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ABSTRACT

\
-]
For periodic review inventory models with stochastic

demand, the idea of stock-out risk is defined, from which

the importance of accurate prediction of demand is deduced.
Methods of demand model parameter estimation are investigated
and several. methods compared on the basis of theoretical
soundness, ease of application, and accuracy of estimates
based upon the results of extensive computer simulation. The
theoretical. development of maximum likelihood and exponential
smoothing estimators as applied to prediction is presented
along with the development of a new Bayesian approach to the

problem of demand forecasting. ' |
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I. INTRODUCTION

There is a great deal of interest today in business and
industry, as well as government activities, in inventory con-
trol. The current literature of opzrations research contains
considerable ideas, methods, mathematical models and algo-
rithms addressing this particular subject area. One of the
most difficult problems involved in the application of any
mathematical model to actual inventory analysis or control
problems is the estimation of the parameters used in the for-
mulas of the models and algorithms. To resolve this problem
operations researchers have concerned themselves with the de-
velopment of accurate estimation techniques and demand fore-
casting methods. One of the techniques which has received a
good deal of attention in the current literature is exponen-
tial smootihing, a method of estimation and forecasting
developed by Brown [Ref. 2). The kasic idea of the smoothing
approach is to use a weighted moving average of demand data in
such a way as to exponentially discount the oldest data in the
demand.sequence and place most of the weight for an estimate
on the most recent data available. This exponential discount-
ing ‘of past demands is controlled by the selection of a smooth-
ing constant which determines the r=lative value of the weight
assigned to the data in the estimate. The exponential smoothing
technique has been questioned on theoretical grounds by Zehna
[Ref. 10) and others. It has been suggested that the classical

maximum likelihood methods will produce better results in a
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number of demand models and some simulation results are avail-
able which indicate that this is the case [Refs. 6 and 11].

The purpose of this thesis is to examine the problem of
forecasting demand and explore several alternative methods
which sﬁould be considered as possible forecasting techniques
for particular demand models. A simulation analysis of max-
imum likelihood, smoothing, and Bayesian estimation methods
was conducted in order to ascertain important or noteworthy
properties of the techniques when applied to normally distrib-
uted randon demand in the constant mean and linear demand
models,

Throughout this report the idea of a risk involved in in=-
ventory operations plays a central role. The demand models
studied arc assumed to be applied to an inventory system in
which stock is controlled by means of a periodic review of
inventory levels. That is, at certain specified periods of
time, monthly, quarterly, etc., the demand for items is deter-
mined along with the current inventory balance. These data
are used to requisition replacement stock to insure that the
system does not run out of stock too often. If the demand were
deterministic there would be no problem in deciding how much
to order. However, the demand in this case is assumed random
and predictions of the demand in future pericds must be made
in order to set reorder levels. It is assumed that resupply
is instantaneous so that, if it can be determined at the end
of a period that within a specified probability the demand in

the next period will be less than a certain quantity, then the
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reorder level is that expected upper limit on the next
period's demand. The reorder quantity is the reorder level
less the amount of stock on hand. 3y deciding what probabil-
ity of running out of stock, called stock-out risk, is
acceptable, the decision maker sets a risk level that deter-
mines the ordering policy. Consequantly estimating parame-
ters and predicting demand in general is a central issue in
the determination of reasonable reorder policies.

In Section II, the theoretical development of the maximum
likelihood estimation technique is presented along with a
simplified version which was used by Zehna [Ref. 11] for
comparison with exponential smoothing. Section III. is a
summary of the theoretical basis for exponential smoothing
developed by Brown [Ref. 2]. In addition, at the end of Sec-
tion III smooti.ing is applied to a case not previously con-
sidered by Brown. Section IV presents a comparison of maxi-
mum likelihood and smoothing with consideration given to
theoretical basis, ease of application, and simulation re-
sults. In Section V a Bayesian prccedure for demand estima-
tion and prediction is develcped for the case when the
variance of the demand distribution is known. The resulting
Bayes estimation method is compared to exponential smoothing
on the basis of computer simulation.

Since simulation was used throughout this study a special
section on this technique is presented at the beginning of
Section IV. It should be noted that in ‘'previous cases
studied by Zehna [Ref. 11] and Ornek [Ref. 6], simulation was

also used as one method of comparing MLE and smoothing. There
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is a basic- - difference in the approach in those papers and
the approach taken in this study. Their procedure was to
generate random demand over a long period of time, 1000
periods, making estimates with the various methods at each
period,'and determining the sample risk (probability of
running out of stock) over the entire time of operation.

The approach taken here, however, r2alizing that in many ap-
plications only a limited amount of data may be available or
used as a basis for estimation, is to generate demand data,
make estimates, and determine the risks involved at various
points in time, say 5 periods, 20 pariods, etc., over a large
number of replications of the experiment. It is fcl£ that
the results of this simulation method should prove useful in
determining vhich estimating techniques perform well when

estimates are based upon a fairly limited amount of data.
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I, MAXIMUM LIKELIIIOOD ESTIMATION

A c}assical approach to forecasting or predicting the
value of a random variable based upon past observations is
to develop a functional relationship between the observed
values of “he random variable and some control variable us-
ing regression analysis. Applied to the present circumstances
one may view the random variable Y as demand and the control
variable x as time. Demand is observed at various times
Xq0 Xop *tve X and then inferences are made about the de-
pendence of Y on Xx.

In this section the results of the General Linear Hypotha-
esis are examined as they apply to forecasting demand when

the mean demand is a linear function of time, that is,

E(Yi) = a + bxi o

A, GENERAL LINEAR MODLL

1. Estimate of the Coefficients

i Xy

If Y =28 + g, where A = {. . coand B = )
1 x
= n'l-l

: 2 .
then Y, =at bxi toeg where ey v N(O, 0),1i=1,2,¢¢¢,n . It

follows that E(Yi) = a + bxi and V(Yi) = 02, i=1,2,¢++,n .

It can ke shown, see Zehna [Ref. 12], that the maximum like-

lihood estimates of g and 02 are:




Y i o o .
N~ ¢ -

A 1 A

o L, (xenf) @-ak)
E=olay ana 8% - .

respectively, where Q = A' A. It is further true that B ,

2

the random vector corresponding to B_ is N2 (@_, 0 (_2_—1) where

N? indicatcs a bivariate normal distribution. Algebraically
then,

pe = - n .j

n nx Y x{ -nX

i=1
9 = ’ and Q—l = ——1;2'
o n o, ns. .
nE R -nX n
' i i~ -
L i=1

n
where s2 = 1/n ) (x, - 35)2 and %X =1/n ) x, .
X j2qp i i

~

Then — =

i i
The above reduces to

n -
2 X.Y: = NXY

A '=l l °

b = ln (2-1)
y xi - n§2
i=1

a=y -xb (2-2)

2. Variance of the Estimators

Since _f&iis Nz(g_, oZQ—l) it follows that:

10
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n
~ o? X 2
E(B) = 8 , V(a) = —i22 , V) = e O
n Y (x, - X2 Y (x, - %)
i=1 i=1 *
(2-3)
and Cov(a, b) = — ~07%
X (x. =- §)2
i=]

These quantities depend only upon the total number of periods
of demand observed and the variance of the underlying distri-
bution in the model. The relative sizes of these variances

are indica:zed in the following table.

TABLE I

VARIANCE OF a and b

n v /el vib)/e? covd, by /o?

10 0.4667 0.0121 - 0.0667
50 0.0825 0.0001 - 0.0025
100 0.0406 0.0000 - 0.0006
1000 0.0040 0.0000 - 0,6001

The maximum likelihood estimate of 02 is

A2 n A 2 2
¢ = 1/n 'El(yi - By - Byx)
l:

It is well known that

R2
no 2
..._.’...'\; x
0& n-2

11
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so that == is an unbiased estimator for ¢ .

3. Preé}ption

The main purpose of using estimation in inventory
applications is to forecast demand at some future period of
time., Most often it is necessary to observe demand in peri-
ods 1, 2, ¢++, n, and utilizing these data predict what de-
mand will be in the next period in order to set a reorder
level such that within tolerable risk limits the system will
not run out of stock,

The demand Ve at time X, # Rye 00y X, may be

n
considered as a value of the random variable YO which is

distributed N(a + bxo, 02). Then

Yo 2
o 1 Sk v N (a8, 0°I)
1 Xq
where A = e . It can be snown that
—© A
S 5 (E-xo)2
Y - a-=Dbx ~ N[O, ¢°|L + 1/n +
o] o) n 9
Lo(x; - X)
i=]
and is independent of n82 . It follows that
YO - a - bxo
2
(x - x))

g 1+ 1/n +

12



has a t-distribution with n-2 degrees of freedom, Thus if

o .
a reorder level R is set by means of

~ A ’~ (;"X)Z
R = a -+ bxo + tn-2,l-a sy‘x 1+ 1/n + m T (2-4)
2 (xi - X)
i=1
where a and b are as defined previously,
n
Yy, - a - sz)z
RS . ;
Sy'x = ——— , and tn-2,l—a is the

(1-a) th percentile of the t-distribution with n-2 degrees

of freedom, the probability that the demand in period X will
be less than or equal to R is l-a. This assumes that a risk
of(lOO a)% is acceptable.

