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FOREWORD

This book presents a unified treatment of normative
theories for che evaluation of individuals' preferences in
a variety of types of decision situations. The material
was compii~? ~~4 developed as part of RAC’s Advaaced
Research Department work program in decision and value
theory. Many of the results in the book were developed
as a result of basic tesearch investigations under the
RAC Institutional Research Program in addition to ONR
and ARO support.

NICHOLAS M. SMITH
Head, Advanced Research Department
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PREFACE

thogu,

The underlying motive for this book is the widespread activity of human
decisivia making. Its basi motif is that decisions depend, at least in part,
cn preferences. Its subject matter is preference structures and numerical
representations of preference structures.

Although utility theory has well-recognized roots that extend into the

eighteenth and nineteenth centuries, much of its significant growth has ;
occurred in the last two or three decades. This growth, whose major con- ;
tributions have come out of economics, statistics, mathematics, psychology,
and the management sciences, has been greatly stimulated by the use of
axiomatic theory. This is evident, for example, in the works of Frank P.
Ramsey (1931), John von Neumann and Oskar Morgenstern (1947), Leonard
J. Savage (1954), John S. Chipman (1960), and Gerard Debreu (1959, 1960),
all of which use the axiomatic approach. In this approach the investigator
puts forth a set of axioms or conditions for preferences. It might be said that
these conditions characterize a preference structure. Some of them may be
viewed as criteria of consistency and coherence for the preferences of a
decision maker; others may be viewed as structural and/or simplifying
assumptions. In any event, the investigator then seeks to uncover a numerical
modc! that preserves certain characteristics inherent in the assumed preference
structure. Further investigation might indicate how such a model can be
used to help decision makers examine and perhaps resolve decision problems.
This can include methods of estimating the terms (utilities, probabilities)
that appear in the model.

During 1963 through 1969, while this book progressed through its own
growth 2nd distillation stages, I have been increasingly concerned by the
needs for a unifying upper-level text and a research-reference work on
utility theory. It is my hope that the book will satisfy these needs for at least
the next several years.

The book was written to be self-contained. My experience indicates that

many people interested in utility theory are not especially well trained in

mathematics. For this reason and to prevent any misunderstanding, I have
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viti Preface

included virtually all required background mathematics. This materisl is
introduced when and where it is needed. Those unfamiliar with it will of
course find much of it difficult going, but at least I hope they will be spared
the trouble of searching elsewhere for it.

Also by way of self-containment, proofs are provided for all but a very
few theorems. Browsers will want to skip the proofs, but they are avzilable
when desired. In most cases, source credit is given for more involved proofs.
In some cases ] have expanded others’ proofs to make them more accessible
to some readers. This is most noticeabls with respect to Debaou’s acdllivity
theory in Chapter 5 and Savage’s expected-utility theory in Chapter 14.

Set theory is the cornerstone mathematics of the text. With no sigaificant
exception, all utility theories examined in the book are based on the theory
of binary relations. The main binary relation is the preference reiation “‘is
preferred to.”” Algebra, group theory, topology, probability theory, and the
theory of mathematical expectation arise at various places.

The exercises are an integral part of the book. Those with boldface numbers
cover important material not presented elsewhere in the chapters. Other
exercises offer practice on the basic mathematics and on the utility theory
and reiated materials discussed in the chapters. Answers to selected exercises
follow Chapter 14. A preview of the book’s contents is given in the first
chapter.

Finally, you should know about two other books that present a significant
amount of material on measurement theory (of wkich utility theory may be
considered a part) that is not found in this book. The first of these is John
Pfanzagl’s Theory of Measurement (John Wiley & Sons, Inc., New York,
1968). The second is being prepared by David H. Krantz, R. Duncan Luce,
Patrick Suppes, and Amos Tversky.

McLean, Virginia Perer C. FiSHBURN
June 1969
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Chapter 1

INTRODUCTION AND PREVIEW

Decision making serves as the foundation on which utility theory rests, For
the purposes of this book we envision a decision maker who must select one
alternative (act, course of action, strategy) from a recognized set of decision
alternatives. Our study will focus on individuals’ preferences in such decision
situations. For a connection between decision and preference we shall assume
that preferences, to a greater or lesser extent, govern decisions and that,
generally speaking, a decision maker would rather implement a more pre-
ferred alternative than one that is less preferred.

In the axiomatic systems examined in this book, an individual’s preference
relation on a set of alternatives enters as a primitive or basic notion. This
means that we shall not attempt to define preference in terms of other
concepts. We shall, however, suggest that, by self-interrogation, an individual
can identify at least some of his preferences.

As we proceed through various types of decision situations it will become
apparent that, under specified assumptions, preferences between decision
alternatives might be characterized in terms of several factors relating to the
alternatives, In cases where alternatives can be viewed as aggregates of several
attributes or factors, holistic preferences might be represented as aggregates
of preferences on the several factors. In other cases, as in decision under
uncertainty, holistic preferences may be represented in terms of utilities for
consequences and probabilities for consequences or for “states of the world.”
These special ways of representing preferences do not of course explain the
meaning of the term although they may help in understanding how holistic
preferences can be described in terms of other factors.

1.1 GENERAL ORGANIZATION
The three main parts of the text comprise two main divisions of our subject
as follows:

Part I. Individual decision under certainty.
Parts II and III. Individual decision under uncertainty.

1
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2 Introduction and Preview

Part I, titled ““Utilities without Probabilities,” covers situations where
uncertainty is not explicitly formulated. I use the phrase “decision under
certainty” as an abbreviation for something like “decision making in which
uncertainty, whatever form it might take, is suppressed and not given explicit
recognition,”

Parts II and III explicitly recognize the form of uncertainty that is charac-
terized by the question: If I implement decision alternative f, then what will
happen ? Parts I1 and I differ in their formulations of an uncertain situation,
although under appropriate interpretation the two formulations are equiva-
lent. In Part I, titled “Expected-Utility Theory,” the uncertainty is expressed
in terms of the probability that consequence = will result if act f is imple-
mented. In Part III, “States of the World," uncertainty is expressed in terms
of probabilities for contingencies whose occurrence cannot be influenced by
the specific act that is implemented but which determine the consequence that
results under each availablz act. The Part II formulation is the one used in
Fishburn (1964). The Part ITI formulation is the one adopted in the version
of statistical decision theory sponsored by Savage (1954) and Raiffa and
Schlaifer (1961).

In the actual presentations of Parts II and III there is another noticeable
difference. In Part III, especially Chapters 13 and 14, the state probabilities
as well as the utilities are derived from the preference axioms. In Part IT
probabilities of acts for consequences are, so to speak, taken as given and
enter into the axioms. This is partly rectified in Section 13.4, which presents
an axiomatization for the Part II formulation in which the consequence
probabilities are derived from the axioms. An alternative axiomatization of
the Part IT model that also does not use consequence probabilities in the
axioms has been developed recently by Duncan Luce and David Krantz.
Since this awaits publication as I am completing this book, its important
contributions do not appear here.

L2 PART I: UTILITIES WITHOUT PROBABILITIES

A natural first topic for a study on utility theory is the elementary prop-
erties of a preference relation on a set of decision alternatives. The next two
chapters go into this in some detail. Their main concern is what might be
called the fundamental theorem of utility. This has to do with axioms for
preferences which guarantee, in a formal mathematical sense, the ability to
assign a number (utility) to each alternative so that, for any two alternatives,
one is preferred to the other if and only if the utility of the first is greater than
the utility of the second.

These two chapters differ primarily in the size assumed for the set of
alternatives. Chapter 2 assumes that this set is finite or denumerably infinite;
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Utilities with Probabilities 3

Chapter 3 covers cases where the alternative set is so large that it is uncount-
able (neither finite nor denumerable). After dealing with the fundamental
theorem, Chapter 2 discusses ordering properties on preferences that are not
strong enough to yield the fundamental theorem. Here we shall not assume
that indifference {*‘no preference’) is transitive. Along with the fundamental
theorem as such, Chapter 3 gives sufficient conditions for order-preserving
utilities when the alternative set is a subset of finite-dimensional Euclidean
space, and then goes on to consider continuous utility functions.

Additive Utilities

Chapters 4, 5, and 7 deal with cases where each alternative can be viewed

as a muitiple-factor or muitiple-attribute entity. in more mathematical terms, :

each alternative is an n-tuple of elements, one element from each of a set of n

factors, Unlike the other chapters in this trio, Chapter 7 deals explicitly with

the case where the » factors are essentially similar. A prototype example for z

Chapter 7 is the case where n denotes a number of time periods and an

alternative specifies income in each period. Time-oriented notions of per- !

sistent preferences, impatience, stationarity, and marginal consistency are

examined in Chapter 7, as well as a persistent preference difference concept

that draws on material in Chapter 6.
Chapters 4 and 5 deal with preference conditions on a set of muitiple-factor

alternatives that not only yield order-preserving utilities as in Chapters 2 and

3 but also enable the utility of each alternative to be written as the sum of :

utility numbers assigned to each of the n components of the alternative. In

simpler language, these chapters deal with conditions that imply that the

utility of 2 whole can be expressed as the sum of utilities of its parts. In

Chapter 4 the alternative set is taken to be finite; in Chapter 5 the number of :

alternatives is infinite. : i

Strength of Preference

Chapter 6 is the only chapter in the book that deals primarily with utility
concepts involving strength of preference or preference intensity. It is con-
cerned with comparisons between pairs of alternatives and raises the ques-
tion: Is your difference in preference (degree of preference) between these
two alternatives less than, equal to, or greater than your difference in
preference between those two alternatives? Chapter 6 is concerned with
utility functions that preserve such preference-difference comparisons.
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1.3 PARTS II AND III: UTILITIES WITH PROBABILITIES

As noted above, Parts IT and I1I differ in their formulations of decision under
uncertainty. Both parts are concerned with simple preference comparisons




4 Introduction and Preview

between alternatives whose consequences are uncertain, and with pref-
erence conditions that not only yield order-preserving utilities for the
alternatives but also enable the utility of an alternative to be written as a
mathematical expectation involving consequence utilities and consequence
probabilities.

In this book, probability is interpreted in a subjective or personal way.
Roughly speaking, a probability is a numerical expression of the confidence
that a particular person has in the truth of a particular proposition, such as
the proposition “if I implement f then consequence z will result,” or the
proposition “this coir will Jand ‘heads’ on the next flip.”” Such probabilities
are required to obey well-defined rules of coherence and consistency. In those
cases where probabilities are derived from preference axioms, the primitive
notion for probability is preference. Early in Chapter 14 we shall see how
probability can be axiomatized in terms of a relation “is less probable than’
on a set of propositions or events. Later in Chapter 14 we shall see how “is
less probable than” can be defined in terms of “is preferred to.” My own
viewpoint on probability is heavily influenced by de Finetti (1937) and
Savage (1954). Kyburg and Smokler (1964) is recommended for further
introductory reading in subjective probability. Chapter 5 of Fishburn (1964)
discusses other interpretations of the meaning of probability.

Part I

The first three chapters of Part II derive the expected-utility representation
for alternatives with uncertain consequences. In these chapters the conse-
quence probabilities are taken as “‘givens’ so that the alternatives in the
preference axioms are probability distributions or measures on a set of
consequences. Chapter 8 concentrates on simple probability. measures, where
each alternative has probability one (certainty) of resulting in a consequence
from some finite subset of consequences. Chapter 9 considers simple measures
also but, unlike Chapter 8, it does not assume that indifference is transitive.
Chapter 10 admits more general probability measures on the consequences.

Uncertainty is combined with multiple-factor consequences in Chapter 11.
This chapter identifies conditions that enable the expected utility of an
uncertain alternative with n-tuple consequences to be expressed as the sum
of expected utilities for each of the n factors. Section 11.4, like Chapter 7,
examines the case where the » factors are essentially similar.

Part 111

The three chapters in Part I1I deal with the basic states of the world decision
formulation. Chapter 12 introduces this formulation, demonstrates its equiv-
alence to the Part II formulation, and considers some axioms that do not
yield the complete expected-utility subjective-probability representation.
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Herman Rubin and Herman Chernoff in the late 1940's and early 1950,
presents axioms that yield the complete expected-utility subjective-probability
model in the states formulation. Probabilities are used in the axioms of this
chapter, but they are extraneous measurement probabilities and not the state
probabilities. The latter are derived from the axioms.

Chapter 14 presents Savage’s (1954) expected-utility theory. His axioms
are free of the extraneous Measurement probability device but impose some

restrictions on the set of states and the state probabilities that are not imposed
by the axioms of Chapter 13.
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UTILITIES WITHOUT
PROBABILITIES

With few exceptions, most of the significant developments in individual
utility theory for preference structures that do not explicitly incorporate
uncertainty or probability have occurred since the beginning of the twentieth
century. Economists and mathematical economists are largely, though not
exclusively, responsible for these developments. The basic theory (Chapters
2 and 3) deals with the existence of utility functions on a set of alternatives
that preserves the ordering of the alternatives based on an individual’s
preference relation, and with special properties—such as continuity—of ’
utility functions. A secondary basic development (Chapter 6) centers on a
strength-of-preference concept that concerns comparisons of preference
differences.
Although the assumption of additive uiilities for multiple-factor situations
(Chapters 4 and S5) was widely used by economists in the mid-nineteenth
century, it was discarded by many toward ike end of the century. In more
recent years, principally since 1959, axiomatic theories for additivity have
been developed. These theories show what must be assumed about preferences
so that the order-preserving utility functions can be written as combinations
of utility functions for the several factors.
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Chapter 2

PREFERENCE ORDERS AND UTILITY
FUNCTIONS FOR COUNTABLE SETS

Throughout the book we shall let X denote a set whose elements are to be
evaluated in terms of preference in a particular decision situation. Depending
on the context, the elements in X might be called alternatives, consequences,
commodity bundles, cash flows, systems, allocations, inventory policies,
strategies, and so forth. This chapter is primarily but not exciusively con-
cerned with cases where X is a countable set, which means that X is finite or
denumerable. A set is denumerable if and only if its elements can be placed in
one-to-one correspondence with the e¢lements in the set {1,2,3,...} of
positive integers. The set {. .., ~2, —1,0,1,2,...} of all integers and the
set of rational numbers (expressible as ratios of integers) are denumerable.

Throughout the book we shall take strict preference < as the basic binary
relation on X or on a set based on X, and indifference ~ will be defined as
the absence of strict preference. One could also begin with a preference-
indifference relation < (read z < y as z is not preferred to y), but I have
come to prefer < for several technical reasons plus the fact that we tend to
think in terms of preference rather than preference-indifference.

The first main result of this chapter is that, when X is countable, numbers
u(x), u(y), . . . can be assigned to the elements z,y, ... in X in such a way

that x <y <> u@) <uly)

holds if < on X is a weak order (Definition 2.1). The <> means “if and only
if” and its companion => means *“‘implies.” A second main result says that
there is a real-valued function u on X such that

z < y=>ux) <uy)

when < on X is a strict partial order (Definition 2.2), provided that X is
countable. Several other utility-representation theorems are presented later
in the chapter.
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10 Preference Orders for Countable Sets

2.1 BINARY RELATIONS

The entire book is based on binary relations. A binary relation on a set ¥
18 a set of ordered pairs (z, y) with z € ¥ and Y€ Y. The z € Y means that
is an element in Y we often abbreviatez € Y, ye Y by writing z, y € Y.

The universal binary relation on ¥ is the set {(z,9):2,y € Y} of all ordered
pairs from Y. In general {x:S} is the set of all elements z that satisfy the
conditions specified by §. If Ris a binary relation on ¥ then it is a subset of
the universal binary relation. In general, 4 < B (4 is a subset of B) means
that every element in A4 is in B also.

We often write Ry to mean that (2, ¥) € R. Similarly, not ZRy (it is false
that = stands in the relation R to y) means that (z,y) ¢ R. In general a ¢ 4
means that 2 is not an element in 4. If R js a binary relation on ¥ then for
each (2, y) in the universal relation either ZRy or not Ry, and not both.

Because we are dealing with ordered pairs, (z, ¥) is not the same as (v, 2)
unless » =y, Hence, if R is a binary relation on Y and if x,y€ Y, then
exactly one of the following four cases holds:

1. (zRy, yRx),

2. (zRy, not yRxz),

3. (not xRy, yR2),

4. (not zRy, not yRz).

Let Y be the set of all living people. Let R, mean “is shorter than,” so that
R,y means that = is shorter than y. Case (1) is impossible. Case (2) holds
when z is shorter than y. Case (4) holds when z and y are of equal height. R,
is an example of a weak order.

Next, let R; be “is the brother of” (by having at least one parent in
common). Here cases (2) and (3) are impossible. R, is not transitive since if
ZRy and ¥R,z it does not necessarily follow that zR,z. (Why?)

Some Relation Properties

The binary relations we use will be assumed to have certain properties. A
list of some of these follows. A binary relation R on a set Y is

Pl. reflexive if xRz for every z € ¥,

P2. irreflexive if not Rz for every x € Y,

P3. symmetric if zRy = yRz, for everyz,ye Y,

PA. asymmetric if zRy = not YRz, forevery z, y e ¥,

P3. antisymmetric if (zRy, YRx) =2 =y, for everyz,y € Y,

PpO6. transitive if (zRy, YR2) = xRz, for every z, y,2€ Y,

P1. negatively transitive if (not xRy, not yRz)= not zRz, for every
z,¥,z€Y,
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Preference as a Weak Order 1t

P8. connected or complete if xRy or y Rz (possibly both) for everyz, y € Y,
Pp9. weakly connected if x 3 y = (zRy or yRz) throughout Y.

Several other properties are introduced in Section 2.4,

An asymmetric binary relation is irreflexive. An irreflexive and transitive
binary relation is asymmetric: if (xRy, yRx) then p6 gives xRz, which violates
p2. It is also useful to note that R is negatively transitive if and only if, for all
z,4,2€ Y,

zRy = (zRz or zRy). @n

To prove this suppose first that, in violation of (2.1), (zRy, nct zRz, not
zRy). Then, if the p7 condition holds, we get not zRy, which contradicts
zRy. Hence the p7 condition implies (2.1). On the other hand, suppose the
p7 condition fails with (not #Ry, not yRz, xRz). Then (2.1) must be false.
Hence (2.1) implies the p7 condition.

The relation R, (shorter than) is irreflexive, asymmetric, transitive, and

negatively transitive. If no two people are of equal height, R, is weakly
connected. R, (brother of) is symmetric.

2.2 PREFERENCE AS A WEAK ORDER

Binary relations that have or are assumed to have certain properties are
often given special names. In this section we shall be most concerned with

three types of binary relations, namely weak orders, strict orders, and
equivalences.

Definition 2.1. A binary relation R on a set Y is

a. a weak order <> R on Y is asymmetric and negatively transitive;
b. a strict order <<~ R on Y is a weakly connected weak order;
¢. an equivalence <=> R on Y is reflexive, symmetric, and transitive.

The relation < on the real numbers is a weak order and also a strict order
since # < y or ¥ < z whenever z # y; = on the real numbers is an equiva-
lence, sincez =z, 2=y=>y=z,and =y, y=2)=>2 ==z

An equivalence on a set defines a natural partition of the set into a class of
disjoint, nonempty subsets, such that two elements of the original set are in

the same class if and only if they are equivalent. These classes are called
equivalence classes. Let

R(z) = {y:y € Y and yRz}.

If R is an equivalence then R(2) is the equivalence class generated by z. In this
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i1 Preference Orders for Countable Sets

case you can readily show ihat R(z) = R(y) if and only if 2Ry. Thus, any
two equivalence classes are either identical or disjoint (have no clement in
common). When R on Y is an equivalence, we shall denote the set of equiva-
lence classes of Y under R as Y/R.

Preference as a Weak Order

Taking preference < as basic (read z < y as z is less preferred than y, or
y is preferred to ) we shall define indifference ~ as the absence of strict
preference:

2~y <> (not z < y, not y < z). (2.2)

Indifference might arise in several ways. First, an individual might truly feel
that, in a preference sense, there is no real difference between z and y. He
would just as soon have z as ¥ and vice versa. Secondly, indifference could
arise when the individual is uncertain as to his preference between z and y.
He might find the comparison difficult and may decline to commit himself to
a strict preference judgment while not being sure that he regards z and y as
equally desirable (or undesirable). Thirdly,  ~ y might arise in a case where
the individuai considers « and y incomparable (in some sense) on a preference
basis.

Asymmetry is an “‘obvious”™ condition for preference. It can be viewed as
a criterion of consistency. If you prefer  to y, you should not simultaneously
prefer y to .

Transitivity is implied by asymmetry and negative transitivity, and it
seems like a reasonable criterion of coherence for an individual's preferences.
If you prefer # to y and prefer ¥ to 2z, common sense suggests that you should
prefer z to z.

However, the full force of weak order is open to criticism since it imparts
a rather uncanny power of preferential judgment to the individual, as can
be seen from (2.1). To see how (2.1) might fail, suppose that in a funding
situation you feel that $1000 is about the best allocation. Your preference
decreases as you move away from $1000 in either direction. Although you
prefer $955 to $950, it may also be true that you have no sure preference
between $950 and 81080 or between $955 and $1080. Then (3950 < $955,
$950 ~~ $1080, $955 ~ $1080) in violation of (2.1).

In this example, indifference is not transitive. Armstrong (1950, p. 122)
speaks of intransitive indifference as arising from “the imperfect powers of
discrimination of the human mind whereby inequalities become recognizaole
only when of sufficient magnitude.” Later sections of this chapter take
account of such limited discriminatory powers by not requiring ~ to be
transitive.

Our first theorem notes several consequences of weak order, including the
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transitivity of indifference. For this theorem and for later work we shall
define preference-indifference < as the union of < and ~:

ry=r2<y or T~y (2.3)

THEOREM 2.1. Suppose < on X is a weak order, being asymmetric and
negatively transitive. Then

a. exactly one of x < y, y < %, # ~ y holds for each z, y € X;

b. < is transitive;

c. ~ is an equivalence (reflexive, symmetric, transitive);

d @<yy~ziz>r<z,ad @~y y<2)=>x<2

e. < is transitive and connected;

f. with <’ on X|~ (the set of equivalence classes of X under ~) defined by

a<'b<>xz<y forsome zeca and ye€b, (24
<' on X/~ is a strict order.

Proof. Part (a) follows from asymmetry and (2.2). For (b), supposez < v
and y < 2. Then, by (2.1), (# < z or 2 < y) and (y < z or z < z). Since
z2<y and y < x are false by asymmetry, = < 2. Thus < is trassitive.
Suppose x ~ y, y ~ z, and not x ~ z, in violation of the transitivity of ~.
Then, by {a), either r < z or 2 < z, so that by 2.1) onc of 2 < y, y < 7,
z<y, and y < « must hold, which contradicts x~y, y~z, and (a).
Hence ~ is trausitive. Suppose as in (d) that # < y and y ~ 2. Then, by (a)
and (2.1), # < z. The second half of (d) is similarly proved. For (¢) ihe
transitivity of < follows immediately from (b), (c), and (d). For the com-
pleteness of < suppose to the contrary that (not z < ¥, noty < z). Then, by
(2.3}, (notz < y, not  ~ y, not y < %), which violates ().

Finally, we examine the properties of a strict order for <’ on X/~:

1. asymmetry. If @ <’ b and b <’a then 2 < y and ¥’ < z’ for some
z,z’caand y,y €b, with z~ 2z’ and y ~y'. By (d), 2 < y. Again, by
(d), # < y', which contradicts ¥’ < #'.

2. negative transitivity. Suppose a <’ b with x€q, y€ b, and x < y. For
any ¢ € X/~ and any z € ¢, (2.1) implies that z < z (in which case a <’ ¢) or
that z < y (in which case ¢ <’ b).

3. weak connectedness. Suppose a, b € X|~ and a ¢ b. Then g and b are
disjoint so that if z € @ and y € b then not = ~ y. Hence, by (a) either z < y
ory < z, so thateithera <'borb <'a. &
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14 Preference Orvders for Countable Sets

An Order-Preserving Utility Function

THEOREM 2.2. If < on X is a weak order and X |~ is countable then there
is a real-valued function u on X such that

zLy < u@) <u(y), forallz, yelX. (2.5)

The utility function u in (2.5) is said to be order-preserving since the
numbers u(z), u(y),... as ordered by < faithfully reflect the order of
z,¥,...under <. Clearly, if (2.5) holds, then

z<y<>v(@) <vy), forallz,yelX,

for a real-valued function v on X if and only if [v(z) < o(y) <> u(z) < u(y)]
holds throughout X. In the next section we shall consider the case where <=
in (2.5) must be replaced by =. In later chapters we shall meet utility
functions with properties beyond that of order preservation,

Under the conditions of Theorem 2.2, (2.5) implies that, for all z,y € X,
z~y <> u(x) = u(y), and z < y <> u(z) £ u(y), where ~ and < are
defined by (2.2) and (2.3) respectively.

The following proof of the theorem is similar to proofs given by Birkhoff
(1948, p. 31) and Suppes and Zinnes (1963, pp. 26-28). As we shall see in
Chapter 3, the conclusion of the theorem can be false when X/~ is uncount-
able (neither finite nor denumerable).

Proof of Theorem 2.2. Assuming the hypotheses of the theorem we shall
assume also that X/~ is denumerable. The X/~ finite proof is similar and is
left to the reader. Let the elements in X/~ be enumerated as a,, 4, @;, . . . and
let the rational numbers be enumerated as ry, ry, 13, . . . . No particular <’
ordering (see (2.4)) or < ordering is implied by these enumerations. We
define a real-valued function ¥ on X/~ as follows, recalling that <’ as in
(2.4) is a strict order on X/~.

Set u(a,) = 0. For a,, it follows from the properties for <’ and induction
that exactly one of the following holds:

1. a; <’ a,, for all i < m: if s0, set u(a,,) = m,
2. a, <’ a;foralli < m: if so, set u(a,) = —m,
3. a; <’ a,, <’a,for somei,j < mand not (a; <’ a, <'ay),

for every positive integer 4 that is less than m and differs from i and j: if so,
set u(a,,) equal to the first r, in the enumeration ry, ry, ry, . . . for which
u(a;) < r, < u(a;). Such an r, exists since there is a rational number between
any two different numbers.

By construction, u(a,,) # u(a,)foralli < m,and a; <’ a; <= u(a;) < u(a,)
for all i, j < m. This holds for every positive integer m. Hence it holds on all
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of X/~. Finally, define v on X by

u(zx) = u(a) whenever ze€a.

Equation (2.5) then follows provided that, when g <’ b, = < y for every
z € a and y € b, which follows directly from (2.4) and Theorem 2.1(d). &

As you will easily note, if (2.5) holds, then < on X must be a weak order.
Hence if < on X is not a weak order then (2.5) is impossible regardless of the
size of X.

2.3 PREFERENCE AS A STRICT PARTIAL ORDER

Throughout the rest of this chapter we shall look at cases where indifference
is not assumed to be transitive. This section considers the case where < is a
strict partial order.

Definition 2.2. A binary relation R on a set Y is a strict partial order if
and only if it is irreflexive and transitive.

Since this allows (z~y,y ~ 2,z < z) when < on X is a strict partial
order, ~ is not necessarily transitive and therefore may not be an equivalence.
However, a new relation &, defined as

rany<>(r~z<y~z forallzeX) (2.6)

does turn out to be transitive when < is a strict partial order.  ~ y holds if,
whenever 2 is indifferent to a z € X, y also is indifferent to z, and vice versa.
For comparison with Theorem 2.1 we have the following.

THEOREM 2.3. Suppose < on X is a strict partial order, being irreflexive
and transitive. Then

a. exactly one of s < y,y < z, x & y, (x ~ ¥, not x =~ y) holds for each
z,y€X;

b. ~ is an equivalence;

crray> <z y<zadz<z<>2<y, forallze X);

d <y y~d)=>z<z,and(zryy<)=>zr<z

e. with <* on X|=s (the set of equivalence classes of X under =) defined by

a<*b<>z<yforsomezxcaandyeh, 2.7)

< * on X[ is a strict partial order.

Proof. (a) follows from asymmetry (implied by irreflexivity and transi-
tivity) and the fact that z &~ y can hold only if z ~ y. For (), the reflexivity
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and symmetry of s follow directly from (2.6) and the reflexivity and sym-
metry of ~. Suppose 2 ~ y and y = z. Then, by (2.6), if 2~ then y~ 1
and, again by (2.6), if y ~ ¢ then & ~ ¢, Hence z ~ ¢ = z ~ t. Conversely
z~ 1z~ t, 80 that 2 = z as desired for transitivity.

For part (c) suppose first that & y, If # < z then either y < zor y ~ 2,
forif z < y then z < y by transitivity of <. Butif ¥ ~ 2 then x ~z by (2.6),
which contradicts z < z. Hence # < 2= y < z. Similarly y < 2= 2 <z
A similar proof shows that z < # <> z < y. (This also establishes (d).) On
the other hand, assume that the right part of (c) holds. Then, if z~v ¢, it
cannot be true that either y < ¢ or £ < y so that y ~ ¢ by (2.1} and the
asymmetry of <. Conversely y ~ t ==z ~ 1. Hence z =~ y.

For (e), we cannot have ¢ <* g when g € X/a, for then z < y for some
x and y for which z & y, which is false by (a). For transitivity suppose
(@a<*b,b<*e) Then (< y,y~y,y <z)forsomezxea,y,y €b,and
z€¢. z < z then follows from (d) so thata <*c. ¢

Zorn's Lemma and Szpilrajn’s Extension Theorem

Before we can establish a utility-representation theorem for the case where
< is a strict partial order and X/=s is countable, we need to prove the follow-

ing theorem, due to Szpilrajn (1930).

THEOREM 2.4. If <* is a strict partial order on a set Y then there is a
strict order <° on Y that includes <*, so that

z<*y=>z<%, forallz,yel. (2.8)

The utility theorem given later as Theorem 2.5 is very easily proved from
Theorem 2.4 and the proof of Theorem 2.2.

To establish Szpilrajn’s theorem, which holds regardless of the size of ¥,
we shall need an axiom of set theory that goes by the name of Zorn’s Lemma.

ZORN'S LEMMA. Suppose P on Y is a strict partial order and, for any
subset Z of Y on which P is a strict order, there isaye Y such that zPy or
z =y for all 2 € Z. Then there is a y* € Y such that y*Px forno x€ Y.

Consider the real numbers in their natural order under <. Since < itself
on the numbers is a strict order but there is no number y such that z < y or
z = y for every number z, the “lemma’ does not imply that the real numbers
have a maximal element under <, as of course they do not.

Zorn’s Lemma, used today by most mathematicians, is an assumption.
Kelley (1955, pp. 31-36) presents other axioms that are equivalent to Zorn's
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Preference as a Strict Partial Order

Lemma. One of these is the Axiom of Choice: if 8 is a set of nonempty sets
then there is a function f on 8 such that £(S) € S foreach S ¢ 8.

Proof of Theorem 2.4. If <* is a strict order, there is nothing to prove.
Suppose then that < * is a strict partiz! order and that #, y in Y are such that
z ¢y, (not 2 <*y, noty <*z). Define <! on Y thus:

a<tb<a<*h orelse [(a<*zo0ra=12z),(y<*bory=1"b)] QI

Clearly, ¢ <*b=>a <'b, and z <'y. We prove first that <! is a strict
partial order.

A. <1 is irreflexive. To the contrary suppose @ <'a. Then, f either
@<*z,y<*a)or a<*z,y=a) or (=29 <*a), we get y <*=z,
which is false. Also, ¢ <*a and (a = z, y = a) are false by assumption.
Hence a <* g is false.

B. <! is transitive. Assume (@ <'b,b <'¢). If (a <*b,b <*¢) then
a<*csothata <tec.If(@a<*b,(b<*zorb=2z)and (y <*cory = ¢))
thena <*zsothat a<tcby (29). If ((a<*zora=2x)and (y <*b or
¥ =b),b<*c)theny <* cand hence a <! ¢. Finally, if neither a <* b nor
b <*cthen, by (29),(y <*bory = b)froma <*hand (b <*zorb = z)
from b < ¢, which zre incompatible since they givey <* z or y = z, which
are false. Hence this final case cannot arise.

We now use Zorn’s Lemma. With 4 © B <> A4 is a subset of B, we define
A< B<> (A4 < B, not B A). Let R be the set of all strict partial orders
on Y that include <(*, so that Re R <> (R cn Y isastrict partial order and
<* € R). In Zorn’s Lemma as stated above, < takes the part of P and R
takes the part of Y.

Clearly, < on R is a strict partial order. Let § be a subset of (R on which ©
is a strict order. (We omit the trivial case where $ = @ .) Let S be the set of
all (z, y) that are in at least one R € 8: that is, (z, ) € S or 28y if and only if
(%, ¥) € Ror zRy for some R € 8. Clearly, R ¢ S for every R€ 8. To apply
Zorn’s Lemma we need to show that S € &, or that S on Y is a strict partial
order:

A. S is irreflexive. (z, x) ¢ S since (x, %) ¢ R for every Re R.

B. Sistransitive. If (z, ¥) € S and (y, 2z) € Sthen (%, y) € S, and (y, z) € S,
for some S, and S, in 8. For definiteness suppose S, = ;. Then (z,y) € S,
and hence (z, z) € S, by transitivity, so that (z, 2) € S by the definition of §.

It follows from Zorn’s Lemma that there is a <° € R such that <° < R
for no R € R. Because <°is in (R, it is a strict partial order. To show that it
is a strict order, it remains to note that <® on Y is weakly connected, for
when this is true <°® must be a strict order. (You can easily show that a
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weakly connected strict partial order satisfies (2.1), or negative transitivity,
and is thus a strict order by Definition 2.1.) Suppose then that contrary to
weak connectedness there are z, y € Y with z € y and (not z <%y, not
¥ < z). Then, by the first part of this proof, there is a strict partial order <!
on Y such that g <%b= a~<'h, and # <1y. But then <° < <! which
contradicts <® < R for no R & R. Hence <? is weakly connected.

Another Utility Theorem

With = defined by (2.6), the following theorem says that when < is
irreflexive and transitive and X/~ is countable, numbers can be assigned to
the elements of X so as to faithfully preserve both < and ~. However,
because ~~ can be intransitive, we cannot guarantee that u(z) = u(y) when
z ~ y and not x &~ y. We might have any one of #{z) = u(y), u(z) < u(y),
and u(y) < u(x) when (x ~y, not z A~ ¥).

THEOREM 2.5. If < on X is a strict partial order and X|~ is countable
then there is a real-valued function v on X such that, for all z,y € X,

z < y=> u(@) < u(y) (.10}
z &~ Y= ulx) = u(y). (2.11)

Proof. By Theorem 2.3(¢), <* on X/~ as defined in (2.7) is a strict
partial order. By Theorem 2.4, there is a strict order <° on X/ that includes
< *. With X/~ countable, the proof of Theorem 2.2 guarantees a real-valued
function ¥ on X/~ suchthata <° b <= u(a) < u(b), for all a, b € X/~:, With
a € X/, set u(x) = u(a) whenever z € a. Then, if v &~ y, u(®) = u(y), so
that (2.11) holds. And if ¥ < y withz ez and y € bthen a <* b by (2.7) and
Theorem 2.3(d): hence a <° b so that u(a) < u(b) and u(z) < u(y). &

2.4 ORDERED INDIFFERENCE INTERVALS

There are other interesting assumptions for preferences that add things to
strict partial order, but still retain the possibility of intransitive indifference.
‘Two such conditions were introduced into preference theory by Luce (1956).
They are stated here in the form given by Scott and Suppes (1958, p. 117).

PlO0. <y, z< wy= (z<worz<y),forallz,y,z,welX
Pll. @<y, y<z)=>(z<worw<z2),forallz,y,2z,we X

It is easily seen that if < is irreflexive and either pi0 or pi1 holds then < is
transitive. When < is a strict partial order, the only instances of p10 and p11
that are not already implied by irreflexivity and transitivity are those iilus-
trated in Figure 2.1. For p10, we have the case shown on the left of the figure
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Figure 2,1  Cases not covered by irrefiexivity and transitivity,

wherex <y, 2 < w,z~z and y ~w, withz s z and y # w. In a sort of
cross-connectedness, p10 says that at least one of the dashed lines musi be
strict preference: we can’t have both  ~ w and y ~ 2. For pl1 we get the
picture on the right of the figure where 2 < y < z and w ~y with w # y.
Here pl1 says that at least one of the dashed w-lines must represent strict
preference: w can’t be indifferent to each of #, ¥, and z.

Conditions p10 and pll may seem reasonable if the elements of X are
naturally ordered and preference is cither nondecreasing or nonincreasing
as one proceeds along the natural order. For example, if you prefer your
coffee black it seems fair to assume that your preference will not increase as
z, the number of grains of sugar in your coffee, increases. You might well be
indifferent between z = 0 and 2 = 1, between x =1 and z = 2, ..., but
of course will prefer # = 0 to =z = 1000. Although ~ is not transitive here,
P10 and pl11 would probably hold along with irreflexivity.

However, if there are several factors that influence preference or if there
is only one basic factor along which preference increases up to a point and
decreases thereafter, < may fail to satisfy the cases of p10 and p11 shown in
Figure 2.1, To continue with coffee and sugar, suppose you like about 1000
grains of sugar in your coffee. The left part of Figure 2.2 shows a case where
it might be true that z < g, 2 < w, z ~ w, and y ~ z, in violation of pl0.
The right part of the figure suggests that p11 may fail with z < ¥ < z and

R ¥4
] l | E— | &
? o | \ g
1000 2000 0 1000 2000
p10 ph
Figure 2.2 “Failures™ of p10 and pl! for single-peaked preferences.
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wex, w~y, w~z. We could expect both p10 and p11 to hold on a fixed
side of your peak or ideal (Coombs, 1964) but there seems to be little reason
to suppose that they hold for the cases illustrated. "he funding situation in
Section 2.2 gives another peaked situation where p; " and pl1 might not hold.

Definition 2.3. A binary relation is an interval order if it is irreflexive and
satisfies p10, and a semiorder if it is irreflexive and satisfies p10 and pl1.

The term “semiorder™ was introduced by Luce (1956) and is now standard
terminology. The way I use “‘interval order” is not standard, but seems
reasonable in view of Theorem 2.7.

Interval Orders

In the rest of the chapter, ~ is defined by (2.6). For interval orders
{(p2, p10) we shall use the following:

zLly<e>(x~z,2<y) forsomezeX (2.12)
z ly<>(@<z,2~Y) for some z € X. (2.13)

THEOREM 2.6. If < on X is an interval order then each of <* and <®is a
weak order,andz ~ y <> (z =1y, z =2y), wherex =’ y <= (not x <’ y, not
y <'=).

Proof. The final assertion follows from (2.6). To prove asymmetry for
<! suppose to the contrary that (z <'y,y <'z). Then (x ~2z,2z < y) and
(y ~w,w < x) for some 2z, w € X, which contradict p10. To establish nega-
tive transitivity suppose to the contrary that (notx <'y,noty <'z,z <'z).
Byz <lz, (v~ t < z)forsometeX. Fromz ~ztand notr <'y, (2.12)
implies not ¢ < y. From ¢ < zand noty <!z, (2.12) yields nct ¢ ~ y. Hence
¥ < t. But then, by transitivity, ¥ < z which implies ¥ <!z, contradicting
noty <'.. Hence <!is negatively transitive. The proof for <?is similar and
is left to the reader. @

THEOREM 2.7. If < on X is an interval order and X[~ is countable then
there are real-valued functions u and ¢ on X with a(x) > 0 for all x € X such
that

< y<>ux) + o) <uly), forallz,yelX. (2.14)

Note also that if (2.14) holds then p10 must hold.

Theorem 2.7 is like the weak order Theorem 2.2 with the addition of a
“vagueness’ function ¢ which allows for intransitive indifference. The
indifference interval for z is I(z) = [u(x), u(x) + o(r)]. By (2.14), I(z) is
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wholly to the left of I(y) if and only if # < y. If two intervals intersect then
their elements are indifferent. As seen by the failure (z < y < 2, w~uz,
w ~y, w ~ 2)of pl1, one indifference interval may lie entirely within another
interval: in the case at hand, I{y) must be shorter than I(w).

Proof of Theorem 2.7. Let < on X be an interval order. Using the Axiom
of Choice let Y consist of one element from each equivalence class in X/a.
For each z € Y let #* denote an artificial element that corresponds to z, with
Y* the set of artificial elements, Define <®on Y U Y* (the set of elements in
Y or Y*) as follows:

r<liy<szrliy (2.15)
* Fyrt e <y (2.16)
2* year<y 2.17
z3y*=>2x <y (2.18)

where < = < U ~v as in (2.3). We prove that <*on Y U Y* is a weak
order.

Asymmetry. We want @ <*b=>not b <*a. If (a,b) = (z,¥) or (a, b) =
(z*, y*) then asymmetry follows from Theorem 2.6 and (2.15) or (2.16).
Suppose (a,b) = (z*,y) and (a <*b,b <®a). Then (x<y,y < 2) by
(2.17) and (2.18), which is impossible.

Negative Transitivity. We shall suppose that (not @ <%b, not b <?¢,
a <3 ¢) and obtain a contradiction. The cases for (a, b, ¢) = (2, ¥, 2) and
(a, b, ¢) = (z*, y*, z*) are covered by Theorem 2.6. The others follow.

1. (z,y,2*). Then not z <'y, z < y, x < 2, If £ ~ z then z <!y, which
contradicis not # <'y. If x < z then # < y, which implies x <*y, a contra-
diction.

2. (z,y*,z). Then y < z, z < y, ¢ <*z. From the last of these, (x ~ 1,
¢t < z), which along with (y < =, 2 - y) contradicts pl0.

3. (*,y,2). Theny < 2, noty <'z, z < 2. Similar to Case 1.

4. (z,y*, 2*). Theny < x,noty <?z, 2  z. fx ~ztheny <%z, and if
z < z then ¥ < z and hence y <%z, contradicting not y <*z.

5. (x*,y,2%). Theny < 2, 2 < y, ¢ <%z. From the last of ihese, (z < ¢,
¢t ~ z), which along with (¥ < z, z < y) contradicts p10.

6. (z*,y*,2). Then not x <%y, z < g, # < 2. Similar to Case 4.

Assume that X/~ is countable. Then Y U Y* is countable and by
Theorem 2.2 there is a real-valued function fon Y U Y* such that, for all
bee Y UY*,

b e f(b) <f(o).
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For z€ Y let u(x)=f(x) and ofx) = f(z*) — f(%). Then, using (2.17),

z < y<>u(x)+ o) <uly),forallz,y € ¥.Sincex <*z*by(2.18),0 > 0.

Let u(z) = u(y) and o(x) = ofy) whenever x ~ y and y € ¥. Then (2.14)
follows from Theorem 2.6 and Theorem 2.3(d). &

Semiorders

On adding p11 to p2 and p10 we sbtain the following extension of Theorem
2.6.

THEOREM 2.8. Suppose < on X is a semiorder and, with <' and <?
defined by (2.12) and (2.13), <® on X is defined by
ey y or 20y,

forallz,y € X, (2.19)
Then <° on X is a weak order.

BT

Proof. Asymmetry. (x <'y,y <'z)and (z <?y, y <®x) are prohibited
by Theorem 2.6. Suppose (x <'y,y <®*z2). Then (x ~z,z < y)and (¥ < w,
w ~ z) for some z, w € X, which violates pl1. :

Negative Transitivity. By (2.19), not # <%y => (not <!y, not 2 <*y) i
and not ¥ <%z=-(not y <'z, not y <*z). Therefore, by the negative

transitivity of <* and <2, (not z <'z, not # <*2), so that not # <°z by
(2.19). ¢

When X/ = is finite and < is a semiorder, it is possible to make ¢ in (2.14)
constant on X. A constructive proof of this is given in Scott and Suppes
(1958) or in Suppes and Zinnes (1963). An alternaiive proof, similar tc that
given by Scott (1964), uses the Theorem of The Alternative which will be

introduced in Chapter 4. Exercise 4.18 gives an outline of the alternative
proof of the following theorem.

THEOREM 2.9. Suppose < on X is a semiorder and X|~: is finite. Then
there is a real-valued function u on X such that

z<y<=>ux)+1 <uly), forallz yeX. (2.20)

With an appropriate change in u, any positive number could be used in
(2.20) in place of 1.

1.5 SUMMARY

A binary relation on a set is a weak order if it is asymmetric and negatively
transitive. Defining indifference ~ as the absence of strict preference, ~ on
X is an equivalence (reflexive, symmetric, transitive) when < on X'is a weak
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order. If the set X/~ of equivalence classes of X under ~v is countable when
< is a weak order then utilities u(z), u(y), . . . can be assigned to the elements
in X so that z < y <> u(z) < u(y). This gives T ~ y <> u(x) = u(y) also.

The preference relation is a strict partial order when it is irreflexive and
transitive. In this case indifference may be intransitive but ~s, defined by
&y <> (x~z<>y~z, for all z € X), is an equivalence. When < on X'
is a strict partial order and X/~ is countable, utilities can be assigned so
that u(z) < uly) ifz < y, and u(z) = u(y) ifz ~ y.

Interval orders and semiorders lie between strict partial orders and weak
orders. When < on X is an interval order or a semiorder and X/~ is count-
able, we get # < y <= I(x) is wholly to the left of i(y), where I is a function .
that assigns an interval of real numbers to each z € X. If < is a semiorder i
and X/~ is finite then ali indifference intervals can be made to have the same
length.
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1. Denumerable sets. 2. Binary relations. 3. Weak order. 4. Quasi order. 5-7. Asym-
meetric transitive closure. 8. Equivalence. 9. Partitions. 10-13. Interval orders and semi-
orders. 14. Choice sets. 15-16. Cartesian products. 17-18. Lexicographic orders. 19,
Theorem 2.2, 20-21. Sets and relations.

Exercises

1. Prove that the following sets are denumerable: (@) {2, 4, 6, . . .}, the set of all
positive, even integers; (b)) {..., =2, —1,0, 1, 2,...}; (c) the set of all positive
rational numbers (Hint: place these in a two-dimensional array with 1/1, 1/2,
1/3, ... in the first row, 2/1, 2/2, 2/3, . .. in the second row, and so forth); (d) the
set of all rational numbers.

2. With Y the set of all living people, identify the meaning of cases (1) through :
(4) in Section 2.1 and state which of properties pl through p9 hold for the binary
relation identified as: i

a. “is a blood-line descendant of,”

b. “‘is married to” (assuming moncgamy throughout society),

c. ‘‘is married to” (admitting polygamy),

d. “is as old as,”

e. “has fathered or mothered the same number of children as.”

3. Suppose < on X is transitive and connected, and < and ~ are defined as
follows: ¢ < y<>noty < x; z ~y <> (x <y, ¥ < z). Prove that < is a weak
order and that ~ is an equivalence,
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4. < on X is a quasi order if it is reflexive and transitive. Prove that if < on X
is a quasi order and <, ~ are: defined as in Excrcise 3 then

a. ~ on X is an equivalence

b. < on X is a strict partia! order :

€&~y y <D >2 <7 @<Y,Y ~D) > <2,

5. If < on X is a binary relation, the transitive closure <! of < is defined as
follows:

z <ty <« x < y or there are x, &y, .. . , T, € X such that
LBy, Ty KLy e nr s Ty <X Ty Ty <Y

Prove that if <! is asymmetric then <! is a strict partial order.

6. (Continuation.) Suppose X is countable. Use Theorem 2.5 to prove that there is
a real-valued function « on X that satisfies (2.10) if and only if the transitive closure
of < is asymmetric.

7. (Centinuation.) Give an example of a < on X whose transitive closure is
asymmetric and with « satisfying (2.10) and ~ defined by (2.6) it is not possible
for u to satisfy (2.11) also.

8. Using (2.2) and (2.6) prove that =5 is an equivalence when < on X is asym-
metric,

9. A partition of a set Y is a set of nonempty subsets of ¥ such thateachze Y
is in exactly one element of the partition. Prove that any partition of Y is a set of
equivalence classes under some equivalence relation on Y.

10. Prove that (p2, p10) = p6 (transitivity} and that (p2, p11) => p6.
11. (From Fred Roberts.) (X, ~) is an interval graph <> a real interval I(z) can
be assigned to each x € X so that, for all z,y € X, z ~y if and only if /(=) and

I(y) intersect. Prove that if X is countable then < on X is an interval order if and
only if < is transitive and (X, ~) is an interval graph.

12. (Continuation.) Roberts (1969). Suppose X is finite. Prove that < on X is a
semiorder if and only if (X, ~) is an interval graph and (x ~ w, y ~w, z ~ w, not
z ~y,noty ~z, not ¢ ~ z)is false whenever z, v, z, and w are in X.

13. Show that if (2.20) holds when < is & semiorder and X is finite, then for
any a > 0 there is a real-valued function v, oir X such that, for allz,y€ X, z <
y <> v,() + a < v,y

14. Arrow (1959). Let F (the choice function) be a function that, for every non-
empty subset Y of X, assigns a nonempty subset of Y to Y, so that F(Y) = Y and
F(Y) # & for every Y = X such that ¥ # &. Consider the following conditions
on F.

TRANSITIVITY. ye F({z, y}), z€ F({y, 2}) = z € F({z, z}).

EXTENSION. F(Y) ={x:x€ Y and z€ F({z, y}) for every y € Y}, provided
that the set {x: - - -} is not empty.

TE. Ifz,y€ Y, z,y€ Y*, z€ F(Y),and y ¢ F(Y)then y ¢ F(Y*).

Interpret each of these conditions in your own words when F(Y) s the individual’s
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= set of most preferred elements in Y, that is his choice set. Then suppose that X is
X finite and prove that Transitivity and Extension hold if and only if TE holds. In
- doing this it may help to note that, with z < ¥ <> y € F({z, ¥}), < is tramsitive
- and connected when Transitivity holds, and that, when th- first two coaditivus
3 hold then F(Y) ={x:x€ Yandy < zforall ye Y}.
15. Show that {(z,, #,) : x; and =z, are positive integers} is denumerable.

16. (Continuation.) The Cartesian product of sets X; and X, is Xy x X, =
{(zy, 75) : 2, € Xy and z, € Xy}, Use the preceding results to show that X; x X, is
denumerable if both X and X, are denumerable.

17. (Continuation.) With X = X, x X, let X, ={1,2,...} and let X, be the
H set of all rational numbers between 0 and 1 inclusive. Define < on X by (z;, ) <
(1, ¥2) <> 2, <y or (2, = ¥, %y < ¥,p). (This weak order is a lexicographic order
since it orders the pairs of numbers like two-letter words would be ordered in a
dictionary.) Write out an explicit formula for 4 on X; x X, that satisfies (2.5). i

18. (Continuation.) Let < be defined as in the preceding exercise, except that X,
is the rationals between 0 and 1 inclusive and X, = {1, 2, ...}, the positive integers,
Theorem 2.2 says that there is a real-valued u on X = X; x X, that satisfies (2.5).
Can you write out an explicit formula for 4 on X, x X, that satisfies (2.5)? If not,
explain why not. ’

19. Prove Theorem 2.2 when X/~ is finite.

20. Let 4 = B mean that A is asubset of Band 4 = Bifand onlyif 4 € Band
B = A. A U Bis the set of all elements in 4 or in B, and 4 N B is the set of all
elements in both 4 and B. Let @ denote the empty set (set with no elements),
With Y a set, let A = {(x,2):2€ Y}; if R is a binary relation on ¥ let R =
{(y,2): (=, y) € R}; if K and S are binary relations on Y, let RS = {(z, 2) : 2Ry and
ySz for some y € Y}. Express pl through pl1 of the chapter in terms of these defi-
nitions. For example, p1 can be writtenas A = R,

21. (Continuation.) Verify that when the given sets are binary relations on a set
Y, then

a A = A; @’ = g[& is the empty binary relation]

b (AuB =A'"UB;(ANBY =4"NnB

c. (AB)C = A(BC)

d A3 =gA=¢g

e. AA=AA=A

f- A< Band C € D imply AC < BD.

(See Chipman (1960) for additional material of this kind.)

b

< g




Chapter 3

UTILITY THEORY FOR
UNCOUNTABLE SETS

This chapter extends the theory of preference-preserving utility functions to
include uncountable sets. A new condition of order denseness is used for this
purpose. After proving basic theorems for weak orders and strict partial
orders we shall consider preferences on subsets of n-dimensional Euclidean
space. The chapter concludes with a discussion of continuous utility functions.
An uncountable sct is a set that is not countable: it is neither finite nor
denumerable. The following examples introduce some other new terms.

1. The set of all real numbers is uncountable. This set, denoted by Re or
E:, is one-dimensional Euclidean space. The intervals of numbers [a, b] =
{r:ra<2<b}, [g,b)=&aLz<b}, (a,b]={xa<z<b}, and
(a,b) = {x.a <z < b} are uncountable when a < b. [a,b] is a closed
interval: (a, b) iz an open interval. (a, b) is also used to denote an ordered
pair of elements. The context should clarify the usage.

2. The set {(zy, %y, ...,2,):xz,€Refori=1,...,n}, denoted as Re" or
E" and called n-dimensional Euclidean space, is uncountable. E* is the real
plane, In the vector (z,, z,, ..., x,), the ith component is z;.

3. The set {(z;,7;,...):z,€{0,1} for i=1,2,...} is uncountable.
Although {(z), z,, ..., z,):x,€{0, 1} fori=1,2,..., n} is finite for each
n, the given denumerable-dimensional set is uncountable (and not denumer-
able). On the other hand, {(z,, z,):2, € {1,2, ...} for i = 1, 2} is denumer-
able.

3.1 THE DENSENESS AXIOM AND WEAK ORDERS

We shall now extend Theorem 2.2 to cover the case where X/~ may not
bc countable. To do this we shall introduce an assumption concerning the
concept of order denseness.

26
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Definition 3.1. Let R be a binary relation on aset Y. Then Z g Y is
R-order dense in Y if and only if, whenever zRy and z and ¢ are in Y but not
Z, there is a z € Z such that (zRz, zRy).

Since there is a rational number between any two distinct real numbers,
the countable set of rational numbers is <-order dense in Re. For the
following theorem, <’ on X/~ is defined by (2.4). ‘

THEOREM 3.1. There is a real-valued function u on X such that
z < y<>ul@) <u(y), forallz,yelX, (3.1

if and only if < on X is a weak order and there is a countable subset of X|~
that is <'-order dense in X|~.

Unfortunately, the countable order denseness condition does not have a
simple, intuitive interpretation. To see how this condition can fail, suppose
X = Re? with < the lexicographic order

Fhz) < W y) =2 <y or (7 =y, 2 <Yy

Then X[/~ = {{z}:x € X}, so that {#} <’ {y} <> = < y. With z, fixed it takes
a denumerable subset of Re to obtain an <-order dense subset on {#;} X Re.
But there is an uncountable number of such , and it follows that no count-
able subset of Re? is <-order dense in Re?.

For another example let X = [—1, 1}. The absolute value of z, written
jz|, is defined by |z| = zif 2 > 0, |2} = ~=z if x < 0. Define < on X by

x<y<> 2l <lyl or (lz] =|yl,z <y

Suppose Y is <-order dense in [—1, 1]. With z € (0, 1}, —2 < = and there
is no ¥ with |y| # |z| such that —z < y < 2. Hence either —2 or x must be
in Y for each = € (0, 1). Thus, every <-order dense subset Y of [—1, 1}
contains a subset that is in one-to-one correspondence with (0, 1], which is
uncountable.

Proof of Theorem 3.1

Before proving the theorem, several additional notions will be defined. If
A and B are sets, the union 4 U B of A4 and B is the set of all elements in 4
or B. The relative difference A — B is the set of all elements in A but not B.

Let A be a set of numbers all of which are less than some number not in A.
‘Then the least upper bound or supremum of A is the smallest number that is as
large as every number in 4:

sup A = smallest y such that zx < y forall z € 4.

If all numbers in A4 exceed some number not in A then the greatest lower
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bound or infimum of A is the largest number that is as small as every number
in A:
inf 4 = largest y such that y S v forallz e 4.

For example, sup{1,2,3} =3, inf{1,2,3} =1, sup(0,1)=1 and
inf (0, 1) == 0. In the last two cases sup and inf are not in 4,

Proof of Necessity. Let (3.1) hold. Then < on X must be a weak order,
and <’ on X/~ is a strict order, with a <’ b <> u(a) < u(b), where u(a) =
u(z) whenever z € a. Let C be the denumerable set of closed intervals in Re
with, distinct, rational eadpoints. For each I € C that coniains some u(a) for
a € X/~ select one such a. Let A be the subset of X/~ thus selected. A4 is
countable. Next, let

K={b,c)b,ceX[~—A,b<"¢c,b<"a<'cfornoac A4}

If (b, c) e K, then b <’ @ <’ ¢ for no a € X/~, for otherwise there would be
ade Awithb <’ d <’ ¢since for every point in the open interval (u(b), u(c))
there is an I € C that includes the point with I < (u()), ¥(c)). Hence no two
open intervals (u(b), u(c)) for (b, ¢) € K overlap, so that X must be countable.
Therefore,

B = {b:b € X/~ , there is a ¢ € X/~ such that (b, c) € K or (¢, b)) € K}

is countable and hence 4 U B is countable. Moreover, if b, c € X[~ —
AVUBand b<"c¢, then thereis ana e 4 U B such that b <" a <’ ¢. Thus
the countable order denseness condition is necessary for (3.1). @

Proof of Sufficiency. We assume that < on X is a weak order and will
woik with the strict order <’ on X/~. We shall assume that 4 includes the
least and/or most preferred (<) elements in X/~, if such exist, and that 4
is countable and is <’-order dense in X/~. Let

B = {b:be X[/~ —~ A, ecither {g:a€ A,b <'a} has a least preferred
element a, or {c:c € 4, ¢ <’ b} has a most preferred element c,}.

With b € X/~ — A4, {a:a€ A,b <" a} and {c:c € 4, ¢ <’ b} are two disjcint
subsets of 4 whose union equals A. It follows that a given a € 4 can be an a,

for at most one b € X/~ — A, and that a given ¢ € A4 can be a ¢, for at most
one b € X/~ — A. Hence B is countable and therefore

C=AUB
is countable. Moreover,

1. There is no least preferred ac {a:ac C,b <’ a} for any be X|~ - C
2. There is no most preferred c € {c:c€ C,c <’ b} for any b € X/~ — C.
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For proof, suppose (1) is false and a, is the least preferred e¢lement in
{a:ae C,b <’ a} for some be X[~ — C. Then a, cannot be in A, for

otherwise be B.But thenc <’ b <" a, <'aforall ce {c:c€ 4, ¢ <’ b} and
all ae{a:aec A, b <’ a} and there is no element in A between b and g, in

violation of the order denseness assumption. Hence (1) is true and, by »

symmetric proof, (2) is true.
By the proof of Theorem 2.2 there is a real-valued function 4 on C such
that g <’ ¢ <> u{a) < ulc), foralla, c € C. For each b € X[~ — Clet

w = {u(a):aec C,b < a}
t, = {u{c):ceC,c < b}

e i et

s e e %*s*%'"?'ﬁaf.r-‘ﬁ-?« £ i

1L IR T

and set

s TRee e R

u(b) = &(sup u, + inf u*), (3.2) é

where, since u(c) < u(a) for all ¢ € 4, and a € u®, sup u, < inf «®. From (2)
and (1) above it follows that for each b € X[/~ ~ C,

u(c) < sup u,, for all u(c) e u,

inf u® < u(a), for all u(a) € u.

Hence u(c) < u(b) < u(a) forall ce{cice C,c<'b}and allae{a:aeC,
b <’ a}. Hence u(b) # u(a) when b € X/~ — C and a € C, and the extension
of u by (3.2) preserves the ordering of the b€ X/~ — Candtheae C.

Suppose then that b, c€ X/~ — C. If b <’ ¢ then b <’ a <’ ¢ for some
a € Cso that u(b) < u(a)and u(a) < u(c)and hence u(b) < u(c). Conversely,
if u(b) < u(c), there is, by definition of supremum and (1), a u(a) € #* such
that u(b) < u(a) < u(c), which yields » <’ a and a <'c¢ and therefore
b <’ ¢ by transitivity. Hence, for all g, b€ X[~, a <"b <> u(a) < u(d).
Defining u(z) = u(a) when z €4, (3.1) follows. &

The above proof is patterned after outlines in Birkhoff (1948, p. 32) and
Luce and Suppes (1965, pp. 263-264). Our proof is similar also to Debreu’s

proof of his Lemma II (1954, pp. 161-162).

3.2 PREFERENCE AS A STRICT PARTIAL ORDER

We shall now consider an appropriate generalization of Theorem 2.5 for
strict partial orders. Throughout this section <* on X/ is defined as in
(2.7) with =~ as in (2.6).

THEOREM 3.2. Suppose < on X is a strict partial order and there is a
countable subset of X[~ that is <*-order dense in X/=~. Then there is a
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real-valued function u on X such that
' z<y=>uz) <uly), forallz,yeX, (3.3)
2 ry=>u(z) = uly), forallz,yeX. 3.4)

In this case the denseness condition is not necessary for (3.3) and (3.4).
Suppose for example that X' = Re and define

z<Ly<>2x<y and y==x+n  for some positive integer n.

Then u(x) == x satisfies (3.3) and (3.4}, and X/~ = {{zg}:zeX}. HZc X
is countable then there is an « such that neither z nor 2 + 1 is in Z, But with
z < z 4 1, there is no z € Z such that x < z < z 4+ 1. It follows that there
is no countable subset of X/~ that is < *-order dense in X/=v.

Our proof of Theorem 3.2 is based on an ingenious proof of a somewhat
more general theorem given by Richter {1966).

Proof of Theorem 3.2. Let the hypotheses of the theorem hold. By
Theorem 2.3, < * on X/ is a strict partial order. Let 4 be a countable subset
of X/~ that is < *-order dense in X/~s. By Theorem 2.4 there is a strict order
<% on X/~ that includes <*:a <* b = a <°b. Define a binary relation £

“on X/~ as follows:

aEb<>a=b or (g,b¢gAanda<c <%borb<c<%afornoccAd).

Then E is obviously reflexive and symmetric and is in fact an equivalence on
X/=s. For transitivity suppose (aEb, bEc) with a # b # ¢ # a (to avoid the
trivial cases). If (a <°b,b <%¢) or (a<®b,c <?b) or (b <%a,b <%¢) or
(6 <®a, ¢ <°b), which are the only four possibilities, then there isnode 4
such that a <%d <%c or ¢ <°d <°a. Hence gEc.

Let r, 5, and ¢ be equivalence classes in the set of such classes in X/~s under
E. That is, r € (X/~)/E. Define <! on these classes as follows:

r<is<>rss and a<®b for some (and thus for all)acr,bes.

Sinc: <® on X/~ is a strict order and E on X/ is an equivalence, <! on
X/=[E is a strict order. Moreover, B = {r:r€ X/~[E and a r for some
a € A} is <*'-order dense in X/a/E. For suppose r, s are not in Band r <'s.
Then, withaerand bes, a <®band a, b ¢ A. Since not aEb there must be
ace€ Asuchthata <%c¢ <°b. Withc e titfollowsthat r€ Band r <* t <1s.

It then follows from the proof of Theorem 3.1 that there is a real-valued
function f on X/=s/E such that

r<ts<>f(r) < f(s), forallr,seX/=/E. (3.5)
Suppose that, with a € r and bes, a <* b. Then a < b. Therefore either

i
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b r=gsorr<'s Ifeither a or bis in A then r 7 s since a % b and hence not

akb.Ifa, b ¢ A and r = s then a <°® ¢ <° b for no ¢ € 4, which is false since

A is < *-order dense in X/~ and hence if a <* b and a, b ¢ A then a <*

) ¢ <*b (and thus g <% c <°b) for some ¢ € 4. Therefore a <* b= r <1s.

] Defining u(a) = f(r) when a €r it follows from (3.5) that if a <* b then

’ u(a) < u(b). Defining u(x) = u(a) when = € @ and observing that if z <y
and (xea,ycbh) then a <*b, it follows that x < y=> u(x) <u(y). 1t is
clear also that u(x) = u(y) whenz,yca. &

3.3 PREFERENCES ON Re”

Preferznces in many decision situations are influenced by multiple factors.
Hence a large part of our study will focus on sets whose elements are n-tuples.
When the components of the n-tuples are real numbers, the n-tuples are called
vectors.

This section looks at the special case where X equals Re” or is a rectangular
subset of Re", by which is meant the Cartesian product of n real intervals,
including perhaps infinite intervals such as (a, ), the set of all numbers

greater than g, and (— o0, ) = Re.
When (z,,...,2,)and (y,, . .. , ¥,) are vectors in Re™ and «, f are scalars

~ (real numbers), we define multiplication by scalars and vector addition by

i et bR iR S8 1S i el st Lh.wu.-..u*‘--z»‘,a’m;m@ﬁ;lw; b 3,, *QM'{*‘%E o
M, b sy i iﬁé

ax+ﬂy= (g, . ooy 0@,) + (Byrs - - - 5 BY,)
= (o + Byy, .. ., 0@, -+ Py,). (3.6)

After illustrating a utility function for increasing preferences in two
dimensions we shall consider some formal theory for such cases.

