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iir Force requirements, such as the knowledge of the upper atmosphere en-
virenment of vehicles and the knowledge of the propagation characteristics of radio
and radar signals, require the solutions of the equations of motion of fluid dynam-
ics and of electromagnetic theory which are often very complicated. This report
presents a new mathematical approach to the obtaining of such solutic 8. The
vector field is represented in such a form that new techniques may be used to find
the appropriate solutions. ZTome problems of fluid dynamics and electromagnetic
theory are solved as an illustration of the new approach. In later reports, new
techniques will be used in other problems related to Air Force needs.

In this report, eigenfunctions of the curl operator are introduced. The ex-
pansion of vector fields in terms of these eigenfunctions leads to a decomposition
of such fields into three modes, one of which corresponds to an irrotational vector
field, and two of which correspond to rctational circularly vector fields of oppoaite
s1gns of polarization. Under a rotation of coordinates, the three modes which are
introduced in this fashinon remain invariant. Hence the Helmholtz decomposition
of vector fields has been introduced in an irreducible, rotationally invariant form.

These expangions enable one to handle the curl and divergence operators
simply. As illustrations of the use of the curl eigenfunctions, four problems are
solved.
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Eigenfunciions of the

Curl Operator, Rotaticnally invariant
Helmholtz Theorem, and Applications io
Electromagnetic Theory and Fluid Dynamics

1. INTRODUCTION

In problems which involve vector fields, the curi and divergence operators
play a central role. For example, in electromagnetic theory, Maxwell's eguatious
are expressed in terms of these operators, while in fluid dynamice it is convenient
to decompose the velocity vector field into two parts: one for which the curl is
zero, and the other for which the divergence i8 zero. In this report, eigenfunctions
of the curl operator are introduced which considerably simplify | reblems involving
vector fields, particularly when these fields are defined over the entire cosrdinate
space. Vector fields in terms of these eigenfunictions will be expanded, and wijl
show that each vector of a vector field can be expregsed as a sum of three vectors:
one is an irrotational vectar, and the other two are rotational vectors which are
circularly polarized and have oppcsite signs of polarization. Furthermore, this
decomposition is rotationally invariant because in a frame of reference obtained
from the original one by a rotation, the three vectors, into which the rotated vector
18 8plit, each maps separately into the corresponding vector inte which the original
vector was decomposed. That is, the irrotaticnal vector goes into the irrotational
vector, while each of the two rotational circularly-polarized vectors go into ‘he
corresponding circularly-polarized vector. This allowa improvement upon the

(Received for publication 8 April 1870)
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original Helmhoitz decomposition of a vector into a rotational and irrotational
part. Vector and scalar potlentials will also be intraduced in a rotationally in-
variant manner guch that the irrotational mode is obtaired from a scalar potential,
and each of the circularly-polarized rotational mod=s is obtained as the cur) of a
correspouding vector potential. It will also be shown how to construct these
vector and scalar potentials from the vector.

In addition to giving the expansion of the vectors in terms of cartesian
variables for the arguments of the vector functions, expansions will be given in
terms of spherical coordinates. In this case, the modes are conveniently ex-
pressed in terms of the vector sphericai harmonics. This expansion will obviougly
be useful for cases of spherical symmetry.

The initial value problem for Maxwell's equations will be solved when the
sources and currents are given functions of time and space, and will show how the
uge of the curl eigenfunctions yields in a very simiple manner the uncoupling of the
longitudinal and transverse mode8. The velocity vector fields of fluid mechanics
can also be interpreted in terms of these modes and show that the irrotationai
modes of the vector field correspond to irrotationai motion of the fluid, while the
circularly-polarized components ccrrespond to the rotational motion of the fluid.
The vorticity can be related simplvy to these circularly-polarized components.
Such concepts will be used to obtain families of new cxact solutions of the in-
compressible Navier-Stokes equations and solutions in the theory of linearized
compressible viscous flow. Exact solutions will also be obtained for vertical
shear motion in an ocean on the rotating earth.

The eigerdunctions of the curl and their properties were oblained by consider-
ing helicity representations of the rotation group. The general properties of such
representations hzve been digcuased in great detail by Moseg (1970). The method
by which the eigenfunctions were obtained i{a given in Appendix A. Having obtained
the eigenfunctions, however, it is a straightforward matter to verify their proper-
ties by direct computation, and this verification will be indicated in the body of
this report.

1. THE @, VECTORS

Let the variable A take on the three valuea A = 1,0, -1, and g be any unit
vector. Then for every n = (7,.n,.ng) the ihree vectors Q,(7) = [Q,, ().
Q(g) Qy, ()] are defined b,
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Q)= - .
QD - -uz;"“[”“’l&?"z) 1, 2 ("11:::" l-i)\.nlﬁ;\nz] : (m
for A =11.
The following properties of Q) are easily verified:
Q=) 94,(.'1) LA
Z;,Qu Q) =6y
2)

n-Qx(n)=0 fora=z1,
1*Qaf) = -dgy ()

The above equations show that the unit vectors @, span the three-dimer.sional
vector space for each vector g .

The vecters Q) were introduced previously (.n a sumewhat different notation)
as a means of reuucing the electromagnetic fields and the electromagnetic vector
potential o the irreducible representations of the Poincare group (Moees, 1966a).
This report extends the applicability of these vectors.

The following propertics of Q, are uscful when it is desired to impose rcality
conditions upon the vector fields:

Q)= -Q ,(n) forx =41,

Qo () =Qpw)- 3)
Also
n,-iAn
i
Q.x”-i"'(m;f)ﬁa‘i’- @

Let p be any vector. Then Q,{p) is defined by

QxpI=Q, ). (5)

-
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where

Q‘%.P= ‘J.‘ (5a)
Then

R

Qolp) = - b

Q. (p) = -22) /2 py(py*irpy] -1 pz(plﬂmz)-u PP, (6)

<A e plp+p,) * plptpy) op ’
forx =t1.

It will now be convenient to indicate how the vectors Q, behave under rotations
of the framc¢ of reference. As is well known, every rotation of a frame of refer-
ence can be described by means of « vector _(i e U'l. ”2, ”_.;) where the direction of
0 gives the axis of rotationand A = || is the angic of rotation (0 < 7 < 7). Ifa
vector X has the three components X inone frame of reference, in a rotated frame

it will have the components x,' where

and Rij(g) are the matrix elements of the rotation matrix K (4) .

. (1-c08 ) - sin 0
Ry;(8) = 6;5c08 o+[—-"§—— 00 + >1:<: I et (8)

where €isk is the usual anti-symmetric tensor:
€jik " Ciky " "Cyw 12371 (8a)
it is convenient to define the vector x ' as being the vector whose components

in the unrotated frame are given by x.’ which are the components of x in the
rotaw. frame. Then Eq. (7) may be written as

x' = R(O)x . (7a)




Let u(x) be a vector function of x- Then undes a rotation parametrized by
2 . the components of this vector in ‘he rolated frame w:ll be components of the

vector y'(x '} given by

wix) =R [RC-Qx] . {Tb)

In a similar way, one can define vector functions of the vector p and give
their transformation properties in t¢~ms of the vector 8 which desc;ibes 2 rota-
tion of coordinates. The vectors Q) (p) may be regarded as being vector functions
of p . Ina certain sense they are "eigenfunctions' of rotations. They natisfy the

- relation : 4
. R(D)Qy [R(-A)p] = exp{20(2.0)} Q) (). (9) P
4
where :
: -2 (9a) |
. n = P’ 92

and @ (A, n) is the principal branch of

(- 0+ O3)an(6/2)
e . (6o} '
AT+ ) + (07 q), tan (0/2] ;

tan@({j_.g_)=

The proof of Eqs. (9) and (9b) will be given in Section 5, where additional
properties of the vectors @y will be given. !

3. EIGENFUNCTIONS OF THE CURL OPERATOR, EAPANSION
THEOREMS, AND INVARIANT HELMHOLYZ THEOREM

LeT DGR THWONES mew kMWD g o T

Let the vectors X, ({_l E.) be defined by

o

xy b lp) = 2n 320 £ Q (p) . {10}

-

Then from the properties of the Fourier transformation and the completeness f
and orthogonality properties of the vectors Q, in Eg. {2), the vectors x A(llﬁ,)

satisfy the following orthogonality and completeness relations:
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,/;1{ _Xu;\'(zl[l)'iu zp') = bxolpp) .

