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ABSTRACT 

This note presents a detailed mathematical analysis of a multiple- 

antenna AMTI radar system capable of detecting moving targets over a 

significantly wider velocity range than is achievable with a single-antenna 

system.   The general system configuration and signalling strategy is 

defined, and relationships among system and signalling parameters are 

investigated.   A deterministic model for the target return and a statistical 

model for the clutter and noise returns are obtained, and an optimum pro- 

cessor for target detection is derived.   A performance measure applicable 

to a large class of processors,  including the optimum processor,  is defined 

and some of its analytical properties investigated.   It is shown that an 

easily implementable sub-optimum processor, based on two-dimensional 

spectral analysis,  performs nearly as well as the optimum processor.   The 

resolution and ambiguity properties of this sub-optimum processor are 

studied and a detailed numerical investigation of system performance is 

presented,  including a study of how performance varies with basic system 

parameters such as the number of antennas. 

Accepted for the Air Force 
Joseph R. Waterman, Lt. Col., USAF 
Chief, Lincoln Laboratory Project Office 
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A THEORY OF MULTIPLE ANTENNA AMTI RADAR 

1. Introduction 

In order for a surveillance radar to obtain reasonable resolution in both 

range and angle and also have good coverage,  it is necessary to use many range gates 

and have a Doppler processing capability for each range bin.   Even then, the wide 

spread of the clutter spectrum, along with range ambiguity considerations make it 

extremely difficult for a high speed surveillance airplane to detect moving targets 

embedded in ground clutter.   This latter difficulty may be greatly alleviated by pro- 

cessing signals from several antennas in such a way that ground clutter returns then 

are essentially cancelled.   Moving targets then may be detected even if their Doppler 

frequencies fall within the main beam clutter spectrum of the return received at each 

antenna. 

This note is devoted to a detailed mathematical exposition of the theory of such 

a multi-antenna AMTI radar.   The major goals of the analysis are the derivation of 

an optimum processor along with a quantitative evaluation of its performance, the 

formulation of an easily implementable sub-optimum processor whose performance 

is close to that of the optimum processor and the determination of a good choice of 

the system parameters such as number of antennas, antenna spacing, etc. 

These ends will be accomplished by the detailed discussions contained in the 

following sections. Section 2 contains a discussion of the basic system parameters 

and their interrelations. The signalling strategy to be used is set forth and an ele- 

mentary discussion of the basic clutter cancellation mechanism to be exploited by 



the system is included.   Section 3 continues with a precise description of the target, 

clutter and receiver noise signals that are received by the radar.   The desired target 

return is described in a deterministic fashion but the clutter and receiver noise 

returns are modelled as random effects and given a statistical description that is 

suitable to the forthcoming analysis.   Section 4 addresses the problem of how best 

to extract the desired signal from its interfering background and arrives at an opti- 

mum processor for this purpose.   A performance measure applicable to a large 

class of processors (including the optimum processor) is defined and some of its 

analytical properties investigated.   Section 5 postulates a simple sub-optimum pro- 

cessor and gives heuristic as well as mathematical reasons for expecting that this 

processor should perform almost as well as the optimum processor.   The section 

concludes with a short discussion of the resolution and ambiguity properties of the 

sub-optimum processor.   Section 6 concludes the body of the note with a detailed 

numerical investigation of the performance of the optimum and sub-optimum pro- 

cessors and provides the final justification for adopting the latter processor.   In 

addition, an investigation of various system configurations leads to what seems to 

be the best choice of the basic system parameters.   The major results obtained are 

summarized briefly in section 7 and several areas in which more work should be 

done are indicated. 



2.       Geometry and Signalling for a Multi-Antenna AMTI System 

a)       Basic System Configuration 

The purpose of this section is to establish constraints among some of the basic 

geometric and signalling parameters of an AMTI system which achieves a degree of 

clutter cancellation by processing the returns from several antennas, each of which 

has collected returns independently from the identical clutter area on the ground.   The 

parameters of such a system turn out to be so closely interrelated that (for a given 

aircraft length and velocity) a choice of the number of antennas and a parameter 

relating  the prf to the aircraft velocity and antenna spacing,   essentially determines 

the remaining   system parameters.   Hence the various performance criteria (MTI 

gain, unambiguous range interval, velocity resolution, blind speeds) need only be 

investigated for variations of these two parameters. 

The basic geometry for the problem at hand is depicted in Fig. 2. 1 where the 

aircraft is assumed to be moving with constant velocity v in the positive y direction 

at altitude h.    A linear antenna array of total length L is arranged along the length 

of the aircraft.   By appropriate excitation of the elements of the array, m, essentially 

identical synthetic antenna beams are formed which can transmit and receive independently 

at different times.   Each such antenna beam will have an effective aperture length denoted 

by a and the phase center will be equally spaced with separation d.    As indicated in 

Fig.  2. 2, a can,  if desired, be made larger than d by allowing different antennas to 

share some of the elements of the physical array.   It is apparent that 

L=(m-l)d+a (2.1) 

a relationship that is valid whether a > d or not.   The forwardmost phase center is 
i-i 

assumed to be located at the point (0, 0,h) at t=0 which means that the i     phase center 

(i=0,  ...   m-1) is located at point 0 > vt-id, h) at time t=0 where d denotes the separation 

between successive phase centers. 
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Fig.  2.1.   Basic geometry. 
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Fig.  2.2.   The effective antenna apertures. 



b)       Clutter Cancellation Principle 

It is quite simple to obtain a quantitative understanding of how the proposed 

systein cancels ground clutter returns without at the same time cancelling the return 

from a moving target.   The basic equation for this purpose relates s.(t), the signal 

transmitted on the i    antenna, to r.(t), the signal received on the i    antenna from 

a stationary point scattering target on the ground.   Ignoring amplitude factors which 

play no role in the present discussion and limiting attention to the case m=2, the 

equation is 

r.(t) = s. 
2R. (t) 

,  1=0,1 (2.2) 

th 
where c denotes the velocity of light and R.(t) denotes the distance from the i 

antenna to the ground clutter scatte 

shows that this distance is given by 

antenna to the ground clutter scatterer (z =0, v      = v      = v      =0).  Reference to Fig.  2. 1 o ox      oy       oz 

~|l/2 
R.(t) = |~xJ + (yo + id -vt)2 + h2J      ,  i=0,l (2.3) 

where (x , y   0 ) is the location of the stationary ground scatterer.   Now if the 

transmission on the first antenna is a delayed version of the transmission on 

the zeroth antenna, s.(t) = s    ( t - A), then 

r                2R- (t) 1 
r.(t) = sQ I t - iA ^— J ,    iO.l (2.4) 

But,  it is easily seen that if A = d/v 

R. (t +   -)-R  (t) (2.5) 1 v v ow 

Equation (2. 2) is only an approximation to the true radar return but it can be shown 

that this approximation is valid as long as (-)   < < A./R        , where R denotes the c rricLX m3.x 

maximum range of targets of interest.    This condition is easily met for most cases 

of interest. 
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and it follows from equation (2.4) that the signal received on lagging antenna is 

identical to the one received on the leading antenna except for a known delay. 

Since this holds true for all values of x^ and y , it follows that the returns from 
o J o 

all  fixed clutter scatterers may be cancelled by delay and subtraction.   On the 

other hand the returns from a moving target will not be cancelled by this delay 

and subtraction scheme because the distance the transmitted signal must travel 

from the leading antenna and back is different  from the distance the transmitted 

signal must travel from the lagging antenna and back. 

The technique just outlined can easily be extended to more than two antennas 

and can be applied even if the antennas are not equally spaced.    As long as the 

time offset between transmitted signals from adjacent antennas is equal to the 

time necessary to fly the distance between the antennas, the returns at each 

antenna, due to fixed clutter, will be identical except for a delay.   This mode 

of operation is usually referred to as a DPCA mode (Displaced Phase Center Antenna) 

and this nomenclature will be used hereafter whenever A, the time between successive 

transmissions on adjacent antennas, is set equal to d/v.   The clutter cancellation 

technique just described is basic to the multi-antenna AMTI system to be studied 

in detail in the remainder of this report and a clear understanding of it will greatly 

facilitate the readers' understanding of the results to follow. 

c)       The Illuminated Range Interval 

A basic requisite of the clutter cancellation scheme is that the returns from the 

various antennas do not overlap in time, so that they can be sampled independently 

without crosstalk.   This was tacitly assumed in the discussion above which used 

the fact that the i     antenna only received returns that were produced by its own 

transmission and that these returns were not overlapped by returns produced by trans- 

missions from the other antennas &i other times. 



This need for independence of antennas imposes some additional constraints 

on the signalling strategy.   To illustrate, consider the signalling scheme in Fig. 2.3, 

for a two antenna system, where s.(t) represents the pulse train from the i      antenna, 

s„(t) and s.(t) are assumed identical except for a delay of d/v and 1/T is the prf seen 

at either antenna.   Only if the time duration of the return from a single pulse is less 

than the minimum interval, t    .   , between the transmitted pulses in the composite mm 

pulse train, can the antenna returns be sampled independently.   This limits the 

maximum range interval R        to be illuminated, according to the formula 

R =  ^J•_ (2.6) 
max 2 

The vertical antenna pattern must be designed so that only this range interval is 

illuminated. 

It is desirable to interleave the pulse trains so that R is as large as possible. 

Two signalling schemes which will achieve this end are illustrated in Fig. 2.4.   In each 

case, the pulse trains have been interleaved so that in the steady state the composite pulse 

train is equispaced.   In the first example, 

% -iT <2-'> 

while in the second case 

!=§T (2.8) 

Generalizing from these two examples, it is seen that the general signalling scheme 

satisfies, 

£  =(N--J)T (2.9) 
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Fig.  2. 3.   A two-antenna signalling scheme. 
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Fig.  2.4.   Two 2-antenna signalling schemes. 



where N is the number of pulses transmitted by a given antenna during the inter-antenna 

flight time d/v.   If (2. 9) is imposed, the composite pulse train will be equispaced (in 

the steady state), and t   .   will be maximized at T/2 SO that ' mm 

R =%   I (2.10) max     2   2 

The arguments leading to (2. 9) and (2.10) easily can be generalized to the m-antenna 

case.   To illustrate, in Figs.  2.5a and 2.5b two possible signalling schemes for the 

4-antenna case have been indicated.   In Fig. 2.5a, N=l where N has the same meaning 

as above, and 

-   = I    T (2-u) v       4 

In Fig.  2.5b,   N=2, and 

£ = <1+£)T (2.12) 

In both cases, the illuminated range interval is given by, 

C    T 
Rmax =1  4" (2.13) 

The generalization of (2. 12) to the m-antenna case is given by 

d 
v |(N-1)+^J   T (2.14) 

The considerations that led to the constraint expressed by equation (2. 14) can be 

summarized as follows.   First, it was required that the transmitted pulse trains from 

all antennas be delayed with respect to each other in such a way that all antennas transmit 

pulses from the same set of locations in space.   This was necessary to allow for the 

cancellation of fixed clutter returns.     Then,while satisfying this clutter cancellation 

constraint,  it was required that the pulse trains be interleaved in such a way that the 

range swath which could be illuminated, without crosstalk between antennas, was 

maximized.    The resulting illuminated range interval is given by 

10 
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Fig.  2.5.   Two 4-antenna signalling schemes. 
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R = £   - . (2. 15) max     2   m 

By designing the vertical antenna pattern and taking advantage of the signal attenuation 

with increasing range and the horizon effect, the system must be arranged so that 

appreciable returns are received only from this portion of the ground. 

One further point should be noted.   It is true that crosstalk between antennas 

can be eliminated by limiting the illuminated range interval as indicated above; however, 

it is still true that transmissions from a given antenna can be received by the other 

antennas.   The only thing the range limitation accomplished was to insure that the 

returns received at a given antenna caused by transmissions from other antennas 

do not overlap in time with the returns caused by the given antenna's own transmissions. 

These non-selfgenerated returns were ignored in the above discussion of the clutter 

cancellation principle and they will continue to be ignored in the remainder of the 

report.   It is clear that some information about the environment the radar is 

probing is being discarded by this procedure but it is not at all clear that this 

additional information can be used to increase the system's clutter cancellation 

effectiveness appreciably.   This is a point that should be the subject of further 

investigation. 

d)   The Sampling Rate Constraint 

It is convenient at this time to introduce a spherical polar-coordinate system 

whose origin is (0,0,h).   This coordinate system is depicted in Fig.  2.6 where the 

origin for the azimuth angle 0   is chosen to be the (common) antenna boresight azimuth 

angle @,  and the polar angle o  is measured from the negative z-axis.    In terms of these 

coordinates,  it is a simple exercise to see that, at a given range, R' the spread of Doppler 

frequencies produced bv around clutter scatterers (z  =0 v      = v      = v      =0) located in 1 r ' ° x o     ' ox       oy       oz 

the main lobe of any of the m antennas is approximately given by 

L2 
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Fig.  2.6.   Aircraft centered polar coordinate system. 
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W-T   (T)sm(0 (2.16) 

For a mechanically scanned antenna whose beamwidth is independent of 9, . W would 

be proportional to sin 6, .   But for the electronically scanned antenna under consider- 

ation the beamwidth varies approximately as 1/sin 6,. and hence W is independent 

of 9, .   The elevation angle ® to be used in equation (2. 16) is the angle that defines 

the range of the ground clutter, R' cos &' = h.   Now it is well known that any radar 

using repetitive pulse trains will cause all Doppler frequencies that differ by the prf 

to appear as the same frequency.   If the prf is chosen too low with respect to the 

width of the clutter spectrum, then aliasing, or foldover of the clutter spectrum will 

occur, causing the effective amount of clutter that must be combatted at a given 

frequency to increase.   In order not to alias the clutter, the minimum prf of each 

antenna must be equal to the spectral width of the clutter,  so that -   = W.    Actually 

to avoid aliasing the clutter sidelobes, the minimum prf would probably be chosen 

higher than W; however, the prf should not be chosen higher than necessary because 

as the prf is raised, the maximum illuminated range interval R decreases as r 6 max 

per equation (2. 15).   The dependence of the prf on o' might appear troublesome, 

since the implication of this dependence, together with (2. 1) and (2. 14) is that the 

antenna structure would have to change as a function of this angle.   However, a reason- 

able procedure would be to design the system by imposing the constraint 

1 2v ,„  ,_. -   =   n  — (2. 1/) 
T a 

where \i > 1.    Equation (2. 17) guarantees that the clutter is never aliased no matter 

what the value of o' is.   R is now not always the largest value that could be achieved max } 6 

but, in return, spectral sidelobes of the clutter have been decreased. 