Example

We consider preferences of the president of a company on a set of two-
dimensional vectors (#,, x;) where x; denotes net profit for the coming year
and z, denotes the company’s market share for the coming year. X, =
[— $5 million, $5 million] and X, = [10%, 30%,]. A utility surface that
might reflect the presideat’s preferences is shown in Figure 3.1. If < on
X, X X,is a weak order and (3.1) holds then all (z,, #,) € X; X X, with equal
utility constitute an element in X/~. These equivalence classes are variously
called indifference curves, trade-off curves, indifference loci, isoutility contours,
and so forth. The family of indifference curves in the plane constitutes an
indifference map. Twc curves of the indifference map are iilustrated in the
figure.

If indifference were not transitive in this example then the preceding
interpretation for an element in X/~ does not apply.
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u(xy, xg)
A

Net profit {millions of dollars)

Figure 3.1 Unidimensional utilities on 7 two-dimensional space.

Increasing Preferences with Weak Orders

Let X;, i=1,2,...,n be nonempty sets. Their Cartesian product is
XXXy x XX, ={(x,2,,...,z2,):0,¢€X, for i=1,2,...,n} In
this subsection we assume that each X is an interval of real numbers, so that
X = X; -+ x X, is a rectangular subset of Ke". Elements in X could be
amounts of money allocated to activity { or earned in year i, or they could be
amounts of commoditv i purchased during a fixed time period, and so forth.

With v = (zy, ...,z )and y = (¥, ...,%,), we define s < y<>x ¥y
andz, <y, fori=1,...,n.

THEOREM 3.3.  Suppose that X is a rectangular subset of Re™ and that the
Jollov g hold throughout X :

1. < on X is a weak order,
2. <y=>z<y,
3 (z<y,y<2)=urx+ (1 —a)z < yandy < fxr + (1 — B)z for some
«, f€(0,1).
Then there is a real-valued function u on X that satisfies (3.1).

The second condition (monotonicity, nonsaturation, nonsatiety, domi-
narce, ctc.) states that preference increases with any increase in quantity.
Condition 3 is an Archimedean condition that will be used to establish a
countzble order dense subset. For the third conditiorn to hold it may be
necessary in some cases to have a very near to 1 and # very near to zero.

In proviag the theorem we shall first prove the following lemma.
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LEMMA 3.1. The hypotheses of Theorem 3.3 imply that if z,y,z € X and
z <y <z, theny ~ ax + (1 — a)z for exactly one «. € (0, 1).

Proof. If y~az <+ (1 —a)z for no ac (0, 1), it follows from the
hypotheses that there is a 8 € (0, 1) such that either

y<oaxt+ (1l —-a)z foralla<<p (3.7)

ar + (1 —a)z < ¥y foralla>pf (3.8)
or

y<oex+ (1 —a)z foralla <p (3.9)

ex + (I —ayz<y foralle>}f. (3.10)

We consider the latter case. By (3.10) and the hypotheses, Sz + (1 — f)z <
¥ < z. Hence, by condition 3 of Theorem 3.3, there is an « € (0, 1) such that
affr+ (1 —Bz]l+ (1 —a)z<y, or afz+ (1 — af)z<y. But since
af < B, (3.9) says that y < afx 4 (1 — «p)z, a contradiction. Hence (3.9)
and (3.10) can’t hold. A similar proof shows that (3.7) and (3.8) can’t hold.
Hence y ~ ax + (1 — «)z for some € (0, 1). If y ~ a2 + (1 — a,)z and
Yy~ &% + (1 — ap)zthen a,x + (I — )z~ a2 + (I — «y)z by the transi-
tivity of ~, which can only be true if «; = a,: for if «; < oy then oz +
-z <oyz+ (1 —o)esincer <z, @

Proof of Theorem 3.3. 1In view of Theorem 3.1 we need to show that X/~
contains a countable subset that is <’'-order dense in X/~.

Let ¥; be the set of all rational numbers plus any finite end point at any
closed end of X, (if such exist), Let Z, = X; N Y, Z, is countable. Let
W, = {ax; + (1 — a)y,:« is a rational number in [0, 1} and z,, y, € Z;}. W;
is a countable set. Let W= W, x W, x --+- X W,. W is countable. Let A
consist of all elements in X/~ that contain one or more elements in W. A is
countable since any = € W is in exactly one a € X/~. Suppose a, b € X/~ — 4
with @ <’ b. We need to show that there is a ¢ € 4 such that a <’ ¢ <" b.
To do this it will suffice to show that when 2z, y€ X — W and z < y then
there is a z € W such that x < z < y. We consider two cases as follows.

Case I: z <y. Then there are 2!,2!€Z;, X -+ - X Z, such that 2! <«
and y < 22 Lemma 3.1, weak order, and condition 2 of the theorem imply
that there are «, 8 with 0 < « < f <1 such that z~ f2! + (1 — )2,
y ~ az' 4+ (1 — a)z®. Let ¥ be any rational number in the interval («, f).
Then, by weak order and conditior 2, r < yz! + (I — )22 < y. Since
2L, 2?eZ, x --- x Z, and y is rational, y2* + (I — p)2e W.

Case 2: z <y is false (with z,ye X — W and < y). Let v;=
inf {2,, y;} and w; = sup {#,, %,}. Thenr < z < wand v <y < w. It follows
that there are «, f with 0 < o < 8 < 1 such that z~ v + (1 — f)w and

i
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y~av+ (1 —a)w. Since Bv+ (1 —fw <av + (1 — )w, it follows
from the Case 1 proof that there is a z « Wsuch that fv + (1 — fiw < 2 <
av + {1 —o)w, Hence 2z <z < y. @

If preference decreases rather than increases as z, € X, increases, Theorem
3.3 can still be used after a change of variable from «, to y;, = —=,.

Nondecreasing Preferences with Strict Partial Order

We conclude this section with a theorem that uses generally weaker con-
ditions than those of the preceding theorem. We shall use the non-negative
orthant {(z,,...,2,):#; > 0fori =1, ..., n} of Re" This is often used by
mathematical economists in investigations of consumer preference or con-
sumer choice. In this context the vectors are called commodity bundles.

z Ly meansthat z; <y, for i=1,...,n

THEOREM 13.4. Suppose that X is the non-negative orthant of Re" and that
the following hold throughout X ;

1. < on X is a strict pertial order,
2. [y, y<or(z<y,yKd]=>z<z,
3. 2 < y= z < y for some z such that x & z.

Then there is a real-valued function u on X that satisfies (3.3).

The notion of nondecreasing preferences comes from condition 2. Irre-
flexivity and condition 2 say that 2 < y = not y < #: an increase in every
commodity ‘does not decrease preference. Condition 3 says that if y is pre-
ferred to = then increases (perhaps very slight) can be made in all components
of z, and y will still be preferred to the augmented a.

Proof of Theorem 3.4. Let the hypotheses hold. Define z <'y <>z <y
or z « y. Conditions 1 and 2 imply that <! is a strict partial order. From
<1 we can define ~! and ~! in the raanner of (2.2) and (2.6). By Theorem
2.3, ~' on X is an equivalence and <** on X/}, defined in the manner of
(2.7), is a strict partial order. To show that there is a countable subset of
X/~* that is <'*-order dense in X/=v!, it suffices to show that the set of
rational vectors in X (all components rational) is <l-order dense in X.
Suppose then that x and y are not rational and # <1y. If * K y then z
z « v for some ratioual 2, and hence z <!z <'y. If < y then, by condition
3, z < y for some z such that x « z. Then # & ¢ « z for some rational ¢. By
condition 2, 7 < y, Hence <!t <! y. Theretore, by Theorem 3.2, there is
a real-valued function # on X such that z <t y = u(z) < u(y). Thenz < y =
u(z) < u(y)sincer <y=z<ty. @
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3.4 CONTINUOUS UTILITIES

Continuity formalizes the intuitive notion that if two elements in X are
not very different then their utilities should be close together. The difference
between x and y can be thought of either in terms of their relative proximity
under < or in terms of a structure for X that is related to < in some way.

Part of the interest in continuity stems from the fact that, when continuity
helds, the utility function will attain a maximum value on a suitably restricted
subset of X. Suppose for example that X is the non-negative orthant of Re”
and that an individual can spend his income m > 0 on the # commodities
whose unit prices are p; > 0, p, > 0, ..., p, > 0. His choice is restricted to
(p,m)={x:zeX and I} pw, < m}. If < satisfies the conditions of
Theorem 3.3 then there is a » that satisfies (3.1) and is continuous, and there
is an 2* € (p, m) that satisfies 3 pz¥ = mand sup {u(z):x € (p, m)} = u(z*).
Or suppose that < satisfies the conditions of Theorem 3.4. Then. there is a u
that satisfies (3.3) and is upper semicontinuous and there is an z* € (p, m)
such that sup {u(z):z € (p, m)} == u(z*). (See, for example, Thielman (1953,
p- 102).)

Definitions for Continuity

To consider a general definition of continuity we require the following
notions. The union () of a set of subsets of X is the set of elements that
appear in at least one of the subsets. The intersection (N) of a set of subsets of
X is the set of elements that appear in every one of the subsets.

Definition 3.2. A ropology G for a set X is 2 set of subsets of X such that

I. The empty set & (which is always a subset of X) is in G,
2. XeT,

3. The union of arbitrarily many sets in G is in G,

4. The intersection of any finite number of sets in T is in G.

If Gis a topology for X, the pair (X, B) is a topological space. By definition,
the subsets of X in T are called open sets.

The usual topology W for Re is the set of open intervals along with their
arbitrary unions and finite intersections. The relative usual topology for
XcReis {4 N X:4AeUWU}. When X = [0, 2], the closed interval [0, 2] is
an open set in the relative usual topology, but it is the only nonempty closed
interval in X that is an open set in the relative usual topology.

Definition 3.3. If (X, G) is a topological space then a real-valued function
u on X is continuous in the topology G if and only if Ae W= {x:zeX,
u(x) e A} € G.

e T -
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Suppose X = [0,2] and G = {4 N [0,2]: 4 €W}. Then the function
u(x) = x for all € X is continuous in G, but the two-part function f(z) = z
forx € [0, 1]and f(2) = © + 1 for z € (1, 2] is not continuous because of its
gap or jump at z = 1. For example, (1/2, 3/2) e W but {z:z € [0, 2], f(x) €
(1/2,3/2)} = (1/2, 1] is not in 6.

Necessary and Sufficient Conditions for Continuity

Assume that u on X satjsfies (3.1) and is continuous in the topology G.
For any y € X the sets {b:b < u(y)} and {a:u(y) < 4} are open sets in W:
hence {x:z e X,z < y} and {z:x € X,y < z} must be open sets in G for
every y € X, Again, if w is continuous in the topology G and if < y, so that
u(x) < u(y), then there are open sets A, 4, € U such that u(z) € 4, and
a < u(y) foreverya € A, and u(y) € 4, and u(x) < bforevery b € A,: hence
there is an open set {z:u(2) € A,} containing z such that z < y for every z in
this set and there is an open set {w:u(w) € 4,} containing y such that z < w
for every w in this set.

The foregoing paragraph sets forth two necessary conditions for continuity.
Each condition is also sufficient for continuity.

THEOREM 3.5. If (X, T) is a topological space and there is a real-valued
Junction on X satisfying (3.1), then there is a real-valued function on X satisfying
(3.1) and continuous in the topology G if and only if

L {zrzeX,e<yteCand{z:x e X,y <z} G foreveryye X, or
2. Ifx,y € X and x < y, then there are sets T,, T, € G such that x € T,,
yeT,, 2 <y foreveryz' €T, and x <y foreveryy T,

Proof. The sufficiency of conditions 1 and 2 for continuity can be estab-
lished by showing that 2 implies 1 and that 1 implies that some u satisfying
(3.1) is continuous in B,

Let ¥ be any element in X. We show that condition 2 implies that {z:x € X,
x < y} € G; a symmetric proof suffices for the other part of condition L. If
z<yfornozeX then {z:ze X,z <y} = o, whichis in G. If z <y,
then by condition 2 there is a set T, € G containing » such that ' < y for
all " € T,. The union of all such T, is {x:x € X.x < y}, which is in T by
part 3 of Definition 3.2.

To show that condition 1 implies that some « satisfying (3.1) is continuous
in G, we follow Debreu (1964). let u on X satisfy (3.1), with u(X) =
{u(z):x € X}. A gap of u(X) is a nonempty interval / in Re such that no point
in u(X) is in [ and, with ael, I = {bu(z) < b <u(y) for all u(x)e
{u(z):x € X, u(x) < a} and all u(y) € {u(y):y € X, a < u(y)}}. Debreu’s basic
theorem (p. 285) asserts that, with » on X satisfying (3.1), there is a function
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v on X that satisfies (3.1) such that all gaps of v(X) are upen intervals in U.
Debreu’s proof of this (pp. 285-289) will not be repeated here.

Let v on X satisfy (3.1) with all gaps of v(X) open. With a € Re, let
(—o0,a) €W be the open interval of all numbers less than a. If a € v(X)
with a = v(y), then {z:v(x) € (—w, a)} = {#:2 < y} which by condition 1
is in G. If a ¢ v(X) and a 1s in a gap of v(X), this gap has the form (a,, a;)
with a € (a;,a;) and a,,a, € v(X): then, {r:v(@)e(—w,a)} = {x:x < z}
where a; = v(z), and again by condition 1 this set is in G. Finally, if a ¢ 9(X)
and it is in no gap of v(X), then either

1. a < infv(X) so that {z:v(x) € (—w,a)} = &, in G, or

2. sup v(X) < a so that {z:0(¥) € (~0,a)} = X, in G, or

3. a = sup {¢(z):x € X, v(z) < a} so that {z:v(z) € (— o0, @)}, the union
of all sets of the form {z:x < ¥, v(y) < a}, is in G since each set in the union
is in 6. Thus {z:v(2) € (~ 0, a)} € G for every a € Re, and, by a symmetric
proof, {x:v(z) € (b, )} € G for every b € Re. Since any bounded open
interval (a, b) €W is the intersection cf (4, o) €W and (—o0, ) €U,
{z:v(x) € (a, b)} is the intersection of two sets in G and hence is in B. Since
any A €W is formed by arbitrary unions and finite intersections of open
intervals in Re, the corresponding set {z:v(x) € 4} can be formed in a similar
way from sets in G and hence is in G. ¢

Contributions to continuity in the context considered in this subsection
have been made also by Eilenberg (1941), Newman and Read (1961), and
Rader (1963). Condition 2 of Theorem 3.3 is identical to Condition B, p. 160,
in Newman and Read. Debreu (1964) includes most of the important results
in this area..

Continuity of Increasing Ultilities on Re”

For Re” we shall let “UL" be the set of all open rectangles along with their
arbitrary unions and finite intersections. With X a rectangular subset of Re”
this subsection examines the continuity of ¥ on X with respect to the relative
topology {4 N X:A € W"}. The following theorem is slightly differnt than
very similar theorems on continuity discussed by Wold (1943), Wold and
Jureen (1953), Yokoyama (1956), Debreu (1959), and Newman and Read
(1961). The proof is similar to Yokoyama's,

THEOREM 3.6. The hynotheses of Theorem 3.3 imply that there is a real-
valued function on X that satisfies (3.1) end is continuous in the topology
{ANX:AeUm}

Proof. Considering Theorems 3.3 and 3.5 we need only show that
condition 2 of Theorem 3.5 holds under the stated hypotheses when

Stand




38 Utility Theory for Uncountable Sets

GC={ANX:AcU"}. With E={4 NX:4AU"} and 2 <y we show
that there is a 7, € G such that ye 7, and z <z for every z€ 7,. The
proof concerning T, is symmetric to this proof and is left to the reader,

With ¢ < y, let v, = inf {z,, y;} and if v, is greater than some element in
X, let v/ be any element in X, less than v,: otherwise let v; = v, Then v’ < v,
v <20 <y Ifv =z, thenx < zforallz 3 =,z € X, and any T, containing
¥ but not z suffices. Henceforth we assume that ¢’ < z,sothat v <z <y,
implying by condition 3 of Theorem 3.3 that for some a € (0, 1), 2 < a’ +
(1 — a)y. Now av; + (1 — @)y, < y, for all i and strict inequality holds for
some 7. Let € > 0 be smaller than the smallest y, — [ow; + (1 — a)y,] for
which the difference is positive. Then av] + (I — a)y; <y, — € for all {
for which y, — [ap, + (1 — a)y,] > 0. If v, = y,, then any 2, less than y, is
notin X, Let T, = (y; —e,y1 + ) X (2 — €, 45+ €) X " X {y, — ¢,
Yo+ ¢€) and let T, =T, N X. Then T,€ G and for every ze T, a” +
(1 —a)y <z,sothat x < zforeveryzeT, @

Upper Semicontinuity with Strict Partial Order

Definition 3.4. If (X, B)is a topological space then a real-valued function
u on X is upper semicontinuous in the topology G if and only if

{zxzeX,u@x)<cteT for each real number c. (3.1H

Lower semicontinuity is defined by (3.11) after < is changed to >. Given
a bounded, real-valued function f on X let u on X be defined by

u(@) = inf {sup {f(y):y € T}:xze T, Te G}. (3.12)

For a given real number ¢ suppose u(x) < ¢ for no z. Then {z:xe X,
u(¥) < ¢} = @, which is in G. Suppose u(r) < c¢ for some z€ X. Then
there is a 7, € B such that z € T, and sup { f(y):y € T,} < c. It follows from
(3.12) that u(y) < c for every y € T,. Hence, for each x such that «(z) <c¢
there is a T, € G such that z € T, and u(y) < ¢ for every y € T,. The union
of all such T, will equal {z:2 € X, u(x) < c}, and this union is in G by
Definition 3.2(3). Hence u is upper semicontinuous in G. We shall use this
observation in proving the following theorem.

THEOREM 3.7. The hypotheses of Theorem 3.4 imply that there is a real-
valued function on X that satisfies (3.3) and is upper semicontinuous in the
topology {A N X:A € U}

Proof. As in the proof of Theorem 3.4 let <! on the non-negative orthant
of Re" be defined as the union of < and «. From that proof there is a real-
valued functicn f orn X that satisfies # <'y = f(z) <f(¥). By a simple
monotonic transformation if necessary, we can suppose that f is bounded.
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Then, with u defined as in (3.12), 4 is upper semicontinuous ia the relative
topology G = {4 N X:4 €U} ;
It remains to show that z < y => u(z) < u(y). Suppose z < y. Then, by 4
condition 3 of Theorem 3.4, z < v for some z € X for which x < z. There is
then an open rectangle T, € G that contains = and has all elements « z, so s
that f(¢) < f(z) for all t & T,, so that u(z) < f(z). Along with f(z) < f(y) i
from 2z < y, and f(y) < u(y) by the definition of u, this gives u(z) < u(y) 3
as desired. @ ¥
I am indebted to Hurwicz and Richter (1970) for the approach used in this é
proof. E
3.5 SUMMARY

When X is uncountable and < on X is a weak order, preferences can be
faithfully represented by a real-valued function if and only if there is a :
countable subset Y of X such that whenever # < y there is a z € Y such that
{z < zorx~2)and (z~y or z < y). Lexicographic preference orders give
examples where this denseness condition fails. With < assumed only to be a
strict partial order, we have given a sufficient but not necessary countable
order denseness condition for real-valued utilities.

When X is a rectangular subset of n-dimensional Euclidean space and
preference increases (or does not decrease) with increases along any dimen-
sion, conditions that make better intuitive sense than plain order denseness
lead to real-valued utilities.

If (3.1) holds for # on X then there is a continuous (in a specified topology
G) utility function on X if and only if £ < y implies that there are two
subsets of X in G one of which contains « and has every element less preferred
than y and the other of which contains y and has every element preferred to .

The conditions on < used in the weak order and strict partial order theorems
for utilities on regions of Re” also imply the existence of continuous (weak
order) and upper semicontinuous (strict partial order) utility functions.
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Exercises

1. Prove that Re is uncountable by supposing that {0.z,2%, - iz, € ({1, 2}
fori =1,2,3,...} € Re is countable and showing that this suppositior is faise.
Note also that {(z,, x;, . ..):x, € {0, 1} for all {} is uncountable.

2. Let @ and b be numbers with a < b. Show that there is a rational number in
the open interval (e, b). Use the fact (or axiom) that there is a positive integer n
such that 1 < n(b — a). Let m be the smallest integer greater than 4 and show that
min€ (a, &).

3. For the second example following Theorem 3.1 where X' = [~1, 1], show that
preferences can be represented by two-dimensional vectors (u;(x), u,(%)) in Re®
under a lexicographic order.

4. Prove statement (2) preceding (3.2) in the proof of Theorem 3.1.
5. Describe in your words the effect of E in the proof of Theorem 3.2.

6. Use (3.6) to evaluate: a. (1,1,2,3) + (0, —-1, —10,6); b 6,2, 3,4);
¢. 30,0,1, -1) - (-1,2, -1,0); d. «(2,4, -6, —8) + (1 — o)(5, —1, 3, 1).

7. The scalar product of real vectors = (x;,. ..,z ) and ¥ = (¥y,...,¥,) i8
Ty =Ly + Y, = Z?-A z;y;. Evaluate a. (1,2,3,4,5)-(6,7, 8,9, 10);
b (3(0,1,2) + 4(-2,1,3)) - (=501, 0, —-1)).

8. Use an indifference map in Re? to argue that the hypotheses of Theorem 3.3
do not imply the following: if z <y and 0 € « < f <1 then fr + (1 ~ By <
ax + (1 — oy, :

9. Show that (3.7) and (3.8) cannot hold under the stated hypotheses.

10. Show that Lemma 3.1 remains valid when *“z <y <2z” is replaced by
“rLy<<zandx <z

11. Prove that the conclusion of Theorem 3.4 remains valid when condition 1
of its hypotheses is replaced by “the transitive closure of < on X is asymmetric.”
(See Exercise 2.5.)

12. The discrete topology for any set X is the set of all subsets of X. Isevery real-
valued function of X continuous in the discrete topology ? Why? What does this
say about continuity when X is finite ?

13. Show that any bounded closed interval [a, b] in Re with @ < b is not in U,

14, Let < on X = [0, 2] be defined by: « <y if (t < yand z,y€ [0, 1]) or if
(y<zand z,ye[l,2]); x ~ (2 — 2%/3) when z £ [0, 1/2) and = ~ (5/3 — 2x[3)
when z e [1/2, 1). Show that there is a # on X that satisfies (3.1) and that no such
u ¢an be continuous in the relative usual topology.

15. For the proof of Theorem 3.5 show that {z:v(z) € (b, c0)} € T for every
beRe.

16. A topological space (X, T) is connected if X cannot be partitioned into two
nonempty subsets both of which are in G. Prove that if (X, B) is connected, if u
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on X is continuous in G, and if u(x) < u(y) forz, y € X, then for each ¢ € (u(x), u(y))
there is a z € X such that u(z) = c.

17. Show that any rectangular subset of Re” is connected.

18. Let X be a rectangular subset of Re". With z, ¥ € X, the line segment L =
{ax + (1 — wy:«€ [0, 1]} between z and ¥ has the relative topology &' = {4 N
L:A € U} (a) Given the result of the preceding exercise show that (L, ©') is
connected. (5) Suppose u on X is continuous in {4 N Y:4& U}, and let o'(z) =
#(2) when 2 € L. Argue that &' on L is continyous in G,

19. In the proof of Theorem 3.4 show that if z <y, then there isa T, €T =
{4 N X:A€ U such that x € T and z <y for every 2 € Ty

20. Let f be a bounded, real-valued function on X and let v on X be defined by
v(z) = sup {inf {f(¥):y € T}:w € T, T & B}. Show that v is lower semicontinuous in
the topology G.

21, Wold (1943). Condition W: if s <y and y <z then ox + (1 —a) 2 ~y
for some « € (0, 1). Show that the conclusions of Theorems 3.3 and 3.6 remain
valid when condition W replaces condition 3 of Theorem 3.3. Also show by in-
difference curves in Re? that « need not be unique. (See Exercise 8.)

22. Use the results of Exercises 16 and 18 to show that if X is a rectangular subset
in Re™, if ¥ on X is continuous in {4 N X:A4 € U”}, and if conditions 1 and 2 of
Theorem 3,3 held, then condition 3 and condition W (Exercise 21) must hold also.

23. X = Re® is convex <=ox + {1 — a)y € X whenever 2, y€ X and « € (0, 1).
Show that “X is convex” and “(X, {4 N X:4 € W"}) is not connected” cannot
both be true. Assuming that X is convex, use this result along with that of Exercise
16 to conclude that if there is a real-valued function « on X that satisfies (3.1) and is
continuous in {4 N X:A4 € W"} then condition 3 of Theorem 3.3 and condition ¥
must be true. Thus, regardiess of whether condition 2 of Theorem 3.3 holds,
condition 3 must hold when X is a convex subset ¢f Re® in order that there be a
4 cn X that satisfies (3.1) and is continuous. But note also from Exercise 14 that
there can be a « on X satisfying (3.1) when condition 3 fails and X is convex,




Chapter &

ADDITIVE UTILITIES WITH
FINITE SETS

Except for Chapter 6, the remaining chapters of Part I examine special kinds
of preferences and utilities that might arise in multiple-factor situations.
Chapter 3 has already considered some basic theory for n-dimensional
Euclidean spaces. This chapter and the next deal with additive utility repre-
sentations for preference orders on sets of a-tuples. Section 4.3 considers
lexicographic utility.

Throughout this chapter we shall usually assume that X is a nonempty
subset of the Cartesian product

n
IIX.=X, x Xgx -+ x X,
fe=
of n other finite sets. Thus, each alternative in Xisan n-tuple z = (z, ..., 2,).
Each X, is a factor or attribute set. For convenience we assume that each
z, € X, is the ith compozuent of some z € X,

The subscript i could refer to n different attributes or performance charac-
teristics of competing altsrnatives, it could refer to a time factor (» periods),
and so forth. We shall identify conditions for < on X that lead to additive
utility representations such as the one for weakorders: < y <= u,(z,) +
+ un(xn) < ul(yl) + + un(yn)'

It should be emphasized that < is applied to pairs of complete n-tuples, or
whole alternatives. In multiple-factor situations it often seems natural to
think in terms of a preference order for each factor and then to wonder how
these ought to be combined or synthesized into an overall preference order.
However, this approach presupposes a certain Kind of independence among
the factors, namely that the order for a given factor is independent of the
particular levels of the other factors. This can of course be false. For example,
suppose that (chicken for dinner tonight, chicken for dinner tomorrow
night) < (steak tonight, steak tomorrow night) < (chicken tomght, stcak

4
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tomorrow night) < (steak tonight, chicken tomorrow night). In this case,
preference for tonight clearly depends on what is assumed about tomorrew
night. Under the hypothesis of chicken tomorrow, steak is preferred tonight,
Under the hypothesis of steak tomorrow, chicken is preferred tonight,

For situations where the independence conditions seem reasonable and
additive utilities apply, Fishburn (1967) summarizes a number of ways to
estimate factor utilities so as to satisfy the additive representation.

4.1 PREFERENCE INDEPENDENCE AMONG FACTCRS

Consider a two-dimensionai case where X = X, X X,, < is a weak order
and, for each xz, y; € X, and =, ¥, € X,

(%3, 25} < (¥, Ta) = (T4, ¥a) < (%1, Ya)s 4.1)

(71, 23) < (@, Y2) = (1, @) < (F1: Ya)- 4.2)

The first of these says that, if we define z; <, y;, <> (%, 73) < (4, 5) for
some ¥, € X,, then <, is a weak order on X, that is independent of the
particular element used from X,. Similarly, the second says that, when the
first factor is fixed, there will be a weak order <, on X, derived in the natural
way from < that does not depend on the element used from X;. In the
simplest possible way this suggests that X; and X, are indeperdent in a
preference sense.

As demonstrated by Scott and Suppes (1958), even in the two-u.mensional
case considered above it may be necessary to go beyond {4.1) and (4.2) to
obtain an additive-utility representation of the form (z,, #;) < (¥;, y2) <>
(%) + uy(zy) < uy(yy) + ua(y,). Clearly, (4.1) and (4.2) are necessary for
the existence of such a representation, but they are not sufficient. Suppose
for example that < on X = {1, 2, 3} x {I, 3, 5} is a weak order with

(21, 23) < (%, ¥o) = 1%y + (2) < Y2 + YO 4.3

Since u(x. 7} = w7, + (2.%3 js stri~ increasing in z- for a~ . od 7. and
is strictly wwaeawsiug in 2, for any fixed z;, (4.1) and (4.2} hold. However,
additive utilities do not exist. To the contrary, suppose that there are real-
valued functions &, on X; = {1,2, 3} and u; on X, = {1, 3, 5} such that
(Z1, 73) < (Y1, ¥2) <= 13 (21) + ua(7) < wy(y,) + uy(y,). Then, since (2, 1) ~
(1,3) and (1, 5) ~ (3, 1) by (4.3),

1(2) + ua(1) = uy(1) + :43(3)

ui(1) + u(5) = u1(3) + ux(1).

By adding these equalities ana canceiling identical terms we get

uy(2) + uy(5) = uy(3) + uy(3)
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which. according to the presumed existence of an additive sepresentation,
yields (2, 5) ~ (3, 3). But, by (4.3), u(2, 5) = 42 and u(3, 3) = 36, so that
(3, 3) < (2, 5). Hence there is no additive representation for this case.

Additive Utilities
In generalizing independence conditions like (4.1) and (4.2) we shali use a

sequence of equivalence relations £, on X™ {m = 2, 3, ...} where X™ is the
mi-fold Cartesian product of X wilh iiself.

Defnition 4.1, (%, ...,2™) E, @ ..., y™) if and only if m > 1, o/,
yeXforj=1,...,m, and with X € JT]7 X; it is true for each i that
xi, ...,z is a permutation (reordering) of ¥}, ...,y

ThUS, for (41)9 ((xla xs), (yb yz)) Ez ((yls xz), (xb y2})7 and in the example
refuting additivity for (4.3), ((2, 1), (1,5), 3,3 £ ((1,3), 3, 1), (2, 5)).
With n == 3 and (=, 2,, ¥;) = (net profit, market share, dividend per share
of stock), the following arrays reveal that (21, ..., 2% E; (%, ..., ¥%).

~profit  share  dividend profit  share dividend
2zt $im 20% 304 ! 2m  20% 50¢
x? $0m 10% 50¢ y® —8lm  10% 45¢
z® $2m 307, 45¢ ¥ $im 159 10¢
| —$lm 15% 10¢ y* $0m 307 30¢

For the purpose of further discussion we shall first present three additive
utility theorems. For comparative convenience they are presented together
in Theorem 4.1. There is a theorem A, a thecrem B, ard a theorem C, with
“hypotheses” and ‘“‘conclusions” noted accordingly,

THEOREM 4.1. Suppose X < |17, X, is finite. Then

A @, .. 2 EL (. Y™, PLY or =y for j=1,...,
m — 11=> not x™ < y™;

B [(=,..., 2™ E, (4 ....9™), @<y or D~y for j=1,...,
m — 1] = not 2™ < y™;

C. i@, ..., 20 E (&, ....y™, @<y or I~y for j=1,...,
m — 1]<>not 2™ < y™;

forallz', ... 2™y, ... ,y"eXandm=2,3,...,ifandonly if there are
real-valucd functions uy, . .., u, on Xy, . .., X, respectively such that, for all
z,4 € X,

A z < y=> ZZ‘=1 uy(x;) < Z.’;l URUAN

B* z<{y= 37 ufx) < Ir uy).x ~y=>L ulx) =20 uly);
C*. u <y<>2n ule) < 20, udlyy).
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Indifference {(~)and ov aredefinedas r ~ y < {notz < ¥, noty < xrand
Ty <> (2 x> 2wy, for all z € X}, as in Chapters 2 and 3.

Unlike (4.1) and (4.2}, the conclusions of 4, #, and € are stated in the
negative. It is easily seen that 4 is necessary for A*, that B is necessary for
B*, and that C is necessary for C*, For example, suppose that 4* holds and
that the hypotheses of 4 hold with (&%, ..., ™ E, (#%, ..., ¥™ and 2’ < ¢/

or &’ = g for each j < m. Then, by 4%, Z?f:g Z};I ufzl) < 37 ;1 2n, w iy
But, by E,, 2%, of, ufzi) = 3% 3= uly). Therefore 37wy <
?, #(x), which by A* implies not ™ < y™, which is the conclusion
of A.
We shall consider the sufficiency of A for A*, Bfor B*, and Cfor C* in the
next section. These sufficiency proofs will be based on & theorem from linear
algebra called the Theorem of The Alternative, which will be proved in the

next section,

Further Remarks on Indeperdence Conditions

Each of conditions 4, B, and C in Theorem 4.1 is actually a denumerable
bundle of conditions, one for each equivalence E,,, m = 2,3, .. .. If we let
A, B, and C,, denote the part of condition 4, B, and C that applies to
E, thend, = A4, B, .= B,, and C, ;= C, for all m > 2. However,
as suggested by Scott and Suppes (1958), there is no one finite value of m for
which 4, = A* or B,, = B* or C,, == C* for all finite sets X. We now
consider some of the other aspects of 4, B, and C.

Our main purpose in including 2’ = %’ in the hypotheses of 4 was to get
A= A,, but the equality part of the hypothesis of 4 is unnecessary.
Although A4 does not imply that < is a strict partial order since it does not
imply transitivity, it does say that if x* < 22, 22 < 2%,..., 2™ 1 < 2™ then
not z™ < z!. This follows from the fact that (2!, 2%, ...,2™E,, (=% ...,
z™, z1), Hence when A holds, the transitive closure of < (Exercise 2.5) is a
strict partial order.

Like 4, B does not imply that < is a strict v.ciial coler For cxample,
suppose X = {x,y,z,t} and < = {r < y,y < 2,z < ¢} with ~ elsewhere.
Then ~ holds for no distinct pair of ¢lements in X so that B reduces, in
effect, to A. Since A is consistent with < as given and < is not transitive, B
does not imply that < is a strict partial order.

On the other hand, B does imply that ~ is an equivalence since it implies
asymmetry on considering (z, ¥) E, (¥, ), and asymmetry of < implies that
/s is an equivalence (Exercise 2.3). B implies also, as in the conclusions of
Theorem 2.3. that (@ < y,y ~2)=>zr < zandthat (z a y,y<2)= < 2.
For example, since (z, y, 2) E3 (y, 2, 2), z < y and ¥ ~ 2z imply not z < z by
B. Hence either x < z or x ~ 2z, If x ~ 2z then x ~ y by the definition for
¥ a2z Butx < y. Hence z < z,
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C of course implies that < is 2 weak order. Suppose not ¥ < ¥ and not
y-<<z Theny < zory~z, and z < y or 2z~ ¥, so that, since (¥, z, 2) E,
(%, %, %), C implies not » < z. Hence, C implies that < is negatively transi-
tive. Asymmetry follows from (z, 3 £, (v, x).

Remarks on Additive Utilities

It should be noted that if additive utilities exist in the sense of 4%, 8%, or
C*, then it does not follow that any utility function v on X that preserves the
preference order can be written in an additive fornm. For example suppose in
connection with C* that v < y <> u(xr) < u(y). Then it may be impossible to
write « in an additive form when C* holds. What C* says is that, among all
functions u that satisfy z < y <= w(2) < u{y), there is at least one that can be
written int the additive form as u{®) = w{x) + - = + u,(#,).

It cannot be emphasized too strongly that additive vtiliiies might not exist
in some situations where their use seems attractive for ease in analysis.
Possibly the best way to test condition A4, cr B, or C, is to try deliberately to
find n-tuples in X that violate the condition. An inability to construct a
violation would lend support to the credibility of the condition. Another
obvious way of testing for additivity is to obtain a set of preference state-
ments, convert these intv additive utility inequalitics and equalities (for C
when ~ arises) and test this system for the existence of a solution. If no
solution exists then a violation of the appropriate condition has been
uncovered.

4.2 THEOREM OF THE ALTERNATIVE

To prove the sufficiency of the conditions 4, B, and C of Theorem 4.1,
we shall use the following theorem, which is discussed by Tucker (1956, p. 10),
Goldman (1956), and Aumann (1964, p. 225), and which has been used by
Tversky (1964), Scott (1964), and Adams (1965) to prove theorems like
Theorem 4.1. Re” is N-dimensional Euclidean space and ¢ * 2% = 3% ca%

THEDREM 4.2 (THEOREM OF THE ALTERNATIVE). If «!,...,

M c ReV and | < K < M, then either there is ¢ ¢ € Re such that
c-x*>0 for k=1,...,K (4.9
c2*=0 for k=K+1,..., M, 4.5)

or there are non-negative numbers ry, . . . , rg aot all of which equal zero and
numbers ry.y, . .., ry such that

M
Srai=0 for j=1,...,N. (4.6)

k=1
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Proof. Let §={2,.,.,2%} and T = 84, oM} Let § be the
convex closure of & so that

ki . 3
S = {x:x =Y Ad'withY i =1,m>0,and 4 > 0anda’= S forall i},
o /

and let 77 be the vector space generated by T so that

T'=[siz= 3 abfwithm > Oand € Reand bt e T for all s; U B
where 0 is the origin of ReV. When K= M, I'= ¢ and T’ = 0.

The two alternatives depend on whether § and 7 have a common element.
If § T % o then (4.6) hoids as is seen from 3 A’ =6 or 3 A4 —
> o' = 0 with the obvious definitions of the r, in terms of the 4, (k < K)
and g, (k > K).

On ihe other hand, {4.4)-(4.5) hold when § N 7" = . Since both § and
T are finite scts (and this is critical to the conclusion), it can be shown that
there are vectors s € § and 7€ T’ such that (x — ¥)* > (s — )2 > 0 when
ze Sand y € T'. The x* = 2 - « (not to be confused with 22 € S). Let x & S.
Then, with0 <2< 1, (1 — s + Axe 8. Sincere T', (1 — At € T'. Hence
(G — s+ 42 — (1 — AP 2 (s — t)%, which reduces to 24(s — ) *
(= (s—1))+ (s — 1) — )2 > 0. Take >0, divide by A, and let
A approach 0: this leaves (s—f)-(z—(s—)>0, or s~z >
s—12>00r(s—1)- x>0 Letc=s~¢tThusc-z>0forallze S,
so that (4.4) holds.

To verify (4.5) when K< M and S N T'= g, take y € T'. Then oy +
teT so that (oy + 1t —s5)* > (s —1)?, or o%? > 2oy (s — t) = 20c ¥.
First, take ¢ > 0, divide by ¢ and let ¢ approach 0. Since y% > 0 this leaves
0 2 ¢ y. Second, take ¢ < 0 and divide by o giving oy? < 2¢ - y. Letting
o approach 0 from below gives 0 < c-y. Hencec -y =0. &

In the following I shall detail only the proof that 8 =~ B* in Theorein 4.1.
The proof that C =~ C¥* is entirely similar since C* is equivalent to z < y =
Fulzx) < Y uly) and 2 ~y = 3 ux;) = 2 uy,), which is like B* with
~ replaced by ~. The proof that 4 = A*, as given by Adams (1965),
involves only (4.4) from Theorem 4.2 and not (4.5) since there are no
equality implications in 4%,

Sufficiency Proof of Theorem 4.1B. Let B hold. For the application of
Theorem 4.2 we let N equal the size of X; plus the size of Xj - - - pius the size
of X, and let ¢ = (uy(zy,), uy(219), . . . , u,(2,,)) with N components. Let i
be the size of < (the number of » < y statements) and let M — X be half
the size of &~ — =, containing exactly one of ¥ &~ y and y & z for each such

I
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x, y pair for which z ¢ . The £ « statements in the conclusion §* and the
Af ~ K == statements transiate inlo the eqvivalent system
cod >0 for k=1, .., K{& <y (4.7}
cra"=0 for k=K+1,...,8(@E" =y {4.8)

where each o € {—1,0, 1} and 3, o = 0 for each k. B* holds if and only
if (4.7) and (4.8) have a ¢ solution.
Suppose there is no such ¢ solution. Then, by Theorem 4.2, there are

r,2z0fork=1,...,Kwithr,>0forsomek <K, and rgy...., 0y
such that

M

kzlrka’;? =0 for j==1i,...,N. (4.9)

Because each af is rational there is a set of rational and hence integer r,, that
satisfy (4.9). If some of these integer r, for & > K are negative they can be
made positive by replacing a* with —a* in (4.8) and (4.9) and replacing 7,
by —~r, in (4.9), which does not essentially change (4.8) or (4.9) and is
legitimate from the standpoint of (4.8) since ~s is symmetric. Then, with
all rp, >0, (4.9) says that (n2Vs, rga®s, ..., ra™'s) E, iy (1YY,
rol®S, . ., ray™'s) with 2* < y* for k= 1,..., K and #* ~ y* for k =
K+ 1,..., M. Sincesome r, > 0fork < Kit follows thai B does not hold,
for if 3 r, = | then irreflexivity of < (implied by B) is violated and if
2. r > 1then B is violated as it stands. Since B is in fact assumed to hold it
must be false that there is no ¢ solution for (4.7) and (4.8). &

4.3 LEXICOGRAPHIC UTILITIES

The purpose of this section is to note an affinity between additive utilities
and lexicographic utilities. For the latter case we define <% for real vectors
a=(a,...,a)andb = (b,...,b,):
a<Pb<>azb and b, <a,=a,<b;

forsomej <k, k=2,...,n (410)
Thus a <Lb<>a, <b, or [a,=b,a,<b)] or---or [a,=b,...,
a,.,= bu«l’ a, < bn]

In comparison with Theorem 4.14 we shall consider the existence of real-
valued functions u,, ..., %, on X, ..., X, such that

<y = (U, .o u(z) <Y (), - ul(a) (411)
The comparison for Theorem 4.1C is

x < y <~ (“l(xl)’ A ] un(xn)) <L (ul(yl)) LR ] un(yn))' (412)
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{4.11) or 14 12} says approumately that X, dominates Xy, X, dominates X7,
and so forth.

The main point to be made about {4.11; and (4.12) is that ¢condition A4 of
Theorem 4.1 is necessary for (4.11}, and condition C is necessary for (4.12).
For example, suppose (4.11) holds along with the hypuiheses of condition 4:
(.. am E et coyMead Y Lo =myiforj= 1,0, m— L
Then w;(c]) < wily)) for all j < at, and since 3™ wy(xl) = 3™ u(y)) by £,
u(u) < u@P). I uylx]) < uylyi) for some j < m then u(y™) < u,(2P) s0
that (), .. w (™) <5 (@), .o, u (2™ I (2] = u,{y)) for all
J < mthen uy(y7) = u;(x7), in which case we repeat the analysis just given,
using v, instead of u;. Continuing this we conclude that either (u,(¥™), ...,

1 s

in both vases the order o the & s very signihcant in a preference sense,

.....

1, (™) <X @), ..., u(z) or else that the two utility vectors are equal.
it then follows from (4.11) that not #™ < y™, which is the conclusion of
condition A.

Thus, if X is finite and lexicographic utilities exist in the sense of (4.11)
then additive utilities exist in the sense of A* in Theorem 4.1. A similar
assertion holds for (4.12) and C*. Clearly, the converses of these assertions
are not geners"'y valid.

What is required for (4.12) in addition to condition C? Clearly, something
like the following is needed.

Condition L. Ifx < y when z, =y, for all i except i = k, then x* < y*
when (2 =z, y} = y,) forall i < k, provided x, y, z*, y* € X.

Interestingly enough, when this lexicographic dominance condition is
used and X = [T X, it is no longer necessary to use all of condition C. The
following uses only the m = 2 part of C. We can also remove the strict
finiteness assumption for X.

THEOREM 4.3. Suppose X is countable and X = T, X,. Then (4.12)
holds for all 2, 4 € X if and only if

1. < s negativeiy transitive,
2. eV E, (y, W), a < yorx~yl=>not <« < w,
3. condition L holds.

Sufficiency Proof. Under the given conditions define x, <y, <>z < w
for some z, w € X such that z; = w;,forall j # i and (z; = z,, w; = ¥,). Then
<; on X;1s a weak order: asymmetry follows from condition 2 and negative
transitivity follows from condition 1 and X = J] X,. Then, by Theorem 2.2,
there is, for each i/, a real-valued function u; on X; such that z;, <, y, <
ux;) < udy,).

Suppose that (u;(ry), . .., w,(x,)) <L (uy(yy), .. ., u,(y,)) and let ¢ be the
smallest 7 for which 1,(x;) < u,(y,), with u,(x;) = u,(y;) foralli < t, We wish
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to show that < y. To do this we first note that, if 1 < ¢, (not z, <, y,, not
Y1 <12 > Ty, Ty ..., )~ (Y1, g, . .. 5 Ty,). Similarly, if 2 < ¢, uy(z;) =
ug(¥a) = (Y1, T35 . . . , T,) ~ (Y1, Y2, %3, . . . , 2,,). Continuing this and using
the transitivity of ~ (from weak order), we get (z,...,2,) ~ (¥y,...,
Yi1s %y, ..., %,). Now z,<,y, Therefore (¥1,...,% 1,%...,2,) <
e v o Y19 Ys Tppay - - . 5 %,) by the definition of <, and condition 2.
Hence, by condition L, (¥1,...,¥%-1,%H..-32) < W1s... Y1, Yes
Yis1s - - - » Yp). Thus, by Theorem 2.1, z < y.

On the other hand suppose that not (u,(z,), . . . , #,(z,)) <% (u(vy), . . .,
u,(¥,)). Then either (,(vy), ..., u,(¥,)) <= (U (x), ..., u,(z,)), in which
case ¥y < z and hence not z < y, or else the two utility vectors are equal, in
which case the ~ analysis of the preceding paragraph leads to x ~ y and
hencenotz<y. @

4.4 SUMMARY

When X is a finite subset of the Cartesian product of n other sets, additive
utilities for several cases considered exist if and only if appropriate independ-
ence conditions hold. The finiteness cf X is crucial for these cases in the
absence of additional conditions. However, in a weak order case with
X =TT X, the finiteness condition can be replaced by a countability con-
dition in a simple axiomatization for lexicographic utility according to a
definite dominance order for the n factors. With X finite, lexicographic
utilities imply the existence of additive utilities, but the converse is not
generally true.

It cannot be emphasized too strongly that additive utilities might not exist
in some situations where their use seems attractive for ease in analysis.

INDEX TO EXERCISES

1. The size problem. 2. Weak orders and additivity. 3-4. Functional forms which may
or may not admit additive utilities. 5. Condition C,. 6. The necessity of all of C. 7-8.
Variations on C. 9. E,,. 10. Necessity of B* and C*. 11-12. B and 4. 13-18. Applications
of the Theorem of The Alternative. 18. Proof of Theorem 2.9. 19. <% 20. Admissible

transformations.

Exercises

1. Suppose X = J];?, X; and each X; has 10 elements. Then X has 10 billion
elements but there are only 100 z,. Discuss the potential attractiveness of additive
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uithitses from the standponn of size and the number of vnhiny valies that reed 1o be
estimated. '

2. Let & = la, b x {c,d}. How many preference weak Jrders can be defined
on X7 List those for which adqitive uiilities exist as in Theorem 4 1C*,

3. With X=X, x X, Xy ={1,2,..., M} with M jarge, and x -{y<>
wizy, %y < wlyy, 1p), For which of the foliowing cases do there exist u; and gy so
thats < Yoy (o) 4 wyl) < () + ) 7 (@  niy, 7)) = 240, B alz,, 2% —
2 4 Wy (0) (@) = 2y + B+ awy; (@) e, xy = sup {zy, 3.}, (e} wlzy,
Zy) = |y = w4l (absolute valuel: (f) alwg, =) = (w2 (g} iy, v =7/
{z; + =y). For each that admits additive utilities, tell why this is so.

4. Let & = Xy x X, with X, sad X, suis of positive mtegers and suppose that
- w{@y, Ty = 22y + @0 and o < yeuley, 1) < u(yy, ¥s). Show that additive
utilities exist in the sense of Theorem 4.1C*,
5. The accompanying utility matrix gives u(a, p)for (¢, p)e X = {g,, ..., q} =
{P1s+ . . » pa}. Assume that (g, p) < (a', p') <= ula, py < u(@’, p'),

[

41 P2 P Pa

a, 0 4 8 9
a, 5 9 12 14
ay 8 11 13 15
a, 10 s i6 17

and show that condition C, (C with m = 4) of Theorem 4.1 fails. Does condition
C, hold?

6. Lot X={(1,1D,(2,2),...,(m, ), 1,2, (2,34, ..., (m 1, m), (n, D)}
Let u(j, k) = 0 for all {j, k)& X except for (m, 1) where u(m, 1) > 0, and take
z Ly <= u(x) < uly). Show that condition C,, of Theorem 4.1 fails but that
condition C,,_, holds.

7. Show that condition C of Theorem 4.1 implies that if (a4, ..., a™E, (4, ...,
y™) and &7 < g/ for all j < m then y™ < z™.

8. (Continuation.) Tversky (1964) uses an axiom he calls the cancellation law,
which in our terms reads: if (21, ..., 2™ E,, (4, ..., y™), if @ <yloral ~y for
all j < m, and if =¥ <y for some j < m, then y™ < z™. With ~ defined by (2.2)
as usual, show that Tversky’s condition is implied by C and that C is implied by
Tversky's condition plus the assumption that < is irreflexive.

9. Prove that E,, on '™ is an equivalence,
10. Show that B* => B and that C* == C.
11, Prove that B implies that x < zwhenx ~ yand ¥ < 2.
12. Does A of Theorem 4.1 imply that =~ is an equivalence ? Why?
13. Write out the sufficiency proof for Theorem 4.14.
14. Write out the sufficiency proof for Theorem 4.1C.
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18, With <! defined by {2.12) for inmterval orders, fet condition D be: [{#, ...,
2y B, @, ..., y™, of <yl for j=1,...,m — 1]=> not 2™ <*y™ Suppose
X e H X; is finite. Prove that < on X is an interval order and condition D helds
if and only if there are real-valued functions 4, . . . , #y, 00 Xy, . . ., Ay, respectively
and a nonnegative real-valued function o on X such that, forailz, y€ X,

v <y S uz) + o@ < S wiw.

g PP}

Use the Theorem of The Alternative in your sufficiency proof.

16. Letcondition Ebe: [(z), ... ,&® E (', ... 9" ~yfforj=1,...,
mand® <y'forj =m-+1,...,2m = 11 => not 2*™ < 4®™, Show that if £ holds
and not # < = for some z € X, then < on X is irreflexive and asymmetric, < is
transitive, and < satisfies p10 and pil of Section 2.4 and hence is a semiorder.
(Do not use the Theorem of The Alternative here.) Note the necessity of using
not # < x for some x € X, for without this we could have X = {z} and z < = with
condition E holding.

17. (Continuation.) Suppose X < H X; is finite. Prove that < on X is irreflexive
and condition E hoids (for m = 1,2,...) if and only if there are real-valued
functions #,, ..., 4, cn X, ..., X, respectively such that, for all x,y € X,

n n
z <y ule) + 1 <Y uy).

izl [ES

18. Scott (1964): Proof of Theorem 2.9. With X/~ finite select one element from
each = class and call the resu ting set Y. Henceforth, work with Y. Each z <y
statement translates into u(y) — u(z) — 1 > 0 by (2.20), and each  ~ y statement
translates into w(z) + 1 — u(y) > 0 and u(y) + 1 — w(z) > 0. [ >0 might be used
in the latter two, but >0 will work also.} Let N equal the size of Y plus 1, with
¢ = (u(x),...,u(t), 1) being N-dimensional.

a. Use Theorem 4.2 to show that if there is no ¢ solution to the stated inequalities
then there are sequences z;, . . . , T, 24, ..., Zp,and ¥y, .. ., Yy, Wy, ..., Wp
such that each is a permutation of the other and z, <y, z; ~w, for k =
i,..., T

b. Show that T = 1 is impossible under the semiorder axioms.

¢. Consider T > 1. Form a cycle through the two sequences by starting
with some z;. y; is the second element in the cycle. Find y; in the first se-
quence. Then the third element in the cycle is the element in the second
sequence under y, in the first. Continue this until you reach x, in the second
sequence. Show that if any such cycle stays wholly in the x;, y; pairs then
transitivity of < is violated.

d. Hence, with T > 1, a cycle beginnir., with x; must pass through z,, w; pairs.
Supposesome y; = x,. Then use pl1 of Section 2.4 to show that you can reduce,
bv deletion and rearrangement, the two 7 sequences to 7 — 1 sequerces (one
of which is a permutation of the other, with T — | < and T — 1 ~ statements
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between the two). Suppose no y, = ;. Use pl0 of Section 2.4 to show that
the two T sequences can be reduced to corresponding T" — 1 sequences.
e. Conclude the proof of Theorem 2.9.
19. Verify that <% on a set of #-dimensional real vectors is a strict order. (See
Definition 2.154.)
20. When Theorem 4.1C* holds with X finite, discuss the nature of transfor~
mations on the u; under which C* will remain valid. Do the same for lexicographic
utilities when (4.12) holds.

BN




Chapter 5

ADDITIVE UTILITIES WITH
INFINITE SETS

This chapter presents two well-structured theories for additive utilities on
infinite sets. The earlier theory, due to Debreu (1960), is presented in Section
5.4. It is based on topological notions that are defined in Section 5.3. The
other theorv, due to Luce and Tukey (1964) and Luce (1966), is given in
Section 5.2. As Krantz (1964) has noted, proofs in the latter theory can be
based on the theory of ordered groups. Section 5.1 presents some of this
theory.

Throughout this chapter, X is a complete Cartesian product, X = ] [ | X|,
and < is assumed to be a weak order. Partly as a result of these assumptions
along with a rather “tight™ structure for < on X, we shall not require all of
condition C.of Theorem 4.1. When n = 2, C, (condition C with m = 3) will
suffice, and when n > 3, C, as in Theorem 4.3 will do. The assumptions of
the theories imply the existence of additive utilities that are unique up to
similar positive linear transformations. By this we mean that if real-valued
functions uy, . .. ,u, on Xy, ..., X, satisfy z < y <> D, u,(z,) < 2, ulyy),
for all z, ¥ € X, then real-valued functinns vy, ... ,2, 0n X;, ..., X, satisfy
x <y <> 2 0(%) < X0y, for ail z,y € X, if and only if there are
numbers a, by, .. ., b, with g >> 0 such that

vi(x) = aufz)) + b, forallz;eX;;i=1,...,n (5.1)

5.1 STRICTLY ORDERED GROUPS

A group is a set Y and a function that maps each (z,%) € ¥ X Y into an
element = + y in Y such that for every z,y, z € Y and some fixed element
ecY,

Gl.(z4+¥)+z=z+ (y + 2) (associativity)
Gl x+e=e+z==x (identity)
G3. thereis —x€ Ysuchthatr + (—2) = —z + 2 =e.

(additive inverse)
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e is the group identily and ~x is the inverse of x. A group (Y, +) is com-
mutative if the following holds throughout Y:

G4 24+ y=y+ =z

(Re, +) with 4 natural addition and e = 0 is a commutative group. So is
0,1}, HHwith-0=0, -1 =1,040=14+1=0,0+1=1+0=1
and e = 0.

When m is a positive integer, mz =z 4+ x + * * * <+ & (m times). When m
is a negative integer, mz = —& — & — -++ — z (~m times). 0r = ¢, If
(Y, -+) is a group and m and n are integers, it is not hard to show that
mz -+ nx = (m -+ njx.

Definition 5.1. A strictly ordered group (Y, +, <) is a group (¥, +) and
a strict order < on Y such that, for allz,y,2€ ¥,

<y +2<y+2z and z4+2<24y. (5.2)

A strictly ordered group is Archimedean if and only if. for all z,y€ Y,
(e < z, e < y)=>y < max for some positive integer m.

Let ¥ = {(j, k):j and k are integers}, let 4 be natural addition, and let
< = <L, so that (j,k) < (j,k)<=>j<j or (j=j,k<k'). Then
(Y, 4+, <) is a strictly ordered group, but it is not Archimedean since
©0,0)< (1,0) and (0,0) < (U, 1) and m(0, 1) = (0, m) < (1, 0) for every
positive integer m. However, additive utilities exist for this case (Exercises
lc, 2). On the other hand if Y = {(r, 5):r and s are rational numbers} then
again (Y, 4+, <%) is a non-Archimedean strictly ordered group but additive
utilities do not exist for this case (Exercise 15).

The following theorem, due to Holder (1901), is used in the next section.
The proof given is similar to Fuchs’ proof (1963, pp. 45-46).

THEOREM 5.1. Suppose that (Y, +, <) is a strictly ordered group. Then
(Y, +, <) is Archimedean if and only if there is a real-valued function f on
Y such that, for allz, y€ Y,

z < y<>f(2) <[f(y) (5.3)
S +y) =f(@) +f@). (5.4)

Moreover, if (5.3) and (5.4) held and if a real-valued function g on Y also
preserves order [as in (5.3)] and is additive [as in (5.4)] then there is a real
number ¢ > 0 such that

g(x) =cf(x) forallze Y, (5.5)

and c is unique if e < x for somex € Y.




56 Addisive Utilities with Infinite Sets

Procf. The fact that (5.3) and (5.4) imply the Archimedean property
follows from f(e) = 0, using G2. To show the converse we assume that the
Archimedean property holds and consider two exhaustive cases.

Case 1: set ¥ has a smallest “positive” element z so that e < z and
e<y<zfornoye Y. Bythe Archimedean propertyande <z <2r< -,
0 < y implies that mz X ¥ < (m + 1)z for some positive integer m, where
zZ y<>z<yorz=y Therefore e X ¥y — mx < x by (5.2), G3, G2, and
(m + 1)x = mx + z. But then, by hypothesis for this case, e = ¥y — mz,
and thus y = mx by (5.2), G3, and G2. Likewise, if ¥ < e then y = mz for
some negative integer m. Let f(y) = m when y = mz. If (y = myz, z = myx)
theny < 2 <> my < my, sothat (S.3)holds, and f(y + 2} = f{mzx + myx) =
S(my + mp)x) = my; + my, verifying (5.4).

Case 2: if e < x then e < y < z for some y € Y, For this case we first
establish G4 (commutativity). Suppose ¢ < ¥ < z. Then either 2y < z or
z < 2y. In the latter case z — y <y by (5.2) and 2y — y =y, so that
-y + (x—y)< (x —y)+ y by (52) and hence 2(x — y) < z by G1,
G3, and G2. Moreover, ¢ < x — y by (5.2) and G3, and y — = < « since
y — x < eand e < z. It follows that if e < = then there is a z € ¥ such that
e<z<xand 2z é z. Now suppose that Y is not commutative: for definite-
ness assume that e < a, e< b, and a+ b # b+ a with b+ a< a+ b.
Then let x = (@ + b) — (b + a) so that e < z by (5.2) and G3, and let z be
such that ¢ > z <z and 2z X  as just established. By the Archimedean
property (mz 2 a < (m + 1)z, nz X b < (n + 1)2) for non-negative integers
mand n. Hence e+ 23 < (m+1z+b<(m+1)z24+n+1)z=(m+
n+2z and (m+mer=n+mib+mb+a or —(b+a
—(n+mz,sothatz =@+ b)—(b+a)< m+n+2)z—~(n+ mpz=
2z, or # < 2z thus contradicting 2z X z. Hence G4 holds.

For Case 2 fis defined as follows, assuming e < z for some x € Y to avoid
the trivial situation. Fix @ with e < @ and set f(a) = 1. Forz € Y let

L, = {m/n:ma X nr, m&n integers with n > 0}
U, = {m/n:nx < ma, m&n integers with n > 0}.

{L,, U.} is a partition of the rational numbers with m/r < r/s whenever
min€ L, and r/s € U,, as is easily seen. (For example, if e < x then ma X
nr = sma i snx and sr < ra = nsx < nra so that sma < nra, or sm < nr
(since nr > 0), or m/n < rfs.) It follows that there is a unique real number
S () such that

f(x)=sup L, =inf U,

To prove that f(r + y) = f(z) + f(y) suppose first that m/ne L, and
r/se L,. Then ma X nr and ra X sy. Hence sma X snr and nra < nsy so

that (ms + nr)a é ns(x 4 y), where nsr + nsy = ns(x + ») on using G4
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repeatedly to get nsx +nsy=a+y+ 2+ y+ -+ x+y. Therefore
(ms + nr)jns = (m[n) 4 (r]s) is in L,,. Similarly, if m/ne U, and rfs € U,
then m/n + r/sisin U, _,. It follows that

sup L, +suplL, Ssup L, =fle+y)=inf U,  <infU, +infU,

and hence that f(x + y) = sup L, + sup L, = f(x) + f(y). This proves
(5.4).

To establish (5.3) suppose e < x. Then a < mz for some positive m and
bence I/me L, so that f(z) > 0. Similarly if x < e then f(—2) > 0, and
f(e) = G by G2 and (5.4). Hence e < z <> 0 < f(x), which is easily seen to
imply (5.3).

The final part of the theorem, namely (5.5), is proved as follows. If ¥ = {e}
then f(¢) = g(e) = 0 and every c satisfies (5.5). Next, suppose that e < « for
some z € Y. If Case 1 above holds then, with e < z and e < ¥ < « for no
yeY, f(2)=mf(x) and g(z) = mg(x) when z =mz so that g(z) =
[g@)/f(®1)(z) for all z€ Y. On the other hand suppose Case 2 holds with
e < a. Then, by (5.3) and (5.4), mf (a) < nf (2), mg(a) < ng(x), s/ (z) < rf (@)
and sg(x) < rg(a) for all mfn € L, and rfs € U, from which it follows that
f@)f(a) = g@)/g(a), or g(x) = [gl@)[f(@)]f(x)forallze Y. &

5.2 ALGEBRAIC THEORY FOR n FACTORS

The additive-measurement theory developed by Luce and Tukey (1964) and
Luce (1966) is based on the idea that a difference in two levels of one factor
can be offset by a compensating difference in the levels of any other factor.
For example, given 2} € X, and 2}, z; € X,, the compensation or “solva-
bility” assumption says that (zJ, zl) ~ (x7, zJ) for some z} € X;. If X =
X; x X, then (z},#)) € X and again by solvability (z}, z}) ~ (23, 23) for
some x? € X;. Under the cited conditions this gives rise to the picture in
Figure 5.1 where the broken curves represent indifference sets. Suppose
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additive utilities exist for this two-factor case and that, for points on e, such
as (22, z9), u,(*?) + uy(x)) = 0, and for points on g, such as (z}, ),
u (@) + uy(29) = 1, with (2%, 23) < (2!, z2). Then, as is easily verified, the
value of u; + u, for the first curve to the right of a must be 2, for the next
curve 4y + u, = 3, and so forth. Thus, if 2 < y <= u(2y) + wa(g) < wy{yy) +
ug(yy), then, for any y € X there must be a positive integer k such that
¥ < (3%, 23). Hence, under unrestricted solvability, we have a necessary
Archimedean axiom for the two-factor case. It is £3 in Theorem 5.2,

Two Factors

In the following Theorem Pl (C; of Theorem 4.1) and P3 are necessary
conditions for weak-order additivity when X = X; x X;, but unrestricted
solvability (P2 is not. Except in the trivial case when X/~ = {X}, P2 requires
both u, and «, to be unbounded above and below, Luce (1966) shows how to
weaken P2 to avoid the unboundedness implication: see also Krantz (1967,
pp. 25-27).

THEOREM 5.2. Suppose X = X, X X, and the following three conditions
hold throughout X :

Pl [(z', 2%, ) Eg (', v, %), & <y or P ~ y! for j < 3] = not 2® < .

P2 (24, 41 € Xy 23 € Xp) = (21, %) ~ (Y1, Yo) for some Y, € Xy, and (2, €
X1 %y, Y3 € Xa) = (24, %) ~ (41, ¥a) for some y, € X;.

P3. [(#3,20) < (2}, 7)), (¥, 2}) ~ (@5, ) for k=1,2,...;9y€X]=
y < (2, 20) for some ke {1,2,...}.

Then there are real-valued functions u, on X, and u, on X, such that

z < Yy <> u(xy) + ug(zy) < w(yy) + upye), forallz,ye X, (5.6)

and u, and u, satisfying (5.6) are unique up to similar positive linear trans-
JSormations.

Proof. Pl implies that < is a weak order (asymmetric, negatively
transitive) so that ~ is an equivalence. Let X/~ be the set of equivalence
classes of X under ~ and fix (20, 20) € X. By P2, each element in X/~
contains elements in X of the form (z, 22), (22, z,). Define 4+ on X/~ as
follows:

with a, b € X/~, a + b is the element in X/~ that contains (2, ;)
when (z,, 2)) ea and (20, 23) €b. (5.7)
With g <’ b <>z < y for some z € a and y € b, we first verify that (X/~,

+, <') is a strictly ordered commutative group. We then show that it is
Archimedean and use Theorem 5.1.
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1. + is well defined. By Pl, (z,, 22), (¥,, #3) € a and (2, 2,), (%], Y,)Eb
imply that (2, 2,) ~ (%1, ¥a).

