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ADSTRACT

The main results of a atructural analysis program concerning
a coaventional submarine pressure hull configuration consisting of a
rib-stiffened cylindrical shell with a reinforced circular penetration
under hydrostatic pressure are discussed. The mathematical solution
in series form has been cbtzined by superposing the analytical solutions
for (a) a long, unstiffened, and unperforated circular cylindrical
thin shell, closed at the enci, under external hydroatatic pressure,
(b) a long, unatiffened, and unperforated circular cylindrical thin shell
under a prescribed number of arbitrary radial line loads, and (¢) a
loag, ucstiffened, circular cylindrical shellow thin shell under
arbitrary loading along the boundary of a circular peuetration. During
the computation, following truuncation of the series, the method of
least squares 13 amployed in solving for the integration constants
determined by the boundary conditions prescribed aleng the ribs end
the reinforced penetration. The analysis has been coded and the
numerical resulte generated by the use of a digital computer for an
unstiffened as well as a cib-stiifened shell with a reinforced penetration
are presented and comparxed graphically with experimental data available
from certain photoelastic model tests. The corresponding zonsa of
influence of the penetration end the state of stress conceatration
about it are delineated.
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HOMERCLATURE

oubscript denoting solution for a plain, closed cylindrical
shell under pressure.

coefficients depending on v, x, i; 1 =1, 2, ... , 5

roots of A in lower half of complex plane; 3 = 1, 2, 3, 4

(s)

complex conjugates of a

area of rib cross sectioan
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integration constants
integration constants

subscript denoting sclution for & plajn cylindrical shell
under multiple radial line loads
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inverse of Bﬂii
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functions dcfined in Eq. (3})

functiong defined in Eq.(3})
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values of Cp 8t N " liln

values of C st n= £, /R
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P =Py ¥ig.3

value of h(¢) st ¢ = O
depth of riung, Fig.3
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dimensionless principal stress concentration factor
defined ia RBRq.(4)

shell stress resultants ia n, 6 coordinate system, Fig.Z
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Fourier transform variable corresponding to n
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().. e paztial dsrivative vith respect to ¢
, Po = outer radius of reinforced penetration, Fig.l
o = distance from transverse sxis of shell to 1-1 axis, Pig.3
a’. d‘, ':“- stresses in p, ¢ coordinate system
939 99 » principal stresens for rib-stiffened ahell with reinfoxced penstration
31, 32 ~ principal stresees for plain shell
v = complex poteutial functiom

vz = Laplacian operator
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1. INTRODUCTION

Current interest in the structural analysis of deep diving manned
submersibles and of submerged habitats, such as naval or commercial
submarines znd installstions and cceanographic resesrch vehicles end
laboraiories, is due to evolving tactical concepts and emerging ecc-
nondc and scientific goals in the development of undexwater resources
and the sxploration of the underwveter environment. It is generaliy
recognized that the presence of structural penetrations, such as
xisslile tubes, hatches, locks, observation ports, valves, and various
othar functional connections, constitutes a source of weakness in say
pressure hull. Related problems arise in the pressure vessel and
pipeline technologies where structural intersections are common. A
comprehensive revicw1 of past research on the subject is available.

In recent years, considerable analytical and erxperimental dats
on the stress analysis of prassure vessels with intersections have
been obtalnedz-6 in support of programs for the development of asso-
clated design codes. The results make possible the planning of further
experiments and the partial verification ¢f information obtained by
nore powerful -athodss of computational stress analysis.

Pressure hulls with penetretions have also been investigated
by both analytical and experimental means in the couxse of recent
progrsms of submarine atructural research involviag conventional
hull configurations. The present woik, part oX auch efforts, concerns
the analysis of a rib-stiffened cylindrical shell with 2 reinforced
circular penetration subjected to hydrostatic pressure. The special
cases of a rib-stiffened shell with an unreinforced penetrations,
including the presence of multiple stiffeners’, and that of an unatif-
fened shell with a reinforced penetration8 have been reported earlier.
Other numerical teaultsg on the last problem are also available. Experi-

