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ABSTRACT

st

E §> The development of certain aspects of a physically interpretable
geometry defined over a finite field is presented. The concepts of
order, norm, metric, inner product, etc. are developed over a subset

of the total field., It is found that the finite discrete space behaves

..locally, not globally, like the conventional "continuous" spaées. The

implications of this behavior for mathematical induction and the limit

: o= ' : 1

procedure are discussed, and certain radical conclusions are reached.

- ——

Among these are: (a) mathematical induction ultimately fails for a

finite system and further extension leads to the introduction of forma} _ | .

indeterminancy; (b) finite space-time operations have iﬁherent fqrmal

properties like those heretbfore attributed to the substantive rhysical

universe, and (c) certain formal properties attributed.to continuous

spaceé cannot be developed from successive embedding in finite space of

finer resolution—but must be based on indemn; ‘ent axiomatic (non-

testable) assumptions. It is suggested that a finite field representa-

tiqn should be used as the fundamental basis of a physical representation, |
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1. INTRODUCTION

"Mathematics is devised by mathematicians," Thie tautology contains
potentially significant implications. Mathematicians are mortal human
beings whose conceptualizing capacity is finite. Acting in a rational
.mode, or as we shall say, as & "cognitive agent," man communicates at
finite rates; employs finite strings of symbols; and has finite data pro-
cessing and storage capacity. Yet he has devised conceptual mathématic'l

geometries of continuous and infinite spaces. It is reasonable to expect

"that a man's finiteness qua mathematician will exert a controlling iﬁ}lu-

ence on the nature of the concepts he develops. This realization has led
us to seek a priori characterizations of these concepts that result from
the nature of the cognitive agent who produced them.

Thus, ve have set ourselves the task of determining "How do you get
there from here." Or more formally, how can a finite cognitive agent
develop concepts of continuous spaces and space-time systems aé well #s

the associated mathematical operations. It is necessary to stérﬁ'wiﬁh

the development of numbers-—in the finite cognitive system and demonstrate

how this leads to operations such as translation and rotation in finite

geometries. Then, vwe examine the meaning of the corresponding processes

. in continuous spaces in a manner appropriate to the operations admissible

{0 the finite cognitive agent.

The resulting implications of this investigation are in some respects

expected;—in other aspects quite radical. The findings of this paper are
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in opposition to certain of the conventional conclusions and assumptions of
mathematics and we are aware of their heretical natu;e. Thus we ask the
reader to consider the arguments in the context of the philosophical view-
point uwpon which they are.based.

| It is found that there are constraints that limit the cognitive agent
in actu and contribute certain formal properties to his admissible concepts.
In particular, we look at ma£hemat1cal induction aﬁd the process of going
to the limit; examples are presented that are physical illustrations of our
ideas. It is proposed that certain of the presuned external physical |
postulates are in fact formal properties of finite spaces and their re-

introduction as paysical properties results from our using infinite field

mathematics, We suggest, and present examples,lto-show how these postulates

arise to constrain the mathematics of infinite fiel@s to represent
."cxperience."

In this paper, we explore a finite field (Galois Field) representation
and attempt to formulate a physically interpretable geometry over this
field. Thus we seek to define the basic objects of geometry solely in
terms of the finite field concepts. We have developed some formal aspects
of a vector space defined over a finite scalar field. Kustaanheimo and
J§rnefelt1 did extensive work to formulste such a geometry in order to
provide a structure that was consistent with the apparent finiteness and

discreteness of the physical universe; since fhen there have been additional

efforts to refine the mathematics.2
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.2. HEURISTICS

The goal of this effort is to establish that one can perform all
' L

legitimate arithmetic and algebraic operations solely within the context
3

defined by a primitve commitment ﬁo finitism, etc.” In order to achieve
this demonstration, we must adopt certain mathematical structures that
can serve as the foundation of the various operations. In this section

- we shall present a series of metatheoretical aﬁd motivational argunents
that seek to establish the concepts and development that are employed.
It is clear that uniqueness and necessity of a representation of experience
‘cannot be proven unless the universe of discourse is closed, i.e.,‘uniaueness
and necessity are always with respect to a gi%en context. Hence a system
purporting to represent or at least be consonant with experience is perforce
backed "only" by sufficiency or demonstrable adequacy. |

To insure that arithmetic can.bé carried out we shall require that

the two basic operations of addition and multiplication be defined. Also
the inverse operatioﬁs of subtraction and division will be required. To
insure that we satisfy the requirement of 6ntological parity3 we shall
demand that the bazic set be closed under the four primary operations.
Nonambiguity similarly implies that the results of these40peratigns be
unique. We shall also seek as much procedural invariance as we can by
requiring associative and commutative multiplication and addition.
Furthermore, the combination of these two operations will be such that
{the appropricte distributive laws are valid. ihese conditions are

sufficient to define a field as the wnderlying mathematical reservoir
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Ko : for our primitive operations. Therefore, as an immediate consequence of

owr commitment to finitism, we are led to consider a finite field

B
' " " (Galois nem)..l'
) If our mai:,hematical system is to serve as .a. suitable basis for the
s .
» ‘ many computational operations, then it must admit of many other operations
that are to be considered legitimate. There are certain such operations;
.that do not always lead directly to a formal answer because.of the
severe limitations imposed by the restriction of finite resources and
capabilities. However, in any actual calculation cne always has finite
and greatly limited resources and that never becomes a deterrent or
causes termination of the logical procedures. One simply replaces tile
'.problem for which there is no formal solution by some solvable problem
:. . taken from the given field. Thus, for example, when computing the
o square root of two, one "trunca.t.es". the calculation at the desired
level ui resviubion., Clearly tnis is La.ui,;.muunb tv introducing a replace-

ment problem. If we seek a resolution of one decimal place in the answer,

-2
then we look to a neighboring perfect square, 196 X 10  that is "close"
2

e it

0 200 x 10~ and declare the ansver to be 14 x 10 . In this vay,
o replacement permits our mathematical operations to continue and avoids
[ cessation due to uncomputability or lack of performable instructions. One
} 3 could also construct his system to reset itself to some arbitrary point—say
zero—vhenever an impasse is reached. However, the rationale for replacement

is clearly preferable because it seeks a "nearby" problem and we shall

‘ d adopt it.
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Let us point out that we have described reploccment with a
“neighbo;ing" problc or "best" approximation but the bare algebraic
structure does not yet Pave any procedure for détc;mining such a "best"
replacement. Thus we need. some measure of proximity or closeness in
order to determine that which is the appropriate substitute. If we are
to define a vector space over the finite field, then a metric can fill
this requirement. However, éven if some value can be associated with
the "distance" between pcints, we still require a mechunism for comparing
different diétances. In short, the underlying number field must have
some ordering relation. ISince our primitive commitiments do not demand
global operations but merely a suitable local definition, we shall seek~

5

as a minimum—an irreflexive” binary relation. Clearly there is no way
to define a méaningful transitive crder throughout a Tinite field and

still retain the other properties of uniqueness, nonambiguity,

Jrreflexivity, etc.

In defining a metric for a vector space, we will encounfer the
square root operation. If ve restrict ourselves to a ground Tield GF(ﬁ),
then there will be formal square roots for half the elements of the
multiplicative group, i.e. for (p - 1)/2 elements. This behavior is
reminiscent of the analogous property of the real number system in which
only "half" the elements (positive elements) have square roots in the
field. If we wish to institute an extension of GF(p) in order.to

generate a square root for every element of GF(p), then we may do a
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similar thing to that done in conventionsl analysis, viz. cmbed our -

system in a "complex planc" obtained by expanding GF(p) via x® + 1 as a

prime ideal. “In‘ihis way all "real" mubers (i.e. elcments of GF(p))

will have formal squére roots. Unfortunately, we have merely set the
problem back one stage for only (p® - 1)/2 elements of GF(p®) have square
roots in GF(r®). We can establish a replacement technique for these
nonsquare elements of GF(p®), thereby closing rur systea. This procedure
does geﬁéraﬁe a formally satisfactory system f.: all elements of the
ground field. Actuaily,' we will find tha;t even these hard won f:ox.-mal
square roots for GF(p) do not in general béhaVe as desired and we are -
forced to introduce still another replacement procedure to rectify the
situation. This is necessitated by the additional demand that square
roots of ordered numbers lie in the same order. With these many quali-
fications and éxtensions, we will find that certein general properties

of geometry in vector spaces can be recalized.




