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FOREWORD

This formal technical report entitled '"Stress Wave
Effects in Inhomogeneous and Porous Earth Materials,' is
submitted by Systems, Science and Software (S3) to the
Advanced Research Projects Agency (ARPA) and the Defense
Atomic Support Agency (DASA). The report presents the
results of the first ten-month period of a continuing study
to develop reliable material models to predict the response
of geologic media in the transition regime which lies be-
tween the high pressure hydrodynamic and low pressure elastic
regimes. This work, in support of the PRIME ARGUS research
program, was accomplished under Contract No. DASA 01-69-C-
0159, which was funded by ARPA, Dr. Stanley Ruby was the
ARPA Program Manager and Mr. Clifton B. McFarland was DASA
Project Scientist. Dr. T. David Riney was the S® Principal
Investigator for this study.

The tcchnical results presented in Sections II through
VII represent the work of a number of S® staff members. It
is appropriate to 1ist here both the principal authors of
these sections and the other contributors to that work:

Authors Contributors
Section II J. W. Kirsch G. A. Gurtman
C. R. Hastings
M. L. Gittings
Section III C. R. Hastings
Section IV J. W. Kirsch C. R. Hastings
L. J. Hageman
Section V T. D. Riney K. G. Hamilton
G. A. Gurtman
v
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Authors Contributors

Section VI T. D. Riney E. J. Halda
J. K. Dienes
*
Section VII L. W. Morland K. G, Hamilton
S. K. Garg

Dr. J. M. Walsh contributed to the thermodynamic studies
and Dr. D. H. Brownell, Jr., contributed to the choice of
numerical schemes utilized in some of the calculations.
The authors are also indsbted to Dr. G. D. Anderson for
technical review of this report.

%
Work done during the summer of 1969 when Dr. Morland,

University of East Anglia, served as a consultant on
this project.
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I. INTRODUCTION AND SUMMARY

The PRIME ARGUS progiam is concerned with the detec-
tion, identification and interpretation of the teleseismic
signals which emanate from an underground nuclear explosion.
Because detection stavions are necessarily at remote loca-
tions from the event, the detected signals are weak, well
within the apparent elastic regime of earth media. Thus,
one is concerned with a signal which has attenuated from
stress levels, at close distances, which may be megabars,
to stresses, at detection distances, which are small com-
pared to strengths of earth media.

In the PRIME ARGUS program, it has been recognized
that a basic problem in relating the yield of a device tc
the observed seismic signal magnitude is the lack of under-
standing of the phenomena that occur in geologic materials
under shock conditions in the pressure range from 300 kbar
down to a few bars.(l) This is the transition region between
the hydrodynamic regime, in which strength effects may be
ignored, and the elastic regime. In the transition region
complex phenomena such as those associated with dynamic void
compaction, heterogeneity, pore water pressure and diffusion,
fracture phenomena, material phase changes, and dependence
of strength parameters on thermodynamic state can become so
important as to dominate the attenuation of the signal.(z)
Current uncertainties in modeling these effects in continuum
mechanics computer codes, coupled with the usual difficul-
ties of shock hydrodynamics, render it hazardous to predict
ground shock effects in the critical pressure range.

A typical geologic material consists of a rock matrix
containing voids or cracks that may be partially filled with
water in one of its thermodynamic states. Even if the basic




matrix material is unchanged, the porosity and the water
content will vary significantly with depth and with surface
distance and the propagation characteristics of the medium
will vary accordiangly. The theoretical studies described in
this report, in support of the PRIME ARGUS program, are
directed to the construction of reliable techniques for pre-
dicting wave propagation in a geologic medium which cuntains
a specified amount of water in its pores.

The geologic medium is considered to be a composite
and a description of its wave propagavion cha: ctteristics
is sought in terms of the behavior of the isolated matrix
and water compon-:nts. The general approach is to construct
material models of increasing sophistication from availzkle
material properties daia and to use analytical and numerical
methods to evaluate stress wave phenomena as each additional
physical effect is introduced into the modei. Nevada tuff
was selected as the matrix rock in order to be specific,
but the basic methods should be applicable to other porous
and heterogeneous geologic media.

In Section II, the thermodynamic equation of state
for water is constructed in convenient analytic forms for
the critical transition pressure regime. Both the expanded
and condensed states of water are treated as well as the
transition through the steam dome. In Section IiI, an
equation of state for compacted dry tuff is formulated for
the transition pressure regime. These analytic forms are
used in Section IV to implement a computer program which
calculates an homogenized equation of steste for 2 water/rock
composite medium from the equations of state of the com-
ponents under the assumption that the components cf the
composite are in pressure and thermal equilibrium. The pro-
gram is applied to predict the shock response of saturated
wet tuff media with varied mass fractions of water.

v gt -
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The homogenized equation of state for the water/rock
composite ignores the substructure of the medium which
can scatter or disperse a wave. Detailed finite difference
calculations have been made tc examine this effect for water/
tuff configurations in which both materials are treated as
fluids. Tn Section V calculations are presented describing
the propagation of pressure pulses in a direction normal to
the layers of bilaminate composite configurations. Calcuvia-
tions treating wave propagation parallel to the layers of
a bilaminate configuration are prese¢ *ed in Section VI.
Numerical results for a step pulse ..’ pagating through a
tuff matrix with periodic water-filled pores are also pre-
sented in this section.

The adaptation and application of the Theory of
Interacting Continua to study non-linear wave propagation
through a water/rock composite mediam is describad in
Section VII. This analysis permits the treatment of the
motion (diffusion) of water relative to the rock matrix
without explicit treatment of the substructure of the medium
as would be required by conventional continuum mechanical models.
A computer program implemented to study wave propagation
within this theoretical framework is applied to study
diffusion effects in a water-saturated tuff matrix with
shear strength., Finally, in Section VIII, the status of
the work is cummarized and suggestions are made for the
direction of the effort during the next contract period.
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1I. EQUATION OF STATE OF WATER

2.1 INTRODUCTION

Numerical calculations to predict shock wave prcpaga-
tion in various media require that an equation of state for
the materials be known. In particular, such computer codes
as SKIPPER, CRAM, and POROUS (which have been employed in
the course of the present program) are typical of shock pro-

pagation codes which are dependent on an equation of state

of the form

p=rp{, E) . (2.1a)

An adequate equation of this form is not readily available
for pure water. Moreover, the consideration of thermal
equilibrium between tuff and water in Section IV requires
that a caloric equation of state also be determined, i.e.,

E =E(V, T) . (2.1b)

In this section, new equations of state for water in

the compressed and expanded regions are presented. They are of

the required forms, (2.1, a and b), and are based on a physical
model of water which is compatible with experimental results.
Within the framework of this model the double formulation of
the equilibrium states implicitly guarantees that the re-
sults will be internally consistent.

Compatible with the pressure-volume range of interest
noted in Section I, the prcposed equations of state have
been developed for application to the thermodynamic region
with entropies less than the value at 200 kbars on the
shock Hugoniot. This would include the liguid-vapor transi-
tion at low pressures, but no attempt has been made to
characterize the solid phases of water.

E3
Author: J. W. Kirsch
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Considerable effort has been expended in the charac-
terization of water by numerous investigators and is available
in the open literature. However, most of the experimental
data on equilibrium states z ¢ concentrated in low pressure
regimes(s) (below 2.5 kilobars), low temperature regions,(4’5)
and the thermodynamic vicinity of the saturation line.(6’7’8)
Unfortunately, the peculiar qualities of water are most evi-
dent in these regimes and precise characterization of the
molecular physics of water has not been possible.

A review of the literature on water was undertaken
to ascertain the extent of previous investigations in the
range of interest. The major contribution to our under-
standing of high pressure (250 kbar) thermodynamic states
was made by Rice and Walsh.(g’ 10) Their experiments on
water were conducted to determine the shock Hugoniot. The
experimental results were interpreted under the simplifying
assumption that, above 25 kbar, the specific heat at constant
pressure is constant and that %% is, at most, a function
only of the pressure. Their analys?s provides a numerical
method by which p, V, E states may be computed (as well as
the temperature, T) for the compressed states of water.
Under certain additional approximations, Papetti and
Fujisaki(ll) have reduced the Rice and Walshclo) numerical
method to a still simpler, eanalytic form. The equation of
state, however, is not written in the form p(V, E), but
xather V{(p, E), and does not lend itself, directly, to use

in the continuum mechanics computer codes.

Walker and Sternberg(lz) have developed a p(V, E)
equation of state for water, These equations have the form

f (E) £f (E) £ (B) f (E)
p = 1\, + 2 + 3 + )
A A v7

where the fi(E) are polynomials in E, and have been fit

-
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to the Rice and Walsh data. Although such a form is con-
venient for p-V-E calculations, the complexity of the rela-
tions and the lack of a direct E-V-T relationship precluded
(immediate) use of this analytic form of the equation of
state of water.

Tabular arrays(13’14)

of equilibrium states of water
are available which supply data in the range of interest.
These tables have been developed from the same data(S'lo)

and present no new information or physical insight into the
physics of water states. In any case, the tables contain

only a limited amount of data* and considerable effort

would be required to "fill" in the gaps. There is in progress
(at the RAND Corporation) a compilation of water states.(lé)
This work covers, effectively, the entire range of thermo-
dynamic variables encountered in nuclear bursts. However,
in the range of interest in this study, the compilation
contains data based on the work of Papetti and Pujisaki,(ll)
and Walker and Sternberg(lz) (both of which are derived from
the Rice and Walsh(lo) data).. These states have been pre-
sented elsewhere(17) (in graphical form). The RAND tables
are not presently available and it is not known as to how
much of an improvement they represent over that already in

the 1iterature.(12'l4)

As a result of these findings, effort has been con-
centrated on constructing an analytic equation of state
which affords considerable simplification relative to pre-
vious models, yet yields results which agree with the
available data.

%

Moreover, Sharp's(13’14) tables contain some inconsistencies
and a certain degree of inaccuracy is implicit in his method
of calculation. Howard(15) pres>nts only p-V-T data.
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2.2 COMPRESSED STATES

A new equation of state for compressed water is
developed on the basic assumption that in the thermodynamic
vicinity of the Hugoniot, water can be considered to behave
in a pseudo-crystalline manner. (Actual phase transitions
{(to Ice-VII), however, are not considered.) The analyvsis ,
relies heavily on the experimental data and theoretical cal-
culations presented by Rice and Walsh(lo) for pressures be-
tween 2 and 200 kilobars. In this regime, it is assumed
that the specific heat at constant volume, CV’ is constant.
This assumption implies an equivalence between the Mie-
Gruneisen formulation often applied to solids and the p-T-V
equation of state suggested by Born(ls) for crystalline
maxerials at the melting point.

It should be noted that most of the numerical pulse
propagation work presented in other sections of this report
wae conducted under the assumption of a relatively simpler
form of the equation of state than in Eq. (2.1la). In the
spirit of step-by-step consideration of the various factors
affecting shock wave propagation in geologic composites,
first consideration has been given to idealized forms for
the equation of state for compressed water, i.e.,

p = p(V). These equations of state and the p-V-E, E-V-T
expressions that have been developed for later inclusion
in numerical experiments are presented in this section.

2.2.1 Theory

Analytical expressions for the equation of state of
water in the thermodynamic vicinity of the shock Hugoniot
have been proposed by Papetti and Fujisaki(ll) and most
recently, Cowperthwaite and Shaw.clg) As noted previously,




-

the Papetti-Fujisaki(ll) model is based on the Hugoniot data
published by Rice and Walsh,(lo) and is limited to pressures
greater than 25 kbar. Cowperthwaite and Shaw(lg) hypothe-
size an equation of state for a number of iquids based on
the Walsh-Christian(zo) mcdel for metals. Their approach

is to assume CV is (at most) dependent cnly on temperature

and that 3p is constant.
BTV

An alternate view of the physics underlying water's
behavior can be deduced from the fact that extrapolations of
Bridgman's phase transition data by Snay and Rosenbaum(21)
lay immediately adjacent to the experimentally determined
Hugoniot in the pressure range from 20 to 30 kilobars.*
Moreover, in a subsequent set of shock propagation experi-
ments, Altshuler, et al.,(zz) report data from which they
concluded that a phase transition (to [ce-VII) had occurred
at about 120 kbar.

Within this framework, it is quite relevant to note
that Born,(ls) in his paper on the thermodynamics of crystal
melting, hypothesized that liduids in states near the melting
transition may retain the basic lattice structure similar to
the so.id phase, although the ordered geometric arrangement
of the lattices may be lost. This suggests that, at least
in the vicinity of the Hugoniot curve, the equation of state
for water may be describable by a functiopai form similar to
that derived by Born for melting crystals, i.e.,

PV, T) = h (V) + T h2(v3** (2.2)

*Phase change effects were not considered by Rice and Walsh.
**An equivalent expression was proposed by Schall(zs) in 1949
for employment in the interpretation of the results of his
experimental investigaticn of shock propagation in pure water.
The physical justification for this equation is vague (per-
haps due to losses in translation) and his resulting ex-
pressions appear to be inaccurate (vis-a-vis the experimental
data of Rice and Walsh.(9,10))

L A A ——
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Implicit in this form of an equation of state is the parti-
tioning of a material's internal energy into harmonic thermal
motion of its molecules and the comprescional potential enargy
of its lattice. This can be readily demonstrated by invoking
the identity,

aE = - g.R = -
(E'V),.. =-p T <3T)v hl(V) (2.3)
. T
i.e., the compressional energy of such materials is solely a
function of the degree of compression (of its lattice). More-
ove.”, Eq. (2.3) can be integrated to yield

\
E(V,T) = -}f hl(V)iv + £(T) (2.4)
\

o

where £(T) represents the contribution of the thermal motion

A}

\ 2 molecules within the lattice.

In the calculations which follow, we have assumed that
this thermal contribution to the internal energy is linear
with T, i.e.,

oE _ ~ .
(gf)v = Cv = constant (2.5)

Tnis assumption admits a functional form of (2.4) and

V
< - b = - - ‘A
E(V,T) LO(VO,TO) CV(T To) j[ hl(V) dv (2.6)
v
0
It may be observed that if CV is considered a constant,
the Born form of the equation of state (2.2, 2.6) is equiva-
lent to the Mie-Gruneisen formulation often applied to solids
subjected to high pressures. The Mie-Gruneisen equation of
state can be written as

- - o i e B .- o e T T




p = py(V) + G&V) (E - EH(V)> (2.7)

where the subscript H refers to the Hugoniot curve. Sub-
stituting the expression for energy (Eq. 2.6) into this
relaticn, gives
r Vl
p= oy - SN E vy + GW (Eo / h, (V) dV)
\4

0

(CVG(V))
+ T \—— (2.8)

This expression for pressure, in terms of T and V, is
equivalent to the Born form with the following identafications.

(79}

(V)
v GT

o

Vv
h (V) = pH(V) + G\([V) (E - EI‘ V) "/ : h1 (V\)dv - CV To)(Z.Q)
1 0.
VO
; ) CVG(V) .
h, (V) = L= (2.10)

Thus, in the limit that CV is constant, the Mie-Gruneisen
formulation is equivalent to the Born model. This is sig-
nificant in that one can construct a self-consistent equation
of state (for such materials) based on either isothermal data
or Hugoniot-release isentrope information.

2.2.2 Analysis

The available information on compressed water enables
the development of an equation of state based on either of
the twe methods noted above. In the present work, a "hybrid"
equation of state, derived from both types cf data, has been
selected for use in the numerical experiments dealing with
energy effects. Presentation of the analysis f£rom which this

11
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equation of state has been constructed is given in separate
sections dealing with the two component formulations.

2.2.2.1 Mie-Gruneisen Formulation

The cornerstone of this analysis is to characterize
+he Hugoniot with analytic expressions. A least square, cubic
fit to the Rice-Walsh data(lo) has been obtained for pH(V),
(see Fig. 2.2), i.e.,

py(V) = Au + Bu® + Fy?, (2.11)
A = 21.9534 %bar
B = 52.138 kbar
F = 231.81 kbar

vV -V
0

where u = — and EH(V) is determined from the Hugoniot
relation

Py (V)
By(V) = + —— (V V) (2.12)

The expression in Eq. (2.11) has been used as the non-linear,

volumetric equation of state in a portion cof the calculations
*

presented in Sections V, VI, and VII.

Since EH(V) and pH(V) are knywn, the only unknown in
the Mie-Gruneisen formulation is the Gruneisen ratio, G(V).
Tt is possible to explicitly determine G(V) on the Hugoniot
within the framework of the analysis (above 25 kbar). These

calculations are graphically presented in Fig. 8 of the Papetti
and Fujisaki papercll).

®
A linear, volumetric equation of state, P = A luV/Vg , has

also been utilized in the first phase of the numerical work
presented in Section V.

12




It is of interest to determine if the Rice—Walsh(lo)
isentropic data could be reduced to the Mie-Gruneisen form.
This is accomplished by calculating the value of G(V) which
is required to satisfy Eq. (2.7) at a given value of V and
entropy, SH‘ From Eq. (2.7),

b (V) - py(V)

G(V) = ESH(V) ™) v (2.13)

where the subscript Sy refers c¢o a specific isentrope

which intersects the Hugoniot as VS , and
H

8. (V) = E, (V. ) - V) av. (2.14)
Esyy H ( sH) /v Ps,,
Sy

The five series of G(V) points obtained in this fashion
are displayed in Fig. 2.1. It can be szen that the points
do not lie on a single curve, nor are they coincident with
the Hugoniot values for G(V)(ll). These results indicate
that the Gruneisen ratio based on the constant C data(lo)
is somewhat dependent on the energy. The dependence must
be small, however, since the series of points in Fig. 2.1
trace out curves that arc in reasonable agreement.

The data presented in Fig. 2.1 can be represented by
the following form

G(V) = a sin (bV + ¢} + h (2.15)
where
a = .41 b = 9.52 ¢ = ~-4,5676 h = .94
13
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1.6

Gruneisen Ratio

Data From:

= e 250 kbar Release Adiabat
e 200
e 150
a4 100
2 b ® 50
* . . . (11)
we e Papetti and Fujisaki
e Eq. (2,15)
0 | d 1 ] i
.5 .6 .7 .8 .9 1.0

Specific Volumz (cc/g)

Fig. 2.1--Gruneisen ratio for water plotted as a function of

volume. Calculations of G(V) on the Hugoniot(ll) are
compare¢d to those computed from release adiabats
(kq. 2.13). Also shown is G(V) used in
subsequent calculations (Eq. 2.15).
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This expression is plotted in Fig. 2.1 for comparison to the
varicus curves for G(V). Using this expression for G(V),
and Eqs. (2.11, 2.12), a complete p-V-E equation of state
can be written for the compressed states of water, i.e.,

p(V,E) = pyv) (1 - S}, C B (2.16)

As a check on the sufficiency ¢f this equation of
state, a set of release isentropes have been calculated by
substituting Eq. (2.16) into the differential equation

dE = -p(V,E) aV (2.17)

and integrating this equation from various starting points on
the Hugoniot. The comparison of these calculations *o the
isentropes calculated by Rice and Walsh(lo) is given in

Fig. 2.2 wherein the excellent agreement between the two sets
of data is clearly indicated.

It should be noted that it was not, strictly speaking.
necessary to use the G(V) derived from the release isentropes.
The Gruneisen ratio determined by Papetti and Fujisakicll)
is dependent only on the Hugoniot values of p,V,E. Although
this method has been applied to the region above 25 kbar, it
would, no doubt, be possible to extend this curve to Vo
(urder some sort of simplifying thermodynamic assumpticn).
However, the advantage in using Eq. (2.15) is that the original
release isentrope data(lo) are more closely approximated
than with the G(V) computed on the Hugoniot.

Caloric Equation of State -- Complete formulation of
the water equation of state must include some additional
relationship which includes temperature. The specific heat
at constant volume and hl(V), are all that are needed to
provide an E-V-T eguation of state (see Eq. 2.6). The

15
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Fig. 2.2-~Hugoniot and release adiabat curves for water cal-~
culated from Eq. (2.13) compared to the

Rice and Walshclo) values.

16




e

specific heat at constant volume is taken as being between
.7 and .8 based on Bridgman's data reported by Dorsey(24).
For CV independent of volume, the compressignal energy
derivative, hl(V), is just the 0°K isotherm. Since the
p-V-E equation of state is known and the 0°K isotherm is
equivalent to an isentrope passing through V =V  at

T = OOK, h, (V) may be directly determined by integrating
the isentropic equation (2.17). The p-V relation resulting

from this integration has been fit to a six-degree polynomial.

This is then integrated over gpecific volume to obtain
the compression energy integral, I, (V)

v
L) = _./f h (V) 4V (2.18)
1 v

Q.
where the polynomial is given in Fig. 2.3. Although another
form of II(V) is determined in the analysis associated with
itiie Born formulation (Eq. 2.2z}, it is instructive to com-
pute Hugoniot temperatures from the relation

. 1, .
I(EH - bo) - TJ(V)} & " Ty - T, (2.19)

where EH is the energy on the Hugoniot(g) and II(V) is
given by Eq. (2.18). (For comparative purposes, a

Cy = .78 cal/g (v3.265 x 10°7 ergs/gm) has been utilized to
find TH.) These values are plotted vs specific volume in
Fig. 2.3, and compared to the Rice and Walsh theoretical
values. It can be seen that there is excellent agreement

E3
Jt should be noted that this same form of ihe thermal equa-

tion cf state (Eq. 2.6) has been applied to non-metallic
geologic materials with low thermal expansion coefficients,
by Ahrens, et al.,(25). For such materials, substitution
of a room temperature isotherm for the compressioi:ial shock
energy derivative, (aE/aV)T, is a good approximation,.

17
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Fig. 2.3--Temperatures on the watex Hu§oniot computed from
Eq. (2.19) (using the Rice and Walsh(10) Hugoniot energies)
with Cy = .78 cal/g and the I;(V) determined from the

P-V-E equation of state (2.3).
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which might be improved in the low pressure range by
choosing a different CV’ Further discussion of these re-
sults is contained in the following section.

2.2.2.2 Bown Equation of State

The p-V-T equation of state requires that hl(V)
and hz(V) be known. CV is required to establish the E-V-T
state equation, Eq. (2.6). In the case of water, these
functions may be deduced from the available data in a number
of ways. The most direct method is described below. Essen-
tially, the Rice-Walsh(lo) isotherms are demonstrated to
conform to the proposed equation ¢f state in the (thermodynamic)
vicinity of the Hugoniot. This analytical method, although
cquivalent to the Mie-Gruneisen formulation, is significant
in that it is not necessary to possess an explicit descrip-
tion of the shock Hugoniot to construct a2 reasonably accurate
equation of state.

Compression Energy Function, h (V) -- The functional
form of h (V) was obtained by flrst taking polynomial flts
to the tabu‘ated(lo) isothermal pressure-volume variations.
Then, for any two isotherms, (Ti, lj), and a given specific
volume, Eq. (2.16) yields

(2.20)

p: - (T./T )p,
h‘1 (V) = ll - (%1/%‘])1

In this manner, polynomial expressions for hl(V) vere ob-
tained for the ten possible combinations of the Rice-Walsh
isotherms. One may then compare these curves to ascertain
the validity of the assumption that a unique hl(V) does exist

Six-degree polynomials were required to fit the Rice-Walsh(lo)
data.
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for water. The ten curves are presented in Fig. 2.4 wherein
it can be seen that any pair of isotherms yield an hl(V)
which varies from the mean by only three percent. In Fig. 2.4
the hl(V) computed from the 448°K and 1273°K isotherms is
highlighted because it is employed in subsequent equilibrium
state calculations. Expressed in polynomial form, this hl(V)
is given by

-
h (V) = A +AV+AVE+AVS+AVY+ AVS + A VS
1 4480 1 2 3 y 5 6 7

1273° (2.22)
where Ai are presented in Table 2.1,

As a check on the E-V-T equation of state the thermo-
dynamic data for water computed by Sharp(14) could be used
te verify the form of the compressional energy integral
( -J/.hl(V) dV) . Sharp has fit V(T,p) between neighboring
isobars and isotherms and then integrated (aV/aT)p and V

to obtain the entropy (S) and Gibbs free energy (G).

From S and G, Sharp§14) calculated the other thermo-
dynamic variables. The basic data input of his calculations
is from Rice and Walsh(lo) above 2.5 kbars, and the various
"standard" sources on water data for the lower pressures.

For a number of condensed state isotherms, Sharp has computed
the internal energy. In the present formulation, these energy
isotherms should have the same variation with V, and their
shape would be ideatical to that of Il(V) defined by Eq. (2.18).
A comparison of Sharp's data with the compressicn energy
curves obtained from the volumetric integration of the two
expressions for hl(V), Eqs. (2.18) and (2.22), is pre-

sented in Fig. 2.5. (The energy points from Sharp's iso-
therms over 160°C were normalized by setting the internal
energy equal to zero at V = .675. Lower temperature iso-
therms tabulated by Sharp(14) were normalized at V = 1.0018.)
It may be concluded from Fig. 2.5 that the variation of
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. 2.4--Zero degree X isotherms (hl(V)) for water plotted
vs volume. Each curve is determined from two
of the isotherms computed by Rice and Walsh(lo).
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TABLE 2.1
POLYNOMIAL EXPRESSIONS FOR h1 V) ,f

\

v

h1 (V), AND hZCV)

0
DERIVED FROM THE 448°K AND 1273°K RICE AND WALSH(IO) ISOTHERMS

)
f(V) =a +aV+aVi+aV®+aV® +aVs+a Ve + aV?

hl(V), kbars

=3
i ]

-

o = w »

i

o v 8w
o
i

~

2,
-1.
5.
-9.
9.
-5,
1.
0.

1151485352+04
6696763086+05
5372096875+05
7904692187+05
6834446875+05
0652573047+05
0931559375+05
0000000000

V in cc/g

T

v
Jf h (V)dv,kbars-cc
V 1

]

0

.3440333252+03
.1151485352+04
.3483815430+04
.8457365625+05
.4476173047+05
.9366889258+05
.4420955078+04
.5616513306+04

kbars
}%(V)’_—E_—

-1.
9.
.3131429672+02
.2118081665+02
.4345397186+02
.4930139542+02
.7670559883+01
.0000000000

< s PP

0418174624+01
2393891470+01
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energy with volume indicated by Sharp's data is in reasonable
agreement with both of the present theory's energy compres-
sion curves from the present theory.

It should be remarked that the increased scatter in
the energy curve data for V > .7 can be interpreted as an
indication of a2 transitional molecular structure of water.
The hypothesized lattice-like structure of the more compressed
water states appears %o break down in this regime, being re-
placed by more gas-like behavior as the molecules separate.

Determination of h2(V) -- Analogous to the determina-
tion of hl(V), one may compute curves for hz(V) from the
relation

pi(V) - pj )

'l‘i - Tj

where the subscripts connote particular isotherms. Although
the degree of convergence of these hz(V) curves is seen in
Fig., 2.6 to be slightly less satisfactory than the hl(V)
curves (see Fig. 2.4), it can be claimed that one may repre-
sent hz(V) by a single curve within the 1limits of the
present theory. The highlighted curve in Fig. 2.6 is hz(V)
computed from the 448°K and 1273°K isotherms and has been
empleyed in subsequent calculations of equilibrium states.
In polynomial form, hz(V) is

(2.23)

h (V) =

h (V) =¢c +cV+cVi+tcViwscVY+cVS+ Vs
2 4480 1 2 3 Y [ 6 7
1273° (2.24)

where c; are given in Table 2.1.

Selection of Cv -- The last parameter required to
characterize water is its specific heat at constant volume,
There exists little experimental information on the CV
for water. It has already been pointed out that values

24
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h (V) from 448° and 1273°K
: Isotherms

h, (V) (kbars/°C)

Specific Volume {cc/g)

Fig. 2.6--h2(V) for water plotted vs volume. Each curve is
determined from two of the isotherms computed by Rice
and Walsh (10},
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between .7 and .8 cal/g have been reported by Dorsey(24).
Near the critical region, values within 10% of .7 have been

computed from an equation of state developed by Watanabe,
26)
et al( .

