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Abstract

tir Force requirements, such as the knowledge of the upper atmosphere en-

vironment of vehicles and the knowledge of the propagation characteristics of radio

and radar signals, require the solutions of the equations of motion of fluid dynam-

ics and of electromagnetic theory which are often very complicated. This report

present& a new mathematiLal approach to the obtaining of such solutio is. The
vector field is represented in such a form that new techniques may be used to find

the appropriate solutions. Come problems of fluid dynamics and electromagnetic

theory are solved as an illustration of the new approach. In later reports, new

techniques will be used in other problems related to Air Force needs.

In this report, eigenfunctions of the curl operator are introduced. The ex-

pansion of vector fields in terms of these eigenfunctions leads to a decomposition

of such fields into three modes, one of which corresponds to an irrotational vectorI
field, and two of which correspond to rotational circularly vector fields of oppo3ite

s~ins of polarization. Under a rotation of coordinates, the three modes which art
introduced in this fashion remain invariant. Hence the Helmholtz decomposition

of vector fields has been introduced in an irreducible, rotationally invariant form.I These expansions enable one to handle the curl and divergence operators

simply. As illustrations of the use of the curl eigenfunctions, four problems are

solved.I r

I
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Eigenfunctions of the
Curl Operator, Rotationally Invariant

Helmholtz Theorem, and Applications to
Electromagnetic Theory and Fluid Dynamics

1. INTRODUCTION

In problems which involve vector kields, the curl and divergence operators

play a central role. For example, in electromagnetic theory, Maxwell'b equatio.ju

are expressed in terms of these operators, while in fluid dynamica it is convenient

to decompose the velocity vector field into two parts: one for which the curl is

zero, and the other for which the divergence is zero. !n this report, eigenfunctions

of the curl operator are introduced which considerably sinmplify tro.blerna involving

vector fields, particularly when these fields are defined over the entire cno'rdinate

space. Vector fields in terms of these eigenfunctions will be expanded, and will

show that each vector of a vector field can be expressed as a sum of three vectors:

one is an irrotational vector, and the other two are rotational vectors which are

circularly polarized and have opposite signs of polarization. Furthermore, this

decomposition is rotationally invariant because in a frame of reference obtained

from the original one by a rotation, the three vectors, into which the rotated vector

is split, each maps separately into the corresponding vector into which the original

vector was decomposed. That is, the irrotational vector goes into the irrotational
vector, while each of the two rotational circularly-polarized vectors go into 'he

corresponding circularly-polarized vector. This allows improvement upon the

(Received for publication 8 April 1970)



2

original Helmhoitz decomposition of a vector into a rotational and irrotational

part. Vector and scalar potentials will also be intrpiduced in a rotationally in-

variant manner such that tlhe irrotational mode is obtained from a scalar potential,

and each of the circularly-polarized rotational modos is obtained as the cur) of a

corresponding vector potential. It will also be shown how to construct these

vector and scalar potentials from the vector.

In addition to giving the expansion of the vectors in terms of cartesian

variables for the arguments of the vector functions, expansions will be given in

terms of spherical coordinates. In this case, the modes are conveniently ex-

pressed in terms of the vector sphericai harmonics. [his expansion will ob-:ious].y

be useful for cases of spherical symmetry.

the initial value problem for Maxwell's equations witl be solved when the

sources and currents are given functions of time and space, and will show how the

use of the curl elgenfunctions yieids in a very simple manner the uncoupling of the

longitudinal and transverse modes. Tne velocity vector fields of fluid mechanics

can also be interpreted in te.rma of these modes and show that the irrotationai

modes of the vector field correspond to irrotational motion of the fluid, while the

circularly-polarized components correspond to the rotational motion of the fluid.

The vorticity can be related simplv to thcse circularly-poiarized components.

Such concepts will be used to obtain families of new exact solutions of the in-

compressible Navier-Stokes equations and volutions in the theory of llnearizcd

compressible viscous flow. Exact solutions will also be obtained for vertical

shear motion inr an ocean on the rotating earth.

The eigerfunctlons of the curl and their properties were obtained by consider-

ing helicity representations of the rotation group. The general properties of such

representations have been discussed in great detail by Moses (1970). The method

t'y which the eigenfunctions were obtained is given in Appendix A. Having obtained

the eigenfunctions, however, it is a straightforward matter to verify their proper-

ties by direct computation, and this verification will be indicated in the body of

this report.

2. TilE QA VECTORS

Let the variable A take on the three value. A - 1.0.-i, and L be any unit

vector. Then for every !L. (r 1 , Y2 a 3 ) the three vectors ( EQlA(il.),

Q2 A(.&, Q•X(•)] are defined b.
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for -1.

The following properties of Q X are easily verified:

Q ix-: ( r7)Q,, • - ij
X

(2)

Y• QX(?L) 0  for ±X ,

the above equations show tnat the unit vectors Q, span the three-dimet,.ional

vector space for each vector I .

The vectors ! Q were introduced previously (,n a somewhat different notation)

as a means of reoucing the electromagnetic fields and the electromagnetic vector

potential to the irreducibl- representations of the Poincare group (Moses. 19i66a).
This report extends the applicability of these vectors.

The following properties of QX are useful when it is desired to impose reality

conditions upon the vector fields:

Q: (i) * - A.-,t) for X ,,•

o : O•o(I) (3)

Also

? 1 (

Let p be any vector. Mhen Q (Q is defined by

Q),(-- Q •~n (5)
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w ht-I-e

Then

Sp

(p) PI(Pi+'AP2) P9(P+i+P2)
(p) -(2 p p 3 ) 1, ) , P j (6)

for A 1 1

It will now be convenient to indit ate how the vectors Q A behave under rotations

of the frame of reference. As is well known, every rotation of a frame of refer-

ence can be described by means of t vector 0, (01, 1). ":) whez.- the di.-,ction of

o givvi the axis of rotation and n0 is the angi(e of rotation (0 70 ' r). If a

vector x has the three components xI in one frame of refvrence, in a rotated frame

it will have the components x. where

I 1J 3
xi'- •. ij(jz)xj. (7)

and Ri (O) are the matrix elements of the rotation mati ix IH (Q)

R )6 COE; 0 + (I-( os 0) 0 .+ k sin0l ()
i ij k 1 - "k

where cijk is the usual anti-symme-tric (flnsur:

fjik' 'ikj " -'ijk' ' 1 2 3 !"(8a)

It is convenient to define the vector Y.' as being the vector whose components

in the unrotated frame are given by xi' which are the components of x in the

rotat., frame. Then Eq. (7) may be written as

,. F(O)x (7a)



Let .(;) be a vector function of k. Then under a rotation parametrized by

d. the components of this vector in ",e roLated frame w;ll be components of the

vector v '(;') given by

- R(Q) ,H(-)j ] (7b)

In a similar way, one can define vector functions of the vector p and give

their transformation properties in te-ms of the vector 0 which describes a rota-

tion of coordinates. The vectors Q> (p) may be regarded as being vector finctions

of P. In a certain sense they are "vigenfunctions" of rotations. They satisfy the

relation

R Q)Q 3F(19Z)~j exp 12iX4)(9rl)Qj~ (9)

where

p
Z = --. (9a)

p

and 0 (9 , r) is the principal branch of

Q.- + 03)tan(0/2)
ta Z31,~ (9b)Stan 0(1+03) + (-t> tan (//2)

The proof of Eqs. (9) and (9b) will be given in Section 5, where additional

properties of the vectors !A will be given.

3. EIt;ENFI U :"TI( 01; TI lE i 'i tiU . OPE;I Vl'O1 . F•P \11  
'•4)%

TIIEOIIIEIS. %ND IM• RIV T Ir iwImIII. I7 zIIxwOIwl

Let the vectors XA.(XI .) be defi(xd by

SX.l (x I 1 Z) -12 7)'-3/2 Cip•"•', P• (10)

Then from the properties of the Fourier transformation and the completeness

and orthogonality properties of the vectors Q in Eq. (2), the vectors x ,(xl[)

satisfy the following orthogonality and completeness relations:

4



Jdxx Q~~9 X u: =X 1!) 6p-

~fdp ix -xI 1).(X ,) =' 6 6 (x -x)

where x U denotes the i'th component of the vector X

From UEq. (2) it is seen that

z ' x(•) for - ±11, (12)

. 0 (xj ,) . .. .- 3/2 ip.x

(.p -ip(2i) e

fhe first part of Eq. (12) shows that the vectors are eigenfunctiors of

the curl operator with eigenvalue Ap. The variable X itself may be considered to

be the eigenvalue of the operator (-2) -1/2 1 - when this operator is properly

interpreted.

