_Q--‘D%I)BT-C ) . (2.11)
Then
fl (x) S 0 - (2.12)
L
Proof
There is no loss of generality in assuming that ¢ =0 and b =x . ‘
By condition (2.11), ‘
b=x<he-Ha)-f0) __1(2(a) -£(0) _Lly) | (2.13) ‘
-2 Ma M a 2
80, by Lemma 2.1, we have
b <-f'(0)/M . (2.14)

Now the result follows from Lemma 2.2.

Remarks

Theorems 2.1, 2.2 and 2.5 are sharp, as can easily be seen by
taking f(x) as a suitable parabola with leading term %Mx2 . The 1
theorems are generalized in Section 7, and the proofs given there show
that everything needed to justify our minimization algoritim follows +
from the fundamental inequality (2.3). The proors given in this section

are, however, simpler and more intuitive than those in Section 7.
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5. An algorithm for global minimization
1
Sunpose that feCe[a.,b] and, for all xela,b], l
M(x) <M . (3.1) §
We want to find ;:e[a.,b] and @ = f(a) satisfying ;}(
4
19-9,l <t > ’ (3.2) ;
|
where t 1is a given positive tolerance, and i
. ! L
¢, = min f(x) . (3.3)

xela,b]

If M <O the problem is quite trivial, for Theorem 2.1 says that £(x)

can not lie below the straight line interpolating f at a and b, so

¢, = min (£(a),£(v)) . (3.4)

If M >0 the problem is not trivial, although we saw in Section 1 that

there does exist an algorithm to solve it.

The basic algorithm

The algorithm described in this section is aa elaboration and
refinement of the following basic algorithm. (The notation is consistent
with that of the ALGOL procedure glomin (Section 10), except that we
write M for m, ;:. for x, cI) for y (= glomin), and € for

macheps.)

1. Set ¢ ~min (£(a),f(d)) ,
p~if @ = f{a) then a else b,

and azo—a.
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2. If M<0O or a.2 3

in (a2,b] (e.g., b: see below for a better choice).

3. If f(a3)<€> then set 1 +~a, and @ « f(a

3 3) )
L. If the parabola y = P(x) , with P"(x) =M , P(ae) = f(a.e) "

>b then halt. Otherwise set a, « some point

and P(a3) = f(a.5) , satisfies P(x) 2&’-*3 for all x 1in [ae,aj] y <'

then go on to 5 . Otherwise set a .-%: (a.2+a.5) and go back to 3 . 1

3

5 Set a, ~a

o 3 and go back to 2 .

We shall see shortly that (with a sensible choice of a

3 at

step 2) the basic algorithm must terminate in a finite number of steps.

In view of Theorem 2.1 and step 4, it is clear that, when the algorithm

terminates, it does so with ¢ satisfying (3.2).

Refinements of the basic algorithm

The crux of the problem is how to make a good choice of a

3

step 2 of the basic algoritim. We want to choose 8.5 as large as

possible, but not so large that it has to be reduced at step k.

Theorems 2.2 and 2.3 provide useful lower bounds. Jf the global minimum

at

ne lies outside (ay,b) , or if o, >¢ -t , then the algorithm may

halt, for @ already satisfies (3.2). Otherwise

f (“f) S0)
ard

f(pf) <69"t )

so, fram Theorem 2.2 with a replaced by a, and c¢ by He s

2
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£(a,) —p+t
-8, > T ; ~ (3=7)
) M

Thus, at step 2 it is safe to take 19.3 S aé » Where

f(a,) -9+t
a.% = min{b, a, + T ) ' (3.8)
> M

and with this choice there is no risk that za.3 will have to be reduced
at step %. Since the right side of (3.7) is at least (2‘t,/M)l/2 , the
basic algorithm must converge in a finite number of steps if, in step 2,
we choose any 8y in the range [a.%,b] .

If f 1is decreasing rapidly at 8, » then Theorem 2.5 may give a
better bound than (3.7). Apply Theorem 2.3 with c replaced by 8,
and a replaced by a point a,-d, (with dy > 0) where f has
already been evaluated. (This is not possible if a, = a .) Combining
the result with (3.8), we see that it is safe to choose 8y = ag at

step 2, where

( £(a,) - £lu) +t
a.g=mi b, max a2+ lM 5
2
1 f(a2) - f(a2 - do) +2.01e
& - 5|% * i . (3.9
5 M.do

Here e 1is a positive tolerance, and the term 2.0le is introduced
to combat the effect of rounding errors (see equations (3.41) and (3.52)).
The choice a.5 = ag is safe, but it is possible to speed up the

algorithm by sometimes choosing a.3 > ag . Because we want to avoid
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having to decrease a, at step 4, the best choice would be to take

P
8y = min (b,ag) s Where ag is the abscissa of the point to the right

of a2

second derivative M , which passes through (ag,f(ae)) and attains

where the curve y = f(x) intersects the parabola P , with

its minimum value @' -t <to the right of a Here

2 L]
9' = min (9, £(as)) (3.10)
is the value of a) after step 3 has been executed, and we can extend

the domain of f by defining f(x) = f(b) for x >b if this is

necessary. A typical situation is illustrated in Diagram 3.1.

Diagram 5.1: The points a

and ag

2

It is not practical to choose &3 = ag , for, although ag exists,
several function evaluations are needed to approximate it accurately.
Procedure glomin (Section 10) finds a rough approximation ag-* to a¥
without any extra function evaluations, by assuming that f can be

approximated sufficiently well by the parabol. which interpolates f at
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the last three points at which f has been evaluated To avoid
overstepping ag too often, because of the inadequacy of the parabolic

approximation to f , the procedure uses a heuristic "safety factor"

ne(0,1) . If

33 min (b, a,* h(ag* - a.2)) - (3.11)

then at step 2 we choose

3'3 max (a-g:a}) ’ : . (3.12)

end if it necessary to reduce as at step 4 then we set
1
- T oy = . .
8y « uax (a3 '3 (a.2+ 83)) Procedure glomin also makes a rather
primitive attempt to adjust h , the adjustment depending on the outcome

of step k.

Some details of vnrocedure glcomin

The ALGOL 60 procedure glomin given in Section 10 uses the basic
algorithm with the refinements suggested above. from equgtion (3.8)
and the criterion in step 4 of the basic algoritim, it is clear that,
to speed up convergence, we want to find a rough approximation to the
global minimum as soon as possible. In other words, &3 should be
nearly at its final value as soon as possible. For this reason, procedure
glomin incorporates several strategies which are designed to reduce 6
quickly. We emphusize that the global minimum would be found without
using these strategies: the strategies merely reduce the number of
function evaluations required (see Sections 5 and 6).

The first strategy for reducing ¢ quickly is a pseudo-random
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search. Abcut 10 percent of the function evaluations are used to
evaluate f at "random" points uniformly distributed in (ae,b) ®
(f is not evaluated at the random point a5 if Theorem 2.1, with a

replaced by a, and x by 83 » indicates that f(a3) 26-’( , for

2
such an evaluation would be a waste of time.) At worst, this strategy
wastes 10 percent of the function evaluations, but in practice the

saving in function evaluations caused by quickly finding a good value

~of 6 is often much more than 10 percent. (The choice of 10 percent

is, of course, raf;her arbitrary.)

By cqnparison witn the random search si:rategr, the second strategy
is a highly "non-random” search. f is evaluated at the minimum 8.3
of the parabola which interpolates f at the last three points at which
f 'has been evaluated, provided that this point o lies in (ag,b)
and Theorem 2.1 does not show that the evaluation is ﬁtile for the purpose
of reducing @ . The details are similar to those of procedure localmin
(see Chapter 5). Th.is strategy helps to locate the local minima of f
which are in the interior of {a,b], and, unless the global minimum is
at a or b, one of these local minima is the global minimum. A bonus
is that, if f 1is sufficiently well-behaved near the global minimum
(see Chapter 5 for more precise conditions), then the minimum will be
found more accurately than would be expected with the basic algorithm.
The numerical examples given in Sections € and 8 illustrate this. To
avoid wasting function evaluations by repeatedly finding the same local
minimum, this strategy ic only used about once in every tenth cycle,
although it is always used if ¢ = f(a.,a) , for then there is a good

chance that f(aj) <€) .
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Finally, the user may be able to make a good guess at the global ;
minimum. For example, he may know a local minimum which is likely 5
to be the global minimum, or he mauy know the global minimum of a !
slightly different function (see the application discussed in Section 8).

Thus, pﬁcedue glomin has an input parameter c¢ which may be set by

the user at the suspected position of the global minimum, and on entry

the procedure evaluates f at c¢ in an attempt to reduce 63 . If the
user knows nothing about the likely position of the global minimum, he ‘ |
can set ¢c =a or b. |

We can now summarize procedure glomin (for points of detail, see

Lt L i s i

Section 10). Step 1 of the basic algorithm is performed, &nd the

algorithm terminates immediately unless M >0 and a <b . Before

choosing a.3e('a.2,b] at step 2, the strategies described above are used
to try to reduce ¢ . Then a5 is chosen, and perhaps reduced at
step 4, as described above.

The reader who is not very interested in the murky details of

* R b e P R R ST RS S s a5
[

procedure glomin, or in the effect of rounding errors, would be well
advised to rkip the rest of this section.

Some of the formulas used by procedure glomin need an explanation. {
When either the random or non-random search strategy is performed, we : {

have numbers q and r , and wish to determine if the relation {

’\1)40/\(9-2<32+r/q<b)/\

(b-(a2+ r/‘l))f(a'g) + (I‘/Q_) f(b)

b-a.2

3 % M(r/q)(b—(a2+ r/q)) <-t (3.13)
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is true. If m, =3M>0, 2,=b-a,>0, yb-f(b) , and
Yo = f(aa) » then (3.13) is equivalent to

alr(y, - ¥,) +2,a(y, -®+1)] < zomyr(za-1) (3.14)

which is the condition tested after label "retry" of procedure glomin.
(If q =0 then (3.14) is false, and it is aleo false if a2+r/q

lies outside (a.e,b) , since m, >0 and -t <min (ye,yb) .)

2
To approximate ag » We need the point ag* where the parabola
y = P(x) , passing through (ai,yi) for i =0,1,2 , intersects the

parabola

+9-t . (3.15)

(In procedure glomin we use c¢ in place of a, to save a storage

1

location.) Let 2y =Vp-¥y s 2 =Vp-Yy s Gy =8,-8;, 4 =a,-a,,

and 4, =a,-a In the non-random search we have already computed

2 1 9
numbers p and qg (r and q above) with

p=dz - (3.16)
and

q = E(dozl-dlzo) ’ (3.17)

in order to find the turning point a2+p/qs of P(x) . By forming

the quadratic equation for ag* , and dividing out the unwanted root a
we find that
a%* = a2+ P'/q' o (3-18)
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6.3

where
p' =p+2rs , (3.19)
qQ' =r+3 qs ’ (3'20)
= d0d1d2m2 N (5.21)

and

. (3.22)

Finally, there is the inspection of the lower bound on f in

(a2, a3) given by the parabola

(az-x)y, + (x-a,)y
Y = a3 yzdo = = mg(x = 8'2) (8'5 -X) > (3'23)

1
where m2 =-2—M>O and

do=a,3-32>0 . (3.24)
If
Yo = ¥
P = 2__'2 2 (3025)
53

then the parabola (3.23) is monotonic increasing or decreasing in
(a.e, 33) provided

e} 24, - (3.26)

Otherwise, the parabola (3.23) attains its minimum in (aa,a}) , and
1 4 2 2y 1
the minimum value is 3 (y2+y3) —Hmz(do+p ) at x = (a2+a3+p) .

Thus, at step 4 of the basic algorithm, 8z must be reduced if
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2.2 2
ol <8y A% (p*yy) - Fmp(as+p) <@ -t (3.27)
i.e., if
2 ' ~
ol <y A M5 +D) > (- @)+ (v5-P) 42t (5.28)

The effect of rounding errors

So far we have ignored the effect of rounding errors, which
actually occur both in the computation of f(x) and in the internal
computations of procedure glomin. HNow we show how these rounding errors
can be accounted for.

Let € Dbe the relative machine precision (parameter macheps of

procedure glomin), i.e.,

= (truncated arithmetic),

T
l-1

P
1 . g
58 (rounded arithmetic),

for 1-digit floating-point arithmetic to base B . We suppose,
following Wilkinson (1953), that

fl(x4y) = (x#y)(148) , (3.29)

where # stands for any of the arithmetic operations +, -, x, /,

and

8] <e . (3.30)

On machines without guard digits, the relations (3.29) and (3.30) may
fail to hold for addition and subtraction: we may only have the weaker

relation
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f1(x+y) =Xﬂﬁ5931yu+5g 5
} (3.31)

5,1 <& for i=12 .

J

With these machines it seems difficult to be sure that rounding errors
committed inside procedure glomin are harmless. At any rate, our
analysis depends heavily on relation (3.29). (See equation (3.52) and
the following analysis.)

We also suppose that square roots are computed with a small relative

error, say

fl(sqrt(x)) = /x(1+3®) ,
where > (3.32)

ol < .

J
(Any good square root routine should satisfy (3.32) very easily. The
library routines for the IBM 360 certainly do: see Clark, Cody, Hillstrom
and Thieleker (1967).)

Let us first consider the effect of rounding errors in the computation
of f , supposing for the moment that the internal computations of
procedure glomin are done exactly. The user has to provide procedure
glomin with a positive tolerance e which gives a bcund on the absolute
error in computing f . More precisely, we assume that, for all © and

>

x with |8] <e and x, x(1+8) in [a,b] , we have
loL(£(x(1+8)) -£(x)| <e | (3.33)

where f(x) is the exact mathematical function (satisfying condition

(2.1)), and fl(f(x)) 1is its computed floating-point approximation. The
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6.3

reason for condition (3.33) will be apparent later: at present we only

need the special case with & =0, i.e.,

|f1(£(x)) - £(x)| < e (3.34)

for all xe[a,b] .
We have seen that, without rounding errors, procedure glomin would

return @ (or y = glomin) and 1: (or x) satisfying
9, <0 = (1) <P+t . (3.35)
With rounding errors, (3.35) no longer holds, but we shall show that

P, < £(B) SO tt+2e (3.36)
and

P, - e<® = fU(£(1)) <P+t te . (3.37)

If the error e in cuanputing f is much less than the tolerance ¢t ,
then (3.36) and (3.37) are much the same as (3.35), 8o rounding errors
have 1ittle effect on the accuracy of &3 g

The left hand inequality in (3.36) is obvious from the definition
of ¢ P To prove the right hand inequality, we must look closely at
the "critical" sections of procedure glomin, i.e., the sections where
rounding errors could make an essential difference. (Examples of non-
critical sections are the random and non-random searches.)

In camputing the safe choice ag for a, according to equation
7

(3.9), we compute
y2 e (‘f) + t
8 = |——F— (3.38)
2
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and

1 (z, + 2.0le)
r=-3{%* am, ) (3-39)

1 > ~
where d) =8,-8; , Z; =Yy-Y¥; s Wy, =F M, @ = f1(f(n)) ,

and y, - fl(f(a;)) for i=1,2. Thus

N

£(a,) = (k) + (t+2e) o
’ e
8 < ™ .

80, a8 far as the computation of s 1is concerned, everything said
above holds if t is replaced by t+2e . (Remember that we are
regarding all camputstions inside the procedure as exact.) We are only

interested in r when d0>0 and m2>0, and as

z, + 2.0le >z + 2e > f(az) -f(al) 5

0 0
we have
£(a.) - 2(a.) ﬂ
1l 2 1 :
r<-3[d,+ i, . (3.h1) 1

(The reason for the extra 0.0le will be apparent later.) Thus, the
computed a.'3' will not exceed the correct value given by (3.9), if t

is replaced by t +2e .

The other point where rounding errors in the camputation
of f are critical is when we determine whether the parabola y = P{x) ,
with P'(x) = M, P(a2) =¥, , and P(aB) = ¥3 » lies above the line
Yy =9-t in the interval (ag,aj) . Let y = Q.(x) be the parabola

with Q"(x) =M, Q(ag) = f(az) , and Q(e3) = f(a3) . Since
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Y.

5= fl(f(ai)) < f(ai) +e for i =2,3,

it is clear that
P(x) <Q(x) +e (3.k2)

in (az,a,i) . Thus, if
F(x) >0 - t (3.43)

in (30,93) , then

Qx) >9 -t -e > £(i) -t - 2e (3.44)

in (ag,a3) , 50 again everything is accounted for by changing t to
t+2e . This completes the proof of (3.36). The left inequality in
(3.37) is obvious, and the right inequality follows from the above
argument if we note that it is sufficient to replace t by t+et(f(p) -cTJ) .
Now, let us consider the effect of rounding errors committed inside
procedure glomin. We shall show that (3.356) and (3.37) still hold,
provided some minor modifications are made in the algorithm. These
modifications are included in procedure glomin, but, to avoid confusion,
they were not mentioned in the description above. The most important

modification is that, instead of having m, = % M , procedure glomin has

m, = f]_(%(1+ 16e)M) , (3.45)

where the factor 1+ 16e¢ 1is introduced purely to nullify the effect
of rounding errors.

For the sake of simplicity, terms of order 52 are ignored in the

rest of this section. Because of the slack in some of our inequalities,
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6.3
these terms may be accounted for if € < % . From (3.45) and the

assumption (3.29), we certainly have

1 z
my > 3 (1+13€)M . (3.L16)

In the computation of ag according to (3.9), procedure glomin

actually computes

- (y,-9) +t
8 = 11| ——— : (3.47)

and as errors in the computation of f have already been accounted for,
we can assume that Y5 and «'{; are exact floating-point numbers. Fram

(3.46) and the assumptions (3.29) and (3.32),

Ol

(75 -®) (1+5,) +) (1+5,) (1+55)

1 y  (3.48)
5 M(1+13¢)

8 < (1+ 35)4)

where |51‘S€ for i =1,...,4 . Since yg-(f) and t are both

nonnegative,
(¥,-9)(1+ )+t < (y,-0+t)(1+¢€) (3.49)
80 1
e~ y2'$+t
5§ <8 = (2.50)
5 M

Thus, the slight modification of m,

is no greater than the exact s . Note that, in the derivation of

has ensured .hat the computed s

(3.50), it was essential that Yo -¢ was computed with a small relative

error, so the assumption (3.29) was necessary: (3.31) would not be enough.
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6.3

Similarly, to find a,5 s we actually compute
(y, -y,) +2.01e
% (ay-ap) + %a -la 'R ’ (3.51)
2 172

where = >0, m, >0, and &, > a.l . We are only interested in f‘

R
]

if >0, so

0 > f1((y,-y,)*2.0le)

v

((v,-¥,) (1+€) +2.0le(1-¢)) (1+¢)

v

(vp-y +2e)(1+6)° (3.52)

assuming that € < 11%5 . (The reason for the extra 0.0le in (3.39) is
novw clear.) Thus

~ 1

P e (- 2 (ry41)) (3.53)

where

0< (ag-al)(l-e) S rl S (ae-al)(l+5) (3'5"")
and

(¥, - yq * 2¢) (1 - 9¢)
0>r, > . (3.55)
&= S M(a, -a,)
2 2 1

Since r >0, (3.53) shows that |rl| < |r2| , 80, fram (3.53) to

(3.55),

- YA -y, t2e
r<r < %(a.e-al)+ 12 = . (3.56)
L1t (ay-2y)
sM(ay -8y
164

o h

TN




R ———_———
P e

6.3
As before, the computed T is no greater than the correct r . The
same is not true for a" , tne computed value of a; , but Eg is

either b , fl(a2+§') y Or fl(a2+§) . Suppose, for example, that

Eg = fl(a2+E) . (3.57)

Then

£1(£(a3)) = £1(£((ay* 5) (1+9))) (3.58)

where |5| <€, 80, from (3.33),

|f1(f('ég)) - flay*+8)| e . (3.59)

(This is why we required (3.33) instead of the weaker (3.34).) Thus,
the error in computing a.2+§ or a2+; can be ignored, for it has
been absorbed into the assumption (3.33) on e .

Finally, we have to consider tue efrect of rounding errors when

testing the condition (3.28). First

= Yo = ¥
p=f112—5‘ (3.60)
M (a.3 -a,)
is computed. It is important to note that we use %M » not the
slightly different m, (given by (3.45)) here. Thus
! y2'y7 b
P=g—— — - (1+58) , (3.61)
EM (53 -52)
and
d, = fl(ai-a.e) = (a5 -ag)(1+ 52) , (3.62)
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6.3
where |Si| we Pon = L2 e
z The test actually made by procedure glomin is whether
5
~ = 1 2 ~2 ~ -
Ip| < £1((1#9¢)d)) A £1(5my(d;+27)) > fll(y, @)+ (yv5@)+25] ,  (5.63)
f
and we shall show that (3.63) is true whenever the condition (3.28) is
true. First, |p| < d, implies that |5| < do(l+5€) , and thus i
Bl < £2((1+9¢)d) - (3.6h) ;
s ;
~ Similarly, if |p| <4, aud
{
? 1, .2, 2 . . . 1
~ EM(dy+p7) > (v,-9) + (yz-9) +2t , (3.65) 1
| |
then '
2~ 2
&+ > (a0 +p)(L-6e) (3.66)

o TR P

80

~2 2

£1(5 my (35 + ) > § (@ + p9)(1 + ke)

> ((y, - ) + (v5 - 6) + 26) (1 + 3e)

AP ST R R

> 11(y, - @)+ (y5 - 9) + 2t) . (3.67) ;

& )

(Note the importance of grouping the terms: since Yo -9 , y3 -&3 and {

2t are all nonnegative, their sum can be camputed with a small relative

error.)