In the absence of any additional experimental or
theoretical values, it is perhaps most appropriate to use the
compression energy curve in Fig. 2.5 to determine an appro-
priate value of CV' This method involves drawing the
(isothermal) compression energy curve through the various
points on the water Hugoniot in the E-V plane (as in Fig. 2.7).

Then CV is computed from

_ (AE . 5
CV = (KT)V 12.25)

where the AT's are taken from the Rice-Walsh(lo) values (see
Fig. 2.7). The variation of Cy with T determined by

this graphical method is depicted in Fig. 2.8. It can be
seen that Cy exhibits a slight temperature dependence, but
in the spirit of using single ci "ves for hl(V) and hz(V),
a single value of Cy (equal te 78 cal/g) is sufficiently
accurate.

p-V-T Calculations -- It is a straightforward matter
to .alculate the Hugoniot, release adiabats, and isotherms
from the two expressions

gl
il

hl(V) + Thz(V) (2.2)
\

) CV(T-TO) - jC hl(V) dv (2.6)

0

tm
'

m
n

where hl(V) and hz(V) are given in Eqs. (2.22) and
(2.24).
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A comparison of the calculated pressure-volume varia-
tion for the Hugoniot to that measured by Rice and Walsh is
presented in Fig. 2.9. For pressures above 200 kilobars,
there is a mild departure between the calculated curve and
the experimental values. Overall, the agreement is comparable
to that of the Hugoniot curve used in the p-V-E formulation
which is a (least-squares) cubic fit to the Rice-Walsh data.

The release adiabats from 50, 100, 150, and 290 kbars
are depicted in Fig. 2.10. Comparable Rice-Walsh data are
also plotted, which are seen to be in reascnable agreement
with the present calculations.

To best compare the caleric equation of state, tem-
peratures on the Hugoniot have been calculated from Eq. (2.19)
us’ng the Hugoniot energies and specific volumes reported by
Rice and Walshclo). In Fig. 2.11, the Hugoniot temperatures
computed by Rice and Walsh {constant C_), Cowperthwaite and
Shawclg) (constant CV’ constant (ap/aT)V) are plotted against
shock pressure and compared to the results of the present
theory. The excellernt agreement between the Rice-Walsh values
and the present theory demonstrates that it is possible to
represent water as having a constant CV; yet still predict
temperatures compatible with the results of Rice and Walsh.

The difference between the present calculations and those of
Cowperthwaite and Shaw(lg) can be attributed directly to the
inclusion of the compression energy integral in the present
theory, since the same value of Cy was employed in both
sets of computations.

Finally, it is of interest to see how satisfactorily
the hl(V) and ha(V) computed from two isotherms can be
employed to predict the shape of other isotherms. Using the
hl(V) and hz(V) derived from the 448°K and 1273°%K isotherms,
the pressure-volume traces for 448, 523, 773, 1023, and 1273°%K
are plotted in Fig. 2.12 and compared to the Rice-Walsh re-
sults., The two sets of datu are very nearly coincident.
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Fig. 2.9--The water shock Hugoniot computed from Eq. (2.2),
(2.6) (using h)’ hz, Il in Table 2.1, and CV = .78 cal/g).
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2.11--Temperatures on the water Hugoniot %ggguted from

energies and CV = ,78 cal/g) compared to the Rice
and Walsh values (C_ = constant) and the

calculations by Cowperthwaite and Shaw(lg)

(CV = .78 cal/g, (ap/aT)V = const.)
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12--A comparison of the water isotherms computed
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hZ(V) in Table 2.1 to the values
reported by Rice and Walsb(lo).
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However, there is some mild disagreement in the low-pressure
This is
to be expected vis-~a-vis the aforementioned scatter arcund
h (V)

(high-specific volume) range of the calculations.
in this regime.

2.2.3 Final Selection of Equation of State for Compressed
Water

It can be concluded from the results presented in the
preceding sections, that the simplifications accrued by the
present theory do not greatly alter the thermodynamic repre-
sentation of equilibrium states from that of other investiga-

(10--15)

tors The two equations of state formulations

presented are (in principle) equivalent. However, they do
exhibit (expected) minor quantitative differences since the
analytic expressions were derived from different forms of the

Rice-Walsh data(lo).

For the purposes of this contract, it

is perhaps most convenient to use a hybrid form developed

from these two methods of characterizing pure water substance.
This selected form would have the quality of most accurately
matching the Rice-Walsh data {(the more-or-iess accepted
"standard'" for high-pressure (up to 250 kbar) water calcula-
tions) while retaining the simplicity of the overall theory.
The most appropriate equation of state (from this viewpoint)
is the p-V-E relation (Eq. 2.16) in combination with the

E-V-T relation developed from the isotherm data (2.6, 2.22):

G (V)

~ E (2.16)

p ={21.

EO + CV(T - To) - ]/
\

where

9543, + §82,138p? + 231.81u3}(1 . G(V)u) .
vV

tr1
1]

h‘(V) dv (2.26)

4

G(V) =.41 sin (9.52 V ~ 4.5676) + .94

PR e TP

(2.15)
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Vv
- ][ h (V) d&v=B +BV!+BV2+BV®+ BV +BV®+
V 1 1 2 3 L 3 6

0
B7V6 + B8V7, B. given in Table 2.1 (2.27)

Cy = .78 cal/gm = 3.26 x 107 ergs/gm (2.28)

This set of expressions adequately represent the thermodynamic
states on the Hugoniot and release adiabats (see Figs. 2.2,
2.11). Additionally, the isotherms computed from this state
equation are in reasonable agreement with the Rice and Walsh
calculations as may be observed in Fig. 2.13.*

The choice of Eq. (2.22) for hl(V), as opposed to Eq. (2.18),
was made on the basis that the predicted shock temperatures
are in better agreement with the Rice and Walsh values at
pressures less than 150 kbar.
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Rice and Walsh(lo) results,
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2.3 EXPANDED STATES

Tt can be anticipated that knowledge of the expanded
states of water, similar to that obtained about the com-
pressed states near the Hugoniot, will be required to com-
pletely describe nulse propagation effects in geologic com-
posites. The particular regime to be characterized is that
between the 200 kbar release isentrope and the saturation
line, as well as the two phase region under the steam dome
(see Fig. 2.14).

In light of the conclusions concerning the physical
state of conpressed wa.er as the specific volume increases,
it could be expected that water exhibits more gas-like
behavior as it is expanded.

Thus, the compressed equation of state would have to
be modified to mirror the drastically different physics of
the water equilib -ium states. (Once again, however, the
equations of state must be suitable for use in thermal
equilibrium calculations.) The general lack of simple (or
even complicated), consistent thermal equations of state
that existed for water in the compressed state is also
evident in the expanded regions. It was necessary, there-
fore, to develop a thermal equation of state.

The following section describes the development of
an equation of state for water in the range in interest.
Emphasis has been placed on reproducing the qualitative
trends of the available (extrapolated) data, simplicity,
and comyatibility with the Keenan-Keyes(6) steam dome data.
The expanded liquid phase is treated in a manner analogous to
the compressed states described in the preceding section.
Two-phase conditions in the steam dome are determined under
the assumption of pressurc and thermwl equilibrium between
the phases.

e . s L —




38

Fig. 2.14--Region of interest for
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2.3.1 Expanded Liquid States

The Mie-Gruneisen (-Born) form of the eauation of
state developed for the condensed states of water may be
employed to compute various release adiabats which extend
into the expanded state regime  Three of these isen*ropes
are shown in Fig. 2.15 and conmpared to those presented by
Walker and Sternberg(lz). The latter calculations are based
on multi-staged p-V-E equations of state which represent
fits to experimental data near the saturation line (and a
meager amount of data from the work of Kennedy, gg_gl.(3’27-31)'
It can be seen that the extrapolated adiabats using the com-
pressed equation of state are qualitatively similar to the
Walker-Sternberg curves, but their intersection with the
saturation line is markedly inaccurate.

To remedy this situation and yet retzin the basic
simplicity of the form used in the condensed states, a new
p-V-E equation of state has been constructed based on an
extrapolation cf the water shock Hugoniot into the expanded
state regime. The Walker-Sternberg equations were not used
because energy levels of the release adiabats would require
a number of states in which portions of the equation would
have to be changed. Moreover, the present form facilitated
a smooth transition to the condensed states data at
V = 1.0018. The new equation of state has been developed
(;mplicitly) to assure isentrope intersection with the
saturation line at the proper entropy value. Similarly, a
caloric equation of state is constructed using the iso-
thermal compression energy term. Employment of such an
energy equation maintains the fundamental partition of the
internal energy between a strictly thermal portion and the
compressional energy.
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2.3.1.1 p-V-E Equation of State

A hypothetical shock Hugoniot has been constructed
tor V > 1 which is centered on the ambient equilibrium
state (V = 1.0018, T = 293°K, p = 1 bar). The develop-
ment of this curve was based on the method described for the
comp: ¢essed states (see Section 2.3.2.1). A Mie-Grumeisen
form of the state equation, with the Gruneisen ratio set at
.54, is used to generate the p-V relation describing the
(extrapolated) Hugoniot. The only data input was the satura-
tion line . Continuity of the shock Hugoniot's first
derivative was imposed at the cross-over point (Vo = 1.0018).
It was found necessary to include an exponeantial function near
V = Va to smoothly join the two Hugoniots.

The resulting Hugoniot curve plotted in Fig. 2.16 is
represented by the analytic expression

XS ~i
p=u"" L oau + A exp (blu|%) (2.29)
where p = u + constant. The coefficients in (2.29) are

given in Table 2.2. The usefulness of such a straightforward
construction is appavent in Fig. 2.17 where the release adia-
bats (from 50, 100, 150, 200 kbar) are plotted on a logarith-
mic pressure scale. These compare favorablv to the results
of the Walker-Sternberg(lz) calculations, and are seen to
intersect the saturation line within one percent of the
corrvect specific volume {up to the 150 kbai release adiabat).
For higher shock pressure isentropes, there is more divergence
in the specific volume intersection (the 200 kbar case is
shown in Tig. 2.17). However, the pressures are within the
same accuracy as those for the lower valued isentropes,

Although one may improve on the present expression by
a number of methods (e.g., admit volumetric dependence in the
Gruneisen rat  or perhaps use some Walker-Sternberg data to
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curve fit the extrapolated Hugoniot), it can be concluded
that up to the 150 kbar release adiabat, the expanded p-V-E
equation of state (Eq. 2.29) provides sufficiently accurate
representation of the available state information on water
in the regime of interest.

2.3.1.2 E-V-T (Caloric) Ejuation of State

An analogous approach to the construction of a p-V-E
form of the equation of state may be employed for the thermal
formulation. Water is still presumed to exhibit a thermal
behavior represented by

\'
E = £(T) / hldV (2.47)
V

0

(as in the compressed states). The compressional energy term
for the expanded states must now be determined and should be
expected to continue the gas-like behavior noted in the (less)
compressed states (see Section 2.2.2).

Consis*ent with the proposed p-V-E Mie-Gruneisen
formulation and Eq. (2.4'),CV is assumed constant. For
continuity of the energy expressions, CV is once again
taken as .78 cal/g. This value is chosen out of convenience
and taken to be representative of water in this limited
regime. The data of Bridgman reported by Dorsey(24) indicatc
a temperature dependence and infer that slightly higher values
would be appropriate, whereas data in the critical regionczs)
indicate that CV has dropped below the value used in our

calculations. v

The compression energy integral -Jf h‘dv has been

determined by satisfying energy requiremen¥§ on the satura-
tion line, i.c.,

44

- ——p




Al au

R ——

i

Voar (T)
-][ h (V)dv (2.30)

Vo

[ESAT(T) - Eo] - ¢y [T ]

= Igx (V)

where the subscript EX connotes expanded states. With such
a construction, the thermal equation of state will assuredly
be accurate in the vicinity of the saturation line and will
be continuous with the compressed state values at V = Vo.

In Fig. 2.18, IEX(V) determined from this set of hypotheses
is compared to the normalized energy isotherms taken from
Sharp's(14) tabular data. The normalization of the data was
accomplished as in the compressed states (by taking the zero
energy point at V = ,685 for high temperatures (t > 160°C),
and at V = 1.0018 for lover temperatures).

The normalized compression energy points of Sharp(14)
are lower (by ~ 25%) than the %X (V) calculated from the
constant C;, form of the thermal equation of state. How-

ever, the data in Sharp's tables does appear to be in agree-

ment on the shape of an IEX (V), which is an indication that

the Born form of the equation of state is appropriate (i.e.,
the interral energy is partitioned into volumetric and ther-
mal components). This result is not unreasonable for a

"gas-like liquid" since a van der Waals gas exhibits similar

behavior and satisfies the proposed form of the p-V-T
equation of state.

It is apparent that if the tabulated data(14) are a
good representation of the =quilibrium states of pure water
(in this regime), the constant CV model 15 not entirely
satisfactory. Modifications of the thermal contribution to
internal energy c2n be considered (e.g., an additicnal
logarithmic contribution to the thermal energy would fit
the data). The present formulaticn, however, should also be
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judged on its p-V-T comparison with the work of other
investigators(S’ 10, 12). In Figs. 2.19, the expanded state
(p-V) isotherms calculated from Eqs. (2.29, 2.30) are com-
pared to the experimental data(s) and the theoretical
pointsclo’ 12). There is good agreement over most of the
range of interest. The relatively poor correlation of the

IQ (V) does not greatly affect temperature calculations,
sig§e the internal energy of the liquid states in this thermo-
dynamic region are primarily determined by the CV(T) term
in Eq. (2.30). Moreover, when the compre:sional energy input
becomes significant (V > 1.3), the present form for I, (V)
does give compressional energy values which are reasonab§§

coilsistent with the data in Sharp's tables(14).

2.3.2 Liquid-Vapor Equilibrium States

It has been reported in previous investigations(lz’ 17)

that the adiabatic expansion of water which has undergone a
shock compression contains a regime whevein the expanded water
may undergo a phase transition. This is demconstrated by the
intersection of the release adiabats (from 50 to 200 kbar)
with the saturation line (on a p-V plot, for example). In
the following section, an equation of state for liquid-vapor
equilibrium states is developed under the assumption of pres-
sure and thermal equilibrium. It should be mentioned that,
fundamentally, this approach is identical to that previously
used(17), but the finagl form of the equation of state is
different (and more appropriate for our tuff/water mixture
study (Section IV)).

2,3.2.1 Basic Theory

In principle, the characterization of equilibrium
mixtures (of saturated) liquid and gaseous water may be
accomplished in a straightforward (albeit numerically
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complicated) manner. Equilibrium mixtures of co-existent
states differ from homogeneous equilibrium states in that
the two phases have separate state equations. A two-phase
system in equilibrium is (strictly speaking) not represented
by a single point on the p-V-T surface, but rather by the
two points on the phase lines of the saturated liquid and
vapor.

If we restrict the analysis to phase mixtures in
thermal and pressure equilibrium wherein the vapor is free
to expand, the Gibbs phase rule states that equilibrium is
possible at a definite pressure once the temperature is
specified. More generally, the phase transition occurs
along a line on a thermodynamic variable plane (i.e., p-V
plane, etc.), and can be characterized as a function of one
state variable. For our purposes, temperature is the desired
choice since it will facilitate the incorporation of phase
change effects into the pressure-thermal equilibrium tuff/
water mixtures described in Section IV,

As presented in most tHermodynamic text books(SZ’ 33)

the well-known Clausius-Clapeyron relation for the pressure
on the phase line is

SAT Ve Vy
where L(T) = (latent) hcat of vaporation and the subscripts

denote: g(gas), 2(liquid) and SAT (phase line). Eq. (2.31)
yields pSAT(T), the saturation (or phase) line for water in
the p-T plane. Expressions for p(T)SAT are available(s’ 8)
which have been derived from analytical and empirical ex-
pressions tor L(T), Vg(T), and VQ(T).

Complete specification of an equilibrium liquid/water
mixture is accomplished when the relative amount of water in
the gaceous state is known. Let us introduce ¢ as the

e - b~ o . e




fraction of the mass of a system which has changed phase,
i.e.,

" (2.32)

where Mg ) is the mass of gas or liquid. It is easily
)
shown that ¢ may be represented in terms of the mixture's

specific volume by

A AL (2.33)
AR M VRER Y ¢ '

where, V, the specific volume of the liquid/vapor misture
is
_ Mng(T) + MQVR(T)

e (2.34)
M, M,

and Vg ¢ (T) 1is the specific volume of the gas or liquid
H

on the phase line. The totzl energy of an equilibrium mix-
ture is given by

B = Ey(T) + 5(V,T) (B (T) - E,(D) (2.35)

(The specific energy of the gas or liquid, E_ ,, is written
as a function of temperature on the phase 1ine,§ust as one
may write any other thermodynamic state variable in terms

of T.) Subsiitution of Eq. (2.33) into this last equation

and re-writing it in a more convenient form resuits in,

E=F (T) + VF (T) (2.36)
1 2
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where

v, (T)
C ko L s )
F(T) = E,(T) Wy (Bg - Ey) (2.37)
F (T) = 5 j"‘ (2.38)
2 g 2

Admittedly, the preceding analysis is based on an
idealized model of the phase change. It is not obvious that
the conditions of pressure and thermal equilibrium may be
extended to include changes of phase in water when absorbed
in pores of a geologic material. However, the energy-
absorbing significance of vaporization can be readily studied
within such ao»nraximations.

2.3.2.2 Calculations

Once pSAT(T), F1(T)’ and FZ(T) are determined, the
equation of state for water in the two-phase region (..e.,
the steam dome) is specified. As mentioned previously,
expressions for pSAT(T) are available in the literature,
but these are quite cumbersome for our purposes. If it is
assumed that Vg<< Vz’ then Eq. (2.31) becomes

N

. /V
LT .
dp =~ dT !——q- 2 ! (l + 0 ‘_g)) (2.39)
Furthermore, in the region where Vo <<V, it is observed
that one may fit the available data for L(T) and Vg(T)

to analytical ecxpressions such as

T £\

L(T) ~ Lo(l - EZ) , (2.40)
k i (7.41)
t t

V T ~ r - — 2

g (") PsaT( D) (1 tc)

- e -~ e e e e e e -
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where k1 and k2 are constants, t 1is degrees F, t. is
the critical temperature, and T 1is the absolute temperature.
A comparison of such expressions with tne available data(6)

is given in Fig. 2.20.

The integration of Eq. (2.39) with these substitutions
for L(T) and Vg(T) results in

-k l + bAnT + ¢ + dT
p(T) = e | (2.42)

-3

where a, b, ¢, and d are constants. It was then determined
that by properly choosing these constants, an expression is
obtained for pSAT(T) which is accurate to about one percent
(in pressure) up to a temperature of 300°C. The final form
of pSAT(T) used in these calculations is given in Table 2.2,
and its accuracy is graphically depicted in Fig. 2.21(a).

This latter expression differs (in form) from Eq. (2.42) only
in a small correction term to the exponent.

Bor the components of FI(T), Fz(T), expressions have
been constructed (see Table 2.2) which fit the saturation
data(6) to within a percent from 20°C to 300°C. The repre-
sentation of Vg(T) is similar to that postulated in
Eq. (2.41). Poliynomials in T have been fit to the E, and
E_ data. Finally, the expression for V£(T) is taken
directly from Keenan and Keyescé) and is that which is used
to develop the steam tables. These analytic forms are com-
pared to the saturation line data in Fig. 21(b-d).

The pressure-volume traces of the expanded state re-
lease adiabats extending well in to the two-phase region are
presented in Fig. 2.22. These isentropes are in agreement
with the results previously reported(17). Moreover, numerous
hand calculations were performed to check the validity of
the E-V-T relationship. The accuracy cf the present calcula-
tions was found to be within one percent (in energy).
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TABLE 2.2

ANALYTIC EXPRESSIONS FNR SATURATION STATES
AND THE EXTRAPOLATED HUGONIOT

(T = temperatuse n °K, To =293.16 °K, TC==critical temperature, OK)

SPECIFIC ENERGY OF LIQUID:

E, (T)

. } 2 o_m 3
Klg(L To) + Kzg(T To) + ng(r To) , ergs/g

K o = 4.1842 x 107
1

=~
I

= -4,132 x 10°

-
n

4.8754 x 10

SPECIFIC ENERGY OF GAS:

Eg(G) = Klg + Kng + ngTz + quT3 , ergs/g
Klg = 2.56886 x 10!°
K,g = -4.156137 x 107
Kyg = 1.58541 x 10°
K“g = -1.55021 x 10?
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(Table 2.2 continued)
SPECIFIC VOLUME OF GAS:

K,T -

~ 2 ~3
V (T) = 1 - .167 T+ .01 T - .01 T
g Pgar (1) (

-1 T - 5':"5)
. © 28
X é:.OOQS szn{—izﬁ-Lt-QOO),), cc/g
- T - T
K = 4.7 x 10° ; T = g—7
H C 0

SATURATION PRESSURE:

N 4
p(T) = 5.343439 x 1012[exp (- 2222 > 10

X

—

\)
- » ~2
1.13 + .2T74nT" - .0145 T°%)]|

. [6.28(T-320
% (1 + .018 51n( 580 )», ergs/cc
. 9T
T"= 3527
D A RN N N
2’ = 1/3 i S—
1+ K (Te-T) + K_(Tg-T)
Vo = 3.1975 zc/g K = 1.203374 x10 3
2
T = 647,27 Ok K = 7.48908 x 10713
3
X = -0.3151548 K = .1342489
1 y
K = - 3,946263 x 10 '3
S5
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EXTRAPOLATED HUGONIOT:

where

c
I on

OFF
COR

(=9

LS TLN = TN « TRy « WO = T « VY < VO
® N o 0 or ow N

w

I}

+

Au exp (blul®), ergs/cc

= P_ _
upol
W = 4 + OFF
-8.0719379 x 1010
-4.29432294 x 103
1.11758514
-3.5 x 107°
-3.63648578 x 105
-4.95410061 x 10!
-2,81642881 x 10%
~7.29095512 x 108
-6.12098976 x 10%
3,35998858 x 1010
1.22992201 x 10!
2,75208479 x 101!
4.05505393 x 10!
2,59487478 x 101!

From Keenan-Keyescé)
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%
ITI. CHARACTERIZATION OF NYS TUFF

3.1 INTRODUCTION

A qualitative definition of tuff has been given by
Allen: (34)

""Newly fallen volcanic ash is a fine white

or gray powder which may also contain small

fragments or other pyroclastic matter. This

material 1is called tuff when it becomes

moderately compacted."
Take the phrase '"moderately compacted,' add to that the
variation in the composition and combination of '"volcanic
ash'" and "pyroclastic matter,'" throw in tne fact that tuff
has a chemical affinity for water,(zs) and it becomes clear
that tuff is not a well-defined material. The variation in
the properties of tuff will be presented and discussed in
this section., Also presented in this section will be a set
of parameters representing a completely compacted or non-
porous, dry tuff., Since the parameters of this representa-
tive tuff will be used extensively in the remainder of this
report, and because its description is lengthy and cumber-
some, it will be referred to as "S?® compacted dry tuff."

*Author: C. R. Hastings
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3.2 DRY TUFF

Tuff in its natural state is very rarely found in
the absence of water; however, the majority of the laboratory
data is on dry tuff. Furthermore, completely compacted or
non-poreus, dry tuff, does not appear to exist in a natural
state amd there are little or no data on this material. In
the sequel, data fcr porous, dry tuffs are presented and
discussed. Also, the development of an equaticn of state
and estimation of the critical constitutive parameters for
S® cempacted dry tuff are described.

3.2.1 Porous, Dry Tuff Data

The available hydrostatic, pressure-volume data for
dry tuffs of various densities and porosities are shown in
Fig. 3.1. A third-degree polynomial fit to the Schooner
tuff data (reqﬁired in Section VII of this report) 1is also
shown. The spread in the specific volume at higher pressures
(.36 to .41 cc/g at 40 kbar) seems to indicate that all of
the pores have not been collapsed in tuff at 40 kilobars.
However, the initial porosity and the chemical (or grological)
composition (seidom reported) must be taken into accuunt
before any meaningful conclusions can be made. The irrever-
sible crushup of the pores has not been treated duving the
past contract period.

The available Hugoniot data below 200 kilobars for
various dry tuffs are shown in Fig. 3.2(a) (shock velccity
vs particle velocity) and Fig. 3.2(b) (stress vs volume).
The crystal or non-porous density of tuff varies from 2.0
to 2.7 g/cc (see Appendix B.1). The grain size varies con-
siderably in a single sample (see Appendix B.2); however,
the matrix of tuff appears to be a very fine grained powder
with an average diameter of 0.01 mm or less. The repcrted
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120} L] 9
- " R 1.61 g/cc (Ref. 4p)
'3 o £, = 1.58 to 1.63 g/cc (Ref. 47 )
w 110 3 ° 5 1.90 to 1.93 g/cc (Ref. 47)
S <> [} S oo = 1. to 1.93 g/c ef . 47
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o
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Fig.3.2(b)-~Hugoniot stress-specific volume data for dry,
porous tuffs.
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values of the hydroéynamic sound spezd, c,9 for porous dry

tuff, varies from 1.03 to 2.56 % 10° cm/sec (see Appendix
B.3).

3.2.2 S® Compacted Dry Tuff

The density chosen for S*® compacted dry tuff is

P, = 2.4 g/cc. A reasonable representation of the composi-
tion is:

80% by weight Glass
10% by weight Quartz
10% by weight Clay

(See Appendix B.4 for compositions found in the literature.)
The hydrodynamic sound speeds of quartz and a typical glass
are 4.09 x 10° cm/sec and 3.9 x 10° cm/sec.(48) A value of
c, = 3.2 x 10%° cm/sec, required in constructing the equation
of state, is felt to be a reasonable estimate for the hydro-

dynamic sound speed of S’ compacted dry tuff.

Hugoniot Fit -- The procedure used to obtain a
Hugoniot fit, of the form of Eq. (2.11), for $* compacted
dry tuff is as follows. At a Hugoniot stress of 200 kbars,
the specific volumes of several porous dry tuffs are close
to .28 cm/g. This point, and the initial density of 2.4 g/cc
were used in the standard mass and momentum ‘ump relations,

Mass: °, D= p(D - u) (3.1

Momentum: p = poDu (3.2)
where

p = initial density

©
[}

shock density
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D = shock velocity
u = particle velocity
p = Hugoniot stress or pressure,

to obtain a D, u point., A straight line (with a slope s,
of 1.1077) is drawn from this point to the sound speed, c s
in the D, u plane (see Fig. 3.2(a)). The following rela-
tions, from Bakken and Anderson,(49) are all that are

needed to evaluate the constants in the Hugoniot fit in the

required form:
p = Ap + Bp? + Fp?, we= (/o) -1 (3.3)

where the constants in the cubic approximation are

A = pocz

= 2.4576 x 10!'! ergs/cc
B = A[1+2(s-1)]

= 2,98697 x 10! ergs/cc
F = A[2(s-1) + 3(s-1)2]

6.14886 x 10'° ergs/cc

This fit is illustrated along with the Hugoniot and hydro-
static data in Fig. 3.3.

Thermal Description -- Data for the volums tric thermal
expansion coefficient, B8, and the constant pressure and con-
stant volume specific heats, Cp and CV’ could not be found
for tuff., Estimates were made from handbook values given
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Fig. 3.3--Hugonioct and hydrostatic data and calculated
curves for dry tuffs,
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for similar materials and from values cited for its assumed
components (glass, 80%; quartz, 10%; clay, 10%). The esti-
mated values for S® compacted dry tuff are as follows (see
Appendix B.5 for summary of data):

B = 27. x 10°® cc/cc °C (3.4)
cp = 0,2 cal/g °C (or 8.372 x 107 ergs/g °C) (3.5)
Cy = 0.2 cal/g °C (or 8.372 x 107 ergs/g °C) (3.6)
Gruneisen Ratio -- The Gruneisen ratio for S°® compacted
dry tuff can be obtained from the thermodynamic relation(4g)
G = Bccz . (3.7)
%

Using the values given above, the Gruneisen ratio was found
te be

G =0.33 . (3.8)

This value is assumed to be constant over the entire pressure-
volume range of interest. The Gruneisen ratio and the
Hugoniot fit were used to cal."i1late a release adiabat from

the 200-kbar Hugoniot state. The calculated curve is shown
in Fig. 3.3.

