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ESTIMATES OF THE ROUNDOFF ERROR IN THE SOLUTION

OF A SYSTEM OF CONDLTIONAL EQUATIONS

by

V. I. Gordonova
Zh. Vychislitel. Matem. i Matem. Fiziki, Vol. 9, No. 4
July-August 1969, pp. 775-83

In the present work we will examine estimates of the equivalent
perturbation of roundoff errors in the solution of a system of condi- !
tional equations by the method of Jeast squares (Method A) and by a
method which was proposed by .D. K. Faddeev, V. N. Faddeeva, and V. N.
Kublanovskaya in a joint report at a conference on numerical methods r
in Kiev in 1966 (Method B).

let us examine the system of conditional equations:

Axm £ (1)
with a rectangular matrix A haviag N rows and n columns, where
geperally N >> n. Method A leads to the system of normal equations

A%Ax « ATt (2)
with a symmetric positive definite matrix ATA of rank n. We will

assume that the solution of (2) is found by the method of square roots,

alvays taking advantage of the accumulation of scalar products, independ-
ently of how one computes the elements of system (2).
Method B leads to a left orthogonal transformation of (1) into

Px = £ (2')

The term "equivalent perturbation"” seems to refer to inverse roundoff
analysis.




where P =QA, £ = Qf, matrix P has non-null elements only in the right
upper triangle P of rank n. ILet £ be the vector whose components are

the first n components of the vector Qf. The triangular system

Px = £ (3)
is equivalent to system (2).

The total error in both methods is composed of the roundoff error
in reading in the coefficients and the right-hand terms of (2) and (3)
and the roundoff error during the solving of these systems. Since
triangular systems may be solved very exactly ([1, Chapter 4]), we can
neglect the roundoff error in the solution of (3) and in the back-
solution part of the method of square roots in the solution of (2).

Because of the equivalence of (2) and (3) it does not matter whether
one calculates the equivalent perturbation of roundoff errors of Methods
A and B in terms of (2) or (3). We will do the calculations in terms of
system (2) since this is more convenient. Everywhere below, if it is not
specifically stated, we will use the symbols adopted in [1] and the
Euclidean norm of the matrices and vectors.

1) Let us examine in the first place the errors of Method A.
Because of the roundoff in the calculation of the scalar products, the

T

elements of the matrix A"A and the vector ATf will be obtained with

a certain error; i.e., instead of (2) we obtain

Bx = k (4)

T

where B = ATA + A(ATA), k = ATf + A(AT?).
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Tne norms of the error matrix A(A:A) and the error vector A(ATf)
essentially depend on the method of calculating of scalar products in
the machine.

In the carrying out of all operations in a machine with a t-digit
accuracy, the elements of A(ATA) and A(ATf), which we will designate
respectively by Abij and Ak, , may be estimated on the basis of (1, '

Chapter 3] as

-4 =ty
lob,  f < = ey |l ||aJl| ; IAKJI < 7 e el

i

if the calculations are executed with floating point (fl1). Here and

later t) =t - 0.08406, &and a, 1is the i-th column of the matrix A.

i

Hence, we obtain

-t
Il < 12 b 1 Py (5)
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-t
laa®e)l < we LAy el

If the calculations are executed in fixed point (fi), we get

correspondingly

In(aTA)) < wm2" %L, fa(aTe) | < mat/2 27T, (6)

t-l, el < l-N2-t-l, which guarantees

Here it is assumed HaiH < l-N2”
the possibility of calculating in fixed point.
If the scalar products are calculated with double precision, then

the estimate wider consideration is practically independent of N. In




particular, in the case of floating point (fze), according to [1, : N

Chapter 3],

-t T 3 p-2t+0.08L06 o
IAbijl <e (ai aj) +gm ”ai” l‘ajh .

Assuming g— NQ-t < 0.1, we obtain

= N o=t
b, .| <2 (di uj) + 0.11:2 Mdin HaJH .

