
(£>
f

2
IIIK r\i\ KRSH Y OF MICHIGAN

9 mmt mn 4 m m 9 §

CONCOMP
iw»

THE CAMA OraiATINO SYSTEM

L J. Mjk

rf
-«....

NATIONAL TECHNICAL
INFORMATION SERVICE

»l».noI,.ltf V* 21ISI

' •

BEST
AVAILABLE COPY

-'~

Tit UIIIVBitlTV Of MICNIGAM

n*mor»t%4\m 30

Th« CANA OpurAtinq System

L. J. .lulyk

CONCONPt Itetoarch in Conversational Us« of Computers
P. H. Westerve It, Project Director

ORA Project 07449

supported by:

ADVANCED RESEARCH PROJECTS AGENCY
DEPARTMENT OF DEFENSE

WASHINGTON, D.C.

CONTRACT NO. DA-49-083 OSA-3050
ARPA ORDER NO. 716

administered through

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

August 1970

ABSTRACT

The CAMA (Computer-Aided Mathematical Analysis)

operating system is a program which controls the operation

of an interactive processor. It is designed to operat in

the environment of a large central computer which polls

a small graphics terminal computer for user-input. The

CAMA system is designed to handle a number of different and

independent operations, and to perform operations in a

priority-based, multiply-queued environment. It is self-

expandable by the use of its macro facilities.

xxi

TABLE OP CONTENTS

ABSTRACT lii

1. Introduction 1

2. Glossary 2

3. Operation of the C/ftA Sunervisor 9

4 . CAMA Commands 13

5. Task-handling Routines 26

REFERENCES 65

LIST OF FICURES

nagr

Piq. I. Active Task Block 37

Piq. 2. Pause Control Block (T'CB) 44

Fiq. 1. Road Control Block (RGB) 5?

Fiq. 4. Task Control Block (TCB) fl

Fiq. 5. Wait Task Link (WTL) M

vii

1. INTRODUCTION

■
The CAMA (Computer-aided Mathematical Analysis)

operating system is a program which controls the operation

of an interactive processor. It is designed to operatu in

the environment of a large central computer with a small

graphic terminal computer connected to it tay means cf a

2000-baud telephone line. The CAMA system is designed to

handle a large number of different and independent operations

assigned to it until the user signals that he wants to do

something else. When this happens, the normal processing

operations are interrupted, the user generates priority

operations of his own, and the CAMA system returns to what-

ever it was doing before the user interrupted. A user-

generated interrupt is not processed immediately, but is

held in the terminal computer until the central computer

has completed its current operation, whereupon it processes

the interrupt.

The operating system in the central computer

operates in an asynchronous mode. That is, new tasks are

initiated not on a fixed time schedule, but on the comple-

tion of the currently executing task. The central computer

determines whether there is information waiting for it by

polling the terminal computer.

When executing many tasks, the central computer

polls the terminal computer after the completion of each task.

However when the queues are empty, the central computer sends

a message to the terminal computer which says in effect,

-1-

-2-

"Sond me word it you want to do soowthinq.* That is» th«

central computer no lonqer polls, but waits for the terminal

computer to send information.

The supervisor performs many functions for tne

user. It allows him to insert commands and have them

processed, and to enter various modes of operation, for

example, a mode for defining macros, a mode for operating

the interpreter, or a mode for defining various procedures

or tasks. The supervisor also handles program interrupts,

attention interrupts, and error messages from the central

computer, all the time allowing the user to remain operating

within the CAMA system without returning to the central

computer controlling system. It also allows the user to

run other programs such as the FORTRAN compiler or a user-

generated program while still under CAMA command control.

The supervisor dynamically loads and executes all programs

from disk storage. The user may then unload all of these

dynamically loaded programs by issuing the proper command.

2. GLOSSARY

Task

A task is a procedure which is executed according

to its position in a queue. When a task is completed the

control of the program returns to the CAMA supervisor to

determine which task should be executed next.

During the execution of a task other tasks may be

generated and put onto the queue. As soon as a task is put

on the queue, operation returns to the mother task.

-J-

NonMl Task Procoduro

1. Opsrattnq in T0

2. occur re no» c«us«s n«w t—k to bo ^onorot^d

3. Now took TN^| it put on (|uoue

4. Operation return« to T0

5. Tasks T0 through TN+j are axeeuted (unless

priorities «ro ostsblished).

Wait Task

When a wait task is generated by the current

operating task and put on the queue, operation is returned

to the queueing system and not to the current task.

Wait "ask Procedure

1. Operating In TQ

2. Occurrence causes a wait task to be generated

3. The new task TN . Is put on queue

4. Operation Is returned to Task T,

5. Tasks T, through TN+, are executed

6. Operation is then returned to T..

The purpose of a wait task is to take care of operations

which are necessary for the completion of the current

operating task TQ. As an example, suppose a pack has a data

overflow while a store operation is taking place. The store

operation is task TQ, wait task TN+1 is gftnerated to exoaru

the pack. The store operation is not continued until the

pack is expanded.

A -iu.il» in lim OMA «•«■# I» « MflM of %mk»

««it* i « i« «oeoH^llfttiP«.

OWHMM oeoiir in |Niifft. Tii«r« ««y l>» n |Niir« off

liiPiMt. Cacti txiir «onikitit of m* «ctiw >,i»rw<> «f«4 • ronorwt

An active <|UVIM in in« <|uvtae whten i« proonnncd

firnt when * qunu« pair i« rofaranoad. It la aiwaya

prooaaaatf befor« a raaarva qiaaua in m« pair* anoapt «#nan

the wntar aitplicitly oakaa rafaranoa to tha raaanra quooa.

Waacrvo Qucu«

In qanaral, a ratarva quaua la avacutad only when

tha active quaua la axhauatad. Tha taaka on tha raaarva

quaua ara usually of relatively little inportanoa»qart»a9e

collection, for exaaple—which can be dona whan no praaain^

activities are present.

Look Task

The look task is a special taak oparatinq in the

central computer which looks to see if there is any inforoa-

tion in the terminal oomputor. In effact it polls the terminal

computet. The look task is executed after each taak on tha

task queue. It is suspended when a data ready taak is sent

to the terminal computer. This occurs under two conditions!

1) if the panic flaq has been set;

2) if the current queue pair runs down.

A qmm pair it «n «ctiv« qu«u« and a raaarv« quoua

lafcaa aa a Mt* Th* rvaarva «fuaua o|»oratas whan tha aetiva

ifif^ua haa nan «tOMn.

Data »aad» Taafc

A data raady taak la a taak for tna toniinal

oonpwtar. it la tapleaeniad auhar whan tit« panic flag ia

aat or •»»•« a qvaiK. pair runt down« and allowt tha ayttaa

%o oparata in a raad ttata twhich la nora aconoaicaU whila

»••ittna foff data to ba aaot fffo« tha taminal coaputar.

Panic riaq

A panic n«9 la aat by tha co—nd MAW. At tha

tiaa of aaacutloo of tha look taak If tha panic riaq it

tat* taalilng it not oontmuadi It it tutpand«d and tha data

rtady taak ia aant to tha tarBinal coaputar. The panic flag

paraita tha uaaff tot

1} aurvay tha ttatut of hit pratant queues,

2) aaa wharc ha atandt in tha operation of tha

prograa«

3) axacuta other conaandt to take care of such

things aa data collection,

4) pause whan ha it confuted and needs tine to

look around a bit.

Front End

Tha front and ia a procedure whose function is to

ditpatoh inforaation arising fro« the terminal computer and

-*-

to inttiAt« prooodurvt to prootu or storo this tnfonMtlon.

The infomation ttam th« teminal ooM|»ut«r cmn bm in th«

for» of cowund*, 9i«phtc infonMtion. niMMrleal infonMtion*

or othor types of d«t*. The front-«nd procodur« first

dctemtnos the character of th« infonution« decidei which

processor should handle it« end then relinquishes control

to that prooessor. In general« the iteas sent to the

processors are .. tasks and can be processed iMMdiately.