Isotherm -- The thermal expansivity is assumed to be
sufficiently small such that a good estimate of hl(V) (see
Eq. (2.2)) is given by the zero degree isotherm,

h (V) = [pOV,E) ] peqoy (3.9)

[ ——n e s - - - - LR e A - . < -
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The value of [p(V,E)]T=0°K has been determined by numeri-
cally integrating the pdV work on the zero degree isotherm,

M = gl pr(vnel vn) , (3.10)
where pn = p(V as evaluated from Eq. (2.7), using
the parameters for S°® compacted dry tuff given above. The
integration is initiated at the state p = -19.4 kbar,

&

E=-2,45 x 10!° ergs/g, p = 2.4 g/cc. The resulting iso-
therm is shown in Fig. 3.3, A fit to the integral of the
isotherm (see Eq. 2.6) is

n-l’ En-l)

i
)[ hl(V) dv = au+ azu2 + ...+ au’ (3.11)
Vv

0

E3
An approximate value of the internal energy, E, at

p = 2.4 g/cc on the 0°K isotherm can be obtained from the
exprzssion (see Eq. 2.6)

~V
= - - 7 \
E E0 + CV(T To) J/ hl(\) av .

\Y
0

The values of E , T and the integral are all zero, leaving
0

E=-CvT0

The corresponding pressure can be obtained from the ex-
pression, (sce Eq. 2.7)

p = £(V) + GpE .
The function, £(V), is zero at p = 2.4 g/cc; therefore,

p = GpE

-19.4 kilobars.
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where

a = 8.0746633 x 10% ergs/g
a = -5.3895904 x 10'° ergs/g
a, = 2.8099165 x 10'° ergs/g
a = -1.784375 x 10'°% ergs/g
a_ = 1.14124046 x 10} ergs/g
a = -5.47535341 x 10° ergs/g
a_ = 1.341517856 x 10° ergs/g
Strength -- Data on the strength of dry, non-porous

tuff have not been found. There is a limited amount of
strength data on dry, porous tuffs (see Appendix B.6).
Reasonable estimates of Poisson's ratio, v, and the uncon-
fined shear strength, Y of S® compacted dry tuff, based on
existing data, are

V= 0.15 (3.12)
Y = 1. kilobar . {3.13)
Equation of State -- For easy reference, all of the

parameters presentcd above for S® compacted dry tuff are
tabulated in Table 3.1. These may be employed in a Mie-
Gruneisen formulation of the equation of state:

G G
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and the constant Cy form of the caloric equation of state

Vi
E-E = Cy(T-T,) -}{ h (V) av (3.15)

\
0

where E  is taken to be zero, TQ = 293°K, and Py, G, C

v v’
jg h1(V) dV are given in Table 3.1.
0

3.2.3 Scuooner Tuff Hydrostat

/n extension to 200 kbars of the hydrostatic fit to
Schooner tuff (shown in Fig. 3.1) is required later in Sec-
tion VII of this report. The high pressure portion of the
Hugoniot curve, obtained in Section 3.2.2, is considered to
be a reasonable representation of the high pressure states
of this material. The following is a fit to the low pressure
hydrostatic data and the high pressure points computed from
the S® compacted dry tuff Hugoniot:

p=au + azpz + a3u3 + auu“; u = %— -1 (3.16)

where

b}
]

4.8851 x 10%° ergs/cc

a = 1.9868 x 10%? ergs/cc
a_ = -4.6715 x 1012 ergs/cc
a = 4.3406 % 10'? ergs/cc
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3.3 WET TUFF DATA

The completely saturated wet tuff data presented in
this subsection will be used in following sections as a check
on the success of various models to predict the equilibrium
states of the water-tuff composite.

The pressure-volume hydrostatic data for various
saturated tuffs are shown in Fig. 3.4. The discontinuities
at 10 and 24 kilobars are due to the water-ice VI and ice VI-
ice VII phase changes.

The available published Hugoniot data for saturated
tuffs are shown in Fig. 3.5. The data are not complete
enough to indicate whether or not any of the water phase
changes take place. Figure 3.6 contains both the Hugoniot
and hydrostatic data along with two adiabats released from
Hugoniot states of 135 and 146 kilobars. The accuracy of
the adiabatic data, as the pressure is released further and
further from its associated llugoniot state, becomes so poor
that it can no longer be used to evaluate a composite model.
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Pressure (kbars)

- —

@p, = 2.083 g/cc; W.C.
cip = 2,108 g/ce; W
= 1,977 c; ¥.C.
35 = O >P, g/e
+p° = 1,858 g/cc; W.C.
<0, = 1.678 g/cc; W.C.
20 J )
¢ <
o b
25 | ° B +
++
8o < &
4+
20 | =0 b+ <
15 - C;D 1 4 + ~<
I~
10 - QBQPs; 4 %t <
O & + ~<
5 4 0 b + ~
[0,
0 b »> -
0 p o+ <
cqi (3 +, <
0 ] T
.40 .45 .50 .55 .60

Specific Volume (cc/g)

U

15. wt.% (Ref. 37)
13.4 wt.% (Ref. 35)
14.4 wt.% (Ref. 35)
20.5 wt.% {(Ref. 35)
30. wt.% (Ref. 35)

3.4-~Hydrostatic, pressure-volume data for saturated tuffs
of indicated water content.




- o) p; = 1,97 g/ccy; W.C. = 10.7 wt.% (Ref. 38)
A, =1,928 g/cc to i.973 g/cc;
200 °  W.C. =17.2 to 18.9 wt.} (ReE. 50)
® e @po = 1.796 to 1.901 g/cc;
190 ° °  W.C.n 9.5 wt.$ (Ref. 41)
p = 1,72 to 1.74 g/cc;
180 — © % T WIC. n 15.6 wE.S (Ref. 42)
170 4 o, = 2.19 g/cc; W.C. = 10 wt.% (Ref, 43)
7 ) B o, = 1.9 g/cc; W.C. = 15.8 wt.t (Ref. 45)
160 — > ] p, = 1.74 g/cc, W.C. = 13.8 wr.3 (Ref. 44)
> Q. 1.76 g/cc, W.C. = 23.9 wt.t (Ref. 44
150 = 0
140 |
130 4",
120 —
110 o
100 v
£ b
<90 -
v
Jos o)
w \
70
60 -
10 o
40 <
20~
20 ~ Qg
10 ot )
vd
0 T T | T T T ¥ T "
.26 .30 .34 .38 .42 .46 .50 .54 .58 .62
Specific Volume (cc/g)
- Fig. 3.5--Hugoniot stress-volume data feor saturated tuffs
\ of indicated water content.

75

A —— - - = e mme———— —_— - e - - -

Tt - Py g = -~ ~— -

TS




3
|
210+
Combined Hydrostatic and Hugoniot
2007 ®p, = 2.02 ¢ .17 g/ce; W.C. = 10.1 ¢ 0.6 wt.3
- @0 =72.002 .1 g/cc; W.C. = 14.6 ¢ 1.2 wt.}
1907 - o
+o, = 1.9 ¢ .05 g/cc; W.C. = 19.2 * 1.2 wt.$
lsoﬂ ep = 1.76 g/cc; W.C. = 23.9 wt.3
i - AP, ¢ 1.735 & 005 g/cc; W.C. = 14.7 £ 0.9 wt.s
170 - <P, = 1.678 g/cc; W.C. = 30, wt.3
160-] ¢e
¢ Release Adiabats
150~ -0 = 1.91 g/cc; W.C. = 15.8 wt.$
° (Ref. 45) (Taken from figure
140 oa page 85.)
- ~ ——p = 1,928 to 1.973 g/cc; W.C. = 17.2 to
o 130+ ® 18.9 wt.$ (Ref. 50)
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Z 1207
o 1104
Q
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» 1004
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o 90.4
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S
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60 _
50
104
301 <
4
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Fig. 3.6--Hydrostatic, Hugoniot and release adiabatic data for

saturated tuffs of indicated water content.
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*
IV. HOMOGENIZED EQUATION OF STATE FOR TUFF/WATER MIXTURES

It is often useful in the study of pulse propagation
into composite materials to consider the mixture of consti-
tuents to be so thorough as to justify the use of a homo-
geneous equation of state for “he gross material. Such an
approximation reduces the complexity of any numerical calcu-
lations for such materials. Jn the case of some extremely
complex geologic composites, it is presently the only prac-
tical method to model the material. An equation of state
for such a geologic material, compacted dry tuff, has been
derived which is based on this assumption of homogeneity
(Section 3.2). An additional component, i.e., water, is
also present in most test si*te locations. In the following
section, a hemogenecus equation of state for fully saturated
water/tuff mixtures is developed.

4.1 BASIC CONSIDERATIONS

The problem to be considered is the determination of
a homogeneous equation of state for a composite consisting
of materials which have been characterized by the following
relations,

py = o5 (Vs E5) (4.1)

B = E(vy, 1) (4.2)

Since it is necessary that the composite material be charac-
terized by its own p,E,V, and T, certain additional relations
are necessary to censtruct an appropriate squation of state.
Namely, if the specific volume and interral energy of the

*Author: J. W. Kirsch

77




™

mix is given by

V= DF

Vo E= DRV, (4.3)

where Fi is the mass fraction of material i, some sort of
nolecular interchange must be hypothesized to provide the

additional equations to enable the calculation of equilibrium
states.

The condition of pressure and thermal equilibrium
(PTEQ) requires that

Py = Py =Py = .. (4.4)
and
Ti = Tj = Tk = ... (4.5)

This is an idealized situation wherein the mixture is homo-
geneous down to such a small scale that the molecular exchange
of thermal energy between the components (effectively) occurs
ipstantanewusly. One may alternatively propose that no ther-

mal energy is exchanged and that only hydrostatic (pressure)
equilibrium occurs.

Each thermodynamic statement above (Eqs. 4.4, 4.5)
carries along some implicit statements about the nature of
the material. Pressure equilibrium between constituents is
justifiable on the grounds that only saturated tuff is under
consideration. That is, all pores are taken to be filled
with water. Under this assumption, it is a trivial calcula-
tion to show that a pressure pulse will travel the order of
.15 cm in a microsecond. Since typical pore sizes are be-
tween .0l cm and .001 cm, or smaller,(36’ 40, 45) it is
reasonable to assume that pressure equilibrium will occur
during a mirrosecond pulse.
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The occurrence of thermal equilibrium, between water
and the tuff composite, is more difficult to achieve. A
simple model of the thermal situation has been suggested.(so)
The surfaces of spheres of water or quartz are assumed to
instantaneously come to the temperature of the material in
which it is immersed. The surface temperature is further
assumed to remain constant for all time. By using standard
heat transfer graphs,(51) it is possiblez to calculate
"effective heat penetration times'" for various, simple geo-
metries. It is shown by Rosenberg, 93_31.550) that for the
smallest tuff particles (.03 cm) and available thermal
diffusivity data, the time required to reach thermal equili-
brium is a couple of orders of magnitude larger than a upsec.

The basic parameter of these calculations is the
Fourier moduius, Fo’ given by

F =z 2% (4.6)
0 dz
where
o = thermal diffusivity, cm?/sec
T = time, sec
d = characteristic (particle) dimension, cm

A larger Fourier medulus implies greater thermal penetration.
In Fig. 4.1 the temperature distribution in a sphere is
graphically depicted under the condition that the surface
temperature has been raised to to at T = 0, and maintained
thereafter. With appropriate diffusivity values for water

and quartz (i.e., ¢q = 03, o, = .0014), the Fourier modulii
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for .03 cm-diameter particles and T = 1 usec are

F
o

.33 x 107¢ (4.7)

F
0

.014 x 10°* (4.8)
w

Qualitatively, one can see that only minute thermal penetra-
tion is possible under these conditions (as was concluded

by Rosenberg, et al~(50)) However, it has been reported by

a number of investigators(se’ 40, 45} that tuff consists

not only of relatively large grain matter sized between 3

and .03 cm, but also of small grain particles and matrix
material sized on the ovder of tens of microns. It is pointed
out in Ref. 40 that about 22% (by weight) of their tuff
samples consisted of fine grain particles less than .005 cm,.
This is significant since 10 ® cm pore sizes increase the
Fourier modulii (4.7, 4.8) by about three orders of magni-
tude. Based on the temperature distribution plot in Fig. 4.1,
it can be concluded that significant portions of such

spheres would experience 2 marked change in temperature

during the microsecond pulse (the fine grain (d < 1lu) material
would achieve thermal equilibrium with the water based on

this model).

These simple calculations suggest that a partial
thermal equilibrium model be considered for tuff wherein
the water is in thermal equilibrium with only a portion of
the tuff material. However, within the context of the
available information on tuff, it may very well be that
water in equilibrium with only the fine grain material
may lead to even lower water temperatures if that material's
thermal capacity is lower than that of the large grain
matter.




It should also be mentioned that the thermal material
properties and the molecular interaction between various
species under high pressure shock conditions is not consi-
dered in the simplified model described above. One investi-
gation(sz) of shock wave propagating into a dust-laden fluid
(40% dust, by mass) shows that the solid particles in the

flow attain a high degree of thermal equilibrium within the
shock itself.

One may conclude from the above discussion that ques-
tions concerning thermal equilibrium are directly connected
to the overall problem of characterizing the macro- and micro-
structure of geologic materials.* The critical physical
parameters of a particular model are not available. 1In the
interest of brevity, only the pressure equilibrium and PTEQ
models will be considered so as to ascertain the extremes
of the thermali behavior to be anticipated in the constituents.

® . .
it should be noted that for millisecond duration pulses,
the argument is considerably enhanced in favor of both
pressure and thermal equilibrium,
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4.2 PRESSURE EQUILIBRIUM (p-V_ECUATIONS OF STATE)

Mixtures in pressure equilibrium can be most readily
analyzed if there is a single-valued relationship between
pressure and volume. Hence, if energy effects are neglected
altogether, Eqs. (4.1) through (4.3) reduce to the volumetric
equations of state,

p(v) = p;(Vy) (4.9)
where
V = L F,V; (4.10)
1

Specializing these equations to a two-component mixture (like
that proposed for tuff and water),

P(V) = p (V) =, (V) (4.11)

\%

RV + (1-F) V, (4.12)

The simplest case to consider is a mixture of two
materials described by linear equations of state

p = A Y1, p, = A i —2, (4.13)

where V . 1is some initial volume and Ai are constants.

0l
Solving each of these expressions for Vi’ setting p1 p2 =D
(i.e., pressure equilibrium), and svstituting the Vi ex-

pressions into Eq. (4.12) yields

AV - pV AV - pV
Vo vt 0) s (1-F) {222 02 (4.14)

1 02




ey

Solving this equation for p results in a linear equation
of state for the mix,

V0 -V
P = Al —— (4.15)
0
where
V0 = FV01 + (1-F) V02 (4.16)
V0
01 + 02
A A
1 2

In general, components with non-linear equations of
state do not yield an explicit relation between p and V.
The equation of state (of the mix) is a transcendental rela-
tionship. For example, the Murnaghan form

p = % [(vo/v)‘w - 1] (4.18)

of the equation of state is sometimes used to represent the
extremes of static compressibility tests and shock measure-
ments at high pressures., The constants B and ¢ are re-
lated to the sound velocity < and the slope of the shock/

particle velocity Hugoniot data according to(ss)

C =4/BV , ¢ = 4s-1 (4.19)
Pressure equiiibrium suffices to construct an homo-

genized equation of state for 2 mixture from those of its
constituents when substituted into Eq. (4.12).

v A
= 01 L 02
V=F ol RO B \I7, (4.20)
L+ % R
1 2
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This transcendental relation cannot be solved explicitly for
p and, unlike the simple linear case, does not preserve the
form of the equations of state for the constituents. Never-
theless, p can be numerically evaluated for specified V
and (4.20) represents an homogenized equation of state.

For subsequent calculations it is necessary to con-
sider pressure equilibrium between materials who§e_8gfssure
varies according to a cubic polynomial in u | = —l——} .
Specifically, the Hugoniot data for both compacted dry tuff
and water have both been fitted to the form

p = Ap + Bu? + Fu¥; (4 21)

where A, B, F are given in Eqs. (2.11) and (3.3) respect-
ively). The condition of pressure equilibrium (together with
the tacit assumption that the internal energies of the con-
stituents of the mixture are those for the Hugoniots of the
pure materials) has been imposed on these fits to construct
a p-V relation for completely saturated wet tuff with the
following values for the mass fractions of water.

Mw

F = Mw o vl o, .5, .10, .15, .20, .25, .30 (4.22)
1

Pressure-volume relationships are obtained for each mix in
the same manner. A given pressure implies the specific volumes
of the two components from which V 1is directly calculzted
(i.e., Eq. (4.12)).

The correspending p-V curves are shown in Fig. 4.2.
The curve for zero water content represents the Hugoniot for
compacted dry tuff of density o= 2.4 g/cc.
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Pressure or Strests (kbar)

200

op, = 1.97 g/cc, Shipman, et a1, (38

op, =1.91 g/cc, Rosenberg, et a1 50

10v

1

¥

\

o1 L ! AN \‘\X\

.28 W32 .36 .40 .44 .48 .52 .56 .60
Specific Volume fcc/g)

Fig. 4.2--Hugoniots for varijous water/tuff mixtures
computed on the basis of pressure equilibrium.
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The available Hugoniot data for saturated wet tuff
for p < 200 kbar are alsc shown in Fig. 4.2. The data
points are scattered about the F = .15 curve which corres-
ponds to the representative value for the water content of

wet tuff. This particular curve has also been fitted to the
cubic form, i.e.,

p = 5.96758 x 10'° y

+ 6,31245 x 10%?! p?

- 2.60228 x 10! yu?, ergs/cc (4.23)
where
p, = 1.9835, g/cc (4.24)
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4.3 EQUILIBRIUM STATES—ENERGY EFFECTS

The calculation of equilibrium states when the consti-
tuents are characterized by equations of state of the form
(4.1), (4.2),involves the simultaneous solution of a set of
algebraic equations. As one might suspect, the "hand" solu-
tion of these equations, even for a two-component mixture,
can be very complex and time consuming. Consequently, an
iteration subroutine from the S® computer library has been
adapted to calculate p-V-E-T data for PTEQ (or, alternatively,
pressure equilibrium only) mixtures. This iterative scheme
is fully described in Appendix B.

Briefly, the iteration process for PTEQ calculations
is initiated for a given E,V by assuming a temperature of the
mix, as well as the Vi's. The constituent's energies are
then computed (from Eq. (4.2)) and their mass-weighted sum
is compared to the original E. The difference between the
energies 1s then divided by an appropriate Cy of the mix
to give the first correction to the temperature.

In the next phase of the calculations, the (corrected)
temperature is held constant, while the specific volumes are
adjusted to assure pressure equilibrium. Thus, new T and
Vi's are obtained with which the iteration is continued until
a satis.actory answer is obtained. For the present calcula-
tions, the iteration is completed when the difference in
the energies is less than .05 percent of the desired E.

If thermal equilibrium is not required, the thermal
iteration step is omitted. Since the constituents will under-
go independent thermal shock transitions, it is possible to
adapt the above-described iteratior procedure to solve for
Vi if (during unloading) the isentropic expression
J/‘ pdV + Ey, (V ), is substituted for E in the p-V-E

vHo
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equation of state. The subscript Ho corresponds to the
state of the material just behind the shock. In sheck
loading, the EHo expression is obtained from the shock
Hugoniot. (For the present calculations, the basic itera-
tion scheme has not been used to calcilate pressure equili-
brium mixtures.)

4,3.1 PTEQ Calculations

A series of PTEQ calculations has been conducted
wherein equilibrium states of various mixtures have been
computed on the shock Hugoniot and release adiabats. In
these calculations, the equations of state developed for S°
dry compacted tuff (Egs. 3.14, 3.15) and water (Eqs.2.16,
2.25) have teen employed. It was ascertained that a typical
calculation of pressure, after the energy and specific
volume of the mix had been specified, requires approximately
10 milliseconds cn the UNIVAC 1108 computer.

4,3.1.1 Shock Hugoniots

Shock Hugoniots for the homogenized PTEQ tuff/water
mixes have been computed for various mass fractions cf water.
These are presented in Fig. 4.3. The experimental data for
wet tuff is plotted for comparison. The thermodynamic states
represented by these curves have been obtained by finding
those states which satisfy both the Hugoniot relation,

e, o)

Eo = 5 (4.25)

(k2]

and the PTEQ mixture equation of state. The p-V-E-T data
(for the ccmponents and the mix) are given in Table 4.1.

Qualitatively speaking, these (PTEQ) curves are simi-
lar to those obtained on the basis of prescsure equilibrium
only (see Fig. 4.2). Moreover, the general agreement with
the experimental data for F = .15 and .20 is maintained in
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05 .15 ,25
200 7
199
180
170 - O o = 1.97 g/cc; W.C. » 10.7 wt.\ (Ref. 38)
A ol ® 1,928 to 1.973 g/eci  W.C. v 17.2 1o 1.9 we.b (Ref.SO)
160 7 O e, = 1.796 to 1.901 g/ec; W.C. » 9.5 wt o [Ref. 41)
O o, v 1.72 to 174 g/cc; W.C. = 15.6 wt. (Rof, 42)
150 + . bl - 219 g/ecs N.C. = 10 wt.t (Rof. 43)
¢ 0" 1.9 g/a¢; M.C. v 15.8 wt.t (Ref. 45)
140 v s, =174 g/ec; N.C. » 13,8 wt.3 (Ref. 44)
e b, = 1.76 g/cc; H.C. = 23.9 we.\ (Ref, 44)
130 —
120
110 ~
w100
1]
-
L
- 90 -
& go
70 —
60 —
50 7
40 —
30~
20—
10—
] i I I ] i [
.25 .3 .35 .4 .45 5 .55 .0
v, cc/g
Fig. 4.3--Hugoniots for various water/tuff mixtures computed

on

the basis of pressure and thermal equilibrium (PTEQ).
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the PTEQ calculations. Direct comparison of the results of
these calculations, in the p-V plane, is presented in Fig. 4.4
wherein the pressure equilibrium and PTEQ shock Hugoniots for
two of the mixes (5, 15%) are plotted on a common set of axes.
The PTEQ Hugoniots lie below those determined from pressure
equilibrium considerations, indicating that the effect of
imposing thermal equilibrium on the mix is to enhance the
energy absorption characteristics of the materials.

This effect can be explained by the fact that water,
under the same relative compression, heats up to higher tem-
peratures than tuff. Thermal equilibrium requires that the
water gives up a significant portion of this thermal energy
to the tuff. Although this doesn't greatly affect the com-
pressibility of the tuff, it does result in a sizeable in-
crease in the water's compressibility. (Another way of
explaining this result is that the internal energy of the
water is dominated by the thermal component (CyAT) wherein
for (S®) tuff, compressional energy ( -/ h,(V) dV) 4is much
greater than its thermal component. Temperature equilibrium
will thereby greatly reduce the internal energy of the water
component (at a given V) while the tuff would exhibit cnly
a small increase in its internal emnergy.)

To demonstrate this explanation, the locus of equili-
brium statec computed for the water and tuff components in the
Hugoniot curves for each of the pure materials in Fig.4.5. It is
readily observed that the water states in the PTEQ mix must
be at considerably lower thermal energies than the (thermally
independent) pure water case. This can alsc be seen in the
temperatures calculated for the PTEQ Hugoniots. The tuff
temperatures are increased cver those calculated for the pure
tuff Hugoniot whercas the water temperatures in the (shocked)
PTEQ mixes are lower. These Hugoniot temperatures are plotted
vs specific volume in Fig. +.6 for the case of the 15% mix.
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190 b e Pressure Equilibr‘um

— PTEQ
180 ~

170 L
160 -
150 |
140 [~

130 |7
120 ~
110 |

100 |
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80

60 |-
50 .

40 L.
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20 -

10
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Fig. 4.4--Comparison of the 5% and 15% (by mass) water/tuff
Hugoniots computed on the basis of PTEQ with the pressure
equilibrium curves.
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Fig. 4.5--Locus of the water and tuff states on the PTEQ
Hugoniot compared to the Hugoniots of *he pure materials.
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Fig. 4.6--Comparison of the shock temperature for a (15%
water) PTEQ mixture to the shock temperatures of the
pure materials.,
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Such behavior of the water and tuff, when in thermal
equilibrium, enhances the possibility that the compressed
water would undergc a phase change (to ice-VII). The extra-
polation of Bridgman's phase transition curve for water(21)
is superimposed on the plots in Fig. 4.5. Clearly, for the
lower percentage water mixes, an analysis of phase transi-
tion kinetics may be appropriate as the statement that the
Hugoniot 'sk*.ts the phase transition line'" is not applicable.
In this regard, it shou’d also be noted that increases in
the tuff temperature might have a significant effect on high
pressure phase transitions (at pressure about 380 kbar(53))
and may also induce the debonding of "nonliquid" water con-
tained within tuff's clay lattice (reported by Stephens,
et al.(ss)).

4,3,1.2 Release Adiabats

Release adiabats have been calculated for the various
percent water mixtures under consideration up to pressures
of 150 kbar. 1In general, the isentropes for the PTEQ mixes
lie close to the Hugoniots in the pressure range of interest.
However, there are significant differences between these
results and those computed for pure tuff. As shown in
Fig. 4.8 for the 15% water mixture, the extra energy absorp-
tion due to the presence of the water results in "slower"
unloading of the shocked composite material than in the pure

tn-‘:f’

“ A

The erfects of water concentration on the unloading
curves is demonstrated in Fig. 4.8. Three cases (5, 20, 30%
water) are considered wherein the release adiabats are
presented along with the corresponding Hugoniot curve. It
may be readily concluded that as the water concentration
goes up, tuff/water mixtures would exhibit more and more
energy dependence in an unloading process.
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4.7--Release adiabats computed for the 15% water PTEQ
mixture compared to that of (S%) dry tuff.
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Fig. 4.8--Release adiabats of three PTEQ water/tuff mixtures.
Note the increased energy dependence as water concentration
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In Fig. 4.8 the water phase change cccurs at pressures
too small tc be shown. It is not evident from these curves
that there is a discontinuity in the p-V trace as the two-
phase thermodynamic region is entered. This is seen in
Fig. 4.9 wherein the release adiabats for 10 and 25% mixtures
are plotted out to specific volumes or 2.5. Essentially,
the phase transition is isothermal, and the water component
acquires energy from the tuff as the pressure slightly de-
creases. For example, in the two-phase region of the 15. ".ar
release adiabat (10% water mix), the temperature changes by
only .3°C (.1%) whereas the pressure drops by about 2% at
a specific volume (of the mix) equal to 2.5,

There isn't an over-abundance of experimental data io
which the present theory can be compared. In Fig. 4.10, the
135-kbar release adiabat measured by Rosenberg, et al.(so)
for a 15% water/tuff mix (fully saturated) is compared to the
Hugoniot and 135-kbar .elease adiabat for the 15% (by mass)
PTEQ water/tuff mixture. There is reasonable qualitative
agreement, In fact, the shape of the curves is very nearly
identical.* However, the other set of experimental points,(45)
plotted in Fig. 4.11, illustrates that the simple homogenized
model may not be appropriate in all cases. (It should be re-
marked that in both sets of experimental release data the
p-V relationship below 80 kbar is difficult to infer from the
axperimental data), This disparity in experimental results
is one indicatiocn that teo fully characterize the effect of
the presence of water in geologic material one will also re-
quire more exact knowledge of the geologic composite itself.

*

The S?® compacted ¢ry tuff Hugoniot could be slightly dis-
placed (to the left in the p-V plane) to more exactly
reproduce the experimental results.
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Fig. 4.9--Release adiabats of two PTEQ water/tuff mixtures
showing the effect of vaporization of the water.
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4,3,2 Additional Comments

It is evident from the results presented in this
section that a rational calculation of PTEQ states for tuff/
water mixtures has been demonstrated. The computer time to
determine p from a given V and E 1is approximately 10
milliseconds on the UNIVAC 1108. This is at least an order
of magnitude slower than could be achieved if a table of
equilibrium states were used in conjunction with a rapid
table look-up scheme.(54) Thus, in numerical experiments
wherein core storage capacity is no limitation, such tables

could be readily computed from the PTEQ iteration progran.

