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INTROLUCTION

The theovy of controllability and observability has been
developed, one might almost say reluctantly, in response to problems
generated by technological science, especially in areas related to
control, communication, and computers. It seems that the firat
conscious steps to formalize _these matters ag 2 separate area of
(system-theoretic or mathematical) research were undertaken only as
late as 1959, by KAIMAN [1960b-c). There bave been, however, many
scattered results before this t:h:.he (see Section 12 for some historical
comments and references), and one might confidently assert today that
some of the main results have been discovered, more or less independ-
ently, in every country which has reached an advanced stage of
"development” and it is certain that these same results will be
rediscovered again in still more places ag other countries progress
on the road to 'development.

With the perspective afforded by ten yesrs of happenings in
this field, we ocught not hesitate to moke some guesses of the signi-
ﬁcance of what has been accomplished. I see two main trends:

(1) The use of the concepts of controilability and observability
to study nonclassical questions in optimal control and optimel estima-
tion theory, sometimes as basic hypotheses securing existence, more
r.;ﬁ:en as seemingly technical coniitions which allow a sharper statement
of results or snorter proofs.

(11) Interaction between the concepts of controllability and

observability and the study of structure of dynamical systems, such
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as: formulatior and solution of the problem of realization,
canonical forms, decomposition of systems,

The first of these topics i1s older and hag been studied
primarily from the point of view of amulysis, although the basic
-lemma (2.7) 1s purely algebraic. The second group of topics
may be viewed &s "blowing up" the ildeas ivherent in the ba.si.c
lemma (2.7 ), resulting in a more sad more strictly algebraic peint
of viev.

~There is active research .in both areas.

in the first, attention has shifted rrcu the case of systems
governed by finite-dimensional linear differential equations with
constant coefficients (where success was quick and total) to systems
governed by infinite-dimensional lineer differential equetions (delay
di_fterentia.l e@tions, classicael types of partial differential
eqmti_éns, ‘etc.), to finite-dimensional linear differential equa-
tions with tine«depéndent coefficients, and finally to all sorts
and subsorts of nonlinear differential equa.}sions. The first two
topies are 'su:;'veyed concurrently by WEISS [1969]) while MFRKUS [1965]
locks ai the nonlinear situation.

My own current interest lles in the second streem, and thaese
lectures will deal primarily with it, g.fter a rather hurried over-
;'liew of the genersl problem and of the "classical™ results.

Iet us take a quick look at the most important of these "classical"

results. For convenience I shall describe them in system-theoretic
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(rather than conventional pure mathematical) language. The mathe-
matically trained reader should have no difficuity in converting
them into his preferred framework, by digging a little into the
references.

In area (i), the most important resuits are probably those
vhich give more or less explicit and computable results for control-
lebility and observebility of certain specific classes of systems.

Beyond these, there seem to be two main theorems:

THECREM A. A real, continuous-time, n-dimensional, constant,

linear dynamical system Z has the property "every set of n

"eigenvalues may be produced by sultable state feedback" if and

only if Z 1is completely controllable.

The central speclial case is treated in great detail by KAIMAN,
FALE, and AKBIB [1969, Chapter Z, Theorem 5.10]; for a proof of the
general case with background comments, refer to WONHAM [1967). As
a particular case, we have that every system satisfying tﬁe hypotheses
of the'theorem can be "stabilized" (made to have eigenvalues with
negative real parts) viz a suitable choice of feedback. This result
is the "existence theorem" for algorithms used to construct control
systems for the past threc decades, and yet & conscious formulation
;f the problem and its mathematical solution go back to about 1963.
(See Theorem D below.) The analogous problem for nonconstant linear
systems (governed by lirear diff .rcitial equations with variable

coefficients) is still not solve.
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THEOREN. B. {"Duality Principle") Every problem of control-

lability in a real, (coniinuous-time, or discrete-time), finite-

dimengional, congtant, linear dymamical system is equivalent to

a_controllability problem in a dual system

This fact wes first observed by KALMAN [1960a] in the solution
of the optimel stochastic filtering problem for discrete-time
systems, and was soon applied to several problems in system theory by
KAIMAN [1960b-c]. See also many related comments by KAIMAN, FALB,
and ARBIB [Chapters 2 and 6, 1969]. As a theorem, this principle
is‘ not yet known to be valid outside the linear area, but as an
intuitive prescription it has been rather useful in guiding system-
theoretic research. The problems involved here are those of fomila-

1_:ion rather than proof. The basic difficulties seem to point toward

‘algebra and in particular category theory. System-theoretic

duality, like the categoric one, is concerned with "reversing
errows"”. BSee Sectior 10 for a modern discussion of these pointa
and & precise version of Theorem B.

Partly as & result of the questions raised by Theorem B and
partiy bec_a;\ise of the algebraic techniques needed to prove Theorem
A and rela‘ted lemmas, attention in the early 1960's shifted toward
qerta.in problems of a structural nature which were, gomewhat sur-
prisingly at first, found to be related to controllability and

observability. The main theorems again seem to be two:

THEOREM C. {Canonical Decomposition) Every real {continuous-

time or discrete-ﬂirﬁe)', finite-dimensional, consten’, linear dynamical
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system mey be cancnically decomposed 1ntgrfour parts, of which only

one part, that whick is completely ccentrolleble and completely observ-

able. is invelved in the input/output behavior of the syctem.

The proor given by KALMAN [1962] applies to nonconstant svstems

only under the severe restriction that the dimensions of the sub-
space of all controllable and all unohservable states is constant p
on the whole real line. The result represented by Theorem C is far from
definitive, however, since finite-dimsnsionsl linear, Egggggggégg systems
admi’ at least four dirferent cenonical decompositicns: it is
pcssible and fruitful to dualize the notions of controllability
and observability, thereby arriving at four properties, pfesently
called

reachability and controllability
as well as

lconstructibility* and obsarvability.
(See Section 2 definitiona.) Any combination cf a property from
the first list with a property froum the second list gives a csanoni-
cal decomposition result anslogous to Theorem T. The complexity of
the situation was first revealed by WEISS and KAIMAN [2965]; this
paper coﬁtributed to a revivel of interest (with hopes of success)
in tne special probiems of norconstant linear systems. Recent

#WEISS [1959] uses "determinability" instead of constructi-
bility. The new terminology used in these lectures is not yet
entirely standard.

Y T
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progress is surveyed by WEISS [1969]. Intimately related to the '

canonical structure theorém, and in fact necessary to fully clarify

ks

the phrase "involved in the 1nput/output behavior of the system”, is
the last basic result:

MOR‘E;M D. (Uniqueness cf Minimel Realization) Given the

' Impulse-response matrix W of a rea), continuous-time, fintlgg-

dimenisionsl, linear dynamical system, there exists a real, 'enntinuous-

tine, ﬁnite-dimensiofxa.l, linear dynamicazl system Z‘J which

" {a) realizes W: tnat is, the impulse-response matrix of

l'w is equal to W;
(v) bes minimal dimension in the clast of linear systems

satisfying ();
(c) 1s completely controllsble and completely observeble;

{a) is uniquely determined {modulo the choice of & basis

at each t for its state space) by requirement (a)

together with (b) or, indepéndently, by (a) together with
(c). '

In short, for any W -as described above, there 1s an "essentially

unique” l‘w of the same "type” which satisfies (a) through (c).

COROLIARY 1. If W comes from a constant system, there is a

corstant I, which satisfies (a) through (c), and is uniguely

determined by (aj + (b) or (a) + (c) (modulo a fixed choice of

basis for its state space).
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COROLIARY 2. All claims of Corollary 1 continue to hold if

"impulse-response matrix of a constent, finite-dimensional system"

is replaced by "transfer function matrix of a constant, finite-

dimeisional system".

The first general discussion of the situation with an equiva-
lent statement of Theorem D is due to KAIMAN {1963b, Theorems 7
and 8]. (This raper does not include complete proofs, or even
an explicit statement of Corollaries 1 and 2, although they are
implied by the general algorithm given in Section 7. An edited
version of the original unpublished proof of Theorem D is given
in KAIMAN, FALB, and ARBIB [1969, Chapter 10, Appendir C].)

These results are of great importance in engineering system
theory since they relete methods based on the laplace tranzform
(using the transfer function of the system) end the time-domsin
methods based on input/output data (the metrix W) to the state-
variabl=: (dymemical system) methods developed in 1955-1960. In
fact, by Corollary 1 it follows that the two methods must yield
identical results; for instauce, starting with a constant impulse-
response matrix W, property (c) implies that the existence
of & stable control ley is alweys assured by virtue of Theorem A.
Thus it is only after the development represented by Theorems A-D
that a rigorous justification is obtained for the intuitive design
methods used in control engineering.

As with Theorem C, certain formulationel difficulties arise

in connection with & precise definition of a "ronconstant linear
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éymnaxical system™. Thus, it &eems prefereble at present to replacs
in Theorem D "inpuisze-response matrix W" by "weighting pattern W©
(or "sbstract imput/output map W*) and "complete contrcliability”
by "cemplete reachability”. The definitive form of the 1963 theorem

ot s hoel iy Sl

evolved through the works of WEISS and KAIMAX [1965], YOUIA {1966),
and KAIMAN; a precise formulation and modernized proof of Theorem D
in the weighting onttern case vas given recently bty KAIMAK, FAIB,

r and ARBIB [1959, Chupter 1T, Sectiocn 13.] A completely general

ﬁamsion of what iz meant by a "minieal realizstion™ of a non-

_ constant impuise-response matrix involves many technical complica-
3 tiong due to the fact that such a minimal realization does not

s csn

exict in the class of linear differential equatiors with "nice”
coefficient functions. For the current status of this problexm,

; consult especially DESOER and VARATYA [19567], SILVERMAX and MEADUAS
} (1960], EAIMAN, PALB, and ARFIB (1969, Chapter 10, Secticn 13] and
{ WEI8S [196].