1J

Using the relation I(af1 aj)l < Hai|| ila.J II, we find

ia(aTa) < 1om1-27% a2, (7)

In the same way, i
Ia(ae) | < 1.11027% ] Jle) . (8)

In the case of fixed point (fiz), we have
Is(aTa)] < 27, (s < ot/2 270t (9)

-t-1 -t-1
» el g 12777

with the assumption that llai | <1-2
let us now estimate the equivalent perturbation due to the roundoff
error in the application of the forward step in the method of square
roots, i.e., in the decomposition of the matrix of system (4) into the
product of two triangular matrices. It is known that the triang.lar
fuctors S and ST of the matrix B that are really obtained in the ‘

machine are the exact factors of a certain matrix B+E, that is

B +E =SS (10)
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The following estimates are verifiable for the elements e J of matrix E:

|siJsJJ|2't, 1>

-t

IeJilg |sJisii|2 o LS g (11)
2 -t
5112 ’ i-J

with an accuracy up to terms of 0(2'2t) in calculations with floating

point and
0.5, 2%, 1>
leg | < { 0-58,, 2, 1<y (12)
1.00001s, 2-t, 1=

in calculations with fixed poiut. In the latter case, if lbiJ' <
1-1.00001°2't for all 1,)J and if matrix B 1s not very badly condi-
tioned, then |31J| <1 for all 1i,J.

Considering (4) and (10), we get that the numerical decomposition
is exactly the decomposition of a perturbed matrix, i.e., ATA +Cs= SST,

where

¢ = A(ATA) + E. (13)

The norm of C 1is indeed of interest to us as the norm of the total error
in the coefficients of system (2), while the norm of the vector A(ATf)
is the norm of the error in the right-hand side of the system.

From (11) in calculations with floating point, neglecting terms

of order 2'2t, we have




n n i-1 n
z efJ 5'2-2t (£ SfJ S§J + hs?i + I Bﬁi s?i)
1,4=1 i=l j=1 J=i+l
n n
<2278y g sij s?'J y B sii $2))
i,d=1 i,j=1
n
= h-2-2t z Sij S?J
i,5=1
-2t 2 22 <2ty b
< k.2 max sJJ z Sij = 427°"|s|I".
J i,j=1
Considering that
n i N
2 2 2
Is,.= Zs,,ab . +e ., = Za, 6 +08, +e
P AT B At 11 * €14
N2 -t 2 -t
= Ty (1407 = flay [ [1+ (7)),
J=1

we obtain |Is|| = [JAJl[1 + o(v2"Y)], where

el < 2-27% JalB1 + o(m"®)). (1k)

As V. V. Voyevodin observed, these considerations pérmit us
to obtain an estimate of the equivalent perturbation for the method
of square roots which is n times better than that suggested in [2],
without the assumption of sccumulation.

Actually from the above explanation it follows that with an

accuracy up to quantities of order 0(2-2t)




lEll < 227" = (z 2 P12 < 2.27 s
3

2.27% |ssT|| = 2.27% |B].

Passing from the Euclidean norm to the spectral norm, we obtain

1/2 1/2

lEll < 2-27%(sp B)? max 5,4 < 2.27%n max xf)

i i

I
= 2.27% g2 IBll, -

This estimate is n times better than the one obtained in (2], for

example. For fixed point, an estimate analogous to (14), derived from

(12) with the assumption that Isijl <1, has the form
-t-1 1
IEll < n27" (2 + o(2) . (15)

Using the relations (5)-(15), we obtain finally

o<t AR + od), It < L Al el 5 (e2)
i< 2.7127° 4, laaTe)l| < 1.11-27% Ja)| ey 5 (£1,)
lei < w2741 + o)), IaaTe)) < w2 270 (£1)
e < 2781 + o(3)), laaTe)) < /2 27T, (£1,)

respectively, for the calculation of the elements of ATA and ATf

in the cases of fUi, ﬂ’2’ fi, f12.
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2) We will now estimate the equivalent perturbation for the errors
in Method B, which is equivalently an estimate of the errors in the elements
of the system

P'Px = P'4 (16)

which ware obtained pecause of the inaccurate calculation of P and £.
it 15 Jenote by AP &and AL, respectively, the matrix and the vector
orror. Because of these errors, instead of (16) we obtain the perturbed
system (P + AP)T(P + &P)x = (P + AP)T(L + AM). Neglecting the products
APEAP  and (A.P)T » we obtaln for the perturbations the approximate

~qualities

TP+ (aP)TP, a(PTR) = PPas + (2P) T4,

/\(PTP) = P

from which
T <
la(pR)l| < 2llell flaell , laCeTe)ll < lBl flael + lapi (2} -
Because of the orthogonality of the matrix of transformation Q,

we have

Pl = [QAll = [All end [1£] = |l = |i£); ,
whence

1a(ETR) || < 2)lal lapll , aC(eTe)| < Ual lagi + gy la®l . (17)

In order to obtain final results it is necessary to estimate the norms
of AP amnd AMl. These estimates essentially depend on the actual method
cf obtaining P, i.e., the method of transforming the system of simultan-

cous equations into system (2'). To obtain the matrix P we will eliminate
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the elements aiJ of matrix A for which 1 > j. We will perform the

elimination with the help of a matrix of rotation or reflection [3].