The completeness and orthogonality relations of Eq. (11) enable us to expand

any vrector function u(x), subject to very general restrictions, as follows:

u(x). Z2fdp xX(xJLp)g-(p)
f

(13)
• •:E (x)

where

Eqs. ). fd. ,, Q gt ( • (13a)

Eqs. (13) and (13a) constitute our sharpening of the Helmholtz decomposition

theorem, for from Eq. (2)

VU )"t( 0r for =x±,

!10u (x)-O (14)

lI



One can also introduce vector and scalar potentials. For X = ± 1, the ve,.tor

potentials A.X(x) and the scalar potential V(x) are introduced. First note that th.,

coefficients g X(p) of the expansion Eq. (13) can be .btained fro-! ux) as follows:

gx(.) "fx*(x (x) d,. (13b)

Then

V(X i(Z1r) 3/2f ) (15)

From Eq. (12) it follows that

uX(x)= V× ,)4(x), for =A,

S V(x) 0(1)

Thus the original Helmholtz theorem has been sharpened in two ways. First,

two irrotational vec ýrs have been introduced in the decomposition of a general

vector, each of which is the curl of its own vector potential. Second, a procedure

has been given for obtaining the vector and scalar potentials when the vector u (x)

is given. Now it will be shown how our formulation is rotationally invariant.

Under the rotation of axes described by the vector 0. the components of the

vectors u) (x) are given in the new frame by the components of .•'(x), where

uX'X) R(8)u x[R(-O)xJ , (17)

See Eqs. (7a) and (7b).

On using Eq. (9). note that gX' (p), which replaces gh(p) in the expansion
Eqs. (13) and (13a), is related to gX(i) by

gXl(Z) - expf2iAO(8, n)}g)[R(- O)p j (18)

where the inction O(S. •) is given by Eq. (9b).

' _1t

_I



Thus, exck pt for a phase, the decomposition given by Eqs. (13), (13a), and

(13b) is invariant. Vectors belonging to values of X do not mix, unlike the situa-

tion for the cartesian components.

The scalar potential and the vector potentials, which in the rotated frame

are denoted by V!(x) and A'(x ) are also uncoupled:

V'(x) V1 R(-') ]

Ax'(X) = R(8) A. R(-O)x (19)

Vector and scalar potentials do not mix. Furthermore, there are no am-

biguities in gauge in the present invariant set-up.

Now it will be shown how the requirement that u(x) be real affects the ex-

pansion Eq. (13) and puts re,•trictions on the functions gk(Z). From Eq. (4) it is

seen that a necessary and sufficient condition that the vector u (x /) be real is

g?(p)-_ (Pl-XP2 ) g~-.PX2 (_(20)

When the vector u (x) is real, it will be convrAient to replace the expansions

Eqs. (13), (13a) and (15) by

A •
"]C • xx...),(13c)

where

)L (X-)"I+fdp !x,(kxp)gX(P)+fdP. xj)*(xij)g% *(P) (13d)

Also

,_f -s I- -(15a)

V(X)1(2w)-32 I (L- A- tg (p)e-4, !

2. p pg.*P
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5. APPIICATIOnV

This section gives some applications of the use of the curl eigenfunctions.

and shows how the modes that have been introduced uncouple in many cases.

4.1 Application to Maxwell's Equations

4.1.1 THE INITIAL VALUE PROBLEM IN THE USUAL FORM.

In terms of Gaussian units, Maxwell's Equations are:

4r . 1aE (tx t)
V >H(x, t) j (x• - t) + 1 t (21)~ • c at

3 H (x, t)
E (x,,t) = 1 t (22)

V* E (x , t) = 41rp(x, t), (23)

F. H (X, t) 0. (24)

The current density L(x, t) and the charge density p(x, t) are taken as given

functions of x and t, and it is assumed that the dielectric constant c - 1 and the

magnetic permeability P 1.

Then the general initial -ilue problem posed by these equations will be solved.

Actually, in terms of the present notation it will be shown how the modes uncouple.

In paragraph 4. 1. 2, a more convenient, though less conventional, notation will be

introduced, and then the solution of the initial value problem will be carried out to

the end.

Expansion Eq. (13) for the vectors E and H may be written as

!:(x,t) - •fdp xx(Jpkfx(pt) (25)

where the functions hX(p, t) and ft(p, t) are regarded as unknown functions of

their arguments.

Also, the known current density j is expanded as

(x, t) *fIfdp x(xlkA(p t), (26)

,I

/__
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where the functions kX(p,. t) are known from Eq. (13b).

The scalar p is expanded in terms of an ordinary Fourier transformation as

follow s:

p(x, t) - (2)- 3/2jd[ ei." A r(p. t) , (27)

where the function r(p, t) is also known.

Substitute Eqs. (25) and (27) into Eqs. (23) and (24). On using Eq. (12). one

obtains

.- -/2f ip
-i1(2,f)/ d. p ei-' h0(p, t) = 0 .

1i(21)3od( p o 0 t) (217) - fdp ei'" x. r(p, t) . (28)

Thus the longitudinal components of the electromagnetic field can be solved

immediately:

ho (E. t) -- 0.

f 0 (, t) Ti r(p, t). (29)

Similarly, on using Eq. (25) and Eq. (26) in Eqs. (21) and (22), and using the

fact that the vectors XX(xI p.) are linearly independent.

af,)(E, t)BE -- 4w k 0 (p. t) ,(30)

and

1h ah(P. t)W X'Pf -p t) c- " at' " X = I , (31)

XP1 kXt t) + :t (32)

Note that the modes are completely uncoupled. This result is in sharp contrast

to the it-.•viu, in which one uses simply the Fourier transform of the cartesian
components of the vectors, where considerable coupling occurs.

______ _-___
I ... . .. In n
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lFrom the second part of Eqs. (29) and from Eq. (30). one obtains a necessary

condition for the solubility of Maxwell's Equations:

ar(p. t)
-at- ipko(p. t). (33)

This equation is simply the equation of continuity

ap(x, t)
+ V • (x,t) - 0 (33a)

when it is written in terms of modes through the substitution of p and by

Eqs. (26) and (27). It is interesting to note that only the lamellar part of the

cairrent density jis determined by the c iarge density p.

Since Eq. (29) gives h 0 (p. t) and f0 (p, t), one need only find hx(p, t) and
fx~p, t) for X a ± 1. Equations (31) and (32) are a pair of ordinary differential

equations which are of first order and which are coupled. They are easily solved

using standard, ,vell-known techniques. However, instead of carrying out the

solution in the present notation, Maxwell's Equations will be written in terms of

another notation which will give the results more directly. The objective in this

section was to show the effectiveness of the use of the curl eigenfunctions without

the use of notational simplifications. Furthermore, it is believed that the tech-

niques used in this section are capable of being extended in various directions.

We may go further into the matter in later reports.

4. 1. 2 THE SOLUTION OF TIHE INITIAL VALUE PROBLEM IN TERMS OF
AN ALTEHNATIVE NOTATION

Define the complex vector 41(x, t) by

4(x, t) = E (x, t) - iH (x, t). (34)

In terms of' 4', Maxwell's Equations, Eqs. (2 1) through (24) become

7 (x, t) 4 1r(3t)
~ ~ at ~ - i ( . t) ( 5VX*,(x,t) = -- at -"

V "' (x, t) = 4 ir p(x, t) . (36)

The expression * (x, t) is expanded as follows:

( '(-t

1



12

Upon substitution into Eqs. (35) and (36) along with Eqs, (26) and (27), one obtains

g (p, t) -a r(p, t),
p -Sg0 (P, t

- at , u-- k0 (p't), (38)

agx(p, t)

a -t icpAgk(p t) = "47rk)(Pt t) , for X±

The first part of Eqs. (38) gives the irrotational or longitudinal part of the

electromagnetic field immediately. For the second part of Eq. (38) to be valid,

the consistency condition Eq. (30) is required as in the earlier treatment. The

last part of Eq. (38) is an ordinary differential equation which gives the transverse

field. The general solution is

gX(pR t) - gx(p)eicXpt - 4,leicxpt e-icXpt kX(p, t')dt' , (39)

"0 [
where g)(p) is a constant of integration and is given by

gx(p) = gx(pO) . (40)

The first term on the right of Eq. (39) represents the radiation field, and the

second term represents the field due to the currents. To find the significance of

the variable X in the electromagnetic case, let us conaider the pure radiation

field. Accordingly, set kX(p. t) = 0 in Eq. (39), and take g)(p) to be given by

g)L a 6?, 1 6(p 1)6(p 2 ) 6(P 3 -k) , (41)

where k > 0.

The electric field is given by

E ot) =,{r-/(2)-I/coo(kct+kz),

E 2 (1. t) --(2#)3f2(21 1/2sin(kct+kz), (42)

Es(x, t) -0o

ImI
E_ N 0
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The electromagnetic wave is clearly a wave moving in the negative z-direction

and is circularly polarized in the direction of propagation. Let us now take

g,(p) - 6X .16 (p 1)6 (P2)6 (P3 -k) .(43)

The electric field is given by

E I (xt) - -(27r,)'3/2(2)" 1/2cos (kct-kz),

E2(x, t) - (2-r) 3/2(2)_ /2sin~kct-kz) (44)

E 3 (x, t) - 0.

This electromagnetic wave propagates along the positive z-axis with a circular

polarization opposite to the direction of propagation. Hence, in our representation,

the radiation field consists of a superposition of circularly-polarized waves

travelling in various directions. Of course, by picking the function gX(p)

appropriately, plane polarized waves can also be represented.