From the standpoint of the present lectures, by far ihe most
interesting consequence of Theorem D is its influence, via efforts
to arrive at a definitive proof of Corollary 1, on the development
kL . of the algebraic strear of system theory. The first prodf of this
important result \in the special case of distinct eigenvalues) is

that of GINBERT [1963]. ITmmediately afterwards, u general proof

wag given by KAIMAN {1963b, Section 7}. This proof, sirictly
computational and. linear algetraic in nature, ylelds no thecreti-

cal insight although it is useful &s the basis of & computer algorithm.
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Using the classical theory of invariant factors, KAIMAN {1965a]
succeeded in showing that the solution of tr2 minimal realization
problem can be effectively reduced to the classical invariant-
factor algorithm. 'fhis result is of great theoretical interest
ainse it strongly suggests the now standard module theoretic
&pproach, btut it does npot lead to a sgimple proof of Corollary 1
end is not a prectical method of coputation.
The best known proof of Corollary 1 was obtained in 1565 by
B. L. Ho, ﬁth the aid of a remarkahble algorithm, which is equally importent
from a theoretical and computational viewpoint. The ew.ly formula-
tion of the algorithm was described by HO and KAIMAN [1966], with
later refinements discussed in HO and KAIMAN [1969), KAIMAN, FALB,
and APBIB {19€9, Chapter 10, Section 11) and KALMAN [1969¢].
Almost simultaneously with the work of B. L. Ho, the basic results
were disccvered independently also by YOULA and TISSI [19606] and
by SILVERMAN [1966]). The subject goes back to the 19th century
and centers around .the thecry of Hankel matrices; however, many
of the results Just referenced seem to be fundamentally new. This
field iz currently in a very active stage of development. We shall
discuss the essential ideas involved in Sections 8-9. Many other
toples, especially Silverman's generalization of the algorithm to

nonconstant systems unfortunately camnct be covered due to lack of

time.

B SO NI SR TR AL T R 1 R
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1. CLASSICAIL AND MODERN DYNAMICAL SYSTEMS

In mathematics the term dynamicel system (synonyms: topologicel

dynamics, flows, abstract dynamics, etc.) usually comnotes the action

of a one-parameter group T {the reals) on a set X, where X is
at least a topological space (more often, a differentiable manifold)
and the action is at least continuous. This setup is physically
motivated, dbut in a very old-fashioned sense. 4 "dynamical system"
as Jjust defined is an idealization, generalization, and abstractiocn
of Newton's world view of the Solar System &s described via a finite set of
nonlinear ordinary differential cquations. These equations represent
the positions and momenta of the planets regarded as point masses and
are completely detcrmined by the laws of gravitation, i.e., they do
not contain any terms to account for "external" forces that may act
on the system.

Interesting as this notation of a dynamical system may be (and
is1) in pure mathematics, it is much too limited for the study of
those dynamical systems which are of contemporary intere:t. There
are at least three different ways in which the classical concept
mist be generalized:

(i) The time set of the system is not necessarily restricted
tc the reals;

- (11) A state x € X of the system is not merely acted upoa by
the "passage of time" but also by inputs which are ~r could be mani-

pulated to bring about a desired type of behavior;

TR ==
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(iii) The states of the system cennot, in general, be ohserved.
Rather, the physical bekavior of the system is manifested through
its outputs which are many-to-one functions of the state.

The generalization of the time set is of minor interest to us

here. The notions of input and output, however, are exceedingly

fundanental; in fact, controllability is related to the input and _
observability to the oﬁtput. With raspect to dymamical systemé in
the clssgsical sense, neither controllability nor observability are
meaningful concepts.

A m-lch more detailed discussion of Aynamical systems in the modern
sense, together with rather detailed precise definitions, will be
found in KAIMAN, FALB, and ARBIB [1969, Chapter 1].

From here on, we will use the term "dynamical system" exclusively
in the modern sense {we have already done so in the Introduction).

The following symbols will have & fixed meaning throughout the

paper:
(T = time set,
U = get of input values,
X = gtate set,
(1.1) { Y = set of output values,
Y; ; input functions,
¢ = transition map,
. 1 = readout map.

The following assumptions will aiways apply (otherwise the sets

above are arbitrary):
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fT = an ordered subset of the reals I_i,

f = class of functions T < U such thas

(1) each function w 1s undefined outside some
(1.2) < finite interval J CT dependent on w;
(11) 1r JwﬂJm, = @, there is a function

w € § which agrees with ®» on Jw and

" with ' on J .

For mos? g.rzoses later, T will be equal to 2 = (ordered)
abelian group of integers; U, X, ¥, Q@ will be linear spaces; "unde-
fised" can be replaced by "equzal to ©"; and "functions undefined out-
gide a finite _nterval" will mean the same as "finite sequences"”.

The most general notion of a dynamical system for our present

needs is given by the following

(1.3) DEFINITION. A dynamical system I is & composite object

consisting of the maps o, n defined on the sets T, U, Q, X, ¥

{as_&bove):

@ TXT XXX X,
: (t; 1, x, ©) & ¢{t; 1, %, ©)

undefined whenever t > 71;

Nt TXX o Y (t, x) » 3t, x).

The fransition rﬁa_'g @ satisficc the following assumptions:

(1.4) o(t; t, x, ®) = x;
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(1-5) (P(t} Ty Xs m) = @(ti Sy @(3; Ty X m): u’)i

{1.6) if @ = w on [r, t], then for al1 =€ {1, t]

3 os; t, % ©) = o{s; T, x, ).

The defirition of a dynamical system on this lavel of generality

ool i i Rl

should be regarded only as a scaffolding for the terminology; interest-
; ! ing mathematics begins only after further hypotheses are made. For
instance, it 1s ususlly necessary tc endow the sets T, U, &I, X, and

Y with a topology end then require that ¢ and 1 be continuocus.

(1.7) EXAMPLE. ' The classicel setup in topological dynamics may

be deduced from ocur Defirition {1.3) in the following way. lLet

T= 5 = reals, regarded asz an abelian group under the usual addition

and having the usua.':l. topology; let {1 consist only of the nowhere-

defined functlon; let X be topologiéa.l space; disregard Y and 1 .entirely;

define @ for gll t, v € T and write it as

qJ(t; X ®) = x(t-=%),

that is, a functior of x and t - 7 alone. Check (1.4-5); in

the new notation they become
x0 = x and x-(s+t) = (xs)-t.
Finally, require that the mep (x, t) » x't be continuous.

(1.8) INTERPRETATION. The essential idea of Definition.(1.3) is

that it axiomatizes the notion of stete. A dynemical system is informally
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& rule for state transitions {(the function ¢), together witk suitable
means of expressing the effect of the input on the staée and the effect
of the state on the cutput (the function 7). The map ¢ 1s verbalized
as follows: "an input ®, applied to the system £ in state x at
time 7t produces the state ¢(t; 7, x, ®) &t time t." The peculiar
definition of an input function @ is used here mainly for technical
convenience; by (2.6) only equi&alence classes of inputs agreeing over
[z, t] enter into the determination of @{t; 7, x, ®). '"® not defined”
at t means no input actson I at yime t.

The pair (7, x) € T XX will bte called an event of a dynamical
system Z. |

In the sequel, we shall be concerned primarily with systems which

are finite-dimensional, linear, and con.inuous-time or discrete-time.

Often these systems will be also real and constant (= stationary or

time-invariant). We leave the precise definition of these terms in
the context of Definition (1.3 to the reader (consult KALMAN, FALB,
or ARBIB [1969, Chapter 1] as needed) and proceed to make some ad hoc
definitions without detailed explanation.

The following conventions wili remain in force th}oughout the

lectures whenever the linear case is discussed:

(1.9) Continuous-time. T=R, U=R, X=R, Y=§

J

f = all continuous functions R — Em which vanish out-

gide a finite interval.

(1.10) Discrete-time. T= 2Z, K = fixed field (arbitrary),

*
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U=%X X=k% Y=i°, Q=all functions
2 - ¥ wajch are zero for all but a finite number of

+heir arguments.

Row we bave, finally,

(1.11)  DEFINITION. A real, continaous-tine, n-d:uensional, 3inear

=

Mcu 'sxﬁtem L is a tripie cf continuous matrix fuictions of

bime (F(+), G('): H(+)) where

Fi*): B> (nXn matrices over R)
G(+): R - [;_1 Xm matrices over ﬁl:

E(): R — {p Xn =nairices over R}.

Thess maps. determine the zqueticns of mocion of £ in the following

panners:

ax/at = F(t)x + 6(t)w(t),
(1.12) { s iy
yit) = BE(t)x(t),

where t€R x€R, o})€y, emd y(t) ez d

Po check that (1.12) indeed mskes I into a well-defined dynamical
system in the gense of,Deﬂnitfcn (1.3), it is necessary to recall the
basic facts sbout finite systems of ordinery linear differential equations

vith continuous coefficients. Define the map
QF(t: 7)3 . RXR - (nXn matrices over R}

to be the family of aXn matrix solutions of the linear differential
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equation : -
dx/at = F(t)x, x€R
subject to the .in.i.tia.l condition

or(r, t) = I = unit matrix, T € R.

Taen @F is of class Cl in both arguments. It is called the

transition matrix of (the system 7 whose "infinitesimal" transition '

matrix is) F(-}. From this standard rerult we ge* easily also the

fact that the transition map of I is explicitly given by

(1.23) ot 1, % @) = o (e, D)x+ ¢ 0.(t; 8)6()G(s)9L(t, s)ds
Or '

vhile the readout map is given by

(.14) 2, x) = H(t)x.

It ic instructive to verify thut ¢ indeed depends only on the equiva-

lence class of s which agree on (71, t].
In view of the classical terminoliogy "linear differential equa-

tions with consiant coefficieonts", we introduce the nonstandard

(1.15) DEFINITION. A real, continuous-time, finite-dimensional
AY

linear dynamical system I = (#(-), G(-), H(:)) 4is called constent

:i.f.f all three matrix functions are constant.

Tp strict analogy with (1.15), we say:

(1.16) DEFINITION, . A discrete-time, finite-dimensional, linear,

cengteat dynamical system I over X 4s a triple. (F, G, H) of
[ L gy Lo —— : " o

e e e R L
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nXn, aXm pXn matrices over the field K. These meps deter-

-

nine tho.. equations of motion of £ in the following marner:

x(t +1) = Fx(t) + co(t),
(e { y(t) = Hx(t),

where t€2, xeK, oft) € & end y(t) € xP.

In the sequel, we shall. use the notatinns (F, 6, -) or

F, -, H}' to denote systems Possessing certain properties which
are true for any H or G.

Finally, we adopt the following convention, which is already
1mp11cit in the Preceding discussion:

(1.18)  DEFINTTION. The dimension n of a dynamical system

L is equal to the dirmension of Xz as a vector space.

T —




— 23
R.E,Kalman
2. STANDARDIZATION OF DEFINITIONS AND "CLASSICAIL" RESULTS

In this section, we shall be mainly interezted in finite-
dimensional linear dynamical systems, although the first two
definitions will be quite general.

‘Let £ be an erbitrary dynamical system as defined in
§ection 1. We assume the following slightly speclal property:

There exists a state x* and an input «w* such that
o(t; 7, ¥, ¥} = x* for a1l t, T€ET and t> 1.

