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ABSTRACT 

\ u 
For periodic review inventory models with stochastic 

demand, the idea of stock-out risk is defined, from which 

the importance of accurate prediction of demand is deduced. 

Methods of demand model parameter estimation are investigate;d 

and several, methods compared on the basis of theoretical 

soundness, ease of application, and accuracy of estimates 

based upon the results of extensive computer simulation.  The 

theoretical development of maximum likelihood and exponential 

smoothing estimators as applied to prediction is presented 

along with the development of a new Baycsian approach to the 

problem of demand forecasting.  ) 
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I.  INTRODUCTION 

There is a great deal of interest today in business and 

industry, as well as government activities, in inventory con- 

trol.  The current literature of opsrations research contains 

considerable ideas, methods, mathematical models and algo- 

rithms addressing this particular subject area.  One of the 

most difficult problems involved in the application of any 

mathematical model to actual inventory analysis or control 

problems is the estimation of the parameters used in the for- 

mulas of the models and algorithms.  To resolve this problem 

operations researchers have concerned themselves with the de- 

velopment of accurate estimation techniques and demand fore- 

casting methods.  One of the techniques which has received a 
- 

good deal of attention in the current literature is exponen- 

tial smoothing, a method of estimation and forecasting 

developed by Brown [Ref. 2],  The basic idea of the smoothing 

approach is to use a weighted moving average of demand data in 

such a way as to exponentially discount the oldest data in the 

demand sequence and place most of the weight for an estimate 

on the most recent data available.  This exponential discount- 

ing of past demands is controlled by the selection of a smooth- 

ing constant which determines the relative value of the weight 

assigned to the data in the estimate.  The exponential smoothing 

technique has been questioned on theoretical grounds by Zehna 

[Ref. 10] and others.  It has been suggested that the classical 

maximum likelihood methods will produce better results in a 

T 
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number of demand models and some simulation results are avail- 

able which indicate that this is the case [Refs. 6 and 11]. 

The purpose of this thesis is to examine the problem of 

forecasting demand and explore several alternative methods 
■ 

which should be considered as possible forecasting techniques 

for particular demand models.  A simulation analysis of max- 

imum likelihood, smoothing, and Bayosian estimation methods 

was conducted in order to ascertain important or noteworthy 

properties of the techniques when applied to normally distrib- 

uted random demand in the constant mean and linear demand 

models. 

Throughout this report the idea of a risk involved in in- 

ventory operations plays a central role.  The demand models 

studied are assumed to be applied to an inventory system in 

which stock is controlled by means of a periodic review of 
» 

inventory Levels.  That is, at certain specified periods of 

time, monthly, quarterly, etc., the demand for items is deter- 

mined along with the current inventory balance.  These data 

are used to requisition replacement stock to insure that the 

system does not run out of stock too often.  If the demand were 

deterministic there would be no problem in deciding how much 

to order.  However, the demand in this case is assumed random 

and predictions of the demand in future periods must be made 

in order to set reorder levels.  It is assumed that resupply 

is instantaneous so that, if it can be determined at the end 

of a period that within a specified probability the demand in 

the next period will be less than a certain quantity, then the 
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reorder level is that expected upper limit on the next 

period's demand.  The reorder quantity is the reorder level 

less the amount of stock on hand.  3y deciding what probabil- 

ity of running out of stock, called stock-out risk, is 

acceptable, the decision maker sets a risk level that deter- 

mines the ordering policy.  Consequantly estimating parame- 

ters and predicting demand in general is a central issue in 

the determination of reasonable reorder policies. 

In Section II. the theoretical development of the maximum 

likelihood estimation technique is presented along with'a 

simplified version which was used by Zehna [Ref. 11] for 

comparison with exponential smoothing.  Section III. is a 

summary of the theoretical basis for exponential smoothing 

developed by Brown [Ref. 2].  In addition, at the end of Sec- 

tion III smoothing  is applied to a case not previously con- 

sidered by Brown.  Section IV presents a comparison of maxi- 

mum likelihood and smoothing with consideration given to 

theoretical basis, ease of application, and simulation re- 

sults.  In Section V a Bayesian procedure for demand estima- 

tion and prediction is developed for the case when the 

variance of the demand distribution is known.  The resulting 

Bayes estimation method is compared to exponential smoothing 

on the basis of computer simulation. 

Since simulation was used throughout this study a special 

section on this technique is presented at the beginning of 

Section IV.  It should be noted that in previous cases 

studied by Zehna [Ref. 11] and Ornek [Ref. 6], simulation was 

also used as one method of comparing MLE and smoothing.  There 



is   a »basic difference   in  the  approach  in  those  papers and 

the  approach taken in  this  study.     Their  procedure was  to 

generate  random demand over a long period  of  time,   1000 

periods,  making estimates with the various methods  at each 

period,  and determining the sample   risk   (probability of 

running out of stock)   over the entire  time  of  operation. 

The  approach taken here,  however,   raalizing that in many ap- 

plications only a  limited  amount of data may be available or 

used as  a basis   for estimation,   is   to generate  demand data, 

make estimates,   and determine the  risks  involved at  various 

points  in time,   say  5  periods,   20  periods,   etc.,   over a  large 

number of replications  of  the experiment.      It  is   felt that 

the  results  of  this  simulation method should prove   useful in 

determining which  estimating techniques  perform well when 

estimates arc based upon a  fairly limited  amount of data. 

m 
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II.  MAXIMUM LIKELIHOOD ESTIMATION 

A classical approach to forecasting or predicting the 

value of a random variable based upon past observations is 

to develop a functional relationship between the observed 

values of the random variable and some control variable us- 

ing regression analysis.  Applied to the present circumstances 

one may view the random variable Y as demand and the control 

variable- x as time.  Demand is observed at various times 

x,, X-, • • -, x and then inferences are made about the de- 

pendence of Y on x. 

In this section the results of the General Linear Hypoth- 

esis are examined as they apply to forecasting demand when 

the mean demand is a linear function of time, that is, 

E(Yi) = a + bxi . 

A.  GENERAL LINEAR MODEL 

1.  Estimate of the Coefficients 

If X = Aß + £, where A = ■ 

x. 

x. 

x h 

and 3^ = 

2 
then Y. = a + bx. + e. where e. 'v N(0, a ), i=l,2, • • • ,n .  It 

follows that E(Y.) = a + bx. and V(Y.) = a2, i=l,2,«",n . 

It can be shown, see Zehna [Ref. 12], that the maximum like- 

2 
lihood estimates of 3. and a are: 

': 
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A    -3 A. 2 
ß = Q  A' Y and o 

(Y - A P_)  (Y - A 3_) 

n 

respectively, where Q * A' A.  It is further true that B_ , 

2-1 
the random vector corresponding to (J_ is N« (ß_, ö Q ) where 

N„ indicates a bivariate normal distribution.  Algebraically 

then, 

Q = 

n   nx 

_  n 2 
nx  I  x. 

1=1 1 

,  and Q -1 

ns. 

n 

.1-   - i=l 
nx 

-nx   n 

s>       n      - 2 v 
v;here sz = 1/n ) (x. - x)   and  x = 1/n  2. xi ' 

x      i=l  1 i=l 

Then 

I = Q.'1^'! = Vns* 

n 2 

i=i 1       i=i "^ 1 

n 
); (x. - x) (y. - y) 

i=l 

The above reduces to 

n 

^ xiyi " i=l 1 
nxv 

n v  2    -2 
I-Xl " nX 

i=l 

(2-1) 

a = y - xb (2-2) 

2.     Variance  of the  Estimators 

I2(g. Since § is N,(ß, ö
2
Q"

1
) it follows that: 

"— ■ " ■'  
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E(ß) - 3 r V(a) - 

a  ) x. 
i'l i 

n 
n J (x. - x) 

i=l 1 

-^2 
,  V(b) n 

I (x. - x)2 
i=l x 

(2-3) 

and COV(a, b) -a2x 
n 
I   (xi - x) 

i=l  ;L 

-x2 

These quemtities depend only upon the total number of periods 

of demand observed and the variance of the underlying distri- 

bution in the model.  The relative sizes of these variances 

are indicated in the following table. 

TABLE I 

VARIANCE OF a and b 

n 
Ä   2 

V(a)A7 V(ß)/o2 C0V(a, b)/a 

10 0.4667 0.0121 - 0.0667 

50 0.0825 0.0001 - 0.0025 

100 0.0406 0.0000 - 0.0006 

1000 0.0040 0.0000 - o;oooi 

2   . The  maximum likelihood estimate  of  a     is 

S2  = 1/n     I   (y.   -  0.   -  Lx.)2   . 
i=l     1 1 2  1 

It is well known that 

Ä2 
na     ^   x2 

,2 n-2 

«—■        I     I     .     ■M    M -T-**-*—■■! 
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so   that     —rj-    is  an  unbiased estimator  for a 

3.     Prediction 

The main purpose of using estimation   in  inventory- 

applications  is  to  forecast demand at  some  future  period  of 

time.     Most often  it  is   necessary  to observe  demand  in peri- 

ods   1,   2,   •••,   n,   and utilizing  these data predict what  de- 

mand will be  in the next period  in order to  set  a reorder 

level such  that within  tolerable   risk  limits   the  system will 

not  run  out   of  stock. 

. 

The  demand y     at  time x     ^ x,.   •••,   X   .   may be Jo o  '      1 '     n'       J 

considered as  a value  of  the  random variable   Y    which  is o 
2 distributed N(a + bx   ,   a   ).     Then 

Y  = -o 

where A = —o 

1 x 
• « 

A 

o 
• • • 

%   Vi^o h al) 

It can be snown that 

Y - a - bx »v NIO, or 
o       o   ' 

-2 

1 + 1/n + 
(x - xo) 2 -r 

n 
I   (Xi - x)2J 

1=1 1 

and is independent of no  .  It follows that 
A      A, 
* A. 

Y  - a - bx. 