It should he noted that the length of this one-sided upper
prediction limit for Yo increases as the period for which the
forecast is made differs in time from x. This fact should
discourage "Extrapolation" too far above the midpoint of the
sampling interval. However, the forecast should be good for

the (n+l)st period.

B. CONSTANT MEAN MODEL
The constant mean model may be considered as a special

case of the linear model above with b = 0, #tor this model,

2 . s
Yi =a+¢e, where Gi v N(O, 0%) 1i=1,2, %o}

1. Estimates of the Coefficient and Variance

Utilizing the same procedure as before it is found

that

13
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n
a = 1l/n )jyi=§7 , (2-5)
i=1
A _ 2 2
E(a) =a , V(a) = 0°/n (2-6)
. R n
and 52 = 1/n ) (y. - ?)2
i=1

2. Prediction
Again it can be shown that Yo - 2 has a

N(O, 02[1 t+ 1/n]) distribution and is independent of na .
A2
No__

02

2 , . .
has a Xpe2 distribution so thet
YO - a

of 1T+ 1I/m

R2 -
o

oz(n—l;

is distributed as t .
n-1

It follows that setting a rcorder level by means of

R=a + tn—l, il Syv 1 + 1L/n (2-7)

n
b (. = e
=1 L

where S
Y

1

n -1

will yield the desired risk a .

C. LINEAR MODEL WITH Y-INTERCEPT = 0

'In many cases it might be reasonable to assume that there
is no minimum initial demand imposed on the system, i.e., at
time x = 0, Y = 0, and that demand grows linearly with time.

This may be expressed as

Yi = bxi + € where e, v N(O, 02) i=1,%,¢¢+,n.

14
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In matrix notation

P Ab + & where A=

X
n

-

L Estimate of Coefficient and Variance

Proceeding as before,

n n
Q=na'a= ) x° ot =1/ 7 %2
= — , 1 —_ ' 1
i=1 i=1
121 (2-8)
X.Y. .
~ - v L
b= o iaty =22l
= == n
] %%
i
i=1
2 ~ ~ v A
0% = (Y - Ab)' (Y - 2b) =1/n [ (y; - bx,)
i=1
2 _ 2 2 (2-9)
V(b) = O'ZQ 1 = -—-g—-—n. E(b) = b
LI
Z x5
i=1

2. Prediction

As in the previous case it can be shown that

2
X .
———9——]) distribution,
2
1

Y - gxo has a N({(O0, 02[1 +

[ Raget=i

b

is

Xp=1

and further that Yo - bx0 and n82 are independent.

15



Thus

n-1

2
X
A=f\’ ) . . - () _
B o s Ln—l, l—asy'x et no, (2-19)
L Xj
i=1
n ~ 2
where S E Yy (v, = bx)”
y X jaq A i
=R
and t__, l-q is the (1-0)th precentile of the t-distribution
14

with n-1 degrees of freedonm,

D. CONSTANT MEAN-SIMPLIFIED PROCEDURE

A more easily applied technique for setting the reorder
level in the constant mean case was demonstrated by Zehna
[Ref. 11] and Ornek [Ref. 6] with very good results. The
procedure was used only as an attempt to compare the accuracy
of maximum likelihood estimation with that of estimating
parameters using exponential smoothing,

"Since demand is normally distributed with mean p and
variance 02 there is, of course, a theoretical reorder level

p + Ko such that

Pr (Y <u+Kog)=1-=-aqa (2-11)



( ) ¥
where K is the (1 - «)th percentilz of the standard normal
random variable — N(0, 1) .

Hence maximum likelihood methods may be used to estimate

U and o separately and then these estimates combined as in

Eq. (2-11) to set the reorder level., In this way,

2

I

=<1

>
i

)
(y: = ¥)
j=1 *

n - 1

A~ n
u = 1/n z Yi
i=1

and

R=1 + Ko. (2-12)
This method of course fails to consider the actual distri-
butions of ﬁ and 0 so that the true risk so obtained is prob-
ably not exactly a, but for many purposes the ease of
application may make the tradcoff worthwhile.
It is possible to make statements about the expected
value and variance of this estimate of reorder level as the

distributions of ﬁ and 0 are well known, and the correspond-

ing random variables are further known to be independent.

From Eq. (2-6), E(ﬁ) = py and V(ﬁ) = 02/n . It is showu

in Hald [Ref. 5] that o has a Chi-distribution and in

particular
5 22 oL 5 I (5
E(O) - an 1l - H A ¢) Where an d ﬁ‘——_———r ———?1——-_—-1——
=t
= \/1 - 1

E(@ =} 1l~3557 0 =5> 0

17



V(a) _on -

Thus E(R)

and V(R) =

K

TS TSR e

18
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where b * = 1 - aZ =
V(g) = .]_'..._ ¢ g T 0
2]‘1 n-«)m .
< [y
Wt . L = -2-.1; n—»ooj u + Ko
K? + 2 g2 N
2n e 0



III. EXPONENTIAL SMOOTHING

As indicated in the introduction, exponential smoothing
is a method of forecasting discrete time series, in this
case future demand, based upon past observations of the sys:-
tem., The majcr source of information on the development and
application of exponential smoothing is the book by Robert
G. Brown [Ref. 2]. In fact, Brown introduced the concept and
the very name exponential smoothing in an earlier publication.
Unless otherwise indicated all of the following discussion of
the methodology and theory may be found in the reference

noted abova.

A, LEXPONENTIAL SMOOTHING OF PAST OBSERVATIONS

The basic idea behind exponential smoothing is to assign
weights to past observations so as to place the most weight
upon recent observations and less and less weight on the
older pieces of demand data, thereby limiting the effect on
the estimate of "dated" information. This may be accomplished
by selecting a smoothing constant 0 < ¢ < 1 which is exactly
the weight placed on the current observation. The smoothing
operator is given by

t-1 c

o 2 Blyt_i + B y
i=0

[}

St(Y) o

(3-1)

ayti-aByt_l + osee + Btyo

19
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where g = 1 - o and Yir Ypr *r+, y, are the observations of

t
demand in the first t periods, and Y s is some initial demand
often takean to be zero. For application in this thesis it
will be assuvmed that Vs = 0.

Y = St(Y) then is the exponentially smoothed estimate of
demand in the (t + 1l)st period based upon t periods of
observation.

Brown claims that exponential smoothing may be utilized
effectively to accurately estimate the coefficients in vari-
ous models of discrete time series such as demand or sales
forecasts. The idea ccrtainly has intuitive appeal and seems
to be widely used as a forecasting technique,.

For applications of exponential smoothing the number of
coefficients to be estimated in a model is referred to as the
degreces of freedom of the model. Corresponding to each degree
of freedom is an order of exponential smoothing defined by
applying the smoothing operator recursively. For single
smoothing, as first order smoothing is called, Eg. (3-1) may

be written,

where St-l(Y) is the current smoothed estimate prior to

observing Y- Nth order smoothing may then be defined as
sP(y) = s(s”"Hw) 1 = as™Hv) + ST ()
t t t t-1

where Sg(Y) is defined to be St(Y). As a special case,

double smoothing becomes
s2(¥) = as,_(Y) + BSZ_.(¥) (3-3)
t t t-1

20
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B, CONSTANT MEAN MODEL - SINGLE SMOOTHING
Assuming that demand Y is distributed normally with mean
: 2
M and variance 0 then

2 y
Yi-= (U e where € v N(0, 07) i=1,2,°*°*,t .

Since there is but one coefficient to be estimated, single
smoothing is called for to estimate u, After t periods have
been observed the exponentially smcothed estimate of the mean

of the demand distribution is given by

t=-1 .

