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I. INTRODUCTION AND SUMMARY

The PRIME ARGUS progiam is concerned with the detec-

tion, identification and interpretation of the teleseismic

signals which emanate from an underground nuclear explosion.

Because detection stations are necessarily at remote loca-

tions from the event, the detected signals are weak, well

within the apparent elastic regime of earth media. Thus,

one is concerned with a signal which has attenuated from

stress levels, at close distances, which may be megabars,

to stresses, at detection distances, which are small com-

pared to strengths of earth media.

In the PRIME ARGUS program, it has been recognized

that a basic problem in relating the yield of a device to

the observed seismic signal magnitude is the lack of under-

standing of the phenomena that occur in geologic materials

under shock conditions in the pressure range from 300 kbar

down to a few bars.(') This is the transition region between

the hydrodynamic regime, in which strength effects may be

ignored, and the elastic regime. In the transition region

complex phenomena such as those associated with dynamic void

compaction, heterogeneity, pore water pressure and diffusion,

fracture phenomena, material phase changes, and dependence

of strength parameters on thermodynamic state can become so

important as to dominate the attenuation of the signal.(
2)

Current uncertainties in modeling these effects in continuum

mechanics computer codes, coupled with the usual difficul-

ties of shock hydrodynamics, render it hazardous to predict
ground shock effects in the critical pressure range.

A typical geologic material consists of a rock matrix

containing voids or cracks that may be partially filled with

water in one of its thermodynamic states. Even if the basic



matrix material is unchanged, the porosity and the water

content will vary significantly with depth and with surface

distance and the propagation characteristics of the medium

will vary accordingly. The theoretical studies described in

this report, in support of the PRIME ARGUS program, are

directed to the construction of reliable techniques for pre-

dicting wave propagation in a geologic medium which contains

a specified amount of water in its pores.

The geologic medium is considered to be a composite

and a description of its wave propagation cha: *teristics

is sought in terms of the behavior of the isolated matrix

and water componznts. The general approach is to construct

material models of increasing sophistication from available

material properties daa and to use analytical and numerical

methods to evaluate stress wave phenomena as each additional

physical effect is introduced into the model. Nevada tuff

was selected as the matrix rock in order to be specific,

but the basic methods should be applicable to other porous

and heterogeneous geologic media.

In Section II, the thermodynamic equation of state

for ,,ater is constructed in convenient analytic forms for

the critical transition pressure regime. Both the expinded

and condensed states of water are treated as well as the

transition through the steam dome. In Section III, an

equation of state for compacted dry tuff is formulated for

the transition pressure regime. These analytic forms are

used in Section IV to implement a computer program which

calculates an homogenized equation of state for a water/rock

composite medium from the equations of state of the com-

ponents under the assumption that the components of the

composite are in pressure and thermal equilibrium. The pro-

gram is applied to predict the shock response of saturatod
wet tuff media with varied mass fractions of water.

i2
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The homogenized equation of state for the water/rock

composite ignores the substructure of the medium which

can scatter or disperse a wave. Detailed finite difference

calculations have been made to examine this effect for water/

tuff configurations in which both materials are treated as

fluids. Tn Section V calculations are presented describing

the propagation of pressure pulses in a direction normal to

the layers of bilaminate composite configurations. Calcula-

tions treating wave propagation parallel to the layers of

a bilaminate configuration are prose ed in Section VI.

Numerical results for a step pulse I.- pagating through a

tuff matrix with periodic water-filled pores are also pre-

sented in this section.

The adaptation and application of the Theory of

Interacting Continua to study non-linear wave propagation

through a water/rock composite mediam is describ-d in

Section VII. This analysis permits the treatment of the

motion (diffusion) of water relative to the rock matrix

without explicit treatment of the substructure of the medium

as would be required by conventional continuum mechanical models.
A computer program implemented to study wave propagation

within this theoretical framework is applied to study

diffusion effects in a water-saturated tuff matrix with

shear strength. Finally, in Section VIII, the status of

the work is summarized and suggestions are made for the

direction of the effort during the next contract period.

3t



iI. EQUATION OF STATE OF WATER

2.1 INTRODUCTION

Numerical calculations to predict shock wave propaga-

tion in various media require that an equation of state for

the materials be known. In particular, such computer codes

as SKIPPER, CRAM, and POROUS (which have been employed in

the course if the present program) are typical of shock pro-

pagation codes which are dependent on an equation of state

of the form

p = p('V, E) . (2.1a)

An adequate equation of this form is not readily available

for pure water. Moreover, the consideration of thermal

equilibrium between tuff and water in Section IV requires

that a caloric equation of state also be determined, i.e.,

E = E(V, T) , (2.1b)

In this section, new equations of state for water in

the compressed and expanded regions are presented. They are of
the required forms, (2.1, a and b), and are based on a physical

model of water which is compatible with experimental results.

Within the framework of this model the double formulation of

the equilibrium states implicitly guarantees that the re-

sults will be internally consistent.

Compatible with the pressure-volume range of interest

noted in Section I, the proposed equations of state have

been developed Zor application to the thermodynamic region

with entropies less than the value at 200 kbars on the

shock Hugoniot. This would include the liquid-vapor transi-

tion at low pressures, but no attempt has been made to

characterize the solid phases of water.

Author: J. W. Kirsch
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Considerable effort has been expended in the charac-

terization of water by numerous investigators and is available

in the open literature. However, most of the experimental

data on equilibrium states a j concentrated in low pressure

regimes(3) (below 2.5 kilobars), low temperature regions, 4' 5)

and the thermodynamic vicinity of the saturation line.
(6'7'8)

Unfortunately, the peculiar qualities of water are most evi-

dent in these regimes and precise characterization of the

molecular physics of water has not been possible.

A review of the literature on water was undertaken

to ascertain the extent of previous investigations in the

range of interest. The major contribution to our under-

standing of high pressure (250 kbar) thermodynamic states

was made by Rice and Walsh. (9' 10) Their experiments on

water were conducted to determine the shock Hugoniot. The

experimental results were interpreted under the simplifying

assumption that, above 25 kbar, the specific heat at constant

pressure is constant and that (4") is, at most, a function

only of the pressure. Their analysis provides a numerical

method by which p, V, E states may be computed (as well as

the temperature, T) for the compressed states of water.

Under certain additional approximations, Papetti and

Fujisaki (l"1 have reduced the Rice and Walsh 10 ) numerical

method to a still simpler, analytic form. The equation of

state, however, is not written in the form p(V, B), but

rather V(p, E), and does not lend itself, directly, to use

in the continuum mechanics computer codes.

Walker and Sternberg(12) have developed a p(V, E)

equation of state for water, These equations have the form

f(E) f(E) (E) f (E)p _ 1 + 2 + 3 + l

V V VS  V7

where the fi(E) are polynomials in E, and have been fit

6



to the Rice and Walsh data. Although such a form is con-

venient for p-V-E calculations, the complexity of the rela-

tions and the lack of a direct E-V-T relationship precluded

(immediate) use of this analytic form of the equation of

state of water.

Tabular arrays (13'14) of equilibrium states of water

are availablb which supply data in the range of interest.

These tables have been developed from the same data
(3 -1 0)

and present no new information or physical insight into the

physics of water states. In any case, the tables contain

only a limited amount of data and considerable effort

would be required to "fill" in the gaps. There is in progress

(at the RAND Corporation) a compilation of water states.
(16)

This work covers, effectively, the entire range of thermo-

dynamic variables encountered in nuclear bursts. However,

in the range of interest in this study, the compilation

contains data based on the work of Papetti and Fujisaki,(11)

and Walker and Sternberg( 12) (both of which are derived from
the Rice and Walsh (10 ) data).. These states have been pre-

sented elsewhere (17) (in graphical form). The RAND tables

are not presently available and it is not known as to how

much of an improvement they represent over that already in

the literature.(12-14)

As a result of these findings, effort has been con-

centrated on constructing an analytic equation of state

which affords considerable simplification relative to pre-

vious models, yet yields results which agree with the

available data.

Moreover, Sharp's (13,14) tables contain some inconsistencies
and a certain degree of inaccuracy is implicit in his method
of calculation. Howard(lS) pres.nts only p-V-T data.

7



2.2 COMPRESSED STATES

A new equation of state for compressed water is

developed on the basic assumption that in the thermodynamic

vicinity of the Hugoniot, water can be considered to behave

in a pseudo-crystalline manner. (Actual phase transitions

(to Ice-VII), however, are not considered.) The analysis

relies heavily on the experimental data and theoretical cal-

culations presented by Rice and Walsh (10 ) for pressures be-

tween 2 and 200 kilobars. In this regime, it is assumed

that the specific heat at constant volume, CV, is constant.

This assumption implies an equivalence between the Mie-

Gruneisen formulation often applied to solids and the p-T-V

equation of state suggested by Born (18) for crystalline

materials at the melting point.

It should be noted that most of the numerical pulse

propagation work presented in other sections of this report

was conducted under the assumption of a relatively simpler

form of the equation of state than in Eq. (2.1a). In the

spirit of step-by-step consideration of the various factors

affecting shock wave propagation in geologic composites,

first consideration has been given to idealized forms for

the equation of state for compressed water, i.e.,

p = p(V). These equations of state and the p-V-E, E-V-T

expressions that have been developed for later inclusion

in numerical experiments are presented in this section.

2.2.1 Theory

Analytical expressions for the equation of state of

water in the thermodynamic vicinity of the shock Hugoniot

have been proposed by Papetti and Fujisaki (II) and most

recently, Cowperthwaite and Shaw.(19) As noted previously,

8



the Papetti-Fujisaki (I ) model is based on the Hugoniot data
(10)

published by Rice and Walsh, and is limited to pressures

greater than 25 kbar. Cowperthwaite and Shaw (19) hypothe-

size an equation of state for a number of :iquids based on

the Walsh-Christian (20) model for metals. Their approach

is to assume C is (at most) dependent only on temperature

and that (-T) is constant.

An alternate view of the physics underlying water's

behavior can be deduced from the fact that extrapolations of

Bridgman's phase transition data by Snay and Rosenbaum (21)

lay immediately adjacent to the experimentally determined

Hugoniot in the pressure range from 20 to S0 kilobars.

Moreover, in a subsequent set of shock propagation experi-

ments, Altshuler, et al., (22) report data from which they

concluded that a phase transition (to Ice-VII) had occurred

at about 120 kbar.

Within this framework, it is quite relevant to note

that Born, (18) in his paper on the thermodynamics of crystal

melting, hypothesized that liquids in states near the melting

transition may retain the basic lattice structure similar to

the solid phase, although the ordered geometric arrangement

of the lattices may be lost. This suggests that, at least

in the vicinity of the Hugoniot curve, the equation of state

for water may be describable by a functional form similar to
that derived by Born for melting crystals, i.e.,

p(V, T) = h (V) + T h (V) (2.2)
1 2

Phase change effects were not considered by Rice and Walsh.

An equivalent expression was proposed by Schall (23) in 1949
for employment in the interpretation of the results of his
experimental investigation of shock propagation in pure water.
The physical justification for this equation is vague (per-
haps due to losses in translation) and his resulting ex-
pressions appear to be inaccurate (vis-a-vis the experimental
data of Rice and Walsh.(9 ,1 0))

9



Implicit in this form of an equation of state is the parti-

tioning of a material's internal energy into harmonic thermal

motion of its molecules and the compressional potential enargy

of its lattice. This can be readily demonstrated by invoking

the identity,

(E\ p + T h2' h(V) (2.3)
@ V T aT I

i.e., the compressional energy of such materials is solely a

function of the degree of compression (of its lattice). More-

ove-, Eq. (2.3) can be integrated to yieldV
1(VT) = / h (V)-IV + f(T) (2.4)

V 0.

where f(T) represents the contribution of the thermal motion
1,3 molecules within the lattice.

In the calculations which follow, we have assumed that
this thermal contribution to the internal energy is linear

with T, i.e.,

(3E) = CV = constant (2.5)

This assumption admits a functional form of (2.4) and

E(V,T) 13 (V ,T0) = Cv(TT) -, J hi(V) d (2.6

V
0

It may be observed that if CV is considered a constant,

the Born form of the equation of state (2.2, 2.6) is equiva-
lent to the Mie-Gruneisen formulation often applied to solids

subjected to high pressures. The Mie-Gruneisen equation of

state can be written as

10



p = pH(V) + G(V) (E - E (V)) (2.7)

where the subscript H refers to the Hugoniot curve. Sub-

stituting the expression for energy (Eq. 2.6) into this

relation, gives --(E 1v1  a)
= H(V )  G(V) EH(V) + G(V) E - h (V) dV

G(V) C T + ( V(2.8)

This expression for pressure, in terms of T and V, is

equivalent to the Born form with the following identi.fications.

G(V) V
b (V) = P(V) + G(V)M +E EH (V) -. h1 (V)dV - CV T (2.9)

0

(V) CVG(V) (2J10)

VV
Thus, in the limit that C V is constant, the Mie-Gruneisen

formulation is equivalent to the Born model. This is sig-

nificant in tiat one can construct a self-consistent equation
of state (for such materials) based on either isothermal data

or Hugoniot-release isentrope information.

2.2.2 Analysis

The available information on compressed water enables

the development of an equation of state based on either of

the two methods noted above. In the present work, a "hybrid"

equation of state, derived from both types of data, has been

selected for use in the numerical experiments dealing with

energy effects. Presentation of the analysis from which this



equation of state has been constructed is given in separate

sections dealing with the two component formulations.

2.2.2.1 Mie-Gruneisen Formulation

The cornerstone of this analysis is to characterize

the Hugoniot with analytic expressions. A least square, cubic

fit to the Rice-Walsh data (l0 ) has been obtained for PH(V),

(see Fig. 2.2), i.e.,

PH(V) = AV + Bp2 + Fp3, (2.11)

A = 21L9534 kbar

B = 52.138 kbar

F = 231.,81 kbar

V -V
0

where 11 = -V-- , and EH(V) is determined from the Hugoniot

relation

PH(V)
E14(V) + ---- (V -V) (2.12)

0.

The expression in Eq. (2.11) has been used as the non-linear,

volumetric equation of state in a portion of the calculations

presented in Sections V, VI, and VII.

Since EH(V) and p,1(V) are known, the only unknown in

the Mie-Gruneisen formulation is the Gruneisen ratio, G(V).

Tt is possible to explicitly determine G(V) on the Hugoniot

within the framework of the analysis (above 25 kbar). These

calculations are graphically presented in Fig. 8 of the Papetti

and Fujisaki paper

A linear, volumetric equation of state, P = A (l-V/V) , has
also been utilized in the first phase of the numerical work
presented in Section V.

12



It is of interest to determine if the Rice-Walsh (1 0 )

isentropic data could be reduced to the Mie-Gruneisen form.

This is accomplished by calculating the value of G(V) which

is required to satisfy Eq. (2.7) at a given value of V and

entropy, SH. From Eq. (2.7),

G()ip S H (V) PH p(V)

G(V)-S(V )  H(V) V (2.13)
E SHV)-E H(V)I

where the subscript SH  refers co a specific isentrope

which intersects the Hugoniot as VS , and

E SvH (V) = H SH) Ps(V) dV. (2.14)

SH

The five series of G(V) points obtained in this fashion

are displayed in Fig. 2.1. It can be seen that the points

do not lie on a single curve, nor are they coincident with

the Hugoniot values for G(V)(11 ). These results indicate

that the Gruneisen ratio based on the constant Cp data (1 0 )

is somewhat dependent on the energy. The dependence must

be small, however, since the series of points in Fig. 2.1

trace out curves that arc in reasonable agreement.

The data presented in Fig. 2.1 can be represented by

the following form

G(V) : a sin (bV + c) + h (2.15)

where

a = .41 b = 9.52 c = -4.5676 h = .94

13



1.6

1.4

1.2

A A
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IV A
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Data From: A,
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Papetti and Fujisaki " "

Eq. (2.1S)

0 [J - I I I, ,,
.5 .6 .7 .8 .9 1.0

Specific Volun3 (cc/g)

Fig. 2.1--Gr'zneisen ratio for water plotted as a function of
volume. Calculations of G(V) on the Hugoniot (11) are

compart-d to those computed from release adiabats
(Lq. 2.13). Also shown is G(V) used in
subsequent calculations (Eq. 2.15).
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This express-in is plotted in Fig. 2.1 for comparison to the

various curves for G(V). Using this expression for G(V),

and Eqs. (2.11, 2.12), a complete p-V-E equation of state

can be written for the compressed states of water, i.e.,

p(V,E) = p1.1(V) (1 - G(~i+ G)E (2.16)

As a check on the sufficiency Gf this equation of

state, a set of release isentropes have been calculated by

substituting Eq. (2.16) into the differential equation

dE = -p(V,E) dV (2.17)

and integrating this equation from various starting points on

the Hugoniot. The comparison of these calculations ':o the

isentropes calculated by Rice and Walsh (I0 ) is given in

Fig. 2.2 wherein the excellent agreement between the two sets

of data is clearly indicated,

It should be noted that it was not, strictly speaking.

necessary to use the G(V) derived from the release isentropes.

The Gruneisen ratio determined by Papetti and Fujisaki [ I)" "

is dependent only on the Hugoniot values of p,V,E. Although

this method has been applied to the region above 25 kbar, it

would, no doubt, be possible to extend this curve to V 0
(under some sort of simplifying thermodynamic assumption).

However, the advantage in using Bq. (2.15) is that the original

release isentrope data(10) are more closely approximated

than with the G(V) computed on the Hugoniot.

Caloric Equation of State -- Complete formulation of

the water equation of state must include some additional

relationship which includes temperature, The specific heat

at constant volume and h (V), are all that are needed to

provide an E-V-T equation of state (see Eq. 2.6). The

15



260

240 0 Hugoniot (Rice/Waluh)

S- Hugoniot (Calculated)

220 - 0 Adiabats (Rice/Walsh)

Adiabats (Calculated)

200 -

\o
180

160

140 -

120

,' \\\ \,
100 N

Hugaioo

800

60 \lgno K

20

Specific Volume (cc/g)

Fig. 2.2--lugoniot and release adiabat curves for water cal-
culated from Eq. (2.13) compared to the

Rice and Walsh (I10) values.
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specific heat at constant volume is taken as being between
(24).7 and .8 based on Bridgman's data reported by Dorsey

For CV  independent of volume, the compressional energy
VA

derivative, h1 (V), is just the 0°K isotherm. Since the

p-V-E equation of state is known and the 0 K iso-therm is

equivalent to an isentrope passing through V = V0 at

T = 0°K, hl(V) may be directly determined by integrating

the isentropic equation (2.17). The p-V relation resulting

from this integration has been fit to a six-degree polynomial.

This is then integrated over Epecific volume to obtain

the compression energy integral, I(V)

I dV (2.18)

0.

where the polynomial is given in Fig. 2.3. Although another

form of I (V) is determined in the analysis associated with

tie Born formulation (Eq. 2.2Z), it is instructive to com-

pute Hugoniot temperatures from the relation

J(E~ - EQ) - T(rV)j 1- TH - To (2.19)

where EH is the energy on the Hugoniot (8) and I (V) is

given by Eq. (2.18). (For comparative purposes, a

Cg = .78 cal/g (''3.265 x 10- 7 ergs/gm) has been utilized to

find T,,.) These values are plotted vs specific volume in

Fig. 2.3, and compared to the Rice and Walsh theoretical

values. It can be seen that there is excellent agreement

It should be noted that this same form of ihe thermal equa-
tion of state (Eq. 2.6) has been applied to non-metallic
geologic materials with low thermal expansion coefficients,
by Ahrens, et al.,( 2 5). For such materials, substitution
of a room temperature isotherm for the compressiou'al shock
energy derivative, (E/3V)T, is a good approximation.

17
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Fig. 2.3--Temperatures on the wate. HuYoniot computed fromEq. (2.19) (using the Rice and Walsli 0) Hugonjot energies)with CV = .78 cal/g and the JI(V) determined from the
P-V-E equation of state (2.3).
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which might be improved in the low pressure range by

choosing a different CV. Further discussion of these re-

sults is contained in the following section.

2.2.2.2 Bo-"n Equation of State

The p-V-T equation of state requires that h (V)
1

and h (V) be known. CV is required to establish the E-V-T
2

state equation, Eq. (2.6). In the case of water, these

functions may be deduced from the available data in a number

of ways. The most direct method is described below. Essen-

tially, the Rice-Walsh(10) isotherms are demonstrated to

conform to the proposed equation of state in the (thermodynamic)

vicinity of the Hugoniot. This analytical method, although

equivalent to the Mie-Gruneisen formulation, is significant

in that it is not necessary to possess an explicit descrip-

tion of the shock Hugoniot to construct a reasonably accurate

equation of state.

Compression Energy Function, h (V) -- The functionalI *

form of h (V) was obtained by first taking polynomial fits

to the tabulated (i'0 isothermal pressure-volume variations.

Then, for any two isotherms, (Ti, T.), and a given specific

volume, Eq. (2.16) yields

h(V) - (T/T )P (2.20)

In this manner, polynomial expressions for hI (V) were ob-

tained for the ten possible combinations of the Rice-Walsh

Lsotherms. One may then compare these curves to ascertain

the validity of the assumption that a unique h (V) does exist
I

Six-degree polynomials were required to fit the Rice-lfalsh
(I0 )

data.
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for water. The ten curves are presented in Fig. 2.4 wherein

it can be seen that any pair of isotherms yield an h (V)

which varies from the mean by only three percent. In Fig. 2.4

the h (V) computed from the 4480K and 12730K isotherms is
highlighted because it is employed in subsequent equilibrium

state calculations. Expressed in polynomial form, this h (V)
1

is given by

[8=(V) 4 A A+AV+AV2 +AV V4 + A V + A V6
44 o 1 2 3 4 5 6 7

12730 (2.22)
where. Ai are presented in Table 2.1.

As a check on the E-V-T equation of state the thermo-

dynamic data for water computed by Sharp(14 ) could be used

to verify the form of the compressional energy integral

( -f h I(V) dV) . Sharp has fit V(T,p) between neighboring

isobars and isotherms and then integrated (9V/9T)p and V
to obtain the entropy (S) and Gibbs free energy (G).

From S and G, Sharp (14) calculated the other thermo-
dynamic variables. The basic data input of his calculations

is from Rice and Walsh (l0 ) above 2.5 kbars, and the various
"standard" sources on water data for the lower pressures.

For a number of condensed state isotherms, Sharp has computed

the internal energy. In the present formulation, these energy

isotherms should have the same variation with V, and their

shape would be identical to thaL of i (V) defined by Eq. (2.18).
1

A comparison of Sharp's data with the compression energy

curves obtained from the volumetric integration of the two

expressions for h (V), Eqs. (2.18) and (2.22), is pre-

sented in Fig. 2.5. (The energy points from Sharpts iso-

therns over 160 0C were normalized by setting the internal

energy equal to zero at V = .675. Lower temperature iso-

therms tabulated by Sharp (14) were normalized at V = 1.0018.)

It may be concluded from Fig. 2.5 that the variation of

20
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Fig. 2.4--Zero degree K isotherms (h (V)) for water plotted

vs volume. Each curve is determined from two

of the isotherms computed by Rice and Walsh (I0 ) .
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Fig. 2.5--Comparison of compression energy integrals, I (V),
1

determined from the p-V-E state equation (2.13) and that
448 0 Kderived from [11 (V)] 12780 K, Eq. (2.22), with the energy

isotherms tabulated by Sharp (1 4 ).
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TABLE 2.1 V

POLYNOMIAL EXPRESSIONS FOR h (V)f h (V), AND h (V)

V
0 10

DERIVED FROM THE 448 K AND 1273 K RICE AND WALSH(10 ) ISOTHERMS

f(V) = a + a V + a V2 + a V 3 + a V' + a V5 + a V6 + a V70 1 2 3 4 5 6 7

fvoh kbars
h (V), kbars (V)dv,kbars-cc h (V), o

f 2 K

a = 2.1151485352+04 = -2.3440333252+03 = -1.0418174624+01
0
a = -1.6696763086+05 = 2.1151485352+04 9.2393991470+01

1
a = 5.5372096875+05 = -8.3483815430+04 = -3.3131429672+02

2
a = -9.7904692187+05 = 1.8457365625*05 = 6.2118081665+02

3
a = 9.6834446875+05 = -2.4476173047+05 = -6.4345397186+02

a = -5.0652573047+05 1.9366889258+05 3.4930139542+02
.5

a 1.0931559375+05 = -8.4420955078+04 = -7.7670559883+01
6

a 0.0000000000 = 1.5616513306+04 = 0.0000000000
7

V in cc/g
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energy with volume indicated by Sharp's data is in reasonable

agreement with both of the present theory's energy compres-

sion curves from the present theory.

It should be remarked that the increased scatter in

the energy curve data for V > .7 can be interpreted as an

indication of a transitional molecular structure of water.

The hypothesized lattice-like structure of the more compressed

water states appears to break down in this regime, being re-

placed by more gas-like behavior as the molecules separate.

Determination of h (V) -- Analogous to the determina-2

tion of h (V), one may compute curves for h (V) from the
1 2

relation

pi(V) - pj(V)
2 - T. - .(2 23)

where the subscripts connote particular isotherms. Although

the degree of convergence of these h 2 (V) curves is seen in

Fig. 2.6 to be slightly less satisfaictory than the h (V)

curves (see Fig. 2.4), it can be claimed that one may repre-

sent h 2 (V) by a single curve within the limits of the

present theory. The highlighted curve in Fig. 2.6 is h (V)

computed from the 4480K and 1273 K isotherms and has been

employed in subsequent calculations of equilibrium states.

In polynomial form, h2 (V) is

hZ(V)] 8o = C I C V + C V2 + c V 3 + c VI + c VI + c V 6

12730 (2.24)

where ci are given in Table 2.1.

Selection of CV  - The last parameter required to

characterize water is its specific heat at constant volume.
There exists little experimental information on the CV

for water. It has already been pointed out that values

24

........ es little en informatio n t



12
.10

h.(V) from 4480 and 1273°K
Isotherms

.08

0

.06

.04

,--. .04

.02

.S .6 .7 .8 .9 1.0

Specific Volume (cc/g)

Fig. 2.6--h (V) for water plotted vs volume. Each curve is
2

determined from two of the isotherms computed by Rice
and Walsh(lO),
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(24)
between .7 and .8 cal/g have been reported by Dorsey

Near the critical region, values within 10% of .7 have been

computed from an equation of state developed by Watanabe,

et al(" ) .

In the absence of any additional experimental or

theoretical values, it is perhaps most appropriate to use the

compression energy curve in Fig. 2.5 to determine an appro-

priate value of CV. This method involves drawing the

(isothermal) compression energy curve through the various

points on the water Hugoniot in the E-V plane (as in Fig. 2.7).

Then CV  is computed from

cV = A (2.25)

where the AT's are taken from the Rice-Walsh (10 ) values (see
Fig. 2.7). The variation of CV  with T determined by

this graphical method is depicted in Fig. 2.8. It can be

seen that CV  exhibits a slight temperature dependence, but

in the spirit of using single c 'yes for h (V) and h (V),

a single value of CV  (equal t, 78 cal/g) is sufficiently

accurate.

p-V-T Calculations -- It is a straightforward matter

to .alculate the Hugoniot, release adiabats, and isotherms

from the two expressions

p = h (V) + Th (V) (2.2)1 2

V
Jo

E E = Cv(TT) - h (V) dV (2.6)

00

where h (V) and h (V) are given in Eqs. (2.Z2) and1 2

(2.24).
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Fig. 2.7--Graphical description of C calculation from Rice
and Walsh ( I 0 ) Hugoniot data. (The compression energy

curves are only qualitative in this figure.)
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A comparison of the calculated pressure-volume varia-

tion for the Hugoniot to that measured by Rice and Walsh is

presented in Fig. 2.9. For pressures above 200 kilobars,

there is a mild departure between the calculated curve and

the experimental values. Overall, the agreement is comparable

to that of th6 Hugoniot curve used in the p-V-E formulation

which is a (least-squares) cubic fit to the Rice-Walsh data.