1 + 1/n + 

no 

n      - 2 

a (n - 2) 

12 
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has a t-distribution with n-2 degrees of freedom.  Thus if 

a reorder level R is set by means of 

R « a + bx -i- t „ T „ S . / 1 + 1/n +        (2-4) o   n-2,l-a yx/     /    n        o 
I (xi - x)2 

where a and b are as defined previously. 

n      ^      2 
I   (Yi " a - bx2) 

Sy.x " 1/     n - 2  ' and Va,!-« is the 

(l-a)th percentila of the t-distribution with n-2 degrees 

of freedom, the probability that the demand in period x will 

be less than or equal to R is l-cc.  This assumes that a risk 

of 1100 a I % is acceptable 

It should be noted that the length of this one-sided upper 

prediction limit for Y  increases as the period for which the 

forecast is made differs in time from x.  This fact should 

discourage "Extrapolation" too far above the midpoint of the 

sampling interval.  However, the forecast should be good for 

the {n+l)st period. 

B.  CONSTANT MEAN MODEL 

The constant mean model may be considered as a special 

case of the linear model above with b = 0,  For this model, 

Y. = a + e. where e. ^ N(0, O
2
)  i=l,2,,,,,n 

1.  Estimates of the Coefficient and Variance 

Utilizing the same procedure as before it is found 

that 

13 
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Y-^r-   (r~ 

n 
a - 1/n I y. = y  , 

i-1 1 
(2 -5) 

E(a) = a , V{a) = cT/n (2-6) 

n 
and o^ - 1/n  J (y. - y) 

i=l 

2.  Px-ediction 

Again it can be shown that. Y - a has a J o /\ 
2 ^2 N(0,   a   [1   f  1/n])   distribution  and  is  independent  of no 

na 

a 
w- has a Y  „ distribution so thst 
2       An-2 

Y  - a 
o 

ö^i + r7n 
is distributed as t 

ä2 
na 

n-1 * 

a^(n-l) 

It follows that setting a reorder level by means of 

R = a + t t  ,  ,   S i/ 1 + 1/n 
n-1, 1-a y]/ 

(2-7) 

n 
where Sw = / I (y• - a) 

äV2 

1=1 
n-1 

will yield the desired risk a . 

C.  LINEAR MODEL WITH Y-INTERCEPT = 0 

In many cases it might be reasonable to assume that there 

Is no minimum initial demand imposed on the system, i.e., at 

time x = 0, Y = 0, and that demand grows linearly with time. 

This may be expressed as 

■ 

2 
Y. = bx. + e. where  e. ^ N(0, a )   1=1,2, ««^n. 

"f 
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In matrix notation 

Y = Ab + E  where A = 

r   "i 
xi 
X2 
• 
* *          ' 

n 

1.  Estimate of Coefficient and Variance 

Proceeding as before. 

n 2 .-1     n Q = A'A - I   x^     Q"1 = 1/ I   x" 
i=l 1 i=l 

b = Q-^^ 

n 
y  x.y. 

i=l  
n 0 i A 

i=l 1 

(2-8) 

02 = (Y - Ab) ' (Y - Ab) 

A     2-1 
V(b) = O^Q J- 

n 

n 

= 1/n I   (y. 
i=l x 

E(b) 

bx.) 
i 

(2-9) 

i=l 1 

2.     Prediction 

As   in  the previous  case  it can be  shown  that 
2 

Ä 2 X 
Y    - bx    has  a N(0,   a   [1  + -~ ])   distribution, oo n 

I x. 
1=1 

no        . 2 
-T"    1S     Xn-1 

and  further that Y    - bx    and na    are  Independent. 

15 
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Thus Y     - bx o o 

a. 
'n-1 

cT (n-1) 

The appropriate  reorder  level  to  obtain  a  risk a is 

R ^ b?i     +   t     .      ,      S o n-11   1-a yx 
x 

i + o 

iii 1 

(2-13) 

where     S y »x 

n 
V   (y.   -bXi) 

1-1  
n-1 

2 

on and t     ,     ,        is  the   (l-a)th precentile of  the t-distributi n-1,   1-a \    v*/       r 

with n-1 degrees  of  freedom. 

D.     CONSTANT   MEAN-SIMPLIFIED  PROCEDURE 

A more easily  applied technique  for setting  the  reorder 

level  in the  constant mean case was demonstrated by  Zehna 

[Ref.   11]   and  Ornek   [Ref.  6]   with very  good results.     The 

procedure was  used  only as an attempt  to compare the accuracy 

of maximum  likelihood estimation with  that  of estimating 

parameters using exponential  smoothing. 

Since demand is  normally distributed with mean y  and 

variance a     there   is,   of course,   a theoretical  reorder  level 

y + Ka  such that 

Pr   (Y < y + Ka)   =  1  - a (2-11) 

16 
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where K is  the   (1  - a)th percentila  of  the   standard normal 

random variable  — N(0,   1)   . 

Hence maximum  likelihood methods  may be  used to estimate 

y and a  separately and then these estimates  combined  as  in 

Eq.   (2-11)   to  set the  reorder  level.     In  this  way, 

n 
l/n     I  y-   = y 

i=l   1 
o  = 

n 2 
I (Yi - y) 

3.-1 
n -■"l' 

and 

R = y  +    Ka   . (2-12) 

This method of course fails to consider the actual distri- 

butions of y and 8 so that the true risk so obtained is prob- 

ably not exactly a, but for many purposes the ease of 

application may make the tradeoff worthwhile. 

It is possible to make statements about the expected 

value and variance of this estimate of reorder level as the 

distributions of y and a are well known, and the correspond- 

ing random variables are further known to be independent. 

From Eq. (2-6), E(y) = y and V(y) - a /n .  It is shown 

in Hald [Ref. 5] that a has a Chi-distribution and in 

particular 
Ä .  -\\ T" 

E(a) = a  l/1 - n ' a where a. 
n\) 

r( n 

^ 
1 - 2(n - 1) 

E( si-Y 2n n- 

17 
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,.,~   n - 1 , 2  2  .    .2   -,    2 •     1 
V(a) = ~— bn o  where bn » 1 - an - 2 (n . ^ 

K  . 1    5 
V(a) = i- . a^  1 

2n    n-*00 0 . 

Thus  E{R) « y +  K / 1 - 
;Y 2n n-^00 p + KO  , 

and V(R) = - „   a"1 -~-> 0 . 
2n      n-»00 

18 
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III.  EXPONENTIAL SMOOTI1I.HG 

As indicated in the introduction, exponential smoothing 

is a method of forecasting discrete time series, in this 

case future demand, based upon past observations of the sys-- 

tem.  The major source of information on the development and 

application of exponential smoothing is the book by Robert 

G. Brown [Ref, 2],  In fact, Drown introduced the concept and 

the very name exponential smoothing in an earlier publication. 

Unless otherwise indicated all of the following discussion of 

the methodDlogy and theory may be found in the reference 

noted above. 

A.  EXPONENTIAL SMOOTHING OF PAST OBSERVATIONS 

The basic idea behind exponential smoothing is to assign 

weights to past observations so as to place the most weight 

upon recent observations and less and less weight on the 

older pieces of demand data, thereby limiting the effect on 

the estimate of "dated" information.  This may be accomplished 

by selecting a smoothing constant 0 < a < 1 which is exactly 

the weight placed on the current observation.  The smoothing 

operator is given by 

t-1 
'.I   ' i=0 

st(Y) = * i yyt-i + ^Y0 

(3-1) 

= ayt+aßyt_1 +   . • •  + ß yo 

19 
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1 
where ß = -1 - a and y^,   y-,   ..., y  arc the observations of 

demand in the first t periods, and y is some initial demand o 
often taken  to  be  zero.     For application  in  this   thesis  it 

will be assumed that y     =0. o 

Y -" S ('!') then is the exponentially smoothed estimate of 

demand in the (t + l)st period based upon t periods of 

observation. 

Brown claims that exponential smoothing may be utilized 

effectively to accurately estimate the coefficients in vari- 

ous models of discrete time series such as demand or sales 

forecasts.  The idea certainly has intuitive appeal and seems 

to be widely used as a forecasting technique. 

For applications of exponential smoothing the number of 

coefficients to be estimated in a model is referred to as the 

degrees of freedom of the model.  Corresponding to each degree 

of freedom is an order of exponential smoothing defined by 

applying the smoothing operator recursively.  For single 

smoothing, as first order smoothing is called, Eq. (3-1) nuiy 

be written, 

St(Y) = ayt + ßS^W " (3-2) 

where S   (Y) is the current smoothed estimate prior to 

observing yt.  Nth order smoothing may then be defined as 

sjj(y) - SLS""1^)] = asjrV) + ßst-i(Y) 

where S°(y) is defined to be S (Y) .  As a special case, 

double smoothing becomes 

S^(Y) - aSt(Y) + 3s2_1{Y) (3-3) 

20 
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B,      CONSTANT  MEAN  MODEL  - SINGLE  SMOOTHING 

Assuming  that  demand Y  is  distributed normally with mean 
2 

V and variance o    then 

Yi = u + E. where e. ^ N(0, a2)  i=a,2,"*,t . 

Since  therci   is  but  one   coefficient  to be  estimated,   single 

smoothing  is   called  for to estimate   |i.     After  t periods have 

been  observed  the exponentially smoothed  estimate  of  the mean 

of  the demand distribution is  given  by 

t-1   . 
y = st(Y)   = ayt +  ßS^j^CY)   = a I  S y^   . (3-3) 

t-1   . 
Note  that  E(y)   =  cxE(Y)    ^   ß1  =  pd  -   $  ) ,   where   jj   is  the  ran- 

i=ö 
~ lim  — dorn variable associated with u,  so  that, .   E(u) = p.  Thus, 

jj is asymptotically unbiased.  Also, 

V(y) = a2o2     I   32i = a2o2   [}  1 %     ] (3-4) 
i=0 1   ß 

lim „/«x   _  _2,     a 
■3' 

and     T™ V(y)   =  0" {y ^—-x) ,   a non-zero quantity. 