" = = = ‘,l . &5
W= S (Y) = ay  + BS__,(¥) uizot Yeoq o (3-3)
= ol t o
Note that E(p) = aE(Y) ) g~ = u(l - g7), where p is the ran-

i=0
dom variable associated with ﬁ, so that, iiz E(ﬁ) = |, Thus,
ﬁ is asymptotically unbiased. Also,
t-l : 2t
~ 2 2 =
V(u) = q 02 ): 821 = g 0_2 [%T_%__] (3-4)
i=0
and Lim V(p) = 2( % ), a non-zero quantit
to H C \1 ¥ B! 2 q Y-

In attempting to estimate the underlying variance of the
demand distribution (not considered a coefficient in the
model), Brown chooses to use mean absolute deviation, MAD for
short, a measure of variability which has gquestionable theo-

retical basis and properties [Ref. 10]. MAD is defined as
A =E(]Y - u]) . (3-5)

It is well known that when Y is normally distributed the
ratio of A to o is V % , about 0,798, This relationship does

not hold however in several other important probability

21
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distribuéions. To estimate ¢ Brown first estimates A by
smoothing forecast errors defined as
e(t) =y, ~ 8, _,(¥) , (3-6)

the forecast error in period t. Ths smoothed estimate for

A is given by

- t~1 i
Ay =a ) BTje
t i t-1i
or in operator form
A =ale ] + B8 Ay - (3-7;

Then the smoothed estimate of ¢ is given by

== \/E. RV
c=1\5 5 A (3-8)

implicitly assuming the smoothed estimate for A enjoys the
same invariance principle known to ke true for maximum like-
lihood estimates.

It has been clearly pointed out by Zehna [Ref. 11] and
others that such a procedure as that described above is sta-
tistically suspect. Several attempts have been made to de-
velop the distribution theory necessary to make theoretical
judgments concerning A and the invariance principle implicit
in obtaining o but so far the mathematics has proven
intractible [Ref. 6].

Disregarding the statistical questions involved, Brown
combines the smoothed estimates of y and ¢ as in Eq. (2-12)

to obtain a smoothed estimate of reorder level, In this way,

& =qp + Ko (3-9)

22
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where K is® the appropriate percentile of the N(0, 1)
distribution.

The initial condition SO(Y) is 2ither zero or some bhest
guess as to what the value of y will be prior to making any
observations., The effect of this initial value is negli-
gible after 30-45 periods for .1 < 3 < .9 .

Some remarks may be made concerning the expected value

and variance of R, the random variable corresponding to R,

\/w'\/2~a " 5
5 5 E(A)

t-1 i
a ) BE( e 4 |).
iLof B e |

E(5)

i

E(A)

g Vv . i 3 /-—2—
E (| ey |} is shown in [Ref. 11] to be ¢ 7—:75_1 =

so that

E(G) = (1 - Bt)o ==> O (3-10)

indicating that ¢ is asymptotically unbiased if all the
underlying assumptions are valid.

As stated earlier, no analytical results have been ob-
tained concerning the distribution of l and the problems
involved extend into the intractibility of obtaining the exact
variance of g. However, Ornek [Ref. 6) was able to develop a
method for approximating V(g) numerically. v(c) is dependent
upoﬁ botho'2 and the value of the smoothing constant a. That
is,

v(g) = czo2 (3-11)

where C may be found in the following table.

23
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TABLE II

G VARIANCE FACTORS

o, C t ]
0.10 0.1745 t > 80
0.15 0.2173 t > 50
0.20 0.2553 & > 35
0.25 0.2905 t > 30
0.30 0.3239 t > 2J
0.35 0.3561 t > 2#
| 0.40  0.3876  t > 15

The values of C were calculated by Ornck [Ref. 6] and the
number of periods necessary for a ygood approximation were
determined in the course of computer simulation and testing
of the model,

Using the results of Egs. (3-3) - (3-11) the expected

value of R may be written
o~ t .
E(R) = (1L - 87)[u + KOJ zmz>» u + Ko,

{0

and the variance of g may be approximated as

VR 2 S (1 - 875+ Pkl (3-12)

assuming that ﬁ and 0 are independent. Again, the variance

2

of R is non-zero even for large t.
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C. LINEAR MODEL -— DOUBLE SMOOTHING

I{ the demand in period t is of the form

2
ed where €y v N(0, oF)

then B(Y;) = a + bi and V(¥;) = g% , i=1,2,++¢,t

1. gg}imate of the Coefficients

At time t, the coefficients are estimated by a com-
bination of both single and double smoothing and the demand

at time t + v is estimated as

Yt+r = a, + th
where 1t is the number of periods in the lead time. The esti-

mates of the coefficients developecd by Brown are

2
ZSt(Y) = St(Y)

o)
1]

(3-13)

ot
1

2
C = /RIS (V) = SE(V)]

where St(Y) and Si(Y) are given by Egqs. (3-2) and (3-3). It

is important to note that a, is not an estimate of the para-

t
meter a in the model but rather an estimate of the current
point on the theoretical line at time t. Thus §t+r =

5t + BtT is equal to the estimate of the current theoretical
demand increased by the estimated slope multiplied by the
number of periods in the lead time. Usually t will be equal
to one and the forecast will be for the next period only.

2. Initial Conditions

The initial conditions for the lirear model are
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TABLE IIT

VARIANCE OF SMOOTHING COEFFICIENTS

a A B c
0.10 .12611 .00029 .00539
0.15 .18982 .00107 01262

| 0.20 .25377 .00274 .02332
1 0.25 .31778 .00583 .03790
10.30 .38164 .01099 .05679
0.35 .44508 .0190° .08045
[9,40 .50781 03125 ,10938

absolute differences between the estimated point on the linz,

ﬁt, and the actual demand observed in period t.

D. LINEAR MODEL - Y INTERCEPT = 0
When the Y - intercept is known to be zero the model is

given by

2 !
Y, =bx, + e, where e; v N(O, ¢%), i=1,2,+¢.,t

Brown does not consider the model as a special case so no
smoothed estimate for b is given in [Réf. 2}. Following the
general smoothing methodology, it is assumed that only single
smoothing is necessary to estimate the single coefficient in
the.model. At successive periods of time X10 Xor *00r Xy
the corresponding demand Yir Yor *t0r Yy is observed. A

natural point estimate of the slope at time Xy would be

By = ¥p/¥y
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S5,(Y) = a_ = B/a)b,
(3-14)

2
S, (Y)

it

2= Z(B/bt)bO

where 36 and 50 are initial guesses as to the values of the
coefficients a and b, Again these initial conditions are
transient and have no effect on the estimate after 30-45
periods.

3. Yg;iance of the Estimators

Using multivariate analysis Brecwn claims the follow-
ing asymptotic formulas for the variances of 5 and b in the

linecar cas-z2,

)
V(gt)“" a(l + 48 +336 ) 2 - pg?
(L + B)
. 3 =
V(Bt) = —-—g..g_.-—._g. 02 S Bo’t'
(1 + B)
a3 @ a®(1 + 38) 2 2
COV(ét, Bt) = . 35— 0~ = Co
(1 + B)

where representative values of A, B, and C are presented in
Table IIX.

4, Setting the Reorder Level

As in the previous case the smoothing estimates of
the mean, ﬁt = ;t + btt and 0 as defined in Eq. (3-8) may be

combined in the form

R, = yig + Ko, (3-15)

where K is chosen to obtain the desired risk. 1In this model

A is obtained from Eg. (3-7) by smoothing the successive
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An estimate of b can then be obtainzd by smoothing the suc~-

cessive observations of Bk obtaining

-~

by = 85.(B) = aly,/x) + BS, _;(B) .

Since E(Yi) = bxi : E(Yi/xi) = b, It follows that

£-1
« § BYE(Y
i=0

il

E(S, (B)] eei/%eny) = (1= 85D

i

and lim E(ﬁt)

to

b which implies that this smoothed estimator

for b is asymptotically unbiased.
The esiimate of ¢ is obtained as in the previous two
models using MAD, Tn Egs. (3-7) and (3-8) the forecast error

for this procedure may be defined as
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Iv. COMPARISON O MLE AND SMOOTIING

In this section the procedures developed in the previous
two sections arc compared chiefly bv means of computer simu-
lation. Before detailing the analysis some general comments

on the technique of simulation are in order.

A. COMPUTLR SIMULATION

l. General Comments

Computer simulation is primarily utilized to study
systems or procedures which cannot be adequately analyzed by
means of mathematical analysis or hand calculations. Some
advantages of simulation are the rapidity of calculations,
magnitude of data which can be generated and analyzed, and
the ease with which sensitivity analysis may be conducted.
One of the main disadvantages is that the results obtained oy
simulation are known to be typical of that particular case
only and in many cases may not be accurately extended to oth-
er scts of circumstances with any assurance that the results
are true in general. Also, the results of a simulation study
may not be at all applicable to an actual situation if the
modgl developed for the study does not accurately represent
the system being analyzed.