The release adiabats from 50, 100, 150, and 200 kbars

are depicted in Fig. 2.10. Comparable Rice-Walsh data are

also plotted, which are seen to be in reasonable agreement

with the present calculations.

To best compare the caloric equation of state, tem-

peratures on the Hugoniot have been calculated from Eq. C2.19)

usng the Hugoniot energies and specific volumes reported by

Rice and Walsh (1 0) . In Fig. 2.11, the Hugoniot temperatures

computed by Rice and Walsh (constant C ), Cowperthwaite and

Shaw (19 ) (constant CV, constant (Op/DT)v) are plotted against

shock pressure and compared to the results of the present

theory. The excellent agreement between the Rice-Walsh values

and the present theory demonstrates that it is possible to

represent water as having a constant CV; yet still predict

temperatures compatible with the results of Rice and Walsh.

The difference between the present calculations and those of

Cowperthwaite and Shaw(19) can be attributed directly to the

inclusion of the compression energy integral in ths present

theory, since the same value of CV  was employed in both

sets of computations.

Finally, it is of interest to see how satisfactorily

the h1 (V) and h, (V) computed from two isotherms can be
1

employed to predict the shape of other isotherms. Using the

h1 (V) and h 2(V) derived from the 448 0K and 1273 0K isotherms,

the pressure-volume traces for 448, 523, 773, 1023, and 1273OK

are plotted in Fig. 2.12 and compared to the Rice-Walsh re-

suits. The two sets of data are very nearly coincident.



220

0 Rice/Walsh Values

200

180

160

140

120

5, 100
5.

80

60

40

.4 .5 .6 .7 .8 .9 1.0

V (cc/g)
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compared to Rice and Walsh (1 0) calculations.
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Fig. 2.11--Temperatures on the water Hugoniot computed from
Eq. (2.19), (2.22) (using the Rice and Walsh(10 Hugoniot

energies and CV = .78 cal/g) compared to the Rice
and Walsh values (Cp = constant) and the

calculations by Cowperthwaite and Shaw (19 )

(Cv = .78 cal/g, (ap/T)V = const.)
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However, there is some mild disagreement in the low-pressure

(higX-spocific volume) range of the calculations. This is

to be expected vis-a-vis the aforementioned scatter around

h (V) in this regime.

2.2.3 Final Selection of Equation of State for Compressed
Water

It can be concluded from the results presented in the

preceding sections, that the simplifications accrued by the

present theory do not greatly alter the thermodynamic repre-

sentation of equilibrium states from that of other investiga-

tors( 0 - - S). The two equations of state formulations

presented are (in principle) equivalent. However, they do

exhibit (expected) minor quantitative differences since the

analytic expressions were derived from different forms of the

Rice-WValsh data (10 ) . For the purposes of this contract, it

is perhaps most convenient to use a hybrid form developed

from these two methods of characterizing pure water substance.

This selected form would have the quality of most accurately

matching the Rice-Walsh data (the'more-or-less accepted
"standard" for high-pressure (up to 250 kbar) water calcula-

tions) while retaining the simplicity of the overall theory.

The most appropriate equation of state (from this viewpoint)

is the p-V-E relation (Eq. 2.16) in combination with the

E-V-T relation developed from the isotherm data (2,6, 2.22):

p ={21.95434 + 52.138J2 + 231.81P3}( I - ) + GV) B (2.16)
V

= Eo + Cv(T - T) - h (V) dV (2.,26)

where

G(V) =.41 sin (9.52 V 4.5676) + .94 (2.15)

34



[V h (V) dV = B + B V1 + B V2 + B V3 + B V4 + B V5 +

fV0
B V6 + B V7, Bi given in Table 2.1 (2.27)

7 8

CV = .78 cal/gm = 3.26 x 107 ergs/gm (2.28)

This set of expressions adequately represent the thermodynamic

states on the Hugoniot and release adiabats (see Figs. 2.2,

2.11). Additionally, the isotherms computed from this state

equation are in reasonable agreement with the Rice and Walsh
,

calculations as may be observed in Fig. 2.13.

The choice of Eq. (2.22) for h (V), as opposed to Eq. (2.18),
was made on the basis that the predicted shock temperatures
are in better agreement with the Rice and Walsh values at
pressures less than 150 kbar.
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Fig. 2..I3--Isotherms determined from "hybrid" equation ofstate of compressed water (2.16), (2.26) compared to

Rice and Walsh (1 0 ) results.
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2.3 EXPANDED STATES

it can be anticipated that knowledge of the expanded

states of water, similar to that obtained about the com-

pressed states near the Hugoniot, will be required to com-

pletely describe pulse propagation effects in geologic com-

posites. The particular regime to be characterized is that

between the 200 kbar release isentrope and the saturation

line, as well as the two phase region under the steam dome

(see Fig. 2.14).

In light of the conclusions concerning the physical

state of copressed wa~er as the specific volume increases,

it could be expected that water exhibits more gas-like

behavior aq it is expanded.

Thus, the compressed equation of state would have to

be modified to mirror the drastically different physics of

the water equilib'ium states. (Once again, however, the

equations of state must be suitable for use in thermal

equilibrium calculations.) The general lack of simple (or

even complicated), consistent thermal equations of state

that existed for water in the compressed state is also

evident in the expanded regions. It was necessary, there-

fore, to develop a thermal equation of state.

The following section describes the development of

an equation of state for water in the range in interest.

Emphasis has been placcd on reproducing the qualitative

trends of the available (extrapolated) data, simplicity,

and com,-atibility with the Keenan-Keyes ( 6 ) steam dome data.

The expanded liquid phase is treated in a manner analogous to

the compressed states described in the preceding section.

Two-phase conditions in the steam dome are determined under

the assumption of pressure and thermul equilibrium between

the phases.
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2.3.1 Expanded Liquid States

The Mie-Gruneisen (-Born) form of the eauation of

state developed for the condensed states of water may be

employed to compute various release adiabats which extend

into the expanded state regime Three of these isen4'ropes

are shown in Fig. 2.15 and compared to those presented by

Walker and Sternberg (12) . The latter calculations are based

on multi-staged p-V-E equations of state which represent

fits to experimental data near the saturation line (and a

meager amount of data from the work of Kennedy, etal. ( 3 2 7 - 3 ! ) .

It can be seen that the extrapolated adiabats using the com-

pressed equation of state are qualitatively similar to the

Walker-Sternberg curves, but their intersection with the

saturation line is markedly inaccurate.

To remedy this situation and yet retain the basic

simplicity of the form used in the condensed states, a new

p-V-E equation of state has been constructed based on an

extrapolation of the water shock Hugoniot into the expanded

state regime. The lWalker-Steinberg equations were not used

because energy levels of the release adiabats would require

a number of states in which portions of the equation would

have to be changed. Moreover, the present form facilitated

a smooth transition to the condensed states data at

V = 1.0018. The new equation of state has been developed0

(implicitly) to assure isentrope intersection with the

saturation line at the proper entropy value. Similarly, a

caloric equation of state is constructed using the iso-

thermal compression energy term. Employment of such an

energy equation maintains the fundamental partition of the

internal energy between a strictly thermal portion and the

compressional energy.
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Fig. 2.15--Release adiabats for water in the expanded states
region as computed from the (compressed)

state equation (Eqs. 2.16, 2.26).
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2.3.1.1 p-V-E Equation of State

A hypothetical shock Hugoniot has been constructed

for V > 1 which is centered on the ambient equilibrium

state (V = 1.0018, T = 293 0 K, p = 1 bar). The develop-

ment of this curve was based on the method described for the

comp:essed states (see Section 2.3.2.1). A Mie-Gruneisen

form of the state equation, with the Gruneisen ratio set at

.54, is used to generate the p-V relation describing the

(extrapolated) Hugoniot. The only data input was the satura-

tion line (6) Continuity of the shock Hugoniot's first

derivative was imposed at the cross-over point (V - 1.0018).0

It was found necessary to iiclude an exponential function near
V = V to smoothly join the two Hugoniots.

0

The resulting Hugoniot curve plotted in Fig. 2.16 is

represented by the analytic expression
~- 3 'K ~i

p aipi + Ap exp (blp c) (2.29)

where p = + constant. The coefficients in (2.29) are

given in Table 2.2. The usefulness of such a straightforward

construction is apparent in Fig. 2.17 where the release aii_-

bats (from 50, 100, 1S0, 200 kbar) are plotted on a logarith-

mic pressure scale. These compare favorabl,- to the results

of the Walker-Sternberg (12) calculations, and are seen to

intersect the saturation line within one percent of the

correct specific vol ume (up to the IS0 kbai release adiabat).

For higher shock pressure isentropes, there is more divergence

An the specific volume intersection (the 200 kbar case is

shown in Fig. 2.17). However, the pressures are within the

same accuracy as those for the lower valued isentropes.

Although one may improve on the present expression by

a number of methods (e.g., admit volumetric dependence in the

Gruneisen rat or perhaps use some Walker-Sternberg data to
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lalker-Sternberg

100 -Release Adiabats

SO kbar

u 100 kbar from Fig. I
* 150 kbar (Ref. 12)

v 200 kbar
Rice/Walsh
Release Adiabats
o 100 kbar

0 150 kBar
10 7- 200 kbar

Solid lines - Present
Calculations
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50 k ar
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*"-Saturation Line

.01

.001
(1 bar) I * i * I
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V (cc/pa

Fig. 2.17--Relez.se adiabats for water based on the Mie-Gruneisen
form of expanded (states) equation of state ared to

results published by Walker and Sternberg L .
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curve fit the extrapolated Hugoniot), it can be concluded

that up to the 150 kbar release adiabat, the expanded p-V-E

equation of state (Eq. 2.29) provides sufficiently accurate

representation of the available state information on water

in the regime of interest.

2.3.1.2 E-V-T (Caloric) Equation of State

An analogous approach to the construction of a p-V-E

form of the equation of state may be employed for the thermal

formulation. Water is still presumed to exhibit a thermal

behavior represented by

= f(T) - h dV (2.4')
fv V

0

(as in the compressed states). The compressional energy term

for the expanded states must now be determined and should be

expected to continue the gas-like behavior noted in the (less)

compressed states (see Section 2.2.2).

Consistent with the proposed p-V-E Mie-Gruneisen

formulation and Eq. (2.4"),C V is assumed constant. For

continuity of the energy expressions, CV  is once again

taken as .78 cal/g. This value is chosen out of convenience

and taken to be representative of water in this limited
regime. The data of Bridgman reported by Dorsey (24) indicate
a temperature dependence and infer that slightly higher values

would be appropriate, whereas data in the critical region(
26)

indicate that CV has dropped below the value used in our

calculations.

The compression energy integral -f h dV has been

determined by satisfying energy requirentenY9 on the satura-

tion line, 1.L.,
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VSAT (T)

[ESAT(T) - E o] - CV [-TO
] = -f h (V)dV (2.30)

V0

I IEX (V)

where the subscript EX connotes expanded states. With such

a construction, the thermal equation of state will assuredly

be accurate in the vicinity of the saturation line and will

be continuous with the compressed state values at V = V 00
In Fig. 2.18, IEx(V) determined from this set of hypotheses

is compared to the normalized energy isotherms taken from

Sharp's 14) tabular data. The normalization of the data was

accomplished as in the compressed states (by taking the zero

energy point at V = .685 for high temperatures (t > 1600C),

and at V = 1.0018 for loier temperatures).

The normalized compression energy points of Sharp
(14)

are lower (by - 25%) than the X (V) calculated from the

constant C V  form of the thermal equation of state. How-

ever, the data in Sharp's tables does appear to be in agree-

ment on the shape of an IEX (V), which is an indication that

the Born form of the equation of state is appropriate (i.e.,

the internal energy is partitioned into volumetric and ther-

mal components). This result is not unreasonable for a
"gas-like liquid" since a van der Waals gas exhibits similar

behavior and satisfies the proposed form of the p-V-T

equation of state.

It is apparent that if the tabulated data (14 ) are a

good representation of the equilibrium states of pure water

(in this regime), the constant CV model is not entirely

satisfactory. Modifications of the thermal contribution to

internal energy can be considered (e.g., an additional

logarithmic contribution to the thermal energy would fit

the data). The present formulation, however, should also be

45



1] - h (V) dV, present calculations (Eq. 2.30)

0
• 300 °C

100- **4 160 *C .
* * . 2 6 0 C . . .
•o 400 'C -A,

oo 500 C"
S* . 360 C

60-

U, 40_ II,'"

0

PII

0
U 20- 

..

1.0 1.1 1.2 1.3 1.4 1.5 1.6

Specific Volume (cc/g)

.orm.alized to E at V = .68S

Normalized to E at lowest value of V in Sharp' data (V > 1)

Fig. 2.18--Compression energy curve for the expanded states

of water based on constant CV(=.
7 8) compared to

normalized energy isotherms reported

by Sharp (14)
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judged on its p-V-T comparison with the work of other
invetigaors3, I0, 12)(3,t10, . In Figs. 2.19, the expanded state

(p-V) isotherms calculated from Eqs. (2.29, 2.30) are com-

pared to the experimental data (3 ) and the theoretical
points(10, 12) There is good agreement over most of the

range of interest. The relatively poor correlation of the

IZ (V) does not greatly affect temperature calculations,

sige the internal energy of the liquid states in this thermo-

dynamic region are primarily determined by the Cv(T) term

in Eq. (2.30). Moreover, when the compreisional energy input

becomes significant (V > 1.3), the present form for IZ (V)

does give compressional energy values which are reasonabf

conisistent with the data in Sharp's tables (14 )

2.3.2 Liquid-Vapoy Equilibrium States

It has been reported in previous investigations
(12' 17)

that the adiabatic expansion of water which has undergone a

shock compression contains a regime wherein the expanded water

may undergo a phase transition. This is demonstrated by the

intersection of the release adiabats (from 50 to 200 kbar)

with the saturation line (on a p-V plot, for example). In

the following section, an equation of state for liquid-vapor

equilibrium states is developed under the assumption of pres-

sure and thermal equilibrium. It should be mentioned that,

fundamentaly, this approach is identical to that previously
(17) ,  . c form of the equation of state is

different (and more appropriate for our tuff/water mixture

study (Section IV)).

2.3.2.1 Basic Theory

In principle, the characterization of equilibrium

mixtures (of saturated) liquid and gaseous water may be

accomplished in a straightforward (albeit numerically
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Fig. 2 .19--Expanded states isotherms from present theory
uompared to availabl 9lXpimentaI and

theoretical , ) data.
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complicated) manner. Equilibrium mixtures of co-existent

states differ from homogeneous equilibrium states in that

the two phases have separate state equations. A two-phase

system in equilibrium is (strictly speaking) not represented

by a single point on the p-V-T surface, but rather by the

two points on the phase lines of the saturated liquid and

vapor.

If we restrict the analysis to phase mixtures in

thermal and pressure equilibrium wherein the vapor is free

to expand, the Gibbs phase rule states that equilibrium is

possible at a definite pressure once the temperature is

specified. More generally, the phase transition occurs

along a line on a thermodynamic variable plane (i.e., p-V

plane, etc.), and can be characterized as a function of one

state variable. For our purposes, temperature is the desired

choice since it will facilitate the incorporation of phase

change effects into the pressure-thermal equilibrium tuff/

water mixtures described in Section IV.

As presented in most thermodynamic text books
(32' 33)

the well-known Clausius-Clapeyron relation for the pressure

on the phase line is

SAT- T) (2.31)

FT SAT (Vg-v
where L(T) = (latent) hcat of vaporaLion and the subscripts

denote: g(gas), Z(liquid) and SAT (phase line). Eq. (2.31)

yields PSAT(T), the saturation (or phase) line for water in

the p-T plane. Expressions for p(T)SAT are available(6 , 8)

which have been derived from analytical and empirical ex-

pressions for L(T), Vg (T), and V,(T).

Complete specification of an equilibrium liquid/water

mixture is accomplished when the relative amount of water in

the gaseous state is known. Let us introduce as the
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fraction of the mass of a system which has changed phase,

i.e.,

M

M (2.32)

where M is the mass of gas or liquid. It is easily

shown that i may be represented in terms of the mixture's

specific volume by

V - V£,(T)
4(V,T) =V V(T) (2.33)

where, V, the specific volume of the liquid/vapor misture
is

M V (T) + M£V(T)
V g g M+ M9( (2.34)

and Vg,, (T) is the specific volume of the gas or liquid

on the phase line. The total energy of an equilibrium mix-

ture is given by

E = Ek(T) + 4(V,T) (Eg(T) - E£(T)) (2.35)

(The specific energy of the gas or liquid, Eg,1 is written

as a function of temperature on the phase line just as one

may write any other thermodynamic state variable in terms

of T.) Substitution of Eq. (2.33) into this last equation

and re-writing it in a more convenient form results in,

E = F (T) + V F (T) (2.36)
1 2

s0

- -



where

V £ ( T )C EE( . 7
F (T) = E,(T) - EV) (1.37t

F (T) = 't (2.38)
2 VgV,

Admittedly, the preceding analysis is based on an

idealized model of the phase change. It is not obvious that

the conditions of pressure and thermal equilibrium may be

extended to include changes of phase in water when absorbed

in pores of a geologic material. However, the energy-

absorbing significance of vaporization can be readily studied

within such an'nr,;ximations.

2.3.2.2 Calculations

Once PSAT(T), F (T), and F (T) are determined, the1 2

equation of state for water in the two-phase region ('..e.,

the steam dome) is specified. As mentioned previously,

expressions or PSAT(T) are available in the literature,

but these are quite cumbersome for our purposes. If it is

assumed that V << V., then Eq. (2.31) becomes

Furthermore, in the region where V, << V g it is observed

that one may fit the available data for L(T) and V (T)
to analytical expressions such as

L(T) , L 1 - (2.40)

kt (7_t_12 (.41)
Vg (T) kt  (1 1

PSAT
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where k and k are constants, t is degrees F, tc  is1 2

the critical temperature, and T is -the absol'te temperature.

A comparison of such expressions with tne available data
(6)

is given in Fig. 2.20.

The integration of Eq. (2.39) with these substitutions

for L(T) and V (T) results ing

-k k + b9nT + c + dT
p(T) = e IT J (2.42)

where a, b, c, and d are constants. It was then determined

that by properly choosing these constants, an expression is

obtained for PSAT(T) which is accurate to about one percent

(in pressure) up to a temperature of 300 C. The final form

of PSAT(T) used in these calculations is given in Table 2.2,

and its accuracy is graphically depicted in Fig. 2.21(a).
This latter expression differs (in form) from Eq. (2.42) only

in a small correction term to the exponent.

"or the components of F (T), F (T), expressions have1 2

been constructed (see Table 2.2) which fit the saturation

data (6) to within a percent from 20°C to 300 0C. The repre-

sentation of V (T) is similar to that postulated ing
Eq. (2.41). Polynomials in T have been fit to the E, and

E data. Finally, the expression for V,(T) is taken

directly from Keenan and Keyes(6) and is that which is used

to develop the steam tables. These analytic forms are com-

pared to the saturation line data in Fig. 21(b-d).

The pressure-volume traces of the expanded state re-

lease adiabats extending well in to the two-phase region are

presented in Fig. 2.22. These isentropes are in agreement

with the results previously reported(17). Moreover, numerous

hand calculations were performed to check the validity of

the E-V-T relationship. The accuracy of the present calcula-

tions was found to be within one percent (in energy).
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Fig. 2 .21--Accuracy of the analytic fits in Table 2.1 compared
to the s;aturation data of Keenan and Keyes (6)
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- Present Calculations
01ISO kbar I Points on Release
13 00 barAdiabas from
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1.0
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0.01 D1 r'l

50 kbar

0.001
(1 atm) 0 1.0 2.0 3.0 4.0 5.0

V (c,/&)

Fig. 2.22--Release adiabats for water extending into the
steam dome. Also shown are representative points

from a graphical presentation of

previous calculations (17)
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TABLE 2,2

ANALYTIC EXPRESSIONS FOR SATURATION STATES
AND THE EXTRAPOLATED HUGONIOT

(T = temperature .n OK, I = 293.16 0K, TC = critical temperature, OK)
0

SPECIFIC ENERGY OF LIQUID:

Et(T) = K (T-T ) + K (T-To)2 + K (T-T )3 , ergs/g

K = 4.1842 x 107li

K = -4.132 x 10
3

22.

K = 4.8754 x 10
32.

SPECIFIC ENERGY OF GAS:

Eg(G)= Kg + K2gT + K T2 + K T3 ergs/g

Kig 2.56886 x 1010

K2g = -4.156137 x 107

K3g = 1.58541 x 105

K = -1.55021 x 102
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(Table 2.2 continued)

SPECIFIC VOLUME OF GAS:

KIT (T 2 
3

Vg(T) -PSAT(T) 1 .167 T T- .01 - .01 T

- .1 T4- .5s~

x -0093 sin[ -L8 (t-300) ,cc/g

- TT
K 4.7 x 106 ; T = 0A T 0

0

SATURATION PRESSURE:

p(T) = 5.343439 x 1012 [exp 
(- 222 10

x (113 + .2T-knT - .0145 T"))]

+ .018 si(6.28(T32))) ergs/cc

928

3527

+, i(cf /3 K
V* = C+ C T )13+ K TC"-T + K (T -T),cc/g

1 + K (TCT) 3 + K (Tc-T)

V = 3.1975 cc/g K = 1.203374X10 - 3

2

TC = 647,27 0K K = 7.48908 x 1013
3

K = -0.3151548 K = .1342489
14

K = - 3.946263 x 10"13
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EXTRAPOLATED HUGONIOT:

PH = COR + P- t d + d 22 +- ----- -+ dqp 9

+ All exp (b lc), ergs/cc

where

S= .___ _ 1
p P0

Po

= V+ OFF

a = -8.0719379 x 1010
b = -4.29432294 x 103
c = 1.11758514

OFF = -3.5 x 10-3

COR = -3.63648578 x 105
d = -4.95410061 x 10'

d = -2.81642881 x 104
2

d = -7.29095512 x 106
3d = -6.12098976 x 108
'4

d 3,35998868 x 1010
5

d 1.22992201 x 1011
6

d 2.75208479 x 1011
7d 4.05505393 x 10'1

.8
d. 2.59487478 x 1011

9

From Keenan-Keyes (6)
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III. CHARACTERIZATION OF NTS TUFF

3.1 INTRODUCTION

A qualitative definition of tuff has been given by

Allen: (34)

"Newly fallen volcanic ash is a fine white
or gray powder which may also contain small
fragments or other pyroclastic matter. This
material is called tuff when it becomes
moderately compacted."

Take the phrase "moderately compacted," add to that the

variation in the composition and combination of "volcanic

ash" and "pyroclastic matter," throw in the fact that tuff

has a chemical affinity for water, (35) and it becomes clear

that tuff is not a well-defined material. The variation in

the properties of tuff will be presented and discussed in

this section. Also presented in this section will be a set

of parameters representing a completely compacted or non-

porous, dry taff. Since the parameters of thi representa-

tive tuff will be used extensively in the remainder of this

report, and because its description is lengthy and cumber-

some, it will be referred to as "S3 compacted dcy tuff."

Author: C. R. Hastings
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3.2 DRY TUFF

Tuff in its natural state is very rarely found in

the absence of water; however, the majority of the laboratory

data is on dry tuff. Furthermore, completely compacted or

non-porous, dry tuff, does not appear to exist in a natural

state aiid there are little or no data on this material. In

the sequel, data for porous, dry tuffs are presented and

discussed. Also, the development of an equation of state

and estimation of the critical constitutive parameters for

S3 compacted dry tuff are described.

3.2.1 Porous, Dry Tuff Data

The available hydrostatic, pressure-volume data for

dry tuffs of various densities and porosities are shown in

Fig. 3.1. A third-degree polynomial fit to the Schooner

tuff data (required in Section VII of this report) is also

shown. The spread in the specific volume at higher pressures

(.36 to .41 cc/g at 40 kbar) seems to indicate that all of

the pores have not been collapsed in tuff at 40 kilobars.

However, the initial porosity and the chemical (or gi-ological)

composition (seldom reported) must be taken into accuunt

before any meaningful conclusions can be made. The irrever-

sible crushup of the pores has not been treated during the

past contract period.

The available Hugoniot data below 200 kilobars for

various dry tuffs are shown in Fig. 3.2(a) (shock velocity

vs particle velocity) and Fig. 3.2(b) (stress vs volume).

The crystal or non-porous density of tuff varies from 2.0
to 2.7 g/cc (see Appendix B.1). The grain size varies con-

siderably in a single sample (see Appendix B.2); however,

the matrix of tuff appears to be a very fine grained powder

with an average diameter of 0.01 mm or less. The reported
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o o P 2.24 g/cc (Ref. 36)

A P 1.406 g/cc (Ref. 37)

40 E P P =  1.761 g/cc (Ref. 37)

OXO = 2.356 g/cc (Ref. 35) SCIiOONER

+ - + PO = 2.300 g/cc (Rcf. 35)

3 p = 1.466 g/cc (Ref. 35)

30- + 0 -Fit to SCIHOONER TUFF
"-4

0++ p
a I 2 3=P

$1 20- 11 - -1

a1 = 46.S78 kbars

0a 2 = 2.115 x 1033 kbars

El A a3 = -5.309 x 10 kbars

it A A

.36 .40 .44 .48 .52 .56 .60 .64 .68 .72

Specific Volume (cc/g)

iFig.. 3.1--Hydrostatic pressure-volume data fur dry, porous tuffs.
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II

a V34.5 _i

S3 Dry Tuff
Ilugoniot NA V

Quartz -- o®
Co ,4.0 Slope V
Glass -- J S =1.1077 a *

3.5 V '

U S3 Dry 0 0 P 1.76 g/cc (Re£. 38)

STuff, 1.6 g/cc (Ref. 39)
3.0 n 1.41 to 1.45 g/cc (Ref. 40)

U O 1.604 to 1.882 g/cc (Ref. 41)

0 1.46 g/cc (Ref. 42)
2.5 1.97 gicc (Ref. 43)

V 2.5 J 2.01 g/cc (Ref. 43)
> A C 3 0'

A4 /1.64 g/cc (Ref. 43)

o 8 = 1.23 g/cc (Ref. 43)~~A A V P

A A 1.4 g/cc (Ref. 43)

Forous 2.0 1.34 g/cc (Ref. 44)

Tuff m E3 PC w 1.5 g/cc (Ref. 44)
Rcnge + t PC 4 1.95 g/cc (Ref. 44)PO = 

2.0 g/cc (Ref. 44)

1P = 1.8 g/cc (Ref. 45)
£Po =1.329 g/cc (Ref. 45)

P = 1.61 g/cc (Ref. 46)

P mP 1,58 to 1.63 g/cc (R,!.t. 47)
1.0 n 1.90 to 1.93 g/cc (Rcf. 47)

0 . 1.0 1.5 2.5 3.0
Particle Velocty (x 105 cm/sec)

F4. 3 o2(a)--Hugoniot shock velocity-particle velocity data
for dry, porous tuffs.
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100" V 0 P -p 1.76 g/cc (Ref. 38 )

19(, r' E3A 0 = 1.56 g/ce (Ref. 39 )

.o p - 1.41 to 1.45 g/cc (Ref. 40

1 0" !1 0 o DO - 1.604 to 1.882 g/cc (Ref.41 )
180 E3 E V P 1.46 g/cc (Ref. 42)

1( po 0 1.97 g/cc (Ref. 43)
170- 6 = 2.01 g/cc (Ref. 41)

11O a 1.64 glco (Ref. 43)
160- C) 1.23 g/cc (Ref. 43)

VV P . 1.4 g/cc (Ref. 43)
1 p00 . 1.34 glcc (Ref. 41)

140 = 1.50 glcc (Ref. 44 )
140 + 0o 1. 95 g/cc (Ref. 44)

IO0 = 2 .0 glcc (Ref. 44)
* 0 = 1.8 g/C (Ref. 45 I

120 - p7 P 1.32 g/cc (Ref. .15
U 00 = 1.ol g/cc (Ref. 4f)

110 Cm 0 . 1.58 to 1.63 g/cc (Ref. 17)
.p 1.90 to 1.q3 g/cc (Ref. 47)

0- a
"100" 0

'190-

C3 V
8011 E1

0- V

85Y

10- [k+

., .311 .34 .?.8 .4.1 .46 SQ1 .54 .38 ,b. .66 .'70 .74

Fig.3.2(b)--Hugoniot stress-spec£ific volume data for dry,
porous tuffs.
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values of the hydrodynamic sound speed, c , for porous dry

tuff, varies from 1.03 to 2.56 x 105 cm/sec (see Appendix

B.3).