(11)
Zkfdgx il“‘(’UR“ jl(gt_'lg) = 6ij6(£-)5_‘) ,

where x i denotes the i'th component of the vector X 5

From Eq. (2) it is seen that

e Xatelp) = prxy )

1A

‘X {xlp) =0 for A =11, (12)

(R

. g =3/2 ip-
‘10({|g‘)=-1p(2") /(‘IR{

fhe first part of Eq. (12) shows that th= vectors Xy are eigenfunctions of
the curl operator with eigenvalue Ap. The variable A itself may be considered to
be the eigenvalue of the operator (- 22)-1/2 -Y, v when this onerator is properly ;
o interpreted. l
The completeness and orthogonality relations of Eq. (11) enable us to expand
any vector function u(x), subject to very general restrictions, as follows:

u(x)= Zfdp xx(x|pig, (p)
LJ RDRRER

(13)
= Ly, (x) ,
A
where

' \_‘LA‘L) =fdﬁ :x(l‘lg)gx(g) . (13a)
!
!
! Eqs. (13) and (13a) constitute our sharpening of the Helmholtz decomposition
i theorem, for from Eq. (2)
:

Voupixl=o fora=ti,

Vxuslx)=0 . (14)
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One can also introduce vector and scalar potentials. For A = t1, the vector
potentials A, (x) and the scalar potential V(x) are introduced. First note that tha
coefficients g A(R) of the expansion Eq. (13) can be ‘btained fro—. E(i) ag follows:

alp) *f x,*(xlR) ulxiax. (13b)
Then
dp
Ay(x)= Af(-ﬁ"—’) "A(,’,‘_IB)EJ\(E) ,
- dp\ | )
V(x) = iizm) 3/2_/’(;’&)@&' g () (15)

From Eq. (12) it follows that
Ua(x) = VX A,(x), fora=z1

uglx) = TVix) . (16)

Thus the original Helmholtz theorem has been gharpened in two ways. First,
two irrotational vec- ,rs have beea introduced in the decomposition of a general
vector, each of which is the curl of its own vector potential. Second, a procedure
has been given for obtaining the vector and scalar potentials when the vector u ({)
is given. Now it will be shown how our formulation is rotationally invariant.

Under the rotation of axes described by the vector 0, the components of the
vectors U, (x) are given in the new fram= by the components of h'(i)' where

Uy ') =R@)u, [RG-0)x] , an

See Eqs. (7a) and (7b).

Op using Eq. (9), note that gy' {p), which replaces & (p) in the expausion
Egs. (13) and (13a), is related to gx(“é) by

g2'(p) = exp{2ia @8, n}g[R(-8)p ], (18)

where the inction ¢(9;. 1) is given by Eq. (9b).
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Thus, exccpt for a phase, the decomposition given by Eqs. (13), (13a), and
(13b) is invariant. Vectors belonging to values of X do not mix, unlike the situa-
tion for the cartesian components.

The ecalar potential and the vector potentials, which in the rotated frame
are denoted by Vi(x) and A'(x ) are also uncoupled:

VYx)=V[ R(-§)x]

Ay'(x) =R(8) 4, [R(-0)x] . (19)

Vector and scalar potentials do not mix. Furthermore, there are no am-
biguities in gauge in the present invariant set-up.

Now it will be shown how the requirement that “(i) be real affects the ex-
pansion Eg. (13) and puts restrictions on the functions g)_(a). From Eq. (4) itis
seen that a necessary and sufficient condition that the vector u (x; be real is

(p) P1P2Y o aep) 20)
5% P pl+ikp2 TR’

When the vector E(i) is real, it will be convcuient to replace the expansions
Eqs. (13), (13a) and (15) by

a%)-%l‘z:fdg OelRn @+ Z fap i fpla )
A A

=3 u,(x), (13¢)
A
where
lx(i) --21- )jdg X \(x|pler(p) +fdg X2t xfple * @) (13d)
Also
Axlx) = %V(i&) (x| RIeap) *f(%g') afapeace)
(15a)

Cign-3/2) F{RY ip-x R -ip-x
Vig) =3(27) ’f(p)e2~go(g) f(p e ~~g0,,(g)i_

Y T S
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f. APPLICATION:

This secticn gives some applications of the use of the curl eigenfunctions,
and shows how the moces that have been introduced uncouple in many cases.

4.1 Application to Maxwell's Equations
4.1.1 THE INITIAL VALUE PROBLEM IN THE USUAL FORM.

In terms of Gaussian unils, Maxwell's Equations are:

9E (x,t)

4r
ng({.t)'%i(i.t)+?—-31——— . (21)
1 MY
TxE@.0 = SE, 22)
Y-E(,t)=4m0(x,1) (23)
Y- H@x.0=0. (24)

The current density L(i' t) and the charge deusity p(x, t) are taken as given
functions of x and t, and it is assumed that the dielectric constant € = 1 and the
magnetic permeability 4 = 1.

Then the general initial v2lue problem posed by these equations will be solved.
Actually, in terms of the present notation it will be shown how the modes uncouple.

In paragraph 4. 1.2, a more convenient, though less conventional, notation will be
introduced, and then the solution of the initial value problem will be carried out to
the end.

Expansion Eq. (13) for the vectors E and H may be written as

He 0 = T fop x s [pimyp. 0
A

B, b= ):fdg x 2 | p)E.Y . (25)
A - ~

where the functions h, (p,t) and f, (p.t) are regarded as unknown functions of
their arguments.

Also, the known current density j is expanded as

L({.t)s}:/dp lx(ilﬂ)kl(g‘t)’ 26)
A

MG T T S ey

vt

R R -

A v ol Mias . e




e e

10

where the functions kA(R’ t) are known from Eq. (13b).

The scalar p is expanded in terms of an ordinary Fourier transformation as
follows:

plx, 1) = (21)_3/2_/‘dR eR X rp b, @27

where the function r(p, t) is also known.

Substitute Eqs. (25) and (27) into Egs. (23) and (24}. On using Eq. (12), one
obtains

-i(21)'3/2_/dg_ pelR X hyp,th =0,
-x(zr)":’/":fdg p el Xtolp.t) = (2#)-3/2fdp eRX rp,b. (28)

Thus the longitudinal components of the electromagnetic field can be solved
immediately:

hy (g. t)= 0,
41
!0(2, t) =—p—rfg_. t) . (29)

Similarly, on using Eq. (25) and Eq. (26) in Eqs. (21) and (22), and using the
fact that the vectors .’f_l(il p) are linearly independent,

o (p,t)
o'k

=7 " 47k, (p.1). (30)
and

N 1 3hx(P »t) X

pfx(g,l)"g —f——, =x]1, (31)
a5, (p,t)
4x 1 AL’
Aphx(g,t)-?kx(&,t)*-g 5> A=t1. (32)
Note that the modes are completely uncoupied. This result is in sharp contrast

to the situativn in which one uses simpiy the Fourier transform of the cartesian
components of the vectors, where considerable coupling occurs.
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From the second part of Eqs. (29) and from Eq. (30), one obtaing a necessary
condition for the sclubility of Maxwell'as Equations:

ar(p,t)
—F" ipko(g_, t). (33)

This equation is simply the equation of continuity

dolx,t)
_:_)—;-.__.fv 'J.(i't)-o (33a)

when it is written in terms of modes through the substitution of p and j by
Eqs. (26) and (27). It is interesting to note that only the lamellar pa;t’ of the
current density jis determined by the c iarge density p.

Since Eq. (29) gives h0 (g. t) and fo(g. t}), one need only find hA‘E,' t) and
fk(ﬂ’ t) for A=+1. Equations (31) and (32) are a pair of ordinary differential
equations which are of first order and which are coupled. They are easily solved
using standard, well-known techniques. However, instead of carrying out the
solution in the present notation, Maxwell's Equations will be written in terms of
another notation which will give the results more directly. The objective in this
section was to show the effectiveness of the use of the curl eigenfunctions without
the use of notaticnal simplifications. Furthermore, it is believed that the tech-
niques used in this section are capable of being extended in various directions.
We may go further into the matter in later reports.

4.1.2 THE SOLUTION OF THE INITIAL VALUE PROBLEM IN TERMS OF
AN ALTERNATIVE NOTATION

Define the complex vector !(i‘ t) by
¥ {x, t) = Ex, t) - iH(x, t). (34

In terms of* i . Maxwell's Equations, Eqs. (21) through (24) become

oo ¥ix,t) .
Vxgt) = - L S 4y, (35)
Vo¥ix,t)=4rmax,t). (36)

The expression ¥ (x,t) is expanded as followa:

~

¥l t) = Yxfdﬂf_h(iiz;gkiﬂ't) . (37)

o —— e ——————— % o e s
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Upon substitution into Eqs. (35) and (36) along with Eqs. (26) and (27), one obtains
47
golp. t) = Fr(g. t),

i 98pP. Y 4
L e ), (38)

(o} Lon

agy(p . t)
—5t— - icpagy(p.t) = 47k, (p, 1), for A=21.

The first part of Eqs. (38) gives the irrotational or longitudinal part of the
electromagnetic field immediately. For the second part of Eq. (38) to be valid,
the consistency condition Eq. (30) is required as in the earlier treatment. The
last part of £q. (38} is an ordinary differential equation which gives the transverse
field. The general solution is

t
. . et
Al 1) = gy (p)ei®MPt - 4ne‘°"p‘J‘ e 1Pk, (p, )t (39)
0

where gh(p) is a constant of integration and is given by
gxlp) =g,(p.0). (40)

The first term on the right of Eq. (39) represents the radiation field, and the
- second term represents the field due to the currents. To find the significance of
the variable X in the electromagnetic case, let us consider the pure radiation
field. Accordingly, set kA(E,' t}) = 0 in Eq. (39), and take gk('py) to be given by

€ap) = 8y 19(p,)8(p,y) d(pg-kt, (41)
where k > 0.
The electric field is given by

E b= ( ,r)'3/2(2)' llzcos(kctﬂtz).

Eyle, 0 = 20 3/2@) V 2siniketia), (42)

Es(i") =0,

L] R 1 o

) —— s = —— o e =
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The electromagnetic wave is clearly a wave moving in the negative z-direction
and is circularly polarized in the direction of propagation. Let us now take

g\p) =) 160 )6(py)olps-k) . (43)
The electric field is given by

El(gt.. t) = -(21')-3/2(2)-1/2cos(kct-kz),
E,x,00 @n 22 Y inket-ka) €4)

Es({-'t)' 0.