2. Use of Random Numbers

Random numbers generated by a computer routine are
actually pseudo-random numbers in that the same sequence may

be reproduced at will by means of proper initialization of
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the Aequcnce. In the strict sense of the word, such replica-
tions are not truly random and, therefore, detract from
modeling realistic situations such as demand which is known
to occur at random. However, it is this property of being
reproduéible that makes pseudo~-random numbers useful in a
study which has as its main purposc the comparison of various
techniques such as methods of demand forecasting, or the ef-
fects of variations in the parameters of the model being stud-
ied. To decide if one demand forecasting technique is
superior in accuracy to another, the two techniques should be
compared under similar circumstances, using the identical de-
mand data. This requirement also is important when the
effects on forecasting accuracy of changes in parameters, say
the mean or variance of normally distributed demand, are to
be measured or tested in some way. If differences in results
are to be interpreted as indicating an actual difference in
the methods or parameter cffects, then the experimenter must
insure that such simulation variations are not due simply to
the randomness of the data generated.

3. Simulation Used in this Study

As a basis for comparison of maximum likelihood pre-
diction and exponential smoothing as described in Sections
II and III, random demand data were generated, computations
made according to the method used, and the results compared.
The various computer routines utilized were written in For-
tran IV and the simulation was conducted using an IBM 360/67
computer. The method of generating the actual data for each

specific model is discussed briefly along with the results in
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the following sections. It cannot be emphasized enough that
all of the numerical results obtaincd were simulation results
and should be interpreted as such. There is no claim made
that the results of this thesis are true in general but only
that they may give some idea as to properties of the methods
tested. The results presented are but a small fraction of
the total cases examined and situations studied. Some of the
results of the study have been summarized or eliminated en-
tirely for the sake of brevity, but all of the examples pre-

sented are fairly typical of the general results obtained.

B, PRELIMINARY CONSIDERATIONS

Before presenting the simulation results a few comments
must be made concerning what criteria should be used in judg-
ing whether or not a forecasting technique is satisfactory
for a particular purpose. Brown [Ref. 2] suggests the fol-
lowing three criteria as a starting point: accuracy; simpl:ic-
ity of computation; flexibility to adjust the rate of response.
Accuracy of the forecasting method is discussed in the follow-
ing section. For the models examined in this section, flexi-
bility of the forecasting technique is not important in that
it is assumed that the model is good and that the underlying
parameters remain constant over time. Simplicity of computa=-
tioﬁ is discussed in the next paragraph.

One of the main advantages claimed by Brown for exponen-
tial smoothing is the ease and simplicity of calculation, to
include consideration of the actual computation process and

the computer storage required to store the information
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necessary to make running computations over time. By
formulas (2-2), (3-3), and (3-7) it is easily seen that
smoothing requires the retention of only the current value cf
S(Y) and Z for the constant mean case and, in addition, the
current value of SZ(Y) for the linear model. At each obser-
vation only multiplication and addition are required to up-
date the estimate. Smoothing advocates claim [Ref. 1] that
complete historical records must be maintained in order to
estimate the parameters in the model by means of maximum like-
lihood or least squares regression in the linear case. -How-
ever, it is well known from decision theory that to estimate

the parameters in the constant mean case when demand is

n n
N(u,oz), the statistics ) Y. and ) v? are sufficient [Ref.
i=1 ; == =

j=1 t
4). This means that these two statistics are all that must bhe
stored from one period to the next in order to update the
estimates with each new observation. Granted, these statis--
tics must be combined at each step with an additional opera-
tion or two required including the taking of a square root in
the estimation of o, but with the use of modern high speed
computers in most large scale inventory control operations the
exﬁra time required for these calculations is probably negli-

n
gible. For the linear model the statistic 2 XiYi where X,
i=1

is the number of the period in which demand Yi is observed
must also be maintained. The identities which express the
formulas in Section II in terms of the above sufficient stat-

istics are developed in Appendix A,
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For simulation purposes random demand was generated in
accordance with the model being stulied. Uniform random
deviates, U(0,1), were first generated and, recalling the
asymptotic normality of the sum of uniform random variables,
normal demand was in turn generated. The random demand was
tested by several methods to assure that it was indeed normal
with the desired parameters. The Chi-Square test (d.f. = 9)
was used and the resulting test statistic value of 12.8 fell
below the critical value of 21,7 at the 1% level of signifi--
cance. The normal demand was either used directly in the
constant mean case or converted for the linear model by means
of an appropriate linear transformation.

Most of the results of the simulation are presented in the
form of tables depicting the methods of estimation and the
resulting sample quantities of interest., Various streams of
random demand were used in many instances from table to table,
but within each table the same data were used for each case
in order to make suitable comparisons.

1. Simplified MLE and Smoothing in the Constant Mean
Model.

Since Zehna [Ref. 11] and Ornek [Ref. 6] previously
reported on several aspects of the case where demand is
norﬁally distributed with constant mean and demonstrated what
appeared to be a significant difference in the accuracy of
estimates of the mean obtained by maximum likelihood and ex-
ponential smoothing, it was decided to take that model as a

point of departure for the simulation study in this thesis.
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In this section various results of Zorecasting demand using
the simplified maximum likelihood approach Eg. (2-12) and
smoothing Eg. (3-9) are presented.

As mentioned in the introduction, the approach taken
was to generate random demand, make estimates of the various
parameters after particular sampliny intervals, replicate the
experiment a number of times, and then determine the average
values of the estimates in the particular periods and the
variability of the estimators over the replicated experiments.
Table IV presents these results for estimates of reorder level
after 15, 30, 45, and 300 periods cf demand observation over
100 replications. The parameter pairs (p,0) are of the same
proportions as those studied by Zelna and previously indicated
to be realistic by NavSup. The theorctical reorder level was
determined from Eg. (2-11l) with the risk level constant at
0.05 for each parameter pair. In this case, and throughout
the study unless otherwise indicated, the initial values for
smoothing were chosen in order to give smoothing the best pos-

sible starting conditions, that is,

5 .
V ;E'V —2—_;;0'. (4"1)

A smoothing constant value of a = 0.20 was used, the value

I

SO(Y) = u, and AO(Y)

presently being used by NavSup in their forecasting models.
The entries in Table IV are the average estimate of
reorder level and the sample standard deviation of the esti-
mators over 100 replications for the indicated parameter
pairs and number of periods. The results are rather striking

and consistent. In most cases exponential smoothing tends to
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overestimate the reorder level while MLE underestimates, a
result noted also by Zehna. However, the most noteworthy
aspect is the much larger variability of the smoothing esti-
mate demonstrated by a relatively h:gher sample standard
deviation. As more and more observations are taken the sample
standard deviation of the maximum likelihood estimate decreases,
a fact that is easily verified in the theory. However, this
property is not demonstrated by the smoothing estimates.

This point was suggested by Ornek [Ref. 6] and indicated by
Eq. (3-12). 1In fact, after 300 periods the sample standard
deviation of smoothing is consistently over six times as

large as that of maximum likelihood.

It is indicated in Table IV that for these particular
parameter pairs the results do not depend, on the average,
upon the various values of the parameters. For example, the
average reorder level estimate given by MLE after 15 periods
for the pair (10,1) is exactly 1/10th the average estimate
for the pair (100,10). This result occurred in every case
examined. This is not surprising since the random demand
for each case was generated by the identical stream of random
numbers, altered only by the specific parameters. For this
reason it was decided to consider further only the parameter
pair (100,10) as a typical case. Continuing with this ap-
proach, Table V presents the results for the (100,10) para-
meter pair with estimates being made after 5 to 100 periods.
The entries are the average reorder level and sample standard
deviation of the estimates over 100 replications. These re-

sults are consistent with the ideas brought out by Table 1V,
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but some additional insight into the source of recorder level
estimate variability may be gained by examining Table V,
After 100 periods the sample standard deviation of R for rigk
level 0.01 is over twice as large as the same statistic for a
risk oflO.SO. This is because in the estimate at the former
risk level, considerable weight is given to the estimate of

0 while at the latter risk level, K = 0 and the reorder level
estimate is determined solely by ﬂ. Thus, the weight given
to ¢ in the estimate decreases as the risk increases from
0.01 to 0.50 and the corresponding variability of R decreases.
The same gencral effect is true for R but to a lesser cxten:.
This is to be expected since, from the theoretical development,
¢ is roughly twice as variable as ﬂ in the limiting case (2.3
times for o = 0.2). For MLE the variance of G is half that
of ﬁ .

To determine the effects of staring conditions, or
initial values, on the ultimate estimate given by smoothing
the same experiment was conducted comparing the perfect initial
values given in Eq. (4-1) with SO(Y) = 0 and AO(Y) = 0. The
results are listed in Table VI for various values of the
smoothing constant o to determine how long the initial values
effect the reorder level estimate and the variance of the
estimate. In the Table, Rl imnlies the zero initial values
and R2 indicates the best possible starting conditions. The
approximate period in which the effect of the initial values
become negligible is indicated as the "catch-up period."