2. Commutativity, G4. By Pl, (z,, %), (23, %,) €4 and (2}, ), (¥, ) €
b = (;, 2) ~ (41, ¥3), and hence by (5.7), a + b=5b+a

3. Associativity, G1.By G4, (@ +b) + c =a + Bty c+(at+b)=
a+ (¢ + b). Let (z,, 2 €a, (2],7)€ b, (¥, 2D €ec, @ y)ea+b, and
(2% z,) € c + b. Hence (23, %,) ~ (%, z,) and (¥, z) ~ (3, z,). Hence, by
P1, (4, ¥5) ~ (%, ), which yields ¢ 4 (¢ + &) = a + (¢ + b).

4. Identity, G2. Let e contain (z},29). By G4, e +a=a+e Witk
(z,, 2 € a, (3.7) implies (z,2)ea+e Hencea=a+e.

5. Additive Inverse, G3. Define —~a as that clement in X/~ that contains
(2%, z,) when (x,, 2) € a and (2, z,) € e. Then, by (5.7), —a+a=ce.

6. <’ on X/~ is a strict order by Theorem 2.1. Suppose 4 <'b. With
(z.xd)€a,(y,r)eband (@, )€, let 2, by P2, satisfy (z;, Zg) ~ (¥,, 23)-
With (2,23 < (,, #3) also, Theorem 2.1 yields (2, 29) < (31, %), which
along with (z,, z3) ~ (¢,, 23) under P1 yields not (¥, zg) < (21, Tg) and in
fact (2,, 2,) < (#;, %) since (zy, Tg) ~ (¥, *p) gives a violation of P1. Hence
a+ ¢ < b+ ¢, so that (5.2) holds.

To prove that (X/~, +, <’) is Archimedean, suppose (e< a,e<b)
With (29, #}) € a, let the sequence in P3 be constructed as described in
connection with Figure 5.1, Since (%, z}) € a and (2}, 7)) € 4, (5.7) says that
(#1, 21) € 2a. Then, since (@2, 29) ~ (a3, 23), (22, 2%) € 2a. Using (3.7) to
continue this we see that (af, 2) € ka, k = 1, 2,.... With yeb, P3 says
that y < (2%, 23) for some k, which gives b <’ ka for some positive integer k.

ence (X/~, +, <') is Archimedean.

Thus, by Theorem 5.1, there is a real-valued function f on X/~ such that
f@a+b) =f(@+f(®) and a <"b <> f(a) < f(b). Defining uy(z1) = f(a)
when (z,, 20) € g, and uy(%y) = f(b) when (22, ,) € b, (5.6) follows easily.

Suppose vy on X, and v, on X, also satisfy (5.6). Defining g on X/~ by
2@ = [py{zy) — v, (2] + [va(®s) — 1,(x3)] when (z,, %,) € 4, it follows that,
taking (z,, )€ a and (2}, z,) €b so that (z, t) €a + b, gla) + gb) =
[vy(z) ~ 2,(@)] + 0 + 0 + [05(2y) — (2] = g(a + b). Moreover, from
this and (5.6), g(@) < g(b) <> a <'b. Hence, by Theorem 5.1, g = ¢f for
some positive number c. It follows that, taking (z,, 28), vy(z;) — 2, (=) =
cuy(z), or () = cuy(zy) + v,(2]) for all z, € X,. Similarly, vy(zs) =
cug(zy) + v,(z%) forall z; € X;. @

Three or More Factors

We now consider a version of Luce’s theory (1966) for more than two
factors. As pointed out to me by David Krantz (correspondence), the
independence condition C; can be replaced by C, in this case. This necessi-
tates of course the explicit assumption that < is a weak order {or negatively
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transitive) since weak order does not follow from C;, or P1* as we call it
below.

THEOREM 5.3, Suppose X = ]2 X;, n 2> 3, < on X iv a weak order,
and the following hold throughout X:

Pi* [(z,2)E; (g, w), e <<yorz~yl=>nolz < w.

P2* lie{l,...,nh,xeXandy, e X, foralljs£ {}=> 2~ (4, ..., ¥ 1
Ziy Yists - - - » W) for some 2, € X,

P, (29,28, ..., 20) <{(al,2},...,2), ({1, 2}, ..., a)) ~~ (af,2), . ..,
B fork=1,2,.. . ;9eX]=>y < (&, ...,28) forsomeke{l,2,...}.
Then there are real-valued functions uy, ... ,u, on Xy, ..., X, respectively
such that

L2 n

v <y ulx) < Fuly), forallz,yelX, (5.8)
fml fe=1

and uy, . . . , u, satisfying (5.8) are unique up to similar positive linear trans-

Jformations.

Proof. Our major task will be to show that C; or P1 for n > 3 follows
from the stated hypotheses. We delay this until later, assuming for the
moment that Cy or P1 holds. Fix (2}, . . . , z2). By P2* any a € X/~ contains
elements of the form (z, for i € I, z? for i ¢ I) for any nonempty proper subset
I< {1,...,n}. Define + on X/~ as follows:

a -+ b is the element in X/~ that contains (zy, .. ., %,) when, for any
nonempty 7 < {1,...,n}, (z; for iel, 2? for i¢I)ea and (=} for
iel,z fori¢eb.

To show that + is well defined suppose (z, fori e/, 2 for i ¢ I) e a, (=? for
iel,z, fori¢l)eb, (y,foriel* 22 fori¢[*)ea, and (x? foriel*, y,
for i¢ I*)eb, when I and I* are any two nonempty proper subsets of
{1,...,n}. We need to prove that (zy,...,2,)~ (¥, - .., ¥,) and this is
easily seen to follow from P1.

By analogy with the preceding proof (let X, there represent X, X+« « X X,
here) it follows from P1 and the hypotheses of Theorem 5.3 that (X/~, +,
<"} is an Archimedean simply ordered (commutative) group. With f as in
(5.3) and (5.4) and (=}, . . . , 2%) € ¢, define u,(z;) = f(a) when (20, ... ,20 |,
T, X5y - o - » %) € @, and define u(z) = f(a) when z € a. Then u(z) < u(y) <
f(a@) < f(b)so that z < y <> u(z) < u(y). Moreover, with (z)~ the element
in X/~ that contains z, it follows from successive uses of our definition for +
that (zy, ..., 2" = (z, 2% ..., 207 + (2. x,,...,2,)" = (z,,73,...,
20)” + (28, 25, 7, ..., @)™ + (22,20, 2, ..., 2) ] = = (2,20, ...,
)+ (@, zy, 2, 2T (2,2, 7)), from which we

» Fa—1? T
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obtain u(z) = uy(zy) + u(xy) +  + - + u,(x,). The proof of uniqueness
follows from Theorem 5.1 as in the preceding proof.

Proof of P1. Let X =T]r, X,, n > 3, and assume that P1* and P2*
hold and that < is a weak order. To verify Pl we begin with the following
general form: show that (x4, 2, . . ., %) X (W1, Y3 ¥s, Yoo s, ¥) When

(z15 T3, 23, 24, 25 26) X (Y1, 23, Yas %05 T %) (5.9
(zl! Zgy Ty, Ty, fa, tt) %‘ (219 Yas Z3: Y1 35, la)- (5'10)

This includes all possible placements of z,, y,, ¢etc. in the two given statements.
It should be understood that some dimensions may be collected into a single
iin {5.9) and {5.10) and that one or more of the / patterns in (5.9) or (5.10)
may be absent in a specific case.

Suppose first that the first dimension (i = 1) in (5.9) and (5.10) is actually
present. Using P2* let s5; satisfy (omitting parentheses and commas)
S1Za2glx%y ~ Ty TgtaZaite. Then, by PI*, 22,2472, ~ 5122524824, Also,
SINCE 512525241526 < Yrtalatalsze DY (5.9), P1¥ implies sy¥aza¥e25% < Y1l a¥s¥ 4%
Also, by (5.10) and P1*, s;2,2,2,852¢ < S1¥s%ale%5%e. Hence, by transitivity,
D\ ZgTeT 2%y N V1Y 2Yalitse, SO that by PI* 22,007,257 < 1h¥YeYa¥a%s-

The key to this proof was that the same clement (2;) appeared in the first
position on each side of (5.10). A similar proof holds if either the fourth
dimension is present (z; on both sides of (5.9)) or the sixth dimension (z¢)
is present. Assume henceforth that none of these three dimensions is actually
present. Renumbering subscripts, (5.9) and (5.10) then reduce to

(1, 23, 23) < (21, Y35 ts) (5.1D)
(215 %2, 13) < (Y15 225 29)- (5.12)

We are to show that z,7,2; < ¥3¥.%;. Assuming that the third dimension is
present let s; satisfy 2,223 ~ 22,5y, Then, by (5.11) and P1*, 32,55 < v1¥afs.
Also, ;2523 ~ 2125, and (5.12) satisfy the condition in the preceding proof
and can conform to £, so that, by Pl for this case 2,2ty X ¥,235;. Then, by
transitivity, o,2,1y X ¥¥af3 S0 that 2,225 < y,y,24 by P1*.

Finally, suppose that the third dimension in the preceding paragraph (fifth
dimension originally) is not present. This leaves us with only two patterns.
But n > 3. Therefore, we have a case like

(®1, %3, 23) X (21, Ygs ¥3) (5.13)
(21, %3, %) < (W15 29, 2) (5.14)

from which we are to show that z,z,%; < ¥,%.¥;. Let 5y satisfy 2,2,2; ~ 2)245,.
By (5.13) and P1*, 12355 < ¥1¥a¥s. Also, ,2525 ~ 22,8, and (5.14) satisfy
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the previous pattern for which P1 holds (z, on both sides of the ~~ statement),
50 that by P! for this case, 72,7y < 1253 Then, by transitivity, z2ee, <
YihYs € -

5.3 TOPOLOGICAL PRELIMINARIES

To obtain a sound understanding of Debreu’s (1960) additivity theory a
review of some theory of topology is in order. Familiarity with Section 3.4 is
assumed.

A topological space (X, T) is connected if and only if X cannot be parti-
tioned into two nonempty open sets {(in B), The closure A of A = X is the
set of all y € X for which every open set that contains y has a nonempty
intersection with A:

A={y:yeX and (yeB,BeB)=ANB# g} (515)

(X, ) is separable if and only if X includes a countable subset whose closure
is X. (Re, W) is separable (as well as connected) since Re is the closure of the
set of all rational numbers.

The following is Debreu’s Proposition 4 (1964, p. 291).

LEMMA 5.1. Suppose < on X is a weak order, (X, G) is a connected and
separable topological space, and {c:2 € X, s < y} € Gand{z:2 e X,y <z} €
G for every y € X. Then there is a real-valued function u on X that is continuous
in the topology G and satisfies

< y<>u(x) <uly), forallz,yelX. (5.16)

Proof. By separability, X includes a countable subset 4 with 4 = X. If
z < z then {y:y < z} and {y:x < y} are nonempty intersecting (by con-
nectedness) open sets with intersection {y:z < y < 2} € . Then, by 4 = X
and (5.15), wx<y<z} NA 5 . Hence 4 is <-order dense in X.
Theorems 3.1 and 3.5 complete the proof. @

Lemma 5.1 is used in the next section. Lemma 5.2, based on the following
definition, is used later in this section. Given a topclogical space (X, B),
Y< Xisconnectedifandonlyif (Y NA#% g, YNB#x g, YS AU B,
YNANB= g)is false for every 4, B€ G.

LEMMA 52. If A< X is connected for each Ae Aand if A N A* % 3
when A, A* € & then {J4 A is connected.

Proof. Suppose Y = |Jx A is not connected. Then (Y NB## @,
YncC# g, YSBUCYNBNC= @) for some B, CeT. Let
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A, A* € A satisfy (4 N B 5 G, 4* N C # &). Using B and C it follows
that 4 U 4* is not connected and that, since each of 4 and A* is connected
by hypothesis, it must be true that ANC=g, 4*NnE= ). But then
(A< B, A* < C), since 4, A* < Y ByU C and hence @ = 4 N C oy
A* "NB=(4 NB) N (A4* i C) = 4 N A*, which contradicts our second
hypothesis. ¢

Product Topologies
IfX =T~ X and (x,, B.) is a topological space for each § let

1% = {A:A S Xandif (2,...,2,) € 4 then there are 4, € G, for

whicha, e 4,(i = 1,... n)and IT4: < A}‘ (5.1
f=l
11 B, is the product fopology for X = TT X,. The product space T (X,, B,
is the topological space (T x.. IT ).

To verify that [ 6, is indeed a topology (Definition 3.2), we note first
that 2 €J[ %, and Xe ]G, Let B be a union of sets in I B, with
B 5 2 and v € B. Then z € 4 for some 4 in the union and in I G, from
which it follows that B e IT B.. Finally, suppose 41, . . . , A" e T] B, and
N4 # @. With z € (] 47, there is for each / and j an 4! € G, such that
z;€ Ajand ], A = 4. Since v, € [); A2 € G, for each ; and I1. (N, 4) =
N: A1: 4) < N, A, it follows from (5.17) that N4ells.

Exercise 13 gives an equivalent definition of a product topology.

LEMMA 5.3. If (X, B,) is a connected (separable) topological space Jfor
eachie{l,... n}then (IT X, TI ©.) is connected (separable).

FProof.  Separability. 1.et (X, ;) be separable for each i, with A4; € X,
Countable and 4; = X,. Given z ¢ ¥ = IT X; suppose z ¢ B¢ TI G.. Then
by (5.17) there are B, & G, such that z, € B, and I1 B; = B. Since X;, B)
is separable, B, N A4, % . Therefore (ITB) N (AT 4) = & so that
B N (IT 4) # @. It follows that « is in the closure of JT 4,.

Connectedness. Using the definition of a connected subset it is not hard to
show that {z,} x -+ - x e} X X X {z,) % -+ x {z,} is a connected
subset of X = [T X, when (X;, G,) is connected. Let each (X:, G,) be
connected so that X, x {ra} X *+ - x {x} U i} X Xy X {2} x -+ x {z,}
is connected by Lemma 5.2 since (1, %, ..., 2,) is in both parts of the
union. Since (z,, T3« -, &,) IS in every such union as ¥ varies over X, it
follows by Lemma 5.2 that Xy X Xy X {xg} X ++- x {z,} is connected.
Hence X; X X, X {3} x - x {z,} U W) X {ya} x Xy x {z} x - - x {z,}
is connected, so that X1 X Xy X Xg X {z} x - x {z,} is connected. By
induction, X; x Xy X -+ X X, is connected. ®
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Continuity

The appropriate generalization of continuity over that given in Section 3.4
is included in the following definition.

Definition 5.2. Llet (X, R), (Y, 8), and (Z, G) be topological spaces. If
[fis a function on X into Y then fis R — 8 continuous if and only if $ € 8 =
{rze X, f(x)e S} e R. If gis a function on X X Yinto Z then

i. giscontinuousin X ifandonly if (€ ¥, T €G)= {r:ze X, glz.y) €
Tie R;

2. giscontinuousin Yifandonlyif (xc X, TeT)=-{y:ye Y, gla, y) €
Tie .

The foiiowing lemma is used in the next section.

LEMMA 54. If (X, R), (Y, 8), and (Z, T) are tepological spaces and f on
X x YintoZis R x 8 ~ G continuous then fis continuous in X and in Y.

Proof. Let fbe R x 8 — G continuous, and let be ¥, T € G. We shail
show that {r:ze X, f(z,b)eT}eR. For all x € X let g(x) = x, h(z) = b
and k(x) = (g(z), h(zx)). As is easily verified, g on X into X is R — & con-
tinuous and 42 on X into Y is R — 8 continuous. To show that £k on X into
X x Yis R — R x 8 continuous let 4 # &, 4 € R x 8. By Exercise 13,
A has the form

A = U Bw) x C(w)

well”
with B(w) e R and C(w) € 8 for all we W. Letting a super —1 denote the
inverse {k1(A4) = {z:k(z) € A}], it follows that
k=i(4) = k-3 [Bow) x COv)])
= J k1 [B(w) x C(w)]
= [J Kk ({B(w) x Y] N [X x C(w)]
= U k" HB(w) x Y] N k7YX x C(w)])
= U (g MBw)] NA[Cw)) R
since g~ {B(w)] € R and h{C(w)] € R for every w.
Let riz) = f(k(z)) =f(x,b). Let Te®B. Since [ (T)eRh x &, and
k=) f/~UT)) e R by the preceding demonstration, r"/(T') = k=Y f~(T)} is in
R.Thatis, {r:xe X,/ (r,b)e T} e R, as desired. @

Suppose (X;, G,) is a topological space for each i and u is a real-valued
function on X = J]1, X, thatis T| G, — ‘W continucus (continuous in the
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topology T1 G.). Then, as a corollary of Lemma 5.4, u is continuous in
T1.e; G; for every nonempty / < {1,2,...,n}. That is, for each Ue“U
and fixed «f for i ¢ 1, {z;:z € ] X,, x, = 2l foralli ¢ J,u(x) € U} € [],; G-

54 TOPOLOGICAL THEORY FOR n FACTOKS

Debreu’s (1960) topologically oriented theory for additive utility with
two factors is essentially as follows.

THEOREM 5.4. Suppose X = X, x X, and the following three conditions
hold throughout X:

QL (=, 22, 2 E; (9%, 4%, 9*), @ < Y ord? ~ ' for j < 3] = not 23 < 5.
Q2. (X, G,) is a connected and separable topological space for i = 1, 2.
Q3 {rxeX,z2< y}eG, X Goand {r:2e X,y < 2} €6, x B,

Then there are real-valued functions u, on X, and u, on X, that satisfy (5.6)
and, if (x,, 2,) < (21, ¥g) and (g, 23) < (21, 2;) for some quartet ¢f elements
in X, then u, and u, satisfying (5.6) are continuous in G, and G, respectively
and are unique up to similar positive linear transformations.

The obvious difference between this and Theorem 5.2 is in the Q2 and
03 conditions (Q1 = P1). Debreu ties the space together with topological
conditions, whereas Luce and Tukey use solvability. The need for the quartet
condition in Theorem 5.4 stems from the fact that under @1, Q2, and Q3 it
is possible to have, say, u, constant on X; and u, nonconstant on X,, in which
case additive utilities are not unique up to similar positive linear trans-
formations and u, need not be continuous. With no loss in generality we
assume in what follows that (zy, ;) < (x,, y,) and (y, 2,) < (2,, 25) for some
quartet of elements in X.

The most obvious application of Theorem 5.4 arises when X, and X, are
intervals in Re. In fact, Part I of the two-part proof of the theorem assumes
that X, X X, is a rectangular subset of Re2. Part II then shows how the
general case can be transformed into the plane. Because Part I, which involves
ideas of Thomsen (1927) and Blaschke (1928) for what Debreu calls the
Thomsen-Blaschke theorem. goes through many steps and is rather long, 1
shall not detail every step.

Proof. Part I. Throughout we assume that the hypotheses of the theorem
hold, that X, and X, are nondegenerate intervals of real numbers, that G,
and G, are the relative usual topologies on X, and X,, and that

T {Yy=>x <Y (5.18)
as in Theorem 3.3, condition 2,
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(a.d) ¢ {b,d)
8\‘
flz1) e
4 f
(a,c) zy (b,¢c)
Figure 5.2

1."By Lemmas 5.3 and 5.1 there is a real-valued function v on X that is
continuous in TG, X T; and satisfies = < y <> v(x) < v(y). Then, by
Exercises 3.22 and 3.10,

E<y,y<zr<z=>y~ 2+ (1 —a) fora unique a & (0, 1)
(5.19)

2. Let {a,b] X [c,d] be a rectangular subset of X; x X; for which
(b, ¢) ~ (a, d). (Figure 5.2.) From (5.18) and (5.19) it follows that there is a
real-valued function f on [z, b} onto [¢, d] that is one-to-one with

(1, f(z)) ~ (b, c) for every z; € [a, b].

Since f strictly decreases as z, increases, it and its inverse f~* are continuous,
3. Or immediate goal is to show that additive utilities satisfying

u(xy, Ty) = uy(Ty) + uy(xy), (5.20)

exist on {o. b] X [c, d] with u a monotonic transformation of v in step 1.
First, set wu;(@) = uy(c) =0 and uy(d) = uy(d) == 1. Then u(a,c) =0,
u(zy, ;) = 1 for all (z,,xy) €f, and u(b, d) = 2. As shown in Figure 5.2
there is a z, € (a, b) such that (z,, ¢) ~ (a, f(z,)). To prove this note first that
since v is continuous it is continuous in X, and X, by Lemma 5.4. Then, by
Exercise 3.16, {v(z,, ¢):x, € [a, b]} is an interval in Re. Likewise, {v(a,
Sf@)):x, € [a,b]} = {v(a,xy):x,€ [c,d]} is an interval. Since v(z,,c)
increases in x; and v(a, f(x,)) decreases in 2,, there is a unique z, € (a, b) for
which ©(zy, ¢) = v(a, f(2,)), so that (2, ¢) ~ (@, f(z)).

Let g be the continuous indifference curve through (24, ¢). To satisfy (5.20)
we must have u,(z,) = uy(f(z,)) = 4 and u(z,, z;) = } for every (x,, z3) € g.
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(a,/(x)) =S < R
)
» 2 R
4 Y
@ > T, N
Ao oy Ny f
(xy.¢) P 8=y
Figure 5.3
Q1 implies that e ~ e’ as shown in Figure 5.2, with u(x;, 2,) = $ for every
(z,z)eg’.

For reasons like those given above there is a point (2, f(¥,)) = P" in g for
which (z,, ¢) ~ (a, fi(v,)). As shown in Figure 5.3, the constructions from
P” define two new curves /1 and k. As is easily seen from 01, 0 ~ Q', 0 ~ &',
and Q' ~ S so that @, @', S, and S’ do indeed lie on the same indifference
curve (k). For (5.20) we must set u(x;) = uy(f(y)) = } and w(y) =
u(f(xy)) = 1 with u = } for A and u = { for k. Similar constructions (from
£’ in Figure 5.2) hold above f on Figure 5.3.

4. The process of generating indifference curves in [a, b] X [c, d] is
repeated ad infiritum and yields a continuous indifference curve for each
value of ¥ in (M2~ 1< M<KL2", n=1.2,..}0u{l +m2":0<Mm<L
2"~ 1, n=1,2,...}. If (#,2y) and (%, ys) are on these curves then
(71, 20) < (1, ¥3) <= (s, 2) < u(yy, yo)-

In addition, we have a set A of x; points in [a, b] whose set of u, values is
{m2*:0 <m<2", n=1,2,...} and a set B of «, points in [c, d] whose
set of ug values is (m2:0 < m<2" n=12,..} with u(z,, z,) =
uy(%,) + ug(xs) whenever (z,, ) €A X B.

5. A = [a, b} and B = [c, d]. (We leave this closure proof to the reader.)
It follows that

sup {,(¥1):%h < 1, Y1 € A} = inf {u():7, < 2,2, € 4} (5.21)

for each z, € [a, b). Extending u; on A to , on [a, b] by defining u,(z,) as the
common value in (5.21), it follows easily that u,(z,) < u(y,) <>, < y; and
that 4, on [a, b] is continuous. It is clear also that once w,(@) and u, () are
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Figwe 54

specified, the rest of 4, on [a, b] is uniquely determined and u, on [, b] must
be continuous.

Similar remarks hold for u, on [c, d], and, if u; and u, satisfy (5.20), they
are unique up to similar positive linear transformations.

To verify additivity on [a, &] % [c, 4] suppose first that (21, Za) ~ (¥, ¥2),
both points being in [a, b] x {c, d]. Since additivity holds on 4 x B, we have
from (5.21) and its companion for B that u,(2,) + uy(zs) = uy(3,) + a(¥s)-
On the other hand suppose that (2,, ) < (¥, ¥3). Then, as is easily seen
there must be a point (z,, 25) ~ (2, ;) for which (z;, 2;) < (7, ¥s) so that
u(21) + 4y(23) < wy(y1) + us(y,) and hence uy(2;) + u(wy) < uy(y1) + ua(ys)-

6. We now show that u, and u, can be extended in one and only one way
to all of X; and X, to satisfy additivity. Beginning with [a, b] x [c, d] we
first extend the horizontal lines through (a, ¢) and (b, ¢) and through (a, d)
and (b, d), and likewise for the two vertical lines. The indifference curves
through (a, ¢), (b, ¢), and (b, d) are extended also. The procedure described
in connection with Figure 5.1 is then used to generate additional indifference
curves that must have u values of 2, 3,4, ...,and —1, —2, ..., this process
continuing indefinitely or until the border(s) of X (if any) are reached. This
provides us with a grid pattern on X; x X, of rectangles similar to [a, 5] x
{c, d], except that some of these will be truncated if X is bounded. Using Q1
it is easy to verify that (except at the boundary) the lower right corner of any
rectangle is indifferent to its upper left corner.

7. We need to show that these rectangles (including truncated ones at the
boundaries, if any) actually cover X; X X,. For this it will suffice to show that
every z; > b lies beneath an indifference curve generated in the manner of
Figure 5.1. To the contrary suppose, as in Figure 5.4, that y, € X; does not
satisfy this condition. Let z, = sup{zJ: j=0,1,...} as shown on the
figure. The continuity of v then implies that v(z,, ¢) = sup {v(#{, ¢):j =
0,1,...}and v(z,, d) = sup {v(x], d):;j =0, 1, .. .} sothat v(z;, ¢) = v(z, d)
and hence (z,, ¢) ~ (2;, d), which contradicts (5.18).
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8. For additivity it is clear that u,(x]) = j for each such point on the z,
axis of Figure 5.4. Suppose w; € X;: for definiteness we assume w; > b as
shown on Figure 5.4. By the construction shown for w,, additivity requires
u(wy) + ug(wy) = 3. But uy(w,) is aiready known since wy € [¢, d]. Hence
uy(w,) ‘s uniquely determined. Similar remarks heid if w; < 4, and, by
symmetry, for points in X not in [e¢, d]. Thus, given additive u, and u; on
[a, b} and {c, d}, 4, and u, are uniquely determined on all of X; and X, when
additivity is required, and they are continuous.

9. It remains to show that (5.6) holds throughout X; x X,. For this it will
suffice to show that (zy, 2) ~ (41, ¥2) = (1) + ws(%a) == 1, (¥1) + us(yy)
because then all points on the same indifference curve will have a common
u; + uy value and, by construction, one such curve is to the left of another
if and only if the former has a smaller u; + u, value.

We begin this with the rectangle in the grid of step 6 that is to the immediate
right of {a, ] x [c, d]. Suppose first that z ~ y and these points are beneath
the u = 2 curve as shown on Figure 5.5. By the constructions shown in the
figure, and using @1, (P~ P, z2~z)=> 0~ Q and (P~P",z~y)=>
R~ R'. Then, from additivity on [a, b] X [c, d] and the definition of u,
extended, it is easily shown that u,(x)) 4 uy(xe) = uy(y;) + uy(ys). On the
other hand, if z and y lie above the « == 2 curve we have the situation shown
in Figure 5.6. Then, by construction and Q1, (x ~y, P~ P)=>Q~ ("
By the Figure $.5 analysis additivity holds for Q and Q’, and it readily follows
that u,(z;) + uy(xy) = wy(y1) + uy(y,). By analogy, additivity holds in each
of the four rectangles that have a boundary in common with [a, b] % [c, d].
By induction, additivity holds for every rectangle (complete or truncated)
to the right or left of [a, b] X [c, d] and above or below [a, b] x [e, d].

The next step is to show that additivity holds throughout (X; % [c,d]) U
([, b] x X;). There are no unusual difficulties in this and we omit the proof.
It can then be shown that additivity holds in each of the four rectangles that
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have one corner in common with [a, b] X [c, d] and then that additivity
holds on all of (Xy x [c,4)) U ([a, b] X X,) U (four corner rectangles).
The systematic introduction of new rectangles completes the proof.

Proof, Part Il. We now see how the general situation for Theorem 5.4
can be transformed into the structure assumed in Part I of the proof. The
hypotheses of the theorem are assumed to hold.

1. By Lemmas 5.3 and 5.1 there is a real-valued function w on X; X X,
that is continuous in B; x B, and satisfies

x < y <> wix) < w(y), forallz,y e X. (5.22)

With (g, b) € X, x X, fixed let wi(z,) = w(z,, b) and wy(x;) = w(a, 2,) for
all z; € X, 2, € X,. By Lemma 5.4 and Exercise 3.16, w; is continuous in B;
and W, = {w,(z,):z; € X,} is a nondegenerate interval in Re. Let R, be the
relative usual topology on W, Each (W,, R,) is a connected and separable
topological space,

2. Let v on W; X W; be defined by v(wy(z,), wy(zy)) = w(z,, z5). From
step | it follows that » is well defined and increases in both components.
Defining <* on W; x W, by

(¢, d) <* (e,f) <> v{c,d) < vie,f) (5.23)
it follows from (5.22) that
(wi(zy), wa(2p)) <* (wi(31), walye)) <> (24, 22) < (Y1, ¥a)- (5.24)

Hence <* is a weak order and it satisfies (¢, d) < (e, f) = (¢, d) <* (e, f),
similar to (5.18). It remains to show that Q! and Q3 hold for -<* on
W, X W,
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3. For Q1 suppose for W, x W, that (¢!, % ¢¥) E, (d*, d% 4% and
(ct <* d', ¢ <* d%). We need to obtain d® <* % Let (z,z)) forj=1,2,3
satisfy {c{, c}) = (w,(#]), w (). Define 3, y%, ¥ equal to =}, 22, 2? according
to the permutations (for /=1 then i=2) that establish (c?, c®, c®) E,
(d, &%, d®). Then (2}, 2%, =) E; (4, %%, ¥®) and by (5.24) and Q1 for < on
X; X X, y® < 2% Hence, again by (5.24), d® <* %

4. To establish (3 for <* we note first that » is continuous in W; and in
W,. For the W, proof let Wi(x,) = {w(x,, xy): 2, € X,} for each x, € X, s0
that W(x,) is an interval for each ;. By Definition 5.2 we are to show that
{c:ce Wy, v(c,d)e A} e R, when de W, and A eW. Let 2, € X, satisfy
wal{%y) = d. Then {c:c € Wy, v{c, d) € A} = {wy(z,):2; € X3, wy(Ty, TP EA} =
{w(zy, b):2, € Xy, wlry, z) € A N Wi(zy)}. Since w(z,, x) < wlz,, 2,) <=
w(zy, b) < wiz;, b), it follows from the continuity of w that if 4 N W (zy)
is an open interval in W;(x,) then {wy(zy, b):7; € X, w(zy, 2,) € 4 N Wi(2)}
is an open interval in W, and hence that {c:c € W, v(c, d) € A} € R,. Thus,
if A€W, then in general {c:ce Wy, v(c,d)e A} € R,. (See Exercise 19.)
Hence v is continuous in W;. The proof for W; is similar.

Now suppose (¢, d) <* (e,f). Then v(c, d) < v(e, f) by (5.23). Since v
increases and is continuous in each component, it is easily seen that there are
intervals Ry(c), R,(e) € R, and Ry(d), Ry(f) € R, such that (c, d) € Ry(c) x
Ry(d), (e,f)eRi(e) X Ry(f), t<*(e,f) for all te& Ry(c) X Ry(d) and
(¢, d) <* tfor all 1 € Ry(e} x Ry(f). This is condition 2 of Theorem 3.5 in
the <* context. It then follows from that theorem that {r:r € W, x W,
r<*t}eR; x Ry and {rireW;x W,, t<*r}eR; x R, for each
t e Wy, x W,, which is Q3 for <*,

Thus, all the hypotheses of Part I hold for <* on W, x W,, so that there
are real-valued continuous functions v, on W, and »v; on W, that satisfy
(c,d) <* (e, f) <> vy(c) + vy(d) < vy(e) + vy(f) and are unique up to
similar positive linear transformations when v, + v additivity holds.
Defining u,(z;) = v,(w(z;)) we then get (y,7,) < (¥, ) < (%) +
ug(xy) < uy(y,) + us(ys). Because w,; on X, is continuous and v; on W, is
continuous, ¥; on X; is continuous (Exercise 16). ¢

Three or More Factors

Provided that at least three factors actively influence preferences, or are
essential to use Debreu’s term, Debreu’s additivity theory with n 2> 3 requires
only the m = 2 part of condition C in Theorem 4.1. For ready comparison
with Theorems 5.4 and 5.3 we state his theorem as follows,

THEOREM 5.5. Suppose X =[], X;, n 2 3, < on X is a weak order,
z < y for some x, y € X that differ only in the ith components (i =1, ..., n),
and the following hold throughout X :
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Q1. [(z, ) E;(y.w), 2 < yorxz~y]l=>notz < w,

Q2%. (X, ) is @ connected and separable topological space for i=
h,...,n

Q3. rweX e <y el]r, Boand {z:zc X,y <z} e[]n

jwl ir
Then there are real-valued functions u;, . .. ,u, on Xy, ..., X, respectively

that salisfy (5.8), and uy, . . ., u, satisfying (5.8) are continuous in Gy, . . .,
C,, respectively and are unigue up to similar positive linear transformations.

Proof, Part 1. As for the preceding theorem we consider first the case
where each X, is a nondegencrate real interval, G, is the relative usual
topology for X,, and (5.18) holds (x < y =z < y) along with the other
hypotheses of Theorem 5.5.

1. For the same reasons given in Step 1, Part [ of the preceding proof, and
by Lemma 5.4, there is a continuous (in ] G,) < ~ preserving real-valued
function ¢ on X that is continuous also in any combination of factors.
Moreover, (5.19) holds.

2. Following Debreu (pp. 22-24) we consider first an additive representa-
tion for X; X X, With @; € X, on the interior of X, for i > 2, let

H-":XIXX,;X{G;;}X“'X{CZ,,}

and let <%on X; x X, be the weak order induced by the restriction of < on
H. By Q1*, <% is independent of the particular a,, ..., a, values used,
Moreover, the conditions in the first paragraph of the preceding Part I proof
apply to <°on X, x X,: @, follows easily from Theorem 3.5, but Q1 (the
C, condition) is more difficult to verify.

3. Because of continuity and * < y=»z < y, the former Part I proof
used only the indifference part of Q1 in the two forms shown in Figure 5.7.
Form I was used to establish additivity on [a, &] x [c, d}: Form I was used
in extending additivity to all of X; x X;. In either case the ~ part of Q1 says
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that (P~P',Q~ Q)= R~ R’ and Q~Q,R~R)=P~P, To
show that these hold on H we show first that they hold for sufficiently small
rectangles in H.

4. Let z; <z, and z, < 2, with the differences z; — xz; and 2, — z, suffi-
ciently small so that there will be a point W’ = (z,, 2%, by, ..., b,) € X that
is indifferent to W = (2, 25, 0, . .. , @,) € H. This is shown on Figure 5.8
and follows from continuity and the fact that the a; were chosen on the
interiors of the X,. Lety,, , € X, fori=1,2besuchthatz; <y, < t, < z
and such that 0 ~ Q' and P~ P’. Because W~ W’ there is a Q* =
(1, %3, €3, ..., ¢,) in the indifference set (hypersurface) containing Q and
Q. Let T, T', R, and R’ be positioned as indicated. Then, by Q1*,
HO* R)E,(Q',T),0* ~ Q)= R~T, (@*. R)E, (O, T), 0* ~ Q] =
R'~T, and [(P,T)E,(P',T). P~ Pl==T~T' so that R~ R’ by
transitivity. By a similar analysis (take R ~ R’, then position P, P'), we have
(@Q~Q,R~R)=P~P'
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5. Suppose P~ P'and @ ~ @' as in Form I, Figure 5.7. By repeating the
procedure used for positioning the new point P” in Figure 5.3 we obtain a
succession of such points and their associated indifference curves that proceed
toward the lower left corner of the rectangle that has P and P’ (Figure 5.7)
as two corner points. Using the construction procedure of Figure 5.3 at each
step, the rectangle is divided into many small rectangles. After some suffi-
ciently large number of steps, the W ~ W’ condition of step 5 above will
apply to each 2 x 2 block of four small rectangles, and hence Q1 holds in
these cases. Beginning in the lower left corner and using the Q1 condition on
the 2 x 2 blocks, one can show that, for each small rectangle, the lower right
corner is indifferent to the upper left corner. Using transitivity, this leads to
R~ R'. Similarly, if R~-R' and @ ~ @', we find (by working into the
middle from the lower left and upper right corners) that P~ P’, It then
follows from the former Part I proof that additive utilities hold in the
rectangle with corners P and P’ in Form II of Figure 5.7 and from this it
follows that Q1 holds for Form II. Thus Q1 holds in general for H.

6. We know that additive utilities exist for H. Proceeding by induction
assume that for each i from 1 to k — 1 (>2) there is a continuous, increasing
real-valued function u, on X; such that the indifference hypersurfaces in
Il x, Ge, TIiX: % TIn.{a}) are represented by 3*1u(z) =
constant, Following Debreu (p. 24) we extend additivity to JJ*_, X..

It follows from Q1* and step 1 that 3%} uy(z,) = J*uy(y,) <> v(xy, .. .,
o gy Toy Tpgts oo - 5 8n) = 0¥y, - oo 5 Yr1> X Gpurs - - - 5 &,). Hence, we can
define a real-valued function f on {D*lugx):z,eX; for i=1,...,
k— 1} x X, by

k-1
Sla, 2) =2y, ..., 23,844y, ..., a,) When Sufx)=a  forsome z,
1
The f increases in each component and is continuous since v is continuous.
Let Q= {v(x,..., %, apy,...,a,):%,€X; for i=1,...,k}, a real
interval. With o €, the set of all («, ;) pairs that satisfy
fla,5) =0 (5.25)

represents an indifference hypersurface in [J*_, X;. Clearly, given (z;, w) €
X, x Q, if (5.25) holds for some a = E’{-l u,(z,), this « is unique; we shall
call it g(z;, w). It follows that the w indifference hypersurface represented by
(5.25) can be thought of also as the set of all {x,, . .., ;) for which

k—1

}_‘luf(xf) = (%, ). (5.26)

Let G, a subset of X}, x €2, be the domain of definition of g. With G, the

relative usual topology for €1, the applicable topology for G is Ty =
{G N A:4 €T, x Bg}. g is continuous in T, (See Exercise 22.)
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7. Let (a,, @®) be in the interior of G, and take (¥(ay), .. ., 4 3(ey))
from the interior of {(uy(%), . . . , e (Tr)): 252 ui(®) = g(a,, ©%}:
k-2

;“:‘(“i) + tps(Bp-1) = g{as, °). (5.27)

Next, let (z,, w) € G be near enough te (g, @ so that the operations used
with (5.28) and (5.29) are possible. Select (¢4, . .. , ¢1) € [T X, for which

k-2
;ui(af) + () = g @°) (5.28)
k-2
guifcf) + Ug_r(@x_y) = 8(az, ). (5.29)

By (5.27) and (5.28), (a3, . .. , Gpgy @y, @) ~ (@14 - - . 5 Gpgy €1, %) SiDCE
both are on the w? indifference hypersurface. Then, by Q1% (¢;, ..., ¢z
Qe 15 @)~ (€15 .. .y Comgs Coys %), Since the first of these is on the o
indifference hypersurface by (5.29), so is the latter:

k-2

;”;(Ci) + 4 y(Cr1) = (7, ). (5.30)
Subtracting (5.27) from (5.28) and (5.29) from (5.30) we get
gz, ) = gla,, w) + glzy, 0° ~ glap, W°). (5.31)

8. Let V" be a rectangle in G whose sides are parallel to the axes (of X, and
€)) and which contains (4, ©®) and permits the operations used on (5.28)
and (5.29) for each (z,, w) € V. By (5.31) and Lemma 5.4, g on ¥V can be
written as the sum of increasing continuous functions of w and z,, say

8@, w) = A{w) — uy(xy). (5.32)

This analysis applies to each (a,, »°) in the interior of G: each such (a;, w®)
will have an associated V rectangle in G within which g can be decomposed
as in (5.32). Suppose ¥V N V' 7 @ with

g(zk: C()) = h(w) - uk(zk) for (zks CO) eV (533)
gz, w) = h'(w) - u(z) for(z,w)eV' (5.39)

Fix (b, w®) € ¥V M V" and transform A’ and u; by adding constants so that
h'(w®%) = h(w®) and uib) = u(h). (5.35)

Suppose (z,, w) € V' N V', Then, by the parallel sides condition, (6, w) and
(7, w® are in ¥ N V', Hence, using (5.33) and (5.34),

ulxy) = —g(z,, %) + h(o?
u(2) = —g(=y, w®) + k' (0°)
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so that u(x,) = u,(x,) on using (5.35). Similarly, #(w) = A'(w). Thus, under
the alignment of (5.35), (4, u,) = (', u;) on ¥V N V" It follows that £ and u,
can be defined so as to satisfy (5.32) throughout the interior of G. Continuity
then insures that (5.32) holds on all of G.

9. Substitution of (5.32) into {5.26) yields 2 *_ u,(z;) = h(w) as a repre-
sentation of the w indifference hypersurface in T]%., X;. By induction, each

frml

indifference hypersurface n JT, X, can be represented by 27 u(z) =
constant, with each u; continuous and increasing in z,.

Proof, Part Il. The proof that the general situation of Theorem 5.5 can
be transformed into the structure of Part I in this proof is similar to the
Part Il proof of Theorem 54. &

55 SUMMARY

Although a very general theory of additivity has been devcloped by
Tversky (1967), it becomes somewhat complex and difficult to interpret in
an easy, way when infinite sets are involved. The reader interested in a very
general theory should censult this paper.

When rather strong structural conditions, such as weak order, X =
TT¢r., X, solvability, and so forth are assumed to hold, less general but more
easily interpreted additivity theories result. One of these, developed by Luce
and Tukey (1964) and Luce (1966), is algebraic in nature and involves the
assumption that differences in the levels of some factors can be offset (in the
preference sense) by compensating differences in the levels of other factors.
As shown by Luce (1966) it is possible to weaken this unrestricted solvability
condition and still obtain results similar to those in Section 5.2. The theory
that results from restricted solvability is very similar to the topological
additivity theory of Debreu (1960) as reviewed in Section 5.4. In all the
theories noted in this paragraph, the independence condition Cj of Theorem
4.1 is sufficient for additivity, but Cy(m = 2) can be used when there are
more than two factors because C; then follows from C, and the other con-

" ditions. In these well-structured theories additive utilities are unique up to

similar positive linear transformations, and in Debreu’s theory each u; on
X, is continuous in the topology associated with (<, X)).

" INDEX TO EXERCISES

1-3. Lexicographic orders and additivity, 4. mx + nz = (m + n)z. 5-6. Strictly ordered
groups. 7. Commutative group. 8. Similar positive linear transformations. 9. Unbounded
utilities. 10. Countable sets applicability. 11-12. Closure. 13. Product topology. 14-15.




Exercises Yy
Products, intersections, unions. 16-22. Continuity, 23-24. Insufficiency of Cy(P1*, Q1%)
when n = 2, 25. Mean-variance criterion for normal probability distributions.

Exercises

1. For each of the following cases X = X, x X; and (%, x3) < (¥, 1) <=
(@1, 79} <L (yy, 93) <>y < g, or (2 = 4y, Ty < Yy). Verify the assertions made.

a. Xy = {0, 1}, X; = {r:r is a rational number}. Additive utilities exist.

b. X; = {r:r is a rational number}, X; = {0, 1}. Additive utilities don’t exist,

v. X; = X, ={j:jis an integer}. Additive utilities exist,

2. (Continuation.) Even though additive utilities exist in Exercise 1c, (¥, +, <%)
as defined preceding Theorem 5.1 for this case is a non-Archimedean strictly ordered
group and therefore there is no f on Y that satisfies (5.3) and (5.4). Discuss this

situation further.
3 letX = Xl X Xz x XsWith XI = {0, l}, Xg = {l, 2, . .}-
a. If X3 = {0, 1} prove that additive utilities do not exist whenz <y <>z <Ly,
b. If Xy = Re and z < y <> o <L y show that there is a countable subset of X
that is <-order dense in X.
4. Let (Y, +) be a group. Show that if m > 0 and n < 0 are integers then
mx + nx = (m + n)x whenever z € Y.
5. Prove that a strictly ordered group is Archimedean when (5.3) and (5.4) hold.
6. With L, and U, as defined in the proof of Theorem 5.1, prove that there is a
unique real number g(z) such that mfn < g(x) < r/s for all mfne L, and r/s € U,
7. Let Y = {0, a}, a £ 0, and define ma = 0 when m is an even integer and
ma = a when m is an odd integer. Define + fully so that (Y, +) is a commutative
group.
8. Show that additive utilities are unique up to similar positive linear transfor-
mations when X = {z;, %} x {2, 45} and (z,, 2) < (=1, ¥a) ~ s, Z2) < (¥4, ¥2).

(Assume that < is a weak order.)

9. Verify that unuer the hypotheses of Theorem 5.2 u; and 4, in (5.6) must be
unbounded when = < y for some =,y € X.

10. When z < y for some z,y € X, can X, and X, be countable under the
hypotheses of Theorem 5.27 Is the same thing true for the hypotheses of Theorem
5.4?

11. Let X = Re with the usual topology W. Specify the closure of (a) {0, 1,
2,...}; (b)) {r:0 <r <1 and r is rational}; (c) {1/n:n=1,2,3,...}; (d) {m/

2"m=0,1,...,2%n=12,...}5
12. Let X be all rational points in Re, with the relative usual topology {X N
A:A € 2}, What is the closu.e of X*
13. Let (X;, T;) be atopological space fori =1, 2,...

»n, and let TT* T, be the

R T
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family of sets formable by arbitrary unions of the sets in {7, 4::4(€ G, for
i=1,,..,n} Provethat T[* T, = []%.

14 Let X = JJe. XAl s X forj=1,... ,mand{ =1, ..., n Prove that
T N2 4D = N7 QT 4D

15. (Continuation.) Let X = Hs';x X, A1) € X, for all re T, where T is an
arbitrary set. Verify

a. TTous (Neer A = Nyep (TT7., 400,

b. Uer (TT0 4t € Ty (Uier 440D,

c. Show by example that {}; (T A4:(+)) can be a proper subset of [T ({J z4:()).

16. Let (X, &), (Y, 8), and (Z, T) be topological spaces and suppose fon X
into Yis & — 8 continuous and g on Yintc Z is & — T contin- ous. Let #(x) =
2(f (=)} for ali z € X. Prove that #is & — T continuous.

17. Using the first part of the proof of Lemma 5.4 as a guide, prove that if
(X, R), (7, 8), and (Z, ©T) are topological spaces, if fon X into Yis R — 8
continuous and if g on X into Z is & — T continuous, then hon X into ¥ x Z,
defined by k(=) = (f(2), g(x)), is & — (8 x ©) continuous.

18. With L the usual topology for Re, verify that 4 € U if and only if A is the
union of open intervals in Re.

19. (Continuation.) Argue that a real function fon X is continuous in the topology
G for X if and only if 4 is an open interval in Re implies that f~}(4) = {z:z€ X,
f@) e d}isin B.

20. With (X, R) and (Y, §) topological spaces and f a function on X into ¥,
let f(X) = {y:y€ Y and y = f(z) for some = € X}. Show that if fis R ~ 8 con-
tinuous, then fis ® — {f(X) N §:5 € 8} continuous. Thus, a continuous function
is continuous also with respect to the relative topology for its range.

21. Let f be a real, strictly increasing (or strictly decreasing) function on a real
interval {a, 8], and suppose that the range of £, f(X), is a real interval. Prove that
[ is continuous.

22. Suppose X, Y, and Z are real intervals, f on X x Y onto Z is strictly in-
creasing in each variable and is continuous. For each (y,2)€ Y x Z for which
there is an ze X that satisfies f(x,y) = z, let g(y, 2) equal = when f(z,¥) = 2.
Let G £ Y x Z be the domain of g. Prove that g is continuous.

23. Given X = [1, c0) x [1, o0) and
u(xy, xz) = z,x, + for each (z;, x) € X,

suppose (zy, %;) < (y1, %2) if and only if wu(xy, zy) < u(y;, yy), for all (z,, ),
(¥1, ¥2) € X. Verify that all the hypotheses of Theorem 5.4 hold except for Q1, and
that O1* holds for this case (i.e., C;). Do additive utilities exist in this case? Why
not?

24. (Continuation: due to David Krantz.) Given X = (0, o) x (0, oo) and
rzy +xp if 1 €2,1 7
u(x,, xp) = xy(x; + 1) if 0<z, €1 <KL,
22,2, if 0<2z,0<z €1
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Exercises >

SUPPOSO () < {y;, ¥ if and only if u(z, xp) < ulyy, yp), for all (%, 29,
(%1, ¥2) € X, Verify that all hypotheses of Theorems 5.2 and 5.4 hold with the ex-
ception of P1 or Q1, and that P{ fails but P1* or Q1* holds.

25. Let X be the set of all normal probability distributions on the real line. Each
such distribution is completely known when its mean x and standard deviation
< (20) are specified. so that we can represent X by the set X* of all ordered pairs
(4, o) for which 4 is a real number and o 3> 0. If the hypotheses of Theorem 5.4
hold for < on X’ then there are continuous real-valued functions Jfon(~o0, )
and g on [0, oo) such that, for every (x, v) and (s4*, o*) in X',

(4, 0) < (¥, a*) <= f(1) + g(0) < f(1*) + g(a®).

If you are familiar with normal probability distributions, comment on the reason-
abloness of the hypotheses (in particular Q1) in the case where each normal dis-
tribution represents & course of action that is a gamble for amounts of money.




Chapter 0

COMPARISON OF PREFERENCE
DIFFERENCES

All preference axioms in preceding chapters and those in Parts Il and III
involve only simple preference comparisons (<). In this chapter, however,
we shall consider a “strength-of-preference’ notion that involves comparisons
of preference differences. We will use a binary relation <* on pairs of ordered
pairs in X X X.

We interpret (x, ¥) <* (z, w) to mean that the degree of preference for =
over y is less than the degree of preference for z over w. The “degree of
preference™ for « over y can of course be “negative” if y is preferred to .

For conceptual clarity I shall use z — y to denote an ordered pair (z, y) €
X %X X:x —y = (z,y). Thus, z — y <* z — w will be vsed in place of, and
is identical to, (2, ¥) <* (2, w). This notation suggests some conditions that
may clarify the notion of directed preference difference comparisons, such as

r—y<*z—wsw—z<*y—u=zx, (6.1)
z—u<¥fz—w>r—z<¥y—w 6.2)

In our utility representations r — y <* z — w will be associated with
u(z) — u(y) < u(z) — u(w). In distinction to this approach Suppes and
Winet (1955) work with undirected or absolute difference comparisons and
associate the preference degree between x and y with |u(x) — u(y)|. They use
also a simple preference relation (<). With directed differences < ccn be
defined directly from <C*, such as

r< y<>r—xr<*y—ux, (6.3)
but at least one author, Armstrong (1939), has taken issue with this. His
idea, which is not in vogue today, was to take < * as a precisely ““measurable”

notion so that, for example, if « -{ y then, by gradual changes, one can
always find a z between « and y so that = — r~*y — =, and eventually

80
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obtain z — y <*z — w<>u(x) — u(y) < u(z) — u(w): but at ihe same
time he championed intransitive indifference for ~ with = < y only if the
difference u(y) — u(z) exceeds a minimal positive threshold value.

6.1 “MEASURABLE” UTILITY

Before we look at some formal theory, other remarks should be made.
Defining

z2—y~Pz—wer(notz —~y<*z—w,notz — w<*z—y) (6.4)

it seems clear, Armstrong (1939) and others to the contrary notwithstanding,
that there is no more (and probably less) reason to suppose that ~* is
transitive than to suppose that ~ is transitive. For example, can you find
one and only one value of = for which $z — $0 ~* $100000 — $z? If you
can, I venture to say that your discriminatory judgment is rather more acute
than that of most mortals.

Since its introduction by Pareto (1927, p. 16) and Frisch (1926), the idea
of comparable preference differences has been severely criticized, and for
reasons that go deeper than the discriminatory vagueness that may lead to
intransitive ~*. One charge has been that the notion has no operational
meaning. Because of this, several “operational” modes for making compari-
sons have been suggested, including the following three, where we assume for
convenience thaty < 2z < w < 2,

1. To compare z — y and z — w, compare a 50-50 gamble resulting in
either z or w with a 50-50 gamble resulting in either y or z, If the former is
preferred, take = — w <* z — y, and so forth.

2. To compare £ — y and z —~ w imagine that you already have y and w
and can either exchange ¥ for « or exchange w for z. If you prefer the former
exchange take z — w <* z — y, and so forth.

3. Assuming that z, y, z, and w are nonmonetary, estimate the minimum
bonus $a for which x ~ y + $a, and estimate the minimum bonus $5 for
whichz~w + $b. If $a < Shtakex — y <*: — w.

Of these three we must reject the second since it violates the hypothesis
that X is a set of mutually exclusive alternatives, in which case it makes little
if any sense to suppose that you already have both y and w. The third
approach, which might appeal to some people, is suspect first for the reason
that it presupposes a form of independence between X and the monetary
bonuses (as in a two-factor situation in Chapters 4 and 5) and second that,
even if independence applies, there is some question about defining a strength-
of-preference notion on the basis of simple preference comparisons.
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This last clause applies also, as noted by Weldon (1950) and Ellsberg
(1954), among others, tc the 50-50 gambles device. Simple comparisons
between even-chance gambles as a basis for defining degree of preference
seem to distort the notion introduced by Pareto and Frisch. Included in this
distortion is the addition of chance, which plays no part in the basic notion.
Along with Weldon and Elisberg, [ would have no quarrel with an individual
who judges that $30 — $0 <* $100 — $40 but prefers an even-chance
gamble between $30 and $40 to one between $0 and $100. The latter judgment
involves the individual’s attitude toward taking chances, an attitude we feel is
not part of the <* notion.

If we do in fact reject such approaches we may be driven back to the idea
of the early writers on this subject, that <* comparisons are essentially a
matter of direct self-interrogation as to whether your degree of preference
for = over y exceeds, equals, or is less than your degree of preference for 2
over w. As noted above, this is rejected by some because of its “nonopera-
tional” character.

Others dislike the idea of direct preference-difference comparisons for the
reason that, under sufficiently powerful conditions on <*, one must logically
accept the ability to “measure” preference differences introspectively much
as one would go about measuring lengths with a measuring rod. This
implication of the “measurability™ of utility has caused much commotion in
the literature: some writers who accept the concept of simple preference
comparisons find it impossible to endorse the notion of ‘“measurable”
utility. Pareto, in fact, denounced the very notion he introduced when he
found that it was not needed to derive certain results in the theory of
static, riskless, consumer demand. On the other hand, Frisch (1964) remains
an advocate of “measurable” utility: in the cited paper, on the subject of
dynamic (time-dependent) consumer demand theory, he points out that
several attractive results cannot be obtained without some notion of
“measurable” utility.

For some people, the direct, introspective ‘‘measurability” pill may be
easier to swallow when intransitive ~* is allowed to enter the theory.
Although our preference-difference comparisons may not be as precise as
length comparisons made with precision instruments, I do not feel that this
is sufficient reason to abandon the idea of such comparisons.

6.2 THEORY WITH FINITE SETS

Using the method of Adams (1965), we now state and prove two represen-
tation theorems for preference-difference comparisons when X is finite. Both
are incorporated in Theorem 6.1. The A <> A* theorem permits intransitive
~*, but the B <> B* theorem takes ~* as transitive. The 4 theorem is
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proved by Adams (1965). An equivalent of the B theorem is proved by Scott
(1964).

THEOREM 6.1. Suppose X is finite. Then

A [=h . 2™ wh, L., wh s a permutation of ¥, ..., y", A, ..., 2"
and @@ — y' <*z! — W for all j < m}=>not x™ — y™ <* 2" —~ W™,

B [zt ..., z™ W, ..., W™ is a permutation of y, ...,y 0, ..., 2"
and 2t —y <*z —~w or 2~y ~¥2 ~w for each j< m]=>not
wm_ym<tzm___wm;

fJoralla?, y, 2, wie Xandm = 2,3, ..., if and only if there is a real-valued
Junction u on X such that, for all x, 3,2, we X,

A*. - y <*z — w= u(®) — u(y) < u(z) — u(w);
BY. 2 -y <*z — w<>u(x) — u(y) < u(z) — u(w).

It is easily seen that 4* = A and B* = B. 4 does not require <* to be
transitive although the transitive closure of <* under A is a strict partial
order. 4 does not imply either (6.1) or (6.2). On the other hand, B implies
that <* is a weak order along with (6.1) and (6.2). For asymmetry, B says
thate — y <¥*z2 —w=>notz — w<*z — y, since z, z, w, ¥ is a permuta-
tion of y, w, z, z. Negative transitivity then follows from B: (notz — y <*
z—w,not 2= w<*r—-9)=>@~w<*r—y, r - 5s<*z — w)=>not
z —y <*r — 5 With < as defined in (6.3), B implies that < on X is a weak
order. Here and later, <* = <* |J ~*.

Sufficiency Proofs. Let A hold. To apply the Theorem of The Alternative
(Theorem 4.2) let ¢ == (u(t¥), u(1®), ..., u(t®)) where X = {11, ..., ¥}, Let
A be the set of all x — ¥y <* z — wstatements. If £ = @, A* is immediate.
If A £ ¥, each corresponding u(z) — u(y) < u(z) — u(w) translates into a
¢ - @* > 0 statement, which gives a system like (4.4). If this system has no ¢
solution then, by Theorem 4.2 and the fact that the a% € {—1, 0, 1} for all j
and k, there are non-negative integers r, at least one of which is positive such
that 3, raf =0 for j=1,...,N. From the original  —y <*z — w
statements it then follows that there is a sequence 2! — y? <* 2zt — w!, . ..,
2 — Y™ <* 2™ - wm with 2, ... ,2™, wl,...,w™ a permutation of
¥,y 2, 2™ I m > 1, this violates A, If m =1, it yields
x—~y<*z—~yorelse z — z <*y -y, each of which violates A. Hence
there is a ¢ solution.

Let B hold. Axiom B implies as a special case that if (in the two-dimen-
sional sense) ((2%, %), ..., &E™, ¥y™) E, (2, wY),..., (™, w™)and if z* —
v <*2) —w or ' —y'~*z' —w for each j < m, then not 2™ —
y™ <*z2™ — w™ It follows immediately from Theorem 4.1C that there
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are real-valued functions u; and ¥, on X such that z — y <*2 — w <>
u(z) 4 uy(y) < ty(2) 4 up(w). Also, B implies that 2 —y <*z — w <>
we—z<*y —x Hencex — y <%z — w <> uy(w) + uy(2) < u,(y) + ug().
Defining u(x) = u;(z) — uy(x) it then follows that 2 -y <*z — w <>
u(z) — uly) < u(z) — u(w). ®

6.3 REVIEW OF INFINITE-SET THEORIES

In this section we review some theories that assume that <* on X X Xisa
weak order and imply that there is a real-valued function ¥ on X satisfying

z—y <%z —w<>u(x) — uly) < u(z)— ulw), forallz,y,2z, weX (6.5)

that is *‘unique up to a positive linear transformation.” This means that if u
satisfies (6.5) then v satisfies (6.5) also if and only if there are real numbers
a > 0 and b such that

v(%) = au(z) + b, forallze X. (6.6)

The two-factor additivity theories of Chapter 5 can be adapted to the
present case. Suppose, for example, that there are real-valued functions u,
and u, on X such that

z—y<*z—weu(2) + u(y) < uy(2) 4+ ug(w), forallz,y,2, we X,
6.7

with 4, and u, unique up to similar positive linear transformations. Suppose
also that (6.1) holds. Then, as in the proof of Theorem 6.1B, u on X, defined
by u(x) = u,(x) — uy(x), satisfies (6.5). In addition, u is unique up to a
positive lincar transformation. For suppose that u and v satisfy (6.5). Defining
u)(Z) = u(z), ug(r) = —u(x), v(x) = v(r) and v(z) = —v(z), it follows
from (6.5) that (6.7) holds for (i, ¥;) and for (vy, vy). Since v, is a positive
linear transformation of u,, v is a positive linear transformation of u.

From this reasoning and Theorem 5.4, the following axioms, after Debreu
(1960), imply a u for (6.5) that is continuous in G:

Al z ~y<*z —w=>w—2<*y —z,

A2, [((#, ¥, (@, 57), (2, 9)) E5 (2%, W'), (2%, %), (%, W), 2/ — ! <*
?d—word —y~*2d —worj=12]=>notzd~ y* <*23 - w3,

A3. (X, B) is a connected and separable topological space,

Ad. [t -~y z—yeX x X2 —y<*2—w}eTBxBand {x —y:x—
YyeXx X,z—w-<*x~yleT x G, foreveryz — we X x X.

Algebraic Axioms

Suppes and Winet (1955), Scott and Suppes (1938), and Suppes and Zinnes
(1963, pp. 34-38) present nontopological axioms that imply a u for (6.5) that
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is unique up to a positive linear transformation. The first four Suppes-Zinnes
axioms are equivalent to B1 and B2:

Bl. <¥* on X x X is a weak order,
B2. (6.1) and (6.2).

Their final three axioms, rather than using the complete 42, are based on
algebraic conditions., With < on X and ~* on X x X as defined in (6.3) and
(6.4), ¢ — yM%2 — w means that £ — y ~* 2 — w and y ~ 2. (That is, the
preference interval from y to x “equals” the preference interval from w to 2
and the two intervals are contiguous.) Proceeding recursively, z — yM"*'z —
w means that there are 5, 7 € X such that # — yM"s — fand s — (M¥% —~ w.
The final three axioms are: forevery z, ¥, 2, we X,

B3 x —s~*s~yforsomesc X,

B4 (y<z,z2—w<¥z—y)=>y<s<a, 2~ wx*2 —5) for some
SEX,

BS. (y<z,2~y<*2-wWy=> @ ~sM"t—w,z2—s<*z—~y) for
some s, t € X and some positive inieger n.

B3 is the midpoint or bisection axiom, similar to Armstrong’s notion
following (6.3). In nontrivial cases, B3 requires X to be infinite. B4 is like
a continuity condition, and B5 is a structural-Archimedean axiom. B5 says
that if the difference z — y is ““positive” then, no matter how large z — w
happens to be, there is an n such that the z — w interval can be divided into
n + 1 equal parts no one of which is larger thanz — y.

Pfanzagl’s Theory

Pfanzagl (1959) presents axioms that, under one interpretation, imply (6.5)
with ¥ unique up to a positive linear transformation. His general theory uses
a set X that is connected (topologically) and a function fon X x X into X,
Instead of < * he uses < along with f. However, in the interpretation of this
chapter, <* is not completely absent since f(x, ) is interpreted as a point in
X that is midway in preference between x and y, like s in B3.

In addition to a continuity axiom, Pfanzagl’'s theory uses the following

assumptions:

Cl. < on X is a weak order,

C2L z<y=>f(x,2)< f(y,2) and [f(z,2) < f(z,y) for every z€X;
z~Yy=>f(x,2) ~f(y,z) and f(z, ) ~ f(2,y) for every z € X,

Cl f(f (= 9. [z, W) ~ f(f(x,2),[(y, W)

C1 is the bisymmetry axiom. These axioms (including continuity) imply that
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86 Lomparison of Preference Differences
there is a real-valued function ¥ on X that satisfies
x < y <> u(x) < u(y) 6.8)
u(f(=z,y)) = pu(x) + qu(y) + r (6.9)

for all z, y € X and is unique up to a positive linear transformation.

Under the interpretation of f as a midpoint function, two more axioms
arise:

C4. f(z,2)~z
CS. [z, y)~[(y, ).

Whenz < y forsomez, y€ X, Cdand CSrequirtep=¢ =}andr=0in

(6.9). It follows that f(x, ) < f(z, w) <> u(r) + u(y) < u(z) + u(w). (6.5)
then follows when <* on X x X is defined as follows:

r—y<*z~weflz,w) < f(zy). (6.10)

6.4 SUMMARY

The notion of comparable preference differences is (with the exception of
Exercise 17) the only strength-of-preference or preference intensity concept
that appears in this book. The additive utility theories of Chapters 4 and 5,
although mathematically similar to the theories in this chapter, are based
solely on simple preference comparisons and involve no higher-order prefer-
ence concepts.

With z — y <* z — w interpreted as *your degree of preference for z over
w exceeds your degree of preference for  over y,” the conditions that relate
Z -y <*z— wto u(x) — u(y) < u(z) — u{w) are similar to the conditions
used in two-factor additivity theories. Exceptions to this arise in (6.1) and
(6.2), which are addressed specifically to the preference-difference notion and
have no counterparts in preceding chapters.

INDEX TO EXERCISES
1-3. Even-chance gambles theory. 4-6. (6.1) and (6.2). 7-9. (6.3). 12. Condition B.