This electromagnetic wave propagates along the positive z-axis with a circular
polarization opposite to the direction of propagation. Hence, in our representation,

the radiation field consists of a superposition of circularly-polarized waves
travelling in various directions. Of course, by picking the function g, (p)
appropriately, plane polarized waves can also be represented.

4.1.3 GREEN'S FIINCTIONS, AND AN INVERSE PROBLEM

By using ¥q. (13b}, one can express gk(g) in terms of i()_i. 0). Similarly,
k,\(g‘, t) can be expressed in terms of the current density ,_1;(1. t}). Then, from the
substitution of Eq. (39) into Eq. (37), it is seen that t(.’i't) is an expression in-
volving Green's functions in X,t space. For the sake of brevity, this expression
will not be given in this report.

It is also possible to solve an inverse problem. Assume that the current
density j (x,t) is identically zero for t <0, is "switched on" during the interval
0 <t <T, and is identically zero again for t » T. During the times that the cur-
rent density if "off", the transverse part of the electromagnetic field will be a
radiation field. Omne can use Eq. (39) to solve the direct problem, in which one
prescribes the radiation field before the current is switched on and calculates the
radiation field after the current is switched off. The current density is assumed
to be known. In the inverse problem, one prescribes the radiation field belcre
the current density is switched on and the radiation field after the current is
switched off. One asks for the curren: density, during the time that it is "on",
which will take the initial radiation field into the final radiation field. This prob-
lem has been shown to have non-unique solutionis (Moses, 1958) using a different
form for the electromagnetic field. The present notation seems more useful for
solving the inverse problem. In particular, it appears easier to impose ''physical”
conditicng - such as the requirement that

o
-

he curreni density be expressibie in

-
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terms of multipoles contained within a given volume - upon the inverse problem
to yield a meaningful unique solution. Perhaps we shall discuss this problem
in later reports.

1.2 Application to Fluid Dynamica

4.2.1 IRROTATIONAL  AND ROTATIONAL VELOCITY MODES,
VORTICITY MODES, INTERPRETATION OF VORTICITY MODES
AS SHEAR VELOCITY MODES, AND STRATIFIED VORTICITY
MODES
Let us now regard the vector uf{x) which is decomposed into the curl modes
of £qs. {13) or (13c) as being the velocity vector of a fluid, using the Fulerian
description.  The mode ug {x) is clearly the irrotational mode and can be ob-
tained from a scalar potential V(x) as in Eq. (16). For the present, only the
rotational modes u_‘}‘(i) for which A = +1 will be discussed. F¥rom Eq. (13c) it is
seen that the most general real rotational velocity field u(x) can be written, on
absorbing some factors in EA(R) .

L , 25, Srow R0 X lf R @e R ini@ @5

where

).

oo

(n =

Thus the general rotational velocity vector u(x) is a superposition of the
velocities u, (x|n, p,) where

x|z pa) = e PL L g ogeiP@ X, (46)

In Eq. (46), n is any unit vector, p any real number, and ¢ any other real number.

The velocitygk(;u_y,p, a) will be called a "vorticity mode" of helicity A, direc-
tion n, wave length (27/p), and phase a. Note that in a single vorticity mode, the
phns: can be made zero by changing the origin of coordinates appropriately. To
find the velocity field determined by a single vorticity mode, let us take the phase
a=0, and assume that the unit vector 1 points in the positive z direction; that is,
ns {0,0, 1). Then

“M({l!l: p,0) = (2)1/2l coB pz ,

1/2

qu(lIQI P 0) - -(2) sin PZ.

- nY =
{ ¢l =

»

(47)

ran i 7 A2 18

- i s IS S dr s | s
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Thus the velocity vector El(’il»'l'p'a) is transverse to the direction n, is
constant in magnitude, and rotates clockwise as one moves in the positive n
direction of A = 1 and rotates counter clockwise if Am»-1. Thus, if am axis is
agsigned to the direction n and if in each plane orthogonal to this axis the velocity
vector is drawn from the ;xis, the locus of the tip of the vector will be a negative
helix if A = 1 ag one moves in the positive direction on the axis, and a positive
h: lix if X = -1. The pitch of the helix equals the wave length of the vorticity mode,
namely 27/p.

It is clear that the vorticity mode co. 'eaponds tc a kind of shear velocity
field. The use of the curl eigenfunctions leads to the decomposition of rotational
flows into shear flows. The notion of "little vortices", which one might cxpect to
be useful in describing fluid motion with vorticity, plays no rote,

It will be useful to introduce the superposition of vorticity modes which have
the same direction n- Such a superposition will be called "a stratified vorticity
mode'. Designating such a mode by 1()_:_[_:_7).

ulx Q,( f+wd ip{n - x) ) (48)
ulxn,. P Q) . peP L Tlgp),
Azt]

where p is a single real variable and gA(p) is a complex function of p. The vector
n is the direction of the stratified vorticity mode. One sees that g({_[ n)as a
function of x depends only on x+n . It is for this reason that the erm "stratified"

is used to describe the superposition. These modes satisfy the condition
|u(1[r)-v1u(x|1)=0. (49)
As will be seen, a consequence of Yg. (49) is that one of the non-linear terms

in the equations of fluid motion vanishes and that ane is able to get some exact
solutions of fluid flow.
From the iirst part of I'g. (3), a necessary ar i sufficient condition for

u (x [n) to be real is
~

gy () =-g.(-p). (50)
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On using Eq. (50} in Eq. (48)
T g P %)
u(xln)-Ql(n)f dp v‘piigl(p)
~=IT VN,

+wc R
+Q 1=-"(Q_)f dp 5‘p‘i'i)gl>(p) . (51)
- 00

L.et us now define f;\(p) for p >0 by
ll(p) = gl(p), f_li (p)= -gl(-p) . (52)
T'hen on using the first part of Eq. (3), Eq. (51) becomes

ujn) s X o). (53)

where

0 -
uixin) = gx(ﬂ_’ f(\ dp elp(Q"i)ix(p)
©0 :
i) _/; dp e PW X)p oy, (53a)

Clearly, the vector E.A(il n) is a superposition of vorticity modes u ,(x in p.a)
belonging to the same value of X and n.

4.2.2 EXACT SOLUTIONS OF THE INCOMPRESSIBLE NAVIER-STOKES
EQUATION

4.2.2.1 General Stratified Vorticity Motion
The Navier-Stokes equations for an incompressible fluid are

a!'(l, t)
at

+ (v (1,1)-g|i(x,t)+£-‘v_m£,t)-uvzx(i.tho.
Z"L( ,t)y = 0. (54)

in Eq. (34), v (x,t) is the velocity vector, P(x,t} is the pressure, v is the
kinematic viscosity u/p, and p is the density taken to be constant, of course. The
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objective is to find seolutions of this equation which correspond to a stratified
vorticity mode. That this is possible is due to the fact that the non-linear term
of the first part of Eq. (54) vanishes; see 1q. (49}, Furthcermore, it will be seen
that the pressure P uncouples from the stratified vorticity mode which simpiifics
the problem even more. One hopes that one can get sume insight into the nature
of more general viscous flows and even, perhaps, a decper understanding of
turbulence. In a later veport, we shall give other exact solutions of rotational,
viscous flow which, in a sense, is complementary to the flow discussed in the
present section,

Actually, a somewhut more general problem than the tune-development of a
stratified vorticity mode will be solved. It will be assumed that the velocity
i(i' t) is the sum of a velocity !(t). which depends on time but not un position,
and a stratified vorticity mode. That is, the stratified mode ''rides' a velocity
which varies with tilme but whose spacc variation 1s slow compared with the space
variation (that is, pitch) of the helices in the stratified mode.

Thus
vis, ) = V{t) +ulx,t), (55}
where
+w0 ip(n-x)
ut. = 3 Q) f dp 'L gy tp, 1) (55a)
-on

A=t]

Clearly, v (x,t) satisfies the second part of Fq. (54). Hence one need unly be
concerned with the first of these equations.
Let us write

. 3V (1)
P(;L,t)=fdg eR'Xr@.t) -0 —3—1—-1 . 6}

It should be noted that, while in Lq. (55a) the integration is over a single variable
denoted by p, the integration in liq. (56} is over the three-dimensional space whose
variables are collectively denoted by P -

Using ¥q. (49) with g(?i, t) for .';'.(.’il,'l)' the nonlinear term in the first part of

Eq. (54) disappears. On substituting Eqs. (55), (55a) and (56) into the first part
of Eq. (54)

o T P
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+o0 . ) ag)‘(p, t)
> Sx‘i)f dp P X) ?-—eﬂ——+ ip(n-V (1)]gp,0)
Azil e
+yp2g/\(p, t)‘ = -bl— fdg eig'i prip.t). (57)

Multiply throughiy e--IL(-' % and integrate with respect to x:

ag, (p,t)
T Qalele-pn) | =2+ iply - V(O] gy o, 1)

A=+1

+ Ung)‘(p.t)t = - iplj_r(}i. £ . (58)

Let us dot through by k anduse k-Q,(g)é¢k -pn) = p Q'QA(Q)é(,li'pU,) =0,
Then

KirG, b =0 (59)
for which the general solution is
rik )= Alt)alk), (60)

where A(t) is cn arbitrary function of t, as can be shown from the theory of dis-
tributions. Thus irom Eq. (56)

i v (U
i Ply, )= A() - —— - x . 61)

Except for the derivative of the space-independent wind, the pressure un-
couples from the velocity field.