One of the most interesting results of this Table is that the
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TABLE VI

EFFECT OF INITIAL CONDITIONS
FOR SMOOTHING WITH VARIOUS SMOOTHING CONSTANTS

Botie- Number of Periods
o |CUP™ |ator
R 5 10 20 40 75 100
| 63.76 104,27 141,13 142,50 122.68 118.26
0 o5 lover 2.95 3.58 3.36 3.95 2.94  2.68
100 - |116.73 116.25 116,59 116.47 116.47 116.48
| 1.72 1.94 2,18 2.42  2.62  2.57
' .
. |106.37 143,12 142.58 120.85 116.60 116.56
B 5.16 5.60 4.82 4,18 3.61  3.88
5, [116.21 116.09 116.73 116.33 116.48 116.55
3.24  3.21 3.40 3.61 3.60  3.88
S, [132.66 149.51 128.14 116,70 116.45 116.55
. 6.92 7.00 5.31 4.65 4.46  4.88
0.15 65
s, [116.12 115,98 116,81 116.22 116.45 116.55
4.58 4.08 4.32 4,58 4.46  4.88
s [140.98 140.98 123.60 116.34 116.43 116.54
ST 7.70  7.38 5.49 5.06 4.85 5.30
s, [116.08 115,92 116.83 116.18 116.43 116.54
5.19  4.41 4.72 5.04 4,85 5,30
5 |146.69 142.92 120,72 116.21 116.42 116.52
| 24
Sl 8.43 7.44 5,59 5,47 5.21 5.69
%, [116.05 115.88 116.83 116,17 116.42 116.52
5.76  4.68 5.09 5.47 5.21  5.69
= [150.18 138.15 118,96 116.18 116.42 116.50
- 9.13  7.50 5.73 5.89 5.54  6.05
-, [116.02 115,83 116.82 116.17 116.42 116.50
6.70 4,92 5.42 5,89 5.54 6.05
&y [151.83 133.48 117.94 116.17 116.40 116.47
* . r . L[] . L] 38
025 | 35 9.81 7.49 5.52 6.30 5.86 6
,  [115.99 115.78 116.80 116.17 116.40 116.47
6.80 5.13 5.73 6.30 5.86 6.38

* "Catch-Up Period"

40

T




choice of smoothing constant o has Llittle effect on the av-
erage valuc of the reorder level estimate but the standard
deviation of the estimate increases with increasing . This
is not ;urprising since for a stabls system, as in the cur-
rent case, the smaller values of th2 smoothing constant are
clearly indicated. This choice of 3 causes the resulting
estimator to be less sensitive to changes in the system, but
have much smaller variance than for larger values of the
smoothing constant.

One possible measure of the accuracy of an estimator,
at least for comparison purposes, is the mean squared error
of the estimate, Mean squared error (MSE) may be defined as
the sum of the square of the bias and the variance. The
theoretical MSE and average sample MSE for the (100,10) para-
meter pair after 200 observations of demand are displayed in
Table VII for the MLE and smoothing estimates of reorder
level. The sample results compare favorably with the theo-
retical values which for smoothing are approximations based
upon the results of Section III., Not surprisingly, the re-
sults favor the MLE procedure, due in large part to the much
smaller variance. In fact, the variance in both cases is
the dominating factor as the bias is negligible after 200
periods,

As one further illustration of the greater sample
variance of ﬁ, reorder level for the (100,10) case was esti-
mated using 1000 periods of demand observations and the ex-

periment repeated 100 times. A graph of the MLE and smoothing
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TABLE VII

THEORETICAL AND SAMPLE MEAN SQUARED
ERROR IN PLERIOD 200

Theoretical Mean Squared Error

Smoothing with Indicated a

Risk | MLE |

0.10 0.15 0,20 0,25 0.30 0, 35 0.40;
0.01]1.87|21.79 33.74 46.50 .60.10 74.60 90.05 106.56
0.05}11.13 | 13.50 20.89 28,75 37.12 46.04 55,53 65.065
0.10 {0.91 | 10,27 15.87 21.82 28,16 34.89 42,05 '49.69
0.25 | 0.62 6.65 10.26 14,08 18,13 22,43 26.99 31.35
0.50 {0.59 5.26 g.11 11.11 14.29 17.65 21,21 25.00

Average Sample Mean Squarced LError over 100 Replications

Smoothing with Indicated a

Risk | MLE 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.01 |1.64 22,94 35.64 50,55 €7.26 84.72 102.28 119.63
0.05 [1.01 | 14,06 22.29 32,01 42.99 54,56 66.24 77.84
0.10 |0,78 }10.57 17.01 24.64 33.25 42.37 51.60 60.82
0.25 {0.53 6.62 10.98 16,10 21.82 27.87 34.04 40,24
0.50 {0.47 4.99 8.37 12,16 16.21 20.40 24.66 28.9°

estimates of reorder level over the 100 replications is dis-
played in Fig., 1, The theoretical reorder level for a risk
of 0.05 is 116.45. Although the average values of R and R
are not significantly different, the difference in variabil-
ity is quite obvious. In fact, even after the 1000 periods

the sample standard deviation of R is 5.654, while that of

R is but 1.007. In vicw of many other experiments of this
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type that were conducted, it appearsi that for a risk level of
0.05 and o = 0.2, a lower bound on the standard deviation of
R is approximately 0/2. No results to that effect have been
determined analytically so the remark is included here only
as a matter of interest.

As a final example of resul:is under this particular
case, a comparison of the sample risks obtained by both meth-
ods of estimation was made. Again with p = 100 and o = 10
demand was generated and the rcorder level estimated after
various sampling intervals. This time the experiment was
repeated 500 times and the risks ovar the 500 replications
in the indicated periods are presented in Table VIII, In
several of the cases the results do not differ significantly
in one way or the other, but generally both methods tend to
yield higher risk than desired. In the case of smoothing
this is due to the variability of the estimate, and in the
case of MLZ the higher risk may be attributed to the tendency
to underestimate reorder level., The risk obtained by smooth-
ing was greater than that obtained by MLE in the majority of
instances.

2. Linear Model

In this section a study similar to that of the previ-
ous section is presented for the linear model. The exact
results of the maximum likelihood development of Section II
are used for comparison with the exponentially smoothed esti-
mates. The constant mean and zero Y-intercept cases are pre-

sented as special cases of the general linear model.
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TABLE VIII

SAMPLE RISK OBTAINED BY SMOOTHING
AND SIMFLIFIED MLE PROCEDURE

Desired Esti- Number of Periods

Risk mator 10 20 50 100 150 200

0.01 R |.044 .016 .018 .014 .006 .010
R |.026 .024 .036 .030 .014 .032

0.05 R .078 ,076 .062 ,064 .046 .060
R |.088 .078 .070 .096 .064 .076

0.10 R |.134 .132 .120 .134 .086 .108
R |.120 .120 .114 .142 .1l0 .128

0.25 R |.272 .270 ,248 .246 .224 250
R |.264 .284 .258 ,272 ,256 ,250

0.5C R |.514 .480 .504 ,494 .500 .482
R |.532 .480 ,496 .474 .488 .472

The first simulation experiment performed in this
section was to generate random demand according to the linear

model given by
y =a+bx+e, where e n N(O,Uz)

for various values of a, b, and 0. The maximum likelihood
and smoothing estimates of the parameters in the model were
calculated after 100 periods of demand observation and the
results averaged over 100 replications. The estimate ..long
with the sample standard deviation of the estimates are dis-
played in Table IX. As indicated in Section III the smooth-
ing method does not estimate the value of the intercept
separately but rather the point on the theoretical line at

each period. For purposes of the Table only, St was
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b x, from the average smoothed estimate of the point on the

line for each period of interest, and thus no sample standaxd

deviation of a, was obtained. The results of Table IX arec

TABLE IX
ESTIMATE OF PARAMETERS

[N A LINEAR MODEL AFTER 200 PERIODS

Parameters MLE Smoothing
_ Sample Sample '
(a,b,0) iiggiee Standard iigiiee Standard
El Deviation ¢ Deviation
(5,.1,1)
a 4,84 .095 5.23 &
b .10 .025 .10 .050
Y .93 077 1.04 .294
(50,.2,3)
a 50.57 .378 50.64 *
b .20 .099 .19 .151
o 2.85 .200 3.13 .882

a 100.24 .6938 100.87 W

b .30 117 .30 .201

o 3.96 . 347 4,17 1.176
(500,.5,5)

a 499.68 .540 501.05 L

b .50 . 249 .50 .252

o 4,96 . 377 5,21 1.470

* See Narrative

not very revealing except that once again the smoothed esti-
mates are more variable than the corresponding maximum like-

