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INTBOEÜCTION 

The theory of controllability and observability has been 

developed, one might almost say reluctantly, in response to problems 

generated by technological science, especially in areas related to 

control, communication, and computers. It seems that the first 

conscious steps to formalize these matters as a separate area of 

(system-theoretic or mathematical) research were undertaken only as 

late as 1959, by KAIMAN CL9&0b-c]. There have been, however, many 

scattered results before this time (see Section 12 for some historical 

comments and references), and one might confidently assert today that 

some of the main results have been discovered, more or less independ- 

ently, in every country which has reached an advanced stage of 

"development" and it is certain that these same results will be 

rediscovered again in still more places as other countries progress 

on the road to development. 

With, the perspective afforded by ten years of happenings in 

this field, we ought not hesitate to r°Jie some guesses of the signi- 

ficance of what has been accomplished. I see two main trends: 

(i) The use of the concepts of controllability and observability 

to study nonclassical questions in optimal control and optimal estima- 

tion theory, sometimes as basic hypotheses securing existence, more 

often as seemingly technical coalitions which allow a sharper statement 

of results or shorter proofs. 

(ii) Interaction between the concepts of controllability and 

observability and the study of structure of dynamical systems, such 
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as: formulation and solution of the problem of realization, 

canonical forms, decomposition of systems, 

The first of these topics is older and has been studied 

primarily from the point of view of analysis, although the basic 

lemma (2.? ) is purely algebraic. The second group of topics 

may be viewed as "blowing up" the ideas inherent in the basic 

lemma (2.7 ), resulting in a more and more strictly algebraic point 

of view. 

There is active research .in both areas. 

In the first, attention has shifted from the case of systems 

governed by finite-dimensional linear differential equations with 

constant coefficients (where success was quick and total) to systems 

governed by inf?.nite-dimensional linear differential equations (delay 

differential equations, classical types of partial differential 

equations, etc.), to finite-dimensional linear differential equa- 

tions with time -dependent coefficients, and finally to all sorts 

and subsorts of nonlinear differential equations. The first two 

topics are surveyed concurrently by WEIt'S p.969] while MPKKSJS [1965] 

locks at the nonlinear situation. 

Hy own current interest lies in the second stream, and these 

lectures will deal primarily with it, after a rather hurried over- 

view of the general problem and of the "classical" results. 

Let us take a quick look at the most important of these "classical" 

results. For convenience I shall describe them in system-theoretic 

—  
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(rather than conventional pure mathematical) language. The mathe- 

matically trained reader should have no difficulty in converting 

them into his preferred framework, by digging a little into the 

references. 

In area (i), the most important results are probably those 

which give more or less explicit and computable results for control- 

lability and observability of certain specific classes of systems. 

Beyond these, there seem to be two main theorems: 

THEOREM A. A real, continuous-time, n-dimensional, constant, 

linear dynamical system £ has the property "every set of n 

eigenvalues may be produced by suitable state feedback" if and 

only if I is completely controllable. 

The central special case is treated in great detail by KAIMAN, 

FALB, and ARBIB [1969, Chapter 2, Theorem 5.10]; for a proof of the 

general case with background comments, refer to WONHAM [19^7]. As 

a particular case, we have that every system satisfying the hypotheses 

of the theorem can be "stabilized" (made to have eigenvalues with 

negative real parts) via a suitable choice of feedback. This result 

is the "existence theorem" for algorithms used to construct control 

systems for the past three decades, and yet a conscious formulation 

of the problem and its mathematical solution go back to about 19^3 • 

(See Theorem D below.) The analogous problem for nonconstanc linear 

systems (governed by linear differential equations with variable 

coefficients) is still not solve*. 

W—B 
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THEOREK B. ("Duality Principle") Every problem of control- 

lability in a real, (continuous-time, or discrete-time), finite« 

dimensional, constant, linear dynamical system is equivalent to 

a controllability problem in a dual system 

This fact was first observed by KAIMAN [1960a] in the solution 

of the optimal stochastic filtering problem for discrete-time 

systems, and was soon applied to several problems in system theory by 

KAIMAN [1960b-c]. See also many related comments by KAIMAN, FALB, 

and ARBIB [Chapters 2 and 6, 1969]. A* a theorem, this principle 

is not yet known to be valid outside the linear area, but as an 

intuitive prescription it has been rather useful In guiding system- 

theoretic research. The problems involved here are those of fomula- 

tion rather than proof. The basic difficulties seem to point toward 

algebra and in particular  category theory. System-theoretic 

duality, like the categoric one, is concerned with "reversing 

arrows". See Section 10 for a modern discussion of these points 

and a precise version of Theorem B. 

Partly as a result of the questions raised by Theorem B and 

partly because of the algebraic techniques needed to prove Theorem 

A and related lemmas, attention in the early 1960's shifted toward 

certain problems of a structural nature which were, somewhat sur- 

prisingly at first, found to be related to controllability and 

observability. The main theorems again seem to be two: 

THEOREM C. (Canonical Decomposition) Every real (continuous- 

time or discrete-time), finite-dimensional, consign*, linear dynamical 

*~'' '.' • • 
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system may be canunically decomposed into four parts, of which only 

one part, that which is completely controllable and completely observ- 

able,, is Involved in the input/output "behavior of the system» 

The proof given by KAIMN [I962J applies to nonconstant systems 

only under the severe restriction that the dimeiiwions of the sub- 

space of all controllable and all unobservable states Xs constant 

on the vhole real line. The result represented by Theorem C is far from 

definitive, however, since finite-dimensional linear, r-enconstant systems 

admit at least four differer: canonical decomposition«: it is 

possible and fruitful to dualize the notions of controllability 

and observability, thereby arriving at four properties, presently 

called 

reachability and controllability 

as well as 

constructibility* and observability. 

(See Section 2 definitions.) Any combination of a property from 

the first list with a property from the second list gives a canoni- 

cal decomposition result analogous to Theorem C. The complexity of 

the situation was first revealed by WEISS and KAIMAN [1965]; this 

paper contributed to a revival of interest (with hopes of success) 

in the special problems of nonconstant linear systems. Recent 

«WEISS [1969] uses "detenainability" instead of construct!- 
bility. The new terminology used in these lectures is not yet 
entirely standard. 

« 

• 
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progress is surveyed by WEISS [1969]« Intimately related to the 

canonical structure theorem, and in fact necessary to fully clarify 

the phrase "involved in the input/output behavior of the system", is 

the last basic result: 

THEOREM D. (Uniqueness of Minimal Realization) Given the 

impulse-response matrix W of a real, continuous-time, finite- 

dimensional, linear dynamical system, there exists a real,'continuous- 

time, finite-dimensional, linear dynamical system Z,. which 

(a) realizes W: that is, the impulse-response matrix of 

$L is equal to W; 

(b) has minimal dimension in the class of linear systems 

satisfying (a); 

(c) is completely controllable and completely observable; 

(d) is uniquely determined (modulo the choice of a basis 

at each t for its state space) by requirement (a) 

together with (b) or, independently, by (a) together with 

(c). 

In short, for any W as described above, there is an "essentially 

unique" 21. of the same "type" which satisfies (a) through (c). 

COROLLARY 1. If W comes from a constant system, there is a 

constant JtL which satisfies (a) through (c), and 3s uniquely 

determined by (a) + (b) or (a) + (c) (modulo a fixed choice of 

basis for its state space). 

. ———  
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COROLIARY 2. All claims of Corollary 1 continue to hold if 

"impulse-response matrix of a constant, finite-dimensional system" 

is replaced by "transfer function matrix of a constant, finite- 

dimensional system". 

The first general discussion of the situation with an equiva- 

lent statement of Theorem D is due to KAIMAN [1963t, Theorems 7 

and 8]. (This reaper does not include complete proofs, or even 

an explicit statement of Corollaries 1 and 2, although they are 

implied by the general algorithm given in Section 7» An edited 

version of the original unpublished proof of Theorem D is given 

in KAIMAN, FALB, and ARBIB [1969, Chapter 10, Appendix Cj.) 

These results are of great importance in engineering system 

theory since they relate methods based on the Laplace transform 

(using the transfer function of the system) and the time-domain 

methods based on input/output data (the matrix W) to the state- 

variable (dynamical system) methods developed in 1955-19&). In 

fact, by Corollary 1 it follows that the two methods wust yield 

identical results; for instance, starting with a constant impulse- 

response matrix W, property (c) implies that the existence 

of a stable control lay is always assured by virtue of Theorem A. 

Thus it is only after the development represented by Theorems A-D 

that a rigorous justification is obtained for the intuitive design 

methods used in control engineering. 

As with Theorem C, certain formulational difficulties arise 

In connection with a precise definition of a "r.onconstant linear 

•mm 1 • ••• !• im JI.W 
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dynaaical syste-". Thus, it seems preferable at present to replace 

In Theorem D "impulse-response matrix W" by "weighting pattern V 

(or "abstract input/output map W") and "complete controllability" 

ty "complete reachability". The definitive for» of the 196*3 theorem 

evolved through the works of WEISS and KAIMAH [1965• 3, YOULA [1966], 

and £AIMA!f; a precise foraulation and modernized proof of Theorea D 

in the weighting bittern case was given recently by KAIMAX, FALB, 

and ARBIB [1^9, Chapter 1C, Section 13.} A completely general 

discussion ol vbat is neant by a "minimal realization" of a non- 

constant impulse-response matrix involves many technical complica- 

tions due to the fact that such a minimal realization does not 

exist in the class of linear differential equations with "nice" 

coefficient functions« For the current status of this probler., 

consult especially DE30ER and VARAIYA [1967], SiLVERHAN and MEADCVfS 

[I969], RAIMA», IAL3, and AäBIB [I969, Chapter 10, Section 13 ] and 

HESS [1969]. 

From the standpoint of the present lectures, by far the most 

Interesting consequence of Theorem D is its influence, via efforts 

to arrive at a definitive proof of Corollary 1, on the development 

of the algebraic stream of system theory. The first proof of this 

important result \,in the special case of distinct eigenvalues) is 

that of GILBERT [1963]. Immediately afterwards, a general proof 

was given by KAIMAN [1963b, Section 7]. This proof, strictly 

computational and.linear algebraic- in nature, yields no thecreti- 

cal Insight although it is useful as the basis of a computer algorithm. 

 —   
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Using the classical theory of invariant factors, KAIMAN [1965a] 

succeeded in shoving that the solution of thJ mini FA 1 realization 

problem can be effectively reduced to the classical Invariant- 

factor algorithm, this result is of great theoretical interest 

since it strongly suggests the now standard module theoretic 

approach, tut it does not lead to a simple proof of Corollary 1 

and is not a practical method of computation. 

The best known proof of Corollary 1 was obtained in 1965 by 

B. L. Ho, with the aid of a remarkable algorithm, which is equally important 

from a theoretical and computational viewpoint. The eaxly formula- 

tion of the algorithm was described by HO and KAIMN [1966], with 

later refinements discussed in HO and KAIMAN [1969], KALMAN, FALB, 

and AEBIB [1969, Chapter 10, Section 11] and KALMAN [19690]. 

Almost simultaneously with the work of B. L. Ho, the basic results 

were discovered independently also by YOULA and TISSI [I966] and 

by SILVERMAN [1966], The subject goes back to the 19th century 

and centers around the theory of Hankel mat.~i.ces; however, many 

of the results just referenced seem to be fundamentally new. This 

field is currently in a very active stage of development. We shall 

discuss the essential ideas involved in Sections 8-9« Many other 

topics, especially Silverman's generalization of the algorithm to 

nonconstant systems unfortunately cannot be covered duf to lack of 

time. 

twav 
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1. CLASSICAL AND MODERN DYNAMICAL SYSTEMS 

In mathematics the term dynamical system (synonyms: ^opological 

dynamics, flows, abstract dynamics, etc.) usually connotes the action 

of a one-parameter group T (the reals) on a set X, where X is 

at least a topological space (more often, a differentiable manifold) 

and the action is at least continuous. This setup is physically 

motivated, but in a very old-fashioned sense. A "dynamical system" 

as just defined is an idealization, generalization, and abstraction 

of Newton's world view of the Solar System as described via a finite set of 

nonlinear ordinary differential equations. These equations represent 

the positions and momenta of the planets regarded as point masses and 

are completely determined by the laws of gravitation, i.e., they do 

not contain any terms to account for "external" forces that may act 

on the system. 

Interesting as this notation of a dynamical system may be (and 

isi) in pure mathematics, it is much too limited for the study of 

those dynamical systems which are of contemporary intere. t. There 

are at least three different ways in which the classical concept 

must be generalized: 

(i) The time set of the system is not necessarily restricted 

to the reals; 

• (ii) A state x € X of the system is not merely acted upon by 

the "passage of time" but also by inputs which are or could be mani- 

pulated to bring about a desired type of behavior; 
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(iii) The states of the system cannot, in general, be observed. 

Rather, the physical behavior of %he  system is manifested through 

its outputs which are many-to-one functions of the state. 

The generalization of the time set is of minor interest to us 

here. The notions of input and output, however, are exceedingly 

fundamental; in fact, controllability is related to the input and 

observability to the output. With respect to dynamical systems in 

the classical sense, neither controllability nor observability are 

meaningful concepts. 

A much more detailed discussion of dynamical systems in the modern 

sense, together with rather detailed precise definitions, will be 

found in KAItfAN, FALB, and ARBIB [1969* Chapter l]. 

From here on, we will use the term "dynamical system" exclusively 

in the modern sense (we have already done so in the Introduction). 

The following symbols will have a fixed meaning throughout the 

paper: 

T • time set, 

U • set of input values, 

X = state set, 

(l.l) \ Y • set of output values, 

ß • input functions, 

<p * transition map, 

^ i) B readout map. 

The following assumptions will always apply (otherwise the sets 

above are arbitrary): 

r 
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(1.2)  < 

T B an ordered subset of the reals R, 

fl « class of functions T -* U such that 

(i) each function cu is undefined outside some 

finite interval J C T dependent on co; 

(ii) if J^J^, • 0,    there is a function 

co € ß which agrees with o> on J  and 

v        with co» on J • 

For most c-rpDses later, T will be equal to Z  « (ordered) 

abelian group of integers; U, X, Y, fl will be linear spaces; "unde- 

fined" can be replaced by "equal to 0"; and "functions undefined out- 

side a finite .nterval" will mean the same as "finite sequences". 

The most general notion of a dynamical system for our present 

needs is given by the following 

(1.3)    DEFINITION. A dynamical system L    is a composite ob.1ect 

consisting of the maps cp, J\    defined on the sets T, U, fi, X, Y 

(as above): 

cp: T X T X X X ft -* X, 

: (tj T, x, to) u» cp(t; T, X, CO) 

undefined whenever t > T; 

1): T XX -> Y: (t, x) h> T)(t, x). 

The transition map cp satisfi'tj the following assumptions: 

(l.*0    <p(t; t, x, co) = X; 

WIIIMWH 
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(1.5) <p(t; T, x, a>) m   <p{t; s, <p(s; x, X, ü>), CD); 

(1.6) if Cü = u>» on [T, t], then for all s € [T, t] 

qis;  x, x, CD) = cp(s; x, X, »•)• 

The definition of a dynamical system on this level of generality 

should he regarded only as a scaffolding for the terminology; interest- 

ing mathematics begins only after further hypotheses are made. For 

instance, it is usually necessary to endow the sets T, U, ß, X, and 

I with a topology and then require that <p and i\   be continuous. 

(1*7)    EXAMPLE. The classical setup in topological dynamics may 

be deduced from our Definition (1.3) in the following way. Let 

T = R = reals, regarded as an abelian group under the usual addition 

and having the usual topology; let fl consist only of the nowhere- 

defined function; let X be topological space; disregard Y and i\   entirely; 

define 9 for all t, x € T and write it as 

<p(t; x, x, cu) « x-(t - x), 

that is, a function of x and t - T alone. Check (1.4-5); in 

the new notation they become 

x«0 • x and x«(s + t) « (x*s)»t. 

Finally, require that the map (x, t) h> x*t be continuous. 

(1.8)    INTERPRETATION. The essential idea of Definition.(1.3) is 

that it axiomatizes the notion of state. A dynamical system is informally 

  -' •   — 
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a rule for state transitions (the function <p), together with suitable 

means of expressing the effect of the input on the state and the effect 

of the state on the output (the function T)). The map q> is verbalized 

as follows: "an input a>, applied to the system Z   in state x at 

time T produces the stata q>(t; T, X, O>) at time t." The peculiar 

definition of an input function cu is used here mainly for technical 

convenience; by (1.6) only equivalence classes of inputs agreeing over 

[ft  tj enter into the determination of qp(t; T, x, a>). 'to not defined" 

at t means no input acts on Z   at time t. 

The pair (T, X) € T X X will be called an event of a dynamical 

system Z, 

In the sequel, we shall be concerned primarily with systems which 

are finite-dimensional, linear, and continuous-time or discrete-time. 

Often these systems will be also real and constant (* stationary or 

time-invariant). We leave the precise definition of these terms in 

the context of Definition (1.3) to the reader (consult KALMAN, FALB, 

or ARBIB [1969* Chapter l] as needed) and proceed to make some ad hoc 

definitions without detailed explanation. 

The following conventions will remain in force throughout the 

lectures whenever the linear case is discussed: 

.m ,n 
(1.9)   Continuous-time. T = g, Ü * g"1, X *= g", Y = Rp, 

ft « all continuous functions R -» R  which vanish out- 

side a finite interval. 

(1.10)   Discrete-time. T « Z, K - fixed field (arbitrary), 
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ü m &9    X = &*,    Y » K?,    ft « all functions 

Z -*  Kr   i£i3ch &re zero for all but a finite number of • 

their arguments. 

Now we nave, finally, 

(l.ll)   DEFINITION, A real, continuous-tine, n-dmensional, linear 

dynamical system £ is a triple cf continuous matrix functions of 

time W')>  ß(')# H(0) where 

Pv*): R -* (nXn matrices over R) 

G(')s R -* {n X m matrices over R}, 

H(-)s § -• (p * B aair?ces over R}. 

These maps determine the equations of motion of Z   in the following 

manner; 

C dx/dt - F(t)x + G(t)o)(t), 
(1.12) 

t y(t) - H(t)x(t), 

where t € R, x € Rn, a>($) € Rm, and y(t) £ Rp. 

To check that (1.12) indeed makes £ into a well-defined dynamical 

system in the sense of Definition (1.3)* it is necessary to recall the 

basic facts about finite systems of ordinary linear differential equations 

with continuous coefficients. Define the map 

t> T): . R X R -> {n X n matrices over R} 

to be the family of a X n matrix solutions of the linear differential 

—. , , _,.     —,—., -. _ 



. ___- ,-_—«^r.  •TO,,.uf.W..J.iilll»«LHli.>        m.mm*.        um.     IM II 

_   21   ~ 
R,E. Kaiman 

equation 
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dx/dt   -   F(t)x,      x 6 R 

subject to the initial condition 

T, T) • I • unit matrix, T €  R. 

Tuen «L is of class C  in both arguments. It is called the 

transition matrix of (the system Z   whose "infinitesimal" transition 

matrix is) F(»}. From this standard result we g?t easily also the 

fact that the transition map of Z   :1s explicitly given by 

(1.13) tftj t, x, CD) = yt, T)X + /* *?(t, s)G(s)G»(s)*|,(t, s)ds 

while the readout map is given by 

(1.14) lj(t, x) = H(t)x. 

It is instructive to verify that cp indeed depends only on the equiva- 

lence class of y>«s which agree on [T, t]. 

In view of the classical terminology "linear differential equa- 

tions with constant coefficients", we introduce the nonstandard 

(1.15) DEFINITION. A real, continuous-time^ finite-dimensional 

linear dynamical system Z • (?(•)/ G(*)> H(«)) is called constant 

iff all three matrix functions are constant* 

In strict analogy with (1.15), we say: 

(l.l6)   IEFINITION. A discrete-time, finite-dimensional, linear, 

cofls^aat dynamical system Z   over X is a triple (F, G, H) of 

«MHMPBMUIHK    ' "" am 1 wir tan—BiimiiMW—1 »m»ii».x^awaw— 
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n X n, n X m, p X n matrices over the field K. These maps deter- 

mine the equations of motion of £   in the following manner: 

(1.17) 
x(t + 1) = Fx(t) + Gco(t), 

y(t) = Hx(t), 

where 
t £ Z, x € K", a>(t) € K*  and y(t) € Kp. 

In the sequel, we shall use the notations (F, G, -) or 

F, -, H) to denote systems possessing certain properties which 

are true for any H or G. 