Now substitute Eq. (60) in Eq. (57). The right hend side of Eq. (57) vanishes.
H On letting £ =1 %, taking the Fourier transform with respect to £, and using

, the linear independence of the vectors QA(Q)' one obtains the following uncoupled
: ordinary differential equations for g, (p, t):

3gA(P. t) 2
H o Tt jipln. Y@ 1+pTvi gle.t) =0, (62)
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for which the general solution ia

t 2
E\(p. t) = g, (plexp -ipfo dt' (n-V@R')]| exp[-vpt] .

where g, (p) is the constant of integ-ation: gh(p) = g,(p,0) .
For u(x,t) to be real, it is required that

g.,() = -g ;7 (-p) .
Now define fk(p) for p > 0 by
fl(p) = gl(p). f_l(p) = -gl*(-p).

Then substitute Egs. (63}, (64), and (65) into Eq. (55a).
part of Eqs. (3), one obtains finally

t
ulx,t)= 3 b\({-f Vit'dt', t)
=11 0

where w (x,t} is given by
A

®  iply.x) -vpt
‘ﬁx(?i‘t)=9~1(ﬂ)f dp e'PHL ) 7VP f, (p)
’ 0

© -ip(n - x) 'upzt
*Qx*(ﬂ.)f dp e ~ e fx-‘-(p) .
b]
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(63)

(64)

(65)

On using the first

{66)

(67)

Clearly, g({, t) of Eqyz. (66) and (67) is a sum of stratified vorticity modes

gk(;d g‘) given by I'q. (53a) where the amplitudes now include an explicit time

factor. It is seen that even if there is a wind which drives the vorticity modes,

the modes with sma:ler pitch or wavelength damp out much more readily than the

longer wavelengths. It was our hope, when we first investigated this solution,

that this vortex motion would have some of the characteristics of turbulence in

which longer wavelength modes feed shorter wavelength modes.

be seen, stratified vorticity motion does not have this property. We have in-

vestigated other exact solutions ot the incompressible Navier-Stokes cquation

However, as can

in which the non-linear term v -9V v plays a more central role. Again, however,
o~

these special solutions, which will be discussed in later reports, do not have the

-
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properties of turbulent flow. We hope, in later work, to discuss more general
solutions of the Navier-Stokes equations through the use of perturbation theory.
In this report, one of the solutions of the linearized, compressible Navier-
Stokes equations, which we shall discuss shortly, has some of the properties of
turbulence. However, since this flow is longitudinal, it is probably not what is
usually thought of as a turbulent flow.

4.2.2.2 Stratified Flows in Oceans on a Rotating Earth.

We will now consider the most general incompressible viscous flow which
can occur in oceans on a rotating earth subject to the condition that the velocity
field and pressure depend on the vertiical coordinate only. It will be seen that
such flows are stratified vorticity motions of the type just discussed, whose time
dependence include an oscillatory factor which depends on the latitude and con-
stitutes a sort of "tide'.

Following Brunt (1952), the equations of motion of a fluid on the rotating
earth expressed in terms of Cartesian coordinates in which the x-axis is horizon-
tal and points east, the y axis is horizontal and points north, and the z-axis is
vertical is

v (x, 1) 1
'~at +[x(i,t)-g_jxQ,tH;VP(i.t)+22\<1({,t)

+ gk -vvly(x,t) =0, (68)

where w is the angular velocity of the earth about the North Pole, and k is the unit
vector in the direction of the vertical. Note that from the second part of Eq. (€8),
v {x,t) can be expanded in terms of rotational modes as follows:

2 =vo+ 20 T fap @upieR g0 . (69)
A=l

In Eq. (69), V(! is a thus far undetermined function of time but not of space.
While vectors v (x, t), expanded in Eq. (69), satisfy the second part of Eq. (68),
this expansion is the only possible expansion, if we assume that we are working
in an infinite fluid, that is, the scale of variation in space of the fluid velocity is
smzall compared to the distance ¢f the boundaries of th2 fluid. Whether the fluid
is of finite or infinite extent, a solution wil. be found for stratified flow which is
unique in the cage that e fluid is of infinite extent.
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The requirement that v (.., t) depends on the verticn! coordinate z=xq only
leads to the following conditior on gy{p.,t):
EA(Q_. t) = 6(px)6(py)gx(pz. 8, (70}

where gh(pz, t) is now a function of p, and t only.

3/2

Then, on cbsurbing a factor of (27)" into the function g, and on renaming

the variable p,, our expression fory {(x,t) becomes
~

vz, =V({t) +ulz,t), (71)

where u(z,1) is given by

+00 :
uz, )= 3 Q, f dp e'P* g, (p. 1), (1a)
A=11 e
and
Qy = Q) = @ YR, 0. (71b)

It is clear that the vector u(z, t) is the sum of two stratified vorticity modes
with the direction = k.
Note thatu, =u, = 0. Furthermozre, the non-linear term simplifies in an

essential way:

ag(z.t)
[x_();.t)'Z]\L({_.t)=Vz(t)—a'z——-. (72)

Let 0 be the co-latitude measure from the North Pole. Let “"lfﬂlbe thea -
solute value of the angular velocity of rotation of the earth, a=2w con 0, B=2w
sin 9,2(:) be the vector whose components are [Vx(t), Vy(t). 0}, and W(t) be
defined by W(t) =V, (t).

Finally, the dyadic A is introduced whose components are given by the matrix
A where A is defined below:

lo -1 0
A= 1 c 0 (73)
0 0 0
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The x- and y- components of Eq. (68) can be written as

v (t) ~ o du (z,t) du (z,t)
S+ eAV() + BLWE) + 5 + W) -5
+aAu(z,t) ~vglu(z,t) =0, (74)

where i is the unit vector in the x-direction: i = (1,0,0). The z-component of
Eq. (68) is

oW (t)

1 9Pfz,t) . B
BBV 0 - Bu @, o+ 2 EED a0 (75)

Equation (74) will first be solved by substituting Eq. (71a) for u (z, t). Note
that the voctors Qy are eigenvectors of the dyadic A for A=tl:

AQ) = -idQ, - (76)

~

Then the orthogonality of the vectors Q5 is used and a Fourier transformation
is taken with respect to z. On defining

Gy (t) = Q;ﬁ“i(t) = Q¥ V() (A=tl), a1

The following Equation is obtained from Eq. (74):

8G, (1)
[ i - aGy ) + @)Y 2apw (t)] s(p) +
agl(p. t) 2
—5p—t [-ixa +ipW () +up°lg (. ) = 0. (78)

From the theory of distributions, the coefficient of the delta-function must
vanish as must the second line on the right of Eq. (78). Thus G, (1) is given in
terms of a differential equation as dependingon W(t). Note that

Vi = T GytiQy - (79)
Ast 1
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On integrating the differential equation for GA(t) and then on substituting
into Eq. (79), cne obtaing the following relationships between the compeonents of
itk

~ A t
6(t) = V(0) cos at - AV(0) sin at - Bf dt' Git-tYw') ,
-~ ~ —~ A o -~

V,itr = Wit} , (80)
where g(t) is a vector Green's function
g(t) = {cos at, - sin at, 0} . (80a)

Thus the vector !(t) can have only the form given by Eq. (80), where }2(0)
and W(t) are arbitrary. '

The expression E’(z. t) can also be found in much the same manner ag in the
previous section, where the most general golution for the stratified vorticity
mode was found. The differential equation for g, (p.t) is solved by the usual
elementary methods, and the reality condition is used on u(z,t) toc obtain relations
between the constants of integration. Our final result is

" t
u(z, t) = A‘Z: wk(z-f ar' W), 1) , (81)
~ ~ 0

=+]

where

P % . - 2
o =@ue f L @ e i)
@ 2
+ Qx*e-ﬂat [ ap e ) (81a)
~ 0

Note that if the rctation rate of the earth were zero or if we were at the
Equator, the velocity i(z. t) is identical to the stratified vorticity mode Egs. (66)
and (67) when n =k. Let us now take f, (p), which in general is arbitrary, to be
given by

f, (p} = As(p-k), (82)
where A and k are positive. It is clear that the general w,(z,t) i8 a super-

ces . I P ans~ 112
position of such particular velocities. On absorbing s facior {2) 1 into A, one
outains
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vkzt
A “’Xy (z, t) = -A sinfat+Akz)e

-vkzt

Wy, (2, 1) = A cos(at+Akz)e

le(z,t) =0 (83)

If V{t} is picked to be identicall - zero and one of the w, chosen to be equal
to zero, then the velocity ie given by Eq. {83). This velocity is seen to be a
circularly-polarized wave t. avelling in the negative z- direction and polarized in
the direction of motion if A= 1, and travels in the positive- z direction and is
pelarized opposite to the direction of propagation when A=-1. If the viscosity is
not zero, this wave is damped in time.

1t is now easy to integrate Eq. (75) for the pressure, since W (t), v (),
ux(z. t) are known. lL.etus consider the special case where the velocity is given
by Eq. (83). Then the pressure is given by

2
P(z,t) = P_(t) - gz + % Appre VE Y gin %—z- cos (at+A 523) . (84)

where Po(t) is the pressure at z=0 and is an arbitrary function of the time.