3.2.2 S3 Compacted Dry Tuff

The density chosen for S3 compacted dry tuff is

p = 2.4 g/cc. A reasonable representation of the composi-

tion is:

80% by weight Glass

10% by weight Quartz

10% by weight Clay

(See Appendix B.4 for compositions found in the literature.)

The hydrodynamic sound speeds of quartz and a typical glass

are 4.09 x 105 cm/sec and 3.9 x 105 cm/sec. (4 8) A value of

c = 3.2 x 105 cm/sec, required in constructing the equation
0

of state, is felt to be a reasonable estimate for the hydro-

dynamic sound speed of S3 compacted dry tuff.

Hugoniot Fit -- The procedure used to obtain a

Hugoniot fit, of the form of Eq. (2.11), for S3 compacted

dry tuff is as follows. At a Hugoniot stress of 200 kbars,

the specific volumes of several porous dry tuffs are close

to .28 cm/g. This point, and the initial density of 2.4 g/cc

were used in the standard mass and momentum Jump relations,

Mass: p0 D = p(D u) (3.1)

Momentum: p = p Du (3.2)

0

where
p = initial density

p = shock density
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D = shock velocity

u = particle velocity

p = Hugoniot stress or pressure,

to obtain a D, u point. A straight line (with a slope s,

of 1.1077) is drawn from this point to the sound speed, c ,0

in the D, u plane (see Fig. 3.2(a)). The following rela-

tions, from Bakken and Anderson, (49) are all that are

needed to evaluate the constants in the Hugoniot fit in the

required form:

p Ap + Bp 2 + Fp 3  P = (p/p ) (3.3)

where the constants in the cubic approximation are

A = p c 2
00

= 2.4576 x 1011 ergs/cc

B = A(l+2(s-1)]

= 2.98697 x i011 ergs/cc

F = A[2(s-1) + 3(s-l)2]

= 6.14886 x 10 10 ergs/cc

This fit is illustrated along with the Hugoniot and hydro-

static data in Fig. 3.3.

Thermal Description -- Data for the volum;tric thermal

expansion coefficient, a, and the constant pressure and con-

stant volume specific heats, C and CV, could not be found

for tuff. Estimates were made from handbook values given
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Fig. 3.3--Hugoniot and hydrostatic data and calculated
curves for dry tuffs.
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for similar materials and from values cited for its assumed

components (glass, 80%; quartz, 10%; clay, 10%). The esti-

mated values for S3 compacted dry tuff are as follows (see

Appendix B.5 for summary of data):

0 = 27. x 10-6 cc/cc 0C (3,4)

Cr = 0.2 cal/g °C (or 8.372 x 107 ergs/g 'C) (3.5)

CV = 0.2 cal/g 'C (or 8.372 x 107 ergs/g 0C) (3.6)

Gruneisen Ratio -- The Gruneisen ratio for S 3 compacted

dry tuff can be obtained from the thermodynamic relation
(4 9 )

c2

G = 7p . (3.7)

Using the values given above, the Gruneisen ratio was found

to be

G = 0.33 . (3.8)

This value is assumed to be constant over the entire pressure-

volume range of interest, The Gruneisen ratio and the

Hugoniot fit were used to cal, ilate a relea:e adiabat from

the 200-kbar Hugoniot state. The calculated curve is shown

in Fig. 3.3.

Isotherm -- The thermal expansivity is assumed to be

sufficiently small such that a good estimate of h (V) (see1

Eq. (2.2)) is given by the zero degree isotherm,

h (V) = (p(V,E)]T=oox (3.9)
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The value of [p(V,E)]T=OOK has been determined by numeri-

cally integrating the pdV work on the zero degree isotherm,

En = En ' l + pn (Vn-l - vn) , (3.10)

where pn = P(vn-l, Enl) as evaluated from Eq. (2.7), using

the parameters for S3 compacted dry tuff given above. The

integration is initiated at the state p = -19.4 kbar,

L = -2.45 x 1010 ergs/g, p = 2.4 g/cc. The resulting iso-

therm is shown in Fig. 3.3. A fit to the integral of the

isotherm (see Eq. 2.6) is

VV h d(V) = a P + a2 + . + a 17  (3.11)V 

+

0

An approximate value of the internal energy, E, at
p = 2.4 g/cc on the 00 K isotherm can be obtained from the
expression (see Eq. 2.6)

E= + Cv(T-T0) - h (V) dV

0

The valLes of E , T and the integral are all zero, leaving
0

E C CV T0

= -2.45 x 101'ergs/g

The corresponding pressure can be obtained from the ex-
pression, (see Eq. 2.7)

p = f(V) + GpE

The function, f(V), is zero at p : 2.4 g/cc; therefore,

p = GpE

= -19.4 kilobars.
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where

a = 8.0746633 x 109 ergs/g1

a = -5.3895904 x 1010 ergs/g2

a = 2.8099165 x 10" ° ergs/g
3

a = -1.784375 x 10"° ergs/g

a = 1.14124046 x 10"° ergs/g5

a = -5.47535341 x 10' ergs/g
6

a = 1.341517856 x 109 ergs/g7

Strength -- Data on the strength of dry, non-porous

tuff have not been found. There is a limited amount of

strength data on dry, porous tuffs (see Appendix B.6).

Reasonable estimates of Poisson's ratio, v, and the uncon-

fined shear strength, Y of S' compacted dry tuff, based on

existing data, are

V = 0.15 (3.12)

Y = 1. kilobar . (3.13)

Equation of State -- For easy reference, all of the

parameters presented above for S' compacted dry tuff are

tabulated in Table 3.1. These may be employed in a Mie-

Gruneisen formulation of the equation of state:

p = P. (1 - 2 E (3.14)
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and the constant Cv  form of the caloric equation of state

v

E - E = Cv(T-T) fV h (V) dV (3.15)
V

0

where E is taken to be zero, T a 293 0K, and p., G, CV,tV 0

h (V) dV are given in Table 3.1.
0

3.2.3 Schiooner Tuff Hydrostat

An extension to 200 kbars of the hydrostatic fit to
Schooner tuff (shown in Fig. 3.1) is required later in Sec-
tion VII of this report. The high pressure portion of the
Hugoniot curve, obtained in Section 3.2.2, is considered to

be a reasonable representation of the high pressure states
of this material. The following is a fit to the low pressure

hydrostatic data and the high pressure points computed from
the S3 compacted dry tuff Hugoniot:

p a V + a V2 + a p3 + a p 4 1 (3.16)
1 2 3 4 0

0

where

a = 4.8851 x 101 ergs/cc
1

a = 1.9868 x 101 2 ergs/cc
2

= -4.6715 x 1012 ergs/cc

a = 4.3406 x 1012 ergs/cc
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3.3 WET TUFF DATA

The completely saturated wet tuff data presented in

this subsection will be used in following sections as a check

on the success of various models to predict the equilibrium

states of the water-tuff composite.

The pressure-volume hydrostatic data for various

saturated tuffs are shown in Fig. 3.4. The discontinuities

at 10 and 24 kilobars are due to the water-ice VI and ice VI-

ice VII phase changes.

The available published Hugoniot data for saturated

tuffs are shown in Fig. 3.5. The data are not complete

enough to indicate whether or not any of the water phase

changes take place. Figure 3.6 contains both the Hugoniot

and hydrostatic data along with two adiabats released from

Hugoniot states of 135 and 146 kilobars. The accuracy of

the adiabatic data, as the pressure is released further and

further from its associated Ilugoniot state, becomes so poor

that it can no longer be used to evaluate a composite model.
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OpO = 2.083 g/cc; W.C. = 15. wt.% (Ref. 37)

CMpO = 2.108 g/cc; IV = 13.4 wt.% (Ref. 3S)

.P = 1.977 g/cc; W.C. = 14.4 wt.% (Ref. 35)

+p 0= 1.858 g/cc; W.C. = 20.5 wt.% (Ref. 35)

,Do = 1.678 g/cc; W.C. - 30. wt.i (Ref. 35)

0 W+20 ow pl+ + 4

4.

020 2+

O,=x I + "<

10 ++, I oCO P.+ ,

50I + -<

0
*O , .,,. .

4'-jW - i t

.40 .45 .50 .55 .60

Specific Volume (cc/g)

Fig. 3.4--Hydrostatic, pressure-volume data for saturated tuffs

of indicated water content.
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20 0 P = 1.97 g/cc; W.C. a 10.7 wt.% (Ref. 38)

A P 1.928 g/cc to 1.973 g/cc;
200 o W.C. = 17.2 to 18.9 wt.% (Ref. 50)

1 9 0 = 1.796 to 1.901 g/cc;
190 - 0 W.C. u 9.6 wt.% (Ref. 41)

0 P0 = 1.72 to 1.74 g/cc;

180- : W.C. 2: 1.6 wt. (Ref. 42)

170 - V p0 
=  2.19 g/cc; W.C. 1 10 wt.% (Ref. 43)

9 t = 1.9 g/cc; W.C. = 15.8 wt.% (Ref. 45)

160- 0 I P = 1.74 g/cc, W.C. 13.8 wt.% (Ref. 44)

to 15 P = 1.76 g/cc, W.C. = 23.9 wt.t (Ref. 441
ISO - 0

140 _

130 - i I 0

120 -

110- 0

Joo- V
J. 100

'-' 90-

80-
+j 0

U)
70-

60-

SO- 0

40-

70

20

10

oili I i I I I . . .. -

.26 .30 .34 .38 .42 .46 .50 .54 .58 .62

Specific Volume (cc/g)

Fig. 3.5--Hugoniot stress-volume data for saturated tuffs
of indicated water content.
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IV. HOMOGENIZED EQUATION OF STATE FOR TUFF/WATER MIXTURES

It is often useful in the study of pulse propagation

into composite materials to consider the mixture of consti-

tuents to be so thorough as to justify the use of a homo-

geneous equation of state for -he gross material. Such an

approximation reduces the complexity of any numerical calcu-

lations for such materials. Yn the case of some extremely

complex geologic composites, it is presently the only prac-

tical method to model the material. An equation of state

for such a geologic material, compacted dry tuff, has been

derived which is based on this assumption of homogeneity

(Section 3.2). An additional component, i.e., water, is

also present in most test site locations. In the following

section, a homogeneous equation of state for fully saturated

water/tuff mixtures is developed.

4.1 BASIC CONSIDERATIONS

The problem to be considered is the determination of

a homogeneous equation of state for a composite consisting

of materials which have been characterized by the following

relations,

Pi = pi(vi, Ei) (4.1)

= Ei(vi, Ti) (4.2)

Since it is necessary that the composite material be charac-

terized by its own p,E,V, and T, certain additional relations

are necessary to construct an appropriate equation of state.

Namely, if the specific volume and internal energy of the

Author: J. W. Kirsch
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mix is given by

V = 5,.. E = ]F VI (4.3)4-4 3.i 1 Fi i

where Fi is the mass fraction of material i, some sort of

molecular interchange must be hypothesized to provide the

additional equations to enable the calculation of equilibrium

states.

The condition of pressure and thermal equilibrium

(PTEQ) requires that

pi = p. = Pk = (4.4)

and

T. = Tj = Tk = ... (4.5)

This is an idealized situation wherein the mixture is homo-

geneous down to such a small scale that the molecular exchange

of thermal energy between the components (effectively) occurs

instantane-vusly. One may alternatively propose that no ther-

mal energy is exchanged and that only hydrostatic (pressure)

equilibrium occurs.

Each thermodynamic statement above (Eqs. 4.4, 4.5)

carries along some implicit statements about the nat-ure of

tht material. Pressure equilibrium between constituents is

justifiable on the grounds that only saturated tuff is under

consideration. That is, all pores are taken to be filled

with water. Under this assumption, it is a trivial calcula-

tion to show that a pressure pulse will travel the order of

.15 cm in a microsecond. Since typical pore sizes are be-
tween .01 cm and .,00l cm, or smaller,[36 ," 40, 45) it is

reasonable to assume th3t pressure equilibrium will occur

during a microsecond pulse.
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The occurrence of thermal equilibrium, between water

and the tuff composite, is more difficult to achieve. A
simple model of the thermal situation ha's been suggested.(5")

The surfaces of spheres of water or quartz are assumed to

instantaneously come to the temperature of the mateijal in

which it is immersed. The surface temperature is further

assumed to remain constant for all time. By using standard

heat transfer graphs, (51 ) it is possible to calculate
"effective heat penetration times" for various, simple geo-

metries. It is shown by Rosenberg, et al.J 50) that for the

smallest tuff particles (.03 cm) and available thermal

diffusivity data, the time required to reach thermal equili-

brium is a couple of orders of magnitude larger than a psec.

The basic parameter of these calculations is the

Fourier modulus, F , given by
0

F = °r - (4.6)
o d 2

where

a = thermal diffus4.vity, cm2/sec

T = time, sec

d = characteristic (particle) dimension, cm

A larger Fourier modulus implies greater thermal penetration.

In Fig. 4.1 the temperature distribution in a sphere is

graphically depicted under the condition that the surface

temperature has been raised to t at T = 0, and maintained
0

thereafter. With appropriate diffusivity values for water
and quartz (i.e., aq = .03, aw = .0014), the Fourier modulii
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for .03 cm-diameter particles and T = i sec are

F = .33 x 10-4  (4.7)

F = .014 x 10-' (4.8)
ow

Qualitatively, one can see that only minute thermal penetra-

tion is possible under these conditions (as was concluded

by Rosenberg, et al.(50)) However, it has been reported by

a number of investigators( 3', 40, 45) that tuff consists

not only of relatively large grain matter sized between 3

and .03 cm, but also of small grain particles and matrix

material sized on the order of tens of microns. It is pointed

out in Ref. 40 that about 22% (by weight) of their tuff

samples consisted of fine grain particles less than .005 cm.

This is significant since 10-' cm pore sizes increase the

Fourier modulii (4.7, 4.8) by about three orders of magni-

tude. Based on the temperature distribution plot in Fig. 4.1,

it can be concluded that significant portions of such

spheres would experience a marked change in temperature

during the microsecond pulse (the fine grain (d < Il) material

would achieve thermal equilibrium with the water based on

this model).

These simple calculations suggest that a partial

thermal equilibrium model be considered for tuff wherein

the water is in thermal equilibrium with only a portion of

the tuff material. However, within the context of the

available information on tuff, it may very well be that

water in equilibrium with only the fine grain material

may lead to even lower water temperatures if that material's

thermal capacity is lower than that of the large grain

matter.
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It should also be mentioned that the thermal material

properties and the molecular interaction between various

species under high pressure shock conditions is not consi-

dered in the simplified model described above. One investi-

gation (52) of shock wave propagating into a dust-laden fluid

(40% dust, by mass) shows that the solid particles in the

flow attain a high degree of thermal equilibrium within the

shock itself.

One may conclude from the above discussion that ques-
tions concerning thermal equilibrium are directly connected

to the overall problem of characterizing the macro- and micro-

structure of geologic materials. The critical physical

parameters of a particular model are not available. In the

interest of brevity, only the pressure equilibrium and PTEQ

models will be considered so as to ascertain the extremes

of the thermal behavior to be anticipated in the constituents.

it should be noted that for millisecond duration pulses,
the argument is considerably enhanced in favor of bothpressure and thermal equilibrium.
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4.2 PRESSURE EQUILIBRIUM (p-V EQUATIONS OF STATE)

Mixtures in pressure equilibrium can be most readily

analyzed if there is a single-valued relationship between

pressure and volume. Hence, if energy effects are neglected

altogether, Eqs. (4.1) through (4.3) reduce to the volumetric

equations of state,

p(V) = Pi(Vi) (4.9)

where

v = LF iV (4.10)
11

Specializing these equations to a two-component mixture (like

that proposed for tuff and water),

p(V) = p (V ) = p2(V2) (4.11)

V = FV + (1-F) V (4.12)1 2

The simplest case to consider is a mixture of two

materials described by linear equations of state

V -V V -V
p A o 1, = A 02V 2 (4.13)

01 02

where Voi is some initial volume and Ai are constants.

Solving each of these expressions for Vi, setting pi p = p

(i.e., pressure equilibrium), and sr'stituting the Vi  ex-

pressions into Eq. (4.12) yields

I = V _1 o A 1 (1-F) 1o A,,,) (4 14)
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Solving this equation for p results in a linear equation

of state for the mix,

p =A A(V V ) (4.15)

where

V = FV + (1-F) V (4.16)
0 01 02

V0
FV (=-f-0 V (4,17)

1 + 02
AA

1 2

In general, components with non-linear equations of
state do not yield an explicit relation between p and V.
The equation of state (of the mix) is a transcendental rela-

tionship. For example, the Murnaghan form

p V 0 - 1 (4.18)

of the equation of state is sometimes used to represent the

extremes of static compressibility tests and shock measure-

ments at high pressures. The constants B and are re-
lated to the sound velocity c and the slope of the shock/0

particle velocity Hugoniot data according to
(3 S)

c =jV 0 , t = 4s-1 (4.19)

Pressure equilibrium suffices to construct an homo-

genized equation of state for a mixture from those of its

constituents when substituted into Eq. (4.12).

Vv= F[ 1 + (-F) 02 (4.20)
l + p 27

1~2 ]
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This transcendental relation :annot be solved explicitly for

p and, unlike the simple linear case, does not preserve the
form of the equations of state for the constituents. Never-

theless, p can be numerically evaluated for specified V

and (4.20) represents an homogenized equation of state.

For subsequent calculations it is necessary to con-

sider pressure equilibrium between materials whose ressure

varies according to a cubic polynomial in v(

Specifically, the Hugoniot data for both compacted dry tuff

and water have both been fitted to the form

p = Ap + Bp2 + F1 3 (4 21)

where A, B, F are given in Eqs. (2.11) and (3.3) respect-

ively). The condition of pressure equilibrium (together with

the tacit assumption that the internal energies of the con-

stituents of the mixture are those for the Hugoniots of the

pure materials) has been imposed on these fits to construct

a p-V relation for completely saturated wet tuff with the
following values for the mass fractions of water.

Mw

F 5-0 5 .0, .15, 20, .25, .30 (4.22)Mw + M•,
IV

Pressure-volume relationships are obtained for each mix in

the same manner. A given pressure implies the specific volumes
of thc two comiponents from which V is directly calculated

(i.e., Eq. (4.12)).

The corresponding p-V curves are shown in Fig. 4.2.

The curve for zero water content represents the Hugoniot for

compacted dry tuff of density po= 2.4 g/cc.
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200 ~~

201 .2 2 .30

o P . 1.97 g/cc, Shipman, et al.(38)

0 O = 1.91 g/CC, Rosenberg, et a (5sO)

00

4-'

O

.28 .32 .36 .40 .44 .48 .52 .S6 .60

Specific Volume fcc/g)

Fig. 4.2--Hiugoniots for various water/tuff mixtures
computed on the basis of pressure equilibrium.
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The available Hugoniot data for saturated wet tuff

for p < 200 kbar are also shown in Fig. 4.2. The data

points are scattered about the F = .15 curve which corres-

ponds to the representativo value for the water content of

wet tuff. This particular curve has also been fitted to the

cubic form, i.e.,

p = 5.96758 x 1010

+ 6.31245 x 10"

- 2.60228 x 10"1 3 , ergs/cc (4.23)

where

P = 1.9835, g/cc (4.24)
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4.3 EQUILIBRIUM STATES-ENERGY EFFECTS

The calculation of equilibrium states when the consti-

tuents are characterized by equations of state of the form

(4.1), (4.2),involves the simultaneous solution of a set of
algebraic equations. As one might suspect, the "hand" solu-

tion of these equations, even for a two-component mixture,

can be very complex and time consuming. Consequently, an

iteration subroutine from the S3 computer library has been

adapted to calculate p-V-E-T data for PTEQ (or, alternatively,

pressure equilibrium only) mixtures. This iterative scheme

is fully described in Appendix B.

Briefly, the iteration process for PTEQ calculations

is initiated for a given E,V by assuming a temperature of the

mix, as well as the Vi's. The constituent's energies are

then computed (from Eq. (4.2)) and their mass-weighted sum

is compared to the original E. The difference between the

energies is then divided by an appropriate CV of the mix

to give the first correction to the temperature.

In the next phase of the calculations, the (corrected)

temperature is held constant, while the specific volumes are

adjusted to assure pressure equilibrium. Thus, new T and

Vi's are obtained with which the iteration is continued until

a satisfactory answer is obtained. For the present calcula-

tions, the iteration is completed when the difference in

the energies is less than .05 percent of the desired E.

If thermal equilibrium is not required, the thermal

iteration step is omitted. Since the constituents will under-

go independent thermal shock transitions, it is possible to

adapt the above-described iteration procedure to solve for

Vi if (during unloading) the isentropic expression
X pdV + EHO (V), is substituted for E in the p-V-E

8
H88 , -



equation of state. The subscript Ho corresponds to the

state of the material just behind the shock. In shock

loading, the EHo expression is obtained from the shock

Hugoniot. (For the present calculations, the basic itera-

tion scheme has not been used to calcu.late pressure equili-

brium mixtures.)

4.3.1 PTEQ Calculations

A series of PTEQ calculations has been conducted

wherein equilibrium states of various mixtures have been

computed on the shock Hugoniot and release adiabats. In

these calculations, the equations of state developed for S3

dry compacted tuff (Eqs. 3.14, 3.15) and water (Eqs.2.16,

2.25) have been employed. It was ascertained that a typical

calculation of pressure, after the energy and specific

volume of the mix had been specified, requires approximately

10 milliseconds on the UNIVAC 1108 computer.

4.3.1.1 Shock Hugoniots

Shock Hugoniots for the homogenized PTEQ tuff/water

mixes have been computed for various mass fractions of water.

These are presented in Fig. 4.3. The experimental data for

wet tuff is plotted for comparison. The thermodynamic states

represented by these curves have been obtained by finding

those states which satisfy both the Hugoniot relation,

E Eo = (P + p (V - V (4.25)
0 2

and the PTEQ mixture equation of state. The p-V-E-T data

(for the components and the mix) are given in Table 4.1.

Qualitatively speaking, these (PTEQ) curves are simi-

lar to those obtained on the basis of pressure equilibrium

only (see Fig. 4.2). Moreover, the general agreement with

the experimental data for F = .15 and .20 is maintained in
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.10 .20 .30200 -i
200- S .15 .2S

190 -

180 -

170 - 0 p - 1.97 g/cc; W.C. - 10.7 wt.A (Ref. 38)

A - 1.928 to 1.973 g/c; N.C. - 17.2 to 18.9 wt.A (Reo.SO)
160 - 13 - 1.796 to 1.901 g/cc; W.C. - 9.S wt ; Ref. 41)

150 :* :1.72 to 1.74 ;/.c; W.C. - 1S.6 wt.1 (Ref. 42)
ISO e - 2.19 V/cc; Nr.C. - 10 wt.% (Ref. 43)

140 -p 1.9 g/ C; '.C. - IS.8 wt.I (Ref. 4S)

V o - 1.74 g/c; N.C. - 13.8 wt.A (Ref. 44)

130 - " 1.76 g/cc; W.C. - 23.9 wt.A (Ref. 44)

120 -

110-

loo-

80-

70-

60-

so-

40-

30-

20-

10

.2S .3 .35 .4 45 .5 55 .6

v, cc/g

Fig. 4.3--Hugoniots for various water/tuff mixtures computed
on the basis of pressure and thermal equilibrium (PTEQ).
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the PTEQ calculations. Direct comparison of the results of

these calculations, in the p-V plane, is presented in Fig. 4.4

wherein the pressure equilibrium and PTEQ shock Hugoniots for

two of the mixes (5, 15%) are plotted on a common set of axes.

The PTEQ Hugoniots lie below those determined from pressure

equilibrium considerations, indicating that the effect of

imposing thermal. equilibrium on the mix is to enhance the

energy absorption characteristics of the materials.

This effect can be explained by the fact that water,

under the same relative compression, heats up to higher tem-

peratures than tuff. Thermal equilibrium requires that the

water gives up a significant portion of this thermal energy

to the tuff. Although this doesn't greatly affect the com-

pressibility of the tuff, it does result in a sizeable in-

crease in the water's compressibility. (Another way of

explaining this result is that the internal energy of the

water is dominated by the thermal component (CvAT) wherein

for (S') tuff, compressional energy ( -f h,(V) dV) is much

greater than its thermal component. Temperature equilibrium

will thereby greatly reduce the internal energy of the water

component (at a given V) while the tuff would exhibit cnly

a small increase in its internal energy.)

To demonstrate this explanation, the locus of equili-

brium states computed for the water and tuff components in the

10% and 30% FTEQ mixes ate superimposed on the corresponding

flugoniot curves for each of the pure materials in Fig.4.5. It is

readily observed that the water states in the PTEQ mix must

be at considerably lower thermal energies than the (thermally

independent) pure water case. This can also be seen in the

temperatures calculated for the PTEQ Hugoniots. The tuff

temperatures are increased cver those calculated for the pure

tuff Hugoniot whereas the water temperatures in the (shocked)

PTEQ mixes are lower. These Hugoniot temperatures are plotted

vs specific volume in Fig. +.6 for the case of the 15% mix.
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Hugoniots computed on the basis of PTEQ with the pressure

equilibrium curves.
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93



1600

/
/

/
1400 //

/
/

/

/
1200 .

/.

1000/

/

800

/
/

U /

~ 600 -
~/

400

200 I I I I
0 20 40 60 80 100 120 140 160 180 200 220

Shock Pressure (kbar)

Fig. 4.6--Comparison of the shock temperature for a (15%
water) PTEQ mixture to the shock temperatures of the

pure materials.

94



Such behavior of the water and tuff, when in thermal

equilibrium, enhances the possibility that the compressed

water would undergo a phase change (to ice-VII). The extra-

polation of Bridgman's phase transition curve for water
(21)

is superimposed on the plots in Fig. 4.5. Clearly, for the

lower percentage water mixes, an analysis of phase transi-

tion kinetics may be appropriate as the statement that the

Hugoniot "sk-.ts the phase transition line" is not applicable.