For simplicity, we write x* and w* as O, (When X
and 0 have zdditive structure, 0 will have the usual mean-

ing.} The next two definitions refer to dynamical systems
with this extrs property.

(2.1) DEFINITION. An event (7, x) is controllable iff‘-§'

there exists 8 t €T andan w€ 0 (both t and @ may depend

on (7, x)) such that
q’(t; X o = 0
In words: an event is controllable iff it can be Yransferr:
+to

0 in finite time by an appropriate choice of the input function

@. Think of the path from (71, x) to (t, 0) as the gragh of a

function defined over [r1, t].

et

i me— g —
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Consider ncw a reflection of this greph about <. This
suggests a nev definition which is & kind of "adjoint" of the

definition of controliability:

(2.2) IEFINITION. An event (71, x) 3is reachable iff there

isan s€T ancdan € Q2 (Lwth = and @ may deperd on

(1, x)) anch that
x = oft; s, 0, ©).

We empbasize: controllabllity and reechability are entirely

different concepts. A striking example of this fact is encountered
below in Prepositiou (4.26).

We shall now review briefly some well-known criteria for end

relations between reachability and controllsbility in linear systems.

{2.3) PROPOSITION. In a real contimuous-time, finite-dimensional,

linear dynemicai gystem Z = (F(:), G(+), - ), asnevent (1, x) is

(2) reacheble if and only if x € range W(s, 1) for

soms seg, § < T, where
fis, v) = J° %7, 0)G(o)6'(0) 03(x, o)ar
. 8

(b) zontrollable if an only if x € range W(xt, t) for

some telj, t > 1, where
W, t) = It @F('r, s)G(s)G‘(s)@}(r, s)ds.
.. T

whe original proof of (b) is in KAIMAN [1960b]; both cases

are treated in detail in KAIMAN, FALB, and ARBIB [1969, Chepter 2,
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Section 2]. Note that if G{*) is identically zero on {- w, 1)

w we cannst have reachebility, and if G(+) 1is identically .

zero or (T, + ®) we cannot have controllability.

| For = constant system, the integralg above depend only on

the difference of the limits; hence, 'in particular

T S —"

wit, t) = Wer-o, 1.
So we have

(2.4) PROPOSITION. In & real, continuous-time, finite-dimensional,

f linear, ccnstant dynamical system an event (1, x) is reachable

for a1 1 if and only if it is reechable for one T; &an evant

is reachable i1f and only if it is controllable.

From (2.3) one can obtain in & straightforward fashion also

the following mmch stronger result:

(2.5) THEOREM. In & real, continucus-time, n-dimensional,

linear, constant dynamical system L = {F, G, -) a state x

is reachable (or, equivalently, controllable) et any 7 € R

if and only if

xe Sp&n (G, FG, toe )an;

if this condition is satisfied, we can r se s=71 =58, t = 1T + 5,

with & >0 arbitrary. {The span of & udence of meirices is %o

be interpreted &s the vector space generated by the columns of

these matrices.}
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A proof of (2.5) may be found in KALMAN, HO, and NARENDRA
[1963] and in KAIMAN, FALB, and ARBIB [19469, Chapter 2, Section
3], A trivial but noteworthy consequence is the fact that the

definition of reachable states of I is "coBrdinate-free":

(2.6) COROLIARY. The set of reachable (or controllable)

states of I in Theorem (2.5) is a subspace of the real vector

space X, the stete space of Z.

Very often the attention to individual states is unnecessary
and therefore many suthors prefer to use the terminology "L e
completely reachable at 1" for "every event (1, x), t = fixed,
x€X, is reachable”, or "I completely reachable” for "every
event In & is reachable",-etc. Thue (2.5), éogetﬁer with the

Cayley-Hamilton theorem, implies the

(2.7) - BASIC LEMMA. A real, continuous-time, n-dimensional,

linear, constant dynamical system I = (F, G, -) is completely

reachable if an only if

(2.8)  rank (G, FG, ..., i) = n.

Condition (2.8) is very well-known; it or equivalent forms o
it have been discovered, explicitly used, or implicitly assumed ty

"many authors. A trivially equivalent form of (2.7) is given by

(2.9) COROLLARY 1. A constant system L = (F, G, -) is

completely reachable if and only if the smallest F-invariang

subspace of X, containing (211 column vectors of) G is X

itself.
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A usgeful variant of the last fact is given by

(2.10)  COROLIARY 2. (W. Hahn) A constant system I = (F, G, =)

is completely reachable if and only if there is no nonzero elgen-

vector of F which is orthogonal to {every column vector o;) G.

Finally, let us note that, far from being a technical cordi-
tion, (2.5) bas a direct system-theoretic interpretution, as

follows:

(2.1.1) PROPOSITION, The state space XE of & real, continuous-

time, n-dimensional, linear, constant dynamical system Z = (F, G, -)

may be written as & direct sum

Xp = X 9%,

which induces a decomposition of the equations of motion as (obvious

notations)

F..x. +F x2+Glu(t),

dx)/at = Fpyx) + Fpy
(2.12)
dxe/dt = FpoXye

The subsystem I, = (Fll, G, -) is cumpletelv reachable. Hence

a state x = (xl, x2) € X; 1is reachable if and only if x, = O.

FROOF. We define Xl to be the set of reachable states

of Z; by (2.5) this is an F-invariant subspace of X.. Hence, by

finite-dimensionality, xl is & direct summand in Xz. By construc-

tlon, every state in Xl is reachable, and (every column vector of)
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G belongs to X The Fe-invarience of X, Implies that

1’ 1
Fll = 0, which implies the asserted form of the equations of

nmotion. a

(2.13) REMARK, Note that X, 1s not intrinsically defined

2
(1t depends on an arbitrary choice in completing the direct sun).
Hence to say that "(0, x2) is an unreachable (or uncontrollable)
state if x, # 0" is an abuse of language. More precisely: the

set of all reachable (or controllable) states has the structure of

& vector space bib the set of all unreschable (or uncontrollabl:)

states does not have such structure. This fact is importent to

bear in mind for the algebraic development which follows after
this section and also in the definition of observability and
congtruetibility below. In general, the direct sum cannot be

choeen in such a way that Fip = 0Oe

While condition (2.8) has been frequently used as a technical
requirement in the solution of various optimal control problems in

the late 1950's, it was only in 1959-60 that the relation between

(2.8) end system theoretic questions wes clarified by KAIMAN [1960b-c]

via Definition (2.2) and Propositions (2.5) and (2.11). (See Section

11 for further details.) In other words, without the preceding

. discussion the use of {2.8) may appear to be artificial, but in fact

it 18 not, at least in problems in which control enters, because,

by (2.12) control protlems stated for X; 6&:e nontrivial orly with

respect to the intrinsic subspace Xl.
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The hypothesis "constant" is by no means essential for
Proposition (2.11), but we must forego further comments here.

For later purposes, we state some facts here for {discrete-
time, constant linear systems analogous to those already developed
for their continuous-time counterparts. :he proofs are straight-

forward and therefore omitted (or given later, for illustrative

purposes).

(2.1%) PROPOSITION. A state x of a real, discrete-time,

n-dimensional, linear, constant dynemical system Z = (F, G, =)

is reachable if and only if

(2.15) % € span (G, FCG, ..., P Yg).

Thus such & system is completely reachable if and only if (2.8)

holds,

(2.16) PROPOSITION., A state x of the system I described

in Proposition (2.14) is controllable if and only if

(2.17)  x € span (F° %G, ..., F 1),
where

F“kG = |x: Fkx = 8 g = column vecicr of G}.

(2.18)  PROPOSITION. In & resl, discrete-time, finite-dimensionel,

linear, crustant dymamical system I = (F, G, =) a reackable state

is always controlleble and the converse is always true whenever

det F # 0.
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Note also that Propesitions (2.11) and its proof contimue
to be correct, without any modification, when "continuous-time"
is replaced by "discrete-time".

Now we turn to a discussion of observability.

The originel definition of observability by KAIMAN {1960b,
Definition (5.23)] was concocted in such a way as to take advan-
tage of vector-space dquality. The conceptual problems surround-
ing duality are eazy to handle in the linear case but are still
by no means fuliy understood in the nonlinear case (see Section
10). In order to get at the main facts quickly, we shall consider
here only the linear case and even then we shall use the- under-
lylng idea of vector-space duality in a rather.aﬂ-hoc fashion.
The reader wishing to do so can easily turn our remarks into &
strictly duel treatment of facts (2.1)-(2.12) witk the aid of

the setup introduce? in Section 10,

(2.19) DEFINITION. An event (1, x) in a real, continuous-

time, Pinite~dimensional, linear dynamical system I = (F(*). -, H(*))

is unobservable iff

H(s)oF(s, )x = 0 forall s € {7, =),

(2.20) DEFINITION. With respect to the same system, an event

(v, x) 1is unconstructible* iff

*In the older literature, starting with KAL¥AN [1960b,
Definiticen (5.23)], it is this conzept which is called "observability".
By hindsight, the present choice of words seems to be more natural
to the writer.
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H(U)‘DF(U', T)x = 0 forall o€ f-w, g].

The motivr.tion for the first defirition is obvious: the
"occurrence” 3f an unobservable event cannot be detected by look-
ing at the output of the system after time <. (The definition
subsumes © = 0, bul this is no loss of generality because of
linearity.) ffhe rotivation for the second definition is less
obvious but is in fact strongly suggested by statisticzl filtering
theory (see Section 10). 1In any case, Definition (2.21) comple-
nents Definition (2.20) in exactly the same way as Definition (2.1)
complements Definition (2.2).

¥rom these definitions, it is very easy to deduce the follow-

ing criteria;

(2.21) PROPOSITION. In & real, continuous-time, finite-dimensional,

linear dynamicel system I = (F(-), -, H(-)) an event (1, x) is

(/) uncbservable if and only if x € kernel M(t, t)

for all t € 5, t > 1, where
Mo

B, t) = [° o(s, D' (s)H(s)oy(s, T)as;
T

(b) unconstructible if and only if x € kernel M(s, 7)

s0r a1l s € R, s <1, where

M(s, T) = _LT QF'.(J, T)H'(O‘)H(O‘)@F(O‘, T}do.
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g PROCF. Part (a) follows immediately from the observation:
x € kernel M(t, t) & H(s)¢F(s, t)x = O for ali s € [1, t]. Part

- {b) follows by an anaiogous argument. o

| (2.22) REMARK. Iet us compare this result with Proposition (2.3),

and let us induige (only temporarily) in abuses of language of the
following sori:¥*

et

3 (r;, x) = unrveachable € x € kernel s, t)

for all t> 1

(5, x) = observable & x € range M(t, t)

for some t > 1.

i From these relations we can easily deduce the so-called "duality
rulea"; that is, problems involving observability (or constructibsl-
ity) ‘are converted inmto problems involving reachability (or control-
1ability) in a suitably defired dual system. See KAIMAN, FALB,

and ARBIB [1969, Chapter 2, Proposition (6.12)] and the broader

discugsion in Section 10.