!

: From (3.64) and (3.67), the inexact test (3.63) results in 8; being
reduced whenever the exact test (3.28) says that it must be. a5 may

occasionally be reduced unnecessariiy because of rounding errors, but
this does not invnslidate the bounds (3.3%6) and (3.77), it mereliy causes

scme unnecessary function evaluations.




o3)

6.4

We should mention a remote possibility that rounding errors can
prevent convergence. This is only possible if fl(a2+§) =a,, and,

1/2

as s > (1-1ke)(2t/M) » there is no chance of it happening provided

£ Me® ma.x(ae,bz) . (3.68)

Thus, convergence can only be prevented by rounding errors if t is
unreasonably small.

| In conclusion, procedure glomin is guaranteed to return 63 and ;1
satisfying the bounds (3.36) and (3.37), provided the input parameters

macheps, t and e are set correctly.

L. The rate of convergence in some special cases

It is difficult to say much in general about the number of function
evaluations required by the algorithm describted in Section 3. In the
next section we compare the algorithm with the best possible one for
given M and t . In this section, we try to gain some insight into the
dependence of the number of function evaluations on the bound M and

the tolerance t , by looking at some simple special cases.

The worat case

As pointed out above (equation (3.4)), two function evaluations

are enough to-determine ﬁ and :?) if M <O, so suppose that M >0,

and let

e a2 (.1)
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We showed above that, if the last function evaluation was at a.,ae[a,b) ’

we could safely choose

85 = min(b,a2+ 5) (4.2)
for the next evaluation (step 2 of the basic algorithm). With this
simple choice of 8.3 , about (b-a) /8 function evaluations would be
required. Procedure glomin tries to do better than this, and is nearly
always successful (see Section 6), but the worst that can happen is

that 93 will be chosen to be b , and then a.5 w1]_'l. be reduced several
times at step 4 of the basic algorithm. As 8-, is halved at each

gsuch reduction of 83 s there can be at most

b -
logg( ;2) < | 208, (b 5 a.) (k.3)

consecutive reductions of 93 at step 4. Thus, at worst, about

(b 5 “) log, (35—‘) (1)

function evaluations will be required. We have ignored the random and

nonrandom searches, but these can only add about 2(% extra function
evaluations.

If & is given by (4.1), the term loge(hg;e) in (4.4) varies
only slowly with M and t , so the upper bound is roughly proportiocnal
to (b-a) (M/t)l/ 2 . 1 particular, the upper bound is roughly proportional
to /M , and it seems to be a good general rule that the number of function
evaluations is roughly proportional to /M » even when the upper bound

(4.4) is not attained (see below and Section 6'.
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A straight line

If the global minimum of f occurs at an endpoint p=a or b,

and f'(u) # 0, we can gain an insight into the behaviour of the

algorithm near p by considering the linear approximation f£(u) + (x-p)f'(p)

to f(x) . Suppose, for example, that
f(x) = k(x-a)+t ' (%.5)

for some k >0, s0o 4 = a . Ignoring the random searches, the
algorithm will evaluate f at the points 5. , b, c, and then at
points xl<x2 <x3 < oo <xN-l say, where xo =a<xl ’ xNZb »
and the points (xn, f(xn) )_ and (xn-!-l’ f(xn+l)) lie on the parabola

Yy = Pn(x) which touches the line y = 0 and has P;;(x) =M . (See

Diagram 4.1.) 1If Pn(x) touches y =0 &t x =@ , then

P(x) =3M(x-a)® , (4.6)
80
[ 2 ) :
Q = xn+‘ T (k(xn-a.)+t) =X ., (ﬁ (k(xml'a) +t) . (4.7)
If

A
n

an-ai—t/k B (4.8)

then (4.7) gives

2k
Zn+l = Zn + Td- ’ (’4.9)
80
, t ‘21( '
Zn = E + n 'ﬁ' . (h.lO)
Thus
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6.b
k= pfn‘%i' n” (%) p (.11)

and 88 N is the lesst positive » guch that )(an,‘.!;ly_isg;ly“

W- [@(ﬁmﬁ)} : (4,22)

(h.12) shoys thet N is esseatislly proporticnel to /M .

/A ,I[

Diggram h.li A straiest line, £(¥) = k(x-8)+t (for N = 6)

Two limiting cases of (h.12) are intepesting, If t is small and
k not teo small, so that k(b-a) >t , then

¥z uﬁ““‘f{ : (4,13)

which is independent of t . {In this section we ave neglecting the

V{0



6.4

effect of rounding errors, but these should not be important if ¢t

satisfies the weak condition (3.68).)

If k is very small, so that k(b-a) << t , then (4.12) gives

(v-a)/5 , (k.1h)

vl | o)

N ~

and the algorithm proceeds in steps of size about 25 , where & is

given by (L4.1).

A parabola
If the global minimum of f occurs at an interior point u , then

fr(u) =0, sc if £"(u) £ 0 we may analyse the behaviour of the
algorithm near p by considering the parabolic agproximation

f(u)+-]é'-f"(p) (x-p.)2 to f(x) . Thus, suppose that\

M>m >0 (4.15)

and

£(x) = % m(x-p)°+t (4.16)

where pue(a,b) . The nonrandom search will quickly locate u , so we
may suppose that p = u , and, without loss of generality, p = O . The
algorithm will call for the evaluation of f at points to the left, and
then to the right, of u . As these two cases are similar, let us

define x_ = = 0 , and study the points x_,x defined above,

O l' 2’ L 2
except that now f is given by (4.16) instead of by (4.5). In place

of (L.7), we find " hat

1,2 2t
m el \ M (xn+l * F) * (4.17)
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It does not seem to be possible to give a simple expression like

(4.11) for X defined by the recurrence relation (L4.17), but we may

solve for X 41 in terms of X obtaining
Mim M m, 2 2t
"1 = (ﬂ') *p * (MNE G v ) (k.38)
If
1/2 ]
p = (M/m) ) (k.19)

this may be written as

1 2 2 . 2t
a1 = (%) Xt (?ﬁ)( T am "t ’ {t=20)

Suppose that p i1is close to 1, i.e., M 1is not much larger

than m = f"(p) . Then

=T iy (e (h.21)
x - — . , .
1 pa-l m

For n >1, the first term in (4.20) dominates the second, and
x o= |23 x (1+0((p-1)®) as p-1. (4.22)
n+l e=-1l] n P

Thus, if p is close to 1 , then

X ~(L1)n = (4.23)

n-1p-1 m

for n>1, and, as the factor %]1. is large, only a few function

evaluations will be required.
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6.5
5. A lower bound on the mumber of function evaluations required

Suppose that a positive tolerance t and bound M are given,

that f attains its global minimum @, ir [a,b] at Ko s and that

f'(x) <M {5y

for a1l x.{a,b] . (Similar results to those below hold if equality is |
allowed, but the definitions and proofs have to be modified slightly.)

First, we need a lemma.

Lemma 5.1
If x'e[a,b) , then there is at most one point x"e(x',b] , such that

the parabola y = P(x) , with P"(x) =M, P(x') = £(x') , and touching

the line y =9,-t , satisfies P(x") = £(x") .

Proof

Suppose, by way of contradiction, that two such distinct points x"

and x"' exist. Then A
M = 2f[X"x",x"'] = f"(g) . (5-2) 1 1
for some Ee¢[x',b] (see Chapter 2), contradicting

"(E) <M . (5.3)

Definition 5.1 ﬂ

For x'e[a,b) , define

x" if the point x" of Lemma 5.1 exists,
s{x') = '
b otherwise.
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6.5

Lemma 5.2 shows that N is finite, in fact

N<1+ [(v-a)0y (82 . (5.5)

The following lemma shows that, in order to prove that f(x) > -t
for all xe[a,b] , given only condition (5.1), it is sufficient to

evaluate f at xl‘,xa,...,xN .

Lemma 5.3

If .gece[a,b] » g"(x) <M for all xea,b , and

g(x,) = £(x) (5-6)

for n=1,2,...,N and the points X defined above, then

P, 29~ . (5.7)

Proof

The lemma follows immediately from the definitions and Theorem 2.1.
/
(Clearly, weaker conditions on g , e.g. condition (2.1), are sufficient.)
Qur interest in the points XqseeerXy stems from the following

theorem, which complements Lemma 5.3.

Theorem 5.1
: Letxi< xé Claas <x", be any Vv points in [a,b] , with v <N .

Then there is a function geC [a,b] , satisfying

g"(x) <M 3 (5.8)

for all xe[a,b] , and
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g(x!) = £(x!) (5.9)

fOI‘ n = 1’2, ...,V ) SuCh thﬂt

Proof

Suppose, by way of contradiction, that

® >9.-t (5.11)

for all such g . Then X] =a , for otherwise -g(a) can be
arbitrarily large, and, similarly, x) =b . Since Vv <N, there is

1 ]
an n, 1<n<V, such that xn_gxn and xn+1>xn+l' Thus,
the parabola y = P(x) , with P"(x) =M, P(xr'l) = f(xr'l) , and
P(xr'1+l) = f(xr'rl-l) , is such that

min P(x) < Po-t . (5.12)

xe[x;l,xr'ﬁl]

Since there is a rfunction g as above which is arbitrarily close to

P(x) in [xr'l’xr'&l] , this contradicts (5.11), so the theorem holds.

Consequences of the theorem

Theorem 5.1 says that, if all that is known a priori about f is
that fecz[a,b] and satisfies condition (%.1), then any algorithm,
which is guaranteed to find p so that f£{j) < q>f+t , must require
at least N evaluations of f . This is so because, if an algorithm

required only v < N evaluations at points xi < xé & e S x{l y 58y,
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then it would be sure to fail for either f or for g, for f and g
are indistinguishable on the tasis of the Vv function evaluations,

yet @g+-t <'¢f . Of couvse, we are only conside,ing algorithms which
sequentially evaluate f at a finite number of points.

Conversely, Lemma 5.5 implies that N+1 function evaluations are
sufficient (just evaluate f &t e and xl,...,xN) , and possibly N
are sufficient. (See Diagram 5.1.) Unfortunately, Lemma 5.3 does not
give us an effective algorithm for approximating Qf , for we do not
know N or the points XovooorXy o in advance, and a large number of

function evaluations is usually needed to approximate them.

Efficiency
Suppose that an algorithrn requires N' function evaluations to

find @ = f(3) such that o < o+t 1is guaranteed. We could define

the efficiency E of the algorithm by
E = N/N' . (5.13)

(Note that E depends on f , M, t , a and b, &8 well as on the

algorithm.) We have shown that

E<1 (5.1k4)

for any correct (i.e., guaranteed) algorithm, so, if an algorithm has
an efficiency close to 1 , then we are justified in saying that the
algorithm is nearly optimal (for that f , M, t etc.). In the next

section we give numerical results which show thﬁt, for practical examples,

the algorithm described in Section 3 is cften nearly optimal.
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6. Practical tests

The ALGOL procedure glomin given in Section 10 was tested using
AIGOL W (Wirth and Hoare (1966), Bauer, Becker and Graham (1958)) on an
IBM 360/91 computer with machine precision 3677 & | Some representative
numerical results are summarized in Table 6.1. For all of these
results the parameters e and macheps were set at lO-lh and 167
respectively.

The table gives the upper bound M (parameter m of glomin) on f" ,
end the total numoer of function evaluations required by procedure glomin:

N" with tolerance t = 10‘8 , and N' with tolerance t 10712 . The

-12

Jcwer bowd N defined in Section 5 is also given for t = 10

H

(Recall that ro algorithm which is guaranteed to succeed can take less
than N function evaluations.) N and the points SERREER " (see
Sectior «w.e computed in the obvious way from Definition 5.2, using

procedurc zero of Chapter 4 to solve the nonlinear equation
P(x) = f(x) , (6.2)

where P(x) is the parabola of Lemma 5.1. Finally, the efficiency
E = N/N' (equation (5.1%)) is given.

For some more nurerical results, see Section 8.

s
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6.6
Table @_}. Numerical results for procedure glomin
£ M N" N' N E =H/N'
0 2 2 2 1.00
fl 100 15 15 11 0.75
10000 106 106 | 101 0.95
L L 2 0.50
2.1 8 g 8 0.73
) 9 13 0.69
ts 8 25 3 | 29 3.85
72 L8 68 60 0.88
128 95 141 | 120 0.85
1k 38 51| 37 0.75
fs 28 48 63 5k 0.70
56 67 98 76 A N
f), o 222 2k6 | 126 0.51
fs 72 hs56 shz | W37 0.81
The symbols are explained above. The function’s are:
fl(x) =2 -x on [7,9] (in all cases L=9 @=1),
f,a(x) -x° on [-1,2] (in all cases p =¢ = 0) ,
f3(_x) T I :{3 on |- -;'— , 2] (for t = 10'12, |f1| < 5.10_lo 5 |&>| < (‘.10-20
fh(x) = (x+ Sin(x))exp('xz) on [-10,10]} (:1 = -0.6795786599525 ,
® = -0.824239398476077) , and
r5(x) = (2 - sin(x))exp(-x°) on [-10,10]
(h = -1.195136A416€5 , @ = -0.06349052893(k399) .
1.9

)
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Comments on Table 6.1

The results for the simple functions fl(x) =2-x and fe(x) - x°
verify the predictions made in Section 4. For example, the values N = 11
and N = 101 for fl are exactly as predicted: one more than the
right side of equation (4.12). N, N' ard N" are roughly proportional
to /M 1f M >> f"(u) (see also the results for £) ; but this rule
breake down if M ~ f"(u) , as expected from equation (4.23). (See the
results for f, with M =2, 2.1, 2.2.)

It appears that the number of function evaluations does not depend
strongly on t : comparing N" with N' , we see that the average
numbér of function evaluations required is only about 20 percent more
for t =107 than for t = 1078

Finally, the efficiency E of the algorithm is fairly high, even
for the difficult functions fh and f’5 .
algorithm based entirely on function evaluations could do very much better

This means that no correct

than ours, at least on these examples. This is not too surprising, in

view of the results of Section 5.

7. Some extensicns and generalizations

So far we have assumed that feCefa,b] and

f'(x) <M (7.1)

for all xe{a,b] , or at leas’ that feCl[a,b] and

£r(x) - £'(y) < M(x-y) (7.2)
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for a <y <x<b . Condition (7.2) was necessary to prove the basic
Theorem 2.1. For the application discussed in Section 8 (global
minimization of a function of several variables), we need to find the
global minimum of a function which is continuocus, but not necessarily
differentiable. We can justify using procedure glomin, even though f
may not be differentiable, because of the following Theorems 7.l to 7.3,
which generalize Theorems 2.1 to 2.3. (If the reader is prepared to
accept the fact that Theorems 2.1 to 2.3 can be generalized in the

appropriate way, he may skip this section.)

Theorem 7.1

Let <teC[a,b] , and suppose that there is a constant M such

that, for all sufficiently small h >0,

£(uth) - 2£(u) + £(u-h) < Mh° (7.3)

for all ue[ath,b-h] . Then, for all xel[a,b],

£(x) > (b-xlf(gl.:(x-a) (o) _ %M (x-a)(b-x) . (7.4)

Proof

There is no loss of generality in assuming that

f(a) = £(b) =0 (7.5)

and

M=20 ’ (7‘6)

for we can consider f(x) -P(x) , where P(x) is the right side of

(7.4), instead of f(x) . Thus, we have to show that
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9. >0 , (7.7

where cpf is the least value of f on [a,b] . Suppose, by way of

contradiction, that

and let

u = sup{xe[a,b] | £(x) = 9.} . (7-9)

By the continuity of £, f(u) = ¢, <0, s0 u £a& or b . Thus,
for sufficiently small h >0, vue[ath, b-h] , and, from the

definition of u,

f(u-h) > f(u) (7.10)
and

f(uth) > £(v) . (7.11)

Because of the assumption (7.6), this contradicts (7.3), so (7.8) is
impossible, and the result follows. (Nnte the close connection with

the maximum principle for elliptic difference operatcrs.)

Theorem 7.2

Suppose that (7.3) holds, M >0, a < c; <c,<b, and

£ =
f(a) > ..(cl) f(c2) . Then
f(a) - f(cl)
c, -a > | —5-— . (7.12)
5 M

Proof

Apply Theorem 7.1 with x replaced by N end b by c, The
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hypothesis that f(cl) = f(cz) gives, after some simplification,

f(a) - f(cl)
(cl-a) (c,-8) > T ’ (7.13)

'é'M

and the result follows as 02 -8 > c:L -a>0.

Theoremn 7.3

Suppose that (7.3) holds, M >0, a<c <b, and the interval

I =(c,b}nNn [c, -3-*23 - E%Q] has positive length. Then f(x)

is strictly monotonic decreasing on I .

Proof.

Suppose Xqs%, € I with Xy < X, We have to show that

f(xl) > f(x2) . (7.14)

Apply Theorem 7.1, first with x replaced by c¢ and b Dby Xy
then with a replaced by ¢, X by Xy aad b by Xy - The two

resulting inequalities give, after some simplification,

f(xl) - f(x?) > at+c ) f(a) - f(gl ) xl+ x2 (7 15)
M(x,, -x? = 2 M(a-c) 2 ’
X, + X,
Since —=3 = < X, the right side of (7.15) is positive, so (7.1k)
holds.
Remarks

2

Theorems 7.1 to 7.3 generalize Theorems 2.1 tc 2.0 respectively.
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Since the algorithm described in Section 5 is based entirely on

Theorems 2.1 to 2.3, it is clear that condition (7.3) is sufficient for

the algorithm to find a correct approximation to the global minimum

of f . This is not surprising, for condition (7.3) is equivalent to

(7.2) if feCl[a,b] , and is equivalent to (7.1) if feCE[a,b] . In the

next section, we use this result to develop an algorithm for finding the

global minimum of a function < of several variables.

The conditions

on f are much weaker than those required by Newman (1965), Sugie (195k4),

or Krolak and Cooper (1953). (See also Xaupe (1964) and Kiefer (1957).)

8. An algorithm for global minimization of a function of several variables

2
Suppose that D = [ax,bx])([ay,by] is a rectangle in R™ ,

f: D -+ R has continuous second derivatives on D , and constants Mx

and Mv are known such that

L

fn(x:Y) < Mx
and
fyy(X,y) < My )

for all (x,y)eD . Let us define @: [ay,by] - R by

o(y) = min  £(x,y) .
xela ,b_ ]
X X

Clearly o(y) is continuous, and

min f£(x,y) = min  Q(y)
(x,y)eD yg[ay’by]

18k
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Thus, we have reduced the minimization of f£(x,y) , a function of two
variables, to the minimization of functions of one variable. Procedure
glomin (see Sections 3 and 10) can be used to evaluate @(y) for a

given y , using condition (8.1). If we could show that

CP"(Y) < My ’ (8-5)

then procedure glomin could be used again (recursively) to minimize
o(y) , and thus, from (8.4), f(x,y) . Unfortunately, examples show
that @(y) need not be differentiable everirwhere in [ay,by] , 80O

(8.5) may be meaningless (we shall see below that (8.5) holds when {

9¢"(y) exists). For example, consider
£(x,y) = xy (8.6)
on D=1[-1,11x[-1,1] . Then

o(y) =min (y,-y) = -|y| > (8.7)

which is not differentiable at y = O , and we can not expect to prove
(8.5). The same problem may arise if the minimum in (8.3) occurs at an

interior point of D : one example is

£(x,y) = (x° - 3%)sin(y) (8.8) ]

on D= [~3,/3]x[-10,10] . (fx(x,y) vanishes for x =+ 1, ;
so ®(y) = -2|sin(y)| , which is not differentiable at O , + n , etc.)
Fortunately, the following theorem shows that ¢(y) does satisfy ﬂ
a condition like (7.3), so the results of Section 7 show that procedure
glamin can be used to find the global minimum of @(y) , just as if (8.5)

held.
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Theorem 8.1

Let f(x,y) and 9(y) be as above. Then, for all h >0 and

ye [a.y+h, by-h‘; ,

?(y+h) -29(3) +9(y-h) SHB . (8.9)

Proof

From the definition (8.3) of @(y) , there is a function pu(y)

from [ay,by] into [ax’bx] (not necessarily continuous), such that

o(y) = £(u(y),y) - (8.10)

Thus

e(y+h) < £(u(y),y+h) , (8.11)

80

@(y+h) - 20(y) +@(y-h) < £(u(y),y+h) -2£{u(y),y) + £(u(y),y-h) , (8.12)

and the result follows from condition (8.2).

Corollary 8.1
For all ye[ay,by] at which ¢"(y) exists,

m"(y) S My R (80D)

Functions of n variables

Theorem 8.2 generalizes Theorem 8.1 to functions of any finite

number of variables.