Finally, we adopt the following convention, which is already 

implicit in the preceding discussion: 

(1.18)   DEFINITION. The dimension n of a dynamical system 

Z   is equal to the, dimension of X„ as a vector space. 
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2. STANDARDIZATION OF DEFINITIONS AND "CLASSICAI/'RESULTS 

In this section, we shall be mainly interested in finite- 

dimensional linear dynamical systems, although the first two 

definitions will be quite general. 

Let Z   be an arbitrary dynamical system as defined in 

Section 1. We assume the following slightly special property: 

There exists a state x* and an input CD* such that 

<p(t; x, x*, oj*) = x* for all t, x € T and t > T. 

For simplicity, we write x* and co* as 0. (When X 

and ft have additive structure, 0 will have the usual mean- 

ing.) The next two definitions refer to dynamical systems 

with this extra property. 

(2.1)    DEFINITION. An event (T, X) is controllable iff? 

there exists a t € T and an o> £ ft (both t and CD may depend 

on (T, X)) such that 

cp(t; T, x, «fj • 0 

In words: an event is controllable iff it can be transfers 

•to 0 in finite time by an appropriate choice of the input function 

CD. Think of the path from (T, X) to (t, 0) as the graph of a 

function defined over [T, t]. 

§ 
The technical word iff means if and only if. 
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Consider new a reflection of this graph about T. This 

suggests a new definition which is a kind of "adjoint" of the 

definition of controllability: 

(2.2) DEFIKITIQH. An event (T, X) is reachable iff there 

is an s € T and an CD € Q (both s and CD way depend on 

(t, x)) such that 

x • 9(T; a, 0, to). 

Me emphasize: controllability and reachability are entirely 

different concepts. A striking example of this fact is encountered 

belov in Proposition (4.26). 

We shall now review briefly some well-known criteria for and 

relations between reachability and controllability in linear systems. 

(2.3) raOFOSITION. In a real^ continuous-tliae, finite-dimensional, 

linear dynamical system Z m  (F(»)> G(-)> - ),  an event (T, X) is 

(a) reachable If and only if x € range W(s, T) for 

SOB» s € R, s < -x,  where 

W(s, T) - r  *p(x, <r)0(cr)Of(<r)fl$(T, cr)<fcr 
0 

(b) controllable if an only if x € range W(T, t) for 

some t 6 R, t > T, where 

W(T, t) « /* «p(x, •)0(«)G
,
(B)«J1(T, s)ds. 

x'he original proof of (b) is in KAIMAN [ 1960bj; both cases 

are treated in detail in KAUfiAN, FALB, and ARBIB [1969, Chapter 2, 
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Section 2]. äöte that if G(*) is identically zero on {- «, T) 

we cannot have reachability, and if G(«) is identically . 

zero on (x, + •) we cannot have controllability. 

For a constant system, the integrals above depend only on 

the difference of the limits: hence, in particular 

W(x, t) * W(2T - :, x . 

So we have 

(2.*0    PROPOSITION. In a real, continuous-time, finite-dimensional, 

linear, constant dynamical system an event {i,  x) is reachable 

for all T if and only if it is reachable for one x; an event 

is reachable if and only if it is controllable. 

From (2.3) one can obtain in a straightforward fashion also 

the following much stronger result: 

(2.5)    THEOREM. In a real^ continuous-time, n-dimensional, 

linear, constant dynamical system I = (F, G, -) a state x 

is reachable (or, equivalently, controllable) at any T £ R 

if and only if 

x € span (G, FG, ,.. ) C Rn; 

if this condition is satisfied, we can n  se s • T - 6, t - T + 6, 

with 5 > 0 arbitrary. (The span of a  -^ence of matrices is to 

be interpreted as the vector space generated by the columns of 

these matrices.) 
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A proof of (2.5) may be found in KALMAR HO, and NARENDRA 

[1963] and in KALMAN, FALB, and ARBIB [1969, Chapter 2, Section 

3]. A trivial but noteworthy consequence is the fact that the 

definition of reachable states of Z is "coordinate-free": 

(2.6) COROLLARY. The set of reachable (or controllable) 

states of Z in Theorem (2.5) is a subspace of the real vector 

space Xj,, the state space of Z. 

Very often the attention to individual states is unnecessary 

and therefore many authors prefer to use the terminology MZ is 

completely reachable at T" for "every event (T, X), T *  fixed, 

x G Xj, is reachable", or "Z completely reachable" for "every 

event in Z is reachable", etc. Thus (2.5), together with the 

Cayley-Hamilton theorem, implies the 

(2.7) BASIC LEMMA. A real, continuous-time, n-dimensional, 

linear, constant dynamical system Z = (F, G, -) is completely 

reachable if an only if 

(2.3)    rank (G, FG, ..C, F11"0^) = n. 

Condition (2.8^ is very well-known; it or equivalent forms of 

it have been discovered, explicitly used, or implicitly assumed by 

many authors. A trivially equivalent form of (2.7) is given by 

(2.9)    COROLLARY 1. A constant system Z = (F, G, -) i£ 

completely reachable if and only if the scaliest F-invariant 

subspace of X-, containing (all column vectors of) G is X- 

itself. 

- 

• 
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A useful variant of the last fact is given by 

(2.10) COROLLARY 2. (W. Hahn) A constant system Z * (F, G, -) 

is completely reachable if and only if there is no nonzero eigen- 

vector of F which is orthogonal to (every column vector of) G. 

Finally, let us note that, far from being a technical condi- 

tion, (2.5) has a direct system-theoretic interpretation, as 

follows: 

(2.11) PROPOSITION. The state space X-, of a real, continuous- 

timej n-dimensional, linear, constant dynamical system I • (F, G, -) 

may be written as a direct sum 

h = h*xs> 

which induces a decomposition of the equations of motion as (obvious 

notations) 

(2.12) 
V* S rilXl + F12X2 + Glu(t)' 

^ 
dXVdt F22X2' 

The subsystem Z   « (F.., G., -) is completely reachable. Kence 

a state x = (x,, xp) € 3L. is reachable if and only if xp = 0. 

PROOF. We define X1 to be the set of reachable states 

of Z;    by (2.5) this is an F-invariant subspace of Xr. Hence, by 

finite-dimensionality, X.. is a direct summand in X«. By construc- 

tion, every state in X.. is reachable, and (every column vector of) 
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G belongs to X.. The F-invariance of X. implies that 

F-^, • 0, which implies the asserted form of the equations of 

motion. O 

(2.13)   REMARK. Note that Xg is not intrinsically defined 

(it depends on an arbitrary choice in completing the direct sum). 

Hence to say that "(0, Xp) is an unreachable (or uncontrollable) 

state if Xg p 0" is an abuse of language. More precisely: the 

set of all reachable (or controllable) states has the structure of 

a vector space, bit the set of all unreachable (or uncontrollablo) 

states does not have such structure. This fact is important to 

bear in mind for the algebraic development which follows after 

this section and also in the definition of observability and 

constructibility below. In general, the direct sum cannot be 

chosen in such a way that F-p » 0. 

While condition (2.8) has been frequently used as a technical 

requirement in the solution of various optimal control problems in 

the late 1950's, it was only in 1959-60 that the relation between 

(2.8) and system theoretic questions was clarified by KALMAN £l960b-c] 

via Definition (2.2) and Propositions (2.5) and (2.1l). (See Section 

11 for further details.) In other words, without the preceding 

discussion the use of (2.8) may appear to be artificial, but in fact 

it is not, at least in problems in which control enters, because, 

by (2.12) control pr*»>lems stated foi Xj, a±e nontrivial oily with 

respect to the intrinsic sub space X.. • 
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The hypothesis "constant" is by no means essential for 

Proposition (2.11), but we must forego further comments here. 

For later purposes, we state some facts here for discrete- 

time, constant linear systems analogous to those already developed 

for their continuous-time counterparts. The proofs are straight- 

forward and therefore omitted (or given later, for illustrative 

purposes)• 

(2.1*0   PROPOSITION. A state x of a real, discrete-time, 

n-dimensional, linear, constant dynamical system Z a  (F, G, -) 

is reachable if and only if 

(2.15) x € span (G, FG, ..., F11""1^). 

Thus such a system is completely reachable if and only if (2.8) 

holds. 

(2.16) PROPOSITION. A state x of the system £ described 

in Proposition (2.1*0 is controllable if and only if 

(2.17) x € span (F^G, ..., F""G), 

where 

F" G • tx: Fx • g , g. ts column vector of Gj. 

(2.18) PROPOSITION. In a real, discrete-time, finite-dimensional 

linear, ^cnataut dynamical system £ = (F, G, -) a reachable state 

is always controllable and the converse is always true whenever 

det F ^ 0. 
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Note also that Propositions (2.11) and its proof continue 

to be correct, without any modification, when "continuous-time" 

is replaced by "discrete-time". 

Now we turn to a discussion of observability. 

The original definition of observability by KAIMAN' [ 1960b, 

Definition (5-23)] was concocted in such a way as to take advan- 

tage of vector-space duality. The conceptual problems surround- 

ing duality are easy to handle in the linear case but are still 

by no means fully understood in the nonlinear case (see Section 

10). In order to get at the main facts quickly, we shall consider 

here only the linear case and even then we shall use the under- 

lying idea of vector-space duality in a rather ad-hoc fashion. 

The reader wishing to do so can easily turn our remarks into a 

strictly dual treatment of facts (2.l)-(2.12) with the aid of 

the setup introduce'' in Section 10. 

(2.19)   DEFINITION. An event (T, X) in a real, continuous- 

time, finite-dimensional, linear dynamical system I = (F(*),- -, H(°)) 

is unobservable iff 

H(s)CF(s, r)x = 0 for all s £ [T, *>). 

(2.20)   DEFINITION. With respect to the same system, an event 

(T, X) ig unconstructible* iff 

*In the older literature, starting with KAIMN [lQoOb, 
Definition (5.23)], it is this concept which is called "observability" 
3y hindsight, the present choice of words seems to be more natural 
to the writer. 
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H(ff)*„(<r, T)X - 0 for all or 6 {- •, T]. 

The motivation for the first definition ig obvious: the 

"occurrence" of an unobservable event cannot be detected by look- 

ing at the output of the system after time T. (The definition 

subsumes a> = 0, but this is no loss of generality because of 

linearity.) The rjotivation for the second definition is less 

obvious but is in fact strongly suggested by statistical filtering 

theory (see Section 10). In any case, Definition (2.21) comple- 

ments Definition (2.20) in exactly the same way as Definition (2.1) 

complements Definition (2.2). 

Irom these definitions, it is very easy to deduce the follow- 

ing criteria: 

(2.21)   PROPOSITION. In a real, continuous-time, finite-dimensional, 

linear dynamical system L = (F(')> -, H(*)) an event (T, X) i£ 

(a) unobservable if and only if x € kernel M(T, t) 

for all t £ R, t > x,  where 

M(T, t) = /* 4£(s, T)H'(S)H(S)*F(E, T)ds; 

(b) unconstructible if and only if x £ kernel M(s, T) 

j.or all s € R, s < T, where 

M(s, T) - /T 4£((r, T)Hf(o-)H(cr)*F(<r, T)do. 
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PROOF. Part (a) follows iianediately from the observation: 

x 6 kernel M(T, t) &  H(s)*F(s, x)x = 0 for all s € [T, t]. Part 

(b) follows by an analogous argument. O 

(2.22)  REMARK. Let us compare this result with Proposition (2.3)> 

and let us indulge (only temporarily) in abuses of language of the 

following sort:* 

(T, X) • -unreachable ^  x € kernel W(T, t) 

for all t > T 

and 

(T, X) = observable &   x € range M(T, t) 

for some t > T. 

From these relations we can easily deduce the so-called "duality 

rules"1; that is, problems involving observability (or constructs 1- 

ity) are converted into problems involving reachability (or control- 

lability) in a suitably defined dual system. See KAIMAN, FALB, 

and AR3IB [196*9, Chapter 2, Proposition (6.12) j and the broader 

discussion in Section 10. 

We will say, by slight abuse of language, that a system is 

completely observable whenever 0 is the only unobservable state. 

ÜThus the Basic Lemma (2.7) "dualizes" to the 

(2.23)   PROPOSITION. A real, continuous-time or discrete-tine, 

n-dimensional, linear, constant dynamical system Z » (F, - , H) 

*AH this would be strictly correct if we agreed to replace 
"direct sum" in Proposition (2.11) and its counterpart (2.25) by 
''orthogonal, direct sum''; but fala  would be an arbitrary convention 
which, \iile convenient, has no natural system-theoretic justifica- 
tion. .Reread Remark (2.r?)• 

i_ 
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is completely observable if and only if 

(2.24) rank (Hf, F*H*,  ..»,  (F')nmlH')    *   n. 

$y duality, complete construetibility in a continuous-time 

system is equivalent to observability; in a discrete-time system 

this is not true in general but it is true when det F ^ 0. 

It is easy to see also that (2.1l) "dualizes" to: 

(2.25) PROPOSITION. The state space X-, of a real, continuous- 

time or discrete-time , n-dimensional, linear, constant dynamical 

system £ = (F, -, H) may be written as a direct sum 

and the equations of £ are decomposed correspondingly as 

dx^/dt = FnX1, 

dxg/dt « F21x1 + F22x2, 

y(t) = H2x2(t). 

PROOF. Proceed dually to the proof of Proposition (2.1l), 

beginning with the definition of X., as the set of all unobservable 

states of L D 

Combining Propositions (2.1l) and (2.25) gives Theorem C as in 

KALMAN [1902J. 

This completes our survey of the "classical" results related 
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to reachability, controllability, observability, and 

constructibility. 

The remaining lectures »/ill be concerned exclusively with 

discrete-time systems. The main motivation for the succeeding 

developments will be the algebraic criteria (2.8) and (2.2*0 

as well as a deeper examination of Theorems C and D of the 

Introduction. 
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3. DEFINITION OF STATES VIA NERODE EQUIVALENCE CLASSES 

A classical dynamical system is essentially the action of the 

time set T (« reals) on the states X. In other words, the 

states are acted on by an abelian group, namely (R + usual 

definition of addition). This is a trivial fact, but it has deep 

consequences. A (modern) dynamical system is the action of the 

inputs n on X; in exact analogy with the classical case, to 

the abelian structure on T there corresponds an (associative 

but noncommutative) semigroup structure on ft. The idea that fl 

always admits such a structure was apparently overlooked until 

the late 1950*s when it became fashionable in automata theory 

(school of SCHUTZENBERGER). This seems to be the "right" way 

of translating the intuitive notion of dynamics into mathematics, 

and it will be fundamental in our succeeding investigations. 

It is convenient to assume from now on, until the end of 

these lectures, that 

(3«l)   T = time set = Z = additive (ordered) group of 

integers. 

Since we shall be only interested in constant systems from 

here on, we shall adopt the following normalization convention;* 

*In the discrete-time nonconstant case, we would have to deal 
with Z copies of (I, each normalized with respect to a different 
particular value of T E Z. 
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In view of (3-2), ve can define the "length" |o| of co by 

|to| • max (-t € 2: o> is not defined for any s < t}. 

Before defining the semigroup on Q, ve introduce another 

fundamental notion of dynamics: the (left) shift operator aQ> 

defined for all q > C in Z by 

(3*3)   oj: Q -• Q: o> n -£0: t -* n(t + q). 

Bote that the definition of trQ is compatible with the normaliza- 

tion (3.2). 

If JL^^Li • «*pty for to, to* € ß, we define the join 

of co and a* as the function 

(to on J. 
(3.4)   tovto' -{      ^ 

^a>  on J .. 
to 

When fl has an additive structure, then we replace ca v CD* by w + o;' 

(3.5)    DEFINITION. There is an associative operation 

•: fl x ft --» ft, called concatenation, defined by 

• : (to, v) H a^ 'to v v. 

Note that, by (3.2) through (3.*0,  ° is well defined. 

Note also that the asserted existence of concatenation rests 

on the fact that 0' is made up of functions defined over finite 

intervals in T. We might express the content of (3*5) also as: 

fl is a semigroup with valuation, since evidently |a>0v| » |o>| + JVj 
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In view of (3.5), It is natural to use an abbreviated notation* 

also tor the transition function, as follows: 

(3.6)   x«o> *= <p(0; - ja>|, x, o>) 

Now we come to an important zionclassical concept in dynamical 

systems, whose evolution was strongly influenced by problems in 

communications and automata theory: a discrete-time constant 

input/output map 

(3-7)   t: Q -* Y: o> ^ f(a>) u   y(l) 

We interpret this map as follows; y(l) is the output of some 

system Z (say, a digital computer) when Z   is subjected to 

the (finite) input sequence cu, assuming that £ is some fixed 

initial equilibrium state before the application of o. This 

definition automatically incorporates the notions of "discrete- 

time" as well as "causal" or "dynamics" (the latter because 

y(t) is not defined for t < l). However, (3.7) does not 

clearly imply "constancy" (implicitly, however, this is clear from 

the normalization assumption (3«2) on ß). To make the definition 

more forceful, we extend f to the map 

. (3.8)   f: fl -• r » T X T ... (infinite cartesian product) 

: o)i-* (f(o>); f(aflo>), ... ) » (y(l), y(2), ... ). 

Interpretation: f gives the output sequence r * (y(l), y(2), .. 

of the system L   after t • 0 resulting from the application of an 

•Observe that X°üJ is the strict analog of the notation xt 
customary in topological dynamics. The action of o> on x satis- 
fies xo(coov) • (XO(ü)OV in view of (1.5)« 

i imam—***--—-' 
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input co which stops at t = 0. 

This definition expresses causality more forcefully and 

incorporates constancy,, provided we define the (left) shift 

operator ap on V   so as to be compatible with (3.3)» So, 

for any T > 0, T 6 Z, let 

(3.9) ap: L -» r: r »-> tfjjr: t H r(t + T) 

:(yd), y(2), ...)•-> (y(t + 1), y(t + 2), ... ) 

Note: the operator <yfl "appends" an undefined term at 0, the 

operator a„ "discards" the term y(l). 

Now, dropping the bar over f, -te adopt 

(3.10) DEFINITION. A discrete-time, constant input/output map 

(of some underlying dynamical system Z) i? any map f such that 

the following diagram 

is commutative. We ssy that f is linear iff it is a K-vector 

space hqmomorphism. 

It will be convenient to regard (3-10) as the external 

definition of a dynamical system, in contrast to the internal 

definition set up in Section 1. 

Intuitively, we should think of f as a highly idealized 

kind of experimental data; namely, f incorporates all possible 

information that could be gained by subjecting the underlying 
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system to experiments in which only input/output data is avail- 

able. This point of view is related to experimental physics the 

same way as the classical notion of a dynamical system is related 

to Newtonian (axiomatic) physics. 

The basic question which motivates much of what will follow 

can now be formulated as follows: 

(3.11) PROBLEM OF REALIZATION. Given only the knowledge of 

f (but of course also of Z, ft, and r) how can we discover, 

in a mathematically consistent, rigorous, and natural way, the 

properties of the system £ which is supposed to underlie the 

given input/output map f? 

This suggests immediately the following fundamental concept: 

(3.12) DEFINITION. A fixed dynamical system L    (internal 

definition, as in Section l) is a realization of a fixed input/ 

output map f  iff f • f- }    that is, f  is identical with 
o 

the input/output map of T. , 

In view of the notations of Section 1 plus the special con- 

vention (3.6), the explicit form of the realization condition is 

simply that 

(3.13) f>) « \ (%  (0; - M,  *, a>)) 
u       00 

for all ü)  ft. The symbol * stands for an arbitrary equili- 

brium state in which £  remains, by definition, until the 

application of o>. (Later we simply take * to be 0.) 

; 
••• nnm 
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To solve the realization problem, the critical step is to 

induce a definition of X (of some Z )    from the given f . 

It is rather surprising that this step turns out to be trivial, 

on the abstract level, (On the concrete level, however, there are 

many unsolved problems in actually computing what X is. In 

Section 8, we shall solve this problem, too, but only in the 

linear case.) The essential idea seems to have been published 

first by NERODE [1958]: 

(3.1*0   DEFINITION. Make the concatenation semigroup n into 

a monoid by adjoining a neutral element 0 (which is the nowhere- 

defined function on Z). Then CD H  CD» (read: CD is Nerode 

equivalent to co* with respect to f) iff 

f(a>oV) • f(tu' ov) for all v € fl. 

There are many intuitive, physical, historical, and technical 

reasons (which are scattered throughout the literature and concen- 

trated especially strongly in KALMAN, FALB, and ARBIB [1969]) for 

using this as the 

(3.15)   MAIN DEFINITION. The set of equivalence classes under 

sf>    denoted as Xf - {(t»)f: to € fl}, is the state set of the 

input/output map f. 