Soaetiaes one of these procedures will generate tasks to

be put on t;.o queue to be processed later. Durinq the

proc<?siinq of the front end, the operation of the queue

is stopped and the processinq takes place as detemxned by

the front-end processor.

Cowwand

A cow and is one of the qroup of words preceded

by s percent siqn or a colon which stinulates action that

takes precedence over all other operations in the CAMA system.

The key words for a cosmand are preassiqned, and the commands

are defined as macros in such a way that the user can expand

the command processor by devisinq new commands.

The command lanquaqe is processed through the inter-

preter. That is, a command is qenerated by using the macro

processor to generate the code» which is then executed through

the interpreter.

Scheduler

The task scheduler is a procedure for operating the

current queue pair. In addition, it checks to see if a task

-7-

18 in use and, if so, reschedules the task on the current

queue from whence it came. It also handles loading of

processing code, if necessary, as well as errors which might

occur.

CAMA Macro

A CAMA macro is a macro written by a user or by a

writer. It is written in the form of a prototype, as are

many macros for assembly languages. The only variation is

that the CAMA macro may be expanded in a number of base

languages, among which are the command language, FORTRAN,

ALG0L, or other standard languages. Macros can also be

written in terms of languages created within CAMA.

Language

In CAMA, a language is a set of instructions whose

interpretation is a function of the language named. For

example, an ADD operation in the MATRIX language would be

interpreted differently than, say, an ADD operation in the

POLYNOMIAL language.

Writer

A writer is a skilled programmer who knows the

intricacies of the CAMA system. He is distinguished from

the user in that he has considerably more experience and

therefore is able to manipulate the system internally, which

the user cannot do.

-8-

User

A user is one who may know a little about the CAMA

system but is essentially concerned with the operations as

they have been predefined by the writer. The distinction

between a user and a writer is not always clear-cut; an

individual might perform as a writer in some cases and as a

user in others.

Interpreter

The interpreter is a processor which interprets

code dyn ami ca1ly.

ATB - ACTIVE TASK BLOCK (see Fig. 1).

ATPL - ACTIVE TASK PUSH LIST, a pack of Type 4 on which the

ACTIVE TASKS are stored.

CURRENT ACTIVE TASK - a task which is currfently in operation.

ACTIVE TASK - a task which is pending operation due to the

generation of a WAIT TASK or a READ which reads the

TTY, light pen, or Grafaeon.

TCB - TASK CONTROL BLOCK (see Fig 4).

WTL - WAIT TASK LINK (see Fig 5).

PRIORITY CONDITION - the priority upon which the QUEUE PAIR

is to operate with (see command SET).

TASK PRIORITY - the priority given to a task when it is

generated.

-9-

MOTHER TASK - task from which a wait task was generated.

PCB - PAUSE CONTROL BLOCK (see Fig. 2).

RGB - READ CONTROL BLOCK (see Fig. 3).

3. OPERATION OF THE CAMA SUPERVISOR

The operation of the CAMA supervisor is begun by

issuing a RUN CAMA conunand to MTS. After MTS indicates that

execution has begun, there is a period of waiting until

the CAMA system is bootstrapped into the virtual memory.

At the completion of this loading, the CAMA supervisor asks

for the name of the data structure file where the user has

stored his information or data. If an illegal file name is

given, the supervisor continues to ask for it until a legal

name is ^xven. The supervisor does not check to see that

this file has any structure in it; it requires only the

legal name of a file. This can be a permanent file in the

MTS system or it can be a temporary file.

Once the file name for the data structure is

given, the CAMA supervisor checks to see if a master

directory exists in this file. If one does not, the super-

visor creates its own ttaster directory. It also creates a

number of packs which are necessary for its own operation.

For example, it creates packs necessary for the operation of

the CAMA queue pairs. It next sets a number of traps for

such things as program interrupts and attention interrupts.

When all of this work is completed, the CAMA supervisor will

-10-

print on the output terminal the words CAMA SYSTEM. At

this point the user is in control. At this time the user

is being buffered in the terminal computer and in the central

computer. This means that messages being sent either way

are not dependent upon whether the computer at the other

end is ready to receive or not. Therefore the messages can

be transmitted or held for transmission until the computer

is ready to receive. The 338 or the termind computer does

not send anything to the central computer unless it is asked

to. If, however, the central computer sends information to

2
the terminal computer, the RAMP system will set up * RAMP

task to handle it.

Although the user is in control of the operation

he must do a number of things before he can go very far.

The initial loading of the CAMA system included only those

subroutines that are needed for minimal operation. To

attain certain specific objectives with the CAMA system,

other routines will have to be loaded. These must be accessed

from subroutine libraries, and the user must specify which

libraries he wants before he can proceed. Once specified,

these libraries need not be kept in virtual memory, however,

but may be discharged by the user, thereby reducing his

operating cost.

In some cases the order of bringing these files

into the virtual memory is most important. Actually the

order depends upon the operation of the MTS loader. The

loader will scan the library files in the order specified.

-11-

Because it is a one-pass loader, it cannot handle back-

references between libraries, that is, references to a

library file that has already been scanned. If the order of

loading is improper, MTS will not be able to find certain

subroutines and will send a message to that effect. In

order to resume operation, the user must give a command to

the terminal computer to turn off the buffering

(CTRL-A CTRL-A TK 1375 0)

then type the appropriate answer to the loader, followed

by a local command to turn buffering back on

(CTRL-A CTRL-A TK 1375 1)

when he has finished communicating to the loader.

Commands are issued in CAMA by typing a % or :

as the first character, followed by the command name,

followed by the parameters for the command. For example,

to get a complete dump of the master list, one would type

%DUMP PTR-ON

(See COMMAND section for a complete description of tt is

command and others presently defined in the CAMA system.)

To enter a specified mode in CAMA, one would type

a left parenthesis as the first character, followed by the

mode name, then a right parenthesis, and finally, any other

information applicable to the mode. At this point the

procedure for handling this mode w\ll be dynamically loaded

and any subsequent line of input will be directed to this

procedure. For example, to enter the interpreter mode, one

would type

(INTERPRETER) (MATRIX) (PROB5)

-i^-

Noto that only the first three characters of the mode name

are used to identify it. Here the interoreter mode would be

entered, with the default variable mode taken to be the MATRIX

mode, and the default problem name taken as PR0B5.

A mode is ended by entering r ew mode or by typing

(END), except in the case of the interpreter mode. This

mode is ended by typing

(END)INTERPRETER

thereby allowing the interpreter to release its temporary

variables. If one first establishes the interoreter mode and

then establishes a second mode, the interpreter mode is held

pending. Then, if the user ends the stcond mode with (END),

he will return automatically to the interpreter mode. See

the routine LPARIN for more details about mode setting. Modes

may also be ended by giving the command to unload (i.e., %UNL).

Currently three modes are available:

interpreter mode,

macro mode (see routine STOMAC), and

procedure mode (see routine STOPRO).

The remainder of this report describes the current

commands available under CAMA. In these commands, one or

more blanks, or a comma with optional blanks on either

side, serve as delimiters. Underlined values are the default

values. Following the commands are descriptors of the routines

which make uo the CAMA supervisor, as well as comments in some

cases about the internal structure of the CAMA supervisor.

-13-

4. CAMA COMMANDS

NAME:

PURPOSE:

PROTOTYPE:

PARAMETERS:

COMMENTS:

EXAMPLES:

ALIB

to add library files to dynamic loader's

library table.

ALIB LFN

LFN one or more LIBRARY FILE names separated

by delimiters•

the library files are added to the bottom of

the dynamic loader's library table in the

order given. Currently a maximum of

ten library files may be used at any

one time.

%ALIB A,B, C

files A, B, and C are added.

%ALIB A C,D

only D is added since A and C already

exist.

NAME:

PURPOSE:

PROTOTYPE:

COMMENTS:

EXAMPLE:

DESTROY

to destroy a pack.

DESTROY P=pack name, Lslist name

(1) must confirm action by giving OK.

(2) see DESTP routine in Reference 4 before

using this command.