We will say, by slight abuse of language, that a system 1s

completely observable whenever O is the only unobservable state.

Thus the Basic Lemma (2.7) "dualizes" to the

(2.23) PROPOSITION. A real, contimuous-time or discrete-tire,

n-dimensiopal, linear, conmstant dynamical system I = (F, - , H)

| #A11 this would te strictly correct 1f we agreed to replace

"dirsct sum” in Proposition (2.11) and its counterpart (2.25) by

1 “ortiogrnal dtrect sum"; bub this would ve an arbitrary convention
kL which, vYile converdent, has no nstural system-theoretic justifica-
‘ tion. - Rereed Rematle(2.13).
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is completely observaole if and only if

(2.24)  rank (W', F'H', ..., (F)" ') = n.

Ey duality, complete constructibility in & continuous-time
system is équivalent to observabllity; in a discrete-time system
this is not true in general but it is true when det F ¢ O.

It is easy to see also that {2.11) "dualizes" to:

(2.25) PROPOSITION. The state space X; of a real, contimuoue-

time or dlscrete-time , n-dimensional, linear, constant dynamical

system I = (F, -, H) may be written as & direct sum

x5 = X19X2

and the eguations of I are decomposed correspondingly as

R
dxp/dt = Fyyx) + Foox,,
y(t) = Hx,(t).

PROOF. Procead dually to the proof of Proposition (2.11),

beginning with the definiticn of X, as the set of all unobservable

1
states of LK. 0

Combining Propositions (2.11) and (2.25) gives Theorem ¢ as in
KALMAN [1902].

This completes our survey of the "classical” results related
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to reachability, controllability, observability, and
constructibility.

The remaining lectures will be concerned exclusively with
discrete~time systems.

The main motivation for the succeeding

developments will be the algebraic criteria (2.8) and {2.24)

as well as a deeper examination of Theorems C and D of the
Introduction.
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3. DEFINITION OF STATES VIA NERODE EQUIVALENCE CLASSES

A clasgsical dynamical gystem is essentially the action of the
time set T (= feals) on the states X. In other words, the
states are acted on by an abelian group, namely (5 + usual
derinition of addition). This is a trivial fact, but it has deep
consequences. A {modern) dynamical system is the action of the

inputs 0 on X; in exact analogy with the classical case, to

the abelian structure on T there corresponds an (associative

but noncommtative) semigroup structure or Q. The idea that 0

glways admits such a structuvre was apparently overlocked until
the late 1950's when it bccame fashionable in automata theory
(school of SCHUTZENBERGER). fhis seems to be the "right" way

of translating the intuitive notion of dynamics into mathematics,

and it wiil be fundamental in our succeeding investigations.

1y is convenient to assume from now on, until the end of

these lectures, that

(3.1) T = time set = Z = additive (ordered) group of

integers.

Since we ghall be only interested in constant systems from

here on, we shall adopt the following normalization conventicni*

#+In the discrete-time nonconstant case, we would have to deal
with 2 copies of 0, each normalized with respect to a different
particular value of T € Z-
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£3.2) No element of i 1g defined for t> 1 = 0.

In view of (3.2), we can define the "length" |n| of © by

lo] = max (-t € 2: @ 18 not defined for-any s <tj.

Before defining the semigrcup on I, we introduce another

fundamental rotion of dynamics: the (left) shift operator T

defined for a1 g>C in 2 %y
(3.3) ol 0o 0: @w ,g,,,, t - at + q).

Bote that the definition of Tq is compatible with the normaliza-
tion (3.2).
Ir Jmme. = empty for ®, @' € 0, wve define the join
of ® and ®' as the function
@ on J
(35) ovo' = ol

¥
L on Jm,.

¥hen 0 bas an edditive structure, then we replace w. o' by w+ w'

{3.5) IEFINITION. There is en associative operation

o O X0t-+ 0, called concatenation, defined by

o2 (0, Vi b crsl)vlw v Ve

Fote that, by (3.2) through (3.4), o is well defined.

Note also that the asserted existence of concatensticn rests
on the fact that ' is zade up of functions defined over finite
intervals in T. We might express the content of (3.5) also as:

ft 1s & semigroup with valuation, since evidently Jwov] = lo| + [v].
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In view of (3.5), it is natural to use an abbreviated notation*

alsoc for the transition function, as follows:
(3.6)  xw = ¢(0; - jo], x, w)

Now we come to an important nonclassical concept in dynamical

systems, whose evolutior was strongly influenced by probdlems in

carmmunications and automata theory: a discrete-time constant

imput/output map

(3.7) 20 Y: weo o) = y(2)

We interpret this map as follows: y{1) 1is the output of some
system I (say, a digital computer) when I 4is subjected to .

the (finite) input sequence w, sassuming that I 4is some fixed

initial equilibrium state before the application of w©. This
definitior autcaatically incorporates the notlons of "discrete-

time" as well ac "causal" or "dynamics" (the latter tecause

y(t) 1is not defined for t < 1). However, {3.7) does not

clearly imply "constancy" (implicitly, however, this is clear from

the normalization assumption {3.2) on Q). To meke the definition

more forceful, we extend f to the map

»++ (infinite cartesian product)
: wr (flw), f(crnw), o) = {y(2), y(a),‘... ).

Interpretation: f gives the output sequence 1 = (y(1), y{2), ...

of the system I after t = 0 resulting from the application of an

*Observe that x»w 1s the strict analog of the notatlon xi
customary in topological dynamics. The actlon of w on x satis-
fies xs{wev) = (xow)ev in view of (1.5).

|
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input w which stops at t = 0.
This definition expresses causality more forcefully and
incorporates constancy, provided we define the (left) shift
operster o, on I' so as to be compatible with (3.3). 8o,

for any 12> 0, 165, let

(3.8) opt Zo T v v te r{t + 1)

=(Y(1): ¥(2); oo ) o (y(o+ 1): y(t + 2), ... )

Note: the operator %9 "appends” an undefined term at 0, the
operator o, "discards® the term y(1).

Now, dropping the bar over f, - adopt

(3.10) DEFINITION. A discrete-time, constant input/output map

(of some vnderlying dynamical system L) ie map f such that

the following diagram

ﬂ—.—f——-hl"

0 l"r‘

r‘.:ﬂ

is cormutative. We soy that £ 1is lincer iff it is a K-vector

ot~ aPamy

Space homomorpiism,
s Attt et et el -k -

It will be convenient to regard {3.10) as the external

,definition of a dynemical system, in contrast to the internal

definition set up in Section 1.
Intuitively, we should think of f as a highly idealized
kird of experimental data; namely, f incorporates all possible

information that could be gained by subjecting the underlying
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system to experiments in which only input/output data is aveil-
able. This point of view is related to experimental physics the
same way as the classical notion of & cynamical system is related
to Newtonian (axiomatic) physics.

The basic question which motivates much of what will follow

can now be formulated as follows:

(3.11) FRORLEM OF REALIZATION. Given only the knowledge of

f (but of course also of g, 2, and T') how can we discover,

in a mathematically consistent, rigorous, and natural way, the

properties of the system I which is supposed to underlie the

given input/output map f£?

This suggests immpediately the following fundamental concept:

(3.12) DEFINITION. A fixed dynemical system £ (internal

definition, as in Section 1) is a realization of a fixed input/

output map f = iff f = fzo, that is, f_ 1s identical with

the input/output map of Eo.

In view of the notations of Section 1 plus the special con-

vention (3.6), the explicit form of the realization condition is

simply that

*(3.13) fo(ﬂ-\) = le (% (0; - I“’I: %, w))
. o ‘o .

for all w Q. The symbol * stands for an arbitrary equili-
brium state in which Eo remains, by definition, until the

application of w. (Leter we simply take * to be 0.)

- - s —— Ll PO A TR P 0 P A
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To solve the realization problem, the critical step is to
induce a definition of X {of some 20) from the given f .
Jt 18 rather surprising that this step turns out to be trivial,
on the abstract level. (On the concrete level, however, there are
many unsoived problems ir. actually computing what X is. In
8ection 8, we shall solve this problem, too, but only in the
linear case.) The essential idea seems to have been published
first by NERODE [1958]:

(3.14) DEFINITION. Make the concatenation semigroun 8 into

& monoid by edjoining & neutral element @ (which is the nowhere-

defined function on 2). Then w =_ o' (read: ® is Nerode
= —— T e fe——

equivalent to ! with respect to f) Aiff

f(wev) = f(w'ev) for all V€ Q.

There are many intuitive, physical, historical, and technical
reasons (which are seattered throughout the literature and concer.-

trated especially strongly in KAIMAR, FALB, and ARBIB [1969]) for

using this as the

(3.15) MAIN DEFINITION. The set of equivalence classes under

=, denoted as X, = {(w),: € Q), 1is the state set of the

input/output map f.

Let us verify immediately that (3.15) makes mathematical

gense:
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(3.16) © PROPOSITION. For each linear, constant input/cutput map

f there exists a dymamjcal system ZI_. such that .

f
(a) L, realizes f;

(b) x}:f = X

PROOF. We show how to induce I £ given f. We
de“ine the state set of Z, by (b). Further, we define the

transition function of I £ by

(3.17) %V = (@)gev & (wo¥), forall veEd, x€X.

We must check that o on the left cf 2 is well defined (note
two different uses of o!), that is, independent of the repre-

sentation of x as' (w) g+ This follows trivially from (3.14)..