4. 1.3 GREEN'S FUJNCTIONS, AND AN INVERSE PROBLEM

By using Eq. (13b), one can express gX(p) in terms of *(x, 0). Similarly,

kX(p, t) can be expressed in terms of the current density j (x, t). Then, from the

substitution of Eq. (39) into Eq. (37), it is seen that * (x,t) is an expression in-
volving Green's functions in x, t space. For the sake of brevity, this expression

will not be given in this report.

It is also possible to solve an inverse problem. Assume that the current

density j(x. t) is identically zero for t < 0, is "switched on" during the interval

0 < t < T, and is identically zero again for t > T. During the times that the cur-

rent density if "off', the transverse part of the electromagnetic field will be a

radiation field. One can use Eq. (39) to solve the direct problem, in which one
prescribes the radiation field before the current is switched on and calculates the

radiation field after the current is switched off. The current density is assumed

to be known. In the inverse problem, one prescribes the radiation field before

the current density is switched on and the radiation field after the current is

switched off, One asks for the curren density, during the time that it is "on".

which will take the initial radiation field into the final radiation field. This prob-

lem has been shown to have non-unique solutions (Moses, 1958) using a different

form for the electromagnetic field. The present notation seems more useful for

solving the inverse problem. In particular, it appears easier to impose "physical"

conditions - such as the requirement that the current density be expressible in
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terms of multipoles contained within a given volume - upon the inverse problem

to yield a meaningful unique solution. Perhaps we shall discuss this problem

in later reports.

1.2 %pplication to Fluid D)nainic-

4.2.1 IRROTATIONAI, AND ROTATIONAL VELOCIT1 MODES,
VORTICITY MODES, INTERPRETATION OF VORTICITY MODES
AS SHEAR VELOCI rY MODES, AND S rRATIFIED VORTICITY
MODES

Let us now regard the vector u(x) which is decomposed into the curl modes

of Eqs. (13) or (13c) as being the velocity vector of a fluid, using the I.u]erian

desc,'iption. rhe mode u 0 (x) is clearly the irrotational mode and can be ob-

tained from a scalar potential V(x) as in Eq. (16). For the present, only the

rotational modes j(x) for which X = ± I will be discussed. From Eq. (13c) it is

seen that the most general real rotational velocity field u(x) can be wrilten, on

absorbing some factors in g,(p)

2 I( 4- 1) -'P*±x(p)f+ Xfl)e g (45)

where

Thus the general rotational velocity vector u(x) is a superposition of the

velocities y•(xl12, p,a) where

-1!1, p "Q2•Q(2)eip(n" X+a) + Q.*(2)e -ip(n- X+,). (46)

In Eq. (46), ,j is any unit vector, p any zeal number, and a any other real number.

The velocity n, p, a) will be called a "vorticity mode" of helicity X, direc-

tion n. wave length (2w/p), and phase a. Note that in a single vorticity mode, the

phase can be made zero by changing the origin of coordinates appropriately. To

find the velocity field determined by a single vorticity mode, let us take the phase

a. 0, and assume that the unit vector ri points in the positive z direction; that is,

q (0,0, 1V. Then

u)L (x 2Zp, 0) - (2)1/2J- coo p,

Sux2 (•ljg, p. 0) - -(2)l/ sin pz.
.. 4 I -/% i

] ,.h3•.,i,, p v, O.(47) VX3
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rhus the velocity vector u,(x l. p,a) is transverse to the direction n. is

constant in magnitude, and rotates clockwise as one moves in the positive 1)

direction of A - I and rotates counter clockwise if A I-I. Thus, if an axis is

assigned to the direction n and if in each plane orthogonal to this axis the velocit.'

vector is drawn from the axis, the locus of the tip of the vector will be a negative

helix if A = 1 as one moves in the positive direction on the axis, and a positive

h, Iix if xrn -1. [he pitch of the helix equals the wave length of the vorticity mode,

namely 21/p.

It is clear that the vorticity mode co- esponds to a kind of shear velocity

field. The use of the curl eigenfunctions leads to the decomposition of rotational

flows into shear flows. The notion of "little vortices", which one might expect to

be useful in describing fluid motion with v-orticity, plays no role.

It will be useful to introduce the superposition of vorticity modes which have

the same direction ri. Such a superposition will be called "a stratified vorticity

mode". Designating such a mode by u(xf ),

+ ( ip(r • x ) . (

X.+l -10

where p is a single real variable and g,(p) is a complex function of p. [he vector

q• is the direction of the stratified vorticity mode. One sees that u(x !L) as a

function of x depends only on x ' v . It is for this reason that the .erm "stratified"

is used to describe the superposition. These modes satisfy the condition

I (x 170-V u (x I r))=0 (49)

As will be seen, a consequence of Eq. (49) is that one of the non-linear terms

in the. equations of fluid motion vanishes and that one is able to get some exact

solutions of fluid flow.

From the iirst part of Eq. (3), a necessary ar i sufficient condition for

u(x Q) to be real is

g ( = - P) (50)

I



On using Eq. (50) in Eq. (48)

+ ( 1.( ) dp -iP( . . (51 )

LUt us now d(fine f•(p) for p >0 by

1i(p) = gl(p). f- 1 : (p)- -g l (-p) ' (52)

rh(n on using the first part of Eq. (3), Eq. (51) becomes

u(x-~ (53)
Xutl

where

w x Q Q? dp eiP(n X'))fx(p)

-o eip (n7 ~A*()
dp e . (53a)

Clearly, the vector u I(x! is a superposition of vorticity modes u X(xI n. p,a) I
belonging to the same value of A, and n.

4.2.2 EXACT SOLUTIONS OF THE INCOMPRESSIBLE NAVIFR-STOKES
EQUAT ION

4.2.2. 1 General Stratified Vorticity Motion

The Navier-Stokes equations for an incompressible fluid are I -

av(x, t)
" + [v (xt)" VJ v(x,t) + I,(x,

V. v (x , t)a 0. (54)

in Eq. (54), v(, t) is the velocity vector, P(x, t) is the pressure, v is the

kinematic viscosity jA/p, and p is the density taken to be constant, of course. The

I

(._i
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objective is to find solutions of this equation which correspond to a stratified

vorticity mode. That this is possible is due to the fact that the non-linear terrn

of the first part of Eq. (54) vanishes; see Eq. (49), Furthermore, it will be seen

that the pressure P uncouples from the stratified vorticity mode which simpiifies
the problem even more. One hopes that one can get some insight into the nature
of more general viscous flows and even, perhaps, a deeper understanding of

turbulence. In a later report, we shall give other exact solutions cf rotational,

viscous flow which, in a sense, is complementary to the flow discusu;ed in the

present section,

Actually, a somewhat more general problem than the ýine-developrnent of a

stratified vorticity mode will b. solved. It will be assumed that the vclocity

v(x , t) is the sum of a velocity V(t), which depends on time but not on position,

and a stratified vorticity mode. That is, the stratified mode "rides" a. velocity
which varies with tii-e but whose space, variation is slow compared with the spoct

variation (that is, pitch) of the helices in the stratifid mode.
Thus

v 0 t) V(t) + u(x, t) , (55)

where

!!u(X 0 !2,(r0 ) dp t i x g?,(p, 0. (55a)

co c e -l0i

Clearly, v(x, t) satisfies the second part of Eq. (54). Ifence one nmvd only be
concerned with the first of these equations.

Let us write

f 93V Mt
P~,t) = dp ei P, ; ( t) - P ý- '• -" x .(56)

It should be noted that, while in Eq. (55a) the integration is over a singh variable

denoted by p, the integration in Lq. (561 is over the three-dimentional space whose

variables are collectively denoted by p.

Using Eq. (49) wtth u (,x. ) for u(x .Z). the nonlinear term in the first part of

Eq. (54) disappears. On substituting Eqs. (55), (55a) and (56) into the first part

of Eq. (54)

!

t m J ,



+•~ ~ ~~~g ipr )(p, 1)2 x(Z) dp • x + ip[Y.V(t)Jg)(p..t)

+ vP2g x(p, t) -f V i p r(p, t) (57)

Multiply through 1 y C.-ik' x and integrate with respect to x:

a gA(p, t)
6 I'ktp + ipi I V (t)JI gX (p, t)

+ VPg(p. t) - kr(k, t) (58)4--

Let us dot through by iand use k-. Q(n)W(k-pE) = p Z-Q?(6)7 (k-pr,) - 0

Then

I

k r(kt) - 0 (59)

for which the general solution is 3

ri(k I = A(t)6,(k) (60)

"Ahere AMt) iu Ln arbitrary function of t, as can be shown from the theory of dis-

tributions. Fhus from Eq. (56)

aV(t)SP(,, t) = Aft) - •-•-•x . (61I)

Except for the derivative of the space-independent wind, the pressure un-

couples frum the velocity field.