14 



Another disadvantage of aliasing the clutter spectrum, perhaps more impor- 

tant than the effective increase of clutter power,  is the fact that stationary ground 

targets at different angles, whose Doppler frequencies differ by a multiple of the 

prf, become indistinguishable.   Thus the capability for mapping fixed targets 

while searching for moving targets is lost.   If the prf is high enough to prevent 

appreciable aliasing of the clutter sidelobes (i.e. ^ 2.5), the Doppler filtering 

of the returns received at any one of the antennas would produce a synthetic aperture 

ground map whose cross-range resolution is determined by the physical beam width 

of an individual antenna divided by the number of returns processed.   It will turn 

out (see section 5) that the signal processing to be employed for AMTI includes 

Doppler filtering of the returns received at each antenna by means of a discrete 

Fourier transform.   Thus for a high enough prf the AMTI processing includes, as 

an intermediate step, essentially all the processing necessary for forming a 

synthetic aperture ground map. 

If the system's clutter rejection capability were so great than the additional 

clutter power caused by aliasing were of no consequence, and if ground mapping 

were of no concern, consideration could be given to dropping the prf requirement 

(2.17).   The prf could then be lowered, with a consequent increase in the illuminated 

range interval.   However, as indicated in an example below, it appears that quite 

sufficient range coverage can be obtained even while the prf is high enough to pre- 

vent aliasing.   Finally, even if the prf requirements (2.17) is dropped, a lower 

bound on the prf, and therefore an upper bound on the illuminated range interval, 

is imposed by the DPCA constraint (2. 14). 

15 



In the ensuing discussion and examples it will be assumed that clutter is not 

aliased, and the prf is chosen at least equal to (and perhaps higher than) the clutter 

spectral width. 

Effects of Constraints 

The constraints that have been established, now can be brought together and 

solved for their joint effect.   The parameters that have been of concern so far 

include: 

d = the inter-antenna spacing 

a = the length of each individual antenna aperture 

L = the overall length of the antenna array 

v = aircraft speed 

1/T = the prf at each antenna 

R = the unambiguous range interval of the system 

m = the number of antennas 

N = the number of pulses transmitted by a given antenna 

before the next antenna in line moves to the original 

spatial position of that given antenna. 
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The constraints between these parameters have been stated in (2. 1),  (2. 14) 

(2. 15), and (2. 17).   These constraints may be summarized as: 

L = (m-1) d+a (geometry) (2.18) 

VT = d/(N - HLi) (clutter cancellation) (2. 19) 

VT  = a/(2|i) (sampling rate to prevent aliasing) (2. 20) 

C      T R = •*  -   (unambiguous range interval) (2.21) max 2   m & b 

If we take L, v, and \i as given, then for a specified m and N, these equations 

can be solved explicitly for the remaining parameters.   The results are: 

• _   (N-l) m + 1 T (2  22v 
6      (N-l)(m-l)m + (l + 2M)m-l L (  '     ' 

a=   (N-l)(m-l)m + (l + 2^)m-l L (2l23) 

m  L ,~  ,,.> 
(N-l) (m-1) m + (l + -2n) m-1 v (        ' 

1 CL 
Rmax   _ (N-l) (m-1) m + (1 + 2jx) m-1 "2V (2

-
2D) 

It can be observed from (2. 25) that R is largest for m=2, N=l, and decreases v        ' max 6 

monotonically with increasing m or N.   This statement imples that unless other considerations 

(such as MTI gain or velocity resolution) dictate otherwise, a two-antenna system, with a 

simple alternate pulsing of the antenna would be chosen.   It will be shown later that after 

consideration of these factors, m=2, N=l remains a reasonble choice of system para- 

meters. 

Examples of Parameter Values 

This section will be closed with a few examples of the parameter values dictated 

by (2.22) - (2.25).   It is assumed in the examples that ^-l. 
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First leave N arbitrary, and consider the two antenna case.   The results 

are: 

2N-1 
d     2N+3 L 

4 
a     2N+3 L 

4 
7     2N+3 

JL 
V 

1 cl 

(2.26) 

(2.27) 

(2.28) 

Rmax = TN+T   2? (2' 29) 

Note that R is a monotonically decreasing function of N, and is maximum when N=l. 

For N=l, we obtain 

. _ I   T     a _ 4 2    L _ 1    cL 
d"5L'a"5L,T"57'     max"5    T7 (2.30) 

The inter-antenna spacing is 1/4 of the aperture size,  implying a need for antennas 

which overlap and must share elements.   For a Mach 1 (1100 ft/sec.) aircraft with a 

10 foot array, the illuminated range interval is about 170 miles. 

Form (2. 26) and (2. 27) it is seen that the ratio d/a of spacing to individual 

antenna size,  is less than 1 (requiring overlapped antennas unless N ^ 3.    However, for 

large N, the R decreases. 6 max 

For a comparison to the two-antenna case, consider the example of m=4, N=l. 

The results are 

d=4iL'a=-rTL>T = TT->R =   1     cL (2 31) 
11 11 11   v        max      11    2v 

The inter-antenna spacing is 1/8 of the length of each antenna.   For a given L/v, 

the illuminated range interval is slightly less than half of that in the corresponding two-antenna 

case. 



3.       Target and Clutter Returns 

The purpose of this section is to construct a mathematical model of the signals 

received by an m-antenna airborne array used in the manner described in the previous 

section.   Three types of received signals will be considered:   1)   The signal produced 

by a desired target which is defined to be a moving point object located on or above 

the ground, 2)  The signal produced by non-moving ground clutter and 3)   The signal 

produced by receiver front-end noise.   The basic structure of the radar receiver to 

be used is sketched in Fig. 3.1. The returns produced by each transmitted pulse 

from the i     antenna are received by the i     antenna, corrupted by front-end noise 

and then passed to a filter that is matched to the (common) subpulse shape.   The 

output of the matched filter is then range gated with each gate producing a sample 

of complex video from the same range for each pulse transmitted.   The samples 

obtained in this  manner, along with the samples from the other antennas, are then 

passed to a processor whose nature will be specified later and a decision as to the 

presence or absence of a desired target in each range gate is made. 

In the sequel, attention will be focused on a single range gate.   The samples 

obtained from this gate when n pulses are transmitted on m antennas can be arranged 

as un nm dimensional column vector denoted by r.    More precisely, let the complsx 

sample received on the i     antenna, i=o,... m-1, due to the k     pulse, k=o,.. .n-1, 

transmitted by that antenna be denoted by r...   Then r is a column vector whose 

components are arranged in the order r„~, r„. ,  ... r„     _., r.„, r^, ... r.       ,>••• 

rm-l,0' rm-l,r  •" rm-l,n-l* 

The received vector r can be represented in the form, 

r   ^JEAQG(e )£ + c+n (3.1) 
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Fig. 3. 1.   The basic radar receiver. 
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where c and n denote the received vectors produced by ground clutter and receiver 

noise respectively.   The vector s denotes the signal received from the desired 

moving target normalized in such a way as to bring out explicitly the dependence 

of this return signal on the angular location of the target in the antenna beam, the 

radar cross section of the target, and the transmitted energy.   Accordingly, G(6 ) 

denotes the two-way voltage gain of each of the antennas, evaluated at the azimuth 

6    (measured from the antenna boresight azimuth 6   as per Fig.  2. 6) of the desired 

target.   It has been assumed, as is usually the case, that the vertical beam pattern 

is sufficiently broad so that the antenna gain is essentially independent of the target's 

elevation angle relative to the boresight elevation angle for all targets in the illuminated 

range interval.   The scale factor A    is a constant that accounts for the radar cross 

section of the desired target and the signal attenuation due to range.   The factor E 

represents the transmitted energy per pulse.   In the following subsections, detailed 

descriptions of the received vectors s, c and n will be given. 

a)  The Desired Signal Vector £ 

The purpose of this sub-section is to compute the components of the vector s. 

These components are the received samples produced when the transmitted signals 

are returned by an arbitrarily located, moving point scatterer. 

Assume that the location of the scattering object at t=o is the point (x , y  , z ) 

and that the rectangular coordinates of its velocity are (v    ,v    , v    ).   It follows, 

as shown in Fig.  2. 1, that the location of the scattering object at time t is (x   + v     t, 
t h 

V   + v     t, z   +v     t).   The complex signal r.(t) received on the i     antenna is given 
'o      oy      o      oz ^        i & 

by equation 3. 2, 
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r       M.w    -,           r             r        2R.(t)    ,-i 
ri(t) = 8i [* " -T- J   exP[j^X   [* T-]J 0.2) 

where s.(t) denotes the complex envelope of the signal transmitted by the i     antenna 

normalized to unit average energy per pulse transmitted and R.(t) denotes the distance 

between the i    antenna and the moving object.   The amplitude factorJEA G (0 ) has 

been deleted in equation (3. 2) because it already has been taken into account by equation 

(3. 1).   Reference to Fig.  2. 1 shows that 

Ri(t) = [(xo + Voxt)2 +(y0 
+ V " vt + id)2 + (zQ + vQzt - h)2] '  2 (3. 3) 

This last expression is much too complicated to be of use in the following analysis; 

however, useful approximations to equation (3.3) can be obtained by expanding it in a 

double power series about t=0, d=o and retaining only the first few terms.   These 

approximations turn out to be valid  as long as the observation time is sufficiently small 

and the range to the target is large compared to d.   When only the constant and linear 

terms of the power series are retained, the resulting approximation to R.(t) is given by 

R.(t)-R   +i-    |[x   v     +y   (v     -v) + (z    -h)v    11 + y   id 
iv '       o     R        [o   ox     ;o    oy o oz J o   J 

= R   +(V      -v -^_)t + id ^- (3.4) 
o        o R R o o 

where 

R    = [x 2+y  2 + (z    -h)21 (3.5) 
o     I   o       •'o       v o 

and v   denotes the target's radial velocity at t=o. 
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Making use of the polar coordinates defined in Fig. 2. 6, equation (3.4) can 

be rewritten in the form, 

R.(t) ^ RQ +[vQ - v sin tpQ cos (^ + 6Q)] t + id sin cpQ cos (^ + 9Q) ^ &) 

The signal transmitted by the i    antenna is assumed to be a uniformly spaced 

coherent pulse train consisting of n pulses.   In symbols, the signal transmitted on the 

.th     . 
l     antenna is 

n-1 
s.(t)=exp(j2TT£t)2      a.ku (t - iA - kr) exp[(-j2n£ ) (iA + kT)l (3.7) 

k=o L A J 

where u(t) denotes the complex envelope of the transmitted subpulse (usually either a 

simple pulse or a linear fm pulse-compression waveform) normalized so that 

l!k 
2 th 

u (t)      dt = 1 and a     denotes the complex amplitude of the k     pulse transmitted 

from the i     antenna.   The transmitted signal s.(t) is normalized to unit average energy 

per pulse by requiring 

, rn-1 „ m-1   n-1 0 
1 =^T      2        j" ls-(t> |    dt=—     2      2 la,   r nm      .        J   '   r     i nm , '    ik ' i-o i=o    k^ 

As before, T denotes the prf seen at one antenna and A denotes the transmission delay 

between antennas.   The transmission delay A will always be set equal to d/v to achieve 

DPCA operation as discussed in the previous section.   For the time being, however,  it 

will simplify notation to allow A to be arbitrary.   It is further assumed that the duration 

of u(t) is smaller than either A or T SO that no pulses in the train overlap in time. 

Combining equations (3.2), (3.6), and (3.7) yields the following expression for the signal 

received by the i     antenna, 

(3.8) 
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2R 

i « = exP \}V X (t - -T">] exP h2" X <Vo " Vao> *] 

-1 2R r 9       v     -] r .. 
S     a.k u (t - iA - kr - -E

0-) exp [-j2n i (id -^°-)J exp |_-j2n £ (iA + kr)J (3. 9) 

where the target's apparent velocity is defined by, 

v     =vsincp   cos (9, + 9 ) (3.10) ao o b       o 

In arriving at equation (3. 9) it has been assumed that only the gross antenna-to-target 

2R delay      o/c has an appreciable effect on the subpulse envelope u(t). 

The output of each of the airborne antennas is next passed through a filter matched 

to the subpulse shape and then range sampled before being processed further.   It is 

possible to justify this initial subpulse matched filtering and range sampling operation 

on theoretical grounds; however, the argument is fairly involved mathematically and does 

not give any real insight into the operation of a multi-antenna airborne MTI system.   For 

this reason, as well as the fact that subpulse matched filtering seems a natural thing 

to do, this point will not be pursued further and the formal discussion of the processor 

will begin with the range samples derived in the above manner. 

The output of the subpulse matched filter connected to the i    antenna is given by 

y.(t) = J* r. (T?) u* (TJ - t) exp [-j2n £ (^ - t)J   drj (3. 11) 

2R' This output is next sampled at the times + iA +kr, yielding the desired 

complex samples 
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2R' 
s.,   = y. (   + iA + kT),  i=o,... m-1, k=0,.. .n-1 

IK 1      C 

This yields nm samples corresponding to the target returns from a single range R'. 