3. AN "ORDERING" RELATION

In this section we shall begin work upon the explicit development

of geometry defined in a finite and discrete space. For the early and

cla.ssical work on this topic see reference 1.

Consider GF(p) with p = 8 H e 1 , where the g, ere the odd primes.

We Xnow that in such a field the elements 1,2,...,q, are all square

residues and -1 is nonsqua.z'e.1

Definition(l) Iet x,y € GF(p) with p given above. If x -y =

square residue, then x is said to exceed y, .in symbols x > y. If s
X - Yy = nonsquare residue, then x is less than y, x < y.6 -
Theorem (l!. Iet p 'be as above. If x is square, then -x is non-

squa.re and vice versa (here -X is the addltn.ve inverse of x, i.e.

x + (-x) = 0(mod p).

e
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) ' Proof. If p is en 0dd prime and w a. pritﬁitive root of GF(p), then T
: (7272 2 L1(mod p).7 Let x = w* .dnd -x = w" ., vhere n an even integer )
; . and m an intégér. We have .
: “ Cx+ (=x) =" +w" =0(moa p) .
Now, either n>morm>n . Assume,' for definiteness, m < n . Then
v + 1) = 0(mod p) .
Since w* # O(rﬁod p) , ve have v*™® + 1 = O(mod p) . From above, this . ,'
gives v " éw(’"'”/z(moé p) . From this vwe obtain n < m = (p - 1)/2 (mod p - 1) . |
Hovever, for a p in the. Torm ziven above, we see that T !
(p-1)f2=bhg -2 | e
:' which is alvays odd. Therefore n and m have opposite parity. i
o Theorem {2). If x,y € GF(p) with p given above, then x > y. iffy<x. . }
‘:-) Pronf. Aesume x >y ., fhen v - v = eauare residne snd ¥ - ¥ = ' i 'f‘
y ~(sq\.1arle residue). In such a GF(p), the additive inverse of a square 3‘1
x residue is nonsquare and vice versa. This follows because in such GF(p) ! H
L -1 is & nonsquare residue and if x is a square residue, then (-1)(x) = -x ke
} is a nonsquare residue. (See Theorem (1)). | Hence x >y =y <x . The o ]
| converse is proved similarly. _
| "Theorem (3). If o € GF(p) , then o® = (~a)*(mod p) . : ! ri
i Proof., i?rom the above theorem, we know that if « =" and ~o = V" | 1.
E then n = m = (p - 1)/2 (mod p - 1) . Hence, since o® = w*" , (-a)® = w** , ‘
g we have 2n - 2m = (p - 1)(moé p - 1) = O(mod p = 1) . .




Definition (2). Define an "absolutc value" function in the following

. , . .
vay. If o € G¥(p) withp =81 q, - 1, then Ial = o 1f o is a square rosidue
. i =) 090 N

and |o| = - if o is a nonsguire residue. Theorew (1) provides the justi-

fication for this definition. | |
Theorem (4). Let x € GF(p) (p # 2) be a square residue. Then there
exist two elcments a,b € GF(p) such that a® = bv? = x(mod p). Furthermore,

k
if p=81Mgqg -1, then a and b are of opposite parity and are additive
1=1 )

inverses of each other, a + b = O(mod p) . One of the two, say a, is . .
“square and the other b, is nonsquere. @ is called + /% .
. Proof. Let us first prove there 'can't"bé; three elements all 6f..
which square to the same value. Assume % thrg'e distinct elements
a,b,c € GF(p) d a°® =1? =o? = x(mod p) . Thén &2 - 12 = o(mod p) and J
8® - -2 0(mod p) , or (a + b)(a ~b) =0(mod p) and (a + c)(a - ¢) = ..

O(mad p) . SRinee a, b, nare Aietinet, wa have A + h 2 N(mad 1) nnd

‘ a+c¢ =0(mod p) . But in a field, the additive inverse is

uwnique, so b ='c(mod p) which violates assumption that a,b,c are distinct.
E Novw prove ¥ two elements a,b D a® =1b® = x(wod p) . There are p ~ 1
) *  distinct nonzero clements and (p - 1)/2 distinct squares in GF(p), p # 2 .
‘Sir.lce there aren't three elements having some sq;uare‘d value, there must
beltwé such distinct elements for every square x. |

From 8® - 1° = (al + b)(a ~ b) = O(mod p) and a # b(mod p) ve sce | f
that a,b are addit;ve inverse. If p= 8‘ §1 q - 1, we may invoke Theorem (1), ii

" to conclude they are of opposifoe parity. ' ) 4




k. LOCAL “ORDER"

Let us consider some arbitrary x € GF(p) . ¥e know that
(x + 1) - x = 1 = square residuc; hence x + 1. > x . Similarly,
x_-(x-l):l, orx>.x-l. Also, (x +1) - (x = 1) = 2 = square
fesidue, 'so that x + 1 > X >x -1 . Clearly this process iy be
;:ontinued for g, consecutive elements to generate the following ordes
relations:
x-{q -1)/2<x - {a, - 3)/2 <...<x + (qk - 1)/2.

let us designate this set of g, consecutive transitively ordered elements
that is centered about x by Toss (x,q, ). We shall consider

x +1 s see 5 X F (qk -1)£2 as all "positive" with respect to x while
x~1 s eee 5 X = (g -2)2 are "negati.ve" vwith respect to x. It is
important to realize that the terms positive and negative express a
relation that is referred to some specific point, not necessarily the
additive identity 0. In order to perform calculalions we must be sure
to refer to this central point x. This is done by counting the number
of steps "above" or "below" x for any merber of Toss (x,q, ), - Thus,
if a,b € Toss (x,q, ) ,.we have the sum as (a -~ x) + (b - x) + x , ete.
Clegrly this is the well-known transformation of linear translation.
Thﬁs, with the above identifications and definitions, we see that any
point x € GF(p) may serve as the center of a Toss (x,q,). Thus vhatever
“geomctry” can be done at one point can be donc at any point. Therefore

we have shown that

|
|
i
!
1
i+
1,
i
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Theorem (5). Any point x € GF(p) can be the center of a Toss (x,a.)

and‘gecmetry’can be déne locally within this sct.

To simplify calculations we may assume that'x = O is the chosen
center, thereby avoiding the extra terms of d - x , ete. However, ve
must remember that the choice of center point is arbitrary and the :
geometrical results obtained in one Toss arc equivalent to those found
in any.Toss iﬂnfhe field.