Theorem 8.2
Suppose that n > 1, Ii is a nonempty compact set in R for

. 1 . .
l=l,..-,l’1+l, D=I1X12xoncxIn*l§Rm ’ f:D"R 1s Contlnuous,
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and

f(x+ hei) -2f(x) + £(x - hei) < Mih2 (8.14)

for ell sufficiently snall h >0, all xcB™ ' such that x,x+he €D,

and i =1,2,...,nt1 . Let D' =le...xIn, and define @: D' - R by

?(y) = min £(y5.-0¥5%) - (8.15)
ern+l

Then @ is continuous on D' ,

min £(x) = min @(y) , (8.16)
xeD 7 yed' 7

and

P(y+he!) -2(y) +@(y-hey) < My° (8.17)

for all sufficiently small h >0, XeRn such that X,zihg% eD',
and j = 1,2,...,n . (Here e, is a unit vector in le, and e5
is a unit vector in R" .)

Proof

The proof is a straight-forward generalization of the proof of

Theorem 8.1, so the details are amitted.

Theorem 8.2 shows that it is possible to use procedure glomin to
find the global minimum of a function f(xl, ...,xn) of any finite
number n > 1 of variables, provided upper bounds are known for the
partial derivatives f x.(f) (1 =1,...,n) . It is interesting that

i

i

no bounds on the cross derivatives f (x} (i # j) are necessary.

A
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I: a one-dimensional minimization using procedure glomin requires
about K function evaluations, then we would expect that about K
function evaluations would be required for an n-dimensional minimization.
Since K is likely to be in the range 10 < K < 100 in practice (see
Section 6), the computation involved is likely to be excessive for
n >3 . Thus, for functions of more than three variables, we probably
must be satisfied with methods which find local, but not necessarily
global, minima {see Chapter 7). It shculd be noted, however, that the
theorems of Section 5 do not extend to functions of more than one
variable, so we do not know how tar our procedure is from the best
poséible (given only upper bounds on fx.x. for i =1,...,n ). Thus,
there is a chence that a much better met:lo; for finding the global
minimum of a function of several variables exists. It is also possible
that siightly stronger a priori conditions on f (e.g., both upper

and lower bounds on certain derivatives) might enable us to Tind the

global minimur much more efficiently.

Minimization of a function ¢f two variables: procedure glomin2d

In Section 10 we give an AIGOL 60 procedure (glamin2d) for finding
the global minimum of a function f(x,y) of two variables, using the
method suggested above. Note that glomin2d uses procedure glamin in a
recursive manner, for glaomin is required both to evaluate and to
minimize @ . The error bounds given in the initial comment of procedure
glomin2d are easily derived from the error bounds (3.36) and (3.37) for

procedure glomin.

188
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Procedure glomin2d was tested on an IBM 360/91 computer (using
AIGOL W), and some numerical results are summarized in Table 8.1. 1In

e all cases shown in the table the parameters macheps , e and t were

-1k 14

set at 1671 , 10 ana 10”30 respectively. (Thus q)f-lo- _<_€>

= is guaranteed, where cpf is the true minimum of £,

<@t 1.0002 x 10~
and @ is the value rc¢twrncd by the procedure.) In the table we give
the upper bounds M and NIy (see equations (8.1) and (8.2)), the total

number of function evaluations N , and the approximate global minimum @

(always very close to the true global minimum ¢ f) .
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6.8
Table 8.1: Numerical results for procedure glomin2d
f Mx My N 0]
0 0] -1
il .
1 4 4 9 -1
L 51 0
£ 10 116 0
2
10 L 446 31-35
10 10 956 41-39
f 3 2210 200 13320 21-18
f), 200 2210 1815 0
f5 L L 1954 ~0.396652951085471
s b b 10033€ | -0.396652961085468
6 8 8 130496 -0.396652961085434
The symbols are explained above. The functions are:
fl(x’y) =133+ 99x - 35y on [-1,1] x [-1,1] ;
£(5y) =% +xy +2° on [-L,3] x [-2,4] ;
- 2,2 2 )
3(x,y) =100(y -x )" + (L -x) on [-1.2,1.2] x [-1.2,1.2] ;
fh(x,y) = fi(y,x) on the same domain;
£,(5,y) = sin(x)eos(y)exp(-(x"+y%)) o (-L,2] x [-L,2] ;
f6(XJY) 5 fs(x)Y) on [-2,4] x [-2,4] .
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Comments on Table 8.1

The results for the simple functions fl and f‘2 are not very
sarprising. As expected from the behaviour of procedure glomin on
functions of one variable (see Sections 5 and 5), the number of function

evaluations (N) increases with M and My

f5{x’Y) = lOO(y-x2)2+ (1- x)2 is the well-known Rosenbrock

fun:tion (Rosenbrock (1960)), and it has a steep curved valley along

the parabola y = X . fh(x’Y) = f5(y,x) is just the Rosenbrock function
in Aisguise, and it is interesting that ocnly 1815 function evaluations
were required to minimize fh , compared to 13320 for f5 . Thus, it can
make a large difference whether we minimize first over x (with y fixed)
and then over y , or vice versa, but it is difficult to give a reliable
rule as to which should be done first. Of course, even the lower figure
of 1815 function evaluations is very high by comparison with 100 or less
for methods which seek local minima (see Chapter 7), but perhaps this is
the price which must be paid to guarantee that we do have the global
minimum. (This ie only a conjecture, for the results of Section 5 have
not been extended to functions of several variables.)

The functions f_. and f6 are the same, but the domain of f6 is

rd
.

four times as large as the damain of f5 . For this function the size

of the domain has much more influence on N than do the bounds Mx

and My : 1increasing the size of the domain by a factor of four increased
N Dby a factor of abouat 50, but doubling Mx and My only increased W
by about 30 percent. Wich a different function, though, we could easily

reach the opposite conclusion. (f2 is one example.)
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6.9

To summarize: if.it is possible to give upper bounds Mx and M
on the partial second derivatives fxx ard fy_y s> then procedure
glomin2d will find a guaranteed good approximation to the global minimum,
but the number of function evaluations required may be consid/erable,
especially if the damain of f 1is large or if the bounds Mx and M
are weak. As for one-dimensional minimization, the size of the tolerance
t has a fairly gmall influence on the total number of function evaluations
required. I

Finally, we should note that we have restricted ourselves to

rectangular domains merely for the sake of simplicity: there iz no

real difficulty in dealing with nonrectangular domains.

9. Summary and conclusions

In Section 1 we saw that the problem of finding the global minimum
Pp = f(uf) of a function f defined on a compact set is well-posed,
whereas the problem of finding g £ is not well-posed. To be sure to
find the global minimum, some a priori conditions on f are necessary,
and several possible conditions were discussed in Section 1. We
concentrated our attention mainly on one such condition, a given upper
bound on f" , and small variations of this condition.

An efficient algorithm for one-dimensional. global minimization,
based on theorems in Sections 2 and 7, ie described in Section 3. The
effect of rounding errors, and the nuinber of function evaluations
required, are discussed in Sections 3 to 5, and numerical results are

given in Section 6. Finally, in Section 8 the results for fuactions of
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one variable are used to give an algorithm for finding the global
minimum of a function of several variables (practically useful for two
or three variables), and ALGOL procedures are given in Section 10. The
AIGOL procedures are guaranteed to give correct results, provided the
basic aritlmetic operations are performed with a small relative error
(see the remark following equation (3.30)).

For practical problems, the main difficulty in using the results of
this chapter lies in finding the necessary bounds on second derivatives.
One intriguing idea is that, if f(f) were expressed in terms of
elementary functions, then the second derivatives could bYe computed
symbclically, and upper bounds could then be obtained from the symbolic
second derivatives by using simple ineq .alities. Thus, the entire
process of finding the global minimum could be automated. In same cases
finctions defined on infinite damains could also be dealt with

autamatically by using suitable elementary transformations.

10. ALGOL 60 procedures

The ALGOL procedures glomin (for global minimization of a function

of one variable) and glomin2d (for global minimization of a function of

two variables) are given below. The algerithms and some numerical results

are described in Sections 3 to 6 and 8.
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Procedure zlomin

real procedire glomin (a, b, c, m, macheps, e, t, f, X);

value a, b, ¢, m, macheps, e, {;

real a, b, ¢, m, macheps, e, t, xX; real procedure f;

begin comment:

Glomin returns the global minimum y at x of the function
f(x) definedon [a,b] . The procedure assumes that feC(z)[a,b]
and f"(x) <m for all xe[a,b] (weaker conditions are sufficient:
see the text). e and t are positive tolerances: we assume that
f£(x) is camputed with an absolute error bounded by e , i.e., that
| £1(£(x(1+ macheps))) - £f(x)| < e , where macheps is the relative
machine precision. Then x and y = glomin are returned so that
min(f) < f(x) < min(f)+t+2e and
min(f) -e <y = f1(£f(x)) <min(f)+t+e .
¢ is en initial guess at x (a or b will do). The number of
function evaluations required is usually close to the least possible,
an¢ considerably less than (b-a)(m/8t)l/2 , provided t is not
unr:asonably small (see Sections 3 to 5);

integer kX; real a0, &2, a3, dJ0, 41, d2, h, m2, p, q, g8, I, S, ¥,

v0, vl, y2, y3, yb, 20, zl, 2z2;

c cmnient : Initialization;

x := 80 :=b; a2 := a;
yb :=y0 := £(b); ¥y :=y2 := f(a);
if yO <y then y := y0 else x := a;

i_fm>0/\a<bthen
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begin comment: Nontrivial case (m >0, a <b);

m2 := 0.5 x (1 + 16 x macheps) x m;
if c <avec >bthenc := 0.5 x (ath);
yl := f(e); k :=3; d0 := a2-c¢; h := 9/11;
if yl <y then
begin x :=c¢; y :=yl end;
comment: Main loop
next: dl := a2 - aC; 42 :=c - ad;
z2 :=b - a2; 20 :=y2 - yl:s 2zl :=y2 - yO;
Pp:=r :=4dL x d1 x 20 - 40 x 40 x =zl;

gqs :=2 x (d0 x 21 - 41 x z0);

q :

camment: Try to rind a lover value of f using quadratic interpolation;

if k > 100000 A y < y2 then go to skip;
retry: if q x (r x (yb-y2) + 22 x q x ((y2-y)+t))
<z2 xm2 xrx (z2 xq-r) then
begin a3 := a2 + r/q; y3 := f(a3);
if y3 <y then
begin x :=a3; y :=y>3
end

end;
comment: With probability about 0.1 do a randam search for a lower
value of f . Any reasonable random number generator can be used in
place of the one here (it need not be very gooci);
skip: k := 1611 x k; k := k - 1048576 x (k + 1048576);
qQ :=1; r := (b-a) x (k/100000);

if ¥ < 72 then go to retry;
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cament: Prepare to step as far as possible;

ri=m2 x d0 x dl x d2; s := sqrt(((y2-y)+t)/m?);

h := 0.5 x (1+h);

P:=hx (p+2 xr x8); q :=r+0.5 x 3s;
r := -0.5 x (a0 + (20 + 2.01 x e)/(dO x m2));
r :=a2+ (if r <s v dO <O then s else r);

comment: It is safe to step to r , but we may try to step further;
a3 := if p x q > O then a2 + p/q else r;
inner: if a3 < r then al := r;
if 83 > b then
begin a3 := b; y3 :=yb end
else y3 := f£(a3);
if y5 <y then
begin x :- a3; y := y3 end;
A0 := u) - a2;
if a> > r then

begin comment: Inspect the parabolic lower bound on f in (a2,a3);

p:=2x (y2 - y3)/(m x d0);
if abs(p) < (1 + 9 x macheps) x 4O
AO.5 xm2 x (A0 x A0+ p xp) >(y2-y) + (y3-y) + 2 x t then

begin comment: Halve th: step and try again;

a3 := 0.5 x (a2 + &3); h := 0.9 x h; go to inner
end

end;

if a5 <Db then
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begin comment: Prepare for the next step;

an :=c; c :=a2; 82 :=a3;
yO := y1l; yl :=y2; y2 :=y3;
g0 to next
end
end;
glomin :=y

end glomin;

Procedure glomin2d

real procedure glomin2d (ax, ay, bx, by, mx, my, macheps, e, t, £, x, y);

value ax, ay, bx, by, mx, my, macheps, e, t;
real ax, ay, bx, by, mx, my, macheps, e, t, X, ¥y;

real procedure f;

begin camment:

Glumin2d returns the global minimum 2z = f{x,y) of the function
f(x,y) defined on the rectangle [ax,bx] x [ay,by] . mx and my
are upper bounds on the second partial derivatives of f : we
assume that fu(x,y) <mx and f_ﬁ(x,y) <my in the rectangle.

e and t are positive tolerances: f must be evaluated to an
accuracy of +e , and on return

min(f) < £(x,y) < min(f) +t+3e and

min(f) - e <z = f1(f(x,y)) <min(f) + t + 2e .

macheps is the relative machine precision, and procedure glomin (for

one-dimensional minimization) is assumed to be global;
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real procedure phi (y); value y; real v;

begin comment: Returns min f(x,y) over x (y fixed), and may

alter the gloval variahles first, xs and zm;

real procedire fx (x); value x; real x;

begin fx := f(x,y) end fx;
real ym;
ym := glomin (ax, bx, xs, mx, macheps, e, tl, fx, xs);
if first v ym < zm then

tegin first := fulse; zm := ym; X := xs end;

phi := ym
end phi;

real t1, xs, zm; Boolean first;
first .= true; zm := 0;

tl := 0.5 x t; x8 :

il

ax;
glomin2d := glomin (ay, by, ay, my, macheps, tl + e, tl, phi, y)

end glamin2d;
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Without Calculating Derivatives
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1. Introduction and survey of the literature

In this chapter we consider the general unconstrained minimization
problem: given a function f: R* - R s Tind an approximate local minimum
of f . There is no need to emphasize the practical importance of this
problem, and the recent literature on the subject is quite extensive.

Here we give only a brief introduction, and no attempt is made to duplicate
the survey articles by Box (1966), Fletcher (1965, 1959c), and Powell
(1970a, e), or the books by Beale (1968), Box, Davies and Swann (1969),
Jacoby, Kowalik and Pizzo (1971), Kowalik and Osborne (1968), Wilde (1964),
and Wilde and Beightler (1967).

In practical problems the global mirnimum, not a mere local minimum,
is usually of interest. Methods for finding global minima are discussed
in Chapter 6, but for functions of a moderate or large number cf variables
the methods of Chapter 6 are impractical. Usually the best thaf we can
do, in the absence of any special knowledge about f , is to use a good
local minimizer and try several different combinations of starting
poeitions, steplengths etc., in the hope that the best local minimum

found is the global minimum.

Constrained problems

It often happens that we want to minimize f(x) subject to the
constraint that x 1s ir some subset D of Rn . (Sometimes f 1is

only defined on D .) Simple upper and/or lower bounds, of the form

a, <x,<Db (1.1)

on the components x, of x , are particularly common, and problems

i
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7.1

with such constraints can be reduced to unconstrained protlems by a

transformation of variables (see Box (1966)).

More general constraints may be of the form

gi(x) =0 (an equality constraint)
or (1.2) :

gi(x) >0 (an inequality constraint) , ' i

where 8;¢ Di (ot R - R is some given function, for i =1,...,m . i

gi(x) may be linear, say

g (x) = a;x+ c; (1.3)

-8 _TEE B —_— eem

for some a eRn and cieR sy Or gi(x) may be nonlinear, and perhaps

i
quite difficult to compute. From the point of view of efficiency, it is

probably best to deal with linear constraints directly, but this is
difficult for nonlinear constraints. Direct methods for linear constraints ..
are given in Fletcher (1968b), Goldfarb (1959a), and Rosen (1960). (See
also Bartels (1968), Bartelec and Golub (1969), Bartels, Golub and

Saunders (1970), Gill and Murray (1970), Goldfarb and Lapidus (1968),

U N S

Hanson (1970), and Shanno (1965, 1970b).)

Problems with nonlinear constraints can be reduced to a sequence of

e ke AR

unconstrained problems by the use of penalty or barrier functions. (See
Carroll (1961), Fiacco (1961, 1967, 1959), TFiacco and Jones (1969),
Fiacco and McCormick (1968), Fletcher (1969b), Fletcher and McCann (1969),
Jones and McCormick (1969), Kowalik, Osborne and Ryan (1969), Lootsma
(1968, 1970), Murray (1969a, b), Osborne and Ryan (1970, 1971),

Pietrzykowski (1969), and Zangwill (1967b).) Attempts have also been made
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to deal with nonlinear constraints directly. (See Allran and Johnsen
(1970), Box (1955), Haarhoff and Buys (1970), Kalfon, Ribiere and
Sogno (1958), Iuenberger (1970), Mitchell and Kaplan (1968), Murtagh
and Sargent (1969), Powell (1959d4), Rosen (1961), and Zoutendijk (1960,

1970) .)

Methods using derivatives

Many methods for the constrained or unconstrained minimization of
f: D » R explicitly use the partial derivatives Bf/axi , for
i=1...,0 , and some methods also use the second partial derivatives
of f . (Methods for constrained minimization may also use the partial
derivatives of the constraint functions g; .) For example, the
classical method of steepest descent (Akaike (1959), Cauchy (1847),
Curry (19uli), Forsythe (1968), Goldstein (1962, 1965), and Ostrowski

(1966, 1967a)) repeatedly minimizes f in the direction -g , where
af/axl

1.5)
af/axn

is the gradient of f . Perhaps the most successful methods using
derivatives are the Davidon-Fletcher-Powell "variable metric" method
(Davidon (1959), Fletcher and Powell (1963), Huang (1970), and

McCormick (1969)), s..d the conjugate gradient method of Fletcher and
Reeves (1954), which is slower but requires less storage than the
variable metric method. (For other methods using derivatives, and related

topics, see Bard (1968, 1970), Broyden (1970a, b), Cantrell (1969), Cragg
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and Levy (1959), Davidon (1968, 1969), Davies (1968), Fletcher (1966,
1970), Goldfarb (1956, 1969b, 1970), Goldfeld, Quandt and Trotter (1968),
Greenstadt (1957, 1970), Hestenes (1969), Kelley and Myers (1967),
Luenberger (1969b), McCormick and Pearson (1969), Miele and Cantrell
(1969, 1970), Myers (1968), Pearson (1969), Powell (1969b, ¢, 1970b, ¢, d),
Remsay (1970), Shanno (19%9a, b), Shanno and Kettler (1959), Sorensen
(1969), Takahashi (1965), Tokumaru, Adachi and Goto (1970), Vercoustre
(1970), Goldsteir. and Price (1967), and Wells (1965).)

In many practical problems, it is difficult or impossible to find
the partial derivatives of f(f) directly. One possibility is to
compute derivatives numerically, e.g., by finite differences, and then
use cre of the methods requiring derivatives. Stewart (1967) has
successfully modified the variable metric method so that difference
approximations to derivatives can be used. The difficulty is in
balancing the influence of rounding errors and truncation errors when
using finite differences to estimate derivatives. For a computer program,

see Lill (1970).

Methods not using derivatives

Although Stewart's modification of the variable metric method
appears to work well in most practical cases (see Stewart (1967),
Powell (1970a), and Section 7), it is more natural to use a method which
does not need derivatives, if derivatives can only be found numerically.
Possibly such methods could be more efficient than methods which approximate
derivatives numericall'y, although this is less clear in n dimensions than

ia one dimension (for which see Chapter 5).
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Several methods which do not use derivatives have been compared in
the survey papers of Box (1966), Fletcher (1955, 1969c), Powell (1970a, e),
and Spang (1962). (See also Bell and Pike (1966), Berman (1969), Box
(1957), Chazan and Miranker (1970), Hooke and Jeeves (1961), Kowalik
and Osborne (1968), Nelder and Mead (1965), Smith (1952), Spendley (1969),
Sperdley, Hext and Himsworth (1962), Swann (1964), and Winfield (1967).)
Excluding Stewart's method, the most successful method, especially for
functions of more than three or four variables, appears to be that of
Powell (1964) (see Section 3). The main object of this chapter is to
present some modifications which improve the speed and reliability of
1'7wé]_l's method. The modifications are discussed in Sections 4 to 5,

and some numerical results are given in Section 7.

Quadratic convergence

Suppose that f£(x) has continuous second derivatives

2
It .
fiy = 3, (1.0)

for i,j =1,...,n, in a neighbourhood N of a local minimum p .
Since u is & minimum, the gradient of f vanishes at p , and the

Hesslan matrix

A= (fij) (1.7)

is positive definite or semi-definite. Near pu , the quadratic form

ax) = 2(u) + 3 (x-w)" A(x-u) (1.8)
204
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is a good approximation tc¢ f(f) . Thus, any minimization method, having
ultimate fast convergence for a general function f(f) with continuous
second derivatives, must have fast convergence for a positive definite
quadratic form, and we might expect the converse to hold too. This
observation has led to the investigation of methods which have quadratic
convergence, i.e., which find the minimum of a positive definite quadratic
form in a finite number of function and/or derivative eva’iations, apart
from the effect of rounding errors. Examples of methods with quadratic
convergence are those of Davidon-Fletcher-Powell, Fletcher and Reeves,
and Powell (1954) (this is not quite true: see Section 3). The method
of steepest descent exhibits only linear convergence on a quadratic form,
80 it is not quadratically convergent.

A few methods are not qua.dré.tically convergent, for exact convergence
requires an infinite number of steps, but they do exhibit superlinear
convergence on quadratic forms. Examples are the methods of Rosenbrock,
as modified by Davies, Swann and Campey (see Swann (1964)), of Goldstein
and Price (1967), and of Greenstadt (1970). There is nc apparent reason
why such methods should fail to perform as well as quadratically convergent
methods on general (nonquadratic) functions. Thus, quadratic convergeace
is a desirable property, but it is neither necessary nor sufficient for

a good minimization method.

