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Experimental Verification of Cavity-flow Wall Effects

and Correction Rules

Abstract

This report is intended as a companion to Report No. E-111A. 5,

"Wall Effects in Cavity Flows", by Wu, Whitney and Lin. Some simple

rules for the correction of wall effect are derived from that theoretical

study. Experiments designed to complement the theory and to inspect

the validity of the correction rules were then carried out in the high-speed

water tunnel of the Hydrodynamics Laboratory, California Institute of

Technology. The measurements on a series of fully cavitating wedges at

zero angle of attack suggested that of the theoretical models that due to

Riabouchinsky is superior. They also confirmed the accuracy of the

correction rule derived using that model and based on a measurement of

the minimum pressure along the tunnel wall.



1. Introduction

Wu, Whitney and Lin (1969) presented exact solutions for fully

cavitating flows in solid wall tunnels. In particular they computed the

non-lifting case of a wedge (half vertex angle, P ir, base width, I )

centered in a stream limited by straight walls, h apart. Having explored

the choked flow conditions in which the cavity is infinitely long and the

cavitation number, a, takes its minimum possible value, a P they then

treated the general case of finite cavities and came to the following basic

conclusions on the influence of the wall upon the drag on the headform:

(i) The drag is always lower than that in unbounded flow

at the same cavitation number, a. The difference is

termed the drag reduction. It is due to the somewhat

increased velocity, decreased pressure coefficient, Cp'
over the wetted surface of the body though the end

points, C = 1 at stagnation, C = -0 at separation
p p

are identical.

(ii) At the same a and K = I /h the percentage drag

reduction increases with decreasing wedge angle, imply-

ing that the wall effect is more significant for thinner

bodies in cavity flows.

(iii) The drag reduction is almost insensitive to a for a

given wedge angle, f, and X =I /h.

These effects were found with both the open-wake and Riabouchinsky

theoretical models. Effects (i) and (iii) were also found for the re-entrant

jet model for a flat plate { = "), although numerical results for other

wedge angles are as yet unavailable. A review of the previous theoretical

work is included in Wu, Whitney, Lin (1969) and will not be repeated here.

Morgan (1966) reviews recent experimental studies of the wall effect in

cavity flows. Investigations of "flow choking'and wall effect in nominally

axisymmetric flow have been reported by Barr (1966), Dobay (1967) and

Brennen (1969b) among others. Brennen also finds numerical solutions

to the theoretical Riabouchinsky flows around a sphere and a disc and

these furnish theoretical predictions of the wall effect in axisymmetric

flow.
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In another experimental endeavor, Meijer (1967) carried out a

study of the wall effect upon a *tat_-g hydrofoil with flaps (nominally

planar flow). He suggests an empirical method to correct for the influence

of the walls. This involves the use of the minimum pressure on the tunnel

wall, pb ' and the corresponding -,elocity, V, as reference rather than

the tunnel "free stream" pressure and velocity, p00 and U. The usual

cavitation number, a, and drag coefficient are

p0o-P c D
a P oo -P C D D (I )

CU D- I__ (1
- pUz D -~pU. IS

where pc is the cavity pressure, D the drag on the body, p the density

of the liquid and S the span. Meijer's corrected a", Ci are thusD
, =Pb -PC D()

l'l pV pv'IS

Meijer found that this provided a satisfactory wall correction rule

for his experiments. The correction rules suggested in this

report are similarly based on a measurement of the minimum

pressure pb. However both the theoretical predictions of Wu, Whitney

and Lin and the present experimental results indicate that Meijer's rule

generally over-corrects by an amount which can be quite large.

It is of interest to point out the different trends between the wall

effects in non-separated, non-cavitating flows and those in cavity flows.