(3. 12) 

Samples from other range gates are obtained by incrementing R' by an integer multiple 

of the range resolution of a subpulse.   After some tedious but straightforward manipulation, 

equation (3. 12) can be combined with equations (3. 9) and (3. 11) to yield the expression, 

ik tik exp0*o) exp [-j2n J [kT ^ . V(J + iv&J.A) + ]A TJ j 
(3.13) 

y   (R    - R', v    - v    ) 
'Hi     o o      ao 

where v    (?,??), the ambiguity function of the subpulse, is defined by 

yu (?,!?) = ju (t) u* (t +| ?) exp (-2TT 1 r?t) dt 

and where ty denotes a carrier phase angle that is independent of i and k.   In arriving 

at equation (3.13),  it has been assumed that the scatterer's range is less than R max 

Equation (3. 13) can be simplified in several ways.   First, the requirement 

for DPCA operation (A = d/v) causes the second term in the exponential to vanish. 

Next, the fact that in any practical situation, the Doppler frequencies involved are 

much smaller than the reciprocal of the subpulse duration makes the approximation 

V   (R    -R',v    -v    ) 2; V    (R    -R',o)a reasonable one.   These simplifications 

result in the final equation, 

Sik * aik exP0%)exP [-J»T \ [kr (vQ - vao)]+ i d £_ 

Finally,  it will be assumed that the desired target is in the range resolution cell 

being sampled,  |R    - R' |< 1/W   where W    is the bandwidth of a subpulse.   It then 

follows that v   (R    - R', o) ^ x^0*0) = l- 

(3. 14) 

(3. 15) 
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b)   The Clutter Vector c 

The ground clutter will be modelled as a continuum of stationary scatterers. 

The signal received on the i    antenna from a small patch of such scatterers c.(t), could 

be expressed mathematically by setting v   = o in equation (3. 9) and multiplying it by 

a suitable amplitude factor; the result is, 

c.(t) =,JE G(6) A (R,0) RdRdeexp[j2Tr£   (t - ^)J exp [j2n -£• t] 

n-1 
2 

k=o 
S     a.k u (t - iA) - kr - ^ ) exp[-j2rr * (id -^)Jexp[ -J*T £ (iA + kT)J     (3# 16) 

where now, 

v   = v sin ID cos (0, + 0) 

and R and 0 denote the range and azimuth of the scattering patch.   The elevation angle 

of the patch is related to R by means of the relationship R cos o = h.   The function 

A (R, 9) is the clutter amplitude desnity per unit area.    As mentioned before, this 

amplitude factor takes  into account the attenuation with range as well as the clutter 

cross section 

Unfortunately, equation (3. 16) neglects certain effects which are vital to 

an understanding of the clutter cancellation capabilities of the multiple-antenna AMTI 

system under consideration.   As mentioned in the previous section, the key phenomenon 

the processor to be described exploits is the fact that,  in the DPCA mode, each antenna 

receives essentially the same clutter signal from the ground.   The key word here is 

"essentially".   If all the antenna gains were truly identical and if the pulses transmitted 

on different antennas were exactly the same,  it turns out that the processor would 

ahieve perfect clutter cancellation and system performance would be limited by receiver 

front-end noise alone.   Of course, this is never the case in practice and so it becomes 

important to model in some way the effects of small differences in the clutter returns 

received by the different antennas. 



This end will be accomplished by assuming that the gain of the i     antenna 
XT. 

is given by G.(8), and that the transmitted subpulses on the i     antenna are given 

by u.(t).   These functions are assumed to differ from their nominal values G(9) and 

u(t) only in "small" ways.   This notion of smallness will be made more precise 

later.   It now follows, that the clutter return from a small patch of scatterers 

located at (R, 9) is given by equation (3. 16) modified by replacing G(9) by G.(0) and 

u(t) by u.(t).   The total clutter return is obtained by integrating the so modified 

equation (3.16) over all R and 0.   The resulting signal is then passed through a 

2R1 

filter matched to the nominal subpulse shape u(t) and sampled at the times + iA + kr 

to yield the clutter samples c, .   The result of this somewhat tedious calculation is, 

Cik~EailJJ,A(R,e)exp j^(R,e) G.(9)vi(R -R',o) 

2v   T 
exp (j2TT —i  k) RdRdB (3. 18) 

where ty(R, 9) is the carrier phase angle corresponding to <fr in equation (3. 13) and 

v. (?, t) is the cross-ambiguity function defined by, 

y. (5,77) =JV(t)u"(t+§  ?)exp •j2n j-    T?t dt (3. 19) 

All the simplifications leading to equation (3.15) except the one requiring the scatterer 

to be in the range resolution cell being sampled have been made in arriving at equation 

(3. 18). 

The clutter returns c, given by equation (3.18) are critically dependent 
IK 

on the detailed way in which A(R, 9) exp ]$> (R, 9) varies with R and 0; in fact, this 

function usually is quite noise-like in character.   For this reason, it is common practice 

to model the clutter as noise and to use a statistical description of the clutter return 

to design and evaluate systems for combatting such clutter.   One such statistical para- 

meter is the clutter covariance matrix which will play a vital role in the subsequent 

analysis and which can be calculated from equation (3.18) once some assumptions as to 
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the statistical behavior of A(R, 0) exp j >p (R, 0) are made.   Two common and very 

2 3 
useful assumptions are as follows:  ' 

1. A(R, 0) and >p(R, 0) are statistically independent and \£(R, 0) is uniformly 

distributed in the interval (-TT.TT).   From this it follows that the mean of A(R, 0) exp j>J<R, 0) 

is zero,* 

e[A(R,0)expj*(R,0)] = O (3.20) 

2. Scatterers located at different locations in space are statistically independent. 

Because of equation (3.20), this assumption implies the equation, 

e   A(R,0) A (R',0')expj^(R,0) ->j,(R',0'j| 

= a(R,0)5 (R-R')S (0-01) (3.21) 

where a (R. 8) denotes the average clutter "cross-section" density per unit area and 

<5(x) denotes the Dirac delta function. 

Given these assumptions, it is now an easy matter to calculate the clutter 

kk' 
covariance matrix C whose elements c... are defined by 

e*,-«Esnt
e*iv] (3-22> li 

and the result is given by 
2v   T 

cj*'= E a.k a*,k, JJaCR.eJF. (R,e)F.,(R,9)exp[j2n  — *—  (k-k'^RdRde     (3.23) 

where 

Fi(R,0)=Ci(9)yi (R-R',0) (3.24) 

#The symbol p denotes the expectation operator. 
**Delta functions are used here and later in the description of receiver noise 

strictly for mathematical simplicity. This artifice gives correct results as 
long as the actual correlation lengths or times are small compared with the 
resolution of the system. 
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The clutter matrix C is to be formed out of its elements c, according to the scheme 

given by, 

C = 

c        c c 
00 01 "• 0,m-l 

C C C 
11 12 •*       l,m-l 

Hermitian 

m •l,n-l 

where the submatrices C, are defined by, 

C... = 
n 

00 00 
c,       c .., 

a li 

11 
c .., n 

Hermitian 

0,11-1 
cii' 

l,n-l 
c .:, 

a 

n-l,n-l 
c .., n 

(3.25) 

(3.26) 

c)  The Noise Vector n 

The last effect that must be accounted for is that due to receiver front-end 

noise.   Denoting the noise voltage introduced by the i     antenna by n.(t), it is seen from 

equations (3.11) and (3. 12) that the received noise samples n     are given by, 

n., = I n. (H) u (r?- iA - kT 
lk    ^    l     ' 

2R' 
)dT7 (3.27) 

A statistical description of this noise can be given by making the usual assumption that 

the real receiver noise is a zero-mean, white Gaussian process with a power spectral 

density of N   watts/Hz.   This corresponds to a complex  Gaussian noise with a auto- 
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correlation given by, 

n.(t) n* (f) = 4 N   8 (t-f) o     v (3.28) 

In addition it will be assumed that the noises introduced by different front-ends are 

statistically independent which means that 

»i(t)if (f) 4 NQ 6..,6 (t-f) (3.29) 

where 5.., denotes the Kronecker delta.   It now follows easily tnat the covariance matrix 

of the noise samples has elements given by, 

n..  nw.,, , lk      l k 
= 4 N   <5.., 6,, , 

o    u'   kk' 
(3.30) 

whicn means that tne receiver noise covariance matrix is of the form 4 N I where I is o 

the (nm) x (nm) identity matrix.   Finally, assuming that the receiver noise is statistically 

independent of the clutter, it follows that the combined covariance matrix tor clutter 

plus noise, j\ is given by, 

A=C + 4N I (3.31) 
' o 

The matrix /\will be referred to as the interference matrix in the sequel. 

d)   Summary 

It has been snown that the received signal vector given by equation (3. 1) 

consists of a desired signal vector s whose components are given by equation (3. 15), 

a clutter vector whose components are given by equation (3. 18) and a receiver noise 

vector whose components are given Dy equation (3. 27).   The clutter vector has been 

described statistically by means of its covariance matrix C whose elements are given 

by equation (3.2a), and the receiver noise covariance matrix is equal to 4N I.   The 

covariance matrix of the combined (clutter plus noise) interference is given by eq. (3.31) 
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4. Data Processing 

Now that a detailed description of the data collected by the radar has been 

given, it is possible to address the question of now best to process these data to 

separate a moving target from its background of ground clutter and receiver noise. 

The present section will argue that, for several reasons, a logical choice  for this 

processor is a linear filter followed by an envelope detector.   A performance 

measure for such processors will be defined and the processor that maximizes 

this performance measure will be derived.   This optimum processor, as well as 

its associated performance measure, turns out to depend on the covariance matrix 

of the interference.   Since this matrix, as derived in the previous section,  is quite 

difficult to use for numerical evaluations, certain additional assumptions will be 

made in order to simplify its structure.   In addition to simplifying numerical work, 

these assumptions will prove to give a great deal of insight into the nature of the 

interference and the structure of the optimum processor.   The next task of this 

section will be to define the "improvement factor" for an arbitrary linear processor. 

This factor will be normalized in such a way as to make it quite simple to compare 

AMTI systems having different parameters such as number of antennas or number 

of pulses.   It will be shown that, subject to some additional assumptions, the improve- 

ment factor factors into two terms, one associated with temporal (pulse-to-pulse on 

a given antenna) processing and the other associated with spatial (antenna-to-antenna) 

processing.   This result is valuable because it better defines the structure of the 

processor and because it gives a quantitative measure of the relative contribution 

spatial and temporal processing make to the total improvement factor.   Finally,  it 

will be demonstrated that the optimum processor can usually be considered as a 

cascade of a purely temporal processor and a purely spatial processor. 
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a)  The Optimum Linear Processor 

One of the most well justified and commonly used tecnniques for defining 

the structure of tne data processor to be used for extracting a desired signal from 

4  5 
a background of interference is statistical decision tneory.        This theory requires 

that a complete statistical description of the interference, in this case the ground 

clutter and receiver noise, be available.   Because both clutter and receiver noise 

can be thought of as the superposition of a large number ol small, statistically 

independent voltages, it is common practice to invoke the central limit theorem 

and assume that the receiver noise and clutter voltage are Gaussian and, therefore, 

completely specified in a statistical sense by a knowledge of their means and covariances. 

Given this assumption,  it is well known that statistical decision theory as applied to 

the problem of extracting a signal that is known except for its complex amplitude trom 

background interference leads to a data processor that consists of a suitably chosen 

linear weighting ot the received data followed by an envelope detector.   The output of 

tne detector is compared with a thresnold and "target present" is announced when 

the thresnold is exceeded. 

This result can be stated in precise mathematical terms by means of the 

notation r, £ and ^defined in the previous section.   Using this notation, the processor 

*   -1 discussed above can be snown to calculate the quantity ft = | r   A     £ I and compare 

it with a threshold.   Since the signal vector £ depends on the unknown target velocity 

v   and target azimuth and elevation (9  ,<o ) through the quantity v      = v sin to   cos (B.+6 ), 

the detection statistic S. must be calculated for all values of v   and v     that are of interest o ao 

and a separate threshold comparison must be made for each pair of these values.    In 

other words, each threshold comparison tests the hypothesis and there is a target 

present whose parameters v   and v     are equal to those values used in computing H. 

*The asterisk denotes the conjugate transpose of a matrix. 
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The processor just described is a special case of a general linear processor 

which is defined to be a device that computes R   r* w   where w is an arbitrary 

nm-dimensional vector, and compares it with a threshold.   The weights w = A    £ 

which can be derived via statistical decision theory under the assumption that both 

receiver noise and clutter are Gaussian actually have an important optimality 

property which does not require the assumption that the underlying interference is 

Gaussian.   In order to state this property, the signal-to-interference ratio (SIR) of 

the linear processor is defined to be 

2 
(output for target alone present  ) 

output variance for no signal present 

* 2 
2                    2       Is     w I 

= EAZ | G (60) |          (4.1) 
W-H- A w 

Now it is a simple exercise in applying the Schwarz inequality to show that the SIR 

defined by equation (4. 1) is maximized when w = A    £ and that this maximum value 

is given by 

p =       EA 2 I G (0 ) I2 s* A"1 s (4.2) rmax        o    '      v o   '   — — 

Thus, the linear processor whose weighting vector w is given by w * A~   s is optimum 

in the sense that it maximizes the SIR given by equation (4.1) 

In the light of the above discussion it seems reasonable to use a linear processor 

with the optimum weights given by w = A    s to separate the desired signal from its 

background interference.   This is the course that will be followed in the sequel even 

though it shortly will be necessary to introduce a number of additional statistical 

effects which presumably may be non-Gaussian into the description of the clutter. 

33 



The linear receiver will now no longer necessarily be the one dictated by statistical 

decision theory but, it will still maximize the SIR over the set of all linear receivers 

as long as the weights are chosen according to the formula w = A    £,where A is the 

covariance matrix of the interference obtained by averaging over all statistical 

effects, Gaussian and non-Gaussian. 

Before discussing these additional statistical effects.it is important to note 

that because a linear processor is to be used, there is no reason to transmit anything 

but equal amplitude zero-phase pulse trains.   In other words, no loss of generality 

is incurred by assuming a.,   = 1 in the remaining discussion.   This conclusion comes 

about because of the fact that the receiver weights w., and the transmitted weights a 

always appear as a product w     a     in the equation for the SIR (4. 1).   Thus it follows 

that anything that can be accomplished by weighting on transmit can equally well be 

accomplished by weighting on receive.   Since the latter is easier to accomplish than 

weighting on transmit it will henceforth be assumed that a.,   = 1. 