It is perhaps interesting to note that Egs. (§3) and (84) provide a aolution
for possible motions under the surface of a ""quiet" ocean in which the surface of
the ocean is taken to be at z=0. Then Po(t) is the atmospheric pressure at the
surface. Such sclutions are the simplest vorticity solutions in the ocean which it
is possible to have.

4.2.3 PROPAGATION OF SMALL DISTURBANCES IN A COMPRESSIBLE,

VISCOUS GAS

This section treats the propagation of a small disturbance in a compressible,
viscous gas. It will be assurned that the fluid flow is adiabatic and the flow is
general in that it may have vorticity as well as irrotational flow. The restric-
tion to adiabatic flow is not essential, for equations could be included having
energy transport. The adiabatic flow, however, is simpler and illustrates more
directly the uge of the modes which have been intrcduced. It should be mentioned
that Morse and Ingard {1968) have treated closely related problems. They take
into account heat conduction. They also include the case where vorticity is
present, but they separate the vorticity by using well-known vector calculus
relationse instead of using the curl eigenfunctions, as in thia report. Further-
more they are inlevesied primarily in time-harmonic motions and in solutions
near boundaries. By contrast, our interest is mainly in initial value problems
salved in the infinite do nain.

Following Landau and Lifshitz (1959}, the equations of motion for a viscous
fluid are
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By (. v 1 g2
S+ ‘i‘i't)'!.] X.Qf't)+SZP(£'t) -pv y»(gg.t)

- (3uc) 2g-v v o,

aplx,t)
et (Lt Yok, t) 4o i, 0T V@, ) = 0. (85)

In the first part of Eq. (85), u is the usual "dynamic' viacosity coefficient and ¢
is the "second'' or 'bulk' viscosity coefficient.
It will also be assumed that the pressure is a function of density only:

P = F(p). (86)

Equation (86) holds for adiabatic flow. It also holds for iscthermal flow.

We will now investigate how a small disturbance propagates. This disturbance
is regarded as being a disturbance about a steady state whose velocity, density, and
preasure are constants denoted respectively by V, Py and PO’ and is written as:

vix.t)=V +tulx,t)
P, = g+ Ple, 1)

plx,t) = 30 +ole, ). @7)

~ ~
In Eq. (87) u, P, and p are regarded as small quantities as in the usual perturbation
approaches. By substituting Eq. (87) in Eq. (85) and neglecting products of the
small quantitiea, the linearized equations of fluid flow are obtained below:

[

+

at V-yul

Ao 2
{.t)+povn(x,t) -vVialx, 0
-—;-(vﬂe)z[f_'g(g_.t)] =0,

dplx, 1) A
St TY el O e[ T oulx, ) =0, -

Plx,t) = c2plx, 0 . (88)
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In Eq: (88), we use
v = {u/py) = kinematic viscosity,
€ = (3t/40) & = Flloy) . (88a)

In Eq. (88a), the prime means the derivative with respect to the argument.
The quantity ¢ in the usual treatments of linearized compressible flow turns out
to be the velocity of the pound waves. It will play the same role in the present
treatment. The first two parts of Eq. (85) are regarded as being a pair of
simultaneous linear partial differectial equations for the unknown quantities
u(x,t) and 3(&. t). The last part of Eq. (88) allows one to obtain 1?’({. t) from
Plx, 1),

From Eq. (13), it may be written that

ulx, t) '?fdh’f.x‘il&)‘x‘g' t), {89)

where the summation over A inciudes all three values.
1t is clear that since § is a scalar, it should be expanded as an ordinary
Fourier integral:

plx.t) = (2 x"8/2 f dp elp Xrip. 0. {v0)

Equations (89) and (90) will be used in the first two parts of Eq. (88), and
ordinary differentiu} equations will be obtained in the variable t for the functions
‘A(E,' t) and r(g, t) which are uncoupled to a high degree.

On substituting Eqa. (89) and (90) into the second part of Eq. (88), on using
Eq. (12), and firally on taking a Fourier transform with respect to x, there is
found one of the equations we wigh to solve:

Br(g , t)
ET

+iV-pirlp,v) - ipoggylp.t) = 0. (91}

[InEq. (91) p »|p|. as usual] .

Let us now substitute Eqs. (89) and {90) inte the firat part of Eq. (88), and
use the second and third parts of Eq. (12). On taking the Fourier transformation
with reapect to x, one sbtains:
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dgk(p ’ t)
§ Qrp) [—m‘f—~ +i(V.pigylp,t) +ungx(g. t)}
c? 1
*p p—o irfp,t) - g(u+4§)pgo(g. t){ =0 . (92)

On substituting -pQO(p) for pin Eq. (92) and using the fact that the vectors Q, {p)
are linearly independent, one obtains

bgo(g.t) 4 2 2
— Y. i P
5t +i(y g)go(g, t) + 3P 'rgo(g. t) - i oy prip.t) =0 (93)
where
T =y +E,
and

Og;\(p‘_. t) ) 9
'_;E——+‘(Y,'E)g)«(2't)+”p g .ty =0 (94)

for A = 1 .

Note that the differential equations for g)‘(_pl. t) uncouple completely for the
vorticity modes Awi 1. Equations (91) and (93) couple the density amplitude
rp, ) and the irrotational velssity amplitude & (;i, t) . Thus the vorticity dis~
turbances are completely uncoupled from the pressure and density disturbances.
In fact, F'q. (94) would also be valid for incompressible flows, if perturbation
theory had been used on the incompressible Navier-Stokes equation. In 4 sense,
the discussion of the problem of small disturbances in 4 compressible {luid bears
strong resemblances to our carlicr discussion on Maxwell's Equations.

Since the rotational and irrotational components of _li(i.t) uncouple, it is con-

venient to write

ux,t) = gr(x.t) Ut (95)

where u. and U Ere, v spectively, the rotatiopal and irrotational parts of u

and are thus given by
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uox,the 2, dp  x,(x|plgxp.t).,
L ol b ~x~|~ AR

g (et = fd-‘l X0 (’LI Pyt . (95a)

In Fy. (95), the real part of the expressions are taken because, as explained
in connectien with I'q. (13c), the reality conditions on the vectors lead to con-
ditions on the amplitudes g;\(g, t) which allow us to assume that the imaginary part
of the expansions are zero.

Equation (94) is casily solved. The solution is, in fact,
gx(p . t) = gy(plexp [-i(V:pit- ipPt], (96)

where g,(p) = g, (p.0) is the constant of integration.
We have immediately

L‘-r(x't) = AZ walx -V i), (97)
~ spg ~ N~ ~
where
- zt
\i‘\(i. t) = de X X(il R)EA(R)L‘ VP . ‘973)

it is clear that v, 15 a superposition of vorticity modes which are being car-
ried ulong with the steady wind whoge velocity is Vand whose amplitude is being
attenuated with the time factor o-"p“t. Hence the vorticity modes with shorter
wavelength damp out at a much faster rate than those with a longer wavelength.
That is, the small scale vorticity modes are damped out faster than the larger
scale modes. Thus, the rotational velocity u,. does not at all behave like tur-
bulence in this respect.

We shall now show that the irrotational velocity ¥, and the corresponding
density increment § can be written as the sum of iwo parts: one which can be
interpreted as a damped scund wave, and the other which is a damped standing
wave. The damping of the sound wave is such that the longer wavelengths persist
longer, while for the standing wave the shorter wavelen ths maintain themselves
for a longer time. Surprisingly, then, this standing irrotational wave has some
of the characteristics of turbulent flow in that small scale phenomena persist
over large scale ones.
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Differential Eqs. (91) and (92) will now be solved. Let R{(p,t) and Glp.t) be
defined by

r{p,t) = eTiE !.tR(R,t). glp.t) = e P xtG(R,t) . (98)

The differential Eqs. (91) and (93) are now differential equations for R and G:

9R(p.t)
T~ ipgpGlp,t) = 0,

aG(E,t) a 2
.42 _sen -
P +37P G(R,t) lp() pR(R,t) 0. (99)

The usual techniques are used to solve these coupled differential equations.
The second part of Eq. (99) is differentiated with - egpect to t, the bH(R. t)/ ot is
eliminated through the use of the first part of Eq. (98), and the following second
order differential equation is thereby obtained for G:

1 (v(L,’) v oa aG(g.t) 23
- ;)' : :}-Tp T—‘F c’p G(P\,t) =0. (100)

The general solution of this equation is of the form
Glp.t) = G (g)exp{w*tj + G (g) explw_t] , (101)

where W, are the tuwo roots of the quadratic equation

. (101a)

and Gi(ll) are vonhstents of integration, The plus and minus signs refer to the
signs in front of the discrininont of the quadratic equaiion, Of course, w
depends on p.

