AD715502

(-

THE UNIVERSITY OF MICHIGAN

LTS
\ '."s

Memorandum)0

CONCOMP

THE CAMA OPERATING SYSTEM

L J Julyk

Reproduced by S ahatts : .
NATIONAL TECHNICAL -

INFORMATION SERVICE
Springtield,

Veo. 1213

BEST
AVAILABLE COPY

THE UNIVERSITY OF XI1CHIGAN

MNemorandum 30

The CMA Operating Systom

L. J. Julyk

CONCOMP: Research in Conversational Use of Computers
F. H. Westervelt, Project Director
ORA Project 07449

supported by:

ADVANCED RESEARCH PROJECTS AGENCY
DEPARTMENT OF DEFENSE
WASHINGTON, D.C.

CONTRACT NO. DA-49-083 OSA-3050
ARPA ORDER NO. 716

administered through

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

August 1970

ABSTRACT

The CAMA (Computer-Aided Mathematical Analysis)
operating system is a program which controls the operation
of an interactive processor. It is designed to operat in
the environment of a large central computer which polls
a small graphics terminal computer for user-input. The
CAMA system is designed to handle a number of different and
independent operations, and to perform operations in a
priority-based, multiply-queued environment. It is self-

expandable by the use of its macro facilities.

iii

TABLE OF CONTENTS
Paae
MSTMCT L] L] L] . L] . . L] . . L] . L] L] . . L] i i i

1. Introductijon,1
2. GlOSSBArY. . ¢« ¢« ¢ ¢ + o o o o o 4 o v 0 .2
3. Operation of the CAMA Sunervisor. 9
4. CAMA Commands « « « « o« & o = .13
5. Task-handling Routines.26

MFERENCES L] L] L] L] L] L] . L] L] L] . . L] 65

Fig.
Fig.
Fig.
"iqg.

Fig.

LIST OF FIGURES

Active Task Block. .

Pause Control Block (PCB)

Read Control Block (RCB)

Task Control Block (TCB)

Wwait Task Link (WTL)

vii

1. INTRODUCTION

The CAMA (Computer-aided Mathematical Analysis)a
operating system is a program which controls the operation
of an interactive processor. It is designed to operate in
the environment of a large central computer with a small
graphic terminal computer connected to it by means cf a
2000-baud telephone line. The CAMA system is designed to
handle a large number of different and independent operations
assigned to it until the user signels that he wants to do
something else. When this happens, the normal processing
operations are interrupted, the user generates priority
operations of his own, and the CAMA system returns to what-
ever it was doing before the user interrupted. A user-
generated interrupt is not processed immediately, but is
held in the terminal computer until the central computer
has completed its current operation, whereupon it processes
the interrupt.

The operating system in the central computer
operates in an asynchronous mode. That is, new tasks are
initiated not on a fixed time schedule, but on the comple-
tion of the currently executing task. The central computer
determines whether there is information waiting for it by
polling the terminal computer.

When executing many tasks, the central computer
polls the terminal computer after the completion of each task.
However when the gqueues are empty, the central computer sends

a message to the terminal computer which says in effect,

-1-

"Send me word if you want to do something.” That is, the
central computer no longer polls, but waits for the terminal
computer to send information.

The supervisor performs many functions for tne
user. It allows him to insert commands and have them
processed, and to enter various modes of operation, for
example, a mode for defining macros, a mode for operating
the interpreter, or a mode for defining various procedures
or tasks. The supervisor also handles program interrupts,
attention interrupts, and error messages from the central
computer, all the time allowing the user to remain operating
within the CAMA system without returning to the central
computer controlling system. It also allows the user to
run other programs such as the FORTRAN compiler or a user-
generated program while still under CAMA command control.
The supervisor dynamically loads and executes all programs
from disk storage. The user may then unload all of these

dynamically loaded programs by issuing the proper command.
2. GLOSSARY

Task

A task is a procedure which is executed according
to its position in a queue. When a task is completed the
control of the program returns to the CAMA supervisor to
determine which task should be executed next.

During the execution of a task other tasks may be
generated and put onto the queue. As soon as a task is put

on the queue, operation returns to the mother task.

Normal Task Procedure
1. Operating in To
2. Occurrence causes new task to he gencrated
3. lew task Tuel is put on queue
4. Operation returns to To
5. Tasks To through Tue) o€ executed (unless

priorities are established).

Wait Task

When a wait task is generated by the current
operating task and put on the queue, operation is returned
to the queueing system and not to the current task.
Wait "ask Procedure

1. Operating in To

2. Occurrence causes a wait task to be generated

3. The new task TN+1 is put on queue

4. Operation is returned to Task Tl

5. Tasks Tl through TN+1 are executed

6. Operation is then returned to To.
The purpose of a wait task is to take care of operations
which are necessary for the completion of the current
operating task TO' As an example, suppose a pack has a data
overflow while a store operation is taking place. The store
operation is task To, wait task TN+l is generated to exmand
the pack. The store operation is not continued until the

pack is expanded.

Quuus
A qurus in Lhe CARA sense is 3 series of tasks
¥aitinhg 1o be aceomplished.
Quoucs occur In pairs. There may be n pairs of
soucs. Lach palr connists of an active qusue and & reserve

jueue.,

Act ive queue

An active queue is the queve vhich is processed
tirst vhen a queue pair is referonced. It is alwvays
processed before a reserve queue in the pair, except when

the writer explicitly makes reference to the reserve gueuve.

Reserve Queue

In general, a reserve queue is executed only when
the active queue is exhausted. The tasks on the reserve
queue are usually of relatively little importance--garbage
collection, for example--which can be done when no pressing

activities are present.

Look Task

The look task is a special task operating in the
central computer which louvks to see if there is any informa-
tion in the terminal ocomputer. In effsct it polls the terminal
computer. The look task is executed after each task on the
task queue. It is suspended when a data ready task is sent
to the terminal computer. This occurs under two conditions:

1) 4if the panic flag has been set;

2) 1if the current gqueue pair runs down.

Queue Pair

A queve palr IS an active quoue and a reserve queue
Laken as & set., The reserve jqueue operates when the active

Gqueue has run down,

Data Ready Tank

A data ready task is a task for the terminal
computer. It is implemented either vhen the panic flag is
set or wvhen a queus pair runs down, and allowe the system
to operate in a read state (which is more economical) while

vaiting for data to be sent from the terminal computer.

Panic Plag
A panic flag is set by the command HALT. At the

time of execution of the look task if the panic flag is
set, tasking is not continued; it is suspended and the data
ready task is sent to the terminal computer. The panic flag
permits the user to:
1) survey the status of his present queues,
2) see vherc he stands in the operation of the
program,
3) execute other commands to take care of such
things as data collection,
4) pause when he is confused and needs time to

look around a bit.

Front End
The front end is a procedure whose function is to

dispatch information arising from the terminal computer and

to initiate procedures to process or store this information.
The information from the terminal computer can be in the
form of commands, gtaphic information, numerical information,
or other types of data. The front-end procedure first
determines the character of the information, decides which
processor should handle it, and then relinquishes control
to that processor. In general, the items sent to the
processors are .. tasks and can be processed immediately.
Sometimes one of these procedures will generate tasks to

be put on t..e queue to be processed later. During the
processing of the front end, the operation of the queue

is stopped and the processing takes place as determined by

the front-end processor.

Command
A command is one of the group of words preceded
by a percent sign or a colon which stimulates action that
takes precedence over all other operations in the CAMA system.
The key words for a command are preassigned, and the commands
are defined as macros in such a way that the user can expand
the command processor by devising new connandn.l
The command language is processed through the inter-
preter. That is, a command is generated by using the macro

processor to generate the code, which is then executed through

the interpreter.

Scheduler
The task scheduler is a procedure for operating the

current queue pair. In addition, it checks to see if a task

is in use and, if so, reschedules the task on the current
queue from whence it came. It also handles loading of
processing code, if necessary, as well as errors which might

occur.