Stability: the descent property

In many methods for unconstrained minimization, f(x) has been
evaluated at Xy the current best estimate of the position of the

*
minimum of f(x) . A new estimate, Xy is made on the basis of the
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values of f at x. and a smnall number of other points (previous best

0

estimates, or points close to X5 ). Additional information built up

from previous iterations, e.g., an approximation to the Hessian matrix

*
;, may also be used. The prediciion Xy

et g T e s - o

of £ at x may be unreliable,

.0
and it may happen that

f(x) > £(x) (1.9)

e B ST A— R B

For example, this often occurs if X, is not close to a local minimum,
and an inacequate quadratic approximation to f(x) is used.

To avoid the possibility of instahility, most procedures do not

accept f;. as the next approximation to the minimum. Instead, they
perform a "linear search" in the direction 35; - X5 i.e., they take
the point

S )‘o(f; ) (1.10)

! as the next approximation, where )\O is chosen to minimize the function

90N = £(x, + Mxy - %)) (1.13)

of one variable. This ensures that

f(x) < £(x) (1.12)

so the successive points generated must lie in the "level set"

e e eamtn e e oo i —_—,

S = {feRn | £(x) < £(x))} - (1.13)

In practice, it is not worthwhile to try to minimize the function

®(N) very accurately. In fect, the minimum may not even exist: @(A) may
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be monotonic increasing or decreasing, or have a maximum but no minimum.

Box (1966) gives examples where an attempt to minimize @(A) too accurately
prevents a minimization procedure from finding the desired minimum. It

is sometimes stated thet the quadratic convergen:e property of certain
methods depends on @(A) being minimized exactly but all that is really
required for these methods is that the one-dimensional minimization
procedure minimizes a quadratic function of A exactly. Thus, for
quadratic convergence, it is sufficient to fit a parabola P(A) to ¢(A) ,
and take )»O = }\; , where )»; minimizes P(A) . Because of the danger

of instability, this simple procedure is not acceptable, but it is reasonable

*
to take A = A

0 0 provided that

o) < 9(0) (1.14)

which ensures that (1.12) holds. (Powell (iJ70e) gives some reasons

for requiring rather more than (1.14).) See also Sections 6 and 7. :

T -

vl it e o

Sums of squares

A very common wnconstrained minimization problem is to minimize a 1

function f£(x) of the form
| m ) ]
L £(x) = ,):1 (£, (1.15) |
i=

for some (generally nonlirear) functions fi(x) . For cxample, this
problem arises when parameters Xyyeee:X are fitted, by the method of
least squares, using m observations. An important special case arises

wien the minimum value of f(x) is zero: then we have a solution of the
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system of equations

fi(f) =0 , (1.16)

for 1 =1,.00,m.

Applying a general function minimizer to f(f) may not be the most
efficient way to minimize (1.15). Methods which make use of the individual
residuals fi(f) are likely to be considerably more efficient than
methods which merely try to minimize f()j) without considering the
individual residuals, at least if the minimum value of f(ff) is close to
zero. Methods which make use of the residuals are described in Barnes
(1965), Box (1966), Brown and ~ennis (1968, 1970, 1971a, b), Broyden (1967,
1969), Dennis (1968, 19f9e, b, ¢), Fletcher (1968a), Gauss (1809),

Hartley (1961), Jones (1970), Levenberg (19Ll), Marquardt (1963),

Matthews and Davies (1969), Morrison (1968), Ortega (1970), Ortega and
Rheinboldt (1970), Peckham (1970), Powell (1965, 1968b, 1969a),

Rabinowitz (1969), Rall (1966, 1969), Schubert (1970), Shanno (197Ca),
Spath (1967), Voigt (1969), Wolfe (1959a), and Zeleznik (1968). Good
numerical methods for solving linear least squares problems are also
relevant: see Bjorck (1967a, b, 1968), Businger and Golub (1965),

Golub (1965, 1968), Golub ani Reinsch {1970), Golub and Seunders (1959),
Golub and Wilkinson (19%6), Jordan (1968), Khabaza (1963), Maddison (19%6),
and Powell and Reid (1968).

Let us see why it may be worthwhile to use the residuals. Suppose
that we have a good initial approximation to the minimum of f(’f) , 80 the
functions fi(f) can be closely represented by linear approximations in

the region of interest. To find a linear approximation to fi(x) , we
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need to evaluate fi(f) at n+l points, or evaluate fi(f) and the

n components of its gradient at one point. Thus, after the same amount
of work as is required for nt+l evaluations of f('ic) s Or one evaluation
of f(f) and its gradient, the solution of a linear least squares problem
gives an approximation to the minimum. Tris approximation is usually good
if the minimum value of <£(x) is small (see Powell (1955)), unless the
linear problem is very ill-conditioned. On the other hand, if the special
form (1.15) of f(f) is disregarded, then it is necessary to evaluate
f(f) at -;—‘ (n+1) (n+2) points to find in approximating quadratic form.
(Alternatively, f and its gradient must be evaluated at r% (n+2)-]

or more points.) This suggests that methods which disregard the special
form of f(_’f) are likely to be much slower than methods which use the
individual residuals, at least if n 1is large. Empirical evidence
supports this conclusion (see particularly Table 3 of Box (1966) for

n = 20 ), although some of the present methods which make use of the
residuals appear to be rather unreliable.

Despite our conclusion, most of the numerical examples given in
Section 7 are of the form (1.15). This is because a particularly simple
way to construct test functions with bounded level sets is to use functions
’ of the form (1.15), and most of the test functions giver in the literature

have this fomm.

Some additional references

The following general references on function minimization and related
topics have not been mentioned above: Abadie (1970), Balakrishnan (1970),

Bennet: (1965), Bennett and Green (1966), Colville (1968), Davies (1969),

Samdhs,

A
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Davies and Swann (1959), Dold and Eckmenn (1¢70a, bt), Evans and Gould
(1970), Fletcher (1959a), Hadley (1954), King (1966), Kunzi, Tzschach

and Zehnder (1968), Lavi and Vogl (19%6), Leon (1956), Luenberger (1979a),
Mangasarian (1969}, Murtagh (1959), Murtagl: and Sargent (1970), Powell
(1956, 1959e), Ralston and Wilf (1960), Rice (1970), Rosen and Suzuki
(1965), Shah, Buehler and Kempthorne (1964), Wolfe (1963, 1959), Zadeh

(1949), Zangwill (1969a, b), and Zoutendijk [1966).

2. The effect of rounding errors

Rounding errors in the camputation of f(f) limit the accuracy
attainable with any minimization method usin; only the computed values
of f(f) . In this section, we generelize the result~ of Section 5.2,
where the same problem is considered for functions of one variable. As
in Section 5.2, the results of this section do not necessarily apply to
methods which use the gradient of f , computed analytically. (They do
apply if the gradient is computed by finite differences.)

Suppose that, in a neighbovrhocd N of a local minimum Ko the

partiel derivatives fij(x) ure Lipschitz continuous, i.e., r'or all

AL
£, - £,,01 < M0k -yl (2.2)

where Mij is a Lipschitz constant (i,j = 1,...,n) , and any of the
usual vector norms may be used. Since the gradient of f(x) vanishes

at p , a simple extension of Lemma 2.5.1 shows that, for xcN ,

e

miuie-wly




(2.2)

A= (£, .(n)) (2.3)

ij‘h

is the Hessian matrix of f(x) at u , and
R | < - wl® (2.4)

for some constant M depending on n , the norm used, and the
Lipschitz constants M*j .
As in Section 5.2, the best that can be expected is that the computed

value f1(f(x)) of f(x) satisfies the nearly attainable bound

£1(2(x) = £(x)-(1 + £ (2-5)
where

€

el < ¢ (2.6)
and € is the relative machine precision (see Section 4.2). If £ is

computed using single-precision arithmetic, the error bowid will probably
be consideravly worse than this.
Let B be the largest number such that, according to equations

(2.2) to (2.6), it is pessible that

f1(f(p + 5u)) < £(w) (2.7)

for some unit vector u . Then it is unreasonable to expect any

minimization procedure, hased on single-precision evaluations of f , to

l return an approximation ; to u with a guaranteed uppar bound for

i - uj] iess than 5 .
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Let the eigenvalues of A be kl o

corresponding normalized eigenvectors UpsUyy oo Since , is a

SN, > e an, with a set of

local minimum of f£(x) , certainiy

A >0 - (2.8)

and we suppose that Xn >0 . (The positiocn of the minimum is worse

A

determined 1f A_=0.) If 3= is small compared to unity, and
n .

we take u = L then (2.7) is possible for

2|t(p) e | ‘ :
- ,I—L;Ti-— - - (2.9

Thus, an upper bound on It - ul| can hardly be less than the right side

of (2.9).

The condition number

With the assumptions above, and & given by (2.9),
£ + 8u) ~ £(u) + n e|f(p)| (2.10)

where

K = ;\l/xn (2.11)

i3 the usual condition number of A . We shall say that wx is the

condition number of the minimization problem (for the local minimum ).

~ The condition number determines the rate of convergence of some minimization

methods (e.g., steepest descent), and it is also important because rounding
errors make it difficult to solve problems with condition numbers of the

order of €1 or greater (see below).
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Scaling

A change of scale along the coordinate axes has the effect of
replacing the Hessian matrix A by SAS , where S 1is a positive
diagonal matrix. The problén of choosing S to minimize the condition
numbelr of SAS is difficult, even if A is known explicitly. (See
Forsythe and Moler (1967) for the problem of minimizing the condition

number of S_AS

185, 5 where A 1is not necessarily symmetric.) A good

general rule is that SAS should be roughly row (and hence column)

equilibrated (see Wilkinson (1953, 1965a)). In practical minimization
problems, one difficulty is that little is known about the Hessian
matrix A until a reasonable approximation to the minimum |

has been round. This suggests that a general function minimizer which
is scale-dependent could incorporate an automatic scaling procedure,
using current information abouf A to detemine the scaling. One way

of doing this is described in Section L.

3. Powell's algorithm

In this section we briefly describe Powell's algorithm for minimization
without calculating derivatives. The algorithm is described more fully
in Powell (1964), and a small error in this paper is pointed out by
Zangwill (1967a). Numerical results are given in Fletcher (1965),
Box (1966), and Kowalik and Osborne (1968). A modified algorithm, which
is suitable for use on a parallel camputer, and which converges for
strictly convex C2 functions with bounded level sets, is described by

Chazan and Miranker (1970).

213

[ ¢




7.3

Powe’l‘s method is a modification of a quadrutically convergent
method proposed by Smith (1952). Both methods ensure convergence in a
finite number of steps, for a positive definite quadratic form, by

making use of some properties of conjugate directions.

Conjugate directions

If A 1is positive definite and symmetric, then minimizing the

quadratic function
xAx -2b'x = (x-A 1) A(x - A7) -bTahy (3.1)
is equivalent to solving the system of linear equations

Ax =b . (3.2)

~

If the matrix A 1is known explicitly, then, inctead of minimizing

(3.1), we can solve (3.2) by any suitable method: for example, by forming
the Cholesky decamposition of A. In the applications of interest here,
A 315 the Hessian matrix of a certain function, and is not known explicitly,

but the equivalence of the problems (3.1) and (3.2) is still useful.

Definition 3.1

Two vectors u and v &are said to be conjugate with respect to

the positive definite symmetric matrix A if

BTA =0 . (3.3)

~

When there is no risk of confusion, we shall simply say that u
and v are conjugate. By a set of conjugate directions, we mean a set

of vectors which are pairwise conjugate.

21k
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Remark

If {ul,...,xjm } 1is any set of nonzero conjugate directions in e s

then Ujyeeerd BTE linearly independent. Thus m<n, and m =n iff

u Rn
~l’ ...’u‘vm sparl L)

Theorem 3.1
If A is positive defirite symmetric, Ax =b , and {ul"”"..l.m}

is a set of nonzero conjugate directions, then

T
o} u,b
A z === |u (3.4)
- B S ! uTAu ~1

is conjugate to each of Uy, ceeyl .

Proof

If 1<Jj<m, then, fram (3.4),

wjxt = wlex o) =0 (3-5)
Corollary 3.1

Tf m=n in Theorem 3.1, then x* =0, so

n u';"_E
z= 1| = u (3.6)
1=1L uiﬂui £33

Returning to the minimization probiem, Theorem 5.1 and the equivalence

of problems (3.1) and (3.2) give the following result.
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7.3
Theorem 5.2

If A 1is positive definite symmetric,

f£(x) = XTAX - 2b'x + ¢ (3.7)

n L :
for some beR and ceR , and ul,-..,llm is a set of nonzero conjugate

directions, then the minimum of f(x) in the space spanned by Upyee U
m L d ~
occurs at the point -glai‘ii » Waere
uzb
By = . (3.8)
u, Au,
Sl

Proof

This follows from Theorem 5.1, or, alternatively, from the relation

T.\2
m m 5 T m (uib
£ auy | o= § (0 -By)" wiAu 4 - ) EE (3.9)
= i=1 i=1 uiAui

(cross terms vanish because of the conjugacy of UpyeeesU e
The usefulness of Theorem 5.2 stems from the following result,
which shows how we can calculate the B, of (3.8) using function

evaluations, even if A, b and ¢ are not known explicitly.

Theorem 3.3

With the notation of Theorem 3.2, a fixed J satisfying 1< j<m,

and fixed o ’“"aj-l’aj+l’ ...,am » the minimum of

1
m
(pj(aj) =f igl @, (3.10)
occurs at aj =B,j .
216
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Proof :

This follows immediately from equation (3.9).
From Theorems 5.2 and 3.3, we see that the minimum of the quadratic {
form f(x) can be found by n one-dimensional minimizations along nonzero

conjugate directions u.,... Uy and the order of the one-dimensional

l’
minimizations is irreievant. To use this result, we have to be able to
generate sets of conjugate directions. Both Powell's method and Smith's

method do this by using the following theorem, given in Powell (1964).

Theorem 3.k

If the minimum of f(x) (given by (3.7)) in the direction u from

*
the point X, is at X5 s for i =0,1, then X, =X, is conjugate
to u.
Proof.
For i =0 and 1,
af(x+>~.u)=0 at AN =0 (3.11)
TS B é .
so, fram (3.7),
T
u (Ax, -b) =0 . (3.12)

Subiracting equations (3.12) for i =0 and 1 gives
wTA(x, - x)) =0 (3.13)
5 el S0 ? b

which campletes the proof.
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Powell's basic procedure

We can now describe the basic idea of Powell's algorithm. Let X,y
be the initial approximation to the minimum, and let ul, 900 ,un be
the columns of the ilentity matrix. One iteration of the basic procedure

consists of the following steps:

1. For i=1,...,1, compute B, to minimize f(xi-l+ Biui) ,

and define xi =

~

X1t By -

2. For i=1...,n-1 , replace :1 by Bi+l

2. Replace u by X X, -

4., Compute B to minimize f(x0+BBn) , and replace x_ by AN

For a general (non-quadratic) function, we just repeat the iteration
until some stopping criterion is satisfied. Suppose that 1 <k <n,
and consider the situation after the k-th iteration. If f is quadratic

then we can show, by induction on k , that u are conjugate.

Yn-k+1’ 00
This follows from the choice of u at step 3, and Theorem 3.k: see
Powell (1954). After n iterations, we have minimized along n
conjugate directions uy 5 ’En ; 80, by Theorems 5.2 and 3.3, the

i
true if, at each iteration, B, £ 0, for then the directions Uppenesid

minimum will have been reached if the u, are all nonzero. This is

can not became linearly dependent.

The problem of linear dependence

Unfortunately, as pointed out by Zangwill (1957a), even for a

quadratic function f one of the iterations may have Bl = 0, which
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results in the directions w5, ’En becoming linearly dependent, and

fron then on the procedure can only find the minimum of f(x) over a 1

proper subspace of R® . The samne is, of course, true for non-quadratic
functions, and even though it is unlikely that B, will vanish exactly,
Povell discovered that the directions Uyyeenr W ofter becare nearly

linearly dependent. Thus, he suggests that the new direction x -xo

-~

should be used, and one oz the old U5 ceerl discarded, only if this

does not decrease the value of |det(vrl vn)| , where
1

Yy = (BTAB) ° e (3.14) § .1

et A e 7

for 1 =1,...,n . With this modification the algorithm is quite successful
(see Fletcher (1965) and Box (1956) for a comparison with other methods),
but the desirable property of quadratic convergence is lost, for a complete

set of conjugate directions may never be built up. In the next secticn,

e AT Dl Yot 43
]

we describe a different way of avoiding the problem of linear dependence

of the search directions. The numerical results given in Section 7

-~ PEED o ooy i

suggest that our method of ensuring linear independence may be preferable

to Powell's.

e St e

4. The main modification ' {

The simplest way to avoid linear dependence of the search directions

with Powell's basic procedure, and retain quadratic convergence if Bl £0,
is to reset the search directions UppeeerU to the columns of the

identity matrix after, say, every n iterations. A similar "restarting"
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device is suggested by Fletcher and Reeves (196L) for their conjugate
gradient method. Unfortunately, restarting tends to slow down convergence
for approximately quadratic Tunctions, because any information built up
about the function is periodically thrown away. (Perhaps this is way

the Fletcher-Reeves algorithm is generally slower than the Davidon-
Fletcher-Powell algorithm.)

Instead of resetting U = [El’ ""Bn] to the identity matrix, we
could equally well reset U to any orthogonal matrix Q . To avoid
discarding useful information about £ , we could choose Q 8o that,
if 'f is quedratic, Ujyeeerst remain conjugate. This suggests that
principal vectors Sl’ ’S'n should be computed on the assumption that
f 1is quadratic, and U should be reset to Q = [gl,...,gn] . The

motivation for this procedure may be summarized thus:

1. If the quadratic approximation to f 1is good, then the new search
directions should be conjugate with respect to a matrix which is close
to the Hessian matrix of f at the minimum, and thus subsequent

iterations should give fast convergence.

2. Regardless of the validity of the quadratic approximation, the new
search directions are orthogonal, so the search for a minimum can never

become restricted to a subspace.

The extra computation involved

We show below that finding principal axes does not require any
extra function evaluations, but it does involve finding an orthogonal

set of eigenvectors for a symmetric matrix H of order n . This requires
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about 6n° multiplications, and a similar number of additions, if done
as suggested below. Since the principal axes are found only once for
every n2 linear minimizations, and a linear minimization requires about
2.25 function evaluations on the average (see Section 7), the extra
computation is less than 3n multiplications per function evaluation.

We can expect the evaluation of a nontrivial function of n .variables to
require considerably more than 3n multiplications, and possibly order n2 ’
so the overhead caused by our modification is not excessive. Also, it
may be worth paying a little for the principal axis reduction, for the
extra information about f is often of intercst. For example, it

shows the sensitivity of f(f) to slight changes in X near the minimum.
The principal axes and eigenvalues may be of interest in statistical
problens when f is minus the log-likelihood, for then the inverse of

the Hessian at the minimum is the sample variance-covariance matrix of

the maximum likelihood estimates: see Nelder and Mead (1965).

calin

:

Powell's modification of his basic procedure has one feature which
ours lacks: his determinantal criterion is independent of a linear
transformation of the independent variable space (an important special
case is a change of scale for the independent variablesg). This feature
is certainly desirable, for when a function of, say, temperature and
pressure is to be minimized, there is no netural way to scale the variables.
We should note, though, that Powell's algorithm is not completely

independent of linear transformetions of the variable space, or even of
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scale chang:s, for these influence both the initial choice of the

vectors Upseeerl and the stopping criterioen.

Finding the principal vectors

Suppose that

£(x) = xTAx - 2bix + ¢ (4.1)

~ o~

is a positive definite quadratic form, although A , b and ¢ may not
be known explicitly. If n iterations of Powell's basic procedure are

performed as described above, and at each iteration Bl f 0 , then we

obtain n nonzero conjugate directions Upy oo, Let U = [u:L un] .

By the conjugacy of Upyeeerl
T
U'AU =D ) (’4-2)

where D 1s a diagonal matrix with positive diagonal elements di .
During the last (i.e., n-th ) iteration, we have performed one-

dimensional minimizations in the directions Bl’ ’Bn . Consider a

minimization from the point X1 in the direction U for

1<i<n. We minimize the function

= ho
9y(@) = £y, + o) 2
27 T ™ T T
= oughu, + 20(uAx, o -upb )+ (xg X, ) -2x; 0 +e) L (BuE)

To minimize cpi(a) we fit a parabola, which necessitates computing the
second difference tpi[ao,al,ae] for three distinct points Ay, A

and @, . From equation (4.4),
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iy -
93[@00,] = wsAuy = 4y, (k.5)

so the diagonaielanents di of D are known without any wxtra
camputation. (If the quadratic approximation to tpi(a) is bad we may

have q>i[ao, ,ae] < C, and then we arbitrarily set 4, toa sxnall

% i

positive number.)

Let _ n
2
V = UD * (’406)
be the matrix with columns Vis+++s Vv given by (3.14), and let
-1

H=A" . (4.7)

Since U it nonsingular, equation (L.2) gives
B=w =w . _ (4.8)

The matrix V is easily computed from U in n2 multiplications and
n square roots, but the camputation of V'VT is more expensive, and can
be avoided: see below. .