The motivation for the introduction of additional statistical effects lies in the 

complexity of the clutter covariance matrix C which is needed to compute the optimum 

weights.   Reference to equations (3. 22) and (3. 23) reveals that the elements of C 

depend on the cross-ambiguity functions x. (?. 0) and the gain functions G.(6), i=0,... 

m-1.   So far in the discussion it has been tacitly assumed that these quantities were 

known.   This is not really the case in practice because, for example, the y. (F,0) only 

differ from one another because of small,  presumably uncontrollable, departures of 

the transmitted subpulses u. (t) from the nominal pulse u (t).   Similarly, even if 

all the antennas were designed to have the same nominal gain G(9),  slight fabrication 

errors can result in departures of the individual gains from the nominal gain.   These 

effects often can be neglected but the present system's clutter rejection properties 

depend heavily on having these quantities equal and thus the effect of small departures 

from equality must be taken into account. 
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A convenient way to do tnis and one that leads to quite tractable final results 

is to assume that the departures of the y. (R - R',0) and the G.(9) from their nominal 

values are statistical in nature and then to make certain, hopefully reasonable, 

assumptions about these statistics.   The simplest, non-trivial assumptions that can 

be made concern the first few moments of the pertinent statistics.   To this end, the 

following assumption will be made about the second moment of F. (R, 9), 

F.(R,9)F*   (R,9) (i-^5"..,) | F(R,G) |2 (4>3) 

where 5".., = 1 - 6... and F(R,9) = G (9) y   (R - R',0). 

In addition, it will be assumed that F.(R, 9) is statistically independent of the random 

scattering mechanism producing the clutter.   The quantity Q* appearing in equation (4. 3) 

is presumed to have a magnitude that is small compared with unity.   It is possible, 

of course, to make more involved and perhaps more realistic statistical assumptions 

about F.(R, 9) than those just made but to do so would to some extent bring back the 

original dependence of C on the details of F.(R, 9) which the statistical assumptions 

were supposed to remove.   The efficacy of assumption (4. 3) in predicting actual 

system performance will require validation by experiment or simulation. 

The clutter covariance matrix, equation (3. 23) must be recomputed now in order 

to take account the effect ot the additional statistical parameters that have been introduced. 

Because of the assumed statistical independence of F.(R, 9) and the ground scattering 

mechanism, the existing equation (3. 23) can be interpreted as given the conditional 

covariances of the clutter given F.(R, 9); all that remains to be done is to average 

over the remaining random variables.   With reference to equation (4.3), the result 

of this operation easily is seen to be, 

C1*'  = E (1 - ^6..,)! J'a (R,9) | F(R,9) |2exp[j2n —|-(k - k')J  RdRd9 (4.4) 
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This definition of a implied by equation (4.3) is somewhat unsatisfactory 

because it does not give any insight into how to estimate a in any given situation. 

This can be remedied to some extent by noting that for i ^ i\ 

£E J|a (R,6) | F.(R,0) - F (R, 9) |2RdRd0 

2 
=   2E JJa (R, 9) | F (R, 9) |     RdRdB 

- 2 (1-a) E J J" a (R, 9) | F (R, 9) |2 RdRdB 

- 2E a J JCT (R,6) I F (R,0) |2 RdRd9 (4.5) 

so that, 2 
l        ? J7a(R,e) | F. (R,9) - F., (R,9) |   RdRdG 

J JCT(R,0) I F(R,9)|2RdRd0 (4.6) 

Equation (4. 6) can be used to derive a more useful estimate for a by first assuming 

that CT (R, 8) is a constant and then noting that, 

gJ'J 1 y. (R-R')[G.(9) -G.,(8)]+G.,(8)[y1(R-R') - x., (R-R')] ]2RdRd6 

H | v   (R-R') |2 | G(9) |2RdRd0 

eJ7 IXyCR-R'jfG.OJ-G.^e)' 
 TV, m „.. ,2 , „ 

+ G(0) X. (R-R') - xf(R-R') I2 RdRdf 

J'J | Xy (R-R') |Z | G(9)]TRdRdG 

ej | G (9) -G (9) |2d9 cj" | x, (R-R') -yr (R-R') |2RdR 
_   » J       _|_ i *         (4.7) 

r | c(9) |2 de J |xu(R-R') |2RdR 

where second order terms such as   G.(0) - G(9)  G.(g) - G.,(9)    have been ignored, 

G. and \, have been assumed statistically independent and it has been assumed that 

e[cj (9)] = G(e)ande|xi(R-R')] = xu (R-R')- 
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Equation (4.7) provides a means of estimating a in terms of average percentage antenna 

errors and average percentage pulse mismatch errors. 

Equation (4. 4) can be written in a simpler form by the introduction of some 

new notation.    To this end, the input clutter power per pulse P   is defined by 

Pc = ° if   =  E JJcr (R,e) | F (R,6) |2RdRd0 (4.8) 

and the temporal correlation function H(x) is defined by 

„ r- 2v   T       -| 

H(x) =E P"1 j'JcrtR.e) | F(R,6) |   exP L2^ ~T~~ XJ RdRde (4,9) 

In terms of this notation,  (4.4) can be written as 

kk' — 
c . ,   =P   (1 - a 6..,) H(k - k') (4.10) 

Finally, the entire interference covariance matrix A = C + 4N I will be written in o 

terms of the normalized matrix M defined by 

A= P M (4. 11) 

It is easily seen that the elements of M are given by 

kk' — 
m..,=p     6.., 5, , +(1 - ad..,) H (k - k') (4.12) n      rnc    n     kk      v n 

where 
4N 

nc        P c 

is defined to be the input noise-to-clutter ratio per pulse. 
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c)  The Improvement Factor 

The output signal-to-interference ratio p defined by equation (4. 1) obviously 

can be considered as a figure of merit for a given AMTI system and systems having 

different parameters (number ofpulses, number of antennas) and/or processors could 

be compared by comparing their SIR's.   Such comparisons can be simplified somewhat 

by the introduction of the notion of an improvement factor which measures the SIR 

gain that is obtained from a given system. 

The improvement factor can be defined by first noting that the SIR for an 

arbitrary linear processor given by equation (4. 1) can be written in the form, 

EAo   I^V I2             |£*  w|2 

p=—2-v 2  _  (4.13) 
c w    M w 

where use has been made of equation (4. 11).   Next,  it is observed that the quantity 
9 9      _ l 

EA~   I F(8 ) |" P       can be identified as an input signal-to-clutter ratio per pulse, 

p.    = EA2   I G(9 ) I2 P"1 (4.14) rm o   '    x o   '     c 

The improvement factor I(v  ,v    )is now defined to be the ratio p/p.    and is given y x o   ao r    in G 

bv, |   *       12 |s     w | 
I(v  , v    ) =     

0    ao w* M w (4. 15) 

where the dependence of the improvement factor on the desired target's velocity and 

location parameters v   and v     (through the components of s) has been indicated explicitly 

in the notation.    Several points should be noted about this definition of improvement 

factor.   First, although p.    was defined as an input signal to clutter ratio and not 

an input signal-to-interference ratio, these two quantitites are almost equal in 

any practical situation where usually the input clutter power far exceeds the input 
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noise power.   The next point to bear in mind is that two systems should always be 

compared with the desired target at the same azimuth for otherwise, p.   will be 

different for the two systems and the improvement factor will not give a fair comparison. 

In the same vein, equation (4. 5) shows that systems having different antenna apertures, 

a, will have different p.  's because their antenna gains and beamwidths will be different. 

This last effect turns out not to be very important, however, because the system 

constraints discussed in section 2 (see equation (2. 23)) do not allow a to vary significantly 

for N=l which turns out to be the most interesting case.   Finally,  it should be noted 

that the  improvement factor for the optimum linear processor, I (v  , v    ) can be 

written in the form, 

I        (v  ,v    )    =s*M_1 s (4.16) maxv o    ao'      - - 

An extensive numerical investigation of the improvement factor will be presented 

in a later section. 

d)   Spatial-Temporal Factorization 

The remainder of this section will be devoted to showing that as long as the clutter 

power is much larger than the receiver noise power, the improvement factor for a 

large class of interesting linear processors factors into a product of two terms, one of 

which gives the improvement due to temporal  (pulse-to-pulse) processing and the other of which 

gives the improvement due to spatial (antenna-to-antenna) processing.   This is an 

important result because it facilitates the assessment of the relative efficacy of 

increasing the number of pulses or the number of antennas.   In addition, it will be 

shown that subject to the same assumption the optimum processor has the property 

that it factors into two independent processors one performing purely temporal 

processing and the other performing purely spatial processing. 
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The establishment of these factorizations is greatly aided by the introduction 

of the Kroneker product of two matrices.   The Kroneker product A ® B of an n x m 

dimensional matrix A with elements a.,  with apxq dimensional matrix B with elements 
ik 

b  , is defined by the equation 

A® B = 

ailB 

a21B 

a    ,B ml 

al2B 
ik 

a2kB 

a     B 
mn 

(4.17) 

Note that the matrix A X B is np x nq dimensional.   The sequel will make use of 

several easily verified identities involving Kroneker products.    They are, 

(A® B)"1 = A"1® B"1 
(4.18) 

if A and B are non-singular, 

(A «• B) (C (8 D) = (AC) ® (BD) (4.19) 

provided that the products AC and BD are defined, 

(A 8 B)* = A* « B* (4.20) 

Inspection of equation (3. 15) now shows that the vector s can be written in 
+ 

the form s = s  g £   where s. and £ , respectively denoting the temporal and spatial parts 

of s, are given by, 

+ The unimportant carrier phase angle has been dropped from this equation. 
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=t 

-s 

r         2(v    - v    )T -|                       r          2(v    - v    ) -fl 
1, exp   [-J2TT        °  x

a°     ]   , ... exp  [-j2n °_«>_ (n-ij| (4.21) 

1, exp (-j2n   *L   -JL.),  ... exp [-j2n ^ -2 (m-l)]J (4.2 2) 

In addition, inspection of equation (4.10)shows that the matrix P     C can be written 

in the form P      C = M. ® M   where the elements of M  are given by 

M^, = H (k - k') , k,k' = 0,1,.. .n-1 (4. 23) 

and the elements of M   are given by 

MJ., =(1 - (x 6     ) ,   i,V =0,1, ... m-1 (4.24) 

It will now be assumed that the clutter power is large enough so that receiver 

noise effects can be ignored.   The precise mathematical definition of what is meant 

by this assumption is that p      be small compared to the eigenvalues   of P    C.   This 

assumption implies that M a< P     C.   The factorization of the improvement factor now 

can be established for all separable processors;i. e., processors whose weights 

satisfy, 

w = w ® w (4. 25) 

where w_  is an arbitrary 1 x n vector and w   is an arbitrary 1 x m vector.   Given 

these assumptions and making use of the identities (4. 20; and (4. 21), the improvement 

factor can be expressed as, 

I(v ,v    ) v o    ao 

|(st®st)*(wt®wg) |2 

(w. ®w   )*(M®M )(w®w   ) 

|(s* ® s*)(wt®wg) |2 

(w~®w£) r(Mtwt)®(Mswg)] 
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-t '    '-s   -a 

(w*   Mx   wj (w     M   w ) 
- t      t   -t   - s      s —s 

I.(v , v    )I   (v ) (4.26) t   o     ao    s     o' 

where the temporal and spatial improvement factors are given by 

2 Is,*-,!' 
—t    t —t 

and I    * 12 s      w 
I (V )=      ~s    ~S  (4.28) 

s      Ms 
-s       s —s 

Equation (4. 26) exhibits the desired spatial-temporal factorization of the improvement 

factor. 

It is easy to see, using the Schwarz inequality that the maximum achievable 

improvement for a separable linear processor is given by, 

I       (v , v    ) - (s* M,"1 s.) (s*   M"1   S   ) (4-29> maxx o     ao7     v-t     t    -t'  -s       s    -s' 

and the associated weighting vectors are, 

w^M.^s,., w   = M_1  s (4.30) -t       t    -t   —s       s   —s 

The notation I (v , v    ) used in equation (4. 29) tactitly assumes that the max v o     ao ^ J 

maximum achievable improvement with a separable processor, subject to the assumption 

M5;P     C is comparable to the improvement achievable with the optimum processor, w 

= M     s, subject to the same approximation.   This follows from the fact that the 
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optimum processor is approximately separable as may be seen from the following 

equations, 

M"1sa!(^)'1s = (Mt®Ms)"1(st®ss) 
c 

= (Mt"1®Mg1)(st®£s) 

MM."1   sJSfM"1     S ) (4.31) t     -t s      -s 

where use has been made of identity (4. 18) 
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5. The Double Discrete Fourier Transform (DDFT) Processor 

This section will be devoted mainly to the derivation of an approximation 

to the optimum processor discussed in the last section.   As will be shown, the 

7 
approximate processor is a device that first performs m n-point DFT's on the 

pulses received from each antenna.   The resulting data is then processed in an 

antenna-to-antenna fashion by means of n m-point DFT's.   The magnitude of 

each of the nm complex numbers derived in this manner is then compared with 

a threshold and "target present" is announced for each threshold crossing.   The 

DDFT frequency resolution cell for which the threshold crossing occurred will 

be shown to give a measure of the target's radial velocity v   and its apparent 

velocity v     = v sin ®   cos (9   + 9 ) which gives some information about m   and 

9 .   The usefulness of the approximate   processor, which will be shown to perform 

within a few db of the optimum processor, lies in the fact that a DFT can be performed 

with extreme ease and rapidity on a digital computer by means of the, well known 

fast Fourier transform (FFT) algorithm.   The optimum processor, on the other 

hand, requires much more complicated and time consuming computation.   The 

section will continue with the derivation of an approximate formula for the improve- 

ment factor of the DDFT processor and conclude with a discussion of its spatial and 

temporal resolution and ambiguity properties. 

a)   Derivation 

The first step in deriving the desired approximate processor is to introduce 

the derived data d., , i=0,... m-1; k=0,.. .n-1 which is obtained from the original 

data by means of a DDFT. 