CAMA Macro

A CAMA macro is a macro written by a user or by a
writer. It is written in the form of a prototype, as are
many macros for assembly languages. The only variation is
that the CAMA macro may be expanded in a number of base
languages, among which are the command language, FORTRAN,
ALG@L, or other standard languages. Macros can also be

written in terms of languages created within CAMA.

Language

In CAMA, a language is a set of instructions whose
interpretation is a function of the language named. For
example, an ADD operation in the MATRIX language would be
interpreted differently than, say, an ADD operation in the

POLYNOMIAL language.

Writer

A writer is a skilled programmer who knows the
intricacies of the CAMA system. He is distinguished from
the user in that he has considerably more experience and
therefore is able to manipulate the system internally, which

the user cannot do.

User
A user is one who may know a little about the CAMA
system but is essentially concerned with the operations as
they have been predefined by the writer. The distinction
between a user and a writer is not always clear-cut; an
individual might perform as a writer in some cases and as a

user in others.

Interpreter

The interpreter is a processor which interprets

code dynamically. 1

ATB - ACTIVE TASK BLOCK (see Fig. 1).

ATPL - ACTIVE TASK PUSH LIST, a pack of Type 4 on which the

ACTIVE TASKS are stored.

CURRENT ACTIVE TASK - a task which is currently in operation.

ACTIVE TASK - a task which is pending operation due to the

generation of a WAIT TASK or a READ which reads the

TTY, light pen, or Grafacon.
TCB - TASK CONTROL BLOCK (see Fig 4).
WTL - WAIT TASK LINK (see Fig 5).

PRIORITY CONDITION - the priority upon which the QUEUE PAIR

is to operate with (see command SET).

TASK PRIORITY - the priority given tn a task when it is

generated.

MOTHER TASK - task from which a wait task was generated.

PCB - PAUSE CONTROL BLOCK (see Fig. 2).

RCB - READ CONTROL BLOCK (see Fig. 3).

3. OPERATION OF THE CAMA SUPERVISOR

The operation of the CAMA supervisor is begun by
issuing a RUN CAMA command to MTS. After MTS indicates that
execution has begun, there is a period of waiting until
the CAMA system is bootstrapped into the virtual memory.

At the completion of this loading, the CAMA supervisor asks
for the name of the data structure file where the user has
stored his information or data. If an illegal file name is
given, the supervisor continues to ask for it until a legal
name is yiven. The supervisor does not check to see that
this file has any structure in it; it requires only the
legal name of a file. This can be a permanent file in the
MTS system or it can be a temporary file.

Once the file name for the data structure is
given, the CAMA supervisor checks to see if a master
directory exists in this file. If one does not, the super-
visor creates its own master directory. It also creates a
number of packs which are necessary for its own operation.
For example, it creates packs necessary for the operation of
the CAMA queue pairs. It next sets a number of traps for
such things as program interrupts and attention interrupts.

When all of this work is completed, the CAMA supervisor will

-10-

print on the output terminal the words CAMA SYSTEM. At
this point the user is in control. At this time the user
is being buffered in the terminal computer and in the central
computer. This means that messages being sent either way
are not dependent upon whether the computer at the other
end is ready to receive or not. Therefore the messages can
be transmitted or held for transmission until tﬁe computer
is ready to receive. The 338 or the termincl computer does
not send anything to the central computer unless it is asked
to. If, however, the central computer sends information to
the terminal computer, the RAMP2 system will set up a RAMP
task to handle it.

Although the user is in control of the operation
he must do a number of things before he can go very far.
The initial loading of the CAMA system included only those
subroutines that are needed for minimal operation. To
attain certain specific objectives with the CAMA system,
other routines will have to be loaded. These must be accescsed
from subroutine libraries, and the user must specify which
libraries he wants before he can proceed. Once specified,
these libraries need not be kept in virtual memory, however,
but may be discharged by the user, thereby reducing his
operating cost.

In some cases the order of bringing these files
into the virtual memory is most important. Actually the

3

order depends upon the operation of the MTS loader. The

loader will scan the library files in the order specified.

-11-

Because it is a one-pass loader, it cannot handle back-
references between libraries, that is, references to a
library file that has already been scanned. If the order of
loading is improper, MTS will not be able to find certain
subroutines and will send a message to that effect. 1In
order to resume operation, the user must give a command to
the terminal computer to turn off the buffering

(CTRL-A CTRL-A TK 1375 0)
then type the appropriate answer to the loader, followed
by a local command to turn buffering back on

(CTRL-A CTRL-A TK 1375 1)
when he has finished communicating to the loader.

Commands are issued in CAMA by typing a % cr :
as the first character, followed by the command name,
followed by the parameters for the command. For example,
to get a complete dump of the master list, one would type

$DUMP PTR=ON
(See COMMAND section for a complete description of tiis
command and others presently defined in the CAMA system.)

To enter a specified mode in CAMA, one would type
a left parenthesis as the first character, followed by the
mode name, then a right parenthesis, and finally, any other
information applicable to the mode. At this point the
procedure for handling this mode will be dynamically loaded
and any subsequent line of input will be directed to this
procedure. For example, to enter the interpreter mode, one
would type

(INTERPRETER) (MATRIX) (PROBS)

-12-

Note that only the first three characters of the mode name
are used to identify it. Here the interpreter mode would be
entered, with the default variable mode taken to be the MATRIX
mode, and the default problem name taken as PROB5.

A mode is ended by entering ¢ :ew mode or by tyving
(END), except in the case of the interpreter mode. This
mode is ended by typing

(END) INTERPRETER
thereby allowing the interpreter to release its temnorary
variables. If one first estahlishes the interpreter mode and
then establishes a second mode, the interpreter mode is held
pending. Then, if the user ends the second mode with (END),
he will return automatically to the interpreter mode. See
the routine LPARIN for more details about mode setting. Modes
may also be ended by giving the command to unload (i.e., %UNL).
Currently three modes are available:
interpreter mode,l

macro mode (see routine STOMAC), and

procedure mode (see routine STOPRO) .

The remainder of this report describes the current
commands available under CAMA. 1In these commands, one or
more blanks. or a comma with ontional blanks on either
side, serve as delimiters. Underlined values are the default
values. Following the commands are descriptors of the routines
which make up the CAMA supervisor, as well as comments in some

cases about the internal structure of the CAMA supervisor.

NAME :

PURPOSE :

PROTOTYPE:

PARAMETERS :

COMMENTS :

EXAMPLES :

NAME :
PURPOSE:
PROTOTYPE

COMMENTS :

EXAMPLE:

-13-

4. CAMA COMMANDS

ALIB

to add library files to dynamic loader's
library table.

ALIB LFN

LFN one or more LIBRARY FILE names separated
by delimiters.

the library files are added to the bottom of
the dynamic loader's library table in the
order given. Currently a maximum of
ten library files may be used at any
one time.

$ALIB A,B, C
files A, B, and C are added.

SALIB A C,D
only D is added since A and C already

exist,

DESTROY

to destroy a pack.

DESTROY P=pack name, L=list name

(1) must confirm action by giving OK.

(2) see DESTP routine in Reference 4 before
using this command.

SDESTROY PACK1l
PACKl defined in the master directory

is destroyed.

-14-

$DESTROY PACK3, LISTS
PACK3 defined in the list LISTS is
destroyed.

SDESTROY L=LISTS

LISTS is destroyed.

NAME : DLIB

PURPOSE : to delete library files from dynamic lcader's
library table.

PROTOTYPE : DLIB LFN

PARAMETERS : LFN 2zero or more library file names
separated by delimiters.
COMMENTS : if no parameter is given then all the library
files stored are released.
EXAMPLES : SDLIB C,B
files C and B are deleted.
$DLIB
all library files are deleted from table

and their associated storage is released.