In closed wind-tunnels, the lateral constraint and body thickness general-

ly result in an increase of flow velocity and hence dynamic pressure,

thus increasing lift, drag, and moment coefficients at a given angle of

attack (see, e.g., Pope (1954) ). In contrast, the general trend of the

wall effect on cavity flows in closed tunnels have been found to decrease

the drag and lift coefficients at prescribed cavitation number and in-

cidence. These opposite trends may seem at first glance puzzling,

particularly to those experienced with wind-tunnel testings. Actually,

the lateral constraint in the presence of a cavity still results in an in-

crease of flow velocity and hence a decrease of the pressure over the

wetted surface of the body, consequently decreasing all the forces if

referred to the same cavitation number. Furthermore, this increase in

flow velocity at the cavity boundary will cause the cavity pressure pc
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to be somewhat lower, and hence the cavitation number somewhat higher

than in an unbounded flow with the same free stream condition. These

two effects therefore reinforce each other such that the curve of drag co-

efficient, CD, against a lies below the corresponding curve for un-

bounded flow.

The first concern of the present report is the derivation of some

simple rules for the correction of cavity wall effect. The second is the

experimental verification of these rules and of the theoretical analyses

of Wu, Whitney and Lin. However, at the same time the opportunity is

taken to discuss some of the other problems and real fluid effects which

arise during cavitation experiments in high speed water tunnels. These

may be generally grouped as follows:

(i) Viscous effects due to the boundary layer on the

model being tested.

(ii) Viscous and other effects due to the boundary

layer on the tunnel walls including production of a

longitudinal pressure gradient and acceleration and

the possible appearance of secondary flows.

(iii) The necessity of determining the cavity pressure,

PC; effects which cause this to differ from pV, the

vapor pressure.

(iv) The determination of a hypothetical "free stream"

pressure, p.0, equal to the remote pressure were the

tunnel infinitely long.

(v) Limitations on the range of cavitation number which

can be satisfactorily covered including the effects of

"flow choking. "

(vi) Effects due to actual cavity closure. These include

the unsteady, turbulent nature of the flow in this region,

the cavity filling effect of the re-entrant jet (especially

when this impinges on the rear of the headform) and the

viscous, turbulent wake behind the cavity.

Some discussion on these is included at the appropriate point in the sections
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which follow.

2. Wall Correction Formulae

In view of the fact that the ratio X -I /h is usually small in experi-

mental practice, an asymptotic representation, for X small, of the exact

solutions of Wu, Whitney, Lin (1969) can serve useful purposes for evaluat-

ing the wall effects and their corrections. The analysis of the asymptotic

expansions is less complicated for symmetric wedges and will be carried

out for two different flow models.

For the reader's convenience, expressions utilized in the deriva-

tions will be reproduced from Wu, Whitney, Lin (1969).

A. The Open-Wake Model

For this model, the drag coefficient is given by

CD(U(c,X) X1PUYVV (3)

where
1

u U- )• (4)

is the upstream velocity and V is the downstream velocity. The cavity

wall velocity has been normalized to unity. V depends on a and X

through the implicit relation

X= U[F(U) - F(V)] , (5)

where
o {+(1',)}•.' dt• (-

F (U) sin J + U] dt (6)
Y( [ )a(U)]

and a(U) = Z[ U -UqZ z•1 (7-

In (6) and (7), wir is the half-angle of the wedge.

For fixed a (hence U), the unbounded flow limit (X =0) of the

drag coefficient is found by letting V -U in (3) and (5), giving upon

using l'Hospitol's rule



-5-

CD(a, 0 ) =-_U

If this equation is solved for F'(U), and integrated from U to V,

an alternate expression for X is obtained, using again (5)

x UV a u)(1+a(u).) du (8)C D(a (u), 0)

where a(u) = u - 1. For a given wedge angle, (8) determines V

implicitly as a function of ý and X.