Moreover, we will designate by ai,ob,... constants, which depend on the g

actual method of rounding in the machiase. According to the assumptions t

of (1], these constants are not more than a few units or 1-2 tens. |
(1) The transformation of matrix A 1is accomplished with the

help of a succession of elementary rotation matrices Ti in a cyelic

J
order (Method Bl). Each of these rotations eliminates the element standing
in the (i,j)-th position.

The roundoff error during the corresponding process of eliminating
the subdiagonal elements of the square matrix was investigated in [1,
Chapter 3], where elimination by columns was examined. In our case it
is more convenient and necessary to eliminate elements by rows, i.e., in
the order (2,1), (3,1), (3,2), (#,1),...,(n,n-1), (n+l,1)....,(n+l,n),...,
(Nyn). It can be shown that the roundoff error in the elimination of
elements by rows and columns is the same.

Without stating the calculations, which are like those examined in

[1, Chapter 3], but which are even more cumbersome, let us write the final

result for the i-~th column Aﬁ of the error matrix AP:

, . = / 5 =
la Il < 02 la(n-n) + MBI 2(nn2)t (nege2 M8 o (19)
in the cage of computing with floating point. In the same way an estimate, L

with the substitution of |[|f|| for “ai“’ is verifiable for the error of
transforming the column of the right-hand side. Here the calculation of

scalar products with double precision has not been assumed. This cannot




essentially change the estimate since, in the process under consideratior,
we do not encounter the calculation of scalar products of a vector of
more than the second order.

In computing with fixed point
-t n(n-1l
oIl € @ 27 (a(n-n) + 22Dy (19)

moreover, for it to be possible to compute with fixed point it is suf-

ficient that

ol <1 - @ 27(n(t-n) + REEY)

The same estimate is correct for the error of rotating the right-hand side.
The estimate obtained is exactly like that given in [1, Chapter 3],
where actually the fact that the transformed matrix is square 1s not used.

2 2l
Considering that [AP|| = ( Z “AEH )Y/ €, we obtain from (18)

i=l

1/2

lopl < o M2 278 fall , flatl < o Mt/ 27t e

for floating point. In the same way from (19) we obtain

1/2 -t -t
lePl < o N2 27%all, ol < o Me2

for fixed point.

(2) Errors can be reduced essentially if one uses rotation matrices
with the order of elimination of the unknowns that is suggested in [4]
(Method 132_).

Let us denote by M the number of cycles required for the transforma-
tion of A {into triangular form. The estimate computed in [4] for our

cuse takes on the form

10




-t\M-1
)

ol < a 2”1 + 6:2")"Hall , llatl < a2y "2 + 6:27)" gl (20)

for floating point, and

lapl < %Q-tMl/a nl/a[n(n-n) + 9.(%'.]_'2.]1/2 _

(21)
lal < 02”2 [n(nen) + RBLL11/2

for fixed point.

For an estimate of the value of M 1let us note that the number of
cycles is independent of the actual realization of the process suggested
in [4] if one does not consider zero elements of the initial metrix or
auy elements accidentally zeroed in one elementary transformation. For
the elimination of the m-1 elements of the matrix consisting of m
rows and one column, [loge(m-l)] + 1 cycles are required. Here the
square brackets denote the integer part.

Let the matrix have N rows and n columns. For the elimination
of all the elements of the first column except the first element, one
requires [logz(N-l)] + 1 cycles. With these it could happen that some
of the elements of other columns are eliminated. However, even if one
disregards the last situatior for the elimination of elements of the
second column, [loga(N-E)] + 1 cycles are required, etc.

Finally, we obtain

n
M < T [log,(N-k < n{[log.(N-1)] + 1) .
s og2( )+n<n 052( )] + 1)

11



This estimate is a little excessive, but not by more than 4-5 times for

N < 100000.