NAME : DPROB

PURPOSE: to define a problem in CAMA
PROTOTYPE: DPROB

COMMENTS : see Reference 5.

EXAMPLE : SDPROB

NAME : DTASK

PURPOSE : to delete a task from a queue.

-15~

PROTOTYPE : DTASK T=task name, Q=queue name or blank.
COMMENTS : none
EXAMPLES : $DTASK TASK1l

causes the first occurrence of task
TASK1 to be deleted from the active
queue pair.

$DTASK TASK3, QUES
causes the first occurrence of task

TASK3 to be deleted from the queue

pair QUES.
NAME: DTATPL
PURPOSE: to delete a task from the ATPL.
PROTOTYPE: DTATPL task name oOr blank.
COMMENTS : none
EXAMPLES : $DTATPL PRT

deletes the task PRT from the ATPL
if PRT is in ATPL.
$DTATPL
deletes the most current task in ATPL.
NAME: DUMP
PURPOSE: to dump the contents of a list, association
table or a queue, or to obtain the header
information on any pack.

PROTOTYPE : DUMP P=pack name, L=list name

-16-

4 A
Eist
Association table
Active
N
T=< Queue=(Reserve > » PTR=
FF
Both
Pause
ATPL
LGRS J
ON
H= , A=association, f@=object
OFF
V=valve
COMMENTS : underlined values are the default values.

EXAMPLES for dumping lists:
$DUMP
gives a dump of the pack names in the
master directory.
$DUMP PTR=@gN
gives a dump of the pack names and their
pack pointers in the master directory.
$DUMP LISTS PTR=OFF T=LIST
gives a dump of the pack names in list
LISTS.
$DUMP LISTS
equivalent to above command.
EXAMPLES for obtaining the header information for any pack:
The header information returned for a pack

congsists of:

11

NAME...ccceseesseo.2ame of pack dumped,
LENGTH. c ¢ e e e s o000 onumber of units pack
is defined for.
TYPE.cceseescssessstype of pack (some
positive numbcr).4
USAGE COUNT........current usage count.
DEFINED IN.........name of list where
pack was defined.
LENGTH OF DATA.....current length of
data in us~ (in bytes).
LINE NUMBER........line number of pack
indicating where it
is defined on the disk.
SDUMP H=ON
gives the header information for the
master directory.
SDUMP H=0N PACKl
gives the header information for the
pack PACKl1 which is defined in the master
directory.
SDUMP PACK6, LIST12 H=ON
gives the header information for the pack
PACK6 defined in list LISTI12.
SDUMP L=LISTl1 H=ON
gives the header information for the

list LIST1.

EXAMPLES for dumping QUEUES:

SDUMP T=QUEUE

et

-18-

gives a dump of the tasks on the currently
active queue pair. Dumps only the active
queue member of the pair.

$DUMP T=Q==RESERVE
same as above except that only the
veserve queue member of the queue pair
is dumped.

$DUMP QUES5.63A T=Q==BOTH
gives a dump of the tasks on the queue
QUE5.63A. Dumps both the active and
reserve members of the queue pair. Note:
queve dum consists of the names of the tasks
on the queue, their associated priorities
and the name of the task that they return to.

EXAMPLES for dumping association packs‘:

$DUMP T=ASSOCIATION
gives a complete dump of the association
table which connects all lists in the
data structure.

$DUMP T=A V=MASDIR
dumps out only the associations with
value equal to MASDIR in the associa-
tion table which connects all lists in
the data structure.

$DUMP ASSOC1 T=A O=Ml
gives a dump of associations in the
association table ASSOCl which is

defined in the master directory. Dumps

-19-

only those associations with object
value equal to Ml.
¥DUMP ASSOC5, LIST3 A=Al, V=V2
gives a dump of the association table
ASSOC5 defined in list LIST3. Dumps
only those associations with associa-
tion equal to Al and value equal to V2.
Note that T=A was not necessary here.
EXAMPLES for dumping list of tasks which have been PAUSEd
(through the execution of a FORTRAN PAUSE type of statement):
$*DUMP T=PAUSE
or equivalently
$DUMP T=P
EXAMPLES for dumping the ATPL:
$DUMP T=ATPL

EXAMPLE for dumping general registers:

$DUMP T=GRS
NAME : EMPTY
PURPOSE: to empty a pack.
PROTOTYPE : EMPTY P=pack name, L=list name.
COMMENTS : (1) lists cannot be emptied.

(2) must confirm action by giving OK.
EXAMPLES: $SEMPTY Al, C3
pack Al defined in the list C3 is
emptied.

SEMPTY A5

NAME :
PURPOSE:
PROTOTYPE :

COMMENTS :

EXAMPLES :

NAME :

PURPOSE :

PROTOTYPE :

COMMENTS :

EXAMPLES :

PROTOTYPE :

-20-

pack A5 defined in the master directory

is emptied.

FPAUSE
to flush a PAUSEd task.
FPAUSE name of task
flushes a task which was PAUSEd by the
execution of a FORTRAN PAUSE statement.
SFPAUSE TASK3.5
flushes the PAUSEAd task TASK3.5.

GTQ

go to a specified queue and begin task
scheduling with this queue.

GTQ gueue pair name or blank.

if the quaue pair named does not exist it
is created.

$GTQ QUEl.6
task scheduling is resumed with queue
QUEL.6.

SGTQ
task scheduling is resumed with previously
defined queue pair.

HALT
to halt task scheduling.
HALT

COMMENTS :

EXAMPLES:

NAME :
PURPOSE :

PROTOTYPE:

COMMENTS :
EXAMPLES :

PURPOSE :
PROTOTYPE :
COMMENTS :

EXAMPLE:

-21-

see command RES.

$HALT

LIST
to list a macro definition or a procedure.
LIST macro name or procedure name,
language name of macro, S=starting line
number, E=ending line number.
none
$LIST PRO1
lists all lines defined for the procedure
PRO1
$LIST MACROl, LANG3.5 S=-5.21
lists the lines starting at line
number -5.21 to end of pack for the macro
MACROl1l defined in language LANG3.).
$LIST PRO2 3.5, 3.5
lists the line 3.5 only for the procedure
PRO2.

MTS

returns the user to MTS.

MTS

all MTS commands may then be processed with
the exception of the RUN command. The
MTS command RESTART brings the user
back to the CAMA supervisor.

$MTS

-22-

NAME : PROT
PURPOSE : to protect or unprotect a pack.
PROTOTYPE: PROT name of pack, L=name of list where pack
is defined,
p=| N
OFF
COMMENTS : a protected pack cannot be destroyed.
EXAMPLES : SPROT PACK1

this protects the pack PACK1l which is
defined in the master directory.
SPROT P=OFF PACK3,LIST3
this command unprotects the pack PACK3
defined in list LIST3.
SPROT L=LIST3
this protects the list LIST3.
NAME : REL
PURPOSE: to release the virtual memory used by the
data structure.
PROTOTYPE: REL
COMMENTS : this comaand sets up a task to release the
virtual memory used by the data struc-
ture and to save any part of the data
structure that was changed while in

virtual memory.

NAME : RES

PURPOSE : to restart task schecduling.

PROTOTYPE:
COMMENTS :

EXAMPLES :

NAME:
PURPOSE:
PROTOTYPE:

COMMENTS :

EXAMPLES :

NAME :

PURPOSE:

PROTOTYPE:
COMMENTS :

EXAMPLE:

RES
see command HALT.

$RES

RPAUSE

to restart a PAUSEd task.

RPAUSE name of task.

restarts tasks which were PAUSEd by the
execution of a FORTRAN PAUSE statement.

SRPAUSE TASK3.5

restarts the PAUSEd task TASK3.5.

RTQ

to return to a specified queue pair and
begin task scheduling with it only
after the current queue pair has run
down.

RTQ queue-pair name or blank.

if the queue pair named does not exist it
is created.