Let us verify immediately that (3^15) makes mathematical 

sense: 
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(3.16) PROPOSITION. For each linear, constant input/output map 

f there exists a dynamical system T,     such that 

(a) Zf   realizes f; 

«= XÄ. 
'f 

PROOF. We show how to induce £f, given f. We 

define the state set of T.     by (b). Further, we define the 

transition function of £  by 

(3.17) XoV = (ü))foV = (o>oV)f for all V G Ö, x € Xf. 

We must check that o on the left of • is well defined (note 

two different uses of ©I), that is, independent of the repre- 

sentation of x as (co)f. This follows trivially from (3.1^). 

Now we define the readout map of T,     by 

(3.18) ^ :; Xf-> Y: (a>)f w f(co)(l) 

Again, this map is well defined since we can take V = (ß    as a 

special case in (3.1*0. Then 

T^ (x.v) = T^ ((co0v)f) = f(o)0v), 

and the realization condition (3.6) is verified. Hence claim (a) 

. is correct. Ü 

(3.19) COMMENTS. In automata theory, E  is known as the 

* reduced form of any system which realizes f. Clearly, any two 
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reduced forms are isomorphic, in the set-theoretic sense, since 

the set Xf is intrinsically defined by f. (This observation 

is a weak version of Theorem D of the Introduction; here "unique- 

ness" means "modulo a permutation of the labels of elements in 

the set X ".) Motice also that t     is completely reachable 

since, by Definition (3.15/, every element x = (CD)  of Xf 

is reachable via any element; cu« in the Nerode equivalence class 

(o>) . As to observability of £f}    see Section 10. 

i 
—— 
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k.    MODULES INDUCED BY LINEAR INHJT/OUTPOT MAPS 

We are now ready to embark on the main topics of these lectures. 

It is assumed that the reader is conversant with modern algebra (espe- 

cially: abelian groups, commutative rings, fields.« modules, the ring 

of polynomials in one variables and the theory of elementary divisors), 

on the level of, say, VAN DER WAERPEN, LAEG [19653, Hü [1965] or 

ZARISKI and SAMUEL [1958, Vol. l]. The material covered from here 

on dates from 1965 or later. 

Standing assumptions until Section 10: 

(4.1) All systems £ = (F, G, H) are discrete-time, linear, 

constant, defined over a fixed field K (but not necessarily 

finite-dimensional). 

Our immediate objective is to provide the setup and proof for the 

(4.2) JVNDAMENTAL THEOREM OF LINEAR SYSTEM THEORY. The natural 

state set X- associated with a discrete-time, linear, constant input- 

output Dk p f over a fixed field K admits the structure of a finitely 

generated module over the ring K[z] of polynomials (*~th indeterminate 

2 and coefficients in K). 

(4.3) COMMENTS. Since the ring K[z] will be seen to be related 

t 
to the inputs to Z, this result has a superficial resemblance to the 

fact that in an arbitrary dynamical system £ the state set X^, admits 

the action of a semigroup, namely &,  (see (3« 6) and related footnote). 

It turns out, however, that this action of ß on X, which results • 

from combining the concatenation product in Q   with the definition of 
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§ 

states via Nerode equivalence, is incompatible with the additive 

s-ructure of fl [KAIMAN, 1967, Section 3]. Our theorem asserts the 

existence of an entirely different kind of structure of X. This 

structure, that of a K[z]-module, is net just a consequence of 

dynamics, but depends critically on the additive structure on n 

and on the linearity of f. The relevant multiplication is not 

(noncommutative) concatenation but (commutative) convolution (because 

convolution is the natural product in K[zj); dynamics is thereby 

restated in such a way that the tools of commutative algebra become 

applicable. In a certain rather definite sense (see also Remark 

(4.30)), Theorem (4.2) expresses the algebraic content of the method 

of the Laplace transformatioi especially as regards the practices 

developed in electrical engineering in the U.S, during the 1950's. 

The proof of Theorem (4.2) consists in a long sequence of canoni- 

cal constructions and the verification that everything is well defined 

and works as needed. 

In view of (4.1) and the conventions made in Section 1, fl may 

be viewed as a K-vector space and o:(t) « 0 for almost all t G Z 

and all CD € £. By convention (3.2 ), we have assumed also that 

o)(t) ** 0 for all t > 0. As a result, we have that: 

(a) fl * A [25] as a K-vector space. Let us exhibit the isomor- 

phism explicitly as follows: 

(4.4)   CD • icoftjr e KVJ. 

3y (3*.2 ), the sum in (4.4) is always finite. The isomorphism 

• 
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obviously preserves the K-linear structure on ft. In the sequel, we 

shall not distinguish sharply between a> as a function T -» R  and 

a) as an a-vector polynomial. 

(b) ß Is a free K[z3-module with c generators, that is, 

ß « iftz] also in the K[z]-module sense« In fact, we define the 

action of K[z] on ß by scalar multiplication as 

where 

(*.5) 

*: tiz] x n -» 0: (tr, <U) .-» W<D 

TT'Oi     « 

to 

(a> £ K[zj, j * I, ..., m). 

The product of ir with the components of the vector o> is the 

product in K[z]. We write the scalar product on the left, to avoid 

any confusion with notation (3-6 ). It is easy to see that the module 

axioms are verified; ß is obviously free, with generators" 

(k.6) 

o 

l 

0 

f—j-th position, j « 1, ..., m. 

(cj On ß the action of the shift operator o^ is represented 

by multiplication by z. This, of course,, is the main reason for 

introducing the isomorphism (k.k)  in the first place. 
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(d) Each element of i is a formal power series in 2" . in fact, 

(k*k)  suggests viewing z  as an abstract representation of - t € 2; 

hence we define 

<*.T) r « i^i^cAir1]]. 

By (3.8 ) and (^.l)> r(t) € Kp for each t > 1 and is zero (or 

not defined) for t < 1. In general the sum is taken over infinitely many 

nonzero terms; there is no question of convergence and the right-hand side 

of (fc-7) is to he interpreted stictly algebraically as a formal power 

series. Since r(0) if; always zero (see (3.8)), we can say also 

that 

(e) P is Isomorphic to the K-vector subspace of Kp[[z" ]] 

(formal power series in z   with coefficients in Kp) consisting 

of all power series with 0 first tern. 

The first nontrivial construction is the following: 

(f) T has the structure of a K[z] module, with scalar 

multiplication defined as 

Ik*) :   K[zJ X r -9 V:    (ir,  r) »ir-r   = Tr(<rp)r, 

This product may he interpreted as the ordinary product of a power 

series in z"     by a polynomial in z, followed by the deletion of 

all «erms containing no negative powers of z. The verification of 

the module axioms is straightforward. 
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(g) t   is ft Kls] homomorphism« This lg an immediate conse- 

quence of the fact that f » constant (see (3»10))and that multipli- 

cation "by z corresponds to the left shift operators on Q and V, 

(h) The Nerode equivalence classes of f are isomorphic with 

ß/kernel t.    This is an easy but highly nontrivial lemma, connecting 

Nerode equivalence with the module structure on ß. The proof is an 

immediate consequence of the formula 

JvS 
(if.9)   OJCV « z '©+ V. 

In fact, Ijy K-linearity of f, (4.9) implies 

f(o)ov) = f(o)>ov) for all V€ ß 

if and only if 

f(zk«cu) o f(zk-u>') for all k>0 in Z. 

The proof of Theorem (4.2) is now complete, eince the last 

lemma identifies Xf as defined by (3*15) with the K[z] quotient 

module ft/kernel f. 

We write elements of the latter as [oj] * ay + kernel f^ then 

it is clear that Xf as a K[z]-module is generated by i^t9   •.•** ^iJf* 

since ß itself is generated by e_, ..., e  (see (4.6)). Note also 

that the scalar product in ft/kernel f is 

(4.10)        (IT,   [co]f) h»  Tr-[co]f    *    [7T.O)]f. 

The last product above (that in ß) has already been defined in (4.5). 

The reader should verify directly that (4.10) gives a well-defined 

scalar product. 

• 
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(fc.ll)        RH4ARK.    There is & strict duality in the setup used to 

define    f«    Fros the point of view of homological algebra [MAC LASS 

1963)*  this duality looks as follows.    Since every free nodule is 

protective,  the natural nap 

n:    Q -*   Xf:   o> *-»   [O>) 

exhibits X as the image of a protective modale. On the other 

hand, there is a bisection betveen the set X  and the set 

f( 2) C r. 

! 

H  is clearly a K[rJ-sub-aodule of   V   (with z-f(ü>) = f(z •<*>))> 

asd so Xf   and H  are iscoorphic also as K[:J-modules. It is 

known that T is an injective nodule [MAC IAJiE 1963, page 95, 

Exercise 2] So the natural cap X- ~> Hf: [<o] H» f(co) exhibits 

X- as a submodulc of an Infective gcdule. This fact is basic in the 

construction of the "transfer function* associated with f (Section 7), 

but its lull implication are not yet understood at present. 

There is an easy counterpart of Theorem (h.2)  which concerns a 

dynamical system given in "internal" form: 

(4.12)   PROPOSITION. The state set X- of every discrete-time, 

finite-dimensional, linear, constant dynamical system t - (f,  G, -) 

semits the structure of a K[g)-module. 

PROOF. By definition (see (l.lO)), X = K° is already a 

K-vector space. We make it into a K[z]-module by defining 
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(4.13) •: K[zJ XE0-, A (TT, X)K» F{F)r. Q 

(4.14) CC&MENT. The construction used in the proof of (4.12) is 

the classical trickQf studying the properties of a fixed linear map 

F: K^ -* !T via the K[zj-module structure that F induces on 

K° by (4.13). In **** °* tne canonical construction of £  provided by 

Proposition C3-l6), tße state set X can be treated as a K[z]- 

module irrespective as to whether X is constructed from f (X • X.) 

or given a priori as part of the specification of I (X • X,,). Thus 

the K[z]-module structure on X is a nice way of uiu.-ng the "external" 

and thj  "internal" definitions of a dynamical system. Henceforth *e 

shall talk about a (discrete-time, linear, constant dynamical) system 

L   somewhat imprecisely via properties of its associated K[zj-module X-. 

We shall now give sor^e examples of us in* module-theoretic language 

to express standard facts encountered before. 

(4.1$)   PROPOSITION. If X is the state-module of Z,    the map 

*£ is given by X -> X: XH z«x. 

PROOF. This is obvious from (4.13) if X = X^.. If X = Xf » Xj, , 

then we find that, by (1.17), 

x(l) = Fx(0) + Gü>(C), 

- ?[i)f + Go>(0); 

since x(0) results from input |, x(l) results from input z»| + co(o) 

•:- 

\ 
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and we get 

- i-«Jf + Mo)]f, 

* z-[|jf + Go)(0). 

So the assertion is again verified. • 

Sow ve can replace Proposition (2.1U) t?y the much more elegant 

(k.l6)       JROF06ITIOH. A system E « (f, G,  -) is completely reachable 

if and only if the columns of G generate X-.. 

PROOF. The claim is that complete reachability is equiva- 

lent to the fact that every element x € X-   is expressible as 

x m &LWfy    »j€M«Jj G * [g^ ..., gj. 

In view of (4.15)., this is the same as requiring that x be expressible 

this last condition is equivalent to complete reachability by (2.14). Ü 

(4.17)   COBQLLAHY. Tne reachable states of E are precisely 

those of the subaodule of X_ generated by (the columns of) G. 
- 

(t.iß}   REKARK. The statement that "£ is not completely reachable" 

simply means that X is *iot generated by those vectors which make up 

the matrix G in the specification of the input side of the system  E. 
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It does not follow that X cannot be finitely generated by some other 

vectors. In fact, to avoid unnecessary generality, we shall henceforth 

assume that 

X is always finitely generated over K[zJ. 

From the system-theoretic point of view, the case when we need 

infinitely many generators, that is, infinitely many input channels, 

seems rather bizzare at present. 

(k.lQ)       IMPOSITION. The system X  is completely reachable. 

PROOF. Obvious from the notation: a state x • [£] 

Is reached by J £ Q. D 

(4.20)   PROPOSITION. The system Xf is completely observable. 

PROOF, Obvious from Lemma (h) above: I)(((D]J = f(a>) = 0 

iff to € [0] , which says that the only unobservable state of Xf 

is 0 £ X . • 

Let us generalize the last result to obtain a module-theoretic criterion 

for complete observability. There are two technically different ways of 

doing this. The first depends on the observation that the "dual" of a 

submodule (see Corollary (i*.17)) is a quotient module. The second defines 

observability via the "dual" system (F», H', -) associated with (F, -, K). 

Consider a dynamical system £ « (F,. -, H) and the corresponding 

K[z ] -module Xj. and K~homomorpMsm H: XL ~» Y « K . We can extend H 
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to a K[z]-homomorphism   H    (look back at (?.8)) by setting 

H: V" r 

XM   (Hx, H(z-x), H(z  »X),   ... ). 

From Definition (2.19) we see that no nonzero element of the quotient 

module XL/kernel H is unobservable. Hence, by abuse of language, we 

can say that XL/kernel H is the module of observable states of £. 

Thus we arrive at phrasing the counterparts of (4.16-17) in the fc. mow- 

ing language: 

(4.21) PROPOSITION. A system Z = (F, -* H) is completely observable 

If aal only if the quotient module Xl/kernel H is isomorphic with X_. 

(4.22) CQROUARY. The observable states of Z   are to be identified 

with the elements of the quotient module X^/kernel H. 

(4.23) TERMIHOIZXJY. The preceding considerations suggest viewing 

a system Z   as essentially the same "thing" as a module X, Strictly 

speaking, however, knowing Z » (F, G, H) gives us not only X~ = X^ 

(see (4.13)) but also a quotient module x£ (over kernel H) of a sub- 

module (that generated by G) of X^ that is 

l£ = tfzjG/kernel H. 

If x£ « Xj, we say that X^   is canonical {relative to the given G, H). 

To be more precise, let us observe the following stronger version 

of (4.19-20): 
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(k.2k)        CORRESPONDENCE THEOREM. There is a bijective correspondence 

between K[ z J-bomomorphisms f: fl -» r and the equivalence class of 

completely reachable and completely observable system* Z   modulo a 

basis change in X_. 

Detailed discussion of this result is postponed until 

Section 7. 

A stricter observation of the "duality principle" leads to 

(4.25)   DEFINITION. The K-linear dual of Z =  (F, G, H) is 

T*  = (F», K', C») (• = matrix transposition). The states of 

£* are called costates of £• 

The following fact is an ims»ediate consequence of this definition: 

(k.26)       PROPOSITION. The state set X^*   of Z*   may be given the 

structure of K[z 3 module, as follows: (i) as a vector space XL# 

is the dual of X~ regarded as a K-vector space, (ii) the scalar 

product in X—^ is defined by 

(z~l-x*)(x)    = x*(Fx). 

(4.26A)  REMARK. We cannot define X^ as HOBL^AX^,  K[z]) equal to 

K[z 3-15 near dual of X-, because every "torsion module M over an integral 

domain D has a trivial D-dual. However, the reader can verify (using 

the ideas to be developed in Section 6) that X_^ defined above is iso- 

morphic with Horn^j(X^, K(Z)/K[Z]). See BOURBAKl [Algebre, Chapter 7 

(2e ed.), Section k,  No. 8]. 

II 
MMMBI •* 
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Now we veriiy easily the following dual statements of (^.16-17): 

0.27)   PROPOSITION. A system Z  = (F, -, H) IS completely observable 

if and only if H» generates X_.#. 

(4.28)   COROLIARY. The observable COstates of Z*   are precisely 

the reachable states of £*, that is, those of the submodule of 

^r* generated by H». 

We have eliminated the abuse of language incurred by talking 

about "observable states" through introduction of the new notion of 

"observable COstates". The full explication of why this is necessary 

(as we?JL as natural) is postponed until Section 10. 

The preceding simple facts depend only on the notion of a module 

and are Immediate once we recognize the fact that F may be eliminated 

from statements such as (2.8) by passing to the module induced by F 

via (^.13). But module theory yields many other, less obvious results 

as well, which derive mainly from the fact that K[z] is a principal- 

ideal domain. 

We recall: an element m of an R-module M (R = arbitrary 

commutative ring) has torsion iff there is a r € R such that 

r«m • 0. If this is not the case, m is free. Similarly, M is 

said to be a torsion module iff every element of   M has torsion. 

M is a free module if no nonzero element lias fcnreior. If L C M 

is any subset of M, the annihllator» A., of L is the set 

h (r; T*£   = 0 for ail £ € L} 

it follows immediately that A, is an ideal in R. Note also that 

I  
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the statement "M Is a torsion module" does not imply in general 

that Ay    is nontrivial, that is, A. ^ 0. (Counterexample: t*ke 

an M which is not finitely generated.) 

Coupling these notions with tu« special fact that, for vs, 

E * It*]* we get a number of interesting system»-theoretic results: 

(k.29)       TxtOFOSmOB. L   is finite-dimensional if and only if XT 

is a torsion JK[S]-module. 

COROLLARY. If X^ is free, t   is infinite dimensional. 

PROOF. We recall that "Z * finite •dimensional" is defined 

to he "Xj. « finite-dimensional as A K-vector space". See (l.l8). 

Sufficiency. By assumption X is. finitely generated 

by, say, q nonzero elements *:,,, ..., x  of X-, (which are not 

necessarily the columns of G). Hence 

I 

Since K[z] is a principal-ideal domain, each of the A   is a princi- 

pa.l ideal, say, rMz]   with y\ € K[zj. If X^, is a torsion module, 

then deg v. = n. > 0 for all j • 1, ..., q.  For otherwise r1 

is either zero (and then x. is free, which is a contradiction) or 

a unit which implies x. = 0" contr / to assumption.  Hence we can 

replace each expression 

Ä *i -xy vi X *  X, 7T.-X^ IT.  € K[z] 

• 
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by the simpler one 

q 
x = jSi [7rj (>odrj»-v 

which shows that X^., as a K-module, is generated by the finite set 

Necessity. Let if     be the minimal polynomial of the map 

F: x »•* z»x. If Xj, is finite-dimensional as a K-module, deg •_, > 0. 

Ihis means (by the usual definition of the minimal polynomial in matrix 

theory or more generally in linear algebra) that t„ annihilates every 

x € Xj. so that 3L, is a torsion K[z]-module. D 

Notice, from the second half of the proof, that the notion of a 

minimal polynomial can be extended from K-linear algebra to K[z]-modules. 

In fact, the same argument gives us also the well-known 

(*.-30)   PROPOSITION. Every finitely generated torsion module M 

over a principal-ideal domain R has a nontrivial minimal p ynomiaj. 

VM given by ^ = ^ 

0*.3l)   COROLLARY. If a K[z]-module X is finitely generated with 

q generators and minimal polynomial ^,    then 

dim X (as K-vector space) < q»deg ty. 

(If.32)   REMARK. The fact that L      is completely reachable and is 

therefore generated by m vectors allows us to estimate the dimension 

of £-. by (^.31) knowing only deg ^Y  but without having computed 
1 Af 
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X- itself. (Knowing X  explicitly means knowing F: XH Z«X, etc.) 

In other words, the module-theoretic setup considerably enhances the 

content of Proposition (3«l6). Guided by these observations, we shall 

develop in Section 8 explicit algorithms for calculating dim Z     directly 

from f without first having to compute F. 

(4.33)   PROPOSITION. If Xj, is a free K[z 3-module, no state of 

L   can be simultaneously reachable and controllable. 

PROOF. We recall that "X^, = free" means that X^, is 

(isomorphic to) a finite sum of copies of K[z]. Suppose for 

simplicity that X^ • K[z]. Then x = reachable means that x = 1-1 

for some I € K[z], Similarly, x = controllable means that 

z  «x + o)«l = 0 for some o> £ K[z]. Hence if x has both properties, 

(z|ü)'| +o)).l = (Io0>)-1 •= 0. 

This shows that 1 is annihilated by Soou, the input 5 followed 

by 0), which contradicts the assumption that X~ is free, G 

The most important consequence of Theorem (4.2) is due to the 

fact that through it we can apply to linear dynamical systems the well-known 

(k.3k)        FUNDAMENTAL STRUCTURE THEOREM FOR FINITELY GENERATED MODULES 

OVER A PRINCIPAL IDEAL DOMAIN R (invariant Factor Theorem fc • Modules). 