11, Semiordered preference differences. 12-13. Algebraic theory. 14-16. Pfanzagl's con-
ditions. 17-18. “Twice as happy."’

Exercises

L. Interpret (x, y) < (z, w) to mean that a 50-50 gamble between z, we X is
preferred to a 50-50 gamble between z, y € X. Assuming that X is finite, give
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necessary and sufficient conditions for < on X* x X for each of the following two
utility representations: (a) (%,%) < (2, w) = u(®) + u(y) < u(z) + w(w); (b
(z,y) < (2, w) < u(@) + u(y) < u(@} + ulw).

2. (Continuarion.) Using Theorem 5.4 argue that, when 41 of Secction 6.3 is
replaced by (x, ¥) ~ (v, 2) for all z, ¥y € X, and (<*, ~*) in 42, 43, and 44 is
replaced by (<, ~), then there is a real-valucd function # on X that satisfies
(z,y) < (2, w) <> u(x) + u(y) < u(z} + u(w) and is continuous in B and unique
up to a positive linear transformation.

3. (Continuation.) Interpret f(x, y) in Pfanzagl’s theory as an element in X that is
indifferent to a 50-50 gamble between x and y. Show that (z, ) < (2, w) <= u(=) +
#(y) < u(z) + u{w) follows from (6.8) and (6.9) when C4 and CS5 are used and
(z,y) <z, w) < f(®,4) < [ w)

4. Prove that [=<<* is irreflexive, (6.2)] =& —a ~*y — .

5, Provethat [(6.1), (6.2))=>(z —y~* 2 mwez —2~Fy —waow —z~*
Yy — x).

6. Prove that [<* is asymmetric, (6.2), x — y ~* 2 — w <> — 2z ~¥y — w) =>
.1,

7. Suppose that <* on X x X is a strict partial order, (6.2) holds, x < ¥,y < z,
and x <z according to (6.3) and, with a ~* b <> (@ ~* c <= b ~* ¢, for all
c€CEX X X)r —ra*s —s for all ,s€ X. Show that: (@) 2 — y <%z ~ z;
Bz ~y <*z —~y;(@r —2<*y ~2;(d)y —x <Mz —x;(e)2 ~y <*z —=z.

8. (Continuation.) Show that [<* is a strict partial order, (6.1), (6.2), x — z & *
y —yforallz, y€ X]= < on X as defined by (6.3) is a strict partial order.

9. Show that [<* is a weak order, (6.2),x —y ~¥2 — w2 ~ 2z ~¥y —
w] => < on X as defined by (6.3) is a weak order.

10. Show that B, of Theorem 6.1 (B with m = 2) implies (6.2)and x — y ~* 2z —~
wes>ax —z~%*y —w,

11, Prove the following theorem. If X is finite, if <* on X x X is irreflexive,
and if [#*,...,2%™ wi .., w? is a permutation of ¥*,...,y*™, 2, .., 2™,
o~y ~Fd —wiforj=1,...,mu —y <*2 —w for j=m+1,...,,
2m — 1] => not 22" — y™ <* 22 — W™ for all positive integers m and 27, ¥, 27,
w! € X, then there is a real-valued function « on X such that

T —y <¥z —w<=ux) - a) +1 < uz — ulw), forall =, v,z, we X.

12. Interpret M*, M2, and M3 (Section 6.3) in terms of points on a line.

13. Show that B1 and B2 in Section 6.3 imply that if z — y x*y —yandy —
z<*w —tthenz —z <*w — 1. (Use Exercises 4 and 5. This exercise is due to
Michael Levine: see Suppes and Zinnes (1963, p. 35).)

14. Show that [(6.8), (6.9), C4, C5, x <y for some z, ye X]=>p =q =},
r=20.

15. With <* defined from < on X as in (6.10), prove the following.

a. (C1,C2,C3) = <*on X x X is a weak order. (Due to Luce and Tukey
(1964, p. 14).)
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b. (Cl, C5) = (6.1) and (6.2).
. (Cl,C4) =2 — g ~*5 — gy forsomes X
d. (C1, C2, C3) = A2 (in the Debreu axioms).

16, Let condition B, of Theorem 6.1 hold for m < 6. Assume also that [, y) =
2=z —z~%*4 —y and let (6.10) apply. Prove that C3, Pfanzagl's bisymmetry
axiom, follows,

17. Galanter (1962) asks the following type of question: What amount of money,
as a gift, would make you feel twice as happy as you'd feel if you were to receive a
gift of $10? If the response in $45 (the median for one sample), it is sugges:ed that
we set u($45) = 2u($10), with 4(80) = 0, This is the same as taking u($45) —
u(310) = u(810) — 4($0) so that $10 is midway in preference between $0 and $45.
Do you feel that this midpoint interpretation is reasonable in view of the question
that gave rise to it and the strength-of-preference interpretation used in the chapter?

18. (Continuation.) A motorist is asked for his reaction to delays at toll booths
with the question: What waiting time r would make you twice as mad as you would
be if you had to wait for tirne 1? Given the set of (¢, r) pairs {(1, 3), (3, 8), (8, 18),
(18, 30), (30, 45), (45, 60), (60, 75), (75, 90)} and taking u(r) — u(0) = 2{u(t) —
u(0)] for each of the eight (r. r) pairs, set #(0) = 0 and u(1) = —1 and sketch u on
[0, 100].




Chapter 7

PREFERENCES ON HOMOGENEOUS
PRODUCT SETS

A homogeneous product set has the form X = A4 x A x +--. If 4 is re-
peated n times, we write X = A". A common interpretation for A" is that
there are n time periods and (y, ..., 2,) € A™ represents a series of similar
events that can be selected or occur during the n periods: , is the event for
period i. (z,....z,) could be a series of annual incomes for the next »
years or, in a single-period context, z; could be the amount of money
allocated to the ith of n activities.

With X = A", this chapter examines concepts for the time context,
including persistence, impatience, and discounting. Our usage of these terms
is based on the work of Koopmans (1960), Koopmans, Diamond and
Williamson (1964), and Diamond (1965) in a denumerable-pericd formula-
tion.

Throughout, < on X will be assumed to be a weak order. Since the inde-
pendence notions of Chapters 4 and 5 are relevant for X = 4", we shall
consider, in conjunction with the foregoing concepts, special cases of

T < y<=>§_1u,-(x,) < .Zl“"(y")’ forallz,ye A" 7.1

One such case is the no time preference situatior where p is a real-valued
function on 4 and

n n
< y<> p(x) < 3 py), forallz,y € A". (7.2)

f=1 =1
Given (7.1), it is easily shown that there is a p that satisfies (7.2) if and only
if (2,...,2,)~ ¥1,...,¥y,) whenever z,,...,2, is a permutation of
Y15 .+ - » Y. In the time context this says that times of occurrence of various

events have no affect on preferences, which is often false. Somewhat more
realistic special cases of (7.1) will be considered later.

89
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7.1 PERSISTENCE AND IMPATIENCE

Two notions that postulate forms of regularity of preferences in the
homogeneous time context are persistence and impatience. Persistence applies
when similar preferences hold in the various periods. Impatience says that
you'd rather have more preferred things happen sooner than later. In the
following definitions 4 denotes the constant alternative that yields ¢ € 4 in
every time period: d = (a,.. ., a).

Definition 7.1. < on A" is persistent if and only if (x,,..., 7,y
Ay Zppgy ooy L)< @y, Tg, by g, )= W o n vy Y1y 4,
Yivtso - Y < Wrse v s Yo By Yip1s -« - » ¥n) Whenever £, je{i, ..., n}
and all four n-tuples are in A*. < on A" is impatient if and only if
a< 6:;’(1:1" v ’xihl’a:b’xﬂzv- . ’xn) < (xls' . ’xi—lsb’aﬁxﬂz’ R ,I,,)
and d~b=>(2,..., 2,4, @, b, Typ, ..., T~ ..., 2,1, b, 4,
Tipa, - .., %,) Whenever i€ {l,...,n — 1} and the n-tuples are in A"

Persistence seems reasonable when the n-tuples in X represent income
streams over a period of n years. Impatience might also hold in this case.
The reverse of impatience could hold in some situations for people who
prefer to postpone favorahle events, perhaps to increase their anticipatory
pleasure or for a variety or other reasons. The reverse of persistence might
arise from a desire for variety, as in the chicken-steak example preceding
Section 4.1.°

When < is a weak order, < is persistent implies that <; on 4, defined by
a<;b<=>(xy,...,0 8, 2;4,...,8)< (@, .., % 3,0, %4, ...,%,)
for some «,,...,%, 3, #;4, ..., %, €A, is a weak order (which also
follows from condition Cy(m = 2), Theorem 4.1) and that <, ..., <, are
identical (which does not follow from C,).

In our definition of impatience, a and & are in contiguous time periods. A
more general case of impatience arises when

a< ("")5:::> @1y oo Ty, B By, Tioty b, Lig1s e« x,)
< ()@t b, Z; 15 @y Tjigye s x,) (7.3)

for any 1 <i<j<n and x,,...,x,€A4. This does not follow from
persistence and impatience. The following theorem amplifies this statement.

THEOREM 7.1. (< is a persistent and impatient weak order on A™)
does not imply (7.3). (< is an impatient weak order on A" that satisfies
condition Cy of Theorem 4.1) implies (7.3).

Proof. For the latter assertion it suffices to show that the hypotheses
imply that (a, x,, ..., 2, 4, 8) < (~)b, %3, . . . , X4, @) when a@ < (~)b.
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Given 4 < (~)b, repeated applications of impatience give (2,5, ...,8) <
(~)b,a,b, ..., 8) < (~)b,b,a,b,...,0) < (~) < (~)b,...,b,4)
sothat (a, b,...,b) < (~)b,...,b,a). Since ((a,b,...,8), (b, %y, ...,
Ty1s a)) Ez ((b’ rer s b, a)a (ar Tyy oo oy Tpoxs b))9 (d, Loy« -+ 3 Tpis b) <
(~)(b, zy, ..., =, 4, a) follows from condition C with m = 2.

To verify the negative assertion, take 4 = {4, b, ¢}, n = 3, and let < on
A3 be defined by (7.1) when the u; on A4 take the values shown in the following
array. Clearly, < is persistent and as we shall note in the parentheses it is

o
&1 10 9 8
cf{ 20 15 12

impatient (8 <9< 10,12<15< 20,10+ 15<20+ 9,9+ 12 <154 8)
and in fact satisfies (7.3). In the middle of < we find - < (b, a, ¢) <
(a,c,b) < (b,c,a) < (b,b,b)y~ (a,c,¢) < ---.Let <" = < except that
we replace (a, ¢, b) < (b, ¢, a) by (4, ¢, b) ~' (b, ¢, @). With this one change,
persistence and impatience hold also for <’, but (7.3) fails sinced <’ 5. @

Additive Utilities

When (7.1) holds and < is persistent, each u, function has the same order
on A, as illustrated with 4 = [0, 1] on the left of Figure 7.1. When < is
impatient also we get a picture like that on the right of the figure in which

J ’ |

Uy u
up
u3
u3z
0 1 0 1
Persistence Persistence and impatience

Figure 7.1 Additive utilities on [0, 1)3,
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(B) — uy(@) > us(b) ~ ug(a) > us(b) — ug(a) whenever b > a (ie., d < ),
which says that the vertical distance between u, and ug, and between u, and
ug, increases as b increases.

Additive utilities can of course hold when impatience holds and persistence
fails. For, with 4 = {q, #} and n = 2, it is easily seen that (a, b)) < (4, a) <
(b, b) < (b, a) has a u, and u, that satisfy (7.1). Since 4 < b and (a, b) <
(b, @), < is impatient. Howaver, < is not persistent since (a, b) < (b, b) and
(b,6) < (b, a).

7.2 PERSISTENT PREFERENCE DIFFERENCES

We shall now look at a higher-order persistence notion based on the degree
of preference relation <* on X X X used in Chapter 6, along with the
weak-order difference representation

2 —y<¥z—weu@) — uly) < u@) — uw), forallz, y,z, we A"

(7.4)
As in Definition 7.1, 8 = (a, .. ., d) in the following.
Definition 7.2. <* on A" X A" is persistent if and only if
T—y<*z—w<>I - § <% —w (7.5

wheneverje{l,...,n}, 2z, = y,andz;, = w,foralli # j,and z,y,z, w € A,
This says that the order of preference differences with constant alternatives
dictates the order of differences for each j, other things being equal. With
n =2, <* is persistent implies that if (a, z;) — (b, %) <* (c,¥2) — (d, 90
for some z,, y, € A then this holds for every z,, ¥, € A and, in addition,
(21, @) — (21, b) <* (yy, ¢) — (y;, d) holds for every ¢, y; € A.
Part of the power of persistent < * is shown by the next theorem.

THEOREM 7.2.  Ifu on A" satisfies (1.4) and if <* is persistent then there
are real-valued functions u,, ..., u, cn A Sor which

n

u(zy,...,z,) = z u(x), forallze A", (7.6)

and, for every a, b, ¢, d € A and Lje{l,..., n}
ua) — u(b) < u,c) — u,(d) <= u(a) — u(b) < u,c) — u,(d). (1.7)

When < is defined as in (6.3), (7.1) follows immediately from (7.6) and
(7.4). Hence, additive utilities exist for A" when (7.4) holds and <* is
persistent.
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Proof. Let u satisfy (7.4) and assume that <* is persistent. Fix e € A4,
assign wuy(e), ..., u,(e) so that u(@) = 3 wu,(e), and define u, on A, for
i=1,,..,n, by

ufa) = ule,...,e,a,e,...,e)—dude), forallacd. (7.8)
EE )

To verify (7.6), let o = (2, ..., 2,3, 2, e,...,8), 8 = (24,..., %, e,
e,...,eandy'=(e,...,e,z,e,...,e)for2 Lign Ifaf — f* <*
y* — é then &, — é <* &, — & by (7.5), and similarly if y* — & <* o' — .
Hence ! — f* ~* y* — & so that, by (7.4),

Xy, ... Tl ) — Xy, Xy g8 ... 5 €)
= ule,...,e,z,,8e,...,e — u{d.

Summing from i = 2 t0 i = n and using u(&) = > u,(e) and (7.8) we get

w@y, ..., T,) — u(2y, e, ..., 8) = 3 ufa) — 3 ue),

ot LR

which yields (7.6) after u(zy, e, . . . , ) is transposed and (7.8) is used again.
(7.7) follows easily from (7.4), (7.5) and (7.6). &

Weighted Additivity
In the rest of this section we shall consider a form of weighted, additive
utilities that is less general than (7.1) and more general than (7.2). This is

the form

2 < y<=>3 hp(x) <3 Ap(y:), forallz, yeam, (7.9
f==1 f=1

where 4, > 0 for each i and p is a real-valued function on A. It is easily seen

that, when (7.1) holds, (7.9) can hold if and only if there are u, satisfying

(7.1) that are pairwise related by positive linear transformations, say with

u;=au, + bandag, >0forj=2,...,n

In the time context ihe 4, are weights for the different periods. If 4, >

Ay > =<+ > A,, we could call them discount factors: 4, > -+ > A, follows
from (7.9) when < isimpatientand z < y forsome z,y € X. If , < -+ <4,
the 4, might be referred to as markup factors.

In general, (7.1) along with < persistent is insufficient for (7.9). As this
is written, I do not know of any set of axioms for < on A" that, even when A
is finite, is necessary and sufficient for (7.9). For this reason, and because
(7.9) implies (7.7) when u; = 4,p, we shall consider a pathway to (7.9) that
leads through (7.4) and makes the assumption that <* is persistent. Even
here we shall note a negative conclusion before giving sufficient conditions

for (7.9).
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THEOREM 7.3. Suppose (7.4) holds and < * is persistent. Then with <
defined by * < y<>x — x <*y — x, there may not exist A, >0 and &
real-valued function p on A that satisfy (1.9). This conclusion holds even when
u in (7.4) is unique up to a positive linear transformation.

Proof. Let A == {a, b, ¢} and n = 3, and let (7.1) hold with the y, defined
as follows:

a b ¢
w {0 1 3
!0 2 5
{0 3 9

Define u by (7.6) and take z — y <*2 — w<=>u(z) — u(y) < u(z) — u(w).
Because u() — u(d) < u(¢) — u(b) and u,(b) — ua) < u,(c) ~ u,(b) for
i=1,2,3, <*is persistent. In defining 4,, 43, 4; and p for (7.9) we can,
with no loss in generality, set 4; = 1, p(a) = 0 and p(b) = 1. Then, since
(c,a,a) ~ (a,a, by ~ (b, b, a), p(¢c) = 43 = 13 + 1. This along with
(a,a,c)~ (b, c,b) gives (A3 + 1)2 =1 + A,(A + 1) + (4; + 1) according
to (7.9), and this reduces to 1 = 2, which is false. Hence (7.9) cannot hold.
Moreover, u is unique up to a positive linear transformation when it satisfies
(7.4). This follows from the fact that each of the 25 other u(x,, z,, z3) can be
written solely in terms of u(a, a, a) and u(b, a, a) when (7.4) holds.

Sufficient Conditions for Weighted Additivity

Despite Theorem 7.3 there are axioms implying (7.4) which imply (7.9)
also when <* is persistent. We consider one such case, based on Debreu’s
theory. The following correspond to A1-44 in Section 6.3. X = 4™

Al 2 —y<*2z—w=w—2z<%y — =z,

A2, If 21, &, 28 is a permutation of 22, 2%, 28, and y*, Y, y® is a permuiation
ofwawi W oandift—y <*7d —word —y~*d—wiforj=1,2,
then not x® — y® <* 23 — w8,

A3'. (A, B)is a connected and separable topological space,

A zg—-yr—yeXx X,z—-y<*z2—wleB®™and{x — y:z —ye€
XXX, z2—w<*r—~yleB™ foreveryz —~weX x X.

B* is the product topology for X X X = A™ x 4", By Lemma 5.3, A3’
says that (4", B") and (X x X, G) are connected and separable topologi-
cal spaces. It then follows from Theorem 5.4 and A1’ that there is a continuous
(in ©") real-valued function u on X that satisfies (7.4) and is unique up to a
positive linear transformation.

Let u, on A be defined by (7.8) in the proof of Theorem 7.2. Since u is
continuous in G, u; is continuous in G for each i. Let <* on X X X be
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persistent and define <* on 4 x A by
a—-b<*c—~desd—b<*f—d Tforalla, b, c, dec A
It then follows from Theorem 7.2 and persistence that
a—b<*c—d<>uda) — ulb) <ulc)—uld), foralli (7.10)
This is (7.4) in miniature, for A4 instead of X. Since u, is continuous and (7.10)
holds for each i/, the correspondents of 41'-A44’ hold for <* on A*for each /.
It follows that w, and u, are related by a positive linear transformation. In
particular there are positive oy, ..., &,, and B, ..., §,, such that u,(a) =
au(a) + B, forallacd,j=2,...,n Letting p = w3, A, = 1, 4; = o for
j>1,(1.6) gives u(z) = X7 Ap(2)) + constant, which, on using (6.3) and
(7.4) gives ¢ < y <> 2 Ap(x) < 2 Ap(yy), all 4, > 0. This proves the first
part of the following theorem,

THEOREM 7.4. Suppose X = A", <* on X x X is persistent, and AY',
A2', A3, and A4’ hold. Then there are A; > 0 and a continuous (in G) real-
valued function p on A that satisfy (1.9) when < on A*® is defined from <* on
A x A" bys < y<>x —~x<*y — z If in addition n > 1 and = < y for
somezx,y€X andif A, > 0 and p' on A satisfy (7.9) along with A, > 0 and p
on A, then there are numbers o > 0, # > 0 and y such that

M=ol i=1,...,n (7.11)
p(a)=PBpla) +y forallacA. (7.12)

Proof. For the uniqueness assertions take p and the 4, as defined for the
first part. Let u(a) = A,p(g) and u(x) = 3 u,(x;). Then, as in the first part
of the proof, u is continuous and hence, by Theorem 3.5, {z:z < y} € G"
and {z:y < z} € B, which establish condition Q3 of Theorem 5.4 (n = 2)
or condition @3* of Theorem 5.5 (n > 2). With <* persistent and z < ¥
for some z, y € X, each of the n factors has an active influence on <. Since
the other conditions of Theorem 5.4 or Theorem 5.5 are easily seen to hold
for < on A", by (7.9), it follows that the 4,p in (7.9) are unique up to similar
positive linear transformations. Hence 4] > 0 and p’ satisfy (7.9) if and only
if there is a k > 0 and B, such that A/p'(@) = ki;p(a) + B, fori=1,...,n
Since this gives p'(@) = (kA,[A))p(a) + B,/A], p’ is a positive linear trans-
formation of p as in (7.12). Also, since p is not constant on 4 (z < y for
some z,¥), kA[A] = kA,[A; for all i, j, or A; = (A}/A)A; for j=2,...,n
Set @ = A;/4,. (7.11) then follows. &

7.3 CONSTANT DISCOUNTY RATES

Although persistent preference differences were used to obtain (7.9) for
arbitrary positive 4,, special cases of (7.9) can be derived using only the
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simple preference relation <. One of these is (7.2). Another occurs when
AifAymwfori=1,2,...  n~ | with > U, in which case (7.9) reduces
to

<y 7o) < ¥ min(y),  forall z,ye 4™  (1.13)
fmel fal

If # =1 we have (7.2), the case of no time preference. If = < 1, (7.13)
represents the case where utilities are discounted at a constant rate, which
arises under (7.13) when < is impatient. When > 1, utilities are marked
up at a constant rate,

One way to obtain (7.13) is to begin with Debreu’s additivity theory.
Taking 7 > 3, we shall use the hypotheses of Theorem 5.5 applied to
X = A*(X, = A for each i) along with one more condition. The new con-
dition is referred to as temporal consistency by Williams and Nassar {1566)
and as stationarity by Koopmans (1960).

Definition 7.3, < on 4" is stationary if and only if there is an e € 4 such
that, for all z,, . . . , Zots Yty oo s Ypa €A,

(171, sy xn—-h e) ’< (yh LR ’yn--b 8) <> ('9: xl; 2eey xn—l) '< (e! yl! £ syn-—l)'
(7.14)
In going from (z,, . . ., T, e)to (e, xy,...,2, ) each 7, is updated by

one period and e is shifted from the last period to the first. Stationarity says
that preferences do not change under such shifts.

THEOREM 7.5. If the hypotheses of Theorem 5.5 hold for X = A" and if
< on A" is stationary then there is a positive number m and a continuous real-
valued function p on A that satisfy (1.13). Moreover, n is unique and p is
unigue up to a positive linear transformation.

Proof. Let the hypotheses hold, with continuous «; for (7.2) unique up to
similar positive linear transformations, Define < on 4"1 by

(.'171, cvey xn—l) < (ylv sy yn-—l) <> (.‘L‘l, SRR 2R e) < (yh vy Ypets E).

It follows from (7.2)and (7.14) that, for all (x,, . .. , Zu 1) Y15 . .y Ypr) €
AL,
n—1

n—1
(#, ... 2, < (Y, - .., Yn-1) szlu‘(z‘) < Zlui(yi)

n—1

n-1
(%, ..., 2, )<,..., Yn1) <:>_zlui+1(xi) < gl“wl(?/i)-

It follows from these two expressions and Theorems 5.4 and 5.5 that there is
a7 > 0and numbers g,, .. ., B.-1 such that

Ui 1(a) = mua) + B, forallae 4; i=1,..,,n-1.
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Using this recursively to express each u, in terms of u, and letting p = u,,
substitution into (7.2) yields (7.13).

Suppose (7.13) holds then along with z < ¥ <> 3, 4 0(z) < 3, Aa(y).
From Debreu’s uniqueness up to similar positive linear transformations it
follows that there are numbers « > 0 and Bis. .. B, such that

A10(a) = an*-1p(a) + B,  for allaed;, ji=1,,..,n~1.

With / = | this gives o(a) = ap(a) + . Substituting for ¢ with / > | we
then have A*-1xp(q) + A71By = wlap(a) 4 B, which, since p is not constant
on A4, requires A = =, ¢ :

7.4 SUMMARY

When X = 4" and i indexes time, new concepts come into play, including
no time preference, impatience, persistent preferences, persistent preference
differences, and stationarity, These concepts can apply whether or not
utilities are additive over the n periods,

The most general special case of additivity considered in this chapter is the
weighted form z < y <=3 Ap(z) < 2 Ap(y), with 4, > 0 for each i.
Debrew’s topological theory for weak ordered preference differences along
with persistent preference differences implies this form. Additive utilities,
but not necessarily the weighted form given here, arise from the representation
Ty <*z—wu@)—uly) < u(z) — u(w) along with persistent prefer-
ence differences.

Under appropriately strong axioms for additive utilities based on simple
preference comparisons, the form z < y <=3 mlp(z) < 2 7 p(y,) can
result when < is assumed to be stationary. If < is impatient also then
O0<nr<l.

INDEX TO EXERCISES

1-3. No time preference. 4-5. Persistent preferences. 6. Impatience. 7. Persistent
differences. 8. Nonhomogeneous preference difference additivity. 9-10. Weighted additivity.
1-12. Constant discount rate. 13-14. Present monetary value,

Exercises
1. Given (7.1) prove that (7.2) follows when @Eree ) ~ Wy .., y,)
whenever x,, . .., z, is a permutation of Y1> -+« s Yn- Define p by p(a) = 37 | u,(a).

2. With X < 4", let (z1,...,am) EX@..., Yy =[m > 1, 2L, am
¥l ..., %" € X: the number of times a € A appears as a component in (zl, . . . , zm)
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equals the number of times it appears as a component in (4%, ..., y™), for each
a € 4). Let condition C’ be: [(x*,...,2™) EX (4}, ...,y™), #/ <y or 2! ~y
forj=1,...,m— 1] = notz™ < y™, Show that C' = C of Theorem 4.1 and
that C'=if z,yeX and z,,...,%, is a permutation of ¥,...,%, then
@y o) ~Wy o0 Y

3. With X = A X A suppose u(a, b) = u(b, a)foralla, be Aandthatz < y <>

u(z) < u(y). With 4 = Re, specify a u that satisfies these conditions (define <
from <) and for which there is no corresponding additive representation as in (7.1).

4. With X = A" suppose < on A" is a persistent weak order. Define <°on 4
by a <% <2 (g, .. oy % g, @y gy o oo s ) < (Fyy o oo Ty by @y, ..., &) fOr
some z; € A. Prove

a. <" on 4 is a weak order,

b (z; <Py;orz; ~yfori=1,...,n =z <y,

c. (z; <%y, foralliand z; <%y, forsomei) =z <y.

§. Suppose < on A" is a strict partial order, < is persistent, and <; on A4 is
defined as in the paragraph preceding (7.3). Prove that each < is a strict partial
order and all <; are identical. Show also that when <; is defined in this way and
< is persistent then it is possible to have all <; identical weak orders on A when
< on A" is not even a strict partial order.

6. Show that «;(b) ~ u(a) > ug(h) ~ us(a@) > - - - > up(b) — up(a) when g < b,
(7.1) holds, and < is impatient.

7. Show that if X = A", <* on X x X is persistent, andz < y <=2 ~ o <*
y — %, then < on X is persistent.

8. Showthatif X = T ., X., if (7.4) holds forallx, y,2, we Xand ifz — 2’ <*
y—y =>z—2 <*w—w whenever i€ {l,...,n}, (5, =2, y, =y, 2 =2,
w, = wy) for all j i and (%, 2}, 9,, %) = (2,, 2;, w,, w}) then there are real-valued
u; on X; that satisfy u(z) = 3 u(z;) for allz € X.

9. Show that (7.9) holds with the 4; > 0 if and only if there are «; satisfying
(7.1) that are positive linear transformations of each other.

10. Verify the linear transformation assertion in the proof of Theorem 7.3.

11. Show that if (7.13) holds with = > 0 and if < is impatient and # <y for
some z,y € A", then = < 1.

12. Under the hypotheses of Theorem 7.5 does (7.14) hold for every e € 4?

13. Williams and Nassar (1966). Let H be the following set of hypotheses:
X = Re", conditions 1, 2, and 3 of Theorem 3.3, and z <y <> 0 <y — 2, for
allz, y € X. The final assumption is referred to as *‘marginal consistency.” Show that
the following hold, given H.

T ~Yy<s>z —Y ~ Q.

T~y <> =L~ —Y,

x ~) <2+ 2~y + zforevery z € Re™.
L~y z~w) = b2~y o

x ~y = Mz ~ My for every integer M.

N

"
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f 2Ly <~y <~z
£ x <y<z 2 <y +zforevery z € Re".
hEz<y,zsw)=>x+2<y +w
i ® <y=> Mz < My for every positive integer M, and # <y => My < Mz
for every negative integer M.
J- If M is a nonzero integer then Mz ~ My =>2z ~y.
k. x ~y => ax ~ ay for every rational number a.
m. ¥ ~y = ax ~ oy for every « € Re.

14. (Continuation.) Show that H implies that there are positive numbers 4;,
A such that

.

n H
<y My <D Ay, forallw,ye X (7.15)
=1 i=1
To do this show first that, for each = € Re", there is one and only one ¢ € Re for
which # ~ d. Then take u(z) = 2 when & ~ g, so that « satisfies 2 < y <> u(®x) <
u(y). Finally, use results d and m of the preceding exercise to show that « can be
written as u(z) = 3 Ax; where J; ~(0,...,0,1,0,...,0).




PART

1]

EXPECTED-UTILITY
THEORY

Until the rnud twenticth century, utility theory focused on preference struc-
tures that do not explicitly incorporate uncertainty or probability, the
yardstick for uncertainty. The expected-utility theory of John von Neumann
and Oskar Morgenstern, and an carlier theory by Frank P. Ramsey, stimu-
lated new ’nterest in the role of uncertainty in preference structures.

An expected-utility theory may incorporate probabilities in the alternatives
of the preference structure or it may formulate uncectainty in the alternatives
without i.. nrior enceding in terms of probability. In the latter casc, proba-
bilities as well as utilitics are derived from the axioms. In the former case only
utilities are derived from the axioms since the probabilities are already part
of the axiomatic structure. The former approach is used in this part of the
book: ihe alternatives are probability measures defined on a set of conse-
quences. Basic theory is in Chapters 8, 9, and 10: additive, expected-utility
theory for muitiple-factor situations 1s in Chapter 11.
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Chapter 8

EXPECTED UTILITY WITH SIMPLE
PROBABILITY MEASURES

When each strategy or decision alternative corresponds to a simple proba-
bility measure on the consequences in a set X, we consider the expected-
utility model for computing utilities of the strategies, or their associated
measures. The idea for this model dates at least from Bernouili (1738) but it
was not until the present century that apparently reasonable preference
axioms were given as a basis for the model. The axioms of this chapter are
similar to those initiated by von Neumann and Morgenstern (1947) and to
later modifications by Friedman and Savage (1948, 1952), Marschak {1950),
Herstein and Milnor (19°3), Cramer (1956), Luce and Raiffa (1957), and
Blackwell and Girshick (1954). The last of these applies to probability
measures that are more general than those considered in this chapter. They
will be e".zmined in Chapter 10.

After an introductory example and a brief discussion of simple probability
measures we shall consider the basic theorem and then offer some criticisms
of its preference conditions. A complete proof of the basic weak-order
theorem is given in Section 8.4. The case of intransitive indifference is
investigated in the next chapter.

8.1 EXAMPLE

Suppose that the owner of a small construction firm plans to submit a
sealed bid for a job that he estimates will cost his company $200000 to
complete. if he bids $x and gets the job, he will be paid $x: his profit is
$x — $200000.

Since the construction industry is in a slump, he believes that there will be
many bids. From his prior experience and knowledge of the current situation
he estimates the probability p(x) of getting the job if he bids $z. [Winkler
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X

200000 250000 300000

Figure 8.1 Probability of getiing job for a bid of $x.

(1967a, 1967b) discusses some ways of doing this.] p(z) for 190000 <
x < 300000 is shown in Figure 8.1.

Because of the scarcity of work the owner would be willing to take the job
at a loss of not more than $10000. In other words, (get job and make
— $10000) ~ (don’t get job). Using an appropriate method of scaling utilities
for the expected-utility model [see, for example, Pratt, Raiffa, and Schlaifer
(1964), Swalm (1966), or Fishburn (1967)], the owner estimates his utility
function for net profit (assuming he gets the job) as shown in Figure 8.2. The
figure iudicates that he is indifferent between making $10000 with certainty
and a‘SQQO gamble giving either — $10000 or $100000. He is indifferent also
between making $50000 with certainty and an 80-20 gamble giving $100000
(with probability .8) or =$10000 (with probability .2). According to the

u (net profit)

Net profit ($)

Figure 8.2 Utility of aet profit.
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-

u(bid $x)
— R W B B B W e

] ] | 1 l | ! i i ] \ J

0 -
190000 200000 210000 220000 230000 240000 250000 *
Figure 8.3 Expected utilities using Figures 8.1 and 8.2,

expected-utility model, the latter indifference comparison transforms into
u($50000) = .84($100000) + .2u(— $10000). Equations such as this can be
used as a guide in constructing and checking w.

If be bids $x his expected utility will be p(x) u(get the job and make
$2 — $200000 net profit) + [I — p(x)}u(don’t get job). By Figure 8.2 and
(get job and make —$10000) ~ (don’t get job), u(drn’t get job) =0 so
that

u(bid $2) = p(x)u(get job and make $x — $200000 net profit).

Reading off approximate values for p(x) and u($z — $200000) from Figures
8.1 and 8.2 we obtain the expected-utility curve in Figure 8.3, which shows
that expected utility is maximized at about z = 206000. A bid of about
$206000 is therefore recommended.

8.2 SIMPLE PROBABILITY MEASURES

Definition 8.1. A simple probability measure on X is a real-valued
function P defined on the set of all subsets of X such that

1. P(A) 2 Oforevery 4 < X,

2. PX)=1,

3. (AU B)=P(A) + P(BYwhen 4, B< Xand A NB = &,
4. P(A) = 1 for some finite A < X.

Property (4) distinguishes P as a simple probability measure. Chapter 10
removes this restriction and considers expected utility for more general
measures.

Property (3) is the finite additivity property: the probability of the union
of two disjoint subsets of X equals the sum of the two separate probabilities.
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P({z}), which we shall write as P(z), is the probability assigned by P to the
unit subset {x} of X.

THEOREM 8.1. Suppose P is a simple probability measure on X. Then
P(x) = 0 for all but a finite number of x € X and, for all A < X,

P(A) = 3 P(). (8.1)
aGA

Proof. Suppose P is simple and A4 is a finite subset of X for which P(4) =
1. Then P(x) = O for all = ¢ 4, for otherwise, if P(x) > 0, P(A U {=}}) > 1
by (3) of Definition 8.1, which by (1) and (3) then leads to P(X) > 1,
contradicting (2). By successive uses of (3}, (8.1) holds when 4 is finite. For
arbitrary A € Xlet B= {x:z€ 4, P(x) > 0} and C = {x:x € 4, P(x) = 0}.
By (3), P(A4) = P(B) + P(C). Moreover, B is finite so that (8.1) holds if
P(C) = 0. If P(C) > 0 then, by (3), P(C U {z:xe X, P(x) > 0}) > 1 since
if P{z:x € X, P(x) > 0} < 1 then, by (8.1) for finite sets, P(D) < 1 for every

finite D < X. Hence, if P(C) > 0 we find again that P(X) > 1. &

Convex Combinations of Measures

In expectr.d-utility theory we use a rule for combining two probability
measures t> form a third measure. This rule can of course be extended to
the combination of any finite number of measures.

Definition 8.2. If P and Q are simple probability measures on X and
o€ [0, 1] then aP + (1 — )@ is the function that assigns the number
aP(A) + (1 — 0)Q(A) toeach 4 < X.

Under the definition’s hypotheses it is readily seen that P + (1 — «©)Q
is a simple probability measure on X.

If P($100) = .3, P(8200) = .7, Q($100) = .5, and Q($300) = .5 then,
with R = .1P 4 .90, R(3100) = .48, R($200) = .07, and R(8300) = .45.

Expected Value

If P is a simple probability measure on X and f'is a real-valued function on
X then the so-called expected value of f with respect to P, written here as
E(f, P), is defined by

E(f.P) = EEY S(@)P(2). (8.2)
With P, 0, and R as in the preceding paragraph and with f(z) = =, E(f, P) =

$170, E(f, Q) = $200, and E(f, R) = $197 = .1E(f, P) + 9E(f. Q). In
general, £(f, aP 4+ (1 — a)Q) = «E(f, P) + (1 -~ ©)E(f, O).
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8.3 EXPECTED UTILITY FOR SIMPLE MEASURES

e, By e L*‘-,a\éu S D
b b

If 9, is the set of all simple probability measures on X then the measures
that correspond to the strategies in the type of situation considered in this
chapter comprise a subset of §,. In our preference conditions for expected
utility we shall use all distributions in ¥, for two related reasons. The first is
for mathematical expediency, for when 7, is used it is closed under convex
combinations as defined by Definition 8.3: if P, Q€ T, and a € [0, 1] then
aP + {1 — x)Q € ¥,. The second reason concerns the estimation of utilities,
for when the theory is used as a basis for estimating ¥ on X it is often con-
venient to use measures in §, that have P(z) > 0 for only one to two x € X, i
and such measures may correspond to no actual strategies. i

The following theorem will be seen to be a corollary of a more general
theorem that is presented and proved in the next section.

e Nt @R E e 3

THEOREM 8.2. Suppose that §, is the set of all simple probability measures
on X and < is a binary relation on §,. Then there is a real-valued function u on
X that satisfies

PLQ<>Eu,P)<Ewu,Q), forallP, Qef, (8.3
if and only if, for all P, @, R §,,

l. < on?T,is a weak order,

2 P<0,0<a<)=alf+ (1 ~)R<a@ + (1 ~ 2)R,

3. P<G,0<R=aP+(~0)R<LQandQ <pP+ (1 —R for
some «, f € (0, 1).

Morecver, u in (5.3) is unique up to a positive linear transformation. that is,
if u satisries (8.3) then a redl-valued function v on X satisfies P < Q <3~
E(v, P) < E(v, @), for all P, g € 3,, if and only if there are numbers a > 0
and b such that

v(x)=au(x)+b forallxeX. (8.49)

Suppose we extend v to I, by defining u{(P) = E(u, P). Then, if (8.2) holds,
P < Q<= u(P) < u(@). Now if v on T, is any order-preserving {(not neces-
sarily linear) transformation of u on ¥,, then P < @ <> v(P) < v(Q). Given
such a v we can define v on X by v{z) = v(P) when P(x) = 1. However, if v
is not a finear transformation of u then o(P) = E(v, P) must be false for some
Pe?,. In other words there are functions v on ¥, that satisfy P < @ <>
e(P) < v(Q) but do not satisfy P - ¢ <> E(v, P) < E(v, Q) whau v on X is
defined from ¢ on T, in the inanner indicated (provided that P < Q for
some P, 0 e,
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Condition 1: Weak Order

Condition 1, weak order, can easily be criticized for its implication of
transitive indifference. For example, let consequences be amounts of money
viewed as potential increments to one’s present wealth. Let P($35) =1,
Q($36) = 1, and R(30) = R($100) = .5. Surely P < Q. But it seems quite
possible that P~ R and Q ~ R, in which case ~ is not transitive,

For this reason the next chapter examines the case where < on J,is only
assumed to be a strict partial order. We shall not consider interval orders and
semiorders per se, as in Chapter 2, for conditions P10 and p11 of Section 2.4
are liable to criticisms of the sort given above, For example, if 0’($35.50) =
I, then P < Q' < Q but R might be indifferent to each of these, which would
violate p11. Moreover, if < on ¢, is assumed to be jrreflexive and to satisfy
P11, and if condition 2 of Theorem 8.2 holds then ~ on ¥, is transitive. For
suppose to the contrary that (P~ Q, Q ~ R, P < R). Then, by condition
20nP< R,P= 4P+ }P < }P + }R and 1P+ 3R< }R+ IR =R, so0
that, by pl1, P < Q or Q < R which contradicts (P~0Q,Q0~R.

Condition 2: Independence

Condition 2, a form of independence axiom, is regarded by many as the
core of expected-utility theory, for without it the “expectation” part of
expected utility vanishes. Moreover, this condition is often regarded as a
principal normative criterion of the theory, along with transitivity of <.

aP + (1 — a}R may be viewed in two ways: either as a gamble that yields
Z € X with probability aP(z) + (1 — «)R(z), or as a two-stage process
whereby P (or R) is selected in the first stage with probability « (or 1 — «)
and then = is selected at the second stage using the one of P and R already
selected. These two interpretations are probabilistically identical although
they are not psychologically identical. For example, you might find the
two-stage process more exciting.

As a normative criterion, (P < 0, 0<a<D=>aP+ (1 ~a)R< xQ +
(1 — ®)Ris usually defended with the two-stage argument. If you prefer Q to
P then it seems reasonable in view of the two-stage interpretation that you
should prefer «Q + (1 — ®)R to P + (1 — a)R, or that, in the following
“payofl” matrix, you should prefer 4 to B when you have a choice between

* 1 -«

Option 4 o R
Option B P R

A and B and, independent of your choice, a “coin” with probability « for
“heads” and probability 1 — « for “tails” is flipped to determine the
appropriate column.
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Condition 2 has several related functions as a guide in making consistent
preference judgments. First, it may help to uncover preferences between
more complex alternatives on the basis of preferences between simpler
alternatives. Suppose that, initially, a person has no clear preference between
R and S where

R($50) = .10,  R($80) = .45,  R($100) = .45
S(30) = .02,  S($80) = .45,  S($100) = .53,

but definitely prefers O to P when 0(%0) = .2, Q($100) = .8, and P($50) =
1. Let T($80) = 7($100) = .5. In view of the fact that S = .1Q + .97 and
R = .1P + 97, his preference for Q over P may convince him that he
should prefer S to R even though he might feel that § and R are “very close
together.”

Condition 2 can also be useful in uncovering inconsistencies in preference
judgments. Consider an example used by Savage (1954, pp. 101-103) that is
due tc Allais (1953). Which of Q and P do you prefer?

Q(8500000) = 1;  P($2500000) = .10,
P($500000) = .89,  P($0) = .0l.

Also, which of R and § do you prefer?
R(3500000) = .11, R($0) = .89;  S($2500000) = .10, S(30) = .90

According to Allais and Savage it is not unusual to find P < Q and R < S.
Now with T(§2500000) = }¢, T(30) = %, and V(80) = 1,

Q=.11Q + .89Q

P = 11T + .89Q
and

R =110 + .89V

S = .11T + .89V.

Since condition 2 implies the converse of itself in the presence of the other
conditions, P Q0 =T < Q and R < §= Q < T, so that an “inconsis-
tency” has been uncovered. In Allais’ viewpoint, this result speaks against the
reasonableness of conuition 2. On the other hand, Savage suggests that many
people would be alarmed at the apparent inconsistency and, accepting the
“reasonableness” of condition 2, wish to revise their initial judgments so
that the revisions are consistent with the condition.

Condition 3: An Archimedean Axiom

The third condition in Theorem 8.2 says that if P < @ < R then there is
some nontrivial mixture of P and R that is less preferred than Q, and also
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some nontrivial mixture of P and R that is preferred to Q. It specifically
prohibits the possibility that not aP + (1 — 2)R < Q for all « €(0, 1), or
thatnot Q < aP + (1 — )R forallx € (0, 1) when P< Q@ < R.

Suppose that a newly minted penny will be flipped » times and that, for any
positive a, you feel that there is an n(a) such that « exceeds the probability
that every one of the () flips will result in a head. Consider a choice between
A and B:

A. Receive $1 regardless of the results of the » flips,
B. Be executed if every flip results in a head, and receive $2 otherwise.

If execution < §1 < §2 and if you prefer 4 o B regardless of how
large n is taken to be, then you violate condition 3. If the coin is flipped
100 times, then under B there is only one sequence of the more than
1,000,000,000,000,000,000,000,000,000,000 possible sequences under which
you would be executed. In view of such numbers, many people might find a
satisfactorily large value of » for which they would choc 2 B. It is often
claimed that the willingness that many people show toward small risks such
as crossing the street or driving a car is sufficiently convincing evidence in
favor of the condition.

Despite the fact that condition 3 is called an Archimedean axiom, it and
weak order do not imply the existence of a « on ¥, that satisfies P < Q <>
u(P) < u(Q). In other words, conditions 1 and 3 do not imply (see Theorem
3.1) that 7,/~ includes a countable subset that is order dense in T /~.
Exercise 6 goes into this further,

Hausner (1954) considers the case where condition 3 is not assumed to
hold. To conditions 1 and 2 he adds the indifference version of condition 2,
(P~0,0<a<)=zalP+ (1 ~a)R~al 4+ (1 — )R, which as we
shall see in the next section is implied by conditions 1, 2, and 3. His axioms
imply a lexicographic form of expected utility, but the dimensionality of this
form might not be finite. In the 2-dimensional case his representation would
be P < Q <= (E(uy, P), E(uy, P)) <% (E(uy, Q), E(u,, @) where u, and u, are
real-valued functious on X and <7 is defined as in (4.10).

8.4 MIXTURE SETS

We shall now develop and prove a theorem that is more general than
Theorem 8.2. The reason for this is that the more general theorem will be
used in later developments, especially in Chapter 13. The generalization uses
Herstein and Milnor’s (1953) definition of a mixture set.

Definiticn 8.3. A mixture set is a set T and a function that assigns an
element o 4+ (1 — a)Q in Ftoeach a € [0, 1] and each (P, @) €T x ¥ such
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that, for all P, Q €7 and «, € [0, 1],
Ml. 1P 4+ 0Q = P,
M2 aP+ (1 -} = (1 — )@ + aP,
M3. a2[fP+ (1 — PO] + (1 — )@ = «fP + (1 — af)Q.
The ¥, with aP 4 (I — )@ as in Definition 8.2 is a mixture set. Along
with M1 through M3 we shall use the following:
M4, aP + (1 — )P =P,
Ms. «[fQ + (1 — B)R] + (1 — J[y@ + (1 — MR]
= [xf + (1 — Jy]Q + [x(1 — ) + (I — &)(1 — PR
The first of these follows from M1-M3 as foiiows: aP 4+ (1 — a)P =
aflP+ 0Pl 4+ (1 —a)P=af0P+ 1P|+ (1 -~ )P =0P + 1P = 1P +
0P = P. The second follows easily from M1--M3 if § or y equals 0 or 1.
Henceforth, to verify M5 for a mixture set, we suppose that 8, y € (0, 1) and
that 8 < v for definiteness. Following Luce and Suppes (1965, p. 288):
[ef + (1 — a)y]Q + [x(1 = B) + (I — )(1 — P)IR
= {[apfy + (1 — O} + {l — [affy + (1 — DR
= [afly + 1 = )@ + (1 — )R] + [1 — «ffy — (1 — D)IR

by M3
= [a(l — B/YIR + [1 — a(1 — B/VIYQ + (1 — )R] by M2
= a{(1 — YR + (B/VyQ + (I — MR} + (1 — D[¥@ + (1 — )R]

by M3
=a{(BNyQ+ (1 — YIRI+ (I — B/y)R} + (I — )[yQ + (1 — ¥)R]

by M2
=a[fQ + (1 -~ BR]+ (1 —a)[yQ + (I — y)R] by M3.

As a preface to the main theorer we consider a succession of lemmas, as
incorporated in the following theorem. Conclusion 5 of the theorem is due to
Jensen (1967). ~ and < are defined as in (2.2) and (2.3).

THEOREM 8.3. Suppose that § is ¢ mixture set and that the following hold
forall P, Q, RET:

Al. < on T is a weak order,

A2. (P 0, 0<a< )=aP + (Il —ax)R< aQ + (1 — 2)R,

A3. (P< 0, Q<R =>aP+ (1 —a)R<Q and Q < pP + (1 — BR
for some a, B € (0, 1). Then, forall P, @, R, S€ 7,
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Cl. (P < Q,OSa(ﬁg1):»ﬁP+(Iuﬁ)Q<aP+(l.-a)Q,

C2L (P Q, OXR, PL<R)y=>Q~aP+ (1 — )R Jor exactly one
a € [0, 1],

C3. (P<Q,R<S,0$mgl):>aP+(l——:x)R<ocQ+(l—ac)S,

Ca P~Q,0<a<)=>aP+ (1 — )0~ P,

Cs. (PwQ,OSocSl)»mP-{-(l-cc)R~ch+(1~»oa)R.

Proofs. CL If <1, P+ (1 =p)Q < Q4+ (1 — PO by 42, and
hence P + (1 — B0 < 0 by M4, If 8 =1, then AP + (I - Q< Qby
M1 1f 0 < o, then (/B)IBP + (1 — H)Q] + (I — a/B)IBP + (1 — A)O] <
(/BIEP + (1 — B)O1 + (1 — o/B)Q by A2, and hence P+ (1 —HE<
P + (1 — x)0 by M3and M4.1f « =0,8P+ (1 -0 < aP + (1 — )Q
by M1 and M2,

C2. Suppose first that O ~ P. Then @~ 1P+ OR by M1, and 1P +
OR < P + (1 — P)R for every § < 1 by C1 and M2. Then, by transitivity
(see Theorem 2.1d), o = 1 is the unique « € [0, 1] for which QO ~ aP +
(1 — a)R. A symmetric proof holds if @ ~ R (in which case & = 0). Finally,
if P < Q < R, the proof of Lemma 3.1 applies with the obvious notational
changes and the use of C1, A1-A43, and M2 and M3.

Gl lif0<a<l, aP + (1 — )R < «Q + (1 — 2)R and (1 - «)R +
xQ < (I — a)S + aQ by 42,

C4. Suppose P~ Q and «P + (1 — )@ < P. ThenaP + (1 — Q< 0
(Theorem 2.1d). Then, by C3, afaP + (1 — «)Q] + (1 — )[aP +
(I — Q] < aP + (1 — w)Qor, by M4, aP + (I =)@ < P + (1 — 0)Q,
which is false. Similarly, not (P~ Q, » < P + (I — &)Q). Hence P ~ Q =
aP -+ (1 — )0 ~ P,

C5. M1 and M2 yield the conclusion if «c {0, 1}. Take (P~ Q,
0<a<l) If R~P then, by C4, aP + (1 — WR~P~Q~aQ +
(I — )R, or 2P 4 (1 — )R~ a0 + (1 — «)R. Henceforth take R <P
(the P < R proof is similar). Then R < aP + (I —&)& by C! and M4.
Suppose also that oP + (1 — R < aQ + (1 — a)R. Then, by C2,
WP+ (I —a)R~ (1 — B)R + PleQ + (1 — «)R] for a unique £ € (0, 1).
Hence af + (1 — ®)R ~ o0 + {I —«f)R by M2 and M3. Also, since
R<Q, (1 -PR+PC<QO~P by C1 and M4: hence 80 + (1 — PIR <
Pby Al and M2: then «[8Q + (1 — PR + (I ~ )R < aP + (1 — «)R by
A2: finally, «8Q + (1 — a)R < aP + (I — «)R by M3, thus contradicting
P + (1 — )R~ afQ + (I — «f)R. Hence oP + (I — )R < aQ +
(I — @)Ris false. Similarly «Q + (I — )R << aP + (I — «)R is false. Hence
aP + (I —a)R~aQ + (| — )R, ¢

The Main Theorem

THEOREM 8.4. Suppose ¥ is a mixture set. Then Al » A2, and A3 of Theorem
8.3 hold for all P, @, Re y if and only if there is a real-valued Junction u on
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T such that
PLQ<u(P)y<u(@), forallP,Qc? (

0

5
v/

w(@P + (1 ~ Q) = au(P) + (1 ~ Wu(Q), forall (x.P,Q)e[0,1] x 2.
(8.6)

Moreover, if u on ¥ satisfies (8.5) and (8.6) then a real-vaiued Sunction v on ¢
satisfies (8.5) and (8.6) with u replaced by v if and only if there are numbers
a > 0 and b such that

o(P)=au(P)+b forall Pe?. (8.7)

Theorem 8.2 results from this when § = ¢, and v on X is defined from u on
T by u(z) = .«(P) when P(x) == 1. If {£:P(z) >0} = {x,,...,z,} then
repeated applications of (8.6) with P; € J, such that P,(x;) = 1 give u(P) =
u(Qr, P(x)P) = 30 P(xu(z;) = E(u, P), so that P < Q <> E(u, P) <
E(u, Q) by (8.5). (8.4) follows from (8.7).

The necessity of A1, 42, and 43 for (8.5) and (8.6) is obvious. To prove
sufficiency, Part I of the following proof shows that (8.5) and (8.6) hold on
RS = {P:R < P < S8} when R < S. We assume R < S for some R, S&€&
for otherwise the conclusion is obvious. Part 11 exteuds (8.5) and (8.6) to all
of §. Part 111 verifies (8.7).

Proof, Part I. Assume that A1, A2, and 43 hold and that R < §. Let
RS = {P:Ped, R < P< S}. By C2 there is a unique number f(P) ¢ [0, 1]
for each P € RS such that

P~{[l —f(P)IR + f(")S, with f(R)=0 and f(§)=1. (8.8)

Suppose P, Q € RS and f(P) < f(Q). Then, by C1, [l — f(P)IR + f(P)S <
[l = F(@IR + f(Q)S. Transitivity and (8.8) then give P < (. On the other
hand, if f(P) = f(Q) then (8.8) and transitivity imply P ~ Q. Thus

P < Q<>f(P)<f(Q), forallP, QeRS. (8.9)

If P, Qe RS and « € [0, 1] then aP + (I — x)Q € RS. If a €{0, 1} this
follows from Ml and M2. If 0 < a < | then R=aR + (I — )R < aP +
(l=gR=({l—-aR+aP (I~ +aP=aP+ (I —ax)Q < aS +
(=)@ =(—-2)@ +aS < (Il —a)S+ aS = S by M4, A2 00 5, M2,
A2 or C5, M2, A2 or C5, M2, A2 or CS, and M4, in that order.

Therefore, if P, Q € RS and « € [0, 1] then, by (8.8),

aP + (1 — )0~ [ —f(aP + (1 — )ONR + (2P + (I — 0)Q)S.
(8.10)
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In addition, by two applications of C35,
aP + (1 — 2)Q ~af[l — f(P)IR + f(P)S}

+ (1 = ){[1 — f(DIR + f(Q)S},
so that, by M5,

aP + (1 — )@ ~ [l = of (P) — (1 — &) f(Q)IR

P+ (1~ QS
From this, (8.10), transitivity, and C1 it follows that

f@P + (1 — 2)0) = «f (P) + (1 — )f(Q), forall (, P, Q)€ [0, 1] x RS™.

(8.11)
(8.9) and (8.11) verify (8.5) and (8.6) on RS.

Proof, Part II. To extend this to all of &, .. RS with R < 8, and let
RS,={P:PeT, R, X P=< S,;} be such that s < RS, fori=1, 2, Let
S ¥on R,S; satisfy (8.5) and (8.6) for (a, P, Q) € [0, 1] x R;S?, as guaranteed
by Part 1. Let f; be a positive linear transformation of f so that fi(R) = 0
and f;(S) = | for i = 1, 2. The f; must satisfy (8.5) and (8.6) for («z, P, Q) €
[0, 1] x RS2

Suppose P € RyS; N RyS,. If P~ R or P~ S then fi(P) = fo(P) ty the
definitions. Three possibilities remain as shown here with the unique element
in (0, 1) as guaranteed by C2 and strict preference:

P<LR<LS, R~ ({1 —a)P+ aS (8.12)
R<P<LS, P~({-PpBR+pS (8.13)
R< S<P, S~ (I —y)R + yP. (8.14)
Using (8.5) and (8.6) on each of these we get, for i = 1, 2,
0=(—c)fi(P)+a (%1 (8.12%)
Py =48 (8.13%)
1 = yfi(P) (y#0) (8.14%)

respectively, so that f,(P) = f3(P) in each case.

Finally, let u(P) be the common value of f,(P), as assured by the foregoing,
for every interval of the form R;S; containing P, R, and S. Since every pair
P, Q €7 is in at least one such interval it follows that u is defined on all of T
and satisfies (8.5) and (8.6).

Proof, Part I11. If u satisfies (8.5) and (8.6) and v satisfies (8.7) witha > 0
then v obviously satisfies (8.5) and (8.6). To go the other way, suppose v
satisfies (8.5) and (8.6) along with u. If u is constant on 7 then so is v and they
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are related by the positive linear transformation v(P) = u(P) + (¢’ ~ ¢)
where u = ¢, » = ¢’. On the other hand suppose that R < 5 for some
R, $cT With such R and § fixad let

t(P) — u(R) P) = v(P) — v(R)
u(8) ~ u(R) v(S) — v(R)
Since f; and f; are positive linear transformations of v and p, both satisfy
(8.5) and (8.6). Moreover f1{R) = f2(R) = 0 and £;(S) = £4(S) = L. If P~ R
or P~ § then f,(P) = fo(P). Or if (8.1%) holds then f;(P) = f;(P) by (8.1k*)
for k = 2, 3, 4. Hence f; = fo. Then, by (8.15),

(P} = forallPeg. (8.15)

U(P) = M u(Py + v(R) — u(R) U(S) - U(R)

u(S) — u(R) u(S) — u(R)
so that v is a positive linear transformation of v. &

8.5 SUMMARY

When a decision alternative has positive probability of resulting in any
consequence in a finite subset of consequences and the probabilities sum to
one, then a simple probability measure on X corresponds to the alternative.
Three preference conditions—weak order, independence, Archimedean—for
< on the set of simple probability measures imply that the util¥ of any
measure can be computed as the expected utility of the conse.; - nces with
respect to that measure, provided that the consequence utilities are defined in
a manner consistent with the expected-utility model.

For a general theory we defined the notion of a mixture set and applied the
three conditions to it. The expected-utility model for simple probability
measures illustrates one application of the general theory. Other uses of the
general theory occur later.

INDEX TO EXERCISES

1. Expected net profit. 2. Simple measures. 3. Unbounded utility. 4. Positive linear
transformations. 5. Independence condition. 6. Order denseness. 7. Indepenucnce. 8.
Necessary conditions. 9. Expected utility. 10-11. Sequential analysis, 12-13. Certainty
equivalents. 14. Pfanzagl's “consistency’® axiom, 15. Linear additivity. 16. Buying and
selling prices.

Exercises

1. Using Figure 8.1, sketch a curve of the expected net profit of z, similar to
Figure 8.3. Approximately what  value maximizes expected net profit? Why does
this differ from the x that maximizes expected utility ?
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2. Use (3) of Denitiiion 8.1 to show that (@} (Y, 4,) =271 KA if 4, N
A, = @ whenever i # j; (b) P(A v B) = P(4) + P(B) — P(4 N B).

3. Show that (8.3) does not imply that « is bounded.

4. Letuon X = {x,y, z, w} satisfy (8.3) with (u(z), u(y), u(z), u(w)) = (0,1,2,5).
Assuming inat v satisfies (8.4) compute v on X when (a) v(z) = —1, v(¥) = 1;
b) v(x) = —10, v(z) =50; (c) v(w) =2 and v(x) + v(y) + v(z) + v(w) = 1;
(d) v(x)o(w) = v(yIr(z) = 150.

5. Consider P and Q as defined on § by the probability matrix:

$10 330 $50 3100 3150

P
Q

2 3 2 1 2
4 .1 .1 3 .1

Consider also two gambles for a four-ticket lottery as described in the following
payoff matrix:

Number on drawn ticket is
lor2 3 4

Gamble A $30 $50 $150
Gamble B $10 $100 $100

If each ticket has the same chance of being drawn, show that condition 2 of Theorem
8.2 implies P < Q if 4 < B, and Q < P if B < A. (Compute « and R that satisfy
P=ad" + (1 —a)Rand Q@ = aB’ + (I — )R, where A’ and B’ are the measures
for 4 and B.)

6. With <’ defined on 7,/~ as in (2.4) let condition 4 be: there is a countable

subset of §,[~ that is <'-order dense in T ,|~.

a. Show that condition 1 (of Theorem 8.2) and condition 4 do not imply con-
dition 3. (Define < by P < Q@ < R ~ S where P(x) = Q(y) =1 forz,ye X
and R and § are any two measures in ¥, — {P, Q}.)

b. Show that conditions 1 and 3 do not imply condition 4. (Let X = {z, }, let
7, be represented by [0, 1] where p € [0, 1] is the probability assigned to z,
andletA = {p:0 < p < 1/2,pisrational}, B = {p:0 < p < 1,pisirrational},
C ={p:1/2 < p £ 1, pisrational}. Define < by:p ~qifp,gedorp,qcC
orp =q;p <qif(pec A, qg¢ Ayor(p¢ C,qeC)or(p.gc Band|p — 1/2} <
lg —1/2])or (p,qe B, p < g, and |p — 1/2| = |g — 1/2]).)

c¢. Show that conditions 1, 3, and 4 do not imply condition 2. (Define < by
P <Q ~ Tforall Tin T, — {P, Q} as in part a.)

d. Prove that conditions i, 2, and 4 imply condition 3.

e. Argue that conditions 1, 2, and 3 imply condition 4. (See Theorem 3.1.)

7. Show that condition 2 is not implied by conditions 1 and 3 of Theorem 8.2
and C5 of Theorem 8.3,

8. Show that 41, 42, and 43 of Theorem 8.3 are implied by (8.5) and (8.6).
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9. Give details for the assertions in the paragraph following Theorem 8.4,

16. Consider the following two alternatives:

Alternative A. One fair coin is flipped. I7 it lands **heads” you get steak for dinner
every night for the next three nights; if it lands *“tails” you get chicken for dinner
every night for the next three nights.

Alternative B. On each of the next three days a fair coin is flipped to determine
whether you get steak (if **heads™) or chicken (if *“tails”) for dinner that evening.

Let X be the set of eight triples (x,, z,, z5) where z; € {chicken, steakj for i =
1, 2, 3 and specify P and Q on X that correspond to alternatives # and B respectively.
Can you think of any reasonable argument why P ~ Q ought to be true? Identify
your own preference in this case and explain why you prefer the one alternative
to the other if you are not indifferent. If you are indifferent, would you remain
indifferent if the example were phrased in terms of 100 nights rather than three
nights?

11. Consider the following two pairs of gambies in which the

A. Get 310 with pr. .3 or $50 with pr. .7
8. Get $0 with pr. .2 or 370 with pr. .8

C. Get $20 with pr. .9 or $70 with pr. .1
D. Get $40 with pr. .6 or $60 with pr. .4

amounts of money are to be considered as possible increments to your wealth as
of this mornent. In considering your preference between 4 and B the correct inter-
pretation of the expected-utility theory says that you should disregard C and D:
that is, suppose you have a choice between 4 and B and that these are the only two
alternatives you can select between and the only two that can change your {inazcial
position in the near future. Similarly, disregard 4 and B when you consider your
preference between C and D.

a. Now suppose you are allowed to choose either 4 or B and ¢ither C or D before
either of your choices is actually played cut. You then have four alternatives,
say (4, C), (4, D), (B, C), and (B, D). For each of these four alternatives
specify the corresponding measure on amounts you might win. Does the theory
in this chapter imply that if 4 < Band C < D, as in the preceding paragraph,
then (B, D) will be preferred to the other three alternatives in the new situation ?
Why not?

b. Suppose you can select either 4 or B and then, after your selection has been
played out, you can choose either C or D and have this second choice played
out. Show that you have cight strategies in this case, one of which is: (Select
A; if $10 results then choose C and if $50 results then choose D). Make out
a table that identifies the eigit strategies and shows the probability measure
on totals you might win with each strategy.

12. Let x = 0 represent your present wealth, If P is a probability measure on
amounts of money that represent potential incremental additions to your present
wealth and if P ~ Sz (where $x is considered as a sure-thing addition to your
present wealth) then Sz is a certainty equivalent for P. P ~ $x means that you would
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be indifferent between gambling with P and “receiving” $= as an outright gift.
Estimate your certainty equivalent for P when (a) P(30) = .5, P($10000) = .5:
() P($0) =.1, P(3$1.000,000; =.9, (c) P(—8500} =.5, P(3500) =.5; (d)
P(~8100) = .2, P(—$10; = 8; (¢) P(30) = 1/3, P($1000) = 1/3, P($3000) = 1/3;
(/) P(890000) = .5, P($100000) = .5.

13. (Continuation.) Estimate your certainty equivalent for each of the following
probability measures.

a. P(30) = .01, P($5000) = .99, $z ~ P
b. Q($0) = .99, Q(85000) = .01. $y ~ Q
c. R(30) = .50, R($5000) = .50. 8z ~ R.