Hecause of the radicul!y Aditfercnt character of w | for different regions in
p -space, It is couvenment to - ivide p-space into two domains, A critical length
L_ is intruduced and a ('Url'('slmlu”n\g critical wave muphey K by

ko 2T goom

(102)
C
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Call P the sphere in p -space for which p <k, where the letter P stands for
"Propagating''. The remainder of p -space, that is all of p -space other than the
sphere P, will be denoted by N, which stands for ''Non-propagating'. Now the

resulis can be combined to give g, (p,t) and r{p,t) in a physically significant
o'R B phy y
marner.
For p in P:
_ .. . 2,1/2
go(g,t) = exp|-ip ’\Lt]exp[-cp(p/k,\t] G_'_(R)exp[xcp(l—(p/k) )7/ et
+G_(p)exp| --icp(l—(p/k)z)l/ztj } R
fo
r(R, t) = g era[ -ip - Xt]exp[ -cp(p/kit] {G+(p)
2,1/2

« [ (p/kWi(1-(p/k) ]exp[icp(l-(p/k)z)l/zt]

+ G_(g)[(p/k)~i(1-(p/k)‘°‘)1/21exp[ -icp(1- (p/ W5 2t } ) (103)

For p in N:
g4lp.t) =sexp[-ip-V] {G+(g)exp[ -cpF (p/k)t]

+ G _{pexp| 'CPF_(p/k)t]} ,
pO .
r{p,t) = -i7 exp[-ip-V] {G+(E)b‘_(p,/k)exp[ -cpF, (p/kt]

+G_{p)F (p/klexp[ -cpF _(p/kit] } , (104)
where the function Fi(x) which appears in Eq. (104) is defined by
¥ 00 = x - (202, F_ e x o+ 62-n/2, (104a)

On using Egs. (103) and (104) in Eqs. (95a) and (90) it is seen that uso and
§ each can be broken up into two parts corresponding to the spaces P and N. It
is also seen that the parts of Yir and p that correspond tc P space are damped
moving waves which, »Hr sufficiently smail p, are undamped and travel with the
velocity ¢ with respect to the constant wind which has the velocity V. The shorter
wavelengths damp out faster than the longer wavelengths (with a di;ferent damping
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factor from that for rotational flow), so that the longer wavelengths persist for a
longer time. Thus the contribution of the space P may be identified as being
sound waves.

The coniribution to u..and 8 from the space N does not at all behave like
sound waves. These motions are, in a sense, ''overdamped'.

Because of the nature of the function F_ which appears in Eq. (104), it is
seen that the shorter wavelength contributions damp out more slowly than the
longer wavelength contributions. Thus small scale phenomena persist ionger
than the large scale phenomena. In turbulent flow, a similar pattern is observed,
though usually it is agsumed that turbulent flow is rotational, rather than ir-
rotational. Our results suggest that perhaps some of the phenomena of turbulent
flow are related to the irrotational components of the flow corresponding to the
space N, Perhaps, also, inclusion of the non-linear terms in the equations of
fiow would induce a similar vehaviour in the rotational flow. However, such
speculation is beyond the intent of this report.

Withoul going into detail, note that all the constants of integration gy (p ) and
Gi(g) are uniquely determined when ¢ and p are given at time t=0. Henc:the
initial value problem has been solved in all generality for the propagation of small
disturbances in a compressible viscous fluid.

3. FURTHER PROPERTIES OF THE VECTORS @ )\(7) AND
GENERALIZED sURFACE BARMONICS

Having given some applications of the eigenfunctions of the curl operator, we
shall go into further propcrties of the vectors Q~)‘(Q). primarily to obtain the ro-
tation property of Eq. (9) and to restate the Helmholtz theorem in terms of
spherical coordinates. Up to now, it will be noted that the cartesian coordinates
arc emphasized over other coordinate systems.

1t will be necessary to go into some properties of the representation of the
rotation groun. Indeed, as will be shown in the Appendix A, rotation group con-
siderations have motivated our introduction of the Helmholtz theorem.

The irreducible representations of the generators of the rotavion group are
three matrices Si(j) (i=1, 2, 3) which satisfy the commutation rules

[sl(j), Sz(j)] =15,9) (eye.) (105)

where j characterizes the irreducible representation and is a positive integer or
half-odd integer. The matrices have 2j+1 by 2j+1 in dimension. The elements

arc Jdenoted by {j, m}Si}j, m'} where m, m' take on the values -j, -3+1, ...,)-1,j}.

P
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The usual form for the elements are (for example, see Edmonds, 1957).
(J'.m|53lj.m') =mh L m
. . S . i . 1/2 X
(J.m!SllJ,m') t 1(],m152,3,m') = [ Fm")(jam'+1)} / S m.m'+1 (106)
The column vectors upon which the matrices Si(J) act will have the components
N labelled by m, where the top component will be labelled by m=j, the second

component by m=j-1 and so on until the bottora component which is labelled by
m=-j. Correspondingly, the first row of the matrices Si(j) will be labelled by
m=j, the second by m=j-1, etc. A similar labelling convention is used for the
colurins of these matrices.

(])j is an irreducible

Let 6 = (01, 62, 64) be any real vector. Thenexp (18-S
ropresentation of the rotatlon matrix R(G) of Eqgs. (7) and (8) (We use 0 ‘4 (J)
z0, S (J)) Moses (1966b) has given the matrices exp[16 S G ] for all 9 It w111 be
Aecessary to introduce the Jacobi polynomial Prf +B) (). Its propertles are given

by Szego (1959), for example. We define the function S(j, m, m', x) by

S, m,m',x) = Pj(mn;m smAmY) (107)

From Rodrigues’ formula for the Jacobi polynomials (Szego, 1959)

i m-j P i
S(j,m,m',x) = (-1} (jz-m)! (1-x)" (@-m 145y~ +mY)
j-m 3 1 5 '
de'm [(I'X)J-m (1+X)J+m]' (108)
dx

Moses (1965) has given an alternative expression for S(j,m,m', x);

. 1 oI=] jtm . ' s
Stom )« 0 E S ot ], o

In fact, one may use either Eq. (108) or (109) to define S{j,m,m',x). Let us
i denote the matrix elements of exp [iﬂ-S(J)} by (j.m‘exp[ig'-ilfj,m‘). Then

Gomlexp(i9-SI|3m") = (G-m)? /G-m") ¢ 1/ 2{ Grm)t / rrmye 1/ 2

9.+i6 'm m 0 m+m'
X (gin 2)™ ™' ( L. 2 cos =+ i sin e $(G,m,m',z) , (110)
2 S \co8 g ¥ 1p sing
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where

2

5] /932
6:|9|,z=[1-(73>]c050+(-§-) . (110a)

We have previously introduced "generalized surface harmonics' (Moses,
]
1967). The generalized surface harmonics Y;n‘m (0,¢) are defined for 0<6<m
and 0<¢<2m by

N M (0,6) = (-1 (/23" 2501/ Y 2 GGom)t fGomyt ) /2

w [G+m)? fG+m1y) 1/ 2eim-m"o o g m-m!

1
x [ 1+cos BJm S5(j,m,m"', cos 8]. (111;

These functions have the following properties:

m, 0 _
Y0 00,9) = ¥, (0,40, (112)

where ij((), ¢) are the usual surface harmonics in the notation of Edmonds.

.[2-” i : m, n m', n :
A dé fo dé sin 6 Yj (6.¢)YJ., 6, ¢) = éj,j'ém,m' . (113)
) J )

LT e, avi 0N e sin 0 = 6(0-6")6(8-9) (114)
i=ln] m=-;

i o

p) Y;“'“ (0.¢)Y;“’“ 6,9) = (j+0)/am]e, ., {115)
m=-j

J

m,n m', n¥ - .
b Y6, @)Y, (0.¢) = [@i+1/am)s 0, (116)

n=-j

R N
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v " 6, 9) - <-1)“‘myj""“*<a,¢> . (117)
ke

YT e ev™ ™ 6,0 = T {12neken) /a2
J-|j-k|

~ (k,n',j, m'Ik,j.J.n'+m')(k, n,j,mlk,j,J, n+m)

1 H
) YTRmERT (g g) (118)

In Eq. {118), we have used the Clebsch-Gordan coefficients in the notation used
by Edmonds.

The matrix elements of exp[i§ - §_(j)] for the case 63= 0 is conveniently ex-
pressed in terms of the generalized surface harmonics. Using polar coordinates

to describe 2 which has only x and y components, 9 and ¢ are defined by

Gslgl 8 = 6(cos ¢,sin $,0) . {119)
Then
(Gom|exp[i8-8 )i m’) = (-0 ™ [4m/(2j+1)] i/ZYE"’""* (6,9) . (120)

One of the more interesting properties of the generalized surface harmonics
is their behaviour under rotations. Let the angles 6, ¢ determine a unit vector

n by
Qe {sin 6 cos ¢, sin 0 sin ¢, cos A) . (121)

Let n' be the vector obtained from n by means of the rotation R(-g ). That

is
n'= R(-g)i . (122)

where the elements of the rotation matrix are given by E.  (8). Furthermore,
iet 9' and ¢' be the angles which give n' through Eq. (121). Then
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j 1
¥R (8", ¢) = exp [-2ing(R2,n )] T Y e, 96, m'|exp[i- S]] m) , (123)
m's-j

where ¢(g,1) is given by Eq. (9b) .

1t will now be convenient to express the matrix R{(6) whose elements are given
“~
by Eq. (8) as

R(f) = exp[if - K] , (124)
3
where 0-K = 30 0K, where K, are three matrices given by
i=1
0 0 0 0 0 i 0 -t 0
Kl = 0 0 -i B K2 = 6 0 O B K3 - i 0 0 J. (i25)
\ o i o -1 000 0 0 0

It is a well-known theorem that Eq. (124) is valid, and can be verified by
direct expansion of the exponential using the fact that (6-K)3 w 92(6 . 5) .
Now the matrices Ki are unitarily equivalent to the matrices Si(l):

K, = vsi(”v'r (126)

where the dagger means hermitian adjoint and the matrix V is given by

1 0 -1

v =(2)yi/2 i 0 i (127)
0 @iz

It is clear that

viilayt (128)
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Let us construct the matrix I' as follows for any unit vector n:

L=V explinv-$') = explin K] V, (129)
where w is related to 1 by means of

w= 6(sin ¢, -cos ¢, 0), (130)

where n is given in terms of 9 and ¢ by Eq. (121).