Since we are defining a vector space ower'GF(p), vwe may generalize

this discussion for n-dimensional vectors and let the center become a

X
X2

i

~vector x = | . Essentially this is a succinct formulation of n

Xy

distinct centers, one for each componént.‘

5. EXTENSION OF THE FIEL'D8

Let GF(p) be a Galois ficld. We know that (p - 1)/2 elements are

square and (p - 1)/2 are nonsquare (see Theorem (4)). The (p - 1)/2

~ square elements all have two square roots in GF(p) whercas the nonsquare

. K

elements. do not have a square root in GF{(p). If p=8 M q - 1, then
: 1=1 .

the two roots of the square elements are related by + /§.+ (-v%) =0

and +/X >0, - /x <0 . To obtain square roots for the nonsquare

clements we must embed GF(p) in a larger ficld GF(p®) which is the exten-

sion of CF(p), i.e. we obtain GF(p®) from GF(p) by adjunction of a root

of x> + 1 =0(mod p) . GF(3F) becomes isomorphic to the set of first degree

polynomials

11

P

Sy




ié’;:. _ J
i O - a + bx where the coefficients a,b € C¥{(p) . Clcu{-]y there are p° elements *
&'P - - in GF(p»). To simplify comparisons u.i.th "ordi_ﬁury“ mathematics, let us.
¥ denote the indeterminant by i. -Since i + 1 = 0 we have 1® = -1 , and
- a+ ib € GF(p?) . Let us now find sl:qua're roots of the hegative elements
r ’ of GF(p). Let x € 6¥(p) p = 8‘?_11 Qs - 1 be nonsquare. Assume an element

a + 1b € GF(r?) as the square root of x. Hence a + ib =/x or x =

- (a + ib)® =a® - b® + 2iab . From this we see that &b =0 = a =0 or

it

b=0. Alsohave 82 =b® =x . Ifb =0, then b® =0 and x = a°

vhich violates assumption that x is nonsquarc. Hence a =0 and x = -b?

and b® = -x . We know that x < 0= -Xx >0 so b =*/x'. Hence-

_Vx = t1/X' vhich conforms to our prior expectetions. Thus ¥V x € GF{(p)

e SZEGF(PZ)BZSEX;9

Since (p? - 1)/2 clements of GF(p®) are square and (¥ -1)/2 are ‘

o nonsquare, we sce that a square root for clements of GF(p®) can be found

S T
pay
@

for some of the clements ((p® - 1)/2 of them). This can also be seen

since there are two square roots for cach x € GF(;?) (x #£0) end this— ‘ (

B due to uniqueness properties—implies thqf only half the nonzero clenents i
can have square roots in GF(p®). This is yet another way in which the i
finite field differs radically from the continuous field vhere every

complex number has two square roots in the complex plenc. In finite field i
mathematicslwe are able to count according to the customary rules without 4
encowntering the unusual characteristics of the {ransfinite arithmetic. et |
- : Theoren (6). If p = 81§1q‘ - 1, then x* + 1 is irreducible over

g GF(p°).

-
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Proof. Assume x + 1 is reducible over GF(pa). Then 9 a,b € GF(p) 3
xs +1=(x+a)(x+dp)= x + ab + x(a + b). For this to hold, we must
bave

b=l and a+b=0.
This implies a +abe L 1 =0. In GF(p) of the above form, there
exist no solution to this because -1 is nonsquare and a."2 2 -1 cannot be
solved.

‘fheoren (7). Hp:Béﬂi-LtMn;+lismtmmﬁheMéH;L

Proof. For such & p, we always have 'pz >k, yet x2 + 1 di.vides .

x‘ I- 1 ; hence xa + 1 cannot be primitive because its order is Iess than pa.

Beltrametti and Blas%ohave shown tha.ih for a p of the above form, -

i' =i ; if a,b € GF(pa), then (a + b)P = (aP + bp). Therefore if
a,b € GF(p), then (a + ib)P = a - ib ; hence complex conjugation can be
associated with the pth power of a "complex number," Define Z* such that

Vo€ GF(PE), 2% ~ of
We follow reference 4 and define the absolute value in an olvious way, viz.

Vz¢€ GF(pa), lz| = JZ¥%2 = /2P | If z = a -f- ib, a,b € GF(p) , then
|z| = /a7 + 0% and we see that V z € GF(pa) q |z] € GF(pz). This is
somevhat unfortunate because the absolute v.alue function is generally
considered to be a mapping {rom the complex plane onto the pesitive real
line. In our case, this becomes a mapping from GF(pa) onto the square
r'esidues of GF(p). As before, we can achieve such a condition over a
subset. Leﬁ S(x,q,) = {y : y € Toss (i,qk) and f»_’ya € Toss (x,q,)}
(remembér 2y2 to be performed with respect to the center, x). For
simplicity, consider S(0,q,). Define ¢(S(0,q,)) ={z : z =a + ib ,

a,b €8(0,q,)}. Then V z € ¢(S(0,q,)) |z| €GF(p) eama |z]| =

square residue. We may generalize our definition to include the

1)
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replacement square roots to find (see section 7).

Iz‘. = (./z*z) .
R
5 = . ' a L
In terms of this definition, |z|y is ordered, etc. over an appropriate

. 2
subset. Thus, we can introduce a length notion over part of GF(p ).

1k
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system. The square root situation is much the same, for every system .

F' & (f1p1ﬂ\ is Adependent wmon the am%raa~ns 21013 lmakn €24

6. SQUARE ROOTS AND INCOMPLETENESS

We have seen that for any GF(p), there are (p - 1)/2 elements

that do not have square roots in GF(p). 1f you embed GF(p) in GF(pa),'
b i, o then eacﬁ of these (p - 1)/2 elements has a square.root in GF(p?).
However, in GF(pe), there are (p2 - 1)/2 elements without square roots
in GF(pe). This process continues for all finite fields, the richest

always failing to contain square roots for about half its members. This

a form of incompleteness that is somewhat reminiscent of the Godel

type incompleteness. Godel showed that within any formal system at least

rich as aiithmetic, there always exist statements whose truth or

11
falsity depends entirely upon the truth or falsity of a meta statement.

Hence the status of certain statements cannot be determined within the'

la\ Prw 2dan
ot A st \0 - ale N l - alle VS

square root completion. It should be noted that an infinite field is not con-

] sidered to display such behavior.In fact the complex plane is purported

contain the square root of every one of its elements. This is another

I | example of the curious counting results one encounters when dealing with
infinities of numbers. However, if the infinite field is obtained
from a limiting process of successive imbedding, of finite fields, the
cited property of the continuous complex plane will not appear for any

¢ finite part of the limiting process,

15




7. REPLACEMENT TECHNIQUE FOR SQUARE ROOTS

& . Let us concentrate our a‘l;tention ;lpon the ordered subset centered
* : | ebout 0, i.e. Toss (O,qk). We are going to be concerned with those
elements in Toss (O,q,) that in conventional number theory are known as_
£ x perfect squares, viz. 0, 1, 4, 9, 16, ... . ILet '.l‘oss"’(o,c;k) =

l | {0,1,2,...,(q,-1)/2} , i.e. the "positive" clements of Toss (O,qk)

Let us construct a set I'(q,) as follows. ‘Let 0 €T (q,) . Then let

(0o + 1)2 € I'(q,) if (0 + 1)® € Toss*(0,q,) . Continue in this until the

Lo . first time that (O + 1 + «-- + 1) £ Toss*(0,q,) . Then the n elements

n+l times

K%

»
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O 0?,12,22,...,1° will constitute I(q,). Jet us arrange and nuaber the
. clements of I'(q, ) so that Yo.= 0,y =2, -etc. faen we have . N
Y% <w < Yz. < e+ < Y, vhere Y,,' is the largest "perfect square" in

s Toss*(0,q, ). Let S(qx)'n {x : x € Toss*(0,q, ) and x <¥,} . Thus for

% the elements of I‘(qk) we have the squarc roots lying in the s order
as the squarcs, clearly a desirable situation. Unfortun: .cly the fortﬁal
square roots of the elements of S(g,) not in. I(q, ) do not ;:xhibit this
property. We shall impose the additional condition that the squa.res. ar;d
square roots of S(q, ) lie in the same order. Siﬁce we cannot obtain an
acceptable solution—acceptable with respect to the eviteria establi;hed

. #@bove-ve shall replace the problem by one 1';hat ve can solve within the .

framevork.

Let x € 5(g,) , x £T(q,) . Problem (1) is to find y € 8(q,) D ¥ ~x . |

5-?‘ ) . _
E ‘Q T x €8(q. ) and x ¢T(a.) , then ¥ 1 (i € f0.1,2,....n-1}) D v, <X < ¥y . ';

? Ve shall replace problem (1) with /¥,,; € S(q,,) and dzsignate the replace-

{

/
. ‘1
% ment by (‘/i;R . Clearly, if x € I(q,) , then (/X), = /X (where /X has its ordinary '4
definition. ’

Ve have replaced problem (1), which does not have an acceptable

solution in GF(p ), by another problem that does admit of solution. We

again see that going beyond Toss (O,qk) leads us into a realm of uniter-

pretable results. In effect, this corresponds to going beyond the
capa'b:ilitics or resources of the given C¥(p ).

| * Theorem (8.). 1. Vx €8(q) , (/%) € 5(q) ‘
IL . 2, If x,y €8(q ) and x £y, then (Vx); < (./37)R
;

X 3. If x,y €85(q,) and (/X), < (/F)y , then x <y .