SRTQ QUE6
task scheduling is resumed with the queue
pair QUE6 only after current queue
pair has run down.

$RTQ
task scheduling is resumed with the
queue pair previously defined when

current queue pair runs down.

NAME :

PURPOSE:

PROTOTYPE:

COMMENTS :

EXAMPLES :

PROTOTYPE :
COMMENTS :

EXAMPLES :

-24-

RUN
to dynamically run programs within CAMA.
RUN string
same as MTS RUN command3 except for the
handling of the PAR= option.
$RUN *PERMIT PAR='FILE RO'
note that the parameters for PAR=
have been enclosed in primes.
$RUN *FORTRAN SCARDS=FILE(3.5,LAST-10)
SPUNCH=PUN (LAST+1) PAR=SML
note that when only onc parameter is
given for PAR= it need not be enclosed
in primes.
SRUN *ASMG SCARDS=FILEl1+FILE2(1,10)
+(30.5,LAST-2) +FILE3 SPUNCH=-PUNCH
O=*SYSMAC 2=MLIB PAR='B,SIZE==]100,NX'
note the use of the double equal-sign

in the PAR= parameter list.

SAVE

to save a pack onto disk storage if it has
been changed while in virtual memory.

SAVE pack name, L=list name.

if a list is saved then everything connected
below the list is saved also.

SSAVE

saves the complete data structure.

-25-~

$SAVE PACK1
saves pack PACKl defined in the master
directory.
$SAVE PACKS, LIST12
saves pack PACKS5 defined in list LIST12.
*SAVE L=LIST12

saves the list LIST12.

NAME : SET
PURPOSE: to set certain options in CAMA.
PROTOTYPE: SET PC=priority condition
_ fon
PRINT= {égg
COMMENTS : priority condition =0=> process tasks in order

which they are stacked (i.e., first on,
first off).

priority condition =-1=> process highest
priority tasks first.

priority condition =n>0=> process tasks with
priority equal to n first.

EXAMPLES : $SET PC=0

$SET PC=5.25 PRINT=ON
the PRINT=ON => all internal data
structure and task-handling comments
which would normally not be printed are
printed to aid the user in possible

trouble-shooting.

NAME :

PURPOSE :

PROTOTYPE:

COMMENTS :

EXAMPLES:

-26-

UNL

when the Active Task Push List runs down, UNL
unloads all the subroutines which were
dynamically loaded.

UNL

turn off the current mode unless it is the

INTerpreter mode.

$UNL

Additional commands and subroutines may be found

in References 1-6.

NAME :
PURPCSE:

CALLING
SEQUENCE :

ARGUMENTS :

RETURN CODE:

COMMENTS :

5. TASK-HANDLING ROUTINES

ANSWER

to answer a read in CAMA

CALL ANSWER (PBUF, HL, SW)

PBUF pointer to buffer.

HL (half-word integer) length of line in
buffer.
SW (half-word integer) switch

=0=>normal return
=4=>EQOF

none

reads are answered in CAMA by typing a slash
"/" followed by required text. FORTRAN
formatted reads are protected from errors

in typing in data.

NAME :

PURPOSE :

CALLING
SEQUENCE:

ARGUMENTS:
RETURN CODE:

COMMENTS :

NAME :
PURPOSE :

CALLING
SEQUENCE:

ARGUMENTS :

RETURN CODE:

COMMENTS :

~-27-

The routine ANSWER ceestablishes the
task state of the task which issued the
read and returns the data obtained,
thereby restarting the task which
(See READ routine.)

generated the read.

ANSWER is not to be called by the user.

CAMSET
to send a task to the PDP-8 to indicate
whether or not the 8 is to store display

file names sent to the 8.

CALL CAMSET (SW)

SW integer switch with the value 0 or 1.
none

SW=0=> do not store names

=]1=> gtore names

DFANS

to answer a DF read

CALL DFANS (PBUF, HL)

PBUF pointer to buffer

HL (half-word integer) length of line
in buffer.

none

DF reads (i.e., reads generated internally

within the DF package of routines) are

-28-

answered in CAMA by inserting a small

'd' at the beginning of each line to be
transmitted. This is done within the
PDP-8. Once the response has been
obtained the DFANS routine reestablishes
the task which issued the DR read and
returns control to it. (See READ routine.)

DFANS is not to be called by the user.

NAME : DFCBL

PURPOSE: to obtain the starting address and length
of the current Display File (DF)
construction buffer.

CALLING
SEQUENCE: CALL DFCBL (START, LEN)

ARGUMENTS * START starting address of buffer (integer)
LEN curent active length of the buffer
in bytes (integer).

RETURN CODE: RC=4 no buffer or buffer is empty.

COMMENTS : none
NAME : DFPTB
PURPOSE : stores a PACK in the current Display File
(DF) construction buffer.
CALLING
SEQUENCE: CALL DFPTB(PTR)
ARGUMENTS: PTR pack pointer
RETURN CODE: RC=4 no huffer or pack is empty

COMMENTS : none

-29-

NAML: ¢ DL

PURPOSE: to dynamically load and execute a subroutine
so that it can use CAMA variables.

CALLING

SEQUENCE: CALL DL (SNAME, NRC, ARCl, ..., ARGM, &l, ...N-1,&N)
SNAME 8-character name of subroutine.
NRC number of return codes possible for
subroutine SNAME plus one (integer).
ARGl,..., ARGM for subroutine
SNAMF .
&l,...,&N-1 returns for subroutine SNAME.
&N return for dynamic loader.
RETURN CODE: see DLR routine.
COMMENTS : the actual arguments to subroutine SNAME
are pointed to by the arguments of DL.
NAME : DLAL
PURPOSE : allows the addition of one library file
name to the library name table in DLR.

CALLING
SEQUENCE: CALL DLAL('FNAME ',&l)

ARGUMENTS : 'FNAME ' - character string which is a library
file name. String length 12 bytes max.
RETURN CODES: &l - control is returned to this statement
for one of the following reasons:
(1) illegal character in file name

(***DL** ILLEGAL FILENAME),

A

COMMENTS:

NAME :

PURPOSE :

CALLING
SEQUENCE:

ARGUMENTS :

RETURN CODE:

COMMENTS :

NAME :

PURPOSE :

-30-

(2) the file does not exist
(***pL** FILE DOES NOT EXIST),
(3) the library file name table is full
(***pL** I TBTAB FULL),
(4) the file is not a library file
(***DL** BAD LIB FILE).
(1) The trailing blank can be omitted if
the file name is 12 characters long.
(2) The library name table can hold 10 file
names.
(3) The library file structure is expected
to be like that produced by GENLIB.
(4) The legal characters in the file name

are the same as are allowed for MTS files.

DLEAL
deletes all library file names from library

file name table in DLR.

CALL DLEAL
NONE
NONE

NONE

DLEOL
deletes one library file from the name table

in DLR.

_Jl—

CALLING
SEQUENCE: CALL DLEOL('LFNAME ',&l)

ARGUMENT : 'LFNAME ' - character string which is the
name of a library file. String length
12 bytes or less.
RETURN CODE: &1 - control is returned to this statement
for one of the following reasons:
(1) the library name table was empty
(***pL** LIB TAB EMPTY),
(2) the file name was not found in
the table
(***DL** FILE NOT IN LIBTAB),
(3) the file name is illegal
(***DL** JTLLEGAL FILE NAME).
COMMENTS : (1) The trailing blank is not necessary if
the file name is 12 characters long.
(2) The characters allowed in the file name
are the same as for MTS file name.
(3) The library name table is automatically

garbage-collected.

NAME : DLR
PURPOSE : allows a subroutine to be dynamically loaded
from a library file and executed.

CALLING
SEQUENCE: CALL DLR ('STRING ',M,Al,A2,...,An,&l,&2...,&M)

-32-

ARGUMENTS : 'STRING ' -~ a character string which is the
name of the subroutine that is to be
dynamically loaded. FORTRAN subroutine
name rules apply:

(1) first character alphabetic A-2,

(2) succeeding characters alphabetic
or integer digits 0-9,

exception (3) 8-byte character length
allowed.