mentally, all of the above pressure hull configurations have been
studted. 1012

-»,W*W.
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The configuration considered here, as shown in Fig.l, consists
of a long, circular cylindrical, thin stell of uniforam wall thicknass
t and middle surface radius R, closed at the ends, with several
identical, internsl; circumfersntial stiffeners of ceantroidal radius
R', and a single, centrally located, veinforced circular penstration
of outsr redius Py closad by a flat membrane. The losding consists
of externsl hydrostatic pressure p, and the deformation is taken small
and etetic. The dimensionless axial and circumferential coordinates,
n and 0, respectively, are centered at the point of intsrsection 0
of the longitudinal and trancverse axes of the shell, as shown in
Fig.l, with R}, a measure of length. The corresponding axial, circum-
ferentizl, and radial displacements, U, V, and W, respectitvely, stress
resultants B", Ne, Nno, Nan' Qn’ Qe, couple resultants Hﬁ’ Ho, Hne'
uan, and an arbitrary radial icad p' for an e«lement of the shell middle
surfaces are indicated in Fig.2 vhere the intended sense of a couple
is also given. The surface coordinstes p and ¢, representing polar
coordinates defined in the plane obtained by davnlopiugz the cylindricel
middle surface, are centered at the point 0' directly above point O,
at the intersection of the main generator and ihe iransverse axin of
the shell, as shown in Fig.l, with

i;s = pcos ¢, RO = pain 4. (1)
The corresponding displacements Up, UQ, stress resultants Np, N¢, NOQ'
N‘p, Qp, QQ, and couple resultants Hp, M‘, Hb#’ M@p for an element of
the shell middle surface are irdicated in Fig.2. Partial derivatives
will be denoted by a corma followed by the perticular coordinates as
subscripts.

The circumferential stiffeners or ribs are assumed to act as
slender, curved beams possessing a plane of longitudinal symmetry and
undergoing only flexural and excensional defcrmations and radial inter-
action with the shell. The relevant geometricel propetiies of a normal
ecros3 section of a rib are then the area A aud the area moment of
inertia I with respect to tha centroidal principal arxis normal to the
plane of the rxih.

PP p——
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A representative reinforced circular panatration or ring
intersecting the shell is shown in Fig.3 in the trarsverse plane
of intersection normal to the axis of the shell. The ring is
assumed to resist flexural, extensional, and torsional deformations.
A normal cross section of the ring has an erea A with an axis of
syometry 2-2 in the plane of the ring. The axis 1-1 is the other
centroidal principal axis of the croos section, located a distance
p from the transverse axis of the shell. The area moments of
inertia of the crogs section with respect to the 1-1 and 2-2
axes are denoted by I1 snd L, respectively. The distance e from
the axis 1-1 to the point of intersection of the ring and the :
shell is assumed to be independent of ¢. The digtance e is ’
nsagsured from the exis 1-1 to the point of intersection of the
ring and the flat membrane covering the openiug. The vertical
distance from the plane of the ring to points above it on the
shell middle surface at p = Py is denoted by h(¢), and the depth
of the ring,by b,.

The wateriale of the shell, ribs, and ring, assuzed different

e b i bt 4 ¢ rommni et T

in the analysis, sre homogenevpus, isctropic, and elastic. The
material constants are the Young's moduli B, E', and E, and Poisson's
ratios v, v', and » for the shell, rib, and ring, respectively.
The torsionsl rigidity of the rirg depends on E, v, and the gaometry
of the cross section, and is denoted by C.

The solution for the total state of deformati-n of the shell
is obtained by superposing the intermediate solutions for (a) s lomg,
unstiffened, and unparforated circular cylindrical thin shell, closed
at the ends, under external hydroatatic pressure, (b) a long, unstif-
fened, snd unperforated circvlar cylindrical thin shell under a
prescribed number of arbitrary radial line. loads, such as those
exertad by the ribs, and (¢) a long, unstiffened, circular cylindrical
shallow thic ghell undexr arbitrary lcziinmg aleng the boundary of