In attempting to estimate  the  underlying  variance  of the 

demand distribution   (not considered a coefficient in  the 

model),  Brown chooses  to use mean absolute deviation,  MAD  for 

short,   a measure  of variability which has  questionable theo- 

retical basis  and properties   [Ref.   10] .     MAD   is  defined as 

A = E(|Y  -  n|)    . (3-5) 

It is well known that v/hen Y is normally distributed the 

ratio of A to a is 1/ — , about 0.79 8.  This relationship does 

not hold however in several other important probability 
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distributlions.  To estimate o Brown first estimates A by 

smoothing forecast errors defined as 

e(t) = yt - st_1(y) , (3-6) 

the forecast error in period t.  The smoothed estimate for 

A is given by 

t-1 . 

^t " «ij^t-il i-0 

or  in operator   form 

At = a|etI   + ß  l^   . 

Then the  smoothed estimate of a  is given by 

(3-7) 

-UM 1/2 - a (3-8.) 

implicitly assuming the smoothed estimate for A enjoys the 

same invariance principle known to be true for maximum like- 

lihood estimates. 

It has been clearly pointed out by Zehna [Ref. 11] and 

others that such a procedure as that described above is sta- 

tistically suspect.  Several attempts have been made to de- 

velop the distribution theory necessary to make theoretical 

judgments concerning A and the invariance principle implicit 

in obtaining a but so tar the mathematics has proven 

intractible [Ref. 6]. 

Disregarding the statistical questions involved. Brown 

combines the smoothed estimates of y and a  as in Eq. (2-12) 

to obtain a smoothed estimate of reorder level.  In this way. 

R = y + Ka (3-9) 
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where K is the appropriate percontiLe of the N(0f 1) 

distribution. 

The initial condition S (Y) is sither zero or some best 

guess as to what the value of ji will be prior to making any 

observations.  The effect of this initial value is negli- 

gible after 30-45 periods for .1 <_ ^ <_ .9 

Some remarks may be made concerning the expected value 

and variance of R, the random variable corresponding to R, 

E{5) =yyyip. E(£) 

t-i. 
E(Ä) = a I  3^(1 e. , |) 

i=0 

(I   e.    ,   1)   is   shown  in   [Ref.   11]   to be o  I ~, /  - 1  t-l ' ^ 2 - a jf IT 
E 

so that 

E(5) « (1 - ßl')a t->-oo -5» a , (3-10) 

indicating that ö is asymptotically unbiased if all the 

underlying assumptions are valid. 

As stated earlier, no analytical results have been ob- 

tained concerning the distribution of A and the problems 

involved extend into the intractibility of obtaining the exact 

variance of a.  However, Ornek [Ref. 6] was able to develop a 

method for approximating V(ä) numerically.  v(ä) is dependent 

2 upon both a and the value of the smoothing constant a.  That 

is, 
•3  0 

(3-11) =     2 2 
V(a) = co 

where C may be  found in the  following table. 
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TABUE II 

a VARIZvNCE FACTORS 

a C t 

0.10 0.1745 I. > 80 

0.15 0.2173 t > 50 

0.20 0.2 55 3 t > 35i 
0.25 0.2905 t > 30 

0.30 0.3239 t > 25 

0.35 0.3561 t > 20 

0.40 0.3 876 t > _15j 

The values of C were calculated by Ornek [Rcf. 6] and the 

number of periods necessary for a good approximation were 

determined in the course of computer simulation and testing 

of the model. 

Using the results of Eqs. (3-3) - (3-11) the expected 

value of R may be written 

E(R) = (1 - $*■)  [y + Kcr] ^^ y + Ka , 

and the variance of ^ may be approximated as 

a 
V(R) ■ [(j-J-yHl - 32t) + C2K2]a2 (3-12) 

assuming that y and ä are independent.  Again, the variance 

of R is non-zero even for large t. 
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C.  LINEAR'MODEL -DOUBLE SMOOTHING 

IT the demand in period t is of the form 

2 
Y. « a + bt + et where e. ^ N(0, a  ) 

then Ed^) = a + bi and V(Y.) = a2 ,  i=l,2,»»»,t 

^*  Estimate of the Coefficients 

At time t, the coefficients are estimated by a com- 

bination of both single and double smoothing and the demand 

at time t + T is estimated as 

5t-fT = *t + *tT 

where x is the number of periods in the lead time.  The esti- 

mates of the coefficients developec by Brown are 

at = 2St(y) - S^(Y) 

bt = a/p[St(Y) - S^(Y)] 

(3-13) 

where St(Y) andS^{Y) are given by Eqs. (3-2) and (3-3).  It 

is important to note that a. is not an estimate of the para- 

meter a in the model but rather an estimate of the current 

point on the theoretical line at time t.  Thus Y.   = 

a-, + b. T is equal to the estimate of the current theoretical 

demand increased by the estimated slope multiplied by the 

number of periods in the lead time.  Usually T will be equal 

to one and the forecast will be for the next period only. 

2.  Initial Conditions 

The initial conditions for the linear model are 
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TABLE III 

VARIANCE OF SMOOTHING COEFFICIENTS 

a A B C 

0.10 .12611 .00029 .00539 

0.15 .18982 .0010 7 .01262 

0.20 .25377 .00274 .02332 

0.25 .31778 .00583 .03790 

'0.30 .38164 .01095 .05679 

0.35 .44508 .01909 .08045 

0.40 .50781 .03125 .10938 

absolute differences between the estimated point on the lins, 

\i.,   and the actual demand observed in period t. 

D.  LINEAR MODEL - Y INTERCEPT = 0 

When the Y - intercept is known to be zero the model is 

given by 

2 
Y. = bx- + c.  where c.   %  N(0, a ),  1=1,2,«»«»t . 

Brown does not consider the model as a special case so no 

smoothed estimate for b is given in [Ref. 2].  Following the 

general smoothing methodology, it is assumed that only single 

smoothing is necessary to estimate the single coefficient in 

the model. At successive periods of time x,, x2, ••*, x 

the corresponding demand y,, y2, •••, y is observed.  A 

natural point estimate of the slope at time x, would be 

Bk = *k/xk 
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r i >     v 

S0{Y) = ao - (3/a)bo 

So(Y) = ao " 2^/a)bo 

(3-14) 

where a and b are initial guesses as to the values of the 

coefficients a and b.  Again these initial conditions are 

transient and have no effect on the estimate after 30-45 

periods. 

3.  Va::ianc-e of the Estimators 

Using multivariate analysis Brown claims the follow- 

ing asymptotic formulas for the variances of ä and S in the 

linear casa. 

v(g    a(lf 48+ 5ß-)  c.2 =Aa2 

* (1 + 0) J 

^                  2a 2     2 
V(b.) = —^ T a^ = Ba^ 

t   (1 + ß)J 

C0V(l,, be,) = a (1 + 3ßl a2 = Ca2 t  t    (1 + ß)J 

where representative values of A, B, and C are presented in 

Table III. 

4.  Setting the Reorder Level 

As in the previous case the smoothing estimates of 

the mean, y. = a. + b.T and a as defined in Eq. (3-8) may be 

combined in the form 

R. = jL + Ka, (3-15) 

where K is chosen to obtain the desired risk.  In this model 

& is obtained from Eq. (3-7) by smoothing the successive 
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An estimate of b can then, be obtainEd by smoothing the suc- 

cessive observations of B, obtaining 

bt - St(B) = a(yt/xt) + 3St-1(B) . 

Since E(Yi) = bx^^ , EfY./x.) = b.  It follows that 

t-1 . 
E[S.(B)]= a I  $XE{Y.    ./x,  ) = (1 - ß^b 

c       i=0 

and lim E(ß.) ~ b which implies that this smoothed estimator 
t-+oo     t 

for b is asymptotically unbiased. 

The estimate of o is obtained as in the previous two 

models using MAD.  In Eqs. (3-7) and (3-8) the forecast error 

for this procedure may be defined as 

et = I yt - btxtl 
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IV.  COMPARISON OF MLE AND SMOOTHING 

In this section the procedures developed in the previous 

two sections are compared chiefly by means of computer simu- 

lation. Before detailing the analysis some general comments 

on the technique of simulation are in order. 

A.  COMPUTER SIMULATION 

1.  General Comments 

Computer simulation is primarily utilized to study 

systems or procedures which cannot be adequately analyzed by 

means of mathematical analysis or hand calculations.  Some 

advantages of simulation are the rapidity of calculations, 

magnitude of data which can be generated and analyzed, and 

the ease with which sensitivity analysis may be conducted. 

One of the main disadvantages is that the results obtained by 

simulation are known to be typical of that particular case 

only and in many cases may not be iiccurately extended to oth- 

er sets of circumstances with any assurance that the results 

are true in general. Also, the results of a simulation study 

may not be at all applicable to an actual situation if the 

model developed for the study does not accurately represent 

the system being analyzed. 

2.  Use of Random Numbers 

Random numbers generated by a computer routine are 

actually pseudo-random numbers in that the same sequence may 

be reproduced at will  by means of proper initialization of 



the Sequence.  In the strict sense of the word, such replica- 

tions arc not truly random and, therefore, detract from 

modeling realistic situations such, as demand which is known 

to occur at random.  However, it is this property of being 

reproducible that makes pseudo-random numbers useful in a 

study which has as its main purpose the comparison of various 

techniques such as methods of demand forecasting, or the ef- 

fects of variations in the parameters of the model being stud- 

ied.  To decide if one demand forecasting technique is 

superior in accuracy to another, the two techniques should be 

compared under similar circumstances, using the identical de- 

mand data.  This requirement also is important when the 

effects on forecasting accuracy of changes in parameters, say 

the mean or variance of normally distributed demand, are to 

be measured or tested in some way.  If differences in results 

are to be interpreted as indicating an actual difference in 

the methods or parameter effects, then the experimenter must 

insure that such simulation variations are not due simply to 

the randomness of the data generated. 

3.  Simulation Used in this Study " 

As a basis for comparison of maximum likelihood pre- 

diction and exponential smoothing as described in Sections 

II and III, random demand data were generated, computations 

made according to the method used, and the results compared. 