In this regard, it shou'd also be noted that increases in

the tuff temperature might have a significant effect on high

pressure phase transitions (at pressure about 380 kbar( 53))

and may also induce the debonding of "nonliquid" water con-

tained within tuff's clay lattice (reported by Stephens,
et ai.(35) ).

4.3.1.2 Release Adiabats

Release adiabats have been calculated for the various

percent water mixtures under consideration up to pressures

of 150 kbar. In general, the isentropes for the PTEQ mixes

lie close to the Hugoniots in the pressure range of interest.

However, there are significant differences between these

results and those computed for pure tuff. As shown in

Fig. 4.8 for the 15% water mixture, the extra energy absorp-

tion due to the presence of the water results in "slower"

unloading of the shocked composite material than in the pure

t,,ff

The exfects of water concentration on the unloading

curves is demonstrated in Fig. 4.8. Three cases (5, 20, 30%

water) are considered wherein the release adiabats are

presented along with the corresponding Hugoniot curve. It

may be readily concluded that as the water concentration

goes up, tuff/water mixtures would exhibit more and more

energy dependence in an unloading process.
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Fig. 4 .7--Release adiabats computed for the 150, water PTEQ
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In Fig. 4.8 the water phase change occurs at pressures

too small tc be shown. It is not evident from these curves

that there is a discontinuity in the p-V trace as the two-

phase thermodynamic region is entered. This is seen in

Fig. 4.9 wherein the release adiabats for 10 and 25% mixtures

are plotted out to specific volumes of 2.5. Essentially,

the phase transition is isothermal, and the water component

acquires energy from the tuff as the pressure slightly de-

creases. For example, in the two-phase region of the 1SL 'oar

release adiabat (10% water mix), the temperature changes by

only .3°C (.1%) whereas the pressure drops by about 2% at

a specific volume (of the mix) equal to 2.5.

There isn't an over-abundance of experimental data to

which the present theory can be compared. In Fig. 4.10, the

135-kbar release adiabat measured by Rosenberg, et al. (5 0 )

for a 15% water/tuff mix (fully saturated) is compared to the

Hugoniot and 135-kbar ,elease adiabat for the 15% (by mass)

PTEQ water/tuff mixture. There is reasonable qualitative

agreement. In fact, the shape of the curves is very nearly

identical. However, the other set of experimental points,(
45 )

plotted in Fig. 4.11, illustrates that the simple homogenized

model may not be appropriate in all cases. (It should be re-

marked that in both sets of experimental release data the

p-V relationship below 80 kbar is difficult to infer from the

eexerimental data). This disparity in experimental results

is' one indication that to fully characterize the effect of

the presence of water in geologic material one will also re-

quire more exact knowledge of the geologic composite itself.

The S3 compacted dry tuff Hugoniot could be slightly dis-
placed (to the left in the p-V plane) to more exactly
reproduce the experimental results.
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4.3.2 Additional Comments

It is evident from the results presented in this

section that a rational calculation of PTEQ states for tuff/

water mixtures has been demonstrated. The computer time to

determine p from a given V and E is approximately 10

milliseconds on the UNIVAC 1108. This is at least an order

of magnitude slower than could be achieved if a table of

equilibrium states were used in conjunction with a rapid

table look-up scheme. (54) Thus, in numerical experiments

wherein core storage capacity is no limitation, such tables

could be readily computed from the PTEQ iteration program.

Still another possibility is that the PTEQ calculations

can be employed as the basis of an analytic model for wet

tuff. In a manner analogous to that presented in Section III,

analytic expressions for the mix could be developed using

the percentage water as an explicit parameter.
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V. I-D COMPOSITE CONFIGURATIONS

5.1 INTRODUCTION

In developing the homogenized equations of state in

the preceding sections the explicit treatment of material

interfaces was avoided. In order to assess the effect of

local material discontinuities, detailed calculation of

stress wave propagation effects in composite materials is

required. In keeping with the philosophy adopted at the

outset of the project, the models for the component materials

of the composite configuration were initially selected to

be very simple and then modified to introduce additional

physical effects. Even if its component materials are linear

fluids a composite medium will disperse a wave by internal

reflections at material interfaces. For a fluid modeled by

a non-linear dependence on the specific volume, p(V), this
"geometric dispersion" will be counteracted by a sharpening

of the wave front provided the bulk modulus increases with

increasing pressure. This is also the situation when

realistic thermodynamic "nodels, p(V,E), are employed. For

non-linear volumetric and thermodynamic models for the

component materials, the dispersion effects will therefore

be complicated by energy dissipation resulting from

irreversible shock heating.

These three fluid models of the component materials

are considered, in this section, for laminated configurations

in which the stress pulse is propagated normal to the

laminates. The component materials represent water, com-

pacted dry tuff and completely saturated wet tuff. As the

dispersion relations for these fluid models are better de-

fined and as more complete material models are developed

it will be fruitful to add to the models treated in the

composite calculations.

Author: T. D. Riney
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In selecting the composite configurations for the

I-D computer calculations it is desirabie to initially

establish a well-defined pulse in a homogeneous material.

The lamina ed composite structure shown in Fig. 5.1 is de-

signed with a left end block of homogenized wet tuff for

this purpose. The midsection consists of N bilaminates

of alternating layers of compacted dry tuff and water. A

right end block of homogenized wet tuff is added so that

the pulse transmitted through the structure can also be

inspected under well-defined conditions. The equation of

state for wet tuff is constructed by imposing pressure

equilibrium, or pressure-thermal equilibrium, between the

water and tuff components mixed in the same water mass

fraction

F1 01 0M Fh p

M +M h p + h p (5.1)
1 2 01 91 02 02

The replacemer4 of the laminated mid-section by wet tuff

provides an associated homogeneous medium and pulse propa-

gation though this material serves as a standard for the

comparison of transmitted pulses.

The 1-D Lagrangian continuum mechanics computer pro-

gram (SKIPPER) that was used for these calculations is in

no way restricted to purely fluid models. Each material

laminate is subdivided into a number of small zones, each

centaining a constant-mass element. Difference equations

expressing conservation of mass, momentum and energy are

solved in conjunction with prescribed constitutive relations

appropriate to each zone material. (55) These normally

include (1) a thermodynamic equation of state describing the

isotropic response of the material, (2) a von Neumann arti-

ficial viscosity to insure computational stability, (3) a

stress-strain relationship describing the deviatoric behavior
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Saturated Wet Tuff

h~iho2Compacted Dry Tuff

X=V for t <t L N

P =0 for t >t 0A h 01+h 0

Fig. 5.l--'Scheinatic of bilaminated composite structure.
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of the material, (4) a flow rule to determine if a zone is

deforming elastically or plastically. The SKIPPER code was

implemented by restructuring and modifying a version of the

RIP code, delloped at S3 under the DASA-sponsored PREDIX

study, (56) from which all subroutines dealing with radiation

had been removed.

In the numerical experiments it is desirable to follow

a pulse through a large number, N, of bilaminates. SKIPPER

is structured to permit the finite difference grid to shift

with the pulse as it propagates through the laminated mid-

section so that calculations are only made in active regions

of the composite structure. At any point in the calculation

an homogenized end block may be introduced on the right-hand

side of the grid and the pulse propagated into it after

traversing the midsection. The calculation may also be

restarted from a point in time prior to the introduction of

this end block, additional bilaminates inserted for the

pulse to propagate through, and then an homogenized right-

hand end block introduced into the grid. By this procedure

it is possible to conserve computer time both by restricting

the calculations to the active part of the laminated structure,

and by avoiding the necessity for repeating the early stages

of calculations in which only N is varied.

120



5.2 LINEAR FLUID MODEL

It is of interest to first consider the case in whichi

the material components are represented as simple linear

fluids

V v
p = A 0 (A, V constants) (5.2)V 0

0

Such an idealized medium does not dezciibe a real material

but it has the convenient property of propagating finite

amplitude waves without undergoing a change of shape. To

see this, consider a permanent wave moving at constant

velocity c into an undisturbed medium, Fig. 5.2. Let0
* denote an arbitrary point on the wave profile where the

particle velocity, pressure, and density are u, p, p

respectively. Then conservation of mass end momentum

yield

p~c -u =p 90 c (=ii, mass swept past
/ 0 point * in unit time)

p = mu

Combining, we get

P(C 0  Pm) =

or

p= p C2 (I -pp /p (5.3)P 0 0

which reduces to Eq. (5.2) upon setting A = p c2 . Since0

(5.3) is obtained for each point *, regardless of the ampli-

tude and shape of the wave, it follows that a steady finite

amplitude wave (in an isentropic process) can only exist for

the highly idealized linear equation of stat,.
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U~ 0

p= 0

p p0

p

Fig. 5.2--Perrnanent wave in a lir-3ar medium.
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5.2.1 Effect of Artificial Viscosity

Lagrangian finite difference codes, including SKIPPER,

use an artificial viscosity, or q-term,

qp(. AX)+ q pc[. AX[, for < 0

q = (5[.4)

0, for V> 0

which is normally added to the hydrodynamic pressure in the

governing equations to permit stable numerical calculations

in the presence of shocks. The quadratic term is required

for the treatment of non-linear material models in which

the wave velocity increases with increased pressure; the

quadratic coefficient oi: q is selected to offset the

associated tendency to steepen the wave front and to smear

the shock front over th 'ee or four finite difference zones.

The linear term damps out spurious oscillations in essentially

uniform flow regions and the coefficient qL is selected on

the basis of numerical experiments. For non-linear materials

the values

q = 1.6 qL = 0.25 (5.5)

have been found to give satisfactory results for a wide range

of pressures and materials, (55)

For a linear medium there is no tendency for the wave
front to steepen to thereby balance the smearing effect of
the artificial viscosity. It is therefore required to inve5-

tigate whether the calculational procedure used in SKIPPER

can indeed iso2ate physically real geometric dispersion effects

from the inherent numerical dispersion due to the artificial

viscosity, zoning, etc. The initial 1-D calculations were

directed toward this question.

123



To isolate the effect of the q-term, the computer code

was applied to an elastic homogeneous medium characterized by

Eq. (5.2) with the following choices for the bulk modulus and

initial bulk modulus:

A = 9.06 x 1010 ergs/cc V = 0.50 cc/g (5.6)0

The medium was 0.7 cm wide and was zoned into 220 zones, all

of width AX = 3.18 x 10 - 3 cm. The pulse of amplitude p0

and duraticn t was introduced at X = 0 by the velocity0

boundary condition defined by:

V = l05 cm/sec t = 0.5 x 10-6 sec (5.7)0 0

producing a pressure of amplitude

P P v c v /A7-= 42.4 kbar (5.8)
0 0 00 0 0

The calculation describing the propagation of this initially

square pulse through the homogeneous medium was repeated for

the following choice of coefficients occurring in Eq. (5.4):

Run No.: 401 402 404 408 410 411 412

(qL / .25): 1 0 .3 1 0 .1 .05

(q /l.6): 1 0 .3 0 1 .1 .03

The first calculation, Run 401, used the values of

q, and q0 commonly employed for non-linear ruedia, Eq. (5.5).

The time variation of the pressure pulse, p(t), propagated

to distances of 0.03 cm (zone 10) and 0.56 cm (zone 175) in

the linear medium are shown in Fig. 5.3. The spreading of

the pulse is severe. The progressive damping of the high

frequency components, corresponding to a continuous rounding

of the initially square pulse, is vividly demonstrated by the

Fourier transform,

P() : p(t) elWt dt
CO 124



PLLSE IN ZONE 10

-TitS~

Fig.. ~ . .......oa 1

I X -----on--17
Fig.~~~__ _,. 5.-Efc of ariica vicst ( .. .6 ._V0

on he uls trnsmtte thoug a iner mdXu
to he wo ndiate poitins

0. 1 41 125 O ."Tt1



of these two transmitted pulses, Fig. 5.4. lnIs attenuation

of the high frequency components is due to the numerics en-

tirely. The second calculation, Run 402 with no artificial

viscosity, resulted in numerical oscillations.

None of the choices of q and qL attempted was

satisfactory. One must compromise between the oscillations

in the pulse that are acceptable (small q-coefficients) and

the spreading of the pulse as it propagates (large q-coeffi-

cients). On this basis the choice for Run 412 (q0 = 0.48

and qL = 0.0757) is considered preferable to the others

for a linear medium.

5.2.2 Laminated Composite

Even though the q-method cannot accurately treat linear

fluid models, SKIPPER was used for one calculation for the

laminated structure, Fig. 5.1, in which the materials were

modeled in the form of Eq. (5.2).

For the materials in the laminated mid-section, the

pressures are given by

V V V -V
A o1 1 P2  =A 0 2 2 (5.9)P1 V p 2 V '

1 02 0 2

The homogenized model for the end blocks is obtained by

assuming that these materials are mixed in the mass ratio F,

Eq. (5.1). The assumption that the two components of the

mixture are in pressure equilibrium then determines the
constants V and A required in the linear model of the end

blocks (see Section 4.2):
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- - - -ww - ip

V 0 FV + (1-F) V (5.10)
0 01 02

V
A FV (1-F)V (5.11)

A A
1 2

The bulk moduli of laminate materials 1 and 2 were,

respectively, selected to match the Raleigh line of the

Hugoniot curves of water and compacted tuff at 50 kbar.

These values are listed in Table 5.1 together with the

associated parameters for the homogenized end blocks that

were computed, (5.10) and (5.11),

TABLE 5.1

PARAMETERS USED IN THE CALCULATION FOR A COMPOSITE
CONFIGURATION OF LINEAR FLUID MODELS

Material A (ergs/cc) pa(g/cc)

Water 1.524 x 10"' 1.0

Compacted
Dry Tuff 2.548 x 10"1 2.4

Saturated
Wet Tuff
(F = .15) 2.079 x 10'' 1.9835

The initial widths of the layers of water and com-

pacted tuff in each bilaminate were

h = 0.0297 cm h1 0.0703 cm (5.12)
01 02

corresponding to a bilaminate width and water mass ratio of

A = 0.1 cm F = 0.15 (5.13)

The end blocks were chosen to be 0.25 cm wide and the mid-

section consisted of ten bilaminates, N = 10.
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The input loading was defined by the imposed ,;elocity

v = 7.786 x 104 cm/sec t = 0.5 x 10-6 sec C514)
0 0

producing a pressure pulse of amplitude and velocity

Po vo/i = 50 kbar c = 0.324 x 106 cm/sec

in the left end block. The initial, pulse length is equivalent

to c t /A = 1.62 bilaminates. Acoustical matching of the00

computational Lones was realized by using 5 zones per water
laminate, 14 zones per compacted tuff laminate, and 51 zones
in each saturated wet tuff end bloc!: for a total of 290 zones.

In Fig. 5.5 the pulse propagated to two positions in
the left and right homogenized end blocks of wet tuff are

shown. Although the details of the calculation in the

linearized models are known to be smeared by the numerics,
tuie gross effect of the propagation through the ten bilaminate

midsection is apparent. Since the rise time of the trans-

;qitted pulse far exceeds that attributable to the numerics
it must be due to geometric dispersion. The pulse is also

lengthened and the peak pressure is actually increased
above the initial value.

The incrcase in the amplitude of the pulse transmitted
through the laminated structure is a consequence of the par-

ticular combination of impedance mismatch of the laminates,

laminate widths and pulse length. The complex form of the
pressure profile, inside the laminated midse.tion is il-
lustrated at three instants in time by plots in Fia. S,6.

In Fig. 5.6(a) the pulse is amplified upon propagating from
the left end block into the first tuff layer. The trough

apparent in Fig. 5.6(b) occurs at the first water layer.
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Pulse at Cycle 300 Pulse at Cycle 400

1 .0000.0 000*I20

C-,U 4.0000.2

0.0000 3.0000-01 3 .00-L I.00o 0.0000 S.0000.01 2.0000.02 3 .5000-Ot
Fig. 5.6(a) Fig. 5.6(b)

6.0000-30 -

0D .0000.2

0.0000 3.0000.01 1.0000.02 t.ooo .0000-08 e.1000.00

Fig . 5.6 (c)
Fig. S.6--Pressure profilz-s at three instants in time forthe linear laminated structure considered. The numberson the horizontal axes denote the grid zone number.
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In Fig. 5.6(c) the profile is shown just prior to entering
the right end block.

The calculated time of arrival of the pulse at each
zone of the configuration is depicted in Fig. 5.7. The wave
velocity for the homogenized wet tuff, Eq. (5.16) may be used
to predict tho time of arrival of the pulse at the rear of

the first end block, the rear of the laminated portion of
the structure, and the rear of the second end block may be
predicted from this ialue. These values (0.77, 3.86 and

4.63 psec respectively) are denoted by points 1, 2 and 3
in Fig. 5.7. The agreement with the calculated value at

point 2 shows that the substructure of the laminate has
negligible effect on the average wave speed in this linear

problem, although it was seen to significantly affect the

transmitted pulse shape.

If one simply divides the length of the laminated

structure by the total times for a signal to cross each layer
the corresponding estimate for the mean propagation velocity
is given by = 0,341 x 106 cm/sec. This estimate would0

predict that the signal would arrive at the rear end block
at 3.71 sec which does not agree with the calculated arrival

time at point 2 in Fig. 5.7.
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5.3 VOLUMETRIC FLUID MODELS

5.3.1 Preliminary Considerations

The SKIPPER code was used to study wave propagation

in the laminated structure, Fig. 5.1, when each component

is represented by a non-linear volumetric fluid model of

the form

p = AP + BP.2 + F11; = V /V-l (5.16)

For the water and compacted dry tuff laminates the parameters

are based on fits to Hugoniot data for pressures below 200

kbar (Eqs, 2.11 and 3.3); the condition of pressure equili-

brium was imposed on those fits to construct an associated

homogenized equation of state for the saturated wet tuff end

blocks with water mass ratio of F = .15 (Eq. 4.23). The

parameters for the components of the laminated structure of

volumetric fluids are listed in Table 5.2.

TABLE 5.2

PARAMETERS USED IN THE CALCULATIONS FOR COMPOSITE
CONFIGURATIONS OF VOLUMETRIC FLUID MODELS

Material A(ergs/cc) B(ergs/cc) F(ergs/cc) p (g/cc)

Water 2.19534 x 10 j 5. 2138 xl0'0 2.3181 x10'' 1.0

Compacted
Dry Tuff 2.4576 x1011  2.98697 x10 1  6.14886 x10'1 2.4

Saturated
Wet Tuff 5.96758 xlO0  6.31245 xl01 -2.60228 x10 11.9835

(F = .15)

The dimensions of each bilaminate (h01 = 0.0297 cm,

h02  0.0703 cm) and the mass function of the water (F - 0.15)
werer the same as for the calculation for the structure with

linear models, Eq. (5.12) and (5.13). The amplitude of the
aprlied velocity loading was unchanged but the duration of
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loading was varied,

v 7.786 x 104 cm/sec t varied (5.17)0 0

This velocity loading introduces a shock of velocity and

magnitude

Dwt = 0.367 x 106 cm/sec P(Vt = 57.1 kbar (5.18)

in the volumetric fluid model for the left end block of wet

tuff.

Preliminary calculations were made to test the numerics

of SKIPPER for the non-linear volumetric models. The usual

choice for the coefficients in the q-term, Eq. (5.5), was

found to maintain the desired three-zone spread for the shock

front propagating in the homogeneous wet tuff. Two calcula-

tions were made for the laminated structure with N = 10 and

t = 0.5 x 10- 6 sec to test the effect of resolution. In
0

one, the zoning was the same as it was in the earlier calcu-

lation for the linear fluids: 5 zones in each water laminate,

14 in each compacted dry tuff laminate, and 50 in each

saturated wet tuff end block. In the other calculation, the

number of zones was doubled but the results were essentially

identical. In subsequent calculations 5 + 14 = 19 zones
have been used in each bilaminate if t > 0.5 X 10- 6 sec.

and 38 zones in each bilaminate for t < 0.5 x 10-6 sec.
0

5.3.2 Pulse Propagation Normal to Laminates

In the SKIPPER studies of laminated structurL with

a large number of bilaminates (N = 30) the value of t was
0

varied while keeping the other parameters fixed. The purpose

is to study the effect of the ratio of the length of the in-

put pulse length to the width of the bilaminate of the
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structural midsection,

D ot (5.19)
A

Calculations were completed to N = 30 for three values of

finite pulse duration, t = 0.25, 0.5 and 1.0 x 10-6 sec.

These correspond, respectively, to input pulse lengths of

0.94, 1.84 and 3.67 bilaminate widths.

A calculation was also made in which the midsection

was replaced by the same homogenized wet tuff as the end

blocks (F = 0.15). Although the input pulse was t = 0.5,0

the results can be used as a standard of comparison for

each of the three laminated calculations for the laminated
midsection by invoking hydrodynamic scaling.

In Fig. 5.8, a series of computer plots are shown

depicting the pressure profile of t,e pulse transmitted to

four mass depths into the laminated structure for the case

where t = 0.5 x 10- 6 sec,
0

= 1.84 CS.520)

The pulse is shown as its front reaches depths corresponding

to 10, 15, 25, and 35 bilaminates. At these instants, the

pulse shape is quite irregular, but a general form is dis.-

cernable from one instant to the other. The front of the

pulse is rounded near its peak by the dispersion effect of

Lhe laminates, and the pulse is divided into two principal

parts. The corresponding pressure profiles for the homo-
geneous wet tuff medium is superimposed for the first three

of these plots. The substructure of the laminated composite

results in an amplification of the peak pressure of the

transmitted shock. The velocity of propagation is also

increased.
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Fig. 5.8--Pressure profiles in a water/tuff laminated structure

shown at instants when the input puJ~se, of duration
0.5 )Jsec, has propagated to deptns Of

(a) 10 bilaniinates, (b) 15 bi.laminates.
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t 0= 0.5 P~sec, has propagated to depths of

(c) 2S bijlaminates, (d) 35 bilaminates.



An alternate method of examining the pulse propagated

through the laminated structure is to allow the pulse to be

transmitted into an homogenized wet tuff end block on the

right side. In Fig. 5.9 computer plots are shown depicting

the pressure pulse transmitted to a fixed distance into an

homogenized wet tuff end block after being propagated through

a laminated midsection of 10, 15, 20 and 30 bilaminates,

respectively. Here again, the general shape of the trans-

mitted pulse, p(t), is seen to be preserved and the ampli-

tude and velocity of the transmitted pulse is significantly

greater than if it were propagated entirely through an

homogenized wet tuff medium of the same total width. This

is clearly demonstrated in Figs. 5.9(a) and 5.9(c) by super-

imiposing the corresponding p(t) for the homogenized wet

tuff medium onto the computer plots for the laminated

structure.

In Fig. 5.10 the pressure pulse of initial duration

t = 1.0 x 10- 6 sec,
0

= 3.67 (5.21)

is shown after being transmitted through the laminated mid-

section into an homogenized wet tuff end block on the right

side of the structure. The transmitteu pulse, after 10 and

30 bilaminates, is compared with the corresponding (scaled)

pulse transmitted through an homogenized medium. The

amplification of the pulse in the composite structure is

again observed.

In Fig. 5.11 the pressure pulse of initial duration

t = 0.25 x 10"6  sec,
0

= 0.94 (5.22)

is shown after being transmitted through the midsections
consisting of 15 and 30 bilaminates to a point in a right

end block.
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Fig. 5.9(b)--15 bilaminates
Fig. 5.9--Pressure pulse transmitted into an homogenizedwvet, tuff end block after propagation through a laminatedwater/tuff midsection of indicated number of bilaminates.The input pulse is of duration t 0=o.S Psec.
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Fig. 5.11(b)--15 bilaminates

numberFig of.water/tu0 bilaminates h nu us ~o

duration t 0= 0.25 PJsec.
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A summary of these calculations is given in Fig. 5.12

which compares the peak pulses transmitted to the right hand

end block with the peak pressures calculated for the homo-

genized wet tuff medium. It was obse-''ed earlier that the

amplitude of the pulse transmitted through the laminated

composite was greater than for the homogenized medium with

the corresponding load duration, t = 0.5 x 10-6 sec. It0

is seen from Fig. 5.12 that the composite medium transmits

a higher pressure amplitude even for the shorter duration

of load, t '= 0.25 x 10-6 sec.0

By invoking hydrodynamic scaling it is possible to

compare these results on the basis of the same load duration,

t = 0.5 x 10-6 sec, but for varying values of the sub-struc-0
ture of the composite medium. The result of this transforma-

tion of the calculations is shown in Fig. 5.13. The pressure

attenuation for all three values of the ratic are ob-

served to lie on essentially the same curve. The attenuation

of the pulse in a laminated composite of non-linear fluids

is relatively insensitive to the dimensions of the substruc-

ture in the range studied. On the other hand, the attenua-

tion for the composite medium is far less severe than for

the homogenized medium, at least for the substructure

dimensions studied.

5.3.3 Step Pulse Normal to Laminates

in seeking an explanation for the greater amplitude

of the pulse propagated through the composite media, Fig. 5.13,

it is desirable to treat the laminated structure when sub-

jected to a step pulse, to CO)

= I (5.23)

The assumption that pressure equilibrium would be attained

at some distance behind the 5hock front in the laminated
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midsection is equivalent to assuming that the final state

is that determined by imposing the Hugoniot condi-tions on

the equivalent homogenized wet tuff medium. From (5.17)

and (5.18) the expected equilibrium values for the particle

velocity, shock velocity, and pressure behind the front are

as follows:

Ue = 0.07786 cm/psec De = 0.367 cm/psec

Pe = 57.1 kbar (5.24)

in Fig. 5.14 pressure vs mass depth plots are shown

at two instants for a SKIPPER calculation in which the pulse

has been propagated through the homogenized left end block

and twenty-four water/tuff bilaminates in the midsection of

the structure. In Fig. 5.15 the time variation of the

pressure is shown at the center of the first and sixteenth

water laminates. For the first water laminate in the mid-

secticn, Fig. 5.15(a), the mean pressure of the oscillations

is indicated by the dashed line, p = 55.5 kbar. This devia-

tion from eventual equilibrium pressure is due to the non-

linearity of the p(V) relations for the laminate materials.

The spatial periodicity of the oscillations about the

value F in Fig. 5.15 corresponds to a width of two bi-

laminates. The time variation of the oscillations is 0.47

psec as illustrated in Fig. 5.15. A discussion of the

approximate periodicity of the oscillation will be given in

Section 6.3., The amplitade of the oscillations continuously

decreases with time as a consequence of the conversion of

the kinetic energy into heat energy.
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Fig. 5.14--The pressure profile produced by step loading the

laminated structure to the indicated time.
The water and tuff components are

described by non-linear
volumetric fluid models.
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5.4 THERMODYNAMIC FLUID MODEL

If a material is shocked from p, V to p, V
1 1 2 2

and then the compression relieved back to V the residual

heat due to the shock processing is

V
E pI+ p ) (V2 - -fVp dV(_,)

When a non-linear material oscillates about some equilibrium

pressure, Pe, there will be a corresponding conversion of

kinetic energy into heat by this mechanism during each

oscillation.