We next seek a partial differential equation for CD(a, X ). Partial

differentiation of (3) and (8) with respect to a and X and elimination of

terms involving V gives

8CD (a, XC D (a,X

2 CD(a,0) BCa +[ a CD(O CD (a,5)

= [CD(a, 0)-CD(a,X)] + C- C(aO)CD(a, X

In the limit as X - 0, this equation becomes

aCD(a O) (1 +U) OCD a, 1 C (a,0) , (9)
+ - C(aO C? (9)

or to the order of accuracy, O(X), we also have

8C D(G X ) 0) a C D (a. X ) I(10)
+ C, (CX) (1 0)

For fixed a, (10) gives an estimate of the dependence of CD on

X, namely 8C OX; however, both C and BC /8a must be known.
dC18 btCD D

For experimental applications, the latter quantity would require estimat-

ing a derivative from experimental data, which can be rather inaccurate.

A more useful result follows by integrating (10) from a to a' < a,

corresponding to X = 0(a-a' = O(X) ), along the mathematical characteristics

da 1+_ dCD CD(a, )

dg = )CD(cr'k) , a I +a
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and yields

C D(a,, O) 1+(l''"

where

a =a -(•-)CD(ax)x + O(\Z) (12)

This two-way correction rule takes a measured drag coefficient

CD(a,X ), in a tunnel of known X, and converts it by (11) and (12) to an

estimated drag coefficient CD((a', 0) in unbounded flow (X =0) at a dif-

ferent cavitation number, a', given by (12). An example of the use of

this rule in estimating unbounded drag coefficients from theoretically

calculated data, CD(a,X), is shown in Fig. 1 for Pw = 150. The agree-

ment of predicted estimates with calculated values of CD(a', 0) is found

to be excellent for all angles, with X up to 1/6 and a up to 1.

Another interesting consequence of Eq. (6) is that estimates of

C CD(a,X ) can be obtained if good approximations of CD(a, 0) are known.

For example, for wedges with P it> 30" it is known that

CD(a, 0) = Co(P )(lI+a) is a fairly good approximation as long as a < 1.
Substituting this approximation for CD(a, 0) into (8), we have

so that
C__o = Co(l+a) =CD(a' o)C D(a, X ) = C 1+a (.0

U&

by (3). Thus, there is no correction for wall effect if CD(a, 0) obeys the

linear relation exactly and it is reasonable to expect that the correction

is small if CD(a, 0) follows it only approximately. This is confirmed by

numerical calculations.

Another important case occurs for small angle wedges (• it < 1 5")

and a fairly large, in which case

CD(a, 0) = a

is a good approximation (see Figs. 7,8,9, Wu, Whitney, Lin (1969)). In
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this case, we find

CD(a, X ) CD(a, O) 1

which is in excellent agreeme nt with numerical evaluations of the exact

equations (3) - (7).

B. The Riabouchinsky Model

For this model, Wu, Whitney, Lin (1969) give

rI-(a, b)
CD(ao,) = (I+a) " (13)

and

X ZU (sinw)(b7z-Z)2 +(a, b) (14)
iT

where

I~ab) C l(l ) 1  d . (15)
kO (%Z +az)(OZ +bz )2

The parameters, a and b, are related to the upstream velocity, U,

and the maximum wall velocity, V. by (7) and

b = a(V) , (16)

respectively. In order to examine the rate-of-change of b as the

'tunnel spacing-ratio' X is varied, and the role played by the minimum

pressure Pb and the maximum velocity V on the wall, as was once

investigated by Meijer (1967) (see Eq. (2) ), we also introduce a new

cavitation number a" based on Pb and V as

= %P~'Ip' = V-9 -1I = a(V) ,(17)

where a(U) gives the conventional cavitation number

-a=a=a(U)=U -1 *(18)
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Th.o unbounded-flow limit X = 0 is reached as b - a, which impli,-s