17 - ; :
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Proof. Property 1. follows immediatcly since ihe Y, were chosen to
be those elements for which /¥, € S(q,) . For provcrty 2., let y, =

min 'y 2x .” Then vy, <x sly, y and (~/§)R' =Yy . Since y 2 x we know

ver(q, ) i .
that either x Sy <Yy, ory >y, . Ifxsysy , then (V) = (Vy), =

/Y% . Ify >y, , then (/3), =

/¥, vhere Y, > Y, ; hence, x <y imblies (V/x)s s (/¥); - For property 3.,
let /Y, = (Vx), and /y; = (/¥)y . Since (/X)y < (/¥); » we bave .y, <Yy . -
We also have Y;., <x <'y; and Yy, <y <Yy; . Now, ¥ <Y, implies

Yi € Yy 3 hencex‘syx S Yy <yandx<y. ‘ -

Note that (/x), < (/¥), does not imply x <y .

isonen (.9). Let x,x* €5(q,) wvith x #0 . Then (/J—{E——:;)R & B
if and only if y € [0, 2x - 2] (here [ ] has usua. definition).

Proof. If (/x® - y)g = x , then (x - 1)? <x® -y S x° . Tnis
implies that y € [0, 2x - 2] . Conversely, assume y € [0, 2x -~ 2} .
Since (x - 1) =x® - (2x - 1) <x® -y <x® , we have x = (m)a .

Theorem (10). V x € S(q,) , [(/x)1? 2 x . o

Proof. Let /¥ = (/X)y « Then, if x 20, vy <xsvy = (/%) =
[(v%)}? . If x =0, the theorem is obvious.

Theorem (11). V x,y € S(g,) D xy € 8(a,) , (/&) s (VF)(/F) -
| _P_g';g_gi_‘. Let /¥; = (/%) and /¥, = (/¥)y - Then, £ x O,y £ O,

| Yip <X <Y and Yy, <y <Yy . Hence, Y‘I_l Yi-1 <X¥ < Y;Yy .  Therefore,
- (V3T <VWiY; = /W /Yy = (VX)(/¥)r « Once again, if x 2y =0 , the

| theorem is obvious.

18
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8. - EMBEDDING

If we wish to find another problem that gives a "better" answer to

rcplace Problem (1), ve must expand our field by cubedding GF(pk) in a

field GF(py) vhere k' > k . Because of its greater richness GF(p,+) can

" provide substitute problems that "more closely approach" Problem (1). : 2
Let us choose p, such that p./p, = 100 + R wvhere R > 0 . Then ve

3_ _shali identify every 100*? element (up to 100g, ) of S{ay) with the elements .

{’ of 5(q,), i.e. if tx' € s(qy) and if g’ =0 (mod 100), then T x € 8(gy) 3 "~k {

i : : v

x -+ x'_. Now we can posc Problem (1’) vhich is to find /x' € S(aqy)
XJs 3

. (x’ € x €5(q)). Again replace Problem (1') by finding vy € gy )
L Yiay < x’s Ys « Again introduce the replacement problem and a soluable

problen in GF(py ). Then, using the relation x + x’, we associate a solution, "~ “ il

say y;, with Provlem (1) by the decimal version cf -}’5 And if greater

resolution is sought repeat this process to GF(py: ), etc. : S L *

o o e

Example. S(11) = {0,1,2,...,9). ®ind /7 . Replaccment problem yields
(/7T7)a * 3. Go to richer ficld with 5(1109). Then 676 < 700 < 729 =
j (VT =+ 2.7,

In this way we have established a procedure that serves to define
accepteble square roots to within any desired “"resolution" or order of | 1

refinement. let us point out that embedding is a form of replacement and the , |

identification of 1.0 .witl.x 1.00 is a matter of pure and arbitrary convention.

g We could—in principle—associate 1.0 with any number, say 6.25, but that would VUl
¢? violate standard practice. The only theoretical requirement is that every
E element in the coarse field be mapped nonabiguously onto an element of t‘he

finer field.
19




9. ALTERNATIVE REPLACEMENT TECHNIQUE | !

Instead of "rounding up" as we have done, one could "round to closcsi

neighbor." This changes the form of the theorems and the triangle inecquality

is lost; however, there. are certain aspects that are quite desirable. In

ol W

this éection,Awe shall just present the definit}on.
Let x €5(q,) 3x £T(q,) . Then T 1 € {9,1,...,n;1] ER <x'€YH1 .
Form the differences é* = vy;,, - x and g =x Y, . Clearly & and d € S(q,) :
ay - 80 are unambiguously comparéble with our order: relation. Let us designate . |

. the replacement square root of x by (/%); . Then, the following will serve

as the definition of (/X); . Let /X designate the positive Galois field . &

square root.

£ : Definition. If @* >d~ , then (/X); =¥ ; if & < d , then
(‘/’T)R = VY541

Since (N + 1)2 - N? = 2N + 1, there can be no x € 8(g, ) such that a* = a -

and ve have an unambiguous formulation. If x € I'(q.) , then (/X), = /%X .

In.the subsequent development we shall restrict our attention to

%; the computationally simple "rounding up". However, we must first
: demonstrate that this choice does not unnecessarily prejudice the
{: s conclusions. 7Thus let us show that the three possible replacement
. techniques lead to essentially equivalent results.

o Sce Appendix I.
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10. GALOIS FIELD GEOMETRY

- . '

. ' 12
A vector space defined over a Galols ficld cannot have an inner

* product with all of the customary properties because of the lack of transitive

order in GF (p)-Howev:;r we shall generalize this notion to what will be

.called a Galois product in the hopes of introducing a concept of direction.

Definition (/3)). Iet V be a vector space of columns defined over GF(p).

B

Iet [x,y) = x"y define a Galuis product Vx, y € V. If [x,y] = O we shall

call x,y orthogonal. | 3 : 4 - '

Theorem (12), The Galois product'satis.fies the following conditions:
: 1. [x,y] € GF(p)

2. [x,y) = [y,x]

Vxy €V;

A x',y €EV; .
3. [x,ay + Bz) = o [x,y) + B [x,2) Vx,y,z €V, YV o,p € GF(p).

21
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the oy, By, v € GF(p). Then [x,y] =‘§;oqﬁ,, etc. Hence 1. follows from
closure of GF(p) under hultiplication and addition. Similerly 2. follows
from commutativity of multiplication in GF(p). Finally 3. follows since

multiplicetion is 2lso distributive in GF(p).

Iet us now study the relationships between lirear independence and

the Galois product.

* Theorem (13). If [x,x] #0and ax =y, o # O where x,y € V and

o € GF(p), then [x,y] # 0. Thus lincar dependence implies a nonzero

Galois product.

Proof. [x,y] = [x,0x] = ofx,x] £ 0.

Theorem (34). If [x,y] = 0 and [x,x] # 0, [y,y] # 0, x,y €V, then

x and y are linearly independent,

Proof. Iet us seek two scalars a,B € GF(p) such that e x + B y = O.