The various computer routines utilized were written in For- 

tran IV and the simulation was conducted using an IBM 360/6 7 

computer.  The method of generating the actual data for each 

specific model is discussed briefly along with the results in 
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the following sections.  It cannot be emphasised enough that 

all of the numerical results obtained were simulation results 

and should be interpreted as such.  There is no claim made 

that the results of this thesis are true in general but only 

that they may give some idea as to properties of the methods 

tested.  The results presented are but a small fraction of 

the total cases examined and situations studied.  Some of the 

results of the study have been summarized or eliminated en- 

tirely for the sake of brevity, but all of the examples pre- 

sented are fairly typical of the general results obtained. 

B.  PRELIMINARY CONSIDERATIONS 

Before presenting the simulation results a few comments 

must be made concerning what criteria should be used in judg- 

ing whether or not a forecasting technique is satisfactory 

for a particular purpose.  Brown [Ref. 2] suggests the fol- 

lowing three criteria as a starting point:  accuracy; simplic- 

ity of computation; flexibility to adjust the rate of response. 

Accuracy of the forecasting method is discussed in the follow- 

ing section.  For the models examined in this section, flexi- 

bility of the forecasting technique is not important in that 

it is assumed that the model is good and that the underlying 

parameters remain constant over time.  Simplicity of computa- 

tion is discussed in the next paragraph. 

One of the main advantages claimed by Brown for exponen- 

tial smoothing is the ease and simplicity of calculation, to 

include consideration of the actual computation process r.nd 

the computer storage required to store the information 



\ 
necessary to make running computations over time.  By 

formulas (3-2), (3-3), and (3-7) it is easily seen that 

smoothing requires the retention of only the current value cf 

S(Y) and A for the constant mean case and, in addition, the 

2 
current value of S (Y) for the linear model.  At each obser- 

vation only multiplication and addition are required to up- 

date the estimate.  Smoothing advocates claim [Ref. 1] that 

complete historical records must be maintained in order to 

estimate the parameters in the model by means of maximum like- 

lihood or least squares regression in the linear case. ■How- 

ever, it is well known from decision theory that to estimate; 

the parameters in the constant mean case when demand is 

P n        n  p 
N(u,o ), the statistics  V Y. and  T Y. are sufficient [Ref. 

1=1      1=1 

41«  This means that these two statistics are all that must be 

stored from one period to the next in order to update the 

estimates with each new observation.  Granted, these statis- 

tics must be combined at each step with an additional opera- 

tion or two required including the taking of a square root in 

the estimation of a, but with the use of modern high speed 

computers in most large scale inventory control operations the 

extra time required for these calculations is probably negli- 
n 

gible.  For the linear model the statistic  T X.Y. where X. 
i=l 1  ;L 

is  the number of  the period in which demand Y.   is  observed 

must also be  maintained.     The  identities which express  the 

formulas   in  Section II  in terms  of  the  above  sufficient  stat- 

istics  are developed in Appendix A. 
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c. 

For s i mulation purposes random demand was generated in 

accordance with the mode l being stud ied . Uniform random 

deviates , t i (O, l), we re fi rs t ge nerate d and , recalling the 

asymp·totic normality of the sum of unifo rm random variable s, 

normal demand was in turn generated. The r andom demand was 

tested by several methods to assure that it wa s indeed normal 

with the desire d parameters. The Chi-Square t es t (d.f. = 9) 

was us e d and the resultin g test s t a t istic value of 12.8 fel l 

below the critical value of 21.7 at the 1% l e ve l of signifi·· 

cance. Th£~ normal demand was either used directly in t he 

constant me an c ase or converted for the linear model by means 

of an appropriate linear transformation. 

Most o f the r e sults o f the simulation are presented in t he 

form o f tables depicting the me thods o f estimation and t he 

r e sulting ~ ample qua ntities o f interest . Va rious streams o f 

random d e ma nd we r e used i n many instances f rom table to table, 

but with i n each t ab l e the same data \'lere used for e a ch case 

in orde r to make suitable comparisons. 

1. Simplifie d MLE and Smoothing in the Constant Mean 
MO'd'el. 

Since Ze hna [Ref. 11] and Ornek [Ref. 6) previously 

reported on several aspects of the case where demand is 

normally distributed with constant mean and demonstrated \>lhat 

appeared to be a significant difference in the accuracy of 

estimates of the mean obtained by maximum likelihood and ex-

ponential smoothing, it was decided to take that model as a 

point of departure for the simulation study in this thesis. 
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In this s e ction various results of ~orecasting d mand us i ng 

the simp lified maximum like lihood a] p rea ch Eq. (2-12) and 

smoothing Eq. (3-9 ) are prese nted. 

As mentioned in the introdu·~tion, the approach taken 

was to gen~rate random d e mand , make e stimates of the v a r i ous 

parameters after purticular s amp linJ i ntervals, replicate t he 

experiment a number of time s, and t e n determine the avera gE: 

values of the estima tes in the particular periods and the 

variabili t~r of the estimators ove r the replicated experime ni:s. 

Table IV p r esents the se resul t s for est imates of reorder le'Tel 

after 15, 30, 45, a nd 300 per"ods of d emand obse rvation over 

100 replic 1tions. 'I'he parame t e r pairs (JJ ,a) are of the same 

proportions as those studied by Zetna und previously indicat ed 

to be rea listic b y Na vSup. The the ore tical reorde r level wa s 

determine d from Eq . (2-11) with the risk level constant a t 

0. 05 for each parumete r pair. In t:his case, and throughout 

the study unless otherwise indicated, the initial value s for 

smoothing were chose n in order to give smoothing the best pas-

sible starting conditions, that is, 

= lJ, and 1'1 (Y) 
0 

= 1Gl~o· . V 1T V 2-a 
( 4-1) 

A smoothing constant value of a= 0.20 was used, the value 

presently being used by NavSup in their forecasting models. 

The entries in Table IV are the average estimate of 

reorder level and the sample standard deviation of the esti-

mators over 100 replications for the indicated parameter 

pairs and number of periods. The results are rather striking 

and consistent. In most cases exponential smoothing tends to 
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overestimate the r e order l e ve l whi l e ~~E underest i mates , a 

result noted als o by Zehna. Hm1eve r , the most noteworthy 

aspe c t is the much l arger variabi l ity of the smoothing esti-

mate demonstrated by a relative ly h~ gher samp le standard 

deviation. As more and more observations are t a ken the sample 

standard d viation o f the maximum l i ke lihood estimate decreases, 

a fact that is easi l y verif ied in t1e th ory. Howeve r, this 

property i s not demonstrated by the smoothing e stimates. 

This point was s uggested by Ornek [Re f. 6] and indicated by 

Eq. (3-12). In fact, a fter 300 p e riods the sample sta ndard 

de viation of smoothing is con istcntly over six time s as 

large a s that o f maximum l ike lihood . 

It is indicated in Table IV that for these particula r 

paramete r pairs the results do not de pend, on the average, 

upon the various value s of the paramete rs. For example, the 

average r e orde r level estimate give n by MLE after 15 periods 

for the pai r (10,1) is exactly 1/lOth the average estimate 

for the pair (100,10). This r esu l t occurred in every case 

examined. This is not surprising since the random de mand 

for each case was gene rate d by the identical stream of random 

numbers, altered only by the specific parame ters. For this 

reason it was decided to consider further only the parameter 

pair (100,10) as a typical case. Continuing with this ap­

proach, Table V presents the results for the (100,10) para­

meter pair with estimates being made after 5 to 100 periods. 

The entries are the average reorde r level and sample standard 

deviation of the estimates over 100 replications. These re-

sults are consistent with the ideas brought out by Table IV, 
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but some additional insight into the source of reorder level 

estimate variability may be gained by examining Table V. 

After 100 periods the sample standard deviation of R for risk 

level 0.01 is over twice as large as the same statistic for a 

risk of O.'iO.  This is because in the estimate at the former 

risk level, considerable weight is given to the estimate of 

a while at the latter risk level, K = 0 and the reorder level 

estimate is determined solely by \x.     Thus, the weight given 

to a in the estimate decreases as the risk increases from 

0.01 to 0.130 and the corresponding variability of R decreases. 
A 

The same general effect is true for R but to a lesser extent. 

This is to be expected since, from the theoretical development, 

a is roughly twice as variable as \i   in the limiting case (2.3 

times for a  -  0.2).  For MLE the variance of a is half that 

of ji . 

To determine the effects of staring conditions, or 

initial values, on the ultimate estimate given by smoothing 

the same experiment was conducted comparing the perfect initial 

values given in Eq. (4-1) with S0(Y) = 0 and A (Y) = 0.  The 

results are listed in Table VI for various values of the 

smoothing constant a to determine how long the initial values 

effect the reorder level estimate and the variance of the 

estimate.  In the Table, Rl implies the zero initial values 

and R2 indicates the best possible starting conditions.  The 

approximate period in which the effect of the initial values 

become negligible is indicated as the "catch-up period." 