%DESTROY PACK1

PACK1 defined in the master directory

is destroyed.

-14-

%DESTROY PACK3, LISTS

PACK3 defined in the list LISTS is

destroyed.

%DESTROY L*LISTS

LISTS is destroyed.

NAME:

PURPOSE:

PROTOTYPE:

PARAMETERS:

COMMENTS:

EXAMPLES:

OLIB

to delete library files from dynamic leader's

library table.

DLIB LFN

LFN zero or more library file names

separated by delimiters,

if no parameter is given then all the library

files stored are released.

%DLIB C#B

files C and B are deleted.

tDLIB

all library files are deleted from table

and their associated storage is released.

NAME:

PURPOSE:

PROTOTYPE:

COMMENTS:

EXAMPLE:

DPROB

to define a problem in CAMA

DPROB

see Reference S.

%DPROB

NAME:

PURPOSE:

DTASK

to delete a task from a queue.

-15-

PROTOTYPE:

COMMENTS:

EXAMPLES:

DTASK T=taäk name, Q=queue name or blank,

none

%DTASK TASK1

causes the first occurrence of task

TASK1 to be deleted from the active

queue pair.

%DTASK TASK3, QUE5

causes the first occurrence of task

TASK3 to be deleted from the queue

pair QUE5.

NAME:

PURPOSE:

PROTOTYPE:

COMMENTS:

EXAMPLES:

DTATPL

to delete a task from the ATPL.

DTATPL task name or blank.

none

%DTATPL PRT

deletes the task PRT from the ATPL

if PRT is in ATPL.

%DTATPL

deletes the most current task in ATPL.

NAME:

PURPOSE:

PROTOTYPE:

DUMP

to dump the contends of a list, association

table or a queue, or to obtain the header

information on any pack.

DUMP P=pack name, L=list name

-16-

List

Association table

>
, PTR=

, A=association, jJ=object

V=valve

COMMENTS: underlined values are the default values.

EXAMPLES for dumping lists:

%DUMP

gives a dump of the pack names in the

master directory.

%DUMP PTR«0N

gives a dump of the pack names and their

pack pointers in the master directory.

%DÜMP LISTS PTR=OFF T-LIST

gives a dump of the pack names in list

LISTS.

%DUMP LISTS

equivalent to above command.

EXAMPLES for obtaining the header information for any pack:

The header information returned for a pack

consists of:

-17-

NANE tame of pack dumped.

LENGTH number of uni ts pack

is defined for.

^YPE type of pack (some
4

positive number) .

USAGE COUNT current usage count.

DEFINED IN name of list where

pack was defined.

LENGTH OF DATA current length of

data in us» (in bytes).

LINE NUMBER line number of pack

indicating where it

is defined on the disk.

%DUMP H-ON

gives the header information for the

master directory.

tDUMP H-ON PACK1

gives the header information for the

pack PACK1 which is defined in the master

directory.

IDUMP PACK6, LIST12 H-ON

gives the header information for the pack

PACK6 defined in list LIST12.

%DUMP L-LIST1 H-ON

gives the header information for the

list LIST1.

EXAMPLES for dumping QUEUES:

%DUMP T-QUEUE

-18-

gives a dump of the tasks on the currently
!

active queue pair. Dumps only the active

queue member of the pair.

%DUMP T=Q==RESERVE

same as above except that only the

reserve queue member of the queue pair

is dumped.

%DUMP QUE5.63A T=Q==BOTH

gives a dump of the tasks on the queue

QUE5.63A. Dumps both the active and

reserve members of the queue pair. Note:

queue dunro consists of the names of the tasks

on the queue, their associated priorities

and the name of the task that they return to.
4

EXAMPLES for dumping association packs :

%DUMP T=ASSOCIATION

gives a complete dump of the association

table which connects all lists in the

data structure.

%DÜMP T=A V=MASDIR

dumps out only the associations with

value equal to MASDIR in the associa-

tion table which connects all lists in

the data structure.

%DUMP ASS0C1 T=A O-Ml

gives a dump of associations in the

association table ASS0C1 which is

defined in the master directory. Dumps

-19-

only those associations with object

value equal to Ml.

%DUMP ASS0C5, LIST3 A=A1, V=V2

gives a dump of the association table

ASS0C5 defined in list LIST3. Dumps

only those associations with associa-

tion equal to Al and value equal to V2.

Note that T=A was not necessary here.

EXAMPLES for dumping list of tasks which have been PAUSEd

(through the execution of a FORTRAN PAUSE type of statement):

%DÜMP T=PAUSE

or equivalently

%DÜMP T=P

EXAMPLES for dumping the ATPL:

%DÜMP T=ATPL

EXAMPLE for dumping general registers:

%DUMP T=GRS

NAME: EMPTY

PURPOSE: to empty a pack.

PROTOTYPE: EMPTY P=pack name, L^list name.

COMMENTS: (1) lists cannot be emptied.

(2) must confirm action by giving OK.

EXAMPLES: %EM?TY Al, C3

pack Al defined in the list C3 is

emptied.

%EMPTY A5

■ •

-20-

pack A5 defined in the master directory

is emptied.

NAME: FPAUSE

PURPOSE: to flush a PAUSEd task.

PROTOTYPE: FPAUSE name of task

COMMENTS: flushes a task which was PAUSEd by the

execution of a FORTRAN PAUSE statement.

EXAMPLES: %FPAUSE TASK3.5

flushes the PAUSEd task TASK3.5.

NAME: GTQ

PURPOSE: go to a specified queue and begin task

scheduling with this queue.

PROTOTYPE: GTQ queue pair name or blank.

COMMENTS: if the qu^ue pair named does not exist it

is created.

EXAMPLES: %GTQ QUE1.6

task scheduling is resumed with queue

QUE1.6.

%GTQ

task scheduling is resumed with previously

defined queue pair.

NAME: HALT

PURPOSE: to halt task scheduling.

PROTOTYPE: HALT

-21-

COMMENTS:

EXAMPLES:

see command RES.

%HALT

NAME:

PURPOSE:

PROTOTYPE:

COMMENTS:

EXAMPLES:

LIST

to list a macro definition or a procedure.

LIST macro name or procedure name,

language name of macro, S= starting line

number, E=ending line number.

none

%LIST PR01

lists all lines defined for the procedure

PR01

%LIST MACROI, LANG3.5 S»-5.21

lists the lines starting at line

number -5.21 to end of pack for the macro

MACR01 defined in language LANGS.J.

%LIST PR02 3.5, 3.5

lists the line 3.5 only for the procedure

PR02.

NAME:

PURPOSE:

PROTOTYPEi

COMMENTS:

EXAMPLE:

MTS

returns the user to MTS.

MTS

all MTS commands may then be processed with

the exception of the RUN command. The

MTS command RESTART brings the user

back to the CAMA supervisor.

%MTS

-22-

NAME:

PURPOSE:

PROTOTYPE

COMMENTS:

EXAMPLES:

PROT

to protect or unprotect a pack.

PROT name of pack, L=naxne of list where pack

is defined,

P= S OFF J

a protected pack cannot be destroyed.

%PROT PACK1

this protects the pack PACK1 which is

defined in the master directory.

%PROT P-OFF PACK3,LIST3

this command unprotects the pack PACK3

defined in list LIST3.

%PROT L-LIST3

this protects the list LIST3.

NAME:

PURPOSE:

PROTOTYPE!

COMMENTS:

EXAMPLE:

REL

to release the virtual memory used by the

data structure.

REL

this conuand sets up a task to release the

virtual memory used by the data struc-

ture and to save any part of the data

structure that was changed while in

virtual memory.

%REL

NAME:

PURPOSE:

RES

to restart task scheculing.

23-

PROTOTYPE:

COMMENTS:

EXAMPLES:

RES

see command HALT.

%RES

NAME: RPAUSE

PURPOSE: to restart a PAUSEd task.

PROTOTYPE: RPAUSE name of task.

COMMENTS: restarts tasks which were PAUSEd by the

execution of a FORTRAN PAUSE statement.