1ihood estimates of the parameters. More interesting was
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the facj that for many experiments using various values of
a, b, and ¢ the sample risks obtained by both methods were
seen to be independent of the particular parameters in the
model, and appear to depend only upon the number of observa-
tions upon which the estimates are based. For this reason
it was decided to again direct attention to only a couple of
parameter values,

For the sake of brevity only a few of the experiments
conducted are reported here, in that the results are much the
same as in the previous sections. Not much insight could be
gained from attempting to analyze the sample estimates of the
parameters, It appearcd more beneficial to examine the sample
risks obtained by the two methods cf estimation. Table X
presents the sample risks obtained after the indicated num-
ber of periods over 1000 replicaticns. It should be pointed
out that the entries in the Table are not the fraction of
time the demand exceceded the reorder level estimates through
50 periods for example, as was the case in the results pre-
sented by Zehna and Ornek, but rather the percentage of times
the actual demand exceeded the reorder. level in the (p+l)st
period over the 1000 samples of the estimates. The reasons
for proceeding in this manner were discussed in the introduc-
tion. For this case the parameters (a,b,o0) are (50,2,5).
Again the best possible initial values were used for smooth-

ing, namely

So(¥) = a - (a/B)b , and sgm =a - 2(a/B)b .
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TABLE X
LINEAR MODEL — ACTUAL RISK OBTAINED

IN 1000 REPLICATIONS (a=f£0, b=2, ¢=5)

Number of Periods

Pesired 10 20 50 100
Risk i

]

~

R R

>
4

W >
o
el
= >
o

R

0.01 .007 .036 .014 027 011 024 008 .029

0.05 .045 .103 .045 .070 .049 .078 .053 .066
0.10 .092 . 155 .098 .124 .103 . 137 110 .114
0.25 .233 . 306 . 256 L2604 .249 274 .256  .249
0.50 .482 .516 .521 + 519 .510 .536 .505  .517

The results here are noteworthy in that the sample risk ob-
tained by the smoothed estimates exceeded that of MLE in
almest every case, in the sense that the smoothing risk dif-
fered more in one way or the other from the desired risk than
did the risk obtained by MLE., It is felt that a sample size
of 1000 for each period makes the results fairly significant,
but once again it must be recognize ! that the results are
sample values from simulation and should be judged accordingly.
Since the simplified maximum likelihood procedure
yielded good results in the constant mean case, it was de-
cided to try a similar version for the linear case. To ap-
ply the methods of Section II exactly, and thereby be able

to make exact probability statements about risk, the value of
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the t-distribution percentile must be changed with each addi-
tional period of demand observation. As n, the total number
of periods, becomes large, however, the value of the t-
distribution percentiles approach those of a standard normal
distribution, indicated by K throughout this thesis. In view
of this, it was decided to determine what effect replacing
the varying values of t with the corresponding limiting val-
ue of K, always smaller, would have on the sample risk ob-
tained by MLE. The resulting estimate is referred to as the
K-version in this report. In Table XI this has been done for
the general linear case with parameter triple (100,2,10).

The Table =ntries are the average rcorder level estimate,
sample standard deviation of the estimates over 200 replica-
tions, and the sample risk obtained by the indicated method
of estimation. The desired risk levels of 0.25 and 0.50

have been omitted primarily for the sake of brevity once
again, but also because the values are probably too large for
any practical application. Tables XII and XIII present the
same information for the special cases (100,0,10) and
(0,2,10) respectively.

The results of these final three tables for this
section are consistent with the earlicr results. The sample
standard deviation of the smoothed estimates is relatively
constant over the number of periods and the corresponding
values for both versions of MLE, although consistently larger
in the early periods, decrease over time and are roughly a
third as large as the deviation of the corresponding smoothed

estimates after 100 periods. The maximum likelihood risk
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TABLE

REORDER LEVEL, SAMPLE STANDARD DEVIATION OF ESTIMATOR,

AND SAMPLE RISK OVER 200 REPLICATIONS,

LINEAR (100,2,10)

Desirced | Bsti~ Number of Perviods
Risk mator 10 50 i00
0.01 R - T 156.63,10.62 227.41,3.77  326.11,2.62
,02 .01 .01
R - K 150.67,9.59 226.59,3.72  325.71,2.60
.02 .01 0L
R 145,83,8.54 228.11,8.58 327.60,8.65
.03 .01 .02
0.05 R - T 144.64,8.67 219.74,3.34  318.87,2.31
.04 .05 .04
F - K 142.36,8.36 219.42,3.32  318.70,2.30
.05 .06 .05
R 138.92,7.26 220.51,7.24  319.928,7.16
.08 .07 .06
0 .10 R - T 139.19,7.97 215.81,3.16  315.07,2.18
.08 .08 .13 '
R - K 137.96,7.84 215.63,3.15 314.99,2.18
.09 .09 .13
R 135.27,6.67 216.48,6.66  315.94,6.49
.13 L11 .12
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REORDER LEVEL,

TABLE XII

AND SAMPLE RISK OVER 200 REPLICATIONS,.

SAMPLE STANDARD DEVIATION OF ESTIMATOR,

LINEAR (100,0,10)

Desired | Bsti=- Number of Periods
Risk ma tor
10 50 100
0.01 R - T |129.78,7.29 124.48,2.76 123.93,1.90
.01 .01 .01
R - K |124.61,6.28 123.69,2.69 123.54,1.87
.01 .01 .01
R 121.85,6.71  124.16,6.98 12°,73,6.86
.01 .03 .02
0 .05 R - T [119.37,7.3z 117.04,2.14 116.78,1.48
.04 .05 .04
R - K [117.39,4.97 116.74,2.11 116.64,1.47
.05 05 .04
R 115.48,5,36 117.15,5.44 116.71,5.36
.10 .08 0%
D .10 R -T |114.62,4.51  113.23,1.85 113.06,1.29
.09 11 .09
R - K |113.56,4.35 113.06,1.84 112.98,1.28
.13 11 .10
R 112.10,4.71  113.43,4.72 112.99,4.65
.13 .13 11




N Y v

(

REORDER LEVEL,

AND SAMPLL RISK OVLER 200 REPLICATIONS.

TABLE

XITI

SAMPLE STANDARD DEVIATION OF ESTIMATOR,
LINEAR (0,2,10)

Desired | Leti- Number ?fwgérlods
Risk mator 10 50 100
0.01 ﬁ - T 54.62,9.25 127.04,3.42 226.08,2.39
01 .01 .01
R - K 48.12,8.10 125.96, 3,34 225,52,2.36
l02 .02 .Ol °
ﬁ 47.62,8,80 126.40,7.11 225.80,6.93
.01 .03 .01
0.05 R~-T 43,28,7.43 119.46,2.93 218.88,2.06
.04 .05 .04
R - K 40.79,6.,98 118.97,2.90 218.61,2.05
.06 .05 .04
ﬁ 40,74,7.32 119.32,5.59 218.76,5.44
.06 .08 07
0.10 ﬁ - T 38.11,6.74 115.58,2,72 215,11,1.92
.08 .10 .11
R - K 36.90,6.46 115.27,2.70  214.95,1.92
.09 .10 .13
R 37.09,6.61 115.57,4.88 215.03,4.73
.10 13 11
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using the exact t factors is never larger than the risk

when the corresponding values of K are used. On the basis

of these results, it would be difficult to state that the
modified K-version of maximum likelihood estimation of re=-
order level is significantly poorer than the actual estimator
using t. In fact, in the earlier periods the sample standaxrd
deviation of the K-version is smaller than that of the

actual MLE estimation technique. This of course is due to
the smaller weight placed upon the estimate of ¢ in the

earlier periods.
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V. BAYLES PROCEDURES

At times the manager of a supply system may have "a
priori" degrces of belief about the values of the unknown
parameters in the demand distribution assumed for a partic-
ular model. In other words, he may subjectively feel, prio:
to actually observing any demand data, that certain values of
the unknown parameters in the model are more likely than
others, He may further wish to include his subjective feel-
ings along with observed values of the random demand to make
estimates of the unknown parameters. Bayesian methods may
accomplish the above, combining the real data and subjective
feelings into estimates which actually minimize the decisicn
maker's risk as defined in a very special way.

The subjective probabilities which measure the degree of
belief discussed above determine a prior distribution for the
parameters. The sample values of the observed demand are
used with the prior distribution to determine a posterior
distribution which is then used in order to obtain an esti-
mate of the unknown parameters. The choice of a prior distri-
bution for the unknown parameters is certainly arbitrary and
has lead to general controversy as to the appropriateness and
value of Bayesian methods. It is not much more arbitrary,
however, than the selection of initial values for use with
exponential smoothing estimation techniques. These initial
values were shown in Section IV to effect the estimate for as

many as 100 periods, depending upon the value of the smoothing
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constant, another aspect of smoothing which is certainly open
to subjectivity. Without attempting to discuss the appropri-
ateness of Bayesian methods for the demand forecasting prob-
lem at hané¢, and certainly without recommending its use
without.further examination, the coacept is developed in this
section as it applies to the model 2f normal demand with cor-
stant mean. The Bayes estimation rasults are then compared

to exponentiial smoothing in a varicty of situations.