One of the most interesting results of this Table is that the 
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V    ^ 

TABLE   VI 

EFFECT   OF   INITIAL  CONDITIONS 

FOR  SMOOTHING WITH  VARIOUS   SMOOTHING   CONSTANTS 

a CUP* Esti- 
mator 

Number of  Periods 

5 10 2C            40 75 100 

Rl 

R2 

63.76 104.27 141.13  142.50 122.68 118.26 

0.05 
Over 

100 
2.95 

116.73 

3.58 

116.2 5 

3.36        3.95 

116.59   116.4 7 

2.94 

116.47 

2.68 

116.48       \ 
1.72 1.94 2.18       2.42 2.62 2.57 

Rl 
106.37 143.12 142.58   120.85 116.60 116.56 

0.10 100 5.16 5.60 4.82       4.18 3.61 3. 88       j 

R2 
116.21 116.09 116,73  116.33 116.4 8 116.55 

3.24 3.21 3.40        3.61 3.60 3.88       \ 

Rl 
132.66 149.51 12 8.14   116.70 116.45 116.55       | 

0.15 65 
6.92 7.00 5.31       4.65 4.46 4.88 

R2 
116.12 115.9 8 116.81   116.22 116.4 5 116.55       j 

4.58 4.08 4.32        4.5 8 4.46 4.88 

Rl 
140.98 140.98 123.GO   116.34 116.4 3 116.54 

0.175 55 
7.70 7.38 5.49        5.06 4.85 5.30       | 

R2 
116.08 115.92 116.83  116.18 116.43 116.54 

5.19 4.41 4.72       5.04 4.85 5.30 

Rl 
146.69 142.92 120.72   116.21 116.42 116.52       ' 

0.20 45 
8.43 7.44 5.59       5.47 5.21 5.69 

R2 
116.05 115.88 116.83  116.17 116.42 116.52 

5.76 4.68 5.09       5.47 5.21 5.69 

Rl 
150.18 138.15 118.96   116.18 116.42 116.50 

0.275 40 
9.13 7.50 5.73       5.59 5.54 6.05 

R2 
116.02 115.83 116.82   116.17 116.42 116.50 

6.70 4.92 5.42       5.89 5.54 6.05 

1    ** 
Rl 

151.83 133.48 117.94   116.17 116.40 116.47       I 

0.25 35 
9.81 7.49 5.52       6.30 5.86 6.38 

R2 
115.99 115.78 116.80   116.17 116.40 116.47      j 

6.80 5.13 5.73       6.30 5.86 6.38 

*   "Catch-Up Period" 
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( 
choice of smoothing constant a has Little effect on the av- 

erage value, of the reorder level estimate but the standard 

deviation of the estimate increases with increasing a.  This 

is not surprising since for a stable system, as in the cur- 

rent case, the smaller values of the smoothing constant are 

clearly indicated.  This choice of a causes the resulting 

estimator to be less sensitive to changes in the system, but 

have much smaller variance than for larger values of the 

smoothing constant. 

One possible measure of the accuracy of an estimator, 

at least for comparison purposes, is the mean squared error 

of the estimate.  Mean squared error (MSB) may be defined as 

the sum of the square of the bias and the variance.  The 

theoretical MSB and average sample MSE for the (100,10) para- 

meter pair after 200 observations of demand are displayed in 

Table VII for the MLE and smoothing estimates of reorder 

level.  The sample results compare favorably with the theo- 

retical values which for smoothing are approximations based 

upon the results of Section III.  Not surprisingly, the re- 

sults favor the MLE procedure, due in large part to the much 

smaller variance.  In fact, the variance in both cases is 

the dominating factor as the bias is negligible after 200 

periods. 

As one further illustration of the greater sample 

variance of R, reorder level for the (100,10) case was esti- 

mated using 1000 periods of demand observations and the ex- 

periment repeated 100 times.  A graph of the MLE and smoothing 
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TABLE VII 

THEORETICAL AND SAMPLE MEAN SQUARED 

ERROR IN PERIOD 200 

Theoretical Mean  Squ ared Error 

Risk MLE 

Smoothing with I ndicate id  a 

0.10 0.15        0.20 0.25 0.30 0.35 0.40 

0.01 1.87 1  21.79 
i 

33.74     4 6.50 60.10 74.60 90.05 106.56 

0.05 1.13 13.50 20.89     28.75 37.12 46.04 55.53 65.65 

0.10 0.91 10.2 7 15.87     21.82 2 8.16 34.89 42.05 4 9,69 

0.25 0.62 6.65 10.26     14.08 18.13 22.43 26.99 31.85 

0.50 0.50 5.26 8.11     11.11 14.29 17.65 21.21 2 5.00 

Average  Sample Mean  Squared Error over  100  Replications 

Risk MLE 

Smoothing with I idicated  a 

0.10 0.15       0.20 0.25 0.30 0.35 0.40 

0.01 1.64 22.94 35.64     50.55 67.26 84.72 102.28 119.63 

0.05 1.01 14.06 22.29     32.01 42.99 54.56 66.24 77.84 

0.10 0.78 10.57 17.01     24.64 33.25 42.37 51.60 60.82 

0.25 0.53 6.62 10.98     16.10 21.82 27.87 34.04 40.24 

0.50 0.47 4.99 8.37     12.16 16.21 20.40 24.66 28.95 

estimates of reorder level over the 100 replications is dis- 

played in Fig. 1.  The theoretical reorder level for a risk 

of 0.05 is 116.45. Although the average values of R and R 

are not significantly different, the difference in variabil- 

ity is quite obvious.  In fact, even after the 1000 periods 

the sample standard deviation of R is 5.654, while that of 

R is but 1.00 7.  In view of many other experiments of this 
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type that were conducted, it appears that for a risk level of 

0.05 and a -  0.2, a lower bound on the standard deviation of 

R is approximately a/2.     No results to that effect have been 

determined analytically so the remark is included here only 

as a matter of interest. 

As a final example of results under this particular 

case, a comparison of the sample risks obtained by both meth- 

ods of estimation was made.  Again with y - 100 and a = 10 

demand was generated and the reorder level estimated after 

various sampling intervals.  This time the experiment was 

repeated 500 times and the risks over the 500 replications 

in the indicated periods are presented in Table VIII.  In 

several of the cases the results do not d.i ffer significantly 

in one way or the other, but generally both methods tend to 

yield higher risk than desired.  In the case of smoothing 

this is due to the variability of the estimate, and in the 

case of M.L'.Z   the higher risk may be attributed to the tendency 

to underestimate reorder level.  The risk obtained by smooth- 

ing was greater than that obtained by MLE in the majority of 

instances. 

2.  Linear Model 

In this section a study similar to that of the previ- 

ous section is presented for the linear model.  The exact 

results of the maximum likelihood development of Section II 

are used for comparison with the exponentially smoothed esti- 

mates.  The constant mean and zero Y-intercept cases ara pre- 

sented as special cases of the general linear model. 

44 



TABLE VIII 

SAMPLE RISK OBTAINED BY SMOOTHING 

AND SIMPLIFIED MLE PROCEDURE 

Desired Esti- Numb or oi Periods 

Risk mator 10 20 50 100  150 200 

0.01 R .044 .016 .018 .014 .006 .010 
R .026 .024 .036 .0 30 .014 .032 

0.05 R .0 78 .076 ,062 .064 .046 .060 
R .088 .0 78 .,0 70 .096 .064 .076 

0.10 R .134 .132 .120 .134 .086 .108 
R .120 .120 .114 .142 .110 .128 

0.25 
A 

R .272 .270 .248 .246 .224 .250 
R .264 .284 .258 .272 .256 .250 

0.5C R .514 .480 .504 .494 .500 .482 
R .532 .4 80 .496 .474 .488 .472 

The first simulation experiment performed in this 

section was to generate random demand according to the linear 

model given by 

2 
y = a + bx + e ,  where  e ^ NCO,!? ) 

for various values of a, b, and a.  The maximum likelihood 

and smoothing estimates of the parameters in the model were 

calculated after 100 periods of demand observation and the 

results averaged over 100 replications.  The estimate .long 

with the sample standard deviation of the estimates are dis- 

played in Table IX. As indicated in Section III the smooth- 

ing method does not estimate the value of the intercept 

separately but rather the point on the theoretical line at 

each period.  For purposes of the Table only, a. was 
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b.x from the average smoothed estimate of the point on the 

line for ecich period of interest, and thus no sample standard 

deviation of a was obtained.  The results of Table IX are 

TABLE; IX 

ESTIMATE OF PARAMETERS 

£N A LINEAR MODEL AFTER 200 PERIODS 

Parameters MLE Smoothing 

(a,b,a) 
Sample 
Averacje 

Sample 
Standard 
Deviation 

Sample 
Average 

Sample 
Standard 
Deviation 

(5,.1,1) 

a 
b 
0 

4.84 
.10 
.93 

.095 

.025 

.077 

5.23 
.10 

1.04 

* 

.050 

.294 

(50,.2,3) 

a 
b 
a 

50.57 
.20 

2.85 

.378 

.099 

.200 

50.64 
.19 

3.13 

* 

.151 

.882 

(100,.3,4) 

a 
b 
a 

100.24 
.30 

3.96 

.698 

.117 

.347 

100.87 
.30 

4.17 

* 

.201 
1.176 

(500,.5,5) 

a 
b 
a 

499.68 
.50 

4.96 

.540 

.249 

.377 

501.05 
.50 

5.21 

* 

.252 
1.470 

* See Narrative 

not very revealing except that once again the smoothed esti- 

mates are more variable than the corresponding maximum like- 

lihood estimates of the parameters.  More interesting was 
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the facJ that f or many experi 1cnts using 

seen to b e inde pendent of the particular parameters in the 

model, a nd appear to depend only upon the numb e r o f observa­

tions u p on which the estimates are based. For this reas on 

it was d e cid e d to again di rect atten tion to only a couple of 

parameter va l ues . 

Fo1· the sake o f br vity only a f ew of the expe riment.s 

conducted nre reported he re , in tha t the r esults are much the 

same as in the previous e ctions . Not much insight could be 

gained fr01n attempti:;y to a naly ze the sample estimates of the 

parameters , It appe are d mo r e b e neficial t o examine the sampl e 

risks obta ine d by the two me thod s c f estimation. Table X 

pre s e nts t~ e s amp l e ri sJ· s obtaine d after th indicate d num­

ber of periods ove r 100 0 r ep lica t ion s . It should be pointed 

out that the entries in the Ta b le a re not the fraction :>f 

time the demand exc eeded the r eorde r leve l estimates through 

50 periods for example , as was the case in the results pre­

sented by Ze hna and Ornek , but rather the p e rcentage of times 

the actual demand excee ded the reorder. l eve l in the (p+l)st 

p e riod ove r the 1000 sample s of the estima t e s. The r easons 

for proceeding in this manner were discussed in the introduc­

tion. For this case the parameters (a,b,a) are (50,2,5). 