I        m-1     n-1 , 
dik=/MT      2 Z        r      w^  wl    exp(j2n£i)exp(j2n  ^) (5.1) 

V p=0       q=0        W     P      q m n 

    g J 
+ Equation (5.11) is actually a "windowed" DDFT because of the weights w   and w but this fact 

will not be reflected in the nomenclature. 
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s t 
where w   and w  are respectively arbitrary, non-zero spatial and temporal weighting 

factors.   Since the DDFT is well known to be an invertible operation (the r.,  can be 

recovered from the d., by a formula that is identical to equation (5.1) except that the 

sign of the exponents is reversed), it follows that the optimum linear processor for 

extracting the desired signal from the derived data d.,  must perform just as well as 

the optimum linear processor based on the original data r    .   The processor based 

on the derived data is defined by the expression £ = | d* D     v | where d is a vector 

composed of the derived samples d.,   in the same manner that r was composed of the 

samples r.. .   D denotes the covariance matrix of the derived data whose elements 

kk' 
d „,   are defined by 

klc' 
d .,   -e<d..d*   ,) (5.2) 
u v lk   I k 

when clutter and receiver noise alone are present in d...   The vector v is the DDFT of 

the desired signal vector and has elements v., defined by 

.    m-1   n-1 , . 
v      =   ±   2 2       s      wS w    exp (J2TT £i) exp (j2n3±) (5.3) 

ik  f%=o  q=o    pq   P  q      u    m       u    n 

It should be noted that the DDFT defined by equation (5.1) can be implemented 

as a cascade of a temporal and a spatial DFT in any order desired.   Furthermore, for 

the case of only two antennas, the spatial DFT merely consists of adding and subtracting 

n pairs of complex numbers. 

The next task will be to demonstrate that the matrix D is approximately a diagonal 

matrix.   An intuitive argument for why this    should be so can be constructed along 

the following lines.   The temporal part of the DDFT takes a set of n pulses from each 

45 



antenna and frequency analyzes them into n frequency resolution cells.   If this 

frequency analysis were ideal, the only contribution to a given cell would come 

from tnose clutter scatterers whose apparent velocities produced Doppler 

frequencies that lay within the bounds of that frequency resolution cell.   It now 

follows from the initial assumption (equation 3.21) that clutter scatterers located 

at different points on the ground scatter independently, that the outputs of different 

frequency resolution cells - because they are looking at different frequency intervals, 

and, therefore, different regions on the ground - must be independent also.   A DFT 

does not perform an ideal frequency analysis as required by the above argument because 

the filters it uses have sidelobes.   Nevertheless, a properly "windowed" DFT can have 

filtering properties that come reasonably close to ideal which implies that the above 

conclusion is true to within a good approximation.   The argument so far has established 

that all elements of D that refer to the correlation between different temporal frequency 

cells are approximately zero. 

The next step in the argument is to note that the output of any of the n spatial 

DFT's is significant only in that spatial resolution cell corresponding to zero frequency. 

This follows from the fact that the use of the DPCA mode makes the clutter highly 

correlated from antenna-to-antenna and, therefore, essentially a dc voltage that 

shows up primarily in the zero-frequency resolution cell.   This last argument 

establishes the fact that any term in D which refers to the correlation between different 

spatial resolution cells must also be approximately zero.   Combining these two conclusions 

leads to the final result that D is approximately diagonal. 

The elements of D can be evaluated explicitly by reference to equation (4. 6), 

(4.12), (5. 1) and (5. 2) with the result 
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tlf.      P       m-1 n-1 
d
kk - -£.    z z 
11 nm   p.p-0      q.q-0 PP'       P     P q      q 

qq'       s      s*       t       t* 

expC^Pi^iljexpO^H^') (5.4) 

which, after some straightforward algebra, can be rewritten in the form 

..,     = P   p     e.., e       + E f..,   i, , , a c rnc    n    Kk n     kk (5.5) 

where 

ii     m     _-, p=0 

s    i2 .._.     i-i'  . 
wp   |    exp 02" P-^-) m (5.6) 

e       =f    ( k"k'   ) 
kk'      2 *    n     ; (5.7) 

/•>, m-1 r, ... 

f        = -        S w exp (i2n n   ) 
ii'       m     p=0 P m 

rm-1 
+—   (l-ot) m 

pi 
2 w    exp 02" ^-) 

LP=O      
P m 

m-1 ., 
2       w^ exp 02"  Ei) 

Lp=0       P 
(5.8) 

2v  T 2v  T 
fkk' = m J* Jcr (R, 9) | F(R,9) |2f2(^  + —£-)f» (|1  +-^-)RdRd( (5.9) 
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and where, 

1   n_1       t 
f,(x) = —     2      w    exp (\2nqx) 

1 n   q=0      q 

f   =1    s        | w*   |2 exp (j2"qx) (5.10) 
2     n   q=0 * ' 

It now will be shown that, as long as the spatial and temporal weights are properly 

chosen, the covariance matrix D is approximately a diagonal matrix.   In this connection 

it is important to note that the performance of the optimum processor based on the derived 

data is independent of the choice of temporal and spatial weights as long as none of these 
g 

weights are zero.   To this end, a uniform set of spatial weights w    will be chosen with 

the result that, 

e.s,   =6.., (5.11) 
n n 

and 

!*.,=  [* + m   (l-">Vi'o]6ii' 

The temporal weights are to be chosen in such a manner that the functions 

ftx) and f2(x) defined by equation (5.10) behave roughly as indicated in Fig. (5. 1) 

That this sort of behavior can be achieved by a suitable choice of weights w   is well s 
o 

known from the theory of window functions used in spectral analysis.   For example, 

if uniform weights are used both f,(x) and f2(x) are of the form sin nx/sin x which exhibits 

the desired behavior but has rather large sidelobes.   The theory of window functions 

shows how to depart from uniform weights so as to achieve low sidelobes without 

appreciable broadening of the main lobe. 
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i. f, (x) or f2 (x) 

WIDTH   S   1/n 

LOW   SIDELOBES 

•   •   •        »    x 

Fig. 5.1.   Desired behavior of f,(x) and f2(x). 
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Assuming that f.(x) and f?(x) have negligible sidelobes and assuming that the 
n-1 

(5.13) 

1 f      9 
weights have been normalized so that -    S      I w    I    = 1 it now follows that 

n    q=0 q 

In addition, it is obvious that the integral in equation (5. 9) is essentially zero 

unless k=k' which means that f, , , is approximately given by 

ftkk-=ftkk6kk- (5'14) 

ftkk=nJJa(R,6) |F(R,8) I2 |fx^+ -jf—) |2RdRdG (5.15) 

The next fact to be established is that the desired signal vector v has only 

one non-negligible component.   Intuitively, this result is reasonably obvious because 

equation (3.15) shows that the desired signal is a two-dimensional complex exponential 

which will tend to be almost orthogonal to all the exponential factors in the DDFT 

except the one whose frequencies match those of the desired signal most closely.   This 

result can be established more precisely by substitution of equation (3. 15) into equation 

(5. 3) with the result, 

n-1 
v..   =,=^      2       w    exp   i2TTq _ - —  (v    -v    H 
ik^p-     q=0      q       F|_     In      X       o       ao]J 

1   m~* r 2d   V    "I 
v«p=o "PL,*I^"T->J 

V^ fl[j ' T <vo - *ao>] 1    %   ^"[^ fiT7>] <5-I6> 
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Because of the assumed behavior of f .(x), the first term of equation (5.16) is approximately 

k    2T 
equal to zero for all values of k, k=0,... n-1, except that value which makes — -^- (v   - vaQ) 

closest to an integer.   Similarly,   since the second term of equation (5.16) is of the form 

sin mx/sin x, it is approximately equal to zero for all values of i, i=0,. •. m-1 except 

2ri  V 

that value which makes— - -2. -2. closest to an integer.   It follows that the vector v, 
m        A    v - 

as stated, has only one non-negligible component. 

It now follows from the above discussion that the optimum weighting vector 

D     v has only one component whose value differs appreciably from zero.   This means 

that the optimum processor defined by £ = | d* D     v | has an extremely simple structure 

in that, for each hypothesis as to the value of the target's unknown velocity v   and apparent 

velocity v     to be tested, only that value d., corresponding to the "closest" spatial-temporal 

resolution cell need be compared to a threshold.   The "closest" resolution cell corresponding 

to a given v   and v     is defined by those indices i' and k' that make the quantities 

i       2d      o       , k      2T —   - -T—  —  and —  - -T— (v    - v    ) closest to integers. m       A     v n       A   x o       ao 6 

This argument establishes the assertion that the DDFT processor is an approx- 

imation to the optimum processor.   The goodness of this approximation will be established 

by means of numerical examples in a later section where it will be seen that the approximate 

processor performs essentially as well as the optimum processor in all cases of interest. 

b)  The Improvement Factor 

The task of this section is to derive a simple, approximate formula for the 

improvement factor I       (v , v    ) of the DDFT processor.   The function I (v , v    ) K max' o     ao' F v o     ao 

was defined to be equal to the ratio of output SIR to input signal-to-clutter ratio and 

is easily seen to be given by, 

D   _1 

Kv0. vao)=v* <-£-)      v (5.17) 
c 
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Making use of the same approximations used in deriving the DDFT processor, it 

is seen that equation (5.17) is approximately equal to 

lvrk- I 
1 <vo' Vao) ~        dk'k'/p (5.18) 

i'i'       c 

where i' and k' denote the indices of the spatial and temporal resolution cells' "closest" 

to v   and v    .   Equation (5.18) will be evaluated explicitly by means of suitable 

i |2 k'k' k'k' approximations for | v.,. ,  (   and d.,., .   The variance d .,., is given by equation (5.5) 
1 K II 11 

and reference to equations (5.11) through (5.15) shows that the only quantity that requires 

approximation is the integral given by equation (5.15).   This integral will be evaluated 

approximately by means of the following considerations. 

The width of a range resolution cell is assumed to be small enough so that o in the 

integral is approximately equal to the constant cp', where &' is the elevation angle to the 

center of the range resolution cell of interest, R' cos (p' - h.   In addition, V (R-R',0) 

will be approximated by its value at the center of the range resolution cell of interest, 

X (R-R',0) — y (0,0) = 1.   Furthermore, it will be assumed that RdR can be approximated 

by R'dR and thata(R, 9)-cr(R\ 6) in the integral.   These considerations enable equation (5. 15) 

to be approximated by, 

2 
f*,k, * n R'(AR) Ja (R\ 6) | G (9) \2)?J^ + ^ sin 0> cos (9b + 9)1 |    d 9       (5.19) 

where AR denotes the range resolution cell width, AR = c/2 W . 

Next, it is assumed that the beamwidth of G(9) is sufficiently small so that the 

small angle approximation cos (9, + 9) 5; cos 9,-6 sin 9,   can be used in the integral. 

Because of the periodic behavior of f ,(x) (Fig. 5.1), it follows that the f. term in equation 

(5.16) peaks at values of 9 = 9   given by, 
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k'     2VT - + -y- sin tp' cos 9, + p 

P                =P- SU1 <P* sin 8,. A. b 

; p = 0,± 1,... (5. 20) 

Furthermore, because the width of the peaks of f ,(x) is - , the only significant 

rangesof integration are intervals of width 

A9 -*[ 
2VT 

sin (p  sin •I"' 
centered at the values of 9 given by equation (5. 21).   Finally, it will be assumed that 

G(9), f ,(x) and a (R\ 9) are approximately constant over these integration intervals. 

Equation (5. 19) now can be approximated by, 

(5.21) 

£,k, =nR' (AR)(A9) | f: (0) 2 
p = -oo a(R\ ep) |o<ep) I' (5.22) 

The presence of the infinite sum makes equation (5. 22) look quite formidable; 

however, in most cases of interest this sum only contains one significant term.     As 

indicated in section 2, the AMTI system will usually operate with its parameters chosen 

so as to not alias the clutter.   This means that the prf is chosen so that 

1  .     ,2v   A. 
(5.23) 

where \i s 1 is a constant that deter minss by how much the clutter spectrum is over sampled. 

This means that, 

IVT ;   !   ~~ 
-^— sin <o  sin 9, 

A b   i 

-J4 2VT p I *.fi (5.24) 

X   Sin6b 

where the antenna beamwidth ^ is approvimately given by ty = A/a sin 9. . 
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In other words, the angular distance between any two terms in the sum is \i times 

an integral number of beamwidths.   Since only those terms within the main lobe of 

the beam contribute significantly to the sum, it follows that, 

(k^R' (AR)(AG) | f^O) |2a(R\6p,) | G(0  ,) |2 (5.25) 

where p' denotes that integer which makes 8   closest to zero.   The fact that the clutter 

is not aliased also results in a further simplification because A0, as given by equation 

(5.21), can be approximated by, 

A0--L  y^fx (5.26) 
n 

which means that A9 is on the order of one of a beamwidth as long as n is not 

cnosen too large. 

Making use of these approximations in equation (5.5) yields the result, 

d)',f, c*ER' (AR)  jutf| f (0) |2<x(R\  0.) | 0(9.) |2    .,,„ 
^J--p      +  -i— 2 E i#) (5<27) 

P             Knc P c c 

A similar, but somewhat more complicated expression can be obtained for the 

case i' = 0 but, for reasons to be explained in the next section, this case is not 

an interesting one.   One final approximation will yield the desired simple approx- 

k'k' imation to d.,.,   and that is the assumption that a (R', 6) is approximately constant 

over the entire beamwidth of G(9).   Given this assumption, and the approximations 

already made, equation (4.5) shows that, 

Pc - E R' (AR) a (R\  6  .) J | G (9) |2 d0 

= ER' (AR)a(R', 9 .)^_1 J | g(0) |2d9 (5.28) 
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where the normalized gain function g(9) is defined by 

G(B) = ty~l gW~l B) (5.29) 

kk' 
The desired approximation to d .,., is now given by, 

.k'k' d.,., 0 

-T1—   =   Pnc +a I fl(0) I    S " I S  (*~l e_.) |2 (5.30) 
c " 

where s denotes an antenna shape factor that is independent of the variable system 

parameters and given by, 

s =J |g (0) |2d6 (5.31) 

Actual calculations show that s does not differ a great deal from unity and so plays 

a relatively unimportant part in (5. 30). 