V -•U and a" -ba. In order to estimate C for small X, we expand
D

CD(9,%) given by (13) .n Taylor series for ICT" -O(<< 1,

CD(a, ) CT(v,.)) a GD(aX) 7+ ....-a + 0O(a,,-a)z (9

b=a

Now, by (13), .o) and (17),

a DW(.XI X 1 (a,b) 1db dV
la'Ib=a I +(a, b) aV &= b=a

Since the functional dependence of all on b is the same as that of a on

a (see (7), (16). (17), (18)), we have

db dV dadU

b=a

Furthermore, f rom (15) it immediately follows

Id
-I (a,b) 1 d I(aa)

Ib=a! T *

Combi-,.ng these results, we have

a CD(aWX) -I d I-(aa))da d CD(a, O)

S 'T ' b=a " 9a I+(a,a) = '-- - - (20)

Upon substituting ,) in (19), the resulting equation can evidently be

written as

C D(a, ) C D(a 1O)
D+ O(XZ) (21)

where

'='a+ (a1 2 1a + (22)

and 9" is given by (17), which can either be calculated from (14)

and (16) or be obtained by actual measurement in experiments.

This correction rule has also been used to compare corrected
estimates of CD(al,O) with the numerical results of the exact
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solution CD(a, 0); the agreement is again excellent for wedges of all

angles with X < 1/6, a< 1. An example is shown in Fig. 1 for P r-= 15*.

Its application in experiments will be discussed in Sect. 5.

It is noteworthy that (21) is identical to (11); only a' is different

in these two theoretically c!erived wall-correction rules. To this end, we

ncte that a' in (1?) is known once a,,X, and CD(a,X) are measured,

whereas in (22), (17), ca" requires an additional measurement of either

V or Pb

Another point worthy of note is that although the significance of

a" has been explored earlier by Meijer (1967), its use in Meijer's em-

pirical rule leads to an over -correction of the wa'l effect on drag coefficient.

This is indicated in Fig. I for Pir =- 15". This is because in Meijer's

rule, al" takes the place of a', instead of a weighted contribution as

given by (22).

In the choked flow limit, V -• 1 and a" - 0 and (22) becomes

2

so that (21) is

CD(a, X ) CDl* a,0)
D +T (23)

1+Ta

SI... .This equation gives the choked flow drag coefficient if the unbounded drag

coefficient as a function of a is known, or visa versa. As an example of

the use of (23) we estimate the choked flow CD for Pi, = 150 in Fig. 1

and compare this with the computed value.

Finally, we observe that in these two sets of wall correction rules

the body configuration has become implicitly absorbed in the drag coefficient

as one of its argument (i. e. 0 D(•, X ;P ) ). In view of the result that these

correction rules are extremely accurate over the entire range of

P (0 < P < I), it is reasonable to expect that they are also valid for bodies

of arbitrary shape, at least for those with not too great curvatures of

their surface profiles.

3. Experimental Arrangements

Four wedges of vertex angle 2pir = 7° 90 150 and 30 (chord

= 6 in.) were tested in the high speed water tunnel at the California
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Institute of Technology, utilizing the 6 in. span, two dimensional work-

ing section (Kiceniuk (1964) ) whose normal height is 30 inches. However

by fitting the tunnel with inserts the 9* and 30* wedges were also run

with a wall spacing of 13.45 in. (see Fig. 2). The models were supported

in the center of the tunnel on a three component force balance for direct

measurement of total drag. At the conclusion of each set of experiments

the total drag forces on the fairing plate and wedge supports were measur-

ed by replacing that plate by a blank, supporting the wedge in the same

position but fastened to the opposite side-wall and measuring the drag

registered uander conditions identical to those of the main experiments.

Subtracting this tare drag from the original drag reading yielded a mea-

sure of the force on the wedge alone.

A working section reference pressure, pT' was measured at a

point in the center of the side-wall about 7 in. upstream of the leading

edge of the model using a water/mercury/air manometer (see next section).