A. BAYES LSTIMATION

One of the many limitations of Bayesian procedures 1is the
extreme difficulty of obtaining joint prior and posterior
distributions for estimating more than a single parameter in
a model, iowever unrealistic it may appear, it will be as-
sumed here that demand is normally distributed with mcan 6
and known variance 02. This might even be plausible in cases
where the demand for various items of supply demonstrates
about the same degree of variability but fluctuates about
different and unknown mean values., In any case, it is as-
sumed that

- ty-0)?
1 20
£(y]o) = e
o]2n

where f(y|6) indicates that the distribution of Y is condi-
tioned on the value of the parameter 8. It can be shown
[Ref., 8] that if the prior distribution assumed for 8 is

2
N(eo,o

o)/ then the posterior distribution is also normal

with mean
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2 p (5-1)
00 +0
and variance
0202
o \
e (5-2)
I + 0

Thus the mean of the posterior distribution is a linear com-
bination of the observed demand and the mean of the prior
distribution 6, . For estimation purposes it can be shown
that the mean of the posterior distribution as an estimate
of the paramecter 0 minimizes the loss as measured by squared
error. That is, if 6' is an estimate of 0 and the conditional
and prior distributions are as specified above, then (6 - 0')2
is minimized by choosing 8' equal to the mean of the posterior
distributicn.

It shculd be noted that in Eq. (5-1) the weight given to

o2

the observetion in the linear combination is —7—9
o +

5 SO that
o

o
if the decision maker is fairly certain that 60 is the true
value of the parameter 6 or if he wishes to bias the estimate
in favor of his prior feeling, he should choose a small vari-
ance for the prior. If the exact value of 0 is less certain
however, the variance of the prior should be relatively large

y .

compared to 6 . In this way, most of the weight in the re-

sulting estimate will be placed on the observed demand.
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B, BAYES FORECAST MODEL

The Bayes estimate of mean demand developed in the pre-
ceding section may be used to forecest demand and set an ap-
propriate reorder level to obtain ar approximate risk in a
manner énalogous to the procedures used in Section II-D., Tha
demand in period one is observed and assuming a N(Oo,gg) prior
distribution on ¢, a posterior distribution of g given y, may
be determined. As previously derived, the posterior is normal

with mean

2 2
or = Go>1 to 0o
2 - 2
0 o
and variance
2 2
2 0, ©
Gy = smeaem——s—
1 2 2
U + o

The estimate of reorder level then is given by
* = * id
Rl.' 0]. + Ko .
Since information is gained by the observation Yy o the poste-
rior distribution determined in period one is used as the prior
distribution for period two. After observing Y, + @ new poste-

rior distribution for ¢ is determined. It is again normal

with mean

2 %
; _Oly2+062
2 - 2 2
o4 + g
and variance
2 2
olo
i 2 ¢
°1 + 0
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Upon substitution for 6% and 02 the above becomes

bl ik
Oi(yl+y2)+ 026 0202
6% = © and 02 = - 2 _ 5
2 2 2 2 2 2 "
20 4 O 20 + 0
o} o)

Continuing in this manner it may be shown by induction that

after n periods the estimate and variance are

n
0% =02 3} y. + o0

n 0 ;2173 o
2 2
and 2 ) coc
Sl o=
nog + ¢
0
It follows that
2

1
1

*
E(@n)
lim E(O*) = 0
nroe n

and lim 02 =0 .,
n
n*re

The reorder 1level set for the (n+l)st period is given by
* = * (
RA 0n + KO

where K is the (l-a)th percentile of the N(0,1) distribution.

C. SELECTION OF PARAMETERS FOR THE PRIOR-~-SIMULATION RESULTS
The results of Bayes estimation depend strongly in most
cases upon the choice of the parameters in the prior distribu-

tion. The ratio of og to 02 determines the weight given to
the observed demand relative to the weight placed upon the
"a priori" best guess of mean demand 6,. To determine exactly

how much the estimate of mean demand is effected by various

combinations of 60 and og, a limited amount of simulation was
58
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conducted. For the constant mean case with 8 = 100 and
0 = 10, random demand was generated for 100 periods. The
Bayes estinatec of 8 was computed for combinations of 80 = 0,
6, 0/2, 6/3, 6/4, 0/5, and o> = a, 3°/2, 62/3, o%/4, 0?5,
202, 302, 402, 502 . The results of this investigation are
summarized in Table XIV, the entries being the Bayes estimates
of 0 after 5 and 100 periods of demand observation. Obviously
the closer 60 is to the true value of 0 the better the result-
ing estimate is. It should be noted however, that for this
ratio of oi/o2 sufficiently large, the Bayes estimate ap-
proaches the actual value of 0 rapidly. Tor example, in the

. 2 2
above case with Go = (0 and GO = 50

the Bayes estimate of
6 was 96.6 after just 5 periods anc¢ 99.5 at the end of 50
periods.

From the detailed data obtained it appeared that the Bayes
estimate was fairly stablec especially for a relatively good
selection of OO. For this reason it was decided to compare
the Bayes estimates with the corresponding exponentially smo-
othed estimate when 02 is known. The results of this compar-
ison are displayed in Table XV. For purposes of comparison
the initial guess of mean demand was set at zero for both

estimation techniques, that is, SO(Y) = 0 and 00 = 0, and ran-

dom demand generated with 6 = 100 and o = 10. The mean demand
was estimated using each method with various choices of the
observed value weighting factors, a in the case of smoothing,
and cg for the Bayesian method. The entries in the Table re-

veal that the Bayesian approach yields better estimates than

smoothing in the early periods even for a relatively large

smoothing constant. A choice of 02 2_202 resulted in better
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TABLE XV

AVERAGE ESTIMATE OF MEAN DEMAND
BY BAYES AND SMOOTHING

5 = 100 6 =0
5 = 10 so(Y) =10 Number of Periods
Estimator | Tarameter j . 10 15 50 100
Values
2
02 =0 83.7 91.0 93.7 97.9 99,1
! 26> |91.3 95.4 96.8 98.8 99.5
BAYES | ;
36° |94.1 96.9 97.8 99.2 99.7
46® |95.6 97.7 98.3 99.3 99.8
562 |96.6 98.2 98.7 99.4 99.8
« =0.1 |41.1 65.1 79.3 99.2 100.4
0.2 |67.3 89.1 96.4 99.8 100.6
SMOOTHING
0.3 [83.2 96.9 99.5 99.9 100.8
0.4 [92.1 99.0 100.0 99.9 100.9
0.5 |96.5 99.5 100.3 99.9 100.9

estimates by the Bayes technique through 15 periods than the
smoothing estimator with the usual smoothing constant 0.20.
" To determine the effect of the prior parameters on the
sample risk obtained by the forecasting techniques the same
model was used to generate demand for 100 periods and the
experiment replicated 1000 times. For the case where the
prior estimates were the best possible, that is, S (Y) = 6

and 60 = 0, the results are presented in Table XVI. For
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varhnhscmcices of weighting factors, the desired risk was

held constant at 0.05. The results are quite remarkable.

TABLE XVI

SAMPLE RISK OBTAINED BY BAYLES
AND SMOOTHING OVER 1000 REPLICATIONS
(GCOD INITIAL VALUES)

0 = 100 6 = 100
= 10 SO(Y) = 100 Number of Periods
Estimator | Torameter | o 10 15 50 100
Values
2 2 .
ol =0 066  .056  .057 .057  .055
AYES 202 069 .057 .058 .057  .055
302 .072 .058 .058 .057  .055
402 073  .059  .058 .057  .055
502 074  .059  .058  .057  .055
«=0.1 |.060 .051 .057 .057 .063
0.2 |.059 .061 .061 .061  .069
SMOOTHING 0.3 |.066 .073 .069 .070  .079
0.4 .073 .077 .079 .076  .083
0.5 082 .082 .083 .084  .091

Excépt for a few cases the Bayes forecasting method provides
a sample risk closer to the desired risk than the smoothing
process. Also noteworthy is the fact that the Bayes method
again appears much more stable than smoothing. This is in-

deed the case as indicated by the sample standard deviation
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in Table XVII. For only the early periods and for small
TABLE XVIX