Our aim is to find the principal axes of the quadratic form £,

i.e., to find an orthogonal matrix Q such that

Q‘I‘AQ =A 5 (4.9)

where A = diag()\i) is diagonal. Thue, the columns qi of Q@ are just

the eigenvectors of A , with corresponding eigenvalues A N, and

1’°"""n

we can assume that .\l Deee > kn . The obvious way to find Q@ and A
is to compute H - VVT explicitly, and then find Q and A such that

QTHQ = A'l 5 (4.10)

by finding the eigensystem of H .
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Use of the'.singular value decomposition to find 3 and A

If the condition number x = )\.l/)»n is of order e-l ’ where € is
the relative machine precision (see Secticn 4.2), then rounding errors

may lead to disastrous errors in the computed small eigenvalues

L L
(St S

even ii‘ they are well-determined by V . Thus, it may be necessary to

of H , and in the corresponding eigenvectors ql’qe’ 5 ol |

compute H , and find its eigensystem, using double precision arithmetic.

' This difficulty can be avoided if, instead of forming H = VVT , We work

directly with V . Suppose that we find the singular value decomposition

of Vv, i.e., find orthogonal matrices Q and Q' such that

ewm' == , | (4.11)

where I = diag(gi) is a diagonal matrix. (See Golub and Kahan (1965),

and Kogbetliantz (1955).) Then

At -QTm - @wn@wnt =", (4.12)

so Q 1is the desired matrix of eigenvectors of A , and th: eigenvalues

)‘i are given by

e L _ (4.13)

Note that the matrix Q' 1is not required, and i’p is not necessary to
compute '.’VT .

Since it is desirable that the computed matrix Q should be close
to an orthogonal matrix, we suggest that Q@ and I should be found by
the method of Golub and Reinsch (1970). This involves reducing V to

bidiagonal form by Househclder transformations, and then computing the
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singular value decomposition of the bidiagonal matrix by a variant of

the QR algorithm.

. B e e

Let us compare the amount of camputational work involved in X
canputing Q@ and A via

1. The singular value decomposition (SVD) of V as described

e T el b Sl s

above, and |
2. Finding the matrix H and its eigensystem, using Householder's

reduction to tridiagonal form and then the QR algorithm. (See 1

Bowdler, Martin, Reinsch and Wilkinson (1958), Francis {1962),
Householder (1964), Kublanovskaya {1951), Martin, Reinsch and
Wilkinson (1968), and Wilkinson (19%5a, b, 1968).)
For purposés of comparison, we count only multiplications, and
L o igncre terms of ordez; n2 » 80 our conclusions may not be valid for very
-’sma.ll n . Suppos_e that, in each case, the QR process requires pn
b ' iteratione. for some modest number p .
For method 1, the Householder reduction requires hn3 /3 multipiica- |
5 tions, accumulation of the (left-hand) transformations requires another 4
: ltn5 /5 multiplications, and the QR process with accumulation of the

3

) transformations requires 2gn” multiplications, if no splitting occurs. A
Thué, method 1 requires (8+ 6,;>)n5 /3 multiplications in all.

For method 2, the Householder reduction requires 2n5 / 3 multiplications
(only half ‘as much as for method 1 beca.use’ of symmetry), accumulation of
the transformations requires 2n5 /3 multiplications, and the QR process
requires 2pn5 , giving (4+ 6p)n3 /3 altogether. This could be reduced

to hn3 /3 s 8till ignoring terms of order n2 » if inverse iteration were

used to compute the eigenvectors of the tridiagonal matrix, but then it
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Heohas i sompra H « 17 by tre aml sethos (it taking stvantags of
st ry), meking (114 Bgn [6 miirigiteations i sii.

The tabdo of e work involved tor meinois | and 2 18 tius

fw%!ﬁ ; (5. 1%)

wnd tor & Vyploai vaive of § » 1.6 we vave ¢ » 1.1 . Thus, method 1
Ghr bl mapactad Lo be oty ot 0 peroent siower tnan the rumerically
infarior method 7. Win nethiods can bve done in place, &6 require
Lamperrnry whorngs for onily n few neveetors, apart from the n by n
mabeds V Wiek A8 overwritben vy G

braling

We ment ioned in Bection | that & general minimization procedurs
wlght indorporats eobomatie senling of the independent variables, in an
abbampt bo reduss Lhe somdibion number of the problem. Beeling has the
offect of replacing the nabeix v above by s'1v ) where f 1s a
positive dlagonal mabrix (a8 An Bection 1), 'fhe ALLOL procedure "praxis"
glven In Besbion O choonss § sutenatically to try to reduse the condition
nmber of 8 . B e ehosen wo that B°lY 1 row-squilibrated, with

b sonmbenint bhe

whers sebd  in & bound which may be set to 1 Af no soaling 1s desired.
Numsrionl sepsriments on the examples deseribed in Bection 7 suggest that
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scbd should be fairly small (say about 10) unless the axes are very

badly scaled initially. The autamatic scaling is worthwhile, but its
effect is not dramatic, and it is rather unreliable, which is the reason
for introducing scbd . Thus, it is still worthwhile for the user to

try to scale his problem as well as possible.

Another modification

For Powell's basic procedure to minimize a positive definite
quadratic form in n iterations, steps 1 to 3 of the first iteration
are unnecessary. Thus, our algorithm omits steps 1 to 3 on the first
iteration, and, subsequently, after each singular value decomposition
(i.e., at the (n+l)-st, (2ntl)-st, ... , iterations). For this reason,

there are exactly

1+ (n-1)(n+l) = n° (4.16)

linear minimizations, instead of n(n+l) , between each singular value
decaomposition. This modification is not important for large n , but

numerical results suggest that it is worthwhile for small n .

5. The "resolution ridge" problem

Suppose temporarily that we are trying to maximize a function f(xl,xe)
of two varisbles by an ascent method. Wilde (1954) points out that
rounding errors in the computation of f may lead to premature termination

because of the "resolution ridge" problem illustrated in Diagram 5.1.
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X5 - 4 —wxo
Diagram 5.1: A resolution ridge

Regarding the surface defined by f(xl,xe) as a hill, we may reach
a point Xy » gituated on a narrow ridge, and then try to proceed tov a
higher point by perfcrming linear searches in certain directions.
Suppose, for example, that we attempt linear searches in the EW and NS

directions. The point x. may not be at the true minimum of f in both

0]
these directions but, because of the effect of rounding errors in
evaluating f , our one-dimensional search procedure will only attempt to

locate tne position of maxima to within some positive tolerance & (see
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Section 2). Let Xp = §o+631 s Xy o= fo'sfl » Xy = §O+632 , and
X = X, -5e2 . As shown in the diagram, it may happen that f(xo) is

greater than each of f(§N) § f(fs) 5 f(fE) and f(’fw) » 80 X, 1is
within the tolerance 5 of local maxima in both of the search directions,
even tnough X, may be a long way from the true maximum,which could be ‘

reached by climbing up the ridge. The same problem can arise with

functions of more than two variables, or when we are looking for a
minimum rather than a maximum (then we might speak of a "resolution

valley" problem).

It is clear from the diagram that, if we know another point x(')

o "% will give

a point x" with f(xg) > f(x.) , unless the ridge is sharply curved.

on the ridge, then a linear search in the direction x_ -~x!

This is the motivation for the method suggested by Rosenbrock (1940),
and improved by Davies, Swann and Campey. (See Swann (196k4), and also
Andrews (1959), Baer (1962), Fletcher (1965, 1959¢c, d), Osborne (1969),

Palmer (1959), Powell (1968a), Rice (19%6), and Section T.)

Finding another point on the ridge !

If linear searches from the point x_. fail to give a higher point, !
and a resolution ridge is suspected, then the following strategy may be
saccessful: take a step of length, say 105 , in a random direction {

from Xq > reaching the point KR . Then perform one or more linear

seachcs, starting at fR s and reaching the point xc') . As the diagram

shows., the point xé is likely to be on the ridge, so a linear search in

the direction Xy = x(') may be successful.




15
Although he does not refer to the resolution ridge problem,
Powell (1964) incorporates such a strategy in his stopping criterion.

We propose to use this strategy during the regular iterations as well.

Incorporating a random step into Powell's basic procedure

Suppose that we are commencing iteration k of Powell's basic
procedure, rounting either from the start or from the last singular
value decomposition, and 2 < k <n . To ensure quadratic convergence,

we must search along the directions u_ in step 1 of

xt2? ** 0y
iteration k , but the searches along directions El’ ’En-k+l are not
necessary for quadratic convergence. (They are desirable for other
reasons: see Fletcher (1965) for a comparison of Powell's method and
Smith's method.) The quadratic convergence property still holds if,

at step 1, we move to any point

X1 T %ot L By (5-1)

with B]'_ £ 0 , before performing linear searches in the directions

u . Thus, before performing linear searches in directions

n-k+2? Yy
Upseeerl at step 1 of iteration k , we may try the random step strategy
as described above. Procedure praxis does this if the problem appears to
be ill-conditioned, or if the procedure is about to terminate (i.e., if
previous linear searches have falled to find a better approximation to
the minimum).

This modification is rot necessary for well-conditioned problems,

but numerical results show that it is essential in order to ensure that a
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good approximation to the minimum is found for very ill-conditioned

problems. For example, consider minimizing
Jy
f(X) =X A}c ) (5'2)

where A is a 10 by 10 Hilbert matrix (i.e., 855 = 1/(i+j-1)

for 1<i, Jj<10), with a condition number of l.6xlO:D . Using

long real on an IBM 360 camputer {machine precision 1671 ) , and

starting fram (l,l,...,l)T , our algorithm successfully found the 1
position of the minimum of f(x) to w.ithin the specified tolerance

of 10-5 » but it failed without the random step strategy. (For further 1

details, see Section 7.)

Extrapolation along the ridge

If the function minimizer has been climbing a ridge for several

complete cycles, so the quadratic approximation to f 1is obviously

* o g s - 02

inadequate (or the maximum would already have been found), then it may {
be worthwhile to try an extrapolation along the ridge. Suppose that

immediately before three successive singular value decampositions, the best E
approximations to the maximum are x' , x" , and x" , with :
dy = “Jj' "f"\\e >0 and 4,

= |jx"* - x™ \\2 >0 . Numerical tests indicate ' y
that curved ridges are often approximated fairly well by the space-curve

given parametrically by

e S

(A+d ) (r-4,) AA+d,) i

x(A) = ENCRT) Xt - ad £ q(aFay X (5.3)

which is chosen because x(-~do) =x', x(0) =x", and x(dl) = x™

Hence, before the 3rd, 4th, 5th ... singular value decampositions,
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procedure praxis (see Section 9) moves to the point x()so) , where KO
is chosen to approximately minimize f£(x(\)) . N, 18 camputed by the

same procedure that performs linear searches.

6. Some further details

In this section we give some more details of the ALGOL procedure
given in Section 9. The criterion for discarding search directions, the
linear search procedure, and the stopping criterion are described briefly.

(For the sake of clarity, some unimportant details are omitted.)

The discarding criterion

Suppose for the moment that f(f) is the quadratic form given by
equation (3.7). In steps 2 and 3 of Powell.'s basic procedure (gee Section 3),
we effectively discard the search direction u; and replace it by
fn - Jfo . The algorithm suggested by Powell does not necessarily discard
.l..ll ¢ instead, as mentioned in Section 3, it discards one of Upseee L

W = fn"fo » 80 as to maximize

|det(!l .Yn” ) (6.1)

where v, 1is given by equation (3.11&), after renumbering the remaining

i
n directions, We wish to retain convergence for a quadratic form in
n iterations, so we are not free to discard any one of ul""’uml .
At the k-th iteration, for 2 <k <n , we can discard any one of

Uy ool 1y without losing quadratic convergence (see Section S). For
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lack of a better criterion, we choose to discard the direction, fram

UpyeeesW 1q to maximize the resulting determinant (6.1).

Suppose that the new direction X -Jfo = U satisfies

R f: —ﬁ-u (62)
e _ ) .2
(“n+1 n+l)l/2 i=1 © (y A“i) |

Then, the effect of discarding uy

renumbering the directions) is to multiply the determinant (6.1) by |ai| "

and replacing it by u = (and then

go our criterion is to choose i, with 1 <i <n-ktl, so that |ai|
is at its maximum. If Bl’ ...,Bn are as in the description of Powell's
basic procedure (see Section 3), and the linear minimization with step

By, decreases f(’f) by an amount B,y then, fram (3.7),

= BiulAui ’ (6-5)

80 j_A_i/ |ai| may be used as an estimate of (u )1/2 . (I By =
then we use the result of a previous iteration.)
Suppose that the random step procedure described in Section 5 moves

from fo to :

It
= ol 1{:1 38 o =)

R,

before the linear searches in the directions u

37 -»u are performed.

Then

n

LT g MECRS A (6-5)

and the N of equation (5.1) are given by
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B+7, if 1<1i <n-ktl ,
e {71 1 if n+2 <i<n } (€6
From (6.2), (6.3) and (6.5),
(3§+1A‘3n+1)1/2 S R AR DVA A o

80 we must discard direction Ei » 1<1i<n-ktl, to maximize the
modulus of the right side of (6.7). Since this does not explicitly

depend on the matrix A , the same criterion is used even if f is not
necessarily a quadratic form. Note that our criterion reduces to Powell's,
apart fram our restriction that i < n-k+l , if there are no random steps,
i.e., if 7y = O for i=1,...,n . Quadratic convergence is guaranteed

(apart from the effect of rounding errors) unless, for some k = 2,...,n,
! = = eoe = ' — .
B) = B Brje1 = O (6.8)

at iteration k .

The linear search

Our linear search procedure is similar to that suggested by Powell

(1964). We wish to find a value of A which approximately minimizes

() = £lx, + M) (6.9)

where the initial point X, and direction u # 0 are given, and

@(0) = f(fo) is already known. If a linear search in the direction u
has already been performed, or if u resulted from a singular value
decamposition, then an estimate of 9"(C) is available. A parabola

P(\) 1is fitted to @(N\) , using @(0) , the estimate of @"(0) if
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ave “able, and the computed value of @(A) at another point, or at two
peints if there is no estimate of @"(M\). If P{A) has a minimum at
N =A%, and @(\) <@(0) , then N* is accepted as & value of A to
approximately minimize (6.9). Otherwise N 1is replaced by ).*/2 :
cp(%.*) is re-evaluated, and the test is repeated. (After a number of

unsuccessful tries, the procedure returns with A =0 .)

The stopping criterion

The user of procedure praxis provides two par~meters: t (a positive
absolute toleranc.), and € (i.e., macheps , the machine precision);

and the procedure attempts to return x satisfying

be-ull, < M3xl, vt (6.10)

where B is the position of the tru: local minimum near X . The
exact form of the right side of (6.10) is not important, and could
easily be changed if desired. It was chosen because of the analogy with H
the one-dimensional case (see Chapter 5).

It is impossible to guarantee that (6.10) will hold for all
functions f , or even for f which are pe near u . Our stopping
criterion is, however, rather cautious, and (6.10) is satisfied for all L

numerical examples discussed in Section 7, with the sole exception of

the extremely ill-conditioned problem

£(x) = fTAf . (6.11)

where A is a 12 by 12 Hilbert matrix, with a condition number

16 _ -1

[
n~1.Tx107" > ~ L x lOl) . In most cases the stopping criterion

is over-cautious, and some unnecessary function evaluations are performed.
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Let us remark, as does Powell (1964), that the stopping criterion is
not an essential part of our algorithm, so an improved criterion could
easily be incorporated.

Let x' Dbe the current best approximation to the minimum before an
iteration of the baeic procedure, and let x" be the best approximation

~

after the iteration, i.e., n linear searches later. We test if
2l -x, < M, et (6.12)

The stopping criterion is simply to stop, and retnru the approximation
1(" , if (6.12) is satisfied for a prescribed nunber of consecutive
itex;ations. The number of consecutive iterations depends on how cautious
we wish to be: 2 1is reasonable, and was used for the examples

described in Section 7. Because of the random step strategy described
in Section 5, and always adopted if (6.12) was satisfied on the previous

iteration, there is no need for a more complicated criterion, such as

the one used by Powell (1964).

T. Numerical results and comparison with other methods

The ALGOL W procedure "praxis", given in Section 9, has been tested
on IBM 360/67 and #60/91 computers witn machine precision 16 . m
this section we summarize the results of the numerical tests, and compare
them with results for other methods reported in the literature. Cur
procedure has also been translated intc SAIL (an extension of ALGCOL:

see Swinehart and Sproull (1970)) and used %o solve least-squares

paraveter-{itting problems with up to 16 variables on a PDP 10 computer
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(machine precision 2-26) « The parameter-fitting problem is described
in Sobel (1970).

Table 7.1 summarizes the performance of procedure praxis on the
test functions described below. In all cases the tolerance t = lO—5
1670 .

and macheps = The table gives the number of variables, n ;

the initial step-size {a rough estimate of the distance to the minimum),
h ; and the starting point, Xy o So that the results can be campared
with those of methods with a different stopping criterion, we give the

number n, of function evaluations, and the number n., of linear

1
searches (including any parabolic extrapolations), required to reduce

f(x) - f(p) below 10710

, where f(u) is the true minimum of f .

As f(f) was only printed out after each iteration of the basic procedure,
i.e., after every n linear minimizations, the number of function
evaluations required to reduce f(f)-f(p) to 10710 is often slightly
less than n, » 8O we also give the actual value of f(f)-f(g) after

ne function evaluations. Finally, the table gives x , the estimated
condition number of the problem. Except for the few cases where it is
easily found analytically, x 1is estimated from the computed singular
values, and may be rather inaccurate.

For those examples marked with an asterisk, the random step strategy
was used from the start. (In the initialization phase of procedure
praxis, tne variable "illc" was set to true.) TFor the other examples
the procedure was used as given in Section 9 (with "illc" set to false
initially). Although the automatic scaling feature (see Section U4)
reduces ne by about 25 percent for some of the tadly scaled problems,
this feature was switched off for the examples given in the table. (The

bound "scbd" of equation (4.15) was set to 1 .)
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Definitions of the test functions, and comments on the results

summarized in Table 7.1, are given after the table.

A cautionary note

When comparing different minimization methods, such as ours,
Powell's and Stewart's, the reader should nct forget that the numerical
results reported for the methcds may have been obtained on different
computers (with different word-lengths), and with different linear search
procedures. The effect of different word-lengths should only be
significant in the final stages of the search, when rounding errors
determine the limiting accuracy attainaeble, except for ill-conditioned
problems (say x >»10h) . This is another reason why we prefer to
consider the number of function evaluations required to reduce f(f)"f(ﬁ)
to & reasonable threshold (say 10'10) , rather than the number required
for convergence.

Because apparently minor differences in the linear sesrch procedures
can be quite important, Fletcher (1965) prefers to consider the number
of linear searches, D, instead of the num»er of function evaluations,

n This approach discriminates against methods, such as Powell's,

£ -
which use most of the search directions several times, and can thus use
second derivative estimates to reduce the number of function evaluations
required for the second and later searches in each directioﬂ. Note that,
for the examples given in Table 7.1, nf/nl lies between 2.1 #nd 2.7,
but it would be at least 3.0 for methods which do not use second

derivative information, if the linear search involves fitting a parabola

and evaluating 7 at the minimum of the parabola. Also, there are

pramising methods which do not use linear searches at all (see Broyden (1967),
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approximations to derivatives.

Table 7.1: Results for various test functions

and these methods could presumably be adapted to accept difference

Davidon (1968, 1969), Goldstein and Price (1967), and Powell (1970e)),

Thus, we prefer to compare methods on
the basis of the number of function evaluations required, and regard

the linear search procedure, if any, as an integral part of each method.

Function n h Mg n, ny f(f)-f(g) n
Rosenbrock | 2 1| (-1.2,1) 120 Y7l 6.61'-18 2508
Rosenbrock | 2 31 (3,3) 110 42| 8.53'-17 2508
Rosenbrock ; 2 12 | (8,8) 181 671 9.71'-18 2508
Cube 2 1| (-1.2,-1) 177 681 7.13'-18 10018
Beale 2 1] (0.1,0.1) 5k 22| 2.00'-15 162
Helix 3 11} (-1,0,0) 155 671 1.75'-11 500
Powell ) 1] (0,1,2) 55 23] 1.99'-11 28
Box¥ 5 20 | (0,10,20) 100 371 2.37t-13 8300
Singilar* L 11 (3-1,0,1) 234 106 9.76'-11 ©

* Wood* v | 0] -3,131) | bss2 | 101] 6.06-14 | 1boo
Chebyquad 2 0.1 | x; = i/ (n+1) 31 12| 7.89'-20 15
Chebyquad L |o.1 X, = i/(n+1) e 22l 7.89'-11 7
Chebyquad 6 0.1 X, = i/(n+1)| 223 101} 7.00'-13 50
Chebyquad | 8 (0.1 | x 4= i/(n+1)| 326 7| 6.320-11 2007
Watson* 6 1 ot 316 145} 2.83*-12 8€0c0
Watson* 9 1 §T 1184 | ski| 3.18'-11 | 1.7'9
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* For these results we set illc := true

in the initialization

initialized by calling raninlt(2) in procedure test.

phase of procedure praxis, and the random number generator was
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Table 7.1 continued

Function n{ h fg ng n, f(f)'f(ﬂ) "
Tridiag | g <~)T 27 11 0 29.3
Tridiag 61 12 QT s1 | 22 0 64.9
Tridiag 8! 16 ~T 126 | s5 0 113
Tridiag 10| 20 gT 201 | 89 | 1.56'-15 175
Tridiag 12| 2 gT 259 | 118 | 2.231-15 250
Tridiag 16| 32 gT 488 | 222 | 1.26'-13 438

. Tridiag 20 | Lo o* 805 | 379 0 677
Hilbert 2l 0 | (1,...,1) | 1 L | 3.981-15 19
Hilbert | 10 | (1,...,0) | 50 | ee |6.12r-15 | 1.5
Hilbert 61 10 ERETY 133 58 | 1.50'-11 1.5'7
Hilbert 8| 10 (1y000,1) 262 119 | 8.1k'-11 1.5'10
Hilvert* 1010 | (,...,1) | 592 | 267 | 7.84'-11 1.6%13
Hilbert* 12| 10 (1yeeepd) | 731 | 328 | 1.98'-11 1.7'16

+ For these results

the stopping criterion was more conservative:

we set Kktm := 4 in the initialization phase of procedure praxis.