Tth the vector g 1(2,) has its components formed frem the compenents of the
firet columu in I', the top component of the column vector being the x-component
of @,(1), the second component being the y- component, and the third component
being the z-component. QO(P.) and 9_,(1) are formed similarly from the second
and third columns of T".

' The rotation properties of Q) (n) given by Eq. (9) then follow from Egs. (120)
and (123). LetV 1 Yo Y, bg ve'::tors constructed from the first, second, and
third columns of the matrix V of Eq. (127). That is

V=@ V200,500, forr =1,

XO=(O.0,-1). (131
. Then
. ‘ 1/2 ety
L Qain) = @r/37 T v v (6, 9). (132)
I

:.‘ * ‘ 6. THE HELMHOLTZ THEOREM IN TERMS OF SPHERICAL COORDINATES

This section gives the general vector 3(5) in terms of spherical coordinates
in such a way that the Helmholtz decomposition ulx) = )7:3 u ,(x) is preserved.
The components of ‘.i)l(.’f_) will also be given in terms of spherical coordinates.
Toward this end, it will be useful to introduce the vector zpherical harmonics.

6.1 Vector Sphericul Harmonies

The vector spherical harmornics are defined in terms of our notation (Blatt
and Weisskopt, 195Z) by

Y@ == T v, v %0, ot m, 12| L 1,5, M), (133)

m,A
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where V, is given by Eq. (131) and the summation is over all X. Instead of
giving the properties of the vector spherical harmonics, we refer the reader to
Blatt and Weisskopf. We shall be interested in the components of X,JLM(O' ¢) in
spherical coordinates. Let i,l,l‘: be the three unit vectors in the x,y, z direc-
tions, respectively. Let 8,8 g ay be the unit vectors along the r-direction,
0-direction, and ¢ ~direction respectively. Then, as is well known,

a. =sin9cos¢i+ sinesind:i +c058‘li .

&g = CO8 0cos¢i+cos€sin¢l -sinﬂ_li ,

‘a‘._d,'-sind>'i‘+c05¢i. (134)
The following can be shown:

3 Ym0 9 =0,

8, Yy gop ) = (3/25+0) |/2¢M 00 gy

8 Y5 renm(® 9 = 1@/ @30 1Y 2¢M 00, g) (135)

~L ~

M
. M, 0
sinfa,¥Y 6,¢) = - 5 Yy '(0,9),
=8 ~JIJM [J(J+1)}1;2 J

sin 02 g ¥, o 0 (6,8) = = [(3-M+1)I+M+1)/3(2543) /2
29 X5 01, M 3341

M, 0 J+1 1/2,M,0
* Yiygp (0,90 = S5 [@-MWI+M)/J (23 -1)] 7/ Y476, ¢)

sin6ag Y, ;i M09 = zjlﬂ [I-M+DE+M+1)/ S+ 3+3)] /2

M, 0

. J+1 ; 1/2yM,0
X Yy (0,68) - S350 -MIT+M)/ G+ 123 -1)] /9Y 12 706, 9) (136)

sin 03 4 ¥ 51016, 8 - LH UMM 1/ G DI+ RIS 2

x YN 0(6, ¢) - [(I+1W-MT+M)/I (27 1125+ 1)) I/ZY?_'{)(B, ¢)} .
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R : M M, 0
sinGa, Y _ 0,4) = i ——— Y0, 9),
2 13.3-1,M T LA

. . M M, 0
sinfa, Y (6,9} =i 77 Y P U (8, 9). (137)
~¢ ~J,JHIM [(J+l)(2J+l)]1 2 7J

in Eqs. (135) through (137), one must recollect that ym. 0 (0, ¢) are just the
usual surface harmonics. See Eq. {112). The iollowing sketches the derivation
of Eqs. (135) through (137). Note that:

a 'V _=-coseb,

~r 0

Qr’!,\'(z)_l/zsinf?ei ¢. for A =21, (138)

5—6'!0 = gin 6,

gV ™ (3)'1/24\ cos 6 ené , forAszxl, (139)

a4 Vom0 _

ag¥a" 2 V2 P for aasr . {140)
Also

cos @ = (47/3)1/2\’2'0 0, 9),
sin 6 e = -(sw/s)l/zY}"’ ©, 9,

sin 8 e 1 . (ev/a)lfzyl' L0, 4) . (141)

After multiplying through by the appropriate unit vectors on both sides of
Eq. (133) and also multiplying through by sin 8 to obtain Eqs. (136) and (137), sub-
stitute the appropriate expressions from Eqs. {138) through (141) on the right hand
side, use Equation (118) to reduce the product of surface harmonics, and finally
uge the explicit forms for the vector coupling coefficients (L, m, I,X' L, 1,J, M).

6.2 Expansion of Vector Fields in Terms of the lireducible
Representations of the Retation Group
Let us now return to the problem of expanding an arbitrary vector 2(_)5) in
terms of spherical coordinates. The starting point is the expansion of Eqs. (13)
and (13a). Define the function g(p, j, m, ) by
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2% . x AA Ak A A
g, som 0 = [ a6 f otn § b N 6,10, ) . (142)
0 0 ’

In Eq. (142}, 5,3 is used aa the polar angles of p:it is desired to reserve
6, ¢ to denote the polar angles of x. Strictly speaking, g(p, j.m.,}) iz defined for
i ?,7&, only, but g{p,j, m, ») will be defined for j = -1,0,1,2,... with the under-
standing that

£p,0,0,21) =0, gp,-1,mA)s0 (142a)

for the sake of minimizing the difference in appearance of future expressions
between the cases for which3A=0and A=11,

From the completeness relation for the generalized surface harmonics,
Eq. (114), gx(g') can be found from g(p, j,m,}) through

© ]
VR LD DD ) YJ’,“'A(O. $glp.i.m, N . (143)
j*¢ ms=-j

Thus one may express the vectors g)t(?i) as

w00 = 62 p fap SREvH Mg, 0y
Jomi p

x Y;“‘l o, a)g(p.j. m,A), (144)

where Eq. (132) has been used for QA(_'Z,) .

It is clear that froin the construction and from Eg. (12) that ¢ xux({) has
the same expansion as Eq. (144) except that g(p,j, m,A) is replac;d b;
Apg(p.j.m,X). Furthermore, from Egs. (12} and (13a), it will be shown that

w k
e -/mVi LT 0, e
k=0 m=-k

w
"fo dp P3Jk(pr)g(p, k,m,0) , (145)
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where r = :1[ and f, ¢ are the polar angles of x. [n Eq. (145), the functions
jk(x) are the usual spherical Bessel functions. To derive Eq. (145), Eq. (12)

is used in Eq. (13a) for A=0. But a well-known expansion in terms of our
notation for e'R'% ig

i % q AP
eRLaar 3 T @ privl 0,0 V6.5 . (146)
q*0 r=-q

Equations (145) is obtained by substituting this expression for e'L'X, then

integrating over 6. 3 and finally using the orthogonality relation for the surface
harmonics of Eq. (113

The functions g{p.j, m,A) have interesting properties under rotations of
coordinates. Under the rotation of axis described by the vector € (8 is per-
fectly general and has no connection with the polar angles 6, ¢), the vector
4, {x) goes over into u,+(x) where u,'(x) is given by Eq. (17). Similarly, the
am litudes g){p) go over into g, '(p), where g;'(p) is given by Eq. (18). It has
been shown by Moses (1967, 1970) that the relations Eqs. (142) and (143) which
relate gip, . m,}) and g, {p) lead to the following relation between the transformed
coefficients g'(p,j, n,A) and the coefficients in the eriginal frame g(p, j.m,A):

)
g.lmAa 3 (.mexplif-S] jmglp j.m". N, (147)
m'a-j

where (j, mlexp[i0-5 ||, m') is given by Eq. (110). Thus the coefficients

g{p, j.m,A} transform under the irreducible representations of the rotation group
without any mixing of the variables A. This expansion confirms the rotational
invariance of the hielmholtz decomposition of this report.