The hypothetical 'free stream' velocity in the working section, U, was

inferred from the difference between PT and the pressure upstream of

the convergent section. A series of static pressure taps on the lower

wall (see Fig. 2) were connected to an inverted water manometer refer-

enced to for the purpose of determining the wall pressure distribu-

tion. Since some differences were observed even with no model instal-

led in the tunnel, values more representative of the effect of the model

were obtained by using these "clear tunnel" readings as datum.

All four wedges included a base pressure tapping used to measure

cavity pressure, pc' the technique employed being a familiar one

(Brennen (1969a) ). The pressure line is connected through a two way

push pull valve to an air supply adjusted so that the air flow keeps the

line free of liquid. Activating the valve cut off this supply and connect-

ed in an air/mercury/water manometer from which, following an

interval of a few seconds, the difference (pT-P) could be obtained.
Two of the wedges, the 9° and 30, were built up from the basic

model used by Meijer (1967) in order to utilize the static pressure tubes

distributed along one face of that model. Fifteen of these were connected

to a water/mercury manometer board referred to PT in order to obtain

wetted surface pressure distributions; bleeding of these lines before every

I I * 4
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reading was required to obtain reliable data.

For each model configuration data was obtained over a series of

cavitation numbers, a, at a few selected velocities, U. However, apart

from the limit imposed by flow choking (i. e. a > ac ), there were certain

other physical limitations upon the range of a which could be safely and

satisfactorily covered at a particular velocity. At higher velocities (35

to 50 ft/sec depending on model size) readings could be obtained only up

to a certain a, for above this either the drag exceed that measurable

by the balance (120 lbs) or the vibration of the whole structure became

excessive. At lower velocities (25 to 40 ft/sec depending on model size)

a minimum a was usually imposed by the fact that an excessive number

of vapor/air bilbbles appeared in the pressure lines when pT was less

than about 0.45 ft.of mercury. In the case of the reduced tunnel, vibration

of the inserts and oscillation of the flow around them was an added hazard.

In general, however, an acceptable range of a could be obtained by com-

bining the results at two velocities, one in the higher range, the other in

the lower.

4. Experimental Results

A recurring problem in water tunnel experiments arises in deter-

mining a hypothetical, "free stream" pressure corresponding to the remote

pressure, p., of potential flow calculations which assume the working

section to be infinitely long. In a tunnel of constant section a favorable

longitudinal pressure gradient is produced by boundary layer growth on

the walls. In the present tunnel this could be overcome by flairing the

side walls (Kiceniuk (1964)). Then the longitudinal pressure gradient

is given roughly by

plC 2 OS 4(S+h) D (24)

where 6D is some mean boundary layer displacement thickness, x

is the centerline distance and S(x) is the span or tunnel width.

Under normal operational conditions the boundary layer is

probably turbulent so that 8ND/ax may be given by 0.038(v/xTJ)1/5



though the effective origin of x is difficult to estimate. However both the
1/5

experiments of Kiceniuk (1964) and the above formula when, say, x is

of order 1 ft11 5 and U is between 30 and 50 ft/sec indicate that aC /ax
p

is roughly zero when 8S/ax is about 0. 003. Thus the flair is set at this

value. Nevertheless since pressures are to be measured on the model

itself it seems wise to locate the reference pressure tap as close to the

model as possible, yet far enough away for the influence of the pressure

field around the model to be negligible. The choice of a tap 7 in. from

the leading edge of the model (see Fig. 2) involved such compromises.

Theoretical estimates indicated that the pressure field influence was less

than AC = 0. 01 at that point. Further upstream the influence of thep

tunnel convergent section is felt; for example 6 in. further upstream, C
p

was of the order of 0. 03 higher.