240




7T

Definitions of the test functions and comments on Table 7.1

Rosenbrock (Rosenbrock (1960)):

£(x) = 100 (x,, - %5)° - (1.x1)2 . (7.1)

This is a well-known function with a parabolic valley. Descent methods
tend to fall into the valley, and then follow it around to the minimum

at (1,1) . Details of the progress of the algorithm, for the starting
point (-1.2, 1) , are giver in Table 7.2. In Diagram 7.1l we compare
these results with those reported for Stewart's method (Stewart (1967)),
Powell's method, and the method of Davies, Swann and Campey (as reported
by Fletcher (1965)). The graph shows that our method compares favourably
with the other methods. Although the function (7.l1) is rather artificial,
similar curved valleys often arise when penalty function methods are used
to reduce constrained problems to unconstrained problems: consider

minimizing (l-xl)2 s> with the constraint that X, = xi , by a simple-

minded penalty ftunction method.

Cube (Leon (1966)):
£(x) = 100(x, -xi)2+ FIE A (7.2)

This function is similar to Rosenbrock's, and much the same remarks

apply. Here the valley follows the curve x,. = x5

2 1°
Beale (Beale (1958)):
k) 1.2
f(X) = igl (ci -xl(l-xz)) ’ (7'5)

2h1
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where c¢, = 1.5, = 2.625 . This function has a valley

1 2 ‘3
approaching the line X, =1, and has a minimum of 0 at (3, %)T .

= 2.25 ’

Kowalik and Osborne (1968) report that the Davidon-Fletcher-Powell
algorithm reduced f to 2.18x10™' in 20 function and gradient
evaluaticns (equivalent to 60 function evaluations if the usual. (n+l)
weighting factor is used), and Powell's method required 86 function
evaluations to reduce f to 2.9hx10'8 . Thus, our method compares

favourably on this example.

Helix (Fletcher and Powell (1963)):

2(x) = 100((x5-100)%+ (r- 1% +x5 (7.%)
where
w2, 21/2
r= (xl + x2) (7.5)
and
arctan(x,/x,) it %= >0 ,
o = 2* 1 (7.6)
n+arcta.n(x2/xl) if x, <0 .

This function of three variables has a helical valley, and a minimum
at (l,O,O)T. The results are given in more detail in Table 7.3 and
Diagram T7.2. For this example our method is faster than Powell's

method, but slightly slower than Stewart's.

2h2
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Powell (Powell (196L)):

1 - Xt :
x) =3 —=——— ) - sin(@ x.x,) - - - (7.7
£(x) (l+(xl-x2)2) (3 x,x,) - exp [( - ) ] (7.7)

For a description of this function, see Powell (1964). Perhaps by good

luck, our procedure had no difficulty with this function: it found the

true minimum quickly and did not stop prematurely.

Box (Box (1966)):

2

10 [ (exp(-1x,/10) - exp(-ix,/10))
£(x) = ¥ A =p(-1xy/ : (7.8)
= i=1 = 3(3@('1/10) - exp(-i))

This function has minima of 0 at (1, 10, l)T, and also along the
line {(A\A,0f} . (Our procedure found the first winimm.) Kowalik
and Ostorne (i968) report that Powell's method took 205 function
evaluations to reduce f to 3.09x 10.9 » 80 our method is about 'twice
as fast. Our method took 79 function evaluations to reduce f to
2.29x 107" , 8o it is faster, in this example, then any of the methods
compared by Box (1966), with the exception of Powell's method for sums
of squares (Powell (1965)). See the comment in Section 1 about special

methods for minimizing sums of squares!

Singular (Powell (1962)):

f(f) = (xl+ 10x2)2+ 5(x3 - xh)2+ (x2 - 2x5)b'+ .10():l - xh)k . (7.9)
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This function is difficult to minimize, and provides a severe test of
the stopping criterion, because the Hessian matrix at the minimum

(f = 9) is doubly singular. The function varies very slowly near O
in the two-dimensional subspace {(ml, ST )\29“} . Table 7.4

and Diagram 7.5 suggest that the algorithm converges only linearly,

as does Powell's algorithm. It is interesting to note that the output
fram our procedure would strongly suggest the singularity, if we did not
know it in advance: after 219 function evaluations, with

f(f) = 7.67x10-9 , the computed eigenvalues were 101.0 , 9.999 ,
0.003790 , and 0.00101%4 . (The exact eigenvalues at 9 are 101, 10,
@, .a.nd 0 .) After 384 functicn evaluations, with f(f) reduced to

7a.nd

1.02x 1077 , the two smallest eigenvalues were 1.56x 10
5.98)(10-8 . Thus, our procedure should enable singularity of the
Hessian matrix to be detected, in the unlikely event that it occurred

in a practical problem. (For one example, see Freudenstein and Roth

(1963) .)

Wood (see Colville (1968)):

£(x) = 200(x, -x)% ¢ (1-x)% + 90(x, -x5)% + (1-x5)% +
10.1[(x2-1)2 + (xh-l)z] + 19.8(x2-l)(xh-l) . (7.10)

This function is rather like Rosenbrock's, but with four variables
instead of two. Procedures with an inadequate stopping criterion may
terminate prematurely on this function (see McCormick and Pearson (1969)),

but our procedure did find the minimum at u = (1,1, 1,1)T 3

2kl
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Chebyquad (Fletcher (1965)):

f(f) is defined by the ALGOL procedure given by Fletcher (1965).
As the minimization problem is still valid, we have not corrected a
small error in this procedure. (The procedure does not compute exactly
what Fletcher intended.) In contrast to most of our other test functionms,
which are designed to be difficult to minimize, this function is fairly
easy to minimize. For n = 1(1)7 and 9 the minimum is O , for other
n it is nonzero. (For n =8 it is approximately 0.00351687372568 .)
The results given in Table 7.5, and illustrated in Diagrams 7.4t to 7.7,
show that our method is faster than those of Powell or of Davies, Swann

and Campey, but a little slower than Stewart's.

Watson (see Kowalik and Osborne (1968)):

2 2 2
f(f) =X + (xe-xl-l) +
2 2
n n
j-1,d-2 i-1,J-1
£ L (-1x, 05 -(Exdz—9> -1 . (1w
i=2 | j=2 J=1
Here a polynomial
n-1
p(t) = X, + Xt + L.+ x (7.12)
ig fitted, by least squares, to approximate a solution of the
differential equation
2
dz/dt = 1+ z° , (7.13)

with 2z(0) =0, for te[0,1] . (The exact solution is z = tan(t) .)

n-l}

Because of a bad choice of basis functions {1,t,...,t s the
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minimization prcblem is ill-conditioned, and rather difficult to solve.

For n = 6 , the minimum is f(g) ~ 2.28767005555><1o'3 , at

u ~ (-0.015725, 1.012435, -0.232992, 1.260430, -1.513729, 0.992996)7 .

For n=9, f(g) ~ 1.399760138x10'6 , and Mo (-0.000015, 0.999790,

0.01k764, 0.146342, 1.000821, -2.617731, L4.10kk03, -3.143612, 1.052627)T .

(We do not claim that all the figures given are significant.)
Kowe1ik and Osborne (1968) report that, after 700 function

evaluations, Powell's method had only reduced f to 2.h3h><1o'3

(for n =6) , so oar method is at least twice as fast here. The

Watson problem for n =9 is very ill-condit ioned, and seems to he a

good test for a minimization procedure.

Tridiag (see Gregory and Karney (1969), pp. 41 and Tk):

fu)=£u-eﬁ ' (7.14)
where
T n
O
-1 2 -1
-1 2 -1
A= L (7.15)
O
- »

This function is useful for testing the quadratic convergence property.

The minimum f(u) = -n occurs when p is the first column of A-l , i.e.,

b= (n, 01, 02, .uvy 2, DT (7.16)

2L6
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The results given in Table 7.1 show that, as expected, the minimum is

foun? in n or less linear minimizations. The eigenvalues of A are

. _ 2, jm .
just )\j = b4 cos (2n+1) for j = 1y...n .

Hilbert

£(x) = fTAf , (7.17)

where A is an n by n Hilbert matrix, i.e.,

for 1<i, j<n. f(f) can be computed directly without storing
the matrix A . Like (7.14), (7.17) is a positive definite quadratic
formm, but the condition number increases rapidly with n . Because of
the effect of rounding erro:>3, more than n2 linear minimizations were
required to reduce f to lO'lo > except for n =2 . The procedure
successfully found the minimum o= 9 ;, to within the prescribed
tolerance, for n <10 . For n = 12 , some components of the cumputed
ninimum were greater than 0.1 , even though f was reduced to

-15
2.76x 10 ~7 . This illustrates how ill-conditioned the problem is!

Some more detailed rasulits

Tables 7.2 to 7.5 give more details of the progress o  our procedure

(B) on the Rosenbrock, Helix, Singular, and Chebyquad functions. In

Diagrams 7.1 to 7.7, we plot

T T - vy
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against n £ the number of function evaluations.

A = loglo(f(f) - £(u))

\

(7.19)

Using the results

given by Fletcher (1965) and Stewart (1967), the corresponding graphs

for the methods of Davies, Swann and Campey (D), Powell (P), and

Stewart (8), are also given, Tor purposes of camparison.

Table 7.2: Rossenbrock

n. | n £(x) ]"”"";1'""" -

1 0 2.h201 ‘ -1.200000 1.000000

11 L L.1k4t0 { -1.034611 1.071270

21 8 3.42'0 l -0.811598 0.621199

31 12 2.59'0 ! 1.5k9031 | 0.258076

L5 17 1.67'0 . =0.268211 ‘ 0.046503

58 22 1.07'0 -0.028125 -0.010783

T2 7 3.71'-1 0.482692 | 0.20089L

84 32 2.79'-3 0.947231 : 0.897130

98 37 5.89!-4 0.996384 ; 0.990382

109 L2 6.69'-9 0.999991 i 0.959974

120 47 6.61'-18 |  1.000000 1.000000

f1%2 | os2 ] 1a3eee3 1.000000 1.000000

;L 155 57 L.hpr-2) ' 1.000000 1.000000

b e : -
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Table 7.%: Helix

;— ng ) ny ;’ f(f) g X ]: X, T x, -
j 1 o0 : 2.50'3 ; ~1.000000 ! 0.000000 0.000000
o 5 1622 | 1ooooso | 2.000000 2.000000

: 23 9 } 1.18t2 ; 0.563832 '  1.952025 | - 1.759493

| 36w ! sweo | osuss | 1000020 | 2.096124
by x 18 L.0kt0 § 0.305534 5 0.967190 1.9871ks
57 :' 23 3.78'0 f 0.347506 s 0.907981 ! 1.922708
65 ' 27 3.01'0 0.847973 ’ 0.734103 i 1.074593

, g2 33 i G.46" -1 3 0.816717 0.566910 ' 0.969820
|91 . 37 | 3.66'-1 | 0.96573h | 0.3b2023 | 0 7' 3uk
105 43 2.k6r-1 1.004624 ? 0.239418 0.364506

‘ s b7 | 2.84-2 0.9938L3 1 0.091699 ’ 0.153178
126, 53 6.35%-3 1.002319 ‘ 0.0k5726 0.072132

; 134 , 57 8.01'-L 1.002726 ; 0.002303 0.002966 |
: W7 65 | 8.66'-6 0.999996 ! 0.001853 E 0.002942
155 ! 67% 1.75'-11 1.000000 8.49'-9 l 2.471-7 ;
| 169 | 73 ' 1l.12'-20 1.000000 @ -6.45'-11 | -9.92'-11 |
i 178 i ! 1.99'-24 - 000000 -1.69'-13 ' -2.471-13 ;
SRRl e . B
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Table 7.4: Singular*
== e [n_ 25 “"”i
1 0 ' 2.15'2
19 6 1.18'1
31 ; 11 7.96'0 ’
ke © 16 T7.75'0
s8 22 2.940
8 27 9.86'-1
| 78 32 1.3ht-1
b ook 38 6.g2r-3 §
! 10k L3 1.18¢-3
‘ 114 48 5.25'-5 %
129 | 55 @ 8.25'-6 g
RET 236 |
| 149 3 65 Z 2.70"-7 f
: 164 2 72 | 7.91'-8 é
E e LT 3.950-8 |
184 &2 . 3.001-8
; 199 | 89 | 3.90'-8 %
| 209  9h | 3.89'-8
| ! |
NS
i~ (-9.73x 2077

~

approximately in the subspace {(10A.,

*

5 9.73x10'8 , 5.31x107" , 5.51x10'7) , lying

See the comment under Table 7.1.
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Kg)} , as expected.

{ nf ‘WN ni”! f(fi

? 23k é 106 % 9.76'-11

ok é 2.03'-12

| o5k D et

| 269 ; 125 é.61'-1h |
279 E 128 6.431-15
289 ‘ 133 8.887-16 i
308 140 7.35'-16 ;
319 - 145 3.87'-16
320 1 150 9.92t-17 E
358 ? 157 9.92'-17 }
373 E 162 1.65'-17 !
384 § 167 1.02%-17 !
Lol | 17h 9.951-18 ;
bl 179 6.020-n3 |
436 184 5.89'-23

_ Lel 191 5.89'-23

L—'h36 166 5.891-23

13 -~ e

-

e — —
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Table 7.5: Chebyquad
n =2 n =
fr“f ny S00) r—;f. | s lr £(x)
| —f“— —t — }
1 ‘ 0 1.98t-1 1L: O 7.121-2
4 4.530-3 17 b 6] L2
22 8 1.89'-8 ; 27 f 11 ‘ 1.59¢-3
51 12 | 7.89'-20 38 . 16 4 1.00'-4
ks 17 4 .89 -24 i 5k . 22 i 4. 2217
3 22 | h.Byr-2k €y 1 o1 | 1.86'-8
) “ LT i 2 | 7.89'-11
E = (0.2113249, 0.7886751) 87 } 38 | 7.750-14
98 l W3 1.881-16
ET - (0.1026728, 0.4062037,
0.5937963, 0.8973272)
n==6 n = 6 (continued)
fog | n [ 200 e
| ; - L 2
F 1 0 { WA r-l‘il ] 58| 2.14'-5
o3 8 2.35010 ' 1&5! 65 | 1.14'-5
B 15 1.80'-2 | E 159% T2 2.71'-6
A 22 1.21'-2 | i 181 l 80 1.131-7
66 1 29  5.69'-3 | 195 8 €.59'-10
31 : 36 i 2.07'-3 ; 209 9l 1.38'-10
103 Ly 9.891-5 | 223 | 101 7000413
(BT s B 08y sy
QT = (0.066877, 0.2887L1, 0.366682, 0.633318, 0.711259, 0.933123)
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Table 7.5 continued

DLl

n, ; n ! £(x) | [ n, ! n, ; £(x) ?
1 o o.058éi76982859 i :b“208 92 oooa§2699687h7 :
29 , 10 ' 0.017112h413073 , 206 101 . 0.0035191502kok |
b7 ; 19  0.010913181597h il o ' 0.0035180637576 :
65 ( 28 0.0102860269896 262 | 119 | 0.0035176364629 |
83 , 37+ 0.0093337335931 | 280 | 128 ; 0.00351719645k41
100 | 46 0.0072908595069 | l 508 | 138 | 1EL00p LSBT
125 : 55 0.0049952481593 326 | 147 4 0.0035168757890
1k | 64k 0.00L4L32513L463 3hs5 ! 156 |  0.0035168737290
we | | oameanzs || 36 | 6 | ocomenen
190 83 ! 0.0035390722159

e ittt o g i i PO, i el B i 20 et s o A

ﬁT = (0.043153, 0.193091, 0.266329, 0.500000, 0.500000, 0.733671,

0.806910, 0.956847)
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1.7
Diagram 7.1: Rosenbrock

Key: B: Our method,
D: The method of Davies, Swann and Campey,
as given by Fletcher (1965),
P: Powell's (1964) method, as given by Fletcher (1965),
S: Stesart's method, as given by Stewart (1967).

og,, (£(x) - (1))

=g
l

L B
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Diagrar 7.2: Helix

Key: B: Our method,
D: The method of Davies, Swann and Campey, as given
by Fletcher (1965),
P: Powell's (1964) method, as given by Fletcher (1965),
S: Stewart's method, as given by Stewart (1967).
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Diagram 7.3:

Singular (Powell's function of four variables)

Key:

B:

Our method,

The method of Davies, Swann and Campey, as

given by Fletcher (1965),

Powell's (1964) method, as given by Fleicher (1965),
Stewart's method, as given by Stewar: (1967).

e

oy TN N




Key: B: Our method,

D: The method of Davies, Swann and Campey, as given
by Fletcher (1965),

Powell's (1964) method, as given by Fletcher (1965),
S: Stewart's method, as given by Stewart (1967).

b = log, (£(x) - £(p))
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Diagram 7.5: Chebyquad, n = L4
Key: B: Our method,
D:

P:
S.

The method of Davies, Swann and Campey, as given

by Fletcher (1965),

Powell's (1964) method, as given by Fletcher (1965),
Stewart's method, as given by Stewart (1967).

B = log, (£(x) - £(k))

\
\ 2

£
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7.7

Diagram 7.7: Chebyquad, n =8

(Results for Stewart's method not available.)

Key: B: Our method,

D: The method of Davies, Swann and Campey, as given
by Fletcher (1965),

i P: Powell's (1964) method, as given by Fletcher (1965).

b = log,,(£(x) - £(u))

-8t P
10 2o o 40 500  ny
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8. Conclusion

Powell (196k4) observes that, with his determinantal criteiion for
accepting new search directions (see Section 3), there is a tendency for
the new directions to be accepted less often as the number of variables
increases, and the quadratic convergence property of his basic procedure
is lost. Our aim was to avoid this difficulty, keep the quadratic
convergence property, and ensure that the search directions continue to
span the whole space, while using basically the same method as Powell
(and Smith (1962)) to generate conjugate directions.

The numerical results given in Section 7 suggest that our algorithm
is faster than Powell's, and comparable to Stewart's, if the criterion
is the number of function evaluations required to reduce f(f) to a
certain threshold. Also, our algorithm seems to be reliable ever for
very ill-conditioned problems like Watson (n = 9) and Hilbert (n = 10) ,
while Stewart's method breaks down because of numerical difficulties on
some functions, e.g., the Rosenbrock and Singular functions (see
Stewart (1967)). However, we should not try to conclude too much from

the numerical results: see the warning in Section 7.

Theoretical convergence results

Suppose that all arithmetic is exact (i.e., there are no rounding
errors), and consider our algorithm with the stopping criterion removed.
Since the algoritﬁm keeps on performing linear searches along n
orthogonal directions, the same conditions that ensure convergence of
the method of coordinate search to a local minimum will ensure convergence

of our algorithm. In particular, the algorithm will converge to the
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5
(unique) minimum for all functions f which are C° , strictly convex,

and satisfy

Jim f()\e) =+ o (8.1)
Ao -

for 211 noazero vectors e . Of course, this result is of little
practical interest, for in practice rounding errors may be very
important: see Section 5.

It is plausible that, if the Hessian matrix of f is strictly
positive definite at the miniwmum, then our algorithm will converge
superlinearly. McCormick (1G69) shows that this is true for the reset
Davidon-Fletcher-Powell algorithm, provided a Lipschitz condition is
satisfied. Figures 7.1, 7.2, and 7.4 to 7.7 certainly suggest that
convergence is superlinear until rounding errors become important. We
do not have a proof of this conjecture though: perhaps additional
conditions on f , or a slight modification of the algorithm, are

necessary.

9. An ALGOL W procedure and test prograu

The procedure praxis, plus a driver program and test functiocns,
is given below. The language is ALGOL W (Wirth and Hoare (1966),
Bauer, Becker and Graham (1968)), but none of the special features
of ALGOL W have been used, so translation into another dialect of

AIGOL should be straightforward.
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BEGIN COMMENT:
TEST PROGRAM FOR PROCEDURE PRAXIS.