Show that the expected-utility theory implies that R ~ 4P + Q. Does this mean
that $z = }($= + $y)? Does it mean that $z is indifferent 10 a 50-50 gamble between
$x and Sy 7

14, Let X = Re, let u satisfy (8.3) with # < ¥ implying « < 7 and with u on X
continuous. Pfanzagl (1959) considers an axiom which when translated into this
context reads as follows: If P(z +y) = Q(z) forallx€ X and if @ ~z withz€ X
then P ~y + z. [Thus, if P(z + y) = Q(z) for all x € X and if z is the certainty
equivalent for Q then y + z is the certainty equivalent for P.]

a. Under the stated conditions Pfanzagl shows that & on X must have one of the

following three forms {unique up to a positive linear transformation):
1. u(x) = k*withk > 1, or
2, u(x) = —k®with0 < J- <] or
3. u(x) = =z.
Show that each of these expressions satisfies the axiom stated above. Plot (1)
with £ = 2, plot (2) with & = §, and plot 3.
b. Comment on wheiher you think this axiom is valid for you. (Consider, for
example, your answers to parts g and f of Exercise 12.)

15, (Continuation.) Let X = Re and let the other conditions in the first sentence
of Exercise 14 held. Show that ¥ on X is linear [i.c., case (3) in Exercise 14] if either
(a) or (b) as follows holds with = # y:

a. For all z,y€ X and all x€ [0, 1), @ ~ P whenever Q(px + (1 ~p)y) =1

and P(z) =p, P(y) =1 — p.
b. Forallz,y& X, O ~ P whenever Q((x + ¥)/2) = 1 and P(z) = P(y) = §.
c. Give a critique of these conditions.

16. A man estimates his present wealth at $50000. Let = = 0 correspond to
his present wealth and consider possible changes of amounts $10000z in his present
wealth, as shown on Figure 8.4, where u(z) is plotted. Forexample,z = 2 represents
an addition of $20000 to his present wealth. We assume that « has been measured
in accord with the expected-utility model. Let A be a 50-50 gamble that pays either
$0 or $40000.

a. Use Figure 8.4 to estimate the certainty equivalent of A (see Exercise 12).

Write out the indifference statement that defines the certainty equivalent in
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Figure 8.4 Utility function for possible changes in present wealth:
$10000 = is amount of change (see Exercise 8.16).

terms of changes in present wealth, denoting the certainty equivalent by y.
[Answer: y ~ (340000 with pr. } or $0 with pr. }).]

. If the man is given 4 as a gift, what is the least amount he would sell it for?
Letting ¥’ denote his minimum selling price, write the indifference statement
that defines ¥’, and compare to the answer in ().

. If, instead of being given A4, the man considers buying it, what is the most
he would pay for it? Letting z be the most he would pay to take possession of
A, write the indifference statement that defines z.

. Suppose the man actually buys 4 for the amount specified in the answer to
(). Will he then be willing to sell it (before it is played out) for the amount
specified in the answer to (b)? Why not? What would he be willing to sell it
for after buying it?

. Instead of buying A for the amount specified in (c) suppose he gets it at a
bargain price, say for $15000. Having bought A4 for $15000, what is the mini-
mum amount he would sell it for? Write the defining indifference statement
with w the minimum amount.

ot IR
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/. Suppose the man is given 4 as a gift. He now 13 given an opporamty to hy
a second gamble, also an even-chance gamble for $0 or $40070, befors . is
played out. What is the most he would be willing to pay for the second gamble ?
Letting r be the most he wouid pay, write out the indifference statement that
definies r. (Do not make the mistake of asserting that r ~y’.)

£. Suppose the man buys A4 for $15000 and is then given an opportunity to buy
a second gambie just like 4 before A is played out. What is the most he would
pay for this second gamble? Let s be this amount and write out the indifference
statemnent that defines s.




Chapter 9

EXPECTED UTILITY FOR
STRICT PARTIAL ORDERS

This chapter examines the important generalization of expected utility for
simple probability measures when indifference on T, is not assumed to be
transitive. We shall consider the representation

P < Q= E(u, P) < E(u, Q), forall P, Qe ¥, 9.1

in the context where X is finite, Aumann (1962) and Kannai (1963) discuss
the difficulties that arise when X is infinite and Kannai’s paper contains
several important theorems for this case.

The utility theory in this chapter is largely due to Aumann (1962). Although
he assumes that < is a quasi order (reflexive, transitive), minor revisions
make his work applicable to the case where < is a strict partial order
(irreflexive, transitive).

Section 9.1 presents an expected-utility theorem and discusses its condi-
tions. The second section develops a support theorem for convex cones in
Re". The third section proves the utility theorem with the use of the suppori
theorem.

9.1 AN EXPECTED UTILITY THEOREM

In the following theorem T, is the set of simple probability measures on X,
as in Chapter 8. aP + (1 — «)Q is the direct linear combination of P, 0 € 7,.
E(u, F) = 3 x u(@)P(z).

THEOREM 9.1. Suppose that X is a finite set and that the following hold
throughout T, for a binary relation < on J,:

1. < is transitive,
2lIf0<a<lthenP<L Q<=aP + (I —x)R< aQ + (1 — a)R,
3. IfaP+ (1 —a)R< aQ + (1 ~ &)S for all « € (0, 1] then not S < R.

Then there is a real-valued function u on X that satisfies (9.1).
121
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i ne three conditions in this theorem compare with the three conditions of
Theorem 8.2. The - part of condition 2 in Thecrem 9.1 1s condition 2 of
Theorrm 8.2, fhe < part of condition 2, which 1s impiied by the conditions
of Theorem 8.2, can be defended as follows. Suppose in fact that with
a (0, you prefer 2Q + (I ~ 2jR to 2P + (I — «)R. Then it seems
reasonable that tnis preference would depend on your feelings between P and
Q. In fact, since the presence of (1 — «)R tends to weaken the difference
between the two mixtures, the removal of (I — «)R should make the
distinction between P and Q even clearer than that between aP + (1 — a)R
and ¢ 4 (1 — «)R and hence it would seem reasonable that you would
prefer Q to P. In the presence of the = part of condition 2 the <= part can
be written as [x e (0, 1), aP + (1 — )R < «a@ + (1 — @)R]=> not P~ Q.

The Archimedean axiom, cendition 3, is slightly different than Aumann’s
axiom, which says that if R < «Q + (1 — «)S for all « € (0, 1] then not
§ < R. However, both axioms are necessary for (9.1). For example, if
aE(u, P) + (1 — a)E(u, R) < aE(u, Q) + (I — «)E{x, S) for all 2 (0, 1],
then we cannot have E(u, §) < E(u, R). Therefore, condition 3 is the
“weakest” sort of Archimedean condition that can be used to obtain (9.1).

We note also that condition 3 implies that < is irreflexive, and for this
reason irreflexivity does not need to be included along with transitivity in
condition 1.

Because indifference (P ~ Q <= not P < Q and not Q < P)is not assumed
to be transitive for Theorem 9.1, it is not true in general that u satisfying
(9.1) is unique up to a positive linear transformation.

9.2 CONVEX SETS AND CONES

This section develops a theorem from which we shall be able to prove
Theorem 9.1. The new theorem states that if a convex cone C in Re" satisfies
specified conditions then there is a w € Re™ such that v - x > 0 for all x € C.
We shall begin with some definitions and (wo well-known lemmas. In what
follows, X # &.

A set X < Re" is convex if and only if ax + (1 — a)y € X whenever
z,y€ X and 0 < & < 1. The closure of a convex set X, denoted by X as in
Section 5.3, is easily shown to be convex also. The topology with respect to
which closure is defined is the usual product topology U" (Sections 3.4, 5.3).
The 0 is the origin of Re™.

LEMMA 9.1. If X < Re" is convex and (y € Re™, y ¢ X) then there is a
w 7 0 in Re" such that

inf{wz:ixeX;>w-y
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ini Ha — w3 s X0 > 00 and it fellows from tiue definitions of dosure 1nd
convexuy that there s 2 == ¥ such that 1=~y =mffiz — yfir &
Let w =:—y Hence w# 0. With 0< A <1 and «+ <X, (I — 4)

Ar ¢ X.Hence (I — Az 4 Ax — y)* > (2 — w)®. This reduces to A(r — 2) +
2(z — ¥) - (xr — 2) 2> 0. Letting 4 approach zero it follows that w - 2 > w2,
Since(z—y) (z—9)>0,w-z>wu -y Henceinf{w z:zc X} >w-z>
w-y @

y is on the boundary of X if every open set thal contains ¥ contains a point
in X and a point not in X.

LEMMA 92, [t'X = Re"izconvex and y € Re” is un the boundary of X ihen
there is a w # 0 in Re" such that

inf{w-z:ze X} =w-y. 9.2)

Proof. Lety € Re™ be on the boundary of convex X < Re™. Let Y be an
open n-dimensional rectangle that contains ¥ axd suppose that z € X for all
z€ Y. Then, by selecting open rectangles included in Y near the corners of
¥, each of these must contain an element in X, and it follows from convexity
that there is an open set included in X that contains y. But then y is not on
the boundary of X. Hence, for every such Y, there is a point in ¥ that is not
in X. It then follows that there is a sequence y,, ¥, - - . of elements in Re®
that are not in X but approach y. Then, by Lemma 9.1, there is a sequence
Wy, Wy, . .. Of elements in Re” that differ from 0, have w? = 1 for all j (after
multiplication by an appropriate positive number), and satisfy inf {w; - z:z
X}>wy-y; for j=1,2,.... Because w? =1 for all j there must be a
w € Re" such that every open n-dimensional rectangle that contains w
contains some w, It follows that, for each zeX, w-z>w-y.
inf{w-z:x€ X} > w-y is impossible, for if this were so then w-y >
Wy @

Cones

A set X < Re" is a cone if and only if ax € X whenever x € X and « > 0.
A convex cone is a cone that is convex. X is a convex cone if and only if
[x,yeX;a, B > 0]=ax + Py € X. 0 is not necessarily an element in a
convex cone.

THEOREM 9.2.  Suppose that C is a nonempty convex cone in Re" and that
CN(~C)= &, where —C = {g: ~z € C). Then there is a w € Re" such
that

wx>0 forallzeC. (9.3)
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If 0eC then 0eC and 0 € —C so that € N (—~C) # @. Hence the
Archimedean condition C N (—~C) = @ requires that 0 ¢ C. This condition
is necessary also for (9.3), forif (9.3) holdsandz€ C N (—C),thenw -2 < 0
by (9.3) and hence (since z€ C) w -y < 0 for some y € C.

Proof of Theorem 9.2. The theorem is obviously true when n = 1, Using
induction we shall assume with 7 > 2 that the conclusion follows from the
hypotheses for each m < n. Thus, let the hypotheses hold for n > 2. Then,
since 0 is on the boundary of C, it follows from Lemma 9.2 that there is a
w £ Re™ with w # 0 such that

wex >0 forallxe C. (9.4)

If (9.3) holds for this w, we are finished. Otherwise w-z = 0 for some z € C
and in this case we consider two possibilities.

l. fzzw-2>0<c C. Then C={z:w:z >0} and with ze C and
wez=0, —2€ C N (—=C) in violation of the Archimedean condition.
Hence this case can’t arise under tne hypotheses.

2. ThereiseanxeRe"suchthat w-z > 0andx¢ C. Let Y = {y:x -y =
0. The dimensionality of Y is less than n since » 7 0 and if z; ¢ 0 then each
y € Y is uniquely determined by its other n — 1 components. Also, each
z € Re® is expressible in one and only cne way as Sz + y with § € Re and
yeY Namely, 2= (z-zfzD)x 4+ [z — (2-«/s%)z], and if z2=f2+y =
Bz + y with § # §'thenz = (y — y')/(f' — B), implying 2* = z- (y — ')/
(B’ — p) = 0, which is false.

Continuing with Case 2 let
Co={y:px + ye Cforsome y € Y and § € Re}.

Co S Y is clearly a nonempty convex cone. To verify that &, N (—=Cp) =
@ suppose to the contrary that y € C; N (—C,). Then there is a 8 € Re such
that f — y € C and since y € C, there is a sequence ¥,, ¥, ... in C that
approaches y [(y — ¥)* > (v — y;))* and inf {(y — y,)*:i = 1,2,...} = 0]
and a sequence of numbers 8,, f,, . . . such that 8z + y, € C for all i,

Then B+ Bz + y, —yeCforallisothat B+ BIw-z+w: (v, — ¥) 2
0 for all / by (9.4): hence the 8, must be bounded below. The 8, must be
bounded above also: otherwise there are z + (y,/f;) € C that are arbitrarily
close to z, and this contradicts = ¢ C. It follows that there is & 4 € Re such
that inf {JA — §;|:i=1,2,...} = 0, and since fz + y; € C for all i it
follows that Az +y€ C. But then (Az + y) + Bz —y) = (A + Bz e (,
which is false unless A+ =0 But if A+ =0 then Ax+ ye € and
—Az — y e C, contradicting C N (—=C) = 2.

Therefore Co N (—C,) = &. It follows from the induction hypothesis for
m < n that there is a v € Y such that v - y > 0 for every y € C,. Sincev € ¥,
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v'2 =0 and therefore, for each z € C written as z = fz + y in the C,
format,v-z2=0v - fr+y)=v-y>0. ¢

9.3 PROOF OF THEOREM 9.1

Throughout this section the hypotheses of Theorem 9.1 are assumed to
hold along with P < Q for some P, Q e 7,, for otherwise the conclusion is
obvious.

Let X have n + 1 clements, n > 1, identified as z,, 24, . . . , 2,,.;. For each
PeJ, let p=Px). Let T={p=(py,...,p):p >0 for each { and
2 pi < 1}. Then there is a one-to-one correspondence between &, and
¥ = Re" In terms of § the conditions are:

. (p<q.g<=>p<r,
21f0<a<thenp<g<rap+ (1 —a)r < ag + (1 — or,
3. ap+ (1 —a)r < ag 4+ (1 — a)s for all a (0, 1] then not s < r.

Define D € Re" by
D = {1:1 = p — g for some p, q € T for which g < p}. 9.5)

Clearly, (9.1) holds if and only if there is a w € Re” such that w- ¢ > 0 for
every t € D. Some facts about D follow.

a. Suppose t€D is such that t =p —g=+r— s with g < p. Then
ir + 3q = 4p + 15, §r + 1g < 3r + }p by condition 2, and therefore
ip + s < ¥r + §p, so that s < r by condition 2 (<=). Hence if ¢ < p
then s < r whenever r — s = p — q.

b. Suppose t =p — g and t* =r — s are in D. Then ¢ < p and 5 < r.
Hence, by conditions 1 and 2, ag + (1 — «)s < ap + (1 — «)r for any
a € (0, 1), and hence at + (1 — a)t* € D, Thus D is convex.

c. Ift=p —q for somep,q€ § then te D<>ate D for all a (0, 1).
This follows from condition 2.

d. Ift=q —pandt* =5 —rforp,q,r,scTandifat + (1 — a)t*e D
Jor all ae(0,1] then —t*¢ D. To prove this observe that «f +
(1 — a)yt* € D implies that ap + (1 — a)r < ag + (I — a)s by (a).
Then, by condition 3, not 5 < r. Hence, again using (a) with —¢* =
r—s, —t*¢D,

Based on D we define a cone C as follows:

C = {z:x = at for some « > 0 and t € D}.

Since D # o by assumption, C # &. The convexity of C follows easily
from properties (4) and (¢) for D. For the Archimedean condition we wish
to have:

aft + (1 —a)t*eC forallae(0,1]=> —1*¢C. (9.6)
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This is obviously true if #* = 0, Henceforth take ¢ * #0. IfteCitis easily
seen (Exercise 11) that there is a 8 > 0 such that fte D and (B > 1/n3,
Givenat + (1 — a)t* e Cforalla e (0, 1}, it follows that for each « & 0,1}
there is a 8(«) > 0 such that a(B()t) + (1 — a)(B(a)t *) € D and B(a)X(at +
(1 — a)t*)* > 1/n2. Since {(at + (I — a)t*)*:.a € (0, 1]} is bounded above,
it follows that f(a) > 6 for some 8 > 0 and all o € (0, 1]. Therefore there is a
B > Osuch that «(f1) + (1 — «)(8¢*) € D for all a € (0, 1]. With P such that
(Bt*) < 1/nt it follows from (d) that —B1* ¢ D and hence that —¢* éC.
This verifies (9.6).

Suppose C < Re" is actually n dimensional so that some ? € C is not on the
boundary of C. Then there is an open n-dimensional cube in Re” that
contains such a ¢ and is included in C. It follows with little difficulty that if
z€Cthenat 4+ (1 —a)zeCforal ae (0, 1), and hence —z ¢ C by (9.6).
Hence € N (=C)= o and it follows from Theorem 9.2 that there is a
w € Re" such that w- ¢ > 0 for all ¢ € C and hence w-1t>0 for all te D,
If every point in C is on the boundary of C (with respect to Re") then the
dimensionality of C is less than » and a similar analysis applies with respect
to the actual dimensionality of C. ¢

9.4 SUMMARY

C < Re" is a convex cone if [2,yeCia, 8> 0= ax + fyeC. If
C is a nonempty convex cone in Re”, and — C and the closure of C have no
point in common, then there is a w € Re" such that wyz, + - - - + w,z, >0
for every z in C. This result can be used to prove that if X is finite, and if
< on T, is a strict partial order that satisfies an appropriate independence
condition and a necessary Archimedean condition, then there is a real-valued
function u on X that satisfies P < Q= E(u, P) < E(u, Q) for all P and Qin
T,

INDEX TO EXERCISES

1. Independence conditions. 2-3. Conditions that imply transitive indifference. 4.
Aumann’s theorem. 5. Pay Q> P = Q. 6-7. Convex sets and closure. 8. Limit point.
9-10. More boundaries. 11-12. Distance from the origin. 13. Lincar additivity.

Exercises

1. With < on T, a strict partial order let P ~ Q<= (not P < Q, not Q@ < P)and
P Qe>(P~R<>Q ~R, forall Re 7,), as usual, Let B1, B2, and B3 be the
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following independence conditions:

Bl. [P<0,0<a<l]=>aP+ (1 —-—a)R<a@ + (1 — «)R.
B [P~Q,0<a<l]=aP+ (1 —a)R~aQ + (1 — 2)R.
Bl [PrQ,0<a<i]=aP+(1~-)RreaQ + (1 — «)R,

o Fon i :&3'4 R LT

Express your opinions on the reasonableness of B2 and B3, show that (81, B2) >
imply the converse (<=) of each of B, B2, and B3 (with 0 < « < 1), and construct
a specific example to show that Bl, B2, and B3 do not imply that -~ is transitive.
Assume throughout that < on ¥, is a strict partial order.

2. (Continuation.) Let Cl1 and C2 be respectively the semiorder conditions
B (P<LQ, Q<R =P <SorS<R)and (P <@, R<S)= (P <SorR <Q).
Assume that < is irreflexive.
a. Construct situations that question the reasonableness of Cl and C2.
b. Show that (B1, C1) = ~is transitive.
c. Show that (B1, B2, C2) = ~ is transitive.

3. (Continuation.) Let B4 be the condition: (P~ R,Q ~R,0<a <1)=
aP + (1 — «)Q ~ R. Show that B4 is implied by strict partial order and Bl provided
that P < Q or Q < P. Then prove that (strict partial order, Bl, B2, B4) = ~ is
transitive. Can you construct a situation that questions the reasonableness of B4?
If so, what is it?

4. Aumann (1962) proves that if <* on 7, for finite X is a quasi order (reflexive,
transitive), if P <* Q0 < aP + (1 — )R <* a0 + (1 — a)Rwhenever0 < a < 1,
and if R <*aP + (1 — «)Q for all a€(0,1]=>not Q <* R, - 'n there is a
real-valued function ¥ on X such that, for all P,Q€T,, P <*Q = E(u, P) <
Ew,Q) and P~*Q = Eu,P) =E(,Q). Here P <*Q<=>(P <* L, not
Q <*P)and P ~* Q<> (P <* Q, Q0 <* P). Now assume that < on ¢, is a strict
partial order that satisfies B1, B2, and B3 of Exercise | along with R <« P +
(1 — )@ for all € (0,1]1=>not O < R. Defining <* from < by P <* Q<>
(P < Q@ or P~ Q), show that <* satisfies Aumann’s conditions and hence that
there is a real-valued function u on X (finite) such that (9.1} holds along with

Pa Q= E(u,P) = E(u, @), forall P,Q€f,

5. Suppose X = {81, 82,. .., $100}, with $1 < §2 < --- < $100. Argue that
with = defined as in Exercise 1, it would not be unusual to find that P v Q <=»P = :
Q when < on ¢, is a strict partial order. Can you think of a case (with clements in
X not monetary) where P =5 Q would seem reasonable for some P, O with P » Q?

6. Prove that if X = Re" is convex then so is X,

PRTTOEE v .

7. Show that if X € Re" is convex and (y € Re®, y¢ X) then there is a ze X
such that (z — y)* = inf {(z — y)*:z € X}.

8. Let w, € Re" be such that wf =1 for j = 1,2,... . Prove that there is a .
w € Re” such that every open n-dimensional rectangle that contains w contains 3
some w,. :

TN Sy e e
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9. Describe the boundaries of the following convex sets in Red: (@) {#:2] + 2% <
1, ) {z:2} + 22 <1}, (c) {2:0 <2, <1,0 < %3 < 1}, and (d) {z:z = («, «) for
z € (0, 1]}.

10. With X a convex set in Re” suppose that 7 € X is not on the boundary of X.
Verify that if ze Xthen ar + (1 — a)t€ X forall a e 0, 1]

11. With D as defined by (9.5) suppose ¢ € D. Define p, q € Tasfollows: (p;,q) =
(%, 0) or (0, ¢;) or (0,0) according to whether #; > 0 or 7, <0 or #;, = 0. Then

—¢ =t. Now multiply every #; by « > 0 with « as large as possible so that

>0y %0 < 1 and {i:t,<0) %f¢ = —1. Then ap, g€ Tand at = ap — g is in
D. Verify that 3%, (at,)* > 1/,

12. (Continuation.) Verify that 3%, (at,)® > 1/n.

13. Argue from the theory in this chapter tha! if X is the non-negative orthant
of Re® and if, for all z, ¥, 2z, we X,

a. =< is transitive,

b.Ifaec(0,)thenz <y«<>ax + (1 — a)z < ay + (1 — a)z,

¢ ax + (1 ~a)y <az + (1 — a)w for all a€ (0, 1] = not w < y, then there
are real numbers 4y, ..., A, such that z <y = 3%, 4,2, < dn. Ay, for all
z, ¥ € X. What must be true of the 4, if (1) (@ <y foralliz #y)=> 2z <y,
Q) (@ <y foralli) =z <y?
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Chapter 10

EXPECTED UTILITY FOR
PROBABILITY MEASURES
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This chapter extends the weak order expected-utility theory of Chapter 8 to
more general sets of probability measures. Since the sets of measures con-
sidered are mixture sets, Theorem 8.4 will be used as a base for establishing
the representation P < Q <= E(u, P) <. E(u, Q). Conditions that go beyond
those of Theorem 8.4 are required for the extensions. The primary new
condition says that if a measure P is preferred to every consequence in a sub-
set ¥ of consequences for which Q(¥) = 1, then Q shall not be preferred to
P

After two preliminary examples, Sections 10.2 and 10.3 develop necessary
background material on probability measures and expectations. The actual
utility theory development begins in Section 10.4.

10,1 TWO EXAMPLES

In our first example, a decision maker must decide between two construc-
tion procedures, 4 and B, for building a bridge over a river. Procedure A
will cost $150 million and B will cost $100 million. For A4 engineers have
estimated the probability P(r) of completing the bridge by ¢ years from now
at 0 for 1 € 2 and (z — 2)/3 for 2 < ¢ £ 5. For B, the probability Q(t) of
completion by 7 years from now is estimated at 0 for ¢ < 3 and (¢ — 3)/4 for
31 7.

The decision maker’s utilities for the applicable consequences are estimated
according to the expected-utility model as u($150,¢) = —(t — 2)* — 5 for
procedure A, and as u($100, t) = — (1 ~ 2)® for procedure B. The expected
utility of 4 is therefore
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and for B the expected utility is

Jq["-(! - 2)*)(1/4) dt = —10.33.

Thus procedure 4, more costly but faster than B, has the greater expected
utility.

The St. Petershurg Game

The often-discussed *St. Petersburg game” from Bernoulli (1738) gives an
example of a discrete probability measure. Consider a <~juence of coin
tosses and let «,, be the probability that a *head” occurs for the first time at
+he nth Loss. Suppose you believe that a, = 2" forn = 1,2,... and are
given a choice between “Don’t play™ and “Pay the house $100 and get back
$2" if the first head occurs at the nth toss.”

Let X be amounts of money representing changes in your present wealth,
Then, with u defined on X,

Expected utility of “Don’t play” = u«($0)
Expected utility of “Pay and play” = 3>  u($2" — $100)2-".

According to the theory given later, 4 on X is bou ided. Suppose, for example,
that u(z) = z/(|z| + 10000), so that ~1 < u(z) < 1for allz. Then 4($0) = 0

and 3 u($2" — $100)2-" < 0 so that “Don’t play”” has the greater expected
utility.

10.2 PROBABILITY MEASURES

Generally speaking, probability measures are defined on Boolean algebras
of sets. In the following definition 4° = {z:x € X, « ¢ A}, the complement of
A with respect to X, and

oQ
UA4,={z:ze4;, forsomeie{l,2,...}}

i=1

Definition 10.1. A Boolean algebra A for X is a set of subsets of X such
that

1. Xe 4,
2. Ae A= A% A,
3. A, BeA=> AU Be 4.

A o-algebra A for X is a Boolean algebra that satisfies
4 AjeAfori=1,2,...= 2, ;e
{@, X} is the smallest Boolean and o-algebra for nonempty X. The largest

j

A A B iR Y

3
A
4
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Boolean and c-algebra is the set of all subsets of X, For reasons that will
become clearer later we shall usually assume that {x} € 4 for each x € X.

If X is finite then every Boolean algebra is a o-algebra. The difference
between these two arises when X is infinite and it has some affect on properties
cf probability measures. Some authors, such as Loéve (1960), deal exclusively
with o-algebras (or “o-fields™).

If Cis an arbitrary set of subsets of X, the Boolean algebra generated by C
(minimal Boolean algebra over C) is the intersection of all Boolean algebras
that include C. The o-algebragenerated by C is the intersection of all o-algebras
that include C. It is easily verified that the intersection of a set of Boolean
(o) algebras for X is a Boolean (o) algebra for X.

With X = {1,2,...} and C = {{1}, {2}, .. .}, the set of all unit subsets of
X, the Boolean algebra M generated by C is the set of all subsets of X that
are either finite or contain all but a finite number of c¢lements in X. But A
is not a o-algebra since it doesn’t contain the set of all even, positive integers.
The og-algebra generated by C is the set of all subsets of X.

Let X = Re, with C the set of all intervals in Re. The o-algebra generated
by C is called the Borel algebra for Re, and its elements are Borel sets. There
are subsets of Re that are not Borel sets: see, for example, Halmos (1950,
pp- 66-72).

Throughout the rest of this chapter, /& denotes an algebra (Boolean or o)
Jor X.

Probability Measures and Countable Convex Combinations

Definition 10.2. A probability measure on + is a real-valued function P
on # such that

1. P(A) 2 O for every A € A,

2. PX)=1,

3. [Ad,BeA, A NB= g)=-P(A U B) = P(A) + P(B).
For further definitions we shall use the standard notation

ép.. = sup {‘Z:Ipi:n =1,2,.. } (10.1)

when p, > 0 for all i and 32, p, < M for some M and alln=1,2,....
Since 32,27 =1-2" 3% 27 = 1.

je=1 =]
Definitien 10.3. If P, is a probability measure on A and «, 2 0 for
i=1,2,...,and if 32, & = 1, then 32, a.P; is the function on # that
assigns the number 32, a.P,(A4) to each 4 € 4.
The proof of the following lemma is left to the reader.

LEMMA 10.1. 3%, «P; as defined in Definition 10.3 is a probability
measure on A,
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The next definition will be used in our utility theory.

Definition 10.4. A set T of probability measures on # is closed under
countable convex combinations if and only if 3= P, € T whenever P, €T
anda;, >0fori=1,2,...,and 3%, o, = 1.

If 7 is closed under countable convex combinations then T is a mixture set
(Definition 8.3). Hence if < on T satisfies A1, 42, and A3 of Theorem 8.3
then (8.5) and (8.6) hold and u on 7 is unique up to a positive linear trans-
formation.

Countably-Additive Probability Measures

Definition 10.5. A probability measure P on A is countably additive if
and only if

p( 9, A‘) =§1 P(4,) (10.2)

whenever A,e A for i =1,2,..., U2, 4;e# and A; N A, = & when
i j.

This applies whether A is a o-algebra or a Boolean algebra that is not also
a o-algebra. (10.2) is an extension of Definition 10.2 (3).

Let A be the Boolean algebra generated by C = {{1}, {2}, ...}, and let P
on M be defined on the basis of P(n) = 2" foreachne X = {1,2,...}. P
is countably additive but A is not a o-algebra.

Let 4 be the set of all subsets of {1, 2, ...} and let P on £ be any proba-
bility measure that has P(n) = 0 for each ne{l,2,...}. Then £ is a o-
algebra and P is not countably additive. Dubins and Savage {1965) call any
measure that assigns probability I to a denumerable subset of X and proba-
bility 0 to every unit subset diffuse. The uniform measure on the positive
integers, with P(n) =0 forn = 1,2, ... and P({n, 2n, 3n,...}) = 1/n for
n=1,2,...,is diffuse.

Let + be the set of all Borel sets in [0, 1], and let P be the uniform measure
on # defined on the basis of P([a, b)) = b — a when 0 < a < b < 1. This
P is a rountably-additive measure on a o-algebra.

An important property of countably-additive measures is noted in the next
lemma.

LEMMA 10.2. If P on £ is countably additive, if B is a countable subset of
A whose elements are weakly ordered by <, and if s A € £ then

P(IJa A) = sup {P(A4):A € B}. (10.3)

Proof. The conclusion is obvious if B is finite. Assume then that
3 is denumerable, cnumerated as A,, A,, Ay, ... . Let C, = UL, A,
Then C, € G, G ', Usd=UZ,C; and sup {P(A):4 € B} =

sup {P(C,):n = 1,2, ...}. This last equality follows from the facts that for
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any A € 3 there is an n such that P(C,) > P(A) and that for any C, there is
an A € B such that P(A) > P(C,).

Let D, =C, and D, = C, -~ C,_, (set theoretic subtraction) for i =
2,3,...,50that {J D, = C;,, Dy, N D, = & wheneveri st j, and C, =
U, D,. Then

PUg A) = P(gl1 D‘) sincelUg 4 = lj D,

il

=3 P(D;) by countable additivity
il

= sup i P(D):n=1,2,.. } by definition

fl
=sup {PC:n=1,2,...} by finite additivity
= sup {P(4):A € B}. &

Discrete Probability Measures

Definition 10.6. A probability measure P on A is disciete if and only if
{x} € A for each z € X, 4 is a ¢-algebra, P is countably additive and P(A4) = 1
for some countable 4 £ A.

All simple measures are discrete. Nonsimple discrete measures on the set
of all subsets of X = {0,1,2,...} include the geometric distributions
[P(n) = p(1 — p)", 0 < p < 1] and Poisson distributions [P(n) = e~7A"/n!,
A > 0]. The following lemma compares with Theorem 8.1,

LEMMA 103. I P on 4 is discrete then P(x) = 0 for all but a countable
number of z € X and

P(A) =3 P(z) forall A€ 4. (10.4)
2€4

Proof. Let A be countable with P(4) =1 Then P(z) = 0 for every
z € A° for otherwise P(A U {z}) > 1 for some z € A%, (10.4) follows from
(10.2) when A is countable. (10.4) holds in general if P(C) = 0 when P(z) = 0
forallxeCand Ce A. Let D = {z:x € X, P(z) > 0}. If P(D) < 1 it follows
from (10.4) for countable sets that P{4) < 1 for every countable A € £, a
contradiction. Hence P(D) = 1. Then P(C)=0whenCND=g. ¢

Lemma 10.3 shows that a discrete measure is completely described by the
point probabilities P(z).

Conditional Probability Measures

Definition 10.7. 1f P on + is a probability measure and if 4 €4 and
P(A) > 0 then the conditional measure of P given A, written P, is the
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function defined by
P(B) = P(B N A)/P(A) for all Be . (10.5)
When P is well-defined, it is a probability measure on #: if P is countalidy
additive then so is P,, P (A) =1, P(B)=1 if A< Be A, P,(B)=
P(B)P(A)if B< Aand Be £.1f A, Be A and P(A) > 0 and P(B) > 0 then
P(A)P,(B) = P(B)Py(A) = P(4 N B).

P, (B) can be interpreted as the probability that the consequence that
occurs will be in B, given that the consequence that occurs will be in A. If
B NA= ¢ then Py(B) = 0.

If P(4) > 0 and P(A°) > 0 then (note the convex combination)

P = P(A)P + P(A")P 4 (10.6)
since, for any BE A, P(B)=P(BN (AW A)) =P((BNA) U (BN A=
P(B N A) + P(B N A% = P(A)P(B 1 A)JP(A) + P(A)P(B N A%
P(A) = P(A)P(B) + P(A°)P ,.(B). More generally, if P(A) =1 (with
A€ A),if {4y, ..., A,}is an A-partition of A, and if I = {i:P(4,) > 0}, then

P =3 P(4,)P,, (10.7)
I

since, for any B e 4,
2 P(A)P,(B) =3 P(BNA) by(10.5)
1 I

=Y P(BNA,)
==l
- P(U BN A,) by finite additivity
i=1

= P(B N A) = P(B N A) + P(B N A°) = P(B).
(10.7) holds also when P is countably additive, A € £ and P(4) =1, and
{A,, 4,, . . .} is a denumerable A-partition of 4 and I = {i:P(4,) > 0}.

The following definition will be used in our utility development.

Definition 10.8. A set T of probability measures on # is closed under the
Jformation of conditional probabilities if and only if [P € §, A € £, P(A) > 0] =
P,eq,

10.3 EXPECTATIONS

This section defines precisely the expected value E(f, P) of a bounded,
real-valued function f on X with respect to a probability measure P on A.
In general we shall assume that f is A-measurable.
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Definition 10.9. f is A-measurabie if and only if f is a real-valued
function on X and {z:f(2) € I'} € A for every interval 7 € Re.

A-measurable functions are sometimes called random variables, but it is
more common to use this term for functions fon X for which {z:f(z) € B} € A
for every Borel set B € Re.

To define expectation we begin with simple A£-measurable functions.

Definition 10.10. An A-measurable function f is simple if and onlv if
{f(x): 2 & X} is finite, If fis simple and takes on n distinct values ¢;, . .. , c,
with f(z) = ¢, for all z€ 4, then each 4,c A by Definition 10.9 and
{A;, ..., A,} is a partition of X: with P a probability measure on £, we
then define

E(f,P) = 3 c.P(4). (108)

Simple A-measurable functions are bounded. In general, an A-measurable
function f is bounded if and only if there are numbers a and b for which

a < f(x) < b for all « € X. In defining E£(f, P) for any bounded, A-measur-
able f we shall use

Definition 10.11. A sequence f}, f;, . . . of simple A-measurable functions
converges uniformly from below to an A-measurable function f'if and only if,
for ali z € X,

LAB L)<

2. f(@)=sup{f,(x):n - 1,2,...}

3. For any € > 0 there is a positive integer n (which may depend on ¢)
such that f(z) < f(z) + «

For any bounded, A-measurable f there is a sequence of simple 4A-
measurable functions that converges uniformly from below to f. With
X = {z:xe X and a < f(x) < b} and f A-measurable let

Ay, ={taLf(@)<a+ (b—a)fn
Ai,={xia+ (i~ 1)b—a)fn <f(x) < a+ i(b— a)n} i=2,...nm

(10.9)
and define f;, by
i@ =a4+(@~-1)b—-a)fn forallzec4,,, i=1,...,n
(10.10)

Each A,,e€ A by Definition 10.9 and therefore each f, is a simple #A-
measurable function. Conditions 1 and 2 of Definition 10.11 are easily
verified and condition 3 holds with n > (b — a)/e.

e escampdienes RO
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Definition 10.2Z. If fis bounded and A-measurable and if P is a proba-
bility measure on A then

E(f, P) = sup {E(f», P):n = 1,2, ...} (10.11)

where f,. f;, ... is any sequence of simple A-measurable functions that
converges uniformly from below to f.
The following lemma notes that E(f, P) is well defined.

LEMMA 104. If fi.fa, ... and g1.g;, ... are sequences of simple #-
measurable functions that converge uniformly from below to a bounded,
A-measurable function f then sup {E(f,, P):n = 1,2, ...} is finite and

sup {E(f,, P):n=1,2,.. .} =sup{E(@g,, P):n=1,2,...}. (10.12)

Proof. Boundedness assures a finite sup. To verify (10.12) assume to the
contrary that sup {E(f,,P):n=1,2,...} <sup{£(g,,P):n=1,2,...}.
Then there is an € > 0 and a positive integer m such that

E(f,,P)+ €< E(g, . P) forn=1,2,.... (10.13)

By condition 3 of Definition 10.11 ther: is a k such that f(z) < fi(x) + € for
all x € X, so that E(h, P) < E(f, + ¢, P) for every simple A-measurable &
for which h(z) < f(z) for all z € X, In particular, E(g,,, P) £ E(fy + ¢, P) =
E(f» P) + ¢, contradicting (10.13). @

E(f, P,) for a well-defined conditional probability measure P, is defined
as above since P, is a probability measure on .

Finite versus Countable Additivity

The uniformity condition 3 of Definition 10.11 is superfluous for defining
E(f, P) when P is countably additive and # is a o-algebra (Exercise 15). But
uniform convergence is required when countable additivity is not assumed to
hold. The following illustrates what amounts to the failure of (10.3) for a
diffuse measure.

Let X = {0, 1, 2,...}, let /& be the set of all subsets of X (a o-algebra),
let P be any probability measure on 4 that has P(¢) = 0 for all z € X, and
let f(z) = z[(1 + x) forallz e X.

Since0 < f(z) < lonXwecanleta=0and b =1 in (10.9) and (10.10)
to obtain E(f,, P) = 3" [(i — 1)/nlP(A;,) = (n = )[nforn=1,2,...,
since A, , is a finite set for all i < n and therefore, by finite additivity,
P(A;,) = 0 for all i < n. Since f}, f;, . . . converges uniformly from below to
[ EfP)=1.

Now consider a sequence gy, ga, . . . that converges from below to g, but
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not uniformly. In particular let B, , = [0, 1/n] U ((n - 1)/n, 1) and B,, =
(i ~ 1)/n,ijn) = A, Tori=2,...,n— 1, and define g, by

g(2) =infB,, forallzehB,,, i=1,...,n—1
Conditions 1 and 2 of Definition 10.11 hold for gy, g5, . .. . But

1. sup {E(g,.P):n = 1,2,...} £ E(f, P) since E(g,, P) =0,

2. Uniform convergence fails since for each n there are values of = for
which f(z) — g,.(z) is arbitrarily close to 1;

3. (10.3) of Lemma 10.2 fails since, with B = {{z:0 < u(z) < ¢}:
0< <1}, P(Ug A) = P(X) =1 and sup {P(£). A € B} = 0.

104 PREFERENCE AXIOMS AND BOUNDED UTILITIES

Because a number of conditions will be used in the theorems that foilow
we shall first summarize most of these conditions. In all cases, £ is a Boolean
algebra for X and ¥ is a set of probability measures on #A. No notational
distinction will be made between x € X and the one-point measure that
assigns probability 1 to z. With < defined on ¥, v < y <> P < Q when
P(z) = Q(y) = 1. Similar meanings hold for z < P, z < P, and so forth.
As usual P Q@ <> (P < Q or P~ Q), with P~ @ <= (not P < @, not
Q < P).

We list first some primarily *“structural” conditions.

S1. {x} € A for every x € X.

S2. {zxzeX,x<yleAand {z:x € X,y < x} € A jor every y € X.

83. T contains every one-point probability measure.

84. T is closed under countable convex combinations (Definition 10.4),

S5. T is closed vnder the formation of conditional probabilities (Definition
10.8).

Conditions S1 and $3 enable us to define a utility function on X, and S2,
which looks very much like some topological axioms of former chapters (see
Theorems 3.5 and 5.5), guarantees that ¥ on X is A-measurable. In the
present context st could be the set of all subsets of X (i.e., the discrete
topology for X) and no problems would result. At worst we might have to
deny countable additivity. On the other hand, the use of the discrete topology,
which in general implies that (X, ) is not connected, would have disastrous
effects on former theory.

The following preference axioms (in addition to S2) include the three
conditions of Chapter 8 along with three versions of a kind of dominance
axiom. It is to be understood that these conditions apply to all P, 0, R€ T,
Ae A, andy, 2 € A,

L
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Al. < on T is a weak order.

A2, (P<Q,0<a< D)=l + (Il —)R < a@ + (1 — )R

A3, (P<Q,0<R)=aP+ (1 —a)R<Q and Q<P+ (1 — PR
Jfor some a, f € (0, 1).

Ada. (P(A) =1, Q< zforallze A)=>Q <X P. (P(4) =1,z < R for all
zeAd)=P < R

Adb. (PA) =1,y =z forallzeA)=>y < P. (P(A) =1, z < 2 for dll
z€A)=>P <X 2

Ade. (P(A) =l y<zforallze )=y <
z€A)=P <X z

P. (P(A) =1,z <z for all

The final three conditions are weak versions of the following translation
of Savage’s P7 (1954, p. 77): (P(4) = 1, Q@ < zforallz € A) = Q < P, and
(P(4) =1, x< Rforall z€ 4A) = P < R, Axiom A4a is weaker (assumes less)
than this since it replaces < by < in the hypotheses. 44c is weaker than
A4b for the same reason. A4b is weaker than the translation of P7 since
it deals only with one-point measures in part. Under S3, (P7 translation) =>
(A4a, A4b, A4c), Ada = Adc, and A4b => Adc. Axiom A4b does not generally
imply A4a, as can be seen from the proof of Theorem 10.2 in the next section.
However, under the other hypotheses given above (S1-43), A4b => A4a when
every P e ¥ is countably additive: this follows easily from Theorem 10.3.
Under conditions S1-43, A4a = A4b.

In general, the dominance or sure-thing conditions A4a, A4b, and A4c
seem reasonable, although 445 might be liable to criticism in the case where
indifference is not transitive.

Bounded Consequence Ultilities

The first result based on the new dominance conditions uses the weakest
one of Ada, A4b, and A4c. We know from Theorem 8.4 that (10.14) and
(10.15) follow from A1, 42, A3, and $4.

LEMMA 10.5. Suppose that there is a real-valued function u on ¥ for which

PLQ<=ulP)<ulQ), foralP, Qef, (10.149)
u(@P + (1 — a)Q) = au(P)+ (1 — u(?), forall (a,P,Q)€[0,1] x T2,
' (10.15)

and suppose that S1, S3, S4, and A4c hold. Then, with u(z) = u(P) when
P(z) = 1, uon X is bounded.

Proof. Under the hypotheses, suppose ¥ on X is unbounded above.
Then there are z,, 7y, ... such that u(z) > 2 for i=1,2,.... By 84,
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2"z, €T forn=0,1,2,... . By the easy extension of (10.15)
22 y y

u ( >3 2-‘:»‘) = 3 2 u(z) + 2" ( >3 2-'2,,“)
fnl ¢l

=l
so that, since u(z,) > 2¢,

u (f 2“:::‘) >n+2"" (i 2"x,,+,).

fuel ]
Since y < z, for ull i greater than some m and for some y € X, A4c yields

- -}

Y < 21272, for every n 2 m. Therefore, by (10.14),

u(ZZ“x,) 2n+2u(y) forn=m+im<+2,....

f=]

But this is false since (3., 2~z,) is a real number. Boundedness below is
established by a symmetric contradiction. &

10.5 THEOREMS

By Theorem 8.4, the hypotheses of each theorem in this section imply the
existence of a real-valued function u on 7 that satisfies (10.14) and (10.15) and
is unique up to a positive linear transformation. As shown by Lemma 10.5,
u on X is bounded. The question then is whether #(P) = E(u, P) for all

P e T, which is true if and only if there is a real-valued function 4 on X such
that

P<LQ<Eu,P) < E(u, Q), forall P,Q €. (10.16)
In the following theorems « is presumed to satisfy (10.14) and (10.15). These
theorems show the weakest one of A44a, 44b, and A4c that will yield (10.16)
for various T sets. The 3 means ‘““do not imply for all possible cases.”
H = {81, 82, S3, 54, S5, A1, A2, A3}.
THEOREM 10.1. (H, A4a) = (10.16).
THEOREM 10.2. (H, A4b) > (10.16).
THEOREM 10.3. (#, A4b, every P is countably additive) => (10.16).

THEOREM 104. (H, A4c, every P is countably additive, x < y for some
z,y€ X)$ (10.16).

THEOREM 10.5. (H, Adc, every P is discrete, x < y for some x, y € X)=>
(10.16).
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THEOREM 10.6. (H, A4c, every P is discrete) ¥ (10.16).

The three “‘positive” theorems, Theorems 10.1, 10.3, and 10.5 are proved in
the next section. The proofs of the three “negative’” theorems are given in
this section with specific cases where the hypotheses hold and (10.16; fails.
These proofs illustrate some of the differences between measures that are not
countably additive ard those that are, and between countably additive
measures that are not discrete and those that are.

Proof of Theorem 10.2. Let X = {0, 1,2, ...} with u(z) = /(1 + =) for
all z € X. Let T be the set of all probability measures on the set of all subsets
of X and define 4 on ¥ by

u(P) = E(u, P) + inf {P(u(@) > 1 — ¢):0 < e < 1}.

The expression P(u(z) > 1 — ¢€) is a common shortening of P({z:u(z) >
1 — €}). Define < on § by P < Q <> u(P) < u(Q) so that (10.14) holds. By
Exercises 6, 7, 8, and 18, (10.15) holds since

u(@P + (1 — 2)Q)
= E(u,aP + (1 ~ «)Q)
+inf {aP(u(z) > 1 — &) + (1 ~ )Qu(2) > 1 — &):0 < ¢ < 1}
=aE(u,P)+ (1 — o)E(u, @) + ainf {P(u(z) 2 1 — ):0 < e < 1}
+(1—=a)inf{Qu(x) 21 —e):0<e 1}
= au(P) + (1 — «)u(Q).

H then follows from Theorem 8.4, and A44b holds: if P(A) =1 and
y < z for all x€ A then u(y) £ u(P) since u(y) < £u, P); if P(4) =1
and z < z for all z € 4 then u(P) < u(z) since u(z) < 1 — ¢ for some ¢ > 0
and therefore inf {P(u(z) 2 1 — €):0 < e L 1} = 0.

Let P be diffuse with P(x) = O forallx € X. Then u(P) = | 4+ 1 = 2 since
inf {P(u{z) 2 1 — ¢€):0 < ¢ £ 1} = 1. Hence u(P) 3¢ E(u,P). &

Proof of Theorem 104. Let X = [0, 1], let £ be the set of all Borel sets in
[0, 1). Take T as the set of countably-additive measures on . Set u(z) = —1
fz < tand u(z)=1ifz > §, and let

u(P) = S u(z)P(2), forall Pef. (10.17)
X

u on 7 is well defined since P(x) > 0 for no more than a countable number of
z € X. Define P< Q <>u(P) < u(2). Then (10.15) follows easily from

g
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(10.17). The conditions in H hold and A4c¢ holds since

. (P(AY=l,y<zforallze A)=-A < [}, 1), y€ [0, }), and therefore
~1 = u(y) < 0 < u(P), and

2Z2(PA)=1,z<zforallzeA)=> A < [0, %), z€ [}, 1], and therefore
uP) L0 < u(z)=1.

But with Q the uniform measure on [},1],0 = 4(Q) # Eu, Q)= 1. &

Proof of Theorem 10.6. LetX = {1,2,...}, let £ be the set of all subsets
of X and let T be the set of all discrete probability measures on #, Let 8
be the set of subsets of § defined by
8={(8:8cT;ifPy,..., P, Q...,0Q, are all different measures in &

andifa, 20,8, > 0and Ira, = I™ B, = 1then 2P .Py # 37 B,0,;

8 contains all one-point measures}.
A simple measure is in 8 € 8 only if it is a one-point measure. The measures
in any 8 € § are independent with respect to finite convex combinations. A
maximal independent subset is an 8* € § such that $* < 8 for no 8 € ¢ and,
if Pe T and P ¢ 8* then there are positive numbers @, ..., &, f1, ..., fm
with 3 «; = 3 8, = 1 and distinct measures Py, ..., P,, Os,..., 0, € 8*
such that

a,P +§z a.P; =§lﬁ,Q, (n>1,m>1). (10.18)

Using Zorn’s Lemma (Section 2.3) it is easily shown that § has a maximal
element 8*, It can be shown also, but is tedious algebraically to do so, that
each P ¢ 3* has an essentially unique representation in the form of (10.18).

If u is defined on the measures in 8*, its linear extension to all of T is
defined from (10.18) thus:

)= [ 3 p0) - Soat®)] [

To establish Theorem 10.6 define u(z) = 0 for all z € X and let u(P) = 1
for every P € 8* that is not simple. Let ¥ on 8* be extended linearly by
(10.18) to all of § and define P < Q <> u(P) < u(Q). Then H is seen to
hold and A4c holds for the simple reason that # < y for no z, y € X. Hence
the hypotheses of Theorem 10.6 hold. But (10.16) is clearly false. &

A variation on this example shows that 44c cannot be deleted from the
hypotheses of Theorem 10.5. Take w(z) = z for each z€{l1,2,...} and
#(P) = 0 for each nonsimple P € §* and extend u lincarly by (10.18) to all of
¥, Define P < Q <> u(P) < u(Q). With p,R + 37, ¥R, = 33, 6,5, along
with P as in (10.18) we get u(aP + (1 — a)R) = au(P) + (1 -~ «)u(R) so

ot e
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that (10.15) holds. Moreover, z < y for some z, y € X. But ¥ on X is un-
bounded and therefore, by Lemma 10.5, A4c must be false. Clearly, (10.16)
fails, for otherwise we could construct a P with infinite expected utility.

10.6 PROOFS OF THEOREMS 10.1, 103, AND 10.5

For Theorem 10.1 let H and A4a hold, let u on & satisfy (10.14) and (10.15),
and define 4 on X as in Lemma 10.5. ¥ on X is bounded. We note first that
P(A4) = 1 = inf {u(z):z € A} < u(P) < sup {u(x):xcA4}. (10.19)
Let ¢ = inf and 4 == sup in (10.19). To the contrary of (10.19), suppose that
d < u(P). Then, for any z € 4, (10.15) implies that there is a convex com-
bination R = aP + (1 — )z such that d < u(R) < u(P). Therefore, by
(10.14), z < R for all z € A and hence P < R by A4q. But this contradicts
u(R) < u(P). Hence d < u(P) is false. u(P) < c is seen to be false on u.ing
the other half of A4a. Hence (10.19) holds.

Leta = inf {(2):z € X} and b = sup {u(z):x € X}, and let 4, ,, be defined
by (10.9). ForPe T letn* = {i:ie{l, ..., n}, P(A,,) > 0}. Then, by H and
(10.7), P = 3,. P, P(A;,), so that u(P) = 3. u(P,, )P(A,,) by (10.15).
Hence, by (10.9) and (10.19),

Z [a + (i — 1)}(b — a)/n]P(A;,,) < u(P) < 2 [a + i(b — a)[n]P(4,,).
" " (10.20)

Since u is bounded and A-measurable and f;, f;, ... define by (10.10)
converges uniformly from below to u, Definition 10.12 gives

E(u, P) = sup (Z. [a+ (i — 1)b=a)nlP(4, ):n=1,2,.. }

Since the difference between the two sums in (10.20) equals (b — a)/n, which
goes to 0 as n gets large, u(P) = E(u, P). &

Proof of Theorem 10.3. Let H and A4b hold and assume that every P € &
is countably additive. With « as in the preceding proof, we need to verify
(10.19). Then u(P) = E(u, P) follows from the second half of the proof of
Theorem 10.1.

Let P(4) = 1, ¢ = inf {u(z):x € A}, and d = sup {u(z):z € A}. If {u(z):z €
A} = {c, d}, (10.19) follows from A4b and (10.14). Henceforth, assume that
¢ < u(w) < dfor a fixed we 4, and let

A, ={z:zed, 2z < w}, To=1{0:0€T,0(A,) =1}
AY = {z:ze 4, w< 2}, T = {0:0eT, Q(4Y) = 1}.

A=A, A% with 4,7 & and A # &. Let B= {z:ze X,z < w}
so that Be A by S2. Then A, e A since A, =4 N B = [4° U B°)’.

(10.21)

i
i
:
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Similarly, A € £. Then, by (10.7) and S5, P equals 2 convex combination
of a measure in T, and a measure in 7%, 1t follows from (10.15) that (10.19)
holds if it holds for every measure in T, U T

To verify that Q € §¥ = ¢ € ¥(Q) < d, we note first that

c < u(@ for every Q € I (10.22)

follows from ¢ < u(w), A4b, (10.14), and (10.21). It follows from (10.22)
and an analysis like that used in the proof of Lemma 10.5 that » on §¥ is
bounded above. Thus, let M be such that

c<Suw@ <M forall Qe v, (10.23)

If u(x) = d for some x € A” then u(Q) < d for all @ € T* by A4b and (10.14)
so that ¢ < w(Q) < d for this case. Alternatively, suppose that u(z) < 4 for
all z € A® and with ¢ > 0 let

A(e) = {z:ze A”, u(x) < d — €}
B(e) = {x:xc A", d — € £ u(x)}.

Then A(e) U B(e) = A¥ and {A(e):€ > 0} is weak ordered by < so that
for any Q € §¥ it follows from (10.3) of Lemma 10.2 that

sup {Q(4(€):e > 0} = 1. (10.24)

If O(A(e)) = 1 for some € > 0 then u(Q) < d by (10.14) and A4b. On the
other hand, if 0(4(€)) < 1 for all € > O then, with € small and Q ., Qg
respectively the conditional measure of Q given A(¢), B(e), it follows from
(10.15) and (10.7) that

w(Q) = Q(A()UQ 40) + C(B()(Qg0))-

Hence, by (10.23) and Q 4(;,(4(9)) = 1, w(Q) < 2(A(e)) d + [1 — Q(A(NIM
for all small ¢ > 0. u(Q) < d then follows from (10.24). Hence Q € ¥ =-
¢ < u(Q) £ d. By a symmnietric proof, Qe T, =>c < u(Q) <d. &

Proof of Theorem 10.5. Let the hypotheses of Theorem 10.5 hold. Since
every P is assumed to be discrete, st is a o-algebra. With a = inf {u(2):z € X}
and b = sup {u(x):x € X}, a < b since z < y for some z, y € X. We shall
prove first that ¥ on 7 is bounded.

If ¢ < u(w) < b for some w € X, boundedness of # on ¥ follows from an
analysis like that using (10.22) in the preceding proof. Henceforth in this
paragraph assume that {u(z):z € X} = {a, b} and let

§,={P.Pe?l, P(u(x) = a) = 1}
T, ={P:Peq, Plulzx) = b) = 1},

el
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so that every P € T is a convex combination of one measure from each of
7, and 7,. (10.15) says that u on T is bounded if # is bounded on T, U T,.
For §,, an analysis like that using (10.22) applies: a < u(P) for all P T,
by A4c and (10.14). A symmetric analysis shows that u on ¥, is bounded.

If 2 is simple, u(P) == E(u, P) followe from (10.15). If P is not simple and
A = {z:P(z) > 0}, Lemma 10.3 gives 3 , P(z) = 1. With the elements in A
enumerated as z,, %y, ..., P = 3%, P(z)z, Hence, by the finite extension
of (10.15),

u(P) = g P(x)u(z) + [ §1P(:c,)]u ( ;lp(x,)[ §1P(x,)]—lx‘) (10.25)

forn=1,2,....And by Exercise 204,

B(w, P) = 3 Pa)E(u, =) + [ gz’(x‘)]s(uép(zo[ gr(zo]—lz‘)
‘ " (10.26)

forn=1,2,....Since E(u, z,) = u(z,), it follows from (10.25) and (10.26)
that

W(P) = E(u, P) + [ §1P(z¢)] [u( ,2{ . z,) - E(u, ”3;- . x‘)]. (10.27)

Since u on ¥ is bounded, since E(u, P) on J is bounded when u on X is
bounded, and since 3 7., P(x,) approaches 0 as n gets large, the second term
on the right of (10.27) approaches 0 as n gets large and therefore must equal
zero for all n. Hence u(P) = E(u, P). &

10.7 SUMMARY

The weak-order expected-utility result, P < Q@ <> E(u, P) < E(u, Q),
holds for sets of probability measures that include nonsimple measures when
appropriate dominance axioms are used. The basic idea of such axioms is
that if a measure P is preferred to every consequence in a set to which a
measure { assigns probability 1, then Q shall not be preferred to P; and if
every consequence in a set to which Q assigns probability 1 is preferred to P
then P shall not be preferred to Q. This is condition A4a of Section 10.4. 1f
all probability measures under consideration are countably additive then a
“weaker™ form of dominance axiom will yield the expected-utility result in
conjunction with the preference conditions of Chapter 8 and scveral structural
conditions on the set of measures and the Boolean algebra on which they z2re
defined.

Ll
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INDEX TO EXERCISES

1. Denumerable sums. 2-3. Boolean algebras. 4. Countable unions. 5. o-Algebra.
6-11. Infs and sups. 12-15. Countable additivity. 16, Uniform convergence from above.
17. Expectations of sums. 18-19. Expectations with convex combinations of measures.
20. Conditional expectations. 21. Expectations are sums. 22-24, Dominance and expecta-

tions. 25. S2. 26. Failure of A4q. 27-28. Proof of Theorem 10.6. 29. Blackwell-Girshick
Theorem,

Exercises

1. Provethat 37, 27 =1 —~ 2" by noting that 2(37 2~ — J# 2~ = | — 27,
Also show that 0 < p < 1implies 3 p(1 — p)"t = 1,

2. Show that + is a Boolean algebra if and only if 4 is a nonempty set of subsets
of X satisfying (2) and (3) of Definition 10.1.

3. Let M be the set of all subsets of {1, 2,. ..} that are either finite or contain

all but a finite number of positive integers. Show that A, is the Boolean algebra
generated by {{1}, {2}, .. .}.

4. Specify |J2, A¢ = {z:x € A, for somei} when (a) A; = &, (b) A; = {—i, i},
(©) A; = /(1 + D), 1/i) = Re, (d) A; = [1/i,2 — 1/i] = Re.

5. Describe the o-algebra generated by {{r}:x € Re}.

. Let R be a bounded set of numbers. Prove:
sup R = —inf{r: —re R},
. sup {ar:reR} =asup Rifa 20,
sup {ar:r ER} = ainf Rif « <0,
.inf{ar:re R} =ainfRifa >0,
inf {ar:re R} = asup Rif a <0,
7. With R and S bounded sets of numbers prove that sup {r + s:r€ R, s€ S} =
sup R + sup S. Then prove Lemma 10.1.

8. (Continuation.) Prove that sup{e; + ;i =1,2,...} =sup {«:i=1,

2,...} +sup{fiii=1,2,...} if o, ... and B, f,,... are nondecreasing
sequences of real numbers that are bounded above. Generalize this result to n
nondecreasing, bounded sequences.

9. (Continuation.) Suppose a, > 0 for all j, J» , «;, < M for all positive integers
n and some number M, and for each j (j =1,2,...) By, By, ... is a bounded
nondecreasing sequence of nonnegative numbers. Using (10.1) prove that

A R0 RO

sup {i afii = 1,2,... =2a,[sup {ﬁi,.:i =1,2,...}).

=1 =1

10. (Continuation.) With the a, as in the preceding exercise, suppose that, for

o
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cach j, v1,, 7y, . . . is & nonincreasing sequence of nonnegative real numbers. Prove
that

@®© o
inf {‘z a’}’“:f - 1' 2, .o .} - z a,[inf{}'u:i - l, 2, . -”]o
=]

Pt
11, LetPy, P,,...bea sequence of probability measures on the set of all subsets

of X, let a; > 0 for all { with T «, = £, and for any probability measure P and
real-valued function u on X define

limPu@) >r ~ ¢) = inf {P({x:u(x) > r — «Di=1,2,...}

[ e 1]

where ¢; > ¢, > -- - and inf{e:j=1,2,...} =0. Use the result of the preceding
exercise to prove that, for any real number r,

lim i % Pu(x) 2r —¢) = i oy [!im Plux) >r — ¢)].

€0 =] fm=1 €—0
12. Let P be defined on A, of Exercise 3 on the basis of P(n) = 2" forn =1,
2,... .Prove that Pis countably additive.

13, Usethe conclusion of Exercise 9 to prove (P, isacountably-additive probability

measureon Afori =1,2,... a0, > Oandz;“_’_l o, =1)= Z;‘;la,}', isa countably-
additive probability measure on 4.

14. Prove that if P on 4 is countably additive, if 3 is a countable subset of #
weakly ordered by <, and if Na A€ 4, then P(N3 A) = inf{P(A):A € 3}.

Note: In Exercises 15 through 24, £ is a Boolean algebraon X f, g, . . . are bounded
and #A-measurable; P, Q,...are probability measures on 4.

13. If P is countably additive show that E( / P) is unambiguously defined by

(10.11) when £;, J2 - - . is a sequence of simple A-measurable functions that satisfies
conditions 1 and 2 of Definition 10.11.

16. A sequenceg,, g, .. . of simple #-measurable functions converges uniformly
from above to fif and only if, for all z € X,

L. &51(@) 2&HE@) > -

2. g@) =inf{g(2):i =1, 2,.. 3

3.¢6>0=g,@) £&(®) + « for some n (and all z),

Prove that sup {E(f,, P):n=1,2,..} = inf{E(g,, P):n =1,2,...} when fi.
S (g ga - ) converges uniformly from below (above) to f,

17. With c a real number let £ + ¢ be the function on X that takes the value
JF() + catz € X, let ¢f be the function that takes the value ¢f (x) at z€ X, and let
J + & have value f(2) + g(z) at . Prove

a E(f+c¢,P) = E(f,P) + ¢,

b. E(f + g, P) = E(f, P) + E(g, P),

¢. E(cf, P) = cE(f, P).

18. Show that if a € [0, 1] then

E(f, 2P + (1 — 0)Q) = aE(f, P) + (1 ~ 2)E(f, Q) (10.28)
and then generalize this to E(f, 32, «,P,) = 31 | «,F(f, P,).
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19. (Continuation.) Supposing that a; > 0fori =1,2,...,3 2, a,isfinite, and
by, by, .. . is a bounded sequence of numbers, define 3= «.b, from (10.1) by
32, ab -g;'i L %i(bs + ¢) — ¢ 32, a, where ¢ is such that b + ¢ 20 forall i,
Show that 3, ab, is well defined. Then use this definition along with Exercise

17a and Exercise 9 to prove that if «; > O for alliand 32, a, = 1 then

E( I a,P,) =S wE(f, P). (10.29)

i=1 {w=]

20. Use the results of the two preceding exercises along with (10.7) and the sen-
tence following its derivation to show that, given A € #,
a. [P(A) =1,{A4y,...,A4,} is an A-partition of A, I={i1P(4) > 0}l=
E(f,P) = 3, P(A)E(f, P,),
b. [P(A) = 1,{4,, Ay, ...} is a denumerable partition of A with 4, € # for all i,
I = {i:P(A,) > 0}, P is countably additive] = E(f, P) = 3 ; P(A)E(f, P 4).
21. Suppose all z; are different in each of b and ¢. Show that
a. P(x) =1 = E(f, P) = f().
b. %,"_1 Px) =1= E(f,P) = %‘»_1 P()f (=).
¢ 32, Px) =1= E(f,P) = 5= P)f@).
22. Assume that 4 € 4 and P(A) = 1. Prove that
a. [f(@) <g(x)forallze Al = E(f, P) < E(g,P),
b. [f(x) Sg@) for all z€ A, P(f(z) + ¢ L g(x)) >0 for some € > 0]=>
E(f,P) < E(g, P),
¢. [f(x) < g(x) for all x € A, P countably additive] = E(f, P) < E(g, P).

23, (Continuation.) Give an example where P(f(x) < g(z)) =1 and not E(f,
P) < E(g, P). P(f(x) < g(x)) = P({x: f(z) < g(=)}).

24. With u satisfying (10.16) let A, = {z:z€ X, z < y}. Prove that [P(4,) <
Q(A,) for all y€ X]=- E(u, Q) < E(u, P). Prove also that [Q # P; for i =1,
2,...,n, 2,20 for all i,2"«, =1,37 %Pi(4,) < Q(A4,) for all y€ X]=-
E(u, Q) € E(u, P,) for some i.

25. Show that Definition 10.1, $2, and < on X connected imply {r:z€ X,
y<zxzletand{z:xe X,y <z <z}€ 4.

26, Give specific examples of probability measures that demonstrate the failure
of A4a in the proofs of Theorems 10.2 and 10.4.