Operate on this equztion with x' to obtain o x¥ x + B x"y = o [x,x] +

B [x,y] = o [x,x] = 0. Hence, since [x,x] £ 0, «

0. Operate similarly

. with y' to find B = 0, Therefore x and Y are linearly independent.
'.
<
Q
g »’.t
' 22
’___mq ann s P R (S T P P I oy A

3 &
ST

A i s L




.'b_," L]

SR,
L 4
*

11. NORM AND METRIC

'Iet us nov combine the above results and define a region over which

an inner product and norm can be identified. ILet E(q, ) = Toss (0,q,) be |

the transitive ordered subset of GF(p). Let V be an n-dimensional

vector space defined over GF(p). Define a subset of E(aq, ) gé,'

. F(Qx)={.a:a€E(qk) and n_aa<qk}. _ . -

Define a region of V b&

5 . al 8
F={x:x €V, x= | , o4,0,000,0 € Fg)).

an
yneorem (iv). V x € ¥, iX,X] < 03 = 0 11T x = 0,
. %
Proof. let x =[] 3 0305500059 € F(q.). Then we have
On

4

{x,x] =‘§:1 (e )2. Iet F+(qk) = {o: @ € Fq,) and o« 2 0}.

2 ’ 2
Clearly (o) € F'(g) (3 = 1,2,...,n). Since n{ey) < qu, the
po |
swn of T (o) is still in F'(q), i.e. transitivity holds and we can

2
sum the inequalities 0 sn(gy) < g, to obtain the theorem.

b g b st gt
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the condition [ox,x] = efx,x] is valid over V and GF(p) but the condition .

. 4
The sct F is not a subspace of V because it is not closed wnder :
vector sddition or sczlar multiplication. Thus. vhen formulating certain \

theorens.additiohal restrictions are needed to insurc that operations do

not carry beyond the limits of Fintb the set V-F. Thus, for example,

[éz,0x] 2 0 is valid only for those « € GF(p), x € F d a x € F.

Theorem (16). If « € GF(p), x € F and a x € F, then [ax,x] 2 0; =
iff x=0o0r a=0.

Proof. Follows immediately from Theorem (1 ) with ox replacing X. ' ‘

Theorem (17). 1If we restrict ourselves to operations involving

"elements of F that do not produce results out of F, then the Galois product

becomes an inner prcduct over F.

Proof. From Theorem (12), we know that the Galois product satisfies

all but the conaition that (X,X) < U, = U 2II X = U OI Tne aerinition oi an

inner product. Theorems (15) and (16) insure that this condition is also satisfied.

[P

24
Iet H(q. ) = {a: @ € BE(q) and bn o < g .

o : ul ¢ ‘ .
Iet H={x: x €V, x=|a| , 4,00,...50 € H(q)]. . : 1
o, 1
. . ‘

) , -
Theorem (38). If x,y € H, then [x,y] = [x,x]ly,y]. ‘
oy B, . .
Proof. Iet x =| o s ¥ =|Ba |5 onsBy, € B(a) (3 = 1,2,...,n). 1

Q’u BB
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R 2
We have that O < E T (uBy - o)) .

LA This incquality holds because
L e |

by lhe d~.-fim}tmn of l!(q‘ ), each tern is nomegetive and their sum

stays within E(q ). We may expand this incquality to obtain

[Ean) <Z(@) E@).

' . ..
In terms of x and y, this is equivalent to [x,y] =< [x,x] [y,y].

Theorem (19).

If x,y € H, then [x,y] = (N%xT)x (V¥ k-

Proof. From theorens (8.), {-9j,and ('18), we Tind [x,y] = (IxxIy,yT),
and from theorem (8) (/UGN ¥,yil s WIFKxI)s (¥o¥D)s-

Definition (.b4).

Define a mapping from F into GF(p) as follows:
Vx€F, | x || = (I,

Theorem (20). || x || 2 0; = 0 iff x —= 0, Vx €F.

Proof. The proof follows from thcorem (15) and the definition of
(\/ )p,.- - a

Theorem @1). lex 2] a| -

x|l = (Mased ),

||v|| Vx€Pr,. VaGGr(p) BaxCF.

- (V@A ) 2 V& 2 (%) h
=|°f|.'||?<ll- |

Vx,y CH3x +yCF, ||X+y'||5'||><||+||y||

Bx o+ Ny Y = A% + (AT3Tk + 200557, (/[y,yJ)R

Theozcm (10) = 2[x,x) + [y,y] + d(/l)- X Ty syd

Theorem (1) = 2 [x,x] + [y,y] + 2(/5-',32‘]‘[‘9‘,37] e

Theorem (18) = =2 [x,x] + [y,y] + 2(/Tx,yI¥),

Theorem (. 9) =

Proof.

Theorem (.22 .

Proof.

= [x,x) + [y,y] + 2[x,y]

= [x+y,x1y].

n
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v _
‘.) therefore, (|| x |} + || y “)2 2 [x+y,x+#y] which irhplies--i‘rom theoren (8 )
that
Froa theorem (9 )and dei:inition (%), ve have
Hxl+lyll=lx+yll
pefinition (5). Iet p(x,y) =llx -y )] Vx,y€FP3xye€r. -
Theorem (23). 1. p(x,y) 20; =0iffx =y. 3T
.. | 2. p(n,y) = Bly,x)
. ' Proof. Property 1. follows immediately from theorem (20) with
‘e x = y identified with x. Property 2. follows since p(x,y) - hx-yll- T
V753 = (Tyyxd)e = ply,x). ST
Theoremn (24). p(x,y) + p(y,2) 2 p(x,2z) V x,y,z € HOx - ¥s
r*> ‘X ~2,y -2 €H. . .
\“ ’ . ‘_lf_r_g_c_)*f_‘. We shall use the rcsu'lts of thcorcm.(22). p(x,z.) =
Ix-zll=lx-y+y-zlslx-yl+ly-2ll=pxy)+pb.2)
Thus we sec .that p(x,y) satislies the ,tdefiniti_'on{ ol a, metric. over the.
set H. ' '
.
.
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.the conventional forwalism of modern physics. MHowever, this procecdure

12. ROTATION

In addition to the basic metrical properties of geometry that huve

‘already been presented,'ue shall- seek a mechanism for generating =

-yl s

concept of rotation. There has been prior work in this direction,

generally by introducing finite groups of transformations that presé}ve

some appropriate quaératic form 13. ‘ For.example,:if dealing - |
vith a four-dimensional space, onc can introducc a metric tensor of the - 1

form

;0,1 ecr(p) | 2

o
o o+ o
o~ © o
o o ©

0 | _ | |
L il o |

and define a bilinear form x + y = x'gy . This is in dircct analogy with

does not directly consider the problem of interpretability, especially that asso-

P

ciated with the ordered subsets that play such an important role in our
development of finite geometry. lence we impoqelan additional condition
that a subset of all such transformations be found that transforms vectors
from F(q,) into vectors of ¥(q,) (ve might further restrict to H(qy ),
depending on the eontext).

We have devised a finite algorithm that generates transformations

- : 1 L
that "rotate" vectors of the ordered grid into other such vectors. Since

it is a constructive proceéurc, it offers immediate insight into tﬁe
structure and consequences of a finite and discrete geometry.

The rotation technique consists of adjoining integer sided right
triangLNQSabout sore common verlex so that the hypotencuse of onc and a

leg of the other are colinear. The'common verlex is generally considered

R U2 L . _ i




to ke the origin. If tﬁé trianéles are suitably chosen, then the _
vertices are always rcalized al points of the discrete grid. Clesrly
this is a nccessary coqgltion. In order to guarantee that this is
satisfied, one aust have the grid sufficientiy rich, i.c. with suffi-
ciently many points. The adjunction is vicwed conceptually as being
performed via successive embedding in richer, i.e. more "closely"” X
packed fields. Thus, if h is the numﬁer of counts of the hypotenuge
of the first triangle as seen in field F', then this save "se~.cnt"
should be h" counts vhen referred to the field F* which is requircd
after n adjunctions. In other words, we require an ever richer field
@2 nerfonm ‘aveny salarausnt ‘woalodiicn

Pre mavrant ad anenliandlan o8 $h~
- -op - \-r\'“ -k u‘lr-ﬁuﬁ-\—“ - e WA A WAL da b

procedure, ve may generate rational expressions of arbitrary rotations.
If ve let our "unit" triangle be thin, i:g. if the ratio of the legs is
sﬁall, then we can aporcach any "angle" of ordinary rotaticn by repeated
adjunction of this one triangle. In this casc vhen thc same triangle is
used, then the sum of the squares of the coordinates, whén reférrcd té
the richest field, is a conserved quantity. This case fits into

the tormat éf the above described systems. Hence we have generated a

subset of the formal and global definitions of rotation. As has so often

- happened in the development of finite Ticld geometry, one can iutroduce

interpretable objects locally, not globally.