ERREARAARERERAERNRERR AR NSO NAR R AN S

LONG REAL PROCEDURE PRAX!S (LONG REAL VALUE T, MACHEPS, H;
INTEGER VALUE N, PRIN;
LONG REAL ARRAY X(#); LONG REAL PROCEDURE F, RANDCM);
BEGIN COMMENT:

TH!S PROCEDURE MINIMIZES THE FUNCTION F(X, N) OF N
VARIABLES X(1), ... X(N), USING THE PRINCIPAL AXIS METHOD.
ON ENTRY X HOLDS A GUESS, ON RETURN IT HOLDS THE ESTIMATED
POINT OF MINIMUM, WITH (HOPEFULLY) |ERROR| <
SQRT(MACHEPS)*|X| + T, WHERE MACHEPS 1S THE MACHINE
PRECISION, THE SMALLEST NUMBER SUCH THAT 1 + MACHEPS > 1.
T IS A TOLERANCE, AND |.| IS THE 2-NORM. H IS THE MAXIMUM

STEP SIZE: SET WO ABOUT THE MAXIMUM EXPECTED DISTANCE FROM

THE GUESS TO THE MINIMUM (IF H IS SET TOO SMALL OR 20

LARGE THEN THE INITIAL RATE OF CONVERGENCE WILL BE SLOW).
THE USER SHOULD OBSERVE THE COMMENT ON HEURISTIC NUMBERS

AFTER PROCEDURE QUAD.
PRIN CONTROLS THE PRINTING OF INTERMEDIATE RESULTS.

IF PRIN = 0, NO RESULTS ARE PRINTED.

IF PRIN = 1, F IS PRINTED AFTER EVERY N+1 OR N+2 LINEAR
MINIMIZATIONS, AND FINAL X IS PRINTED, BUT INTERMEDIATE
X CNLY IF N <= 4,

IF PRIN = 2, EIGENVALUES OF A AND SCALE FACTORS ARE ALSO
PRINTED.

IF PRIN = 3, F AND X ARE PRINTED AFTER EVERY FEW LINEAR
MINIMIZATIONS.

IF PRIN = 4, EIGENVECTORS ARE ALSO PRINTED.
FMIN IS A GLOBAL VARIABLE: SEE PROCEDURE PRINT.

RANDOM IS A PARAMETERLESS LONG REAL PROCEDURE WHICH RETURNS

A RANDOM NUMBER UNIFORMLY DISTRIBUTED !N (0, 1). ANY
INITIALIZATION MUST BE DONE BEFORE THE CALL TO PRAXIS.

THE PROCEDURE IS MACHINE-INDEPENDENT, APART FROM THE OUTPUT
STATEMENTS AND THE SPECIFICATION OF MACHEPS. WE ASSUME THAT
MACHEPS#+(-4) DOES NOT OVERFLOW (IF IT DOES THEN MACHEPS MUST

BE INCREASED), AND THAT ON FLOATING-POINT UNDERFLOW THE
RESULT IS SET TO ZERO;

PROCEDURE MINFIT (INTEGER VALUE N; LONG REAL VALUE EPS, TOL;

LONG REAL ARRAY AB(»,+); LONG REAL ARRAY Q(#));

BEGIN COMMENT: AN IMPROVED VERSION OF MINFIT, SEE GOLUB &
REINSCH (1969), RESTRICTED TO M = N, P = 0.

THE SINGULAR VALUES OF THE ARRAY AB ARE

RETURNED IN qQ, AND AB 1S OVERWRITTEN WITH

THE ORTHOGONAL MATRIX V SUCH THAT

U.DIAG(Q) = AB.V,

WHERE U 1S ANOTHER ORTHOGONAL MATRIX;
INTEGER L, KT;
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LONG REAL C,F,G,H,S,X,Y,Z;
LONG REAL ARRAY E(1::N):
COMMENT: HOUSEHOLDER'S REDUCTION TO BIDIAGONAL FORM;
G := X := C;
FOR | = 1 UNTIL N DO
BEGIN
E(1) :=G; S := 0; L := [+]1;
FOR J := | UNTIL N DO S := S+AB(J;)#x2;
IF SCTOL THEN G := 0 ELSE
BEGIN
F ¢:= AB(1,1,; G := |IF F<O0 THEN LONGSQRT(S)
ELSE -LONGSQRT(S);
H := F«G-S; AB(i,1) := F-G;
FOR J := L UNTIL N DO
BEGIN F := 0;
FOR K := | UNTIL N DO F := F + AB(K,!)«AB(K,J);
F := F/H;

FOR K := | UNTIL N DO AB(K,J) := AB(K,J) + F+*AB(K,I)

END J
END S;
Q(l) :=G; S := 0;
IF 1<=N THEN FOR J := L UNTIL N DO
S := S + AB(|,J)*=2;
IF SCTOL THEN G := 0 ELSE
BEGIN
F ¢= AB(1,1+1);: G := IF FCO THEN LONGSQRT{S)
ELSE -LONGSQRT(S);
H := F+«G=-S; AB(l,1+1) := F-G;
FOR J ¢= L UNTIL N DO E(J) := AB(I1,J)/H;
FOR J := L UNTIL N DO
BEGIN S := 0; :
FOR K := L UNTIL NDO S := S + AB(J,K)*AB(!,K);
FOR K := L UNTIL N DO AB(J,K) := AB(J,K) + S+*E(K)
END J
END S;
Y ¢:= ABS(Q(1)) + ABS(E(!)); [F Y >X THEN X := Y
END I

COMMENT: ACCUMULATION OF RIGHT-HAND TRANSFORMATIONS;
FOR | := N STEP -1 UNTIL 1 DO
BEGIN .
IF G™=0 THEN.
BEGIN
H := AB(I,1+1)+G;
FOR J t= L UNTIL N DO AB(J, 1) := AB(1,J)/H;
FOR J := L UNTIL N DO
BEGIN S := 0;
FOR K := L UNTIL N DO S := S + AB(I,K)*AB(K,J);

FOR K := L UNTIL N DO AB(K,J) := AB(K,J) + S+*AB(K,!)

END J
END G
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FOR J := L UNTIL N DO AB(1,J) := AB(J,1) := O;
AB(1,1) 2= 1; G := E(1); L :=1
END I

COMMENT: DIAGONAL!ZATION OF THE BIDIAGONAL FORM;
EPS := EPS=*X;
FOR K := N STEP -1 UNTIL 1 DO
BEGIN KT := 0;
TESTFSPLITTING:
KT := KT + 1; |IF KT > 30 THEN
BEGIN E(K) := OL;
WRITE (''"QR FAILED")
END;
FOR L2 := K STEP -1 UNTIL 1 DO
BECIN
L := L2;
IF ABS(E(L))<=EPS THEN GOTO TESTFCONVERGENCE;
{F ABS(Q(L=-1))<=EPS THEN GOTO CANCELLATION
END L2;

COMMENT: CANCELLATION OF E(L) IF L>1;
CANCELLATION:
Ce=s 0; S = 1;
FOR | := L UNTIL K DO
BEGIN
F := S«E(1); E(1) := Ce«E(1);
IF ABS(F)<=EPS THEN uOTO TESTFCONVERGENCE;
G ¢:= QCt1); QCt) :=H := IF ABS(F) < ABS(G) THEN
ABS(G)*LONGSQRT(1 + (F/G)##»2) ELSE IF F ™= 0 THEN
ABS(F)*LONGSQRT(1 + (G/F)»=2) ELSE 0;
IFH=20 THEN G := H := 1;
COMMENT: THE ABOVE REPLACES Q(1):=H:=LONGSQRT(G*G+F«F)
: WHICH MAY GIVE INCORRECT RESULTS IF THE
SQUARES UNDERFLOW OR IF F = G = 0;
C := G/H; S := -F/H
END I;

TESTFCONVERGENCE :
Z := Q(K); |IF L=K THEN GOTO CONVERGENCE;

COMMENT: SHIFT FROM BOTTOM 2«2 MINOR;
X :=Q(L); Y := Q(K-1); G := E(K=1); H := E(K);
= ((Y=Z)*(Y+Z) ¢+ (G-H)*(G+H))/ (2+H*Y);
:= LONGSQRT(F+F+1);
t= ((X=Z)*(X+Z)+H*(Y/(IF FCO THEN F-G ELSE F+G)-H))/X;

F
G
F
COMMENT: NEXT QR TRANSFORMATION;
C:=§ :=1;

F

OR | ¢= L+1 UNTIL K DO
BEGIN
G := E(1); Y :=Q(1); H := S=G; G := G*C;
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E(1-1) := Z := |F ABS(F) < ABS(H) THEN
ABS(H)*LONGSQRT(1 + (F/H)*+2) ELSE IF F "= 0 THEN
ABS(F)*LONGSQRT(1 + (H/F)*#*2) ELSE 0;

IF Z
C :=
F :=
Y o=

= 0 THEN Z := F := 1;

F/Z:; S := H/Z;

X#C + G#S; G := =-X*S +G*C; H := Y=S;
YxG:

FOR J := 1 UNTIL N DO
BEGIN

>

= AB(J,1-1); Z := AB(J,I);

AB(J,1-1) := X*C + Z*S; AB(J,!) := ~X#S + Z«l
END J;
Q(l1-1) ¢= Z := IF ABS(F) < ABS(H) THEN ABS(H)+
LONGSQRT(1 + (F/H)*#2) ELSE IF F ™= 0 THEN
ABS{F)*LONGSQRT(1 + (H/F)*+2) ELSE O0;

IF Z
C :=

2 0 THEN Z := F := 1;
F/Z; S := H/Z;

F ¢:= CeG + S*2Y; X := ~S«G + C»Y

END 1

.
4

E(L) := 0; E(K) := F; Q(K) := X;
30 TO TESTFSPLITTING;

CONVERGENCE:
IF Z<0 THEN
BEGIN COMMENT: 07K) IS MADE NON-NEG;

Q(K)
FOR J

END Z

END K

1= =1;

¢= 1 UNTIL N DO AB(J,K) := -AB(J,K)

END MINFIT;

PROCEDURE SCRT;
BEGIN COMMENT: SORTS THE ELEMENTS OF D AND CORRESPONDING

COLUMNS OF V INTO DESCENDING ORDER;

INTEGER K;
LONG REAL S;
FOR | := 1 UNTIL N - 1 DO

BEGIN K

IF D(J)
BEGIN

IF K >

¢t= |; S :=D(1); FOR J := | + 1 UNTIL N DO
> S THEN

K :=J; S := D(J) END;

| THEN

BEGIN D(K) := D(1); D(l) :=S; FOR J := 1 UNTIL N DO

BEG
END
END
END
END SORT;

INS = V(J,I1); VWJ,I) := V(J,K); V(J,K) := S

PROCEDURE PRINT;

COMMENT:

THE VARIABLE FMIN IS GLOBAL, AND ESTIMATES THE
VALUE OF F AT THE MINIMUM: USED ONLY FOR '
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PRINTING LOG(FX - FMIN);
IF PRIN > 0 THEN
BEGIN INTEGER SVINT; SVINT := INTFIELDSIZE;
INTFIELDSIZE := 10;
WRITE (NL, NF, FX);
COMMENT: IF THE NEXT TWO LINES ARE OMITTED THEN FMIN IS
NOT REQUIRED;
IF FX <= FMIN THEN WRITEON (" UNDEFINED ") ELSE
WRITEON (ROUNDTOREAL (LONGLOG (FX = FMIN)));
COMMENT: "iOCONTROL(2)'" MOVES TO THE NEXT LINE;
iF N > 4 THEN I10CONTROL(2);
iF (N <= 4) OR (PRIN > 2) THEN
FOR | := 1 UNTIL N DO WRITEON(ROUNDTOREAL(X(1)));
IOCONTROL(2); INTFIELDSIZE := SVINT
END PRINT;

PROCEDURE MATPRINT (STRING(80) VALUE S; LONG REAL ARRAY

V(e,«):; INTEGER VALUE M, N);
BEGIN COMMENT: PRINTS M X N MATRIX V COLUMN BY COLUMN;
WRITE (S);
FOR K := 1 UNTIL (N + 7) DIV 8 DO
BEGIN FOR I := 1 UNTIL M DO
BEGIN IOCONTROL(2);
FOR J := 8#K = 7 UNTIL (IF N < (8#K) THEN N ELSE 8#K)
DO WRITEON (ROUNDTOREAL (V (1,4)))
END;
WRITE (" "), IOCONTROL(2)
END
END MATPRINT;

PROCEDURE VECPRINT (STRING(32) VALUE S; LONG REAL ARRAY V(r);

INTEGER VALUE N);
BEGIN COMMENT: PRINTS THE HEADING S AND N-VECTOR V;

WRITE(S);
FOR | := 1 UNTIL N DO WRITEON(ROUNDTOREAL(V(L!)))

END VECPRINT;

PROCEDURE MIN (INTEGER YALUE J, NITS; LONG REAL VALUE

RESULT D2, X1; LONG rEAL VALUE F1; BOOLEAN VALUE FK);
BEGIN COMMENT:
MINIMIZES F FROM X IN THE DIRECTION V(*,J)
UNLESS J<1, WHEN A QUADRATIC SEARCH IS DONE
IN THE PLANE DEFINED BY Q0, Q1 AND X.
D2 AN APPROXIMATION TO HALF F'' (OR ZERO),
X1 AN ESTIMATE OF DISTANCE TO MININUM,
RETURNED AS THE DISTANCE FOUND.
IF FK = TRUE THEN F1 1S FLIN(X1), OTHERWISE
X1 AND F1 ARE [GNORED ON ENTRY UNLESS FINAL
FX > F1. NITS CONTROLS THE NUMBER OF TIMES
AN ATTEMPT IS MADE TO HALVE THE INTERVAL.
SIDE EFFECTS: USES AND ALTERS X, FX, NF, NL.
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IF J < 1 USES VARIABLES Q... .
USES H, N, T, M2, M4, LDT, DMIN, MACHEPS;

LONG REAL PROCEDURE FLIN (LONG RE..L VALUE L);
COMMENT: THE FUNCTION OF ONE VARIABLE L WHICH IS
MiINIMIZED BY PROCEDURE M!N;

BEGIN LONG REAL ARRAY T(1::N);

IF J > 0 THEN
BEGIN COMMENT: LINEAR SEARCH;
FOR I := 1 UNTIL N DO T(1) := X(1) + L+v(1,J)
END

ELSE
BEGIN COMMENT: SEARCH ALONG A PARABOL!C SPACE-CURVE;
QA := L+(L - QDi)/(QDO+¢QDO0 + QD1));
QB := (L + QD0)+(QD1 - L)/(QD0+QD1);
QC := L+«(L + QDO)/(QD1+(QDG + QN1));
FOR | := 1 UNTIL N DO T(!1) := NA=QO0()1)+QB«X(1)+QCT+Ql1(1)
END;

COMMENT: INCREMENT FUNCTION EVALUATION COUNTER;

NF := NF + 1;

F(T, N)

END FLIN;

INTEGER K; BOOLEAN DZ;
LONG REAL Xz, XM, FO, F2, FM, D1, T2, S, SF1l, SX1;
SF1l := F1; SX1 := X1;
K ¢= 0; XM := 0; FO := FM := FX; DZ := (D2 < MACHEPS);
COMMENT: FIND STEP SIZE;
S ¢= 0; FOR I := 1 UNTIL NDO S := S + X(1)w=2;
S := LONGSQRT(S);
T2:= M4«LONGSQRT(ABS(FX)/(IF DZ THEN DMIN ELSE D2)
+ S*LDT) + M2+«LDT;
S := My=S + T;
IF DZ AND (T2 > S) THEN T2 := S;
IF T2 < SMALL THEN T2 := SMALL;
IF T2 > (0.01+«H) THEN T2 := 0.01+H;
IF FK AND (Fl <= FM) THEN BEGIN XM := X1; FM := F1 END;
IF FK OR (ABS(X1l) < T2) THEN
BEGIN X1 := IF X1 >= OL THEN T2 ELSE -T2;
F1 := FLIN(X1)
END; :
IF F1 <= FM THEN BEGIN XM := X1; FM := Fl1 END;
LO: IF DZ THEN
BEGIN COMMENT: EVALUATE FLIN AT ANOTHER POINT AND
ESTIMATE THE SECOND DERIVATIVE;
X2 := IF FO ¢ F1 THEN -X1 ELSE 2«X1; F2 := FLIN(X2);
IF F2 <= FM THEN BEGIN XM := X2; FM := F2 END;
D2 := (X2#(F1 - FO) ~ X1#(F2 - FO))/(X1=2X2#(X1 - X2))
END;
COMME!'T: ESTIMATE FIRST DERIVATIVE AT O0;
D1 := (F1 - FO)/X1 - X1+D2; ©DZ := TRUE;
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COMMENT: PREDICT MINIMUM;
A2 := |F D2 <= SMALL THEN (IF D1 ¢ 0 THEN H ELSE -H) ELSE
-0.5L.+D1/D2;
IF ABS(X2) > H THEN X2 := IF X2 > 0 THEN H ELSE -H;
COMMENT: EVALUATE F AT THE PREDICTED MINIMUM;
Ll: F2 := FLIN(X2);
IF (K ¢ NITS) AND (F2 > FO) THEN
BEGIN COMMENT: NO SUCCESS SO TRY AGAIN; K := K + 1;
IF (FO < F1) AND ((Xxi«X2) > 0) THEN GO TO LO;
X2 := 0.5L+X2; GO TO L1
END;
COMMENT: INCREMENT ONE-DIMENSIONAL SEARCH COUNTER;
NL := NL + 1;
IF F2 > FM THEN X2 := XM ELSE FM := F2;
COMMENT: GET NEW ESTIMATE OF SECOND DERIVATIVE;
D2 := IF ABS(X2#(X2 - 1)) > SMALL THEN
(X2+(F1 - FO) - X1#(FM - F0))/(X1«X2#(X1 - X2))
ELSE IF K > 0 THEN O ELSE D2;
IF D2 (= SMALL THEN D2 := SMALL;
‘X1 = X2; FX := FM;
IF SF1 < FX THEN BEGIN FX := SF1; X1 := SX1 END;
COMMENT: UPDATE X FOR LINEAR SEARCH BUT NOT FOR PARABOLIC
PARABOLIC SEARCH;

IF J > 0 THEN FOR | := 1 UNTIL N DO X(1) == X(1) + X1=V(1,J)

END MIN;

PROCEDURE QUAD;
BEGIN COMMENT: LOOKS FOR THE MINIMUM ALONG A CURVE
DEFINED BY QO0, Q1 AND X;
LONG REAL L, S;
S := FX; FX := QF1; QF1l := S; QD1 := O;
FOR | := 1 UNTIL N DO
BEGIN S := X(1);, X(1) := L := Ql(l); Q1(1) :=S;
QD1 := QD1 + (S - L)==»2
END;
L ¢= QD1 := LONGSQRT(QD1l); S := 0;
IF (QDO0 > 0) AND (QD1 > 0) AND (NL >= ‘3«N«N)) THEN
BEGIN MIN (0, 2, S, L, QF1, TRUE);
QA := L«(L - QD1)/(QDO*(QDO0 + QD1));
QB := (L + QDO)+~(QD1 - L)/(QD0O+QD1);
QC := L»(L + QDO)/(QD1+(QDC + QD1))
END
ELSE BEGIN FX := QF1; QA := QB := 0; QC := 1 END;
100 := QD1; FOR | := 1 UNTIL N DO
BEGIN S := QO0(l); QO(C1) := X(I);
X(1) := QA*S + QB#X(I1) + QC»Ql(1)
END
END QUAD;

BOOLEAN ILLC;
INTEGER NL, NF, KL, KT, KTM;
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LONG REAL S, SL, DN, DMIN, FX, F1, LDS, LDT, SF, DF,
QFl, Qbo, QDl, QA, QB, QC,

M2, M4, SMALL, VSMALL, LARGE, VLARGE, SCBD, LDFAC, T2;
LONG REAL ARRAY D, Y, Z, QO0, Q1 (1::N);

LONG REAL ARRAY V (1l::N, 1::N);

COMMENT: INITIALIZATION;

COMMENT: MACHINE DEPENDENT NUMBERS;

SMALL := MACHEPS##2; VSMALL := SMALL#*#*2;
LARGE := 1L/SMALL; VLARGE := 1L/VSMALL;

M2 := LONGSQRT(MACHEPS); Mu4 := LONGSQRT(M2);

COMMENT: HEURISTIC NUMBERS

(2222222 R2E 2 X2E 2 2

IF AXES MAY BE BADLY SCALED (WHICH IS TO BE AVOIDED IF
POSSIBLE) THEN SET SCBD := 10, OTHERWISE 1.

IF THE PROBLEM IS KNOWN TO BE ILLCONDITIONED SET
ILLC := TRUE, OTHERWISE FALSE.