Now substitute Eq. (60) in Eq. (57). The right hand side of Eq. (57) vanishes. a
On letting g ,vr. x, taking the Fourier transform with respect to g, and using

the linear independence of the vectors Qk(Y), one obtains the following uncoupled

ordinary differential equations for gX(p, t):

* a t)+ ipI?.V(t)+ p2VM gA (p.t) =0 , (62)

a *

i•-- m J J m m m J • m -



19

for which the general solution ia

g•(p, t) = g)(p)exp -ip dt' nV(t')] exp [-.vp , (63)

where gX(p) is the constant of integ:-ation: g,(p) - gX(p, 0)

For u(x, t) to be real, it is required that

g- 1 (p) = -gl*(-p) . (64)

Now define fk(p) for p > 0 by

fl(p) = gl(p), f l(p) = -gl * (-p) . (65)

Then substitute Eqs. (63), (64), and (65) into Eq. (55a). On using the first

part of Eqs. (3), one obtains finally

t
u(xt)= X wZx( -f V(t')dt',t) (66)

X=+I

where w t) is given by

go2

w (x ,t) = QL'(Q f dp eiP(Z" ý) e-up tf (p2

f -ip(n. x) e-VUp tf()

+ Q ) dp e P - ?Qe (p) (67)

Clearly, u(x, t) of Eqz. (66) and (67) is a sum of stratified vorticity modes

u x(x? .J) given by Eq. (53a) where the amplitudes now include an explicit time

factor. It is seen that even if there is a wind which drives the vorticity modes,

the modes with sma-ler pitch or wavelength damp out much more readily than the

longer wavelengths. It was our hope, when we first investigated this solution,

that this vortex motion would have some of the characteristics of turbulence in

which longer wavelength modes feed shorter wavelength modes. However, as can

be seen, stratified vorticity motion does not have this property. WU have in-

vestigated other exact solutions of the incompressible Navier-Stokes equation

in which the non-linear term v. V v plays a more central role. Again, however,

these special solutions, which will be discussed in later reports,, do not hav,. the

I
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properties of turbulent flow. We hope, in later work, to discuss more general

solutions of the Navier-Stokes equations through the use of perturbation theory.

In this report, one of the solutions of the linearized, compressible Navier-
Stokes equations, which we shall discuss shortly, has some of the properties of

turbulence. However, since this flow is longitudinal, it is probably not what is

usually thought of as a turbulent flow.

4.2. 2. 2 Stratified Flows in Oceans on a Rotating Earth.

We will now consider the most general incompressible viscous flow which

can occur in oceans on a rotating earth subject to the condition that the velocity

field and pressure depend on the vertical coordinate only. It will be seen that

suc, flows are stratified vorticity motions of the type just discussed, whose time

dependence include an oscillatory factor which depends on the latitude and con-

stitutes a sort of "tide".

Following Brunt (1952), the equations of motion of a fluid on the rotating

earth expressed in terms of Cartesian coordinates in which the x-axis is horizon-

tal and points east, the y axis is horizontal and points north, and the z-axis is

vertical is

avL(xL,t)1
at + Iv(xt)-VI v (xt) V P(x, t) + 2 w x v (x, t)

+ gk-vV
2

v(x,t) 0 0, (68)

V. v(x,t) = 0,

where w is the angular velocity of the earth about the North Pole, and k is the unit

vector in the direction of the vertical. Note that from the second part of Eq. (68),

v (x , t) can be expanded in terms of rotational modes as follows:

v(x,t) = V(t) + (2 r)"3/2 F, fdS 2X(p--Xg t) (69)

A=

In Eq. (69), Vt i is a thus far undetermined function of time but not of space.

While vectors v (x , t), expanded in Eq. (69), satisfy the second part of Eq. (68),

this expansion is the only possible expansion, if we assume that we are working

in an infinite fluid, that is, the scale of variation in space of the fluid velocity is

small compared to the distance of the boundaries of tho fluid. Whether the fluid

is of finite or infinite extent, a solution wil be found for stratified flow which is

unique in the case that ie fluid is of infinite extent.

I
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IThe requirement that v(. t) depends on the vertiLýn coordinate z~x 3 only

I

leads to the following conditioL on g\(p , t)

)6(p )gx(pz~ . (70)gX (p , t) -- , (7o) .

where g,(p . t) is now a function of p and t only.
Then, on abburbing a factor of (2w)-3/2 into the function gX and on renaming

the variable p., our expression for v (x, t) becomes

v(x, t) = V(t) + u (zt) , (71)

where u (z, t) is given by

u(z,t) = • Qx dp eipz gx(p, t), (7 1a)

and

= Q,() = (2)1I/2;L(1, i ), O) (71b)

It is clear that the vector u(z, t) is the sum of two stratified vorticity modes

with the direction 7= k.

Note that uz = u 3 - 0. Furthermore, the non-linear term simplifies in an

essential way:

au (z t)
[v(x,t) 0 j ]v(xt) = Vz(t) "az (72)

Let 0 be the co-latitude measure from the North Pole. Let w, tIbe the a -

solute value of the angular velocity of rotation of the earth, a =2w co. 0, J =2w

sin 0, V (t) be the vector whose components are [Vx(t). V y(t), 01, and W(t) be

defined by W(t) = Vz (t).

Finally, the dyadic A is introduced whose components are given by the matrix

A where A is defined below:

to -1 0

A = 1 0 0 (73)

0 0 0
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The x- and y- components of Eq. (68) can be written as

aV(t) + au (zt t) au (z, t)"+ •aV(t) + i W(t) + •---- + W(t) ~ý Ia [t (z

2"+ aA u(z, t) - u (z, t) = 0, (74)

I
where i is the unit vector in the x-direction: i = (1, 0, 0). The z-component of

Eq. (68) is

3V(t) PVx(t)- ou (z, t) + .1 aP(z,t) + g = 0 (75)at p x z"

Equation (74) will first be solved by substituting Eq. (71a) for u (z, t). Note

that the vw tors Q), are eigenvectors of the dyadic A for =±Il:

A~x -- -i~QX. (76)

Then the orthogonality of the vectors Q A is used and a Fourier transformation

is taken with respect to z. On defining

Gx(t) Q- A*" X(t) ý Q•,*::" (t). (•k=±I) (77)

The following Equation is obtained from Eq. (74):

L a~x~t) (2)1/2X Wt) +Ot " ixaGx(t) + (2)- XPW (t) 6(p) +
atxp I) I

-g)-(p- t) + [-iUa + ipW(t) + p 2 Jg (p, t) * 0(. (78)

From the theory of distributions, the coefficient of the delta-function must

vanish as must the second line on the right of Eq. (78). Thus Gx(t) is given in

terms of a differential equation as dependingon W(t). Note that

S(t)= 1 Gl(t)Q.X 9).

I ,I
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On integrating the differential equation for GX(t) and then on substituting

into Eq. (79), one obtains the following relationships between the components of

A t}

Vlt) - (0) coo at - AV(0) ain at - 6 dt' G(t-t')W(t') *

V z(t) - W(t), 100)

where G(t) is a vector Green's function

G(t) (cos at, - sin at, 0) . (80a)

Thus the vector V(t) can have only the form given by Eq. (80). where V•(0)

and W (t) are arbitrary.

The expression u(z. t) can also be found in much the same manner as in the

previous section, where the most general solution for the stratified vorticity

mode was found. The differential equation for gX(p.t) is solved by the usual

elementary methods, and the reality condition is used on u(z, t) to obtain relations

betvween the constants of integration. Our final result is

%(zt)- I w'(zf- dt' W(t'), t) , (81)

where

A = eik t go e' -Vp 2 tfh
w)(z, t) *k dp eip eV fp)

+Q *e -ikatf dp eipZ e"Jp 2tfx*(p) (81a)

Note that if the rotation rate of the earth were zero or if we were at the

Equator, the velocity u (z, t) is identical to the stratified vorticity mode Eqs. (66)

and (67) when n mk. Let us now take fX(p), which in general is arbitrary, to be

given by

f>.(p) a A6(p-k), (82)

where A and k are positive. It is clear that the general w (z, t) is a super-

* position of such particular velocities. On absorbing a factor 'M - into A, one

obtains

I
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wx (z, t)- AX coso(t+Akz)eukXt (z. t) -A sin(at+ALkz)ekt

WLz(Z, t) - 0 (83)

If VW(t) is picked to be identicall • zero and one of the chosen to be equal

to zero, then the velocity iE given by Eq. (83). This velocity is seen to be a

circularly-polarized wave t. avelling in the negative z- direction and polarized in

the direction of motion if A a 1, and travels in the positive- z direction and is

polarized opposite to the direction of propagation when X=- 1. If the viscosity is

not zero, this wave is damped in time.

It is now easy to integrate Eq. (75) for the pressure, since W(t), V x(t),

u P.,t) are known. Let us consider the special case where the velocity is given

by Eq. (83). Then the pressure is given by

P(z, t)"P 0 (t) - gz + 2 Apg3e-/k t sin K cos (at+)- !V. (84)

where P (1) is the pressure at z=O and is an arbitrary function of the time.

It is perhaps interesting to note that Eqs. (83) and (84) provide a solution

for possible motions under the surface of a "quiet" ocean in which the surface of

the ocean is taken to be at z-0. Then P 0 (t) is the atmospheric pressure at the

surface. Such solutions are the simplest vorticity solutions in the ocean which it

is possible to have.