For a volumetric fluid the pressure release is forced

to occur along the Hugoniot since variations in internal

energy from th, .. ,oniot value are ignored in computing the

pressure, p = p(V). The amount of kinetic energy dissipated

into heat during an oscillation (per gram of processed mate-

rial) is represented in Fig. 5.16(a) by the area between the

Rayleigh line and the Hugoniot curve. It is this periodic

dissipation mechanisms that causes the attenuation of the

p(t) curves shown in Fig. 5.15. The final equilibrium

pressure is the same as that determined by imposing the

Hugoniot conditions on the associated homogenized volumetric

... tuff medium, i.e. Eq. (5.24)

For a realistic thermodynamic fluid,

p = p(V, E) E = E(V, T) (5.26)

the permissible (p, V) points are not confined to the

Hugoniot (1 ) through (0, V ) since changes in the internal
0 0

energy are reflected in the value of the pressure. The

schematic in Fig. 5.16(b) illustrates the path that would
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Fig. 5.16--Schematics showing (a) hatched area representing
the amount of kinetic energy (per gram) converted into heat
during the indicated oscillation of a volumetric fluid mate-
rial, (b) the locus of p-V points assumed by a thermodynamic
fluid subjected to oscillatory loading, and (c) effect of a
double shock.
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be traced out by such a fluid undergoing repeated shocking
and unloading. Starting at point (p , V ), which in1 1

general will not lie on H , the material particle is shocked
0

along a Rayleigh line to a point (p2, V ) which lies on

H, the Hugoniot which is centered on (pI, VI). The com-

pression is released along an adiabat through (p2, V ) to

(p , V ) with a net gain in internal energy AE given by

Eq. (5.25). The augmented internal energy will tend to

increase the mean pressure during the next oscillation.

The amplitude of the excursions from the increasing mean (to

the asymptotic value Pe) may be expected to decrease because
of this conversion of kinetic energy to heat. Subsequent

shocking and unloading, along the appropriate Rayleigh lines

and adiabats, will produce a p-V path which may be expected

to move to the right of the Hugoniot (H) through (p , V ),1 1

as indicated schematically in Fig. 5.16(b).

If the material particle reaches the shock pressure

Ps in a single shock it will lie on H and the associated
0

internal energy is

E p s (V " V S) (5.27)

If, on the other hand, thd particle reaches the pressure

PS in two successive shocks as shown in Fig. 5.16(c), the

internal energy is only

E-2 a 1 (V s) + h (P +P S1)(VS 1 -VS2) (5.28)

In this case the point (Ps' Vs) lies on the Hugoniot, H, and

is to the left of the Hugoniot H0 . Subsequent oscillations,

such as indicated in Fig. 5.16(b) may or may not be suffi-
cient to move the final equilibrium point (pe' Ve) to the

right of the H curve. In any case the final temperature0

in the doubly shocked material will be less than if it reached
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its maximum pressure in a single shock. For a highly com-

pressible material such as water at low pressure, this can

be a very significant effect.

The calculation for a bilaminated structure subjected

to the step pulse loading

v = 7.786 x 104 cm/sec t > 0
0

was repeated for the case where the water and tuff layers in
the midsection were represented as thermodynamic fluids,

Eq. (5.26). The equations of state for the water and com-

pacted tuff laminates were the dual forms developed in

Sections II and III respectively. Only the condensed states

of water occur under the present step loading. In order to

allow direct comparison with the correspcnding calculation For

laminates modeled as volumetric fluids, Eq. (5.23), the

left end block through which the pulse is transmitted before

entering the midsection was again modeled as an homogenized

wet tuff volumetric fluid. The second form of the water and

tuff equations of state, Eq. (5.26), is not required for the

wave propagation calculations with SKIPPER, but it was used

to calculate the temperature in the water and tuff laminates.

In Fig. 5.17 the variation of the pressure and the

temperature with time are both depicted at a point located

at the center of the first water layer in the midsection

of the water/tuff bilaminate structure. Comparison of

Fig. 5.17(a) with Fig. 5.15(a), shows that the substitution

of the thermodynamic fluid models for the water and tuff has
had only a small effect on the pressure for this particular

situation. The mean pressure is reduced from p = 55.5 kbax

to p 1 53.2 kbar so that the final expected final equili-

brium pressure is approximated by

Pe 57.1 - 2.2 = 54.9 kbar (5.29)
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Fig. 5,17(a)--Pressure vs time

Fig. 5.17(b)--Temperature vs time

Fig. 5.17--Time variation of (a) pressure, and (b) temnperature
at the center o!i the first water laminate in the

extended bilaminated structure subjected
to a step pulse. The laminates are

treated as thermodynamic fluids.
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In Fig. 5.171"b) the temperature in the first water

layer is also seen to approach an asymptotic value. The

same is true for the tuff laminates. Examination of the

numerical data has led to the following estimates for the

equilibrium values for the individual laminates:

Water: Te = 473 OK Tuff: Te = 477 OK (.5,30.)

No heat transfer was permitted in the SKIPPER calculation.

The values are very different from those that would be

anticipated from homogenized equations of state.

For the imposed velocity loading the corresponding

homogenized PTEQ equation of state for wet tuff, mass

fraction F = 0.15, would yield the following values for

the equilibrium particle velocity, shock velocity, pressure

and temperature:

u= 0.07786 cm/psec D* = 0.365 cm/psec
e e

(S.31)

Pe = S6.2 kbar Te = 526 OK
ee

On the other hand, if the individual tuff and water com-

ponents were shocked directly to the equilibrium pressure,

Eq. (5.29), the corresponding Hugoniot temperatures would

be

(PH = 54.9 kbar) Water: 574 'K

(5.32)
Tuff: 487°K

The SKIPPER results, Eq. (5.30), at first sight seem in-

compatible with these values since a much higher temperature

might be expected in the water laminates in the absence of

any heat transfer to the tuff laminates. This discrepancy,

however, can be exp~ained in terms of the substructure in

the laminated composite.
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The front of the step pulse enters a water laminate

by crossing an interface from a compacted dry tuff laminate.

In the tuff the pressure will be on the order of 70 kbar.,
e.g., Fig. 5.14, but because of the impedance mismatch at the

tuff/water interface, the initial shock transmitted into the

water will be only about 35 kbar. Subsequent reflection

of this first suock at the next water/tuff interface will

essentially double the shock strength. The fact that the

water is shocked in a two-step process is verified by

the inflection in the rise portion of the p(t) plot for

a particle located at the center of the first water layer,

Fig. 5.17(b). A rough estimate of the difference between

the single and double shock Hugoniot energies, E - E can be1 2

made by neglecting the difference Vs - Vs2 in Eqs. (527)

and (5.28) and considering the water to be shocked to 35 kbar

and Then to the expected equilibrium value, say 54.9 kbar.

The double shocking reduces the internal energy at the mean

pressure by about 2/3 to 3/4 of its single shock value. This

is of the required magnitude to explain the apparent dis-

crepancy in the equilibrium temperature of the water layers.

The tuff layers appear to undergo a single shock in reacbing

their initial shocked state, but even it it were aoubly

shocked there would be mich less effect than for the more

compressible water.

This simple calculation for a step pulse has shown

that the temperature attained in a composite material can

depend strongly on its substructure.
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5.5 FOURIER SYNTHESIS METHOD

The artificial viscosity term in SKIPPER was found

to damp out high frequency components of waves propagating

in linear materials. To avoid this difiiculty a Fourier-

synthesis code, WARP, has been developed to study pulse

propagation in any linear composite material for which a

dispersion relation is known, i.e., a material for which

the velocity of propagation as a function of the wave length

is known for steady harmonic waves. The pulse is decomposed

into its harmonic components, the phase change experienced

by each component calculated, and then the contributions of

all the resulting harmonics summed to predict the transmitted

pulse. Since the input dispersion relation can be deter-

mined by either theoretical or experimental means, the WARP

code offers a useful tool for studying -the influence of the

material and dimensional parameters on the dispersion of

a pulse transmitted through a linear composite material.

5.5.1 Analysis

In the Fourier synthesis of a pulse transmitted through

a medium from the di.spersion relation fcr the medium, one

first takes the transform of the incoming pulse of duration

0< t< t
0

t

P (w) = F~p (t)] 'p(t) e t dt (5.

To each harmonic component, P (w)dw, the medium will act

as a filter described by a transfer function T(w) and the

transform of the transmitted component is

P (W) P (w)T(w) (5.34)
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The output pulse is then simply

-COp~)= F'1 [p (w)] L. p1w, T(w)e i mt dw (5.35)

In general, the transfer function T(w) will be of the form

T(w) = A(w)eie(W) (A, 6 real) (5.36)

where A(w) is the attenuation factor and 0 is the phase

shift. Alternately, T(w) can be written as

T(m) = e i # m  (5.37)

where

0 = Real part of A = exp (Imaginary part of 0) (5.38)

The dispersion relation for the medium, assumed known,

provides an expression for the wave number, k = w/C, for an

harmonic dilatatio:% wave traversing the medium. Here

C = C(M) is the a3sociated phase velocity. The corres-

ponding transfer function for a length L of the laminated

medium is defined by (5.35) and

= L

O(w) = k()L =w (5.39)

If the given dispersion relation admits the possibility of

complex solutions for R(w), harmonic components will in

general experience both attenuation and phase shift, Nor-

mally, hcwever, there will be frequencies for which 4(w)
is real and for these components there will be no attenua-

tion experienced.
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Substitution of (5.37) into (5.33) yields

(t) P (w) exp[iw(CFT+ t) dw (5.40)

5.5.2 The WARP Computer Program

A WARP computer program was constructed to evaluate the

output pulse from (5.J8) using any prescribed expression for

the. phase velocity, C(w). The Cooley-Tukey algorithm for

discrete Fourier transformation is used in this code. (5 7)

This method, by its speed and accuracy, is superior to al-

ternate algorithms for calculating Fourier transforms.
(58)

There is a possibility of enhancing the operation of -the

Cooley-Tukey algorithm by the use of a base 8 iteration, (59)

but this is not required at the present time.

The WARP code has been tested for the non-dispersive

propagation of a pulse, and simple dispersion relations are
being tested in it currently. In particular, calculations

have been initiated using the Rytov (60) solutions for the

phase velocity, C, of a steady harmonic wave propagating in

an infinite medium composed of alternating laminates of

two elastic materials. His solution applied to treat the

propagation of an harmonic dilatation wave in a direction

normal to the layering becomes

cos[w(h +h )/C] = cos[wh /c ] cos[w h /c1 2 1 1 2 2

1+12 sin[w h /c] sin[w h /c ] (5.41)
21 ~22
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Here h and h are the laminate materials, I is the
1 2

impedance ratio defined by

I 1 2 +211 (5.42)

c ( +Iz )
2 1 1

and c , c are the dilatation velocities of the elastic
1 2

constituents,

A +21C A 2+212
c L ' c 2 2 (5.43)

Parametric studies are planned to examine the influence of

the material and dimensional parameters on the geometric

dispersion of a square pulse propagating through a structure

of alternating elastic laminates.
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VI. 2-D COMPOSITE CONFIGURATIONS

6.1 INTRODUCTION

In the preceding calculations, only waves propagating

normal to material interfaces were considered; no motion

was permitted parallel to the tuff/water bilaminate planes.

In this section the opposite situation, in which the wave

propagates in the direction of the bilaminates, will be

treated. In addition, the intermediate case of a wave pro-

pagating through a tuff matrix with periodic parallel pores

filled with water will be considered. Each of these involves

deformation in two spatial dimensions and numerical solutions

were obtained using the 2-D Lagrangian continuum mechanics

computer program CRAM.

The pumerical technique employed in CRAM is an exten-

sion to two space coordinates of the basic finite difference

formulation used in the 1-D SKIPPER code. Shocks are approxi-

mated by the von Neumann artificial viscosity method.
(5 6)

CRAM can be used to treat multi-material configurations in

either cylindrical (2.-D axisymmetric) or rectangular (2-D

planar) geometry. A variety of choices for the constitutive

relation is available for each component material. The code

has been previously applied to studies of structural response

to energy deposition (61) and armor penetration. (62)

Author:T. D. Riney
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6.2 WAVE PROPAGATION PARALLEL TO BILAMINATES

6.2.1 Simplified Analytic Solutions

Two analytical treatments have been presented for

approximating the Hugoniot of a laminated composite in which

the shock propagates in a direction parallel to the material

interfaces. Tsou and Chou (63) have considered the case in

which the two materials are assumed to be firmly bonded to-

gether and Torvik (64) has considered the situation in which

there is no bond. The latter case is more appropriate to

the situation in which one of the laminates is water and it

is of interest to compare his simplified theory with the

detailed calculation using the CRAM computer code.

The left boundary of the composite has a constant

velocity x = v imposed (Fig. 6.1(a)); because of symmetry0

it is only necessary to consider the section shown in

Fig. 6.1(b). Torvik assumes that a steady shock front is

eventually attainec' which propagates at a constant velocity

D in the two materials. The transition region (S in

Fig. 6.1(b)) of two-dimensional flow is assumed to be

followed by steady one-dimensional flow, and the Iugo-niot

jump conditions may be written which account for the change

in the thickness of each material laminate. Pressure equili-

brium is assumed behind the transition region and the

following relations may be written (i 1, 2);

h0i Poi D = hfi Pfi(D-u.) (6.1)

P(hoi + hfi)= 2hoi poi Dui (6.2)

p = Ai + Bi.? + Fii p i =fi 1 (6.3)

Symmetry demands equality of the sums of the initial and
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Compacted Dry Tuff

Water

Fig. 6.1(a)

hh

Fig. 6.1(b)

Fig. 6.1--Laminated structure subjected to velocity step
loading at left boundary. Subscripts 1 and 2 denote

water and compacted tuff, respectively.
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final laminate thicknesses

h 01+ h = hf + hf (6.4)

and the velocity loading is replaced by the averaged boundary

condition

u + uhf2 = v(hf + hf2 (6.5)

In writing Eq. (6.3) we have assumed that the compacted

tuff and water laminates, and the associated homogenized wet

tuff material, are non-linear volumetric fluids. The asso-

ciated constants in the equations of state, the mass fraction

of the water in the composite (F = 0.15), and the dimensions

of the laminates (h = 0.297 cm, h = 0.0703 cm) are all
0! 02

assumed to be the same as for the calculations presented in

Section 5.3, i.e., Table 5.2.

The above system of eight equations has been evaluated

using a multi-dimensional Newton-Raphson method with the re-

quired funccional derivatives computed numerically. The pre-

dicted shock pressure as a function of the imposed velocity

loading, v , is depicted in Fig. 6.2 for a water/tuff laminate

in which the mass fraction of water is F = 0.15. Curves
depicting shock pressure vs v for the associated homogenized

- 0
wet tuff and for the isolated water and compacted tuff com-

pone.-t materials are also shown in Fig. 6.2 for comparison

purposes. The corresponding curves showing the pressure as

a function of the shock velocity, D, are presented in Fig. 6.3.

The calculation of the Hugoniot for the homogenized

wet tuff equation of state assumes there is no diffusion of

the water through the tuff. Since relative motion is per-

mitted in Torvik's laminate model, there is less constraint

on the materials and a smaller pressure is to be expected

when using this model. This is seen to be the case by the

results in Figs. 6.2 and 6.3.
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Fig. 6.2--Predicted shock pressures for a water and compacted
tuff composite (F= 0.15) compared with the values for the iso-
lated components at indicated magnitude of velocity loading.
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Fig. 6.3--Pre~lcted shock pressure vs shock velocity curves
for a water and compacted tuff composite (F = 0,15) comparedwith the corresponding curves for the isolated component

Mat rials.
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The laminate model allows for a change in the thick-

nesses of the water and tuff laminates during their traversal

of a transition region at the shock front. The predicted

relative changes in the water and tuff laminate widths as

they traverse the shock transition region are shown in

Fig. 6.4 for F = 0.15. At an imposed velocity v > 0.7
0

cm/Psec the water layers increase in thickness and the com-
pacted tuff layers decrease in thickness by a corresponding

amount. The converse is true for v < 0.7 cm/Psec. This

cross-over velocity is near the value for which the CRAM

run was made.

6.2.2 Detailed Computer Solutions

Torvik's simplified analysis of a shock wave propa-

gating parallel to the water/tuff laminates is based on the

assumption that a constant steady-state shock and transition

region are attained. It is of interest to see if these

basic assumptions are valid.

The 2-D Lagrangian CRAM code was used to calculate the

full time-dependent flow induced in the water/tuff laminated

medium, Fig. 6.1(a). The constant-5 in the equations of state

for the volumetric fluid models for the water and tuff com-

ponents, and the dimensions of the laminates, are the same

as in Table 5.2. The configuration was loaded by a longi-

tudinal step pulse by subjecting the left boundary to the

velocity

v = 7.786 X 104 cm/sec (t > 0). (6.6)0

The section of symmetry between the mid-planes of adjacent

tuff and water laminates, zorresrionding to k = 1 and

k = 16 grid lines in the finite difference mesh, were

treated as reflective boundaries and the interface between
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Fig. 6.4--Predicted relative changes in the widths of the
laminates behind the steady state longitudinal shock in a

water and compacted tuff composite (F= 0.15).
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the layers was treated as a slip surface to permit relative

motion between the tuff and water, Fig. 6.5.

The sequence of pressure contours shown in Fig. 6.6

illustrates the formiation and propagation of a steady shock

front. Initially, the shock velocity in the tuff is greater

than that in the water, t = 0.05 and 0.13 psec. An essen-

tially steady front is finally obtained, however, in which

the shock front in the water layer has a slight lead over

the front in the tuff, t = 0.34, 0.45 and 0.55 psec.

The attainment of a steady state shock is verified

by plotting the time variation of the position of the frodt

at the mid-plane of the tuff layer (k = 2) and the mid-plane

of the water layer (k = 16). This information has been

extracted from the CRAM data and is plotted in Fig. 6.7.

The numerical data are seen to converge towards the curve

calculated from the simple steady-state water/tuff laminate

model, D = 0.388 cm/psec. The homogenized wet tuff model

is seen to undc:-estimate the shock velocity, Dwt = 0.367

cm/sec.

The location of the shock front is denoted by S in

the sequence of CRAM velocity field plots shown in Fig, 6.8.

Near the loading surface (left boundary) the tuff is contin-

uously pushed upward to fill the void left by the water which

rushes to the right with a horizontal velocity component

much greater than that of the tuff. In this region the CRAM

finite difference mesh is seen to be severely distorted.

Near the shock front, however, a steady-state situation is

attained in which there is very little vertical motion, the

velocity vectors for the mesh vertex points lie essentially

on the horizontal grid lines. Just behind the shock there

is only a very small downward velocity component in the

tuff. This is predicted by the simple water/tuff laminate

theory which predicts that the tuff laminate's thickness
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0.05 psec

0.13 psec

(/J 0.34 psec
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0.55 p.sec

Fig. 6.6--CIRAM pressure profiles showing the 20- and 40-kbar
isobars near the shock front at indicated times.
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Fig. 6.7--Position of the shock front computed by CRAM
compared with the predictions based on the simple com-
posite models (F= 0.15). Also shown are the positions
for the isolated component materials if subjected to

the same velocity step loading.
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will be decreased less than one percent from its initial

value for v = 0.07786 cm/psec, Fig. 6.4.
0

The horizontal velocity components at the mid-planes

of the tuff (k = 2) and water (k = 16) laminates are plotted

in Fig. 6.9 at three stages of the CRAM calculation. Points

indicating the values predicted by the steady-state laminate

theory (u = 0.132 cm/psec, u = O.ua 44 cm/psec) have also

been inserted for comparison. The predictions are in good

agreement with the CRAM calculations near the shock front.

In each plot the point of intersection of the two profiles

locates the position of the loaded surface at that instant

in time.

In Fig. 6.10 the pressure profiles along the mid-planes

of the tuff and water laminates are presented at the same

three instanLs in time. In each plot, points have been in-

serted indicating the amplitude and position of the shock

front predicted for isolated water, isolated compacted dry

tuff, homogenized wet tuff, and the water/tuff laminate if

subjected to the same step velocity loading, Eq. (6.6). The

prediction of the simple laminate theory, p = 50.9 kbar, is

seen to give good agreement with the CRAM calculations near

the shock front.

The laminate model does not treat the region near the

loading surface. The CRAM results there become increasingly

inaccurate due to the large distortions of the finite

difference mesh, but this difficulty has not affected the

calculations near the shock front.

Loading parallel to the planes of a laminated compo-

site represents the most severe test of the applicability of

the homogenized wet tuff model for a step pulse. We have

seen that the steady-state laminate theory accurately pre-

dicts the shock characteristics of the laminate, at least

for the conditions for which the CRAM calculation was made.
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For loading normal to the laminates, no relative motion of

the water and tuff is possible and the predictions of the

homogenized wet tuff model accurately represent the eventual

steady shock conditions (see Section 5.3.3). Consequently,

the region between the water/tuff laminate and the homo-

genized wet tuff curves in Figs. 6.2 and 6.3 appears to

represent the range of variation of the Hugoniot of a water

and compacted dry tuff composite (F = 0.15). These observa-

tions are based on calculations in which the material models

for the components are non-linear volumetric fluids. From

the discussion in Section 5.4 it is clear that the corres-

ponding curves for thermodynamic fluid components may not

enclose the equilibrium Hugoniot states of the composite.
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6.3 WAVE PROPAGATION TRANSVERSE TO PARALLEL PORES

6.3.1 Computer Solution

The 2-D Lagrangian CRAM code has also been used to

calculate the propagation of a step pulse through a compacted

tuff matrix with periodic parallel pores that are filled with

water, Fig. 6.11(a). The water and tuff responses are again
described by the non-linear volumetric fluid models used in

Section 6.2, and the pulse is generated by imposing the velo-

city loading given by Eq. (6.6). The periodicity normal to

the direction of propagation is the same as for the laminated

structures that have been considered, A = 0.1 cm. The sides
of the square cross of the pores are a = 0.05 cm and the

periodicity in the trainsverse direction is selected,

X = 0.084 cm, so that the mass fraction of the water is the

same as for the laminated structure, F = 0.15. The antici-

pated equilibrium velocity and amplitude of the shock front

are given by Eq. (5.24).

The planes of symmetry of the composite section

treated, corresponding to the k = 1 and k = 10 grid
lines in the CRAM finite difference mech, were treated as

reflective boundaries, Fig. 6.11(b). The plane separating

the water/tuff region from the tuff region was treated as

a slip surface to permit relative motion between the two

regions and to minimize attendant zone distortion.

The calculated velocity field plots shown in Fig. 6.12

show the effect of the passage of the shock front over a

pore. The first plot, Fig. 6.12(a) shows the upward motion

of the tuff when the shock front first reaches the pores.

The flow is later directed downward when the wave crosses

the pore, Fig. 6.12(b). This upward and downward flow

occurs at each pore, Fig. 6.12(c), resulting in a perio6ic
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Fig. 6.11--Composite configuration consisting of periodic
water-filled pores in a matrix of compacted dry tuff. The
symmetric section denoted by the dashed lines in (a) are
covered by the grid in (b) for the CRAM calculations.
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Fig. 6.12--Velocity field calculated with the CRAM code at
three instants during the passage of the shock front over

a water-filled pore in tuff matrix.
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undulating deformation of the composite in the wake of the

shock front. This condition is further illustrated in the

sequence of CRAM grid plots in Fig. 6.13.

The pressure profiles along the two reflective planes

of the symmetric section of the composite are shown in

Fig. 6.14 at two instants. The oscillations are essentially

centered at the equilibrium value and the wave front is lo-

cated near the point calculated from Dwt = 0.367 cm/Psec.

In 9ig. 6.14(b) the wave front has enveloped four pores and

the spatial period of the oscillations behind the front are

about half that distance, 2A. This was also the case for

the corresponding I-D problem, Fig. 5.14.

The spatial periodicity of the oscillations is more

apparent in the 2lots of the particle velocity profiles in

the planes of symmetry, Fig. 6.15. The particle velocities

are plotted against the j-line number in order to more

easily locate the interfaces between the tuff and water/tuff

sections of the pore configuration. The average of these

two particle velocities for the composite and the expected

mean particle velocity are superposed in the CRA plots.

The temporal variation of the pressure on the velocity

loading surface is shown in Fig. 6.16 at the two corners of

the symmetrical section. The period of about 0.4 Psec is

reasonably close to the value computed for the corresponding

laminated structure, Fig. 5.15.

6.3.2 Periodicity of Oscillations

The similarity of the residual oscillations in the

1-D and 2-D periodic composites arises from their common

equilibrium conditions behind the shock front, Eq. (5.24),

and their equal structural periods, A = 0.1 cm. Brillouin (65 )

has presented methods of detailed analysis of periodic linear

structures based on the solution of differential-difference
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Fig. 6.16--Time variation of the pressure at the two left-
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pore configuration treated with the CRAM code.
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equations. Even if the zomposite is considered as linear,

however, the presence of two densities and two elastir

moduli would further complicate the methods presented by

Brillcuin. For this reason an intuitive explanation of the

periodicity is given below, though it is perhaps less convincing

than an explanation based on a datailed solution of differen-

tial-difference equations for periodic structures.

The mean density and sound speed in the water and com-

pacted tuff, corresponding to the equilibrium pressure Pe= 57 .1

kbar, may be computed from Eqs. (2.11) and (3.3) respectively:

Water: Pf, = 1.516 g/cc cf 0.511 cm/Psec
(6.7)

Tuff: f 2.85 g/cc cf2 = 0.390 cm/Psec

The corresponding values of laminate thickness, bulk modulus

= F2, and "spring constant" = are

IT = 0.0196 cm Al = 394 kbar fl= 20.1 kbar/cm
(6.8)

ITf = 0.0592 cm f2 = 433 kbar Tf2 = 7.3 kbar/cm

In the neighborhood of the equilibrium state the water is

stiffer than the tuff. Consequently, the simplest oscilla-

tion will be one which the main motion is in the tuff,

corresponding to a spatial periodicity of 2 + I 'v 2A,

Fig. 6.17(a). The approximate Oeflection from the equilibrium

state associated with this mode of vibration is represented

in Fig. 6.17(b).

The oscillatory strain energy and kinetic energy resi-

dent in the simmetric section

0 < x < N(I + iff) (6.9)

may be estimated from the assumed deflection curve,Fig, 6.17(b),
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= 2x , _2x 0 0 < x < f2
0f 2 0 (6.10 )

6 =6 0 6=0 9 2< X < ,(fI+7

The corresponding energy components are given by

U = kf62 (6.11)

f2

K= m 10+ h- 2 2dx

=14 6 (m + m2/3) (6.12)

where m = 0.0297 g and m = 0.169 g are the mass per

unit area of the water and tuff laminates. For the linear

idealization the total oscillatory energy is conserved,

d(K+U)/dt = 0, and one obtains

+ 4 6 = 0 (6.13)
0 + m/3 0

1 2

The corresponding approximate temporal period of oscillation

is

M +m/ M 086
1 2 .086 -= 0.34 - 10-6 sec (6.14)

m f2 7.3 x 10' 2

An improved approximation can be obtained by replacing

kfZ in Eq. (6.14) by the effective spring constant for Yf1

189



and Ff2 in series,

1 - 5.1 kbar/cm
1+I

Ffi Ff2

Then the estimated period of oscillation would be 0.41 x 10-6

sec which is as close to the periods calculated for the I-D

(SKIPPER) and 2D (CRAM) composites as one would expect for

this crude treatment.
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VII. THEORY OF INTERACTING CONTINUA*

7.1 INTRODUCTION

For geologic materials, a practical analytical model

must provide an average description of the effects of the

constituents, rather than a detailed description of the

stress field at each material interface at each instant.