Still another possibility is that the PTEQ calculations
can be empleyed as the basis of an analytic model for wet
tuff. In a manner analogous to that presented in Section III,
analytic expressions for the mix could be developed using
the percentage wat*er as an explicit parameter.
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V. 1-D COMPOSITE CONFIGURATIONS

5.1 INTRODUCTION

In developing the homogenized equations of state in
the preceding sections the explicit treatment of material
interfaces was avoided. In order to assess the effect of
local material discontinuities, detailied calculation of
stress wave propagation effects in composite materials is
required. In keeping with the philosophy adopted at the
outset of the project, the models for the component materials
of the composite configuration were initially selected to
be very simple and then mecdified to introduce additional
physical effects. Even if its component materials are linear
fluids a composite medium will disperse a wave by internal
reflections at material interfaces. For a fluid modeled by
a non-linear dependence on the specific volume, p(V), this
"geometric dispersion' will be counteracted by a sharpening
of the wave front provided the bulk modulus increases with
increasing pressure. This is also the situation when
realistic thermodynamic -nodels, p(V,E), are employed. For
non-linear volumetric and thermodynamic models for the
component materials, the dispersion effects will therefore
be complicated by energy dissipation resulting from
irreversible sheck heating.

These three fluid models of the component materials
are considered, in this section, for laminated configurations
in which the stress pulce is propagated normal to the
laminates. The component materials represent water, com-
pacted dry tuff and completely saturated wet tuff. As the
dispersion relations for these fluid models are better de-
fined and as more complete material models are developed
it will be fruitful to add to the models treated in the
composite calculations.

E3
Author: T. D. Riney
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In selecting the composite configurations for the
1-D computer calculations it is desirabie to initially
establish a well-defined pulse in a homogeneous material.
The lamina ed composite structure shown in Fig. 5.1 is de-
signed with a left end block of homogenized wet tuff for
this purpose. The midsection consists of N bilaminates
of alternuting layers of compacted dry tuff and water. A
right end block of homogenized wet tuff is added so that
the pulse transmitted through the structure can also be
inspected under weli-defined conditions. The equation of
state for wet tuff is constructed by impcsing pressure
equilibrium, or pressure-thermal equilibrium, between the
water and tuff components mixed in the same water mass
fraction

v}
]
"
]

01 91 -
M S F oy o (5.1)
1 2 01 91 02 02

The replacemer* of the laminated mid-section by wet tuff
provides an associated homogeneous medium and pulse propa-
gation though this material serves as a standard for the
comparison of transmitted pulses.

The 1-D Lagrangian continuum mechanics computer pro-
gram (SKIPPER) that was used for these calculations is in
no way restricted to purely fluid models. Each material
laminate is subdivided into a number of small zones, each
centaining a constant-mass element. Difference equations
expressing conservation of mass, momentum and energy are
solved in conjunction with prescribed constitutive relations
appropriate to each zone material.(ss) These normally
include (1) a thermodynamic equation of state describing the
isotropic response of the material, (2) a von Neumann arti-
ficial viscosity to insure computational stability, (3) a
stress-strain relationship describing the deviatoric behavior
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Saturated Wet Tuff

Fig. 5.1

Compacted Dry Tuff

-~Schematic of bilaminated composite structure.
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of the material, (4) a flow rule to determine if a zone is
deforming elastically or plastically. The SKIPPER code was
implemented by restructuring and modifying a version of the
RIP code, de%?loped at S® under the DASA-sponsored PREDIX
from which all subroutines dealing with radiation
had been removed.

In the numerical experiments it is desirable to follow
a pulse through a large number, N, of bilaminates. SKIPPER
is structured to permit the finite difference grid to shift
with the pulse as it propagates through the laminated mid-
section so that calculations are only made in active regions
of the composite structure. At any point in the calculation
an homogenized end block may be introduced on the right-hand
side of the grid and the pulse propagated into it after
traversing the midsection., The calculation may also be
restarted from a point in time prior to the introduction of
this end block, additional bilaminates inserted for the
pulse to propagate through, and then an homogenized right-
hand end block introduced into the grid. By this procedure
it is possible to conserve computer time both by restricting
the calculations to the active part of the laminated structure,
and by avoiding the necessity for repeating the early stages
of calculations in which only N 1is varied.
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5.2 LINEAR FLUID MODEL

It is of interest to first consider the case in which
the material components are represented as simple linear
fluids

p = A—Lto— (A, V constants) (5.2)

Such an idealized medium does not deccribe a real material
but it has the convenient property of propagating finite
amplitude waves without undergoing a change of shape. To
see this, consider a permanent wave moving at constant
velocity <, into an undisturbed medium, Fig. 5.2. Let

% denote an arbitrary point on the wave profile where the
particle velocity, pressure, and densicty are u, p, p
respectively. Then conservation of mass a2nd momentum
yield

1]
©

p(c - u) ¢ (= m, mass swept past
0 ® ® ‘point * in unit time)

I
=
<

P

Combining, we get

or

'
P=p, Co (- po/p) (5.3)
which reduces to Eq. (5.2) upon setting A = P, ci. Since
(5.3) is obtained for each point *, regardless of the ampli-
tude and shape of the wave, it follows that a steady finite
amplitude wave (in an isentropic process) can only exist for
the highly idealized linear equation of statw..
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5.2.) Effect of Artificial Viscosity

Lagrangian finite difference codes, including SKIPPER,
use an artificial viscosity, or q-term,

Vo \? v
qop(v-AX) *ap pclv Axl , for
q = (5.4)
v
0, for v >0

<f e
A
o

which is normally added to the hydrodynamic pressure in the
governing equations to permit stable numerical calculations

in the presence of shocks. The quadratic term is required

for the treatment of non-linear material models in which

the wave velocity increases with increased pressure; the
quadratic coefficient of g is selected to offset the
associated tendency to stee;en the wave front and to smear

the shock front over three or four finite difference zones.
The linear term damps out spurious oscillations in essentially
uniform flow regions and the coefficient qy, is selected on

the basis ¢f numerical experiments, For non-linear materials
the values

. 4, = 0.25 (5.5)
have been found to give satisfuctory results for a wide range
-~

of pressures and materials.(s"J

For a linear medium there is no tendency for the wave
front to steepen to thereby balance the smearing effect of
the artificial viscosity. It is therefore required te inves-
tigate whether the calculational procedure used in SKIPPER
can indeed isolate physically real geometric dispersion effects
from the inherent numerical dispersion due to the artificial

viscosity, zoning, etc. The initial 1-D calculations were
directed toward this question.
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To isolate the effect of the q-term, the computexr code
was applied to an elastic homogeneous medium characterized by

Eq. (5.2) with the following choices for the bulk modulus and
initial bulk modulus:

A= 9,06 x 10'° ergs/cc V, = 0.50 cc/g (5.6)
The medium was 0.7 cm wide and was zoned into 220 zones, all
of width AX = 3,18 x 10 ® cm. The pulse of amplitude P,
and duraticn t =~ was introduced at X = 0 by the velecity
boundary condition defined by:

v, o= 10° cm/sec t = 0.5x 10°% sec (5.7)
producing a pressure of amplitude

p,=e Vv ¢ = VOVK7V0 = 42.4 kbar (5.8)
The calculatior describing the propagation of this initially

square pulse through the homogeneous medium was repeated for
the following choice of coefficients occurring in Eg. (5.4):

Run No.: 401 402 404 408 410 411 412
(ql/.ZS): 1 0 3 1 0 1 .05
(qo/l.6>: 1 0 3 0 1 1 .03

The first calculation, Run 401, used the values of
ay and a, commonly employed for non-linear media, Eq. (5.5).
The time variation of the pressure pulse, p(t), propagated
to distances of 0.03 cm (zone 10) and 0.56 cm (zone 175) in
the linear medium are shown in Fig. 5.3. The spreading of
the pulse is severe. The progressive damping of the high
freauency components, corresponding to a continuous rounding

of the initially square pulse, is vividly demonstrated by the
Fourier transform,

+oo

P(w) = p(t) e 10t g¢
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Fig. 5.3--Effect of artificial viscosity (q0 = 1.6, qq, = 0.25)

on the pulse transmitted through 2 linear medium
to the two indicated positions.
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of these two transmitted pulses, Fig. 5.4. 'lhis attenuation
c¢f the high frequency components is due ¢o the numerics en-
tirely. The second calculation, Run 402 with no artificial
viscosity, resulted in numerical oscillations.

None of the choices of qo and qq, attempted was
satisfactory. One must compromise between the oscillations
in the pulse that are acceptable (small q-coefficients) and
the spreading of the pulse as it propagates {(large q-coeffi-
cients). On this basis the choice for Run 412 (q0 = 0,48

and q = 0.0757) is considered preferable to the others
for a linear medium.

5.2.2 Laminated Composite

Even though the q-method cannot accurately treat linear
fluid models, SKIPPER was used for one calculation for the

laminated structure, Fig. 5.1, in which the materials were
modeled in the form of Eq. (5.2).

For the materials in the laminated mid-section, the
pressures are given by

p1 = Al_.g_l.v.....__l_ R p = A 02 2 . (5.9)

The homogenized model for the end blocks is obtained by
assuming that these materials are mixed in the mass ratio F,
Eq. (5.1). The assumption that the two components of the
mixture are in pressure equilibrium then determines the

constants VQ and A required in the linear model of the end
blocks (see Section 4.2):
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V =FV + (1-F) V (5.10)
0 02
Vv
A= 0
FV (1-F)V (5.11)
. 01 4 02
A A
1 2

The bulk moduli of laminate materials 1 and 2 were,
respectively, selected to match the Raleigh line of the
Hugoniot curves of water and compacted tuff at 50 kbar.
These values are listed in Table 5.1 together with the

associated parameters for the homogenized end blocks that
were computed, (5.10) and (5.1iy,

TABLE 5.1

PARAMETERS USED IN THE CALCULATION FOR A COMPOSITE
CONFIGURATION OF LINEAR FLUID MODELS

Material A (ergs/cc) po(g/cc)
Water 1.524 x 10! 1.0
Compacted
Dry Tuif 2.548 x 10! 2.4
Saturated
Wet Tuff
(F = .15) 2.079 x 10*! 1.9835

The initial widths of the layers of water and com-
pacted tuff in each bilaminate were
h = 0.0297 cm n = 0.0703 cm (5.12)
01 02
corresponding to a bilaminate width and water mass ratio of
A =0.1cm F = 0.15 (5.13)

The end blocks were chosen to be 0.25 cm wide and the mid-
section censisted of ten bilaminates, N = 10.
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The input loading was defined by the imposed velocity
v = 7.786 x 10* cm/sec t = 0.5 x 107% sec (5.14)
producing a pressure pulse of amplitude and velocity

= = 5 = = 3 6
P v, Apo 50 kbar o \/AV0 0.324 x 10° cm/s~ec

0
(5.15)

in the left end block. The initial pulse length is equivalent
to coto/A = 1,62 bilaminates. Acoustical matching of the
computational :ones was realized by using 5 zones per water
laminate, 14 zones per compacted tuff laminate, and 51 zones
in each saturated wet tuff end block for a total of 290 zones.

In Fig. 5.5 the pulse propagated to two positions in
the left and right homogenized end blocks of wet tuff are
shown. Although the details of the calculation in the
linearized models are known to be smeared by the numerics,
tne gross effect of the propagation through the ten bilaminate
midsection is apparent. Since the rize time of the trans-
imitted pulse far exceeds that attributablc to the numerics
it must be due to geometric dispersion. The pulse is also
lengthened and the peak pressure is actually increased
above the initial value,

The incrcase in the amplitude of the pulse transmitted
through the laminated structure is a consequence of the par-
ticular combination of impedance mismatch of the laminates,
laminate widths and pulse length. The complex form of the
pressure profile, inside the laminated midse .tion is il-
lustrated at three instants in time by piots in Tig. §.6.

In Fig. 5.6(a) the pulse is amplified upon propagatiny from
the left end block into the first tuff layer. The trough
apparent in Fig. 5.6(b) occurs at the first water layer.
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In Fig. 5.6(c) the profile is shown just prior to enter.ng
the right end block.

The calculated time of arrival of the pulse at each
zone of the configuration is depicted in Fig. 5.7. The wave
velocity for the homogenized wet tuff, Eq. (5.16) may be used
to predict the time of arrival of the pulse at the rear of
the first end block, the rear of the laminated portion of
the structure, and the rear of the secornd end block may be
predicted from this value. These values (0.77, 3.86 and
4.63 usec respectively) are denoted by points 1, 2 and 3
in Fig. 5.7. The agreement with the calculated value at
point 2 shows that the substructure of the laminate has
negligible effect on the average wave speed in this linear
problem, although it was seen to significantly affect the
transmitted pulse shape,

If one simply divides the length of the laminated
structure by the total times for a signal to cross each layer
the corresponding estimate for the mean propagation velocity
is given by Eo = 0.341 x 10° cm/sec. This estimate would
predict that the signal would arrive at the rear end bliock
at 3.71 sec which deoes not agree with the calculated arrival
“ime at point 2 in Fig. 5.7.
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5.3 VOLUMETRIC FLUID MODELS

5.3.1 Preliminary Considerations

The SKIPPER code was used to study wave propagation
in the laminated structure, Fig. 5.1, when each component

is represented by a non-linear volumetric fluid model of
the form

p = Au + Bp? + Fu?;, u = VO/V-l (5.16)

For the water and compacted dry tuff laminates the parameters
are based on fits to Hugoniot data for pressures below 200
kbar (Eqs. 2.11 and 3.3); the condition cf pressure equili-
brium was imposed on those fits to construct an associated
homogenized equation of state for the saturated wet tuff end
blocks with water mass ratic of F = .15 (Eq. 4.23). The
parameters for the components of the laminated structure of
volumetric fluids are listed in Table 5.2.

TABLE 5.2

PARAMETERS USED IN THE CALCULATIONS FOR COMPOSITE
CONFIGURATIONS OF VOLUMETRIC FLUID MODELS

Material A(ergs/cc) B(ergs/cc) F(ergs/cc) pO(g/cc)
Water 2.19534 x101'° | 5,2138 x101!° 2.3181 x10*!? 1.0
Compacted

Dry Tuff |2.4576 x10'* |2.98697 x10%!| 6.14886 x101¢

o
-
~

Saturated
Wet Tuff | 5.96758 x10'° | 6.31245 x10*1{-2.60228 x101%1,9835

(F = .15)

The dimensions of each biiaminate (hg; = 0.0297 cm,
hoz = 0.0703 cm) and the mass function of the wa*er (F = 0.15
were the same as for the calculation vYor the structure with
lincar models, Eq. (5.12) and (5.13). The amplitude of the
aprlied velocity loading was unchanged but the duration of

P




v

loading was varied,
v, = 7.786 x 10* cm/sec t, varied (5.17)

This velocity loading introduces a shock of velocity and
magnitude

D.. = 0.367 x 10°% cm/sec

wt = 57.1 kbar (5.18)

Pyt

in the volumetric fluid model_for the left end block of wet
tuff.

Preliminary calculations were made to test the numerics
of SKIPPER for the non-linear volumetric models. The usual
choice for the coefficients in the q-term, Eq. (5.5), was
found to maintain the desired three-zone spread for the shock
front propagating in the homogeneous wet tuff. Two calcula-
tions were made for the laminated structure with N = 10 and
t = 0.5 x 10 % sec to test the effect of resolution. In
o%e, the zoning was the same as it was in the earlier calcu-
lation for the linear fluids: 5 zones in each water laminate,
14 in each compacted dry tuff laminate, and 50 in each
saturated wet tuff end block, In the other calculation, the
number of zones was doubled but the results were essentially
identical. In subsequent calculations 5 + 14 = 19 zones
have been used in each bilaminate if t > 0.5 x 107° sec,
and 38 zones in each bilaminate for t°v< 0.5 x 10°° sec.

5.3.2 Pulse Propagation Normal to Laminates

In the SKIPPER studies of laminated structurus with
a large number of bilaminates (N = 30) the value of to was
varied while keeping the other parameters fixed. The purpose
is to study the effect of the ratio of the length of the in-
put pulse length to the width of the bilaminate of the
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structural midsection,
= wt 0 (5.19)

Calculations were completed to N = 30 for three values of
finite pulse duration, t = 0,25, 0.5 and 1.0 x 10°° sec.
These correspond, respectively, to input pulse lengths of
0.94, 1.84 and 3.67 bilaminate widths.

A calculation was also made in which the midsection
was replaced by the same homogenized wet tuff as the end
blocks (F = 0.15). Although the input pulse was to = 0.5,
the results can be used as a standard of comparison for
each of the three laminated calculations for the laminated
midsection by invoking hydrodynamic scaliing.

In Fig. 5.8, a series of computer plots are shown
depicting the pressure profile of t..e pulse transmitted to
four mass depths into the laminated structure for the case
where t0 = 0,5 x 107% sec,

£ = 1.84 (5.20)

The pulse is shown as its front reaches depths corresponding
to 10, 15, 25, and 35 bilaminates. At these instants, the
pulse shape is quite irregular, but a general form is dis-
cernable from one instant to the other. The front of the
pulse is rcunded near its peak by the dispersion effect of
the laminates, and the pulse is divided into two principal
parts. The corresponding pressure profiles for the homo-
geneous wet tuff medium is superimposed for the first three
of these plots. The substructure of the laminated composite
results in an amplification of the peak pressure of the

transmitted shock. The velocity of propagation is also
increased.
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An alternate method of examining the pulse propagated
through the laminated structure is to allow the pulse to be
transmitted into an homogenized wet tuff end block on the
right side. In Fig. 5.9 computer plots are shown depicting
the pressure pulse transmitted to a fixed distance into an
homogenized wet tuff end block after being propagated through
a4 laminated midsection of 10, 15, 20 and 30 bilaminates,
respectively. Here again, the general shape of the trans-
mitted pulse, p(t), is seen to be preserved and the ampli-
tude and velocity of the transmitted pulse is significantly
greater than if it were propagated entirely through an
homogenized wet tuff medium of the same total width. This
is clearly demonstrated in Figs. 5.9(a) and 5.9(c) by super-
imposing the corresponding p(t) for the homogenized wet
tuff medium onto the computer plots for the laminated
structure.

In Fig. 5.10 the pressure pulse of initial duration
to = 1.0 x 107°% sec,

E = 3.67 (5.21)

is shown after being transmitted through the laminated mid-
section into an homogenized wet tuff end block on the right
side of the structure. The transmitteu pulse, after 10 and
30 bilaminates, is compared with the corresponding (scaled)
pulse transmitted through an homogenized medium. The
amplification of the pulse in the composite structure is
again observed.

In Fig. 5.11 the pressure pulse of initial duration
to = 0.25 x 10°% sec,

£ = 0.94 (5.22)

is shown after being transmitted through the midsections

consisting of 15 and 30 bilaminates to a point in a right
end block.
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A summary of these calculations is given in Fig. 5.12
which comnares the peak pulses transmitted to the right hand
end block with the peak pressures calculated for the homo-
genized wet tuff medium. It was obse'ved earlier that the
amplitude of the pulse transmitted through the laminated
composite was greater than for the homogenized medjum with
the corresponding load duration, to = 0.5 x 10°% sec. It
is seen from Fig. 5.12 that the compesite medium transmits
a higher pressure amplitude even for the shorter duration
of load, t, = 0.25 x 10°% sec.

By invoking hydrodynamic scaling it is possible to
compare these results oa the basis c¢f the same load duvration,
L 0.5 x 10~%sec, but for varying values of the sub-struc-
ture of the composite medium. The result of this transforma-
tion of the calculations is shown in Fig. 5.13. The pressure
attenuation for all three values of the ratic £ are ob-
served to lie on essentially the same curve. The attenuation
of the pulse in a laminated composite of non-linear fluids
is relatively insensitive to the dimensions of the substruc-
ture in the range studied. On the other hand, the attenua-
tion for the composite medium is far less severe than for
the homogenized medium, at least for the substructure
dimensions studied.

5.3.3 Step Pulse Normal to Laminates

in seeking an explanation for the greater amplitude
cf the pulse propagated through the composite media, Fig. 5.13,
it is desirable to treat the laminated structure when sub-
jected to a step pulse, to = o

E]

£ = w (5.23)

The assumption that pressure equilibrium would be attained
at some distance behind the sheck front jn the laminated
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midsection is equivalent to assuming that the final state
is that determined by imposing the Hugoniot conditions on
the equivalent homogenized wet tuff medium. From (5.17)
and (5.18) the expected equilibrium values for the particle

velocity, shock velocity, and pressure behind the front are
as follows:

u, = 0.07786 cm/usec De = 0.367 cm/psec

p, = 57.1 kbar (5.24)

in Fig. 5.14 pressure vs mass depth plots are shown
at two instants for a SKIPPER calculation in which the pulse
has been propagated through the homogenized left end block
and twenty-four water/tuff bilaminates in the midsection of
the structure. In Fig. 5.15 the time variation of the
pressure is shown at the center of the first and sixteenth
water laminates. For the first water laminate in the mid-
secticn, Fig. 5.15(a), the mean pressure of the oscillations
is indicated by the dashed line, p = 55.5 kbar. This devia-
tion from eventual equilibrium pressure is due to the non-
linearity of the p(V) relations for the laminate materials.,

The spatial periodicity of the oscillations about the
value p in Fig. 5.15 corresponds to a width of two bi-
laminates. The time variation of the oscillations is 0.47
usec as illustrated in Fig. 5.15. A discussion of the
approximate periodicity of the oscillation will be given in
Section 6.3. The amplitude of the oscillations continuously
decreases with time as a consequence of the conversion of
the kinetic energy into heat energy.
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5.4 THERMODYNAMIC FLUID MODEL

If a material is shocked from P> V1 to P, Vz
and then the compression relieved back to V1 the residual

heat due to the shock processing is
V2
TN AT T

When a non-linear material oscillates about some equilibrium
pressure, P, there will be a corresponding conversion of
kinetic energy into heat by this mechanism during each
oscillation,

For a volumetric fluid the pressure release is forced
to occur along the Hugoniot since variations in internal
energy from th. .. ,oniot value are ignored in ccmputing the
pressure, p = p(V). The amount of kinetic energy dissipated
into heat during an oscillation (per gram of processed mate-
rial) is represented in Fig. 5.16(a) by the area between the
Rayleigh line and the Hugoniot curve. It is this periodic
dissipation mechanisms that causes the attenuation of the
p(t) curves shown in Fig. 5.15. The final equilibrium
pressure is the same as that determined by imposing the
Hugoniot conditions on the associated homogenized volumetric

wet tuff medium, i.e. Eq. (5.24)

For a realistic thermodynamic fluid,

p = p(V, E) E=EWV,T) (5.26)

the permissible (p, V) points are not confined tc the
Hugoniot (H ) through (0, V ) since changes in the internal
energy are ;eflected in the value cof the pressure. The
schematic in Fig. 5.16(b) illustrates the path that would
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Fig. 5.16--Schematics showing (a) hatched area representing
the amount of kinetic energy (per gram) converted into heat
during the indicated oscillation of a volumetric fluid mate-
rial, (b) the locus of p-V points assumed by a thermodynamic
fluid subjected to oscillatory loading, and (c) effect of a
double shock.
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be traced out by such a fluid undergoing repeated shocking
and unloading. Starting at point (pl, VIJ, which in

general will not lie on Ho, the material particle is shocked
along a Rayleigh line to a point (pz, Vz) which lies on

H, the Hugoniot which 1is centered on (pl, V1)' The com-
pression is released along an adiabat through (pz, Vz) to
(pa, Va) with a net gain in internal energy AE given by

Eq. (5.25). The augmented internal energy will tend to
increase the mean pressure during the next oscillation.

The amplitude of the excursions from the increasing mean (to
the asymptotic value pe) may be expected to decrease because
of this conversion of kinetic energy to heat. Subsequent
shocking and unloading, along the appropriate Rayleigh lines
and adiabats, will produce a p-V path which may be expected
to move to the right of the Hugoniot (H) through (p1’ Vl),
as indicated schematically in Fig. 5.16(b).

If the material particle reaches the shock pressure
P, in a single shock it will lie on Ho and the associated
internal energy is
E = % p, (vo A (5.27)
If, on the other hand, the particle reaches the pressure

P in two successive shocks as shown in Fig. 5.16(c), the
internal energy is only

Eﬁ c i pSl(vo ) ‘,Sx)+ !i(ps+p51)(vsfvsz) (5.28)

In this case the point (ps, Vs) lies on the Hugoniot, H, and
is to the left of the Hugoniot H_ . Subsequent oscillations,
such as indicated in Fig. 5.16(b) may or may not be suifi-
cient to move the final equilibrium point (pe, Ve) to the
right of the Ho curve. In any case the final temperature
in the doubly shocked material will be less than if it reached

o  —— ey A i el = AUt . g T S et 5 o e

— e P e - - —




Pre—rw

its maximum pressure in a single shock. For a highly com-
pressible material such as water at low pressure, this can
be a very significant effect.

The calculation for a bilaminated structure subjected
to the step pulse loading

v,oS 7.786 x 10" cm/sec t >0

was repeated for the case where the water and tuff layers in
the midsection were represented as thermodynamic fluids,

Eq. (5.26). The equations of state for the water and com-
pacted tuff laminates were the dual forms developed in
Sections II and III respectively. Only the condensed states
of water occur under the present step loading. In order to
allow direct comparison with the correspcnding calculation for
laminates modeled as volumetric fluids, Eq. (5.23), the

left end block through which the pulse is transmitted before
entering the midsection was again modeled as an homogenized
wet tuff volumetric fluid. The second form of the water and
tuff equations of state, Eq. (5.26), is not required for the
wave propagation calculations with SKIPPER, but it was used
to calculate the temperature in the water and tuff laminates.

In Fig. 5.17 the variation of the pressure and tne
temperature with time are both depicted at a point located
at the center of the first water layer in the midsection
of the water/tuff bilaminate structure. Comparison of
Fig. 5.17(a) with Fig. 5.15(a), shows that the substitution
of the thermodynamic fluid models for the water and tuff has
had only a small effect on the pressure for this particular
situation. The mean pressure is reduced from D = 55.5 kbar
to p = 53,2 kbar so that the final expected final equili-
brium pressure is approximated by

Pe = 57.1 - 2.2 = 54.9 kbar (5.29)
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Fig. 5.17--Time variation of (a) pressure, and (b) temperature
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extended bilaminated structure subjected
to a step pulse. The laminates are
treatea as thermodynamic fluids.
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In Fig. 5.17.b) the temperature in the first water
layer is also seen to approach an asymptotic value. The
same is true for the tuff laminates. Examination of the
numerical data has led to the following estimates for the
equilibrium values for the individual laminates:

Water: T, = 473 °K Tuff: Tg = 477 °K (8.30)
No heat transfer was permitted in the SKIPPER calculation.
The values are very different from those that would be
anticipated from homogenized equations of state.

For the imposed velocity loading the corresponding
homogenized PTEQ equation of state for wet tuff, mass
fraction F = 0.15, would yield the following values for
the equilibrium particle velocity, shock velocity, pressure
and temperature:

ug = 0.07786 cm/usec Dg = 0.365 cm/yusec
(5.31)
pg = 56.2 kbar Tg = 526 °K

On the other hand, if the individual tuff and water com-
ponents were shocked directly to the equilibrium pressure,

Eq. (5.29), the corresponding Hugoniot temperatures would
be

(py = 54.9 kbar )  Water: 574 °K
0

(5.32)
Tuff: 487°K
The SKIPPER results, Eq. (5.30), at first sight seem in-
compativle with these values since a much higher femperature
might be expected in the water laminates in the absence of
any heat transfer to the tuff laminates. This discrepancy,

however, can be explained in terms of the substructure in
the laminated composite.