The following approximate formula for | v.,  , |    can be obtained from 
1   K. 

equation (5. 17), 

V.M,. 
2 

— kx CO) I 2 (5.32) i'k 

where it has been assumed that the value of | v.,  , |    for targets in the exact 

center of their "closest" spatial-temporal resolution cell is an adequate approximation 

for the case where a target is off center.   Substitution of equations (5. 30) and (5. 32) 

into equation (5. 10) yields the desired approximate formula for the improvement 

factor of the DDFT processor (valid for V#Q) 

I(y     y     ) fe 
nm I f 1 (0) 1  (5.33) 

V Va°   "    Pnc+^VO) I'sfx |g(i_1e   )|2 

Elementary antenna theory shows that g(8) is approximately independent of \J'. 

ss 



If the clutter power outweighs the receiver noise power, equation (5.33) 

can be written in factored form as follows, 

I(v, v    )MT7>    ( 2-TT  > <5'34) 

°    a°      a       sM|g($ \p,i 

These approximate formulas will be referred to in the next section in 

order to give insight into the way that the computed improvement factors vary with 

parameters such as m.n.o' and fx. 

c)   Resolution and Ambiguity 

The resolution of a processor refers to its ability to distinguish two desired targets 

whose parameters v   and v     differ only by a small amount.   Ambiguity, on the other 

hand, refers to the processor's inability to distinguish  two desired objects whose 

parameters differ by a significant amount.   (These ambiguous parameter values are 

sometimes called blind speeds).   For the DDFT processor, these characteristics are 

most conveniently studied by means of the processor's ambiguity function.   This function 

is defined to be the magnitude of the output of a given spatial-temporal resolution cell 

when a desired target with parameters v   and v      is present at the input and is denoted 

bv X-,   (v  > v    )where (i, k) denotes the indices of the output resolution cell under J    ik    o     ao 

consideration.   This function is seen to be given by equation (5.16),+ 

v 

*ik (V vao> 
-   -  (_2_ - _2i) i_| 
n K v v    ' \fl] 

8lnL(-i-- ^   -2)1 L m      A     v   J 

sin rM_L M vi 
L      m        A     v   J 

where it has been assumed that  T is chosen according to equation (5. 23) 

(5. 35) 

+The factor/nm is unessential for the present purpose and has been dropped. 
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Examination of the sin mnx/sin x term in equation (5. 35) shows that it has 

peaks whenever 

v x 

-T-  = 2J   <m +1)' p=0' ± 1'"- (5.36) 

Since the width of the sin mx/sin x term is— ,  it follows that this term only 
m      V X 

contributes substantially to equation (5. 35) when —   is within ± 1/2 ^—-p   of the 

peaks given by equation (5.36).   Similarly the f,(x) terms has peaks whenever, 

v        v 

<"£  "-^) = 'i^   £  +^' ^ * 1"-' (5'37) 
V V d II 

v        v 
and there is substantial contribution to equation (5. 35) only when —   - -^   is 

within ±  TT   —    of these peaks. 2   na K 

The resolution properties of the system can be studied by focussing attention 

on the behavior of \..   in the vicinity of one of its peaks.   It can be seen from the 

discussion in the last paragraph that Xk remains substantially near its peak value 

as long as the departures of the parameter v   and v    - v     from their values at 

the center of the peak are boundedby •* -*—-.      and ^ -^ respectively.   A region of 

the (v  , v    ) plane for which these conditions are met is called a spatial-temporal 

resolution cell and has the shape depicted in Fig. 5.2. 

Examination of Fig. 5.2 reveals that two targets whose parameters 

are equal   to v ' v'      and v  ", v     " respectively can appear in the same spatial- 

temporal resolution cell as long as their parameters satisfy 

iV-Vl'sa v (5-38) 

and v ao Vao   |    . f ^A     ,    A    "I 
   I   ^Ha"     +ImdJ (5.39) 
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Fig. 5.2.   A spatial-temporal resolution cell. 
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Moreover, if either of these conditions is violated, the two targets will not appear 

in the same spatial-temporal resolution cell unless the differences between their 

parameters becomes so large that they lie in the vicinities of different peaks of 

X...   The  quantities appearing on the right-hand sides of equations (5.38) and (5. 39) are 

called the velocity or temporal resolution and the spatial resolution respectively.   The 

latter quantity can be related to resolution in the angles o   and 0    in an obvious 

manner. 

In order to study how the resolution of the system depends on the basic system 

parameters, n, m, N and/i, it is necessary to express the parameters d and a 

appearing in equations (5. 38) and (5. 39) in terms of them.   This is done by means 

of equations (2. 22) and (2.23) which yields the results, 

.          .        (N-l) (m-l) + 1 +2jx - - A       . _A ' N  m 
~Tmd      TL (N-l)m + l 

(5.40) 

\xk    _   (N-l) m + 1 A 
na n 2md 

x        (N-l) (m-l)+ 1 + 2n --L- m 
2T n 

(5.41) 

Study of the spatial-temporal resolution considered as a function of N and m reveals 

that as N increases-*—, decreases steadily whereas (^—,   + — ) decreases until 2md ' 2md       na 

a critical value of N is reached beyond which it begins to increase again.   The 

critical value of N is given by N —J^n and seems at first glance a logical choice for the 

value of this system parameter.   With N set equal to*mn,  it can be seen that both resolu- 

tions degrade with increasing m thus leading to the choice of m=2.   With the velocity reso- 

lutions optimized in this fashion,  it turns out that the resolution improvement over a 

system with parameters N=l, m=2 is about a factor of 5.   On the other hand, the price 

paid for this resolution improvement is a reduction of R by a factor of about 4 
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(for N=30, n-2) and, as will be shown in tne next section, a 5 db decrease in the output 

SIR of the system.   In view of the premium usually placed on large values of R 

and SIR in an AMTI system, it seems that the increased resolution obtainable by 

making N > 1 will not be deemed worth the price and that the choice N=l, m=2 will 

be the one most often made. 

A very useful tool for visualizing the resolution and ambiguity properties of 

the processor is the ambiguity diagram.   This diagram indicates by means of 

shading those areas in the (v  , v    ) plane for which the ambiguity function y .,   is 

substantially different from zero.    For the case N=l and m arbitrary the discussion 

above shows that the pertinent ambiguity diagram is as indicated in Fig.  5.3. 

60 



V  T   x 
/J — 2 nmd 

J //                  V0 A "      V 

/A X 
2 nmd 

DETAIL   OF   AN   INDIVIDUAL 
RESOLUTION   CELL 

X 
2md nd / 

|ll-l-l»5«| 

UNIT   SLOPE 

X 

V _X^ 
2d 

/     z 
2md 

2md 

ORIGIN  LOCATED AT 

(±   -L, J_   ±.\ 
\ m    2d '   run    2d/ 
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6. System Performance 

The purpose of this section is to present and interpret computed results for 

the MTI improvement factor of the multi-antenna system under consideration.   These 

results were computed on the basis of formulas derived in preceding sections descri- 

bing the signals, the interference statistics, the processing algorithms, and the im- 

provement factor itself.   As a preliminary to presenting the computed results, the 

pertinent formulas will be summarized and, when necessary, specialized to a form 

more suitable for computation or interpretation.   The spatial-temporal factorization 

of the improvement factor, introduced in Section 4d, will be drawn upon heavily for 

interpretation and clarification of the results. 

The first set of results will illustrate the variation of improvement factor 

with the antenna and signalling parameters introduced in Section 2.   These results 

will be drawn upon to suggest a reasonable selection of these parameters.   An in- 

crease in the number of antennas from one to two will be shown to produce dramatic 

improvement, while use of more than two antennas provides little added 

advantage.   The effect of the number of pulses transmitted on each antenna, and of 

the parameter N governing the relationship between the prf and the time necessary 

to fly the distance between phase centers, will also be examined.    In general, the 

improvement factor will be plotted as a function of radial target velocity, for a target 

assumed located at the antenna boresight.   This first set of results will be concluded 

with a separate discussion of the change of the improvement factor curves with target 

angle from boresight. 

The second set of results will illustrate the dependence of the improvement 
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factor on the clutter and noise parameters defined in sections 3 and 4.   The aperture 

effect, antenna and pulse shape mismatches, and receiver noise each will be con- 

sidered.   Two additional effects, that of slight inaccuracy in the knowledge of air- 

craft velocity, and of internal motion of the clutter, will be introduced and discussed. 

All the results mentioned above will be presented for the DDFT processor, 

due to the convenient implementability of this processor and the fact that its per- 

formance is very close to the performance of the optimum linear processor.   To 

justify this procedure, computed comparisons between the DDFT and optimum-pro- 

cessor improvement factors will be presented at the end of the section. 

a) General Description of Performance Curves 

The MTI improvement factor for the system was represented in equation 

(4.15) as 2 

|w* s | 
I(VVao>=-T7T- <*•» 

w*M w 

where s is the signal vector, w* is the receiver weighting vector, and M is the 

normalized covariance matrix of the interference.   This formula is valid for any 

linear processor, but will be studied here only for the DDFT processor whose 

weights are (ignoring the scale factor lAfnm in (5.1)) 

w*ik =wk exp G    m")  exp   (j_nL) (6,2) 

where the weight w*..   is applied to the kth received pulse from the ith antenna, and 

for the optimum linear processor whose weighting vector is 

w = M     s (6.3) 
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The DDFT processor is separable by construction.   Therefore for both these pro- 

cessors, the argument of section 4d implies that subject to the assumption that the 

system performance is limited by clutter, rather than receiver noise, the improve- 

ment factor can be expressed as 

I(v , v    ) =1   (v ) I.(v , v    )    , (6.4) v o     ao'      s v o    t   o     ao 

where the temporal improvement factor I. is obtained through processing the pulses 

received at each antenna, and the spatial improvement I   is obtained through antenna- s 

to-antenna processing. 

The explicit dependence of I on target radial velocity v   and on the target 

location parameter v     is indicated in the description of the desired signal as (see 

3. 15)). 

s.k = exp    (-J2TT-JL   -*L i)  exp [-j2n(vQ - vaQ)  -j-   k] (6.5) 

i = 0, 1,  ...,  m-1 

k = 0, 1 n- 1 

A.TU A.-fa 

where s.,  represents the k    received pulse at the i     antenna and v     depends on the 

target location angles (see (3. 10)) according to 

v      = v sin (0   cos (6   + 6.)    . (6. 6) ao ^o o      b 

Most of the important features of the system performance become apparent if I is 

plotted as a function of v  , with v      = 0.   This generally will be the procedure foll- 

owed except in section 6. 6. iv, where the effect of variations of v     due to variations r ao 
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of target azimuth 0   will be studied.   The reason that the spatial improve- 

ment may factor in (6.4) depends only on v   is apparent from (6. 5) where it may 

be noted that the spatial, or antenna-to-antenna, phase factor is independent of v    . 

In the sequel, the notation I(v ) will be used for I(v  ,o). 

The spatial phase factor in (6.5) is periodic in v /v, with period A./2d.   For 

the case where v     =0 and where each antenna transmits from the same location, ao 

N=l in equation (2.19) and T = .   It follows that the temporal phase factor has 

period A/2md in v /v, and thus also repeats at internals of A./2d.   These periodi- 

cities already have been illustrated in Fig. 5.3.   In the performance curves to be 

presented, I will be plotted as a function of v /v, and usually only the interval 

(0, X/2d) will be shown.   For N = 1, which will be shown below to be the situation 

of greatest interest, I is periodic with this period, and-^-r may be straightforwardly 

interpreted as the first blind speed of the system.   For N ^> 1, the temporal phase 

factor in (6.5) has period greater than A./2d; this effect will be discussed later.   In 

plotting I versus v /v, a grid consistent with the velocity sensitivity of the system 

is obtained by changing v /v in increments of y*(2mnd), so that mn points are plotted 

in the interval (o, X/2d).   Reference to Fig. 5.3 shows that the velocity increment 

is just sufficient to guarantee the placing of a target in the center of each DDFT 

resolution cell.   For N -> 1, analysis of Fig. 5.2 shows that this grid is still con- 

sistent with the system's velocity sensitivity although it could be coarsened without 

losing any resolution in the resulting plots. 

In an operating AMTI system, only those n(m-l) resolution cells whose 

spatial indices i are not equal to zero will be examined for the presence of moving 

targets.   The reason for this is that a target whose velocity v    is so small that it 
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appears most strongly in a resolution cell whose spatial index is zero cannot be dist- 

inguished from stationary objects on the ground. The following plots of the improve- 

ment factor were obtained by first constructing the target returns that result when 
v                  x 

v   assumes the values ——  = p fa -r-), p = 0, ... mn-1.   The improvement factor 

is then computed for that spatial-temporal resolution cell "closest" to v   where the 

term "closest" is to be taken in the sense defined near the end of Section 5a.   An 

exception to this rule occurs when the closest cell has indices (i',k') and i' = 0; in 

this case, the improvement factor is computed for the cell (1, k'). 