M - an integer value such that M-l return
codes are for the subroutine which is
to be called; the Mth return code is
for DLR.

Al,A2,...,AN- a list of variable names which
would normally appear as arguments for
the subroutine.

RETURN CODE: &M - control is returned to this statement
for one of the following reasons:

(1) the object module for the subroutine
was not found in the library
(***DL** OBJ MOD NOT IN LIBR),

(2) no library files have been
specified by the user
(***DL** NO LIBRARY),

(3) the subroutine name does not start
with an alphabetic character

(***DL** ILLEGAL CHAR IN OBJ MOD NAME) .

-33-

COMMENTS : (1) The time delay for the first call on a
subroutine is approximately the same
as for a normal load. Subsequent calls
on that game subroutine have a very
small time delay.

(2) If an illegal character occurs in a
subroutine name after the first
character, that character and all
succeeding characters are replaced by
blanks. No comment is printed.

(3) The trailing blank in 'STRING ' is
necessary only if the name is less than
8 characters.

NAME : DLUNL
PURPOSE: unloads all object modules that have been

loaded by DLR.

CALLING
SEQUENCE : CALL DLUNL
ARGUMENTS : NONE

RETURN CODES: NONE

COMMENTS : (1) Selective unloading is not allowed at
this time.

NAME : DRUN

PURPOSE: allows the user to suspend the execution of

one main program and then execute another

-34-

main program with all the logical I/0
devices reassigned. DRUN effectively
allows the MTS command $RUN to be

re-entrant.

CALLING
SEQUENCE: CALL DRUN('STRINGS',&l,&2,&3,&4)
ARGUMENTS: 'STRINGY' - a string of characters identical

RETURN CODES: &l

$2

%3

%4

in format to that following a $RUN
command. ‘'MAP', 'NOMAP', MAPFDNAME,
and execution limits are not allowed.
% (percent) is the terminator for the
string. Maximum string length is 255
bytes.
control is transferred to this statement
if an error was detected in parsing
'STRINGS '

(***DR** PARSING ERROR) .
control is transferred to this statement
if a call to error was trapped

(***DR** TRAPPED CALL TO ERROR).
control is transferred to this statement
if a cull to MTS, SYSTEM, or QUIT was
trapped

(***DR** TRAPPED CALL TO MTS/SYSTEM
/QUIT) .

control is transferred to this statement

=35«

if the return code from the executed
program is greater than zero

(***DR** RC>0 FROM EXECT PROG).

COMMENTS : (1) Prototype: (in FORTRAN)
CALL DRUN('*USERS%')
CALL DRUN('*FORTRAN SCARDS=-Z PAR=SML$%')
(2) The default reassigned values for SCARDS,
SPRING, and SERCOM are *SOURCE*, *SINKY,
and *SINK* respectively. All other
logical I/0 devices are unassigned (just
as in MTS for the TTY).
(3) The symbol % (percent) is not allowed
in FDNAMES that are given in 'STRING%'.
(4) The size of DRUN is 3856 bytes (approx.
one page).
NAME : DTATPL
PURPOSE : to delete a task from the ACTIVE TASK PUSH LIST
(ATPL) .
CALLING
SEQUENCE: CALL DTATPL(NAME)
ARGUMENTS : NAME 8-character name of task

RETURN CODE:
COMMENTS :

RC=4 task not found

(1)

(2)

(3)

If NAME is blank then the current active
task will be deleted.

If the task is found then this routine
does not return to caller.

When a task is deleted, any pending PAUSE,

DF read, or trapped READ is flushed.

NAME :
PURPOSE :

CALLING
SEQUENCE:

ARGUMENTS :
RETURN CODE:

COMMENTS :

-36~-

(4) All MOTHER tasks connected to the

deleted task are also deleted.

DTASK

schedules tasks within a queue pair.

CALL DTASK
none
none

The TASK SCHEDULER (DTASK) is a procedure

which schedules t-sks on a priority basis.
The current QUEUE PAIR is obtained and
the ACTIVE QUEUE is referenced. If the
ACTIVE QUEUE is empty then the RESERVE
QUEUE is referenced. When both queues
are found to be empty, DTASK returns with
the NOTASK flag set. If one of the queues
is not empty then the TASK to be processed
is selected according to the priority condition

which has been set. A priority condition of zero
means that the nerxttask on the queue is to be
orocessed regardless of its priority. For a
condition which is some positive mmber, then only
tas"s with this prioritv will be processed regardless
of their vposition on the OUZUE. If tere is no task with
this priority, then the priority condition is reset
to zero and the ACTIVE QUEUE is referenced

again. If the priority condition is a minus

-37-

one, then those tasks with the highest
priorities are processed first regardless
of their position on the QUEUE. The priority
condition may be set by the user by issuing
the command
$SET PC=number.

Once a task has been selected, the ACTIVE
TASK PUSH LIST (ATPL) is referenced to see
if this new task is already in use (i.e.,
pending a WAIT TASK or the answer to a
READ which requires TTY, light pen, or
Grafacon response). 1If it is in use then
the task is requeued; otherwise an ACTIVE
TASK BLOCK (ATB) is created for this task,
and processing continues as shown in flow
chart for TASK SCHEDULER.

The ACTIVE TASK BLOCK has the following

internal format:

—
 NAME OF TASK

——t —

-
| A(TCB) i
i 1

I
| TASK's SAVE AREA l
' |
e o — — — —d

Figqure 1. ACTIVE TASK BLOCK

1

-38-

Flow Chart for TASK SCHEDULER (DTASK)

obtain current
QUEUE PAIR

ACTIVE QUEUE
empty?

RESERVE QUEUE

empty?

Ng

-

1

| sét N@TASK flag.

entry ==
L@gK ,
TASK

REQUEUE it I —

obtain TASK
according to
PRIORITY
CONDITION

y

task on ATPL?

"

create ATB

l

put ATB on ATPL

l

DYNAMIC L@ADER

cessessssss.cOntinued on next page.

TV ~30-

error return from ask USER if he
DYNAMIC LOADER wants to REQUEUE
or FLUSH his
NG TASK
remove ATB
from ATPL
halt TASK schedulin
’ & turn buffering of
make MOTHER X
WAIT o TASK the READ
TASK? CURRENT TTY
ACTIVE TASK
___§Np i
release turn
ATB T buffering
y release ;
release ATB
remove ATB -
TCB ¢ from ATPL QUELEE
r—-'—l release L | NG
gggﬁ ' ?2? release FLUSH?
ATB
release
WTL L INg
Y
REQUEUE this
return to TASK
MOTHER TASK
L@SK
TASK

make MOTHER
TASK the
CURRENT
ACTIVE TASK

l

release ATB, TCB
and WTL

remove ATB | N2 | wAIT L.,
from ATPL TASK?

Flow Chart for TASK SCHEDULER (DTASK)

NOTE :

NAME :

PURPOSE:

CALLING
SEQUENCE:

ARGUMENTS :

RETURN CODE:

COMMENTS :

NAME :
PURPOSE :

CALLING
SEQUENCE:

ARGUMENTS :
RETURN CODE:

COMMENTS :

NAME :

PURPOSE

-40-

When DTASK has an error return from DLR
it asks the user if he wants to requeue
or flush the task which caused the error.
Task scheduling is halted at this point,
and after the user answers DTASK he
must give the command %RES in order to

restart task scheduling.

EBOCT
convert EBCIDC representation of numbers

to OCTAL.

CALL EBOCT (NUM, HOCT)

NUM EBCDIC representation of number (full-
word integer)

HOCT resulting octal number (half-word integer)

none

none

ERRCODE

program to snatch error code from IBCOM#.

call ERRC@DE
none
none

ERRCODE is not to be called by user.