EXAMPLES: %RPAUSE TASK3.5

restarts the PAUSEd task TASK3.5.

NAME:

PURPOSE:

PROTOTYPE:

COMMENTS:

EXAMPLE:

RTQ

to return to a specified queue pair and

begin task scheduling with it only

after the current queue pair has run

down.

RTQ queue-pair name or blank,

if the queue pair named does not exist it

is created.

%RTQ QUE6

task scheduling is resumed with the queue

pair QUE6 only after current queue

pair has run down.

%RTQ

task scheduling is resumed with the

queue pair previously defined when

current queue pair runs down.

-24-

NAME: RUN

PURPOSE: to dynamically run programs within CAMA.

PROTOTYPE: RUN string

COMMENTS: same as MTS RUN command except for the

handling of the PAR= option.

EXAMPLES: %RUN »PERMIT PAR='FILE RO'

note that the parameters for PAR=

have been enclosed in primes.

%RUN *FORTRAN SCARDS=FILE(3.5,LAST-10)

SPUNCH=PUN(LAST+1) PAR^SML

note that when only one- parameter is

given for PAR= it need not be enclosed

in primes.

%RUN *ASMG SCARDS«FILE1+FILE2(1,10)

+ (30.5,LAST-2)+FILE3 SPUNCH—PUNCH

0**SYSMAC 2-MLIB PAR^'B^SIZE—lOO »NX*

note the use of the double equal-sign

in the PAR« parameter list.

NAME:

PURPOSE:

PROTOTYPE

COMMENTS:

EXAMPLES:

SAVE

to save a pack onto disk storage if it has

been changed while in virtual memory.

SAVE pack name, L»list name,

if a list is saved then everything connected

below the list is saved also.

%SAVE

saves the complete data structure.

-25-

%SAVE PACK1

saves pack PACKl defined in the master

directory.

%SAVE PACKS, LIST12

saves pack PACKS defined in list LIST12.

%SAVE L=LIST12

saves the list LIST12.

NAME:

PURPOSE:

PROTOTYPE!

COMMENTS:

EXAMPLES:

SET

to set certain options in CAMA.

SET PC=priority condition

PRINT* "" (oFFJ

priority condition =0=> process tasks ir- order

which they are stacked (i.e., first on,

first off).

priority condition =-!=> process highest

priority tasks first.

priority condition =n>0=> process tasks with

priority equal to n first.

%SET PC=0

%SET PC=5.25 PRINT=ON

the PRINT=ON => all internal data

structure and task-handling conunents

which would normally not be printed are

printed to aid the user in possible

trouble-shooting.

-26-

NAME:

PURPOSE:

PROTOTYPE;

COMMENTS:

EXAMPLES:

UNL

when the Active Task Push List runs down, UNL

unloads all the subroutines which were

dynamically loaded.

UNL

turn off the current mode unless it is the

INTerpreter mode.

%UNL

Additional commands and subroutines may be found

in References 1-6.

5. TASK-HANDLING ROUTINES

NAME:

PURPOSE;

CALLING
SEQUENCE;

ARGUMENTS:

RETURN CODE;

COMMENTS:

ANSWER

to answer a read in CAMA

CALL ANSWER (PBUF, HL, SW)

PBUF pointer to buffer.

HL (half-word integer) length of line in

buffer.

SW (half-word integer) switch

=0=>normal return

=4=>E0F

none

reads are answered in CAMA by typing a slash

"/" followed by required text. FORTRAN

formatted reads are protected from errors

in typing in data.

-27-

The routine ANSWER reestablishes the

task state of the task which issued the

read and returns the data obtained,

thereby restarting the task which

generated the read. (See READ routine.)

ANSWER is not to be called by the user.

NAME:

PURPOSE:

CALLING
SEQUENCE:

ARGUMENTS:

RETURN CODE:

COMMENTS:

CAMSET

to send a task to the PDP-8 to indicate

whether or not the 8 is to store display

file names sent to the 8.

CALL CAMSET(SW)

SW integer switch with the value 0 or 1.

none

SW=0=> do not store names

=!=> store names

NAME:

PURPOSE:

CALLING
SEQUENCE:

ARGUMENTS:

RETURN CODE:

COMMENTS:

DFANS

to answer a DF read

CALL DFANS(PBUF, HL)

PBUF pointer to buffer

HL (half-word integer) length of line

in buffer,

none

DF reads (i.e., reads generated internally

within the DF package of routines) are

-28-

answered in CAMA by inserting a small

'd' at the beginning of each line to be

transmitted. This is done within the

PDP-8. Once the response has been

obtained the DFANS routine reestablishes

the task which issued the DR read and

returns control to it. (See READ routine.)

DFANS is not to be called by the user.

NAME:

PURPOSE:

CALLING
SEQUENCE:

ARGUMENTS•

RETURN CODE;

COMMENTS:

DFCBL

to obtain the starting address and length

of the current Display File (DF)

construction buffer.

CALL DFCBL (START, LEN)

START starting address of buffer (integer)

LEN current active length of the buffer

in bytes (integer).

RC=4 no buffer or buffer is empty,

none

NAME:

PURPOSE:

CALLING
SEQUENCE:

ARGUMENTS:

RETURN CODE:

COMMENTS:

DFPTB

stores a PACK in the current Display File

(DF) construction buffer.

CALL DFPTB(PTR)

PTR pack pointer

RC=4 no buffer or pack is empty

none

-29-

NAMK :

PURPOSE:

CALLING
SEQUENCE;

RETURN CODE:

COMMENTS:

DL

to dynamically load and execute a subroutine

so that it can use CAMA variables.

CALL DL (SNAME, KRC, ARC1, ..., ARGM, fi.1, ...N-l^N)

SNAME 8-character name of subroutine.

NRC number of return codes possible for

subroutine öNAME plus one (integer).

ARG1,..., ARGM for subroutine

SHANE.

&1,...,&N-1 returns for subroutine SNAME.

&N return for dynamic loader.

see DLR routine,

the actual arguments to subroutine SNAME

are pointed to by the arguments of DL.

NAME:

PURPOSE:

CALLING
SEQUENCE:

ARGUMENTS:

DLAL

allows the addition of one library file

name to the library name table in DLR.

CALL DLALCFNAME ' ,&1)

•FNAME ' - character string which is a library

file name. String length L2 bytes max.

RETURN CODES: &1 - control is returned to this statement

for one of the following reasons:

(1) illegal character in file name

(***DL** ILLEGAL FILENAME),

-30-

COMMENTS:

(2) the file does not exist

(***DL** FILE DOES NOT EXIST),

(3) the library file name table is full

(***DL** LIBTAB FULL),

(4) the file is not a library file

(***DL** BAD LIB FILE).

(1) The trailing blank can be omitted if

the file name is 12 characters long.

(2) The library name table can hold 10 file

names.

(3) The library file structure is expected

to be like that produced by GENLIB.

(4) The legal characters in the file name

are the same as are allowed for MTS files.

NAME:

PURPOSE:

CALLING
SEQUENCE:

ARGUMENTS:

RETURN CODE i

COMMENTS:

DLEAL

deletes all library file names from library

file name table in DLR.

CALL DLEAL

NONE

NONE

NONE

NAME:

PURPOSE:

DLEOL

deletes one library file from the name table

in DLR.

-Jl-

CALLING
SEQUENCE:

ARGUMENT:

RETURN CODE:

COMMENTS:

CALL DLEOLCLFNAME ' ,&1)

'LFNAME ' - character string which is the

name of a library file. String length

12 bytes or less.

&1 - control is returned to this statement

for one of the following reasons:

(1) the library name table was empty

(***DL** LIB TAB EMPTY),

(2) the file name was not found in

the table

{***DL** FILE NOT IN LIBTAB),

(3) the file name is illegal

(***DL** ILLEGAL FILE NAME).

(1) The trailing blank is not necessary if

the file name is 12 characters long.

(2) The characters allowed in the file name

are the same as for MTS file name.

(3) The library name table is automatically

garbage-collected.