The improvement factor I depends not only on the signal vector s but also 

on the covariance matrix M as indicated in equation (6. 1).   To prepare for Section 

6c, where this latter dependence will be examined, the structure of M will be reviewed 

and a specific form for the antenna pattern will be introduced to allow for the compu- 

tation of numerical results.   The elements of M were represented in equation (4. 9) as 

mKK,   =   p     6... 6.. , + (1 -"S"..,) H (k-k')   . (6.7) 
u rnc   11    kk      v ii'     v 

The function H(k-k') is the normalized correlation function of the pulses received 

at each antenna.   Now if a Gaussian illumination of each of the antenna apertures is 

assumed and if it is further assumed that the range resolution is fine enough so that 

the elevation angle to the ground varies negligibly over a range resolution cell,  it 

can be shown that the function H(k-k') has the Gaussian form 

H(k-k') =  exp ("jO (k-k')]  2) (6.8) 
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where 

0=£    ^-  since' (6.9) 
O      3. 

and where e>' denotes the elevation angle from the aircraft to the center of the range 

cell.   A choice of the constant j3   =4 yields a reasonable match between the Gaussian 

correlation function and those which would be obtained with other common antenna 

illuminations such as uniform or triangular illumination.    The correlation function 

(6.8) is actually only valid when the antenna beam is perpendicular to the aircraft 

velocity, or 9,   = 90 .   For 0,  ^ 90 , the right-hand-side of (6.8) must be multiplied 

by a linear phase factor in (k-k') corresponding to the non-zero Doppler frequency 

of the clutter patch at the center of the beam.   However, this phase factor is known, 

appears in both the target and clutter return, and can be removed by suitable pre- 

processing of the data.   For this reason, it will be ignored in the sequel and (6.8) 

will be used. 

It may be observed from (6. 9) that /3 is inversely proportional to the prf, 

1/T     Thus a high £ implies a prf which is low in comparison to the clutter spectral 

width and a low /9 corresponds to a higher prf.    More detailed interpretation of /S 

will be given in section 6. c.i. 

b) Effect of Antenna and Signalling Parameters 

Results now will be presented which illustrate the effect of the parameters 

m, n, and N on the improvement factor.   These results will be presented for the 

DDFT,with a comparison between the DDFT and optimum processors being reserved for 

section 6. d.   A target located on the antenna boresight 0  =0, will generally be assumed, 

but a separate discussion of the effect of an off-boresight target will be given.   It should 

67 



be recalled from section 2 that m and N essentially determine d, a, T, and R        .   Thus 
1T13-A 

in studying the effects of m and N, the effects of changes in these other parameters 

are automatically considered. 

(i)  Number of Antennas 

In Fig. 6.1, the improvement factor is plotted for the case of 1, 2, 

4 and 8 antennas.   The parameter choices a> = 10    , /} = 1.0, p      = 0, N = 1 have 

been made and the product nm has been fixed at 64.   The location parameters 8, 

and 8   have been set equal to 90   because this choice does not misrepresent the 

results as will be demonstrated in section 6.c.i.   One period of the one-antenna 

curve has been plotted in the interval (0, X/2d) for the purposes of simple com- 

parison with the other curves, although the parameter d is meaningless for the 

one-antenna case. 

Inspection of Fig. 6. 1 shows that there is a dramatic gain to be had 

in going from a one-antenna system to a two-antenna system in that the velocity 

region over which the improvement factor is large enough to allow targets to be 

seen (an I of about 45 db is necessary if the input SIR is -30 db) is much larger 

in the two antenna-case.   In fact at the low prf (high /5) considered in this example, 

there is essentially no region of visible velocities for the one-antenna system. 

Referring to equations (6. 9) and (2. 17) it is apparent that /9 = 1.0 corresponds to 

[i = 2.0.   This ratio n of prf to nominal clutter width is not high enough to produce 

visible regions in the aliased clutter spectrum seen at each antenna. 

On the other hand,  it is apparent that even with m = 8, the only 

improvement over the m = 2 case is a slight narrowing of the blind regions.   It 
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seems that essentially all the clutter cancellation possible is achieved with 2 antennas, 

and that little is gained by increasing the number of antennas beyond 2.   The result 

in Fig.  6. 1 is consistent with the approximate gain formula, equation (5.34), which 

indicates that I is proportional to times a term independent of the number of 

antennas. 

It has just been demonstrated that, as far is the improvement factor 

is concerned, nothing substantial can be gained by using more than two antennas that 

could not be gained simply by increasing the number of pulses per antenna n.   It is 

conceivable, however, that, the resolution of the system could be improved by in- 

creasing the number of antennas.   Reference to Fig. 5. 2 shows that the only way 

m influences the system resolution is through the quantity md, which equation (2. 22) 

shows cannot vary substantially from the value L no matter what choice of N or m is 

made.   This means that the system resolution is not affected substantially and since 

it already has been shown that, for N = 1, the improvement factor does not get better 

when m is increased, it seems reasonable to choose a two-antenna system, at least 

when N = 1.   It will be pointed out in the discussion below that a two-antenna system 

also turns out to be the most reasonable choice when N > 1. 

(ii)     Number of Pulses per Antenna 

The effect of increasing n, while keeping the other parameters fixed, 

is straightforward and is illustrated in Fig. 6. 2 for m = 2, N = 1, •» = 10    , and 

$ = 1.    Essentially, doubling n adds 3 db to the gain by doubling the coherent inte- 

gration time of the processor.   In principle, it seems desirable to make n as large 

as possible.   In practice, n is limited by such considerations as (a) when n increases 
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Fig. 6.2.    Effect of varying n. 
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acceleration effects which alter the phase structure of the returns must be accounted 

for, (b) for large n, the target might have to be tracked through several range gates 

during the coherent integration time, and (c) as the aircraft flies along with a fixed 

beam pointing angle, a given target remains in the beam only for a finite period of 

time. 

(iii)   The Parameter N 

The parameter N represents the number of pulses transmitted by a 

given antenna before the next antenna in line moves to the original spatial position of 

that given antenna.   It entered into the clutter cancellation constraint relating the 

prf and the inter-antenna spacing and aircraft velocity according to (see equation 

2.19) 

vT=d/(N-l+ 1/m) (6.12) 

Incorporating (6. 12) into (6. 5) for the case where v     =0 yields 

s.k ^ exp •j2n 2d exp •i 2n 2d 
J ** T    X (N-l+l/m) 

The first, or spatial, phase factor in (6.13) is periodic in   with period 

s    IT 

while the temporal phase factor has period 

(6.13) 

(6.14) 

Pt _ "2d -   (N - 1 + 1/m) (6.15) 

It follows that targets with  separated by an integer multiple of 

~2d" [(N-l) m+ l] (6.16) 
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are indistinguishable and that I repeats with this period in . 

For N=l, P   = -JT~' corresponding to the repetition period of the curves presented 

up to now. 

Now the effect of N may be examined by application of the factorization 

result (6.4), specialized to the case v     = 0 as 

10 log1Q I (vo) = 10 log1() Is (vo) + 10 log10 It (vo) (6. 17) 

An implication of (6.17) is that I for an m-antenna, n-puTse system may be obtained 

by adding (in db) the improvement factor for an m-antenna, 1-pulse system to that 

for a 1-antenna, n-pulse system.   To illustrate consider the example shown in Fig. 

6.3.   The top trace, labelled I , is the improvement factor for m = 2, n = 1, a - 10    ; 

I   has period -5-5-» as indicated in (6.14).   The second curve corresponds to m = 1, 

n = 16, j8 = 1; it has been drawn with period   . ,•  , which corresponds to N = 1, 

m = 2 in (6.15)  Adding the two results, I is obtained for a system where m = 2, 

n = 16, a = 10"5, 0 = 1, and N = 1. 

Figure 6.4 depicts the same situation as Fig.  6.3, except that N = 2.   The 

3     X change is that now P. = -* -j-r- SO that the horizontal scale for 1, has been expanded 

with respect to that for I .   The overall period is now P   = 3 -*-s-, so that to plot 

one cycle of the overall improvement factor curve,  I   must be taken through 3 

cycles and I. through 2 cycles.   For N = 3, the results would change in a similar 

way.   The overall 

and 2 cycles of I.. 

way.   The overall period would become 5 -rnr- » corresponding to 5 cycles of I 

li 
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Fig.  6.3.    Factorization of improvement factor. 

74 



v./v 

Fig. 6.4.    Improvement factor for N=2. 
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Comparing the bottom curves of Figs. b. 3 and 6.4, it is apparent 

that increasing N produces essentially no improvement in system improvement 

factor.   The shape of the curve changes somewhat, but the peak and average 

improvement factors stay about the same.     An explanation for this is that 
v 

the variations of I with  — are essentially determined by the variations of I , 

since the variations of I  are relatively small.   Thus the precise way in which I 
L fa 

and I. line up has an unimportant effect on the overall improvement factor. 

If N were varied for a fixed m > 2, the effect on the improvement 

factor would be similar.   The forms of I   and I. would stay the same but the way 
fa I 

in which the two line up would change.   However, there would be no important 

change in the overall improvement factor.   If m were increased for a fixed N > 1, 

a result similar to that depicted in Fig. 6.1 would ensue.   The greatest improve- 

ment would be in going from one to two antennas, and the remaining improvement 

in going from 2 antennas upward would be small. 

A loss not apparent in the improvement factor is incurred in increasing 

N.   As indicated in equation (2.23), the individual antenna length, a, decreases with 

N.   This implies a decrease in input signal-to-clutter ratio and therefore a decrease 

in output SIR, even when the improvement factor stays the same. 

It was also indicated in section 2 that the unambiguous range coverage 

decreases with N.   The only possible reason for choosing N > 1 is that slightly better 

velocity and angle resolution could be achieved, as discussed in section 5c.   However, 

given the fact that output SIR and range coverage are of prime importance in this 
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system, it seems most reasonable to choose N = 1 as will be done in the remainder 

of this section. 

(iv)  Off-Bores ight Target 

In the results presented thus far, v     has been taken to be zero, so 

that only the variation of I with target velocity, and not the variation with target 

angle, has been exhibited.   Here the effect of the target angle from bores ight 9  > 

will be considered.   This effect is most easily illustrated for the case of <p   = 8,  = ' o       b 

90°, where (6. 6) becomes 

v      = -v sin G (6. 18) 
ao o 

which may be taken as 

vao~-veo (6.19) 

since small angles from boresight are not to be considered.   Substituting (6. 19) 

into (6. 5), the signal return takes the form 

2VT 
5.k=exp[-j2T^L  2d   tJ      exp|_j2n(_£_ +eJ 

A 

v 

(6.20) 

The temporal phase factor, when considered as a function of is simply advanced 

by 9 .   Thus a target with zero velocity, at an angle 9 , will give the same temporal 

phase factor as a boresight target with a velocity v   = v 0 .   This angle-velocity 

coupling effect is well-known in airborne doppler radar systems, and has been dis- 

cussed in more general terms in section 5c. 
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A factorization condition iike (6. 17) holds for the off-boresight case, 
v 

except that I   now depends on both —-— and 6 •   In fact, since 9    simply adds linearly 

to the apparent velocity seen in the temporal phase factor, the counterpart of (6. 17) 

is 

10 log10 I (vo,  90) = 10 logl0 Is (vQ) + 10 log10 It (vQ + v0o) (6.17a) 

Here I   is the same as in the boresight case, and I   (v   + vQ ) may be obtained by 

simply shifting the result obtained in the boresight case. 

Before presenting a result indicating the effect of an off-boresight 

target, a warning mentioned in section 4 regarding the definition of the improvement 

factor must be recalled.   The improvement factor has been defined as the ratio — 
pin 

of output to input signal-to-clutter ratio.   As is apparent from equation (4. 1), the 

input   signal-to-clutter ratio decreases with increasing 6 . according to the fall off 

of the antenna gain function with increasing 9  .    This causes output signal-to-clutter 

ratio to generally decrease as the target moves off-boresight, in a manner which is 

not reflected in the behavior of the improvement factor. 

An example of the effect of 9   on the improvement factor   is illustrated 

in Fig.  6.5, which corresponds to Fig.  6.3 in all respects except that an off-bore- 

sight angle of 9    =TT    -  has been assumed.   Application of equations (2. 18) and O      **     a 
VT 

(2. 19) for the case where — = ft = 1 yields the result a = 8d, so that I   is advanced 
a t 

by 9   = "rag-  as indicated.   Comparing Figs.  6.3 and 6.5,  it is observed that there 

is essentially no loss in improvement factor, although the shape of the bottom curves 

are somewhat different.   However, making the Gaussian beam shape assumption 
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which led to (b. 8) and (b. 9), it is found that for this value of 0   the input signal-to- 
o 

clutter ratio is about 5.7 db down from its value at boresight, and therefore the 

output-to-clutter ratio is lower by this same amount, 

c) Clutter and Noise Parameters 

The effect on MTI improvement factor of the various clutter and noise para- 

meters which enter into the interference covariance matrix will now be considered. 

The interference effects to be dealt with include (1) the aperture effect, (2) antenna 

and pulse shape mismatches, (3) receiver noise, (4) inaccurate knowledge of air- 

craft velocity, and (5) internal motion of the clutter.   The last two of these effects 

have for simplicity not been included in the interference matrix description developed 

above, and will be introduced for the first time in this section.   Again the computed 

results will be presented for the DDFT processor. 

(i)  The Aperture Effect 

Reviewing the factorization result derived in section 4 and restated in 

(b.4), it is clear that the aperture effect, which influences only the correlation among 

pulses seen at an individual antenna, affects only the temporal improvement factor 

and not the spatial improvement factor.   Thus in studying the aperture effect,  it 

suffices to restrict attention to a one-antenna system. 

Recalling (b. 7) - (b. 9), and assuming again that clutter dominates 

over white noise, the correlation coefficient between the kth and the k'th clutter 

sample received by a given antenna may be described as 
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kk' 1 
mu,=  exp   -^ DS(k-k')] (6.21) 

where 

jS=j8       sin<p'»w4   sinco'. (6.22) 
0     3. ti 

Inspection of these two equation can indicate qualitatively the effect of variations of 

ft on the improvement factor.   For very small /9,  (6. 21) indicates that the correlation 

function of the clutter returns is quite flat.   This corresponds to a clutter spectrum 

which is narrow with respect to the prf,  so that very high improvement factor can be 

achieved in the frequency ranges (clear regions) where the spectral amplitude of the 

clutter is low.   For higher j3, the clutter samples becomes less correlated, the 

clutter spectral width becomes comparable to the prf, and these clear regions in the 

clutter spectrum begin to disappear.   The relationship between /3 and the prf is in- 

dicated explicitly in (6. 22).   It may be recalled from (2. 20) that 

T   =  "Y   
sin <D' (6.23) 

corresponding to /5 = 2, specifies a prf equal to the nominal clutter spectral width. 