8 circulayr pemetration. Quantities veferxing to these intermadiate
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solutions (a), (b), and (c) are denoted by the subscripts a, b,
aad c, respectively. Shell quentities without such subscripts
refer to the solution for the total state of deformatica evalusted,
in general, by summing results from cases (a), (b), and (c)

cbove. This total solution for ths shell must fulfill specified
boundary conditions along the ribs and the reinforced penetration..
Tor instence, the lou_ll exerced by the shell on the ring are

shovn in Fig.3 where Q and ;!p ¢ are respaccively the effective

[

transverse and membrane shear stress resultants defined, in
general, as

- | . -1 2

8 = . 4

Q2Q=p My pr Npg Tl t R Mycos ¢, @) "g

vith :
-1
-* - .
Q=M pre O, M+, P (3

The final form of the sclution 18 expressed in terms of Fourier
series expansions in the 6 or ¢ coerdinates, with coefficients that
sre functionz of the n or p coordinates, respectively, and contain
arbitrary integration constants and various coustant parameters.
During the computation, the different series are truncated and the
method of least squares is employed in solving foxr the appropriate
nunber of integration constants from the boundary conditions. Con-
wvargence is verifi{ed numerically.

The numerical data reported here refer to the statz of stress
in an unstiffened and a rib-stiffened cylindrical shell, respectively,
in the presence of a reinforced circular penetration. The results
are also utilized in calculating the state of stress concentration
in the shell. For this purpose, a dimensionless principal stres:
concentration factor N 1s defined, in general, s

ﬁiwlol,czlimaz’al,szﬂ , (4)
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vhere 9y» 9, 8T the principal stresses at a poiat of the shell
with the ribs and the penetration present, while 61, 52 are the
principal stresses at the same point in the abaence of the ribs
and the penstration. The former are given by

2 2
2.-31’2 L dp + 00 t [(cp‘ c’) + 6 ‘p’ ];‘ ’ (5)

in terms of the normal and shearing stresses ap. o’, and x”,
respectively, in the p, ¢ coordinate system, while the latter, for
the loading considered here, correspond to

mlals azl'Pnlt . 6)

Denoting by x the thickness coordinate of the shell, measured
positive outward from the middle surface, with

]
5 4 - 2
Np 2 opt ~ Bo 12:1‘!9/: *
NO g o4t = H¢ lz:u.lc . (7)
- z u 2
u” Z fp’t N“ + 12ﬁ{p¢/t .

it follows drom Eqa.(4)-(6) that

8 = -1 - P R R YA =2 %

Bw (2pR) max | K ¢ F ¢ [ -F07 + &6 1 I (8)
From Eq.(8), setting z equal to Xt, -¥t, and zero in Eq.(7), the
particular values of I at the outer, inner, and middle surfaces of

the shell, respectively, are determiuned.

2, CLOSED CYLINDRICAL SHELL UNDER HYDROSTATIC PRESSURE

For a long, unstiffened, end unpexforaied circular cylindrical
thin shell, closed at the ends, under external hydroststic pressure,
the solution 16

[T
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B ™ R, No= PR U = (v - % pRz(Bt)-"ﬂ ’ (9)
W- k(v - 2) pn.z(m)’1

i{n the n, 6 coordinate system, and

N.p = JpR (cos 2¢ -3) , N‘¢ = -3pR (3 + cos 2¢) ,

Neoo ™ Nagp = “WR oln 20 ,
Ugp = (v =% pl(Et)'lo cos? ¢ , F(10)
Uy = 40s - ¥) pRBO'p atn 2p

W =% - 2) pRS (B0

J
in the p, ¢ cocr-dinate system, all other quan.ities being equal

to zero, so that from Eqs.(2) and (3),

-

= 0, N w N ° (11)

Qs aps ~ Nape

5. CYLINDRICAL SHELL UNDER MULTIPLE ARBITRARY RADIAL LINE LOADS

7or a long, unstiffened, and unperforated circular cylindrical

thin shell under en arbitrary radial load, the governing displacement

equations of equilibrium are 13

Ub,nn + X(1 - v) Ub,ee + (1 + v) Vb’e“ + vwb’n

+eds(l - ) U

b,06 " ¥

b, nan +%(1 - v) W,

bnnef/j = d v

ML+ V) Uy otV got ML -V T W F R, b (12)

+ x(%(l - V)V

b,on ~ ¥3 - ) W

b’nne] 5 0 »




GENERAL TECHNOLOGY CORPORATION

VO nt Vot W txlil - V)0 g - U i
- 43 - Yo,nne * "5 ee60 * 2% nnee * ¥b.nnmn

W, gt Rl p'R2/D

x = K/pR®

where

DEat/(l-vd) , KEES123-vD)

(13)

are rersectively the extensional and flexural rigidities of the ghell.