4.2 3 PROPAGATION OF SMALL DISTURBANCES IN A COMPRESSIBLE,
VISCOUS GAS

This section treats the propagation of a small disturbance in a compressible,

viscous gas. it will be assumed that the fluid flow is adiabatic and the flow is

general in that it may have vorticity as well as irrotational flow. The restric-

tion to adiabatic flow is not essential, for equations could be included having

energy transport. The adiabatic flow, however, is simpler and illustrates more

directly the use of the modes which have been introduced. It should be mentioned

that Morse and Ingard (1968) have treated closely related problems. They take I

into account heat conduction. They also include the case where vorticity is

present, but they separate the vorticity by using well-known vector calculus

relations instead of using the curl eigenfunctions, as in this report. Further-

mre -... . are primarily in time-harmonic motions and in solutions

near boundaries. By contrast, our interest is mainly in initial value problems

solved in the infinite do nain.

Following Landau and Lifshitz (1959), the equations of motion for a viscous

fluid are



I!
av (, t) 1 2

+ IV(xt). Vv(xt)+-VP(,ct) VI7

" +3+•V(V-v(xt)] -0,

at + - j(.t.v]px )• x.tv (.t .(s

In the first part of Eq. (85), u is the usual "dynamic" viscosity coefficient and

is the "second" or "bulk" viscosity coefficient.

It will also be assumed that the pressure is a function of density only:

P - F(p). (86)

Equation (86) holds for adiabatic flow. It also holds for isothermal flow.

We will now investigate how a small disturbance propagates. This disturbance

is regarded as being a disturbance about a steady state whose velocity, density, and

pressure are constants denoted respectively by L P0. and P 0 , and is written as:

v(x.t) =V + X(Xot)

P(x. t) = P0 + P(x. t)

A ;

p(x, t) - P0 + p(x, t). (87)

In Eq. (87) u. P, and p are regarded as small quantities as in the usual perturbation

approaches. By substituting Eq. (87) in Eq. (85) and neglecting products of the

small quantities, the linearized equations of fluid flow are obtained below:

au(x. t) 2..

+ V.Yu(xt) +rl-V P(x.t) - u(xot)

-y1-(t,+4 )V IV'u(x,t)j a= 0

ap(x, t)
at +V.vp(xt) + p0 IV.u(x,t)) -0,

2^

P(x, t) - c p(x (88)

I!
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In Eq, (88). we use

/pO) - kinemnatic viscosity,

= (3C/4po), c 2 . F'(p•0 ) . (88a)

In Eq. (88a), the prime means the derivative with respect to the argument.

The quantity c in the usual treatments of linearized compressible flow turns out

to be the velocity of the round waves. It will play the same role in the present

treatment. The first two parts of Eq. (88) are regarded as being a pair of

simultaneous linear partial differettial equations for the unknown quantities

u(x, t) and ;(x, t). The last part of Eq. (88) allows one to obtain PP_, 0 from
PPxx 0.

From Eq. (13). it may be written that

!L(?Eft) ufdp !_),(x I )gk~p, t) (89)

where the summation over X includes all three values.

It is clear that since p is a scalar, It should be expanded as an ordinary

F'ourier integral:

St)- (2,) 3/2f dp ei (90)

Equations (89) and (90) will be used in the first two parts of Eq. (88), and

ordinary differentiul equations will be obtained in the variable t for the functions

g•(p, t) and r(p, t) which are uncoupled to a high degree.

On substituting Eqs. (89) and (90) into the second part of Eq. (88), on using

Eq. (10), and finally on taking a Fourier transform with respect to x. there is

found one of the equations we wish to solve:

"!r(-" + (,p ')r(%, t) - ippog o(p, t) 0. (91)

IInEq. (91) p P•.p asusualj

Let us now substitute Eqs. (89) and (90) into the first part of Eq. (88), and

use the second and third parts of Eq. (12). On taking the Fourier transformation

with r-,spect to x. one obtainB:
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[ gx(p, t)o]•() •--- + i (v -P )gx(P,. t) + LIP g)~,, t)

4 p ir(p, t) - -- (v+4g)pg0 (p. t) m 0. (92)

On substitutLng -pQ 0 (p) for pin Eq. (92) and using the fact that the vectors Q (p

are linearly independent, one obtains

t)4 22

S + i(V'p)g0 (, t) + p rg 0 (p, t) - i •9- pr(p, t) 0 (93)

where

T e+

and

p)+ i(Vp)gA(Pot) + Vp2 g (p t) 0 (94)

foi- A ±

Note that the differential equation.s for gA(p. t) uncouple complete-ly fur the

vorticity" modts X = 1 1. Equations (91) and (93) couple the density amplitudet

rA., t) and the irrotational velo,-ity amplitude go (p. t) . Thus the vurticity dis.-

turbanc's are comnhIctcly uncoupled from the pr-ssur- and density disturbances.

In fact, Iq. (94) would also be valid fur incompressibl" flows, if perturbation

theory had been used on the. incomriprcSSiblh Navir-Stokes equation. In a Sense,

th l, iscussion of the problem of small disturbances in a compressible fluid bears

strong rtese-mblances to our" earlicr discussion oil ,klxwell's Equations.

Since thie rotational and irrotational comnponents of u x , t) uncouple, i". is con-

vt niilnt to writ.

u (X., t) =u F(X, t) + u ir ( , t) , (95)

"wher' u, and u are, -4 spvctivt-lv, the rotational and irrotational p|arts of u

and arte thus giv(en hy

II
• I
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klr(x. t) ,, ! I X(• P),(X . t),

ir(x . fit) , 0 (X I )g0( 0, t) 0 (95a)

In Eq. (95), the real part of the expressions are taken btcause, as explained

in connection with Fq. (13c), the reality conditions on the ve.tors lead to con-

ditions On the amplitudes g,(p, t) which allow us to assume that the imaginary part

of the expansions are zero.

Equation (94) is easily solved. rhe solution is, in faCt,

gx(p., t) gA(P )exp [ -i(V'p )t- vp 2 
t 0, (99)

where g,(p) = gk(p. 0) is the constant of intUgratioln.

We have imnidiattily

u x t w (x -Vt, ()7)

where

WA(x. t) = fd. )(xj .)g(P)e (97a)

it is clear that u is a superposition of vorticity modes which are being car-

ried along with the steady wind who~c velocity is Vand whose amplitude is being

attenuated with the time factor e1'pt. Hence the vorticity modes with shorter

wavelength damp out at a much faster rate than those with a longer wavelength.

That is, the small scale vorticity modes are damped out faster than the larger

scale modes. thus, the rotational velocity u does not at all behave like_ tur-_r

bulence in this respect.

We shall now show that the irrotational velocity Ui. and the correspunding

density increment p can be written as the sumn of two parts: one which can be

interpreted as a damped sound wave, and the other which is a damped standing

wave. The damping of the sound wave is such that the longer wavelengths persist

longer, while for the standing wave the shorter wavelen ths maintain themselves

for a longer time. Surprisingly, then, this standing irrotational wave has some

of the characteristics of turbulent flow in that small scale phenomena persist

over large scale ones.
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Differential Eqs. (91) and (93) will now be solved. Let R(Z,t) and G(Qt) be

defined by

r(p, t) * e'Y."Vtf(p, t), g 0 (Z, t) - e-i'P"VtG(p, t) (98)

The differential Eqs. (91) and (93) are now differential equations for R and G:

aG(p, t)

+G(,t) 4 2G(pt 0 PH(p, t) = 02 (99)
a)t +3 - PO "

The usual techniques are used to solve these coupled differential equations.

The second part of Eq. (99) is differentiated with espect to t, the dH(p. t)/dt is

eliminated through the use of the first part of Eq. (98), and the following second

01ord dil'f.-('11tial equation is thereby obtained for G:

j2 (f ,b I aG(pt) 0
S" t P + c2 p 2G(p't) = 0 (lIo)

The guene al solution of this equation is of the form

G t) 0= (p )(expj 1/ tj + G_(p)Cxpw_tj (101)

where w ar- tl,, t%&o oots of the quadratic equation

2 + 4 ' .. I

+ 3 Tp', c . 0, (Iola)

and G .(p) are coih tat•s of integr.Atin. rhe plus .nd in minus signs refer to the

signs in front of tht dfisci in~int of the quadratic equa tion. Of course., w ±
detpends on p.

Hi caust. of tih, ra~icI !. ,yi lJ' el'rtrltt characs t r of A f , ifl,.e,-t , regions in

p -space, it is CoQxLi nivut to - fvid p) -.space into tý.(, )iOills. A critimal length
L is ilt'oductu and a cO/r(tsl']Y.dlinlg itical wa\'vc iidI ' , b1.%"

kI- (3,/2-) (102n

1L c
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Call P the sphere in p-space for which p < k, where the Jetter P stands for

"Pr-pagating". rhe remainder of p-space, that is all of p -space other than the

sphere P, will be denoted by N, which stands for 'Non-propagating". Now the

results can be combined to give g0 (p, t) and r(p , t) in a physically significant

ma rr-er.