28
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Another interesting and potentially far-reaching point to mention
iz the fouowing It is found that each successive adjunction requires
a richer field 11’ one is to refer the results back to the original

. orientation. Obviously, this process can continue only so long before
P

one exhausts his capacity to further enrich the field. At this stage,

one must either cease or drop fhe requirement of remenbering exactly
In the latter case, one ‘can ‘either

-’

eliminate the record of the original state entirely or introduce a

vhat the original orientation was.

probebilistic formulation that enables one to go further, although

without a deterministic description. The probabilistic mei:;'?; does . ~

enable one to further extend his capabilities. However, both solutions

. ultimately lead to complete renunciation of strict determipiém in des-
cription; hence, the predictative capability is likewise ld;t. It is

5 conjectured that this failure to achieve a purely and exhaustively =

deterministic description might be the source of the quantum mechanical

behavior so well known in the realm of atomic¢ phenomena.

When the numerical capacity is exceeded, there are ways to reté.in
some control. and information by reducing the resolution requirerﬁents. This
; can be done by introducing a hierarchy of counting that no longer: carries thé
i lowest decimal. For example, an automobile odometer can register more thén
105 miles if, after reaching 99,999, we change the gear ratio by a factor
of ten. We forgo knovledge of thé tenths place but obtain capacity to

count hundred thousands. And this hierarchical embedding can be repeated.

29
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13. MATHEMATICAL INDUCTION AND PASSAGE TO TXE LIMIT

One of the many implications of the local ordering concept is the

distinction between "for any" and "for every." We can declare an origin

at any point in the space and do geometry locally; however, this does

not imply that we can do geometry at every point referred to this one

. ) 16
i origin. Mathematical induction asks if the validity of P(n + 1) follows
from the sssumed validity of P(n) and the demonstrable validity of P(1)

P(n) assumed true and implying the validity of P(n + 1) is a local . i
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demonstration that can be performed anywheré, i.e., at any n. However,
from this local property the conventional assumption is global validity.

On the other hand, since this entire process is highly similar to our

local order concept, we are led to inquire whether mathematical induction

is also limited .by the loal vs. global distinction. If so, then the
principle of mathematical induction must be reevaluated to incorporate
the results of a local ordeéing relation in a finite field.

We have found that any demonstration (from the finite context of

the view taken in this paper) of the validity of mathematical induction

"requires an additional axiom regarding the existence of a "continuous”

field. This is consistent with the findings iﬂ the early 20th century
about the necessity of an axiom of infinity.l7: |

In order to develqp these ideas mére fully, we hust first examine
an extralogical requirement.

This paper begins with a primitive commitment to finitism and we
have attempted to demonstrate the theoreticgl possibility of performing
certain operations wholly within a finite context. Now we must invoke

arother primitive commitment and can only briefly motivate its intro-

duction. Procedural invariance is an extralogical requirement (see

reference 18) that is essentially a generalization of the Einstein prin-

ciple requiring invariance of physical laws under appropriate transforms-

tions. A rational system that leads to a pfediction or prescription
that is not invariant under the arbitrar& procedures of.analysis and
computatioh is inherently ambiguous, i.,e., the system should not have
its results depend upon the computational path that is chosen, The

choice of convention should not determinc the answer, If it does then

R ———
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the resulis cannot be unique, in general, the p&eservatian of consis—
tency un@er altg?native, arbitrary procedures is a categorical require-
ment, i.e,, a system which does ﬁot preserve consistency under arbitrary
procedural convention is & fortisri inadmissible as a rational paradigm.
' We shall now consider "passage to the limit" and mathematical in- |
duction to see what effects the demand for procedural invariance brings.
In general; there are different limiting procedures that are not in
agreement because a discrete grid, no matter how fine, is qualitatively

different from a contimuous line. There is no gradual transition which

txansforms all of the properties of the finite system smoothly into the

proﬁérties of a continuous system; some of the properties of the con-
tinuum appear abruptly only when the embedding reaches the ultimate

transfinite stage.

fConsider three alternative conventions to govern mathematical ine
duction. Let P(n,,p) be a.proposition that is consistent with a set of axioms,

G, where n, € GF(p). Let n (p) denote the largest cownt in 6= (p), i.e.,
()

is zero, i.e., p - 1. Iet nmax(Toss(p)) be the number of elements or size

starting with 1, nmax(p) is the element such that the successor ton

of Toss(p). We shall look at P(n,,P) as n, and plincreaSe.

(1) Conventional or Customary Mathematics: ILet p + "o" = Vp,
n, < nmax(Toss(P)). This corresponds to the construction
of a continuum by indefinite émbedding and generates a

countably infinite set of trantitively ordered numbers.
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The validity of the proposition P is then investigated

by conventional logic in the context of continuous space.

This procedure generates the well-kndt_m (and sometime counter

(1x)

(111)

intuitive) results of mathematics.

Fixed Cognitive Agent: Keep n, € GF(p) but let n, > (Toss(p)).

n
max

In this case induction on P(n,,p) leads to results which are not
interpretable within the context of the fixed cognitive agent
i.e., the results are relatively indeterminably and chaotic.

We describe this result by P(n,,p) - X where X is some

unexpect 1 proposition not necessa.ril} consistent with G. s

Indefinite Finite Embedding: Iet n, and P increase so that .

n, € Toss(p); then perform induction.. In this case the

resultant proposition is determinable and consistent with

G. Unfortunately, this procedure is limited to the resources -

that can generate ever larger p's. Hence, when the "largest"
P is'reached, i.e., when the capacity of the S}stem is
exhausted, then case (III) + case (11'). We observe that
prediction in any .substantive system' (iricluding that of

the phy.'iical universe) ultimately exhausts its numerical

resource.

Of these procedures, case (I) is the conventional one; case (II)

is more appropriate to any actual finite system, and case (IITI) is arbitrarily
constrained to remain within systém of adequate numerical resources and

thereby investigate only the determinable properties of mathematics.:
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Illustrative Examples

Example A: Convergence to a Point

Consider the function P(m) = 1/m. We desire to‘define the limiting
process designed by .
Lim P(m)
m 5
where m -+ indicates that m increases under that aﬁpropriate condition of
the respective procedure.

Undexr procedure I we have

" Lim P(m) = O3 ‘ . -
m- @ , )
i
Under procedure ITI we have a two-stage process

Lim P(m) = e(p)
n <+ n(Toss(p)) ‘

Lim e(p) = 6 >0
p-b

We note that 6§ moves arbitrarily close to zero i.e., & < %, where
M is any number from any Toss(p); however great.

We may say that "6 convergences toward zero" and may be made to lie
within any arbitrarily small neighborhood of zero, i.e., the limit is not
a member of the sequence (cf. definition of a Banach Space and the closure
reéuirement ).

Under ;{rocedure II

We execute the first stage as above in procedure II; then carry
the limiting process through the transitivity ordered numbers:

Li = )
n -omnmi?‘goss(p)) ¢ (nmax

34
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During the limiting process ¢ (n) decreases to a minimum valuc
i/n lmx('.l!oss(p)). Next we execute the second stage by replacing n by the

successors.

Then "incre;a.se" n maxToss(p)) by successive steps defined by the
process:
n'=n+1
Since n + 1 and subsequent nﬁmbers are outside of Toss(p), ¢ (n’)
suddenly escapes the neighborhood of zero., If limited to the numerical

resources of a fixed Toss(p) of GF(p) the value of ¢ (n’) is undeterminable

and may be any number. Here the limiting process, as n increases, behaves

'in a determinable manner and the value is restricted to a smoothly dezreasing

neighborhood until n exceeds nmax' The value then takes on unpredigtable
values including some of which are not interpretable.