Again the b es t possible initial values were used for smooth­

ing, namely 

s
0

(Y) =a - (a/~)b , and S~(Y) =a- 2(a/8)b 
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TABLE X 

LINEAR MODEL - ACTUAL RISK OBTAINED 

IN 1000 REPLICATIONS (a=50r b=2, o-5) 

Desired 

Risk 

5 

Number   of Periods 

10 20 50 100        i 
/\ ~ /\                               — /s. ~ /\                           ~ 
R R R               R R R R             R 

0.01 .007 .036 .014        .027 .011 .024 .008      .0 29 

0.05 .0 45 .103 .045        .070 .049 .078 .053      .068 

1    0.10 .092 .155 .09 8       .12 4 .103 .137 .110      .114 

j    0.25 .233 .306 .256        .264 .249 .274 .256      .249 

\    0.50 .482 .516 .521        .51!) .510 .536 .505      .517 

The results here are noteworthy in that the sample risk ob- 

tained by the smoothed estimates exceeded that of MLE in 

almost every case, in the sense that the smoothing risk dif- 

fered more in one way or the other from the desired risk than 

did the risk obtained by MLE.  It is felt that a sample size 

of 1000 for each period makes the results fairly significant, 

but once again it must be recognize. 1 that the results are 

sample values from simulation and should be judged accordingly. 

Since the simplified maximum likelihood procedure 

yielded good results in the constant mean case, it was de- 

cided to try a similar version for the linear case. To ap- 

ply the methods of Section II exactly, and thereby be able 

to make exact probability statements about risk, the value of 
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the t-distribution percentiJ.e mus t be changed with eac h addi­

tional per i od of d mand observation . As n , the total n umber 

of period s, becomes l arge, howe ver , the value o f the t -

distribut i on p rce nti l es approach tho se o f a standard normal 

distribut i on , indicate d b y K throughout t h is t hesis . In v iew 

of this, i ~ was decided t o d etermine what e f fect r e pla c ing 

the varyincJ v a l ues ·of t with the corre sponding l i mi ting val ·· 

u e of K, a.Lways smaller, would have on the samp l e risk ob -

tained by 11LE . Th result i ng estimate is referr e d to a s th e 

K-version in thi s repo r t. In Tab l e XI t h i s h as b een done f o r 

the g e neral l inear case wi t h parameter t r i p l e (10 0 ,2, 10). 

The Table 0n t r i e s are t h e ave rage reorder lev e l estimate , 

samp l e s t andard dcv1.a ti on o f the estimates ove r 200 r ep l ica -

tions, and the sample r i sk obtained by t he i ndi c a t e d method 

o f e stimation . The de s ire d risk lev els o f 0.2 5 a nd 0.50 

have b een omi t ted p r imar ily f o r th e sake of b revity once 

again, but a lso b e c ause the va l ue s are p roba b ly too l a r ge for 

any pra ct i c a l applica tion. Tab l e s XI I a nd XII I pre s e n t the 

same in f o rmation fo r the s pecial cases (100,0,10) and 

(0,2,10) r e spect ive ly. 

The results of these final t hree tables for this 

section are consistent with the earlie r r e sults. The sample 

standard deviation of the smoot hed estimate s is relative ly 

constant over the number of pe riods and the corresponding 

values for both versions of MLE, although consistently large r 

in the e arly periods, decrease over time and are roughly a 

third as large as the deviation of the corresponding s moo he d 

estimates after 100 periods. The maximum likelihood risk 
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TABLE   XI 

REORDER  LEVEL,   SAMPLE   STANDARD  DEVIATION   OF  ESTIMATOR, 

AND  SAMPLE   RISK   OVER   200   REPLICATIONS.      LINEAR   (100,2,10) 

Desired 
Risk      ! 

Esti-       ' 
ma tor 

Number of  Periods 
10                             50                           100 

0.01 R  - T 

R   -  K 

R 

156.63,10.62       227.41,3.77       326.11,2.62   ' 
.02                             .01                           .01          | 

150.67,9.59          226.59,3.72        325.71,2.60   1 
.02                             .01                           .01 

145.83,8.54          228.11,8.58        327.60,8.65 
.03                             .01                           .02          i 

0.05 R   -   T 

F.   -   K 

R 

144.64,8.67         2.19.74,3.34        318.87,2.31   1 
.04                             .05                           .04          | 

142.36,8.36          219.42,3.3?        318.70,2.30 
.05                             .06                           .05          | 

138.92,7.26         220.51,7.24        319.98,7.16 
.08                             .07                           .06          j 

0.10 
Z1. 

R   -   T 

R   -  K 

R 

139.19,7.97         215.81,3.16       315.07,2.18 
.08                             .08                           •13         ! 

137.96,7.84         215.63,3.15        314.99,2.18   | 
.09                              .09                            .13         | 

135.27,6.67         216.48,6.66        315.94,6.49   | 
.13                             ..11                           .12          | 

50 



TABLE XII 

REORDER LEVEL, SAMPLE STANDARD DEVIATION OF ESTIMATOR, 

AND SAMPLE RISK OVER 200 REPLICATIONS.  LINEAR (100,0,10) 

Desired Esti- N umb e r  o f  Peri ods 
Risk mator 

10 50 100                j 

0.01 R   -   T 129 .78,7.29 124.48,2.76 12 3.9 3,1.90          1 
.01 .01 .01                 \ 

R   -  K 12 4.61,6.28 12 3.59,2.69 12 3.5 4,1.87          1 
.01 .01 .01      '          \ 

R 121.85,6.71 124.16,6.98 12    .73,6.85          | 
.01 .03 .02                 1 

D. 05 R   -   T 119. 37,.r .32 117.04,2.14 116.78,1.48         1 
.04 .05 .04                 | 

R   -   K 117.39,4.97 116.74,2.11 116.64,1.47         I 
.05 .05 .04                 s 

R 115.4 8,5.36 117.15,5.44 116.71,5.36          \ 
.10 .08 .07                | 

p.10 R   -   T 114.62,4.51 113.23,1.85 113.06,1.29          j 
.09 .11 .09                | 

A 

R  -   K 113.56,4.35 113.06,1.84 112.98,1.28         i 
.13 .11 .10                 \ 

R 112.10,4.71 113.43,4.72 112.99,4.65         | 
.13 .13 .11 
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TABLE   XIII 

REORDER  LEVEL,    SAMPLE   STANDARD   DEVIATION   OF  ESTIMATOR, 

AND  SAMPLE  RISK  OVER  200   REPLICATIONS.      LINEAR   (0,2,10) 

Desired 
Risk 

Esti- 
mator 

Number  of periods 

10 50 100 

0.01 R -   T 54.62,9.25 127.04,3.42 226.08,2.39       | 
.01 .01 .01                \ 

A 

R -   K 48.12,8.10 125.96,3.34 225.52,2.36       j 
.02 .02 .01      •          | 

R 47.02,8.80 126.40,7.11 225.80,6.93        1 
.0.1 .03 .01                  \ 

0.05 R -   T 43.28,7.43 119.4 6,2.9 3 218.88,2.06       | 
.04 .05 .04                 ! 

R -   K 4 0.79,6.9 8 118.97,2.90 218.61,2.05        ! 
.06 .05 .04                 | 

R 40.74,7.32 119.32,5.59 218.76,5.44        | 
.06 .08 .07                 | 

0.10 
A 

R -  T 38.11,6.74 115.5 8,2.72 215.11,1.92       j 
.08 .10 .11                 j 

R -  K 36.90,6.46 115.27,2.70 214.95,1.92       i 
.09 .10 .13                 | 

R 37.09,6.61 115.57,4.88 215.03,4.73       i 
.10 .13 .11                 | 
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using the exeict t factors is never larger than the risk 

when the corresponding values of K are used.  On the basis 

of these results, it would be difficult to state that the 

modified K-version of maximum likelihood estimation of re- 

order level is significantly poorer than the actual estimator 

using t.  In fact, in the earlier periods the sample standard 

deviation of the K-version is smaller than that of the 

actual MLE estimation technique.  This of course is due to 

the smaller weight placed upon the estimate of a  in the 

earlier periods. 
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^  BAYES PROCEDURES 

At timos the manager of a supply system may have "a 

priori" degrees of belief about the values of the unknown 

parameters in the demand distribution assumed for a partic- 

ular model.  In other words, he may subjectively feel, prior 

to actually observing any demand data, that certain values of 

the unknown parameters in the model are more likely than 

others.  Hs may further wish to include his subjective feel- 

ings along with observed values of the random demand to make 

estimates of the unknown parameters.  Bayesian methods may 

accomplish the above, combining the real data and subjective 

feelings into estimates which actually minimize the decisicn 

maker's risk as defined in a very special way. 

The subjective probabilities which measure the degree of 

belief discussed above determine a prior distribution for the 

parameters.  The sample values of the observed demand are 

used with the prior distribution to determine a posterior 

distribution which is then used in order to obtain an esti- 

mate of the unknown parameters.  The choice of a prior distri- 

bution for the unknown parameters is certainly arbitrary and 

has lead to general controversy as to the appropriateness and 

value of Bayesian methods.  It is not much more arbitrary, 

however, than the selection of initial values for use with 

exponential smoothing estimation techniques.  These initial 

values were shown in Section IV to effect the estimate for as 

many as 100 periods, depending upon the value of the smoothing 
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constant, another aspect of smoothing which is certainly open 

to subjectivity.  Without attempting to discuss the appropri- 

ateness of Bayesian methods for the demand forecasting prob- 

lem at hand, and certainly without recommending its use 

without further examination, the concept is developed in this 

section as it applies to the model Df normal demand with con- 

stant mean.  The Bayes estimation results are then compared 

to exponential smoothing in a vtiricLy of situations. 