Every such module M with m generators is isomorphic to 

0u35)   S/tjR «... © R/trR © R
8 

3WM* 
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where the R/t.R are quotient rings of R viewed as modules over R, 

the if. (called the invariant factors of M) are uniquely determined 

b£ M up to units in R, t«lt|«i* i = 2, ,.., q, and, as usual, Rs 

denotes the free R-module with s generators^ finally, r + s < m. 

Various proofs of this theorem are referenced in KAIMN, FALB, 

and ARBIB [19^9,  page 270], and one is given later in Section 6. 

Rote: The divisibility conditions imply that M is a torsion 

module iff s • 0 and then t» y_. —————— n      i 

One important consequence of this theorem (others in Section t
7) 

is that It gives us the most general situation when 3C, is not a 

torsion module t.    For instance, combining (4.33) with (4.34), we 

get 

(4.36) PROPOSITION. A system cannot be simultaneously completely 

reachable and completely controllable if its K[ 2 3-module X has any 

«-dimensional components (i.e., s > 0 in (4.35)). 

(4.37) REMARK. Although our entire development in this section may 

be regarded as a deep examination of Proposition (2.14), most of our 

comments apply equally well to (2.7), since both statements rest on 

tha & oe algebraic condition (2.8). In fact, the only remaining 

thing to be "algebraized" is the notion of "continuous-time". We 

shall not do this here. Once this last step is taken, the algebraization 

of the Laplace transform (as related to ordinary linear differential 

equations) will be complete. 
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5. CYCUCirc AND RELATED QUESTIONS 

We recall that an R-module M (R = arbitrary ring) is cyclic 

iff there is an element m € M such that M = Rm. [it would be 

better to say that such a module is monogenic: generated by one 

element m. ] 

If M is cyclic, the map R -* M: r >-* r»m is an epimorphism 

and has kernel A , the annihilating ideal of m. Ifois plus the 

homomorphism theorem gives the well-known 

(5.1)   PROPOSITION. Every cyclic R-module K with generator m 

is isomorphic with the quotient ring R/A  viewed as an R-codule. 

This result is much more interesting when, as in our case, R 

is not only commutative and a principal-ideal domain, but specifically 

the polynomial ring K[z]. 

So let X be a cyclic K[z]-module with generator g and let 

A = • K[z], where fr  is the minimal or annihilating polynomial of 

g. By oommutativity and cyclicity, A = A„. Hence •  is a minimal 
g A g 

polynomial also for   X.    Write    i'    - $   m y-.    In view of (5.1), 
g -A 

X * X[Z]/VK[Z].    Let us recall sose features of the ring   K{zJ/fXlz]: 

(i)    Its elements are the residue classes of polynomials    IT (mod v), 

rr € K[z],    Write these as    [ir]    or    [TT]..    Multiplication is defined as 

M-M m [TRJ]. 

(ij)    Each    [if]    is either a unit or a divisor of zero.    In fact, 

[ir]    is a unit iff   (?r, y) - greatest common divisor of   ir;  y   is a 

^mmmmMumm '•-- 
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unit in   Kl«]    (that Is,    (TT.  •) € K).    Then 

CT + tt   =   1   (er, T € K[z]) 

so that [ff] is the inverse of IT}.    On the other hand, If 

(T, •) « 0 f unit in Klz], then both [v] and [t/ö] are zero 

divisors since [w]*[t/0] = [(TT/O)*] =* 0. 

(ill) If • is a prime in K[z] (that is, an irreducible poly- 

ncnial with respect to coefficients over the ground field K), then 

by (ii) K[z]/tK[z] is a field. This is a very standard construction 

in algebraic number theory. 

Since it is awkward to compute with equivalence classes [ir], we 

ahall often prefer to work with the standard representative of [ir], 

namely a polynomial ir of least degree in [ir]. 5 is uniqvely deter- 

mined by [ir] ana the condition deg TT < deg f. Henceforth   will 

always be used in this sense. 

The next two assertions are immediate: 

(5.2) PROPOSITION, K[z]/tKEz] as a K-vector space is isomorphic 

to the K-vector space (£'  • (I € K[z]: deg I < n • deg V). 

K[z]/tyK[z] is also Isomorphic to §•   '    as a K[z3-module, provided 

we define the scalar product in (B* ' by. (TT-I) W TT|. 

(5.3) PROPOSITION. If Xj. is cyclic with minimal polynomial \!-', 

then dim Z = deg V. 
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Looking back at Sheerer (4.34), we see that tbe most general 

K[zj-nodule is a direct sum of cyclic K[z]-modules. By combining 

(5-3) and (4. 34) and using the fact that dimension is additive under 

direct summing, we can replace (431 ) toy tfce following exact- result: 

(5.4)    PROPOSITION. If Xy is a torsion module with invariant 

factors •., ..., t  then 

dim Z = dag t, + ••• + deg t 

A simple but highly useful consequence of cyclic!ty is the 

so-called control canonical form [KALMAN, FALB, and ARBIB, 19^9, 

page 44] for a completely reachable pair (F, g) where g is an 

n X 1 matrix. We shall now proceecTto deduce this result. 

Observe first that "(F, g) completely reachable" is equiva- 

lent to "g generates Xp, the module induced by F via (4.13)." Let 

XF(z)    ==   det (zl - F), 

*   zn + CLZ
11

"
1
 + ... + a ,   aie K> 

then   X^   is the characteristic (and also the) minimal polynomial for 

Xp.    [This is a well-known fact of module theory.    See for example 

KAIMAN,  FALB, and ARBIB U969, Chapter 10,  Section 7] for detailed 

discussion.]    As in KALMAN [1962],  consider the vectors 

«WWW" 
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»B - g - l.g - ^(l).ft 

(5.5) \ 

«x • «Ä"1*g*«1*
ll"2-g+ ... +0^^ « X^(z)-g 

,(nfl) In X-. [For consistency, Xi  '(z) » Xw(»).] These vectors are 

easily seen to be linearly independent over K. They generate X-, 

since Xy *©n' as a K-vector space (Proposition (5-2)). Hence 

e , ..., e  are a basis for L asa X-vector space. With 

respect to this basis, the K-homomorphism 

s: K° -• K?: XM feoc 

is represented by the matrix 

(5.6) •     • • •     • • • 

-a •Vi -°W-a 
• 

0 
— 

0 

0 0 

• • • 

0 

• • • 

1 

•°2 -°i 

[This is proved by direct computation. In particular, it is 

necessary to use the fact that 

——  
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- -vv] 

3ote that the last row of F in (5.6) consists of the coefficients 

of X_. By definition, g • e . Hence g as a column vector in 

Ii  has the representation 

(5-7)   g = 

Conversely, suppose (pf  gj have the matrix representation (5*6-7) 

with respect to some basis in fc. Then (by direct computation) 

the rank condition (2.8) is satisfied and therefore (F, g) is 

completely reachable in both the continuous-time and discrete- 

time cases (Propositions (2.7) and (2.l6)). 

We have now proved: 

(5.8) PROPOSITION. The pair (F, g) is completely reachable 

if and only if there is a basis relative to which F is given by 

(5.6) and g by_ (5-7). 

(5.9) COROLLARY. Given an arbitrary n-th degree polynomial 

A(z) = z11 + ßj«   + ..-.+ ß  in K[z], K = arbitrary field. There 

exists an n-vector £    such that A = X_ .,     if and only if the 

pair (F, g) is completely reachable. 
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FBOOF.    Suppose that    (F,  g)    is completely reachable. 

With respect to the same basis (5*5) 'which exhibits the canonical 

forms (5.6-7)* define 

(5.10)   £   = 

p  n 

A • V 
Then verify by direct computation that ^ « tali* 

Conversely, suppose that (F, g) is not completely 

reachable» Then, recalling Proposition (2.12) (which is an 

algebraic consequence of (2.8) and hence equally valid for both 

continuous-time and discrete-tise), dim X > 0 and so is also 

deg \   . Since X. is an F-invariant subspace of X = Kr, 
^22 

the polynomial X_   is independent of the choice of basis in 
n 

Jr   and the same is true then also for X_  • \J\,    . (In 
*22   T   Fll 

particular, X^  does not depend on the arbitrary choice of 
*22 

X2 in satisfying the condition X = X^® X .) In view of (2.12), 

we have for all n-vectors t, 

Vgl- " ** -gii,XF • *****     >0- * g*     *u gx*x *22      *22 

This contradicts tb* claim that A ~ X~ ,, is true for any > 

with suitable choice of /. Q 

In view of the importance of this last result, we shall 

rephrase it in purely module theoretic terms: 
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(5.U)       THEOBM.    Let   K   be an arbitrary field and   X   a cyclic 

K[z]-nodule with generator   g   and minimal polynomial   X   of degree 

n.    There is a bisection between   n-th   degree polynomials 

A(z) » zn + ß,zn~ + ... + ß  in K[z] and K-homomorphisms 

i: K11-> K11: x'^'.g H J .g (j = 1, ..., n and x'*' defined 

as in (5*5))  such that A is the minimal polynomial for the 

nev module structure induced on X by the map z^: XH Z»X - i(x). 

Note that in (5.11) i(x) corresponds to gi!x in (5.10). 

The map £   in (5«U) defines a control law for the system 

s = (*> g, -) corresponding to the module X. The passage from 

z to z^ is the module-theoretic form of the well-known open-loop 

to closed-loop transformation used in classical linear control theory. 

PROOF. Since the vectors X^'.g, ..., X^-g forma 

basis for & , £'  is clearly a well-defined K-homomorphism. We 

treat £   formally as an element of K[z] (that is, an operator 

on X is a K-vector space), by writing i*x = 4(f*g)j vhere 

6 represents the equivalence class [£]={£: I*g » x}. Unless 

identically zero, I   is never a K[z]-homomorphism and therefore 

£   does not commute with nonunits in K[z]. 

Define £   = ß - a ,    j = 1, ..., n. We prove first, 

that this choice of £   Implies x'*"(z • £).» x'J\z) for 

j 5 1, ..., n + 1. Use induction on j. By definition, 

V^(z - /} = X^^(z). fin the general case, 

• 

' 
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^^(z .. j)-g   -     [(a - i)X(j)(z - i) + ßj-g       (def. of X(^\ 
*» 

-    I(z - i)X^'(ss) + ß,]*g (inductive hypothesis), 
V 

=    [zX(d)(z) + ß^ - JJ-g (def. of £), 

«    [zx'j)(z) +aj3-g (def. of Jj), 

=   X^(i).g (def. of xO+l>). 

It follows (case ;) = n + l) that X annihilates X 

regarded as a K[z#]-module. On the other hand, the 

V (z^)«g, ..., A '(z#)*g is a basis for X as a K-vector 

space since X* (ft) ft •••> X*n'(z)-g was such a basis. So X 

is cyclic with generator g also as a Kfz^]-module. Hence 

by Propositions (5.1-2) the annihilating ideal of g* with respect 

to the K[z#]-module structure cannot be generated by a polynomial 

of degree less than n, that is, A is indeed the minimal poly- 

nomial with respect to z#. The correspondence X f* £   is obviously 

bijective. ü 

The proof immediately implies the following 

(5.12)   COROLLARY. Let £ - f»g be any element of X viewed 

as a K[z]-module. Then x has the representation |^«g with 

respect to the Kfz»]-module structure on X, where I   and |# 

are related as 

i(z) = ^ l4X
(J>(«).g 
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So the opexi-loop/closed-loop transformation is essentially a 

change in the canonical basis, provided X is cyclic. 

It is interesting that the X^' ha/e long been known in 

Algebra (they are related to the Tschirnhausen transformation 

discussed extensively by WEBER [1898, §^6, 51*, jk.  85, 96]), but their 

present (very natural) use in module theory seems to be new. 

**Theorem" (5«ll) toay he viewed as the central special case 

of Theorem A of the Introduction. Let us restate the latter in 

precise form as follows: 

(5.13)   THEOREM. Given an arbitrary n-th degree polynomial 

A(z) « zn + M11"1 + ... + p  in K[z], K = arbitrary field. 

There exists an n X m matrix L over K such that X_ „., «A 

if and only if (,F, G) is completely reachable. 

For some time, this result had the status of a well-known folk the >rem, 

considered to be a straightforward consequence of (5*9)» The latter 

has been discovered independently by many people, (I first heard 

of it in 1958, proposed as a conjecture by J. E. Bertram and proved 

soon afterwards by the so-called root-locus method.) Indeed, the 

passage from (5«ll) to (5*13) is primarily a technical problem. A 

proof of (5.13) was given by LAIIGENHOP [19&-] and subsequently 

simplified by WONHAM [I967]. The first proof was (unnecessarily) 

very long, but the second proof is also unsatisfactory; since 

it depends on arguments using a splitting field of  K 

• 

*-*The material between these marks was added after the Summer 
School. 1 
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and fail when K is a finite field. Ws shall use this situation 

as an excuse to illustrate the power of the module-theoretic 

approach and to give a proof of (5-13) valid for arbitrary fields. 

The procedure of IANGENHOP and WONHAM rests on the following 

fact, of which we give a module-theoretic proof: 

(5.HO   LEMMA. tet K be an arbitrary but infinite field. Lob 

F be cyclic* and (F, G) completely reachable. Then there is 

an m-vector a £ KT such that (F, Ga) is also completely 

reachable« 

We begin with a simple remark, which is also useful in 

reducing the proof of (5*13) to Lemma (5<l8). 

(5 «15)   SUBLEMMA. Every submodult of a cyclic module over a 

principal-ideal domain is cyclic. 

PROOF OF (5.1*0. We use induction on m. The case 

m = 1 is trivial. The general case amounts to the following. 

Consider the submodule Y of X • X_ generated by the columns 

gj* •••, g^ of G. In view of (5.15), Y is cyclic. By the 

inductive hypothesis, we are given the existence of a cyclic 

generator of Y of the form g = a.g1 + ... + a ,-gL -,> a. € K. 

We. must proves for suitable a, ß € K the vector a-g» + ß«c 

is a cyclic generator for X. 

*0f course, this means that the K[z]-module X_ (see (^.13)) 
is cyclic. 

—— 



69  — 

R.E.Kaiman 

By hypothesis,    X   has an (abstract) cyclic generator 

gy.    By cyclicity we have the representations 

gy     =      1-gj and =    »»ftp       % H € K[z] 

HeLje our problem is reduced to proving the following: for suitable 

a, ß £ K the polynomial OT) + ßji is a unit in K[z]/XJC[z]. This, 

in turn, is equivalent \.o proving 

(5.1o)   a*) + ßu- {   0 (mod ©A)  i = 1, ..., r 

where 0-, ..., Q      in K[z] are the unique prime factors of 

Xp. Let   mean the representative of least degree of equivalence 

classes mod 0.» Then no pair (tj., .i.), i = 1, ..., r can be 

zero. For if one is, then G.I ()C, r\,  n), that is, Xp/O., annihilates 

the submodule X' » K[z]gy + K[z]g, whence X' is a proper sub- 

module of X, contradicting the fact that (F, G) is completely 

reachable. If all the p. are zero, then every 1L £ 0, so TJ 

is a unit in K[z]/X_,K[z], and gy is already a cyclic generator. 

So let a = 1. Then the condition TL + ßu, = C eliminates at most 

r   values of ß from consideration. Since K is infinite by 

hypothesis, there are always some ß which satisfy (5.l6).     O 

An essential part of the lemma is the stipulation that a € K•. 

The hypothesis "F - cyclic + (F, G) = completely reachable" means that 
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that is, the lecae. is trivially true for sane a € &[z]    since 

g^ a Ga. But since we want a € K, -there must, be interaction 

between vector-sp?-ce structure and nodule structure, and for this 

reason ths lemma is nontrivial. As a natter of fact, the learn is false 

when K • finite field. The simplest counterexaople is provided 

when (5-12) rules out a single nonzero value of ß, thereby ruling 

out all ß- 

(5.1?)   COUTfTERBCAMPLS. let K * Z/22, that Is, tne ring of 

integers modulo the prime ideal 2Z. Consider 

0 1 
1 1 
O 0 
O 0 
0 0 

0 
0 
0 
0 
0 

0 0 
0 0 
1 0 
0 0 
0 1 

G 

0 0 
1 0 
0 0 
0 1 
1 1 

notice tint   Jy^X19X2ex3   (as a K[z]-module), where the 

minimal polynomials of the direct sumc&nds are 

X^a)   «   I   + * + 1, 

X^s)   »   z + 1. 

All these factors are relatively prime, (>L, X^ XL) « i, hence 

X is cyclic. Bbtice also that g. generates X © X- while g 

generates X ©X-. A cyclic generator for X is 

«X 

0 
1 
0 
1 

Li. 
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A simple calculation gives 

3 \        2 
e^  -  * '%#   %  •  (* + * * **'%• 

Conditions (5«l6) ore here 

OM + ß-0 ^ 0 (mod X^), 

a-0 + ß.l ft 0 (mod X2), 

a-1 + ß.l   {   0    (mod Xj. 

The < conditions have no solution in &/2Z. 

At this point, the following is the situation concerning 

Theorem (5-13) s 

(1) Its counterpart. Theorem A of the Introduction, van 

claimed to be true in the continuous-time case under the hype :iesis 

of complete controllability. 

(2) In the discrete-time case (5-13) with the preceding 

hypothesis Theorem A is false, because of the counterexample: the pair 

(F • nilpotent, G = 0) is completely controllable, but evidently 

*F-GL* *s ^dependent °* *•» However, in view of (5.11), .Theorem 

(5*13) might be true also in the discrete-time case if "cujplete 

controllability" is replaced by "complete reachability", this modi- 

fication being immaterial in the continuous-time case. 

(3) Because of (5.17)* we migut expect that a theorem like (5»13) 

is false for an arbitrary field K. 
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(k)    If our general claim that reachability properties are 

reflected in module-theoretic properties is true, then (5.13) 

should hold without assumptions concerning K, because the principal 

module-theoretic fact, that K[z] • principal ideal domain, is 

independent of the specific choice of K. 

We now proceed to establish Theorem (5.13)- That is, special 

hypotheses on K will turn out to be irrelevant. 

PROOF OF (5.13). Necessity is proved exactly as in (5.8). 

Sufficiency will follow by induction on m, once we have proved it 

in the special case m = 2: 

(5.18)   LEMMA. Let K be an arbitrary field and let X be a 

K[z]-module generated by g , g . There is a K-homomorphism I 

(of the type defined in (5*11) such that if z^ - z  - I   induces a 

K[z^3-module structure on X then X is cyclic with respect to this 

structure and is generated by either g. + g_ or g . 

PROOF. Let Y« Xfzjg-j^ and Z = K[z}g2. 

Case 1. YHZ = 0, that is, X = Y © Z. In (5.11) 

take an i such that X(x) =0 for all x € Z. Replacing z by 

z# • z - i   will change the K[z3-module structure on Y out pre- 

serve that on Z. Further, choose i so that the new minimal poly- 

nomial X on Y is prime to the unchanged minimal polynomial X_ *  X 
TZ 

on Z. Thus there exist polynomials V, cr such that VX + orX • 1« 

3y hypothesis,, every x € X has the representation 

x = y + z = vgl + £'g2- 
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New verify that 

x   = (ipX + £vX).(gl+ g^, 

•   nd - vx).gl+ 5(1 - ax).%, 

«   n'gx + £-g2- 

Hence g, + $9 is indeed a cyclic generator for X as a 

K[ z^ 3 -module. 

Case 2. YHZ = W / 0. Lot wCW. By hypothesis, 

there is a § € K[z] such that w = |'g  and therefore, by 

cyclicity of Y, there is also a T\ € K[z] such that I'g* - w = ij'g,« 

Take same w f  0. Then if i\  = unit (mod >0 we are done because 

ri~ **ßp generates Y, and so Z = X. In the nontrivial case, 

i\  •£ unit (mod )0. To show: there is a suitable new module structure 

on X such that T^ = unit (mod X^), X^ being the minimal poly- 

nomial of X as a "K[z^j-module. 

The main facts ve need are the following: 

! 