In the particular case of an arbitrary radial line inad,
solutions of Eq.(12) decaying to zero as n + ¢ are sought.
Bxpiadiang the line load exerted ou the shell by a single rib
locited at n = O, and the displacements in Eq.(12), in terms of
suitable Fourier series in 0,

' Uy, WY =F  {p8(n), U (), ¥ (n) } cos mb ,

v, §_o 7 (n) sin mo

wiers w i an integer, p, are arbitrary conztants denoting inter-
action lod amplitudee, 8(n) i1s the Dirac delta function, and Upo
V. W, ar displecesent amplitudes, ond applying to Eq.(12) the
Pourier transtform defined, for an arbitrary function f£(n), as

f(a) = (21:)-;5 [: £(n) exp ian dn ,

whera a 13 the transform variable corresponding to n, and

3 = - -
i 2 (-1)°, a system of equations for Um(u)= Vm(a), and wm(u)
is obtaiind the solution of which 1a6 of the form

- - , o
%,Un, Vm, "m} " me{fl, £, fall(z'w DA R

(14)

{(15)

(16)

S g g Ixf

B
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vaers

Ala) & a (c8 + n‘a§‘+ a3u6 + azcz + al) ’

£,(0F 1a®,e 4+ b+

4 2 r (17)
£,(a) 2 ba” + bga” + be

- 3 2

and the coefficients a, i=1,2, ... , 5, and bi' 1i=1,2, ¢c¢0,9,
depend on v, x, m, It should be noted that Py E 0 if the equilibrium
of the forces exertad on the rib by the shell 18 to dba ecnsured.
Accordingly, solutions obtained in this szection ave for u ¢ 1.

In ordex to determine Um‘ Vn, “m’ the inverse Fourier transform,
defined as

£ = 2074 (B iexp don) da (18)

is applied to Eq.(16), the resulting integrals being evaluated by
nmeans of contour integration in the lower half of the complex plane,
takiang account of the fact that Ub i5 ean odd function of n while

Vb and Wb are even functions. Since A is a fourth order polyromial
in o with real coefficients, it can be written us

A= a, (¥ - (3:1)2 + nia)z)az (1)2 (3)2] [ (a\gz)z . ai")z)az

a<2)za(4)2

m m

} ; (19)

where 0(0)2

that

w1, 2, 3, 4, are the xcote of the polynumial, such

=(3) (1) _ON (2)
S TRy s 8y ey ’ (20)
, ¢ () _(&
with a superposed tar denouting the compiex conjugsate, 1if 8, &,

1 4
(L) _(2) r \
and a ", a ' are respectively in the thivd gud fourth quadrants of the

complex plane.
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For m » 2, it follows that

2
{5, Vo ¥} = 20,07 B (lom ),
F(21)
0¥, ey €1, € 2 -1aP ],
n u
)
vhere Re denotes the real part, sand
() (8) .(8),_ (s), ,
:*, %, o.®1s um, (£, £,, £.} i(a - a*®)sa (22)
u > W W (o)1 20 f3 &

ave the appropriate residues at a simple pole, the numerically
evaluated roots of A, for the corresponding range of m employed in
the calculations, having been found to be distinct and different
from the roots of fl, fz, and £3.