Using this estimate for M, we find from. (20) and (21)

lapl] < og n 10g, N-27Vall , lltil < o n log, N-2”"]

for floating point and

1/2 1/2

el < o, 0¥2(w 208,02, |jat] < a n( 20, W)

for fixed point.

(3) Using a matrix of rotation (Method B3) for the elimination of the
cerents of A appears most expedient in that case where the scalar
products are calculated with double precision. Moreover, the estimates for
AP und A4 are practically independent of N. ILet us assume here that
the calceulation is carried out in floating point. The results obtalned in

[1, Cuapter 3] go for rectangular matrices A and give

e < agfa-n)e™al, ol < a(a-beel)

Having substituted the estimate received for AP and Af . into (17),
we obtalio o final estimate of the norm of the error matrix A(PTP) and
tue error vector A(PTL); namely,

fur method B, :

1
TR < a2 Y, la(eRe) ] < o™ 22 Eal] e (£1)
la(eTe)| < amn®2®, lIa(pTey < <>42Nn3/22't ; (£1)
12




for method Ba:

IA(F™))| < o n 2ogy2” AllZ, IA(FTA)|| < oyn 20m N2 7lal el (£2)
I(E®R) || < oyn®(n logaN)l/ 2 et < %n3/ 2(n 103211)1/ 2, (£1)

for method B3: ;
(2R < ag(m-12” al, i) | < ag(a-2)27Yall el (24,)-

Comparing the obtained results, we see that the estimates of the
equivalent perturbations for the matrix uf system 2 have the form
2-t(p(N,n)“A“2 and 2-tv(N,n), respectively, for the different methods

of calculation. In the table 'the order of magnitude of the functions q

@(N,n) and ¢(N,n) are set forth (N >> n).

Type of Computation

i '
Method L, L f1 ' £1,
A | N i -cons'ﬁ ) nN | 3 n
j B, ! nl/ 2N nl/ N . n2N ; °N
B, o log, N n log,N ; n2(N logaN)l/a ne(N logzn)l/ e
By [N n 2N n2y/2 | ‘

In this table it is seen that a comparison of Methods A and B, in
the sense of majorizing the estimate, goes as a rule in favor of Method A.

Method 132 is the elimiration method.

13




Iet us go now from the equivalent perturbations to the error in
the solution of the system. It is not difficult to construct an example
in which with Method Bl one obtains an order of the norm of the error in
the solution which is equal to the largest estimate of Method A without

accumulation. Lét u: examine, for example, the system with a matrix of

coefficients and a right-hand vector, respectively, of the form

\ 0.5 8 i 1/n i <n;
84 = {'o 13,1280, fi=\.
{el i>n, {0 i >n;

where € << 1, so that n(N-n) € < 1.

Let us consider that computations are carried out witn fixed point,
and that the elementary matrix rotations are computed exactly. Assume
that multiplication by these matrices is equally exact. After each
multiplication by an elementary matrix of rotation, one rounds off the
elements obtained up to a8 t digit number with fixed point, which gives
an error of 2-t-1. It is possible to assume that in this situation the
elements of AP, whiclh stand on the main diagonal and above, have the

gl O(n(N-n) € 2"%). Also, the components of the vector

form (N-n)2
AL have this form with numbers which are not larger than n.

Let us designate by Ax the vector of the error of the solution.
When (; + AE)(x + Xx) = ; + A;, then, neglecting the product A;Ax, we
obtain A&x = ;'l(A; - A;x). Heving computed # ana X, we obtain
llax]] = o((8-2)22"%), e seme order for :Jfaul| \4s obtalned imiMethod
A if one uses the identity /Ax = (A:k)'l(c(ATf) - Cx) and the maximum

estimates for A(ATL) and C.
1L



In conclusion, let us take note of a fact which is connected to the

practical application of the methods under consideration. The application
of Methods 32 and B3 requires storage in memory of all the elements of the
matrix A, while the application of Methods A and Bl permits a row-by-row
introduction of the information. The latter allows one a practically limit-
less way to increase the values of N. In the row-by-row introduction of
information in Method A with accumulation of scalar products, one demands
in addition n2+ n work cells for the storage of intermediate values
during the calculation of the elements of ATA and ATf. Actually, in
this case the coefficients (and the right-hand side) of system (2) can be
considered in & parallel fashiod and each of these intermediate values,
written down in 2t digits, can be stored in 2 cells of memory.

The author wishes to thank V. V. Voyevodin for posing the problem

and for guidance.
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