A.  BAYES ESTIMATION 

One of the many limitations of Bayesian procedures is the 

extreme difficulty of obtaining joint prior and posterior 

distributions for estimating more than a single parameter in 

a model.  However unrealistic it may appear, it will be as- 

sumed here that demand is normally distributed with mean 9 

2 and known variance a .  This might even be plausible in cases 

where the demand for various items of supply demonstrates 

about the same degree of variability but fluctuates about 

different and unknown mean values.  In any case, it is as- 

sumed that 

--='—2-(y-0)2 

f(y|o) = —i~e2a 

where f(y|6) indicates that the distribution of Y is condi- 

tioned on the value of the parameter 6.  It can be shown 

[Ref. 8] that if the prior distribution assumed for 6 is 

2 N(e ,a ) ,   then the posterior distribution is also normal 
o o ' 

with mean 
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and variance 

2 
cr Y + 

0 

2 
cro 

(5-1) 

(5-2. 

Thus the me n of the po terior d i strib ut i on is a line ar com-

bination of th ob served demand and the m a n of the prior 

distributioa e For e stimat i on purpo s s it can b e shmvn 
0 

that th me 3n of the pos t e rior d i st ribut i on as an estimate 

of the param ter 8 minimizes the lo~s as measure d by squared 

error. That is, if e • i s an timat.e of 8 a nd the condi tion ~ l 

and pr i or distribut" nn . a r e as spec if ied a bove, th e n (8 - e•, 2 

is mi imize d by choos i n g 8 ' equal to th e mean of the posterior 

distributicn. 

It should be no ted that in Eq . (5-l) the we ight 

cr2 

given to 

the obse rvc.. tion in th e line ar combination is 0 so that 
cr2 + cr2 

0 

if the decision maker is fairly certain that 8
0 

is the true 

value of the parameter e or if he wishes to bias the estimate 

in favor of his prior feeling, he should choose a small vari-

ance for the prior. If the exact value of 6 is less certain 

however, the variance of the prior should be relatively large 

2 compared to 6 • In this way, most of the weight in the re-

sulting estimate will be placed on the observed demand. 
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B,  BAYES FORECAST MODEL 

The Bayes estimate of mean demand developed in the pre- 

ceding section may be used to foreccSt demand and set an ap- 

propriate reorder level to obtain ar approximate risk in a 

manner analogous to the procedures used in Section II-D.  The 
2 

demand in period one is observed and assuming a N(G ,O   )   prior 

distribution on 6/ a posterior distribution of e given y, may 

be determined.  As previously derived, the posterior is normal 

with mean 

2   .  2 
c 

9* = 
V;l + ^ Oo 

and variance 

a-,   = 

2    .      2 
a0 + a 

2     2 
ao a 

'1 2,2* 
a0 +  a 

The  estimate  of  reorder  level   then  is  given by 

RJ =  Oj  +  KO 

Since information is gained by the observation y, , the poste- 

rior distribution determined in period one is used as the prior 

distribution for period two.  After observing y2 , a new poste- 

rior distribution for 0 is determined.  It is again normal 

with mean 

2   .  2, 
fly2 O-iV-y   + 0 ÖS 

and variance 

ü2 2,2 
a-j^ + a 

2   2 
a,a 
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( 
Upon substitution for G* and a  the above becomes 

^(y-L+yJ-t a2o aV 
62 ^s . A and a2 = ;rT—rr • 2a H a 

o 2a ^• a' o 

Continuing in this manner it may be shown by induction that 

after n periods the estimate and va.:iance are 

and 

0  n      - 
6*«, o2-     I y. + a20 

o .^1
i1     ( 

2 2 
2   aoa an = —r-    ■ 

n üO + a 

It follows that 

E(0*) = n 

na2 0 + a20 
o o 
TT T' 

n a0 + o 

lim E(0*) = 0 n 

and lim a = 0 
ir 

n 

The reorder level set for the (n+l)st period is given by 

R* = 0* + Ka 
n   n 

where K is the (l-a)th percentile of the N(0,1) distribution. 

C.  SELECTION OF PARAMETERS FOR THE PRIOR—SIMULATION RESULTS 

The results of Bayes estimation depend strongly in most 

cases upon the choice of the parameters in the prior distribu- 

2    2. tion.  The ratio of a to a determines the weight given to 

the observed demand relative to the weight placed upon the 

"a priori" best guess of mean demand 0 .  To determine exactly 

how much the estimate of mean demand is effected by various 

2 
combinations of 0 and a . a limited amount of simulation was o     o 
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1 
conducted.  For the constant mean case with  0 = 100 and 

a = 10, random demand was generated for 100 periods.  The 

Bayes estimate of 6 was computed for combinations of 6 
o 0, 

0, 6/2, 8/3, Ö/4, 0/5, and a^ = a, j2/2, a2/3, a2/4, ö2/5, 

2    2    2    P 
2a , 3a , 4a , 5a" .  The results of this investigation are 

summarized in Table XJV, the entries being the Bayes estimates 

of B after 5 and 100 periods of demand observation. Obviously 

the closer 9 is to the true value of 0 the better the result- 

ing estimate is.  It should be noted however, that for this 

2  2 ratio of a~/a  sufficiently large, the Bayes estimate ap- 

proaches the actual value of 0 rapidly.  For example, in the 

above case with 0  =0 and a    -   5a     the Bayes estimate of 
o o ■* 

6 was 96.6 after just 5 periods and 99.5 at the end of 50 

periods. 

From the detailed data obtained it appeared that the Bayes 

estimate was fairly stable especially for a relatively good 

selection of 0 .  For this reason it was decided to compare 

the Bayes estimates with the corresponding exponentially smo- 
2 

othed estimate when a is known.  The results of this compar- 

ison are displayed in Table XV.  For purposes of comparison 

the initial guess of mean demand was set at zero for both 

estimation techniques, that is, S (Y) = 0 and 0 =0, and ran- 

dom demand generated with 0 = 100 and a = 10.  The mean demand 

was estimated using each method with various choices of the 

observed value weighting factors, a in the case of smoothing, 
9 

and a ■  for the Bayesian method.  The entries in the Table re- 
veal that the Bayesian approach yields better estimates than 

smoothing in the early periods even for a relatively large 
2     2 smoothing constant.  A choice of a  >. 2a  resulted in better 

■ 
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TABLE XV 

AVERAGE ESTIMATE OF MEAN DEMAND 

BY BAYES AND SMOOTHING 

le = 100 6  = 0 

a « 10 So(Y) - 0 Numb or of Pe riods 

Estimator Parameter 
Values 5 10 15 50 100  l 

2 a0«a 83.7 91.0 9 3.7 9 7.9 99.1 

2a2 91.3 95.4 96.8 98.8 99.5 \ 
BAYES 

3a2 94.1 9G.9 9 7.8 99.2 99.7 1 

4a2 95.6 97.7 98.3 99.3 99.8 | 

5a2 96.6 98.2 9 8.7 99.4 99.8 i 

a = 0.1 41.1 65.1 79.3 99.2 100.4 

0.2 67.3 89.1 96.4 99.8 100.6 1 
SMOOTHING 

0.3 83.2 96.9 99.5 99.9 100.8 | 

0.4 92.1 99.0 100.0 99.9 100.9 | 

0.5 96.5 99.5 100.3 99.9 100.9  i 

estimates by the Bayes technique through 15 periods than the 

smoothing estimator with the usual smoothing constant 0.20. 

To determine the effect of the prior parameters on the 

sample risk obtained by the forecasting techniques the same 

model was used to generate demand for 100 periods and the 

experiment replicated 1000 times.  For the case where the 

prior estimates were the best possible, that is, S0{Y) = 6 

and 8 =6,  the results are presented in Table XVI. For 
o 
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iriouB  choices of weighting various  choices of weighting  factors,   the  desired risk was 

held constant  at 0.05.     The  results  are quite  remarkable. 

TABLE   XVI 

SAMPLE RISK OBTAINED BY BAYES 

AND SMOOTHING OVER 10 00 REPLICATIONS 

(GOOD INITIAL VALUES) 

e «= 100 0  =» 100 o 
a = 10 So(Y) = 100 Number of Pe riods 

Estimator Parameter 
Values 5 10 15 50 100 

2   „2 .066 .056 .057 .057 .055 

BAYES 
2o2 .069 .057 .058 .057 .055 

3o2 .072 .058 .058 .057 .055 

to2 .073 .059 .058 .057 .055 

5a2 .074 .059 .058 .057 .055 

a  = 0.1 .060 .051 .057 .057 .063 

0.2 .059 .061 .061 .061 .069 

SMOOTHING 
0.3 .066 .0 73 .069 .070 .079 

0.4 .073 .077 .079 .076 .083 

0.5 .082 .0 82 .083 .084 .091 

Except for a few cases the Bayes forecasting method provides 

a sample risk closer to the desired risk than the smoothing 

process.  Also noteworthy is the fact that the Bayes method 

again appears much more stable than smoothing.  This is in- 

deed the case as indicated by the sample standard deviation 
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in Table XVII. For only the early periods and for small 