(5.19) SUBLEMMA. Let X be a fixed element of K[s] with 

deg X «B n, Fv the companion matrix of X given by (5.6), X 

the cyclic module induced by F^? and g a cyclic generator of 

X„ . Then TJ £ K[z] is a unit modulo X if and only if TJ«& is 
*X ^    ~ " " ""'""   ' 

also a cyclic generator of X„ . 
*X 

PROOF. Obvious. 
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(5.20)   SUBLEMM/L Same notations as in (5.19). Write 

1 •  i nj^^(z)   (X^ defined in (5.5)} 

Then %    is a unit modulo X if and only if 

(5.21)   det (y, P^r, ..., S^V) 7* 0. 

where y is the column vector 

(5.22)  y = 

PROOF. Since X*1', ..., X^n' is the basis for the 

K-vector space of all polynomials of degree < n, the n-tuple 

(1J_, ..., If) is uniquely determined by ij. By definition R, 

is the matrix representing the module operator z: x H  Z«X relative 

to the special basis e,, ..., e  in X_  given by (5.5). Similarly, 

using one of the module axioms, we verify that 

V6 =  jfc.IV  (*)]'* 

in other words, the numerical vector (5.22) represents the abstract 

vector   Tj«g   in   X~     relative to the same basis   en,   .,., e .    Recall 
J?X in 
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that rj'g generates 3L,  iff (F,,, T((Fy)g) is complete reachable, 

fiy (2.7) the latter condition is equivalent to (5»2l). The rest 

follows from (5-19). D 

(5.23)   SUBLEMMA. Same notations as in (5-19) and (5*20). Given 

any nonzero numerical n-vector (5»22), there exists a polynomial X 

such that (5.2l) is satisfied. 

PROOF. Let 7|  be the first member of the sequence of 

numbers TJ , ?L, ... which is nonzero. Write 

n-1 X(z) - zn+ c^z11"1 + ... + an, 

and determine the first r coefficients of X by the rule 

\   Vi 
—] —                       "*! f"     "1 

n a r 0 

n-1 Vi 0 

• 

• 8 • 

• • 

r m 
1 0   0 

(Since ail numbers belong to a field, the required values of 

a , ..., a  exist.) Now checl^ by ccmutation, that these conditions 

reduce the matrix in (5.21) to the direct sum of two triangular 

matrices, each with nonzero elements on its diagonal. G 

In view of (5.12), it follows from these facts that we can 

always choose a new )L s 1  such that r\.   - unit mod X.. 
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The proof of Case 2 is not yet complete, however, because 

we must still extend the K[ z^] -module structure from Y to X. This 

is easy. Write first Z * W e Z» and then X = Y 0 Zf, where the 

direct sum is now with respect to the K-module structure of X. Extend 

I    from Y to X   by setting ^IZ' « 0. ITow we have a now minimal 

polynomial X^. defined over X Since z^ -  z. on Y, % « tL.« By 

(5.12), I is replaced by some |^ such that 

(5.24)    w = e*-^  = %-&2> 

that is, our previous representation of w ^ 0 in W induces a 

similar representation with respect to the new K[z^]-module structure 

on X- Since 1^ is a unit modulo Xi., we can write 

fi% » 1 + xXt, with <T, T G K[z*]. 

By (5.24), we have, with respect to the    K[z.J-stricture, 

(o-e*).g, 

=     0-.(T^.g;L), 

=    (l+xXt).6l, 

55 6r 

This proves that g0 generates both Y and Z; that is, g_ is 

a cyclic generator for X endowed with the K[z^]-structure. The 

proof of Lemma (5.18). is now complete. . G 
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It should be clear that Theorem (5.13) is not a purely module- 

theoretic result, but depends on the interplay between module theory, 

vector-spaces, and elimination theory (via (5.2l)). For instance, 

the fact that £   can be extended from Y to X, which was needed 

in the proof of Case 2, is a typical vector-space argument.** 

There are many open (or forgotten) results concerning cyclic 

modules which are of interest in system theory. For instance, it 

is easy to show that an n X n real matrix is cyclic iff a certain 

polynomial Y 6 R[z,, ..., z 2] is nonzero at F; the polynomial 

¥ is roughly analogous to the polynomial det in the same ring, 

but, unlike in the latter case, the general form of V   does not seem 

to be known. 

We must not terminate this discussion without pointing out 

another consequence of cyclicity which transcends the module frame- 

work. Since X = cyclic with generator g is isomorphic with 

K[z]/XK[z]; it is clear that X also has the, structure of this 

commutative ring, tbtfi is, the product is defined as 

xXy = 5-gXrj-g = (fn>g = (fn)-g. 

If X =» irreducible, then X is even a field. Hence, in particular, 

X has a galois group. No one has ever given a dynamical interpreta- 

tion of this galois group. In other words, there are obvious algebraic 

facts in the theory of dynamical systems which have never been examined 

from the dynamical point of iriew* For some related comments in the 

setting of topological semigroups, see MY and WALLACE [1967]. 



•-•'•• — -  ~r— -,—'"T—"'•' "—*—"^-T"" 

— 78 — 

R.E. Kaiman 

6. TRANSFER FUNCTIONS 

(6.0)    PREAMBLE. There has been a vigorous tradition in engineer- 

ing (especially in electrical engineering in the United States during 

19^0-1960) that seeks to phrase all results of the theory of linear 

constant dynamical systems in the language of the Laplace transform. 

Textbooks in this area often try to motivate their biased point of 

view by claiming that "the Laplace transform reduces the analytical 

problem of solving a differential equation to an algebraic problem". 

When directed to a mathematician, such claims are highly misleading 

because the mathematical ideas cf the Laplace transform are never in 

fact used. The ideas which are actually used belong to classical 

complex function theory: properties of rational functions, the 

partial-fraction expansion, residue calculus, etc. More importantly, 

the word "algebraic" is used in engineering in an archaic sense and 

the actual (modern) algebraic content of engineering education and 

practice as related to linear systems iä very meager. For example, 

the crucial concept of the transfer function is usually introduced 

via heuristic arguments based on linearity or "defined" purely formally 

as "the ratio of Laplace transforms of the output over the input". To 

do the job right, and to recognize the transfer function as a natural 

and purely algebraic gadget, requires a drastically new point of view, 

which is now at hand as the machinery set up in Sections 3-5. The 

essential idea of our present treatment was first published in 

KAIMAN [1965b]. 

 — 
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The first purpose of this section is to give an intrinsically- 

algebraic definition of the transfer function associated with a 

discrete-time, constant, linear input/output map (see Definition (3»10)) 

Since the applications of transfer functions are standard, we shall not 

develop them in detail, but we do want to emphasize their role in relat- 

ing the classical invariant factor theorem for polynomial matrices to 

the corresponding codule theorem (^.3^)* 

Consider an arbitrary K[z]-homomorphism f: fl -» T (see lemma 

(g) following Theorem (k.2)).    Then as a "mathematical object" f is 

equivalent to the set {f(e.), i = 1, ..., m, e. defined by (b.6)}, 

since 

o 
(6.1)    f(ü>) = ^oyfte.j) 

(The scalar product on the right is that in the K[z]-module r, as 

defined in Section 4.) By definition of P, each f(e.) is a formal 
w 

power series in z"  with vanishing first term. We shall try to 

represent these formal power series by ratios of polynomials (which 

we shall call transfer functions*) and then we can replace formula (6.1) 

by a certain specially defined product of a ratio of polynomials by a 

polynomial. Some algebraic sophistication will be needed to find the 

correct rules of calculations. These "rules" will consititute a 

rigorous (and simple) version of Heaviside's so-called 'calculus". 

There are no conceptual complications of any sort. (However, we are 

dodging some difficulties by working solely in discrete-time.) 

*This entrenched terminology is rather unenlightening in the present 
algebraic context. 
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Let X« • fl/kernel f be the state set of f regarded as 

a K[a]-module. We assume that Xf is a torsion module with nontrivial 

minimal polynomial if.    Then, for each j = 1, ..., m we have 

(6.2)   ••fCe^) - *(t-«j) • n([*-«jl) s n(\!f-[ej]) * 0. 

By definition of the module structure on T, (6.2) means that the 

ordinary product of the power series f(e.) by the polynomial \|r is 

a (vector) polynomial. Hence (6.2) is equivalent to (notation: 

no dot - ordinary product) 

(6.2«)   ff(e ) * ©j € Xp[a], j = 1, ..., m. 

Intuitively, we can solve this equation by writing f(e.) = ©,/Y« 

There are two ways of making this idea rigorous. 

Method 1. Define 

(6.3)   f(ej) = ij/# 

-1 as the formal division of 0. by t into ascending powers of z 

Check that the coefficient of z° is always 0. Verify by computation 

that the power series so obtained satisfies (6.2') 

Method 2. Multiply both sides of (6.2') by z"m. Write 

•(a"1) *= «"V«) and ©.(z"1) = z"n0(z). Then $ 6 Kfz"1] CKffz'1]] 

and (6.21) becomes 

(6.2")    n(ej   = IjCÄi"1}, 

Moreover, the 0-th coefficient of J is 1 (because of the convention 

———— 
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that the leading coefficient of   \|r   is    l),    aence   ?   is a unit in 

K[ [z"1]]    and therefore 

(6.3f) f(ej)    =   S^^V1). 

Note that (6.3) and (6.3') actually give slightly different defini- 

tions of f(e.), depending on whether we use a transfer function with 
u 

respect to the variable z or %    . (Both notations have been used 

in the engineering literature.) For us the formalism of Method 1 is? 

preferable. (The calculations of Method 1 can be reducer; by Method 2 

to the better-known calculations of the inverse in the ring K[[z" ]].) 

Summarizing, we have the easy but fundamental result: 

(6.If)    EXISTENCE OF TRANSFER FUNCTIONS. There is a Directive 

correspondence between K[z]-homoraorpnisns f: ß -* T with minimal 

polynomial f and transfer function matrices of the type 

where 0 € Kp[z], deg 0 < deg t.« and ^ is the least common 

denominator of Z. 

In many contexts, it is preferable to deal with the Z  corres- 

ponding to f rather than with f itself. Because the correspondence 

is bijective, it is clear that all objects induced by f are well- 

defined also for Z  and conversely. Thus, for instance, 

dim Zf   = dim f = dim Xj 

$2    -    least common denominator of Z, 

- minimal polynomial of f„. 
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(6.5) RBÄRK.    In view of Propositions (h.20-21),  the natural 

realization of   Z,    namely   X_ - X-, ,    is completely reachable as 
3 

well as compile > observable. Kot having this fact available before i960 

has caused a great confusion Questions such as thoasresolved by Theorem (5.13) 

tended to be attacked iOperithsically, using special tricks amounting 

to elementary algebraic manipular.ions of elenents of Z. Very few 

theoretical re-ilts could be conclusively established by this roues 

until the conceptual foundations of the theory of reachability and 

observability were developed. 

The preceding results nay be restated as "rules" whereby the 

values of f nay be computed using Z. We have in fact, f(a>) « 2-OJ, where 

(6,6) Z-CD 2 (fZa,)/*, 

« multiply the polyno Jal matrix tZ consisting of 
the numerators of Z with <JD, reduce to minimal- 
degree polynomials modulo if   and then divide 
formally by t as in Method 1 above. 

We can also compute the entire output of the system 22* (that is, 

all output values following the application of the first nonzero input 

value) by the rule 

(6.7)    Zto « (*&))/*, 

«= same as above, but do not reduce modulo ty. 

In this second case, the output sequence will begin with a positive 

power of Zo (The coefficients of the positive powers of z are 

thrown away in the definition of f (see (3«7)) and in the definition 
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of the scalar product in F, in order to secure a simple formula 

for X « n/kernel f.) 

Many other applications of transfer functions may be found in 

KAI24AU, FALB, and ARBIB [1969,  Chapter 10, Section 10], 

It is easy to show that the transfer function associated with 

the system £f = (F, G, H) is given by Zf * H(zl - F)"^.  (This is 

just the formal Laplace transform computed from the constant version 

of (1.12) by setting z = d/dt or from (1.17) by setting 

x(t + l) • zx(t).) Probably the simplest way of computing Z is 

via the formula 

6.8)     (21 - F)-1 = ^ z^HrHz),      q = deg *r, 

where if      is the minimal polynomial of the matrix I    and the super- 

script denotes the special polynomials defined in (5»5). The matrix 

identity (6.8) follows at once from the classical scalar identity 

[WEBSR, 1898, §1J] 

7r(z) - TT(W) = (z - w) X z¥q"l'(w),  q = deg IT, 

upoii setting w = F, IT = tF> and invoking the Cayley-Hamilton theorem. 

Much of classical linear system theory was concerned with computing 

Z . In the modern context, this problem "factors" into first solving 

the realization problem f -* £  and then applying formula (6.8). See 

Sections 8 and 9» 

One of the mysterious features of Rule {6.6)  (as contrasted with 

the conventional rule (6.7)) is the necessity of reducing modulo \|r. 

The simplest way of understanding the importance of this 
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aspect of the problem is to show how to relate the module invariant 

factors occuring in the structure theorem (4.3*0 to the classical 

facts concerning the invariant factors of a polynomial matrix. 

(6.9) INVARIANT FACTOR THEOREM FOR MATRICES. Let P be a p X m 

matrix with elements in an arbitrary principal-ideal domain R. Then 

(6.10) P = AUB, 

where A and B are p X p and m X m matrices (not necessarily 

unioue) with elements in R and det A, det B units in R, while 

(6.11) a diag (A., ..., % ,  0, ..., O) with Ä. € R 

is unique (up to units in R) with U^ .j i = 1, ..., q - 1, and 

q. * rank P. The \    are called the invariant factors of P. 

As anyone wculd expect, there is a correspondence between the 

module structure theorem (4.3*0 &nd the matrix structure theorem (6.9) 

and, in particular, between the respective invariant factors t., ..., y 

and \j, ..., A . Let us sketch the standard proof of this fact follow- 

ing CURTIS and REINER [1962, §13-3] who also give a proof of (6.9). 

PROOF OF (4.34). Consider the R-homomorphism from Rm 

onto M given by \ii  e 1-» g , where the e. are the standard 

basis elements of K  (recall (4.6)) and the g. generate M. 

Clearly, M * RS/N> where N = kernel n. It can be proved that 

N w R  is a free submodule of R , with a basis of at most & < m 

elements. Write each basis element f. of N as £ p. «e., p  € R. 
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Apply (6.9) to the R-matrix   P.    Define   f   = £ c    «f ,    C = B"1 

*d s Z VV   * tf-M'U),    fk s £•§       Hence 

R e • - \ 

Then, by "direct sura", 

r 

M « B/-ARe...®RAR$^
J  i „ , r        '1     >J--J., ..., r. 

That is, (4.34) holds with tj-^andr-rankP-i. D 

By the same type of calculations, we can prove also 

(6.12)   THEOREM. Let X., ».., Ä  be the invariant factors of 

fZ given by (6.9), and let (Ä., \|f) =0., i = 1, ..., £. Then the 

invariant factors of X~    are 

*2 - */0?, 

where r is the smallest integer such that iff | \    for 

i = r + I* . •',  q « rank YZ. 

PROOF. Consider the };[z]-spimorphism u: fi -> X_: o> ~» [ö>L« 

Clearly, a) € [OL = kernel u iff Z«o> = 0 (see (6.6)). Equivalently, 

(\|fZ)o) = 0 (mod ty),    Using the representation whose existence is claimed 
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ty (6.9),  write    tZ = CAD    (C, A D " matrices over K[zJ.)    Define 

W - D"1!?,    where 

t   =   diag dfx, tg,   ..., tr,  1,  ..., 1), 

Then A?sO, (tZ)W -  0, and W has clearly maximal rank among K[z]- 

metrices with this property. So the columns of the matrix W consti- 

tute a basis for kernel 11. The rest follows easily, as in the proof 

of (k.&). D 

(6.13)   REMARK. The preceding proof remains correct, without any 

modification, if the representation fL a CAD, det C, det D = units 

is taken in the ring K[z]/\|rK[z], rather than in K[z]. The former 

representation follows trivially from the latter but may be easier to 

compute. 

(6.1^)   REMARK. Theorem (6.12) shows how to compute the invariant 

factors of X- from those of tZ. We must define the invariant 

factors of Z to be the same as those of X„ (because of the 

bijective correspondence Z <-* XJ),   Consistency with (6.12) demands 

that we write 

(6.15) \/t  = (\/e±)n*/Q±),    öi = CK±, «), 

where  /  is defined as in (6.3). In other words, the f. are 

the denominators of the scalar transfer function X./^ after cancellation 

of all common factors. 

Theorems (^.3*0 and (6.12) do not fully reveal the significance 

of invariant factors in dynamical systems. Nor is it convenient to 

deduce all properties of matrix-invariant factors from the representation 
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theorem (6.9)* It is interesting that the sharpened results we present 

below are much in the spirit of the original work of WEIERSTRASS, H. J. S. 

SMITH, KRONECKER, FROBENIUS, and HENSEL, as summarized in the well-known 

monograph of MUTH [1899]. 
» 

(6.16) DEFINITION. Let A, B rectangular matrices over a unique fact- 

orization domain R« A|B (read: A divides B) iff there are matrices 

V, W (over R, of appropriate sizes) such that B = VAW. 

This is of course just the usual definition of "divide" in a ring, 

specialized to the noncommutative ring of matrices. 

The following result [MUTH 1899, Theorems IIIa-b, p. 52] shows 

that in case of principal-ideal domains the correspondence between 

matrices and their invariant factors preserves the divide relation 

(is "functorial" with respect to "divide"): 

(6.17) THEOREM. Let R be a principal-ideal domain. Then Al B 

if and only if A (A)U.(B) for all .i. 

PROOF. Sufficiency. Write the representation (6.10) as 

A = V1ALW1,   B = V2A,W2. 

By hypothesis, there is a A. (diagonal) such that Al=l. Hence 

= (V2V£l)A(W^
1Y2) 

* V^V^W^Wp, 
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• 

Necessity. This is just the following 

(6.l8)   LEMMA.. For an arbitrary unique-factorization 

domain R, A|B implies \(A)I\(B)< 

PROOF. By elementary determinant manipulations, as in 

MUTH [1899, Theorem II, p. 16-17]. ° 

This completes the proof of Theorem (6.17) O 

(6.39)   REMARK. Since (6.9) does not apply (why?) to unique factori- 

zation domains, for purposes of using Lemma (6.33) we need WEIERSTRASS•s 

definition of invariant factors: if A.(A) = greatest common factor of 

all j X j minors of a matrix A, with A (A) = 1, then 

^(A) • A. (A)/A. ..(A). Of course, this definition can he shown to be 

equivalent (over principal-ideal domains) to that implied by (6.9). 

In analogy with Definition (6.16), let us agree (note inversion!) on 

(6.20)   DEFINITION. Let Z ,  Z  be transfer-function matrices 

ZjZp (read: Z  divides Z ) iff there are matrices v, W over K[z] 

such that Z = VZ.W. (Note that Z.IZ.. implies at once: % \y„  .) 
————— ± d Id L.     tig 

(6.21) THEOREM. SUZ2 if and only if ^(Z )|*1(Z2) for all i. 

PROOF. This is the natural counterpart of Theorem (6.16), 

and follows from it by a simple calculation using the definition of 

tx(Z) given by (6.15). D 
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(6.22) DEFINITION. E |E2 (read; E  can be simulated by Eg) 

iff X-. IX-, , that is, iff X-,  is isomorphic to a submodule of 

X_  [or isomorphic to a quotient module of JL, ]. 

This definition is also functorially related to the definition 

of "divide" over a principal ideal domain R because of the following 

standard result: 

(6.23) THEOREM. Let R be a principal-ideal domain and X, Y 

R-mc^oles. Then Y is (isomorphic) to a submodule or quotient module 

of X if and only if 

tjOOH^X),   i - 1, ..., r(Y) < r(X). 

PROOF. Sufficiency. Take both X and Y in canonical 

form (JJ-.3*0J with x_, ..., x /^x generating the cyclic pieces of X, 

and y1$   ..., y ,xj (with vi = 0 if i > r(Y)) those of Y. The 

assignment y. K (V.(X)/i{r. (Y))x. defines a monomorphism Y ~» X, that 

is, exhibits Y as (isomorphic to) a submodule of X. Similarly, the 

assignment x. t-> y. defines an epimorphism X -> Y exhibiting Y as 

(isomorphic to) a quotient module of X. 

Necessity (following BOURBAXI [Algebre, Chapter 7 (2e ed.), 

Section k,  Exercise 8]). Let Y be a submodule of X. By (k*3k)9 

X Ä L/N where L, N are free R-modules. By a classical isomorphism 

theorem, Y is isomorphic to a quotient module M/N, where L^MDN 

and M is free (since submodules of a free module are free). 
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From the last relation,    r(Y) < r(X).    Now observe, again using (k,3k) 

Stet, for any R-module   X   and any   ir £ R, 

r(7?X) <k   «=o   tk(X)lir 

and therefore 

R*k(x) = ideal generated by (TT: r(7«) < k}. 

Since 7?   is a submodule of 7JX for all ir € R, it follows that 

R\|r. (X) 3 R^k(Y), and the proof is complete for the case when Y is 

a submodule of X. The proof of the other case is similar.        • 

(6.24)   COROLLARY. tjfß£ftJÜ&h  * • h   •••> r(zz)« 

PROOF. Immediate from the fact that 

of L   (see Section 7). 