It was this basic consideration that led us to concentrate

this part of the work towards modifying and applying the

theo y of interacting continua, or the continaunt theory of

mixtures, to analyze gross wave propagation and dispersion

eifects. In the theory of interacting continua, it is assumed

that every point of the medium is occupied by a particle of

each constituent. Simplified theories were used in the early

treatments of diffusion, and these have been presented and

compared by Truesdell. (6 6 ) To investigate the propagation

of finite amplitude waves, a fuller thermodynamic theory is

needed, at least as the basis for empirical assumptions.

Various mechanical treatments of acoustic (small amplitude)

propagation in porous media have been made-see, for example,

Biot (67)-but the more recent development of (irreversible)

continuum thermodynamics for finite deformation has initiated

applications within the theory of interacting continua.

One approach, Green and Naghdi( 6 8' 69 ) is to emphasize

the mean properties and motion of the mixture, including

interaction forces but not incorporating the individual con-

stituent motions. On this basis, constitutive equations for

fluid flow through an elastic solid have been developed by

Crochet and Naghdi, (70 ) and Green and Steel. (7 1 ) Alternatively,

the detailed properties and motions of each constituent may

be incorporated, and a number of such theories have been

recently presented: Green and Naghdi,
(7 2) Bowen, (7 3 )

Authors: L. W. Morland and S. K. Garg
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"" ler,(74) Dunwoody and Miuller. (75) There are conceptual

differences between the different authors. These differences
arise in the meaning of partial stress and total stress, the

interaction contributions to energy and entropy, and the form

of the entropy production inequality, including the role of

temperature. While an elastic solid-fluid mixture has received

some attention, previous references, a more realistic study of

finite amplitude ground motions should attempt to describe

hysteresis effects by a plasticity ar soil mechanics model for
the solid constituent. In this first contract period, a

purely mechanical model, excluding thermal effects, has been

investigated, and in particular the propagation of plane uni-

axial waves analyzed to assess the significant features of

the model.

Because the theory of interacting continua has apparently

not been previously applied to calculate finite amplitude

stress wave effects for geologic materials, the geieral

theoretical framework is described in detail in Section 7,2.

Some readers may wish only to scan this lengthy section for

basic concepts and the concluding discussion. Constitutive

laws for a purely mechanical model are formulated in Section 7.3

which relate the partial stresses in the solid material and

the fluid constituents to the deformation history of the two

constituents. In addition, an interactive body force account-

ing for the diffusion of the fluid through the pores of the

solid matrix is formulated. In Section 7.4 the formulation

is specialized to the plane wave case and in Section 7.5

the constitutive laws are specifically adopted to describe

completely saturated wet tuff. A finite difference computer

code, described in Section 7.6, is implemented to calculate

uni-axial wave propagation effects in Section 7.7.
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7.2 EQUATIONS OF THEORY OF INTERACTING CONTINUA

In many situations a body of material contains

several constituent materials, each preserving its own

identity but so diffused through the mixture that every

region of space occupied by the mixture, however small

on the mz'croscopic scale, contains some of each constituent.

Examples are mixtures of gases, of liquids, of gases and

liquids, and of gases and liquids in porous solids. In

these situations it is not practical to discuss particle

paths for each constituent separately and determine which

particle occupies any point of the mixture at a given time.

Instead the postulate is made that every point of the mix-

ture body is occupied at every time by a particle of each

((a)
conistituent s (a = I,(a & r). Further, each constituent

s has a velocity field v (x, t) through the mixture,

where x denotes position vector in space (with respect to

a fixed Newtonian frame) and t denotes time. In practice
(a) (a)v (x, t) must be interpreted as a mean velocity of /

particles in some small hnei hborhood of x at time t.

The mass of constituent z er unit volume of mixture is

called its partial density p (?, t), and the total mass

per unit volume of mixture p(x, t) is given by

P f a) p (_7,)

Summation will always denote over a = 1, ..., r. Mass con-
(a)centrations c (x, t) may also be defined:

Ca) Cc)a
= p/p, c=I. (7.2)

(a)
Mass production per unit time of s6 is allowed, due to
chemical interaction between the constituents, and is denoted
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by m per unit volume of mixture. Results for inert

mixtures (( ) = C, a = 1, ..., r) will also be recorded

since they are simpler and will be appropriate to many

practical situations.

Let V be any fixed region of space occupied by

mixtures at time t, with smooth bounding surface S and

outward normal (unit) n as shown in Fig. 7.1. The action of

t

S ~ n.

Fig. 7.1--Space region V occupied by mixture

surrounding material oii material in V is assumed to be

equivalent to a continuously listributed stress vector

t(x, t), defining force per unit area, over S (singular

surfaces may be treated and appropriate jump conditions de-

termined analogous to a single constituent theory). It is

now postulated that this total stress on S (per unit area)

is supportcd between all the constituents in - e division,
and defining the partial stress on s as t (x, t),

(at)
that is, the force on per unit area of mixture surface,

then

t - (,7,3)

This contrasts with a definition of total stress given by
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Truesdell(7j 6) based on momentum balanci for the mixture.

The two forms will be compared later. In addition, there
(a)

is a body force per unit mass of each constituent, b, due

to the external world, for example a grvity attraction, to-

gether with interaction body forces 0 per unit mass of

mixture due to all other constituents. Here these will be

assumed to incorporate momentum transfer due to the mass

exchange, although Eringen ard Ingram ( 77) choose to separate

the latter from the direct diffusive force. The same separa-

tion is made between diffusive couple and angular momentum

transfer due to mas.. exchange. However, constitutive assump-

tions must ultimately be maje for the total quantities, and

the separation does not help. He"n then G denotes the
• . L~a) -.

interaction couple on due jo)all other constituents

per unit mass of mixture, and p denotes the interaction
(a)

energy transfer to ) per Liit mass of mixture. Heat

sources and fluxes will be introduced later. It is convenient

to expre s)the interaction couple in terms of an antisymmetric

tensor X by

(a) (a) (a)
Gi j k j k ij jk Gk (7.4)

ijkij k i

referred to rectangular Cartesian coordinates.

Note that ijk 0 if and only if i, j, k distinct

1 if i, j, k in cyclic order
(i, j, k distinct)

= -1 if i, j, k not in cyclic order
(i, j, k distinct)

Thus, Nq. 7.4(a) + Gy = Xy - z X 2Xyz Gy 2 zX ,
G_ = 2Axy, and hence Eq. 7.4(b).
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Mass balance for the constituent 6 instantaneously

c-upying region V in Fig. 7.1 states t~at the rate of

mass increase inside V plus t]e) z mass flux out

across S is equal to the rate of 6 mass production in-

side V, thus

f (a) /'(a)( c) 
f (a )

a P- dV + p v • n dS m dV (7.5)
V at -- --

Applying the divergence theorem to the surface integral,

and assuming all integrands are continuous (the integral

law leads directly to the jump condition across a singular

surface by the usual "pill-box" argument), leads, on letting

V - 0, to the point form

(a)(a) (M) (a)
.. + div p v= m . (7.6)

Intoducing te 5 terial derivative (time rate of

(a)a

change following an s particle)

D ( (a)
Dt 3 +  v grad , t + Vj (7.7)

where x.(j = 1, 2, 3) denotes rectangular Cartesian coor-

dinates, (7.6) may be written

(a) (a) (a) (a) (a)
Dp0
Dt + p div v = m . (7.8)

Summing (7.6) over the r constituents and noting that there

is no net mass production gives

S(a) W()a
m = 0, T p + div ( = 0 . (7,9)
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Recalling (7.1), (7.9) may be written in the forms

.2p + div p 0 + P div v = 0 (7.10)a°'-[ -- Dt -

if a mass average or barycentric velocity v aud a barycentric

rate of change are defined by

Pv = DE P ] grt - + (7.11)

Now (7.10) describes the mass balance of a body with density

p and velocity v, and ,- is commonly regarded as a velo-

city of a mixture body (in some mean sense), but it should

be noted that there is no mixture bod,' (same set of particles)

occupying continuously changing continuous configur3tions

since in general the different constituents are separating(a)
by diffusion. A diffusion velocity u (x, t) of '6 is

defined by

(a) (c)
u = v - v , (7.12)

giving the relations

D _ D (a) gra

T u rad P u = 0 . (7.13)

(a) (a)
In particular, with no 6 mass production, m 0, (7.6),

(7.8) become

(a) 0a)(a)\ (a) (ci) (a)i (a)
P + div p v/ = D p + p Jivv = 0 (7.8-)

Momentum balance for the ( constituent instan-

taneously occupying V states that the rate of increase of
(oa) (o)s momentum inside V plus the flux of s momentum out
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(a)
across S is equal to the total force acting on s inside

V, thus

f (a) voc dV + 0r v _ -n) dS

V S

-f t dS + J b_ + P _ )dV (7.14)
S V

(a)

The interaction 1ojy force may also be interpreted

as the rate of 6 momentum production due to interaction

with the other constituents per unit mass of mixture.

Applying the divergence theorem to the first surface integral

and using (7.7) shows that

f (a) (a) () (a) (a) (a) (a) (a) (a)1

D Dt + p v div v - p b p 8_ dV

=J t dS . (7.15)

Taking a shrinking sequence of tetrahedrons for V in the

usual way, and assuming the integrands are continuous Pnd

bounded establishes the existence of a partial stress ten-
(al

sor a such that

(a) (c) (a) (a)
t = a n , i = Ui n. (7.16)

where n is the unit outward normal to the surface element
(a)

acted on by It . Note the difference between (7.16) and a

common convention t = aT n where aT is the transpose of

a. Here ai denotes the stress component in the xi-
direction on the surface element with outward normal in the
x j-direction.
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Substituting (7.16) into the surface integral of

(7.15), applying the divergence theorem and assuming con-

tinuity of integrands leads to the point form

(a) (a) (a) (a)(a) (a) (a) (a) (a) (a)
D ( P v + p v div v - p b - p f = div a (7,17)

Dt ...

where

(a)
(a)~~ .

div a] x ' (7.18)

On using (7.8), (7.17) may be written

(D) (v) (a) (a)(a) (a) (a) (a)
P - -=div a + p b +p - m v (7.19)

(a)
In particular, when m = 0

(a) (a)(a) (a) (a) (a) (a)
Ddiv a + p +p (7.19-)

(a)

and 3 is purely a diffusive interaction. Defining the

total external body force per unit mass of mixture as b,

given by

pb = p b , (7.20)

then the momentum balance for the mixture as a whole is ob-

tained by summing the contributions to ( 7.14) from each con-

stituent in the absence of interaction force ,_ontributions,

thus

5 0 o(7.21)
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and the reduction to point form analogous to the derivation of

(7.19) gives

(a)x Da (C (a)(~aJJP D D- + m v div a + pb (7.22)

Here a is the total stress tensor which from (7.13), (7.16)

satisfies

a= a , t a n. (7.23)

Some algebraic manipulation and use of (7.8), (7.13), (7.11),

(7.12), and (7.10) reduces (7.22) to

Dvi i

pb. + 1-- C u u (7.24)

which has the usual form if a total stress tensor a is

defined by

* v'~(a)(a)(a) *.-(t a a
a.. =a.. - p uu , a CF P u u (.51J ij " ij , - (7.25)

Truesdell (76) uses this basis for defining a total stress

j but since a stress boundary condition would relate directly

to the total stress vector t used in (7.3), the stress ten-

sor a defined in (7.23) has direct physical significance
*

while a * involves also the diffusive motion. There seems

little point in introducing a.

(a)
Angular momentum balance for the constituent .6

instantaneous Iy occupying V states that the rate of in-

r~ase of z angular momentum inside V plus the flux of

16 angular momentum out across S is equal to the total
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couple acting on ( inside V, thus

fS (a) () ((a) () ( )

f a)f-() (a) (a)J ijk xj tk dS + f ijk \ j bk + x 6k

(a) dV . (7.26)*+ P jk/

(a)J~e~e the interaction couple G (or rate of production of
s angular momentum per unit mass of mixture) has been ex-

(a)pressed in terms of the antisymmetric tensor ) by (7.4),
and no external body couple {s)included. Expressing t( ) in
terms of the stress tensor a by (7.16) and applying the
divergence theorem to the surface integrals and using (7.8)
allows (7.26) to be written as

aI ) D vk (a)(a) (a)(a) (a) o kCijk Vxj P Dt + m vk - p bk" 8 k x

(a) (a)
- Gkj - X jk dV = 0. (7.27)

Since the quantity in the bracket [ ] vanishes identically
by the momentum balance (7.19), with the integ7;.nd continuous,
(7.27) leads to the point form

£ijk (akj + P Xk) = 0 (i = 1, 2, 3) . (7.28)

Angular momentum in vector notation is r x v. In tensor
notation, it is written as Fijk x v k kwher- F.ij k  has
been defined previously. J i
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(a) (a) T (a) T (a) (a~)T (a) T
This im~1~es that a +p = a -

Ia

X is antisymmetric. That is,

(a) [F(a) (a) (a)
0 [ij] 'i.[a'j PaXjj (7.29)

(a)
which determines the (non-zero) antisymmetric part of a

Angular momentum balance for the mixture as a whole is given

by the sum of the contributions in (7.26) from each consti-

tuent in the absence of the interaction couples, and leads to

a =ar r .(7.20)

ii

That is, the total stress tensor is symmetric (recall the

absence of an exmetnal body couple). The result (7.29) is
a (a)

independent of m and so applies when there is no A

mass production.

Energy balance for the z constituent instantaneously

occupying V states that the rate of increase inside V plus

flux out across S o the internal (stored) &nergy plus

"= (a)

kinetic energy of is equal to the rate of working of

body forces inside V and surface forces on S plus the

rate o 5 heat sutaty inside V and heat flux in across S

on /6 Let U denote the internal energ per unit mass

of (a) the eXternal hcat supply to per unit miss,
(aj a

and ( the interaction energy supply to s (Zer 'init

mass of mixture from othtA()onstituents a)Let B be the

heat flux vector within s that (c. n defines the

Jeat flux across unit surface area in the direction of the(S)
unit normal n carried by (.)and let a denote the

interaction energy flux into .5 from other constituents.

Introducing the symmetric and antisymmetric parts of the
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velocity gradient tensor, namely the stretching d and

spin ( ,given by

(a) avi (ae) 1 (a) (a) T (a) _ 1 () )T\
L.- x. ' - + L L (7.31)

J ~ - /

the energy balance becomes

J t P 1(a [(a 1( ) dV + fS [p K U +. v - n dS

J{(a) (a) (a) (a) (a) (a)(c) i a(a)\ (a)

= p b _v + p r + p 8" v + ptrk~ ~ + p 9 dV

- (aa) n dS . (7.32)

S

Applying the divergence theorem and using (7.7), (7.16),

(7.19), (7.29), (7.31), together with integrand continuity,

leads to the point form

() () (a)(a) (a)
Dt (\P U +- y +- v div v

(a) ,, • ,, /(' ) t)
(a)(a) (a) (a) D .a ())(a)

= p r + P + - P + m v*v

tr(jd) -div(( .+(733)
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Using (7.8) and noting tr d~c) =tr(ad) since d is

symmetric,

() (aD (C (a a (a) (a (a) (a) (a)
Dt 2 -+ M v = p r + p $

+ t.( a d div (q)+a). (7.34)

Summing the contributions to (7.32) from each constituent

determines the energy balance for the mixture provided that

the interaction terms, which make no net contribution, are

absent. In point form, the vanishing of this net interaction

contribution becomes

v) + .. tr X W ID divg 0 , C%~35)

and the mixture energy balance is

()(a(a) ((a) (a)\ (a)(a) (a)
p D U + m pr+ div Dt J- - i

tr o T ) 0 (7.36)

(a) (a)
4) represents the interaction energy supply to 4 per

unit volume of mixture, and (7.35) provides one(r striction

on the contributing quantities, For the case m = 0, the

constituent energy balance (7.34) becomes

(a) D U (o)oa (a) (a) (a) (a)
pDt p r p + tr ~ - divq + (7.37)

(a)
For each constituent s we have the mass balance

equation (7.8), three momentum balance equations (7.19), three
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angular momentum balance equations (7.29), and an energy

balance equation (7.34), giving a total of 8r balance equa-

tions. The quantities to be determined for each constituent(a) (cx)()
are p , m , three components of v , nine components of
(a) (a) (a) (a)
a , three components of a three components of A , U
three components of ((+ )+(g)), q,), and the temperature

e which, though not explicitly arising in the balance equa-

tion, will arise in the heat flux law (in general). That is,

26r quantities, but recall the restrictions (7.9), (7.21),

(7.30), (7.35)-eight in total-arising frow the balance laws

for the mixture as a whole, showing that 26r-8 quantities

only need be found and the set then completed by the restric-

tions. Alternatively, the balance laws and restrictions pro-

vide 8r+8 equations for 26r quantities. To obtain a balance

of equation and unknowns (the usual criterion for a consistent

theory) it is required to prescribe 18r-8 constitutive eq a-

tions (material properties). This is aqcomplise 5 by postulating

fu ctional kelations for, m (r-l); a (6r), 8 (3r-3),
(a) Maj (a) (a) (a)
A (3r-3) U (ri, a + q (3r) and ' (r-l) in terms of

the p , v', ' and quantities derived from these, for

example deformation gradients, velocity gr~d*ents, and tem-

perature gradients. Prescription of the A could be in-

cluded by prescribing 9r components of the a subject

to the three restric'tions. Note that the quantities b(a)
r not discussed above are governed by external environment.

If all consti t.nts have a common temperature
(a)
e , each a, then r-1 quantities are eliminated, In

this situation, the r-l independent interaction energy(a)
supplies p cannot be prescribed separately, and must be

regarded as arising to maintain the common temperature, and

will be determined by (7.34), (7.35). Further, for isother-

mal conditions e = const (prescribed), so that all tempera-
ture derivatives vanish, the energy balance (7.34) serves to
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()(a) (a) (a)
determTine the U once the 20r quantities p , m , v
(a) (a)

, _ P$ ~ are determined by the 7r balance laws (energy

balance excluded), 7 restrictions and 13r-7 constitutive
(a) (a) (a)

equations for the m , a , $ , in terms of kinematic

quantities and a fixed temperature parameter. This is there-

fore a mechanical theory with reference to temperature only

as a parameter which defines a family of mechanical consti-

tutive laws. For an adiabatic theory (for example in wave

motions when heat conduction time sc~les are supposed large
(a,

compared Vith pulse times), each a 0 and, in the same
(a) =

spirit q = 0, but there is less motive for setting
(a)

= 0. However, prgv.ded that the remaining quantities
(a) (a) ta)

in (7.34), U , m-, a d~pynd only on the temperatures,

and not gradients, of all I , then (7.34) for all a in
(a)principle determines the e in terms of mechanical quanti-

ties and temperature may be eliminated to leave a mechanical

theory.

The functional relations describing the constitutive

response of the material must satisfy the principlo of

material frame indifference, that is, be indep(-dent of the

observer. By observer is meant a rigid frame, defined, say,

by a triad of orthogonal vectors, and a clock, and a change

of frame is a tinte dependent rigid rotation and time depen-

dent origin translation. Thus, denoting quantities in a

second frame by *,

x Q(t)x + c(t) , T = 1 , det Q +1 • (7.38)

The charge of time origin, t t+a, is neglected as this

just shows that t should not occur as an explicit argument

in the functionals. Here Q is a proper orthogonal trans-

formation representing rotation and excluding a change from

right to left-handed axes; this restriction is not made by
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Truesdell(78) but in many situations the inclusion of

det Q = -1 does not impose additional restrictions on the

functionals. The meaning of (7.38) is that

* * e* QT e i ( 9
x =xei , x = xe , e Q e (7.39)

in the absence of the translation c(t), where ei, ei  are

the triads of unit orthogonal base vectors in the two frames,

and xi, xi the respective comp ne3t of x, _ . The physi-

cal assertions are that m , U , P are frame indifferent

scalars, that is, have the same value in all frames:

(W) (a)
m : m , etc. (7.40)

(c4) (a) (a) (&)
and n, t , _ , , q are frame indifferent vectors,

that is, have a given magnitude and direction with respect

to some fixed frame. Since any vector d may be expressed

in the form x - x , representing a line segment between-2 --

two points x , x , then if d is frame indifferent d* is

the line segment between the same points, given by x *- x

Thus, from (7.38)

d = Q d . (7.41)

(a)
Since both n nd t are frame indifferent vectors and
(a) (a) - (a~
t - = n , a is efined to be a frame indifferent second

order tensor, and from (6.41) satisfies

(W)* (a) T
a 9 Q (7.42)

(a)
In passing note that particle velocities v are not frame

(a)
indifferent vectors and the spins W are not frame indif-

ferent tensors. Applying the restrictions (7.40:, (7.41),

(7.42) to the appropriate quantities provides some limitations
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on the forms of functional dependence permitted. The case

of a simple material is described by Truesdell. (78 )

Further restrictions on the constitutive functionals

are obtained by invoking a "second law of thermodynamics."

In the case of a single constituent there is not complete

agreement on the form (and meaning) of the axiomatized entropy

production inequality-contrast Trues,'all (78) and Meixner (79) _

and certainly no direct physical interpretation of entropy

during an irreversible motion. For mixtures the situation is

even more tenuous. Should each constituent have its own

entropy or merely the mixture as a whole, does the inequality

apply separately to each constituent or just to the mixture

)a(w ole, are first queries. Then, what are the roles of

q ( ( , / -are they contributions to entropy flux?

Different viewpoints have been adopted by Green and Nagdi,(
68' 72)

Bowen! 7 ) Mu7)ller ( 74) Dunwoody and Muller (75) for example.

Having formulated an entropy production inequality it is

asserted that it must be satisfied by all admissable thermo-

dynamic processes, that is, processos satisfying all the

balance laws but allowing arbitrary oody force and heat

supply. However, even the simple theories, for example, a

mixture of inviscid fluids with no mass exchange, are still

left in a complex form at this point, and it would seem more

fruitful to investigate simple models on the basis of empiri-

cal evidence, perhaps applicable to particular situations.

Mechanical theories of diffusion of fluids through elastic

solids have been given by Adkins ( 80, 81) and Green and

Adkins. 
( 82)

(a)
As far as possible the constitutive laws for the 16

constituent should reflect the character of that material

existing as a single continuum if the identity of the

materials composing the mixture is to be reserved. However,() (a) a &
while the interaction terms in , , , q allow
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(a)
the z equations to depend on the motion and thermal

changes in the other constituents, there is a case for tn)

sisting that the reaions between the partial stress a
ac)

and the motion of z should also be influenced by the

other constituents, and similarly for U) £ . Recall that

the partial stress is defined as force per unit area of mix-

ture surface as each constituent is supposed to occupy the

entire mixture space, which suggests that the effective

stress carried by 6 should be the partial stress appro-

priately scaled to account for an effective area of cross-

section of per unit area o5j mixture. Similarly,

effective density changes of 4 will be given by scaling

the partial denity changes to allow for effective volume

occupied by 6 per unit volume of mixture. To some ex-

tent these two new concepts introduced-effective area and

effective volume-will depend on the motions (deformations)

of all constituents, and a minimal interaction can(bj incor-

porated by postulating that the laws holding for 4 as

a single continuum should apply to the effective stress,

effective density, effective heat flux. Postulates are then

required for the two scaling functions. This idea will be de-

veloped for mixtures of simple materials on a purely mechanical

basis and very restrictive assumptions for the latter postu-

lates. Applications to mixtures of ideal fluids in elastic

and plastic-plastic solids under simple deformations are

made.
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7.3 CONSTITUTIVE LAWS FOR INTERACTING CONTINUA

7.3.1 Formulation of Mechanical Theory

In order to describe the behavior of a (partially)

saturated porous solid under dynamic conditions within the

framework of a mechanical theory of mixtures (appropriate

to isothermal or adiabatic motions), it is necessary to lay

down constitutive laws relating the partial stresses in each

of the constituents to the deformation history of both in

general) constituents In addition, a similar law for the

interaction body force is required. While the principle of

material frame indifference provides some restrictions on

the form of the kinematic quantities which may occur in these

laws, even for mixtures of isotropic elastic solids and ideal

fluids the restricted forms are far too general to fit to

available empirical data. We are primarily concerned with

finite deformation for which material properties are described

in terms of response functions of several arguments, not con-

stant moduli as in linearized approximations.

It is desirable tJlat the individual constitutive laws

should reflect the character of the respective materials as

single continua if their identity in the mixture is to be

preserved. Since the theory of interacting continua postulates

that each point is occupied by a particle of each constituent,

the basic formulation eliminates all reference to actual mean

volume W occupied by ( per unit volume of mixture, and

to actual area of cross-section M per unit cross-section

of mixture. Hence, effective densities ale and effectivep
stress tensors (a)e are not considered. Ccnceptually they

may be defined in terms of the partial densities and

partial stresses ) by the scaled relations

(a) Ca) (a)e ox (a) (a) e
p = n p , C= M a (a = 1, ... , r), (7.43)
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where

= 1 , = , 0 <()< 1, 0 < < 1, (7.44)

and summation over a = 1, ..., r is implied. Such scaling

is, of coyr~e,((cnceptual, ard serves only to introduce the

factors n , M . However, on this basis, a simple model

for the mixturt tan be formulated by assuming the constitutiveMa e
la for each z as a single-continuum to relate a to
a ~e
p and the isochoric deformation associated with the constituent

displacement field u , the latter unchanged by the volume

scaling. This will be called a "dilatation adjusted model."
Further interaction through the shear response may be present,

but the dilatation interaction is conceptually clearer and

will be adopted as a preliminary model for data fitting and

wave propagation studies. It should be noted that additional

interactions may be incorporated in the interaction body

force, but for the initial wave studies in a porous solid
containing ideal fluid, a simple diffusive resistance will

be assumed.

To develop our model we will focus attention on simple

materials exhibiting no explicit time dopendence in their
response, and in particular on elastic materials (solid or

fluid) for which the stress ()e depends only on the

current deformation gradient Fe with respect to some

reference configuration. History dependence through a

scalar parameter such as mean plastic strai on plastic

yo~k can be incorporated similarly. If X denotes an
46 particle position in the reference configuration, then

in rectangular Cartesian spatial coordinates xi(i = 1, 2, 3),

the deformation (motion) of 6 is described by

x i = i ," , (7.45)
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and the deformation gradient is

(a) (a)
(a) uXi  +u i

ij 5- - + (7.46)

where 6 ij is the Krbnecker delta. Mass conservation for
(a)
4 r(in the absence of mass transfer between constituents

due to chemical interaction) requires

(a)(a) (a)
p j p (7.47)

(a)
where p is the initial partial density and

(a) ~(a)\
J = Idetk F)J, > 0 (7.48)

is the Jacobian of the deformation. A partial density pre-

serving deformation satisfies

J E . (7.49)
(a)

Now we may regard tle deformation F as a density

preservi~g deformation F followed by a uniform dilata-

tion J 1; thus

(a) 1() /3 (c, { 11/3

() () 1 (a* (a) 13(a)~
F F 1 F = IF (7.so)

(a)*
where 1 is the unit tensor. F is defined uniquely by

(7.50) and by construction measures the shear deformation.

The dilatatlon ad)usted model defines an effective deforma-
(a)

tion F e by

(a ) ( e (a) (a)

= () ell/j e 0 _F i • .. = - ' -(a) e  aT ( . l
p n
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where n is the initial value of n, and so0

(a) /3
F e In (a)
e =F (7.52)

(a)Then, if the constitutive law for 4 as a single continuum
is expressed by

(a)
=r g (F) ,

(a)where the response function go applies to a reference
configuration with initial density p P within the mixture
the constitutive law for 0 e

the onsitutve aw fr 4 Decolnes

(a) (a)(a)F (j 1/3 1
0 ()

JaJ
0

Thermal expansion effects could be incorporated similarly.