The front of the step pulse enters a water laminate
by crossing an interface from a compacted dry tuff laminate.
In the tuff the pressure will be on the order of 70 kbar,
e.g., Fig., 5.14, but because of the impedance mismatch at the
tuff/water interface, the initial shock transmitted into the
water will be only about 35 kbar. Subsequent reflection
of this first snock at the next water/tuff interface will
essentially double the shock strength. The fact that the
water is shocked in a two-step process is verified by
the inflection in the rise portien of the p(tr) plot for
a particle located at the center of the first water layer,
Fig. 5.17(b}. A rough estimate of the difference between
the single and double shock Hugoniot energies, El - E2 can be
made by neglecting the difference Vs - V52 in Eqs. (5.27)
and (5.28) and considering the water to be shocked to 35 kbar
and chen to the expected equilibrium value, say 54.9 kbar.
The double shocking reduces the internal energy at the mean
pressure by about 2/3 to 3/4 of its single shock value. This
is of the required magnitude to explain the apparent dis-
crepancy in the equilibrium temperature of the water layers.
The tuff layers appear to undergo a single shock in reaching
their initial shocked state, but even it it were doubly
shocked there would be mich less effect than for the more
compressible water.

This simple calculation for a step pulse has shown
that the temperature attained in a composite material can
depend strongly on its substructure.




5.5 FOURIER SYNTHESIS METHND

The artificial viscosity term in SKIPPER was found
to damp out high frequency components of waves propagating
in linear materials. To avoid this difticulty a Fourier-
synthesis code, WARP, has been developed to study pulse
propagation in any linear composite material for which a
dispersion relation is known, i.c., a material for which
the velocity of propagation as a function of the wave length
is known for steady harmonic waves. The pulse is decomposed
into its harmonic components, the phase change experienced
by each component calculated, and then the contributions of
all the resulting harmonics summed to predict the transmitted
pulse., Since the input dispersion relation can be deter-
mined by either theoretical or experimental means, the WARP
code offers a useful tool for studying the influence of the
material and dimensional parametexrs on the dispersion of
a pulse transmitted through a linear composite material.

5.5.1 Analysis

In the Fourier synthesis of a pulse transmitted through
a medium from the dispersion relation fer the medium, one

first takes the transform of the incoming pulse of duration
0<t<t
0

t
P () = Flp ()] = / e LI (5.33)
1
0

To each harmonic component, Pl(w)dw, the medium will act
as a filter described ty a transfer function T(w) and the
transform of the transmitted component is

P (w) = P (&)T(w) (5.34)
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The output pulse is then simply

- 00

p () = Fl(p (0] = 3= [ P Twe du (5.35)

- 00

In general, the transfer function T(w) will be of the form
T(w) = A(w)eie(w) (A, 8 real) (5.306)

where A(w) 1is the attenuation factor and 6 is the phase
shift., Alternately, T(w) can be written as

T(w) = ei¢(w) (5.37)

where

6 = Real part of ¢ A = exp (Imaginary part of ¢) (5.38)

The dispersion reiation for the medium, assumed known,
provides an expression for the wave number, k = w/C, for an
harmonic dilatation wave traversing the medium. Here
C = C(w) 1is the associated phase velocity. The corres-
ponding transfer function for a length L of the laminated
medium is defined by (5.35) and

o(w) = k()L = E%gy (5.39)

If the given dispersion relation admits the possibility of
complex sclutions for X(w), harmonic components will in
general experience both attenuation and phase shift. Nor-
mally, hcwever, there will be frequencies for which ¢(w)
is real and for these components there will be no attenua-
tion experienced.




Substitution of (5.37) into (5.33) yields

-

%_1?/ P (w) exp[iw(a%(—uj— + t)] dw (5.40)

-

pz(t}

5.5.2 The WARP Computer Program

A WARP computer program was constructed to evaluate the

output pulse from (5..8) using any prescribed expression for
the. phase velocity, C(w). The Cooley-Tukey algorithkm for
discrete Fourier transformation is used in this code.(57)
This method, by its speed and accuracy, is superior to al-
ternate algorithms for calculating Fourier transforms.(ss)
There is a possibility of enhancing the operation of the
Cooley-Tukey algorithm by the use of a base 8 iteration,
Lt this is not required at the present time.

(59}

The WARP code has been tested for the non-dispersive
propagation of a pulse, and simple dispersion relations are
being testea in it currently. In particular, calculations
have been initiated using the Rytcv(60) solutions for the
phase velocity, C, of a steady harmeonic wave propagating in
an infinite medium composed of alternating laminates of
two elastic materials. His solution applied to treat the
propagation of an harmonic dilatation wave in a direction
normal to the layering becomes

cos[w(hl+h2)/c] = cos[whl/cl] cos[w hzlcz]

BT infwh /e ] sin[w b /c.] (5.4l
21 1" 1 2" T2 -41)




a

Here h1 and h2 are the laminate materials, I is the
impedance ratio defined by

c (A +2u )
= _1 2 2
1 ST (5.42)

and c , c2 are the dilatation velocities of the elastic

1
/A +21 {A +21
c = S SN o c = — 2 (5.43)
] pl 2 ‘7 02

constituents,

Parametric studies are planned to examine the influence of
the material and dimensional parameters on the gecmetric
dispersion of a square pulse propagating through a structure
of alternating elastic laminates.
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VI. 2-D COMPOSITE CONFIGURATIONS

6.1 INTRODUCTION

In the preceding calculations, only waves propagating
normal to material interfaces were considered; no motion
was permitted parallel to the tuff/water bilaminate planes.
In this section the opposite situation, in which the wave
propagates in the direction of the bilaminates, will be
treated. In addition, the intermediate case of a wave pro-
pagating through a tuff matrix with periodic parallel pores
filled with water will be considered. Each of these involves
deformation in two spatial dimensions and numerical solutions
were obtained using the 2-D Lagrangian continuum mechanics
computer program CRAM.

The numerical technique employed in CRAM is an exten-
sion to two space coordinates of the basic finite difference
formulation used in the 1-D SKIPPER code. Shocks are approxi-
mated by the von Neumann artificial viscosity method.(56)

CRAM can be used to treat multi-material configurations in
either cylindrical (2-0 axisymmetric) or rectangular (2-D
planar) geometry. A variety of choices for the constitutive
relation is available for each component material. The code
has been previously ?gg%ied to studies of structural response

‘s \ ) 62
to energy deposition® and armor penetratlon.(“ )

E3
Author:T. D. Riney
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6.2 WAVE PROPAGATION PARALLEL TO BILAMINATES

6.2,1 Simplified Analytic Solutions

Two analytical treatments have been presented for
approximating the Hugoniot uf a laminated composite in which
the shock propagates in a direction parallel to the material
interfaces. Tsou and Chou(63) have considered the case in
which the two materials are assumed to be firmly bonded to-
gether and Torvik(64) has considered the situation in which
there is no bond. The lLatter case is more appropriate to
the situation in which one of the laminates is water and it
is of interest to compare his simplified theory with the
detailed calculation using the CRAM computer code.

The left boundary of the composite has a constant
velocity X = v, imposed (Fig. 6.1(a)); because of symmetry
it is only necessary to consider the section shown in
Fig. 6.1(b). Torvik assumes that a steady shock front is
eventualiy attained which propagates at a constant velocity
D in the two materials. The transition region (S in
Fig. 6.1(b)) of two-dimensional flow is assumed ts be
followed by steady one-dimensional flow, and the lugoniot
jump conditions may be written which account for the change
in the thickness of each material laminate. Pressure equili-
brium is assumed behind the transition region and the
following relations may be written (i = 1, 2):

hoj Pog D = hgy pfi(D'uj) (6.1
p(hoi ¥ hfi>= 2hoi Poy Duy (6.2)
p = A.p. + B.u2 + F.u?; . = Eﬁi -1 (6.3)

i7i it iri? i 0oi '

Symmetry demands equality of the sums of the initial and
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Compacted Dry Tuff

Fig. 6.1(b)

Fig. 6.1--Laminated structure subjected to velocity step
loading at left boundary. Subscripts 1 and 2 denote
water and compacted tuff, respectively.
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final laminate thicknesses

= +
h01 * hoz hfl

hfz (6.4)
and the velocity loading is replaced by the averaged boundary
condition

whg +uhg = vo(hfl + hfz) (6.5)

In writing Eq. (6.3) we have assumed that the compacted
tuff and water laminates, and the associated homogenized wet
tuff material, are non-linear volumetric fluids, The asso-
ciated constants in the equations of state, the mass fraction
of the water in the composite (F = 0.15), and the dimensions
of the laminates (h L= 0.297 cm, h = 0,0703 cm) are all

02 02
assumed to be the same as for the calculations presented in
Section 5.3, j.e., Table 5.2.

The above system of eight equations has been evaluated
using a multi-dimensional Newton-Raphson method with the re-
quired funccional derivatives computed numerically. The pre-
dicted shock pressure as a function of the imposed velocity
loading, Vo is depicted in Fig. 6.2 for a water/tuff laminate
in which the mass fraction of water is F

0,15, Curves
depicting shock pressure vs v, for the associated homogenized
wet tuff and for the isolated water and compacted tuff com-
ponent materials are also shown in Fig. 6.2 for comparison
purposes. The corresponding curves showing the pressure as

a function of the shock velocity, D, are presented in Fig. 6.3.

The calculation of the Hugoniot for the homogenized
wet tuff equation of state assumes there is no diffusion of
the water through the tuff. Since relative motion is per-
mitted in Torvik's laminate model, there is less constraint
on the materials and a smaller pressure is to be expected
when using this model. This is seen to be the case by the
results in Figs. 6.2 and 6.3.
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lated components at indicated magnitude of velocity loading.
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The laminate model allows for a change in the thick-
nesses of the water and tuff laminates during their traversal
of a transition region at the shock front. The predicted
relative changes in the water and tuff laminate widths as
they traverse the shock transition region are shown in
Fig, 6.4 for F = 0.15. At an imposed velocity v, > 0.7
cm/pusec the water layers increase in thickness and the com-
racted tuff layers decrease in thickness by a corresponding
amount. The converse is true for v, < 0.7 cm/usec. This
cross-over velocity is near the value for which the CRAM
run was made.

6.2.2 Detailed Computer Solutions

Torvik's simplified analysis of a shock wave propa-
gating parallel to the water/tuff laminates is based on the
assumption that a constant steady-state shock and transiticn
region are attained. It is of interest to see if these
basic assumptions are valid.

The 2-D Lagrangian CRAM code was used to calculate the
full time-dependent flow induced in the water/tuff laminated
medium, Fig. 6.1(a). The constants in the equations of state
for the volumetric fluid models for the water and tuff com-
ponents, and the dimensions of the laminates, are the same

as in Table 5.2, The configuration was loaded by a longi-
tudinal step pulse by subjecting thc left boundary to the
velocity

v, = 7.786 x 10" cm/sec (t > 0). (6.6)

The section of symmetry between fthe mid-planes of adjacent
tuff and water laminates, corresponding to k = 1 and
k = 16 grid lines in the finite difference mesh, were
treated as reflective boundaries and the interface between
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the layers was treated as a slip surface to permit relative
motion between the tuff and water, Fig. 6.5.

The sequence of pressure contours shown in Fig. 6.6
illustrates the formation and propagation of a steady shock
front. Initially, the shock velocity in the tuff is greater
than that in the water, t = 0.05 and 0.13 usec. An essen-
tially steady front is finally obtained, however, in which
the shock front in the water layer has a slight lead over
the front in the tuff, t = 0.34, 0.45 and 0.55 usec.

The attainment of a steady state shock is verified
by nlotting the time variation of the position of the froat
at the mid-plane of the tuff layer (k = 2) and the mid-plane
of the water layer (k = 16). This information has been
extracted from the CRAM data and is plotted in Fig. 6.7.

The numerical data are seen to converge towards the curve
calculated from the simple steady-state water/tuff laminate
model, D = 0.388 cm/usec. The homogenized wet tuff model

is seen to undc.-estimate the shock velocity, D . = 0.367

wt
cm/usec.

The location of the shock front is denoted by S in
the sequence of CRAM velocity field plots shown in Fig. 6.8.
Near the loading surface (left boundary) the tuff is contin-
uously pushed upward to fill the void left by the water which
rushes to the right with a horizontal velocity component
much greater than that of the tuff, Ia this region the CRAM
finite difference mesh is seen to be severely distorted.
Near the shock front, however, a steady-state situation is
attained in which there is very little vertical motion, the
velocity vectors for the mesh vertex points lie essentially
on the horizontal grid lines. Just behind the shock there
is only a very small downward velccity component in the
tuff. This is predicted by the simple water/tuff laminate
theory which predicts that the tuff laminate's thickness
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Fig. 6.6--CRAM pressure profiles showing the 20~ and 40-kbar
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will be decreased less than one percent from its iaitial
value for V0 = 0,07786 cm/usec, Fig. 6.4.

The horizontal velocity components at the mid-planes
of the tuff (k = 2) and water (k = 16) laminates are plotted
in Fig. 6.9 at three stages of the CRAM calculation. Points
indicating the values predicted by the steady-state laminate
theory (u1 = 0.132 cm/usec, u2 = 0.vo44 cm/usec) have also
been inserted for comparison. The predictions are in good
agreement with the CRAM calculations near the shock front,

In each plot the point of intersection of the two profiles

locates the position of the loaded surface at that instant
in time.

In Fig. 6.10 the pressure profiles along the mid-planes
of the tuff and water laminates are presented at the same
three instants in time. In each plot, points have been in-
serted indicating the amplitude and position of the shock
front predicted for isolated water, isolated compacted dry
tuff, homogenized wet tuff, and the water/tuff laminate if
subjected to the same step velocity loading, Eq. (6.6). The
prediction of the simple laminate theory, p = 50.9 kbar, is
seen to give good agreement with the CRAM calculatiens near
the shock front.

The laminate model does not treat the region near the
loading surface. The CRAM results there become increasingly
inaccurate due to the large distortions of the [inite
difference mesh, but this difficulty has not affected the
calculations near the shock front.

Loading parallel to the planes of a laminated compo-
site represents the most severe test of the applicability of
the homogenized wet tuff model for a step pulse. We have
seen that the steady-state laminate theory accurately pre-
dicts the shock characteristics of the laminate, at least
for the conditions for which the CRAM calcuiation was made.
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For loading normal to the laminates, no relative motion of
the water and tuff is possible and the predictions cf the
homogenized wet tuff model accurately represent the eventual
steady shock conditions (see Section 5.3.3). Consequently,
the region between the water/tuff laminate and the homo-
genized wet tuff curves in Figs. 6.2 and 6.3 appears to
represent the range of variation of the Hugoniot of a water
and compacted dry tuff composite (F 0.15). These observa-
tions are based on calculations in which the material models
for the components are non-linear volumetric fluids. From
the discussion in Section 5.4 it is clear that the corres-
ponding curves for thermodynamic fluid components may not
enclose the equilibrium Hugoniot states of the composite.
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6.3 WAVE PROPAGATION TRANSVERSE TO PARALLEL PORES

6.3.1 Computer Solution

The 2-D Lagrangian CRAM code has also been used to

calculate the propagation of a step pulse through a compacted
tuff matrix with periodic parallel pores that are filled with
water, Fig. 6.11(a). The water and tuff responses are again
described by the non-linear volumetric fluid models useé in
Section 6.2, and the pulse is generated by imposing the velo-
city loading given by Eq. (6.6). The periodicity normal to
the direction of propagation is the same as for the laminated
structures that have been considered, A 0.1 cm. The sides
of the square cross of the pores are a = 0.05 cm and the
periodicity in the transverse direction is selected,
A =0.084 cm, so that the mass fraction of the water is the
same as for the laminated structure, F = 0.15. The antici-
pated equilibrium velocity and amplitude of the shock front
are given by Eq. (5.24).

The planes of symmetry of the composite section
treated, corresponding to the k =1 and k = 10 grid
lines in the CRAM finite difference me:ch, were treated as
reflective boundaries, Fig. 6.11(b). The plane separating
the water/tuff region from the tuff region was treated as
a slip surface to permit relative motion between the two
regions and to minimize attendant zone distortion.

The calculated velocity field plots shown in Fig. 6.12
show the effect of the passage of the shock front over a
pore. The first plot, Fig. 6.12(a) shows the upward motion
of the tuff when the shock front first reaches the pores.
The flow is later directed downward when the wave crosses
the pore, Fig. 6.12(b). This upward and downward flow
occurs at each pore, Fig. 6.12(c), resulting in a periodic

178




Water Compacted Dry Tuff

] 0o

O O 0
- E-E-E-0-E-E-E- P
OOO0O0nOmo.O . 2
| — =
. a
— X = v0 for t >0
Fig. 6.11(a)
K Slide Line Reflective Boundaries
10 )/7 :
/ /
// ] )lia
8
)4 WATER WATER] |
ur [ ]
4 i %
2 )
j=2 4 6 8 10 12 14 16 18 20 22 24

Fig, 6.11i(b)

&

Fig. 6.11--Composite configuration consisting of periodic
water-filled pores in a matrix of compacted dry tuff. The
symmetric section denoted by the dashed lines in (a) are
covered by the grid in (b) for the CRAM calculations.




(s oI
-
]~ e et
- - P
s e e e e P
b _fo )
b,

Fig. 6.12(a)--t = 0.127 psec.

| |-

LA TR
LT Tt ~
"

— ——

Fig. 6.12(b)--t = 0.270 usec.

(%

L1 | ol
= l/"
P o et I o
! » ’—"’-’;_’-,,-,,—__‘
b e i l
[ - L
; L H <= o | .
<] e e
. -
7 o B . PSP
)

Fig. 6.12(c)--t = 0.416 usec.

Fig. 6.12--Velocity field calculated with the CRAM code at
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a water-filled pore in tuff matrix,
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undulating deformation of the composite in the wake of the
shock front. This condition is further illustrated in the
sequence of CRAM grid plots in Fig. 6.13.

The pressure profiles along the two reflective planes
of the symmetric section of the composite are shown in
Fig. 6.14 at two instants. The oscillations are essentially
centered at the equilibrium value snd the wave front is lo-
cated near the point calculated from Dwt = 0.387 cm/usec.
In Fig. 6.14(bj the wave front has enveloped four pores and
the spatial period of the oscillations bekind the front are
about half that distauce, 2A. This was also the case for
the corresponding 1-D problem, Fig. 5.14.

The spatial periodicity of the oscillations is more
apparent in the plots of the particle velocity profiles in
the planes of symmetry, Fig, 6.15. The particle velocities
are plotted against the j-line number in order to more
easily locate the intesfaces between the tuff and water/tuff
sections of the pore configuration. The average of these
two particle velocities for the composite and the expected
mean particle velocity are superposed in the CRAM plots.

The temporal variation of the pressure on the velocity
loading surface is shown in Fig. 6.16 at the two corners of
the symmetrical section. The period of about 0.4 uwsec is

reasonably close to the value computed for the corresponding
laminated structure, Fig. 5.15.

6.3.2 Periodicity of Oscillations

The similarity of the residual oscillations in the
1-D and 2-D periodic composites arises from their common
equilibrium conditions behind the shock front, Eq. (5.24),
and their equal structural periods, A = 0.1 cm. Brillouin(6s)
has presented methods of detailed analysis of periodic linear
structures based an the solution of differential-difference
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equations. Even if the composite is considered as linear,
however, the presence of two densities and two elastic

moduli would further complicate the methods presented by
Brillcuin. For this reason an intuitive explanation of the
periodicity is given below, though it is perhaps less convincing
than an explanation based on a detailed solution of differen-
tial-difference equations for periodic structures.

The mean density and sound speed in the water and com-
pacted tuff, corresponding to the equilibrium pressure p.=57.1
kbar, may be computed from Eqs. (2.11) and (3.3) respectively:

Water: 5&1 1.516 g/cc 0.511 cm/usec

Efx
(6.7)

0.390 cm/usec

Tuff: pg, = 2.85 g/cc Efz

The corresponding values of laminate thickness, bulk modulus
K = p ¢%, and "spring constant" k = A/h are

fo = 0,0196 cm Afz = 394 kbar kfl = 20.1 kbar/cm
(6.8)
Fg, = 0.0592 cm  Ag, = 433 kbar K¢, = 7.3 kbar/cm

In the neighborhood of the equilibrium state the water is
stiffer than the tuff. Consequently, the simplest oscilla-
tion will be one which the main motion is in the tuff,
corresponding to a spatial periodicity of Z(Hf1 + Hfz) N o 2A,
Fig. 6.17{(a). The approximate Feflection from the equilibrium
state associated with this mode of vibration is represented

in Fig. 6.17(b).

The oscillatory strain energy and kinetic energy resi-
dent in the svmmetric section

0 < x < u(Rg, * Fg,) (6.9)
may be estimated [rom the assumed deflection curve, Fig. 6.17(b),
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s=2 5 , =25, 0<xc<yh
Hf 0 Hfz 0 “
? (6.10)
6 =6, 6 =8 Fe, < x < '/Z(Hf1+Hf2>
The corresponding enevrgy components are given by
= 1 2
U szao (6.11)
l?Hfz
= X4 25 2
K Y m1 60 +‘zj( Pe §° dx
0
= L 5
X3 (ml + m2/3) (6.12)

where m o= 0.0297 g and m, = 0.169 g are the mass per
unit area of the water and tuff laminates. For the linear
idealization the total oscillatory energy is conserved,
d(K+U)/dt = 0, and one obtains

4 k

. £ -
5+ m.-—-——-_z__1 S WE 8§, =0 (6.13)

The corresponding approximate temporal period of oscillation
is

m +m/3
n‘/ I T S n‘/—'ﬂs—‘i—-— = 0.34 x 10°° sec (6.14)
7.3 x 102

An improved approximation can be obtained by replacing
Efz in Eq. (6.14) by the effective spring constant for fo
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and Kfz in series,

= 1 =
k = ——:lw-:—r— 5.1 kbar/cm

Efl lzfz
Then the estimated period of coscillation wouid be 0.41 x 10°°

sec which is as close to the periods calculated for the 1-D

(SKIPPER) and 2D (CRAM) composites as one would expect for
this crude treatment.




VII. THEORY OF INTERACTING CONTINUA®

7.1 INTRODUCTION

For geologic materials, a practical analytical model
must provide an average description of the effects of the
constituents, rather than a detailed description of the
stress field at each material interfzace at each instant.

It was this basic consideration that led us to concentrate
this part of the work towards modifying and applying the

theo y of interacting continua, or the continuum thecry of
mixtures, to analyze gross wave propagation and dispersion
eifects. In the theory of interacting continua, it is assumed
that every point of the medium is occupied by a particle of
each constituent. Simplified theories were used in the early
treatments of diffusion, and these have been presented and
compared by Truesdell.(éé) To investigate the propagation

of finite amplitude waves, a fuller thermodynamic theory is
needed, at least as the basis for empirical assumptions.
Various mechanical treatments of acoustic (small amplitude)
propagation in porous media have been made—see, for example,
Biot(67)——but the more recent development of (irreversible)
continuum thermodynamics for finite deformation has initiated
applications within the theory of interacting continua.

One approach, Green and Naghdi£68’69) is to emphasize

the mean properties and motion of the mixture, including
interaction forces but not incorporating the individual con-
stituent motions. On this basis, constitutive equations for
fluid flow through an elastic solid have been developed by
Crochet and Naghdi,(70) (71) Alternatively,
the detailed properties and motions of each constituent may

be incorporated, and a number of such theories have been
recently presented: Green and Naghdi,(72) Bowen,(73)

and Green and Steel.

3
Authors: L. W. Morland and S. K. Garg
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Mﬁller,(74) Dunwoody and Mﬁller.(75) There are conceptual
differences between the different authors. These differences
arise in the meaning of partial stress and total stress, the
interaction contributions to ensrgy and entropy, and tke form
of the entropy production inequality, including the role of
temperature. While an elastic solid-fluid mixture has received
some attention, previous references, a more realistic study of
finite umplitude ground motions should attempt to describe
hysteresis effects by a plasticity or soil mechanics model for
the solid constituent. In this first contract period, a
purely mechanical model, excluding thermal effects, has been
investigated, and in particular the propagation of plane uni-
axial waves analyzed to assess the significant feavures of

the model.

Because the theory of interacting continua has apparently
not been previously applied to calculate finite amplitude
stress wave effects fcr genlogic materials, the general
theoretical framework is described in detail in Section 7,2.
Some readers may wish only to scan this lengthy section for
basic concepts and the concluding discussion. Constitutive
laws for a purely mechanical model are formulated in Section 7.3
which relate the partial stresses in the solid material and
the fluid constituents to the deformation history of the two
constituents. In addition, an interactive body force account-
ing for the diffusion of the fluid through the pores of the
solid matrix is fermulated. In Section 7.4 the formulation
is specialized to the plane wave case and in Section 7.5
the constitutive laws are specifically adopted to describe
completely saturated wet tuff., A finite difference computer
code, described in Section 7.6, is implemented to calculate
uni-axial wave propagation effects in Section 7.7.
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7.2 EQUATIONS OF THEORY OF INTERACTING CONTINUA

In many situations a body of material contains
several constituent materials, each preserving its own
identity but so diffused through the mixture that every
regica of space occupied by the mixture, however small
on the moecroscopic scale, contains some of each constituent.
Examples are mixtures of gases, of liquids, of gases and
liquids, and of gases and liquids in porous solids. 1In
these situations it is not practical to discuss particle
paths for each constituent separately and determine which
particle occupies any point of the mixture at a given time.
Instead the postulate is made that every point of the mix-
ture body is occupied at every time by a particle of e=ach
constituent b3 (0 =1, ..., ). Further, each constituent
(g has a velocity field gj (x, t) through the mixture,
where x denotes position vector in space (with respect to
aafixed Newtonian frame) and t denotes time. In practige
v (x, t) must be interpreted as a mean velocity of 4
particles in some small neighborhood of x at time t.

The mass of constituent g er unit volume of mixture is
called its partial density % (x, t), ana the total mass
per unit volume of mixture p(x, t) 1is given by

(o)
p = ED g ' (7.1)

Summation will always denote over o =1, ..., r. Mass con-

cen’.rations (% (x, t} may also be defined:
(a7 (&) (o)
¢ = p/p, Z c =1. (7.2)

. . (a)
Mass production per unit time of 4 is allowed, due to
chemical interaction betwecn the censtituents, and is denoted
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(o)

by m per unit volume of mixture. Results for inert
mixtures % =, o0=1, ..., r) will also be recorded
since they are simpler and will be appropriate to many
practical situations,

Let V be any fixed region of space occupied by
mixtures at time %, with smooth bounding surface S and
outward normal (unit) n as shown in Fig. 7.1. The action of

S

Fig, 7.1--Space region V occupied by mixture

surrounding material on material in V 1is assumed to be
equivalent to a continuously listributed stress vector

t(x, t), defining force per unit area, over S (singular
surfaces mav be treated and appropriate jump conditions de-
termined analogous to a single constituent theory). It is
now postulated that this total stress on S (per unit area)
is supportcd between all the constituents in igTe division,

1
L
and defining the partia% ﬁtress on (%) as t (x, t),
a LR
that is, the force on A per unit area of mixture surface,

then

(a)
t. (7.3)

jet
1

This contrasts with a definition of total stress given by
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Truesdellg76) based on momentum baiance for the mixture.