It will be seen that of the theoretical models that of Riabouchinsky

yields results closest to the experimental measurements. To avoid con-

fusion by profusion comparison is made in most of the figures only with

that model, whilst comments on the other model will be included in the

text. Typical pressure distributions on the faces of the 90 and 300 wedges

are shown in Figs. 3,4,5 where s is measured along the wetted surface

from the leading edge and s = C at separation. These agree quite well

with the theory though two deviations are noteworthy: (i) the lower experi-

mental C close to the leading edge are probably due to a slight down-
p

ward inclination of the incident stream since small negative lifts were

also registered by the balance; (ii) near the trailing edge the experi-

mental C are slightly above the theory, especially when the flow is
p

close to being choked. This second effect may be partly due to the

presence of small air/vapor bubbles in the tubes registering these low

pressures though there may also be some contribution from the complex

boundary layer flow near separation.

The coefficients of drag are plotted in Figs. 6 and 7. Graphic

integration of the experimental pressure distributions yields results in

excellent agreement with the Riabouchinsky model theory. The direct

measurements, corrected for tare drag, showed a greater scatter and

the comparison is poorer. An estimate of the skin friction component

of this total drag was obtained using the Faulkner Skan solutions for the



-13-

boundary layer flow near the leading edge of a wedge. Then
3

2"2(n+l) A fA(o)Is)
(A Viscous (CU(

where n = f/(l-3), A represents the strength of the leading edge singular-

itywhichis estimated from the value of (IC) n near that point and

takes a value of about unity. In the conventional notation, f"(0) is a

known function of P available in tables of Faulkner Skan sol'tions. The

work of Ackerberg (1970) would indicate that the contribution of the rapid-

ly accelerating flow near the trailing edge is small in comparison. Equa-

tion (25) yields respective values of 0. 012 and 0. 006 for the 90 and 3C°

wedge experiments and these are included in the figures, with, as can be

seen, mixed results.

The more reliable data, namely the pressure integrated drag co-

efficients could also be compared with the results of the open-wake

theoretical model. However it is clear from the agreement with the

Riabouchinsky model and the difference between the two theoretical

models (Wu, Whitney and Lin (1969) ) that the experimental values will

lie significantly below the open-wake theory except close to the choked

condition where the theories virtually coincide in any case. The differ -

ence would be especially marked for small I /h at moderate to high a.

Comparison could also be made with the results of the linearized theory

of Cohen and Gilbert (1957). As expected the linearized theory yields

values of CD substantially greater than either the exact theory or the

experiments. This is exemplified in Fig. 1 where it is seen that the

linearized theoretical choked flow line is actually above the unbounded

flow line for a 30° wedge. The difference is less for wedges of smaller
'ir.

Sample wall pressure distributions, referenced to clear tunnel

values as mentioned in the last section, are presented in Fig. 8 for the

case of the 9° wedge. Note that the cavity wake causes the experimental

curves to asymptote to a non-zero C downstream of the cavity. ThusP
the actual curves correspond to a compromise on the Riabouchinsky model

theory in the direction of the open-wake model (the curves for which

are not shown but decrease monotonically toward a value C = -a). This
p

------
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deviation clearly causes a slight reduction of the minimum wall pressure

below the Riabouchinsky model value. This occurred consistently as can

be seen from Fig. 9 where the minimum wall pressures for all model

configurations are plotted against a. Nevertheless the agreement with

theory is satisfactory.

The pressure-integrated drag on the 9* and 30* wedges are cor-

rerted for wall effect using the relations (21), (22) and the experimental

values of minimum wall pressure. The results are shown with the

original points and the theoretical Riabouchinsky curves in Figs. 10 and

11. Clearly the results are very satisfactory since the rule collapses

the points for different I /h onto a single line very close to the unbounded

theoretical line. The only noticeable deviation is at low a where the

experimental points lie somewhat above that theoretical curve.

5. Concluding Remarks

The two basic conclusions to be drawn from the present work are

as follows:

(I) The experimental results agree very well with the

theory which employs the Riabouchinsky model. Agree-

ment with other models is less good.

(2) The rules for the correction of wall effect which are

based on the Riabouchinsky model and use the value of

the minimum pressure on the tunnel wall are found to be

eminently satisfactory. They may indeed be applicable

to a much wider variety of cavitating flow.
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