FEND

to dispatch data from the terminal to the

-4]1-~

proper interpreter on thec basis of its

first character.

CALLING
SEQUENCE: CALL FEND(PT2,HL)
ARGUMENTS : PTR pointer to buffer

HL length of data in buffer (half-word
integer)
RETURN CODE: none
COMMENTS : (1) does not return to caller.
(2) its action is depicted in the flow chart

for FR@NT END.

FEND is not be called by the user.

NAME : FIOCSERR
PURPOSE: I/0 recovery routine for FIOCS#
CALLING
SEQUENCE: CALL FIOCSERR
ARGUMENTS : none

RETURN CODE: none

COMMENTS : FIOCSERR is not to be called by the user.
NAME : FPAUSE
PURPOSE : to flush a *task which has been paused by the

execution of a FORTRAN PAUSE statement.

CALLING
SEQUENCE : CALL FPAUSE (NAME)

ARGUMENTS : NAME namc of paused task.
RETURN CODE: none

COMMENTS : does not return to caller.

-42-

Flow Chart for FRONT END

first character
is a non-print-
ing character

N

or

2

TEXTIN

(FEND)
— %1 NPCIN
- COMMAND
4 LPARIN
1 SEQGF ? [
T
ANSWER
SET E@F
FLAG

-43=-

NAME: FRDNL#, FWRNL#, DIOCS#
PURPOSE : NAMELIST and DEFINE FILE FORTRAN I/0 trap.
CALLING

SEQUENCE: see FORTRAN's FRDNL#, FWRNL#, and DIOCS#
ARGUMENTS : see FORTRAN's FRDNL#, FWRNL# and DIOCS#

RETURN CODE: see FORTRAN's FRDNL#, FWRNL# and DIOCS#

COMMENTS : none
NAME : GTQUE
PURPOSE : to establish a new QUEUE PAIR or go to

a previously established QUEUE PAIR.

CALLING
SEQUENCE: CALL GTQUE (NAME)
ARGUMENTS : NAME 8-character name of QUEUE PAIR

RETURN CODE: RC=4 did not change QUEUE PAIR.
COMMENTS: If NAME is blank then go to previously

established QUEUE PAIR.

NAME : HDINFO
PURPOSE: prints out the header information of a pack.
CALLING
SEQUENCE: CALL HDINFO(PTR)
ARGUMENTS : PTR pointer to a pack

RETURN CODE: none

COMMENTS : see DUMP command.

NAME : IBCOM#

PURPOSE : intercept FORTRAN's IBCOM#
CALLING

SEQUENCE : see FORTRAN IBCOM#

-44-

ARGUMENTS : see FORTRAN IBCOM#

RETURN CODE: see FORTRAN IBCOM#

COMMENTS : IBCOM# is the main interception routine
for FORTRAN I/0 (see TASKIBC).

If a pause statement in a FORTRAN program is
executed, the paused task is held until
the user flushes or restarts the task
on command.

IBCOM# creates a PAUSE CONTROL BLOCK (PCB)
with the following format:

Figure 2. PAUSE CONTROL BLOCK (PCB)

and places the PCB on a stack (see

routines RPAUSE and FPAUSE).

NAME : IBCOMERR
PURPOSE: I/0 recovery routine for IBCOM#
CALLING

SEQUENCE: called by FORTRAN's IBCOM#
COMMENTS: IBCOMERR is not to be called by user.
NAME : LPARIN
PURPOSE : to clear or set modes in CAMA
CALLING

SEQUENCE : CALL LPARIN(PBUF,HL)

ARGUMENTS :

RETURN CODE:

COMMENTS :

-45-

PBUF pointer to buffer

length of data in buffer (half-word

integer)

the LEFT PARENTHESIS INTERPRETFR (LPARIN)

is a procedure which establishes mode
operations for the CAMA system. Prede-
fined modes are stored in the LPARPACK
which is Type 3 (association table).

The format of LPARPACK is
A 0 \'%

3-character | 8-character |8-character

mode name long name name of
of mode procedure to
handle this
mode

A mode is established by typing a

left parenthesis in column one followed
immediately by 3 or more characters, a
right parenthesis followed by optional
data.

If the mode is a legal mode as stored in
LPARPACK, then an (END) is sent to the
current mode, unless the current mode

is the INTERPRETER MODE in which a flag
is set to indicate that the INTERP mode
is pending. A user may end any other

mode by typing (END), and if the INTERP

-46-

mode is pending it will be re-established
as the current mode. This prevents the
user from losing his system variables
when going from INTERPRETER mode into

a new mode (see INTERP description).l

If he really wants to release these
variables then he must type (END)INTERP.
Once a mode has been established the
rest of the text or any subseguent text
is directed to the proper procedure

by the TEXTIN routine. Whenever the
command UNL is issued by the user, an
(END) is sent to the current mode unless
it is the INTERP mode. The purpose of
sending the (END) to the current mode

is so that the current mode can release
any temporary storage that it may have
acquired or do anything else which might
be necessary to close itself out. All
mode subroutines must have the same
argument list as LPARIN and must accept
(END) .

The following flow chart describes

LPARIN's operation.

N@

Flow Chart for LEFT PARENTHESIS INTERPRETER

ENTRY

-47-

(LPARIN)

(END)

N@

retrieve
LPARPACK

take first 3
characters after
left parenthesis
as the new mode

\

is the new mode
a predefined mode
in LPARPACK?

is current mode set?

Ng

make new mode
the current mode

@.J

TEXTIN

(END) INT

2

is current
mode set?

is current
mode INTERP?

Ng

send END to
current mode

clear current mode

;

NG | is INTERP

mode_pending? |

make INTERP
current mode
- and clear
pending flag

o return)4_—-

dump

...continued on next page

-48-

is current mod

Ng

o

INTERP?

is new mode
INTERP?

Ng

set INTERP

| pending flag

is INTERP

send END to
current mode

make new mode
the current
mode

mode set?

g

@_.
@.___m_

is INTERP
mode pending?

1

clear INTERP

‘pending flag

l

send END to
INTERP

clear
current mode

!

return

get rest of

line after
right parenthe]
sis

TEXTIN

-49-

NAME : MTS
PURPOSE: return user to MTS
CALLING
SEQUENCE : CALL MTS
ARGUMENTS : none

RETURN CODE: none
COMMENTS : this routine al.ows user to go to MTS with
buffering in PDP-8 turned off. By
giving a RES command in MTS, CAMA will
be restarted with buffering turned back on.
NAME : NPCIN
PURPOSE: to interpret lines coming from the terminal
with a non-printing character as their

first character.

CALLING
SEQUENCE : CALL NPCIN (PBUF,HL)
ARGUMENTS : PBUF pointer to buffer

HL length of data in buffer (half-word

integer)

RETURN CODE: none

COMMENTS : the NON-PRINTING CHARACTER INTERPRETER
(NPCIN) is a procedure operating in the
central computer to direct the flow of
data from the internal responses of the
PDP-8 produced by programs and actions
taken within the PDP-8. For example,

all light pen or Grafacon hits are

w1

NAME :

PURPOSE :

CALLING
SEQUENCE:

ARGUMENTS :

RETURN CODE:

COMMENTS:

NAME :
PURPOSE :

CALLING
SEQUENCE:

ARGUMENTS :

NAME :

PURPOSE :

-50-

directed to the proper places by preceding
the first character of the response with
a small 'd’'.

The flow chart, NON=-PRINTING CHARATCTER

INTERPRETER, describes t'e action taren bv MPCIN.

PROG
to send a PDP-8 program to the PDP-8 from

the central computer,

CALL PROG(PTR)

PTR pointer to data pack where PDP-8
program is stored.

none

none

PROG2

used to store PDP-8 programs in a data pack.

CALL PROG2(PTR,FDUB)

PTR pointer to data pack where PDP-8
program is to be stored.