X^ is a submodule 

• 

Now we can summarize main results of this section as the 

(6.25)   PRIME DECOMPOSITION THEOREM FOR LINEAR DYNAMICAL SYSTEMS. 

The following conditions are equivalent: 

(i) Zx divides Zg. 

(ii)    tj(SU    divides   •«(ZJ    for all   i. 

(iii) Z_  can be simulated by Z„  . 
h z2 

PROOF. This follows by combining Theorem (6.2l) with Theorem 

(6.23), since *.(Z) • tt(^) by definition. D 

ÖFW 
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(6,26)   INTERPRETATION. The definition of ZJZ  means, in system- 

theoretic terms, that the inputs and outputs of the machine whose transfer 

function is Z  are to be "recoded": the original input co- is replaced by 

an input o>p = Btzjo).. and the output r« is replaced by an output 

r, B A(z)r2; with these "coding" operations, Z     will act like 

a machine with transfer function Z.. In view of the definition of a 

transfer function, the equation Z_ = AZ B is always satisfied whenever 

A, B are replaced by A, B (reduced modulo ty„ ). This means that the 
Z2 

coding operations can be carried out physically given a delay of 

d = deg %     units of time (or more). No feedback is involved in coding, 
Z2 

it is merely necessary to store the d la&c elements of the input and 

output sequences. Hence, in view of The em (6.25) and Corollary (6.2*0, 

we can say that it is possible to alter the dynamical behavior of a 

system Z  arbitrarily by external coding involving delay but not 

feedback if and only if the invariant factors of the desired external 

behavior (Z ) are divisors of invariant factors of the external 

behavior (Z ) of the given system. The invariant factors may be 

called the JfKIMES of linear systems: they represent the atoms of system 

behavior which cannot be simulated from smaller units using arbitrary 

but feedback-free coding. In fact, there is a close (bot not isomorphic) 

relationship between the Krohn-Rhodes primes of automata theory (see 

XALMAN, FALB, and ARBIB [1969, Chapters 7-9]) and ours. A full treat- 

ment of this part of linear system theory will be published elsewhere. 
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The purpose of this short section is to review and expand those 

portions of the previous discussion which are relevant to the detailed 

theory of realizations to be presented in Sections 8 and 9» The seme 

issues are examined (from a different point of view) also in KALMAN, 

FALB, andARBIB [1969]. 

Let f: ß -* T be a fixed input/output map. Let us recall the 

construction of X^ as a set and as carrying a K[z]-module structure 

(Sections 3 and k).    It is clear that (i) f = t ©u , where 

Hf: ß -+ Xf: co i->   [to], 

tf: Xf -» T: [o>]f U»  f (CD) 

are K[z]-homomorphisms, and    (ii) n» = epimorphism while    i- = monoriorphism. 

We have also seen that 

(7.1) 

u0 • epimorphism <=£> X     is completely reachable; 

t m   monomorphism <=«> Xf is completely observable. 

These facts set up a "functor" between system-theoretic notions and 

algebra which characterize Xf uniquely. Consequently, it is desirable 

to replace also our system-theoretic definition of a realization (3*12) 

by a purely algebraic one: 

(7.2)   DEFINITION. A realization of a K[zj-homomorphism f: ft -* r 

is any factorization f that is, any commutative diagram 

f ß •> r 

 , ;  
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of Kf z 1 -homomorphisms. The K[z3-module X Is called the state 

module of the realization. A realisation is canonical iff it is 

completely reachable and completely observable, that is, u is 

sur.iectlve and i   is infective. 

A realization always exists because we can take X « Ö, u » ln, 

i - f (or X » T, JA • fj i «'.!£) • 

(7-3)   REMARK. It is clear that a realization in the sense of (3.12) 

can always be obtained from a realization given by (7,2)- In fact, 

define L  = (F, G, H) by 

F: X ->  X: x *-» z-x, 

G • u restricted to the submodule (cu: |CD) = l). 

H • i   followed by the projection r w r(l). 

It is easily verified that these rules will define a system with 

f, x s f. Given any such Z, it is also clear that the rules 

X = % 

v: xi-* (H^x, I^F^x, .. . ) 

define a factorization of    f.    Hence the correspondence betweei (3.12) 

and (7.2) is bijective. 

The quickest way to exploit the algebraic consequences of our 

definition (7.2) is via the following arrow-theoretic fact: 
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(f.k) ZEIGER FILL-IN LEMMA. I«t A, B, C, D be sets and a, ß, r, 

and 6 set maps for vhich the following diagram commutes: 

If a Is surjective and 5 Is infective, there exists a unique set 

map © corresponding to the dashed arrow which preserves commutatlvity. 

This follows hy straightforward "diagram-chasing", which proves 

at the same time the 

(7.5) COROLLARY. The claim of the lemma remains valid if "sets" 

are replaced by "R-modules" and "set maps" by "R-homomorphisms". 

Applying the module version of the lemma twice, we get 

(7.6)    PROPOSITION. Consider any two canonical realizations of a 

fixed f: the corresponding state-sets are lsomorphic as K[z]-modyles. 

Since every K[z]-module is automatically also a K-vector space, (7.6) 

shows that the two state sets are K-isomorphic, that is, have the same 

dimension as vector spaces. The fact that they are also K[z]-lsomorphic 

implies, via Theorem (k.3k),  that they have the same invariant factors. 

We have already employed the convention that (in view of the bijection 

between f and Z \   the invariant factors of f and Xf are to be 
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identified. In view of (7.6), this is now a general fact, not dependent 

on the special construction used to get X . We can therefore restate 

(7.6) as the 

(7.7) ISOMORPHISM THEOREM FOR CANONICAL REALIZATIONS. Any two 

canonical realizations of a i^xeo ± have isomorphic state modules. 

The state module of a canonical 1.  "M.zatlon is uniquely characterized 

(up to isomorphism) by its invariant factors, which may be also viewed 

as those of f. 

A simple exercise proves also 

(7.8) PROPOSITION. If X is the state module of a canonical 

realization f, then dim X (as a vector space) is minimum in the 

class of all realizations of f. 

This result has been used in some of the literature to justify 

the tei^inology "minimal realization" as equivalent to "canonical 

realization". We shall see in Section 9 that the two notions are 

not always equivalent; we prefer to view (7.2) as the basic defini- 

tion and (7.8) as a derived fact. 

(7.9) REMARK. Theorem (7.7) constitutes a proof of the previously 

claimed (4.2*0. To be more explicit: if £ - (F, G,  H) and 

£ = (F, G, H) are two triples of matrrc  lef.ining canonical realiza- 

tions of the same f, then (7«7) implies the existence of a vector- 

space isomorphism A: X -* X such that 
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* -1 
F = AFA , 

(7.IP)   G - AG, 

* -1 
H - HA. x. 

If we identify X and X then A is simply a basis change and it 

follows that the class of all matrix triples which are canonical 

realizations of a fixed f is isomorphic with the general linear 

group over X. 

The actual computation of a canonical realization, that is, 

of the abstract Nerode equivalence classes [w]f,    require a consider- 

able amount of applied-mathematical machinery, which will be developed 

in the next section. The critical hypthesis is the existence of 

a factorization of f such that dim X < «. (this is sometimes 

expressed by saying that f has finite rank.) Given any such reali- 

zation, it is possible to obtain a canonical one by a process of 

reduction. More precisely, we have 

(7.11)   THEOREM. Every realization of f with state module X 

contains a subquotient (a quotient of a submodule, or equivalently, 

a submodule of a quotient) X^ of X which is the state-module of 

a canonical realization of fI 

PROOF. The reachable states X • image u. are a submodule 
r 

of X and so are the unobservable states X • kernel i. Hence o 

\  «Xr/XrPXo is a subquotient of X. It follows immediately that 

X^ is a canonical state-module for f. [The proof may be visualized 

via the following commutative diagram, where the j's and p»s are 

canonical injections and projections.] D 
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(7.12)   REMARK. Since any subquotient of X is isomorphic to a 

submodule (or a quotient module) of X, it follows from Theorem (6.23) 

that X can be state-state module of a realization only if ty. (f)lty.(X) 

for ill i (recall also Corollary (6.2*0). This condition, however, is 

not enough since the f. are invariants of module isomorphisms and not 

isomorphisms of the commutative diagram (7.2). 

The preceding discussion should be kept in mind to gain an over- 

view of the algorithms to be developed in the next sections. 
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8. CONSTRUCTION OF REALIZATIONS 

Now we shall develop and generalize the basic algorithm, originally 

due to B. L. Ho (see HO and KAIMAN [1966]), for computing a canonical 

realization E • (F, G, H) of a given input/output map f. Most of 

the discussion will be in the language of matrix algebra. 

Notations. Here and in Section 9 boldface capital letters* will 

denote block matrices or sequences of matrices; finite block matrices 

will be denoted by small Greek subscripts on boldface capitals; the 

elements of such matrices will be denoted by ordinary capitals. This 

is intended to make the practical aspects of the computations self- 

evident; no further explanations will be made. 

Let f: ft -* F be a given, fixed K[z]-homomorphism. Using only 

the K-linearity of f we have that 

(80I)   f(ü))(l) * £>A.*rftft), 

where the A,  (k > 0) are p X m matrices over the fixed field K. 

We denote the totality of these matrices by 

A(f) = (Ax, A2, ... ). 

Then it is clear that the specification of a K[ z 3 -homomorphism f 

is equivalent to the specification of its matrix sequence A(f). More- 

over, if Z   realizes f  (8.1) can be written explicitly äs 

(8.2)   fOo)(D = ^ Hp-Wt). 

*Note to Printer: Indicated by double underline. 
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Comparing (8.1) and (8.2) we can translate (3.12) into an equivalent 

matrix-language 

(8.3)   DEFINITION. A dynamical system £ • (F, Gs  H) realizes a 

(matrix) infinite sequence A iff the relation 

Ak¥l   « HFkG,  k - 0, 1,  2, ... 

is satisfied. 

Let us now try to obtain also a matrix criterion for an infinite 

sequence A to have a finite-dimensional realization. The simplest 

way to do that is to first write down a matrix representation for the 

map f: Q -> r. So let 

*i 

8(A) = I 
"3 

\ 

A, 

*5 

and verify that H(A(f)) represents f when u> £ ft is viewed as an 

09 column vector with elements (CU_(0), ..., cu (o), u>, (l), ... ). 

Classically, H(A) is known as the (infinite) Hankel matrix associated 

with A. We denote hy H   the \i X v block submatrix of H appear- 

ing in the upper left-hand corner of H. 

(8.4)    PROPOSITION. Let Z be any realization of A. Then 

rank H  (A) < dim L   for all \x,  v > 1. 
SSjij V =S      = ————— j_ i 
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(8.5)    COROLLARY. An infinite sequence A has a finite-dimensional 

realization only if rank H  (A) is constant for all u, V sufficiently- 

large . 

P.-OOF. If dim Z = «> the claim of the proposition is 

vacuous (although formally correctl). Assume therefo.-e that din Z <   » 

and define from Z   the finite block matrices 

and 

Then 

|v - [G, FG, ..., FV-1G] 

<k = [MS H»F«, ..., H'(F')^"1]. 

0'R„ = H  (A) 

by the definitic (8.3) of a realization. It is clear that rank R 

and rank 0  are at most n = dim Z. Thus our claim is reduced to 

the standard matrix fact 

rank (AB) < min {rtnk A, rank B). • 

Our next objective is the proof of the converse of the corollary. This can be 

done in several ways. The original proof is due to HO and KAIMAN [1966]; 

similar results were obtained independently and concurrently by YOULA 

and TISSI [1966] as well as by SILVERMAN [1966], Two different proofs 

are analyzed and compared in KALM'AN, FALB, and ARBIB [1969, Chapter 10, 

Section 11]. All proofs depend on certain finiteness arguments. We 

shall give here a variant of the proof developed in HO and KALMAN [1969]. 
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(8.6) DEFINITION, The infinite Hankel matrix H associated with 

the sequence A has finite length X * (X', X") iff one of the follow- 

ing two equivalent conditions holds: 

X' = min {i«: rank H,, \  »rank H.,,,, „ for all K,V   -1,2,   ...}<« 

or 

X" * {min i": rank H ,„ = rank H .„ - for all K,  \I   = 1, 2,  ... }< 

Xr is the row length of H and X" is the column length of H. 

The equivalence of the two conditions is immediate from the 

equality of the row rank and column rank of a finite matrix. The proof 

of the following result (not needed in the sequel) is left for the reader 

as an exercise in familiarizing himself with the special pattern of the 

elements of a Hankel matrix: 

(8.7) PROPOSITION. For any H, the following inequalities are 

either both true [K has finite length] or both false [otherwise]: 

X« < rank H^,,^,, < mX", 

• A» < rank g^^, < pV, 

The most direct consequence of the finiteness condition given by 

(8.6) is the existence of a finite-dimensional representation S and 

Z of the shift operator a^    acting on a sequence A. The "operand" 

will be the Hankel matrix associated with a given A. As we shall see 

soon, this representation of the shift operator induces a rule for 
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computing the matrix   F   of a realization of   A.   This is exactly what 

we would expect:    module theory tells us that,  loosely speaking, 

S, Z   *   crA   *   z   *   F. 

(8.7)   DEFINITION, the shift operator J. on an infinite sequence 

A is given by 

i*  (Ai' V ••• ) M (iW Aa+k' ••• ); 

the corresponding shift operator on Hankel matrices is then 

oj: H(A) »  H(cr*A). 
H    SB «       SS  A« 

(Of course, ov_ is well-defined also on submatrices of a Hankel matrix.) 

(8.8) 

H 

MAIN LEMMA. A Hankel matrix H associated with an infinite 

sequence A has finite length if and only if the shift operator J„ 

has finite-dimensional left and right matrix representations. Precisely: 

H hai finite length A - (AS A") if and only if there exist Z' X i' 

and i" X ln   block matrices S and Z such that 

<8-9>    °fe|.,J»<s9 * l||.,J-<fi>' 

and furthermore the minimum size of these matrices satisfying (8.9) jls 

A' X A» and A" X A". 

PROOF. Sufficiency. Take any i" X i" block matrix Z 

which satisfies (8.9). Compute the last column of H .„Z: m9 £ » 

UMUM 



_-         "-•—--•-—— '    '- ' •    *'"" •  -   " • 

— 103 — 

R.E.Kaiman 

(8.10) Aj+j«^   *   A^u» + A^-2Z2iw + ••' + V^nZ^"i" 

for all j = 0, 1, ... (where Z   is the (y, v)   element block 

of Z). Relation (8.10) proves that 

rankg^^ = rank H^^ for all K   - 0, I*  ... ; 

the general case follows by repetition of the same argument. Hence the 

existence of the claimed Z implies that the column length A" of H 

cannot exceed the size of Z. If actually A" is smaller than the size 

of the smallest Z which works in (8.9), we get a contradiction from 

the necessity part of the proof. The claims concerning S are proved 

by a strictly dual argument. 

Necessity. By the definition of W,    each column of the 

(Ä" + l)   block column of H ,„,- is linearly dependent on the st*t A +J. 

columns of the preceding block columns of H %-.,; moreover, this 

property is true for all integers n,    no matter how large. So there 

exist m X m matrices Z_, ..., Z,„ such that the relation 

(8.11) Aj+1Zx„ + Aj+2ZA,f+1 
+ •'• + Aj+A»

Zl = Vl+A" 

holds identically for all j = 0, 1, ... . Now define Z to be an 

A" X A" block companion matrix of m X m block made up from the Z 

just'defined: 

, 
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Z = 

0 

I 

0   0 

0 0 

1 0 

0   0   0 

0   0   0 

'A" 

V.-1 

'A"-2 

1  _ 
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The verification of (8.9) is immediate, using (8.11). The existence 

of V  X A' block matrix S verifying (8.9) follows by a strictly 

dual argument. ü 

Now we have enough material on hand to prove the strong version 

of Corollary (8.5): 

(8.12)   THEOREM. An infinite sequence A has a finite-dimensional 

realization of dimension n if and only if the associated Hankel 

matrix H has finite length A = (?,', A"). 

PROOF. Sufficiency. Let E,„ , be a A" X 1 block 
       =A ,1 

column matrix whose first block element is an m x m unit matrix and 

the other blocks are m X m zero matrices. Using (3.9) with *" -A", 

define 

(8.13)    t -< a •• iv%1, 

H = = Si, A". 
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Then, for all k > 0, computi 

the second step uses (8.9). By definition of o\ and E, the last 

matrix is just the (l, l)   element of H(o-A(A)), namely A^. 

Hence the given Z    is a realization of A. 

Necessity. This is immediate from Cor! ;ary (8.5).      f"J 

Nou we want to attack the problem of finding a canonical realiza- 

tion of A, since the realization given by (8.13) is usually very far 

from canonical. Our succeeding considerationshere and in Section 9 

are made more transparent if we digress for a moment to establish 

another consequence of (8.8). 

By outrageous abuse of language, we shall say that A has finite 

length iff H(A) has finite length. We note 

(8.1*0   DEFINITION. An infinite sequence B is an extension of 

order N of (the initial part of) an infinite sequence A iff 

\ = Bfc for k - 1, ..., N. 

(8.15)   THEOREM. No infinite sequence of finite length (A1, A") 

has distinct length-preserving extensions of any order N > A' + A". 

PROOF. Suppose B is a length-preserving extension of order 

N of A, the length of both sequences being (A1, A")> with N > A' + A". 

By (8.8), both sequences sttisfy relation (8.9), with suitable S^ and Z . 
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The sequence   A    is uniquely determined by   S.    acting on   H,,  -.„(A) 
= xA =A , A • 

from the left and the sequence B is uniquely determined by Z_ 

acting on the matrix H,, ^„(B) from the right. The two matrices ÄA , A s 

are equal by hypothesis on H. Moreover, 

and 
8&.,x-& - "iSv,*^ 

are also equal, since the matrices on the right-hand side depend only 

on the 2nd., ..,, N-th member of each sequence. Using only this fact 

and the associativity of the matrix product 

5A',A"5 
S
 h?,*&& * 
SH    Z*"1 

Sa 5v,A"iB' 

- EffAt A«s 

So A = B. 

Now we can hope for a realization algorithm which uses only the 

first A* + A" terms of a sequence of finite length. Ii. fact, we have 

(8.l6)   B. L. HD»s REALIZATION ALGORITHM. Consider any infinite 

sequence A of finite length with as jociated Hankel matrix H. The 

following steps will lead to a canonical realization of A: 
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(i) Determine X«, X". 

(ii) Compute n = rank H-f ^„; In doing so, determine 

nonsingular pX* X pX» and aX" X aX" matrices P, Q such that 

(8.17) 

*5x»,A"Q • 

(8,18) / 

(iii) Compute 

where R , u  are idempotent "editing" matrices corresponding to the 

operations "retain only the first p rows" and "retain only the first 

m columns". 

We claim the 

(8.19)   REALIZATION THEOREM FOR INFINITE SEQUENCES. .For any infinite 

sequence A whose associated Hankel matrix H has finite length 

(X1, X"), B. L. Ho's formulas (8.17-18) yield a canonical realization. 

PROOF. If Z defined by (8.17-18) is a realization of A, 

then it is certainly canonical: by (d.'1) £ has mini mal dimension in 

the class of all realizations of A and so it is canonical by (7.8), 

The required verification is interesting. First, drop all 

subscripts. Observe that IT = QpRP is a pseudo-inverse of H, that 
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is,    HH% = H.    Then, by definition of   F, G,  H,    and   H*, 

Hf^G    -    (RHQC)(RP[crHH]QC)k(RPHC), 

by repeated application of (8.9), 

•    R§H(Aj2;)k~1K*HC, 

=     R[cCT]C. 

The last equation calls for picking out the first p rows and the 

first m columns of CJ^H, which is just A ., as required.     • 

(8.20)   COMMENT. This is a considerably sharper result than Theorem 

(8.12), in two respects: 

(i) It is no longer necessary to compute Z: *te  simply 

use the matrix H,, ^„(cr.A), which is part of the data oi the problem. 

(ii) Formulas (8.18) give the desired realization in minimal 

form: there is no need to reduce (8.13) to a minimal realization (recall 

here (7.11)). 

Notice also that the proof of (8.19) does not require (8.12) 

but depends (just like the latter) on direct use of (8.8). 

•B"»""•~^" 
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An apparently serious limitation of the algorithm (8.l6) is the 

necessity to verify abstractly that "A has finite length". Of 

course, this can be done only on the basis of certain special hypotheses 

on A, given in advance. (Examples: (i) A, • 0 for all k > q; 

(ii) A. = coefficients of the Taylor expansion of a rational function.) 