NAME:

PURPOSE:

CALLING
SEQUENCE:

DLR

allows a subroutine to be dynamically loaded

from a library file and executed.

CALL DLR ('STRING ' ^Al ,A2 , . .. ,An,&l ,&2 . . . , &M)

-32-

ARGUMENTS:

RETURN CODE;

'STRING ' - a character string which is the

name of the subroutine that is to be

dynamically loaded. FORTRAN subroutine

name rules apply:

(1) first character alphabetic A-Z,

(2) succeeding characters alphabetic

or integer digits 0-9,

exception (3) 8-byte character length

allowed.

M - an integer value such that M-l return

codes are for the subroutine which is

to be called; the Mth return code is

for DLR.

Al,A2,...,AN- a list of variable names which

would normally appear as arguments for

the subroutine.

&M - control is returned to this statement

for one of the following reasons:

(1) the object module for the subroutine

was not found in the library

(***DIj** 0Bj MOD NOT IN LIBR) ,

(2) no library files have been

specified by the user

(***DL** NO LIBRARY),

(3) the subroutine name does not start

with an alphabetic character

(***DL** ILLEGAL CHAR IN OBJ MOD NAME).

-33-

COMMENTS: (1) The time delay for the first call on a

subroutine is approximately the same

as for a normal load. Subsequent calls

on that same subroutine have a very

small time delay.

(2) If an illegal character occurs in a

subroutine name after the first

character, that character and all

succeeding characters are replaced by

blanks. No comment is printed.

(3) The trailing blank in 'STRING ' is

necessary only if the name is less than

8 characters.

NAME:

PURPOSE:

CALLING
SEQUENCE:

ARGUMENTS:

RETURN CODES

COMMENTS:

DLUNL

unloads all object modules that have been

loaded by DLR.

CALL DLUNL

NONE

NONE

(1) Selective unloading is not allowed at

this time.

NAME:

PURPOSE:

DRUN

allows the user to suspend the execution of

one main program and then execute another

'

-34-

CALLING
SEQUENCE:

ARGUMENTS:

RETURN CODES

main program with all the logical I/O

devices reassigned. DRUN effectively

allows the MTS command $RUN to be

re-entrant.

CALL DRUN(,STRING%,,&1,&2,&3,&4)

'STRING!' - a string of characters identical

in format to that following a $RUN

command. 'MAP', 'NOMAP', MAPFDNAME,

and execution limits are not allowed.

% (percent) is the terminator for the

string. Maximum string length is 255

bytes.

%1 - control is transferred to this statement

if an error was detected in parsing

•STRING%'

(***DR** PARSING ERROR).

%2 - control is transferred to this statement

if a call to error was trapped

(***DR** TRAPPED CALL TO ERROR).

%3 - control is transferred to this statement

if a call to MTS, SYSTEM, or QUIT was

trapped

(***DR** TRAPPED CALL TO MTS/SYSTEM
/QUIT).

%4 - control is transferred to this statement

-35-

COMMENTS:

if the return code from the executed

program is greater than zero

(***DR** RC>0 FROM EXECT PROG).

(1) Prototype: (in FORTRAN)

CALL DRUN(,*USERS%,)

CALL DRUNC »FORTRAN SCARDS=-Z PAR=SML% ')

(2) The default reassigned values for SCARDS,

SPRING, and SERCOM are »SOURCE*, »SINK*,

and *SINK* respectively. All other

logical I/O devices are unassigned (just

as in MTS for the TTY).

(3) The symbol % (percent) is not allowed

in FDNAMES that are given in 'STRING!'.

(4) The size of DRUN is 3856 bytes (approx.

one page).

NAME:

PURPOSE:

CALLING
SEQUENCE:

ARGUMENTS:

RETURN CODE;

COMMENTS:

DTATPL

to delete a task from the ACTIVE TASK PUSH LIST

(ATPL).

CALL DTATPL(NAME)

NAME 8-character name of task

RC=4 task not found

(1) If NAME is blank then the current active

task will be deleted.

(2) If the task is found then this routine

does not return to caller.

(3) When a task is deleted, any pending PAUSE,

EF read, or trapped READ is flushed.

-36-

(4) All MOTHER tasks connected to the

deleted task are also deleted.

NAML:

PURPOSE:

CALLING
SEQUENCE:

ARGUMENTS:

RETURN CODE

COMMENTS:

DTASK

schedules tasks within a queue pair.

CALL DTASK

none

none

The TASK SCHEDULER (DTASK) is a procedure

which schedules t';sks on a priority basis.

The current QUEUE PAIR is obtained and

the ACTIVE QUEUE is referenced. If the

ACTIVE QUEUE is empty then the RESERVE

QUEUE is referenced. When both queues

are found to be empty, DTASK returns with

the NOTASK flag set. If one of the queues

is not empty then the TASK to be processed

is selected according to the priority condition

which has been set. A priority condition of zero

means that the next task on the queue is to be

orocessed regardless of its oriority. For a

condition which is some positive number, then only

tas'-s with this priority will be processed regardless

of their position on the OUEUE. If frere is no task with

th.rs priority, then the priority oondition is reset

to zero and the ACTIVE QUEUE is referenced

again. If the priority condition is a minus

-37-

one, then those tasks with the highest

priorities are processed first regardless

of their position on the QUEUE. The priority

condition may be set by the user by issuing

the conunand

%SET PC=nuinber.

Once a task has been selected, the ACTIVE

TASK PUSH LIST (ATPL) is referenced to see

if this new task is already in use (i.e. ,

pending a WAIT TASK or the answer to a

READ which requires TTY, light pen, or

Grafaeon response). If it is in use then

the task is requeued; otherwise an ACTIVE

TASK BLOCK (ATB) is created for this task,

and processing continues as shown in flow

chart for TASK SCHEDULER.

The ACTIVE TASK BLOCK has the following

internal format:

NAME OF TASK

| A(TCB) .

1
| TASK'S SAVE AREA

1
1

1
. J

84 bytes

Figure 1. ACTIVE TASK BLOCK

-38-

Flow Chart for TASK SCHEDULER (DTASK)

NGi

(entry j— -» obtain current
QUEUE PAIR

1
ACTIVE QUEUE
empty? obtain TASK

according to
PRIORITY
CONDITION

N0

"

RESERVE QUEUE
empty?

i

L00K
TASK set N0TASK flag.

i

\ '

REQUEUE it task on ATPL?

i

N0

create ATB

\

put ATB on ATPL

\

DYNAMIC L0ADER

& ?\ .continued on ne:

Y -39-

error return from
DYNAMIC LOADER

N0

remove ATB
from ATPL

ask USER if he
wants to REQUEUE
or FLUSH his
TASK

WAIT
TASK?

iM.
release

ATB

Z

make MOTHER
TASK the
CURRENT
ACTIVE TASK

halt TASK schedulim
& turn buffering of:

~ T
READ
TTY

release
TCB

I
L00K
TASK |

release
ATB

turn
buffering

release
TCB

f

remove ATB
from ATPL

release
WTL

release
ATB

return to
MOTHER TASK

£
REQUEUE?

ZEH
FLUSH?

 IN0

REQUEUE this
TASK

L00K
TASK

remove ATB
from ATPL

♦ «1 WAIT
TASK?

-—►
make MOTHER
TASK the
CURRENT
ACTIVE TASK

release ATB, TCB
and WTL

Flow Chart for TASK SCHEDULER (DTASK)

-40-

NOTE: When DTASK has an error return from DLR

it asks the user if he wants to requeue

or flush the task which caused the error,

Task scheduling is halted at this point,

and after the user answers DTASK he

must give the command %RES in order to

restart task scheduling.

NAME:

PURPOSE;

CALLING
SEQUENCE:

ARGUMENTS:

RETURN CODE:

COMMENTS:

EBOCT

convert EBCIDC representation of numbers

to OCTAL.