Example B: Relativistic Proverties of a Random Walk in
Finite Space®

Consider a one-dimensional diécrete space and a point executing a
random walk. The probability of moving one space position to a
contiguous position of higher index is p, converse g, p + q = 1. let
k designate the index of the point, and let n be the number of steps.

Iet P(k,n) be the probability that the point is at the kth position after

the nth transition.

This example is taken from an earlier work by one of us (NMS) reference

19 and is a simplified version of a more general viewpoini in which the
embedded discrete space points are implicil. In order to preserve
consistence under a velocity formation it was demonstrated in the reference
that it was necessary to introduce an imeaginary component of transition
probability in order to achieve 6-dimensional rotational trancformations
(one time dimension for each space dimension). The resulting transformation
was shown.to be the Lorentz-Fitzgerald transformation of relativistic
physics.
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Given 5
P(0,0) = 1, we may show that ; — :
. < .ot N
| X : . - - i i
’ / otk otk ok i
- e
. P(n,k) = P a  ;ZP(nk)=1, i
n-k; k . !
¢ 2] . : |
is a binomial distribution which extends + n either side of k = 0.
We may also show that the first moment, k = ¥xP(k,n) is:
k=n(p - q); | O i
and that the varizi.ze is 1
2 | s _.2 )
o (kn) = = (k - k) = lnpq. - @) . i
Furthermore, since p - ¢ = constant =P and p + q = 1, we have .
' 2 2
o o (k,n) = n(1-B ); (3) {
e the ratio of o(k,n) for B # O to gofk,n) for B = 0 is :
)
( a 2 "2- -
. o= (8 | (1)
i

We interpret the transition to result in the change of one space quanta {

and the corresponding time to change one time quanta. 1In terms of measures

B o e

from some much finer embedding, one space quanta represents a change in

a distance of A, and of time, T. The mean position of the point is given

by
x = kA = nBA 4
and the time ¢, by !
‘ !
t = nT.
*. The speed of the expected position, v, is given by %
: % 2 2 2
. e Bk ; and o (x) = n(1-8 )A .
t LI .
l 4
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The random walk exhibits relativistic properties, under the interpretation
that k determines the position of P(k,n) and that o determines its size. We
note that the speed is limited t¢ a maximal quantity, and that the size
contracts in the direction of motion as in the lorentz-Fitzgearld

contraction. The maximum velocity, V oy 18 given by

= - ._nA_A
B—l, iueo, byvmu—c—'r—l-.?—-.—r-

and the size, o, becomes O a;.t B =1. for all n.

We now examine'these relativistic properties as the embedding of
finite spaces becomes a continuum by permitting.A -+ 0.. This is not a
‘uniquely determinable p'rocedure. We can at most, preserve three propérties
(since P is a function of k, n, and B) of the d:‘istributio‘n, P(k,n). It
is not possible to preserve all of its pr;aperties. The properties ve select
for présentation are:

(). the "size" o is maintained finite and nonzero;

(b) the time measure (and space measure) are held constant, and

(c) the speed v, is held constant.

Condition (a) is satisfied if for & = nAz(l-Bz) ve require

nA2 = noboz (vhere the subscript refers to the values in the

initial discrete space).

From above we have
2

n=2%b  (a)

From condition (b) we have t = nT = nyT, = const. On combining with

Condition(a) we have .
2

r=To b8 | (8)
3

3
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From condition (c) we have

_BA_B e B _B . ’ ‘
v_-—..—%??--const- -ﬁ’—?r%---go—%lv :

T

TS

B =Bo"'%;'- (i:)'

We now let A+ O, having required v and t to remain cons®ant. !

Lim B =0 ) - ) : '
A+ 0 [

2 .
Iim 0 = ngfy, =0po(i.e., the initial standard deviation for

A+ 0 B =0, i.e., zero velocity).
2

Lim ¢ = Lim -$=Lim how.

A+0 A40 A-+0 ©

We note that the Iorentz-like contraction is lost; that the maximum

velocity increases without bound—in short, that the natural relativistic

properties of the discrete space are lost in going to the continuum as a

limiting process. Having destroyed these formal properties in going to the

o — . S

continuum, we may reintroduce them as additional restraints appropriate to the
substantitive problém encountered. For example, in the special theory of
relativity one imposes the constancy of the velocity of light. The point
made herein is that this property is a natural formal property of the {

discrete space—and that finite cognitive agents are constrained to cognize {

in the context of Giscrete spaces. Hence any admissible model of

substantive finite space will, perforce, have the relativistic properties.




Example C: Numerousness of the Even, 0dd
Numbers E

In conventional number theory following pirocess I it is shown
) that the even (odd) nambers are equally as numerous as the transtitive-
. ordered set of all numbers.

Following procedure IIT we note that for any finite model of size

n the evens are as numerous as g, n even (or as !%l if n is odd) snd the

n+l : ] i
i odds as numerous as -’3, n even or —3—, n odd. As n is increased this ratio

2
of evens to n remains, or converges toward %—-for any n. Thus the limiting )
ratio is not one of. equally numerous to the total set of integers (miless one
maintain that 3 of « is "as numerous" as ). o
Procedure II conf(;rms to procedure III until nmax(Toss(p)) is
« exceeded—at vwhich timé the odds and evens appear in random order and
statistically the ratig becomes one-half.

o .
Example D: Trisecting the Angle

In conventional geometry it is agreed that by using an idealized

compass and ruler, any . given angle may be bisected, but that it is

not possible to trisect an angle. It is éxplicitly forbidden, under the

, terms of the exercise, to permit infinite intera‘l:,ive algorithms even though
’ they may converge to a trisection qf an angle. However, by the nature of

| the exercise,' an infinite algorithm has been implicitly admitted. by the

) supposition that one may place the idealized point of the compass exactly
on top of a given point on the idealized paper. One can devise algorithms
which enable onc point to be placed witl;in any e-neighborhood of a given

* point with a finite number of operations; however, they are of the nature

]
f ¢ explicitly forbidden.
]
l
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The result of i;.hese observations is that if infinite procedures J
are ruled out an avgle can néither be bisected nor trisected. On
the other hand, if infinitely converging algorithms are admitted, then
one may constr:act , within any tolerakle variance, .the bisected and the

trisected angle. Under procedure III, the variance is decreased indefinitely.

i i

Under procedure II [and the ultimate fate of procedure III] the variance can
-'be Gecreased progressively until the transitively ordered numbers are
exhausted; further operations result in random results added to the initial 4

determinable results.

The behavior of determination under case II is more lnear]'y in -

conformity tc actual physical behavior. We are led to surmise that this

property—as a natural property of these finite spaces—may be more

appropriately associated with the finiteness of the finite cognizing agent

itself. o
One may regard procedure III as an interim one adritting of embedding

one finite field in a larger one (i.e., greater p) in such a manner as to

preserve pro tem the determinable character of calculation. This process

e i B

may be iteratively advanced until some secondary requirement is met (e, ;
the uncertainties are balanced or the error is admissible )—or until the
process rust halt for leck of additional numerical resocurces. Procedure
II identifies the resulting characteristic when such resources are exceeded— 1
and any fixed system must necessarily sooner or later face the consequent {

introduction of indeterminancy (i.e., all systems are finite).

The use of continuous mathematics to represent finite space-time
wnder the problem conditions imposed here is admissible as an expedient only
if it is kept in mind that (1) some inconsistency may inadvertently be

&

introduced, and (2) it may be necessary to introduce additional side

4o




constraints ostensibly as "properties" of the substantive problem in
order tb preserve some of the characteristics of the finite spaces
vhich have been‘_ lost in the conventional limiting processes (e.g., the
constant finite speed of light in vacuo).