. The two forms will be compared later. 1In addition, there

] is a body force per unit mass of each constituent, ﬁ, due

to the external world, for example 2 r?vity attraction, to-
gether with interaction body forces g per unit mass of
mixture due to all other constituents. Here these will be
assumed to incorporate momentum transfer due to the mass
exchange, although Eringen ard Ingram(77) choose to separate
the latter from the direct diffusive force. The same separa-
tion is made between diffusive couple and angular momentum
transfer due to mass exchange. However, constitutive assump-
tions must uitimately be made for tne tota{a§uantities, and
the separation does not help. He'~ then G denote: the
interaction couple on g due to.all other constituents

per unit mass of mixture, and 3 denotes the interaction
energy transfer to (g) per itnit mass of mixture. Heat
sources and fluxes will be introduced later. It is convenient
to expreig the interaction coupie in terms of an antisymmetric
tensor A by

~

(e) (a) () (a) .
referred to rectangular Cartesian coordinates.
“Note that ( £ijk # 0 if and only if i, j, k distinct
=1 if i, j, k in cyclic order
(i, j, k distinct)
= -1 if i, j, k not in cyclic order
(1, j, k distinct)
Thus, Eq. 7.4(a) - Gx = Ayz - Azy = ZAyz; Gy = ZAZX,
G, = 2\_.,, and hence Eq. 7.4(b).
A Xy
J
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(a)

Mass balance for the constituent 4 instantaneously
?ggupying region V in Fig. 7.1 statescggat the rate of
) mass increase inside V plus the, 4 mass flux out
across S 1s equal to the rate of % mass production in-
side V, thus

()
(o) (a)
[aras [CVns- [ Pw. 09
S v

\

Appiying the divergence theorem to the surface integral,

and assuming all integrands are continuous (the integral
law leads directly to the jump condition across a singular
surface by the usual "pill-box'" argument), leads, on letting
V » 0, to the point form

(o)
(a) () (a)
20+ div ( o 1)= mo. (7.6)

. o . . . .

Introducing the (4) material derivative (time rate of
o

change following an 4 particle)

(
\g) _ 3 (a) 3 (a) 3
ST =5pt v ograd, =Tt Yy 5;; ’ (7.7)

where xj(j 1, 2, 3) denotes rectangular Cartesian coor-

dinates, (7.6) may be written

@) @) @ (W
—5r — t P div v= m. (7.8)

Summing (7.6) over the r constituents and noting that there
is no net mass production gives

(a) ( )
no=o0, ZZ) + div Z(?,‘”ﬁ) =0 . (7.9)
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Recalling (7.1), (7.9) may be written in the forms

QL
1=

== + div pv=20, l—)B +p div v = 0 (7.10)
[ - Dt -
if a mass average or barycentric velocity v aund a barycentric

rate of change are defined by

“(a) (e)
py_:ZpK’ g-E-:-g—f-i-K'grad, (7.11)

Now (7.10) describes the mass balance of a body with density
p and velocity v, and v is commonly regarded as a velo-
city of a mixture body (in some mean sense), but it should

be noted that there is no mixture bodr (same set of particles)
occupying continuously changing continuous configurations
since in general the different consti%gﬁnts are separgfing

by diffusion. A diffusion velocity u (x, t) of p) is
defined by

(«) (o)
u = v -v, (7.12)
giving the relations
G oy @ S @ )
_.I_)..E. = E'E + 9- . grad , o} 2 = 0 . (/,13)
: : o . (a)
In particular, with no 4 mass production, m = 0, (7.6},
(7.8) become
3“;) . ((a) (0()) (g) (f;) (o) . () )
5T + div P \L"—‘O, -—-T)'t————'f' Dil\ll =0 . (7.87)
Momentum balance for the (g) constituent instan-
%a?eously occupying V states that the rate of increase of
% momentum inside V plus the fiux of % momentum out
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(a)

across S 1is equal to the total force acting on 4 inside

V, thus
/%‘f ((g)(;))dv +/l' (g)(;) ((?-.g)ds
S

\'

(a) (@) (@) (a)

= t ds + o b +p g jav . (7.14)
S \Y

. . o) )

The interaction ?89y force B may also be interpreted

as the rate of 4 momentum production due to interaction

with the other constituents per unit mass of mixture.

Applying the divergence theorem to the first surface integral
and using (7.7) shows that

/ PP, @ @ @ @

bt

v div. v - o - p B jdv

] / ‘@ s (7.15)

Taking a shrinking sequence of tetrahedrons for V in the
usual way, and assuming the integrands are continuous 2nd
boundeg establishes the existence of a partial stress ten-
sor o} such that

~

\Y

(%) (a) (o) _ (o)

= on, t n. (7.16)

i” %10
where n 1s the unit outward normal to the surface element
acted on by % . Note the difference between (7.16) and a
common coavention 1t = oT n vwhere gT is the transpose of
g. Here S35 denotes Ehe stress co%ponent in the X4
direction on the surface element with outward normal ia the
xj-direction.
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Substituting (7.16) into the surface integral of
(7.15), applying the divergence theorem and assuming con-
tinuity of integrands leads to the point form

@ (D) (@@ (@ ( ( (
D(D‘t) \L)* b ;",_div‘;,_ -(g) E)-p?ww;) (7.17)
where
@] o
o g. .
[di" g ]i = —_’lax; (7.18)
On using (7.8), (7.17) may be written
() (@)
(o) (a) (o) (o) ( )
P 2L . div(g) R ‘;‘,(g,‘j b o B - 3)(31 . (7.19)
(o
In particular, when m =0,
@ W @ @@ (@ )
Py div g + p b +p B8 , (7.197)

(@)

and 8 is purely a diffusive interaction. Defining the
total external body force per unit mass of mixture as b,
given by

(o) (@)
=20 b (7.20)

then the momentum balance for the mixture as a whole is ob-

tained by summing the contributions to (7.14) from each con-
stituent in the absence of interaction force .ontributions,

thus

Z(g_) -0, (7.21)
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and the reduction to point form analogous to the derivation of
(7.19) gives

Z @ W& (@
P —pF—t m ¥ =divg+ [o] (7.22)

Here o 1is the total stress tensor which from (7.13), (7.16)

e

satisfies

(o)
g=Zo, t=on. (7.23)

~

Some algebraic manipulation and use of (7.8), (7.13), (7.11),
(7.12), and (7.10) reduces (7.22) to

v, ) (o) (o) (@)

1 _ -

- ®
which has the usual form if a total stress tensor ¢ is
defined by

% (@) (o) (@) % (o) (@) _ (o)

Oij T 915 T4 P Vi Yy oo g "9 208 - (7.29)

Truesdell(76) uses this basis for defining a total stress

gﬁ but since a stress boundary condition would relate directly
to the total stress vector t wused in (7.3), the stress ten-
sor g defined in {7.23) has direct physical significance

%
while o involves also the dlffu51ve motion. There seems
little point in introducing o.

(o)

Angular momentum balance for the constituent 4
instantaneous%y occupying V states that the rate of in-
g?ase of g angular momentum inside V plus the flux of
4 angular momentum out across S 1is equal to the total
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(a)

couple acting on 4 inside V, thus

(@) () (@) (@) /(o)
)
jC 3t ( p €ijk x Yk >dV * %5. e eijkxj vy < vV o n) ds

~ {a) \0!) (@) (a:’
=] fijk X5 ty 48 ¢ 13k P X5 by ey By
s

\
(@) g4
vV (7.26)%
LRSI
. (o

Here tne interaction couple G (or rate of production of

o

4

angular momentum per unit mass of mlxture) has been ex-
pressed in terms of the antisymmetric tensor A by (7.4),

\
and no external body couple %s included. Expressing _(a, in

terms of the stress tensor o by (7.16) and applying the

divergence theorem to the surface integrals and using (7.8)
allows (7.26) to be written as

() () ()
[a) D' vy (@@ (@) (@) 3 om]
€15k ; 5LP T Y Mm Vgt by - By - %,

() (o)
T Ajk dv = 0 . (7.27)

Since the quantity in the bracket [ ] vanishes iden tically

by the momentum balance (7.19), with the integrsnd continuous,
(7.27) leads to the point form

(a) () ) )
€55k ( Opj * P Ajp) =0 (i

Angular momentum in vector notation is r x y. In tensor

notation, it is written as ¢.., x. Vi, where .. has
. . ijk 7 'k ijk

been defined previously.

1, 2, 3) . (7.28)
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L . (o) ()T ()T () (u)T ()T
This 1m%é}es that o + p A = g + p A = ¢ =P A

= H

~ -~

5ince A is antisymmetric., That is,

~

(o) 1 [(a) (o) ] (o)

130 7L %5 7 %5a] TP My o (7.28)

. . . . (¢
which determines the (non-zerc) antisymmetric part of o).
Angular momentum balance for the mixture as a whole is given
by the sum of the contributions in (7.26) from each consti-

tuent in the absence c¢f the interaction couples, and leads to

>, '
Aij =0, c =0 . (7.20)

That is, the total stress tensor is symmetric (recall the
absence of an ex%egnal body couple). The result (7.2%))15
. o . . o
independent ¢f m  and so applies when there is no 4
mass production.

(o) ) )

Energy balance for the 8 constituent instantaneously
occupying V states that the rate of increase inside V plus
flux out across S (0§ the internal (stored) e¢nergy plus

. . a . .
kinetic energy of 4 is equal to the rate of working of
body forces inside V and surface forces on S ©plus the
rate og heat sugg}y inside V and heat flux in across §

(a

on (A) Let gy denote the internal ene%gg per unit mass
o o
e

cf 4,
(a) . . o :
and "¢° the interaction energy supply to 4 ger nnit
. X (o

mass of mixture from othe. onstituents, . Let g  be the
a ] )

heat flux vector within 4", <> that ¢ + a defines the

heat flux across unit surfac% ﬁrea in the direction of the

. . Q o

unit normal n carried by 4, and let 'q° denote the

. . . a ‘ .

interaction energy flux into 4" from other constituents.

Introducing the symmetric and antisymmetric parts of the

external hecat supply to per unit m.ss,
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(o)

velocity gradient tensor, namely the stretching d and
spin % » given by

(a)
(a) 3 v, (a) (¢) (a)T (a) (o) (a)
A Y - e

the energy balance becomes

/ gt<(g) [(g)+ %_ (;‘_)»(g)])dv . / (g) [(g)+ % (;—).(i)] (3)° L ds

S

V+p r+pBey+ ptr\é w

(
/{(%) 3)_ <(<1) (d)> 'B_}ds , _ (7.32)

Applying the divergence theorem and using (7.7), (7.16),

(7.19), (7.29), (7.31), together with integrand continuity,
leads to the point form

(o)
(@) [(a) 4 (a)(e) () [(a)
591997 9L .

/ {(a)(a)(a) (@) (@)  (a)(a) /a(a)) (a)’
dv

%_ C;).(g)]div(;)
(u)(fa)(al
(e) (o) (o) ~ (a) . ) a)f{a) ()
= p T *tpy *35 p **-5€—-—- *m vV
(a) (&)
- tr(gTQ) - div( 34ﬂg ). (7.33)

203




Using (7.8) and noting tr(ng) = tr(gQ) since d is
symmetric,

(o) (o)
(o) (a) {(a) (a) (o) (a) (o) (a)
p__D_ﬁ.tL.-i- m(U-%.K.y_)=p‘r+pw
+ tr((g)(g))- div ((g)+(g?>. (7.34)

Summing the contributions to (7.32) from each constituent
determines the energy balance for the mixture provided that
the interaction terms, which make no net contribution, are

absent. In point form, the vanishing of this net interaction
contribution becomes

[4 ( ~
3@ =le[cg).c§)+ tr( o) cg)> . (3)] ] divcg) -0, (7.35)

and the mixture energy btalance is
3 (@) W) (o () |
o 5t + m u - VeV p T + div q

[(a)T((a) (a))]
-tryo d + o =0 . (7.36)

(o) (o)

o) represents the interaction energy supply to 4 per
unit volume of mixture, and (7.35) provides one(g?striction
on the contributing quantities. For the case m = 0, the
constituent energy balance (7.34) becomes

(2) (a)) (o) (a) (o)

O] k=

(o) (@) Q
@Y W® @ (@) (@)

(a)
For each constituent 4 we have the mass balance

equation (7.8), three momentum balance equations (7.19), three
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angular momentum balance equations (7.29), and an energy
baiance equation (7.34), giving a total of 8r balance equa-
tlonsta)rh%a§uant1t1es to be dererml?ed for each constituent
ar p°, m , three components of v , nine components of
, three components of % 2 three_components of A (a ,
e components of ( & +_(§)), ($), and the temperature
which, though not explicitly arising in the balance equa-
tion, will arise in the heat flux law (in general). That is,
26r quantities, but recall the restrictions (7.9), (7.21),
(7.30), (7.35)—eight in total-—arising from the balance laws
for the mixture as a whole, showing that 26x-8 quantities
only need be found and the set then completed by the restric-
tions. Alternatively, the balance laws and restrictions pro-
vide 8r+8 equations for 26r quantities. To obtain a balance
of equation and unknowns (the usual criterion for a consistent
theory) it is required to prescribe 18r-8 constitutive eq a-
tions (material properties)& This is ascompllsT ? by postulating
fu?ctlonal {e}atlon%a§0f ) m (r-1); (g) (6r), B (3r-3),

(%Z)S)t grg, q (3r) and (r-1) in terms of

X , and quantltles der1ved from these, for

example deformation gradients, velocity gradients, and tem-
perature gradients. Prescription of the % could be in-
cluded by prescribing 9r comporents of the g sub%ect

tg the three restrictions. Note that the quantities

E’
e

o

G

b,
r" not discussed above are governed by external environment.
If all constitucnts have a common temperature
6
this situatéon, the r-1 independent interaction energy
supplies v cannot be prescribed separately, and must be
regarded as arising to maintain the common temperature, and
will be determined by (7.34), (7.35). Further, for isother-
mal conditions 6 = const (prescribed), so that all tempera-
ture derivatives vanish. the energy balance (7.34) serves to

8", each ¢, then r-1 quantities are eliminated. In
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. (a) o @ (@) (@
%e§erT1?e %h? U once the 20r quantities p, m, v,
a a o =
o g, A are determined by the 7r balance laws (energy
balance excluded), 7 restrictions and 13r-7 constitutive

) a) (a) (a) . . .
equations for the m, o, B, in terms of kinematic
quantities and a fixed temperature parameter. This is there-
fore a mechanical theory with reference to temperature osnly
as a parameter which defines a family of mechanical consti-

tutive laws. For an adiabatic theory (for example in wave

H

motions when heat conduction time scales are supposed large
compared with pulse times), each g' = 0 and, in the same
sgirit g = 0, but there is less motive for setting

y° = 0, H T,

in (7.34), (%), ?g depend only on the temperatures,
and not gradients, of zll a% , then (7.34) for ail o in
principle determines the G in terms of mechanical quanti-
ties and temperature may be eliminated to leave a mechanical
theory.

ver, provided that the remaining quantities

(9]
i

The functional relations describing the constitutive
response of the material must satisfy the principlz of
material frame indifference, that is, be indepc~dent of the
observer. By observer is meant a rigid frame, defined, say,
by a triad of orthogonal vectors, and a clock, and a change
of frame is a time dependent rigid rotation and time depen-
dert origin translation. Thus, dencting quantities in a
second frame by =,

=ox+e(t), f =1, detq=-+1, (7.38)
The charge of time origin, t* = t+a, is neglected as this
just shows that t should not occur as an explicit argument
in the functionals. Here Q 1is a proper orthogonal trans-
formation representing rotation and excluding a change from
right to left-handed axes; this restriction is not made by
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Truesdell(78) but in many situations the inclusion of
det Q = -1 does not impos2 additional restrictions on the
functionals. The meaning of (7.38) 1is that

% _ *® - « T

X' = X5 €5, XT=X5 85, g =Q ey (7.39)
. . *
in the absence of the translation c(t), where eir & are

the triads of unit orthogonal base vectors in the two frames,

and X35 xg the respectlve compgne? f of x, x*. The physi-

cal assertlons are thart m , , are frame indifferent

scalars, that is, have the same value in all frames:

)
(; * o= (%), etc. (7.40)

(%) (%) (a) (8)

and n, » B, q, q are frame indifferent vectors,
that is, have a given magnitude and direction with respect
to some fixed frame. Since any vector d may be axpressed
in the form X, "X representing a line segment between
two points Xy Xy then if d is frame indifferent *g* is
the line segment between the same points, given by X, "X
Thus, from {(7.38)

*

d =Qd. (7.41)
. (o) '
%énce g tk §nd t are frame indifferent vectors and
t = g n, c is defined to be a frame indifferent second
order tensor, and from (6.41) satisfies
(o) (o) T
g*=Qg¢ Q . (7.42)

(o)

In passing ncte that particle velocigies v are not frame
indifferent vectors and the spins w are not frame indif-
ferent tensors. Applying the restrigtions (7.40;, (7.41),
{7.42) to the appropriate quantities provides some limitations
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on the forms of functional dependence permitted. The case
of a simple material is described by Truesdell.(78)

Further restrictions on the constitutive functionals
are obtained by invoking a "second law of thermodynamics."
In the case of a single constituent there is not complete
agreement on the form (and meaning) of the axiomatized entropy
production inequality—contrast Trues”ell(78) and Meixner(79)——
and certainly no direct physical interpretation of entropy
during an irreversible motion. For mixtures the situation 1is
even more tenuous. Should each constituent have its own
entropy or merely the mixture as a whole, does the inequality
apply separately to each constituent or just to the mixture
a whole, are first queries. Then, what are the roles of
(a) (a‘? (a) (2) N
/ 6 —are they contributions to entropy flux?
leferent viewpoints have been adopted by Green and Nagdi,
Bowen£73) Mﬁller,(74) Dunwoody and Milier (79 for example.
Having formulated an entropy production inequality it is
asserted that it must be satisfied by all admissable thermo-
dynamic processes, that is, processcs satisfying all the
balance laws but allowing arbitrary oody force and heat
supply. However, ever the simple theories, for example, a

mixture of inviscid fluids with no mass exchange, are still

(68, 72)

left in a complex form at this point, and it would seem more
fruitful to investigate simple models on the basis of empiri-
cal evidence, perhaps applicable to particular situations,
Mechanical theories of diffusion of fluids through elastic
solids have been given by Adkins(80’8D
Adkins. (82

and Green and

(o)

As far as possible the constitutive laws for the 4
constituent should reflect the character of that material
existing as a single continuum if the identity of the

materials composing the m1xthe 1s(t3 be 9re gve%é) However,
a
while the interaction terms » 4 allow
208
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(o)

the 4 equations to depend on the motion and thermal
changes in the other constituents, there is a case for %25
sisting that the re%g%ions between the partial stress ¢
and the motion of 4 should also be influenced by the
other constituents, and similarly for Lﬁ), (3 . Recall that
the partial stress is defined as force per unit area of mix-
ture surface as each constituent is supposed to occupy the
en%ire mixture space, which suggests that the effective

stress carried by § should be the partial stress appro-
priately scaled to account for an effective area of cross-
section of % per unit area o§ mixture. Similarly,
effective density changes of (g will be given by scaling
the partial d%niity changes to allow for effective volume
occupied by 3 per unit volume of mixture. To some ex-
tent these two new concepts introduced—effective area and
effective volume—will depend on the motions {deformations)

of all constituents, and a minimal interaction can(B? incor-
porated by postulating that the laws holding for 4 as

a single continuum should apply to the effective stress,
effective density, effective heat flux. Postulates are then
required for the two scaling functions. This idea will be de-
veloped for mixtures of simple materials on a purely mechanical
basis and very restrictive assumptions for the latter postu-
lates., Applications to mixtures of ideal fluids in elastic
and plastic-plastic solids under simple deformations are

made .
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7.3 CONSTITUTIVE LAWS FOR INTERACTING CONTINUA

7.3.1 Formulation of Mechanical Theory

In order to describe the behavior of a (partially)
saturated porous solid under dyvnamic conditions within the
framework of a mechanical theory of mixtures (appropriate
to isothermal or adiabatic motions), it is necessary to lay
down constitutive laws relating the partial stresses in each
of the constituents to the deformation history of both (in

generzi) constituents

In addition, a similar law for the

interaction body force is required.

material frame indifference provides
the form of the kinematic quantities
laws, even for mixtures of isotropic

While the principle of
some restrictions on
which may occur in these
elastic solids and ideal

fluids the restricted forms are far too general to fit to
available empirical data. We are primarily concerned with
finite deformation for which material properties are described
in terms of response functions of several arguments, not con-
stant moduli as in linearized approximations.

t is desirable that the individual constitutive laws
should reflect the character of the respective materials as
single continua if their identity in the mixture is to be
preserved. Since the theory of interacting continua postulates
that each point is occupied by a particle of each constituent,
the basic formulation eliminates all reference to actual mean

volume (%) occupied by (g) per unit volume of mixture, and
. 0, . .
to actual area of cross-section M’ per unit cross-section

of mixture. Hence, effective densities (g)e and effective
stress tensors (ade are not considered. Ccnceptually they

g
may be defined in terms of the partial densities (g) and

partial stresses (g) by the scaled relations

() (g) (g)e @) (ﬁ) (gz)e

p = ’ g:: (¢ =1, ..., 1), (7.43)

~
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where

(a) (o) (@) (a)

n =1, ZM=1, 0<n<1, 0 <M< 1, (7.44)
and summation over o = 1, ..., r is implied. Such scaling
is, of co%rﬁe, c?nceptual, ard serves only to introduce the
factors % , ﬁ . However, on this basis, a simple model
for the mixtur afan be formulated by assuming the co?g§itutive
%gyefor each 4 as a single-continuum to relate ¢ to

0 and the isochoric deformation associated with the constituent
displacement field g , the latter unchanged by the volume
scaiing. This will be called a "dilatation adjusted model."
Further interaction through the shear response may be present,
but the dilatation interaction is conceptually clearer and
will be adopted as a preliminary model for data fitting and
wave propagation studies. It should be noted that additional
interactions may be incorporated in the interaction body
force, but for the initial wave studies in a porous solid
containing ideal fluid, a simple diffusive resistance will
be assumed.

To develop our model we will focus attention on simple
materials exhibiting no explicit time dependence in their
response, and in particular on elastic materials (solid or
fluid) for which the stress (gge depends only on the
current deformation gradient ~\% € with respect to some
reference cenfiguration. History dependence through a
scalar parameter such as mean plastic str%ig on plastic

ork can be incorporated similarly., If g denotes an

% particle position in the reference configuration, then
in rectangular Cartesian spatial coordinates xi(i =1, 2, 3),
the deformation (motion) of $’ is described by

Xi © (;i ((§)° t) ’ (7.45)
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and the deformation gradient is

(a) (a)
() axi ou -
F.. = = §.. + 1
ij — @) ij = Ta) (7.46)
oX. oK.
J J
wgere sij is the Krénecker delta. Mass conservation for

4 (in the absence of mass transfer between constituents
due to chemical interaction) requires

(a) (o o
(o) .
where P, is the initial partial density and
(o) (a)
J = det( F )', >0, (7.48)

is the Jaccbian of the deformation. A partial density pre-
serving deformation satisfies

J=1. (7.49)
(2)

Now we may regard,.the deformation F as a density
- » a * ~ - -
preser%lgg deformation F followed by a uniform dilata-
. o ~
tion J 1; thus

F =

~

(@) 'ca)}l/3 (@) {ca)]1’3 (@)
J 1 F = J

Fo, (7.50)

~ ~

(o) %

where 1 1is the unit tensor. F is defined uniquely by
(7.50) and by construction measu;es the shear deformation.
The dilatation adyusted model defines an effective deforma-
tion (% € by

()
(a) ’(a)e 1/3 (o) % (g %oe (@) (q)
A E o Jos (), Ta) I (7.51)

~




where n is the initial value of n, and so
0

1/3
We s ¥ 7.52
F = (m— F . (7.52)
n
0
: : ()
Then, if the constitutive law for 4 as a single continuum
is expressed by

(a)
o= g, (B), (7.7 %)

(M

(a)

where the response function g, applies to a reference
configuration with initial density A within the mixture
the constitutive law for 4 oecomes

1/3
(@ (@ @]/ (o)
¢ = Mgl @ E I (7.54)
n
0

Thermal expansion effects could be incorporated similarly.

For example, an ideal fluid in isolation satisfies the
constitutive law

¢ =ple /o)1l = -p(N1 ,

(7.55)
so within the mixture the model predicts a law
n 9, ;
o = Mp(H: )1 (7.56)
An isotropic elastic solid is described by
7= 0, (L1 + ¢ (1B + ¢ (I,) B (7.57)
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where B = F F {FT denotes tlhe transpose of F), ¢0, ¢1,

¢2 are the response functions and Ik (k = 1, 2z, 2) are the
invariants of B:

11 = tr B, I =1 trB I =det B =J%,

(7.58)

-1, .
where trB denotes Bi' and B is the inverse of B .,
Now '

/I.L)Z/3 , 1® (ﬂ-\z/s . 1° =<9—>4/3 I,
-~ \l ~ 1 no'_ 1 2 ]‘1O 2

n -
Ij = <H:) 13 , (7.59)

so within the mixture the partial stress is given by /

2/3 473
~ e e\l\/n el/n
5= M ¢o(1k)g . ¢1<Ik)<5:> B+ ¢z(Ik)<H:> Bl - (7.60)

Theuabove de?gription is only complete when the
factors n° and M° are prescribed for each constituent
and these are constitutive functions for the mixture, speci-
fically describing the interaction. In general they could
be functions of the deformations of all constituents (perhaps
histories), but we will make the simple postulate that they
depend on the current partial densities (changes):

(@) () ((s))
M = M\J

)

(@) () ((B) .
n = n J (a, =1, ...y T)j.(7.61)
This "s in accord with the simple concept of interaction only
through dilatations o If further we make the restriction that

each area scaling M  depends on the dilatations only through
the volume scaling of the same constituent, with the same

o B - | ag—- < A S——
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dependence for each constituent, then

() (a)
M = f( n ) , £(0) = 2 . (7.62)

It now foliows, using (6.44), that

(@)  (0)
= n

M . (7.63)T

The relations (7.61) and (7.63) will be adopted as a pre-
liminary description of the interaction, so that_it remains
to determine the single ret of functions %)( g , subject
to (known) initial structure of the mixture. That is, in
the unstressed state we prescribe the effective densities
Soe and, say, the partial densities (part by mass)

p )
a
so that n is determined by (7.43).

0
(@) ((8
To discuss the determination of the n ((J)> let
us focus on a binary mixture (a = 1, 2), and write
(1) /() (2 (2)
n ( J ) =n, n =1-n, (7.64)

2

so we are concerred with a single function n of two argu-
ments. Now consider quasistatic tests such that, in the
absence of external body force and supposing the interaction
body force to be zero when diffusion is negligible, the stress,
partial stresses, and constituent deformations are uniform
through the mixture body. 1In particular the partial densities

TFor eaca fixed s, f ((i))+ :E: f((g))= 1 where (;Ll- (g)).

s) 6#S OFS

(s (o) 5 )

Thus £ ( n.) = };:f‘( n ) for all (n), (% subject to (7.44).
ofs

((a)
Hence, f(n) is linear, and in view of £(0) = 0 and :z:f \n /=1
the result {(7.63) follows.
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are uniform, and if there is no net diffusion from the body,

(a) (a)
Po
L= (¢ = 1, 2) (7.65)%
P po
by mass conservation, and hence
(@) o
J = B"_ ’ = J ((X = 1’ 2) (7..66)

That is, the partial dilatations of both constituents (or
all constituents in general) are the same, equal to the mix-
ture dilatation. Thus the argument of each n , hence n,

is the pair (J,J), and it is convenient to define

n(J,J) = N(J) .
_ . ) {(l) (2))

1) (83a51stat1c tests involve n\ J , J/ only on the path
J = J , but it is possible f??t(i? wave motions with small
diffusion the dilatation pair J , J  will lie in some

re?ig?ab}g)narrow strip containing this path, and that
» J) can be expressed, say, in the form

n((})’(g)) _ N(%[(§)+ (3)]>+ k(%[c§)+(§)])((§)_c5)) NP

In principle, the function k(J) would be determined by solu-
tions for small disturbances superpoesed on equilibrium con-
figurations with diffe¥%?t(d§latations J. Once N(J) 1is
known, magnitudes of J - 3 can be estimated from simple
wave propagation solutions using the leading term of (7,68)

as an approximation to n.

(7.67)

=

(@) (=)
(@) 8, AR . () (o) . )
J = (%) = zﬁ)/v = V/V ( M, = M , no dlffu31on)

Hence, etc.