TABLE XVII 

SAMPLE STANDARD DEVIATION OF BAYES 

AND SMOOTHING ESTIMATORS OF MEAN DEMAND 

e = 100 0  = 100 

ö =  10 
o 

S (Y) = 100 
Numbe. c of Pe riods 

Estimator Parameter 
Values 

5 10 15 50 100 

2    2 a  = a 
o 

3.95 3.26 2.84 1.95 1.69 

2a2 4.25 3.40 2.94 1.97 1.72 

BAYES 30 2 4.3G 3.41 2.94 1.9 6 1.73 

4cr 4.46 3.4 7 2.95 1.95 1.72 

5a2 4.48 3.4« 2.97 1.95 1.72 

a = 0.1 2.31 2.6 4 2.68 2.61 2.73 

0.2 3.41 3.68 3.63 3.60 3.65 
SMOOTHING 

0.3 4.30 4.51 4.40 4.49 4.44 

0.4 5.10 5.27 5.17 5.30 5.16 

0.5 5.96 6.03 5.90 6.06 5.88 

values of the smoothing constant does the smoothed estimate 

demonstrate a smaller variance than the corresponding Payesian 

estimate.  As more and more observations are made, the sample 

standard deviation of the Bayes estimate becomes smaller 

while the variance of the smoothed estimate remains about the 

same. 
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'rh{ s ame expe rim' nt was ' rep ted with 0 = 0 a nd S (Y) - 0 
0 0 

to de termine how quick l y the t wo focecasting methods could 

demonstrate s ens itivity to the actual data and obtain a sample 

risk clos t o the des ired r isk 0.05. In t his case also the 

experiment was repli cate d 1000 tir e s in orde r to obtain a 

degree o f significance in the r sults . The sample risks 

obtained b y both me thods are dis played in Table XVIII. The 

TABLE XVII I 

SAMPLE RISK OBTAINE D BY BAYES 

AND SMOOTHI NG OVER 1000 REPLICATIONS 

(POOR INITIAL VAL UES) 

e == 100 eo ::::. 0 

a = 10 S (Y) == 0 Number of Pe riods 
0 

Estimator Pa r ameter: 
5 10 15 50 Values 

2 2 .63 5 .294 .187 .079 ao == a 

2a 2 • 310 .159 .107 .068 

BAYES 3a 2 .211 .128 .090 .066 

4a 2 .16 B .109 • 0 84 .065 

sc/ .146 .097 .080 .065 

a = 0.1 1.000 .992 .737 .067 

0.2 • 99 - .390 .145 .061 

SMOOTHING 0.3 .761 .137 .080 .070 

0.4 .365 .088 • 080 .076 

0.5 .187 .084 .083 .084 
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sample stai1dard deviations of the es t i mato rs did not change 

appreciably f rom the previous c ase a nd are not p resen ted. 

The results are as expe cted. When a small value is chosen 

f or the . s moot h i ng constant the long t erm results are fairly 

accura te, but the results in the early per i ods are far from 

satis factory. If a larger value is cho&P.n for a the smoothed 

estimate adjusts much more rapidly but g i ves poorer results 

in the long run due to th increased varia nce. The Bayes 

estima tor ad j usts quite rapidly for o 2 = So 2 and the long 
0 

term r e sults for all value s te s t e d are f a irly accurate. 
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VI. 

Before summarizing the conclusions reached in this 

study and the r e conunendations \·7hich follow, it may be worth·­

while to present briefly a fe\-.7 of the conclusions reached b:r 

Zehna and rne k in similar studies [Re fs. 10, 11, and 6 ]. 

1. It is di fficult to judge exponential smoothing on a 

theoretica l basis due to a lack o f knowledge concerning the 

probability distributions of the s roothing estimators • . 

2. Many of the analytical r esults obtaine d by Brm-.1 n 

[Ref. 2] are asymptotica lly valid only although appli e d to 

the finite demand case. 

3. The sour c e of much of the cl ifficulty in determining 

the distributions of the smoothing estimators ic in the use 

of MAD as an estimate of variabili y. 

4. On the basis of simulation results the simplified l'~LE 

approach is to be preferred in those cases in which smoothing 

is presently employed by NavSup. 

A. CONCLUSIONS 

It has been pointed out numerous times throughout this 

thesis that the numerical results and comparisons made are 

based on computer simulation sample outcomes. However, the 

experimentation was conducted with great care taken in the 

handling of random numbers and sample size to assure a degree 

of significance in the results. The results of the various 

comparisons of MLE and exponential s~oothing are quite con­

sistent and reinforce the conclusions reached in the above 
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reference s. Without regre ssing to Lhe specific nume rical 

example s pres nted previously in th:' s thesis it can be con-

eluded that on the basis of t he analys is pe r formed in this 

study the smoothi ng estimators are 1nore variab le than any 

form of ma:>~imum likelihood estimation and prediction me thod 

tested in the line ar or constant me . n models. The source 

of most o f the variability i n the s :noothed estimn tes a ppears 

to b e in the HAD estimate of the variance in the demand 

distribution. This r esults in f ar less cons istent ris ks ob-

taine d by Hmoothing than the comparable risks obtaine d usin9 

MLE. As for the ease or difficulty of computation using th E:! 

various methods, the exact t1LE computations are certainly 

more involved but probably not to the extent of resulting in 

significant ly increased c omputation time . In any case the 

trade -off b eb.reen computational accuracy and computation time 

is a manag~ria l decision. In the cons tant mean model the 

simplified MLE technique is certainly not more difficult to 

handle computationally than smoothing and has been shown to 

produce significantly more stable and accurate results. The 

Bayesian approach, while not immediately applicable without 

further study, appears to offer a procedure which, although 

subjective in nature, has a sounder theoretical basis than 

does smoothing. On the basis of simulation the Bayes method 

has been shown to produce good estimates, be relatively flex­

ible and sensitive, and demonstrate less variability than 

exponential smoothing. 

67 



B. RE(O IE DATIONS 

For the reasonsdiscussed above :i. t is strongly recommended 

that NavSup or o t her agenc ies u s ing s moothing for demand for e -

casting unc'er the assumptions o f the~ mode ls discus sed in th is 

the s is givE~ s e rious consideration to at l eas t testing other 

fore casting techniques und r a v ar i =ty of circumstances to 

compare and contrast the r~sults . rhis testing should invol.ve 

the us e o f actual historica l d emand data so the res ults ob­

taine d by i:he alte rnate for c a sting techniques can be com­

pared in retrospe ct with the for e casting results which were 

obtained b :r me ans of e xponential smoothing. Be cause of its 

intuitive a p peal and com utational simplicity exponential 

smoothing shou ld b e inves tigated further with prime interest 

in d iscovering a method to repla c e MAD as an e stimate of 

variance . If this can b e accomplished it ma y turn out that 

smoothing is in some r e s pects an optimal method of forecast ·­

ing. It is also recomme nded that further study b e made of 

the Bayesia n approach developed in this thesis to determine 

its applicability in actual situations. It would be reward­

ing to develop a Bayesian procedure which could be used to 

jointly estimate the mean and variance of the demand distri­

bution and yet be relatively simple to apply. In cases such 

as those involving a constant proportionality between the 

mean and variance of the underlying distribution it is spec­

ulated that an ad hoc procedure could be developed that would 

involve an "a priori" estimate of the variance and then, after 

data are observed, the use of the posterior distribution to 

estimate the variance as a function of the posterior mean. 
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Final l i t . is r e com.i1lend e d that an investigati on be mad e into 

the use o f smoothing , 1'-iLE , Bayesia n m t hods, or othe r f o re -

casting a p p roa c h es in the case of a time d epend e nt me an wheL 

demand i s normally d istribute d but e a n d emand i s subject to 

pe riodic incre ase s or decreases . In such case s the est i -

mating procedure must not only b e able to yield accurate 

estimate s but also be able to detect the changes in the me an 

of the und~rlying dema n d dist ribut i o n and adjust the fore­

casts accor dingly [Refs. 3, 7, and 9]. 
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APPENDIX A 

IDENTITIES US ED IN MLE COHPUTAT I ONS 

As discussed in Section IV, one of the disadvantages 

often attribute d to maxi mum like lih ood estimation techniques 

applied to demand forecasting is the necessity of storing the 

historical account of d e mand data f or the entire period of 

interest . The following results show that the above as.ser-

tion is not valid and that only c ertain tota ls are required 

to b e stored much t.he sarr.e as with exponential smoothing. 

A. CONSTP. NT MEAN MODEL 

n 
but I <Y. -. 1 ~ 

~= 

so that sy = 

,.. 
a = y = 1 n 

I Y· n . 1 ~ 
~= 

n "' '> L (y . - a) .. 
i=l ~ 

n - 1 

A 2 n 
y)2 

n 2 
a) I <Y. I y. = - = 

i=1 ~ . 1 ~ 
~= 

n -2 = I .l • - n y 
i=1 ~ 

~ 2 -2 
t. y. - n Y 

. 1 ~ 
~= 

n - 1 
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wh i ch hO\vs that 
n n 

2 I y. and I y. a i.·e the on l y dat 
i=l J. i =l ]. 

be r e t a i ned f rom pe riod to per i od . 

B. iiNE. R MODEL - Y-INTERCEPT = 0 

but 

n 

b = 
I x.y. 

i =l J. J. 

s y•x 

n 2 2 x . 
i=l J. 

. 1 J. J. = 

A 2 
bx.) J. -l/ f (y . -

n - 1 

n A 2 I (y. - bx.) = 
i=l J. J. 

n 2 
I Y· . 1 J. J.= 

A n A 2 n 
2 2b I x.y . + b I x. 

i =l J. J. i=l J. 

n 2 
:::: ). yi 

i =l 

" n 
b ) x.y. 
i~l J. J. 

so that 

s y•x 

n 2 n 
I y. - B I x.y. .. J. 'll.J. J.=.i. J.= 

n - 1 

t hat must 

and the only additional information which must be stored is 

n 2 r y. • 
. 1 ~ 
~= 
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' C. GENERAL LINE~R CASE 

"' 
b = 

n 
L x.y. 

. 1 l. l. l. = 

n 2 
I X -

i=l 1 

- nx y 

-2 nx 

N 
-- D 

a = y 

s 
Y•X 

n A A 2 L (y. - a - b x . ) 
. 1 l. l. 1.= 

n - 2 

Now omitting the limits on the s~~s fo r simplicity 

A 

which becomGs after substituting fer a and combining terms 

But the quantities in parenthesis are just N and D respectively 

so noting that 

it follows that 

and 

n 
I <Y· . 1 1 1= 

b2 • D = b • N 

- a -
,., 2 
bx.) 

1 
= 

n 2 
\' y. 

. Ll J. 
1= 

n 2 -2 " l Y· - n y - bN 
. 1 1 1= 

n - 2 
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Note that D depends o n ly upon the n ·.unbe r of periods n and 

if the dem~nd is being fol lowed over successiv~ p e rions of 

time the x. 's are just the first n integers so that the value 
l. 

of D c a n bE~ stored for each period of time only and not 

calcula ted for each part icular ite m of supp ly. 
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