If one does not admit the existence of a continuous space, even as
an additional axiomatic input, he is led to define a concept "infinity"
and a "1limit" in terms of algorithms which are in-every case necessarily

truncated by limiting the sequential process to a finite number of operations.

Statements about the continuum are then-shorthand statements of more exactly.

definable finite procedures. Some such statements are inadmissible (e.g.,

"all complex numbers have square roots").

Iet us also point out that there are prof@d generic differences
between finite fields and infinite fields and the _oné does not gradually
grow into the other. 8o long as a field is fi.nite, no matter how large p
becomes, it is categorieally @ifferent from an infinite set. The transition
occurs not during the finite approach to the limit, but abruptly "over the
horizon" when the limit is reached (e.g., the relative numerousness of
evens and odds cannot be understood via a gradual transition from finite
to infinite sets). Thus, we must reexamine our understanding of limits,
ete., in light of tllése results. Ve as finite cognitive agents; ere
constrained to reach all of our conclusions by finite procedures. Hence,
since ve can infer an infinite set as a finite sequence of finite sets, one
must ask about the status of these infinite sets. Or, if we assume their
existence, how do we work with them since they are not finitely attainable

or realizable?

k1
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APPENDIX ‘I . -

Given x ﬁ F(qk) Ve Loow there exist two pexfect squarcs betwoon
which x lies, say

(oF <x < +aP . | (1)

Hence (./x); will cqual Ny or ¥, + 1 , dcpending on vhether we assume

round-up, round-doun, or round ncarest. Yo increase rcsolution, ve may

add a decimal place to the root by forming

Q .
(JSx) % (J/I00x), . - (2)
How, incquality (1) implies )

100(}, )®> < 100x < 200(1, + 1) . (3)

Theoren (1). There are nine perfcet squares between 100K and 100(W + 1),
not counting the end points.
Proof. Consider [10F + «)® where o is a nomnegative intéger. Clearly

[10% + «)° € [1005%, 100{ + 1)?] for « C [0,10] .

Using ‘Meoren (1) on inequality (3), we sce that 100x lies between two

perfect squares as follous:
(208, + oy )° < 100x < (OB, + o + 1) o €[0,9) (%)
Let us define N, = lOF, + ¢g and rewrite (h) as |
(4, ° < 200x < (1, + 1)° )
Let us now consider still anolher embedding vhich requires

200(x, )? < 10%x < 100(K, + 1)* . (5)

42
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|
~ As before, we use Theorem (1) to i'in(i @, € [0.2] such ihat ' J
) . . !
(-10111 + n‘p) < l\) o < (J-\ 1\] -k G’e + l)" (6) - E
[ 3 ] )
) " and so forth. After n cubeddings ve have
" (B)? <10%"x < (K, + 1) (1

vhere N, = 108,.; + ¢, = 100208, ., + 04y ) + @,

]

10(10[ 208, _5 + a,,_2]-+ Gy ) + 0

4
‘ = 10N, + £ 1o‘a e - (8) .
‘.—
1l 0
Define C(Eh, = (/1o x), - . ' (9) B
Clearly (J10°"x), €[N, n+1] holds for any of the three replacewnent
% alternatives.
7]
T Thus from Equation (9) we obtain :
R - .- ]
. rHoOOR O+ , : . {l
- (\/’*)Rn € ‘ 104 > TI0 J . \1v) : ‘
; G L{
r From Equation (10) we obtain by squaring that > | o ‘l ”
L
2 q . ' 1
| ((J;:)“n) < l—(lO") (l 10% ] (11) 1
l H “ . . }l “ 5 ) '
| ) Define [ on) 3 10 ) ] An . : ('12) .
' B
; ¥rom inequality (7) we find
¥
'Q 0 x € 4, (13)
( " Consider the length of A, viz. Ibn| . Ve have P
!
1 ' ?(lO“J‘ PR TP ) il
| o, + 1\ e T G ,
’ ‘ " IAﬂl = 10°" = J'(;)h | . (ll)'
. \8\
. - \%
J \\0‘ ]




'1
N
. 20
s Tenas :' Mo A eof "nl.'?-‘ aesertinge 4 ~on :.‘" I 1‘} D J 'i’i'{} (i
T Tor larpe n, 4,1 boehovan secording to 210, /10" . n the it as 5
! o el -t s et " T il B et - e
nen, Iﬁ,l buuenes jnfipitost ol ond va reproscri this symoeolizally a

La |a ) =0 ' | (15)
: N .

From Eguaticns (11) and (13), ve see thot both « and ((qE)h.)* are in A

and from (15) we see that |4, ]| + 0 . Iance :

n-»h

Ly (), P = x (26) e

end ve see that the ewbodding procedure converges to the appropriate 5 g e

limit to Justify its Jefinition and clofw for accepicnee.,  Kote, this . i

formulation is valid for all ihree replacement techniques. )

Finally, it must be mentioned that the above proofs presuppose

that all values be withih the appropriate region of some Toss. As the

embedding becomes richer and therefore more demanding of resources, "f*

the size of the Toss and—at an exponential rate-—the size of the E i

GF(p) become increasingly large.: There are serious questions about the

"limiting size of these fields before they become so large as to violate

etc.,

our primitive commitments regarding numerousness end scope,

e 3 .
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For a full discussion of the philosophical comittments, see

N. Smith and M. Marney, Foundations cf the Prescriptive Sciences,
in preparation.
For the detailed development of a Galois Field, see E. Beltrametti,

" and A. Blasi, Journal of Mathematical Physics, 9 (1968) 1027, R.

Carmichael, Introductién to the Theory of Groups of Finite Order,

Dover Publications, Inc., Rew York, 1937, L. Dickson, Linear Groups

Dover Publications, Inc., New York, 1958, and W. Peterson, Error-

Correcting Codes, The M.I.T. Press, Cambridge, Massachusetts, 1961. ‘
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to more fully incorporate the principle of local ordering. Iet

us point out that there a:re. alternative methods for defining an
irreflexive binary relation and we have not yet fully develcped the
ratimnale for chonsing émAng them. PFor dingtence. ane rem1d Tacsily
order by letting x >y if it requires fewer "counts" to reach y

by successive unit sub’ Sractions than by succe§$'ive wnit additions.
(However, such a convention fails to order’ ‘the reciprocals.)
Nevertheless, the geometry is still locally defined for (p + 1)/2
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o
15. One must introduce a purely finite field formulation of planc
geometry. For instance we may define a triangle as follows. Iet V
be a two-dimensional vector space over GF(p). Definition. Iet

1 2 3
X 4x ,x €V be a set of pairwise 1iv +ly independent vectors.
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16.
17.

18.

19.
20.

‘.-
-

Define the “object™ determine: ty the tinee differences

x’ - ;:', x' - xi, x’ - x1 —cglled sides—to be a triangle. Denote
this triangle by A(J:x ,xz ,xa). In this vay cne. cea develop a plane
geometry with many familiar theorems. For example, if A(J:1 ,::a ,xs)
is a triangle with no side of zero "length,” 1-‘.hen there can be at
most one orthogonal intersection of sides. i

Here P(n) denotes some proposition at the atP iteration.

A. Fraenkel, and Y. Bar-Hillel, Foundations of Set Theory, North- -

Holland Publishing Company, Amsterdam, 1958, and A. Fraenkel,

Abstract Set Theory, North-Holland Publishing Company, Amsterdam,

1961.

Procedural invariance is a generalization of the Einstein principle

of relativity that is required to avoid arbiguity of convention—

in the most general sense. See Foundations of Prescrivtive Sciences,

¥. E=idh asd I, Mo

- Sen et L o
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M. Smith, Behzvioral Science, ! (1956) 111. -

Here the "number" 1} will represent the size or scope of a given
cognitive system. In some broad sense it is the largest number of
counts thiat can be conceived of by cognitive sgents from within this
system. Traditional mathematics has used the symbol as in an un-.
restricted and unqualified sense that does not take the capabilities
of the system into account. Thus, T is the largest count not the

largest number. For a further cxamination of this point, see our

earlier discussion.
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