Fortunately, the difficulty is only apparent, for the preceding develop- 

ments can be sharpened further: 

(8.21) FUNDAMENTAL THEOREM OF LINEAR REALIZATION THEORY. Consider 

any infinite sequence A and the corresponding Hankel matrix H. 

Suppose there exist integers &*,  &"    such that 

(8.22) raukHisi„(A) = rank gil+1^tl(A), 

• rank5i.,i"+i^- 

Then there exists unique extension A of A of order i* + i" 

such that T\X < i» and ?0i < i,rj moreover, applying formulas (8.17-18) 

with V • il, A" -  i" gives a canonical realization of A. 

PROOF. Exactly as in the necessity part of the proof of 

(8.8), condition (8.22) implies the existence of S and Z such that 

(Q.23)  <yUi,i..(4) = Bi«,i»^ = ll«,i«^S. 

Define an extension A of A of order i' -f i" by 

fjfei'i"^ • i^U«t(A),  k>l. 
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By repeated application of (8.23), it follows that we have also 

aHäi«,i»(|) " Si,,i"(A)Zk,  k > 0. 

Now it is clear, from (8.8), that ?u < i> and VI < i". The unique- 

ness of the extension follows immediately from (8.15). Moreover, 

Theorem (8.19) is still valid, even though (il, i") is not necessarily 

minimal, because the proof of (8.19) depended only on (8.9) and not on 

the minimality of (i«, i"). D 

Theorem (8.21) says, in effect, that a canonical realization of 

some extension of A is always possible as scon as (8.22) is satisfied. 

Moreover, (8.22) can be used as a practical criterion for constructing 

by trial and error a canonical realization of any A known to have 

finite length (but without being given X», A")« 

(8.2*0   EXAMPLES, (i) There is no scalar infinite sequence (p = m = l) 

A for which (8.22) is never satisfied. 

(ii) If H-, .„ is square and has full rank (for instance, 

in the scalar case), then (8.22) is automatically satisfied. 

(iii) If the algorithm (8.l6) is applied without any informa- 

tion concerning condition (8.22), the system Z defined by (8.l8) will 

always realize some extension of A, at least of order 1. It is not 

known, however, how to get a simple formula which would determine the 

maximal order of this extension of A. 

The remaining interesting question is then: What can be said if 

(8.22) is not satisfied for a finite amount of data A., ..., A^ and 
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any i', V    satisfying 1» • i» • N. This problem is the topic of 

the next section. 

(8.25)   FINAL COMMENT. An essential feature c/ \  L. Ho's algorithm 

is thai is preserves the block structure of the data of the problem. Of 

course, one can obtain parallel results by treating H«, -„ as an 

ordinary matrix, disregarding its block-Kankel structure. Such a 

procedure requires looking at a minor of H of maximum rank, and was 

described explicitly by SILVERMAM [1966] and SILVERMAN and MEADOWS [1969]. 

There does not seem to be any obvious computational advantage associated 

with the second method. 
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In one obvious respect the theory of realizations developed 

in the previous section is rather unsatisfactory; it is concerned 

with infinite sequences. From here on we call a system satisfying 

(8.3) a complete realization, to distinguish it from the practically 

more interesting case given by 

(9.1)   DEFINITION. Let A * (A , k^   ... ) be an infinite 

sequence of p x m matrices over a fixed field K. A dynamical 

system Z * (F, G, H) is a partial realization of order r of 

A iff 

*k :+l HFk< G for k • 0,1, ..., r. 

We shall use the same terminc logy if, instead of an infinite 

sequence A, we are given merely a finite sequence A = (A., ..., A ), 

s > r. The reason for this convention will be clear from the dis- 
m 

cussion to follow. We shall call the first r terms of A a partial 

sequence (cf order r). 

The concepts of canonical partial realization and minimal 

partial realization will be understood in exactly the same sense as for 

a complete realization. We warn tne reader, however, that now these 

two notions will turn out to be inequivalent, in that 

minimal partial canonical partial 

but not conversely. 

Our main interest will be to determine all equivalence classes 

of minimal partial realizations; in general, a given sequence will. 

i 
• 

• 
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have infinitely many inequivalent minimal partial realizations if 

r is sufficiently small. 

According to the Main Theorem (8.2l) of the theory of realiza- 

tions, the minimal partial realization problem has a unique solution 

whenever the rank condition (8.22) is satisfied. If the length r of the 

partial sequence is prescribed a priori, it may well happen that (8.22) 

does not hold. What to do? Clearly, if we have a minimal partial 

realization (F, G, H) of order r we can extend the partial 

sequence of A  on which this realization is based to an infinite 
-r 

sequence canonically realized by (F, G, H) simply by setting 

Aj^ = HFk"1G, k > r. 

Consequently, we have the preliminary 

(9.2)    PROPOSITION. The determination of a minimal partial 

realization for A  is equivalent to the determination of all 

extensions of a partial sequence A  such that the extended 

sequence is 

(i) finlte-dimensicr.al -:nc. i"ore strongly, 

(ii) its dimension is minimal in the class of all extensions. 

It is trivial to prove that finite-dimensional extensions exist 

for any partial sequence (of finite length). Hence the problem is immediately 

reduced to determining extensions which have minimal dimension. The 

solution of this latter problem consists of two steps. First, we show 

by a trivial argument that the minimal dimension can be bounded from 
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below by an examination of the Hankel array defined by the partial 

sequence. Second, and this is rather surprising, we show that the 

lower bound can be actually attained. For further details, especially 

the characterization of equivalence classes of the minimal partial 

realizations, see KAIMAN [1969c and 1970b]. 

(9.3)    DEFINITION. By the Hankel array H(£ ) of a partial 

sequence A  we mean that r X r block Hankel matrix whose (i, j) 

block is Ai+. ^   if i + j - 1 < r and undefined otherwise. 

In other words, the Hankel array of a partial sequence A 

consists of block rows and columns made up of subsequences 

A , ..., A  (l < p < r) of A  and blank spaces. 

(9.*0    PROPOSITION. Let nQ(A ) be the number of rows of the 

Hankel array of A  which are linearly independent of the rows 

above them. Then the dimension of a realization of A  is at least 
——— 1 1 _r   

n (A ). 
o «r' 

PROOF. The rank of any_ Hankel matrix of an infinite 

sequence A is a lower bound on the dimension of any realization 

of A, by Proposition (8.4 ). By Proposition (9.2), it suffices 

to consider a suitable extension A of A . This implies "filling 

in" the blank spaces in the Hankel array of A . Regardless of how 

H(A ) is filled in, the rank of the resulting r X r block Hankel 

matrix is bounded from below by n (A ). D 

By the block symmetry of the Hankel matrix, we would expect 

to be able to determine n (A ) by an analogous examination of the 

.-. . --..:•..^ 
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columns of the Hankel array of A, thereby obtaining the same 

lower bound. This is indeed true. We prefer not to give a direct 

proof, since the result will follow as a corollary of the Main 

Theorem {9.1). 

The critical fact is given by the 

(9.5) MAIN LEMMA. For a partial sequence A  define; 

A'(A ) = smallest integer such that for k'> A' every 

row of H(A ) is linearly dependent on the 

rows above it. 

A*(A, ) = smallest integer such that for k" > A" every 

v  ""inn in the k-th block column of K(A ) 

is linearly dependent on the columns to the 

left of it. 

Every partial sequence A  may be extended to an infinite 

sequence A in at least one way such that the condition 

(9.6) rankH  (A) = n (A ) for all n > A'(A J, v > A"(Aj 
—Hj v  —      o —r        •       =r =r 

is satisfied. 

PROOF. The existence of the numbers A'. A" is trivial. 

It suffices to show, for arbitrary r, how to select A   in 

such a way that the numbers A', A", and n  remain constant. 

Consider the first row of A . -and examine in turn all the 

first rows of the first, second, third, ..., A*-th block rows in 

H(A ). If the first row of the first block row is linearly depen- 

dent on the rows above it (that is, 0), we fill in the first row 
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of A   using this linear dependence (that is, we make the first 

row of A ... all zeros). This choice of the first row of A ,. 
r+i r+i 

will preserve linear dependencies for the first row of every block 

row below the second block row, by the definition cf the Hankel 

pattern. If the first row in the first block row is linearly 

independent of those above (that is, contributes 1 to n (A )), 

we pass to the second block row and repeat the procedure. Eventually 

the first row of some block row will become linearly dependent on 

those above it, except when X1 s r; in that case, choose the first 

row of A 1 to be linearly dependent of the first rows of 

A-, ..., A . Repeating this process for the second, third, ... rows 

of each block row*, eventually A _ is determined without increas- 

ing V or n • 

To complete the proof, we must show that the above definition 

of A - also preserves the value of X". That is, we must show 

that no new independent columns are produced in the Hankel array of 

A  when A_ is filled in. This is verified immediately by noting 

that the definition of A . implies the conditions 

rankIr,l " ranklr+l,l' 

rank5r-l,2 = rank8r,2> 

rank H_   = rank H_   • rank H- 
*l,r       =2,r       =l,r+l 

D 

*0f course, now linear dependence in the first step does not 
imply that the corresponding row of Ar+1 will be all zeros. 

' 
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With thvä aid of this simple but subtle observation, the problem 

is reduced to that covered by the Main Theorem (8*21) of Section 8. We have: 

(9.7)    MAIN THEOREM FOR MINIMAL PARTIAL REALIZATIONS.* Let £ 

be a partial sequence. Then: 

(i) Every minimal realization of A  has dimension n (A ). 
-' ' » • • -   —  =r * • ,  0 "T 

(ii) All minimal realizations may be determined with the aid 

of B. L. Ho's formulas (8.17-18) with X' = V(r*J and X" = X"(Ar) 

as given by Lemma (9«5). 

(iii) If r > A« (A ) + X"(A ) then the minimal realization 

is unique. Otherwise there are as many minipal realizations as 

there are extensions of A  satisfying (9*6). 

PROOF. By the Main Lemma (9«5), every partial sequence A 

has at least one infinite extension which preserves X1, X" and 

n . So we can apply the (8.21) of the preceding section. 

It follows that the minimal partial realization is unique if 

r > X*(A ) + X"(A ) (the X» (A ) + X"(A ) + 1 Hankel matrix can be 

filled in completely with the available data); in the contrary case, the 

minimal extensions will depend on the manner in which the matrices 

A_.-i> ...,A.1±.., have been determined (subject to the requirement 
r+l      A + A 

(9.6)). Ü 

In vie//of the theorem, we are justified in calling tha integer 

n (A, ) the dimension of 'A . 

*A similar result was obtained simultaneously and independently 
by T. Tether (Stanford dissertation, 1969). 
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(9.8)    REMARK. The eLsentiul point is that the quantities n , 

X1, and V are uniquely determined already from partial data, 

irrespective of the possible nonuniqueness of the minimal extensions 

of the partial sequence. We warn, however, that this result does 

not generalize to all invariants of the minimal realization. For 

instance, one cannot determine from A  how many cyclic pieces a 

minimal realization of A  will have: some minimal realizations 
•r 

•ay be cyclic and others nay not [KAIflAN 1970b J. 

Finally, let us note also a second consequence of the Main 

Theorem i 

(9»9)   CORQXIARY. Suppose n_(A ) is the number of independent 

columns of the Hankel array of A  (defined analogously with 

n
0(=r^* 

Then dlm=r * °1^' 

PROOF. If n-(A ) > n (A ) then, using the Main Theorem, 

we get a contradiction to the fact that the rank of any Hankel matrix 

of an infinite sequence is lower bound for the dimension of any reali- 

zation (Proposition (8. k)).    If nJh  ) < n (A ) then extending A 

to any A,,.• •, we contradict the fact that rank H,, .„ is at least 

equal to 11(A). D 

In other w^ ds, the characteristic property of rank, that 

counting rank by row or column dependence yieics identical results, 

is preserved even for incomplete Hankel arrays. 

It is useful to check a simple case which illustrates some of 

the technicalities of the proof of the Main Lemma. 

(9.10/   EXAMPLE. The dimension of (0, 0, ..., 0, A) is precisely 

r X p. where p = rank A  and A» = A" = r. 

- 
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10. GENERAL THEORY OF OBSERVABILITY 

In this concluding section, we wish to discuss the problem of 

observability in a rather general setting: we will not assume 

linearity, at least in the beginning. This is an ambitious program 

and leads to many more problems than results. Still, I think it is 

interesting to give some indication of the difficulties which are 

conceptual as well as mathematical. This discussion can also - 

serve as an introduction to very recent research [KAIMAN 19^9a, 

19?0a] on the observability problem in certain classes of nonlinear 

systems. 

The motivation for this section, as indeed for the whole theory 

of observability, stems from the writer»s Discovery [KAIMAN 1960a] 

that the problem of (linear) statistical prediction and filtering 

can be formulated and resolved very effectively by consistent use 

of dynamical concepts and methods, and that this whole theory is a 

strict dual of the theory of optimal control of linear systems with 

quadratic Lagrangian. For those who are familiar with the standard 

classical theory of statistical filtering (see, for instance, YAGLOM 

[1962]), we can summarize the situation very simply by saying that 

Wiener-Kolmogorov filter 

+ theory of finite-dimensional linear dynamical systems 

= Kaiman filter. 

For the latter, the original papers are [KALMAN 19o0a, 1963a] and 

[KALMAN and BUCY I96I], 
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The reader interested in further details and a modern exposition is 

referred especially to the monograph of KAI24AN [19690]. 

We shall exfjaine here only one aspect of this theory (which 

does not involve any stochastic elements): the strict formulation 

of the "duality principle" between reachability and observability. 

This principle was formally stated for the first time by KAIMAN [l96CcJ, but 

the pertinent discussion in this paper is limited to the linear case and 

is somewhat ad-hoc. Aided by research progress since i960, it is 

how possible to develop a completely general approach to the "duality 

principle". We shall do this and, as a by-product, we shall obtain 

a new and strictly deductive proof of the principle in the now 

classical linear case. 

We shall introduce a general notion of the "dual" system, and 

use it to replace the problem of observability by an equivalent 

problem of reachability. In keeping with the point of view of the 

earlier lectures, we shall view a system in terms of its input/output 

map f and dualize f (rather than z). The constructibility 

problem will not be of direct interest, since its theory is similar 

to that of the observability problem. 

Let ft, T be the same sets as defined in Section k  and used 

from then on. We assume that both ft and P are K-vector spaces 

(K = arbitrary field) and recall the definition of the shift 

operators o\. and dp on ft and P (see (3.10)). We denote 

both shift operators by z but ignore, until later, the K[zJ- 

module structure on ft and T. 
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By a constant (not necessarily linear) input/output map 

f: ft ->r ve shall mean any map f which commutes with the shift 

operators, that is, 

f(z'ü))  «  Z'(f((ü)). 

Let us now formulate the general problem of this section: 

(10.1)   PROBLEM OF OBSERVABILITY. Given an input/output map t, 

its canonical realization Z, and an input sequence v € P. applied 

after t = 0. Determine the state x of £ at t = 0 from 

the knowledge of the output sequence of Z after t = 0. 

This problem cannot be solved in general' To see this, recall 

that the state set Xf of f may be viewed as a set of functions 

(f(ü)oOU): A -»K*: v ^f(a)öv)(l)} 

since a)' is Nerode-equivalent to ü) iff 

f(ü3»o-)(l)  =  f(ü)o.)(l) 

Giving v G ft and the corresponding output sequence amounts to 

giving various values of f(co0«)(l) (namely those corresponding 

to the sequences 0, V , zV + v ., ..,, V, 2V, z V, .,.), and 

it may happen that these substitutions do not yield enough values of 

the function f(o)e*)(l) to determine the function itself. This 

situation has been recognized for a long time in automata theory, 

i ,'.-"*'. * 
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where, in an almost self-explanatory terminology, one says that 

"£ is initial-state determinable by an infinite multiple experiment 

(possibly infinitely many different V's) but not necessarily by a 

single experiment (single v chosen at will)." See MOORE [1956]. 

The pro'uiam is further complicated by the fact that it may make a 

difference whether or not we have a free choice of v. KAIMAN, 

FALB, and ARBIB [1969, Section 6.3)] give some related comments. 

A further difficulty inherent in the preceding discussion is 

that the problem is posed on a purely set-theoretic level and does 

not lend itself to the introduction of more refined structural 

assumptions. We shall therefore reformulate the problem in such 

a way as to focus attention on determining those properties of the 

initial state which can be computed from the combined knowledge of 

the input and output sequence occurring after t =0. 

For simplicity, we shall fix the value of v at . 0 (no loss o3 

generality, since f is not linear). Then the output sequence 

resulting from x after t = 0 is given simply as f(u>); where 

x = [co]f. 

We shall use the circumflex to denote certain classes of 

functions from a set into the field K. For the moment, this 

class will be the class of all functions. Thus 

f = (all functions P ->K}. 

An element y of r is simply a "rule" (in practice, a computing 

algorithm) which assigns to each possible output sequence y    in r 
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a number in the field   K.    If   r   resulted from the state   x   =    [&]f> 

then 

r(r) = rW»)) = (r.*)(«0 

gives the value of a certain function in fi and, by definition of 

the state, also the value of a certain function in X. This suggests 

the 

(10,2)   DEFINITION. An element x € $ is an observable costate 

iff there is a rA £ P such that ve have identically for all 

a) € n 

x(Ccu]f) = r$(f(<i>)). 

In other words, no matter what the initial state x = [CD]  is, 

the value of x at x can always be determined by applying the 

rule rA to the output sequence f(cu) resulting from x. Note, 
x 

carefully, that this definition subsumes (i) a fixed choice of the 

class of functions denoted by the circumflex, and (ii) a fixed input 

sequence after t = 0 (here V = 0). For certain purposes, it 

may be necessary to generalize the definition in various ways 

[KAIMAN 1970 a], but here we wish to avoid all unessential complica- 

tions. 

According to Definition (10.2), we shall see that a system is 

completely observable iff every costate is observable. This agrees 

with the point of view adopted earlier (see Section h)  in an ad-hoc 

fashion. Also, the vague requirement to "determine x" used in 
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(lO.l) is now replaced by a precise notion which can be manipulated 

(via the actual definition of the circumflex) to express limitations 

on the algorithms that we may apply to the output sequence of the 

system. 

The requirement "every costate is observable" can be often 

replaced by a much simpler one. For instance, if X is a vector 

space, it is enough to know that "every linear costate is observable" 

or even just that "every element of some dual basis is an observable 

costate"; if X is an algebraic variety, it is natural to interpret 

"complete observability" as "every element of the coordinate ring of 

X is an observable costate" [KAIMAN 1970a]. 

We can now carry out a straightforward "dualization" of the 
i 

setup involved in the definition of the input/output map f: Ü  -*r. 

First, we adopt (again with respect to a fixed interpretation of the 

circumflex): * 

(10.3)   DEFINITION. The dual of an input/output map f: ft -*r 

is the map 

*     A    A    A     A 
f: r -*ß: r *-*Tof 

Note that f is well-defined, since the circumflex means the class 

of all functions. 

As to the next step, we wish to prove that constancy is inherited 

under dualization. To do this, we have to induce a definition of the 

* A 
shift operator on r and 3. The only possible definitions are the 

obvious ones: 

IWMMHKMNIB 

- 
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/V    <N    ^ 

jp: r -*r: r «[crpr: r »-»r(crrr)]$ 

og: ß ~»Q: oj.Hago: a> t-*aj(cr a>; j. 

Both of these new shift operators will be denoted by z" . 

The reason for this notation will become clear later. 

Now it is easy to verify: 

(10.4)   PROPOSITION. If f is constant, so is f. 

PROOF. We apply the definitions in suitable sequence: 

?(2-1-r)(cü) = (»-^rXfto) 

= r(z.f(o))) 

- ?(f(z.o))) 

= ?(r)(z.co) 

= (z-1.f(r))(o)) 

(def. of f), 

(def. of fff), 

(f is constant), 

(def. of f), 

(def. of og), 

and so we see that f commutes with z whenever f does. D 

At this stage, we cannot as yet view f as the input/output map 

of a dynamical system because concatenation is not yet defined on P, 

A 
and therefore r is not yet a properly defined "input set". 

In other words, it is necessary to check that the notion of time is 

also inherited under dualization. In general, this does not appear 

to be possible without some strong limitation on  the class P. Here 

we shall look only at the simplest 
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(10.S)        HYPOTHESIS.    Every function   r    in   f    satisfies the 

finiteness condition:    There is an integer    |rl     (dependent on   r) 

such that for all   rt 6 € r   the condition 

k ü-ut k = i> •••* IT 

implies 

r(r) = r(5). 