7.3.2 Inceracting Continua under Simple Deformations

First consider a mixture of isotropic elastic solid
and ideal fluid described by (7.55) tarough (7.60), and
denote the solid by o« = 1. In uniform dilatation with
equal principal stretches A, the solid deformation is
given by

§=A21, I = 3)x%2, I = 3AY, I =A% =72 ,(7.69)

~ 1 2 3

Writing B = §(A), it follows from (7.59;, (7.69), that

B ® = g[(g_)l/s ,\], (7.70)

whence by (7.60) and (7.63)

1) (1) (1) (1)

1 ( - n _ n

§°kk"np[ﬁ_o'x3]*'np(ﬁ‘])’ (7.71)
(1)

where p (J) 1is the pressure in the isolated elastic

solid under uniform dilatation with Jacobian J. That is,

the uniform dilatation response in the mixture is determined
solely by the uniform dilatation response in isolation and

n, anticipated by the definitions of n and effective defor-
mation. Finally, for the ideal fluid, from (7.56)

7 oxx - - (I-m) p{{ {7.72)

0

1 @ (2)(1_n (3)>’

and the total mixture pressure is given by

LY =

() (1) (2) /. . (2)
Okk ~ -~ P (%— J)- (1-n) p (ig J ) (7.73)
0 0

217

B s et ¥

bt T Ty Wﬁw h




it o

From (7.66), (7.67), a quasistatic deformation of the mixture
with no diffusion results in a pressure-dilatation response
p(J) where

(1) .
p(J) = N() p [%S—Jl ] + [1 - NG p [%—N—I-S—J-)— J] L7
* 0 0

Thus, given p(J), (;)(J), (;)(J), (6.74) is an implicit
equation for N(J) subject to the initial condition

N(1) = No. Alternatively, a constitutive postulate N(J)
Y%}l predict the mixture pressure p(J) £from 'p°(J),

p (J)

In case both constituents are fluids, it can be shown
from hydrostatics that the effective pressures p(l)e ana

p(Z)e must be the same. In this case, (7.74) may be re-
placed by
pt) [NN— J] = p(® [I———liﬁ J] (7.75)
0 0 *

Thus, given p(l)(J), p(z)(J), (6.75) is an implicit equation
for N(J). We will also investigate a "Minimal Principle"
based on uniform dilatation response¢, namely, that for a
given equilibrium Jacobian J the value N(J) 1is such as

to minimize the total pressure p(J). That is, the effective
density changes in the constituents adjusts to minimize p{(J).

Turning to uni-axial strain with longitudinal stretch
Al and unit stretch in the lateral directions, the dilatation
is given by

J =X . (7.76)
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The principal partial stresses in the ideal fluid, within
the mixture, are equal, and given by

(2) (2), (2)
1-n - 1-n (7.77)
7) (1“)P(-FRO"M)~

For the elastic solid the deformation invariants are

(1) 2/3 (1 4/3

Pee e Do) )

(1)

I, = (%:)2 Mo (7.78)

and the principal partial stresses are

oo () - e (B)) D (BT o
D5 - (B, (BAT 0 (BN

7
Q'
-

: within the
mixture is not related simply to the respective stress in

In view of (7.78) the elastic partial stress

iiolation, even if the response functions depend only on L
Is, since Al is still scaled by (n/no) and by (n/no) :
in different terms. Thus longitudinal response of the solid
is not sufficient to describe that of the mixture even when

n 1is known, but the three separate response functions must

be given.

Before leaving the isotropic elastic solid-ideal fluid
mixture, let us note the linearized infinitesimal strain
equations which are derived from (7.55) through (7.60) and
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(7.63). Defining the infinitesimal strain tensor for the

solid, ¢, by
du. au.
. 1 i
€35 = 7—<§§; + 5§i> (7.81)

where u is the displacement vector, then neglecting terms
of order max(eij) in compariscn with unity,

(1) 5 du, (1)
Fij = ij * oy Bij = %35 * 2845 o
W,
(1) (1) (1)
I =3+ 2, I =3+ 4e, I =1+ 2e, (7.83)
where € 1is the dilatation
(1)
e= e = J -1 (7.84)
Similarly, the fluid dilatation e(<<1) 1is given by
(2)
e = J - 1 . (7,85)
In turn, set
n(l +e, 1+ e) = no(l *ue + nze) (7.86)

where the constants n,n, are supposed to be of order unity
or less. Thus, from (7.58), (7.83), (7.86),

1 1 (1
(Ize -3 = % ((IZe - 3) = Ize - 1= 2l(l+n1)e+n2e}. (7.87)
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Now (7.59), (7.62), (7.82) lead to

(1) (1) [(1) ((1) , (1)
0.. = no 2 u €55 * A+ n1 P u ﬂeéij

ij j 3
((1) 2 (1)) 28
+ ]’l2 A+ 3 u eélj (,7,. )
where
D _{, |
Bo= 16 + 2¢ ’
‘ 1 z]e‘ )

ij=0

(1) 2 0¢ ¢ 29

- z ; X r, T
A= 2 3T + 2 3T + 3T . (7.89)
=0 ! 2 $J%ij=0 -

Similarly, from (7.56), (7.63), (7.85), (7.86), for the ideal
fluid

(2) (2)
g.. = K

i (1 - n,o- nonz)e - nn 8.. , (7.90)

1)
where

(2)

= - p7p, /) 4y (7.91)

Notice that the interaction terms representing depen-
dence on the alternative dilatation are respectively for the
solid and fluid

(1) (2)
X nonzedij ’ - K nonleéij , (7.92)
1 @ o, @
where K = X + r Mo
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Combining equations (7.86), (7.88) and (7.50), we
cbtain the partial stresses in the solid and the fluid as:

ogi) = no k(l)e sij + Zu(l) eij} + (n—no) K(l) Gij (7.93)
and
0(2) = (1 - no) K(z)e - (n - no) K(Z) $. (7.94)

ij ij
The meaning of these equations is quite clear. Let us assume
that Kcl) > K(z). Application of pressure on the solid tends
to reduce the pore volume. Thus the partial fluid pressure
consists of two parts, i.e., (1) deformation of the original
fluid volume and (2) due to relative reduction in pore

volume. Similar interpretation may be applied to the par-
tial solid pressure. In uni-axial strain el and el,

(1) [(Q) 4 () (1)

o = nol( Ko 3 M )e *K (nlel ¥ nzel) ? (7.95)
(2) (2) (2) i

o = (l-no) K e, -1 K (nzel + n1€1) . (7.96)

Now consider the solid %o be elastic-plastic so that
the allowed shear stress is restricted. This is an essential
qualitative feature when large non-isotropic stresses occur,
and, albeit oversimplified, provides the most simple realistic
model. For uni-axial strain and spherically symmetric defor-
mation it is sufficient to postulate elastic dilatation (no
permanent volume change) and a yield criterion to describe
plastic response (no flow rule is required). In both cases
there are two nen-vanishing principle stresses, o (in the
longitudinal or radial direction respectively) and c, =0,
in the lateral directions, together with a longitudinal
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(radial) principal stretch Al, and in the spherical geometry
equal lateral stretches Az = As (unity in uni-axial strain).
Both the Tresca and von Mises yield criteria reduce to

s(o - 01) =Y , s =1, (7.97)

describing yield in the opposite shear senses, where Y 1is
the yield stress in shear. For simplicity we will neglect
work hardening and assume Y 1is constant. Now we postulate
an elastic relation between mean stress increment and dila-
tation increment, of the forn

1 =
3 d (01 + 202) = K dJ , (7.98)

where K is a function of the current deformation invariants
in general, but we assume a simplified dependence

K = K({J) . (7.99)

The incremental relation (7.98) may be alternatively expressed
as . rate law with respect to time or any monotonic parameter
describing the loading path since the material is not rate-
dependent. Note that (7.98) 1is a restricted form of the
isotropic elastic response given by (7.57) which relates

Oy O J only in uniform dilatation, as used in (7.71).
However, the resvricted form (7.98) in conjunction with (7.99)
may be integrated to give

31- (o, +20) = - p(J) (7.100)

which holds through both elastic and plastic deformation.
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In plastic deformation, the yield criterion (7.97)
and dilatation law (7.100) give

0='p(J)'%‘SY’

(7.101)

g

sY + ©
2 1

Hence, within the mixture, during plastic deformation of the
solid,

02 -~ 0 = nsY ,
(7.102)
o = -mp (%“ J) - % nsY

i

ns1 (%—-J)
0

Thus, the longitudinal (radial) stress-dilatation law within
the mixture is determined by the longitudinal (radial) stress-
dilatation law during isolated plastic yield, contrasting
with general isotropic elastic response (7.79) in uni-axial
strain, here a consequence of the foregoing restrictive
assumptions. A complete description requires an elastic

shear law to replace (7.97) during elastic response when

loz - oll <Y, (7.103)

or for “unloading" from yield states. Using the decomposition
(7.50) where J = Allz, the shear deformation is given by

* YZ/S 1/3 ’
-4/ = L
Y » YT X0 (7.104)

_113 2
Y /

[y
n

and J, v can be regarded as the two independent strains
describing dilatation and shear respectively. We now assume
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In plastic deformation, the yield criterion (7.97)
and dilataticen law (7.100) give

o, = -pl) - FsY =5,
(7.101)

n

g

sY + o .,
2 1

Hence, within the mixture, during plastic deformation of the
solid,

c -0 = nsY ,
2 1
= . n 2
o = np(H: J) 3 nsY (7.102)
_ n

Thus, the longitudinal (radial) stress-dilatation law within
the mixture is determined by the longitudinal (radial) stress-
dilatation law during isolated plastic yield, contrasting with
general isotropic elastic response (7.79) in uni-axial strain,
here a consequence of the foregoing restrictive assumptions.

A complete description requires an elastic shear law to replace
(7.97) during elastic response when

|02 - 01] <Y, (7.103)

or for "unloading" from yield states.

From (7.57) the principal stress difference O, - o
is expressed in terms of Al and Az , Which may be expressed
in an incremental form required for unlcading (relnading) from
a previous plastic state, and in turn a mixture law is
obtained., A simpler elastic model is obtained by expressing
as an isotropic tensor function of the stretch tensor
~1/2 and omitting the term in Ya, that is, setting the

<t 1Q
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third response function analogous to ¢2(Ik) in (7.5%7) to be
zero. Then

o =y (IQ1+ v (1YY, (7.104)

and the dilatation law (7.100) requires that

v (1) = -pd) -39 (DI, (7.105)
where

J = 13 = det V , I1 =trV,
Now

o1 -0, = wl(J)(A1 - Az) , (7.309)

and with :che further restriction
w; = const., = Z2u , (7.107)

the incremental law required for loading/unloading from pre-
vious yield states takes the simple form

d(o1 - 02) = Zud(Al - Az) . (7.108)

Allowing wl(J) results in a further dependence on dJ so
that the incremental shear response is not uncoupled from
dilatation response., Confining attention to (7.108), the
mixture law is

0'l ~ 02 hi fl;. r
d(-—“ )—- zud[(r) (O, - )\2)] , (7.109)




since, by (7.50),

1 »
F® = (g_)z Y ) (7.110)
¢

In uni-axial strain il =X,A =X =0, and
J =X, (7.111)

whence the plastic laws (7.102) become

- s (Do S =
o, = “Sl(no x) , o, -0 =nsY. (7.112)

However, the elastic laws (7.98), modified for the mixture,
and (7.109) become

o + 20
1 2\ n N
d(———3—~—)- 3K (H_ A)d(~— A)

0 no
(7.113)
1
c ~0 -
1 21 - n J
d( . )- Zud[(ﬁ—) \]
9
so that
o 4 %
)= gl o)« al(2-)° a 7.114
o) = sl afa ) $uaffa) ) r.110

and the combination K(%— A)+ % y does not determine the
longitudinal stress strain gradient between ol/n and %— Ao
Thus (7.114) requires separate knowledge of K(J) and °‘yp,
even in this highly simplified model, say from dilatation
and uni-axial strain measurements., It must be recalled that

the directly related plastic laws (7.112) are a consequence
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of the simplified elastic-plastic model proposed. While less
restrictive models allow the same extension to mixture laws

by dilatation adjustment, direct relations like (7.112) are
not anticipated
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7.4 PLANE WAVE PROPAGATION

7.4.1 Governing Relations

Wave propagation in mixtures has chiefly been inves-
tigated within linearized theories, and in particular for
harmonic waves in infinite fluid-saturated elastic solids.
Non-linear effects and possible shock formation are thus
absent. The present stuly includes these effects and makes
comparison with the opposite dispersion effects due to the
constituent interactions through diffusion and the coupled
constitutive laws. Attention is restricted to plane wave
propagation in uni-axial strain, and the longitudinal stress-
strain laws derived from the simple elastic-plastic model and
ideal fluid in Section 7.3 are used in illustration.

Now let us consider uni-axial motion in the

X ?irection. We will assume that the external body force

(o

b is absent and that there is nc mass transfer between
the constituents due to chemical interaction. In this case,
equations (7.8) and (7.19) expressing conservation of mass
and momentum for '3° constituents reduce to

1) (1 )
a_p a0 AV _
Tt + v X + P 5% o, (7.115)
(2) 3y
3a_p 3 0 v _
3t TV S5t P 0 (7.116)
1)
(1 (0
3V ., av ). 3 Ix
p (-'a—f PV ax) cR * 3 X ’ (7.117)
123 3(2)
N oW oW\ _ Ox
o (ﬁ”’“"a‘f)“ L T (7.118)
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Here superscripts (1) and (2) refer to material 1 (tuff) and
2 (water), respectively. Also

(1) /(2) _
o ( ) >= partial mass density of tuff (water) ,
_ , (1) (2)
p = current mass density of mix (= p + p |/,
v(w) = the particle velocity of tuff (water) ,

B = internal diffusive body force ,
(1) ((2) . o )
Oy dx>= partial longitudinal stress of tuff (water) ,
(1) ((2) ,
oy oy = partial transverse stress of tuff (water) .

This system has to be completed by adjoining the constitutive
laws developed in Section 7.3. The principie partial stresses
in the fluid, within the mixture, are equal, and given by:

Fluid (e.g., Water):

(2)  (2) (2) r1.n (2
o = 9y = - (1-n) (1_§° J) (7.119)
(2)

where p (J, 1is the relation expressing the pressure res-
ponse of the fluid constituent when isolated. The solid is
considered to be elastic-plastic so that the difference be-
tween its principal partial stresses is restricted.

Solid (e.g., Compacted Try Tuff):

In the plastic regime, we have

m W
ox - 0}’ = snY , s = 1 , (,7..120)
1 1 1
SN AL 0w
0
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(1)

where p (J) is the relation expressing the pressure
response of the isolated solid under uniform dilatation and
Y 1is the maximum shear stress that the(%ﬁolated solid can
sustain. In the elastic regime c -0 l < nY], the

response of the solid is governed by (0 121) and the elastic
shear law

o, - ¢

(- )

= n_
2n ul(no

(1), (1)
J)d J (7.122)

where ul(J) is the shear modulus of the isolated solid.
When the yield stress Y 1is negligible compared to the
applied pressure pulse, the constitutive relation for the
solid assumes the simple form:

(1) (1
o, = -n P (g- )\) (7.123)
0

0 (%§ still remains to prescribe the interaction function
( J ,J ). As a first approximation (assuming small dila-( 2)
difference between the constituents) the function N[T( ‘ﬂ
defined by (7.67) and obtained from the data discussed in
Section 7.5 1s ado?ted This serves to estimate the dilatation
difference J . A second treatment adopts the expansion
(7.68) with different values for k so that a possible
effect of different dilatations on the pulse propagation can
pe observed. Finally, the internal longitudinal body force
B must be prescribed. If we suppose the body force, B
depends on the two velocity fields and partial densities,
frame indifference requires linear dependence on the rela-
tive velocity w - v with coefficient depending on the
scalars (é), (S) and w - v. We will first adopt the mnst
simple form

pR = pod (w-v) (7.124)
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where d 1is a constant with the dimension cf the reciprocal
of time., From data given by Ishiharacgs) for slow diffusion
through sands and clays, d takes values in the range

102 - 10! sec™!, so various values across this range will

be used to investigate the effect of a diffusive resistance.
The significance of this term depends also on the relative
velocity (w - v) and the stress gradient, and hence the
pulse rise time. As d increases we would expect the rela-
tive velocity to decrease (an opposing force), and solutions
for d over the entire range will determine the product
d(w-v) in the different situations and assess the significance
of the resistance. Negligible (or small) relative velocity
which may arise with larger values of d would imply that
both constituents have approximately the same velocity field,
and then the simplifying approximation of a single velocity
field and single ceonstituent described by the total stress-
deformation law may be applicable,

7.4.2 Non-Dimensional Formulation

System of equations (7.115) through (7.118) can be
more simply expressed in terms of (X, t) where X 1is a
material coordinate(fgr Ege first material and by eliminating
partial densities P, P in favor of the Jacobians of
the deformations

LW W @ (@ @

A= J = po/ o, y= J = po/ P (7.125)

Thus, for any function f£(x,t) %(X,t), one has

of _ 1 3F (%)f £

— S e e = §__

53X % 3X ° Dt 3t (7.126)
(

— - vy - > - - e




This transformation reduces the equations (7.115) through
(7.118) to

3N _ dv
—-i:— = r ’ (7.127)
] w-v 9 _ Y ow
(3 + ¥ ax)Y = L3% (7.128)
5 (&)
%% B %é (w-v) + 3 i X (7.128)
0 [ ]

(2)
(3__+E:.‘L§__)w=£(w_)+ 1y 2% ;
3t © X 9% T-c, WV " g ey x AW (7.130)

where c0 and l-c0 denote the initial mass concentrations.

(1 (g
C=p 1 - ¢ =

) a
0
po 0 DO

o -/
o s

(7.131)

We define a characteristic length, L, to be twice the
length of the specimen (2). A convenient measure for a
typical wave speed is an acoustic wave(igeed in material 1
based on the initial partial density p0

(1) d(l)(T\ I x

p, S% = —E%:;La l (7.132)
U

U =0

where y = % -1 .

1) _
*Utilizing the functional form (7.144) for p (u), (7.132)
becomes

W, @
poso = A,

(1)

where A is a material cocustant defined in Section 7.5.
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Introducing the

Z

v

o

non-dimensional

variables,

= X/L T = Sot/L

= v/S0 w = w/S0
W,

= g/ poso = Ld/S0 s

the following system of equations is obtained

oA . BV
T FYAR]
.a_l + ﬁ .-a-.l = l ﬁ ’
T 37 X 32
i {4
v _ A = &
T Co (w-v) + 55
(2)
W , W-V oW _ d = =~ o Yoag
Tt T T V)t e v 5

0

(7.133)

(7.134)

{7.135)

(7.136)

(7.137)

This governing system is completed by adjoining the
constitutive laws (7.68), (7.119), (7.123).

(

(2)
o

where

Q=

)= ) n(%)(g__ A)

n (uy) o= N(IR) .

2
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= - (1-n) (%)(%:20 Y) g

(5 o

(7.138)

(7.139)

(7.140)

1’



The plausible range for d is 10% - 10° sec™?!.
Assuming S0 to be the order of 10° cm/sec and L to be
the order of 10% cm, the range for d becomes 10°% - 107!,
Solutions will be obtained over the entire range of d to

assess the effect of the diffusive resistance.

7.4.3 Initial and Boundary Conditions

We consider the half-space Z > 0 initially at rest.
Thus

(]
o

V=W
at t

1
o

7 >0 . (7.141)

1}
ft

A=y

The motion of the material plane Z = 0 1is prescribed for

Tt as if both constituents move together

Vv=wz=V(t) on Z =0, T<T . (7.142)

0
(1) (2)
For =t > Ty the stresses 0 and o must be zero at

Z = 0. For the simplified constitutive laws considered here
this yields

A=y =1 at Z =0, T> T, (7.143)
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7.5 EXPERIMENTAL DATA ANALYSIS

To arrive at an approximation for the interaction
function n that is based on experimental data, we consider
a body of the mixture to be subjected to quasi-static uniform
dilatation. Under isotropic loading no shear stresses are
introduced and the hydrostatic pressure in the mixture is
given by Eq. (7.74). Thus, given the quasistatic pressure-
dilatation response relation_for the mix%gge, p(J) and
those of its constituents, p (J) and 'p (J), Eq. (7.74)
is an implicit equation for N(J) subject to the initial
condition N(1) = NO. Least square fits have been_made to
%%? data discussed elsewhere in this report for p  (J) and

p  (J). The fits for Schooner tuff(l), Eq. (3.16) and water (2),
Eq. (2.11), are

(1)(J) (}l\)_ (113) — (i'{)__3 (1)_
= + 4 3 + -
P " . whr R, (7.144)
(2) 2)_  (2)_ (2)_
p (J)= Ap+ Bu*+ Ful
where pu = % -1 .
1 @ (2) , _
The parameters A, B, ..., F are Jlisted i

Table 7.1 together with the range of validity. In order to

use Eq. (7.74), we also require the mixture response p(J).

%?fortunately, however the available data for p(J) and
IR}

p {(J) is not sufficiently accurate to enable the use of the
implicit Eq. (7.74).

As we observed in Section 7.2, in case the strength of
tuff can be neglected, both constituents may be regarded as
fluids and the simpler equation (7.75) may be utilized to
calculate Np(J). Fortunately, the yield strength of tuff
is very small (< 0.6 kbar) an:d as such use of Eq. (7.75) is
justified at least as a first approximation. A computer
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program was written to evaluate Np(J) chrough the use of
Eq. (7.75,. We show the results for two water fractions
(F = 14.4% and F = 14.8 %) in Fig. 7.2. Note that mass
fraction, F, is related to N0 through the equation
1
p(*)

1 F (7.145)
N L 7 )
0 o,

The function Np(J) [F = 14.8%] has been fitted tc the :. llowing
theoretical curve,

NP(J) = 0,7085193 - 0.3140556 (J-1)

+0,1399297 (J-1)% + (J-1)°

. 5.726582 (J-1)% . (7.146)

The minimal nrinciple has also been applied to the
dilatational law (7.74) to predict Nm(J). Application of
the method :nvolves analysis of the right-hand side of
Eq. (7.74) In the analysis, for each selected value of
J, p{J) 1is minimized over possible values of N such that

dp(J) . 0

N : (7.147)
N = N(J)

To conduct this analysis, the compfiﬁr prcigfm FLISTT was

developed and applied to the fits p (J), p (J). The pre-

dicted curves for Nm(J) (F = 14.4 and 14.8 %) are shown in
Fig. 7.3. The function Nm(J) (F = 14.3%) has been fitted
to the analytical curve

Nm(J) = 0.71058 - 0,72698(J-1) - 1.71055(7-1)?

+ 5.26770(J-1)% + 14.27141(J-1)" . (7.148)
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N, (9)

0.77
F = 14.4%
0.76 }~
. F = 14.8%

0.75 |~
0.74 |- . . .

Solution of Implicit Equation

) (2) f1.x

?(ﬁ'J)’P(kw'ﬁ
0.73 - ¢ *
0.72 =
0.71 1~
0,70 I ] 1 1 I L 1 i |

0.60 0,64 0.68 0.72 0.76 0.80 0.84 0.88 0.92 0.94

Fig. 7.2--N{J) for satu.,ated wet tuff calculated on the
basis of pressure equilibrium.
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In Figs. 7.4(a) and 7.4(b), we show the quasi-static mixture
response predicted on the basis of pressure equilibrium and
minimal principle models. For comparison purposes, the
response of the individual components and the experimental
data is also plotted therein. Notwithstanding the fact

that Nm(J) and ND(J) are quite different, they predict
approximately the same mixture response except in the louw
pressure regime. We will return to this question in

Section 7.7. 1In the meantime, we observe that there exists
a clearer physical motivation for using N(J) calculated on
the basis of pressure equilibrium than the one obtained by
employing minimal principle.
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Pressure (kbar)

[ ]
. Saturated Wet Tuff Data
® Hugoniot Data (F = 14.83)
130 o Quasistatic Data (F = 14.4%)
S
Pressure
Minimal Equilibrium
Principle
100 —
Isolated
«—Compacted Tuff
50 —~
c Pressure
piaimal ~Equilibrium
Isolated TINCIPlE .
Water
0 l L 1 1§ 1 I I 4 1 1 {
i i |
0.60 0n.70 0.80 0,90 1.00

Deformation (J = oo/p)

Fig. 7.4(b)--Comparison of predicted p-V response of
saturated wet tuff (F = 0.148) on the extended pressure
range. Data points from the Hugoniot measurement of

Ref.38 , and the quasistatic tests of Ref.35 are also
shown.
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7.6 FINITE DIFFERTNCE 3CHEME

The system of equations (7.,134) through (7.140) is

solved by the two-step Lax-Wendroff scheme.

second order accuracy [0(At)?].
first calculated at the centers
(j+%, n+%) of the (Z-7) plane.

This scheme has
The provisional values are

of the rectangular meshes

The final values at mesh

points (j, n+l) are then calculated from provisional values.

The difference scheme is given below.

t

7.6.1 Provisional Values at (j+}, n+k)

\n+hs _ 1 /.n n At (+n  _ —n)
Tivy T2 (Aj+1 * A ) Y 787 (Vj+1 Vil o
= n =n n
n+h L ,n o at (Y41 Vi+l * Vi oV
T4 % 3 (Yj+1 YJ) 287 0 L+ A0
J* J
n n
Y Y
n n At T+l i ~n =]
. . - 4- —
(YJ"l YJ) ZAZ [w_, ,n ( a1 7y )
j*l j
=n+% _ 1 (=n -n Atd 1 (,n n
it I (VJ+1 ") c, ¢ (31 )5 )
L, @
=T =11 n =n At =’n =
(1\'j+1 + Wj Vj'*'l - VJ) + VIVA <Uj+l' O'j 1
—n =n _ =-n =n
—n+y 1 (qn . Wn> T T T TS UL
j*hs 7 \Vj+1 j 247 n n
Aj+l ¥ >‘1

) e (e a5 )

n n .
. lCO 222 qu.l + Yj <(§)n ) (g_).n) (7.149)
-C n n - J s
[\ >\j+1 + )\J J+_,
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7.6.2

A+l

n+l

n

—n+1
v

-~n+l
W

The stresses
corresponding values of A

tions

Final Values at (j, n+l)

and vy
(7.130) through (7.140).

~ 4D, AT (—n+% —n+%)
= . = V.. - V.
Moraz Vit T Vi)
SOt | o=ntl | oondly o oonth
W.. 2 + W, SRR
S\ St E N E S L T
J AL >‘n+15 n+l
J+is i-k
n+l o nilh
O R L AL SIS L TG (ﬁn+% ) vn*%)
SRC TS RS B VAR TR TR G E T EU Y A
341 )
JT4 ]~
-n d 1 ( n+ n+%)(—n+% —n+Y%  -n+k
Ve * AT — F A o *+ AL W, + W, - V.
J CO 4 J""/z J')’i J+‘€ J‘l’i VJ+!5
gy, ar (e Wy
i A j*h i~k
=n+k | -n+l  —ntl | onl
o S L T S b S
j AZ An+% + Ntk
R I
L (=t o=ntly o d AT g onth n+k
(Ws - 7o) T 7 (T3 vi%)
c
. n+Y . —=n+ls _ -ntl  —nth 0o At
(WJ+‘/ + WJ--’/2 Vj-i-’/z VJ-’/Z) ¥ I-Co YA
LOFs L Nt .
Vet Yy (B e
o 9 e T % 5-n) (7.15C)
itk j-%
(1) (2) s
o and o are evaluated by substituting

in the constitutive rela-

In case it is desired to

include elastic-plastic descriptions for tuff, constitutive

relation (7.138) is replaced by the (equivalent non-dimensional
Eqs. (7.120) through (7.122).

forms)
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7.6.3 Velocity Boundary Condition

n+1 n+1

At Z = 0 (j 1), the velocities Vj and Wj

are specified,.