CALL EBOCT(NUM,HOCT)

NUM EBCDIC representation of number (full-

word integer)

HOCT resulting octal number (half-word integer)

none

none

NAME:

PURPOSE:

CALLING
SEQUENCE:

ARGUMENTS:

RETURN CODE:

COMMENTS:

ERRCODE

program to snatch error code from IBCOM#.

call ERRC0DE

none

none

ERRCODE is not to be called by user.

NAME:

PURPOSE:

FEND

to dispatch data from the terminal to the

-41-

CALLING
SEQUENCE:

ARGUMENTS:

RETURN CODE:

COMMENTS:

proper interpreter on the basis of its

first character.

CALL FEND{PT2,HL)

PTR pointer to buffer

HL length of data in buffer (half-word

integer)

none

(1) does not return to caller.

(2) its action is depicted in the flow chart

for FR0NT END.

FEND is not be called by the user.

NAME:

PURPOSE:

CALLING
SEQUENCE:

ARGUMENTS:

RETURN CODE:

COMMENTS:

FIOCSERR

I/O recovery routine for FIOCS#

CALL FIOCSERR

none

none

FIOCSERR is not to be called by the user,

NAME:

PURPOSE:

CALLING
SEQUENCE:

ARGUMENTS:

RETURN CODE:

COMMENTS:

FPAUSE

to flush a task which has been paused by the

execution of a FORTRAN PAUSE statement.

CALL FPAUSE(NAME)

NAME name of paused task.

none

does not return to caller.

■42-

Flow Chart for FRONT END (FEND)

\ fc
first character
is a non-print-
ing character

NPCIN / *

lN0
i or: COMMAND

^0

(LPARIN

|N0

/
1 %E0F ? 1"

W |N0

TEXTIN ANSWER |

t
SET E0F
FLAG

-43-

NAME:

PURPOSE:

CALLING
SEQUENCE:

ARGUMENTS:

RETURN CODE:

COMMENTS:

FRDNL#, FWRNL*, DIOCS#

NAMELIST and DEFINE FILE FORTRAN I/O trap.

see FORTRAN'S FRDNL#, FWRNL#, and DIOCS#

see FORTRAN'S FRDNL#, FWRNL# and DIOCS#

see FORTRAN'S FRDNL#, FWRNL# and DIOCS#

none

NAME:

PURPOSE:

CALLING
SEQUENCE:

ARGUMENTS:

RETURN CODE:

COMMENTS:

GTQUE

to establish a new QUEUE PAIR or go to

a previously established QUEUE PAIR.

CALL GTQUE(NAME)

NAME 8-character name of QUEUE PAIR

RC=4 did not change QUEUE PAIR.

If NAME is blank then go to previously

established QUEUE PAIR.

NAME:

PURPOSE:

CALLING
SEQUENCE:

ARGUMENTS:

RETURN CODE:

COMMENTS:

HDINFO

prints out the header information of a pack,

CALL HDINFO(PTR)

PTR pointer to a pack

none

see DUMP command.

NAME:

PURPOSE:

CALLING
SEQUENCE:

IBCOM#

intercept FORTRAN'S IBCOM#

see FORTRAN IBCOM#

-44-

ARGUMENTS: see FORTRAN IBCOM#

RETURN CODE: see FORTRAN IBCOM#

COMMENTS: IBCOM# is the main interception routine

for FORTRAN I/O (see TASKIBC).

If a pause statement in a FORTRAN program is

executed, the paused task is held until

the user flushes or restarts the task

on command.

IBCOM# creates a PAUSE CONTROL BLOCK (PCB)

with the following format:

Figure 2. PAUSE CONTROL BLOCK (PCB)

_

A(ATB) |

i !
| A (SAVE AREA) I

I I

and places the PCB on a stack (see

routines RPAUSE and FPAUSE).

NAME: IBCOMERR

PURPOSE: I/O recovery routine for IBCOM#

CALLING
SEQUENCE: called by FORTRAN'S IBCOM#

COMMENTS: IBCOMERR is not to be called by user.

NAME:

PURPOSE:

CALLING
SEQUENCE;

LPARIN

to clear or set modes in CAMA

CALL LPARIN(PBUF,HL)

ARGUMENTS:

RETURN CODE:

COMMENTS:

-45-

PBUF pointer to buffer

HL length of data in buffer (half-word

integer)

none

the LEFT PARENTHESIS INTERPRETER (LPARIN)

is a procedure which establishes mode

operations for the CAMA system. Prede-

fined modes are stored in the LPARPACK

which is Type 3 (association table).

The format of LPARPACK is

A 0 V

3-character 8-character 8-character
mode name long name name of

of mode procedure to
handle this
mode

A mode is established by typing a

left parenthesis in column one followed

immediately by 3 or more characters, a

right parenthesis followed by optional

data.

If the mode is a legal mode as stored in

LPARPACK, then an (END) is sent to the

current mode, unless the current mode

is the INTERPRETER MODE in which a flag

is set to indicate that the INTERP mode

is pending. A user may end any other

mode by typing (END), and if the INTERP

-46-

mode is pending it will be re-established

as the current mode. This prevents the

user from losing his system variables

when going from INTERPRETER mode into

a new mode (see INTERP description).

If he really wants to release these

variables then he must type (END)INTERP.

Once a mode has been established the

rest of the text or any subsequent text

is directed to the proper procedure

by the TEXTIN routine. Whenever the

command UNL is issued by the user, an

(END) is sent to the current mode unless

it is the INTERP mode. The purpose of

sending the (END) to the current mode

is so that the current mode can release

any temporary storage that it may have

acquired or do anything else which might

be necessary to close itself out. All

mode subroutines must have the same

argument list as LPARIN and must accept

(END).

The following flow chart describes

LPARIN"s operation.

-47-

Flow Chart for LEFT PARENTHESIS INTERPRETER (LPARIN)

N0

r ^
I ENTRY J

T_
(END)

,N0

retrieve
LPARPACK

take first 3
characters after
left parenthesis
as the new mode

is the new mode
a predefined mode
in LPARPACK?

is current mode set?

N0

make new mode
the current mode

;END) INT

I 0
is current
mode set?

is current
mode INTERP?

N0

send END to
current mode

clear current mode

NfiL

O GV
TEXTIN

I
is INTERP
mode pending?

make INTERP
current mode
and clear
pending flag

return

N0

dump
lin^ hank

.continued on next page

r'

-48-

o 1
send END to

^y INTERP?

! .O

current mode 1

■

is new mode
INTERP? \iJ

N0
f

»

make new mode
the current set INTERP

pending flaq mode

N0

is INTERP
mode set?

I N0
is INTERP
mode pending?

clear INTERP
pending flag 1
send END to

INTERP

clear
current mode

return

get rest of
line after
right parenthe
sis

TEXTIN

-49-

NAME: MTS

PURPOSE: return user to MTS

CALLING
SEQUENCE: CALL MTS

ARGUMENTS: none

RETURN CODE: none

COMMENTS: this routine al^ow

buffering in PDP-8 turned off. By

giving a RES command in MTS, CAMA will

be restarted with buffering turned back on,

NAME:

PURPOSE:

CALLING
SEQUENCE;

ARGUMENTS:

RETURN CODE:

COMMENTS:

NPCIN

to interpret lines coming from the terminal

with a non-printing character as their

first character.

CALL NPCIN(PBUFfHL)

PBUF pointer to buffer

HL length of data in buffer (half-word

integer)

none

the NON-PRINTING CHARACTER INTERPRETER

(NPCIN) is a procedure operating in the

central computer to direct the flow of

data from the internal responses of the

PDP-8 produced by programs and actions

taken within the PDP-8. For example,

all light pen or Grafacon hits are

-50-

directed to the proper places by preceding

the first character of the response with

a small 'd'.

The flow chart, NON-PRINTING CHARACTER

INTERPRETER, describes the action ta>en bv NPCIN.

NAME:

PURPOSE

CALLING
SEQUENCE:

ARGUMENTS:

RETURN CODE

COMMENTS:

PROG

to send a PDP-8 program to the PDP-8 from

the central computer.