For m =~ G, fzia vanishes, therefote,vo = (. At the origin of
the complex plane,where 4 now has & double root denoted by agz),
flld has a simple pole, while £3/A 18 analytic, so that

qéz)- Ml (2 ~x - 1), qég) ° 0. (23)

Furthermore, in the lowaer half of the complex plane, £ has the
remaining two distinct roots agl) and agS), different from those

of fl and fa; and the correspending residues csn be evaluated from
Bq.(22) with wu = 0. Then,U, and W, ara determined from Bq. (21) with
=0,

Finally, considering a given number N of pairs of arbitrary
radial line loads located symmetrfcally acrose the transverse axis
of the shell gt n = IJIR, i=1,2, ... , N, vhere £ repragents
half the distance between the j~th pair of ribse, the soluti. for

the displacements is
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-] R - 2 (.) q N
O = 250 4k nlo oFy BelY (o v e £
msl

TN

+ sgn l\'j' axp 5',')1 Py cos w0,

N 2
-1 (s)
Y = - h siBal0y “(exp €
n¥l

ey

+ exp E'j')] P‘jnm mb,

N 2
2nn-1 (s) '
- J'El. n§o IEI !![Q’li- (exyp Ej r (24)
agl

qF
]

+ exp E;)l Py )08 mé ,

2 o (.) ’ " s o (')
T g L R R LAY
‘' 2 ne ' "o
'!j . “ zjin 1} nj 3 “ + zleR 2

!
where P, are icteraction load amplitudes for the j-th pair of radial

line loads. This sclution allows non-uniform spacing ot adjacent
ribs.
Substituting Eq.(24) into the following resuitant stress-

digplacement relatiops 13

)}

an, = DR [ub',t + w(wh % vb.e) - wa'm] ’
-1 e . e
Nyg = PR~ [W, + vb’e +\,ub’n O "b,oe”'

&R - ) "1 [l ~
R LA A L 3

) -1
Nygn = (1 = VDR V(U o+ ¥ & e(0y W G

10
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1%“ - I'D[Vb.“n - ubm + “{'b,OO - Vb'o)],
%’ » KD(Hb + “b,“ + U"b,'“‘), r(zj)
ano » {] - v):D(Vb.n - ub.nﬂ)'

ube o (1 - v):D(Ub ’“ + zub’ne s

the corresponding solution for the stress and couple resultants is

obtained. These results are then represanted in the p,¢ coordina:x

system by trannfornntion.6 after which, expressiona for th and th.

are found from Eqs.(2) and (3).

B it

4. CYLINDRICAL SHELL UNDER ARBITRARY LOADING ALONG A CIRCULAR PENETRATION

For a long, unstiffened, circular cylindrical shallow thin shell
under edge loading only, the stress and couple resultants can be
expraaaed2 in terms of a complex, dimensionless potential function
y &5

-

-2
N, =Bp Im(y,,, +pys ), N_ =B ,
p = Bo Iy, + v, ), B, = BlnGy, )

Neoe = Negp “"'29‘*'4, Bl

Mep = FooRelv, o * ""-2(*’015 tous) L(26)
Mq - —x,on_g{\‘,,pp + 0-2(%“ + w,pn,
Meoe
B=ogelilza - DT,

-2
a -y = (l. = R.( 5 - b )

where Im denotes the imaginary psrt, and

11
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RPN ..u-—unl’«-amquﬂ

vty + sisnbe, =0, Ba(¥) ¥ W /o,
M c o p(”)

: 2 _ A
PO) 2 O+ Ogen 88 3 6130 - vH ) ¥me,

o

with ~ as ths material-curvature paramster. Various eond;.tionl
concerning tha applicability of the shallow shell theory to the *
presient problea have heen recorded ehmhore.l

The solution of Eq.(27) in the p,¢ coordinates system,

satisfying the conditions of biaxial symmstry and of decaying
to tero as p + &, 156

1
- n"lnzo E(a +1A01 cos 204, ,
r (2 1
R i S TN R SV T JN L I ,

whive 1,8 are integers, Gno 1s a Kronecker delta, A , & m
arbiirary integration constante, and J and BI('.I) are the Bessel
end iankel functions of the first kind and integer order k,

res rectively, of the corplex, dimensionless argument 39(21)*‘
thise functions are evaluated by means of a series representatiom.

Bis>ressions for Q and Ncpé are found from Eqe. (2) and (3) by

siploying 8qm(26) and (-9.