SAMPLE STANDARD DEVIATION OF BAYES
AMND SMOOTHING ESTIMATORS OF MEAN DEMAND

6 =100 |6, = 100
G = 10 So(Y) = 100 Number of Periods
Estimator | Larameter | g 10 15 50 100
Values
2 2
o =0 3.95  3.26 2.84 1.95 1.69
202 4,25 3.40 2.94 1.97 1.72
BAYES 362 J4.36  3.41  2.94 1.96 1.73
. 402 4.46  3.47  2.95 1.95 1,72
502 4.48  3.48 2.97 1.95  1.72
@ = 0.1 12.31 2.64 2.68 2.61 2.73
0.2 3.41 3.68 3.63 3.60  3.65
SMOOTHING
0.3 |4.30 4.51 4.40 4.49  4.44
0.4 15.10 5.27 5.17 5.30 5.16
0.5 5,96 6.03 5.90 6.06 5.88

values of the smoothing constant does the smoothed estimate
demgnstrate a smaller variance than the corresponding Rayesian
estimate. As more and more observations are made, the sample
standard deviation of the Bayes estimate becomes smaller

while the variance of the smoothed estimate remains about the

same.,
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tmu£lﬁme experiment was repeated with 00 = and SO(Y) = 0
to determine how quickly the two forecasting methods could
demonstrate sensitivity to the actual data and obtain a sample
risk close to the desired risk 0.05. In this case also the
experiment was replicated 1000 times in order to obtain a
degree of significance in the results. The sample risks

obtained by both methods are displayed in Table XVIII., The

TABLE XVIII
SAMPLE RISK OBTAINED BY BAVES

AND SMOOTHING OVER 1000 REPLICATIONS
(POOR INITIAL VALUES)

6=100 |eo =0

g = 10 SO(Y) = 0 Number of Periods
Estimator Ps;iﬁzger 5 10 15 50 100
og =02 |.635 .204 .187 .079 .o071
26 |.310 .159 .107 .068 .062
RhES 362 |.211  .128 .090 .066 .06l
46> | .168 .109 .084  .065 .06l
562 | .146 .097 .080 .065 .060
@ =0.1 [1.000 .,992 .737 .067 .063
0.2 |.99° .390 .145 .061  .069
BNOOTRLIS 0.3 | .761 .137 .080 .070  .079
0.4 | .35 .088 .080 .076 .083
0.5 | .187 .084 .083 .084 .091
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sample standard deviations of the estimators did not change
appreciably from the previous case and are not presented.
The resultes are as expected. When a small value is chosen
for the smoothing constant the long term results are fairly
accurate, but the results in the early periods are far from
satisfactory. If a larger value is chosen for o the smocthed
estimate adjusts much more rapidly but gives poorer results
in the long run due to the increased variance. The Bayes

2

estimator adjusts quite rapidly for U= 502 and the long

term resuliis for all values tested are fairly accurate.
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VI, CONCLUSIONS AND RECOMMENDATIONS

Before summarizing the conclusions reached in this
study and the recommendations which follow, it may be worth--
while to present briefly a few of the conclusions reached by
Zehna and Ornek in similar studies [Refs. 10, 11, and 6].

1. It is difficult to judge exponential smoothing on a
theoretical basis due to a lack of knowledge concerning the
probability distributions of the smoothing estimators. .

2. Many of the analytical results obtained by Brown
[Ref. 2] are asymptotically valid only although applied to
the finite demand case.

3. Tke source of much of the difficulty in determining
the distributions of the smoothing estimators ic in the use
of MAD as an estimate of variabilicty.

4., On the basis of simulation results the simplified MLE
approach is to be preferred in those cases in which smoothing

is presently employed by NavSup.

A. CONCLUSIONS

It has been pointed out numerous times throughout this
thesis that the numerical results and comparisons made are
based on computer simulation sample outcomes. However, the
experimentation was conducted with great care taken in the
handling of random numbers and sample size to assure a degree
of significance in the results. The results of the various
comparisons of MLE and exponential smoothing are quite con-

sistent and reinforce the conclusions reached in the above
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references. Without regressing to the specific numerical
examples presented previously in this thesis it can be con-
cluded that on the basis of the analysis performed in this
study the smoothing estimators are more variable than any
form of maximum likelihood estimation and prediction method
tested in the linear or constant mean models. The source

of most of the variability in the smoothed estimates appears
to be in the MAD estimate of the variance in the demand
distribution. This results in far less consistent risks ob-
tained by smoothing than the comparable risks obtained using
MLE., As for the ease‘or difficulty of computation using the
various methods, the exact MLE computations are certainly
more involved but probably not to the excent of resulting in
significantly increased computation time. In any case the
trade-off between computational accuracy and computation time
is a managerial decision. In the constant mean model the
simplified MLE technique is certainly not more difficult to
handle computationally than smoothing and has been shown to
produce significantly more stable and accurate results. The
Bayesian approach, while not immediately applicable without
further study, appears to offer a procedure which, although
subjective in nature, has a sounder theoretical basis than
does smoothing. On the basis of simulation the Bayes method
has been shown to produce good estimates, be relatively flex-
ible and sensitive, and demonstrate less variability than

exponential smoothing.
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B, R E(OMMENDAT IONS
For the reasonsdiscussed above it is strongly recommended
that NavSup or other agencies using smoothing for demand fore-
casting uncer the assumptions of the models discussed in this
thesis give serious consideration to at least testing other
forecasting techniques under a varizty of circumstances to
compare and contrast the results. This testing should involve
the use of actual historical demand data so the results ob-
tained by the alternate forecasting techniques can be com-
pared in retrospect with the forecasting results which were
obtained by means of exponential smoothing. Because of its
intuitive appeal and computational simplicity exponential
smoothing should be investigated further with prime interest
in discovering a method to replace MAD as an estimate of
variance. If this can be accomplished it may turn out that
smoothing is in some respects an optimal method of forecast-
ing. It is also recommended that further study be made of
the Bayesian approach developed in this thesis to determine
its applicability in actual situations. It would be reward-
ing to develop a Bayesian procedure which could be used to
jointly estimate the mean and variance of the demand distri-
bution and yet be relatively simple to apply. In cases such
as those involving a constant proportionality between the
mean and variance of the underlying distribution it is spec-
ulated that an ad hoc procedure could be developed that would
involve an "a priori" estimate of the variance and then, after
data are observed, the use of the posterior distribution to

estimate the variance as a function of the posterior mean.
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7 i Y ST
Finall(,it~is recommended that an investigaticn be made into
the use of smoothing, MLE, Bayesian methods, or other fore-
casting approaches in the case of a time dependent mean whern
demand is normally distributed but mean demand is subject to
periodié increases or decreases. In such cases the esti-
mating procedure must not only be able to yield accurate
estimates but also be able to detect the changes in the mean
of the underlying demand distribution and adjust the fore-

casts accordingly [Refs. 3, 7, and 9].
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APPENDIX A

IDENTITIES USED IN MLE COMPUTATIONS

As discussed in Section IV, one of the disadvantages
often attributed to maximum likelihood estimation techniques
applied to demand forecasting is the necessity of storing the
historical account of demand data for the entire period of
interest. The following results show that the above asser-
tion is nct valid and that only certain totals are required

to be stored much the same as with exponential smoothing.
A. CONSTANT MEAN MODEL

n
a=§;=x_1{ )

y.
i=1" 1
)
S = (y. - a)”~
Y is] * 3
n -1
n n n n
A2 9 2 2
bt Y vy, ~2)" = }) (3. ~ "= v ~2Y )y, *n¥§
i=1 i=1 ji=1" 1 i=1"*
n
2 .
= ) y; -n¥y
i=1 »
; n
2 o3
that S = : = n
so that S/ izlyl y
n -1
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which shows that | Y; and ) y? ase the only data that must
i=1 i=1 ~

be retained from period to period.

B. LINEAR MODEL — Y-INTERCEPT = 0
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C. GENERAL LINEAR CASE

§ "
X.Y.: = nXy
e T N
n B )
) xi “ nkT
i=1
a=y - b
n ~ ~ 2
S,..» =1/ ) (¥y; - a - bx;)
yex joy i
N

Now omitting the limits on the sums for simplicity

n
izl(yi - e Bk} . iyi - ZaZyi - Zbeiyi

+ BZZ xi + 2;82 x;, +n 32

which becomes after substituting feor a and combining terms

2 2

Iyi -ny° - Zﬁ(ixiyi - n xy) + gz(ixi -nx°) ,

But the quantities in parenthesis are just N and D respectively

so noting that

it follows that

n n
(y _a-bx.) =2y-ny - bN
121 a i=1" *
and
n 3
2 2
S,.. = Y} ¥ - ny° - bN
y*x jop i
n - 2
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Note that D depends only upon the nuamber of periods n and

if the demand is being followed over successive periods of
time the xi's are just the first n integers so that the value
of D can be stored for each period of time only and not

calculated for each particular item of supply.
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