KTM+1 1S THE NUMBER OF ITERATIONS WITHOUT IMPROVEMENT BEFORE
THE ALGORITHM TERMINATES (SEE SECTION 6). KTM = 4 IS VERY
CAUTIOUS: USUALLY KTM = 1 IS SATISFACTORY;

SCBD := 1; |ILLC := FALSE; KTm := 1;

LDFAC := IF ILLC THEN 0.1 ELSE 0.01;

KT ¢= NL := 0; NF :=1; QF1 := FX := F(X,N);

T ¢= T2 := SMALL + ABS(T); DMIN := SMALL;

IF H < (100#T) THEN H := 1J0+T; LDT := H;

FOR | := 1 UNTIL N DO FOR J := 1 UNTIL N DO

V(1,J) := IF | = J THEN 1L ELSE OL;

D(1) := QDO := 0; FOR | := 1 UNTIL N DO Ql1(1)} := X(1);
PRINT;

COMMENT: MAIN LOOP;
LO: SF = D(1); D(l) := S := 0;
COMMENT: MINIMIZE ALONG FIRST DIRECTIONM;
MIN (1, 2, D(1), S, FX, FALSE);
IF S <= 0 THEN FOR | := 1 UNTIL N DO V(1,1) := =V(I1,1);
IF (SF <= (0.9+D(1))) OR ((0.9+SF) >= D(1)) THEN
FOR | := 2 UNTIL N DO D(Il) := 0;
FOR K := 2 UNTIL N DC
BEGIN FOR | := 1 UNTIL N DO Y(1) := X(I} SF := FX;
ILLC := JLLC OR (KT > 0);
L1: KL := K; DOF := 0; IF 1LLC THEN
BEGIN COMMENT: RANDOM STEP TO GET OFF RESOLUTION VALLEY;
FOR | := 1 UNTIL N DO
BEGIN S := Z(l) := (0.1+LDT ¢ T2«10#+«KT)+(RANDOM-0.5L);
COMMENT: PRAXIS ASSUMES THAT RANDOM RETURNS A RANDOM
NUMBER UNIFORMLY DISTRIBUTED IN (0, 1) AND
THAT ANY INITIALIZATION OF THE RANDOM NUMBER
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GENERATOR HAS ALRIADY BELEN DONE;
FOR ¢ = ] UNTIL N DO X(J) = X(J) ¢ Se¥(J, 1)

X
FX & FAX, W), NF :» Nf + ]
EHD
FOR K2 i7 K UNTIL N DO
BEGIN SL :7 FX; § 35 ¢;
COMAENT :  MINIBIZE ALONG “HON-CONJUGATE® 01 RECTIONS;
WiN (K2, 2, BAKZ), 5, FX, FALSE);
S & IF HLLC THEN DUK2)#(S ¢ 1(K2))#s2 ELSE Si - FX;
IF OF K § THEN
BEGIN OF :# 5; KL 5 K2
END
i ;
JF ~ILLC AND (DF < ABS(1QQsMACHEPS#EX)) THEN
BEGIN COMMENT: NO SUCCESS ILLC = FALSE SO TRY OHCE
WITH JLLC = TRUE;
ébsc i# TRUE; GO TO 1.}
Wi
IF (K ® 2) AND (RRIH > 1) THEM YECPRINT ("NEW D", D, N);
FOR K2 §# L WNTIL K - 1 DO
BEGIN COIMENT: MINIMIZE ALONG "CONJUGATE” DIRECTIONS;
gués d; MIN (K2, 2, DLK2), S, FX, FALSE)
j
FL 2= FX; FX 3% &F; LRSS ;5 0,
FOR | = L UNTIL W DO

BEGIN SL o XL1); XCI) = YUI); SL s= Y(I) 5= SL - Y(I);

LRS s» LD§ ¢ §LwSi
- ENR;
LOS = LONGSQRT(LNS); IF LBS ) SMALL THEN
REGIN COMMENT; THRQW AWAY DIRECTION KL AND MINIMILE
ALQNG THE NEW "CONJUGATE" DIRECTION;

FOR | i® KL - 1 STEP -1 UNTIL K DO
BEGIN FOR J t» L UNTIL N DO V(J, 1 + 1) t= V(d,1);
AL v 1) = L)
END
DEK) 5= 0; FOR 1 1o 1 UNTIL N DO V(I,K) 1= Y(1)/LDS;
MIN (K, 4, D(K), LDS, F1, TRUE);
IF LRS <= 0 THER
BERIN LD§ ;5 -LN§; |
FOR | &5 1 UNTIL N DO V(I,K) &= =V(I,K)
END
END ; |
LNT 15 LOFACLDT; IF LDT < LPS THEN LDT ¢= LDS;
PRINT;

T2 12 0; FOR | s 1 UNTIL N DO T2 3= T2 ¢ X(1)ws2,

T3 &= MISLONCSART(T2) ¢ T;

COMMENT: SEE (F STEPRP LENGTH EXCEEDS HALF THE TOLERANCE)
KT 4= |F LDT > (0,6e72) THEN O ELSE KT ¢ 1y

IF KT 2> KTM THEN GO TO L2

END;
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CCMMENT: TRY QUADRATIC EXTRAPOLATION IN CASE WE ARE STUCK
"~ IN A CURVED VALLEY;
QUAD; :
DN := 0; FOR | := 1 UNTIL N DO
BEGIN D(1) := 1/LONGSQRT(D(1));
IF DN < D(1) THEN DN := D(I)
END;
IF PRIN > 3 THEN MATPRINT ("NEW DIRECTIONS", V, N, N);
FOR J := 1 UNTIL N DO
BEGIN S := D(J)/DN;
FOR I := 1 UNTIL N DO V(I,J) := S»V(I1,J)
END;
IF SCBD > 1 THEN
BEGIN COMMENT: SCALE AXES TO TRY TO REDUCE CONDITION
NUMBER;
S := VLARGE; FOR | := 1 UNTIL N DO

BEGIN SL := 0; FOR J := 1 UNTIL N DO SL := SL+V(I,J)w*w2;

Z(1) := LONGSQRT(SL);
IF Z(1) < M4 THEN Z(1) :=M4; IF S > Z(1l) THEN S := Z(
END;
FOR | := 1 UNTIL N DO
BEGIN SL := S/Z(1); Z(t) := 1/SL; IF Z(1) > SCBD THEN
BEGIN SL := 1/SCBD; 2(!) := SCBD

END;
FOR J := 1 UNTIL N DO V(I,Jd) = SL=V(I,J)
END
END;
COMMENT: TRANSPOSE V FOR MINFIT; :
FOR | = 2 UNTIL N DO FOR J := 1 UNTIL I - 1 DO

BEGIN S := V(I,J); V(1,J) :=V(J,1); V(@J,I1) := S END;
COMMENT : FIND_THE SINGULAR VALUE DECOMPOSITION OF V.- THIS
GIVES THE EIGENVALUES AND PRINCIPAL AXES OF THE
APPROXIMATING QUADRATIC FORM WITHOUT SQUARING THE
CONDITION NUMBER;
MINFIT (N, MACHEPS, VSMALL, v, D);
IF SCBD > 1 THEN .
BEGIN COMMENT: UNSCALING; FOR ) := 1 UNTIL N DO
BEGIN S := Z(1);
FOR J t= 1 UNTIL N DO V(1,J) := S«V(I,J)
END;
FOR | := 1 UNTIL N DO

1)

BEGIN S := 0; FOR J := 1 UNTILNDO S :=S + V(J,|)#=2;

S := LONGSQRT(S); D(1) := S+D(1); S := 1/S;-
FOR J := 1 UNTIL N DO V(J,1) := S*V(J,1)
END
END;
FOR | := 1 UNTIL N DO
BEGIN D(1) := IF (DN«D(1)) > LARGE THEN VSMALL ELSE

IF (DN#D(i)) < SMALL THEN VLARGE ELSE (DN#D(1))##(-2)

END;
, COMME&T: SORT NEW EIGENVALUES AND EIGENVECTORS;
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SORT;

DMIN := D(N); 1IF DMIN < SMALL THEN DMIN := SMALL;

ILLC ¢= (M2+D(1)) > DMIN;

IF (PRIN > 1) AND (SCBD > 1) THEN

VECPRINT ("SCALE FACTORS", Z, N);

IF PRIN > 1 THEN VECPRINT ("EIGENVAIUES OF A", D, N);

IF PRIN > 3 THEN MATPRINT ("EIGENVECTORS OF A", Vv, N, N);
COMMENT: GO BACK TO MAIN LOOP;

GO TO LO;
L2: IF PRIN > 0 THEN VECPRINT ("X IS", X, N);
FX

END PRAXIS;

COMMENT: RANDOM NUMBER GENERATOR

A2 22 22X 222222222 22 2 2/

PROCEDURE RANDOM RETURNS A LONG REAL RANDOM NUMBER UNIFORMLY
DISTRIBUTED IN (0,1) (INCLUDING 0 BUT NOT 1).

RANINIT(R) WITH R ANY INTEGER MUST BE CALLED FCR
INITIALIZATION BEFORE THE FIRST CALL TO RANDOM, AND THE
DECLARATIONS OF RAN1, RAN2 AND RAN3 MUST BE GLOBAL.

THE ALGORITHM RETURNS X(N)/2#+56, WHERE

X(N) = X(N-1) + X(N-127) (MOD 2#%56),
SINCE 1 + X + X«%127 IS PRIMITIVE (MOD 2), THE PERIOD IS AT
LEAST 2#%127 - 1 > 10w#38, SEE KNUTH (1969), PP. 26, 34, Lb4.
X(N) 1S STORED IN A LONG REAL WORD AS

RAN3 = X(N)/2##56 - 1/2, AND ALL FLOATING POINT ARITHMETIC
IS EXACT;

LONG REAL RANLl; |INTEGER RAN2; LONG REAL ARRAY RAN3 (0:5126);

PROCEDURE RANINIT (INTEGER VALUE R);
BEGIN R := ABS(R) REM 8190 + 1;
RAN2 := 127; WHILE RAN2 > 0 DO
BEGIN RAN2 := RAN2 - 1; RAN1 := -2L##55;
FOR | := 1 UNTIL 7 DO
BEGIN R := (1756*R) REM 8191;
RAN1 := (RAN1 + (R DIV 32))#(1/256);
END;
RAN3 (RAN2) := RAN1
END
END RANINIT;

LONG REAL PROCEDURE RANDOM;
BEGIN RAN2 := |F RAN2 = 0 THEN 126 ELSE RAN2 - 1;
RAN1 := RAN1 + RAN3 (RAN2);
RAN3 (RAN2) := RAN1l := |F RAN1l < OL THEN RAN1 + 0.5L
ELSE RAN1 - 0.5L;
RAN1 + 0.5L
END RANDOM;
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COMMENT: TEST FUNCTIONS

LA LA AR SR A AL LD

LONG REAL PROCEDURE ROS (LONG REAL ARRAY X(+*); INTEGER VALUE N);
COMMENT: SEE ROSENBROCK (1960);
100L*((X(2) = X(1)#»2)242) + (1L = X(1))#*+2;

LONG REAL PROCEDURE SING(LONG REAL ARRAY X(#*);INTEGER VALUE N);
COMMENT: SEE POWELL (1962);
(X{1) + 10L*X(2))##2 + SLe(X(3)-X(h))wx2 + (X(2)- 2L*X(3))**h
+ 10L*(X(1) = X(l4))wwl;

LONG REAL PROCEDURE HELIX(LONG REAL ARRAY X(=);INTEGER VALUE N);
COMMENT: SEE FLETCHER & POWELL (1 63);
BEGIN LONG REAL R, T;
R ¢= LONGSQRT (X(1)##2 + X(2)#%%2);
T := |F X(1) = 0 THEN 0.25L ELSE LONGARCTAN (X(2)/X(1))/(2L+
3.14159265358979L);
IF X(1) < 0 THEN T := T + 0,5L;
100L*((X(3) - 10L*#T)#*2 + (R =~ 1L)*#*2) + X(3)w#2
END HELIX;

LONG REAL PROCEDURE CUBE(LONG REAL ARRAY X(#);INTEGER VALUE N);
COMMENT: SEE LEON (1966);
100L*(X(2) = X(1)*#3)»e2 + (1L - X(1))##2;

LONG REAL PROCEDURE BEALE(LONG REAL ARRAY X(#);INTEGER VALUE N);
COMMENT: SEE BEALE (1958);
(1.5L = X(1)*(1L = X(2)))xw2 +
(2.25L = X(1)*(1L = X(2)*#2))%*2 +
(2.625L = X(1)*(1L - X(2)wn3))wx2;

LONG REAL PROCEDURE WATSON (LONG REAL ARRAY X(=);

INTEGER VALUE N);

COMMENT: SEE KOWALIK & OSBORNE (1968);

BEGIN LONG REAL S, T, U, Y;

S = X(1)e#2 + (X(2) = X(1)®#*2 -~ 1L)==2;

FOR | := 2 UNTIL 30 DO
BEGIN Y := (1 - 1)/29; T := X(N);
FOR J ¢= N - 1 STEP =1 UNTIL 1 DO T := X(J) + Y=*T;
U := (N - 1)«X(N);
FOR J := N = 1 STEP =1 UNTIL 2 DO U := (J - 1)=+X(J) + Y=U;
S := S + (U = T+T - 1L)**2
END;

S

END WATSON;

LONG REAL PROCEDURE CHEBYQUAD (LONG NEAL ARRAY X(w);
INTEGER VALUE N, ;
COMMENT: SEE FLETCHER (1965);
BEGIN
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LONG REAL F, DELTA, TPLUS;
BOOLEAN EVEN;
LONG REAL ARRAY Y, TI, TMINUS (1::N);

DELTA := 0OL;
FOR J := 1 UNTIL N DO
BEGIN Y(J) := 2L=X(J) - 1L;
DELTA := DELTA + Y(J);
TI(J) := Y(J); TMINUS(Y) := 1L
END;
F := DELTA==*2; EVEN := FALSE;
FOR | := 2 UNTIL N DO
BEGIN EVEN := T"EVEN; DELTA := 0OL;
FOR J := 1 UNTIL N DO
BEGIN TPLUS := 2L*Y(J)*TI(J) - TMINUS(J);
DELTA := DELTA + TPLUS;
TMINUS{J) := TI1(J);
TI(J) := TPLUS
END;
DELTA := DELTA/N - (IF EVEN THEN 1/(1 - iwl) ELSE 0);
F := F + DELTA#**2
END;
F
END CHEBYQUAD;

LONG REAL PROCEDURE POWELL (LONG REAL ARRAY X(*);
INTEGER VALUE N);
COMMENT: SEE POWELL (1964);
3L = 1L/(1IL + (X(1) = X(2))»*2) -
LONGSIN(O0.5L#3,14159265358979L+X(2)» X(3))-(IF X(2) = 0 THEN
OL ELSE LONGEXP(=-((X(1)+X(3))/X(2) - 2L)**2));

LONG REAL PROCEDURE WOOD(LONG REAL ARRAY X(*);INTEGER VALUE N);
COMMENT: SEE MCCORMICK & PEARSON (1969) OR COLVILLE (1968);
100L*(X(2) - X(1)#22)#22 + (1L - X(1))#w2 + GOL*(X(4) -
X(3)##2)#w2 + (1L - X(3))**2 + 10,1L*((X(2) - 1L)**2 + (X(4)
= 1L)#**2) + 19.8L*(X(2) - 1L)*(X(4) - 1L);

LONG REAL PROCEDURE HILBERT (LONG REAL ARRAY X(=*);
INTEGER VALUE N);
COMMENT: COMPUTES XT.A.X, WHERE A IS THE N BY N HILBERT
MATRI X, SEE GREGORY & KARNEY (1969), PP. 33, 66;
BEGIN LONG REAL S, T;
S := 0L; FOR | := 1 UNTIL N DO
BEGIN T := OL; FOR J := 1 UNTIL N DO
T =T+ X(J)/(1 + 4 -1);
S =S + T=X(1)
END;
S
END HILBERT;
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LONG REAL PROCEDURE TRIDIAG (LONG REAL ARRAY X(*);
INTEGER VALUE N);
COMMENT: COMPUTES XT.A.X - 2E1T.X, WHERE N > 1,

(1-1 0 0...0)
(-1 2 -1 0...0)
(0-1 2 -1..,0)
A - (.................)
(0 ... -1 2-1)
(o ... 0 -1 2),
AND E1T = (1, O, ... , 0).

SEE GREGORY & KARNEY (1969), PP. 41, 74;
BEGIN LONG REAL §S; |
S = X(1)«(X(1) - X(2));
FOR | := 2 UNTIL N - 1 DO
S := S + X(U)«((X(1) = X(1F = 1)) + (X(1) - X(I + 1)));
S + X(N)*(2+X(N) = X(N - 1)) - 2«X(1)
END TRIDIAG;

LONG REAL PROCEDURE BOX (LOMG REAL ARRAY X(*);INTEGER VALUE N):;
COMMENT: SEE BOX (1966) OR BROWN & DENNIS (1970);
BEGIN LONG REAL P, S; .
S ¢= 0; FOR | := 1 UNTIL 10 DO
BEGIN P := -1/10;
S ¢= S + ((LONGEXP(P*X(1)) - (IF (P*X(2)) < (-40) THEN O
ELSE LONGEXP(P*X(2)))) -
X(3)*(LONGEXP(P) - LONGEXP(10#*P)))#=2
END;
S
END BOX;

COMMENT: GENERAL TESTING PROCEDURE

AR AALLE S AR S RSl l S B

PROCEDURE TEST (3TRING (80) VALUE S; LONG REAL VALUE H;

LONG REAL PROCEDURE F; INTEGER VALUE N);

BEGIN LONG REAL FMIN; INTEGER TiM;

WRITE(" "); WRITE(" "); WRITE(S);

WRITE("N =", N, " 4 =", ROUNDTOREAL(H)); WRITE(" ");

COMMENT: INITIALIZE RANDOM NUMBER GENERATOR; RANINIT(4);

COMMENT: TIME(2) RETURNS CLOCK TIME IN UNITS OF 26 MICROSEC;

TIM := TIME(2);

FMIN := PRAXIS (1'-5, 16%#«(-13), H, N, 1, X, F, RANDOM);

WRITE ("TIME (MILLISEC) =", ROUND((TIME(2) - TIM)/38.4));

WRITE(" ")

END TEST;

COMMENT: TESTING PROGRAM

LA A AR SRR AL S DS B
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LONG REAL FMIN,
COMMENT:

LAM;

LONG REAL ARRAY X(1::20);

COMMENT:

INTFIELDSIZE := 7;

X(1)
TEST

X(1)
TEST

X(1)
TEST

X(1)
TEST

X(1)
TEST

X(1)
TEST

X(1)
TEST

FMIN
TEST

X(1)
TEST

FMIN
TEST

FOR N
BEGIN FOR |

= =1.2L; X(2) := 1L;

INCREASE DIMENSIONS FOR H > 20;
INTFIELDS!ZE CONTROLS THE OUTPUT FORMAT OF INTEGERS;

FMIN := 0;

("ROSENBROCK'S FUNCTION WITH A PARABOLIC VALLEYY,b1,R0S,2);

t= X(2) := 3;
("ROSENBROCK'S FUNCTION ", 3,

= X(2) := 8;
("ROSENBROCK 'S FUNCTION", 12,

= =1; X(2) = X(3) := J;
("HELIX", 1, HELIX, 3):

t= =1,2L; X(2) := -1;
("CUBE", 1, CUBE, 2);

= X(2) := 0.1L;
("BEALE", 1, BEALE, 2);

e= 0; X(2) :=1; X(3) :=
("POWELL", 1, POWELL, 3);

N
e

s 0; X(1) := 0; X(2) :=
('BoX'", 20, BOX, 3);

s= 3L; X(2) := -1L; X(3)

10;

:= 0OL;

ROS, 2);

ROS, 2);

X(3) := 20;

X(4) := 1L;

("POWELL'S FUNCTION WITH A SINGULAR JACOBIAN",1,SING,4);

= 0; X(1) := X(3) := =-3;
("wooD'", 10, WOOD, 4);

t= 2 STEP 2 UNTIL 8 DO

X(2)

¢= 1 UNTIL N DO X(1)

t= X(4)

1= =1;

e= |/(N + 1);

FMIN := {F N < 8 THEN OL ELSE 0.0035168737256779L;
TEST (“CHEBYQUAD"Y, 0.1, CHEBYQUAD, N)
END;

FOR N
BEGIN FOR |

t= 6 STEP 3 UNTIL 9 DO

¢= 1 UNTIL N DO X(1)

c= 0,

FMIN := IF N = 6 THEN 0.00228767005355L ELSE

IF N = 9 THEN 1.399760138098"'-6L ELSE OL;
TEST ("WATSON'", 1, WATSON, N)
END;

FOR N := &,

6, 8, 10, 12, 16,
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BEGIN FOR I := 1 UNTIL N DO X(1) := OL; FMIN := =N;
TEST ("TRIDIAG", 2+N, TRIDIAG, N)
END;

FMIN := 0; FOR N := 2 STEP 2 UNTIL 12 DO
BEGIN FOR I := I UNTIL N DO X(1) := 1;
TEST ("HILBERT", 10, HILBERT, N)

END

END.

i 3 e . O Sl s
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This bibliography contains references relevant to the minimization
of nonlinear functions, and other references referred to in the text.
There is no attempt at completeness, but a large number of recent (up
to late 1970) references on unconstrained minimization have been included.
There are also some references dealing with constrained problems, with
methods for converting constrained gproblems to unconstrained problems,
and with methods for solving nonlinear equations. For a brief survey,
see Section 7.l. References on linear and quadra‘ic programming have
generally been excluded, and we have not attempted to duplicate the
large bibliographies in Jacoby, Kowalik and Pizzo (1971), Kunzi and
Oettli (1970), Lawson (1968), and Ortege and Rheinboldt (1970).

In lieu of annctations, the chapter and section numbers of references
to each entry are given in parentheses after the entry.

References which are not known to have appeared have been assigned

the year 1971. (Some may have appeared late in 1970.)
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