For p in P:

g0(p-,t) x exp[ -ip Vt]exp[ -cp(p/k)t] {G+(p)exp[ icp(l-(p/k)2 1/2t1

+ G_(p )exp[--icp(l-(p/k)2)1/2t] }

r(ptI = -i- en[ -ip .Vt]exp[ -cp(p/kptj G+(p)
C +I -

, [(p/k)+i(l- (p/k)2 ) 1/2 ] exp [ icp(l- (p/k)2) 1/2t]

+ G_(p)[ (p/k)-i(l-(pik)2)1/21 exp -icp(l- (p/k)2)l/2t • (103)

For p in N:

go(p, -t) = exp[ -iP- V] { G+(p )exp[ -cpF+(p/k)t]

+ G_(p )exp[ -cpF_ (p/k)tJ] ,

P~~)= -!0 . {-i-v G+(p)F_ (p/lk)expf -cpF+(p/kt]r,(p. t) = -0- exp[ -ip.VJ lr~,~

+ G_(p )F+(p/k)exp[ -cpF (p/k)t] , (104)

where the function F (x) which appears in Eq. (104) is defined by

F+(x) = x - (x 2 -1)1/2, F_(x) - x + (x2_1)1/2 . (104a)

On using Eqs. (103) and (104) in E:qs. (95a) and (90) it is seen that u, and

p each can be broken up into two parts corresponding to the spaces P and N. It

is also seen that the parts of u ir and ý that correspond to P space are damped

moving waves which, )r sufficiently smail p, are undamped and travel. with the

velocity c with respect to the constant wind which has the velocity V. The shorter

wavelengths damp out faster than the longer wavelengths (with a different damping

.~-*-.

I
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factor from that for rotational flow), so that the longer wavelengths persist for a

longer time. Thus the contribution of the space P may be identified as being

sound waves.

The contribution to Uir and p from the space N does not at all behave like

sound waves. These motions are, in a sense, "overdamped".

Because of the nature of the function F' which appears in Eq. (104), it is+I
seen that the shorter wavelength contributions damp out more slowly than the

longer wavelength contributionq. Thus small scale phenomena persist longer

than the large scale phenomena. In turbulent flow, a sfmrilar pattern is observed,

though usually it is assumed that turbulent flow is rotational, rather than ir-

rotational. Our results suggest that perhaps some of the phenomena of turbulent

flow are related to the irrotational components of the flow corresponding to the

space N. Perhaps, also, inclusion of the non-linear terms in the equations of

flow would induce a similar vehaviour in the rotational flow. However, such

speculation is beyond the intent of this report.

Without going into detail, note that all the constants of integration gx(p and

G (p) are uniquely determined when u and ^ are given at time t0O. Hence the

initial value problem has been solved in all generality for the propagation of small

disturbances in a compressible viscous fluid.

5. RTIITER PROlEHTIES OF TIlE %EE:TOaS VQXA) AI)
I;ENFIMIIZE[I A•FACI I'E II t1%It().S

Having given some applications of the eigenfunctions of the curl operator, we

shall go into further properties of the vectors Q >.(q), primarily to obtain the ro-

tation property of Eq. (9) and to restate the H1eiholtz theorem in terms of

spherical coordinates. Up to now, it will be noted that the cartesian coordinates

are emphasized over other coordinate systems.
S°': It will be necessary to go into some properties of the representation of the

rotation group. Indeed, as will be shown in the Appendix A, rotation group con-
siderations have motivated our introduction of the Helmholtz theorem.

The irreducible representations of the generators of the rotation group are

three matrices Si(J) (i=l, 2, 3) which satisfy the commutation rules

S[sI(J), S 2 (j)] =vS30) (cyc') (105)

where j characterizes the irreducible reprcsntaticn and is a positive integer or

half-odd integer. The matrices have 2j+l by 2j+1 in dimension. The elements

are d1tinotcd by (j m!S1Ij. m') where in, in' take on the values -j, -j+i, J-l,j.

p 4
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The usual form for the elements are (for example, see Edmonds, 1957).

(jmIS 3 Ij,m') mn, m,

(j,mIS1Ij, m') ± t(j.mjS21j, I') [ (j•m')(jiMn+l)] l/2nmm,1" (106)

rhe column vectors upon which the matrices s.(J) act will have the components

labelled by m, where the top component will be labelled by m=j, the second

component by m=j-1 and so on until the bottom component which is labelled by

m=-j. Correspondingly, the first row of the matrices S.( ) will be labelled by

m=j, tbh second by mrj-1, etc. A similar labelling convention is used for the

columns of these matrices.

Let 0 = (01, 6 2' 03) be any real vector. Then exp [ i6. S (j) is an irreducible

r.,presentation of the rotation matrix R(O) of Eqs. (7) and (8). (We use 0. S (j)=

z S, Moses (1966b) has given the matrices expi iO . S I for all 0, It will be

necessary to introduce the Jacobi polynomial P(n' ) (x) . Its properties are given

by Szeg•3 (1959), for example. We define the function S(j, in, m'lx) by

SQj,m, m,, x) =p!m -m'1. m+,n') x

= m(x) . (107)j-m

From Rodrigues' formula for the Jacobi polynomials (Szego, 1959)

S(j, m,m',,x) = -In' (j-m•'(M m

dJm [( 1 -x)J-m' (lx)J+m]. (108)

Ydx3 -mI IXj 1.+-M8

Moses (1965) has given an alternative expression for SQ,m,m'mx):

S(j,m,m',x)= (M) )J+m Im'J dJ+m [o-O+m1 ( +X)J ]. (109)Oj+m)' dxJ+m ('•m xJm 19

In fact, one may use either Eq. (108) or (109) to define S(jQm, m', x). Let us

denote the matrix elements of exp (i0-S(
0

)) by OmIexp[iO.S-Jj,.m). Then

OJmIexpjiO.-Sij,m') = (j-m). /0 -m,)! 1/2 (0+m)!/(i+m')! 11/2

s / . 0 )m+m'
2s )im (cos .- + x-(- s2 n-T S(jm,m',z),
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where

o=oj z=00 2 Cos 0 +(9 (11lOa)

We have previously introduced "generalized surface harmonics" (Moses,

1967g. The generalized surface harmonics Ym'm' (0,.) are defined for 0<6<7ra
and 0<0<27r by

y ,' rn' (0,0) = (-1)n n (1/2)n+l[(2j+l)/Ir]l / [ (jm )! /(j-r ,).j1/2

SI[Q(+-)! /(j+m')!] l/2e ilm-m'[sn Ojm-r'

x [ 4+cos Ojm'S(j,m,m,cos •]. (111

These functions have the following properties:

y 0(0,-) Yj ,, ( )112)

where Y. (0,4') are the usual surface harmonics in the notation of Edmonds.
jm

f2 7 yr n krn, n (oy.sde 0' - 6(0-0')6(4-4') (114)

Ym -nj (0, O)YW.n'(0,4) = f (2j+1)/47rT 6 nn' (115)

M =-jn,'

-Y'n.)? n* (0,) [(2j+1)/4wJ 6 (16)

I .1

m~ml
n--j
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m,n (0,= (-1),Jnmyn ,(0, ) (117)

j+k

Y.r(, {
.11/2

Yflf n, n )ymf.tT ~ (2j+l) (2k+1)J/[41rf(2J+-J 0 /2

J-lj-kl

×(k, n'0 j, m'k, j, J, n'+m'1)(k, n, j, mnIk, jJ, n+L1)

Y ym+n,f rl'+n' ( (118)

In Eq. (118), we have used the Clebsch-Gordan coefficients in the notation used

by Edmonds.

The matrix elements of expfi O. S (j)] for the case 0 3= 0 is conveniently ex-

pressed in terms of the generalized surface harmonics. Using polar coordinates

to describe 0 which has only x and y components, 0 and 0 are defined by

0 = 0 = 0(cos 0,sin 0,0) . (119)

Then

(j,mlexpjiO.S jjj,m') = (-i)m-m' 4,r/(2j+.)j i/2ym'm (0,4) . (120)

One of the more interesting properties of the generalized surface harmonics

is their behaviour under rotations. Let the angles 0, determine a unit vector

nby

71 a (sin 0 cos 4, sin0 sin 4. cos 0). (121)

Let n' be the vector obtained from r by means of the rotation R(-Qfl That

is

I ! " (-Q)n~~ (122)

where the elements of the rotation matrix are given by E. (8). Furthermore,

let 0' and 0' be the angles which give n' through Eq. (121). Then

1 M

I,.,.•• • i i i i lm i i i i i ..
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where O(1?, r7 is given by Eq. (9b)

It will now be convenient to express the matrix FR(O) whose elements are given
t by Eq. (8 )as

! 35y m(e'O ) -ep-i ••]E •~~,)Jm'lexpOi'sK] ,m ( 124)

t -

where 0.K 0 i OK 1 where K• are three matrices given by

0 i

K i( = exp i .W •] (126)

(00a \/

[whe.re the dage men •. ii here ita are it n thr e matrixce s given by

1 0 0-1

V (2)o , o 0 o).K- : 0i (127)

It is a well-known theorem that Eq. (124) is valid, and can be verified by

direct expansion of the exponential using the fact that (0. K) 0 (0 K)
INow the matrices K. are unitarily equivalent to the matrices• Si(•1•:

K. = VS.(l)vt (126)

where the dagger means hermitian adjoint and the matrix V is given by

/ 1 0 -1

0 -(2)1I2 0

It is clear that

V-1 = VT(128)

II !
¢I



Let us construct the matrix F as follows for any unit vector r,

r- V exp[iw-.S(1)] = expfiu.K V , (129)

where w is related to z7 by means of

w= 0(sin 4), -cos 0, 0) ( (130)

where vl is given in terms of 0 and 4 by Eq. (121).