In ether words, we assume that the value of each y at r 

is uniquely determined by some finite portion of the output sequence 

r. 

Assuming (10.5), it is immediate that V   admits a concatenation 

multiplication which corresponds (at least intuitively) to the usua] 

one defined on Q: 

(io.6)  r.S = •"•*'•?+ 8. 

We can now prove the expected theorem, which may be regarded 

as the precise form of the "duality" principle: 

(10.7)   THEOREM. Let f be an arbitrary constant inpi»*/output 

map and f its dual. Suppose further that (10.5) holds. Then 

each observable costate of f (relative to P satisfying (10.5)) 

may be viewed as a reachable state of f, and conversely. 

PROOF. First we determine the Nerode equivalence classes on 

? induced by ?. By definition 

g e (?)? iff f(8.€) - ?(r.S) 
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for all    € £ r.    Now    f   is linear (!);  in fact,  direct use of 

the definition of    f   and (10.6)  gives 

5 6 (r)j    iff    (rof)(o>)     =    (8.f)(o>),  a>€ n. 

So fof ana oof are equal as elements oi X: »;hey define the 

same observable aostate. Tn fancier language, the assignment 

(10.8)   d: X-->Xf: (?)j *-r0f 

is well defined and constitutes a bisection between the reachable 

states of f and those costates of f which are observable 

relative to the function class A. ü 

Thus (10.5) is a sufficient, condition for the duality principle 

A. 

to hold. However, the fact that the canonical realization of f is 

completely reachable is not quite the same as saying that the canonical 

realization of f is completely observable because the latter depends 

on the choice of r and therefore is not an intrinsic property of f. 

Moreover. Theorem (IO.7) does not give any indication how "big" X* is 

and it may certainly happen that the observability problem for f is 

iruch more difficult than the reachability problem. Tnese matters will 

be illustrated later by some examples. 

Now we deduce the original form of the duality principle from 

Theorem (10.7). The essential point is that {10.5) holds automati- 

cally as a result of linearity. 

New definition of the function class: let the circumflex denote 

the class of all K-linear functions. (All the underlying sets with the 

K-vector spaces, so the definition makes sense.) 
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The following facts are well known: 

(10.9) PROPOSITION.    Let   *    denote duality in the sense of 

K-vector spaces.    Then; 

r 2  Ortt«"1]])* =  tf«"1], 

a - art«»* = irttz]]. 

Now we can state the 

(10.10) MAIN THEOREM. Suppose f is K-linear, constant, finite- 

dimensional. Suppose further that A means K-linear duality. Then: 

(i) f is K-linear and constant, that is, a K[z ]-homomorphism 

(and therefore written as f*) and finite-dimensional, 

(ii) The reachable states of f* are isomorphic with the 

K-linear dual of Xf; hence every costate of Xf is observable. 

PROOF. The fact that r is K-linear implies, by (10.3), 

that f is K-linear; the constancy of f always implies that of 

f, by Proposition (10.4). (Caution: f is not the K[z]-linear 

dual of the K[z]-homomorphism f, and the construction given here 

cannot be simplified. See Remark (4.26A).) 

To prove the second part, we note that by Proposition (10.9) 

Hypothesis (10.5) holds and thus f = f* is a well-defined input/output 

map of a dyna.m1.cal system. We must prove that the reachable states 

of f* are isomorphic with Xl, the K-linear dual of X.. This 

amounts to proving that the K-vector space of functions 

x >-• r(Mx), Mz*x), ••• ) 
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is isomorphic with the K-vector space   Xt.    It suffices to prove 

that the K-vector space generated by the K-linear functions 

(10.11)      {X:    x w  [hf(z »x)],,      i   «   0, 1,  ...    and   J   »   1,   ..., m} 

is isomorphic with Xt. Suppose that, for fixed x, every X(x) • 0. 

Then x = 0, by definition of the Nerode equivalence relation induced 

by f (recall here the discussion from Section 3). Since Xf is 

finite-dimensional by hypothesis, it follows from this property of 

the functions (A} that they generate X*. Obviously, dim X* = dim Xf, 

so that everything is proved. 

In other terms, the fact that f * K[z]-homomorphism together 

with the appropriate definition of A implies that 

f: K^z"1] - lfttz]] 

is a K[z" ]-homomorphism. Since (10.5) holds, we can interpret 

f in a system-theoretic way, as follows: the output of the dual 

system at t = - k due to input r is given by the assignment 

r » ?(r)(- a), 

which is a linear function defined on the k-th term of the input 

sequence. In fact, we have 

a 

Hr)  - f(?)(a>), 

= J(?(r)(. k))(a^) 
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(10.12) REMARK. It is essentially a consequence of Proposition (10.9) 

that f turns out to be the face kind of algebraic object as f. Hote, 

however, that 

under duality the input and output terminals are 

interchanged and t is replaced by -t (hence z 

bjr z"1). 

In terms of the pictorial definition of a system, this 

statement simply amounts to "reversing the directions of the arrows", 

which is the "right" way to define duality in the most general 

mathematical context, namely in category theory. We would expect 

that the duality principles of system theory will eventually become 

a part of this very general duality theory. This has not happened 

yet because the correct categories to be considered in the study of 

dynamical systems have not yet been determined. It is likely that 

eventually many different categories will have to be looked Ht in 

studying dynamical problems. 

We shall now present an example which should help to interpret 

the previous results. We emphasize, however, that the theory sketched 

here is still in a very rudimentary form. 

(10.13) EXAMPLE. Consider the system Z   defined by 

x(t + 1) = 2x(t) + u(t), y(t) = x(t), t 6 Z\ 

,0    if 0 < x(t) < 1/2, 

y(t) -/ 

~L if 1/2 < x(t) < 1, 
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with X*U = Y«Hmodl, i.e., the interval [0, l). (l is to 

be thought of as identified with 0.) We let u(t) • 0. We view 

x through its binary representation 

x = i£o5k(x)2~"'  *kU) - 0 or X. 

It is clear from the definition of the system that the output 

sequence due to any x is precisely 

rx - UjU), l2(x), ... ). 

If x is irrational, infinitely many terms are needed to identify 

it. Consequently, the x's are isomorphic with the Nerode equiva- 

lence classes induced by f-. So £ cannot be reduced. 

Relative tc "* = functions'', every«costate of f_ is 

observable, provided that Hypothesis (10.5) is not satisfied. If 

it is, then only those costates defined on fixed-length rationals 

are observable (more precisely, these are functions which depend only 

on a fixed finite subset of the !,(x)«s). Thus: either f does 

not define a dynamical system or not all costates are observable. 

Now let us replace the set [0, l) by its intersection 

with the rationals. It is clear that ther,? is now a finite algorithm 

for determining x: we simply apply the results of partial realiza- 

tion theory of the previous section. (We take K = ZL and the 

problem is to express x from (£,(x), ..., £p(x)0 as a ratio 

of polynomials in Z2[2]--which is always possible since each x 

is rational.) However, x is not "effectively computable" in the 
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strict sense sine* there is no way of knowing when the algorithm 

has stopped. In other words, given an arbitrary rostate x there exists 

so fixed rule y~ such that the application of r* to r  gives 

x(x) for all x. On the other hand, substituting into x the 

results of the partial-realization algorithm will give an approxi- 

mation to the value of x(x) which always converges in a finite 

(hut a priori unknown) number of steps as more values of the output 

sequence are observed. In short, the costate-determination algorithm 

has certain pseudo-random elements in it and therefore cannot be 

described through the machinery of deterministic dynamical systems. 

(is there some relation here to the conceptual difficulties of 

Quantum Mechanics?) 

mm 
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11. HISTORICAL COMMENTS 

It is not en exaggeration to say that the entire theory of linear, 

constant (and here, discrete-tiae) dynamical systems can be viewed as 

a systematic development of the equivalent algebraic conditions (2.8) 

and (2.1$). 

Of course, the us«? of modules (over K[z]) to study a constant 

square matrix (see (fc.13)) nas been "standard" since the 1920's under 

the influence of E. NQETMER and especially after the publication of 

the Modern Algebra of VAN DER WAERDEN. Condition (2.15)> bv itself, 

must be also quite old. For instance, GANTMAKHER [1959> Vol. 1, p. 203] 

attributes to KRYLOV [1931] the idea of computing the characteristic 

polynomial of a square matrix A by choosing a random vector b and 

computing successively b, Ab, AT), ... until linear dependence is 

obtained, which yields the coefficients of det (zl - A). (The method 

will sjcceed iff X. is cyclic with generator g.) However, the 

merger of (^.13) with (2.15), which is the essential idea in the alge- 

braic theory of linear systems, was done explicitly first in KAU4AN [1965b]. 

We shall direct our remarks here mainly to the history of conditions 

(2.8) and (2.15) as related to controllability. See also earlier 

comments in KAIMAN [19&C, pp< kBl,  hS3, h&k]  and in KAIMAN, HO, and 

NARENDRA [1963, pp. 210-212]. We will have to bear in mind that the 

development of modern control theory cannot be separated from the develop- 

ment of the concept of controllability; moreover, the tecnnological 

problems of the 1950's and even earlier had a major influence on the 

genesis of mathematical ideas (just as the latter have led to many 

new technological applications of control in the 19o0's). 
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The writer developed the mathematical definition of controllability 

with applications to control theory, during the first part of 1959» 

(Unpublished course notes at Johns Hopkins University, 1958/59«) These 

first definitions were in the form of (2.17) and (2.3). Formal presenta- 

tions of the results were made in Mexico City (September, 1959« see 

KAIMAN [1960b]), University of California at Berkeley (April, 1969, see 

KAIMAN [I960d]), and Moskva (June, i960, see KALMAR [ 1960c]), and in 

scientific lectures on many other concurrent occasions in the U.S. As 

far as the writer is aware, a conscious, and explicit definition of 

controllability which combines a control-theoretic wording *vith a 

precise mathematical criterion was first given in the above references. 

There are of course many instances of similar ideas arising in related 

contexts. Perhaps the comments below can be used as the starting point 

of a more detailed exardnation of the situation in a seminar in the 

history of ideas. 

The following is the chain of the writer's own ideas culminating 

in the publications mentioned above: 

(l) In KALMAN [195**-] it is pointed out (using transform methods) 

that continuous-time linear systems can be controlled by a linear 

discrete-time (sampled-data) controller in finite time.* 

*It is sometimes claimed in the mathematical literature of optimal 
control theory that this cannot be done with a linear system. This is false; 
the correct statement is "cannot be done with a linear controller producing 
control functions which are continuous (and not merely piecewise continuousl) 
in time." Such a restriction is completely'irrelevant from the technological 
point of view. As a matter of fact, computer-controlled systems have been 
proposed and built for many years on the basis of linear, time-optimal control. 
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(2) Transposing the result of KAIMAN [195M from transfer functions 

to state variables, an algorithm was sketched for the solution of the 

discrete-time time-optimal control of systems with bounded control and 

linear continuous-time dynoaics» [KAIMAN, 1957] 

(3) As a popularization of the results of the preceding work, the 

same technique was applied to give a general method for the design of 

linear sampled-data systems by KAIMAN and BERTRAM [1958]. 

Some background comments concerning these papers are appropriate: 

(l) The ideas and method presented in KAIMAN [195^] descend 

directly -from earlier (and very well known) engineering research on 

time-optimal control. (The main references in KALMAN [195*0 are: 

McDONALD [1950],H0PKIN [1951], BOOKER and KAZDA [1954], as well as a 

research report included in KALMAN [1955].) Although the results of 

KALMAN [195^] on 13 near time-optimal control were considered to be new 

when published, it became clear later that similar ideas were at least 

implicit in OLDENBOURG and SARTORIUS [1951, §90, p. 219] and in TSYFHN's 

work in the early 1950ss. The engineering idea of nonlinear time-optimal 

control goes back, at least, to DOLL [l9Jf3] and to OLDENBURGER in l$kk, 

although the latter»s work was ur,fortunately not widely known before 1957. 

During the same time, there was much interest in the same problems in 

other countries; see, for instance, FELDBAUM [1953] and UTTLEY and HAMMOND 

[1953]. Mathematical work in these problems probably began with BUSHAW's 

dissertation [1952] in which, to quote from KALMAN [1955, before equation 

(40)], " ...!.[it was] rigorously proved that the intuition which led to 

the formulation of the [engineering] theory [quoted above] was indeed 

correct." TSIEN's survey [ 195*1-] contains a lengthy account of this state 



— 1:6 

R.E.Kaiman 

of affairs and was ready by many.- We emphasize: none of this 

extensive literature contains even a hint of the algebraic considerations 

related to controllability. 

(2-3) The critical insight gained and recorded in KALMAN [19571 is 

the following: the solution of the discrete-time time-optimal control 

problem is equivalent to expressing the state as a linear combination 

of a certain vector sequence (related to control and dynamics) with 

coefficients bounded by 1 in absolute value, the coefficients being 

the values of the optimal control sequence. The linear independence 

of the first n vectors of the sequence guarantees that every point 

in a neighborhood of zero can b* moved to the origin in at most n 

steps (hence the terminology of "complete controllability"); and the 

condition for this is identical with (2.17) (stated in KAIMAN [1957] 

and KAIMAN and BERTRAM [1958] only for the case det F ^ 0 and m • l). 

A thorough discussion of these matters is found in KAIMAN [ 1960c; see 

especially Theorem I, p. k@5h   A serious conceptual error in KALMAN 

[3-957] occurred, however, in that complete controllability was not 

assumadj ftp a hypothesis for the existence of time-optimal control law, 

but an attempt was made to show that the controllability is almost 

always complete [Iiemma 1]. In fact, this lemma is true, with a small 

technical modification in the condition. Only much later did it become 

clear (see the discussion of Theorem D in the Introduction), however, 

that a dynamical'system is always completely controllable (in the nonconstant 

case, completely reachable) if it is derived from an external description. It was 

this difficulty, very mysterious in 1957> which led to the development 
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of a formal machinery for the definition of controllability during the 

next two years. The changing point of view is already apparent in 

KAIMAN and BERTRAM [19583; the unpublished paper promised there- was 

delayed precisely because the algebraic machinery to prove Theorem D 

was out of reach in 1957-8. Cc-isult axso the findings of the biblio- 

grapher RUDOLF [I969]. 

IN SUMMARY: under the stimulation of the engineering problems 

of minimal-time optimal control, the researches begun by KAIMAN [195^> 

1957] and KAIMAN and BERTRAM [1958] eventually evclved intoowhat has 

come to be called the mathematical theory of controllability (of linear 

systems). 

Beginning about 195 5> *nd stimulated ] y the same engineering 

problems, PONTRYAGIN-and his school in the USSR developed th iir 

mathematical theory of optimal control around the celebrated "Maximum 

Principle". (They were well aware of the survey of TSIEN [1954] 

mentioned  above, and referenced it both in English and in the Russian 

translation of 1956.) We now know that any theory of control, regard- 

less of its particular mathematical style, must contain ingredients 

related to controllability. So it is interesting to examine how 

explicitly the controllability condition appears in the work of PONTRYAGIN 

and related research. 

GAMKRELIDZE [1957, §2j 195b" §1, §2] calls the time optimal control 

problem associated with the system 

(11.1)   dx/dt = Ax + bu(t) 



« _ 

—  138 — 

R.E. Kaiman 

"nondegenerate" iff   b    is not contained in a proper A-invariant 

subspace of   R .    He notes immediately that this is equivalent to 

(11.2) det (b, Ab,   ..., kn'\)    £   0 

(i.e., the special case of (2.8) for m = l). He then proves: in 

the "degenerate" case the problem either reduces to a simpler one or 

the motion cannot be influenced by the control function u( •). All 

this is very close to an explicit definition of controllability. 

However, in discussing the general case m > 1, GAMKRELIDZE [1958, 

§3, Section 1] defines "nondegeneracy" of the system 

(11.3) dx/dt = Ax + Bu(t) 

as the condition 

(11.10   det (b , Ab., ..., An"T> ) ^ 0 for every column b e B, 

but he does not show that this jneralized condition of "nondegeneracy" for (11.3) 

inherits the interesting characterization proved for "uondegeneracy" 

in the case of (ll.l). In fact, condition (11.4) is much too strong 

to prove this; the correct condition is (2.8), that is, complete 

controllability. In other words, in GAMKRELIDZE's work (11.4) plays 

the role of a technical condition for eliminating "degeneracy" (actual]^, 

lack of uniqaeness) from a particular optimal control problem and is 

not; explicitly related to the more basic notion of complete controllability. 

Neither GAMKRELIDZE nor FONTRYAGIN [1958] give an interpretation of 

(11.4) as a property of the dynamical system (11.3), but employ (11.4) 

only in relation to the particular problem of time-optimal control. See 
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also KALMAK [196OC, p. kSk],    A similar point of view is taken by 

IÄS..LXE [i960]; he calls a dynamical system (11.3) satisfying (2.8) 

"prcper" but then gees on to require (llA) (to assure the uniqueness 

of the time-optimal controls) and calls such systems "normal". 

The assumption of some kind of "nondegeneracy" condition was 

apparently unavoidable in the early phases of research on the time- 

optimal control problem. For example, ROSE [1953, pp. 39-58] examines 

this problem for (ll.l); by defining "nondegeneracy" [p. kl]  by a 

condition equivalent ot (LI.2), he obtains most of GAMKRELIDZE's results 

in the special case when A has real eigenvalues [Theorem 12]. ROSE 

uses determinants closely related to the now familiär lemmas in control- 

lability theory but he, too, fails to formulate controllability as a 

concept independent of the time-optimal control problem. 

A similar situation exists in the calculus of variations. The 

so-called Caratheodory classes (after CARATHEODORY [1933]) correspond 

to a kind of classification of controllability proparties of nonconstant 

systems. In fact, the standard notion of a normal family of extremals 

of the calculus of variations is closely related to condition (11.10* 

suitably generalized via (2.5) to nonconstant systems.* Normality is 

used in the calculus of variations mainly as a 'nondegeneracy condition. 

It is important to note that the "nondegeneracy" conditions 

employed in optima) comiruj. o,nd the calculus 01 variations play mainly the 

role of eliminating annoyins technicalities and simplifying proofs. 

*The use of the word "normal" by LaSALLE [i960] for (-11.10 is enly 
accidentally coincident with the earlier use of the "normal" in the 
calculus of variations. 

, 
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With suitable formulation, however, the basic results of tine-optimal 

control theory continue to hold without the assumption of complete 

controllability. The same is not true, however, of the four kinds of 

theorems mentioned in the Interdiction, and therefore these results 

are more relevant to the story of controllability than the time-optimal 

conti-cl discussed above. 

There is a considerable body of literature relevant to controllability 

theory which is quite independent of control theory. For instance, «he 

treatment of a reachability condition in partial differential equations 

goes back at least to CHCM [l$fcO] but perhaps it is fairer to attribute 

it to Caratheodory^ well-known approach to entropy via the nonintegra- 

bllity condition. The current status of these ideas as related to 

controllability is reviewed by WEISS [1969, Section 9]. An independent 

and very explicit study of reachability is due to RQXIN [i960]; unfor- 

tunately, his examples were purely geometric and therefore the paper 

did not help in clarifying the celebrated condition (2.8), The 

Wronskian determinant of the classical ticory of ordinary differential 

equations with variable coefficients also has intersections with control- 

lability theory, A3 pointed out recently with considerable -success by 

SIuVERMAN [19663. Many problems in control theory were misunderstood 

or even incorrectly solved before the advent of controllability theory. 

Some of these are mentioned in KALMAN [1963b, Section 9]. For relations 

with automata theory, see ARBIB [I965]« 

Let us conclude by stating the writer's owr. current position as 

to the significance of controllability as a subject in mathematics: 

iMm mtfnr riiir 
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(i) ControllBLblllty is basically an algetraic concept. (This 

claim applies of course also to the nor linear controllability results 

obtained via the Pfaffian method») 

(2) The historical development of controllability was heavily 

influenced by the interest prevailing in the 1950*8 in optimal control 

theory. Ultimately, however, controllability is seen as a relatively 

minor component of that theory. 

(5) Controllability as a conceptual tool is indispensable in 

the discussion of the relationship between transfer functions and 

differential equations and in questions relating to the four theorems 

of the Introduction« 

(k)    The chief current problem in controllability theory is the 

extension to more elaborate algebraic structures. 

?or a survey of the historical background of observability, 

which would take us too far afield here, the reader should consult 

KADttN [1969b]. 
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