For example, an ideal fluid in isolation satisfies the
constitutive law

a= P(pO/p)i = -p(J)l ,(755)

so within the mixture the model predicts a law

n 0 Pol(7.56)
0

An isotropic elastic solid is described by

a + (IkB + ,(Ik B 2  (-7,7)
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where B = F FT (FT denotes the transpose of F), , 1%

are the response functions and Ik (k = 1, 2, 3) nre the

invariants of B:

I ~trB 1 1 tr 1 1 3 =det B = j 2  (7,S8)

where trB denotes B.. and B-1 is the inverse of B

Now

Be n I e = I ,n_
I i~ 1 2\ 0 / 20 0i

I e  : - - (7.59)

so within the mixture the partial stress is given by

0 kj.. k{) /3 - 2 \k)(1n) Y 2} ' (.7.60)

The above description is only complete when the
(a) (a)

factors n and "M are prescribed for each constituent

and these are constitutive functions for the mixture, speci-

fically describing thc interaction. In general they could

5e functions of the deformations of all constituents (perhaps

histories), but we will make the simple postulate that they

depend on the current partial densities (changes):

S= J /, n = n (a, a=, ... , r).('7.61)

This .s in accord with the simple concept of interaction only

through dilatations ,If further we make the restriction that

each area scaling M depends on the dilatations only through

the volume scaling of the same constituent, with the same

214



dependence for each constituent, then

(a) f(a)
M f , f(O) - o . (7.62)

It now follows, using (6.44), that

(a) (a)
M = n (7.63)

The relations (7.61) and (7.63) will be adopted as a pre-
liminary description of the interaction, so that it remains

(a)1()to determine the single ret of functions n ( a)), subject
to (known) initial structure of the mixture. That is, in

the unstressed state we prescribe the effective densities
PO and, say, the partial densities (part by mass) ,

a) .0
so that n is determined by (7.43).

To discuss the determination of the n \JV let
us focus on a binary mixture (a = 1, 2), and write

n (J, J) = n, n = 1-n , (764)

so we are concerred with a single function n of two argu-

ments. Now consider quasistatic tests such that, in the
absence of external body force and supposing the interaction
body force to be zero when diffusion is negligible, the stress,
partial stresses, and constituent deformations are uniform

through the mixture body. In particular the partial densities

tFor each fixed s, f n) + E f ()= 1 where =l-
a/s aT s

Thus fn = ()f for all n , n subject to (7.44).

Hence, f(n) is linear, and in view of f(O) = 0 and n 1

the result (7.63) follows.
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are uniform, and if there is no net diffusion from the body,

(a) (a)

P - ( =1, 2) (7.65)*
p p0

P P0

by mass conservation, and hence

(a) o 0_ _ T J (c = i, 2) (766)

That is, the partial dilatations of both constituents (or

all constituents in general) are the same, eqya. to the mix-
ture dilatation. Thus the argument of each n , hence n,

is the pair (J,J), and it is convenient to define

nCJ,J) = N(J) , (7.67)

((1) (2)
(1) (9r1sistatic tests involve n(J .01) only on the path
J =J , but it is possible Mt("i wave motions with small
diffusion the dilatation pair J I J will lie in some

reamQiabluinarrow strip containing this path, and that

n \ J , J can be expressed, say, in the form
n()(2)) [(1+ (2 [()(2] (2 (1

n ( , )( ]))+ k(l{J+ ) ( - . (7.68)

In principle, the function k(J) would be determined by solu-

tions for small disturbances superposed on equilibrium con-

figurations with different ( atations J. Once N(J) is

known, magnitudes of J -(3 can be estimated from simple

wave propagation solutions using the leading term of (7.68)

as an approximation to n.

V0  0= (a) M no diffusion

P A
Hence, etc.
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7.3.2 Interacting Continua under Simple Deformations

First consider a mixture of isotropic elastic solid
and ideal fluid described by (7.55) through (7.60), and

denote the solid by a = 1. In uniform dilatation with

equal principal stretches X, the solid deformation is

given by

B = X 2 1 , I 3X 2  I = 3?) A4i= j2 .(7.69)
S1 2 3

Writing B = B(X), it follows from (7.59), (7.69), that

Be= B 
(7.70)

whence by (7.60) and (7.63)

1 ( I )  (1) jn 3] (1)(n (1))
T kk = n P I n p n- - , (7.71)

(1)

where p (J) is the pressure in the isolated elastic

solid under uniform dilatation with Jacobian J. That is,

the uniform dilatation response in the mixture is determined

solely by the uniform dilatation response in isolation and

n, anticipated by the definitions of n and effective defor-

mation. Finally, for the ideal fluid, from (7.56)

i(2) (2)l (2)
akk = -(l-n) l(ln (772)

0

and the total mixture pressure is given by

p kk = - n - -p -- . (73)
0 

0
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From (7.66), (7.67), a quasistatic deformation of the mixture

with no diffusion results in a pressure-dilatation response

p(J) where

p(J) = N(J) p [N ] + [1 - N(J)]p 1  (7.74)

(1) (2)

Thus, given p(J), p (J), p (J), (6.74) is an implicit

equation for N(J) subject to the initial condition

N(l) = N . Alternatively, a constitutive postulate N(J)
o (1)

1 predict the mixture pressure p(J) from p (J),

p (J)

In case both constituents are fluids, it can be shown

from hydrostatics that the effective pressures p(1)e and

p(2)e must be the same. In this case, (7.74) may be re-

placed by

(1 ]= P(2) [1-N j] 75)

Thus, given p(l)(J), p(2)(J), (6.75) is an implicit equation

for N(J). We will also investigate a "Minimal Principle"

based on uniform dilatation response, namely, that for a

given equilibrium Jacobian J the value N(J) is such as

to minimize the total pressure p(J). That is, the effective

density changes in the constituents adjusts to minimize p(J).

Turning to uni-axial strain with longitudinal stretch

X and unit stretch in the lateral directions, the dilatation1

is given by

J = . (776)
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The principal partial stresses in the ideal fluid, within

the mixture, are equal, and given by

(2) (2) (2) (2)/i n  (2) (2) 1 n  (2) (7.77)
0=0=0= -(1-n) p Jy - = -(l-n) p E- x

1 2 3 n D .n 0

For the elastic solid the deformation invariants are

(1) ( n 2/3 (1) ( j _ 4/ 3 X 2 +(IL..) (X2+2)p Ie = n 2\+1)

(1) (2_2X
3 I no - ' (7.78)

and the principal partial stresses are

Co n e) + e( (2+,e)()

I x4 (7.79)

a a' n O, (e +Ob Ie)(n- +0 1 ek)(aoo 3 (7.80)
2 3 k k 0 20

(1)
In view of (7.78) the elastic partial stress a within the
mixture is not related simply to the respective stress in

isolation, even if the response functions depend only on
(1) 1/3
( 3 ,since X is still scaled by (n/n) and by (n/n0)

in different terms. Thus longitudinal response of the solid

is not sufficient to describe that of the mixture even when

n is known, but the three separate response functions must

be given.

Before leaving the isotropic elastic solid-ideal fluid

mixture, let us note the linearized infinitesimal strain

equations which are derived from (7.55) through (7.60) and
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(7.63). Defining the infinitesimal strain tensor for the

solid, e, by

1 = i4 u (7.81)

where u is the displacement vector, then neglecting ternis

of order max(ij) in comparison with unity,

(1) 3ui  (1)
F ij = 6ij + x' Bij = aij + 2eij%

(1)
B1 = 6.. - 2 (7.82)1J 1J 1

(1) (1) (1)
I = 3 + 2e, I = 3 + 4e, I = 1 + 2s, (7.83)1 3

where e is the dilatation

(1)
S 6kk = - 1 (7..84)

Similarly, the fluid dilatation e(<<l) is given by

(2)
e= J -1. (7.85)

i in turn, set

n(l + e, 1 + e) = n (1 + n s + n e) (7.86)
0 2

where the constants n , n are supposed to be of order unity1 Z

or less. Thus, from (7.53), (7.83), (7.86),

(1 e . = - 3 = - 1 = 2 1(1+n 6+nel. (7.87)
I 1  2 3 J1 2
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Now (7.59), (7.62), (7.82) lead to

(I) (1) [(1) I (I 2 i

ij = n 2 jj ei + x + niA + illsci

+ n + 2 e6. (.7..88)
2) J

where

I + 2P12

(1) 2
4 1r (7.89)

-r=0 ij =0

Similarly, from (7.56), (7.63), (7.85), (7.86), for the ideal

fluid

(2) (2
(ij = K (I n - non2)e - nonj 6i , (7.90)

where

(2) (7.91)
K -- (p./p

Notice that the interaction terms representing depen-

dence on the alternative dilatation are respectively for the

solid and fluid

(1) (2)
r , n e6.j , K n n e6.9

o 2 1 0 1 iJ (.7.,92

(1) (1) 2 (1)
where K = A + t.

221



Combining equations (7.86), (7.88) and (7.90), we
obtain the partial stresses in the solid and the fluid as:

6.5 + 2 (l) oi + (n-n) K( I ) S.. (7.03)

and

2 = (1 - n ) K(2)e - (n - ni ) K(2) 6 i.. (7.94)

The meaning of these equations is quite clear. Let us assume

that K(I) > K(2). Application of pressure on the solid tends

to reduce the pore volume. Thus the partial fluid pressure

consists of two parts, i.e., (1) deformation of the original

fluid volume and (2) due to relative reduction in pore

volume. Similar interpretation may be applied to the par-

tial solid pressure. In uni-axial strain e and e

(1)(I) = 1(1) ,4 (1)) (1)(n

=n + c 1 + K (nl + n2e ) (7.95)

(2) (2) (2)
a (1-n ) K e - n K (n e I + n I ) . (7.96)

Now consider the solid to be elastic-plastic so that

the allowed shear stress is restricted. This is an essential

qualitative feature when large non-isotropic stresses occur,

and, albeit oversimplified, provides the most simple realistic

model. For uni-axial strain and spherically symmetric defor-

mation it is sufiicient to postuJate elastic dilatation (no

permanent volume change) and a yield criterion to describe

plastic response (no flow rule is required). In both cases

there are two non-vanishing principle stresses, a (in the

longitudinal or radial direction respectively) and a = a2 3
in the lateral directions, together with a longitudinal
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(radial) principal stretch X , and in the spherical geometry
1

equal lateral stretches X = A (unity in uni-axial strain).2 3
Both the Tresca and von Mises yield criteria reduce to

s( - a ) = Y , s = ± 1 , (7.97)2 1

describing yield in the opposite shear senses, where Y is

the yield stress in shear. For simplicity we will neglect

work hardening and assume Y is constant. Now we postulate

an elastic relation between mean stress increment and dila-

tation increment, of the formn

d (a + 2a) = K dJ ,(7.98)

where K -s a function of the current deformation invariants

in general, but we assume a simplified dependence

K = K(J) . (7.99)

The incremental relation (7.98) may be alternatively expressed

as - rate law with respect to time or any monotonic parameter

describing the loading path since the material is not rate-

dependent. Note that (7.98) is a restricted form of the

isotropic elastic response given by (7,57) which relates

akk to J only in uniform dilatation, as used in (7.71).

However, the restricted form (7.98) in conjunction with (7.99)

may be integrated to give

( + 2a ) = - p(J) (7.100)

3. 1~ 2)M

which holds through both elastic and plastic deformation.
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In plastic deformation, the yield criterion (7.97)

and dilatation law (7.100) give

2 - p(J) - 2Y , (711

a sY + a (7.101)

Hence, within the mixture, during plastic deformation of the

solid,

a - a = nsY ,
2 , (7 .102)

a n-" J  " nsY
nn3

0

Thus, the longitudinal (radial) stress-dilatation law within

the mixture is determined by the longitudinal (radial) stress-

dilatation law during isolated plastic yield, contrasting

with general isotropic elastic response (7.79) in uni-axial

strain, here a consequence of the foregoing restrictive

assumptions. A complete description requires an elastic

shear law to replace (7.97) during elastic response when

2o - a" I <  Y  , (7.103)

or for "unloading" from yield states. Using the decomposition

(7.50) where J = X X2, the shear deformation is given by

y 2/3 0
F= I X/ I, y = k-~ , 714

-I1/3/ 20 Y

and J, y can be regarded as the two independent strains

describing dilatation and shear respectively. We now assume
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In plastic deformation, the yield criterion (7.97)

and dilatation law (7.100) give

a - p(J) sY = S (J)

(7.101)

2 1

Hence, within the mixture, during plastic deformation of the

solid,

a a = nsY ,2 1

S= -np J) nsY (7.102)

= nS n-- .J

Thus, the longitudinal (radial) stress-dilatation law within

the mixture is determined by the longitudinal (radial) stress-

dilatation law during isolated plastic yield, contrasting with

general isotropic elastic response (7.79) in uni-axial strain,

here a consequence of the foregoing restrictive assumptions.

A complete description requires an elastic shear law to replace

(7.97) during elastic response when

I2 - a I < Y , (7.103)2 1

or for "unloading" from yield states.

From (7.57) the principal stress difference a - a2 !

is expressed in terms of A and A , which may be expressed1 2

in an incremenital form required for unloading (reloading) from

a previous plastic state, and in turn a mixture law is

obtained. A simpler elastic model is obtained by expressing
a as an isotropic tensor function of the stretch tensor

V = B1/2 and omitting the term in V 2, that is, setting the
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third response function analogous to 2 in (7.57) to be

zero. Then

= k)1 + 1(Ik)V , (7.104)

and the dilatation law (7.100) requires that

*0(I' ) = " p(J) -1 1 j) I, (7.105)

where

J= I :det V I = trV
3 " 1

Now

a C a = (J)(A I ) , (7.106)
1 2 1 1 2

and with :he further restriction

const., = ?.i , (7.107)

the incremental law required for loading/unloading from pre-

vious yield states takes the simple form

d(a I - a ) = 2Pd(A - x ) . (7.108)1 2 1 2

Allowing 9 (J) results in a fuither dependence on dJ so1

that the incremental shear response is not uncoupled from

dilatation response. Confining attention to (7.108), the

mixture law is

d= 2Id . - 2) (7.109)
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since, by (7.50),

Fe (n"(" 2 (7.110)

3

In uni-axial strain . = A,2 = 0, and1 2 3

J X ,(7.111)

whence the plastic laws (7.102) become

a = nS (-n X a - = nsY. (7.112)
1 (nfl0 2(712

However, the elastic laws (7.98), modified for the mixture,
and (7.109) become

d(a 1+2) 3K (E- X)d(E- X)
\n n 0

(7.113)1

d(c , -u) d[(n IN x
0

so that

1

d(-c'L) = K(E- X) d(a- x) 7 d LV&0I' (7X4n n n

and the combination K(r x+ . j does not determine the
longitudinal stress strain gradient between a /n and -- x.

1

Thus (7.114) requires separate knowledge of K(J) and 0p,

even in this highly simplified model say from dilatation

and uni-axial strain measurements. It must be recalled that

the Jirectly related plastic laws (7.112) are a consequence
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of the simplified elastic-plastic model proposed. While less

restrictive models allow the same extension to mixture laws

by dilatation adjustment, direct relations like (7.112) are

not anticipated
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7.4 PLANE WAVE PROPAGATION

7.4.1 Governing Relations

Wave propagation in mixtures has chiefly been inves-

tigated within linearized theories, and in particular for

harmonic waves in infinite fluid-saturated elastic solids.

Non-linear effects and possible shock formation are thus

absent. The present stuly includes these effects and makes

comparison with the opposite dispersion effects due to the

constituent interactions through diffusion and the coupled

constitutive laws. Attention is restricted to plane wave

propagation in uni-axial strain, and the longitudinal stress-

strain laws derived from the simple elastic-plastic model and

ideal fluid in Section 7.3 are used in illustration.

Now let us consider uni-axial motion in the

x-direction. We will assume that the external body force
(a)
b is absent and that there is no mass transfer between
the constituents due to chemical interaction. In this case,

equations (7.8) and (7.19) expressing conservation of mass
(a)and momentum fox constituents reduce to

(1) (1) (1)

p + v + (7 115)t )X ax -

() (2) (2)
@_p_ w )  + p Tw _t Zx w (7.116)

(1)(1)
p 2-, v 3 pa + X (7.117)

(2)
(2) w w a a

P+ +a a (7.118)
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Here superscripts (1) and (2) refer to material 1 (tuff) and

2 (water), respectively. Also

( k() = partial mass density of tuff (water)

p = current mass density of mix (= + ,

v(w) = the particle velocity of tuff (water)

$ = internal diffusive body force

(1) ((2)\
a xa x= partial longitudinal stress of tuff (water)

(1) ((2)\
ay lYa= partial transverse stress of tuff (water)

This system has to be completed by adjoining the constitutive

laws developee in Section 7.3. The principle partial stresses

in the fluid, within the mixture, are equal, and given by:

Fluid (e.g., Water):

(2) (2) (2) l-n (2)
ax = = - (1-n) p l-n 0  (7.119)

(2)
where p (J. is the relation expressing the pressure res-

ponse of the fluid constituent when isolated. The solid is

considered to be elastic-plastic so that the difference be-

tween its principal partial stresses is restricted.

Solid (e.g., Compacted Try Tuff):

In the plastic regime, we have

(1) (1)
ax - a= snY s = ±1 (7120)

C [(I+ 2(y] n ( ) (7.121)TY Lx +  kJ= n 0-
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(1)

where p (J) is the relation expressing the pressure

response of the isolated solid under uniform dilatation and

Y is the maximum shear stress that the olated solid can

sustain. In the elastic regime [ IaX aI < nY], the

response of the solid is governed by (17.121) and the elastic

shear law

d c y)=2n j 1,!- dJ (7.122)

where p (J) is the shear modulus of the isolated solid.

When the yield stress Y is negligible compared to the

applied pressure pulse, the constitutive relation for the

solid assumes the simple form:

(1) (1)a( = - Ep (n1 C7..123)

)It still remains to prescribe the interaction function

n( ,.P . As a first approximation (assuming small d$1a-

difference between the constituents) the function N T + 2

defined by (7.67) and obtained from the data discussed in

Section 7.5 is adopted. This serves to estimate the dilatation
diffeence(2) (1ydifference J-(J . A second treatment adopts the expansion

(7.68) with different values for k so that a possible

effect of different dilatations on the pulse propagation can
oe observed. Finally, the internal longitudinal body force

$ must be prescribed. If we suppose the body force, 0

depends on the two velocity fields and partial densities,

frame indifference requires linear dependence on the rela-

tive velocity w - v with coefficient depending on the
(1) (2)

scalars p , p and w - v. We will first adopt the most

simple form

ps p d (w-v) (7.124)
0
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where d is a constant with the dimension of the reciprocal

of time. From data given by Ishihara(83) for slow diffusion

through sands and clays, d takes values in the range

102 - 101 sec-', so various values across this range will

be used to investigate the effect of a diffusive resistance.

The significance of this term depends also on the relative

velocity (w - v) and the stress gradient, and hence the

pulse rise time. As d increases we would expect the rela-

tive velocity to decrease (an opposing force), and solutions

for d over the entire range will determine the product

d(w-v) in the different situations and assess thE significance

of the resistance. Negligible (or small) relative velocity

which may arise with larger values of d would imply that

both constituents have approximately the same velocity field,

and then the simplifying approximation of a single velocity

field and single constituent oescribed by the total stress-

deformation law may be applicable.

7.4.2 Non-Dimensional 'ormulation

System of equations (7.115) through (7.118) can be

more simply expressed in terms of (X, t) where X is a

material coordinate(fr the first material and by eliminating
(1 (2)

partial densities p , p in favor of the Jacobians of

the deformations

(1) (1) (1) (2) (2) (2)
A J . p0 / p , y = J = 1 p %(7.25)

Thus, for any function f(x,t) = f(X,t), one has

(1)_f 1 D f a
TX Y X Dt at C716

(2)
(Df af + _wv) 3f
Dt @t A A "

232



This transformation reduces the equations (7.115) through

(7.118) to

at ax (7.127)

at ax xa(a w-va)~ yaw
+ X, a x (7.128)

(1)
av = Xd (w-v) + 1 x(7.12)
a c p c ax

0 00

(2)
a W-V a x w= -yd (W-V) + 1 Y 3Xa

at x (c ) x ax ' (7.130)0 0 0

where c and 1-c denote the initial mass concentrations.
0 0

(1) (2)

c - , 1 c = (7.131)
0 PO PO

We define a characteristic length, L, to be twice the

length of the specimen (k). A convenient measure for a

typical wave speed is an acoustic wave speed in material 1(I)
based on the initial partial density p

(1) (1) 1
p S 2  dp (- (-7.132)

0 0 d(Ij)
1 :=0

I 1
where '- = -

Utilizing the functional form (7.144) for p ( -), (7.132)
becomes

(1) (1)p S2 = A ,
0 0

(1)
where A is a material cciistant defined in Section 7 .5.
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Introducing the non-dimensional variables,

Z=X/L T = S t/L0 0 }
= v/S i7 = w/S0 (7.133)

(1)
S=o/ pS 2  = Ld/S

00 0

the following system of equations is obtained

T - ,ay )(7.134)

ay+ ay- ' (7.135)

) (1) (7.136)

0

c (2)
X z - (1-T) 1- '_. (7.137)

o

This governing system is completed by adjoining the
constitutive laws (7.68), (7.119), (7.123).

(1 (p) (7138)
0( - 0 ( oo ) ,

(2) (2)1-n (7.139)
a = - (1-n) 1- 00

where

n (X,y) = +N) +)(y-A) . (7.140)
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The plausible range for d is 102 _ 106 sec-" .

Assuming S to be the order of 10 5 cm/sec and L to be
0

the order of 101 cm, the range for 6 becomes 10- 3 - 10+ l.

Solutions will be obtained over the entire range of i to

assess the effect of the diffusive resistance.

7.4.3 Initial and Boundary Conditions

We consider the half-space Z > 0 initially at est.

Thus

v =w =0

at t = 0 Z > 0 . 7141)
y= l

The motion of the material plane Z = 0 is prescribed for

't < T as if both constituents move together
- 0

v= w = V(T) on Z = 0, T < T 0 (7.142)-- 0

(1) (2)
For T > T , the stresses F and F must be zero at

Z = 0. For the simplified constitutive laws considered here

this yields

Sy =1 at Z = 0, T > T 0 (7.143)
0
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7.5 EXPERIMENTAL DATA ANALYSIS

To arrive at an approximation for the interaction

function n that is based on experimental data, we consider

a body of the mixture to be subjected to quasi-static uniform

dilatation. Under isotropic loading no shear stresses are

introduced and the hydrostatic pressure in the mixture is

given by Eq. (7.74). Thus, given the quasistatic pressure-

dilatation response relation for the mixture, p(J) and
(1) (2)

those of its constituents, p (J) and p (J), Eq. (7.74)

is an implicit equation for N(J) subject to the initial

condition N(l) =N . Least square fits have been made to
0 (1)

lie data discussed elsewhere in this report for p (J) and

p (J). The fits for Schooner tuff(l), Eq. (3.16) and water (2),

Eq. (2.11), are

(i) Mi_ (i) Mi) Mi)
p (3 v F p 1- p ,(7.144)

(2) (2) (2)_ (2)_
p (J) = Ap+ Bip2 + p 3

where p T - 1

(1) (1) (2)
The parameters A , B , ... , F are listed iL

Table 7.1 together with the range of validity. In order to

use Eq. (7.74), we also require the mixture response p(J).

Unortunately, however the available data for p(J) and

p k) is lot sufficiently accurate to enable the use of the

implicit Eq. (7.74).

As we observed in Section 7.2, in case the strength of

tuff can be neglected, both constituents may be regarded as

fluids and the simpler equation (7.7S) may be utilized to

calculate N p(J). Fortunately, the yield strength of tuff

is very small (< 0.6 kbar) and as such use of Eq. (7.75) is

justified at least as a first approximation. A computer
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program was written to evaluate N (J) chrough the use of
p

Eq. (7.75. We show the results for two water fractions

(F = 14.4t and F = 14.8 %) in Fig. 7,2. Note that mass

fraction, F, is related to N through the equation
0

P(O)
1 1 + F I (7.145)
N 1-F (2)0 P

0

The function Np (J) [F = 14.8%) has been fitted tc the , Ilowing

theoretical cur-ve.

N p(J) = 0.7089193 - 0.3140556 (J-l)

+ 0.1399297 (J-l)2 + CJ-i.)3

+ 5.726582 (J-l) 4 . (7.146)

The minimal nrinciple has also been applied to the

dilatational law (7.74) to predict Nm (J). Application of

the method involves analysis of the right-hand side of

Eq. (7.74) In the analysis, for each selected value of

J, p(J) is minimized over possible values of N such that

N.- :0 .(74z47)
N = N(J)

To conduct this analvsis the compu....ter,,, FLISTT was

developed and applied to the fits p (J), p (J). The pre-

dicted curves for Nm (J) (F = 14.4 and 14.8 %) are shown'in

Fig. 7.3. The function Nm (J) (F 14.8%) has been fitted

to the analytical curve

N m(J) = 0.71058 - 0.72698(J-1) - 1.71055(,T-1) 2

+ 5.26770(J-) 3 + 14.27141(J-1)4 . (7,148)
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Fig. 7.2--N(J)' for satu,',ated wet tuff calculated on the
basis of pressure equilibrium.
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In Figs. 7.4(a) and 7.4(b), we show the quasi-static mixture
response predicted on the basis of pressure equilibrium and
minimal principle models. For comparison purposes, the
response of the individual components and the experimental
data is also plotted therein. Notwithstanding the fact
that Nm (J) and N (J) are quite different, they predict
approximately the same mixture response except in the luwpressure regime. We will return to this question in
Section 7.7. In the meantime, we observe that there exists
a clearer physical motivation for using N(J) calculated on
the basis of pressure equilibrium than the one obtained by
employing minimal principle.
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IU

Saturated Wet Tuff Data

UHugoniot Data (F =14.81)

150- Quasistatic Data (F =14.4%)

Pressure

Minimal Equilibrium

100-

Isolated
.*-..Compacted Tuff

Deformaio Pressure0

00

Fig. 7.4(b)--Coimparison of predicted p-V response of
saturated wet tuff (F =0.148) on the extended pressure
range. Data points from the Hugoniot measurement of
Ref.38 , and the quasistatic tests of Ref.35 are also
shown.
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7.6 FINITE DIFFERTNCE SCHEME

The system of equations (7,134) through (7.140) is
(84) (.4)isolved by the two-step Lax-Wendroff scheme. This scheme has

second order accuracy [0(AT)']. The provisional values are
first calculated at the centers of the rectangular meshes

(j+ , n+ ) of the (Z-T) plane. The final values at mesh
points (j, n+l) are then calculated from provisional values.