Now we define the readout map of I £ by

(3.18) nzf:: X, Y: (UJ)fH f{w) (1)

Again, this map is well defined since we can take V=g asa

special case in (3.14). Then
oY) = ({wev = flwe.V),
(o) = () )

and the realization condition (3.6) is verified. Hence claim (a)

. 18 correct. O

(3.19) COMMENTS. In eutomata theory, I, is known as the

» reduced form of ‘any system which realizes f. Clearljr, any two
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reduced formes are isomorphic, in the set-theoretic sense, since

the set X, is intrinsically defined by f{. {This observation
is a weak version of Theorem D of the Iatroduction; here "unique-
ness" means "modulo & perzutation of the labels of elements in

the set Xf".) tiothice algo that L. is completely re=acheble

T

since, by Definition (3.15,, every element x = (m)f of Xf

is reachzdie via any elezent o'  in the Nerode equivelencs class

(w) g+ As to observebility of £ see Section 10.

f’

L
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4. MODULES INDUCED BY LINEAR INPUT/OUTPUT MAPS

We are now ready to embark on the main topics of these lectures.
E It is assumed that the reader is conversant with moderﬁ algebra (espe-
cially: abelian groups, commutative rings, fields, modules, the ring

of polynomials in one variable,and the theory of elementary divisors),

on the level of, say, VAN DER WAERDEN, IANG [1955], HU [1965] or
ZARISKI and SAMUEL [1958, Vol. 1]. The materiel covered from here
on dates from 1965 or later.

[ Standing assumptions until Section 10:

{ (%.1) All systems & = (F, G, H) ere discrete-time, linezar,

constant, defined over a fixed field K (but not necesserily

finite-dimensional).

i Cur immediate objective is to provide the setup and procf for the

(4.2) FUNDAMENTAL THEOREM OF LINEAK SYSQTEM THEORY. The natural

! state set Xf associated with & discrete-time, linear, constant input-

F output mp f over & fixed field K admits the structure of a finitely

] generated module over the ring X{z] of polyncmials (with indeterminate

z and coefficients in X).

(4.3) COMMENTS. Since the Fing K{z] will be seen to be related
to the irputs to £, this result has a superficial resemblance to the
fact that in an arbitrary dynamical system Z the state set X. admits

the action of a semigroup, namely & (see (3.5 and related footnote).

It turns cut, however, that this action of & on X, which results

from combiring the concatenation product in Q with the definition of

e L it

—— ¢ R
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states via Nerode equlvalence, is incompatible with the additive
siructure of 0 [KAIMAN, 1967, Section 3]. Our theorem asserts the
existence of an entirely different kind of structure of X. This
structure, that of a K{z]-module, is nct just 3 conzequence of
dynamics, but depends critically on the additive atructure ¢n £
and on the linearity of f. The relevant multiplication is not
(noncommitative) concatenation but (commutative) convolution {(because
convolution is the natural product in X{z]); dynamics 1s thereby
restated in such a way that the tools of commutative algebra become
applicable. In a certain rather definite sense (see also Remark
(4.30}}, Theorem (4.2) expresses the algebraic cortent of the method
of the Laplace transformatior especially as regards the practices
developed in electrical engineering in the U.S, during the 1950's.

The proof of Theoreum (h.a) consists in a long sequence of canoni-
cal constructions and the verification that everything 1s well defined
and works as needed.

In view of (4.1) and the conventions made in Section 1, #

g

be viewed as & K-vector space and w(t) = 0 for almost all t €

nea

and all ® € . By convention (3.2 ), we have assumed also that
w(t) =0 for all t > 0. As a result, we have that:

() o = Kz} as & K-vector spuce. Let us exhibit {he isomor-

phism explicitly as follows:
(b)) o = tg?;m(t)z't € XMz].

By (3.2 ), the sum in (4.4) is always finite. The isomorphism
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obviously preserves the K-linear structure oz (. In the sequel, we
shall not distinguish sharply betwsen «© &s & function T -» K= and

® as an m-vector polynomial.

(p) Q9 is a free K[z]-module with o generators, that is,

g~ K%2) also in the K[z)-module seuse. In fact, we define the

action of K{z] on @ by scalar multiplicetion as

»s Kiz] X0 - 0: (7, ©) » T

wh
ere m’l
(%.5) T = E (deK[z], j = 1, «esy m).
ml

The product of 7 with the components of the vector ® is the
product in K(z]. We write the scalar product on the left, to avoid
any confusion with notation (3.6). It is easy to see that the module

axioms are verified; 1 is obviously free, with generators”

(h-s) e = e‘j-th pOSitiOﬁ, j = l’ cssuy or

Qevopd sued

(c) On @ the action of the shift cperator 9 is represented

by multiplication by z. This, of course, is the main reason for

introducing the isomorphism (k.4) in the tirst place.
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(d) Eech element of . is & formal power series in 2l I t,

g

(b.h) suggests viewing X as an abstract representetion of - t €

nea

hence we define
k7) ¢ = 1;ézgur(t)z‘*"ﬁ iz 1.

By (3.8) and (k.1), v{t) € K’ for each t > 1 and is zero (or

not defined) for ¢t < 1. In general the sum is taken over infinitely many
nonzero terms; there .15 no question of convergence and the right-hand side
of (L.7) is to be interpreted sticily algebraically as & formal power
series. S8Since 7r(0) is always zero {see (3.8)), we can say also -

that

(¢) I is isomorphic to the K-vector subspace of Kp[[z'l]]

(formal power series in 2™ with coefficients in x°) consisting

of all power series with O first term.

The first nontrivial construction is the following:

(£ I bas the structure of a KX[(z] module, with scalar

Iultiplication defined as

(L.8) «: XKzl XTI It (m, v) ey = w(apy,

This product may be interpreted as the ordinary product of a power
geries in 2z~ by & polynomial in z, - followed ty the deletion of
all Germs containing no negative powers of 2z. The verification of

the module axioms is straightforward.




= MT - ——

{ ecoas ——T

=

R.E.Kalman

(g) £ is a X{z] homomorphism. This is an immediate conse-
quence of the fact that f = constant (see (3.10))and that multipii-
caticn by z corresponds to the left shifi operators on 1 and T.

(k) The Nerode equivalence classes of f are isomorphic with

f/kernel f. This is an easy but hizhly nontrivial lemms, comnecting
Rerode equivalence with the module structure on {I. The proof is an

immediate conseguence of the formula

(4.9) WoV = z!viw+ V.

In fact, by K-linearity of f, (%.9) implies
f(wev) = f{wov) for all veE &
if and only if
f(z-k-w) = f(zk-w') for a1l k>0 in Z. .

The proof of Theorem (4.2) is now complete, cince the last
lemma identifies Xf as defined by (3.15) with the Klz] quotient
module 0/kernel f.

We vrite elements of the lattcr as [a:]f = o + kernel f; then
it is clear that X, ase K[z)-module is“gt.enerated by [ellf, savy [emlf’
since @ itself is generated by e, .., € {see (4.6)). Note also

that the scalar product in f/kernel f is
{ - = L]
{4.10) (1, [w]f) T [m]f [ w]f.

The last product above (that in @) has elready been defined in (4.5).
The reader should verify directiy that (h.lO) gives a well-defined

scalar product.
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(:.11) REMARK. There is a strict dvality in the setup used to
define f£. From the point of view of homological algebra [MAC LANE
1963), this duality locks as follows. Since every free module is

projective, the natural map

L 0o xr: w [m]f

exhibits xf as the imfge of & projective modelie. On the other

band, tl-xere iz & bijectior between the zet Xf and the set

Er = 1{J) CPL.

¢

asd 30 X, and Ef. are isomorpnic 2lso as K{:l-mcdules. It is

known that I' is an injective module {MAC LAJE 1967, page 95,

E, is clearly s X{z]-submodule of T (with z-f{w) = #(z-0)),

Exercise 2] 5o the matural rap Xf - [w] s (o) exhibits

=ot
X, asa submodule of an injective module. This fast if basic in the

consiruction of the "transfer function™ associated with ¢ (Section 7},

but its full implications are not yet understood at present.

There is an easy counterpart of Theorem (4.2) which conhcerns a

dynazicel systex given in "internal®™ form:

(%.12) PROPCSITIOR. The state set X, of every discrete-time,

finite-dimensional, linear, constent dynamical system L = (F, G, -}

2dmits the structure of a Kliz]-module.

PROCF. By defirition (see (1.10)), ¥ = K 4s already a

K-vector space. We make it into a K[z]-module by defining
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(4.13) or Klz] x K% o XM (m, x) - w(F)=z. O

(k.14)  COMMENT. The construction used in the proof of (¥.12) is

the classical tridiof studying the properties of a fixed linear map
F: K = K° via the Kiz]-module structure thet F induces on
K® by (k.13). In view of the canonical construction of I, provided by

Proposition (3.16), the state set X can be treated az e K z)-

module irrespective as to whether X is constructed fram f (X = Xi’)
or given a priori as part of the specification of I (X = Iz). Thus
the K{z}-module structure on X is a nice way of uni .hn,'g thae "external"™
and tre "internal™ definitions of a dynamical system. Henceforth ve
shall talk about a (discrete-time, l5near, constent dynamical) system

L someshat {mprecisely via properties cf its associated K{z}-module ..

¥e shall row give sov.2 examples of using module-theors=tic language

to express standard facts encountered Lefore.

(k.15) PROFOSITION. If X i3 the state-module of X, the map

Fz is given by X - X: xm z-x.

I
tad
|

PROOF. This is obvious from (4.13) if X = xz. it X £ xT ,

then we find that, by (1.17},

x(1)} = Fx(0) + Gu{0),

= Flgl, + Go(0);

since x(0) results from input £, x(1) resulis from input z.& + (0}

e R e e s e s B CEden
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and we get
= [zt + w(O)]f,
5 = ze[E]+ [(0)],
' = z'[E}f + GUJ(O)-
8o the assertion is again verified. o
ﬂ Now we can replace Proposition {2.14) by the much more elegant

(4.16)  PROPOSITION. A system I = (F, G, -) is completely reachable

if and only 1f the columis of G generete XE

PROOF. The clalm is that complete reachability is equiva-

Jent to the fect tral every element x € xz “is expressible as
r.
x ..f:?l ‘u‘dgd, ‘.!’J € xfz], ¢ = [31, veey g.].

Ir view of (h.15), this is the same as requiring that x be expressible

as
n
X = T AF s
this last condition is equivalent to complete reachability by (2.14). O

{k.17) COROLIARY. Tae reachable states of I are precisely

those of the submodule of X, generated by (the columns of} G.

(L ,JRY  REMARK. The statement that "I is not completely reachatle"
simply means that X 1is uot generated by those vectors which make up

the matrix G in the specification of the input side of the system ZI.
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It does not follow that X cannot be finitely generated by some other
vectors. In fact, tc avoid unneceasary generality, we shall henceforth

assume thet

X is always finitely generated over K[z].

From the system-theoretic point of vizw, the case when we need

infinitely many generators, that is, infinitely many input channels,

seeas rather bizzare at present.

(4.19) FROPOSITION. The system X, 1is completely reachable.