27. Use Zorn’s Lemma to prove that 8 in the proof of Theorem 10.6 has a maxi-
mal element 8*.

28. Verify that the representation (10,18) for (P& &, P¢ 8%) in terins Of measures
in 8* is essentially unique.

29. Blackwell and Girshick (1954). Prove that if ¢ is the set of all discrete prob-~
ability measures on the set of all subsets of X and if A1 and A3 of Section 10.4
hold along with [P, 0,€ ¥, P; < Q;and a; >0for i =1,2,...; Zﬁ,l a;, = 1;
P; < Q; for some i for which a; > 0]=> 3% a,P; <™ «Q;, thenthereis a
real-valued function « on X that satisfies (10.16).




Chapter 11

ADDITIVE EXPECTED UTILITY

This chapter combines the weak-order expected utility theory of Chapters 8
and 10 with the situation where the consequences in X are a-tuples as in
Chapters 4, 5, and 7. The main focus of the chapter is conditions that, when
XX, x X, X+ XX, imply the existence of real-valued functions
#y,...,u, onkX;, ..., X, such that

P < Q<Y E(u, Py <3 E(uy, Q), forallP,Qe®, (il1.1)
=1 i=1

where 7 is a set of probability measures on X and, for P € 7, P, is the marginal

measure of P on X,

We shall examine (11.1) first for the case where X = X; x --- x X, and
then for the more general case where X € X x - -+ X X,. Section 11.3 then
examines the case where X = X; X ¢+« x X, and (11.1) may fail but some
form of additive interdependence applies such as u(xy, g, z3) = uy(z,, T,) +
ug(xy, Ty). Finally, Section 11.4 looks at the homogeneous product set
situation where X = A", as in Chapter 7.

11,1 ADDITIVE EXPECTED UTILITY WITH X = II X,

To simplify our examination of independence among factors in a multi-
dimensional consequence set in the expected-utility context, this chapter
assumes that probability measures for X are defined on the set of all subsets
of X. A similar assumption applies for a measure defined for a factor set X.

Definition 11.1. Suppose P is a probability measure on X < J[2, X,.
Then P;, the marginal measure of P on X,, is defined by
P(A) = P({x:ze X,z,€A}) forall 4, < X, (11.2)
In (11.2) z, is the ith component of . When X = ], X;, (11.2) becomes
148
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PyA)=PX, X -+ X X;y X Ay X Xyq X -+ X X)), 1t is easily verified
that P, is a probability measure on X; when P is a probability measure on X.

It is possible to have (Py,...,P,) = (Qy,..., Q,) when P ¥ Q. With
n = 2let P and Q be the simple even-chance gambles

P($5000, $5000) = P($100000, $100000) = .5
Q($5010, $100000) = Q($100000, $5000) = 5.

Then (Py, Py) = (1, Q) although P Q. P gives an even chance for a
two-year income stream of either ($5000, $5000) or ($100000, $100000).
Q gives an even chance for an income stream of either ($5000, $100000) or
($100000, $5000). I suspect that many people would prefer Q to P. The
condition for (11.1) requires that P ~ Q. This condition may seem more
reasonable when the different factors in X are heterogeneous.

THEOREM 11.1. Suppose that § is either the set of simple probability
measures on X = [I", X, or a set of probability measures on X = [I7., X,
that satisfies S1 through S5 of Section 10.4, and suppose further that there is a
real-valued function u on X such that, for all P, Q € ¥, P < Q <> E(u, P) <
E(u, Q). Then there are real-valued functions uy,...,u, on Xy,..., X,
respectively that satisfy (11.1) and are unique up to similar positive linear
transformations, if and only if P ~ Q whenever P and Q are simple measures

in T such that (P,, ..., P,) = (Qy,...,Q,) and P(z), O(x) € {0, }, 1} for all
z€X.

The very last condition here shows that (11.1) can be established on the
basis of simple 50-50 gambles when X = [, X,. The necessity of the
indifference condition for (11.1) is obvious. The sufficiency proof follows.

Proof. Fix 2= (zi,..., x‘f"‘) in X, assign u,(z9), . . ., u,(2%) values that
sum to #(2°), and define », on X, by
uiz) = u(zl, ..., 2}, T, 2, 2Y) =3 u (2?). (11.3)
FE X )
The indifference condition between 50-50 gambles when (Py,...,P,) =
(@, ..., Q,) leads directly to u(x,,...,z,22,,..., x:) + u(z?, ..., 7},

mi+19x?+g’ D 9xa) = u(zly R ,x,-+1,x?+2, s ,:r"’.) + u(xO) for i= l) LIEIEE }
n — 1. Summing this fromi = 1to i = n — 1, cancelling identical terms, and
transposing (# — Du(z®) we get X" u(a?, ..., 22 ,.2;,2),,,...,20) —

(n— Du(d, ...,2% = u(y,...,z,), which on comparison with (11.3)
shows that

W(Eys . 2) =S ugz),  forall(z,....z)eX.  (114)
=]
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If T satisfies the Section 10.4 conditions then u on X is bounded and hence
u, on X,, defined by (11.3), is bounded. In any event, although u, is defined
on X,, it is equivalent to a function #! defined on X by u}(z) = u,(x,). Then,
using (11.4) and Exercise 10.17b,

E(u, P) = Eu? + ** + u®, P)
= E@?, P) + -+ + E(u’ P)
= E(up, P+ + E(u,, P,)

which yields (11.1) in conjunction with P < @ <> E(u, P) < E(u, Q).

Finally, suppose that v, ..., v, on X, ..., X, satisfy (11.1) along with
uy, - - . » u,. Define u and » on the simple measures in & by u(P) = 3, E(u,, P)
and o(P) = 3, E(v,, P). It is easily seen that u(aP + (1 — «)Q) = au(P) +
(1 — «)u(Q) and similarly for v for simple measures P, Q € J. Hence, by
Theorem 8.4, v is a positive linear transformation of w, say v = au + b,
a > 0. We then have 3 v,(z,) = 3 E(v;, ) = v(zy, ... ,%,) = au(z,, ...,
z)+ b=aX ulx)+ b, from which it follows that »,(z,) = au,(z,) +
b+ aX.ufad) — 3,020 = auy(z,) + b,, for each i, where b, is
defined in context. @

11.2 ADDITIVE EXPECTATIONS WITH X = I X,
When X = ]2, X;, (11.1) does not generally follow from the 50-50

i=1
gambles version of the indifference condition. In general, we require the more
general condition that (P, ... ,P,)=(Qy,...,0,) =P~ Q. When X is
finite, (11.1) follows from this and P < Q <> E(u, P) < E(u, Q) as is noted
in Exercise 4. For X infinite, only the n = 2 case has been satisfactorily
worked out and then only for simple probability measures. Therefore, this
section examines only the X' = X; X X, case.

To show one difficulty that may arise in this case for nonsimple probability
measures suppose X = {(0, 0), (1, 0), (1, 1), (2, 1), (2, 2), (3, 2),.. .} and let
u on X, satisfying P < Q <= E(u, P) < E(u, Q) for all discrete measures P
and Qon X, be suchthat u(k, k) =0fork =0,1,2,...andu(k + 1,k) =
lfork=20,1,2,.... Set 4;(0) = uy(0) = 0 for (11.1). Then for (11.1) to
hold for all one-point probability measures we must have u,(k) = k and
uy(k) = —kfork =0,1,2,...[when u(z, 23) = uy(z,) + uy(xy)]. Define P
by

P(2k, 2% = 2% fork=1,2,...
so that E(u, P) = 0. Then E(uy, P), if defined at all, is infinite: E(u,, P) =
20271 4282724 -+ =14 1 4+ = + 0. Likewise E(uy, P) = —2!-
271 —28.2% — ... = —w, so that E(uy, P,) 4+ E(u,, Py) is not meaning-
fully defined. Despite this, E(u, Q) = E(u,, Q;) + E(ug, Q) when Q is
simple.
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The Structure of X c X X X,

Several special definitions that apply to this section only will be used in
resolving the X < X x X, case for simple probability measures.

Definition 11.2. (z,, z;)R(y,, ¥;) if and only if there is a finite sequence
(%1, 25), 7, . .., &V, (y), ys) of elements in X € X; X X, such that any two
adjacent elements have at least one component in common.

R is easily seen to be an equivalence on X. We shall let D be the set of
equivalence classes of X under R. In the preceding example D = {X}. If
D,D*eD and (2,,z5) € D, (4, ¥s) € D*, and D £ D* then it must be
true that x, # z, and ¥, # y,. Hence, given u on X, there will be a u;, u,
solution to

Uy, 73) = uy(2)) + ug(%y)  forall (z,, z) € X (1L.5)

as required for (11.1) if and only if there is a w;, u, solution for each D €D
considered separately. We therefore concentrate on an arbitrary D e D.
Proofs of our first three lemmas are left to the reader.

Definition 11.3. An aiternating sequence in D is a finite sequence of two
or more distinct elements in D such that

1. any two adjacent elements have one component in common,
2. no three consecutive elements in the sequence have the same first
component or the same second component.

LEMMA 11.1. Ifz,y € D and x 3 y then there is an alternating sequence in
D that begins with x and ends with y.

Definition 11.4. A cycle in D is a subset of an even number of elements in
D that can be positioned in an alternating sequence whose first and last
elements have the same first component if the first and second elements have
the same second component or whose first and last elements have the same
second component if the first and second elements have the same first
component.

LEMMA 11.2. If D has no cycles then there is exactly one alternating
sequence in D from x to y when z,y € D and = 5 y.

LEMMA 11.3. Suppose z*, . .. ,z* is an alternating sequence in D whose
elements form a cycle. Suppose further that T is a mixture set of probability
measures that includes the simple measures, that there is a real-valued function
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u on ¥ that satisfies (8.5) and (8.6), and that [P, Q € T, (Py, Ps) = (Q4, Q] =>
P~ Q. Then

n n

3 u(x}, 237N = 3 u(al, «3). (11.6)

f=1 1

LEMMA 114. If DeDthen thereisa C = D such that

1. C includes no cycle,

2. xRy for each =, y € C with xRy established by a sequence all of whose
elements are in C,

3. (z1, z3) € D=> (x,, ¥y) € C and (y,, 2y) € C for some y, € X,, Yy, € X,.

Proof. With DeD let
C = {C:C © D, C satisfies conditions 1 and 2 of Lenma 11.4}.

We shall prove that C has a maximal element that satisfies condition 3. Let
C* be a subset of C that is strictly ordered by <, and let C* = Je- C.
C*e€ Csince C* = D and

1. C* includes no cycle, for if {z',...,2"} < C* is a cycle then with
z' € C,, C; € C*, the largest of these C; will include {«%, ..., 2"} and this
contradicts C; € C;

2. zRyif z, y € C*, for 2, y € C for some C € C*. Thus, by Zorn’s Lemma,
there is a B € C such that B < C for no C € C. Suppose (7, ;) € D and
(21, #y) ¢ B. Then, since B is maximal, B U {(z,, 73)} must include a cycle
which, since B includes no cycles, contains (z,, 2,). It follows from Defini-
tions 11.3 and 11.4 that (zy, ¥;) € B and (¥,, x;) € B for some y; € X, and

Nnex. &

Additive Expected Utility with Simple Measures

The appropriate theorem for (11.1) with X < X; x X; and simple proba-
bility measures follows.

THEOREM 11.2. Suppose § is the set of simple probability measures on
X = X, x X; and there is a real-valued function u on X such that P < Q <>
E(u,P) < E(u, Q), for all P, Q €. Then there are real-valued functions u,
on X, and u, on X, that satisfy (11.1) if and orly if [P, Q€ T, (P, Py =
(Q1. Q)] = P~ Q. If v, on X, and v, on X, satisfy (11.1) along with u, and
Uy then there are numbers a > 0 and b and real-valued functions f, and f, on
D such that

vi(zy) = auy(x)) 4 fi(D(z)) forallz, e X,

Ua(%y) = Qug(zy) + fo(D(ze))  for all z; € X,

HD)+ f(D)=b forall DeD
where D(x,) € D contains an element whose ith component is x,.

ity
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For completeness we should mention that each 2, € X is assumed to be the
ith component of some x € X, for i = 1, 2.

Proof. The sufficiency of the hypotheses for (11.1) is proved by showing
that (11.5) holds. Two cases are considered for any D € D.

Case 1: D has no cycles. Fix z° € D, define u,(z}) and u,(z}) so that
u,(7?) + uy(#)) = u(2®), and proceed term by term along alternating se-
quences beginning at 2°, defining u, and u, in the only way possible to satisfy
(11.5). By Lemma 11.1, every «, and z, in clements in D has a u(z,) or
uy(zy) thus defined. Lemma 11.2 implies that the w, and u; values are unique,
given u,(29) and u,(x?).

Case 2: D has cycles. Let C < D satisfy the three conditions of Lemma
11.4. The Case 1 proof then applies to C and gives u(z;, Z3) = u(2) + uy(x,)
for all z € C. Suppose z€ D, z ¢ C. Then, by condition 3 of Lemma 11.4,
we have (z,, ;) € C and (¥,, ¥,) € C and, by Lemmas 11.1 and 11.2 thereis a
unique alternating sequence in C from (z,, ¥3) to (¥, %,). Hence C U {z} has
a cycle that must include z. An alternating sequence whose elements form
such a cycle can be written as (z,, 2y), (22, z2 . » (z3", 237), By Lemma
11.3, (11.6) holds with (z1, z}) = (=, z,). Applymg u=1u + u; to the C
terms in the cycle it follows from (11.6) after cancellation that u(z,, z,) =
Uy(x,) + ug(zy). It follows that u = u; + u, holds on all of D.

For the last part of the theorem let u,, uy and v,, v, each satisfy (11.1).
Using the approach in the final paragraph of the proof of Theorem 1!.1 we
get vy(z,) + vy(xy) = auy(z,) + auy(xy) + b for all z € X. For a given D let
2% € D. The Case 1 procedure for assigning », and u, then leads to

vy(2y) = auy(x,) + auy(2?) + b — vy(x3)
vy(2;) = auy(x,) + 0“1(-”1) + b —~ vy(})

for all x € D. Letting f,(D) = au,(«) + b — vy(z2) and f3(D) = au,(x?) +
— v,(=9), the desired equations follow. (A different 2° must be chosen for
each D siuce there are no z, or z, interconnections between different elements

inD)

11.3 ADDITIVE, INTERDEPENDENT EXPECTATIONS FOR I X;

Throughout this section we take X = [, X, and let {f;,..., 7} be an
arbitrary, but fixed, nonempty set of nonempty subsets of {1,2,...,n}.
For Section 11.1, I; = {j} for j =1, ..., n. Here we s..all permit the /; to
overlap.

We shall let § be a set of probabxhty measures on X and let 7, be a set of
probability measures on [],,, X;. With P e T, the r1arginal measure P; of
P on [],, X; is such that P(4,) = P({z:z € X, z; € X, for i ¢ I, 2’ € A,}) for
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every 4; < 1, X, where 2/ is the projection of z onto I,. For example, if
z = (2,, ¥y, T, %,) and I; = {1, 3} then 2! = (x,, z).

THEOREM 11.3. Suppose that the hypotheses in the first sentence of
Theorem 11.1 hold. Then there are real-valued functions u,,...,u, on
I, X .. .. TI,, X, respectively such that

P< Q<SEwu,P)<SEwu,Q,), forallP,Qef, (11.7)
J=1 J=1

ifandonly if [P,Q €T, (Py,...,P,)=(Qn...,0n)]=P~Q.

Admissible transformations for the u; are discussed in Exercises 9¢ and 10.
The proof of Theorem 11.3 will be carried out in two steps. First, we shall
state and prove a lemma and then use this to prove the theorem. In the
statement of the lemma we shall let 2° = (22, . .., 29) in X be fixed and, for
any re X and I < {1,2,...,n}, let z[I] be the n-tuple in X whose ith
component is x; if ie fand 20 if i ¢ I.

LEMMA 11.5. Suppose T contains every simple probability measure on X,
and a real-valued function u on X satisfies P < Q <= E(u, P) < E(u, Q) for all
simple measures. Suppose further that [P, Qe T, (Py,...,P,)=(0y,...,
Q)] =P~ Q. Then, forall z € X,

u(@) = 3 (=1 3 (x[ﬁ 1‘,]). (11.8)

i=1 154 <ig<-: =1

For m =3, (11.8) is w(z) = wu(z[l,\]) + u(z[l;]) + w(z[l,]) — {u(z[ly, N
L)) + w(z[ly N L)) + wx[ly, N LD} + u([l, N L N L)),

Proof of Lemma 11.5. To simplify notation let x be an arbitrary element
in X and let [I} be the projection of [I] onto . (If I = {1, 3} then z[/] =
(x,, 22, x5, 23, ...). Then if I, = {1, 4}, [I} = (z,,z0).) Because the only
integers in / that are relevant in defining [/} are those in [, [I} = [I N L}.

Let Sand Ron{l,...,m} x {l,..., m} be defined by

S D={G,... .kl £hH< <y L<m,jeliy,... 2 Ix}}
R(ksj)":{(ib---»ik):l ShH<-- <iksm’j¢{ib---:ik}}

so that S(1,)) = {j}, R(m,j) = &, and

S(k!j)UR(ksj)z{(il!~‘-,it):l Sil<"' <igSM}, j="— l,...,m.

S(k, j) U R(k,j) has (';:) elements.
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Let P and Q be simple probability measures defined by
k
P=az4 3 3> az[ﬂ I‘.]

MR SULITRMS) | aml
x

az[n I,,,]

YKo Bk, )IURUK )  Lo=i

where K, = {(i:2<i<m, i is even}, Ko ={i:1 <i<m, iis odd}, and
a = 2-™+1 For the marginal measures on I1,, X; our preceding observations
and definitions yield

Py =oax! 4 E( > m[ﬁ I,,]1+ 2 a[ﬁ .1,']’)

0=3

a

Ke\ Sk 1) Le=1 R(x,5) La=1
k—1 § k [}
=m’+z( s a[m,, +3 a[m,,])
K¢ \R(k=1,5) =] R(k.§) =}
m‘ k i
= qz’ +> 3 a[n l‘.]
k=l R(k,7) | am1
frl ] k )
ez’ 3 all,} + ( s a[m,,] + 3 a[m‘,])
R(1,9) t:fa. R(x~1,7) | swl Bik,d) | sm1
n k i
=2 U+ 2ty + 3 (3 o]
81,9 R(1.5) k:§° S(k,4) Lgag
k ] -
+ 3N L))
Rerd) Ls=1
Rk J
5.5 A
Ko Sk, HVRR.D) Lem1
=09,

Hence, by hypothesis, P ~ 0 and therefore E(u, P) = E(u, @), or
g s w(Eon])=3 3 o(n1])

Ke S, DURW, 5 =1 Kb S(k.9) UR(E, 5)
which is (11.8). ¢

Proof of Theorem 11.3 (Sufficiency). To verify (11.7) under the stated
hypotheses, including (7,,..., P)=(0,...,0,)=>P~ @, we note
first from Lemma 11.5 that (11.8) holds for u on X. With 2° € X fixed as in
the lemma we define u; on 1, X; as follows:

u(z') = u(zll,)) +:>:::(~1)* 3 u(x[ klz,, m,]).

156 < <ip<y -
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u; is well defined since u,(2?) = u,(y’) if 2/ = y’. Moreover, if u on X is
bounded (as in Chapter 10) then u, is bounded. Summing over j:

f:u,(x’) = f:u(m[!,]) 4+ g E‘(-—-l)" p u(z[ﬁ I, N I,])
=]l Jm1 Sl k =} 15 < <fp<d sm]
m m-1 m 13
=SuED+3(-1FS 3 u(m[ﬂ I, A 1,])
Fo=l kel fmptl 1S4y < << ) Sl

- gu(zu,lng(—l)" 2 “(“[ﬁl"])

1sfi<-<f<ip1<m =}

=Suettp+ 3 3 (=] AL))

1543 - <ixEm =1

- é‘““m:« 2, <,,,“(“[f.‘1"'])
= u(x) b}‘_(lll-s)s N

from which (11.7) readily follows. ¢

11.4 PROBABILITY MEASURES ON HOMOGENEOUS PRODUCT SETS

Throughout this section X = 4", ¥, is the set of simple probability
measures on X, and R is the set of simple probability measures on 4. For
Pe?,, P;eR is the marginal measure of P on the ith A: that is, P,(B) =
P(A-! x B x A™) for B < A. The marginal measure of P on all but the
ith A will be denoted P2 P((y, .. ., %, g, Tioqy e o v s Tp)) = Dgen P((21, - ..
Tpops @ Tygpy - o o 5 Ty))

Based on < on 7,, we define < on R as follows:

R < R* <P < Qforevery P, Q €, such that P, = Rand O, = R* for
all /. Three special preference conditions will be applied to this case:

Cl. [P,QE‘J',,P‘E-Q‘fDri:l’,._’n]=>P~Q.

C2. [P,Qef,,P,=R,Q,=R* P =Q!]=[P< Q< R<R*].

C3. For some ReR, [P, Q, P*, Q*€¥,, P,=Q,=P! = Qf =R,
P: = 0, P¥ = Q¥]= [P < @ <>P* < Q*).

C2 is a persistence condition, much like the definition of persistence in
Section 7.1. Under C1, all P that have P, = Rfor i = 1,.. ., n are indiffer-
ent, and all @ that have O, = R* for all i are indifferent. Hence if < on 7, :
is a weak order then, if P < Q for one such P and @, P < Q for all such P ;
and Q so that < on R is a “faithful” weak order. C2 says that this weak order {
on R applies to each of the n factors. C3 is a form of stationary condition,
and compares with stationarity as defined in Definition 7.3 of Section 7.3. ;

ok
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The reasonableness of these condition: is, of course, doubtful in most
situations.

THEOREM 11.4. Suppose that there is a real-valued function u on X = A"
that satisfies P < @ <> E(u, P) < E(u, Q), for all P, Q € 7,, that P < Q for
some P, Q €9,, and that C| and C2 hold. Then there is a real-valued function
p on A and positive numbers 4,, . . . , A, such that

P<Q @:flz‘s(p. P) < gw(p, Q). forallP,Qef, (11.9)

and p’ on A and positive A, . . . , A, satisfy (11.9) along with pand 2, . . . , 2,
if and only if there are real numbers p > 0, q > 0 and r such that

Ai=pA, fori=1,...,n {11.10)

p(@)=gpla)+r forallaeA. (11.11)

If, in addition, C3 holds and n > 2 then there is a unique number w > 0 such
that

P< Q<Y nE(p,P)< I 2 E(p,Q), forallP,Qef, (11.12)
i=1 gl
Expression (11.9) compares with (7.9) and (11.12) compares with (7.13).

Proof. To obtain (11.9) we use Theorem 11.1 to obtain (11.1) for all
P, Q € T,, where each u, is defined on 4. C1 is used in this. It then follows
from C2 and the definition of < on R that, foreach i, R < R* <= E(u;, R) <
E(u,, R*) for all R, R* ¢ R. It follows from Theorem 8.4 that the u, are
related by positive linear transformations, say u, = au, + b, with a, > 0 for
J=2,...,nletp=wand A = 1,4, =gqg;forj=2,...,n Then (11.9)
follows.

Suppose p’ and A > O satisfy (11.9) also. Then, since the A;p are unique
up to similar positive linear transformations by Theorem 11.1, there are
numbersk > Oand 8y, ..., f,suchthat A/p’ = kd,p + f,fori=1,...,n.
(11.10) and (11.11) then follow as in the proof of Theorem 7.4. P < Q
for some P, Q € 7, is used in obtaining (11.10).

The proof for (11.12) follows the general lines given in the proof of
Theorem 7.5 and will not be detailed here. ¢

11.5 SUMMARY

When X < []2., X;, the usual expected utility axioms along with a
condition that says that P~ @ when the marginal mecasure of P for X;
equals the marginal measure of Q for X; (i = 1, ..., n) leads to the additive
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form P < Q <> 3, E(u;, P,) < 3, E(u4;, Q). This was proved in general for
X=TI~, X, and for X € X, x X;. (It is true aiso for simple measures
when X c T2, X, but the proof of this was discovered too late for inclusion
here.)

Under the additive, expected utility representation in the homogeneous
context with X = A", a persistence condition leads to P < Q <> 3, 4,E(p,
P) < 3, AE(p, Q,), and persistence and stationarity lead to P < Q <>

3™ E(p, P) < X, mE(p, Q).

INDEX TO EXERCISES

1. 50-50 indifference condition. 2. Binary relations on the F,. 3. Marginal expectations.
4. Additivity with finite X < I X,. 5-8, Alternating sequences and cycles. 9. Markovian
dependence in utility theory. 10. Admissible transformations. 11. Theorem 11.3 versus
Theorem 11.2. 12. No time preference. 13-14. Theorem 11.4.

Exercises

1. For the bridge-construction example of Section 10.1 let x; be cost and let z,
be completion time in (z,, 7,) € X; X X),. Assume that both factors are subject to
uncertainty. With X = X, x X, argue that only 50-50 gambles of the following
form need to be used in testing the indifference condition of Theorem 11.1: P gives
($100 million, 4 years) or (z, million, =z, years) each with probability .5; Q gives
($100 million, z, years) or (x; million, 4 years) each with probability .5.

2. Let ¥ be the set of simple probability measures on X = J]r, X; and let 7,
be the set of simple probability measures on X;.Witha, b€ T;definea <;b<=P <
Q for every P, Q € ¥ such that P; = a, Q; = b, and P{ = Qf, where P£(Q?) is the
marginal of P(Q) on ;. Xi Also leta <;b<=(a <;b,not b <;a),a ~ b=
(a <; b, b <;a). We identify the following conditions:

A. < on T is transitive and connected;

B (P<LQ,0<a<)=>aP+(l —a2)R<a@ + (1 — 2)R;

C(P~Q0<a<)=aP+ (1 ~a)R~aQ + (1 — a)R;

D (Pi=Qfori=1,...,mM})=>P~Q,
where P< Q<> (P<QO,not @< P)and P~ Q <> (P £ Q, Q < P). Provethe
foilowing theorems. The 3> means *““does not imply.”

a. (< on ¢ is transitive) => (<, on 7; is transitive),

b. (P; ~;Qi, P = Q) =P ~Q.

e. (P;<,QuP;=0%P<Q.

d. (< is transitive, P; <; Q;foralli)= P < Q.

e. (A, each <, on ¥ is transitive and connected, P; <; Q, for all i, P; < Q, for

somei)f> P < Q.
[ D=> < on Tand <, on 7, are refiexive,
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(n =2, <, is reflexive fori = 1,2) = D.
(n > 2, < is reflexive for each i) $ D.
(n 2 2, < is reflexive for each i, ¥ is transitive) == D,
(A, D) $ <, on 7, is transitive and connected.
(< is transitive, B, C, D, P; = a, Q; = bP} =Qia <, b)=>P<Q.
(< is transitive, B, C, D, P, < Qqforall i, P; <, Q; for some i) = P < .
When C in & and / is replaced by A, the conclusions of the two theorems can
be false.
(A4, B, C, D)= <, on 7, is transitive and connected.
(A,B,C,D,P; <; 0,0 < a <1)=aP; + (1 — )Ry < a0, + (1 ~ )R,
p (A4,B,C,D,P; <;0,0 <a<1)=aP; + (I —)R; <, a0, + (1 — WR,.
3. With X = TTr., X; let P; be the marginal measure on X, of the probability
measure P on X and let fon X and f; on X, be real-valued functions that satisfy
f@y, ..., %) = fi(z)) for all z € X. Prove:
a. (P is simple, X = TT X)) = E(f, P) = E({,, P)).
b. (Pissimple, X = [] X)) = E(f, P) = E( Jis Py).
¢. (fiis bounded, X < [T X)) = E(f, P) = E(f,, P).
4. Suppose that ¥ is the set of simple probability measures on a finite set X <
(=1 X1 that there is a real-valued function u on X that satisfies P < Q <> E(u, P)<
E(u, Q) for every P, Q € 7, and that (P, Q € T Pi=Qufori=1,...,m)=>P~Q,
Then there are real-valued functions u, ...,u, on X,,. .., X, respectively that
satisfy (11.1).
Prove this theorem using the following steps.
a. To establish u(zy, ..., z,) =3 u;(2,) for each z € X note that this system of

equations is the same as

N
D a(y) = u(a) Jj=1....M (11.13)
k=1

om0

SRR

when we let X = {xl’ L] 9:”‘1”}: Xi = {zib e i"vim‘}! (yh LR ’yN) =
(@11 ooy By Ty, e By, s Tam,)s N =37 m,, and define the a,; €
{0, 1} in an appropriate manner with Y, a,, = n for cach j.

b. 1t is a well-known fact of linear algebra that (11.13) has a v-solution if and only
if for any non-zero vector (cy, .. ., €y) E ReM

M M
( c,a,,c=0fork=l,....N)::Zc,u(x’) =0, (11.14)
jm1 i=1
To verify this for a non-zero (c,, . . . , ¢yy) let 4 = {jic, > 0}, B = {j:e; <0},
P=3 /3 c)and Q = 3 ¢ (c,/ p e,)2*, and show that the left side of
(11.14) implies that 4 = @ and B # 2, that P; = Q, for i = 1,...,n, and
that 3 , ¢; = —3 p c,. Then use the indifference condition to establish (11.14),
In the X = X x X, context of Section 11.2 verify:
. R in Definition 11.2 is an equivalence.
Lemma 11.1. (Consider a shortest sequence.)
» A cycle has at least four elements.

. Let X = {(xl’ a:,), (xly zi)n (yl’ z,")’ (ylx ys), (zh yi.)$ (zl.s 2‘)}’ and let ¥ on X

= S NP

O P
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satisfy P < Q <> E(u, P) < E(u, @) for & probability measures P, Q on X. Prove:
a. Xis acycle.

b. X has no four-clement cycle.
¢. The 50-50 indifference condition of Theorem 11.1 holds.
d. (11.1) can be false.

7. Prove Lemma 11.2 by showing that if D has more than one alternating sequence
from (z,, z3) t0 (¥, ¥,) then D includes a cycle.

8. Prove Lemma 11.3.

9. In the context of Section 11.3let I; = {i,i + 1} fori =1,2,...,n — 1 with
m=n-—1,

a. Ve.ify that the indifference condition at the end of Theorem 11.3 impiies the
following: [{(w;, %.,4), (¥, Yo} = {(;, 21, (W, Wa+1)} fori=1,...,n—
1= 3§z + 4y ~ 4z + }w. (The latter are 50-50 gambles.)

«. Prove that Theorem 11.3 is true for the case at hand when the indifference
condition in Theorem 11.3 is replaced by the 50-50 indifference condition in
(a)- Obtain U(Z) = 2?:11 u.'(x", xi.,,l).

¢. With P < Q<= E(u, P) < E(u, Q) for all P, Q€ ¥, suppose that u(x) =
dr-tugey, x,) = 325 vfx,, %,,,) for all x € X. Show that there are real-
valued functions f;, ..., fu_y On Xy, ..., X, such that

vy(a, b) = uy(a, b) + f1(b) forall (a,b)eX, x X,,
2ia, b) = ua, b) = fi(@) + fia(b)  forall (a,b)e X; x Xy,
2<Li<n—2,
Up1(a, ) = u,_y(a,b) — f,_1(a) forall (a,b)€ X,y X X,.

10. In the context of Section 11.3 suppose that u(z) = 37 u,(a7) for all x€
TI%, Xs, as in the proof of Theorem 11.3. With u fixed, describe the set of trans-
formations on the u, that preserve equality. Note that, if {v,} is such a transformation
of {u;} then 3 u,(z’) = Y v,(%) and consequently 3™ v, ([,}*) =3 ™, u,(U,]*) for
j=1...,msothat

o,(2) = (@) + 3 [l 415 ~ oG]
k#3
If I, "I, = @, argue that u,([1.}) — v.([;}}) is constant as z ranges over X,
and if I; N1, » & then ihe stated difference varies as x ranges over X but the
variation is caused only by the z; for i€ l; N [,.

11. Argue that if the generalization of Theorem 11.2 were true for X = JT]~, X

withn > 2, then Theorem 11.3 for simple measures would be an immediate corollary
of the more general form of Theorem 11.2.

12. Show that the hypotheses in the first two lines of .Theorem 11.4 along with
(Py, ..., P, is a permutation of Qy,...,@,) = P~ Q, imply that there is a
real-valued function » on X such that, for all P, Qe 9, P < Q <>, E(p, &) <
2E(p, Q0).

13. Verify (11.12) in Theorem 11.4.

14. Can you imagine a situation in the context of Section 11.4 where any one of
C1, C2, and C3 seems reasonable with n > 1?
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STATES OF THE WORLD

Preference structures that incorporate uncertainty in the formulation of
alternatives but do not presuppose probability have been expressed mostly
in states of the world models. In such a model the uncertainty concerns which
state in a set of mutually exclusive states (or environments) obtains, or is the
“true state.” It is generally assumed that (1) the decision maker does not
know the ‘‘true state,” (2) the act he selects has no effect on the state that
obtains, and (3) the state that obtains affects the outcome of the decision in
conjunction with the act selected.

Interest in expected-utility theories that are set in the states of the world
formulation is due in large part to Leonard J. Savage’s theory (Chapter 14),
published in 1954. Before this, the now widely-referenced theory of Frank
P. Ramsey (1931) was virtually unknown. Savage’s theory reflects elements
from Ramsey and from John von Neumann and Oskar Morgenstern: his
interpretation of probability owes much to the pioneering work of Bruno de
Finetti.

Some other theory for the states formulation is presented in Chapters 12
and 13.
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Chapter 12

STATES OF THE WORLD

This chapter introduces the states of the world formulation for decision under
uncertainty. The first section describes the usual states formulation and
compares it with the approach of Part II. The second section examines the
weak-order expected-utility model for the states formulation, and discusses
several axiomatic approaches to the model. Several of these approaches are
explored in the next two chapters.

The second section also points out two problems that arise in the theories.
One of these, often referrer. to as the *“constant acts’” problem, suggests an
alternative approach to the expected-utility model. Axioms for the alternative
approach have yet to be discovered. The second problem concerns the
fineness of state descriptions and residual uncertainty. Some additive utility
models that are designed for this possibility and which do not explicitly
include state probabilities are discussed in the third section.

12.1 STATES AND STATES

In Part I of this book we thought of a decision under uncertainty in terms
of a set F of available acts or strategies and a set X of consequences, one of
which will follow from the selected act. We assumed that the decision maker’s
uncertainty about which z € X would occur if f€ F were selected could be
expressed by a probability measure P, on X. The axioms were based on sets
of probability measures that supposedly included {#,:f € F}.

To enlarge on this let §* be the set of functions on acts to consequences.
Each s S’ assigns a consequence s(f) € X to each fe F. Suppose, for
example, that a young man will propose marriage to either Alice or Betsy,
but not both in case one refuses him. Suppose further that he is interested
only in the three consequences in {Marry Alice, Marry Betsy, Stay Single}.
In this case S’ contains nine functions, but only four of these need be con-
sidered. The four are {(Propose to Alice, Marry Alice), (Propose to Betsy,
Marry Betsy)}, {(Propose to Alice, Marry Alice), (Propose to Betsy, Stay
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164 States of the World

Single)}, {(Propose to Alice, Stay Single), (Propose to Betsy, Marry Betsy)},
and {(Propose to Alice, Stay Single), (Propose to Betsy, Stay Single)}. One
of the five functions that is excluded is {(Propose to Alice, Marry Betsy),
(Propose to Betsy, Marry Alice)}.

Suppose that if act £ is implemented then consequence s(f) will occur and
this is true for each f' F. Then we say that s cbtains. By C' < §' obtains we
mean that some s € C’ obtains. Suppose the decision maker has a probability
measure P’ on (the set of subsets of) §'. P’(C’) is interpreted as 2 measure of
his belief in the truth of the proposition “*C’ obtains.” Given P’ we could
define P, by

P(A) =P'({s:se8',5(f)eA}) foralldc X (12.1)

In the marriage example we would expect that P’(C’) = 0 when C’ is the set
of the five “excluded” functions. Then we would have P’ (either girl would
say “yes”) + P’ (only Alice would say “yes”) + P’ (only Betsy would say
“yes”) + P’ (neither girl would say “yes™) = 1. Here we have translated the
four functions into conditions under which they will obtain. For example
{(Propose to Alice, Marry Alice), (Propose to Betsy, Stay Single)} obtains
if and only if only Alice would say “yes.”

If s € §' obtains it will obtain regardless of which f is implemented. This
is a result of the way 5’ has been formulated. Hence the decision maker’s
choice should not influence his beliefs about which s might obtain, But we
expect that his beliefs about which s might obtain will influence his choice.

In most cases P’ on $’ contains more information about the decision
maker's uncertainty than does {P,:f € F} when the P, are probability measures
defined from P’ as in (12.1). To determine an act in F that maximizes expected
utility it is usually unnecessary to estimate all of P’, a task that may be an
order of magnitude more difficult than the estimation of the P,.

Although four potentially nonzero P’(s) were noted in the marriage
example, our young man would presumably be satisfied with estimating the
two probabilites p = Ppopose 1o alice  (Marry  Alice) = P 0000 10 atice
(Alice would say “yes”) and ¢ = Py opme to netay (Matry Betsy) =
Propose 1o Betsy (Betsy would say “yes”). In fact, all he needs is an estimate
of the ratio p/g since E(u, Propose to Alice) < E(u, Propose to Betsy) <=
plg < [u(Marry Betsy) — u(Stay Single)}/(w(Marry Alice) — u(Stay Single)].

States of the World

In Savage’s words (1954, p. 9) the werld is “the object about which the
person is concerned™ and a state of the world is *‘a description of the world,
leaving no relevant aspect undescribed.”” The states are to incorporate all
decision-relevant factors about which the decision maker is uncertain and
should be formulated in such a way that the state that obtains does not
depend on the act selected.
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According to the last part of this description it would not seem out of
place to call the clements in S’ “‘states.” However, the approach made
popular by Savage and others does not usually proceed in this way. Instead
of defining states as functions on acts to consequences, Savage defines acts
as functions on states to conszquences. With S the set of states of the world,
each f€ F is a function on S to X:f(s) is the consequence that occurs if fis
implemented and s € S obtains.

Simple examples of states as they are often thought of in the Savage
approach are: whether an unbroken egg (the world) is good (state 1) or
rotten (state 2); whether the next flip of this coin will result in a head (s,) or
a tail (sy); whether the accused is guilty (s;) or innocent (s); whether these
mushrooms are harmless (s,) or poisonous (s,). If f = ““Eat the mushrooms”
and g = “Throw away the mushrooms” then f(s;) = “Enjoy a culinary
treat,” f(sy) = “Enjoy a culinary treat then die,” and g(s,) = g(s,) =
“Throw away the bunch of mushrooms.”

If § is so formulated that at most one s € S can obtain, the decision maker
cannot conceive of none of them obtaining, and the state that obtains does
not depend on the act selected, then we might suppose that the decision
maker has a probability measure P* on § where P*(C) is his probability that
some s € C with C = § obtains. We would then define P, by

P(Ad) = P*({s:seS,f(s)€d}) forallAc X. (12.2)

If in fact subsets of S are more or less probable depending on which f € F is
chosen, then new states defined as functions on F into S will remove this

difficulty. In most discussions based on Savage’s theory it is presumed that
(12.2) holds.

Comparisons of Two Formulations

The rest of this book is primarily concerned with utility theory based on
Savage’s conception of decision under uncertainty. Before we get into that
it seems advisable to note that the two formulations presented above are rot
incompatible. In fact, they are virtually isomorphic when a certain consistent
way of viewing uncertainties is adopted. A demonstration of this follows.

Whether §’ and S as conceived of above appear different, at least on the
surface, suppose in fact that their probability measures P’ and P* agree with
each other. By this we mean that, for any 4 & X and fe F,

P'({s':s' eS8, s'(f)c A}) = P*({s:5 € S, f(5) € A}). (12.3)

This says that the decision maker’s probability of getting an € 4 when fis
used is independent of the particular method used to describe his uncertainty.

Let u on X be the point utility function defined in such a way that for any
two measures P and Q on X, P < Q <> E(u, P) < E(u, Q). We assume (see
Chapter 10if X is infinite) that w on X is bounded. Let u,, u,, . . . be a sequence

e Al k.
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of simple functions on X that converges uniformly from below ta »» {Definition
10.11), Consider one of these, say u,,. Let u, have m values with u,(4,) = ¢,
fori=1,...,mwhere {4,,..., A,} is a partition of X and let

C,=1{"seS§,s(f)ed} C,={sse8,f(s) A}

Then {C,, ..., C,}and {Cy,. .., C,} are partitions of §" and S respectively
and, by (12.3), 3, c,P'(C)) = 3 ¢,P*(C)). it follows from Definition 10.12

that
Efu(§'(f)), P'] = E[u(f(3), P*}, (12.4)

where * denotes the varying factor under P’ or P*. In terms of (12.1) the
left side of (12.4) is E(u, P,). In terms of (12.2) the right side of (12.4) is
E(u, P)).

Hence, under the agreement of (12.3), the two formulations give the same
value for the expected utility of act f.

12.2 EXPECTED UTILITY PREVIEW

In viewing acts as functions on states to consequences, we shall be con-
cerned with the expected-utility model

[ < g <> Eu(f(s), P*] < Elu(g(s)), P*), forallf,geF, (12.5)

where P* is a probability measure on the set of all subsets of § and v is a
utility function on X,

A number of axiomatizations of (12.5) have been made. By far the best
known of these is Savage’s theory (1954), all of whose axioms ¢an be stated
in terms of < on F. His axioms require, among other things, that S be
infinite and that if B < § and 0 < p < | then pP*(B) = P*(C) for some
C € B. He assumes also that every element in X can occur under each state
and that all constant acts—those that assign the same consequence to every
state—are in F. His reason for doing this is to provide a way of defining
preferences among consequences on the basis of preferences among (constant)
acts. Moreover, this enables the derivation of a probability measure P* on
S. Savage’s theory will be presented in detail in Chapter 14.

One of the most criticized aspects of Savage’s theory is the structural
condition that all of X is relevant under each s € S. For the general situation
let X(s) denote the subset of consequences that might actually occur under
the acts in F if 5 obtains. Then, viewing the consequences as complete
descriptions of what might occur, it would not seem unusual to have
X(s) N X(s') = & when s £ s’. When this is so, there is no natural way of
defining preferences on consequences in terms of preferences on acts. This
suggests an alternative approach to (12.5) that is based on a pair of preference
relations, < on Fand <’ on X. In this approach we would be interested in
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conditions for < and <’ that imply the existence of a real-valued function u
on X = {Jg X(s) and a probability measure P* on S that satisfy (12.5) along
with <’y <> u(z) < u(y), for all z, y € X. I do not presently know of any
axiomatizatic 1 that does this, even when X and F are finite, and allows for
no overlap of the X(s).

Extraneous Probabilities

In addition to Savage’s approach to (12.5), a number of authors have
developed theories that use a set of extraneous probabilities in the axioms.
These probabilities may have nothing to do with P* which, like u, is to be
derived from the axioms. Conceptually, the extraneous probabilitics can be
associated with the outcomes of chance devices such as roulette wheels, dice,
or pointers spun on circular disks. The axioms in these cases apply < to a
set of elements constructed from F and the extrancous probabilities. The
set to which < is applied includes F as a special subset.

Axioms for (12.5) that. use extraneous probabilities from 0 to 1 have been
presented by Chernoff (1954), Anscombe and Aumann (1963), Pratt, Raiffa,
and Schlaifer (1964), Arrow (1966), and Fishburn (1969). The next chapter
examines two versions of this theory. The first, which assumes that § is
finite, follows Pratt, Raiffa, and Schlaifer and assumes only a minimal
overlap among the X(s) for different s € S. This overlap is necessary in order
to have a base on which to define P*. The second theory makes no restrictions
on the sizes of § and X, but it does assume that X(s) = X for all s as in
Savage’s theory. However, unlike Savage’s theory, almost no restrictions are
placed on P*.

Axioms for (12.5) that use only the extraneous probability 1/2 (or the
notion of even-chance gambles) have been developed by Suppes (1956).
Suppes’ theory can be viewed as a logical completion of Ramsey's (1931)
ideas. Suppes (1956) should be consulted for a more detaiicd account. Some
of the 50-50 theory is presented in the exercises of Chapter 13,

Residual Uncertainty and Act-State Pairs

In practice it is seldom possible to ensure that the states will leave no
relevant aspect of the world undescribed. No matter how finely we describe
the potential realizations of the world, the descriptions will usually be
incomplete even when the states meet the logical criteria of being mutually
exclusive and collectively exhaustive. Thus the specification of act f and state
s will enable us to say something about what will occur although we may
never be precisely certain about exactly what will happen if fis implemented
and s obtains. Part of this residual uncertainty can be identified explicitly by

expanding S to obtain a finer set of states. This may necessitate an expansion
of F also.
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The practical question is thus seen as the question of how detailed to make
the states in light of the purpose of the decision and the import of the
potential consequences.

The possibility of residual uncertainty (given f and s we are still not
precisely certain about what will happen) leads us to consider a formulation
that does not attempt to detail exact consequences. In this formulation
consequences f(s) are replaced by act-state pairs (f, s) € F x S. Uncertainties
not resolved by simply specifying act-state pairs might be mentally factored
into the situation by the decision maker during his preference deliberations.

In this case no act-state pair appears under more than one state. Thus we
have the kind of situation described above where X(s) N X(s') = @. With
u a utility function on F x § in the present formulation, we might ask for
conditions for a binary relation < on F and a binary relation <" on F x §
that imply the existence of a real-valued function ¥ on F X S and a proba-
bility measure P* on S such that

(f, )< (g )<>u(f,s) <ug,t), for all (f,5), (g, t)eF x S, (12.6)
S < g <= E[u(f, s), P*] < Elu(g, s), P*], forall f,geF. (12.7)

I do not presently know of any more-or-less satisfactory axiomatization for
this model.

12.3 MODELS WITHOUT STATE PROBABILITIES

Despite the absence of axioms for the F x § model of (12.6) and (12.7)
we can formulate axioms for more general but perhaps somewhat less
interesting forms of that model. These forms posit additivity over the states
but make no attempt to define state probabilities. I shall comment briefly
on several of them. These comments apply also to the consequence formula-

tion when X(s) N X(s') = @ whenever s # s'. Throughout this section both
F and S are assumed to be finite.

An Order for Each State

In our first case we assume that the decision maker has a weak order <
on F along with a weak order <, on F for each s. Thus, <, orders F under
the hypothesis that s obtains. If the decision maker does in fact have a weak
order <’ on F x 8, then <, would be obtained as the restriction of <’ to
F x {s}). In this context we are interested in the existence of a real-valued
function v on F X S that satisfies

[<.g<>u(f,s5) <v(g,9), forallf,geF and seS§, (12.8)
f<geIsufis)< Xsv(g,s), forallf,geF. (12.9)

s AR
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Under the weak order conditions, an independence axiom across states that
is necessary and sufficient for (12.8) and (12.9) can be derived from the
Theorem of The Alternative (Theorem 4.2). One version of such an axiom is:
ifff<g Ge,fi<glorfi~g)forj=1,...,mand if for cach s there
is a permutation f*, ... ,f*" of f1,...,f™ such that g' <, /¥ for j =
l,...,m, then in fact f’ ~ g/ and g/ ~, f¥ for all f and s.

Apart from the question of intransitive indifference, one can criticize the
model of (12.8) and (12.9) on the count that the decision maker might have
a nonindifferent weak order <, when he regards s as virtually impossible,
In (12.7) we can take care of this by setting P*(s) = 0, but the only way of
reflecting *s is impossible™ in (12.9) in a general way is to have »(f, s) con-
stant on F for the given s, and if (12.8) is to hold we then require (f, s) ~,
(g, s) for all f, g e F. The model given by (12.8) and (12.9) can easily be
amended to handle this criticism by excluding all states that, in the judgment
of the decision maker, cannot possibly obtain, Such states will be referred
to as null states in the next two chapters.

The model and therefore the independence condition can easily be seen to
be unreasonable when the *‘state™ that obtains depends on the selected act.
For example, suppose you want to sell something and can either advertise
(at some cost) or not advertise. Let the “states” be s = item is sold, # = item
is not sold. Then surely advertise <, don’t advertise, and advertise <, don’t
advertise. According to the model this requires that advertise <
don’t advertise, which, if we took it seriously, would say that one should
never advertise.

Perfect Information Acts

An alternativc to using the <{, directly is to work only with < on a set
that includes F. For example, let 5 be the set of functions on S to F: a
function f € F, which assigns act f(s) to state s for each s€ S, is a perfect
information act. We interpret | as follows. Suppose the decision maker
specifies an § € ¥. He then gives this function to an imaginary second party
who has perfect information about which state obtains and who proceeds to
implement the {(s) € F for the s that obtains. In terms of the <, the decision
maker’s most preferred f would presumably be one that for each s has
f <, f(s) for all fe F. (This assumes that the state that obtains does not
depend on the selected act.) F is the subset of constant functions in F.

Under this formulation we are interested in the existence of a real-valued
function v on F X § that satisfies

f< g<=>2 o(f(s), s) < X vlg(s),s), forallf,geF. (12.10)
S S

Condition C of Theorem 4.1 applies directly to this case. That is, (12.10)
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holds if and only if [f(s),..., f™(s) is a permutation of gi(s),..., g™(s)
foreachse S, < g/'forjm1,...,m— 1]=>not = < g™

A probabilistic argument (using extrancous probabilities) that supports
this independence condition proceeds as follows. Suppose fi(s), . .., f™(s)
is a permutation of g(s), ..., g™(s) for each s. Let 3 (1/m)ff denote an
“alternative” whose ‘‘implementation’ is carried out as follows. A well-
balanced die with m symmetric faces numbered 1 through m is rolled and if
face j occurs then f/ is used, with (f/(s), s) the resulting act-state pair if 5
obtains. 3 (1/m)g’ has a similar interpretation. Supposing for convenience
that all f*(s) are different for j = 1, ..., m, if s obtains then 3 (1/m)f’ gives
each of (fi(s), 5), ..., (f™(s), 5) an equal chance of resulting. The same: is
true with respect to Y, (1/m)g’, and since g'(s), . . . , g™(5) is a permutation of
f1(s), ..., f™(s) it seems natural to regard ¥ (I/m)f’ and ¥ (1/m)g’ as
essentially equivalent if s obtains. Since this is true for each s we would
expect that 3 (1/m)ff ~ 3 (1/m)g’.

Now if in fact the condition is violated by f/ < g’ forallj < mand f» < g™
we would then expect that > (1/m)ff < 3 (1/m)g’, which violates our
“reasonable™ conclusion that 3 (1/m)ff ~ 3 (1/m)g’.

Extraneous Probabilities

The model given by (12.10) can be embedded in a model that uses extrane-
ous probabilities. In particular, let T be the set of (simple) probability mea-
sures on F. A pseudo-operational interpretation for P € § is that, using P,
an f € ¥ is determined: then, if s obtains, (f(s), s) is the resulting act-state
pair. In this formulation the axioms of Theorem 11.1, letting X; = F x {53},
lead to

P < QéZS':E[v(f, s), P,] <§E[v(f, s), s (12.17)

in which P, is the marginal of P on F x {s} and the v(-, s5) for the s € § are
unique up to similar positive linear transformations. (12.10) follows from
(12.11) when we define f < g <= P < Q when P(f) = Q(g) = 1.

12.4 SUMMARY

The usual states of the world formulation views the acts in F as functions
on states to consequences. The states represent a partition of the potential
realizations of the world, ideally leaving no relevant aspect undescribed. It
is usually assumed that the state of the world that obtains does not depend on
the act selected by the decision maker. If this is not true, new states that
satisfy the independence criterion can be defined as functions on acts to the
initial set of states. This reformulation is similar to the definition of states
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as functions on acts to consequences, as suggested in this chapter in connec-
tion with the acts-consequences model of Part II. Under a fundamental
agreement between the usual states model and the Part II model, the two
models are seen to be alternative but equivalent ways to characterize decision
under uncertainty with an expected-utility model.

In cases where acts and states are formulated but exact consequences may
not be detailed, independence axioms over the states lead to additive utility
models that do not explicitly include probabilities for the states.

INDEX TO EXERCISES

1, Conditional consequence probabilities. 2. Equivalence of two approaches. 3. Job-
changing example. 4. Psychology of timing. 5. Independence axiom. 6. Win-lose example
and state probabilities. 7-8. Penalty kick example. 9. Propose to the other girl. 10. Theorer:
of The Alternative for (12,8)-(12.9).

Exercises

1. Use (12.1) and (10.5) to write the probability of *‘f will result in an z € 4,
given that g will result in an # € A" in terms of P’. Then use (12.2) to write the
probability in terms of P*,

2. With all sets finite the utility of act fin the Part II approach can be written
as 3 x u(@)P,(z), and as Y g u(f(s))P*(s) in the states of the world model. Assuming
that P(z) = P*({s:f(s) = z}), show that 35 u(f(s)P*(s) = I x u(@)P,(z).

3. A man currently making $10000 per year has been offered $14000 per year
by another company. He decides to give his company notice that he will quit unless
he gets a new salary of $x. He decides to make x either 13000, 14000, or 15000.
The higher z is, the more likely his company will be to reject his ultimatum: if they
reject, he will take the new job at $14000. Formulate his decision under the Part II
approach. Then reformulate it in the states of the world manner so that the state
that obtains doesn’t depend on the selected .

4. Suppose that you have to make a choice between f and ¢ when the pay-off
from your choice will depend on the outcome of one flip of a slightly bent coin that
you have been shown. Furthermore, you can either (1) select for g, after which the
coin is flipped by a referee or (2) have the referee make the flip before you choose
for g, but be informed of the outcome of the flip only after you have made your
choice. Assuming that you believe the referee is thoroughly honest, do you feel that
the procedure (1) or (2) that you select will in any way aflect your decision between

fand g? Explain the reason(s) for your answer.
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5. Adapted from Elisberg (1961) and Raiffa (1961). An urn contains one white
ball (W) and two other balls. You know only that the two other balls are either
both red (R), or both green (G), or one is red and one is green. Consider the two
situations shown below where W, R, and G represent the three “states” (which
don’t depend on the act selected) according to whether one ball drawn at random
is white, red, or green. The dollar figures are what you will be paid after you make
your choice and a ball is drawn.

W R G w R G
Sl %100 30 30 f 3100 30 3100
g1 $0 $100 80 g | % $100 3100

a. Which of f and g do you prefer? Which of f’ and £’ do you prefer?

b. Show that the pair (g <f,f" <g') violates the following independence
axiom: if {f;(s), /2(8)} = {£1(5), £2(5)} for each s€ S and if f; < g, then not
J2 < g Use an argument like that following (12.10) to argue the “incon-
sistency” of (g < f, [ <g").

c. If your answers in (¢) were g < fand /' < g’, does (b) convince you that there
is something “wrong” with your preferences ? Discuss this,

6. Suppose a decision maker can choose cne of two strategies, f and g, and his
*“‘opponent” can independently choose one of two strategies, f* and g’. Our decision
maker is concerned only with the two consequences “‘win” and “lose.” He believes
that either might occur for each of the four strategy pairs in {f,g} x {f’,¢’}. Eight
states, displayed along the top of Figure 12.1, can be used to partition his “world.”
Each state specifies the strategy chosen by his opponent and, for each of fand g,
specifies whether he will win or lose.

a. Does the state that obtains depend on the one of fand g that is chosen by

our decision maker?

b. Suppose an additive expected-utility model without state probabilities, similar
to that described by (12.11), is used as a basis for estimating the v numbers in
the matrix of Figure 12.1. According to this, g is the better act since 3 + 1<
2 + 3. In the usual states model, characterized by (12.5), we would have
28u(f(s))P*(s;) as the expected utility for £ and 38 u(g(s,))P*(s;) as the
expected utility for g with f(s;), g(s;) € {win, lose} for each i. Assuming that
these two models agree with one another we should have P*(sy) = 3a,

5 S 53 53 g Sg Sy Sg
’ !
f P4

Siwin | fiwin | filose | filose | fiwin | fiwin | f:lose | f:lose
g:win | gilose | giwin | g:lose | g:win | g:lose | g:win | g:lose

f 0 3 0 0 0 1 0 0
0 0 2 0 0 0 3 0

Figure 12,1 A v matrix.
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P*(sy) = 2a, P*(s¢) = a, and P*(s;) = 3a, where a > 0. Explain why this is
50. What car: you tell about P*({s,, 5y, 55, 5g}) from the data ? I's there any need
to estimate P*(s;), P*(s,), P*(s;), and P*(s;) when the usual states model is
applied?

7. In soccer, a direct penalty Kick inside the box can be viewed as a two-person

game between the kicker and the opposing goaikeeper. The goalkeeper can select
one of tiree acts:

J = stand firm until the kick is made;
£ = move right an instant before the ball is kicked;
k = move left an instant before the ball is kicked.

Assume that the kicker will aim right or left (from goalkeeper’s orientation),
Assuming several symmetries, the goalkeeper’s probabilities are presented in Figure
12.2: B is the probability a goal will not be scored if he moves right and the kick is
right. Surely g > « > .

/ g h
kick kick kick kick kick kick
right left right left right left
Goal prevented o o 9 ¥ y B
Goal scored l—a 1—a 1—-8 1 -y 1—y 1-8

Figure 12.2 Conditional probabilities of consequences.

a. 1f the goalkeeper considers a right kick and a left kick equally likely (which
may of course be false), show that fis best if 2« > § + y and that either g
ot hisbestif 8 + » > 2a.

b. Reformulate this in the typical states model with acts f, 2, and # and 16
appropriate states.

8. (Continuation.) Suppose in the preceding example we use only the gross
states < = kick right and ¢ = kick left and that an estimatz of von {f, g, i} X {s, #}
in acvord with (12.11) gives v(f, s) = 2, v(g, s) = 6, v(h, s) = 0, and v(f, 1) = 3,
v(g,t) ~C, v(h, t) =9, According to this, which ac. is most preferred? Describe
the best perfect information act. Do the v's suggest that the goalkeeper considers
s more , “obable than ¢? Why?

9. Suppose an extraneous probability model like that described by (12.11) gives
the following v matrix on F x S for the marriage example of Section 12.1:

s5;(both “‘yes™} sp(only Alice *‘yes™) sz(only Betsy *“‘yes™) s (both “no”)

Propose to 1 2 0 0
Alice
Propose to 0 0 4 0

Betsy
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Which girl would the y. ag man rather marry?

. Which girl should he propose to? (Which act is preferred ?)

¢. Suppose that extraneo. probabilities are used to scale the young man’s
utilities on the three consequences, afte: the theory in Chapter 8, and that
u(Stay Single) = 0, u(Marry Betsy) = 3, w(Marry Alice) =4. (That is,
‘*‘Marry Betsy” is indifferent to a gamble with probability .75 for “Marry
Alice” and probabiiity .25 for “‘Stay Single.”) Argue that this data along with
the figures in the above matrix suggest that P*(Betsy would say “yes”) =
(14/9) P* (Alice would say “‘yes”).

10. Use the Theorem of The Alternative to verify that the independence condition
following (12.9) along with weak order is sufficient for (12.8)-(12.9).

& 8




Chapter 13

AXIOMS WITH EXTRANEOUS
PROBABILITIES

This chapter gives two derivations of the expected-utility model
f < g <> E[u(f(s)), P*] < E[u(g(s)), P*), forallf,geF, (13.1)

that are based on extraneous probabilities as described in Section 12.2. The
first derivation assumes that S is finite and presupposes a minimal overlap
of the relevant consequences under each state in S. The second makes no
restriction on the size of § but assumes that all consequences are relevant
under each state. Both P* and u are derived from the axioms. Section 13.4
shows how these axioms might apply to the decision model of Part II.

All probability measures in this chapter are defined on the set of all subsets
of their basic set. “P* on S” is an abbreviation for “P* on the set of all
subsets of S.”

13,1 HORSE LOTTERIES

The purpose of this section is to define many of the terms used later in this
chapter and to prove a theorem for horse lotteries, which are the elements on
which < is applied in our axioms.

Throughout the chapter S is the set of states of the world. Subsets of §,
called events, will be denoted by {s}, 4, B, C, ... . A partition of § is a set of
nonempty events that are mutually exclusive and whose union equals S. 4°is
the complement of A in S: 4° = {s:s ¢gA,s€8}. {4, A°} is a two-part
partition of S proviced that & < 4 < S.

F is the set of acts. Each fe Fis a function on § into X, the c:t of conse-
quences. X(s) = {f(s):f € F}, the set of consequences under state s. X =
Us X(s). $(s) is the set of simple probability measures (extraneous) on
X(s). T is the set of simple probability measures on X.

The phrase “horse lottery’” was introduced by Anscombe and Aumann
(1963). A horse loitery is a function on S that assigns a P € J(s) toeach s € §.

175
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& is the set of all horse lotteries. Horse lotteries are denoted in bold face
asP,Q,R,.... We adopt the following pseudo-operational interpretation
for Pe X. If P is “selected’’ and 5 € § obtains then P(s) e T(s) is used to
determine a resultant consequence in X(s).

IfP,Qe Xand0 < « < 1 then oP + (1 — «)Q is the horse lottery in J€
that assigns «P(s) + (I —)Q(s)eT(s)tose S, for each s € S. Under this
interpretation, X is a mixture set (Definition 8.3).

Taking < on J€ as the basic binary relation, P ~ Q <> (not P < Q, not
Q<P)andP Q<= (P < QorP~ Q). Event 4 < Sisnull<=P~Q
whenever P(s) = Q(s) for every s € A°. State s is null <= {s} is null.

The following theorem is similar to Theorem 1.1,

THEOREM 13.1. Suppose that S is finite and that the Jollowing hold for all
P.QRe X:

Al. < on K is a weak order;

A2. P<Q,0<uac< D=aP + (1 —)R< aQ + (1 — a)R;

A3. P<Q, Q< R)=>«P + (1 — )R <Q and Q< P + (1 - R
Jor some o, g € (0, 1). Then, with S = {s,, . .. » 5.}, there are real-valued
Sunctions u,, . .., u_ on Xi (51, . .., X(s,) respectively such that

P< Qe g"l E(u;, P(s)) < gl E(u, Q(s)), forallP,Qek, (13.2)

and the u; that satisfy (13.2) are unique up to similar positive linear trans-
Jormations, with u, constant on X (5:) if and only if 5, is null,

Proof. By Theorem 8.4, there is a real-valued function u on J¢
that satisfies P < Q « ulP) < u(Q) and u(aP + (1 — 2)Q) = au(P) +
(1 — o)u(Q) and is unique up to a positive linear transformation when it
satisfies these properties. For convenience, we shall write Q = (Q(sy,...,
Q@) = (0, ..., Q.,), with Q, € 9(s,) for each i.

FixR = (R,, ..., R,)in XandletP, = (R,,..., R, 1, P, R,,,,...,R,).
Then, withP = (P,, . . ., P).(1/mP + ((n — 1)/n)R = 2, (1/n)P,. There-
fore u(P) + (n — Du(R) = 2 u(P). Defining u; on 7(s;) by

u(P) = u(P;) — ((n — 1)/m)u(R),
summation over i gives 20 u(P) = 2r u®) — (n — Du(R), so that
u(P) =37 u(P,).

Let Q,=(R,,...,R,_., @i Ry, ..., R,). Then, by the preceding
result, u(aP; + (I — «)Q,) = u(aP; + (1 — 2)Q,) + D+ 4(R,). In addi-
tion,

u(@P; + (1 - 2)Q,) = au(P,) + (1 — )u(Q,)
= au(P;) + (1 — «u,(Q,) + ZJ-,H u;(R;),
so that u(aP, + (1 — «)Q,) = au(P) + (1 — wu,(Q,). Since the elements
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in I(s;) are simple measures, u,(P,) = E(u;, P;) and (13.2) follows with
u(x) = u,(P,) when P,(z) = 1.

Uniqueness up to similar positive linear transformations foliows readily
from the uniqueness property for u. If v, satisfy (13.2) along with the u, then,
with v(P) = 3" E(v,,P,),v=au + b and a > 0. Holding P, fixed for ali
J # i, it then follows that v, = au; + b,. This holds for each i.

Clearly, u, is constant on X(s,) if and only if s, is null. ¢

13.2 FINITE STATES THEORY

In order to derive v on X = [Jg X(s) and P* on S on the basis of Theorem
13.1 when S is finite, two more axioms will be used. The first of these (44)
assumes that two consequences z, and z* appear in every X(s) and that they
are not indifferent. Hence {z,, 2*} < X(s) N X(¢) for 5, t € 5. With a con-
venient abuse of rigor we shall say that a simple probability measure P that
assigns probability 1 to X(s) N X(¢) is in both T(s) and F(t), and write
Pe®(s) NnT@).

The second new axiom (45) is a monotonicity axiom. It says that if s and ¢
are not null then there is the same order under both states for all P € T(s) N
J(#). In other words, preferences on consequences or simple probability
measures on consequences that can occur under different states shall not be
state dependent.