If 1/T is chosen higher than in (6.23), /Swill decrease and clear regions in the clutter 

spectrum will begin to appear.   If 1/T is chosen lower than in (6.23), the clutter 

spectrum will become badly aliased and look essentially flat. 

In Fig. 6.6, the effect of changing /Sfor a one-antenna,  16 pulse system is 

illustrated.   For a one-antenna system, the improvement factor has period \/2VT 

in v /v, and one period of this improvement factor is shown in the figure.   The 

target is assumed to be located at the center of the antenna beam.    Essentially I(v  ) 
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traces out the inverse of the clutter spectrum seen at the antenna.   For high /?, both 

the clutter spectrum and I(v ) are flat.   For low $ the clutter spectrum becomes 

small near a Doppler frequency corresponding to half the prf and the improvement 

factor peaks up at this point.   Two window functions (see equation (6.2)), a uniform 

window 

w^ = 1 (6. 24) 

and a Hamming window 

w,   = . 54 - .46 cos (-T^-) (6. 25) 

were tried for each value of /9considered in Fig. 6. 6.   For high £, where the clutter 

spectrum is flat, the uniform window gives essentially the same performance as 

the Hamming window.   For low 0, the lower spectral sidelobes of the Hamming 

window lead to considerably better performance than with the uniform window in 

regions where the clutter spectral amplitude is low.   For these cases, the results 

plotted correspond to those obtained with the Hamming window. 

The results plotted in Fig. 6. 6 also illustrate the effect of changing beam 

elevation angle on the MTI improvement factor.   As can be seen from (6. 22), the 

effect of changing <e' is simply to change the effective 0.   If the prf is kept fixed, 

while (o' decreases from 90 , £ decreases along with the clutter spectral width, 

and the effect of varying /S on I(v ) is as displayed in Fig. 6. 6. 

(ii)  Antenna Pattern and Pulse Shape Mismatches 

The antenna pattern mismatches and pulse shape mismatches between 

antennas influence only the correlation of clutter returns from antenna-to-antenna, 

and hence affect only the spatial improvement factor and not the temporal improve- 



ment factor.   Thus in studying these effects,  it suffices to consider an m-antenna 

system transmitting only one pulse per antenna.   Specializing (6.7) to the case of an 

m-antenna, one pulse per antenna system, where clutter dominates over white noise, 

the correlation between clutter samples at the i th and i'th antenna becomes 

m.. =1-0-3;.,      . (6.26) 
u n 

Here <y, as defined in section 5,  is a parameter measuring the antenna-to-antenna 

decorrelation of the clutter returns due to the combined effect of antenna pattern 

and pulse shape mismatches. 

An analytical result for the improvement factor of a two-antenna, one-pulse 

system can be easily obtained.   The covariance matrix for this case is 

1 1 - o>~ 

.1 -a     1      J    . (6.27) 
M 

This signal vector is simply (see (6.5)). 

i   = L. ,   ;^ %      2d J -exp (- j 2TT _^_    ~)J (6. 28) 

The weighting vector for the DDFT processor is 

L'J • w* = , (6.29) 

corresponding to p = 1, m = 2, n= 1 in (6. 2); the other weighting vector for this system 

(corresponding to p =0) matches to a zero velocity target and will never be used for 

moving target detection, due to the high correlation of the clutter.   Substituting these 

last three relations into the improvement factor formula 
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I  *    I2 
|w    s I 

I(v )  =   —*  
w   M  w (6.30) 

produces the result 

1 . Cos (2n^ -£) 
I(V ) = —5L (6.31) 

The effect of o-on the improvement factor is readily apparent in (6.31).   The direct 

relationship between the system performance and the degree with which antennas 

and pulse shapes can be matched is clearly indicated.   In Fig. 6.7 the improvement 

-1        -3 -5 factor is plotted for m = 2, n = 1, and <v = 10    ,10    , and 10    .   Recall that for a 

system which transmits more than one pulse per antenna the improvement factor 

would be augmented by a simple addition (in db) of the improvement factor for a one- 

antenna, n-pulse system. 

The effect of a on a system with more than two antennas is essentially the 

same as that described in (6.31) and Fig.  6.7.   The proportionality to I(v ) to l/a 

is also valid for an m-antenna, one-pulse system.   The effect of increasing m for 

a fixed ^has already been illustrated in Fig.  6. 1. 

(iii)   Effect of White Noise 

The effect of white noise is essentially to limit the attainable improve- 

ment factor of the system.   If clutter could be cancelled perfectly, the MTI improve- 

ment factor would be limited by white noise.   Once antenna patterns and pulse shapes 

have been matched as closely as possible, the system must be designed so that the 

receiver noise is low enough to allow the improvement factor that the clutter cancell- 

ation should permit.   On the other hand, given a specific level of receiver noise, 
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Fig. 6.7.    Effect of varying a. 
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little is gained by cancelling clutter more precisely than to the point where the improve- 

ment factor becomes limited by receiver noise. 

To see this more quantitatively, consider the approximate improvement factor 

formula (see (5. 33)) 

nmlf/O)!2 

I(v ,v    )=  —^ , 9 (6.32) 
°  ao     pnc+c|f1(0)|2sHg(>r)ep,)|2 

9 
Here p     is the input noise-to-clutter ratio per pulse; the factors |f,(0)|   , s and \x 

-1 2 
are all constants on the order of magnitude of unity; and |g (>£•   ) G ,)|   , the normalized 

antenna pattern function is proportional to the clutter power present in the output of the 

temporal Doppler filter where the target appears. 

The effect of white noise will be negligible if 

Pnc<<c | g (*'2) 6p.)|2 (6-33) 

and will dominate if 

Pnc» I S (fr1) ep.)|2    . (6.34) 

In intermediate situations both the white noise and the clutter affect the improvement 

factor.   When p      is such that the two terms in the denominator of (6. 32) are equal, rnc 

the white noise will cause a 3 db loss in improvement factor. 

In Fig. 6.8, the effect of p     is illustrated.   The case considered is m = 2, ° nc 

n = 16, a = 10    ,0=1.   For p      = 4 x 10    , the white noise produces about a 3 db 

loss in improvement factor relative to the p     =0 case at the peaks of I(v ).   With 

-7 
p      = 10    , the white noise has negligible effect, and the result is indistinguishable 

-4 from that for p      =0.   For p      =10     the output noise-to-clutter ratio is much rnc rnc ^ 
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greater than 1 and the entire system is white noise limited. 

(iv)  Imprecise Knowledge of Aircraft Velocity 

In order to operate the multi-antenna system in a DPCA mode, the 

time offset between the pulse trains transmitted by adjacent antennas must be set 

equal to d/v so that the antennas transmit from the same points in space.   Any error 

in knowledge of the aircraft velocity will cause the antennas to transmit from different 

locations in space.   This will cause a decorrelation between the clutter returns received 

at different antennas, which in turn will reduce the precision with which clutter is can- 

celled and hence detract from the system improvement factor. 

To introduce this effect into the covariance matrix, the phase factor 

exp[-j 2n| vao4"A)i] (6.35) 

in (3. 13), which was dropped in deriving (3. 15) and in obtaining the description of 

the clutter returns, must be carried out through the entire derivation of the clutter 

covariance matrix.   The result is that (4. 9) is modified to become 

m   ,   =p     6..,6.. ,+ (1 -»6..)H[(k-k,) + -Y (i-i1)] (6.36) n Knc    u     kk      v li'    LX       '     ' v      /J 

where . , 
Y=±   (A -S) (6.37) 

is the ratio of the timing error, A - d/v, to the pulse repetition time T.   Assuming 

the Gaussian correlation function (6.8) and neglecting the white noise yields the 

equation 
2 

m^'  = (1 - a S"..) exp j - \ $2 [(k-k') + y (i-i')]    I (6.38) 
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The parameter y may be related to the percentage velocity error if it is assumed that 

A =d/(v-6v) (6.39) 

where 5v is the velocity error.   The result is 

6v 
v = my (6. 40) 

where N = 1 has been assumed so that (2.14) implies that VT = md. 

In Fig. 6. 9 the effect of y is illustrated for m = 2, n = 16, /? = 1.0, 

-5 -3 and oi = 10    .   For y = (3. 16) x 10     a noticeable but small decrease of I results. 

However, the region of visible velocities is affected negligibly.   This value of y is 
-3 

equivalent to a relative velocity error Sv/v = (6.32) 10    , corresponding to a velocity 

accuracy readily achievable with present-day inertial navigation systems.   With 
-2 

Y = 10    , or 5 v/v = .02, the visible velocities remains fairly wide. 

(v)   Internal Motion of the Clutter 

Internal motion of the clutter, such as that caused by wind, will cause 

a slight decorrelation among the clutter returns seen by the different antennas, and 

thus limit the ability to cancel clutter.   This is a prime limiting effect in a ground- 

based system, and an aim of the DPCA procedure is to make the airborne system 

perform as well as a ground-based system.   Only when the airborne system is 

achieving this objective, and thus performing quite well, will internal clutter motion 

be of importance. 

To avoid additional complexity, the analysis leading to the clutter 

covariance matrix (4. 9) assumed stationary scatterers on the ground.   If the clutter 

scatterers are assumed to have a distribution density A(R, 9,v  ) in velocity as well 
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as in range and azimuth and if an independence assumption analogous to equation (3. 21) 

is made, (hen the resulting normalized covariance matrix (neglecting receiver noise) 

is given by 

m^'  =(l-aor..,)H(k-k')L( J  (k-lO + a-i1)) (6.41) 

where u     v ,    , .,   . ~v 
r   /    \ I   -orr 2d      c      1  dv (6.42) J CT(V ) exp   -j2n _ x        c 

L(x) = - ! -  
Ja(vc)dvc 

In arriving at equation (6.41) it has been assumed that the clutter cross section 

density cr(R, 0,v ) can be factored in the form a(R, 0,v ) = a(R, 0) a (v ).   It also 

should be noted that the total clutter input power per pulse P   now is given by 

equation (4.5) multiplied by [ o(v ) dv  .   Equation (6.41) shows that internal clutter 

motion enters as a simple multiplicative effect in the covariance matrix. 

In order to deal with (6.41) numerically, the correlation function 

L(x) will be assumed to be composed of a dc component due to the zero-velocity 

scatterers plus a Gaussian component due to moving scatterers,  so that 

L(x) = K1 + K2exp(-^(ex)2)    . (6.43) 

The effect of internal clutter motion is illustrated in Fig.  6.10.   For 

-2 -2 
K^/K. = 10     and e = 4.46 x 10     about a 3 db decrease in improvement factor results. 
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d) Comparison of DDFT and Optimum Linear Processor 

A series of examples will now be presented to compare the improvement 

factors achieved with the DDFT and the optimum linear processors.   It was shown 

theoretically in Section 5 that the DDFT processor should perform nearly as well as 

the optimum, and the computed results bear this out.   In practice, the DDFT pro- 

cessor would be used because of its simpler implementation. 

In Fig. 6. 11, the two processors are compared for m=l, n=16, and j8=l, 

and the results are essentially indistinguishable.   As in the one-antenna curve of 

Fig. 6. 1 I(v ) is relatively flat because the prf has been chosen low enough so that 

the aliased clutter spectrum is relatively flat.   With a flat clutter spectrum, little 

is gained through the precise tailoring of the Doppler filter sidelobes achievable 

with the optimum processor.   Fig. 6.12 compares the two processors for m=l, n=16 and 

$=. 4. A Hamming window was used with the DDFT processor.   Here the prf has been 

chosen at five times the nominal clutter width (see (6.10) and (6.11)) so that at Doppler 

frequencies near one-half the prf the clutter spectral amplitude is quite low and the 

improvement factor is high.   In this frequency region the optimum processor does 

produce substantially higher improvement factor than the DDFT processor.   But this 

difference is considered unimportant for two reasons.   First, in the frequency range 

where the difference is appreciable the DDFT processor is already performing ao 

well that targets will be detected and additional improvement factor is useless. 

Secondly, it is desirable in this AMTI system to use as low a prf as possible to 

maximize range coverage; hence, the situation depicted in Fig. 6.11 is more likely 

than that in Fig. 6.12. 
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In Fig. 6.13 the two processors are compared for m=2, n=l, a = 10 

The results are identical, and, in fact, it can be shown theoretically that for this 

case the DDFT processor is identical to the optimum linear processor.   This impor- 

tant result may be generalized to state that in an m-antenna system where a and /3 

are the only parameters of importance in the interference covariance matrix, the 

spatial improvement factors for the DDFT and optimum linear processors are 

identical. 

In Fig.  6. 14, m=2, n=16, o,=10    , /3=1 and p      = 4 x 10    , so that the effect 

of white noise is included.   Obviously the DDFT processor produces results essentially 

equivalent to the optimum processor. 

In Fig.  6.15, the effect of all interference parameters is included.   Again the 

performance of the two processors is indistinguishable. 

7. Conclusion 

The preceding sections have developed a basic theory of multi-antenna AMTI 

radars and used this theory to compare various system configurations.   The main con- 

clusion of this work is that, subject to certain assumptions a two-antenna system with 

each antenna emitting alternate equally spaced pulses (N=l) offers a great improvement 

over a conventional single-antenna radar. 

The main assumption on which this conclusion is based is that antenna mis- 

matches and pulse shape mismatches can be controlled well enough so that values of 

-4 -5 
the degradation parameter a on the order of 10     - 10     can be achieved.   Future work 

should be directed, in part, to establishing a better mathematical and physical under- 

standing of the factors that contribute to a.   Another topic for further investigation 
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is the comparison of system configurations on the basis of constant illuminated range, 

R        , rather than on the basis of a constant sampling rate, u, as was done above, max f    e> 

Preliminary work on such a comparison seems to indicate that the general conclusions 

arrived at on a constant \i basis also hold when comparisons are made on a constant 

R        basis, max 

v„/v 

Fig. 6. 15.   Comparison of DDFT and optimum processors. 
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