Then the vector Q 1 (2) has its components formed from the components of the

first column in %, the top component of the column vector being the x-component

of QI(i), the second component being the y- component, and the third component

being the z-component. Q200) and Q_ j3 () are formed similarly from the second

and third columns of r.

The rotation properties of Qx(n) given by Eq. (9) then follow from Eqs. (120)

arid (123). Let V 1, V 0 , V- 1 be vectors constructed from the first, second, and

third columns of the matrix V of Eq. (127). That is

= (2)'1/2 (X, i, 0), for X ±I

V 0 = (0o0,-l. (131)

Then

' (4 1/3 V y12V py (0,44. (132)

6. TIHE IIELLIIIOI,TZ THEOREM IN TERMS OF SPHERICAl, COOIIDINATES

'This section gives the general vector u(x) in terms of spherical coordinates

in such a way that the Helmnholtz decomposition u(x) = ux;(x) is preserved.

The components of ux(x) will also be given in terms of spherical coordinates.

Toward this end, it will be useful to introduce the vector spherical harmonics.

"6.1 VecM•r Spherircu iarmonies

The vector spherical harmonics are defined in terms of our notation (Blatt

.H and Weisskopf, 1952) by

- E(0 0 )(L. m.1.IL,1.J,M) (133)

K aI

II. t ,

117 ,'
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where V is given by Eq. (131) and the summation is over all A. Instead of
giving the properties of the vector spherical harmonics, we refer the reader to
Blatt and Weisskopf. We shall be interested in the components of Y JLM (0, 0) in
spherical coordinates. Let i, j , k be the three unit vectors in the x, y, z direc-

tions, respectively. Let ar a a. be the unit vectors along the r-direction,

O-direction, and 4 -direction respectively. Then, as is well known,

a a sin O cos i+ sini0 nsi j +cos 0 k

a -cos 0 cos i + cos 6 sin 4j - sin 0 k

a =-sin 0 i + cos4'j. (134)

The following can be shown:

ar" YJJM(0, ) = 0.

ar'YTJ j_,MO , 0) ) [J/(2J+) j1/2yM10(010) 1

a" Y'J, J+1,Mo, 4) - "[ (J+l)/(2J+l) ]1/2y, 0(6° M ) . (135)

M
sin 0a 6 .a jjM(6 ' & j } / ,(,- •

J
sin 0 a J-l, M(0°) j+ f (J-M+I)(J+M+l)/J(2J+3)] 1/2

x YMO(0,0}_ J+l i(J-M)(J+M)/J(2J-1)J1/2yMl0(0, 1,J11 2J+1 J- 1(.i

sin 0 a j0 Jxi, , M 6' ) =O 2j-) l I (J-M+I)(J+M+I)/(J+I)(2J+3)] 1/2

Jx Y* 40(o.0 -t r(J -M) (J+M) / W +1)(2.J -1) 1/2yM, 0 (6 ,) (136)
iJ+1 2J+ I} J-1

sin 0 a iYivý e, ký, k - - 3J-M+1)(J+M+1)/ J.4 1)(2J+1)(2J+3)J 1/2

Sx _MO (0,0) - [(J+1)(J-M){J+M)/J(2J-1),2J+I) 1/2yM M (, 0 , 0 )} 1
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sin0a yj (6 ,) i M (0
[J(2J+l|1T2yMOe'•

sin (J+ )(2J+1) lT2 Yj (0.), (137)

In Eqs. (135) through (137). one must recollect that Y.M 0 (0, ) are just the

usual surface harmonics. See Eq. (112). The following sketches the derivation

of Eqs. (135) through (137). Note that:

!r'ýo 0-coo o

a (2) sin 0 e for A. m t 1. (138)

te-VoO sin 0

a (2)l1/2L cos e eiX , for A = ±I . (139)

a .vo - o
i4-'• = i(2)- 1/2 ei CI for X.•I . (140)

AlsoA cos 6 = (4-r/3) /2y 0.0 (010) 1

sin e eU -(8,0/3)/2 Y0 1(0,1).

sin 0 ei * (87/3)1I/2y;1 0(010). (141)

After multiplying through by the appropriate unit vectors on both sides of

Eq. (133) and also multiplying through by sin 0 to obtain Eqs. (136) and (137), sub-

stitute the appropriate expressions from Eqs. (138) through (141) on the right hand

side, use Equation (118) to reduce the product of surface harmonics, and finally

use the explicit forms for the vector coupling coefficients (L0 m° 1, I L, 1,J, M).

6.2 Expansion of Vector Fields in Toms of the In'educible
Representations of the Hotation Group

Let us now return to the problem of expanding an arbitrary vector u(x) in

terms of spherical coordinates. The starting point is the expansion of Eqs. (13)

and (13a). Define the function g(p, j, mt)) by

I
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t

g(p 2jomo) f d sin OA)gk () (142)

In Eq. (142), 0, , is used as the polar angles of p; it is desired to reserve

0, 0 to denote the polar angles of x. Strictly speaking, g(p, j, mA ) is defined for

j ?IAI only, but g(pj, m, A) will be defined for j a -1.0,1.2,... with the under-

standing that

g(p, 0, 0,:±L) - 0. g(p, -, m.A) a 0 (142a)

for the sake of minimizing the difference in appearance of future expressions

between the cases fox- which X - 0 and X = + 1.

From the completeness relation for the generalized surface harmonics,

Eq. (114), gX(p) can be found from g(p, j.mA) through

gX(P)= , • Y7' (a, )g(p,j,m,X). (143)
IjO mu-j

Thus one may express the vectors X(x ) as

C(6) = (6 )-1/2 d e fd , e Y",Y', A(Ow)VA

MIA~ .%

Y y 0°• O•)g (p, jo R1, X-) (144)

where Eq. (132) has been used for Q A(Y)

It is clear that from the construction and from Eq. (12) that V xux(x) has

the same expansion as Eq. (144) except that g(p,j, m, A) is replaced by

Apg(p,j,m,A). Furthermore, from Eqs. (12) and (13a), it will be shown that

/2 k
Z'Uýo(x) -- (l)l2/70 1 -i -k O(9')(i1•

k=0 mi--k

xf dp P3 (pr)g(pk.m,O) (145)

0 . ,
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where r • x and 0,. are the polar angles of x. In Eq. (145). the functions

Jk(X) are the usual spherical Bessel functionc. To derive Eq. (145), Eq. (12)

is used in Eq. (13a) for A=0. But a well-known expansion in terms of our

notation for eizp2ý in

w q

e- -4 it (i4qjq (prY r , (0, ( )y r 0,( 4) (146)
q q q

q&O r.-q

Equations (145) is obtained by substituting this expression for e
1

P" x • then

integrating over 0. 0 and finally using the orthogonality relation for the surface

harmonics of Eq. (113).

rhe functions g(p.j. mX ) have interesting properties under rotations of

coordinates. Under the rotation of axis described by the vector 0 (0 is per-

fectly general and has no connection with the polar angles 0, 0), the vector

u k(x) goes over into uA*(x) where u?'(x) is given by Eq. (17). Similarly, the

am 1 .litudes gX(p) go over into gX'(,), where g('(p ) is given by Eq. (18). It has

been shown by Moses (1967. 1970) that the relations Eqs. (142) and (143) which

relate g(p,j.m, ) and g,(Z) lead to the following relation between the transformed

coefficients g'(p.j, m,A) and the coefficients in the original frame g(p,j,m, X):

i
g (p,Xm,)) F E ]m exp[i0.S I j, rn')g(pj.mi)n , (147)

m. .- j

where (j.mlexp[ iO SJ j, m') is given by Eq. (110). Thus the coefficients

g(p, j. m,A ) transform under the irreducible representations of the rotation group

without any mixing of the variables A. This expansion confirms the rotational

invariance of the Heilmholtz decomposition of this report.