R A6

To evaluate A?+1, Y?+l, it is necessary to employ implicit

difference equations. These are obtained by centering at
(1%, n+%). Thus

n+l _ .n n _ n+l _ At (=n+l =R -n _ =n+l
n+l At At \ _ At n+l n n
Y1 (1 B YA K‘) =5 ( 2 tY2tTm )
At n+1l n n n+1l n .
YA ( 2 T Y2 - Yl) Yy TR Y P Yo, (7.151)
where

—n+1 -1 —n+1 —h -n+1 =N ~n+1 =
) (w W, * Wy + wl) - (vz + v, + vy + Vl)

2 2
a =
1 n+l n n+l n ’

Ay T A R AL T Ay

and
=n+l =n _ =n _ =n+l

_ W, + W, Wy Wy

1 n+l n n+l n
Ay TR R T AN




T

7.6.4 Artificial Viscosity

In order to smocoth out the shocks, a simple quadratic
artificial viscosity term was added to the partial pressures,

(1) sy, g,(l)n - 2a (Vn ) Vn>2
¢ T Yge T mom Vel T V50
i i
, (2
(2) Nl(z)n 2a® p,

Tgee ™ 9 gey T (1)(.n * Y5.1)
Po\T5 T Vi1

L, Lo 2
_ a“ (=n _ =n
5T om ("j+1 5a)
J
, L(2)
(q)z} & h (W’.‘ . )2 (7.152)
J €9) n j+l j-1 .
4 o v,
o ']
o (1) /(2)
The artificial viscosity term q ( q was evaluated only

when 9v/3Z(3w/8Z) < 0 . For dv/dZ(dw/dZ) > 0, it was set
equal to zero. The coefficient '"a'" was taken co be 2,
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7.7 NUMERICAL RESULTS

A FORTRAN code (POROUS) has been written incorporating
the finite difference schemc outlined in Section 7.6. Wave
propagation was investigated in a water-saturated tuff speci-
men 0.5 cm long (g = 0.5 cm, L = 1,0 cm). The following
values are assumed for various parameters :

v
0

7.786 x 10"/S0 )

~
4]

5 x 107 SO/L )

v T < T ,
o’ 0o

— _ _ 3t
v (1) 0.75 v (3-2t/T ) + 0.25V Tt St

0.25 Vo , T >3 TO/Z )
AZ = 0.004 ,
At = 0.0008 ,
2/8Z2 = 125 (number of zones). (7.153)

For sake of convenience, the following discussion is
divided into four parts, namely:

(1) Use of minimal principle versus
pressure equilibrivm N(J) »

(2) Inclusion of dilatational difference

term k(X-y) in the constitutive law ,

(3) Effect of diffusive resistance

(4) Inclusion of strength effects

a
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7.7.1 Minimal Principle vs Pressure Equilibrium

To study the effect of using Np(J) or Nm(J), the

constitutive relation (7.140) was taken in the simplified
form

At
n(A, y) = N(—?i) .
Also d was taken to be 10°%/sec. Note that this value

for d is used also in Seciion 7.2 and 7.4. Calculations
were run for three different values of N(J), namely

(1) N(J) =N (J) Eq. (7.148),
(2) N(J) = N,(3)  Eq. (7.146),
(3) N(@J) =N

0

The effective pressures in the two constituents and the
mixture at T = 0.064 are shown in Figs. 7.5 through 7.7.
A comparison of Figs. 7.5 and 7.6 shows that although the
mixture pressure (behind the shock) is nearly the same in
both cases, the response of individual constituents (and
the diffusion of water ahead of the shock in tuff) is quite
different. Again, Fig. 7.7 reinforces this observation.
Even thcugh the pressure in the two constituents is quite

........ from that predicted in Figs. 7.5 and 7.6, the
mixture response iz only slightly different.

The preceding Jdiscussion clearly indicates that the
mixture pressure behind the shock is relatively insensitive
to the form of N(J). This is not too surprising. Let
us examine the mixture equations.
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1.4

Effective Pressure

!
!
!
!
|
|
]
|
§
|
|
|
!
i

~we Tuff
. ~ew Water
9.2 I —— Mixture lI
\
0.0 ] 1 i L ! | 1
1 6 11 16 21 26 31 35 46
Zone Numher
Fig. 7.5--Effective pressures with n = Nm(J). Here

d = 10%/sec, t = 0.064 and F = 3,148,
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Effective Pressure

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

-

s o e e e e Tt
-—= Tuff

. ~—-— Water
~—— Mixture
' 1 | 1 §

1 6 11 16 21 26

Zone Number

Fig. 7.6--Effective pressures with n = N_(J). Here

d = 10%/sec, T = 0.064 and F = 0.148.
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|
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e
» w w Tuff {
(3]
S —-— Water \
D . i
w 0.6 P~ —— Mixture i
|
. |
0.4 }= e e / \. }
-~ ~ o — \
i
0.2 | \
\
Y
\\
—
0.0 i l | i ! } e ST, |
i 6 11 16 21 26 31 36

Zone Number

Fig. 7.7--Effective pressures with n = NQ. Here
d = 10%/sec, 7 = €.064 and F = 0.148.
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Equation of Continuity:

3o, 8N <o, (7.154)
Equation of Momentum:
3.11- + v .a_! = .a:._'. - 9— [(1) uz & (2) uz
3t ax  9x ax | P Y L (7.155)
where
1 (@
p= p + p | (Mixture Density)
(1) (2) .
V = ( p VvV + p w)/p R (Mixture Velocity)
u =v -V, u =w -V,
1 2
(13 (2)
c= 0 + o©

-

Behind the shock

and therefore

Thus the mixture behaves more or less like a single consti-

ow the €%§al stress o 1s divided.

€s
tuent., It is immateria%
and

h
into partial stresses %)
However, when the interest centers on the responce of
individual constituents and diffusion, the form of N(J) Iis
quite important. It is felt that since pressure aquilibraum
is physically more reasonable than minimal principle, it
should be used to predict N(J).

(38
W
(92

i
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7.7.2 Inclusion of Dilatational Difference Term
k(A-y) in the Constitutive Law

We observed in the preceding that behind the shock,
the mixture moves as if it were a single constituent. It
ir, therefore, reasonable to expect that the effective
pressures in the two constituents (water and tuff) behind
the shock should be approximately equal. With this in view,
we have examined various forms of the dilatational difference
term k(J) (A-y) for incorporation into the constitutive
law (7.140). We present here (see Figs. 7.8 through 7.10)
results for three choices of k, i.e.,

1) k=10 (J-1) ,
(2) k=1.2 (J-1) ,
(3 k=1.4 J-1) ,
where
J = (A+y)/2

An examination of Figs. 7.6 and 7.8 through 7.10 reveals that
for the choice k = 1.2(J-1), the pressures in the twc con-
stituents behind the shock are nearly equal. This case also
corresponds to least diffusion of water through tuff. We
note in passirg that inclusion of dilatational difference

term does not make too much difference as far as the mixture
pressure is concerned.

Calculations were also run for the following two addi-
tional choices for the dilatational difference term:

(1) (n, - ui) b

(2) (uo - uj)(ul - u";‘) ,
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1.4
1.2 o~
1.0 =
(]
H
7
o
: ——= Water
2 - ~—— Mixture
- 0.6
O
QO
[
[t
23]
0.4 i~
0.2 -
0.0 i i i i 1 )
1 5 11 16 21 26 31 41

Fig, 7.8--Effective
Here d =

S ——

o . i e e

Zone Number,g

pressures with o= N(J) + J-1)(A-y).
10%/sec, 7 = 0.064 and F = 0.148.
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8 0.8 [ —== Tuff
7
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n
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> |
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o !
@
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|
0.2 | \
\
\
0.0 | 1 1 1 ] 1 R
1 6 11 16 21 26 31 36 41
Zone Number
Jig. 7.9--Effective pressures with n = N(J) + 1.2(J-1)(x-v).
Here d = 10%/sec, t = 0.064 and F = 0.148.
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0.4 _ ~——= Mixture )
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Zone Number
Fig. 7.10--Effective pressures with n = N(J) + 1.4{J-1)(xr-v].
Here d = 10%/sec, v = 0.064 and F = 0.143.
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where

and

The effective pressures at <t = 0.064 are shown in

Figs. 7.11 and 7.12., Particle velocities are plotted in
Figs. 7.13 and 7.14. The first choice for the dilatational
difference term leads to nearly the same results as the

case k = 1.2(J-1) discussed above. The second choice for
the dilatational difference term yields a slightly higher
pressure in water than in tuff. It also leads to somewhat
greater diffusion. A look at the velocity profiles is very
instructive. The particle velocity far behind the shock is
nearly the same in both the materials. However, just behind
the shock, the particle velocity in water is much greater
than that in tuff. This result is in qualitative agreement
with the CRAM code calculations of Section VI. Finally, we
observe that in order to correctly predict diffusion and the
response of individual constituents in the mixture, it is
important to include the dilatational difference term. Pre-
sumably it can be tailored to reproduce the experimentally
observed phenomena.

7.7.3 Effect of Diffusive Resistance

In order to study the effect of diffusive resistance,
calculations were run for %he following cases:

(1) d = 167/sec
no= N+ (uo- uz)(A-Y) )
(2) d=0

——
—
[}

= N(J) + ST u:)(x-*{) ,
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Fig. 7.11--Effective pressures with n
Here d = 10%/sec, T
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7.12--Effective pressures with n = N(J) + (uo-uz)(ul—uf).
llere d = 10%/sec, v = 0.064 and 0.148.
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Fig. 7.13--Porticle velocities with n = N(J) + (n ~u2)(x-v).
0 0
Here d = 1€%/sec, v = 0.064 and F = 0.143.
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Fig. 7.14--Particle velocities with n = N(J) + (“o'“i)(“l'“f)'
Here d = 10%/sec, v = 0.064 and F = 0,148.
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Effective pressure distributions in the two constituents

at Tt = 0.064 are shown in Figs. 7.15 through 7.17. It

is evident from Fig. 7.15 (compare with Fig. 7.11) for this
value of d both constituents move together. The small
pressure difference in Fig. 7.15 is probably the result of
the constitutive assumption for the dilatational difference
term. In this case, the mixture motion may be treated as
that of a single constituent. Examination of Fig. 6.16 shows
that the constitutive assumption for the dilatational inter-
action term is incorrect. This is obvious on comparing
Figs. 7.16 and 7.17. 1In Fig. 7.17, the pressures behind

the shock are nearly equal. Note that in this case, there
is a significant amount of diffusion of water through tuff
(compare with Fig. 7.12). Thus a dncrease in d 1leads to
an increase in diffusion and an increase in it produces a
corresponding decrease in diffusion, Also, the constitutive
assumption for n of case (3) leads to physically correct
results over a range of values of d.

7.7.4 Inclusion of Strength Effects

To illustrate the effect of including clastic-plastic
description for tuff, a calculation was run for the following
choice of tuff properties:

Poisson's Ratio (v} = 0,15 »

Yield Stress (Y) = 5 kbar ,

no= NQY o+ (- ui)(u1 - ui) .
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Fig. 7,15--Effective pressures with n = N(J) + (uo-uz)(k-y).
v
In this crse d = 107/sec, T = 0.064 and
F = 0.148,.
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s e g v AL, 7 e TTVRRIE NE 7 T Ty e
1.4
1.2 |
e e e e e
\\\
1.0 ~—
\\
\
:‘5’ - == Tuff \
[77]
9.8 b= —— Water %
I
S \
2 . \
ol
# 0.6 |- |
(8
f |
By
8 }
0.4 b \
|
|
0.2 {
\
\
6.0 | ! ! I I I ']
1 6 11 16 21 26 31 36 41

Zone Numbers

Fig. 7.17--Effective pressures with n = N(J) + (u°~ui)(ul-uf).
In this case d = 0, v = 0.064 and F = 0.,148.
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The longitudinal stresses in the two components at T = 0.064
are shown in Fig. 7.18. A comparison with Fig. 7.12 reveals
that whereas in the hydrodynamic case longitudinal stress in
tuff (behind the shock) is slightly less than that in water,
the reverse appears to be true in this case. Also ihe diffu-
sicn is slightly smaller. However, we observe that it is

not possible to separate the elastic precursor in tuff from
the diffusion of water. Indeed, it appears that diffusion

of water through tuff may be much more important than the
elastic precursor in tuff,
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d = 10°%, ~ = 0,064 and F = (.148.
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VIII. DISCUSSION

The analytic equation of state for pure water presented
in Section II provides an essential tool for investigating
wave propagation effects in geologic compesites when shocked
below 250 kbars. Two areas of interest, however, remain to
be investigated for pure water substance. As pointed out ir
Section IV, water in pressure and thermal equilibrium with a
geologic material (e.g., tuff), is more susceptible to phase
changes in the compressed state. It would be useful to
investigate the Water-Ice VII phase transition to ascertain
the significance of its inclusion in the equation of state
formulation for water.

A second area of interest for pure water is the ex-
tension of the present formulation in the expanded state
regime so as to include the (thermodynamic) region in the
neighborhood of the critical point. This modification should
improve the accuracy of calculation of expanded states of
material previously shocked to a pressure in the range
150-250 kbars.

Perhaps of greater significance to the construction
of adequate material models for calculating stress wave
effects in a geologic medium is a more realistic description
of the rock matrix. Emphasic here should first be placed cn
partially saturated materials wherein such factors as matrix
crush-up strength, irreversible -rush kinetics, enhanced
shock heating, and non-equilibrium thermodynamics are taken
into account. The available data for the crush-up regime
of geologic media are very limited but reasonable estimates
for the pertinent parameters can be anticipated; this was
found to be the case for compacted tuff in Section III of
this report. A phenomenological model for tne crush-up
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regime has been presented by Herrmann(ss’ 86) and this frame-

work, together with an homogenized equation of state for
the water saturated material {corresponding to states
realized when all the voids are crushed up), provides a
point of departure for this analysis.

Work has been initiated along these lines for a par-
tialiy saturated wet tuff medium. The homogenized PTEQ
equation of state will be used to determine the reference
saturated wet tuff states associated with complete crush-up.
An homogenized reference equation based on pressure equili-
brium between the water and tuff components under adiabatic
conditions will also be considered.

Detailed numerical calculation for 1-D laminated
configurations (Section V) demonstrated that the attenuation
of finite-length pulses can be significantly reduced by the
presence of substructure in the medium. This unexpected
result, obtained for non-linear volumetric models for the
water and tuff components, shouid be investigated further
using more realistic material models. Calculations for step
pulses have already shown that the presence of a substructure
can drastically lower the equilibrium temperature attained
by the water laminates when no heat transfer is permitted
between the laminates modeled as thermodynamic fluids., This
is a consequence of the water reaching initial peak pressure
by becing subjected to two successive shocks. For a finite-
length pulse this mechanism is still present and will affect
expanded states cf the water.

Such i-D calculations are extremely useful in pro-
viding an understanding of the effect of substructure on
wave propagation. Partially saturated geologic media can
also be simulated by spaces between the water and rock
laminates in an appropriate configuration. The non-equili-
brium kinetics and thermodynamics can most economically be
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examined by this method in conjunction with analytical
approximations accounting for heat transfer between the
laminates. These studies would help to establish the rele-
vance of the PTEQ model to field type pulse (msec duraticn),
as well as the limits on the homogenized model for laboratory
material tests.

Scme 2-D and 3-D calculations should be made %o simu-
late the crush-up of the rock (e.g., tuff) matrix for a
partially saturated medium. The shear strength of the matrix
and the kinetics of the crush-up mechanism cannot be treated
using a laminated configuration. These calculations would
provide valuable insight and a check on the vealidity of the
homogenized treatment based on Herrmann'c ..odel (and very
limited experimental data).

The 2-D calculation of a step pulse propagating
parallel to the laminates of a water/tuff composite (Section
VI) showed that the particle velocities of the components
can be quite different. The Theory of Interacting Continua
developed in Section VII explicitly accounts for this rela-
tive diffusion within a generalized homogenized model.
Although considerable progress was achieved during the
present contract veriod in understanding the nature of the
interaction function, n, this effort should be continued
and ccrrelated with experimental data. The comstitutive
relations should be extended to account for mechanical
crush-up by considering the rock component to be a porous
matrix (e.g., porous tuff). Calculations should be made
to study this effect when diffusion of the water through
the partially filled pores is allowed.

A major modification of the Theory of Interacting
Media that should be made is to develop material models
which include the dependence of the partial pressures on
the internal energy of the associated component.
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In the above discussion the suggested areas of future
theoretical effcrt are clearly indicated from the work of
the first ten months' period of this contract. The work has
also shown the need for experimental data for the release
isentropes of completely saturated geologic materials, e.g.,
tuff. In extending the modelling to include partially
saturated tuff, there will be a corresponding requirement for
data describing the loading and release paths in the crush-up
regime,

A second area in which experimental data are needed
is to evaluate the relative diffusion of an included fluid
through the pores of a geologic matrix material. The effect
on wave propagation can be studied by using fluids of widely
varying viscosity and measuring the profile and attenuation
of pulses. A separation of the elastic precursor from any
diffusion precursor could also be attained by such tests.

The theoretical and experimental areas suggested are
all in accordance with the philosophy of ircorporating new
physical effects into the material models in a step-by-step
procedure. Once the characterization of the isotropic stress
component and the crush-up states for partially saturated
materials are completed, however, there are various candidates
for the next most important mechanism to be incorporated into
the models, e.g., it is hazardous to specify intuitively
which of these physical effects should be singled out for
detawi2d theoretical analysis (or for associated experimental
tests). It is therefore suggested thac a series of 1-D
spherical calculations be made in which the material para-
meters governing the candidate physical effects are varied
over the range nf uncertainty. The sensitivity of the pre-
dicted far-field seismic signal to the uncertainties in the
material properties c..i be sstimated iun this manner. Such
information would be a heipful basis for determining the phy-
sical effects which warrant subsequent detailed study.
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APPENDIX A

DERIVATION OF THE HYDRODYNAMIC EQUATION OF STATE FOR A MIXTUR
FROM THE GIVEN EQUATION OF STATE OF THE CONSTITUENT MATERIALS

INTRODUCTION

We consider g mixture which is sufficiently intimate
that local temperature equilibrium can be assumed among the
constituents as well as the local pressure equilibration.

The desired equation of state is that of the mixture, to be
used in applications in which dimensions of interest are very
large compared to the scale size of the inhomogeneities.
Further, from use in standard hydrodynamic applications, it
is desirable to determine the pressure P of the mixture as
a function of the density p (or specific volume 7T) and
specific internal energy E of the mix.

BASIC EQUATIONS

The known equations of state of the constituents are
taken to be of the geneial form

P, = pi(ri, Ei) (A.1)
E; = Ei('l'i, e) (A.2)
The condition that the specific energy E be that given by
the energies of the constituents is
- m.E. (T. ,6)
Ty .
2m
where m; is the mass of each constituent, per unit mass of
mix - and 8 ic the temperatuie.
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The condition that the specific volume T be due to
the individual specific volumes is

m.T,
?=le
>
i
and, finally, the condition that the equilibrated pressure

P be that of each constituent is given by the N equations
(for N constituents)

(A.4)

o

= p, (v, E) i=1toN (A.5)

Equations (A.3),(A.4) and (A.5), assuming that Pi Ti,Ei and
Ei Ty 6) are the known functions implied by Eqs.(A.1) and (A.2),
comprise a set of 2N+2 -eyuations in the 2N+2Z unknowns

T;5 6 and P. The objective is to determine the solution of
these equations for fixed E, T.

SOLUTION BY ITERATION

When Eqs.(A.1) and (A.2) are representative of real media,
the above set of equations is ordinarily too complex to solve
exact.y. An accurate solution is, hcowever, possible by the
following iteration method.

It has proved convenient tc scparate the process into

two iterations, which will be described first in general

terms: In the first iteration, the T; are temporarily held
constant and 6 is varied until the energy condition, Eq.(A.3),
is satisfied to some prescribed accuracy. This iteration pro-
cedure gives 6, and also the individual energies Ei’ In the
second iteration, the resulting E; are held constant and

the Ty are varied to solve Eq.(A.4) and the N Eqs. (A.5)

This iteration gives the N quantities t; and also P.
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The process (the two iterations) is then repeatzd until a

self-consistent set of quantities 1, 6, P is obtained.

The detailed procedure is as follows. An initial

estimate is made for 6 and the Ty These initial Ty

are, further, adjusted to satisfy the condition (A.4} on

over-all specific volume 7t (this initial normalization of
the T, will be seen to be useful in the second iteration,

i
below.)

For the & iteration (Ti constant), the right side of

Eq. (3) is computed

5 . 2.m3E4(7550 )
Z"‘i

using the known E; functions Eq. (A:2) . A refined 6

then computed using

where C is an approximate average specific heat. A new

v

is

o~

E

is then computed and an associated new 6. This process is

cycled until convergence is obtained. 1In determining Cv
above, once two values of E have been calculated, it is
possible to obtain an accurate value of this quantity and
speed convergence. For this purpose, a C, 1is calculated
each cycle from C, *© ((EI-EZ)API-?Z)) where 1 and 2
subscripts refer to the last two E, 6 points.,

b E
Until = :_
E

E!

i<'2’ a regula falsi iteration is used to refine 8.-




A

For the T iteration, the basic equations are (from
the variations of Eqs. (A.4) and (A.5) with 6 constant)

_ 3P,
Ey
= Y
0 L.omy Ari (A.6)

1

The second equation (the derivative of Eq. (A.4)) requires
only that the specific volume of the mix remain constant; for
this reason it was necessary to assure that the initial
specific volume be correct, as done in the pre-iteration ad-

justment described sbove. These are N+1 equations in ATi,F
with solution

At. = iﬂ&-(? -._Z_i)_l_‘:’i>
’ 2:“1

as is easily verified by substituticn. Cnce a solution is

determined, the T; are updated

and new Pi are determined from Eq. (A.1)

P, = Py(rs) E; )
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Also, it hac been found that convergence is faster if we
compute improved values of the coefficients (3P1/3T4)E each
cycle, using points Pi’ T5 from previous cycles, i.e.,

in order to have accurate coefficients for the next cycle,

in Eq. (A.6). With these new values of P, and (api/ari)E_
it 1s now possible to compute improved solutions to Eqs. (A%6)
and (A.7) for the next cycle of the iteration. The process is
found to be rapidly convergent.

The «t; iteration gives P and new 7; for fixed
Ei. A new 6 and set of Ei is then determined from the
® iteration and the T iteration can then be repeated to
determine improved 5 and a new P. This process also is
found to converge rapidly in experience to date, giving the

desired P for specified T and E of the mix.

A computer program has been written which performs
t!.e above iterations, utilizing (where possible) the results
of a similar program which was developed at S® for another
application. ‘he basic program is compatible with state
equations of the forms (A.1l), (A.Z), once those relations
are programmed (as subroutines).
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solids." Tne values that have been found are listed in
Table B.1l.
TABLE B.1
Crystal Density (g/cc) Reference
2.3 44
2.0 44
2.6 44
2.7 44
2,37 37
2.597 37
2.122 37
2.21 89
2.23 89
2.43 45
2.409 50
2.33 to 2.49 90
Preceding page blank
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APPENDIX 8
NTS TUFF DATA

R.1 CRYSTAL OR NONPOROUS DENSITY Or DRY TUFEFS

This parameter has also been referred to in the
literature as '"the grain density,'" and '"the density of the




B.2 GRAIN SIZE OF DRY TUFFS

Although the grain size has been reported many vlaces
in the literature, the best study by far was conducted by

Petersen, et a1, (40) All reported values are listed in
Table B.2,

TABLE B.2
Component Wt. % |Grain Size (mm) Reference
g =
2.6 >9.42
2.8 9.42-6.68
3.7 6.68-4.7
2.6 4.7-3.96
Tuff (9.5 [5.96-1.98 ) 40
25.9 1.98-0.41
17,9 (0.41-0.15
13.2  {0.15-0.05
21.8 [<0.05
\ J
Crystals 5-15 average .2 to .4
Glass Fragments 10-70 Javerage .3 to .5 50
Lithic Fragments 3-8 average .3 to .5
Glass Dust Matrix 15-20 |.001 ‘
Glass and Crystallites 60 <,01 39
Quartz, Lhert, Feldspar | 40 W3
Tuff #1 Range (.01 to 10. 1
Tuff #2 Range {.05 to 10. 39
]
Tuff #3 Range [.1 to 2,
Tuff #4 Range [0S to §. ’
Tuff Range |,005 to 3. 36
Tuff Averagel.01 93
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B.3 HYDRODYNAMIC SOUND SPEED FOK DRY TUFFS

The hydrodynamic scund speed, C,o found in the litera-
ture for porous dry tuffs is presented in Table B.3.

TABLE B.3

co(XIOs cm/sec) Remarks Reference

1.034 From a fit to high pressure 38
data (p = .2 to 1.3 Mbar).

1.32 to 1.47 From a fit to low pressure 38
data.(p = 30 to 190 kbar).

1.25 From an extrapolation cf the 41
curve on page 23 of the
reference.

2.3 For pressures greater than 43
130 kbar.

2.56 From the relation 89

2.12 c = (cz - 4/3 cz)%, where 89
0 vl 2

1.94 < and c, were measured. 92

A\
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B.4 COMPOSITION OF DRY TUFEFS

Teble B.4 contains the geologic composition of
various tuffs as found in the literature.

TABLE B.4
Component Quantity Reference
(Wt. %)
Sanidine <1 to 6 A
Quartz <1 to 7
Plagioclase <1 to 5
Biotite Trace to <1 } 50
Glass Fragments 60 to 70
Glass Dust Matrix 15 to 290
Lithic Fragments 3 to 8 J
(We. %)
Glass Shards 85
Quartz, Feldspar and Lithic 15 i >3
(Vul. %)
Feldspar Phenocrysts 6
Quartz Phenocrysts
Chalcedony Segregations 14 88
Matrix (Clay, Chalcedony,
Zeolite, atc.) 72 J
(Vol. %)
Quartz 4
Plagioclase
Alkali Feldspar 7 36
Microlites 10
Glass 78

290




Table B.4 (Continued)

Component Quantity Reference
(Vol. %)
Quartz 32.5 37
Matrixal 67.5
(Vol. %)
Quartz 3.5 3
Matrixal (principally glass) 96.5 7
(Vol. %)
Clinoptilolite 94, .
Anorthoclase 5 37
Quartz
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B.5 THERMAL PROPERTIES FOR TUFF-LIKE MATERIALS AND

TUFF _COMPONENTS

The thermal expansion coefficients of the following

materials were found in the Handbook of Physical Constants.

Glass

Masonry

Fire Clay Brick
Cement and Concrete
Granite

Sandstone

Limestone

Fused Quartz

Quartz
Porcelain

Linear Expansion Coefficient (a)

(x 107°%/°C)

7.88 to 9.1

4,0 te 7.0

8.1

10. to 14.

8.3

7.0 to 12.0

9.0

0.42
Volumetric Expansion Coefficient (R)

(x 10°%/°C)

35.3

10.8

The constant pressure specific heat data for the

following materials was also

Physical Constants.(gz)

found in the Handbook of

Cp(callg °C)

-

Dry Clay .22

Glass .1988

Quartz .138

Granite »192

Basalt .20

Marble 21
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Table B,5 (Continued)

The following are estimated values for nonporous,
dry tuff based on the above values for tuff-like materials
and the compenents of tuff,

B =27, x 10™%/°C
Cp = 0.20 cal/g °C
CV = 0.20 cal/g °C
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B.6 STRENGTH PARAMETERS OF DRY TUFF

The unconfined compressive strength, Y, and Poisson's

ratio,v, for various porous, dry tuffs, have been measured

and calculated in a variety of ways.

Table B.6 contains the

values found in the literature.
Y (kbars) v p(g/cc) | Por. (%) Reinarks References
.65 1.9 34 Strain Rate 1
= 1. x 103/sec
.45 1.9 34 Strain Rate » 87
= 1.8 x 10-%/sec
.36 1.9 34 Strain Rate
= 1.6 x 10"%/sec J
.085 ] 1.76 20.36 p =0 to .2 kbar i
.876 0.6 [1.76 20.36 p = 0. to .876 kbar
075 1 1.76 21.08 p =0 to .5 kbar L g9
.796 0.17 1.76 21.08 p= .5 to .796 kbar
Stress Rate
= 3,5 to 5.2
bars/sec J
.18 1.76 20.36 From pulse velo- 85
28 11.76 21.08 | Gty on coTes
V223 0.15 1.6 Water content
= 4.6% 91
0.306 2.78
0.11 1.45 42, 92
0.11 |1.6 37, "
0.24 2.2 14
214 0.09 2.35 10.3 94
037 0.12 {1.45 42.5 94
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