THEOREM 13.2. Suppose that the hypotheses of Theorem 13.1 hold and
that, in addition,

A4. Therearex,, x* € X(s) for every s € S such that P < Q when P(s)[Q(s)]
assigns probability 1 to x, [x*] for each s € S;

AS. Ifs,t€ S, s and t are not null, P, Q € §(s) N 3(t), and if P € X, then
(P with P(s) replaced by P) < (P with P(s) replaced by Q) <= (P with P(t)
replaced by P) < (P with P(t) replaced by Q).

Then there is a real-valued function u on X and a probability measure P*
on § such that

P < Q<= E[E(u, P(s)), P*] < E[E(u, Q(s)), P*], forallP,Qe X,
(13.3)
with P*(s) = O if and only if s is null. In addition, if v on X and a probability
measure Q* on S satisfy (13.3) along with u and P* then P* = Q* and there

are numbers a > 0 and b such that v(x) = au(x) + b for all x € U, ., not nuny
X(s).

If we define < on F from < on X by f< g <> P < Q when P(s)[Q(s)]
assigns probability 1 to f(s)[g(s)] for each s € S, (13.1) follows immediately
from (13.3).

* o e KRS Ry
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Proof. LletS = {s,...,s,}. Beginning with the results of Theorem 13.1,
A4 implies that I = {i:s; € § and s, is not null} is not empty. If (13.3) is to
hold then #*(s)u must be a positive linear transformation of »; and hence
P*(s) = 0 <= s is null.

If I = {i}, (13.3) follows from (13.2) on setting P*(s;) = | and u(x) = u,(x)
for all x € X(s,). u on the rest of X is arbitrary. Clearly, u on X(s,) is unique
up to a positive linear transformation.

If I has more than one clement let F,; denote the set of simple probability
measures on Xj;; = X(s;) N X(s;) when i, j € I. With a convenient lapse in
rigor, take P € J(s,) and P € 9(s,) when P € §,. By (13.2) and A5, E(u,, P) <
E(u;, Q) <> E(u;, P) < E(u;, Q), for all P, Q €. Then, by 44 and the
latter part of Theorem 8.2, there is a unique r,; > 0 (invariant under similar
positive linear transformations of u, and u;) such that

u(2) — uzy) = rylu(z) = u(z,)] forallxz & X;. (13.9)
Fix t € I and define P* and u by

P*s)=ry/>r, foralliel
i€l

P*(s)=0 foralli¢l
u(x) = [ux) — uz,)l/P*(s;) when z € X(s;) and iel

and u(z) = 0 when z ¢ |J; X(s,). To show that u is well defined we need to
prove that

u(x) — ufz,) = Tit [u(x) = uy(x,)] wheni,jel and xeX,,;.
it
(13.5)

By (13.4), ryfryy, = ([ua*) — ui(@ )} [u,(x*) — u(z)D/{[u;(x*) — u;(zy))
[u(z*) = u(x,)]) = [u,(z*) — u;(x4)]/lu;(x*) — u;(2,)] = ryy, so that (13.5)
follows from (13.4) for i, j. Substitution for u, into (13.2) then yields (13.3).

It follows easily from wu(z,) < w(z*) and the uniqueness assertions of
Theorem 13.1 that P* is unique and u on |J; X(s,) is unique up to a positive
linear transformation. ¢

13.3 HOMOGENEOUS HORSE LOTTERY THEORY

The definitions of Section 13.1 apply to this section.

When S is infinite, the horse-lottery approach meets serious mathematical
difficulties if we assume only a minimal overlap of the X(s). Therefore, we
shall assume throughout this section that X = X(s) for all s € S. Some addi-
tional definitions follow.
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P is constant on event A <= P(s) = P(t) for all 5, t€ A. When P(s) = P
(in T) for all s € A, we shallsay that P=Pon A.P = Qon A <> P(s) = Q(s)
for each s € A. Thus A4 is null <= P ~ Q whenever P = Q on A4°.

With P, Q € 7, we define < on T on the basis of < on X thus: P < Q <=
P<Q when P=P and Q=0 on S. Also, P< Q<>P < Q when
P=PonS. P~Q,P~Q,P<0Q,...aredefined in similar fashion.

After stating our main theorem we shall prove it by proving a series of
lemmas.

THEOREM 13.3. Suppose that the following axioms hold for all P, Q, R €
Je'.

Bl. < on X is a weak order,

B2 P<Qi0<a<)=>aP + (I —a)R<aQ + (I — 2)R;

B, P<QQ<R)=aP + (1 — )R < Q< P + (1 — B)R for some
x, fe(,1);

B4. P < Q for some P, Qe ¥,

BS5. (Event A is not null, P=P and Q=Q on A, P=Q on A°)=
P<Q<«=P<Q);

B6. P(s)<Rforallse S=P< R R<Q(s)forallse S=R Q.

Then, there is a real-valued function u on X and a probability measure P*
on S that satisfy (13.3). Moreover, when (13.3) holds for u and P*,

Ci. Every P e X is bounded. That is, given P € X, there are real numbers
a and b such that P*({s.a < E(u, P(s)) < b}) = 1;

C2. Forall A < S, P*(A) = 0<> A is nuil;

C3. u is bounded if there is a denurierable partition of S such that
P*(A) > O for every event in the partition;

C4. A real-valued function u' on X and a probability measure Q* on §
satisfy (13.3) in place of u and P* if and only if Q* = P* and u’ is a positive
linear transformation of u.

B4 says that there is some pair of constant horse lotteries that are not
indifferent. B4 and X = X(s) for all s € S supplant 44 of Theorem 13.2.

BS is an obvious monotonicity axiom for nonnull events. B6 is a form of
sure-thing or dominance axiom. It is similar to axiom A4a in Section 10.4
and to P7 in the next chapter. B6 is nceded only if S is infinite.

In addition to the noted conclusions of Theorem 13.3 it should be remarked
that P* has no special properties apart from those of a probability measure.
If § is infinite, it may or may not be true that P*(4) = | for some finite
A < S. If P*(A) < 1 for every finite 4 & § it may or may not be true that §
can be partitioned into an arbitrary finite number of events each with equal
probability. In addition, « has no special properties other than those noted
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in C3 and C4, except that it cannot be constant on X. u might be
unbounded when the condition of C3 does not hold.

Proof of Theorem 13.3

To prove the theorem we shall prove a series of statements that, taken
together, establish all conclusions of the theorem. For convenience we first
list these statements. # and P* for §2-S5 are defined as in S1.

S1. B1-B5=- (13.3) for all P, Q € ¥, where Xy = {P:Pec X and P is
constant on each event in some finite partition of S}. u and P* for (13.3) on K
are unique up o a positive linear transformation and unique, respectively, and
P*(A) = 0 if and only if A is null.

S2. B1-B6 = (13.3) fer all bounded horse lotteries. (See C1.)

S3. (BI1-B6, there is a denumerable partition of S such that P*(A4) > 0 for
every A in the partition) => u on X is bounded.

S4. If for each positive integer n there is an n-event partition of S for which
each event has positive probability under P*, then there is a denumerable
partition of S such that P*(A) > 0 for every A in the partition.

S5. If the hypatheses of S4 are false then BI1-B6 imply that all horse
lotteries are bounded. (In this case it is not necessarily true that P* is a simple
probability measure. See Exercises 5 and 6.)

Note that $3, S4, and S5 imply that all horse lotteries are bounded. If the
hypotheses of S4 are true then, by S3, u on .\’ is bounded and hence all P € ¥
must be bounded. On the other hand, if the hypotheses of §4 are false then,
by S5, all P € X are bounded even thougi v on X might be unbounded.

Proof of SI. Let {B,, ..., B,} be a fiite partition of §. Then, by essenti-
ally the same proof used for Theorem 13.2, there are nonnegative numbers
P}(By), .. ., P}(B,) that sum to one and there is a real-valued function ug
on X such that, whenever P=P,onQ=Q,on B, (i=1,...,n)

P < Q=3 PABIEG, P) < 3 PEBIEGH Q) (136)

fa=1
and when this holds P{(B,) = 0 if and only if B, is null, P% is unique, and ug
is unique up to a positive linear transformation.

Let J€, be the set of all constant horse lotteries in JX. Thus X, = X, If
P,QeTandif {B,,..., B,}and {C,, ..., Cn} are partitions of S then, by
(13.6), E(uy, P) < E(uy, Q) <> E(uc, P) < E(uc, Q). Hence, noting that
X, is a mixture set for which Bl, B2, and B3 hold, it follows from Theorem
8.4 that u, on X is a positive linear transformation of ug on X. Therefore,
we can drop the partition-specific subscript on u and have, in place of (13.6),

P< Qag PY(BE(w, P) < gP;(B,.)E(u, 0,). (13.7)

in which u is unique up to a positive linear transformation.
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_ _ ;
Forevent 4 < S'let X, = {P:P e X and P is constant on 4 and on A4°}. 3
If {B),...,B,}and {Cy,. .., C,} are partitions of S and if 4 is an element 2

- in each partition then (13.7) implies that, for all P, Q& J¥,, with P = P
and Q = Q, on 4, and P = P% and Q = Q¢ on A4°,

PR(A)E(u, Po) + PR(A°)E(u, P%) < PA(A)E(4, Q) + PR(A9E(u, Q%)
<=>PHA)E(u, P,) + PYAE(u, PS)
< PY(A)E(u, Q4) + PUAYE(u, Q%)

It then follows from the version of (13.7) for the partition {4, A°} that
PE(A) = P§(A), so that we can drop the partition-specific subscript on P*
. and write (13.7) as

P< Q@f_; P*B)E(u, P,) < 21 P*(B)E(u, 0,). (13.8)

Adding P*(g) = 0to complete P*, it follows that P* is uniquely determined
and that P*(4) = 0 if and only if A is null. Finite additivity for P* is easily
demonstrated using partitions {4, B, (4 U B)’} and {4 U B, (4 U B)%}
with A N B = @ in an analysis like that leading to (13.8).

Finally, to obtain (13.3) for all of J&,, let P = P, on B;and Q = Q, on ;
for partitions {B,,...,B,} and {C;,...,Cn}. Applying (13.8) to the
partition {B, NC;:ii=1,...,mj=1,...,m B, NC; % g}, we get
P< Q< 3.3, PX(B, N C)E(u, P) < 3; 3, P*(B; N C)E(u, Q;). By fi-
nite additivity, the last expression is 3, P*(B)E(u, P;) < X, P*(C;)E(u, Q)).

L 4

Proof of §2. Since X is a mixture set, Theorem 8.4 implies that there is a
real-valued function » on J€ that satisfies P < Q < v(P) < v(Q) and
(P + (1 — 2)Q) = aw(P) + (1 — a)v(Q). Since these expressions hold on
X, = X it follows from (13.3) for ¥, and Theorem 8.4 that w on ¥,
defined by w(P) = E[E(u, P(s)), P*], is a positive linear transformation of
the restriction of v on J¢,. Without loss in generality we can therefore specify
that

v(P) = E[E(u, P(s)), P*] (13.9)

for ali P & X,, with
P<Q&vP)<vQ), forallP, Qe X (13.10)

v(@P + (I — 0)Q) = av(P) + (I — )v(Q),
for all (a, P, Q)€ [0, 1] x X2 (13.11)

According to (13.10), 82 is proved if (13.9) holds for all bounded P € XC.
Our first step toward this end will be to show that

¢ = inf {E(u, P(s)):s € A} S v(P) < sup {E(u, P(s)):se A} =d (13.12)
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holds when P*(A) = 1 and ¢ and d as defined are finite. Let Q = P on 4 and
¢ £ E(u, Q(s)) < d on 4 Since A¢ is null, Q ~P and v(P) = v(Q) by
(13.10). To verify ¢ £ v(Q) < 4 with ¢ and d finite, suppose to the contrary
that d < v(Q). With c < E(u, Q') <dand Q' = Q" on S, let R = aQ +
(1 — «)Q’ with « < 1 near enough to one so that d < v»(R) = av(Q) +
(1 — a)o(Q) < v(Q). Then R < Q by (13.10). But since E(u, Q(s)) <
d < v(R), it follows from (13.10) that Q(s) < R for all s € S and hence by
B6 that Q < R, a contradiction. Hence v(Q) < 4. By a symmetric proof,
c £ v(Q).

With P bounded let A with P*(A) = | be an event on which E(u, P(s)) is
bounded and define ¢ and d as in (13.12). If ¢ = d then (13.9) is immediate.
Henceforth assume that ¢ < d: for convenience we shall takee = 0,d = 1.
Let Q be defined as in the preceding paragraph so that »(P) = v(Q) and
E[E(u, P(s)), P*] = E[E(u, Q(s)), P*], the latter by Exercise 10.22. To show
that v(Q) = E[E(u, Q(s)), P*], let {4,, ..., A,} be the partition (ignoring
empty sets) of S defined by

A, = {s:0 g E(u, Q(s)) < 1/n}

A;={s:(i—Dn<Ew, Q) Lifn} i=2,...,n,
and let P, € T be such that

(i—1)n < E(u,P)<in fori=1,...,n (13.13)

The existence of such P; is guaranteed by (13.12). Let P, = Q on A4, and
P,=P, on A (i=1,...,n); let Po=3" (I/n)P; and let R=
Yz (1/(n = 1))P; on A, for i =1,...,n Then Py(s) = 3, (1/n)P,(s) =
A/mQE) + ((n — )/m) Y, .; (1/(n — 1))P; when se A,, so that P, =
(1/m)Q + ((n — 1)/m)R. Hence, by (13.11) and Py, = >, (1/n)P,,

o(Q) = ;1 o(P,) — (n — 1)u(R). (13.14)
Since R € 16, (13.9) implies that v(R) = ¥, E(u, 3, .; (1/(n — 1))P)P*(A,) =
(M = 1)) 3, [3;..: E(u, P;)]P*(A;). Substituting this in (13.14) gives

Q) = 21 o(P;) — ﬁl ?;.E(u, P,)P*(A). (13.15)
Now by (13.13), (13.12), and the definition of P
(i—-Dn<vP)<iln fori=1,...,n. (13.16)

Since 0 = inf {E(u, Q(s)):s€ S} and 1 = sup {E(u, Q(5)):5€ S}, P, that
satisfy (13.13) can be selected so that either

E(u,P,) = 1/n, and Eu,P;)= (i — 1)/n fori>1 (13.17)
or

E(u, P,) = ijn fori<n, and E{u,P,) = (n— 1)/n. (13.18)
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Applying (13.17) and the left side of (13.16) to (13.15), we get

v(Q)zi""‘—"’lp*ul)—i["‘z'lﬂ';%‘]P'(A,)

i=i n 2 i=2 n

e L Lt L VP (R SR
2 2 i=2 n n

>3 =y - L.
=1 N n

Applying (13.18) and the right side of (13.16) to (13.15), we get

ni_n—lﬂ_f._l._i n— 115 _h—=14,
Q<3 ;[2 “+ ]P(Ai) —1 pa,)

i=1 n
~Sipvay + Lp - pray)

t=1 N n
<sipvay+1.

t=1N n

By the definition of E, 3 ((i — 1)[n)P*(A,) € E[E(u, Q(s)), P*] £
Y (ifmP*(A,), so that |0(Q) — E[E(u, Q(s)), P*]| < 2/nforn=1,2,....
Hence, v(Q) = E[E(u, Q(s)), P*]. &

Proof of §3. Let st be a denumerable partition of S with P*(4) > 0 for
all A€ A. {P*(A): A € A} must have a largest element, say P*(4,;). Then
{P*(A):4 € £ — {A;}} must have a largest element, say A4,. Continuing this,
we get a sequence A,, A,, ... with {4, 4,, ...} = £ and P*(4,) > P*{(4,.1)
fori=1,2,....

Contrary to S3 suppose that u is unbounded above. By a linear trans-
formation of u we can assume that [0, o) € {E(4, P):Pe T}. Let P,€ T be
such that

E(u, P,) = 1/P*(4,) fori=1,2,.... (13.19)

LetP=P,onA4,(i=1,2,...)and let Q, be constant on each A, fori < n

and constant on J2,,, 4, with

E(u, Q,(5)) = P*(4,)" — P*(A)™" forallsed,; i=1,...,n
o0
E(u, Q. s) =0 forallse U A4,. (13.20)

t==pn+1

Let v on X satisfy (13.10) and (13.11) and also (13.9) on ¥,. Then

HQ.) = 3 [PHA,)™ — PHA)IPYA,)

faxl

= P4 S PYA)—n  forn=12.... (1321
fa 1
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By (13.19) and (13.20), E(w, $P(5) + }Q,(s)) = $P*(4,)! + }[P*(4,)* —
P*(A) '] = 4P*(A4,)! for all s€e U7 4, and, by P*(4,) > P*(A4,,,) and
(13.20), E(u, P(s) + 3Q,(5)) > }P*(4,)! for all s€ U, 4, Therefore
inf {E(u, }P(s) + 3Q,(s)):5 € S} = }P*(4,)" . Hence, by (13.12), »(3P +
3Q,) > $P*(4,)7!, which on using (13.11) and (13.21) implies that

v(P) > P¥(A,)™ — P*4,)! SP¥AN)+n2>n forn=1,2,....
i=1

But this requires (P) to be infinite. Hence  is bounded above. A symmetric
proof shows thac u is bounded below under $3’s hypotheses. &

FProof of 4. For each integern > 2 let A" be an n-part partition of S each
event in which has positive probability. Define a new set of partitions
BE, BB, . . . recursively as follows:

332=0/k2
35":{.4 NB:AeA* Be B, 4 NB# @}, n=3,4,....

It is easily verified that B” contains at least # events with positive probability
and that B"* is as fine as B" so that B e B+ = C e B" for some C that
includes B. For each A € $2 let

N)(4) = number of events in B" (n > 2) that are included in 4 and have
positive probability.

With $% = {4, A4°} it follows that N A) + NY(A) > nforn=23,4,....
Thus, as n gets large, at least one of N!(4) and N, (A°) approaches infinity.
Let A, be an event in B2 for which N:(4) — oo and let B, = A4:. Then
P*(B;) > 0 and B, will be the first element in our desired denumerable
partition.

Let n(1) be an integer for which B! contains more than one subset of
A, that has positive probability. For each 4 = 4, and A & BV |et

N7(A) = number of events in B" (n > n(1)) that are included in A and have
positive probability.

Let 4 = {A:4 < A,, 4 € B"V}. Then T4 N2(4) = N1(A,) so that, since
N}(A,) - o« as n — oo, at least one N2(A) - w asn —~ . Let A, € £ be
such an 4 and let B, = 4, N A;. Then P*(B,) > 0 and {B,, B,, A,} is a
partition of § with N3(4,) — o0 asn — .

Continuing this construction in the obvious way gives a denumerable
sequence By, B,, By, .. . of mutually disjoint events each of which has positive
probability. The conclusion of $4 follows. ¢

Proof of §5. If the hypotheses of S4 are false then there is a unique
positive integer m for which there is an m-event partition of S that has
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positive probability for eaca ¢vent and such that no partition of §
lias positive probability on more than m of its events.

For convenience assume that u(y) = O for some y € X. Suppouse then,
contrary to the conclusion of §5, that Q is unbounded above. Let P be
obtained from Q by replacing each x for which Q(s)(x) > 0 and u(z) < 0 by
y withu(y) = 0, for all s € 8. Then E(u, P(s)) > Oforall sand P is unbounded
above. Then, for every n > 0,

P*E(u, P(s)) 2 n} = P*({s:E(u, P(s)) 2 n}) > 0.

By the preceding paragraph, P*{E(u, P(s)) > r} can change no more than m
times as »n increases. Hence there is an N and an o > ¢ such that

P*E(u,P(s)) 2 n} = a foralln > N. (13.22)

Let Eu,P)=1i for i=1,2,..., let Q. =P ¢ {s5:E(u, P(s)) > n},
Q, =P, on {s:E(u,P(s)) < n}, and let R, = F. on {s:E(u, P(s)) > n},
R, =P on {s:E(u, P(s)) < n}. Then, with P, =P, on S, P + {P, =
1Q, + iR, so that withv on X as given by (13.10) and (13.11) and satisfying
(13.9) for all bounded horse lotteries,

o(P)+n=0(Q)+vR) n=12,.... (13.23)

Since R,, is bounded, (13.9) and (13.22) give v(R,) = E[E(u, R,(s5)), P*] > na
for all » > N. Since P,_, < Q,(s) for all s € S, B6 implies that P,_, < Q,
so that v(Q,) 2 n — 1 for all n. Then, using (13.23),

o(P) > nax — 1 foralln > N,

which contradicts the finiteness of v{P). Hence Q is not unbounded above. A
symmetric proof shows that Q is bounded below. &

13.4 THE PART II DECISION MODEL

Beginning with the set # of acts and the sct X of consequences as in the
Part I1 approach, let S be the set of all functions on F to X (see S’ in Section
12.1). Then the subset of X that is immediately relevant under “state” s € S
is X(s) = {s(f):f € F}. For many s € §, X{(s) will be a proper subset of X,
and for each constant s that assigns the same z to each f, X(s) = {z}. Hence
the horse-lottery theory of Sections 13.2 and 13.3 cannot be used in estab-
lishing the Part [ model unless we assume that consequences other than those
in X(s) can be considered relevant under state s.

Suppose in fact that we assume the extreme, that all consequences are
relevant under every state. Then, under B1-B6 of Theorem 13.3, (13.3)
follows. With fe F, Y < X, and P,(Y) = P*({s:5(f) € Y}) we then obtain
E(u, P;) = E[E(u, P(s)), P*] when P(s)(s(f)) = 1 for each s € §. Then under
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the natural definition of - on Fin terms of < on I,
f<g<>Eu P) < Eu,Pr,), forall f,geF, (13.24)

which is the Part If model. Although extraneous probabilities are used in
deriving this, note that P, P,, ... are defined from P*, which may have
nothing to do with tiie extraneous probabilities and is itself derived from the
axioms.

It may of course be stretching things too far to assume that consequences
not in X(s) are rclevant under s. However, it may be possible to say semething
about state probabilities even when this assumption is not made.

Suppose, for example, that F = {f, g} and X = {win, lose}. Then S has
four elements: 5,(f) = 5,(g) = win; 5,(f) = win, s5,(g) == lose; s3(f) = lose,
53(g) = win; s(f) = 54(g) = lose. Let X = T(s5;) x T(s5) X T(s9) X T(5y).
The conditions of Theorem 13.1 then give P < Q<= 3, E(u,, P(s))) <
2 E(u;, Q(s)). Since X{s,) = {win} and X(s,) = {lose}, the first and fourth
terms drop out of this and we are left with

P < Q <= E(uy, P(sy)) + E(uy, P(s5)) < E(uy, Q(s;)) + E(ug, Q(s3)).
(13.25)

According to our definition s, and s, are null, but this is only because X{(s,)
and X(s,) each contain a single consequence: the decisis  maker might
consider s, to be the most probable state. In such a ca... ‘¢ would regard
P*(s,) and P*(s,) as indeterminate within the structure of our axioms. This
indeterminacy actually causes no difficulty since the i = | and i = 4 terms
do not appear in (13.25).

With regard to s, and s5, T(s,) = T(s;) since X(sy) = X(s3) = {win, lose}.
If condition 45 of Theorem 13.2 is used it follows from (13.25) that (assuming
some strict preference) there are 4, > 0 and 43 > 0 with 4, + 43 > 0 and
there is a real-valued function ¥ on X such that P < Q <> 2,2(u, F(s)) +
AsE(u, P(s5)) < A,E(u, Q(s3)) + AsE(u, Q(sy)). Here we would interpret 4,
alG 4> 7S DroNO Liunat w £ (85) a0G £ (oy) Tespecuvety oo that, 1if 43 > 0,
AgfAs = P*(sy)[P*(sy). If u(win) > u(lose) it is easily seen from this that
[< g+ P*(s;) < P*(sy).

13.5 SUMMARY

The usual states expected-utility decision model can be derived from axioms
that involve extraneous probabilities when there is sufficient overlap among
consequences considered relevant under different states. When the number of
states is finite, the assumption that there are two nonindifferent consequences
that are relevant under every state is sufficient. For the more general case, in
whici: the size of § is arbitrary, it was assumed that all consequences are
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relevant under every state, Even when there may be no overlap among ths
conscquences under different states, the expected-utility axioms of Chapter
8 when applied to horse lotteries with § finite lead to an additive-utility
representation that is similar to additive forms of Section 11.1 and (12.11),

Although the horse-lottery approach presumes a continuum of extrancous
probabilities, this appears to be offset by its general applicability since it
places almost no restrictions on the sizes of § and X. Moreover, it places no
unusual restrictions on the utility function on X or on the probability
measure P* on S.

INDEX TO EXERCISES

1. Insufficiently connected X(s). 2. P* = 1 for a finite subset. 3. Intersections of parti-
tions. 4. S4. 5-6. Zero-one measures and S4. 7. Additivity when X = I X, 8-15. P(s) <
Q) frallse 3 = P < Q. 16-19. Evenchance theory.

Exercises

1- Let S = {sla SZo sa}! X(S]_) = {"”: yl z9 W}, X(SZ) = {93, y) r, t}! X(S,) = {Z, W,
r, t}. Let the hypotheses of Theorem 13.2 with the exception of 44 hold, and let the
following values of #; (i = 1, 2, 3) satisfy (13.2):

la

a. Verify that, for each /, j there is a unique r;; such that #;(p) = r,u,(p) for all
PEXG) M X(). Is rag = ryyfry?
b. Show that it is impossible to define » on X = J X(s;) and P* on S so as to
sutisfy (13.3).
2. Prove that if P*(4) = 1 for some finite 4 < § then B1-BS imply (13.3) in
the structural context of Section 13.3.

3. Let D be a set of partitions of S. Show that {[}p.p f(D): f(D) € D for each
De D, Npeq f(D) # @} is 8 partition of S.

4. In connection with 54 and its proof, suppose that 3%, 33, ... is a sequence
of partitions of S such that (1) 3" contains exactly n events, each with positive
probability, and (2) A€ 3" => 4 < B for some Be 3" Show that it may be

impaossible io sclect one event from each 3* so that the selected events are mutualiy
disjoint.

el . LRV
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$. Let P* on § be defined 1n such a way that thaie s a set 4 of subsets of § such
that P*(4) = | if 4¢ 4 and P*id) = 03f A¢ A Frove that if ). 4 » & then
this intersection contains exactly one s and, for this 5, F*(s) = L.

6. Let S be infinite and let § be the set of all sets 4 of subsets of S that have the
following four properiies:

1. & € Aand {s} € A for all s € S;

A€ A= A°¢ A

A, BEA =AU BE #;

. (AE#, B = A)=> Be A,

. Is the set of all finite subsets of S in 97

. Use (4) toshow that (4 €8, 4 U Be A)=>> 4, Be A,

. Prove that (A€ 8, 4+, B A)=> A UB¢ &,

Use Zorn’s Lemma to prove that there is an A€ ¢ that is maximal with
respect to (1) through (¢). Let A* be maximal (if £* < &' then 4" ¢ 9) and
last 2* be the set of all subsets of S that are not in A*.

e. Prove that A4, Be 3* =~ A n B % @. For this suppose that 4, B¢ 3* and
A N B = 3. Then show that £° = £* U{C VU D:C € 4, Dea’."} s in 8,
contradicting the maximality of A*.

f. Let P*(d) = 0 if A€ A* and P*(4) = 1 if 4 € B*. Show that P* is a prob-
ability measure on S. Note that {Jg* 4 = & and compare with the preceding
exercise.

g Explain why the failure of the hypotheses of §4 dues not imply that P* on §
is a simple probability measure.

7. Suppose the hypotheses of Theorem 13.3 hold and, in addition X = T]7., X,
and, with P; the marginal of PEfon X,;, (P=Pon §,Q=Qon §, P, = Q,
forj=1,...,n=> P ~ Q. Show that there are real-valued functions uy, ..., U,
on X,, ..., X, respectively such that

R0 R bW

P < Q<> ElE®, P@)), P <3 ElE@W, Q,), P*), for all P, QX
J=1 =1

where P(s), is the marginal of P(s) on X,.

Note: Exercises 8-15 are set in the context of Section 13.3. Axiom B7 is: P(s) <
Q@) forall se S=> P < Q.

8. Prove that (B1, B7, A¢ is null, P(s) < Q(s) f~-all s¢ H —~P < Q,

9. Prove that (Ei, 87)=> if P =PandQ =Qon A4, P =Qon A%, and P < Q
then P < Q. (This is one half of BS,)

10. By a straightforward partition proof show that if X has a least preferred and
a most preferred consequence then (B1-BS, B7) = (13.3).

11. Show that (B1-BS, B7, there is a denumerable partition 4 of § for which
P*(4) > 0 for every A € £) => u on X is bounded. (Use S1.)

12. (Continuation.) Prove S2 when B6 in its hypotheses is replaced by B7. To do
this you need only verify (13.12) when P*(A4) = 1 and ¢ and d are finite. This is the
critica! point for B6 and thercfore for B7.

e S LKA S

B e




Exsrcires 1

13. (Continuation.} Use Exercises 11 and 12 fo argue that the conclusions of
Theorem 133 ¢ valid when 86 in its hypotheses s repiaced by B7.

14, Let $ ={1,2,3,...}, ¥ =[0, 1), ux) = x, and let P* be a probability
measure on S that has P*(s) =0fors =1,2,... . Suppose P < Q<= u(P) <
v(Q) where

v(P) = E[E(u, P(s}), P*} + inf {EIP(s){z > 1 — ¢}, P*]:e > 0},
with P(s){z > 1 ~ ¢} the probability assigned by the simple measure P(s) to the
subset {z:x 2 1 - ¢, x € X} of X. Show that B1-B5 hold and that B6 and B7 do
not hold.

15. (Continuation.) Let S, X, u, and P* be as given in Exercise i4 with P*{1, 3,
5,...) =P*2,4,6,...} =1/2,and let P < Q <= 2(P) < v(Q) where

v(P) = E[E(u, P(s)), P*] + inf {P*{E(u, P(5)) 2 1 — ¢}:¢ > 0}.
a. Prove that (0 < a <1, P,ReX)= inf{P*{E(u, aP(s) + (1 — x)R(s)) >
1 —cie >0} =inf{P*{EW,P@) 21 — ¢ N{EERE) 21 — ¢p)ie >0},
Note: {E(u, P(s)) > 1 — ¢} = {s:E(u, P(s)) > 1 — ¢}

b. Show that Bl, B4, BS, and B7 hold.

¢. By specific example, show that B2 does not hold.

d. By specific example, show that B3 does not held.

e. By specific example, show th=t B6 does not hold.

Note: In the remaining exercises, F is the set of all functions on S to X, (f, g) € F*
is interpreted as an even-chance alteriiative, =* is the act in F that assigns z€ X to
every €S, and A < S is null <= (f,8) ~ (', 2") whenever (f(s), 8(s)) = (f'(s),
£'(s)) for all s€ A°. Let D1 through D1 be the fuiluwing axioms:

Dl. < on F % F —= F? is a weak order.

D2 [(f,g)<(f.gM ([0 <" gN=(g./) <E*. [

D3. (X, B) is a connected and separable topological space.

DA {(f.2): (LR EF, (f,e) < ([, gNeBrand {(f,.£):(f.e)eF (f,g) <
(f,£)} € B for each (f',g') € F2.

Ds. (z*,2*) < (y*, y*) for some =, y € X.

D6. (Aisnotmull;f =2, =y, f =28 =wonA;{f(9,2)} = {f'(5), £}
for each s € A°) = [(=*, y*) < @*, wH<=(f,8) < (. &N

D1. [(f(s)*, g < (f', g) for all seS1= (f, ) < (&) ([, g) <
(f®)*, g&)" forall se S1= (f', ") < (1, 8)-

16. Prove that if S is finite and D1-D$ kold then there is a real-valued function

u on X and a probability measure P* on S such that

(/.8 < (“, &)< Elu(f (), P*] + Elu(g(s)), P*]
< Efu(f'(s)), P*] + Elu(g’(s)), P*]

for all (f,g), (f',g") € F?, with P* unique and u unique up to a positive linear
transformation when this holds.

17. Let S be of any size and assume that there is a real-valued function v on F
that satisfies

(L8 < (f'.g)<>o(f) +v(g) <v(f) +v(g)), forall (f,0),(f,g)eF?,
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and is wnique up to a positive linear transformation when it satisfies this. Assume

also that the restriction of v to {z*:» . X} is unique up to a positive linear trans-
formation when it satisfies

(=%, y*) < (%, w*) <> v(@*) + v(y*) < v(z*) + v(w*), forallz,y,z, we X,
ang that DS and D§ L.oid.

Let Fy = {f:f€ Fand {f(s):5 € S} is finite}. Prove that, with u(z) = v(x*), there
is a unique probability measure P* ca S such that

v(f) = Elu(f(s), P*] (13.26)
for all f€ F,, with A nuil <> P*(4) = 0. (Compare with §1.)

18. (Continuation.) Along with the assumptions of the preceding exercise
assume that D7 holds and that for any «, y € X there is a z € X such that

(@*,y*) ~ (=%, 2%). (13.27)

Call f€ F bounded <=~ P*{a < u(f(s)) < b} = 1 for some numbers a and b, Use the
following steps to prove that (13.26) holds when f"is bounded.

a. Show that P*{a Su(f(s) <bl=1=a $o(f) <b [Let A ={s:a <
u(f(s) < b}, let d = sup {u(f(s)):s € 4}, suppose 4 < v(f) and use D7 to
cbtain a contradiction.]

b. With fbounded on A4 and P*(A) = 1, for convenience assume inf {u(f(s)):s €
A} =0 and sup {u(f(s)):s € A} = 1, and assume (with no loss in generality
since A° is null) that 0 < u(f(s)) £ 1 on A4° Given a nnsitive intcger « let
Ay ={s:0 S{f()) L Vnj, A;={s:(i ~ Din <u(f(®) Liln} for i=
2,...,n. By (13.27) there are #; € X for whicu (i — 1)/n < u(z,) < i/n for
i=1,...,n Define f;, g, € F by

fi=fondg  fi=z,0onA4p i=1,...,n)
gi=taonlUl, 4; gi=vonUl, 4 (G=1,...,n-1),

Use the fact that {f"(s), 2'(5}} = {f"(s), g"(s)} for all s€ S implies (f',g') ~
(f",£") along with the first <=~ expression in Exercise 17 to prove that

n—1 %
o(f) + 3 v(g) =D o(f). (13.28)
fa] (L]
¢. Under the conditions in (5), it follows from (13.27) that for any « > 0 and
any i€{l,..., n} there are z€ X with ju(x) — i/n] < e. Use this, (13.28),
(13.26) for F, and the bounds on the v(f;) implied by step (a) to show that
2 PHAN — Din = U n Sv(f) £ 3 P¥(A)iln + 1/n. Then argue that
v(f) = Elu(f(s), P*}.
19. (Continuation.) Under the assumptions of the preceding exercise prove (a)
u on X is bounded if there is a denumerable partition of S that has P*(4) > 0 for
cvery A in the partition, (b) every f€ F is bounded.
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Chapter 14

SAVAGE’S EXPECTED-
UTILITY THEORY

The most brilliant axiomatic theory of utility ever developed is, in my
opinion, the expected-utility theory of Savage (1954). It is an eminently
suitable theory with which to conclude this book.

As has been true of significant developments throughout the history of
mathematics, Savage’s theory was not developed in a vacuum. He acknowl-
edges and draws on the prior ideas of Ramsey (1931), de Finetti (1937), and
von Neumann and Morgenstern (1947). His general approach is not unlike
that presented by Ramsey in outline form. Unlike Ramsey, who proposed to
first derive utility on the basis of an “ethically neutral proposition’’ or even-
cliaace event and inen to derive probabilities on the basis of utilities, Savage
reverses this procedure. In his axiomatization of

f< &< Eu(f(9), P*] < E[u(g(s)), P*], forallf,geF,

which is based solely on the binary relation < on F, Savage first obtains the
probability neasure P* on the set of subsets of S. This development owes
much to de Finetti’s work in probability theory. Using P* Savage then
obtains a structure much like that used by von Neumann and Morgenstern
in their utility theory {Theorem 2.2), ari proceeds to specify u on X. One
final axiom then leads to the above representation on all of F. Savage’s
theorem is given in the next section which contains also an outline of later
sections.

14,1 SAVAGE'S EXPECTED-UTILITY THEOREM

The main purpose of this chapter is to explore Theorem 14.1, which may
appropriately be referred to as Savage’s ex -utility theorem. This
section presents the theorem and discusses its conditions and conclusions.
Scme preliminary definitions are required.

191




192 Sarvage's Eipected-1titity Thears

S is the set cf statvs, 4" s the set of consequences, and £ is the set of all
functions on Sinto X. 4, B Six.pyc X, f,zcF. < = F is the basic
binary reiation with ~ and < defined in the usual way: f~ = (not f < g,
not g < f),and f < g<=>(f < gorf~pg).

S=gon A<=f(s)=yg(s) for all s€eAd. =2 on A< f(s)=1r for
all s € A. Partitions of § and complements are defined as in Section 13.1.
A is mef! <~ f~~ g whenever f = g on A°.

r<y<>f<g when f=2z and g=y on S. z < f<>g <[ when
g = z on S. Similar definitions hold for « ~y, f~y, * < f, and so forth.

Conditional preference is defined as follows: f< g given A <>f" < g’
whenever f = f'and g = g'on 4, and f' = g’ on 4°. ~ given 4 and < given
A are definec in the usual way. ¥ < g given A means that f < g given A
whenever f = x on A.

THEOREM 14.1. Suppose that the following seven conditions hold for all
f,8f g €f, A,Bs S, andw,y, v,y €X:

Pl. < on F is a weak order;

PL(f=f andg=g' on A, f=g and ["=g' on A)= (f< g<>
[ <8

P3, (Aisnotnull, f=xand g = y on A)= (f < g given A <>z < y);

PA [z<y, f=yan A, f=2x0n A°, g=y on B, g =z on B°) and
@<y, f'=y ond [f'=zxon A% g'=y on B, g =2x" on B)=
(f<g<=f"<g)

P5. x < y for some x, ye X;

P6. (f < g, x € X)=there is a finite partition of S such that, if A is any
event in the partition, then (f' =z on A, f'=f on A°)=f" < g, and
@ =zomd, g’ =gonA)=>f<g’;

P1. (f < g(s) given A, for all s€ A)=-f < g given A. (g(s) < [ given A,
for all s € A) = g < f given A,

Then, with < * defined on the set of all subsets of S by
AL*B<=f<g whenever (x < y,f=yon A,
f=zomA,g=yon B, g=xonB) (14.1)

there is a unique probability measure P* on the set of all subsets of S that
satisfies
A<*B<>P*(A)<P¥B), forallA,B< S, (14.2)
and P* has the property that
B S,0<p L )= PC)= pPYB) forsomeC < B: (14.3)
and, with P* as given, there is a real-valued function u on X for which
f< g <> Elu(f(5), P*} < Elu(g(s)), P*), forall f,geF, (144)
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and when u .atisfies this it is bounded and unique up to a positive linear
transformatior.

The final condition, P7, is similar to A4a of Section 10.4 and B6 of Section
13.3. It is an obvious dominance (or sure-thing, or independence) condition
and it is not required in the derivation of P* that satisfies (14.2), just as B6
was not required in the derivation of P* for Theorem 13.3. The form of P7
given in the theorem is slightly weaker than (does not assume as much as)
Savage’s original form which has < where < appears in P7, but the two are
equivalent in the presence of the other conditions, P1-P6.

P2 and P3 explicate Savage’s ‘‘sure-thing principle.”” P2 says that prefer-
ences between acts should not depend on those states that have identical
consequences for the two acts. It is closely related to the independence
condition of Chapter 8 and is found reasonable by many persons provided
that the state that obtains does not depend on the act that is actually imple-
mented. Together, Pl and P2 imply that < given 4 is 2 weak order on F for
everty A € S.

P3, as a companion to P2, says thatif f=2xand g =y on 4 and if 4 is
not null, then £ < g given 4 <> f’' < g" when /' = z and g’ = y on S. This
sets up a reasonable correspondence between preferences on consequences
(constant acts) and conditional preferences on events that the decision maker
regards as possible.

<* as defined in (14.1) is a qualitative probability relation on the set of
events. We read 4 <* B as ““A is less probable than B.”’ As noted in (14.1),
*“is less probable than”’ is defined in terms of “is less preferred than.”” The
principle objective of P4 in this connection is to ensure that <* on the events
is a weak order. Suppose you prefer y to x and can either take your chances
on getting y if A obtains or on getting v if B obtains. In either case if the event
you tak- your chances on does not obtain you will receive the less preferred .
If you select B then it seems reasonable to suppose that you regard B as more
probable than A. P4 says that if you prefer to take your chances on getting
y if B obtains then, with two other consequences ¥’ and z’ with y’ preferred
to =’, you would (or ought to) rather take your chances on getting " if B
obtains than on getting y’ if 4 obtains. As in the case of P2, this seems
reasonable as long as the state that obtains does not depend on the conse-
quences assigned to the states by any particular act.

Ps5 says that indifference does not hold between every pair of constant acts.
It is needed to ensure the uniqueness of P*. If PS were false then <* would be
reflexive. For further remarks see Section 14.3.

The effect of P6, which is a rather strong assumption, can best be seen
from (14.3) which in the presence of (14.2) follows from P1-P6. Among other
things, (14.3) says that § must be uncountable, that P*(s) = O for every
s € S, and that for any positive integer n there is an n-event partition of S
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partitions as uaiform partitions.

In guaranteeing 4 ~ * B> P4y < P* B P has an unmuittakable
Aichimedean quality. In effect it says that nao conse 'uence s “infinitely
desirable’’ (which would negate /" < g if x were so dusirable) and that no
consequence is “infinitely undesirable’ (which would negate /' < g if x were
so undesirable). If § is allowed to be infinite, something like P6 is required
to ensure the existence of real-valued order (- *) preserving probabilities,
As Savage points out, weaker versions of P6 are sufficient for (14.2), but may
not yield (14.3) as well. The usefulness of (14.3) will become apparent when
we see how it is used as a point of departure in defining gambles on X that
lead to the definition of the utility function & on A.

P1 through Pb are sufficiont to cbtain (14.4) for all acts in F that assign no
more than a finite number of consequences to all the states in some event 4
for which P*(A4) == 1. P7 is then used (as was B6 in the preceding chupter) to
verify that (14.4) holds for a// acts, and it ensures that » on X is bounded.
When he wrote The Foundations of Statistics, Savage had the impression that
P1-P7 do not imply that « is bounded. Some years later, when we were
working on the theory that appears in Chapter 10 of Part II, we discovered
that this impression was false. Because of the falsc impression, Savage did
not state (14.4) for all acts but, in light of the boundedness of u, he did in
fact prove (14.4) as it is presented here. In other words, he proved (14.<) for
ali bounded acts. Since u is bounded, all acts are bounded. The prooi’ of
boundedness given later is essentially his.

In preving Theorem 14.1 I shall follow the pattern used by Savage. Here is
a sectional outline,

Section 14.2 shows that (14.2) and (14.3) follow from five conditions
(F1-F5) for <{* on the set of events.

Section 14.3 under definition (14.1) shows that P1-P6 => F1-F5.

Section 14.4 establishes, from P1-P6, the three preference axioms of
Theorem 8.2, which shows that (14.4) holds for acts confined with probability
one to a finite subset of consequences.

Section 14.5 proves that u on X is bounded, This uses P7.

Section 14.6 uses P7 to verify (14.4) for all acts.

The proofs that follow are essentially Savage’s. I have added some details
to them in places where I felt that this would aid some readers.

142 AXIOMS FOR PROBABILITY

In this section we shall prove the following theorem.

THEOREM 14.2.  Suppose that < * on the set of all subsets of § satisfies the
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following conditions for all A, B, C < §:

Fl. not A <* &,

F2, g <* 8§,

F3. <* is a weak order,

FA, ANC=BNC=g3=>(A<*B<>AuUC<*BuO(O),

F5. A <* B=>there is a fini.. partition {C,, ..., Cy} of S for which
AU C, <*Bfori=1,...,m.

Then there is one and only one probalility measure P* on the set of all
subsets of S that satisfies (14.2), and (14.3) holds for this measure.

F1-F4, which define < * as a qualitative probability, are necessary for (14.2),
but collectively they are not sufficient. F1-F5 as noted are sufficient but F5 is
not necessary for (14.2) although it does follow from (14.2) and (14.3).

Asusual we define 4 ~* B<=> (not A <* B,not B <* 4),and 4 <* B <>
(4 <* B or A~~* B). Throughout this section and the rest of this chapter,
1 shall use 4/B (“‘4 but not B”) to denote the complement of B relative to 4:

A/B = A N B (14.5)

In approaching Theorem 14.2 we begin with a series of consequences of
F1-F35. C1 through C4 presuppose only F1-74. The rest presuppose all of Fi
through FS5.

ClLBES C=> g <*B*C<*S.

C2(~*). (A~*B,BNC==3)=>AUC<K*BuUC.

CA<*). (A<*B,BNC=g)==AUC<*BUC.

C3H(~*). (A~*B,C~*D,BND=g@)=>AuUuC<*Bu D.

C3<*). 4<*B,C<*D,BND=g@)=AuC<*Buyu D.

C4 (A~*B,C~*D, ANC=BND=g)=>AuC~*Buy D.

C5. @ <* A= A can be partitioned into two events B and C for which
(@ <*R, @ <*C).

C6. (A, B, and C are pairwise disjoint, A <* B, B<* A u C) > there is
a D < Cfor which & <* Dand B\ D <* A u (C|D).

C7. (@ <*4, @ <* B, A N\ B= @)=> B can be partitioned into C and
D for whichC<* D<* 4 v C.

C8. @ <* A= A can be partitioned into B and C with B ~* C.

C9. @ <* A = for any positive integer n there is a 2" part partition of A
such that ~* holds between each two events in the partition.

Proofs of C! through C9
C1. The proof is easy and is left to the reader.
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C2(~*). Assume (A~"B, BN C= ). Since A = (A/C)u (4 N C)
and A N (ClA) = @, FA=> (4/C) U (A N C) U (C|A) ~* B U (C|A), or
Au C~*Buyu (Cl4). By Cl, Bu (C/[A)<*Bu C. Hence, by F3,
AuCK<*BUC

C2(<*). Replace ~* by <* in preceding proof.

C3(~*). Assume (A ~* B, C~* D, BN D= ). Since (C/B) N B =
) &, C{~*)=>A L (C/B) <* By (C{B) = By C. Also, since (B/C) N
T D=g,C2(~*)and C~* Dimply Bu C=Cu (BI|C)<* Dy (B|C). :

By F3,4 U (C[B) <* D U (B/C). This, C2,and (B N C) N (D v (BIC)) = :

@ then imply that A U (C/B) U (B N C)<* DU (B/C)u (B N C), or

AvuC<*DuUB

C3(<*). Replace C~* D by C <* D in preceding proof. Use C2(<*).

C4. Assume (A~*B, C~*D, ANC=BND=g) By C3(~*),
AvCK*BuDand BuUD<*AyC.Hence A UC~*By D.

C5. Assume @ <* A. F.=>there is a partition {D-,..., D,} of § for
which D, <* A for each i. Cl = D, N A <* (D, N A) U (D,JA) = D,.
Hence D, m A <* 4 for all i. If D; " A~* & for each i then, by C4,
U, (D, NA)~* &, or A~* @, a contradiction. If @ <* D, N 4 for
only ane i, say i = 1, then 4 ~* D, N A4 which contradicts D, N 4 <* A4,
Hence g <* D, N A for at least two /.

C6, Assume (A NB=ANC=BNC=3,A*B, B<*Ay ().
(F3,F4)= @ <*C. Since B<*Au Cand g <*C, it follows from F5
that there is a D, € C for which @ <* D, and Bu D, <* 4 u C. By
CS and F3, D, can be partitioned into D and D’ with @ <* D <* D', so
that BUDUD <*AU(CID)u D. FA== By D' <* A U (C|D). (F4,
DL*DYy=Bu D<*Byu D'.Hence Bu D <* 4 U (C/D).

C7. Assume (& <* A4, 2 <*B, A NB= @).If B<* A the conclusion
follows easily from C5. Assume that 4 <* B. F5=- there is a partition
{Gi,...,G,} of B such that G, <* A for each i. For definiteness assume
that G; <* - - <* G,. Letmbesuchthat Y G, <* YUz, G, <* UM G.
Let C= PG, «and D= )%, , G, Then C<* D <*C v G, which,
since Gy <* A, implies by F4 and F3 that D <* C U A.

: CB. Assume @ <* A. It follows from CS5 that 4 can be partitioned into
' B,, Cy, Dy such that B, <* C, U Dyand C, X* B, U D,. If one of these two
K * is ~*, the conclusion of C8 holds. Henceforth assume that B, <* C, U
D, and C, <* B, U D,. Then @ <* D,. For definiteness take B, <* C,.
Then C6=>thereisa C*< D, such that & <*C*and C, U C*<* B, U
(D,/C?). Hence @ <* Dy/C? and, by C7, D{/C? can be partitioned into B*
and D, such that B*<C* D, <*C*y B Since B, <*C,, B,u B *
Ciu D, <*C, v Dy C4 all by F4. Let
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We then obtain a partition {8,, C,, D,} of A for which

1. Bg<*Cyu Dyand C; <* B, D,

2, B = B,, Cie Cy, Dy Dy,

3. Dy &* Dy/Ds.
By repeating this prc.ess it follows that there is a sequence..., {B,, C,,
D.}, ... of three part parititions of A such that, for eachn > 1,

. B, <*C,uD,and C,<*B,u D,
2. Bn & me Cn == Cn+ls n+1 = Dm
30 Dn-!—l <\' Dﬂ/DIH-l!

so that @ <* D, for all n, and D, contains two disjoinl events (D,,, and
D,|D,,,)each of whlch is as probable as D,,,,. Hence, using (3) and C3(< “‘),

(El'< Dn—,—b 2< n+1)—"EIUE2<*D
Now for any G with @ <* G, D, <* G for sufficiently large n. For
example, if G <* D, then, with {E,, ..., E,} for & <* G as in F5 with
E,<*Gforalli, E; <* D, forall isothat E, U E; <* D, ;,Esu E, <*
D, ,,...and then Ul E; <* D, ,, UL E; <* D,_,, ... and so forth, so
that witi, # suﬂicnently large U, E; <* D,, or § <* D,, which is false. In
additicn, @ ~* N, D, for if @ <*A._, D, then D, <*N D, for
sufficiently large m, and this is false since } D, & D.
Let
o0 a0 o0
B=UB, and C= (UC,,) U (nu,,).
n=1 n=1 n=1
{B, C} is a partition of A since ({J B,) N (U C,)= (U B,) " (N D,) =
U<, n(N D,) = o. To verify B ~* C note first that C ~* |J C, since
N D, ~* @. Suppose that B <* C. Then B <* |J C,, and, by C6, thercis a
G = U C, for which @ <* G and

Bu G<* (U C)G.
Since B N G = @ and B, <* B (since B, < B), F4 implies
B,UGX*BuUG.
For large n D, <* G so that, again by F4,
B,uD,<*B,uUG.

Since D, N(UC,) <*G for large n and Y C,,=(UC, /GO U G=
(U C./D,) u (U C.) N D,), it follows by C3(< *) that for large n

U C./G <* (U C,)/D..
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Finally, since (J C,)/D, € C., Cl = (UJ C,){D, <* C,. This and the four

preceding Jispiuyed expressions yield B, U D, <* C, by transitivity (for

large n) which contradicts C, <* B, U D, in (1). Therciore, not B <* C.

By a similar proof, not UJ C, <* (U B,) v (} D,) so that not C <* B,
C9. This follows from C3(<*)and C8. &

We now complete the proof of Theorem 14.2.

Proof of (14.2)

Let FI-F5 hold. We shall call a partition {4,, .. ., A,,} of 4 a u.p. (uniform
partition) when @ <* 4 and A; ~~* g ~* -+ ~* 4., and let

C(r, 2") = {A: A is the union of r events in some 2" part u.p. of S}.

We shall establish (14.2) through a series of steps, each of which proves a key
assertion. :

1. [A,BeC(r,2")]=> A~* B, First, if A, Be C(1,2*), and if 4 <* B,
it follows easily from C3(<*) that § <* S. Hence, if 4, Be C(1, 2"), then
A ~* B, Therefore, if A, Be C(r, 2"), A ~* B follows from C4.

2. [AeC(r,2"), Be C(r2™, 2™™)] = A ~* B, First, if A€ C(1, 2") and
Be C(2™, 2"t™), then A ~* B, for otherwise, by step 1 and C3(<*) we get
S < * S. The desired conclusion follows from C4.

. [AeC(r,2"),BeC(t,2™)] = (A <*B<=r/2" < t[2™). If r2" = (/2™
then r2™ = 12" and, with D e C(r2"™,2*™) it follows from step 2 that
A~*D and B~* D, so that A ~*B. If r2™ < (2" then, with D, &
C(r2m, 2"*t™) and Dye C(12",2"™) we get A ~* D, and B~* D, But
surely D, <* D, when r2™ < 2", Therefore A <* B,

4. For A < Slet k(A, 2") be the largest integer r (possibly zero) such that
B <* A when Be C(r, 2"), and define

P*(A) = sup {k(4,2")/2":n=0,1,2,...}. (14.6)
Clearly, P*(z) = 0, P*(S) = 1, and P*(4) 2> O for all 4 = S§. Moreover,
A e C(r, 2") = P*(A) = rf2". (14.7)

If A € C(r, 2%) then, by (14.6), P*(4) > r[2". If, in fact P*(A4) > r[2" then
for some B e C(t,2™) with r[2" < /2™, B <* A. But this is impossible by
step 3.

5. A <* B=> P*(A4) < P*(B). This is obvious from (14.6).

6. P* is finitely additive. Let A N B = & It follows that, for each », there
is a 2" part u.p. of § for which 4, and B, are unions of elements in this
partition, with 4, N B, = &, A, € Ck(4,2%),2"), B, € C(k(B, 2%), 2"),
A, <*A4, B,<*B. Hence 4, u B, <*Au B by C3, and k(A4,2") +
k(B,2") € k(A v B,2"). Since, for any A < S, it is easily seen that
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k(A4, 2")/2" does not decrease as n increases, it follows from Exercise 10.7
that : :
P*(4) + P*(B) < P*(A U B).

If we now define k*(4, 2") as the smallest integer 7 such that 4 <* B when
B e C(r, 2", it readily follows from the fact that {ri2*:r=0,...,2";
n=0,1,...} is dense in [0, 1] that ief {k*(4,2"/2":n=0,1,.. g =
sup {k(4,2")/2":n =0, 1,...}. A proof symmetric to that just completed
then implies that

P*A U BY< P*(4) +P*(B) whend NB=g

so that P*(4 U B) = P*(4) + P*(B).

7. 3 <*A=0< P*A). Let @ <* A4, By F5 there is a partition
{4y, . .., An} of S for which A, <* 4 for each i, Then, by step 5, P*(4,) <
P*(A). Finite additivity then requires that P*(4) > 0.

8. 4 <* B=> P*(A) < P*(B). Suppose 4 < * B. Then, using F5, there is
a C< §for which @ <*C, CNA=g,and CuA<"*B. By finite
additivity and step 5, P*(C) + P*{4) < P*(B). Since P*(C) > G by step 7,
P*(4) < P*(B).

Steps 5 and 8 imply (14.2) and it is obvious that P* as defined here is the
only probability measure on S that satisfies (14.2). ¢

Proof that (B< S, 0 < p < 1) = P*(C) = pP*(B) for some C < B

If P*(B) = C the result is obvious. Assume then that P*(B) > 0, and
consider a sequence {4}, A1}, {43,..., Ao {AD AR L of 20
part u.p.’s of B for which {45}, 471} is a 2 part u.p. of A}. For a given n
let m = sup {j:P*(U.., 4") < pP*(B)} so that

P*(l"J Ar) + 27"P(B) > pP*(B),
and let k = inf {j:P*(U2", 4%) < (I — p)P*(B)} so that
P*(QA:) + 27"P*(B) > (1 — p)P¥(B).

Let C,=UL, 4" and D, = UL, A? so that C,c Cys---, D, <
Dys---,C, "D, = & forall n, and P*(C,) > pP*(B) — 2-"P*(E) and
P*(D,) 2 (1 — p)P*(B) — 2-"P*(B) for all n. Since C.cs U,C, and
D, < Un Dy, pP*(B) < P*(U C,) and (1 -- p)P*(B) < P*(J,, D,). More-
over, (U C,) N (U D,) = 3. Hence, by finite additivity, C1, and (14.2),

P*U Ca) + P*(U D,) = P*((U C) U (U D) < P*(B)
which requires P*(|J C,) = pP*(B) and P*(J D,) = (I — p)P*(B). &
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‘143 PROBABILITIES FROM PREFERENCES

This section shows how F1-F5 of Theorem 14.2 follow from PI-P6 and
(14.1), which is

A<*B[(x<y,f=yonA,f=z0onAg=Yy onB,
g=zonB)=f< g]. (14.1)

If x~yforallz,y € X then A <* B for every A, B < S. P5 clears up this
potential snag. [Savage, who uses a different definition than (14.1), gets
A~*B for all A, B< § when PS5 is false. His definition is 4 <* B <
[z < y,...)=f< gl The main difference here is stylistic.}

Since PS5 says that z < y for some z, y € X, it then follows from (14.1)
and Pl that <* is asymmetric: 4 <* B=>not B<* 4. Suppose not
A <* B and not B <* C. With z < y it follows from P4 and (14.1) that
(f=yon A, f=20nA°, g=yon B, g==x on B, not f<g) and that
(g=yonB,g=zxzonB,h=yonC, h=xonC notg < h), sothat,
using P1, (f=yon A, f=2o0onA° h=yon C, h =xon C’not f< h),
so that not A <* C. Hence (P1, P4, P5)= F3, <* on the set of all subsets
of § iz a weak order.

Letting A = @ and B = S in (14.1), @ <* § follows immediately from
the definition of < on X. @ <* §is F2.

Suppose A is null and (x <y, f=y on A4, f= =z on A°, g =z on §).
Then, since f= g on A°, f~g. Hence not 4 <* &. If 4 is not null and
(x<y,f=zo0nS, g=yon 4, g==zon A then f < g given 4 by P3,
and since f = g on 4°, f < g by the definition of conditional preference. It
then follows that @ <* A, This verifies F1 in the presence of F3.

F4 is implied by P2 and P4. Assume A N C =3 NC = 2. If P5is false
then A <*Band A U C<* By C follow. Assume then that x < y. Let

f=y on A, f=2 on A°

g=y on B, g==z on B°

J'=y on AVUC, f'==z2 on (AUC(C)

g'=y on BUC, g'=z on (BUC).
Since f=f'and g =g’ on C°, and f= g and f' = g’ on C, P2 says that
f<ge=f'<g.If A<*B then f<pg by (I4.1), then f' < g’, then
AU C<*BuyU C by (14.1) and P4. By the reverse procedure A U C <*
BuC=A4<*B.

To verify FS suppose 4 <* B. Take z < y by P5. With f, g as in (14.1),
f < g. By P6 there is a partition {C;, ..., Cr} of S such that f; < g when
Ji=yon C,and f; = f on C. Since f;=y on AUC, and f; ==z -on
(Au C)andf;, < g, (14.1) and P4 imply A U C; <* B. ‘
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Thus, F1-F5 follow from P1-P6 under (14.1). Therefore, by Theorem 14.2,
P1-P6 imply the existence of P* as specified in (14.2) and (14.3).

14.4 UTILITY FOR SIMPLE ACTS

P* as specified in (14.2) and (14.3) induces a probability measure P,
on (the set of subsets of) X for cach f'e F as follows:

P(Y)=P*{f(s)e Y} foreachYc X, (14.8)

where, as usual, P*{f(s) € Y} means P*({s:f(s) € Y}). Let T, be the set of all
simpie probability measures on X and let § = {P,:f € F}. With F the set of
all functions on § to X it follows from (14.3) that §, < .

Later in this section we shall prove that the three conditions of Theorem
8.2 follow from PI-P6. Before doing that we note that for any P € T there
may be many different acts in F that have this P as their measure on X
induced by P*. Clearly then, if (14.4) is to hold it is absolutely essential to
have f~ g when P, = P,.

THEOREM 14.3. (P1-P6;P, =P,; P,,P,cT,)=>f~g.

Preparatory to pro- ing this we shall prove two lemmas, the first of which
will be used extensively in later developments.

LEMMA 14.1. (P1,P2,{A,,..., A,} is a partition of A, f< g given A,
Joreachi)=>f< g given A. (P1,P2,{4,,..., A,}is apartition of A, f < g
given A, for each i, f < g given A, for some i)=-f < g given A.

LEMMA 142, (P1-PA, ANB=o, A~*B, f=xand g =y on A,
S=yamdg=2zonB)=>f~ ggiven A U B.

Proof of Lemma 14.1. Let the hypotheses of the first part hold. Let ' = f
andg’=gon 4, andf' =g’ on 4%. By (P1,P2), f< ggivend < f' < g'.
Fori=1,...,n—1let

1
fi=g =g on U4,

j=1
7
fi=f'=f on U 4,
Ji+l
fi=f =g on A°
Since f < g given 4, for each i, (P1,P)=f' < fi, i< Sos - s Jaur K &
and hence /* < g". If f < g given 4, for some i also then one < in the sequence
is < and hence f' < g',or f< ggiven 4. &
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202 Savage's Expected-Utility Theory
Proof of Lemma 14.2. Let the hypotheses of the lsmma hold. Let

f'=y on B, f'=z on B
g’=y on A, g'=z on A

If z <y then f'~g’ by A~* B, (14.1), and P4. Since f' =g’ =z on
(A U B, Pl = [’ ~ g’ given (4 U B). Thenf’ ~ g’ given A U B for other-
wise, by Lemma 14.1, either f* < g’ or g’ < f’. Since f = f" and g =g’ on
AU B, (P1,P2)=f~ g given A U B. If y < z the conclusion is the same.
Finally, suppose # ~ y. If A(B) is null then f~ g given A(B) follows from
the definitions of conditional preference and null events. If A(B) is not null

then f~ g given A(B) follows directly from P3. Hence, by Lemma 14.1,
Sf~ggivenAU B &

Proof of Theorem 14.3. Let P1-P6 hoid. We are to prove that if the z, are
all different and if

f=% on A,g=2x on B, fori=1,...,n

0<P*A)=P*B) fori=1,...,n, and 3 P%4)=1,
i

then f~ g. Under these hypotheses S/UJ 4; and S/J B; are null events
(Exercise 17). Hence, with f* = fon U A4,, /' =, on S| A,, g’ =g on
UB,andg =z, 0nS/UB, f ~fand g’ ~gsothat f~g<>f'~pg'
Thus it will suffice to prove that f~ g when {4,, ..., 4,}and {B,, ..., B,}
are partitions of S.

[~ g if n = 1. Using induction on 7 > I we shall “climinate’’ z,. Thus,
assume the theorem is true for n — 1, and with n > 1 let

A=A,NB: and B=B, N A!

so that 4 N B = @ and P*(4) = P*(B), the latter by P*(4, N B%) +
P*(A, N B)) = P*(A,) = P*(B,) = P*(B, N A%) + P*(B, N 4,). Let
D,=BnNnA,fori=1,...,nso0that {D,,..., D,,} is a partition of B.
Then, by (14.3), there is a partition {C,, ..., C,,} of A4 for which

P*(C)=P*D,) i=1,...,n—1. (14.9)

Let f, = f and define f;, . . . , f,_; recursively thus: f; = f;_, on (C, U D))",
fi==z,0on D, f, =z, on C,. Figure 14.1 illustrates this along with g. By
(14.9) and Lemma 14.2, f,~f;_, given C;u D; for i=1,...,n—1.
Since f; = f,, on (C,u D), fi~fi, given (C,u D,). Therefore, by
Lemma 14.1, fi~f,_fori=1,...,n ~1so that f~ 1, ,.
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B,
A=A, "B B = AN B,
€, G G -+ Gy|Dy Dy Dy '+ Dy | Ay N By | A3 N B
wfol Zn %q Tn r @, ¥y Ty Ty 't Ty zy A
1 | %1 Tn Zn z, Ty Ty XT3 " Ty, Ty S/
fa |2 =z Ty "0 By Ty Ty T3 " Ty Tn f
Joaa|® oz omy o my T, my my o, Tn f
£§ 15 & & & T, %, Z, ‘'° X, z, F 4
Figure 14.1

It remains to show that f, , ~g. With B, = BuU (4, N B,) let

f'=fuq on By g'=g on B

=z,; on B, =r,;, on B,
Then, as shown by Figure 14.1, the only consequences that can occur witk
J' and g’ are z,,...,7,,. «, has been climinated. By (14.9) and Figure

14.1, P¥{f, ,(s) = 2;} = P*{f(s) = z,}. Hence
PHf =z} =P*g' =z} =P*B) fori=1,...,n—2,
PHf ==z,.} = PMg' =z, ,} = P*(B,,) + P*(B,)

which fits our initial format with n replaced by n — 1. Thus /' ~ g’ by the
induction hypothesis. Then, since f’ ~ g’ given B,, Lemma 14.1 requires
J'~ g given B:. Then, since f, ; =f" and g =g’ on B, f,_, ~g given

B:. Also, since f,, , = gon B,, f, , ~ g given B,. Hence f,_, ~ g by Lemma
141. ¢

The Axioms of Chapter 8
Defining < on ¥, by
PLQ<f<g wheneverP,=P and P,=0Q, (14.10)

Pl and Theorem 14.3 imply that < on ¥, is a weak order. The second and
third conditions of Theorem 8.2 follow from the next two lemmas.