Equation (144) will now be simplified through the use of vector spherical

harmonics. The right hand side of Eq. (146) is substituted for e'P" 2L, the

product of Yr.0"(0.) and Y•° ""(6. 0^) is reduced through the use of Eq. (118).
q I

the orthogonality relation Eq. (113) is used on integrating over the variables

0, 4 of p. the definition of the vector spherical harmonics Eq. (133) is used, and

finally the known values for the remaining vector coupling coefficients

(L,0. 1, AlL, 1,JX) are substituted to obtain the following:

I!
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o k
u(x) = _1)1/2 S 5 (i)k 3 'k. k, m 0

' ) Akm, ,k W

k1l m--k

+ jk/(2k+l)] 1/2Yk. k+1, m(0, O)Ak, reX, k+CIr)

-if (k+I)/(2k+l) 1/2Yk, k-1, m(0 )Ak, m,k, (r) I
for X=±I, and

cc k

u0(X (2/ )01/2 . W (k+l C(k+l)/(2k+l)] 1/2.k, km ,

k-0 m=-k

AkmOk+l(r) -fjk/(2k+)j l/2yk (0)k, m 0,k+1k, k-l1, m(0

Ak 0kl(r) (148)

where

A k(r) 2. (149)

o P~d iPj(Pr)g(P'j"'mn.X)3 , Im, A,k

The vector potential A)(x) of Eq. (15) for A=± I has the same expansion

as the first of Eq. (148) with g(p.j,m,X) replaced by (X/p~g(p~jm,A). The

scalar potential V(Q) of Eq. (15) is given by

!
XO k

V(x) = (2/ r)12 Y E 0 (0,0) j pdpj (pr)(i) k+g(p,k, in, 0). (150)

knO ma-k 0

Though the expansions of Eq. (148) are very useful, for many applications

oi,e wishes the components of UA(x) in spherical ooordinates. Hence tr. u)Lx)

sin 0 - "uA(x) and sin ( .a uA(x) will be given in terms of g(pj,m,A). One

uses Eqs. (135) through (137) and sees that the components of u X(x) are sumsTfsre n. y 0 vm,0 M
of srie inY K , -kil " In order that the components be a series in Yr k

only (that is, a series in surface harmonics). k±l is replaced by k in sura-

imations and the series is then expressed in terms of the spherical Bessel

functions 3k' jk±l'jk±2 T The functions Jk±l and Jk± 2 can be expressed in terms

of Jk and derivatives of Jk by using the well-known relations, recursiveiy, if

necessary:



&

•22

k+1 2 dx" d . "x("-j" J0+ -+ jkx = jk~(x),

k k

ak(X) (-dJk(x) •k+l). (151)

The differential equation for the spherical Bessel functions is also used, namely

d k

"'r) 1/2 [k(k+.)] /2m 0
k-O ma-k

?,x p 2dp jk(Pr)g(p, k. n, 0) (14

S~~kP)(~~ntJ(153)

??: to. A * ± 1, and

::::::k=O mt-k

x p 2 dp j•(pr)g(p, k, m, 0) . 54

In Eq. 5 ktL, the prime means derivative w,.,i respect to the argument of the

funntiL•:, Similarly, later, the double prime weans that a second derivative has

beer tut'k with respect to the argument.

S k

'> .'• 0 •t"(W ) W - " E (i)k o (, 0 )

.k-0 mx-k

(J • I/[kkk+)J k•k)

+ (k-- i..k...-i i-•6 /k ... k.. '2 k i/2 - (21kD) jg(p, k-i, m, A.)
0 0'4 pr

11 7mr 
"
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f(k+2)(k-m+l)(k+rm+l)/(k+1)(2k+l)(
2 k +3 -/ k(k+l)

(I -~- 2=

p r

-Ff p dp ji (pr) (bk-1) k(k-m)(k+n)/ (2k- 1)(2k+1)] 1/2

-
1/2k 1 ,X 

15

for A ±1.I

In Eq. (155) and later, g(p, 0, 0. ±1) g(p, -1I, rn, A) =0. An alternative ex-
pression for sir, 0 .ux)for X ±1 is given by

sin 0 a 0 .u~x -ý (41/2 (i kym 0
~k

k=0 mm-k

f ~ p ~ j j k p ~ i(kl-) - 1 /2 g (P ' kl m , A )

fg'p, k- m, A,) - f(k+2)(k-ml)(k+m+)/k(2k+] (2k+l)1)(2k~)

g(pk-I l)(A)-m)(k+n)/I(2k-m)(2k+r)J 1/2 g1p, k-i, m, A)I

k~.k 
1, nx

+ (k-1))(k#2)(k-tn+I)(k+rni+)/(k+l)(2k+l)(
2 k+3 )l1/

(156
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00 k
sin 0 a* u0 x 2T1/2 r kyifln0( 4

k0O m--k

2 dp jk(Pr) [(k- 1)(k+1)[ (k-m)(k+rn)/(2k- 1)(2k+l)] /

x g(p, k-i1. in, 0) + k(k+2)[ (k-m+i)(k+in+i)/(2k+l)(2k-s3)] 1/2

x g(p, k+l1, i,0) dp p j&(pr)

x [(k-1)[ (k-rn)(k+m)/(2k- i)(2k+l)] 1/2g (p. k-i1, mn, 0)

-(k+2) [(k-m+1)(k+n+ 0/ (2k+l)(2k-i3)J 1/2 g(p.k+in ,0)]1 (17

Finally,

00 k
sin Oaouý(x) (T)2 l()k fk(k+i)j - /2yr, 0(0.0)

km0 in--k

)< I T fo P dP jk(pr) [ mg(p, k~mX) + X(k±1)

x f (k- l)(k+l)(k-m)(k+m)/(2k-1)(2k+l)j 1/2 g(p, k-i1, in, X)

+ Xk[ k(k+2)(k-rn+1)(k+ni+l)/(2k+l)(2k+3)] 1/? g(p. k+ 1,m,.

+ f'P pdp jý(pr) [mg~p. k, in, X)

+ X[ Ok- 1)(k+i)(k-in)(k+mn)/(2k- 1)(2k+i)J 1/g(p, k-1, mn, X))

- [k(k+2)(k-in+l)(k4-m+i)/(2k+i)(2k+) /g (p, k+ 1, mA)]. (158)

for Au±i, and

sin 0 au 0 x - (217r) 1/ (iUk ~ym, 0 (0,4)
kO rn--k

SJo p dp jk(pr) g(p. km, ,0) (159)
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In Eq. (158), the ambiguity of the term for k 0 is evd'uated in the obvious

way by setting g (p,- 1, nA) = g(p, 0, m, X) = 0 and then by multiplying through by

the factor [k(k+l)J-I/2 (so as to cancel the factor k-1 /2) before setting k = 0

Thus our program of exhibiting the components of thl. rotational and irrota-

tional parts of an arbitrary vector in a spherical coordinate system has been

completed. It is interesting to iote that while general surface harmonics Y'n,n

had to be introduced t- define g(p,•,m, L), the expansions of the components of the

vectors involve the ordinary spherical harmonics Ym., 0. The components of the3

curl oi the vector in spherical coordinates have the same expansion except tnat

g(p, j, m, X) is replaced by Xpg(p, J, m 0X).

I

ir
I

!I

I
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Appendix A

M otivation for the Iniroduction oat he
Eigenfunctions of the Curl Op.oatao

It will now be shown how we came to use the vectors QA() from considera-

tions of properties of representations of the rotation group.

Let us define the vector G(p) as being the Fourier transform of the vector

Sf -. ( (,,-/ dx et ~ u(s),I (Al)

(23/2fdi

u •(x) * (27)-,/'Jd e G•, x c.t(} . (A2)

"Then¶

V Xu(x) i(27)- i dp e'[) [ (M)

Let ?s nlow introduce the columna -v-ector C(t) whose cormponents troin top to
bottom are the x-, y-, and z- coniponvunt-' respectively of G(R). It is readily

shown that thr column vector corresponding to the vector ZxG(p ) is -i(p-K)G(R).

where K - Z piKi and the matrices Ki are given by Eq. (125). As Is shown in

Eq. 24), these matrices are the infinitesimal generators of the rotation matrix.

Let us now define the columnn vector 11(p) by
rR

N ,



A 2

. G (p11 = VH(g),

H(p) w " G(L) (A4)

where V is the matrix o! Eoq. (.127). Then the colnun vector (p, KJG(p) maps into,

thc c•c'una vector (p.S . ))H(p), where the matricE..i S! have the eleýments given
b•y (106). Trhis. mapping follows from Eq.. (126).. Because of the way tlhat the
row: .•nd columns• of tite r-�p s�en�tation,!; of the genen-iLtors of the rotation group

were liabelled, the top c'cnmjpu',wm,-t of HQ() will be labelled HFI(Z). the second

compionent by H0(p ), and Uti:e '-.otton: component by f.. 1(p). Now in Moses (1970)

and In others mentiorned in Utt r'eference, a represenz.tation i6 introduced called

the helicity reprejentation, in which p - S is dial;i-ral.. Thus let i•s introduce

the column vector g(p) whosýe top, middle, and bottorm cemponents are denoted

by g•(p), g (pl) and g(Qp), respectively by

g(p) i(p), H 0(p) I g(pI . (A5)

where wj is a function of pgiven by

P1 U -p •Win W p p sin ,p 3  p cos ('j

W3 *O , W (Ala)

The relation of w to the polar coordinates of p is given by Eq. (130).
The column vector (p-S (1))H~p} maps into the column vector g'(p) whose

components are Xp&)p. Thus, combining all the transformations, u (x) maps into

the column vector g(E) in such a way that V ' u,(x) maps into the column vector

g'(p) - Equations (13) are an explicit form for the mapping and Eqs. (12) and

(129) constitute s statement of the mapping of the curl operator.
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