FDUB FDUB of file to be read.

none

READ
to intercept calls to READ, READ#, SCARDS,

and SCARDS# routines when buffering is on.

~5]~

Flow Chart for NON-PRINTING CHARACTER INTERPRETER (NPCIN)

first character
is 's'

DFANS

NG

:

set up task for
SYMBOL
GENERATOR

m

N@

Qg

g

ignore
it

return

set up task for
MATH
STAGE °

'

put task on
current
ACTIVE QUEUE

CALLING
SEQUENCE :

ARGUMENTS :

RETURN CODE:

COMMENTS :

-52-

standard calling sequence used in FORTRAN.

standard arguments used in FORTRAN calling

sequence.

sce FORTRAN

the following conventions are assumed:

(1)

(2)

(3)

(4)

Figure 3.

calls to SCARDS and SCARD# are
trapped.

calls to READ or READ# with a FDUB

or LDN which is nonexistent, un-
assigned, or connected to the terminal
are trapped.

all other conditions allow the READ
to fall through.

if a call to READ has a FDUB

which is connected to the terminal
then this read is trapped as a DF
read.

DF reads are answered via the DFANS
routine. All other trapped reads are
answered via the ANSWER routine

which requires a "/" (slash) as

the first character. When a read

is trapped a READ CONTROL BLOCK (RCB)

is generated with the following format:

READ CONTROL BLOCK (RCB)

A(SAVE) _{

-53-

where A(ATB) is the address of the ATB
for the task which generated the read,
or zero if not generated by a task.
A(SAVE) is the address of the save area
for the read.

When a read is trapped its RCB is put
on a stack and control is returned to
the CAMA supervisor (see ANSWER, DFANS,

and IBCOM#) .

NAME : REL

PURPOSE: to release the data structure from virtual
memory and save any packs which have been
changed.

CALLING

SEQUENCE : CALL REL

ARGUMENTS : none

RETURN CODE: none

NAME : REQUE

PURPOSE: to requeue a task

CALLING
SEQUENCE: CALL REQUE

ARGUMENTS : none

RETURN CODE: none

COMMENTS : this program requeues the task in which it
was called in. That is, if REQUE is
called within a task, then that complete

task will be requeued.

NAME :

PURPOSE :

CALLING
SEQUENCE:

ARGUMENTS :

RETURN CODE:

COMMENTS :

NAME :

PURPOSE:

CALLING
SEQUENCE:

ARGUMENTS :
RETURN CODE:

COMMENTS :

-54-

RESTOR
The complement to SAVE, i.e., restores the
contents of the general registers and

the vaiues of a list of local variables.

CALL RESTOR (Al,A2,...,AM)

Al,A2,...,AM a list of variables whose values
are to be restored. Each variable must

be a full word and aligned on a full-

word boundary. M should be less than
or equal to N in SAVE.

none

The values for the variables are restored
in the order that they were saved. No

mode or adcon checking is made.
See SAVE routine.

- T D D D =D R R G G D N ED ED N N D SR S R N SR G ORGP EP D GD SR G GD OR Oh S5 SR Oh D ap S On D an e

RPANIC
to decrement the panic flag or HALT flag

in CAMA

CALL RPANIC
none

none

In order to restart tasking operations the

panic flag must be zero

NAME :
PURPOSE :

CALLING
SEQUENCE :

ARGUMENTS :
RETURN CODE:

COMMENTS :

NAME :

PURPOSE:

CALLING
SEQUENCE:

ARGUMENTS :
RETURN CODE:

COMMENTS :

NAME :
PURPOSE :

CALLING
SEQUENCE :

ARGUMENTS :
RETURN CODE:
COMMENTS :

RPAUSE

to restart a task which has paused by the

execution of a FORTRAN PAUSE statement

within the task.

CALL RPAUSE (NAME)
NAME name of paused task
none

does not return to caller.

RTQUE

to establish a new QUEUE PAIR or go to a

previously established QUEUE PAIR only

after the current QUEUE PAIR is empty.

CALL RTQUE (NAME)

NAME 8-character name of QUEUE PAIR

none

if NAME is blank, then go to previously
established QUEUE PAIR. The routine

RTQUE generates the task TASKRTQ

which actually does the work.

RUN

to call DRUN with buffering off.

CALL RUN (same as DRUN)
same as DRUN
see DRUN

see DRUN

-56-

NAME : SAVE

PURPOSE: allows the user to make FORTRAN subroutines
recursive by saving the coutents of the
general registers and the values of a

list of local variables.

CALLING
SEQUENCE: CALL SAVE (Al,A2,...,AN)

ARGUMENTS: Al,A2,...AN a list of variables whose values
are to be saved. Each variable must be
full-word (four bytes) and aligned on
a full-worC boundary. The mode may
be real, integer, or logical.

RETURN CODES: none

COMMENTS : none

NAME : SETPRI

PURPOSE : to set the priority condition for DTASK
CALLING

SEQUENCE : CALL SETPRI (PRI)
ARGUMENTS : PRI priority condition times 1000 (intege.’)
RETURN CODE: none
COMMENTS : PRI = 0 => process tasks in order in which
they are stacked.
PRI = -1 => process highest priority tasks first.
PRI = n>0 => process only tasks with priority

of n.

NAME :
PURPOSE:

CALLING
SEQUENCE:

ARGUMENTS :

RETURN CODE:
COMMENTS :

STOMAC

to store macros.

CALL STOMAC (BPTR,HL)

BPTR pointer to buffer

HL (half-word integer) length of line
in buffer.

none

typing (MACRO) in CAMA will establish the

store macro mode. The syntax of this

mode is
macro language
A mode 88 (4 name)

or a line number followed by a line of
text. Examples:
(MAC) (M1) (L1)
(MAC) established the store macro mode
with the macro name taken as 'M1'
and its language name as 'Ll'. If a
macro name or language name is longer
than 8 characters only the first 8
continuous nonblank characters between
the parentheses are used. If the macro
was previously defined a comment is
printed to alert the user.

(M2) the macro name is taken as ‘'M2'
defined in the language 'L1l'.

() (L3) the macro name 'M2' is defined in

the language 'L3’.

9.361 FN P ‘P P#
the line FN P# '&tP' PH |is
entered into macro 'M2' defined in
language 'L3' with line number 9.36) .
The line number range is -99999.9999<
n<+99999.999

3.5,211 Do 215 1I=J,N
the line

211 Do 215 1I=J,N

is entered for line 3.5.

line 2 is dest:ioyed.

(END) will terminate the store macro mode.

NAME : STOPRO
PURPOSE: to store a procedure
CALLING

SEQUENCE: CALL STOPRO(BPTR,HL)
ARGUMENTS : BPTR pointer to buffer
HL (half-word integer) length of line

in buffer.
RETURN CODE: none
COMMENTS : typing (PROCEDURE) in CAMA will establish

the store procedure mode.
The syntax is
rocedure
¥ proce)5)

name
or a line number followed by a line of

texc.

EXAMPLES :

PURPOSE :

CALLING
SEQUENCE :

ARGUMERTS :
RETURN CODE:
COMMENTS :

NAME :
PURPOSE:

CALLING
SEQUENCE:

ARGUMENTS :

(PRO) (Pl)
(PRO) establishes the store procedure

mode with the procedure name taken as Pl.

(P2)
P2 is taken as the procedure. 1If a
procedure already exists with the given
name, then a comment is printed to
alert the user.

9.5

deletes line 9.5
9.3 (FORTRAN) N=3.5%2
enters line with line number 9.3.

(END) will terminate the store procedure mode.

- e o e e e e e e G D D D D D D D D ED D D D D D D ED . S D ED ED ED e e e e

SPANIC

to increment the panic flag or HALT flag
in CAMA

CALL SPANIC

none

none

a call to SPANIC stops tasking operations.

SPEW
unloads subprograms which were dynamically

loaded in CAMA.