PROOF. Cbvious from the notation: e state x = [¢] -

is reached by £ £ 2. o

(4.20) PROPOSITION. The systenm Xf is completely observable.

PROOF. Obvious from lLermma (h) above: n([m]f) = f{w) =0
iff w€ [0] ¢+ vhich says that the only unobservable state of X

is OEXf. G

ict us generzalize the last result to obtein a module-theoretic criterion
for complete cbservebility. There are two technically diffcrent ways of
doing this. The first depends on the observation that the "duel" of a
submodule (see Corollary (1:.17)) is a quotient module. The second defines
obs;embility via the "dual” system (F', H', -) associated with (F, -, H).

Consider a dynamical system I = (F, -, H) and the corresponding

K z]-module Xz and K-homomorphism He X —» Y= K*. We can extend H
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to a K[z]-komomorphism H {loock back at (2.€)) by setting

H: Xz - I

xrs (Hx, H(z-x), B(z%x), ... ).

From Definition (2.19) we gee that no nonzero element of the quotient
module xz/kernel bt i3 uncbservable. Hence, by abuse of language, we
can ssy that xz/kernel H is the module of observable states of E.
Thus we arrive at phrasing the counterparts of (4.16-17) in the fc.inw-
ing language:

(k.21)  PROFOSITIOE. A system I = (F, -, H) is completely observable

if anionly if the quotient module Xz/kernel H is igsomorphic with xz

(k.22)  COROLIARY. The observeble states of L are to be identified

with the elements of the gquotient module Xz/kernel H.

(k.23) TERMINOLOGY. The preceding considerations suggest viewing
a gystem L as essentially the same "thing" as a module X, Strictly
speaking, however, knowing I = (F, G, H) gives us not only X =X
(see (4.13)) but also a quotiant module x;_," (over kernel H) of A sub-

module (that generated by G) of Yp, that is

lg = K(z)G/kernel H.
If X ®X; wve say that X, is cenonical (relative to the given G, H).

To Le more precise, let us observe the following stronger version
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(b.2k) CORRESPONDENCE THEOREM. There is a bijective correspondence

between K[z ]-homomorphisms f£: @ -» T' and the equivalence class of

completely reschable and completely observable system. Z modulo a

basis change in Xz.

Detailed discussion of this recult is pestponasd until

Section 7.

A stricter observation of the "duality principle" leads to

(%.25) DEFINITION. The K-linear dual of £ = (F, G, H) is

* = (F', K1, G') (' = matrix transposivion). The states of

L* are called costates of Z.
The following fect is an Immediate consequence of thig definition:

(k.26) PROPOSITION. The state set X,
-1
1

module, as follcews: (i) as a vector spece Xrs

of I¥ may be given the

structure of X[z

is the dual of xt regarded as a K-vector space, (ii) the scalar

product in XZ* is defined by

(zlxf)(x) = x(Fx).

(4.260) REMARK. We cannot define X;, as Homx[z](xz, K{z]} equal to
K[z]-1linear dual of Xy, because every torzion module M over an integral
domain D has a trivial D-dual. However, the reader can verify (using

the ideas to be developed in Section 6) that Xy defined above is iso-
morphic. with Homx[z](xz, K(z)/K[z]). See BOURBAKI [Algebre, Chapter 7

(2¢ €4.), Section 4, No. 8].
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Now we verily easily the following dual statcments of (k.16-17):

(&.27) PROPOSITION. A system I = (F, -, H) 1is completely cbservable

if and only if H' generates Xz.*.

(k.28) COROLTARY. The observabie COstates of I* eare precisely

the reachable states of L¥*, <¢hat is, those of the submcdule of

XE* ggnerated bv: i*.

¥We bave elirinated the abuse of lenguege incurred by talking
about "observable states” through intreduction of the new notion of
"observable COstates”. The full explication of why this is necessury

(as well as natural) is postponed until Section 10.

The preceding simple facts de=pend only on the noticn of a module
and are immediete once we recognize the fact that F may be eliminated
from statements such as (2.8) by passing to the module induced by F
via (4.13). But module theory yields many other, less obvious results

as well, which derive m2inly from the fact that K[z} is a principal-
ideal domain.

We recall: an element m of an R-module M (R = arbitrary
commitative ring) has torsion iff there isa r € R such that
rm = 0. If this is not the case, m is free. Similarly, M {is

said to be a torsion mudule iff every element of M has torsion.

M is a free module if nc nonzero element has forgior. If LCM

is any subset of M, the annihilator A’L of L 1is tre set
AL = [r; ref = 0 forall ¢ € I};

it foliows immediately that AL ies an ideal in R. Nutz also that
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the statement "M 1is a torsion module” does not ixply in general

that A; is pontrivial, that is, Ag £ 0. (Counterexample: take
an ¥ vhich is not finitely generated.)

Couplirng these nctions with tn» spacial fect that, for us,

R = K[z], we get s number of inmteresting system-theoretic results:

(4.29) IAOPOSITION. X is finite-dimensional if and only if X
z

is a torsicn K[z)-moduie.

CORCLIARY. If Xy 13 free, L 1is infinite dimensional.

|
PROOF, We recali that "I = finite-dimensional® is defined
to be "X = finite-dimensional as & K-vector space”. See (1.18).
Sufficlency. By assumption X 15 finitely generated 1
. |
by, say, qQ nonzeru elements EYIRERY xq of Kz (whic]:% are not l
necessarily the columns of G). Hence 1
l
L AT 1
! Q |
Since K[z] is & principal-ideal domain, esch of the 4 1s a princi-

pal ideal, say, rjx[z] with Yy € Klz). If X, is a torsion module,

then deg rj = n:j >0 forell j=1, ..., q. For ctherwise T;]
is either zero (and then x 3 is free, which iz a contradiction) or

a unit which implies x 4 =0 contr ¥ to'assump‘\;ion. Hence we can

replace each expression

X = ;Zlvd-xj, TrJEK[z]
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by the simpler one
q
x = 5§1 L (mod rj)]-xj,
which shows that XZ’.’ as 2 K-module, is generated by the finite set

m-1
H, z'xl, *vay z 1' '11, xe, ~eey xq'

Kecessity. Let v? be the minimal polynomial of the map
F: xw» z-x. If X, 1s finite-dimensicnal as a X-module, deg Vg = 0.
This means (by the usual definition of the minimal polynomial in mabtrix
tkeory or more generally in linear algebra) that ¥p eannihilates every
X € X, sothat X, i~ a torsion K[z]-module. m]

Notice, from the second half of the proof, that the notion of &
minimal polynomial can be extended from K-linear algebra to K[z]-modules.

In fact, the same argument gives us also the well-known

(%.30) FROPOSIYTION. Every finitely generated torsion module M

over & principal-ideal domain R has & nontrivial minimal p ynomial
¥y gven by A, = V,R.

(4.31) COROLLARY. If & K[z]-module X is finitely generated with

q generators and minima) polynomial \I!x, then
‘dim X (as K-vector space) < gq.deg Yy

(4.32) REMARK. The fact that L. 1is completely reachable and is

therefore generated . by m vectors allows us to estimate the dimension

of L £ by (4.31) knowing only deg wx but without having computed
. T
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X, itself. (Knowing X, explicitly means knowing F: x »» z-X, etc.)
In other words, the module-theo-etic setup considerably enhances the
content of Proposition (3.16). Guided by these cbservations, we shall

develop in Section 8 explicit algorithms for cal:-uwleting dim E ¢ directly
from f without first having to compute F.

(%.33) PROPOSITION. If X, is a free X{z]-module, mo state of

Z can be simltanecusiy reachable and controllable.

PROOF. We recall that “XE = free" means that )CZ is
(isomorphic to) & finite sum of copies of K{z]. Suppose for
cimplicity that X; = K{z). Then x = reachable means that x = §-1
for some £ € K[z]. Similarly, x = controliable means that

o]

z' 'ex + w1l =0 for some € K({z]. Hence if x has both properties,

(zl‘”lg +w)el = (Eow)el = O.

This shows that 1 is annihilated by Eow, ihe input £ followed

by @, which contradicts the assumption that XZ is free. a

The most important consequence of Theorem (k.2} is due to the

fact that through it we can apply to linear dynamical systems the well-known

(%.3%) FUNDAMENTAL STRUCTURE THEOREM FOP. FINITELY GENERATED MODULES
OVER A PRINCIPAL IDFAL DOMAIN R (Invariant Factor Theorem fo ° Modules),

Every such module M with m generatois is isomorphic to

. H . B
{(#.35) R/#lR & .. .® n/wrn @ R

e e~ vt o, ot . i
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where the R/#iR are quotient rings of R viewed &s moduleg over R,

the ¥ (called the invariant factors of M) are unicuely determined

by M wptounitsin R, V¥, |¥, ., 1=2 ..., ¢, and, as usuel, R®

denctes the free R-module with s generastors; finslly, r + s < m.

Various proofs of this theorem are referenced in KATMAN, Fﬂi&b
and ARBIB [1969, page 2701, and one is given later in Section 6.

Note: The divisibility ccnditions imply that M is & torsion
module Iff s =0 and then *M = *l'

One important consequence of this theorem (others in Section 7)
is that it gives us the most general situetion when xz is not a
tor#ion module E£. For instance, combining (4.33) with (L.34), we

get

(%.36) PROPOSITION. A system cannot be simultaneously completely

reachable and completely controllable if its K[z]-module X has any

w-dimensional components {i.e., s >0 in (4.35)).

(%.37) REMARK. Although our entire develcopment in this section may

be regarded a&s a deep examination of Proposition (2.1%), most of our
comments &pply equally well to (2.7), since both statements rest on

the 5 e slgebraic condition {2.8). 1In fact, the only remaining

thing to be "algebraized" is the notion of "continuous-time". We

shall not do this here. Once this last step is taken, the algebraization

of the Laplace transform (as related to ordinary linear differential
equations) will be complete.

mm : - — -

—
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5. CYCLICITY AKD REILATED QUESTIONS

We recall that an R-module ¥ (R = arbitrary ring) is cyclic
\ iff there is an element m € M such that M = Rm. [It would be

better to say that such a module is monogenlc: generated by one

element m.]
If M is cyclic, themap R -+ M: r+~ r-m 1s en epimorphism
and has kernel Am’ the annihileting ideal of m. This plus the

o~ | homomorphlism theorem gives the well-known

« (5.1) PROPOSITION. Every cyclic R-module & with gereretor n

is isomorphic with the guotient ring R/Am viewed &8s an 2-radule.

This result is much more interesting when, as in our case, R
is not only commutative and a principal-ideal domain, tut specificelly
the polynomial ring K[z].