LEMMA 143. (P, Q, ReS, 0<a <1, Pl-P6)= (P < 0 <>uP +
(1 — )R < aQ + (1 — W)R).

LEMMA l44. (P, Q€¥,, feF, P Q, P fX Q, Pl-P6)=>there is
one and only one « € [0, 1] such that f~ «P + (I — a)Q.
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204 Savage’s Expected-Utility Theory

Of course f < P <+ f < g when P, = P, with similar definitions for f < P,
f~2P,... . Theorem 14.3 guarantees no ambiguity here as long as P € ¥,.
The fact that Lemma 14.4 holds for any f € F will be used in the next section.

Proof of Lemma 14.3. Throughout this proof and the proof of Lemma 14.4
we shall take {x;,...,z,} = {x:P(x) > O} with P(z) = &;, {¥1, . . . , Ym} =
{:Q() > 0} with Q(y,) =B, so that Ja, =3 B, =1, and let w be a
most preferred consequence in {Zy, ..., Ty, Yy, ..., Yu}. A(@) will denote an
event in S for which P* = «. Equation (14.3) will be used freely to construct
events with various probabilities.

For Lemma 14.3 we shall consider £ < g given D(x) with D(a > 0) < §,
PR (f=2z)=a,(i=1,...,n and PRg=y)=p4;(j=1....,m). In
view of Theorem 14.3 and the first paragraph of its proof, f < g given
D(I) <> P < Q,and f< g given D(a) <> aP + (1 — «)R < aQ + (I — a)R.
(When « < 1let f = g on D(x)" with probabilities on D(a)® equal to (I — «)
times the positive R(z).) To prove the lemma we shall show that if f < g
given D(«) for one « € (0, 1] then f < g given D(a) for every « € (0, 1].

Thus suppose that f < g given D(y). Then, by considering n part uniform
partitions of D(y), it follows from Lemma 14.1 that ' < g given D(y/n) for

every positive integer n. Moreover, f < g given D(ry) for every rational
number r € (0, 1/y].

Let 0 < B < 1 be such that f < g given D(f). Let
f*=f and g*=g on D), [*=g*=w on D)

so that f* < g*. Then, using P6 m times (once for each y,) and Lemma 14.1
if necessary (so as not to exhaust all of 1 — § before the m uses of P6 are
completed), we obtain g” with f* < ¢” and
g"=g*=¢g on D(B)
=y, on C[4);4,>0,Cid) <€ DB, C,NC, = &,
- (J=1...,m)
=w on (D(p) U (Uc,(z,))).
=1

Taking C,(d8,) < Cy(4,) for j=1,...,m with > 0, let g° = g” except
that g® = w on C;(4)/C)(88,). Since y; < w, Lemma 14.1 implies that
g" < g with

g=g on DB+ =D@ U (,E_ch,wﬂ,))
=w on D(B+9)
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Also take f* = f* except that f® = z, on E,(da,) where the E, form a partition
of UM, C,(88,). Since z, < w, f° < f* by Lemma 14.1 with

fo=f on D(f+8)
=w on D(f + 8).

Then f° < g9 since [0 < f* < g" < g° and hence /< g given D(8 + 9).
Since this holds for all  in some interval (0. ], it follows from this and the
preceding paragraph that /< g given D(x) for all « € (0, 1). Also, since
S < g given D(1/2), Lemma 14.1 gives /< g given D(1). &

Proof of Lemma 14.4. As in the proof of C1 of Theorem 8.3, (P, Q € 7,,
PLQ,0<a< < )=pP + (1 — Q< aP + (I — a)Qfollows read-
ily from Lemma 14.3. Thus, under the hypotheses of Lemmma 14.4 there is
one and only one « € {0, 1] such that

BP+ (1 —-BQ<f iff>a (14.11)
f<BP+(1-pQ iff<a (14.12)

Clearly, only « can satisfy f~ aP 4+ (1 — «)0.
Suppose then that aP + (I — «)Q < f. This requires « > 0. Let

g==z, on D(xa,) i=1,...,n
=y, on D((l-wp) j=1,...,m

where {D(aay),..., D((1 — «)B,4)} is a partition of S. Then P, = aP +
(1 — «)Q. Hence g < f by Theorem 14.3 and P1. Then by repeated uses of
P6 obtain g’ < f where g’ = g except that g’ = w on C,(y;, > 0) € D(ax,)
fori=1,...,n With § <a and a — § small, take C,(y; > 0) = C,(y,)
with y; = (& — f)a, and let g° = g’ except that g° = 2z, on C,(y,)/Ci(y;). By
Lemma 14.1, g° < g’ with
g =z on D(fa)< D(ax) i=1,...,n
=y, on D((1 — a)B,) j=1,...,m
=w on D(«x—pf).

Now change g° to A by partitioning D(z — B) into {D(By(x — B)),...,
D(fm(x — B))} and replacing w on D(B,{« — B)) by y,. By Lemma 14.1,
h < g° so that by transitivity 2 < f. But P, = P 4 (1 — $)Q by construc-
tion and since f < « we have obtained a contradiction to (14.12). Hence
aP 4 (1 — «)@ < fis false. Similarly, f < «P + (1 — «)Q is false for this
leads to a contradiction of (14.11). Hence f~aP + (1 — 2)Q. &

In view of the results of this section and those of Chapter 8 we can state the
following theorem, in which P* is as given by (14.2) and (14.3) through (14.1).
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THEOREM 14.4. P1-P6 imply that there is a real-valued function u on X
such that

< g <> Elu(f(s), P*] < E[u(g(s)), P*), forallP,, P, ¥, (14.13)

and when u satisfies this representation it is unigque up to a positive linear
transformation.

In the rest of this chapter, u is assumed to satisfy (14.13).

14.5 UTILITIES ARE BOUNDED

In proving that u on X is bounded, we shall use the foliowing lemma,
whose proof follows easily from P7.

LEMMA 14.5. (P1, P2, P7, x < f given A and x < g given A for every
zeX)=>f~g given A. (P1, P2, P7, f < x given A and g < x given A for
every x € X) = f~ g given A.

In the proof of the following theorem sup T = oo means that T is a set of
real numbers and, if ¢ € Re, ¢t > ¢ for some ¢ € T. sup T = oo means that
Tis unbounded above. In addition, when fis such that P*{u(f(s)) > d} = 1
for some number d, E(u, P,) = co means that sup {E[inf {u(f(s)), c}, P*]:c€
Re} = oo,

THEOREM 14.5. (P1-P7)= u on X is bounded.

Proof. Let P1-P7 hold and suppose that # on X is unbounded above.
Using (14.3) construct a sequence By, B,, ... of disjoint events in § with
P*(B,) =2"forn=1,2,... .If 5., B, does notexhaust S, add S/{J B,
to B,. Take u(z,) > 2" for each n and let

f=z, on B, n=12,...,
so that E[u(f(s)), P*] = oo since

Elinf (u(f(5)), 2%}, P41 2 3 P*Bu(z) = 3272 = n

=l )
forn=1,2,... .Letxzbeanyconsequencc. Then, for some y € {z, 73, ...},
u(z) < Elinf {u(f(s)), u(y)}, P*]. (14.14)
Let f' = fon {s:f(s) < y} and f’ = y on {s:y < f(5)}. Then P, €7, and
Efu(f'(s)), P*] = Efinf {u(f(s)), u(y)}, P*] so that, by Theorem 14.4 and
(14.14), z < f’. But f' < f by Lemma 14.1 since, by P7, f' < f given
{s:y < f(5)}. Hence z < f. Therefore = < f for every z.
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Next, let z be such that u(z,) < u(z). Let g = z on By and g = fon B:
As in the preceding paragraph, » < g for every z, so that f~ g by Lemma
14,5, But f < g given B, since z; < # and P*(By) > 0, and f~ g given B}
since f = g on B!. Hence /' < g by Lemma 14.1, a contradiction. Hence u is
bounded above. A syinmetric proof shows that u is bounded below. @

14.6 UTILITY FOR ALL ACTS

To establish £ < g <> E(u, P;) < E(u, P,) for all acts we shall first prove
two lemmas.

With P € J,, g = P on 4 means that P*{s € A and g{s) = z} = P*(4)P(x)
for all z € X. We define /' < P given A <> f < g given A for every g = P on
A. P < fgiven A is similarly defined, and f~ P given A and f < P given 4
are defined in the usual way. Note that, by Theorem 14.3, if f < g given A
foronz g==Pe ¥, on A, then f < h given A forevery h=Pon A. If A is
nuil, g = P on A for every g.

LEMMA 14.6. (P1-P7,A # &,f < zgiven A, u(f(s)) < cforalls € A) =
ikere is a P € T, for which f < P given A and E(u, P) < c. (P1-P7, A # &,
z < fgiven A, ¢ < u(f(s)) for all s € A)=> there isa P& T, for whichP < f
given A and ¢ < 5(u, P).

LEMMA 14.7. (P1-P7,{B,,..., B,} is a partition of S, u(f(s)) < ¢, for
allseB,(i=1,...,n),PeT, P<[f)=Eu,P)< 3" P*B)c.(Pl-P7,
{By, ..., B,} is a partition of S, ¢c; < u(f(s)) forall se B, {i=1,...,n),
Pe “Tn.f< P)=> z:n-l P‘(Bl')cl' S E(u’ P)'

It will suffice to prove the first part of each lemma. Ia each proof the
hypotheses of the first part are assumed to hold.

Proof of Lemma 14.6. If u(x) < c let P(z) = 1. Then f< P given 4 by
hypothesis and E(u, P) = u(z) < c¢. Henceforth suppose that ¢ < u(z). Let
y be any consequence for which u(y) < ¢, as assured by 4 # & and
u(f(s)) < c for all s€ 4. Let P be the unique combination of » and y for
which E(u, P) = ¢.If A is null then f < P given A4 and the proof is complete.
Henceforth assume that P*(4) > 0.

FixteA. Let g = Pon A and g = f(t) on A°. Since u(f(t)) < ¢,

u(f (1)) = P*(Au(f (1) + PHAW(f (1))
< P*(A;E(u, P) + P*(A4u(f (1)) = E[u(g(s)). P*]

50 that, by Theorem 14.4, f(1) < g. Hence f(t) < g given A. S:ince this holds
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for each 1 € A, P7 implies that f < g given A. Since g = Pon 4, f < P given
A @ , , o :

Proof of Lemma 14.7. Suppose the conclusion is false for some fand P so
that 3 P*(B))c. < E(u, P). Since this can’t hold if P is confined with proba-
bility 1 to worst consequences, it follows that there is a Q € T, for which
2 P*(B))c, < E(u, Q) and Q < P < f. Hence, if the lemma is true when its
P < fhypothesis is replaced by 2 < fthen the original lemma must be true.

Thus, it will suffice to show that if PI-P7 hold, if {B,, . .., B,} is a partition
of § and if

L u(f(s)) <c/forallseB,i=1,...,n, and
2. Pef,and P < f,

then E(u, P) < X7, P*(B))c;.

To prove this we show first that f can be modified, if necessary, so that (I)
and (2) hold for the modified f and, for each i, there is a y, such that modified
S < y; given B.. If there is a y, such that f < y, given B,, we cease to worry
about this i. On the other hand, suppose z < f given B; for every z € X.
Then B; can’t be null so that P*(B,) > 0. For this B, takey < zand u(y) < ¢;.
With P < f by (2), it follows from P6 that there is a non-null 4 < B, for
which P < " when f/’ = fexcept on A where /' = y. Let f* = fexcept on 4
where f* = 2. Since y < z, f* < f* given 4. Hence f’ < f* given B, by
Lemma 14.1. It cannot be true that x < f’ given B, for every x€ X for
otherwise, by Lemma 14.5, f' ~ f* given B;, a contradiction. Hence there
is a y; € X such that f’ < y; given B,. Since (1) and (2) hold for f* we see
that, by considering each i, we obtain an act g that satisfies

1. u(g(s)) <c,forallseB,i=1,...,n,

2. Ped,and P < g,

3. There is a y; € X for which g < y, given B,, i=1,...,n.
Given such a g, Lemma 14.6 implies that, for each /, there is a Q, € 7, such
that g < Q, given B, and E(u, Q,) < c,. Let h= Q,on B;fori=1,...,n.
Then, by Lemma 14.1, g < h so that P < k. Since P, = 3 P*(B)0Q;,
Theorem 14.4 implies that E(u, P) < E[u(h(s)), P*). Since E[u(h(s)), P*] =
2 P*(B)E(u, Q) < X P*(B)e;, E(u, P) < 3 P*(B)c,. &

Expected Utility for All Acts
THEOREM 14.6. PI1-P7=- (14.4).

Proof. By an appropriate positive linear transformation of u, we use P5
and Theorem 14.5 to specify

inf {u(z):z€ X} = 0, sup {u(z):x € X} = 1.
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Utillsy for all Acts 209
Each act in F falls into exactly one of the following classes:
L. fis big <>z < ffor every z € X,

2. fis little <> f < z for every x € X,
3. fisnormal <>z < f< yforsome z, y € X.

Suppose first that f is normal. Lemma 14.4 guarantees that there is a Pe T,
such that P ~ f. Divide Sinto 4; = {s:0 < u(f(s)) < 1/n}, A, = {s:(i = 1)/
n<u(f(s) <in}fori=2,...,n Some of the A, may be empty. By the
definition of expectation (Definition 10.12, Exercise 10.16), S.PHANi - 1)/
n < Efu(f(s)), P*] £ 3, P*(A))i/n. Also, by Lemma 14.7, S PHAN —
I — €)/n < E(u, P) < 3 P*(A,)(i + €)/n for any e > 0. Letting n get large
it follows that

Elu(f(s)), P*] = Eu,P) whenf~P,Pe9, (14.15)

Suppose next that f'is big. By Lemma 14.5, all big acts are indifferent. We
shall prove that

Sis big = u(x) < 1 for all z, P*{u(f(s)) > 1 — ¢} =1
Jor € > 0, E[u(f(s)), P*] = 1.

With f big suppose first that u(w) = 1 for w € X. Take = < w, using PS5,
Let 4 = {s:u(f(s)) < 1}, 4° = {s:u(f(s)) = 1}. Then, using P7 if A is not
null, as in the final part of the proof of Lemma 14.6, it follows that f < w
given A. [Suppose that w < fgiven 4° (requiring A° to be non-null). Then, by
P6, there is a non-null B < A° with w < f” given 4° and f’ = f except on B
where /' = x. Let f” = fexcept on B where f* = w. Then f’ < f” given A°
by Lemma 14.1. But then, using Lemma 14.5, /* ~ f” given A°, a contra-
diction.] Hence f<{ w given 4° so that f< w by Lemma 14.1. But f < w
contradicts /’s bigness. Hence fis big = u(z) < 1 for all z € X.

Suppose next that for big f there is an ¢ > 0 for which P*{u(f(s)) >
I — e} < 1. Then, with 4 = {s:u(f(s)) < I — €}, P*(4) > 0. It follows
from the preceding paragraph that we can select y, z € ¥ so that

l —e<uly) <u(z) <i.

Let /" = f' = fexcept on A where f* = y and /" = z. Then, since u(f(s)) <
u(y) forall s € A, £ y given A. This leads to £ < f* < . But since fis big
J” is then big also and hence f ~ f” by Lemma 14.5, a contradiction. There-
fore P*{u(f(s)) > 1 — €} =1 for every € > 0. Therefore Elu(f(s)), P*]1 2
I — e for every € >0 and, since E can’t exceed 1 (Exercise 10.22a),
Efu(f(s)), P*] = 1.

By a symmetric proof for little acts it follows that
Sis little = 0 < u(z) for all x, P*{u(f(s)) < ¢} =1

Jor € > 0, E[u(f(s)), P*] =0,

and, by Lemma 14.5, all little acts are indifferent to each other.
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210 Savage’s Expected-Urllity Theory
(14.4) follows readily from Theorem 14.4, Lemma 14.5, the fact that

every normal act is indifferent to some Pe ¥, and from (14.15) and the
implications for big and little acts. ¢

14,7 SUMMARY

Savage’s axioms for expected utility apply < to the set F of all functions
on £ to X (states to consequences). When <* (is less probable than) is
defined on the basis of < is an appropriate way, his first six axioms imply
that there is a probability measure P* on S that satisfies 4 <* B <> P*(4) <
P*(B), for all A4, B< §, and, when this holds, (B §, 0<p < )=>
P*(C) = pP*(B) for some C < B, and P* is unique. This latter property
implies that the set {P,:f € F} of probabijlity measures on X induced by P*
on § includes the set T, of all simple measures on X. By showing that axioms
similar to those of Chapter 8 follow for < on ¥,, we obtain an expected-
utility representation for J,, or for the set of simple acts. Savage’s seventh
axiom then implies that the utility function » on X is bounded and that the
expected-utility representation f < g <> E[u(f(s)), P*] < Efu(g(s)), P*}], or
equivalently /' < g <> E(u, P;) < E(u, P,), holds for all acts.

Savage’s book (1954) contains an excellent section on “‘Historical and

critical comments on utility”’ (pp. 91-104) that should be studied by everyone
interested in utility.

INDEX TO EXERCISES

1-2. Probability axioms for finite sets. 3. A/B. 4. C1. 5. Qualitative probability impli-
cations. 6. F5. 7-9. Uniform partitions, almost agreeing measures. 10-14. Fine and tight
qualitative probabilities. 15. < given 4. 16. Failure of P2. 17. A is null <= A ~* .
18. Discrete measures in 7. 13. Conditional probability. 20. P1-P6 hold, P7 fails. 21. A
variant of P7, 22. P1-P7 do not imply: P*{f(s) < g(®)} = 1=>f < g.

Exercises

1. Kraft, Pratt, and Secidenberg (1959), Scott (1964). Use the Theorem of The
Alternative (Theorem 4.2) to prove the following theorem. Suppose that $ is finite.
Then there is a binary relation <* on th~ set of all subsets of S that satisfies (14.2)
ifand only if, for all s€ S, all Ay, ... ,Bp = Sandallm > 2:

1. not {5} <* &,

2. g <*S,

3. (CnA; =37 By, A, <* By or A; ~* B, for each j < m) == not A, <* By,
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Exercises 211

In (3), A ~* B<>(not A <* B, not B <* A), and I™ A, = 3™ B, <> for
cach s, the number of 4, that contain s equals the number of B, that contain s,

2. (Continuation.) Kraft, Pratt, and Seidenberg (1959). Let S = {p,q,r, s, ¢}
and denote a subset of .5 such as {p, ¢, ¢} by pgr. Let <* on the set of all events be
given by

@ <*p<tg<Tr<*pg <tpr<*s <*ps
<*gr <%t <P pgr <*gs <*rs <% pr <* pgs <* qt
<*prs <*rt <*grs <* pgt <* prt <* st <* pgrs <* pst
<*gre <* pgre <*gst <* rst <*pgst <* prst <* qrst <™ pgrst,
in which the order of the last two rows is the order of the complements the first
two rows in reverse. Clearly, F1, F2, and F3 of Theorem 14.2 hold.

a. Show that F4 holds,
b. Show that condition (3) in Exercise 1 fails, -
3. For any A, B < § verify that
a. (A[B) N (AN B) = 2 and (4/B) v (A N B) = 4,
b. A\ (B/A) = B (AfB) = A U B,
c. (AIB)N (BlA) = o5,
d. (A|B) © (B/A) = (4 U B)/(A " B),
e. (A/BYU (BIA)LV(ANB)=AVUB,
[- (41B) V (BJC) = (4]C) v ((4 " C)/B) U (B[4 N C)), with A/C, (4 N C)/B,
and B/(4 N €) mutually disjoint.
4. Prove C1 of Section 14.2,
5. Let <* satisfy F1-F4. Verify
a. A <* B> A|B <* BJA,
b. A <* B Bt <* 40,
c. (4 <* A% B <* B)=> 4 <* B°,
d SKX*B=>B~*Sand A N B ~* 4,
. (A~*B,C~*DAVB~*CUD, A NB=CND=g)=>4~*C.
Without using C5-C9, prove that (FI-FS, @ <* 4,2 <* B)= & <*C <*
A for some C < B.
7. (Continuation.) Let F6 be: If @ <* A then A can be partitioned into B and C
with B ~* C, as in C8. On examining the proof of (14.2) through step 6, argue that

F1-F4 and F6 imply that there is a unique probability measure P* on the set of events
that satisfies

o

A X* B=> P*(A) < P*(B), forall A,B<S. (14.16)

8. (Continuation.) Show that the proof of (14.3) holds for the situation of the
preceding exercise, so that F1-F4 and F6 imply (14.3) when P* satisfies (14.16).

9. Let F7 be: For every position integer n there is an n part u.p. of S. On examining
the proof of {14.2) through step 6, argue that F1-F4 and F7 imply that there is a
unigue probability measure P* on the set of events that satisfies (14.16). Also prove
that (F1-F4, FT) = (14.3).
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212 Savage's Expected-Utillty Theory

10. Following Savage (pp. 36-37) we define the following terms for a qualitative
probability <* on the events in § (that satisfies F1-F4):

<* is fine <> (& <* A => there is a finite partition of § cach element of which is
not more probable than A4).

<*is tight <> A ~* Bwhenever A <* BU Cand B <* A U Dforall Cand D
thatsatisfy (BN CmAND =g, 3 <*C, @ <* D)

Given F1-F4, prove that <* is both fine and tight <= F5 holds.

11. (Continuation.) Following Savage (p. 41), let S; = [0, 1], S; = [2, 3] and
let P, be a finitely additive probability measure on the set of all subsets of $, (/ = 1, 2)
that agrees with Lebesgue measure [e.g., P\([a,5])) =b —awhen 0 Sa < b < 1]
on the Lebesguc measurable subsets of S;. Let S = S, v S;and, forany 4 = §
let Ay, = A NS, and 4; = 4 N S, Define <* on the set of all subsets of § as
follows: A <* B<>Py(A,) < Py(B,) or (Py(4y) = Py(By), Py(A4;) < Py(By)).

a. Verify that <* is a qualitative probability. (F1-F4 hold.)

b. Prove that <* is not fine. [Let A = S, and argue that any finite partition of

S must contain a B for which 4 <* B.]

c. Prove that <* is tight.

d. With P*(A) = P,(A,) for all A < S, does P* satisfy (14.16)?

12. (Continuation.) Let S,, Ss, Py, Py, and S be defined as in the preceding
exercise, let A, = A N §;and 4y = A N S, forany A € S, and define 4 <* B<>
Py(Ay) + Py(Ay) < Py(By)) + Py(By) or (Py(A) + Py(Ay) = Py(B,) + Py(By),
Py(A4,) < Py(ByY).

a. Show that <* is a qualitative probability.

b. Prove that <* is fine.

¢c. Prove that <* is not tight. [Let 4 = §;, B = S, and show that if <* is

tight then 4 ~* B. But, by definition, B <* A.]
d. With P*(4) = }[P,(4;) + Py(4y)], does P* satisfy (14.16)?

13. (Continuation.) Let Sy, S,, Py, and 5 be as given in Exercise 11. Let Sy =
[4, 5] and let P, be a finitely additive extension of Lebesgue measure on S, Take
S=85,US; VS, let A, =A4NnS;forl,2,3and any 4 < S, and define <* by
A <* B<>Py(Ay) < Py(By) or (Py(Ay) = Py(By), Py(Ay) + Py(Ay) < Py(By) +
Py(By) or (P(Ay) = Py(By), Py(Ay) + Py(Ay) = Py(By) + Py(By), Py(Ay) < Py(By).

a. Verify that <* is a qualitative probability.

b. Show that <* is not fine.

c. Show that <* is not tight.

d. With P*(A4) = P,(A,), docs P* satisfy (14.16)?

14. (Continuation.) In each of the three preceding exercises argue that, for cach
positive integer n, there is an # part uniform partition of S. It then follows from
Exercise 9 that P* as defined for each of the three preceding exercises is the only
probability measurc on § that satisfies (14.16). Then show that, in each of the three

cases, there are 4, B < § for which A <* B and P*(A4) = P*(B), so that (14.2)
cannot hold.

Note: In the remaining exercises F is the set of all functions on S to X.

i o L S B, b Il el S Dk i il o e e

FREYI EENNHIS

o e s b s i




et B T

e VAT T

o e o A

ey

S NI s e c n e L

Exercises 213

15. Prove that (P1, P2) = < giver: A is ¢ weak order.

16. Savage (correspondence). Let S = [0, 1] with P* on S an extension of
Lesbesgue mcasure on [0, 1] so that, for example, P*([a, b)) =5 — a when 0 <
agb<s1.LetX = [0, ©)and take u(x) = z, s0 that Fis the set of all nonnegative
real functions on [0, 1). Admitting the case of E[u(f(s)), P*] = E(f, P*) = o
(sec Section 14.5), with @ = o, take f < g if and only it E(f, P*) < E(g, P*).

a. Show that P2 fails in this situation, by considering four acts with f = f' = 1,
g=g =00nA=[0,}),and f =g and ' =g’ on A° with E(f, P*) = »
and E(/f", P*) finite,

b. Verify that P1 and P3-P7 hold.

17. Prove that if P1-P5 hoid then A is null <> 4 ~* ¥,

18. Verify that (14.3) implies that all discrete probability measures on X are in
§ = {P,:f€ F} under (14.8).

19. Let P¥ be the conditional probability measure of P* given A when P*(A) > 0,
with PY(B) = P*(4 N B)/P*(A) for all B < S. Verify that P1-P7 imply, for all
fi§€F and A £ S, that f<g given A<>P*A) =0, or Elu(f(s)), P4l <
El( g(s5)), P4] when P*(4) > 0.

20. Savage (p. 78). Let $ = {1,2,...}, let X = [0, 1), and let P* be a diffuse
measure on S with P*(s) = Oforallse Sand P*{n + j,2n +j,3n +j,...} =1/n
foralln >0, 2 0. Define < on Fby f < g<>w(f) < w(g) where

w(f) = E(f, P*) + inf {P*{f(s) 21 — ¢}:c > 0}.

a. Prove that if {4,, ..., A,} is a partition of S and if I = {i:P*(A;) > 0} then,
with P} as defined in Exercise 19,

w(f) = ; P*A)IE(f, P%) + inf {PS{f(s) 21 — ¢}:e > O}).

b. Verify that P1-P6 hold.
¢. Show that P7 is violated by fand ¢ where f = 0 and g = { on the odd integers
and f(n) = g(n) = nj(n + 1) for each even integer n.

21. (Continuation.) In Chapter 10 we saw that Axiom 44b (Section 10.4) is not
sufficient for the general expected-utility result when the measures in & are not all
countably additive. In the context of the present chapter the correspondent of A4b
is PTb: If x < g(s) given A for all s € A then x < g given A; if g(s) < z given A for
all s€ A then g < z given A. Verify that P7b holds for the example of the preceding
exercise.

22. Modify the example of Exercise 20 to give a case where P1-P7 hold and where
the following assertion is false: If f(s) < g(s) for all s€ 4 and A is not null, then

S <z given A.
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ANSWERS TO SELECTED EXERCISES

2.1b. Forcach ie{..., -2, ~1,0,1,2,., .}, let f(0) = 1, f(i) = 2i when i > 0 and
fli)= —2i+ 1 wheni <0.

2.4a, ~ is reflexive since < is reflexive. ~ is symmetric from its definition. If z ~ y
andy ~zthen (z € ¥,y < 2) and (¥ < 2,2 < ¥), which by the transitivity of <
yield (z < 2,z < ).

2.5, If z <tz then not = < = by asymmetry, a contradiction. Hence <* is irreflexive.
Suppose z <'y,y <‘z. Thenz < z,, %) < 2y, ..., T <Y, ¥ <1, ¥ <3, ...,
¥, <z, 50 that z <*z.

27. X={z,y,2} withz <y,y <z,and z ~z.

2.9. Define = and y as equivalent if and only if they are in the same element of the
partition,
2.11. Suppose < is transitive and z ~ y <=~ I(x) N I(y) # & . Clearly, < is irreflexive
since 1(z) N I(x) # & . Suppose (z < y, = < w) so that I(z) N I(y) = & and
I(z) N I(w) = @& . Then either I(z) N I(w) = & in which case either 2 <wor w <=z
(and hence z < y by transitivity); or I(z) N I(z) = & in which case either z < z
(and hence z < w by transitivity) or 2 < z (and hence z <y); or
INnIR=g r;or ) NKw) =& *+*.
2.14. TE = Transitivity. Let TE hold. Suppose Transitivity fails with y € F({z, ¥}),
2€ F({y,z}), and {x} = F({z, z}). Then z¢ F({z, y,2}) by TE. If y€ F({z, y,2})
then z¢ F({y, z}) by TE, a contradiction. Hence y ¢ F({z, y, z}). Therefore
{z} = F({z, , z}). Then, by TE, y¢ F({z,y}), another contradiction. Therefore
F({z,y,2}) = @&, which is false. Hence Transitivity must hold when TE holds.
218, f(z), ) = 2, + .5(x; + x5 — WMz, + 2, — 1) gives a one-to-one correspondence.
2.17. u(x,, z4) = ax, + 25 with a > 1 will do.

2.21b. (z,y)E(A U B) <> (y,x)EAor (y,£)EB. (z, ) EA UB <> (y,2)EA or
(¥, ©)E B. (%,9)€ (4 N B) <> (y, 7)€ A and (v, Z) € B.

3.1. If the subset is countable let it be enumerated as 0.z, 24,7y, * * * , 0.7 5235733 " " *»
0.2, gZggag * ** , * . Lot z; o 2y for all i, 2, €{1, 2}. Is O.zymezy - - - in the
enumeration ?

3.3. Let U(z) = (|2}, z). Then = <y if and only if U(z) <L U(y) where (a, b) <L (c,d)
ifandonly ifa < cor [a=cand b <d]

3.6c. (I, —2,4, =3).
3.7. 130.

3.8, Let X be the unit square with (0, 1) < (1, 0). The set of all «(0, 1) +
(1 — @)(1,0) = (1 — &, @) is the straight line segment from (0, 1) to (1, 0). Can
you draw a valid indifference curve that intersects this segment at scveral places?
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216 Anzwers to Selected Exarcises

3.12. Yes. If the 2 € X are numbers, X is finite, and G = {4 N X:4€ U}, thenuwon X
is continuous in 6.

3.16. Given c € (w(m), u(y)) suppose ¢ ¥ u(z) for every sE X. Let Y = {2:2E X, u(s) < ¢},
Z = {2:2€ X, ¢ < u(x)}. Yand Z are nonempty, disjoint, Y U Z = X, and since
{b:b < c} and {a:c < a} are in "W and » is continuous, ¥, Z € B, contradicting the
connectedness of (X, ).

3.13. If X is not connected then it can be partitioned into nonempty, disjoint subsets
Y and Z that are both in {4 N X: A€ U} If X is convex and y € ¥, 2€2Z, then
L(y, 2) = {oy + (1 — a)s:€ [0, 1]} is in X and (L(y, 3), {4 M L(y, 2): A€ U™}))
is connected. But by X not being connected we must conclude that L(y,z) N Y
and L(y, ) N Z are nonempty, disjoint open sets in {4 M L{y, 5): 4 € U™} that
partition L(y, z), so that L{y, s) is not connected, a contradiction.

4.2. 4! = 24. Eight are additive.

43. 9,¢,f,5.

44, 2,2y + (22" = 2,24(1 + 242,). Witha, b > 1,a S b <> a(l +a) S 1 + b).
See Exercise 3a.

4.5. Hint: Include in ( ) E; ( ) the six elements whose utilities are duplicated
(8,9,15).

4,12, Yes.

4.18, For Theorem 4.2 let C == (0, (21,), #43{#%ys), . . . , Uy(2,,,), (1), 0(2Y), . . ., o).

417, Letc = (iuy(zyy), . . . , 2y(Z,,), 1).

S.08. 4)(0) = 0, 4y (1) == 2, uy(r) = 2 ~ ¢~ when r > 0 and uy(r) = ¢* when r <0
will do.

S.1b. Assume additive utilitics exist, Jet & = uy(1) ~ ug(0) > 0, M = uy(1) — 4, (0) > 0,
B = uy (1) ~ wy(1/(1 + D) for i = 1,2,,..and show that M > ma for every
positive integer m.

S4.Supposemm 3, n= 2. Thendr ~ 2z 42+ (x—2) —2 =
cHzte—2m24(7—2)=mT $emz,

5.‘2- X.

5.13. II* T, < I 5, since T, 4,€T1 6, when A;€ G, for cach /. Supposc 4 % &,
A€l B, Forze A let A,(x)€ T, be such that z,€ A,(z), 1 4, < 4, 11 A;,eTI*T,.
Also, |J,e (IT A,(x)) = A s0 that A€T1* G,. Thus, 116, c 1* B,

5.19. Suppose UEW. Then U = U,ET A(t), where A(t) is an open interval in Re for

each 1€ T, by Exercisc 18, Therefors f~(U) = | J .o /~2(A(1)) is in T when /~2(A(t))
is in G forevery 1€ T.

5'“‘ (xb y,b 21, z‘- Vg. z’) = (2- l: 3: 1-53 5» 8) gim u(zp xl) < ”(yp yg)- "(yu ‘3) <
u(zy, xy), and u(z;, ¥5) < u(%y, £,), which contradict Q1.

6.Ib. [=},...,z™ 4!, ... ,y™is a permutation of 21, ..., 2™, wl,.. ., W™,
@, ¥) < (&, w) or (@, ¥) ~ (2, w!) for all j < m] =>not (™, y™) < ™, w™),
Alternatively, (22, 41), ..., (2™, y™) E, (&1, WY),. .., @™, w™), (&%, ) < (¢, W)
or (¢!, y') ~ (&, w) for all ; < m] => not (2™, y™) < (™, w™), and (z, ¥) ~ (¥, 2)
forallz,ye X.

68. z—y~Yz—w>notz —y <*s—wx>notz —z<*y ~ w(by \6.2)) =
s —s~%y — wory — w<*z ~ ¢] the latter of which gives s ~z <*w — y
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Answers to Selected Exercioes 217

by (6.1). Also,z —y~*r ~w=>notz —w<*z—y=>00ts —z<*we—y
by (6.2). Therefore s ~ y ~*z — w2 — 2 ~*y — w. (And so forth.)

6.9. For negative trangitivity, notz <y =>y —z €*z ~zandnoty <e=>2 —y *
y—y Hences —y %z —z,thent —x *y —~2, thnt —z <%z — 7,

6.15a. Asymmetry of <* is immediate from asymmetry of <. For negative transitivity,
notz —y <%z — w=>not f(z, w) < f(s,4) = f(s,¥) < f(z, w), and not
£ —w<*s—r=>n0tf(z, 1) <f(s, w)=>f(s, w) < f(z,1). Using C3, C2, C3, C2,
and C3 again, f(f(s, ), f(w, 2)) ~ [(f(5, W), S, 2)) < [(f (e, 1), [y, 3)) ~
[, [, 9) < f(fl=, w), f@t,5) ~f(f(=, 1), f(w, 2)): by transitivity,

L. 9).f(w,2)) < f(f(z, 1), f(w,2)), whence f(s,¥) < f(=,1) by C2, which says
thats —r <*z —y,ornotz ~y <*s— .

6.16. To show that f(f(=, ¥), f(z, w)) ~[(f(z,2), fly, W) ket a = f(z, 4}, b = f(3, w),
c-j‘(:c,z).d-f(y,w).Wemtoshowthata—-d~‘c-—b.'l'hcpcmuuﬁon
condition of B holds forz —~a~%*a —y,w —b~*b—s,c—2~*z =¢,
d—y~*w—d,b~d’c—a,a-d" c—bIf?= <*thennota —~d<*c—b
by By, and hence c — b <* a — d by By, and hence ¢ — a <* b — d by (6.2), which
contradicts b — d <* ¢ — a. Similarly ¢ — a <* b — d can’t hold. Hence b — d ~*
¢ — a, which by B,yieldsa ~d ~*¢ — b,

7.1. Since (31, cee .17n)~ (Z’, veoy By, z]) s (z'n Tpypae- ’xn—l)v z "‘(x{) =
3 plzin.

7.4b. = < (‘zp o 9xn-pyn) < (3-'1, e ,zﬂ_’,yn_l,yn) 'Y

7.8. For the last part: 4 = {a, b}, n = 2, (a,a) < (b, @), (a, a) < (a, b), (a, b) < (b, b),
(b,a) < (b, b) and (a, a) ~ (b, b).

7.13k. Suppose a 3 0, @ = M/N where M, N are nonzero integers. Then
z ~y <> Mz ~ My by e and j. Since aN = M,  ~ y<=> Nax ~ Nay, and by e
and j, Nax ~ Nay <= az ~ ay.

8.1. Expected net profit maximized at about = = 235000.

8da, v(z) =3, (W) =9. (d)v="5u+5

85 a= 4,

8.6d. Show that (conditions 1, 2, not 3) =~ not 4, In violation of 3 assume that
P<Q<Rand Q < aP + (1 — &)R for all a€ (0, 1). Show first that, for every
«,f€0,1),0 - +FRK (1 -a)1 ~BP+ B+ (1 — PR <
(1 —a)1 -~ B)Q + [f + (1 — P)a]R. (Note that Q@ < aP + (1 — «)R for all
@€ (0, 1). Why?) Suppose that S < T<=> u(S) < u(T)for all §, TET,. Let f(f) =
u((1 — PQ + BR), g(B) = u((1 — HP + BR) for alt B (0, 1) and note that if
B <y then f(B) < g(») <f(¥), withy = B 4 (1 — ). Show that
sup {f(8):8 < v} < f(») so that f is discontinuous at every point in (0, 1). This is
impossible (why?) and therefore such a u does not exist. Then use Theorem 3.1 to
show that condition 4 is false.

8.7. See Exercise 6¢.

8.11a. For (4, C), P($30) = .27, P($70) = .63, P($80) = .03, P($120) = .07. The
theoty of this chapter does not say that (B, D) will be preferred.

8.13. No. Yes.

8.16a. ¥ = $15000.
8.16b. y’ = y. Given A, he would sell it for an amount with the same utility.
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8.16¢c. 30 ~ (340000 — z with pr. 1/2 or $0 — z with pr. 1/2). z == $18000. If he paid
$18000 for A he would be taking a 50-30 gamble between net increments of $22000
and ~$18000, which has a utility of about zero, which is what he started with,

8.16d. Of course not. In the two situations he is considering different amounts of total
wealth, He would sell it for $18000 or more.

8.16e. (325000 with pr. 1/2 or - $15000 with pr. 1/2) ~ w — $15000. w == $20000.

8.16{. With y as in part 4, y ~ (30 — r with pr. 1/4 or $40000 — r with pr. 1/2 or
$80000 — r with pr. 1/4).

8.16g. (325000 with pr. 1/2 ox — $15000 with pr. 1/2) ~ (30 — $15000 ~ s with pr. 1/4
or $40000 — $15000 ~ s with pr. 1/2 or $80000 — 315000 — s with pr. 1/4).

x = $12500,

9.1, For the converse of 23 suppose aP + (1 — a)R s aQ 4+ (1 — a)R with 2 € (0, 1)
and not P as Q. Then, for example, P~ Tand T < Q. By B2, «P + (1 ~ a)R ~
aT + (1 — a)R. By Bl, aT + (1 — a)R < aQ + {1 ~ a)R. These contradict
aP 4+ (1 — )R~ aQ + (1 — a)R.

9.3, Suppose P ~ Q, O ~ R. Then }P + R ~$0Q + }R and O ~}Q + }R by B2,

Therefore § (3P + 4 R) + 30 ~4R + §Q by B4. Therefore }P + R ~ R by (81, B2).

Hence P ~ R by (Bl, B2).

9.5. If P ~ Q but P 3 Q then by a $1 change in a consequence of P or else a small
change in two probabilities in P it would seem possible to get a P* that is
indifferent to Q but either preferred to P or less preferred than P.

9.7. Suppose (z — y)* > inf {(x — y)*:z € X} for all € X. Then there is a sequence
2y, %g, - . . in X such that (z; — ¥ > (2, — y)* > ** - and
inf {(zy — )%:n = 1,2, ...} = inf {(z — y)*:z € X}. Then there is a z such that cvery
open set in Re® that contains z must contain some z,. Since the closure of Xis Xit
follows that z € X and that (z — y)® = inf {(z, ~¥)3:n = 1,2, ...}, which
contradict the original supposition,

9.9d. {(x,0):0 € a <1},

9.13(2). 4, >Oforaliiand 3 4, > 0.

10.4c. (0, 1) except for 1/2, 1/3, 1/4, ... .

10.5. All subsets of Re that contain either a countable number of clements or all but a
countable number of elements in Re.

10.7. If sup {r + s:7€ R, s€ S} <sup R + sup S then sup {r + s:*+*} < r + s for
somereRand s S, sothatr +s5s <r +s.

109. Ifsup (¥ aByti=1,2,...} < FP ajlsup {By;:i=1,2,...}] then
IR eBiyte< 2":_‘_1 aylsup {B,;:i = 1,2, ...} for some m, some ¢ > 0, and
= 1,2,-- « - Let ﬁ"‘hsuch ﬁhatsup{ﬂ“:l'= 1,2,...} Sﬁ‘ji + C'/Mfor
j=1,2,...,m Let s be the largest such #;,. Then sup{f;;:i = 1,2,...} £
Bus+ eMforj=1,2,...,mand 3™ osup{f;ii=1,2,..} <

2;?_1 a,[ﬁ,, + f,M] < 2;:.1 a,‘ﬂ'i + e, Hence 22.1 a,ﬁ“ < 2,._1 ﬁip" for all 7 and
hence for ¢ = s, which is impossible.

Suppose 32 a;sup{Byci=1,2,...} < sup {32, aByti=1,2,...}. Then

® L asup{fyti=1,2..}+¢ <2;‘; af,; for some k, some ¢ > 0 and all a.
Hence Y., aysup{By:i=1,2,...} < 2‘;':_, @,y for some m and ali n. But

Ira By < DTy oysup {Byy:i=1,2,...} and a contradiction is obtained.

PR

FRRTRETER - JCROr S 118 YL

T

AT N ST ST

I

PTISURCRENE e SR SRR

. <% T Presor IR R




Answers 10 Selected Exercises 219

10.13, Let Ay, A;, . . . be mutually disjoint elements in £ with {J;2, 4, € 4. Then
I aPAUzZ A) =D 0, F PiA) = F o sup{F, PA)in=1,2,..} =
sup {3, 237, Pi(4))in=1,2,..} [by Exercise 9] = sup {37, 3°°, a,P,
(A)in=1,2,.. .} = 33 3 0.P(4).

10.15. Letf,.fs, .. . and gy, £3, - - - be sequences of simple A-measurable funictions
satisfying (1) and (2) of Definition 10.11, and suppese that sup {E(f,, P)} <
sup {E(g,, P)}. Then E(f,, P) + ¢ < E(gy, P) for some m, some ¢ > 0, and all n.
Let A, = {z:g,,(x) < fu(®) + ¢/2} so that A) & A, < **-and P(A,) S P(dg) < ***.
Also, X = | J7_ Ay sothat 1 = P(U;., 4s) =sup{P(Ap):in=1,2,,..} by
Lemma 10.2. Let M = sup[g,(#) — f(#):x€ X}. Then forn > m,
E(gm, P) — E(fy, P) = E(g, — fos P) £ M1 — P(4,)] + P(Ay)e[2, the cquality
coming from Exercise 17, As n gets large, the right side of this approaches /2 and
hence E(g,,, P) ~ E(f,, P) < «for some n, a contradiction.

10.18. E(f,oP + (1 — ©)Q) = sup{E(fp,aP + (1 —)Q):n =1,2,.. } =
sup {aE(f,, P) + (1 — WE(fp, )} = a sup {E(fy, P)} + (1 — o) sup {E(f,, O}
[Exercises 6, 8, 22a] = «E(f, P) + (1 — 9)E(f, Q).

10.21¢. Use the results of Exercises 2ia and 19.

10.22a. Leta < f(x) < b, a < g(2) < bforall z. Let A, , and f, be defined by (10.9)
and (10.10), and let B; , = {2:a + ({ ~ (b — @)/n < g(=) < a + i(b ~ a)/n} and
ga@ =a+ 4 —1)b—a)nforall z€ B, ». Let ¢;, = a + (I — 1)(b — a)/n.
E(fy, P) = 31 P(A; )c.n a0d E(gy, P) = X7 P(Byo)in. E(fus P) < E(gy, P) follows
from 3% P(B; ) < J* PlA; ) fork = 1,..., n, which in turn follows from
P(f(z) S g=)) = 1.

10.28. {z:z€ X,y <z <z} = [{x:y <z}* U {z:x <z}

10,26. For Theorem 10.2 let P(x) == 0 for all z, R = }P + }1.

10.27. Show that if 8* < 8 has elements weakly ordered by < then 8* = [ Jg+ S isin 8.

11.2¢. It can be true for some pair P, Q€ T that P ~ O when Py <; O, and P§ = Q5.
For some other P, Q pair, P < Q.

11.2d. Let R* k = 1,2,.,.,m — 1, be such that R} = Q,, R}* = P{; Rk = Q,,
R =R:cfork=2,3,...,m~1.ThenP K RL R <R, ...,R™1<Q

11.2e. Let n = 2, (z;, zy) ~ (¥, Tg) ~ (25, ¥5) < (¥3,¥g) ~ P for ali P on
{z,. 41} X {q, v} that are not one-point measures. Show that <; and <, are
transitive and connected, that z, <, y,, T3 ~g¥g, but (2,, Tg) ~ (y;, %)

11.2). An example where 4 and D hold but <, is not connected: X = {z,,¥,} X {2;,¥s},
@y, 24) < (yy,%g) < (%4, yg) < (¥1,¥g) < P~ @ for any P, Q that are not one-point
measures.

11.2k. With @ <; b there are R, S€ 7 such that R < S, R; = a, S; = b, and R = S,
Let T=3}R +4Q, T'=}S +{P. T~ T'by D. With R < S, if Q ~ P, then
R +30 <3S +4Q ~45 +#P, or T < T, a contradiction. P < Q by
definition of <;. Hence P < 0 since P ~ Q is false.

lluhlo Iaet X = {31, yl} X {za, y’}, (akel’ < Q <> (Pl(zl)l P’(zg)) < (Ql(zl)t Ql(x!))
and on [0, 1] x [0, 1] take (x, f) < (¥,6)ifand onlyifa <y or [x = pand
aff < y3}, with < on [0, 1] transitive and connected. D holds since (x, 5) ~ (, f).
Moreover, (0, 0) ~ (0, 1) and (1, 0) < (1, 1): that is, (y;, ¥s) ~ (#;, Z¢) and
(24, ¥g) < (%,, %4), from which it follows that y, <, =, but (yy, ¥3) ~ (¥, Z). B says
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that if (2, f) < (», 8) and (j, k)€ [0, 12 and 1€ (0, 1), then (f& + (1 ~ 1),
184 (1 —1)k) < (ty + (1 — t)j, 16 + (1 — 1)k), which is easily seen to be true.

11.20, Let P§ = Qf = K%, Py < Q» a€ (0, 1). Then P < Q. By Band C,
af + (1 — «)R € 2 + (1 — a)R. Since aP§ + (1 ~ )R = aQf + (1 — )R},
ifﬂQ{ + (l - a)R‘ ‘<‘ aP‘ -+ (l - G)R‘ then, by Exercises 2fand 2,
a@ + (1 — a)R < aP + (1 — @)R, a contradiction. Since <, is connected
(Exercise 21), Py + {1 — )R, <; «Q; + (1 — a)R,. For the latter part of the
theorem take P; <, Q,.

L3, E(f,P) =3 x f,(x,)p(z,, o ) = S x fl@IPIXy X e X Xy X
{Z X Xy X 0 X X)) = ZX, fi=®) (“'4) = E(f;, P, i)

11.9b, The condmon of part a leads dmactly to u(z;, ..., z“’ +1, - x:)

+ k(zo zt_p Ty “H-lp "’H.g' . ’,,) = "(""1: . » H.go zo
+ “( 190 v ¢y Vil zf! {+1: veu ,:l: . Let "i(zt'n xi.‘.l) = u( “ey ¢_p 3{;
"'¢+1r"’2+ar T = U, a2 xu)f"f"‘l rvesn—2,and

Up 1 (Zq_yg, Ty) = “(”‘1,’ ces "”on—b T3, Tp)
121, P'({s:s(f)E€ A} N {s:5(f) € A'PIP(A).

12,60, [v(f,ss) ~— v(g,s9)la = P*(sp)u(win) — u(lose)], [v(g, sg) = v(f, spla =
P*(sy)[u(win) — u(lose)), and so forth.

12.9. He would rather marry Alice but should propose to Betsy, Use a= P*(s)[4 — 31,
2a = P*(sy)[4 — 0], and 4a = P*(sy)[3 — 0].

13.4. The simplest example is 3% = {4, B}, 3® = {4,, A,, B}, and B¢ = {4,, A,, B,, B,}.
If A is selected from B2 then B must be selected from $?, but A U B = §,
If B is selected from 32 and 4, (or A,) is selected from B2 then A4, (or 4,)
must be selected from 34 But BU A, U 4y, = S.

135, let B = n,gA with B 5 &, If P*(B) = 0, then P*(B°) = | so that B¢ ¢ £,
which contradicts B = (1) 4« 4. Hence P*(B) = 1. If B has more than one element
then B can be partitioned into C and D with A(C) =0and P(D) =1, D c B,
which contradicts B = ()« 4.

13.10. Let u be such that u(z,) = inf {(z):2 € X} = 0 and u(z*) = sup {u(z):z€ X} = I.
GivenPe X et 4, , = {s 0 < E(u, P(s)) < 1/n} and 4, »= {s:¢—-1/n<
E(u, P(s)) s-/n}forx =2,...,n Define P, andQ,,mJeby
P,(s) = [(f — 1)/n* + [0 — i + 1)/n}x, for all s€ A; ,, and Q,(s) = (i/m)* +
[(n —Dfaf, foralls€ Ay p;i=1,...,n It follows from B7 that
P, < P < Q, and hence that v(l’,,) < v(P) < v(Q,) for all n, where v is as
defined in the proof of §2. Hence, by (13.9) for all hcrse lotteries in
Ky E[E(u, Py(s)), P*] < v(P) < E[E(, Qu(s)), P*] for all .

13.12, Let Q be as defined following (13.12). Assume ¢ = 0, 4 = | fcr convenience.
[If ¢ = d the result is immediate.] Let R; = R, on S with E(u, R;) == i/4 for
f=1,2,3 Since 0 < Ew, Q(s)) < 1 for all 5, 1/4 < E(u, §Q(5) + §Ry) < 3/4
for all s€ S. Therefore Ry < §Q(s) + 4R, < R, for all s€ S. Hence, by B7,

R, < {Q + §R; < Ry. By (13.10) and (13.11), v(Ry) < §o@Ryp) + {v(Q) £ vRy).
Then by (13.9) for %, 1/4 < 4(Q) + 1/4 < 3/4,0r 0 K v(Q) L 1.

13.15a, Given € > 0 et B(e) = {s:aE(u, P(s)) + (1 — @)E(«, R(s)) > 1 ~ ¢} and
C(e) = {s:5€ B(e), and E(u, P(s)) < 1 — e or E(u, R(s)) < 1 — <}, Let
& = a(l — a)e. Then, if s € C(e), s cannot be in B(J) since a(l — ¢} + (1 — a)
<l =canda + (1 — «)(1 — ¢) <1 — ¢. Hence the only elements in B(¢)
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for any ¢« > 0 that can contribute to inf {P*{zE(, P(s)) + (1 — )E(x, R(s))
> 1 — €}:¢ > 0} are those for which both E(u, P(s)) > 1 ~ ¢ and
E(u, R(5)) 2 1 ~ «. As a consequence, inf {P*{aE(u, P(s)) + (1 — a)E(u, R(s))
21 —€:e>0} = inf (P*{EW,P() 21— M {EWRE) 21— epie> 0}
13.15c. Let P, Q, R€ X be as follows. On the even integers, E(u, P(s)) = s/(1 + ),
E(u, Q(s)) = E(u, .{5)) = 0. On the odd integers, P(s)(i) = 1, and E(u, Q(s)
= Eu,R(s) = s/(1 +5). Thenv®P) = [} + D] +3 =514, 0 Q) =4 +{ =1,
VAP +3R) =338 + 3P + 0 =5/8, and v(}Q +$R) =3 D) + D +3 = 1.
Hence Q < Pand §P + {R < §Q +}R.
14.2b, Consider pr <*s, ps <*gr, rs <* pt, and gt <* prs.
144. BS C=C = BV (C/B). By (F1, F3), & <* C/Bso that, by (F3, F4),
& VB S*(C/B)VB, or B{*C.If §<* Cthen €\ C*<*C, which by
F4 implies C° <* ¥, contradicting F1.
14.8¢. A <*C=>B <* D=>A VU B <*CV D by C3(<*), a contradiction.

14.10. Let F5 hold. Then, by F5 directly, <* is fine. If A <* B, it follows easily
from F5 and the other properties of <* that 4 \w D <* B for some D for which
AND=¢g and @ <* D. A similar result is obtained if B <* A. Hence, if the
“AL*BU Cand Bg"* A v Dforall---" conditiuns of tightness hold, then
neither 4 <* B nor B <* 4, which requires 4 ~* B by F3.

On the other hand, suppose F1-F4 hold and <* is fine and tight. Take
A <* B. Suppose, for all B; < B for which B; <* B, B, £ * A. Then consider
& <* Dand A N D=, By fineness, it follows that there is a By = B such
that @ <* B, <* D. Then since & <* By, B/By <* B so that B[R, <* A,
which along with B, <* D gives B <* A \J D by C3. Tightness then requires
that 4 ~* B, which is false. Hence, with 4 <* B, there is a B, < B for which
A <* B, <* B.Since & <* B/B, and <* is fine, therc is a partition {C), ... , Cp}
of S with C; <* B/B, for each i. Along with 4 <* B,, this gives 4 U C, <* B
by C3(<*).

14.11c. Given A, B let the “whenever’’ conditions of tightness hold. If no C satisfies
BNC =g and @ <* Cthen B ~* S so that A <* B. If some C satisfies
@ <* Cand B C == J then, for any such C, cither Py(A4;) < Py(B,) + Py(C))
or Py(A;) = Py(By) + P1(C;) and Py(Ag) < Py(By) + Py(Cy). If Py(Cy) = O for
ali such Cj then Py(Bg) = 1 which insures Py(A;) < Py(B,), and since Py(C;) > 0
can be made arbitrarily small, we get also P,(A4,) < P,(B,). Hence, if Py(Cy) = 0,
A <* B.If Py(Cy) > 0 for some such Cg, then we can take a C, with P, (C;) = 0
and get Py(4;) < Py(B,), where, if equality holds, it must then be true that
Py(Ag) < Py(B,). Again, A <* B. By a similar proof we get B <* A4 for all cases.
Hence A ~* B,

14.13c. Let A = [0,}) VU S, B = (}, 1] U S5, If <* is tight, then 4 ~* B. But
B <* A by the definition of <*.

14.17. If A is not null then, withz <y and f=zon A4,f=yon A°andg =y on §,
[ < g given 4 by P3 s0 that f < g by Lemma 14.1. But if A ~* ¢S then f~¢.
Therefore & ~* A implies that A is null.

14.20b. For P6, suppose f < g of w(f) < w{g). Let w(g) — w(f) = d. Take a

partition {{1,n,2n,.. .}, {28+ 1,2 +1,.. .},....{n -1, 20~ 1,.. . }}
with » large enough so that 2 < dn, and use the answer to part (a).
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Absolute preference-difference compari-
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Act, big, 209
bounded, 209
constant, 166,179, 193
as function on states to consequences, 165,
175, 192
Hittle, 209
normal, 209
perfect information, 169
Act-state pair, 167
Additive utility, 42, 44, 54,91
in expected utility, 148ff
in states model, 168fF
unbounded, 58
unique up to similar positive linear trans-
formations, 54
weighted, 93
Algebra of sets, 130
generated, 131
Alternating sequence, 151
Antisymmetry, 10
Asymmetry, 10
Axiom of Choice, 17

Binary relation, 10ff
properties of, 10, 11, 18
transitive closure of, 24
see also Equivalence, Order, Qualitative

probability

Bisection axiom, 85

Bisymmetry axiom, 85

Boolean algebra, 130
genenated, 131

Borel albebra, 131

Borel si:t, 131

Boundary point, 123
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Bounded act, 190
Bounded utility, 138, 206

Buying price, 118f

Cancellation law, 51

Cartesian product, 25, 35, 42

Certainty equivalent, 117

Choice function, 24

Closed interval, 26

Closure, under conditional probabilities, 134
convex, 122
under countable convex combinations, 132
under group operation, 54
under mixture set cperation, 110
in topological space, 62

Compensation axiom, §7

Complement, 130, 175
relative, 195

Complete binary relation, 11

Component, 26

Conditional preference, 192

Conditional probability measure, 133

Cone, 123
convex, 123

Connected binary relation, 11

Connected topological space, 40, 62

Consequence, 103, 166,175

Constant act, 166, 179, 193

Consumption theory, 35, 82

Continuity, 35, 64
of additive utilities, 65, 72 3
upper semi-, 38 :
Wold's axiom for, 41

Convergence, nonuniform, 137 3
uniform from above, 146 ;
uniform from below, 135

Convex closure, 47 g

Convex combination of measures, 106
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countable, 131, 132
Convex cone, 123
Convex set, 41,122
closuze of, 122
Countable additivity, 132
compared to finite additivity, 136f
Cycle, 151

Decision making, 1

under certainty, 2

under uncertainty, 4
Degree of preference, 80, B8
Difference of sets, 27, 195
Diffuse probability measure, 132
Discount factor, 93

constant, 96
Discrete probability measure, 133
Dominance conditions, 32, 108, 137, 179,

192

Equivalence, relation, 11
3, 15
Em. 44
Equivalence classes, 11
notation for, 12
Essential factor, 71
Ethically neutral propotition, 191
Euclidean space, 26, 31
Even-chance gamble, 86, 149, 189, 191
Event, null, 176, 192
as subset of states, 175
Expected utility, additive, 148ff
Archimedean axiom for, 109
from extrancous probabilitics, 175ff
independence axiom for, 108
lexicographic, 110
maximum, 105
for probability measures, 129ff
Savage’s theory of, 19111
scaling of, 104
with simple measures, 103ff
for states model, 166f
Expected value, 106, 135, 136
Extension, linear, 142
of strict partial order, 16
Extraneous probabilities, 167, 175ff

Finite additivity, 10S
Function, bounded, 135
linear, 118
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Subject Index

measurable, 135
see also Expected utility, Utility

Gamble, 108
buying and selling prices of, 118f
50-50 (even-chance), 86, 149, 189, 191
see also Probability measure

Gap in function, 36

Greatest lower bound, see Infimum

Group, 54f

Homogeneous product set, 89, 156, 178
Horse lottery, 175
bounded, 179

homogeneous, 178

Ideal point, 20
Impatience, 90
Independence among sets, 43
test for, 46
Indifference, 9, 12
intransitive, 12, 15f, 81, 138, 169
Indifference curve, 31
Indifference hypersurface, 74
Indifference interval, 20f
Indifference loci, 31
Indifference map, 31
Induced probability measure, 201
Infimum (inf), 28
Intersection of sets, 35
Interval, closed, 26
open, 26
Interval graph, 24
Interval order, 20
Intransitive indifference, see Indifference
Inverse, of function, 64, 66
of group element, 55
Irreflexivity, 10
Isoutility contour, 31

Least upper bound, see Supremum
Lexicographic order (<L), 25, 48
Linear extension, 14
Linear function, 118
Linear order, see Strict order
Lottery, 116
see also Gamble, Horse lottery, Probability
measure

Marginal consistency, 98
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Mazgingl probability measure, 148, 153

Maikup factor, 93
Maximal independent subset, 141
Maximum net profit, 115
Measurable function, 135
bounded, 135
simple, 135
Measurable utility, 82
Measure, see Probability measure
Midpoint axiom, 85
Mixture set, 110
Monotonicity condition, 32

Negpative transitivity, 10
Nonsaturation condition, 32
Norma! probability distribution, 79
Null event, 176, 192

Null state, 169

Open interval, 26
Open set, 35
Order, interval, 20
lexicographic, 25, 48
quasi, 24,121, 127
semi-, 20
strict, 11
strict partial, 15
weak, 11
Order dense, 27
Ordered pair, 10
Order-preserving utility function, 14

Partition, 24, 175
uniform, 194, 198
Perfect information act, 169
Persistent preference, 90, 156
Persistent preference differences, 92
Preference, 1
conditiconal, 192
consistent judments of, 109
degree of, 80, 88
impatient, 90
marginally consistent, 98
persistent, 90, 92, 156
single-peaked, 19
stationary, 96, 156
strict, 9
time, 891F
see also Qrder

Preference differences, 80ff
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nontopological axiom: for, 85
persistent, 92
topological axioms for, 84
Preference independence, 43
Preference-indifference, 13
Preference intensity, see Degree of preference
Preorder, see Quasi order
Probability, axioms for, 194, 210
extraneous, 167
from preference, 200
qualitative, see Qualitative probability
subjective, personal, 4
Probability distribution, geometric, 133
normal, 79
Poisson, 133
Probability measure, 131
conditional, 133
convex combination of, 106, 131
countably additive, 132
diffuse, 132
discrete, 133
finitely additive, 105
on homogenous product set, 156
induced, 201
marginal, 148, 153
simple, 105
on states, 164, 165
zero-one, 188
Product, scalar, 40, 46
of sets, see Product set
of topological spaces, 63
Product set, 25, 32, 42
homogeneous, 89, 156, 178
Product space, 63
Projection, 154

Qualitative probability, 193, 195
fine, 212
tight, 212

Quasi order, 24,121, 127

Random variable, 135
Reflexivity, 10

St. Petersburg game, 130
Scalar product, 40, 46

Selling price, 118f

Semiorder, 20

Separable topological space, 62
Set, Borel, 131
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closure of, 62 Topolc ~, 3§
complement of, 130 discre. .40 :
convex, 41,122 product, 63 i
convex closure of, 47 relative usual, 35 '
countable, 9 usual, 35 i
denumerable, 9 Trade-off curve, 31 ;
open, 35 Transformations of utility functions, 15, 54,
uncountable, 26 84 3
Sets, Boolean algebra of, 130 Tranzsitive closure, 24

Borel algebra of, 131

Transitivity, 10
difference of, 27, 195

negative, 10
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intersection of, 35

product of, 25, 42 Unbounded utility, 58, 116

G-algebra of, 130 Uncountable set, 26 3

union of, 27, 35 Uniform convergence, 135, 146 ;
Simple probability measure, 105 Uniform partition, 194, 198 i
Single-peaked preferences, 19 Union of sets, 27, 35 ;
Solvability assumption, 57, 58, 60, 65 Uniqueness, up to a positive linear trans- 3
States, as functions on acts to consequences, formation, §4

163, 185 up to similar positive linear transforma-

null, 169 tions, 54 ]

probability measures on, 164, 165 Upper semicontinuity, 37 :

of the world, 164 Usual topology, 35

Stationary preference, 96, 156 Utility, additive, 42, 44, 54, 91
Strength of preference, see Degree of prefer- bounded, 138, 206

ence continuous, 35
Strictly ordered group, 55 expected, see Expected utility
Strict order, 11 lexicographic, 48

Strict parvial order, 15 measurable, 82
extension of, 16 order-preserving, 14
Subset, 10 unbounded, 58,116
maximal independent, 141 uniqueness of, see Uniqueness
Supremum (sup), 27, 206 uppet semicontinuous, 38
Sure-thing 2xioms, 138, 179, 193 weighted, 93
Symmetry, 10 ‘
Szpiirajn’s theorein, 16 Vector addition, 31
Vactor space, 47 j
Temporal consistency, 96
Theorem of The Alternative, 46 Weakly connected, 11 é
applications of, 52, 169, 174, 210 Weak order, 11 3
Time preference, 89ff Weighted additivity, 93 %
Topological space, 35 Wold"s continuity condition, 41 i
connected, 40, 62 4
connected subset of, 62 Zorn’s Lemma, 16 :
scparable, 62
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