CALL PROG(PTR)

PTR pointer to data pack where PDP-8

program is stored,

none

none

NAME:

PURPOSE:

CALLING
SEQUENCE;

ARGUMENTS:

COMMENTS:

PROG 2

used to store PDP-8 programs in a data pack,

CALL PROG2{PTR,PDUB)

PTR pointer to data pack where PDP-8

program is to be stored.

FDUB FDUB of file to be read,

none

NAME:

PURPOSE:

READ

to intercept calls to READ, READ#, SCARDS,

and SCARDS# routines when buffering is on.

-51-

Flow Chart for NON-PRINTING CHARACTEP INTERPRETER (NPCIN)

entry
first character

DFANS

N0

m

€

N0

U0

ignore
it

return

set up task for
SYMBOL

GENERATOR 7

set up task for
MATH
STAGE 5

I
put task on
current
ACTIVE QUEUE

rT

-52-

CALLING
SEQUENCL:

ARGUMENTS:

RETURN CODE

COMMENTS:

standard calling sequence used in FORTRAN,

standard arguments used in FORTRAN calling

sequence.

see FORTRAN

the following conventions are assumed:

(1) calls to SCARDS and SCARD# are

trapped.

(2) calls to READ or READ# with a FDUB

or LDN which is nonexistent, un-

assigned, or connected to the terminal

are trapped.

(3) all other conditions allow the READ

to fall through.

(4) if a call to READ has a FDUB

which is connected to the terminal

then this read is trapped as a DF

read.

DF reads are answered via the DFANS

routine. All other trapped reads are

answered via the ANSWER routine

which requires a "/" (slash) as

the first character. When a read

is trapped a READ CONTROL BLOCK (RCB)

is generated with the following format;

Figure 3. READ CONTROL BLOCK (RCB)

r
I A(ATB)^ __ |

! A(SAVE) '

-53-

where A(ATB) is the address of the ATB

for the task which generated the read,

or zero if not generated by a task.

A(SAVE) is the address of the save area

for the read.

When a read is trapped its RGB is put

on a stack and control is returned to

the CAMA supervisor (see ANSWER, DFANS,

and IBCOM#).

NAME:

PURPOSE:

CALLING
SEQUENCE:

ARGUMENTS:

RETURN CODE:

REL

to release the data structure from virtual

memory and save any packs which have been

changed.

CALL REL

none

none

NAME:

PURPOSE:

CALLING
SEQUENCE:

ARGUMENTS:

RETURN CODE:

COMMENTS:

REQUE

to requeue a task

CALL REQUE

none

none

this program requeues the task in which it

was called in. That is, if REQUE is

called within a task, then that complete

task will be requeued.

NAME:

PURPOSE:

CALLING
SEQUENCE

ARGUMENTS:

RETURN CODE:

COMMENTS:

-54-

RESTOR

The complement to SAVE, i.e., restores the

contents of the general registers and

the values of a list of local variables.

CALL RESTOR (Al,A2,...,AM)

A1,A2,...,AM a list of variables whose values

are to be restored. Each variable must

be a full word and aligned on a full-

word boundary. M should be less than

or equal to N in SAVE.

none

The values for the varlablos are restored

in the order that thoy were saved. No

mode or adcon checking is made.

See SAVK rout im;.

NAME:

PURPOSE:

CALLING
SEQUENCE:

ARGUMENTS:

RETURN CODE:

COMMENTS:

RPANIC

to decrement the panic flag or HALT flag

in CAMA

CALL RPANIC

none

none

In order to restart tasking operations the

panic flag must be zero

-55-

NAME:

PURPOSE:

CALLING
SEQUENCE:

ARGUMENTS:

RETURN CODE

COMMENTS:

RPAUSE

to restart a task which has paused by the

execution of a FORTRAN PAUSE statement

within the task.

CALL RPAUSE(NAME)

NAME name of paused task

none

does not return to caller.

NAME:

PURPOSE:

CALLING
SEQUENCE:

ARGUMENTS:

RETURN CODE;

COMMENTS:

RTQUE

to establish a new QUEUE PAIR or go to a

previously established QUEUE PAIR only

after the current QUEUE PAIR is empty.

CALL RTQUE(NAME)

NAME 8-character name of QUEUE PAIR

none

if NAME is blank, then go to previously

established QUEUE PAIR. The routine

RTQUE generates the task TASKRTQ

which actually does the work.

NAME:

PURPOSE:

CALLING
SEQUENCE:

ARGUMENTS:

RETURN CODE:

COMMENTS:

RUN

to call DRUN with buffering off.

CALL RUN (same as DRUN)

same as DRUN

see DRUN

see DRUN

-56-

NAME:

PURPOSE:

CALLING
SEOUENCE;

ARGUMENTS:

RETURN CODES:

COMMENTS:

SAVE

allows the user to make FORTRAN subroutines

recursive by saving the contents of the

general registers and the values of a

list of local variables.

CALL SAVE (Al,A2,...,AN)

A1/A2,...AN a list of variables whose values

are to be saved. Each variable must be

full-word (four bytes) and aligned on

a full-wore boundary. The mode may

be real, integer, or logical.

none

none

NAME:

PURPOSE:

CALLING
SEQUENCE:

ARGUMENTS:

RETURN CODE:

COMMENTS:

SETPRI

to set the priority condition for DTASK

CALL SETPRI(PRI)

PRI priority condition times 1000 (intege./

none

PRI » 0 => process tasks in order in which

they are stacked.

PRI ■ -1 ■> process highest priority tasks first.

PRI ■ n>0 ■> process only tasks with priority

of n.

-57-

NAME;

PURPOSE:

CALLING
SEQUENCE:

ARGUMENTS I

RETURN CODE:

COMMENTS:

STONAC

to store macros.

CALL STOMAC(BPTR,HL)

BPTR pointer to buffer

HL (half-word integer) length of line

in buffer,

none

typing (MACRO) in CAMA will establish the

store macro mode. The syntax of this

mode is

a(H ma<:ro itf)K(*' language ^ 1 mode "'"^ name /-'

or a line number followed by a line of

text. Examples:

(MAC) (Ml) (LI)

(MAC) established the store macro mode

with the macro name taken as 'Ml*

and its language name as 'Ll*. If a

macro name or language name is longer

than 8 characters only the first 8

continuous nonblank characters between

the parentheses are used. If the macro

was previously defined a comment is

printed to alert the user.

(M2) the macro name is taken as ^2*

defined in the language 'Ll* .

0 (L3) the macro name ^2* is defined in

the language 'L3'.

-58-

9.361 FN P« 'tP Pi

the line FN P# 'iP' P# is

entered into macro ^2* defined in

language 'L31 with line number 9.363 .

The line number range is -99S99.9999£

n<+99999.999

3.5,211 DO 215 I=JfN

the line

211 DO 215 I=J,N

is entered for line 3.5.

2

line 2 is destroyed.

(END) will terminate the store macro mode.

NAME:

PURPOSE:

CALLING
SEQUENCE:

ARGUMENTS:

RETURN CODE:

COMMENTS:

STOPRO

to ctore a procedure

CALL STOPRO(BPTR,HL)

BPTR pointer to buffer

HL (half-word integer) length of line

in buffer,

none

typing (PROCEDURE) in CAMA will establish

the store procedure mode.

The syntax is

tfUJ Procedure ^
^^ name r*

or a line number followed by a line of

texc.

EXAMPLES:

-59-

(PRO) (PI)

(PRO) establishes the store procedure

mode with the procedure name taken as Pi.

(P2)

P2 is taken as the procedure. If a

procedure already exists with the given

name, then a comment is printed to

alert the user.

9.5

deletes line 9.5

9.3(FORTRAN) N=3.5*2

enters line with line number 9.3.

(END) will terminate the store procedure mode.

MAME:

PURPOSE;

CALLING
SEQUENCE:

ARGUMENTS:

RETURN CODE;

COMMENTS:

SPANIC

to increment the panic flag or HALT flag

in CAMA

CALL SPANIC

none

none

a call to SPANIC stops tasking operations.