In order to determine Ucp and U, ¢’ with W  given by Bq.(27),
tle following resultant strees-digplacement telatim3

- -1 .2 W
Upp,p ™ (BEY (N - N ) -~ ¥ R 'stn” 9,
-1 -1 2
p (U cp ’ ¢) > (Et) ‘ - mcp) - WR " cos” ¢,  (29)
-3 - y -1 _ -1
e (llm,¢ - Um) + Uc.'p 2(% + ) (BL) Ncp¢ ch sin 24,

ar: ytilized, the solutions being subject to conditions of symmetry
spizified above.

Finaily, ¥ 1o the 1,0 cooxdinata systen .’1.65

12
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V= m"l_!o oot -c a) cos ws, (30)
vhere

ln_‘ cos :snn(Zi)" - dnv] exp Mgtaor,

-1 r(31)
D (M 5{8:)-1} _Z Bf‘l) cos né cos nd d¢ 1f [‘ ¢ 0 } .

Con(™ + 1, (n) = pox"

n=0

noting the transformation relations in Eq.(1); the integral
appsaxiag in Eo.(31) is evaluated nurerically.

3. BOUNDARY CONDITXONS

Considering first the boundary conditions at the ribs,
since the total solution is symmetric in n, only the conditions
at n = si:'n, i=1, 2, ... , R, namely,

W=y, (32)

need to be employed, whetela

' =, cos 5+ e Eoler - IIAR'Z)GBO
-

~fu? - 1)-2];;'1 cos mé (33)

ig the ou*werd radial displecement of the i-:h pair of ribs, with
4 denoting arbitrary integretion constante vepresenting rigid
body displacements. FProm Egs.(9),(24),(30), (32), and (33),_it
tollowa7 that, for m ¥ 1,

N

2,-1 % -1
Pag =8y e - 221 - v7) TpRE o + T, (€L AL - Co LA )IB 39

min nmji’

whers B li is the inverse of

mi:
: (e}
= 5 ea 84, .1 . -
ij,‘ = 2.5 kei W {exp ;‘ji + exp E‘jj)]

~2

+ OR'GE IR (G - I/m'z)éw - (mf - 17?8
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sud c-uo "1v gii’ and E;i denote cms c.nl E;’ and E;o

respectivaely, evaluated at p = z‘_lx. and, form= 1,
e, =0 Y (C: A -C A) (36)
L1 ns) "lai a ini 0’ *
Considering next the re!nforced penetration, the loads
exarted on the ring by the nydrostatic pressure and, along its
exteraal and internal boundaries, by the shell and (e mambrane
covering the opening, are equipollent to the followiag syltna

of radial, tangential,and tzansvarse forces, Fl’ Yz. F,, respec-
tively, 3nd torsional moment M a&cting along p = p.

2 - - - -1 . -~

[4 Dolll = ﬁﬂp + eNN " 590 pz 3 Np"

z - Noat -l -1, 2
[ 0011‘3 Elp P - [h(Q)Np.)'é + ,[op + p R (“p stn” 4

+ !5;1” ain 24)], H37)

5‘,;114 B M- h(aN + 3e(p - 5)2p;19

- -1 2 -
- e[(;i‘> + p R (Np sin” ¢ + ;5&” ein 24) 1.

4

The equilibrium of thesz forces and momant, the positive directions
of which can be inferraed from Eq.(37) and Fig.2, is esscntially
ensured, since it can be shown that the solution in Eq.(28) implies
4 self-equilibrating system of loads 2long the boundary of the
penetration,

Denoting by u, v, and w the displacements, in the outward
radial, tangential, and upward transverse directions, respectively,
of points of the ring on ¢ = p, the boundary .onditions at the
penetration area

4 v oo Treliy 4 -
B = BL G, )+ BAF (u v,

866~ TToob

M
5E, = EI

2
7 - - Y
Urggs ™ Trop) T EN (Mgt ¥

, r(38)
BT, » 5w, , -w, o) - BL G, 4, + 5w, )
3 P Trgs ™ ¥opnes 2°70 4 oo

=2 PR § Sy ¢ -
p U (5 Vu¢<,' ":p¢¢) + 512“’9!, + 9 L!s°¢)’
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vwhers, appro:i.ntolya.

ueU +hW, + ponflw otal ¢ ,

Py = BU, + 6T  + BNV | +ip PR L etn 29 ,
ve W - oW
?