So let X Dbe a cyclic X[z]-module with generator g and l=t

A Ag = WSK[z] , where \Irg iz the minimel or annihilating polynomial of
g. By commutativity and cyclicity, Ag = %{ Hence \?g is a minimal
| polynomicl also for X. Write ¢fg = \.’r‘x = ¥, In view of (5.1),

X ¥ X[z]/¥K[z]. Let us recall some features of the ring K[z]/tX[z]:
} (1) Its elemsnis are the resicue cizsses of polynomisls T {med V),
7 € K[z]. Write these as (7] or ['n‘]w. Multiplication is defined &s

[7]-[o]) = [ms].

{ ' (1) Each [%] 4s either a unit or a divisor of zero. In fect,

[7] 1is a unit iff (m, v¥) = greatest common divisor of 7. v is a

i
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i_ unit is K{z] (that is, (7, ¢) € K). Then

s+ = 1 (o, t€Kzl)

T T ——

so that [o] iz the inverse of [7¥]. On the other hana, if
(w, ¥) =0 # unit in X[z], then both [7] and [¥/0] ere zero
dvisors sinte [v].{%/0] = {(w/Q)¥] = 0.

(:lii) I ¥ iz & prime in K[z] (that'.’!.s, an irreducidle poly-

nomial with respect to coefficients over the ground field K), then
by (i1) X[z)/¥Kk[z] is a field. This is & very standard comstruction
in algebraic mmber theory.

Since it is awkward to compute with equivalence classes [7w], we
ahall often prefer to work with the standard representative of [7],
namely a polynomie). T of least degree in [T]. < is uniqrely deter-
mined by - [w] and the condition deg 7 < deg ¥. Hencaforth ~ will

always be used In this sense.

The next two assertions are immediate:

(5.2) PROPOSITION. K[z]/¥XK[z] as & K-vector space is isomorphic

to the K-vector space ®(n) = {t € K[z]: deg T<n= deg V].

Elz1/¥X[z] is also isomorphic to @(n) as & K{z]-module, provided

we define the scalar product in ®(n) by (7+E) +» TE.

(5.3} PROPOSITION. If X; 1is cyclic with minimal polynomial V,

then dim I = deg V.
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Looking back at Theorer (4.3k), we see that the most general
Kiz]-module is a direct sum of cyclic Kiz]-modules. By combining
(5.3) and (4.3%) and using the fact that dimensioa is additive under

direct summing, we can replace (431 ) by tke ft‘o]lowing zxact resuit:

(5.4) PROPOSITION. If Xt is a torsion module with invariant

factors *l’

veey *q then
dmE = deg ir1+ eee + deg tq.

A simpie but highly useful consequence of cyclieity is the

so-called control canonical form [FAIMAN, FALB, and ARBIB, 1969,

page 4] for a completely reachable pair (F, g) where g is an
a X1 matrix. We shall now proceed to deduce this result.
Observe first that "(F, g) completely reachable" is equiva-

lent to "g generates Xy, the module induced by F vie (4.13)." Let

det (zI - F),

Xo(z)

2" + alzn"l Taeto, oK

then X; is the characteristic (and also the) minimal polynomial for
Xge [This is & well-known fact of module theory. See for example
KAIMAN, FALB, and ARBIB [1969, Chapter 10, Section 7] for detailed

discussion.] As in KAIMAN [1962), consider the vectors
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Labiic

(e, = & = lg = Xf.l)(z)-s,

i &, = 28+qeg = Xﬁ."‘)(z)m

.59 § .

013 zn'

‘ g
“eg alzn 2-3 teota 08 = x‘(?n)(z)_g
.~ .
. (o1}
in X [For consisiency, X!. (2) = X’,(z).] These vectors are
easily seen to be linearly independent over K. They generate X

since X, “dn) as & K-vector space (Proposition (5.2)). Hence

” seey &
' e, v B

respect to this basis, the X-homomorphisn

are a dbasis for XF as & K-vector space. With

£ En-o Kl,i: X 2k

is represer_rtéd by the matrix

0 1 0 e O 0]
0 0 1 . O 0
(5.6) P o=1.h e e
0 0 o . 0 1

i 1 [ _'ar %1 oo B~ T | x

[This is proved by direct computation. In particular, it is

necessary to use the fact that




—_ 63 -

R.E, Kalman

z-el = .-.)L.s,n)(z)m,
= (G{z) -0 )6

s - Ctn-en.]

Hote that the last row of F in (5.6) consists of the coefficients
of XF. By definition, g-= e Hence g as a colwnn vecter in

K® bas the representation

ses O

(5.7) g

= O

Conversely, suppose , @ bave the matrix representation (5.6-7)
with respect to some basis in K'. Then (by direct computation)
the rank condition (2.8) is satisfied end therefore (F, g) is
completely reachable in both the contimuous-time and discrete-
time cases (Propositions (2.7) and (2.16)).

We have now proved:

(5.8) PROPOSITION. The pair (F, g) is completely reachable

if and only if there is a basis relative to which F is given by

(5.6) and g by (5.7).

(5.9) COROLLARY. Given an arbitrary n-th degree polynomial

Mz) = 7 + ﬁlzn'l + eve * Bn in K[z], K = arbitrary field. There

exists an n-vector £ such that A = X gy ifend only if the

pair (F, g) is completely reachable.

-
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PROOF. Suppose that (F, g) is completely reachable.
With respect to the seme basis (5.5) which exhibits the canonical

tforms (5.6-T), define

By, - @,
(5.10) I = . i
1 " &

Then verify bty direct computation that A = XF- gh’

Conversely. suppose that (F, g) 1ia not completely
reachable. Then, recalling Proposition (2.12) (which is an
algebraic eonsequence of (2.8) and hence equally valid for both
contimous-time and discrete-time), dim X, >0 and so is also
deg XF + Since X1 i's an F-invariant subspace of X = Kn,
the qumomial )%]_'I. 13 independent of the choleg of basis in
K® and the same is true then also for N = )(F/JfF . (In

22 1l
particular, XF22 does not depend on the arbitrary choice of
X, in satisfying the condition X =X, &X,) In view of (2.12),

we have for all n-vectors U,

= . d.ES > 0-
"r-gt ’%11'31‘3'. )&"22’ xFaa

This contradicts the claim that A= )&,_gu is true for any A

with suitable choice of £. a

In view of the importance of this last result, we shall

rephrage it in purely medule theoretic terms:
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(5.11) THEOREM. fLet K be an arbitrary field end X a cyclic

K(z]-nodule with generator g and minimal polynamial X of degree

n. There is 2 bijection between n-th dezree polynomials

Az) = 2% + Blzn'l + ...+ Bn in K(z] and K-homomorph?sms

£ K o K% x(d).g.-, L8 (J=1, ..., n and () gepined

as in (5.5)) such that A is the minima) polynomial For the

new module structure induced on ¥ by the map z,: xp» Z-x - 2(x).

Note that in (5.11) £(x) corresponds to gf'x in (5.10).
Tie map £ in (5.11) defines & control law for the system
L= (F, g -) corresponding to the module X. The passage from
z to 2z, is the module-theoretic form of the well-known open-loop

to c¢losed-loop transformation used in classical linear control thcory.

PRUCF. ©Since the vectors X(l)-g, vaey X(n)-g form a
basis for Kn, 2 is clcarly a well-defined K-homomorphism. We
treat £ frrmally as an elément of Kiz] (that is, an operator
on X is a K-vector space), by writing £:x = £(E-g), where
t represents the equivalence class [E] = {E: t.g = x}. Unless
identically zero, £ is never a Kl[z])-homomorphism and therefore
£ does not commute with nonmunits in X[z].

Define JJ = BJ - aJ, =1, ..., n. We prove first
that this choice of 2 implies 7\(3)(2 < 8) = X(J)(z) for
J=1 esey 0t .1. Use induction on J. By ﬁefinition,

7\(1)(2 -2 = ‘X(l)(z). 7In the general case,
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N3G . ayg - o - XDz - n) wploe (er. of A9,

- [z - !)X(J)(z) + BJ]'g (inductive hypothesis),
- x93 + By - 4l%e (def. of £),
o) + o,l-g (def. of £,),

- ¥y (aef. of x(3¥1)),

It follows (case j =n+ 1) that A annihilates X
regarded as a K[z;]—module. On the other hand, the
'A(l)(z*)-g, o/ s A(n) (z,)°g 18 a basis for X as a K-vector
space since X(l)(z)-g Py X(n) (z).g was such a basis. So X
is cyclic with generator g also ag & Klz, ]-module. Hence
l;y P:':,positiom;‘ (5.1-2) the annihilating ideal of g with respect
to the K[ z*]-modnle structizre cannot be generated by a polynomial
of degree less than &, that is, A is indeed the minimal poly-
nomial with respect to z,. The correspondence A & £ 1is obviously

bijective. @]
Th: proof immediately implies the following

(5.12)  COROLIARY. Let x = f+g be any element of X viewed

as & K[z]-module. Then x has the representation E*-g with

respect to the Kl[z,]-module structure on X, where & eand £,

are related as

t(z) = 1131 EJX(J)(ZM;

. n
Ee(z) = &y tjxij)(z*)g-
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80 the opea-locp/closed-loop transformation is essentially a
change in the canonical basis, provided X is cycliec.

It is interesting .tha.t the X(J) have long teen known in
Algebre (they are related to the Tschirnhausen transformation
discussed extensively by WEBFR [1898, §46, sk, 74. 85, 96]), but their
present (very natural) use in module theory seems to be new. .

#*Theorem (5.11) hay be viewed as the central special case
of Tht;c;rem A of the Introduction. Let us restate the latter in

precise form as follows:

(5.13) THEOREM. Given an arbitrary n-th dsgree polynomicl
n-1

Az) =z + B,z  ~+ ...+ B in Klz], K = arbitrary field.

There exists an n Xm matrix L over KX such that XF-GL‘ = A

if and only if (F, G) is completely reachable.

For some time, this result had the status of & well-known folk the rem,
considered to be a straightforward consequence of (5.9). The latter
has been discovered independently by many people. (I first heard
of it in 1958, proposed as a conjecture by J. E. Be;‘tra.m and proved
soon afterwards by the go-ualled root-locus method.) Indeed, the
passage from (5.11) to (5.13) is primarily a technical problem. A
proof of (5.13) was given by LAUGENHOP [1964%] and subsequently
gimplified by WONHAM [1967]. Tne first proof was (unnecessarily)
very long, but the second proof is also unsatisfactory; since

it depends on arguments using a splitting field of K

EEEen eSS e -----

School.
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and fail when X is a finite field. W= shall use this situvation

as an excuse to illustrate the power of the mcdule-theoretic

apprc«ch and to give a proof of (5.13) valid for arbitrary fields.
The procedure of ILANGENHOP and WONHAM rests on the following

fact, of which we give a module-theoretic proof:

(5.14)  IEMMA. let K De an arbitrary but infinite field. Iet

F be cyclic* and (F, G) completely reachable. Then there is

an m-vector a € K® such that (¥, Ga) is also completely

reachable.