The difference scheme is given below.
t

7.6.1 Provisional Values at (j+ n+ )

j+l +  ) + T -n

n n -nn+-' I -v + 
-A

1 - + 2An n~ j+ n

j+l j

n n

Yj+l + Y

-M 1 n) + ( + n(" + 8 +I + w  - +
0

S + - n - T n•iqw'+l 1+T- vj +l vp -A (29n - (

-- n -n -n

7,nl I AT nYl+Y)

S( - )(++i + )
0
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7.6.2 Final Values at (j, n+l)

%I+l \n A T /( -n ,n+ )3 j+ - v. vj_

-n+ -n+ -n+ _nF
n+l n AT w*+" + w. - V.+ -h_

n n+ -2

S + ,,+j-

-n+l n+ AT "1 (,n+1 + . w" + -
Ifl= vf*-- i 0 T j+ + "- j-'

+ L n+ -n(-+

---n AT J+ + !1 j - i+ .-V

A Z n+ n+

T ("2+ +1h - -

o

Wn+-2 + .-n+h -n +2 +~ c A TJ kj+ + i - V. -2 + -, -2 1-c /z
0

n 2+)n )715CSJ+h + r a2)
X +.n + n i j+h j- 7 1 C

(1) (2)

The stresses a and a are evaluated by substituting

corresponding values of X and y in the constitutive rela-

tions (7.130) through (7.140). In case it is desired to

include elastic-plastic descriptions for tuff, constitutive

relation (7.138) i.s replaced by the (equivalent non-dimensional

forms) Eqs. (7.J20) through (7.122).
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7.6.3 Velocity Boundary Condition
At Z = 0 (j = 1), the velocities n+l and wn+1

'J J
are specified.

-n+l -n+lv -- wI  =7,r

To evluate l+  n+l
To evaluate X, nl it is necessary to employ implicit

difference equations. These are obtained by centering at

(1 , n+ ). Thus

n+l xn +n Xn+l + AT (n+l +n -n - +
S 2 l 2 A-Z + V1  V1  '

Yn+l 1 - a -T - b AT) =b, LT-(,n~1  + +i1 a AZ I A-Z lA-Z k2 2 1

AT (yn+l n n) n+l + n + yn
" al - y + Y2 Y1)-Y 2  +y 2 +y 1  , 11

where

-n+l -w n+l + 1 --n+l + n + -fn+l + n
w2 2 1 wI  + w2 2 1

a1  n+l +n + n+l + n
"2 +2 1 1i

ond
-n+l + -n - -n -n+l

b w 2  w2  W -IW1
D1  An+l n + n+l + n

2 1 1
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7.6.4 Artificial Viscosity

In order to smooth out the shocks, a simple quadratic

artificial viscosity term was added to the partial pres.;ures.

(l)n+h M(1n = 2 a 2 _ -n2a2 ) 2
qj+ j+ + +1 v+

(2)
( 2 )n+ (2)n 2a 2  P - 2

q +_, n j -+j- ,
0

(2)
(2) .a p n 2 (7.152)

q j (-) n
4 p yj

The artificial viscosity term q (q) was evaluated only

when DV/3Z(9;W/9Z) < 0 . For DV/3Z(9i7/9Z) > 0, it was set

equal to zero. The coefficient "a" was taken "co be 2.
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7.7 NUMERICAL RESULTS

A FORTRAN code (POROUS) has been written incorporating

the finite difference scheme outlined in Section 7..6. Wave

propagation was investigated in a water-saturated tuff speci-

men 0.5 cm long (, = 0.5 cm, L = 1.0 cm). The following

values are assumed for various parametersz

v = 7.786 x 104/S
o 0

T = 5 X 10-7 S /L
o 0

v , T < T

3T
v(T) = 0.75 V (3-2T/T) + 0.25 V , T < T < .-- L

0.25 V , T > 3 T j/2 ,
0 0

AZ = 0.004

AT = 0.0008

A/AZ = 125 (number of zones). (7.153)

For sake of convenience, the following discussion is

divided into four parts, namely:

(1) Use of minimal principle versus

pressure equilibrium N(J) P

(2) Inclusion of dilatational difference

term k(X-y) in the constitutive law

(3) Effect of diffusive resistance

(4) Inclusion of strength effects
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7.7.1 Minimal Principle y. Pressure Equilibrium

To study the effect of using N p(J) or N m(J), the

constitutive relation (7.140) was taken in the simplified

form

n (A, y) = N(2X.j2L

Also d was taken to be 106/sec. Note that this value

for d is used also in SecLion 7.2 and 7.4. Calculations

were run for three different values of N(J), namely

(1) N(J) = Nm(J) Eq. (7.148),

(2) N(J) N p(J) Eq. (7.146),

(3) N(J)= N0

The effective pressures in the two constituents and the

mixture at T = 0.064 are shown in Figs. 7.5 through 7.7.

A comparison of Figs. 7.5 and 7.6 shows that although the

mixture pressure (behind the shock) is nearly the same in

both cases, the response of individual constituents (and

the diffusion of water ahead of the shock in tuff) is quite

different. Again, Fig. 7.7 reinforces this observation.

Even though the pressure in the two constituents is quite

differen" from that predicted in Figs. 7.5 and 7.6, the

mixture response is only slightly different.

The preceding discussion clearly indicates that the

mixture pressure behind the shock is relatively insensitive

to the form of N(J). This is not too surprising. Let

us examine the mixture equations.
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Fig. 7.5--Effeztive pressures wi.th n = Nm(J). Here

d = 106/sec, r = 0.064 and F = 0.148.
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Fig. 7.6--Effective pressures with n = N p(J). Here

d = 106/sec, r = 0.064 and F = 0.148.
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Fig. 7.,7-Effective pressures with n = N . Here

d = 106/sec, "z = C.064 and F = 0.148.
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Equation of Continuity:

a- + -(V) = 0 (7.154)

3T Th'jx-

Equation of Momentum:

'I V ( u)  (2) ]a + V cx 3x x Pu2 +  2
_F1 a. X (7X -IP S1 P

where

(1) (2)
p p + p , (Mixture Density)

V = p v + p W /p (Mixture Velocity)

u v - V , u = w V I1 2

(1) (2)
a= a + a

Behind the shock

v i w s const.

and therefore

u u 01 2

Thus the mixture behaves wore or less like a single consti-

tuent. It is immaterial how the total stress a is divided(1) 12)
into partial stresses a and a

flowever, when the interest centers on the response of

individual constituents and diffusion, the form of N(J) is

quite important. It is felt that since pressure equilibrium

is physically more reasonable than minimal principle, it

should be used to predict N(J).
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7.7.2 Inclusion of Dilatational Difference Term
k(A-y)-in the Constitutive Law

We observed in the preceding that behind the shock,

the mixture moves as if it were a single constituent. it

ir, therefore, reasonable to expect that the effective

pressures in the two constituents (water and tuff) behind

the shock should be approximately equal. With this in view,

we have examined various forms of the dilatational difference

term k(J) (A-y) for incorporation into the constitutive

law (7.140). We present here (see Figs. 7.8 through 7.10)

results for three choices of k, i.e.,

(1) k = 1.0 (J-l)

(2) k = 1.2 (J-l)

(3) k = 1.4 (J-l)

where

J = (X+y)/2

An examination of Figs. 7.6 and 7.8 through 7.10 reveals that

for the choice k = l.2(J-1), the pressures in the two con-

stituents behind the shock are nearly equal. This case also
corresponds to least diffusion of water through tuff. We

note in passirg that inclusion of dilatational difference

term does not make too much difference as far as the mixture

pressure is concerned.

Calculations were also run for the following two addi-

tional choices for the dilatational difference term:

(I) 0', U 1 )  P ,
0 C 1

(2) p . )(U - ),
0 1 1 1
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Fig. 7.8--Fffctive prcssures with n = N(J) + 'J-1)(A-y).
Here d = 10/sec, -r = 0.064 and F = 0.148.
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.'ig. 7.9--Effective pressures with n : N(J) + 1.2(J-1)(A-y).
Here d = 106/sec, t = 0.064 and F = 0.148.
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Fig. 7.10--Effective pressures with n N(J) + 1.4'J-1)(X-y).
Here d = 106 /sec, T = 0.064 and F = 0.143.
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where

-I -+ 1
o 2

and

=i-y.

The effective pressures at T = 0.064 are shown in

Figs. 7.11 and 7.12. Particle velocities are plotted in

Figs. 7.13 and 7.14. The first choice for the dilatational

difference teim leads to nearly the same results as the

case k = )..2(J-l) discussed above. The second choice for

the dilatational difference term yields a slightly higher

pressure in water than in tuff. It also leads to somewhat

greater diffusion. A look at the velocity profiles is very

instructive. The particle velocity far behind the shock is

nearly the same in both the materials. However, just behind

the shock, the particle velocity in water is much greater

than that in tuff. This result is in qualitative agreement

with the CRAM code calculations of Section VI. Finally, we

observe that in order to correctly predict diffusion and the

response of individual constituents in the mixture, it is

important to include the dilatational difference term. Pre-

sumably it can be tailored to reproduce the experimentally

observed phenomena.

7.7.3 Effect of Diffusive Resistance

In order to stud), the effect of diffusive resistance,

calculations were run for he following cases:

(1) d =107/sec

n = N(J) + (_) )
o o

(2) d = 0

n = N() + -. 2)(,.y)
250
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Fig. 7.11--Effective pressures with n : N(J) + (11 o y

Here d = 10 6/sec, T = 0.064 and F = 0.148.
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Fig. 7.12--Effective pressures with n = N(J) + (1 o ))(Pj 2)
0 0 1 1

Here d = 10 6/sec, T = 0.064 and 0.148.
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Fig. 7.13--Particle velozitits with n = N(J) + (j -p2 )(\-y).
0 0

Here d = 1C6/sec, T = 0.064 and F 0.148.
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Here d 106/sec, T = 0.064 and F 0.148.

262

K _______



(3) d = 0

n : N(J) + (V - 12)(o - 12)
0 0 1 1

Effective pressure distributions in the two constituents

at T = 0.064 are shown in Figs. 7.15 through 7.17. It

is evident from Fig. 7.1S (compare with Fig. 7.11) for this

value of d both constituents move together. The small

pressure difference in Fig. 7.15 is probably the result of

the constitutive assumption for the dilatational difference

term. in this case, the mixture motion may be treated as

that of a single constituent. Examination of Fig. 6.16 shows

that the constitutive assumption for the dilatational inter-

action term is incorrect. This is obvious on comparing

Figs. 7.16 and 7.17. In Fig. 7.17, the pressures behind

the shock are nearly equal. Note that in this case, there

is a significant amount of diffusion of water through tuff

(compare with Fig. 7.12). Thus a decrease in d leads to

an increase in diffusion and an increase in it produces a

corresponding decrease in diffusion. Also, the constitutive

assumption for n of case (3) leads to physically correct

results over a range of values of d.

7.7.4 Inclusion of Strength Effects

To illustrate the effect of including -lastic-plastic

description for tuff, a calculation was run for the following

choice of tuff properties:

Poisson's Ratio (v) = 0.15

Yield Stress (Y) - 5 kbar ,

= N(J) + (P ) 263 ( 2
0 0 1 1
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Fig. 7,15--Effective pressures with n = N(J) + (i _p2 )(A-y).
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In this c;ase d = 107/sec, T = 0.064 and

F = 0.148.
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Fig. 7.16--Effective pressures with n = N(J) + (0- 1o)(>-y).
In this case d = 0, T = 0.04 and F = 0.148.
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Fig. 7.17--Effective pressures with n = N(J) + (j ° t
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In this case d = 0, T = 0.064 and F = 0.148.
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The longitudinal stresses in the two components at T = 0.064

are shown in Fig. 7.18. A comparison with Fig. 7.12 reveals

that whereas in the hydrodynamic case longitudinal stress in

tuff (behi.nd the shock) is slightly less than that in water,

the reverse appears to be true in this caso. Also the diffu-

sion is slightly smaller. However, we observe that it is

not possible to separate the elastic precursor in tuff from

the diffusion of water. Indeed, it appears that diffusion

of water through tuff may be much more important than the

elastic precursor in tuff.
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d = 106, = 0.064 and F = 0.148.
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VIII. DISCUSSION

The analytic equation of state for pure water presented

in Section I provides an essential tool for investigating

wave propagation effects in geologic composites when shocked

below 250 kbars. Two areas of interest, however, remain to

be investigated for pure water substance. As pointed out in

Section IV, water in pressure and thermal equilibrium with a

geologic material (e.g., tuff), is more susceptible to phase

changes in the compressed state. It would be useful to

investigate the Water-Ice VII phase transition to ascertain

the significance of its inclusion in the equation of state

formulation for water.

A second area if interest for pure water is the ex-

tension of the present formulation in the expanded state

regime so as to include the (thermodynamic) region in the

neighborhood of the critical point. This modification should

improve the accuracy of calculation of expanded states of

material previously shocked to a pressure in the range

150-250 kbars.

Perhaps of greater significance to the construction

of adequate material models for calculating stress wave

effects in a geologic medium is a more realistic description

of the rock matrix. Emphasis here should first be placed cn

partially saturated materials wherein such factors as matrix

crush-up strength, irreversible zrush kinetics, enhanced

shock heating, and non-equilibrium thermodynamics are taken

into account. The available data for the crush-up regime

of geologic media are very limited but reasonable estimates

for the pertinent parameters can be anticipated; this was

found to be the case for compacted tuff in Section III of

this report. A phenomenological model for the crush-up
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regime has been presented by Herrmann (85, 86) and this frame-

work, together with an homogenized equation of state for

the water saturated material (corresponding to states

realized when all the voids are crushed up), provides a

point of departure for this analysis.

Work has been initiated along these lines for a par-

tially saturated wet tuff medium. The homogenized PTEQ

equation of state will be used to determine the reference

saturated wet tuff states associated with complete crush-up.

An homogenized reference equation based on pressure equili-

brium between the water and tuff components under adiabatic

conditions will also be considered.

Detailed numerical calculation for 1-D laminated

configurations (Section V) demonstrated'that the attenuation

of finite-length pulses can be significantly reduced by the

presence of substructure in the medium. This unexpected

result, obtained for non-linear volumetric models for the

water and tuff components, should be investigated further

using more realistic material models. Calculations for step

pulses have already shown that the presence of a substructure

can drastically lower the equilibrium temperature attained

by the water laminates when no heat transfer is permitted

between the laminates modeled as thermodynamic fluids. This

is a consequence of the water reaching initial peak pressure

by being subjectud to two successive shocks. For a finite-

length pulse this mechanism is still present and will affect

expanded states cf the water.

Such 1-D calculations are extremely useful in pro-

iriding an understanding of the effect of substructure on

wave propagation. Partially saturated geologic media can

also be simulated by spaces between the water and rock

laminates in an appropriate configuration. The non-equili-

brium kinetics and thermodynamics can most economically be
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examined by this method in conjunction with analytical

approximations accounting for heat transfer between the

laminates. These studies would help to establish the rele-

vance of the PTBQ model to field type pulse (msec duration),

as well as the limits on the homogenized model for laboratory

material tests.

Some 2-D and 3-D calculations should be made to simu-

late the crush-up of the rock (e.g., tuff) matrix for a

partially saturated medium. The shear strength of the matrix

and the kinetics of the crush-up mechanism cannot be treated

using a laminated configuration. These calculations would

provide valuable insight and a check on t'ie validity of the

homogenized treatment based on Herrmann's ..odel (and very

limited experimental data).

The 2-D calculation of a step pulse propagating

parallel to the laminates of a water/tuff composite (Section

VI) showed that the particle velocities of the components

can be quite different. The Theory of Interacting Continua

developed in Section VII explicitly accounts for this rela-

tive diffusion within a generalized homogenized model.

Although considerable progress was achieved during the

present contract period in understanding the nature of the

interaction function, n, this effort should be continued

and ccrrelated with experimental data. 7'he constitutive

relations should be extended to account for mechanical

crush-up by considering the rock component to be a porous

matrix (e.g., porous tuff). Calculations should be made

to study this effect when diffusion of the water through

the partially filled pores is allowed.

A major modification of the Theory of Interacting

Media that should be made is to develop material models

which include the dependence of the partial pressures on
the internal energy of the associated component.
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In the above discussion the suggested areas of future

theoretical effort are clearly indicated from the work of

the first ten months' period of this contract. The work has

also shown the need for experimental data for the release

isentropes of completely saturated geologic materials, e.g.,

tuff. In extending the modelling to include partially

saturated tuff, there will be a corresponding requirement for

data describing the loading and release paths in the crush-up

regime.

A second area in which experimental data are needed

is to evaluate the relative diffusion of an included fluid

through the pores of a geologic matrix material. The effect

on wave propagation can be studied by using fluids of widely

varying viscosity and measuring the profile and attenuation

of pulses. A separation of the elastic precursor from any

diffusion precursor could also be attained by such tests.

The theoretical and experimental areas suggested are

all in accordance with the philosophy of ircorporating new

physical effects into the material models in a step-by-step

procedure. Once the characterization of the isotropic stress

component and the crush-up states for partially saturated

materials are completed, however, there are various candidates

for the next most important mechanism to be incorporated into

the models, e.g., it is hazardous to specify intuitively

which of these physical effects should be singled out for

deta-tid theoretical analysis (or for associated experimental

tests). It is therefore suggested thac a serie3 of I-D

spherical calculations be nade in which the material para-

meters governing the candidate physical effects are varied

over the range of uncertainty. Ths sensitivity of the pre-

dicted far-field seismic signal to the uncertainties in the

material properties e.,,1 be estimated in this manner. Such

information would be a helpful basis for determining the phy-

sical effects which warrant subsequent detailed study.
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APPENDIX A

DERIVATION OF THE HYDRODYNAMIC EQUATION OF STATE FOR A MIXTURE

FROM THE GIVEN EQUATION OF STATE OF THE CONSTITUENT MATERIALS

INTRODUCTION

We consider a mixture which is sufficiently intimate

that local temperature equilibrium can be assumed among the

constituents as well as the local pressure equilibration.

The desired equation of state is that of the mixture, to be

used in applications in which dimensions of interest are very

large compared to the scale size of the inhomogeneities.

Further, from use in standard hydrodynamic applications, it

is desirable to determine the pressure P of the mixture as

a function of the density (or specific volume 7) and

specific internal energy E of the mix.

BASIC EQUATIONS

The known equations of state of the constituents are

taken to be of the geneial form

Pi= Pi(Ti, Ei) (A.1)

= Ei(Ti, e) (A.2)

The condition that the specific energy IT be that given by

the energies of the constituents is

E m = Ei TCe A.3)

x~ 1
where mi is the mass of each constituent, per unit mass of
mix. and 0 P the temperature.
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The condition that the specific volume be due to

the individual specific volumes is

T = (A.4)

and, finally, the condition that the equilibrated pressure

F be that of each constituent is given by the N equations

(for N constituents)

Pi (T, EJ) i = 1 to N (A. 5)

Equations (A.3),(A.4) and (A.5), assuming that Pi Ti'Ei and

Ei(i' 6) are the known functions implied by Eqs.(A.1) and (A.2),

comprise a set of 2N+2 equations in the 2N+2 unknowns

Ti, 0 and P. The objective is to determine the solution of

these equations for fixed E: T.

SOLUTION BY ITERATION

When Eqs.(A.1) and (A.2) are representative of real media,

the above set of equations is ordinarily too complex to solve

exactxy. An accurate solution is, however, possible by the

following iteration method.

It has proved convenient to separate the process into

two iterations, which will be described first in general

terms: In the first iteration, the Ti are temporarily held

constant and a is varied until the energy condition, Eq.(A.3),

is satisfied to some prescribed accuracy. This iteration pro-

cedure gives 0, and also the individual energies E.. In the

second iteration, the resulting Ei are held constant and

the Ti are varied to solve Eq.(A.4) and the N Eqsq, (A.5)

This iteration gives the N quantities Ti and also P.
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The process (the two iterations) is then repeated until a

self-consistent set of quantities Ti, 6, P is obtained.

The detailed procedure is as follows. An initial

estimate is made for 0 and the T i. These initial Ti

are, further, adjusted to satisfy the condition (A.4) on

over-all specific volume TT (this initial normalization of

the Ti will be seen to be useful in the second iteration,

below.)

For the 0 iteration (T i constant), the right side of

Eq. (3) is computed

. miEi( i',e

E i.

using the known Ei functions Eq. (A:2) . A refined 0 is

then computed using

Ae = - E

v

where C is an approximate average specific heat. A new

is then computed and an associated new 9. This process is

cycled until convergence is obtained. In determining Cv

above, once two values of E have been calculated, it is

possible to obtain an accurate value of this quantity and

speed convergence. For this purpose, a Cv is calculated

each cycle from Cv -E2)/(81 -62)) where 1 and 2

subscripts refer to the last two t, e points.

Until < a reguaa falsi iteration is used to refine 0.
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For the Ti iteration, the basic equations are (from

the variations of Eqs. (A.4) and (A.5) with e constant)

V = P i + (;-i/ ,.ATi (A.6)

0 =At m- AT. (A.6)

The second equation (the derivative of Eq. (A.4)) requires

only that the specific volume of the mix remain constant; for

this reason it was necessary to assure that the initial

specific volume be correct, as done in the pre-iteration ad-

justment described above. These are N+l equations in ATi,P

with solution

k 1 .

AT Wi Pii

as is easily verified by substitution. Once a solution is

determined, the Ti are updated

Ti = i + ATi

and new Pi are determined from Eq. (A.!)

Pi= Pi(Ti , E
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Also, it hac been found that convergence is faster if we

compute improved values of the coefficients (;P±/aT4)E each

cycle, using points P,, T i from previous cycles, i.e.,

aPi) _ i'l Pi,2
S Ti,l - Ti, 2

in order to have accurate coefficients for the next cycle,

in Eq. (A.6). With these new values of Pi and ( Pi/DTiJEi

it is now possible to compute improved solutions to Eqs. (A.6)

and (A.7) for the next cycle of the iteration. The process is

found to be rapidly convergent.

The Ti iteration gives F and new Ti for fixed

E. A new e and set of Ei is then determined from the

o iteration and the Ti  iteration can then be repeated to

determine improved Ti and a new P. This process also is

found to converge rapidly in experience to date, giving the

desired P for specified T and F of the mix.

A computer program has been written which performs

T! e above iterations, utilizing (where possible) the results

of a similar program which was developed at S' for another

application. "ihe basic program is compatible with state

equations of the forms (A.1), (A.2), once those relations

are programmed (as subroutines).
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APPENDIX B

NTS TUFF DATA

B.1 CRYSTAL OR NONPOROUS DENSITY Oi- DRY TUFFS

This parameter has also been referred to in the

literature as "the grain density," and "the density of the

solids." Tne values that have been found are listed in

Table B.I.

TABLE B.i

Crystal Density (g/cc) Reference

2.3 44

2.0 44

2.6 44

2.7 44

2,37 37

2.597 37

2.122 37

2.21 89

2.23 89

2.43 45

2.409 50

2.33 to 2.49 90

Preceding page blank
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B.2 GRAIN SIZE OF DRY TUFFS

Although the grain size has been reported many places

in the literature, the best stuidy by far was conducted by

Petersen, et al.( 4 0) All reported values are listed in

Table B.2.

TABLE B.2

Component Wt. % Grain Size (mm) Reference

2.6 >9.42

2.8 9.42-6.68

3.7 6.68-4.7

2.6 4.7-3.96
Tuff 9.5 3.96-1.98 40

25.9 1.98-0.41

17.9 0.41-0.15

13.2 0.15-0.05
21.8 <0.05

Crystals 5-15 average .2 to .4

Glass Fragments 10-70 average .3 to .5 s
50

Lithic Fragments 3-8 average .3 to .5

Glass Dust Matrix 15-20 .001

Glass and Crystallites 60 <.01 39

Quartzb (ierL, Feldspar 4U .3

Tuff #1 Range .01 to 10. -

Tuff #2 Range .05 to 10. 37
Tuff ft3 Range .1 to 2.

Tuff #4 Range .05 to 5.

Tuff Range .005 to 3. 36

Tuff Average 01 93
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B.3 HYDRODYNAMIC SOUND SPEED FOR DRY TUFFS

The hydrodynamic sound speed, c , found in the lteya-

ture for porous dry tuffs is presented in Table B.3.

TABLE B.3

c (xl05 cm/sec) Remarks Reference0

1.034 From a fit to high pressure 38
date (p = .2 to 3.3 Mbar),

1.32 to 1.47 From a fit to low pressure 38
data.(p = 30 to 190 kbar).

1.25 From an extrapolation of the 41
curve on page 23 of the
reference.

2.3 For pressures greater than 43
130 kbar.

2.56 From the relation 89

2.12 c = (c2 - 4/3 c ) , where 89

1.94 c and c were measured. 92
) 2
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B.4 COMPOSITION OP DRY TUFFS

Table B.4 contains the geologic composition of

various tuffs as found in the literature.

TABLE B.4

Component Quantity Reference

(Wt. %)

Sanidine <1 to 6

Quartz <i to 7

Plagioclase <1 to 5

Biotite Trace to <1 50

Glass Fragments 60 to 70

Glass Dust Matrix 15 to 20

Lithic Fragments 3 to 8

(Ivt. %) ,

Glass Shards 85 1
Quartz, Feldspar and Lithic 15 53

(Vol. %)
Feldspar Phenocrysts 6

Quartz Phenocrysts 8

Chalcedony Segregations 14 88

Matrix (Cl ay, Chalcedony,
Zeolite, atc.) 72 i

(Vol. %)
Quartz 4

Plagioclase 1

Alkali Feldspar 7 36

Microlites 10

Glass 78
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Table B.4 (Continued)

Component Quantity Reference

Quartz 32.5 37

Matrixal 67.5

(Vol. %)Quartz 
3.5

Matrixal (principally glass) 96.5 37

(Vol. %)Clinoptilolite 94.
Anorthoclase 5 3
Quartz 

1
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B.5 THERMAL PROPERTIES FOR TUFF-LIKE MATERIALS AND

TUFF COMPONENTS

The thermal expansion coefficients of the following

materials were found in the Handbook of Physical Constants.

Linear Expansion Coefficient (a)

(x 10-6 /0 C)

Glass 7.88 to 9.1

Masonry 4.0 to 7.0

Fire Clay Brick 8.1

Cement and Concrete 10. to 14.

Granite 8.3

Sandstone 7.0 to 12.0

Limestone 9.0

Fused Quartz 0.42

Volumetric Expansion Coefficient (f)

(× 10- 6/0C)

Quartz 35.3

Porcelain 10.8

The constant pressure specific heat data for the

following materials was also found in the Handbook of

Physical Constants. (92)

C (cal/g OC)

Dry Clay .22

Glass .1988

Quartz .138

Granite .192

Basalt .20

Marble .21
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Table B.5 (Continued)

The following are estimated values for nonporous,dry tuff based on the above values for tuff-like materials
and the components of tuff.

= 27. × 10'/OC

Cp 0.20 cal/g 0C

CV = 0.20 cal/g 0C
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B.6 STRENGTH PARAMETERS OF DRY TUFF

The unconfined compressive strength, Y, and Poisson's

ratio,v, for various porous, dry tuffs, have been measured

and calculated in a variety of ways. Table B.6 contains the

values found in the literature.

Y (kbars) v p(g/cc) Por.(%) Remarks References

.65 1.9 34 Strain Rate
= 1. X 10 3/sec

.45 1.9 34 Strain Rate 87
= 1.8 x 10- 2/sec 8

.36 1.9 34 Strain Rate

= 1.6 x 10"4/sec

.085 1.76 20,36 p = 0 to .2 kbar

.876 0..6 1.76 20.36 p = 0. to .876 kbar

.075 1.76 21.08 p = 0 to .5 kbar 89

.796 0.17 1.76 21.08 p = .5 to .796 kbar

Stress Rate
= 3.5 to 5.2
bars/sec

.18 1.76 20.36 From pulse velo- 8

.28 1.76 21.08 city on cores, 
89

,223 0.15 16 Water content 91

4.6%

0.36 2.78 1
0.11 1.45 42. 92
0.11 1.6 37.

0.24 2.2 14

.214 0.09 2.35 10.3 94

.037 0.12 1.45 42.5 94
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