Equation (144) will now be simplified through the use of vector spherical
harmonics. The right hand side of Eq. (146) is substituted for eiEv"-E-, the
product of Y;' 0*(5. 3) and Y;‘ ’ "“(6:3) i8 reduced through the use of Eq. (118),
the orthogonality relation Eq. (113) is nsed on integrating over the variables
5.3 of p, the definition of the vector spherical harmonics Eq. (133) is used, and
finally?he known values for the remaining vector coupling coefficients
(L,0, 1,2IL, 1,J,}) are substituted to obtain the following:
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-4 k
) =@ V2 Ty @R Mm% A i
k=l m=-k

+ [k/(2k+ D) l/zlk. ke, m (B PRy x ke )

-1 (k+1)/ 2k+1)] llzzk NP (0 )Y SN I

for A=x1, and

© k

IR EAND YIS M i[(k+x)/(zk+1)]1/2gk ke 1, m(€: 9
k=0 m=-k

1/2

v A (r) +[k/(2k+1)}

k,m, 0, k+1 Y k-1,m®®

¥ Ak,m,o,kq(r)% . (148)

where

o
2 . .
ALm,'}\,k(r) : J'O P dp Jk(pr)g(p.J.m,A) : (149)

The vector potential Ay (x) of Eq. (15) for A= 1 | has the same expansion
as the first of Eq. (148) with g{p, j.m,A) replaced by (A\/pigi{p,j.m,2). The
scalar potential V{(x) of Eq. (15) is given by

© k 0
Ve =@/mP L L vy 00, f pdpg ()t igp, k. m, 0). (150)
k=0 m=-k 0

Though the expansions of Fq. (148) are very useful, for many applications
oue wishes the components of u, (x} in spherical cocordinates. Hence a uix),
gin § 2, -u,(x)and sin 0§ ay u, (x} will be given in terms of glp, ),m, ). One
uses Eqs. (135) through (137) and sees that the components of u , {x ) are suins
::]' 0. le:]t‘lo . In order that the components be a series in

only (that is, a series in surfuce huarmonics), kil is replaced by k in gum-

of series in Y Yr:' 0

maticns and the series is then expressed in terms of the spherical Bessel

functions Jk‘ The tunctions i and Iy 4p AN bt expressed in terms

Tt1 ka2
of ), and derivatives of I by using the well-known relations, recursively, af

necessary:

A
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;Jk(x) - d—x—Jk(x) = 3k+1(x) . (151)

The differential equation for the spherical Bessel functions is also used, namely

2

2 d R d . 2 R
X d-x—z— Jk(x) + 2x > Jk(x) + [x -k(k+l)]3k(x) =0. (152)

Though the details of the calculation are tedious, cne can give the final ansv

re
e in a2 straightforward manner.
T -1/2 1 K+ 1/2,m,0
o aub) = m V2L 3 T @ ) Y2y O, )
. k=0 ms-k
i o0
x f p dp j (priglp, k,m,x}, (153)
0
fo. A= 11, and
% k
1/2 Ak+l om, 0
B -uclx)=/mY° 3 5 WY ,¢)
k=0 m=-k
® 2
x j p dp j, (priglp. k, m, 0) . (154)
0

In Eqg. 1%},

the prime means derivative w...i respect to the argument of the
funnti.i

Sirnilarly, later, the double prime means that a second derivative has
beer whin with respect to the argument.

war B 3 ux(x)--(i) -1/2 z Z (i) "mo( é)

k=0 m=-k
U .'m“(pr)[(k'm_r glole wh)

+ ) (k- i_}(!c_-r.rnl-lr-&-m”k"’k-:}(‘:}#l)}l/z{ 1- Lgfféllgip, k-1,m, )

My
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[+2)(k=m+1)(k+m+1)/ (k+ 1)(2k+ )2k +3); 1/ 2 (1 - Kktl) )
nx

£, k+1, m, 7&)}

1% 1/2
—x-_-fo p dp jl"lpr) [[(k-1)k(k-m)(k+m)/(2k-])(2k+l)]

X C(P. k-1, m, >\-)

* L 1) k+2) (k-m+ 1) (ktm+ 1)/ (2k+ 1) (2ke 3) | 1/ 2

* g(0, k+1,m, l)]s .

forA =471,

In Eq. (155) and later, g{p,0,0, #1) =

pression for sir 0 A Wy(x) for X =1} is given by

sin 610-

X

“

X

#

+

x

© k
D= m T T qkymog
k=0 m=-k

® g ma
p“dp j, {pr) 5 &, k,m,A)
3 fo 7 (Koo 12 BF

@« 0y
f(] pdp ji' (pr) [[(k--l)(k-m)(k+m)/k(2k-1)(2k+1)} 1/2
g, k-1, o, ) - [Oe+2) (k-m+ 1) (orm+ 1)/ (et 1) (2Kt 1)(2k43)] 112
1 52
gip, k+1, m,A)] -Tf p dp Jll< Wwr)
0

[(k+2)[ (k- 1)(k-m)(k+m)/k(2k-l)(2k+1)) 1/2 glp. k-1, m, 2}
k= 1){ (c+2) (k- tn+1) (kb 1)/ (4 1) 2k 1) 2k 3)] 1/ 2

g(x:‘kﬂ,m.k)] g .

43

(155)

glp. -1, m,x} = 0, An alternative ex-

(156)
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Also
] k
sin 08 5 u Gi) = e/mY? YT Tk Y{:’”O (6, ¢)
k=0 m=-k
1 w0 l/u
% ’ -3 f dp j, (pr) [(k-l)(k+1)[(k-m)(k+m)/(2k-1)(2k+1)] “
r Q
% glp, k-1, 1, 0) + k(k+2)[ {(k-m+1)(k+m+1)/ (2k+1){2k+3)} 1/2
1 o
x glp,k+l,m, 0)] + ;f dp p jy (pr)
0
* [(k-l)[(k-m)(k+m)/(2k-1)(2R+1)] I/Zg(p,k-l,m,O)
= (k+2) [ (k-m+1)(k+m+1)/ (2k+1) (2k+3) ] 1/2g(p.k+1.m. 0)] }
Finally,
L k
sinfaguy )= -MYZT T @8 kien) V27006, 4)
k=0 m=-k

©
x {% Jo P dp j 1) [mg(p.k.m.x) + Alk+1)

x [ (k- 1)+ Dik-mi(k+m)/ 2k-1)2k+1)] Y 2g6p, k-1,m, )

+  Ak[k(k+2)(k-m+ 1D (ktm+1)/ (2k+1)(2k+3)] 1/?g(p. kt+1, m.x)]
© .2

+ f p"dp jj (pr) [mg(p.k,m.x)
0

+ AL~ D{&+1)k-m)(k+m)/ (2k- Dkt 1] 2 2g(p, k-1, m, )

- Alk(k#2)k-m+ 1) (4m+1)/ @kt 121+ 3)] V 2g o, 1h1, m,)\)} : .

for A=11, and

o k
o oa cugto s -2l R T @ my® 0,0
k=0 m=-k

r 0

X §, P9 ierigh, kom0

(157)

(158)
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In Eq. (158), the ambiguity of the term for k = 0 is eva'uated in the obvious
way by setting g (p,-1,n,)) = g{p, 0, m, A) = 0 and then by multiplying through by
the factor [k(k+1}] -1/2 {so as to cancel the factor kl ") before aetting k = 0 .

Thus our program of exhibiting the components of the rotational and irrota-
tional parts of an arbitrary vector in a spherical coordinate gsystem has been
completed. It is interesting to note that while general gurface harmonics yT.n
had to be introduced tc define glp,j, m, A), the expansions of the components of tne
vectors involve the ordinary spherical harmonics Y™’ 0, The components of the
curl o1 the vector in spherical coordinates have the same expansion except inat

g(p, i, m, ) is replaced by Apg(p, j, m, ).
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5 Appendix A
4 ’ Motivation for the Iniroduction ot the
i ‘ Eigmnfunctions of the Curl Oparato; |
i
b It will now be shown how we came io use the vectors 9,\(2.) from considera- !
tions of properties of representations of the rotation group. i
A 1
g ! Let ue define the vector G(p) as being the Fourier transform of the vector :
L pieh t
I 7 : i
L -3/2 -ip - x 5
[ G(p) = (2 fdie 'L ux), A1) _
- |
I w5 0 in . i
i ; u ) = 2m /¥ dp eR°Lap). (A2) -
i - ! -~ ~
3 \
h ]
": Then
o -5/ i - .
g v xut) = ien S o 27X e G a3)
';" Let pé now introduce the column vector G(E,) whose components from top to
!

hottomn are the x-, v-, and %z~ componinis respeciively of _(E(g). It is readily
shown that the columun vector corresponding to the vector &xg(&) is -i(g- 5)(}(2).
where p- lj -~ T piKi and the matrices Ki are given by Eq. (125). As ig shown in
Eg. 24), these matrices are the infinitesimal generators of the rotation matrix.
Let us now define the column vector H(E) by

et R RO AT T A s e 2

e R

-
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Glp! = \I'H(E:) ’
Hp) » vicg) , (1)

where V ig the matrix of Eq. (127). Then the column vector (p K}L.:(p) maps into
the column vector Lp a “1))H(p ), where the matrices S( )hxw the elements given
by~ (106). This x.nqplpm,lg 1‘ul.lows from Eq. (126). Becauue of the way tlat the
row. «ud columns of thie representations of the generitors of the rotation giroup
were lubelled, the top component of H(Q) will Le labellied HI(P..)‘ the second
coaponent by H 0('51“), and the bottom componemi by H 1(2 ). Now in Moses (1970)
and 11 others mentioned in that reference, a representation iz intreduced called
the helicity representition, in which p-S (1 ig diagomal. Thus let us introduce
the column vector g(g_ ) whose top, xniﬁdi:. and botigni components sre denoted
by &1:1(2 I gn(li) and g_l(wzpi ), respectively by

i 3 V) i+ 5 (1)

G(g_) w e R H(E) . Hl(g) S z(g') . (A5)
where w is a function of pRiven by

hy wy
Py*-pFsinw, p,»p-rsine, pg*pcosw,

wﬁlo,wi'zl. {Ab5a)

The relation of w to the polar coordinates of P is given by Eq. (130).

The column vector (p 9 {1 ))H(p) maps into the column vector g (p} whose
corponents are J\pg’\(g) Thus, combmmg all the transformations, u (x } maps into
the column vector g(p) in such a way that ¥ < u(x) maps into the column vector
g' () - Equations {13) are an explicit form for the mapping and Egs. (12) and
{125) constitute « statement of the mapping of the curl operator,
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