CALL SPEW

none

RETURN CODE: none

COMMENTS : the task TKSPEW is generated to handle the
unloading.

NAME : TASK

PURPOSE: to put a task on the QUEUE and return.

CALLING

SEQUENCE: CALL TASK(0,QUE,PTR)
CALL TASK(1l,QUE,PRIORITY, PROTECTION,
TASKNAME, ARGl,...,ARGN)
ARGUMENTS : QUE=0 put task on ACTIVE QUEUE
=1 put task on RESERVE QUEUE
PTR pointer to TCB
PRIORITY the priority that this task is
to have times 1000 (integer)
PROTECTION=0=> unprotected
=1=> protected from attention
interrupts.
TASKNAME 8-character name of task
ARGl first argument of the task
ARGN nth argument of the task
RETURN CODE: none
COMMENTS : (1) when the first argument of the routine
TASK is zero then it is assumed that the
third argument is a pointer to a uger-
set-up TCB. If, however, the first argu-
ment is one, then the TASK routine will
set up the TCB. The TASK CONTROL BLOCK

(TCB) has the following format:

-61-

Ficure 4. TASK CONTROL BLOCK (TCB)

Priority

Protection

A (TASKNAME)

A (#RC)

A(ARG1)

A (ARGN)

(2)

PRIORITY

PROTECTION

A (TASKNAME)

A(#RC)

A(BUF)

A (HLEN)

#RC=actual number of RC for the routine

TASKNAME + 1

The address of pointer to arguments may or
may not point to within the TCB. For example,

one might have

V (TASKNAME)

V(#RC)

V (HLEN)

V (BUYF)

/A
"
where A(...)= address of

V(...) = value of

NAME :
PURPOSE :

CALLING
SEQUENCE :

ARGUMENTS :
RETURN CODE:
COMMENTS :

NAME :
PURPOSE :

CALLING
SEQUENCE:

ARGUMENTS :
RETURN CODE:

COMMENTS :

This can be done only if the user

(or writer) sets up the TCB. Note that
the TCB is automatically destroyed upon
returning from the completion of the
task. Therefore if the user sets up

the TCB, he must get space dynamically.

TASKIBC
a task to handle IBCOM#s when they pile up.

generated within IBCOM#

see IBC@M#

none

if a FORTRAN read is pending, then this
implies that FORTRAN's I/0 is in use.
Since it is not reentrant, any subsequent
call to IBCgM# must be requeued until
FORTRAN's I/0 is available.

TASKRTQ
task to handle RTQUE

generated within RTQUE

see RTQUE

see RTQUE

requeues itself until current QUEUE PAIR

is empty.

NAME :
PURPOSE::

CALLING
SEQUENCE:

ARGUMENTS :

RETURN CODE:

COMMENTS :

NAME :
PURPOSE :

CALLING
SEQUENCE:

ARGUMENTS :
RETURN CODE:
COMMENTS :

NAME :

PURPOSE:

CALLING
SEQUENCE:

TEXTIN

to dispatch text to the current mode set.

CALL TEXTIN (PBUF,HL)

PBUF pointer to buffer

HL Length of data in buffer (half-word
integer)

none

if no mode has been set then the line is

dumped back with a question mark followed

by the text.

TKSPEW

task to handle SPEW
generated within SPEW

see SPEW

(1) TKSPEW requeues itself until the ATPL

is empty.

(2) Before unloading takes place the current

mode is cancelled unless it is the

INTERPRETER mode.

to put a task onthe queue and return when

the task has been completed.

CALL WTASK(O,QUE,PTR)

ARGUMENTS :
RETURN CODE:

COMMENTS :

NAME :
PURPOSE :

CALLING
SEQUENCE:

ARGUMENTS :
RETURN CODE:
COMMENTS :

-64-

CALL WTASK(l,QUE,PRIORITY,PROTECTION,
TASKNAME ,ARG1, ... ,ARGN)

same as TASK routine

return codes of TASVNAME

see TASK routine. Note that here, if a
wait task (WTASK) is generated within
a task or wait task, a WAIT TASK LINK
(WTL) is generated and has the following

format: Figure 5 . WTL

A(ATB)

A(SAVE area)

where A(ATB) is the address of the ATB
of the task from which the wait task
was generated, and A(SAVE area) is

the address of the save area supplied

by the MOTHFR TASK.

ZPANIC
to zero the panic flag in CAMA

CALL ZPANIC
none
none

forces a restart of tasking operations in CAMA.

-65-

REFERENCES

Dinqgwall, 7., Julyk, L., and Wolf, L., The CAMA Inter-
nreter, Memorandum 36, Concomn Project, University of
Michican, Ann Arbor, August 1970,

Mills, D., RAMP: A PDP=-8 Multinroaramming System for
Real-Time DNDevice Control, Memorandum 5, ibid,, Mav 1967,
24 nn,

MTS (Michican Terminal System) Manual, Computing Center,
University of Michigan, Ann Arhor, 1967.

Julvk, L., and Wolf, L., The CAMA Data Structure,
Memorandum 29, Concomn Project, University of Michigan,
Ann Arbcr, August 1967, 49 pp. + anpendices.

Goodrich, Mrs. 5., CAMA: Define-Froblem Command, Memo-
randum 28, ibhid., June 1970, 31 op.

Dinowall, T., Julyk, L., and Wolf, L., The CAMA Macro
Processor, Memorandum 35, ibid., Auqust 1970, 31 pbp. +
aopendices.

Bisgrove, Mrs. J., and Goodrich, Mrs. S., Symvol
Generation, internal memorandum, ibid., 22 June 1970,

po.

Julvk, L., and YWolf, L., CAMA General Descrintion,
Memorandum 33, ibid., Auqust 1970, in oress.

Securiy Classification

: DCCUMENT CONTRSL DATA =R & 2

Security clugsitieation 37 fitle, o i 00 & G o® 0 overall ropoer o claws:it .l

1 ORIGINATING ACTI/ITY ¢ urnorare author. i CLPLAT SETLR.TY CLASSIFICATION
! Unclassified

UNIVERSITY OF MICHIGAN (&R OLR
. CONCOMP PPROJECT

:
N

=

. REPCRT TIT_E

THE CAMA OPERATING SYSTEM

&, DESCRIPYTIVE NOTES Fine sl senar v 1t s darvae dates
Memorandum

S AUTRORIS (First natne, nddic i, last tanne)

L. J. Julyk

i
[Re~_A- OATE T 70T ke N0, OF PAcSS . NC. CF REF

August 1970 . 65 | 8

,u... CONTRACT On GHANT NC. ! u. JRIGINATOR'S REPORT NUMBERIS
:
:

b.3ﬁ53312?3 RRA e f Memorandum 30

B S SO

9b. OTHER REPORYT NC'S) (Ans other numbers tha! may be ss..gned
thie regort,

T

1
{
L
{10, DISTRIBUTION STATEVENT
i
+

Qualified requesters mav obtain cooies of this renort from DDC.

1 UPE _TNTeT LAy N TS Ifl SPONSORING MILITARY AZTIVITY

‘ l Advanced Pesearch Projects Agency

13. AGSTRACTY

'The CAMA (Computer-Aided Mathematical Analysis) operating
system is a program which controls the operation of an interactive
processor. It is designed to operate in the environment of a larqe
central comruter which oolls a small granhics terminal computer for
user-input. The CAMA system is designed to handle a number of
di fferent and independent operations, and to perform operations in
a oriority-based, multioly-queued environment. It is self-expendivle
by the use of its macro facilities.

DD ."=7.1473

H--Mou-

. -]

Security Classification

16,
KEY WORDS

LINK A

L‘ll_k

ROLE

wy

ROLE

CAMA EXECUTIVE SYSTEM
INTERACTIVE COMPUTER GRAPHICS
PRIORITY-BASED TASK SCHEDULER
TASK

MATHEMATICAL ANALYSIS

‘wrey &

il

—and