NAME:

PURPOSE:

CALLING
SEQUENCE;

ARGUMENTS:

SPEW

unloads subprograms which were dynamically

loaded in CAMA.

CALL SPEW

none

-60-

RETURK CODE:

COMMENTS:

none

the task TKSPEW is generated to handle the

unloading.

NAME:

PURPOSE:

CALLING
SEQUENCE!

ARGUMENTS:

RETURN CODE;

COMMENTS:

TASK

to put a task on the QUEUE and return.

CALL TASK(0,QUE,PTR)

CALL TASK{1,QUE,PRIORITY, PROTECTION,

TASKNAME, ARG1,...,ARGN)

QUE»0 put task on ACTIVE QUEUE

»1 put task on RESERVE QUEUE

PTR pointer to TCB

PRIORITY the priority that this task is

to have times 1000 (integer)

PROTECTION»0"> unprotected

=!=»> protected from attention

interrupts.

TASKNAME 8-character name of task

ARG1 first argument of the task

ARGN nth argument of the task

none

(1) when the first argument of the routine

TASK is zero then it is assumed that the

third argument is a pointer to a user-

set-up TCB. If, however, the first argu-

ment is one, then the TASK routine will

set up the TCB. The TASK CONTROL BLOCK

(TCB) has the following format:

-61-

Figure 4. TASK CONTROL BLOCK (TCB)

Priority

Protection

A(TASKNAME)

A(«RC)

A{ARG1)

MARCSN)

#RC=actual number of RC for the routine

TASKNAME + 1

(2) The address of pointer to arguments may or

may not point to within the TCB. For example,

one might have

PRIORITY

PROTECTION

A(TASKNAME)

A{#RC)

A(BUF)

A(HLEN)

V(TASKNAME)

V(#RC)

V(HLEN)

V(BUF)

where A(...)= address of

V(...) = value of

-•2-

Tms can be oone only if the user

(or writer) sets up the TCB. Note that

the TCB is automatically destroyed upon

returning from the completion of the

task. Therefore if the user sets up

the TCB, he must get space dynamically.

NAME:

PURPOSE:

CALLING
SEQUENCE:

ARGUMENTS:

RETURN CODE:

COMMENTS:

TASKIBC

a task to handle IBCOMts when they pile up.

generated within IBCOMf

see IBC0M«

none

if a FORTRAN read is pending, then this

implies that FORTRAN'S I/O is in use.

Since it is not reentrant, any subsequent

call to IBC0M# must be requeued until

FORTRAN'S I/O is available.

NAME:

PURPOSE:

CALLING
SEQUENCE:

ARGUMENTS:

RETURN CODE:

COMMENTS:

TASKRTQ

task to handle RTQUE

generated within RTQUE

see RTQUE

see RTQUE

requeues itself until current QUEUE PAIR

is empty.

-43-

NAME:

PURPOSE:

CALLING
SEQUENCE:

ARGUMENTS:

RETURN CODE;

COMMENTS:

TEXTIN

to dispatch text to the current mode set.

CALL TEXTIN(PBUF,HL)

PBUF pointer to buffer

HL Length of data in buffer (half-word

integer)

none

if no mode has been set then the line is

dumped back with a question mark followed

by the text.

NAME:

PURPOSE:

CALLING
SEQUENCE:

ARGUMENTS:

RETURN CODE:

COMMENTS:

TKSPEW

task to handle SPEW

generated within SPEW

see SPEW

(1) TKSPEW requeues itself until the ATPL

is empty.

(2) Before unloading takes place the current

mode is cancelled unless it is the

INTERPRETER mode.

NAME:

PURPOSE:

CALLING
SEQUENCE:

WTASK

to put a task onthe queue and return when

the task has been completed.

CALL WTASK(0,QUE,PTR)

-64-

ARGUMENTS:

RETURN CODE:

COMMENTS:

CALL WTASK(1,QUE,PRIORITY,PROTECTION,

TASKNAME,ARG1,...,ARGN)

same as TASK routine

return codes of TAST'NAME

see TASK routine. Note that here, if a

wait task (WTASK) is generated within

a task or wait task, a WAIT TASK LINK

(WTL) is generated and has the following

format: Figure 5 . WTL

A(ATB)

A(SAVE area)

where A(ATB) is the address of the ATB

of the task from which the wait task

was generated, and A(SAVE area) is

the address of the save area supplied

by the MOTHFR TASK.

NAME:

PURPOSE:

CALLING
SEQUENCE:

ARGUMENTS:

RETURN CODE:

COMMENTS:

ZPANIC

to zero the panic flag in CAMA

CALL ZPANIC

none

none

forces a restart of tasking operations in CAMA.

-65-

REFERENCES

1. Dinqv/all, T. , Julyk, L. , and Wolf, L. , The CA.MA Intor-
nrotr-r, Memorandum 36, Concomn Project, University of
Michiaan, Ann Arbor, August 1070.

2. Mills, D., RAM0: A PDP-8 ^ltjj?roaranmin^ S^rstern for
Real-Time Device Control, Memorandum 5, ibid., May 106 7,
2 4 nn.

3. MTS (Michigan Terminal Systerr) Manual, Computing Center,
University of Michigan, Ann Arbor, 1967.

4. Julvk, L., and Wolf, L. , The CAftA Data Structure,
Memorandum 29, Concomn Project, University of Michigan,
Ann Arbcr, August 1967, 49 pp. + anpendices.

5. Goodrich, Mrs. S., CAMA; Define-Problem Command, Memo-
randum 28, ibid., June 1970, 31 op.

6. Dingwall, T., Julyk, L., and Wolf, L., The CAMA Macro
Processor, Memorandum 35, ibid., August 1970, 31 op. +
aopendices.

7. Bisgrove, Mrs. J., and Goodrich, Mrs. S., Symbol
Generation, internal memorandum, ibid., 22 June 1970,
8 po.

8. Julvk, L. , and Wolf, L., CAMA General Description,
Memorandum 33, ibid., August 1970, in oress.

s«rcMni> ri««sifuiiti

.S»cijfi.'.> ttmMnirfi
DCC.MEIST CONTRC- J«TA -

t*:eM ■t^rMll luport ■, cl—j<l)
I O^IGIXATlSO AC l/|TY I ,,r;i < : Sl£Cl.R.TV CLASSIFICATION

Unclassified
UNIVERSITY OF MICHIGAN
CONCOMP ^ppjiXT

fl RFPCPT T I- . F

i^. ACo*

THE CAMA OPERATING SYSTEM

Monorandun
b AJTMOWS . f ir •(rifim« , a M/JM- tnittai, taxi

| L. J. Julyk

I» RE.- J« OATt

! August 1070 65

TT \i. wf RTi

*"• CONTKAOT Oi O'-'NT N^.

DA-49-083 OSA-3050
'.. PHOJEC NO.

I

>Hl!;iNATORS ^t^CRT NutaBcR

Memorandum 30

J»»>. CMtH RCPOUT NC $) IÄn. .xtier numborm ihm- mmy a..,$H»4

\ 10 OlSTPISUTlON STA'CVEST

i
i Qualified requesters mav obtain cooies of this renort from DDC.

^^ONSO«!.N0 MIL'TAHV ACTlV.TV

I Advanced Research Projects Agency

II. ••»TRACT

The CAMA (Computer-Aided Mathematical Analysis) oporatinq
system is a orogram which controls the ooeration of an interactive
processor. It is designed to operate in the environment of a Ian*»
central computer which noils a small qranhics terminal comDutor for
user-input. The CAMA system is designed to handle a number of
different and independent operations, and to perform ooeration« in
a nriority-bnsed, multioly-queued environment. It is self-exoendaule
by the use of its macro facilities.

\

DO '-r:..1473
iC5S^C58i 55»

LIWK A
HOLE I WT

LIWK ■
won I WT" "0U -J2-

Sacurtty CUaaificatloa

Ktv «OROS

CAMA EXECUTIVE SYSTEM

INTERACTIVE COMPUTER GRAPHICS

PRIORITY-BASSO TASK SCHEDULER

TASK

MATHEMATICAL ANALYSIS