.

(39)

p .
Shell quantities appearing in Eqs.(37) and (39) are evaluated
atpw= Py and, in the course of the solution, h($) snd w 0 are

replaced approximatsly by

h($) = b - kp:krl liuz ¢, hsh (0), vo© ﬂ,p .

6., NUMERICAL AND RXPRRIMENTAL RESULTS

The ebove analyais has been coded and numerical results for
certain configurations within the range of applicability of the
theory and for which sxperimental resulta are prasently available
have been generated by the use of a digital computer.

In the special case of a cylindrical shell stiffened ﬁy
uultiple ribs, with an unreinforced penetration, a comparison of
the previous analycesﬁ'7 and experimental data has already been
ruportcd.ll These analyses have also been confirmed by further
numerical tesu1t314 obtained on the bagis of an energy method utilizing
a finite difference representation. The following account, then,
consists of similar comparigons between the result: of the present
analysis and those of further experiments for the rewaining cases of
an unstiffened shell with a reinforced penetrationl2 and a rib-stiffened
shell with a reinforced penetrationlo, respectively, for which no such
evaluations yet exist. The corresponding zone of influence of the
penetration and the state of stress conceniration about it are thereby
delineated.

Numerical results obtained during the present investigation
for the particular case of an urstiffened cylindrical shell with
a8 reinforced circular penetration, and describiing the variation
of the dimensionless hoop and longitudinal stresses with plpo at

the outer and inner surfaces of the shell for ¢ = 0 and ¥/2, are

15
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S -

indicated by the solid curves in Figs.4-7 where the experimental
tl‘ultllz for the sams case are shown by the dashed curves. The
latter are based cn photoelasticity tests potfotIldlz on an epoxy
(Bysol 4290) shell model, with a ring of rectungular croes section
sad of ths same materisl around ths opening covered with & plug,
loaded by internal hydrostatic prussure. The relevant dimensiouns
for ths test model are R = 5-7/8 inches, t = 1/4 inch, Py ™ 7/8 iuch,
b, = 1/2 inch, and e = @ = 1/8 inch; the ring has a fillet vith a
radius of 1/16 inch, the point at which it maets the shell being
indicated by a vertical dash on the experimental curves. The value
of h 1s taken as zero.

Corresponding results for the general case of a rib-stiffened
cylindrical shell with a reinforced eircular penetration are given

in Figs.8~11 where the snlid curves are obtained from the present
10

b, ATV ML @ et T

0 AR e b ekt

analysis and the dashed curves represent the experimental datas.
The latter are based on tests, similar to those mentioned above,
conductedlo on a model of the same material and dimensions, except
for the presence of multiple ribs of rectangular cross section

and of the same material, with adjacent ribs spaced uniformly a
distance 2% apart, as shown in ¥Fig.l, the additicnal relevant

1
dimensions being 2. = 1-1/2 inches, t'» 5/16 inch, and e¢' =» 1i-1/8

inches, where t' l:d e' gre the width and the depth of a rib,
respectively. The calculationa were carried out for the case N = §4;
the centerlines of the first two riba only are shown in Figs.8 and
9, with the width of the vibs indicated by a pair of vertical dashes
cn the experimental curves.

Finally, the calculated values of the principal stress concen-
tration factor at the outer, inpner, and middle surfaces of the
shell, for the two cases considered here,are shown in Fig.12 for
0<¢ < n/2 and oipo = 1, with the curves a and b referring respectively
to the unstiffened and the rib-stiffened cylindrical shell with a

reinforced circular penstration.
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7. CONCLUSION

From the preceding graphical comparisons of analytical and
experimental results, it can be concluded that, in general, &
satisfactory agreement exists. Complete agreement is not expected,
sfuce there are certain features of the test models causing
localized perturbations, such as -the Iillets eround the rin_ and
the ribs, the finite width of the ribs, and the particular plug
covering the penetration, that are not accounted for in the theory.
It should also be noted that some of the experimental data reported
for the fillet region at the ring are based on extrapolations.

It may, however, be desirable to refine the present analysis
by considering the influsnce of the circumferential ‘nteraction
between the shell and the ribs.
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