We begin with & simple remark, which is also useful in

reducing the proof of (5.13) to Lemma (5.18).

(5.15)  SUBLEMMA. Every submodul. of & cyclic module over &

principel-ideal domain is cyclic.

PROOF OF (5.1k%). We use induction on m. The case
m=1) is trivial. The general case amounts to the following.
Cojnsider the submodule Y of X = )LF generated by the columns
g1 o0 gn_l gty 8. In wewof (5.15), Y is cyclic. By the
inductive h;rpothesis, we are given the existence of a cyelic
generator of Y of the form gy = a'igl + . + am-l'gm-l’ <:¢:l €K,
YWe must prove: for suitable @, B € X the vector a-gY * ﬁ-gm
is & cyclic generator for X.

*0f course, this means that the K[z]-module Xp {see (4.13))
is cyelie.
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By hypothesis, X hes an (abstract) cyclic generator

& By cyclicity we have the representations L.
gY = n.gx and gm = u-gx, s )J.E.K[Z]-

Her..e our problem is reduced to proving the following: for suitable
o, B €K the polynomial om + Pu is 4 unit in K[z][XFK[z]. This,

in turn, is equivelent {o proving
(5.16) om+ Bu #O(Md%) i = 1, .ou, 1 . »

vhere 9., ..., 9, in Kfz] are the unique prime factors of

XF. Let ™ mean the representative of least degree of equivalence
classes mod ©,. Then no pair (ﬁi, Ji), i=1, ..., r canbe

zero. For if one is, then OiI(XF, N, 1), that is, xF/oi ennihilates

the submodule X! ='K[z]gY + K[z]gm, vwrence X' is a proper sub-
module of X, confradicting the fact that (F, G) is completely
reachable. If all the ﬁi are zero, then every ﬁi £0, s0 1

is @ vnit in K[z]/XFK[z], and g, 1is already a cyciic generator.
So let &= 1. Then the condition ﬁi + Eui = C eliminates at most

r valuzs of B from consideration. Since K 1is infinite by

hypothesia, there are always some B which satisfy {5.16). .

An essential part of the lemms is the stipulation that a € K'.

The hypothesis "F = cyclic + (F, G) = completely reachable” means that

By = 48 *t ... tag, a €Kzl
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that 1s, the lermz is triviezlly itrue for same & € X*{z] since

By = Ga. But since we went a € K, -ther= must be interaction

between vector-sprce structure and module structure, and for this
reagon the lemma 1s nonirivial. "Ac s matter of fact, the leamn is false
when K = finite field. The simplest counterexsople i1s provided

when (5.12) rules out & single nonzero value of B, theredy ruling

ovt all §.

(5-17)  COUNTEREXAMPIE. lLet K = Z/2Z, that is, tne ring of
integers modulo the prime ideal 2?.3. Consider

- o -
01000 0 0
12000 10
P =10 0010 G = {0 G}
O 0cCO0OO 01
0 0001 11
= - - -

Fotice that =X 0X, 913 (as & X[z]-module), where the
ninimal polynomials of the direct sumzands are

Xl(z) c ez 1,
)‘2(5) “ 32:

‘13(3) - z+ 1.

A1l these factors are relatively prime, (71, X ).'3) = i, hence
X 1is cy=lic. BNotice alsu that 8, generates xl exa while &,

flenerates 12 & x3. A cyclic gensrstor for X is

&:

{-—'HO'HO

o . o
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A simple calculation gives

G - z3-gx, & = (z'h-i-zzﬂ-l)-gz.

Conditions (5.16) are here

a1+p0 £ 0 (mod x),
@0+ Bl £ 0 (modX),

al+p1 £ 0 (nodyj).

The .- conditions bava no soiution in yzg

At this point, the following is the zituation concerning
Theorem (5.13):

(1) Its counterpart, Theorem A of the Introduction, was
claimed to be true in the continuous-time case under the hypc .iesis
of camplete controllability.

(2) In the discrete-time case (5.13) with the preceding
hypothezis Theorem A is false, because of the counterexample: the pair
{F = nilpotent, G = 0) is completely controllable, but evidently
Xp_or: 18 indepen;ient of L. How.ver, in visw of (5.11),.Theoren
(5.13) might be true also in the discrete-time case if "c:..plete
controllability" is replaced by "complete reachability”, this modi-
fication being immaterial in the continuous-time case.

(3) Becauss of {5.17), we migut expect that a theorem 1like (5.13)

is false for an a.rbitrary_ field K.
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(4) If our general claim that reachability properties are
reflected in module-theoretic properties is true, then (5.13)

should hold without assumptions concerning K, because the principal

module-theoratic fact, that X[z)} = principal ideal domain, is
independent of the specific choice of K.
We now proceed to establish Theorem (5.13). That is, special

hypothreses on K will turn out to be irrelevant.

PROOF OF (5.13). Necessity is proved exactly as in (5.8).
Sufficiency will follow by induction on m, once we have proved it

in the special case m = 2

(5.18) IEMMA. .Iet X be an arbitrary field and let X be a

K[z]-module generated by 8,» 8,+ There is & K-homomorphism £

(of the type defined in (5.11) such that if 2z, =z - £ induces &

K[z*]-module structure on X then X 4is cyclic with respect to this

structure and is generated by either g t 8 O 8-

PROOF. Tet Y = K[zlg, and Z = K[zlg,.
i 2

Case 1. YMZ =0, that is, X =Y ®Z. In (5.11)
teke an £ such tha1; J!(x} =0 ‘for all x € Z. Replacing z by
z, = & - £ will change the lK[z]-module structure oa Y uut pre-
sér;fe that on Z. Further, choose £ so that the new minimal poly-
nomial A on Y dis prime to the unchanged minimal polynomial XFZ =X
on Z. Thus therg exist polynomials v, ¢ such that VA +aoX =1,

By hypothesis, every x € X has the representation

x = y+z = ng + g,
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Now verify that

L]
1

(noX + LV +(g; + &)
- qcrx-gl + QV?\-ga,

= (1= Mgy + L - o) ey

nrgy + Eegy

[ .

Hence £y + ‘82 is in'eed & cyclie ge;era‘.;or for X as a -
K[z, 1-module.

Casz 2. Y/MZ =W #0. Let w€W. By hypothesis,
there is 2 & € K[z] such that w = t-g, and therefore, by
eyclicity oil Y, there is also a n € K[z] such that §-g2 =W =1g,.
Teke same w # 0. Then if 1 = unit (mod y)[) we are done beca.us;e
"J“-ge genelra.tes Y, &and so Z =X. In the nontrivial case,
1 i unit (mod Xx) To show: there is a suitable new module stricture
on X such that N, = unit (mod X,), X, being the minimal poly-

nomial of X as a 'K[z,)-module.

The main facti we need are the following:

(5.19) SUBLEMMA. Let X be a fixed element of K[z] with

deg X = n, F, tie companion matrix of X given by (5.6), Xp
X

the cyclic module induced by F,, and g & cyclic generator of

Xp . Ihen n€ K[z) is & unit modulo X if and only if T-g is
X

also & cyclic generator of XF .
X

FROOF. Obvious. . a
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(5.20)  SUBLEMMA.. Seme notations as in (5.19). Write

- 3)31 njx(‘ﬂ(z) (x{3) gefined in (5.5}).

Then 5 is & unit modulo X if and only if

(5-21) det (y, FXY: .--': F;t.IY) ?‘ 0,

where y is the column vector

- sy
i .t

1‘.n

(5.22) vy =

L

.

L]
.t

|
L.l-

L3

moor. since X1, ..., %™ 14 the basts for the
K-vector space of all polynomials of degree < n, the n-tuple
(Yfl, “eey ‘l'in) is uniquely determined by 1. IBy definition Fy
is the ma‘t;ri:'c representing the module operator z: x> z-x relstive
to t.he special basis e, ..., e in ).Fx given by (5.5). Similarly,

using one of the module axioms, we verify that

n
fe = @0,

n

Z, 7,089 2) ),
n [ed +

.1%1 Tne ga1" @y

in otl:ler words, the numerical vector (5.22) repregents the abstract

vector T-g in Xg

relative to the same basis e, eSS e . Recall
x
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thet T'g generates X, iff (F,, ﬁ(Fx)g} is complete reachable.
x -
By (2.7) the latter condition is equivalent to (5.21). The rest

follows from (5.19). w]

(5.23)  SUBLEMMA. Same notations as in (5.19) and (5.20). Given

any nonzero numerical n-vector (5.22), there exists & polynomjal X

such that (5.21) is satisfied.

PROOF. Let ﬁr be the first member of the sequence of

numbers ?11, 'ﬁa, «+». which is nonzero. Write
Xz) = 2"+ oz2™l+ .. +a
ol n’

and determine the first r coefficients of X by the rule

Tir ﬁrfl ves n ar (0
0 T]r [N nn-l ar_i_l 0

I L ] L ] L] .

|

é _0 0 ae e ‘ﬁr _ .-Ctn | .,._,l y

(Since all numbers belong to a field, the required velues of

Qo oeeey @ exist.) Now check by ccrratation, that these conditions

reduce the matrix in (5.21) to the direct sum of two triangular

matrices, each with nonzero elemen%s on its diagonal. a

In view of (5.12), it follows from these facts that we can

always choose & new XY = X* such that W = unit mod XT'
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The proof of Case 2 is not yet complete, however, because
we must still extend the K[z, ]-mcdule structure from ¥ %o X. This
1s easy. W-rite first Z =W ®Z' and then X =Y ®2', where the
direct sum is now with respect to the K-module structure of X. Extend
2 from Y to X bty setting £4IZ' = 0. Tlow we have a ncw mini_ma.l
polynomial X, defined over X Since z, = % on Y, n,= Ty By
(5.12), & 18 replaced by some £, such that .

(5.24) w o= 5*-'81 = Ny 8o

that is, our previous representation of w# 0 in W induces a
similar representation with respect to the new K[z, )-module structure

on X. 8ince 17, 1is a unit modulo Xr , we can write
an, = 1+ 1%, with o, 7€ ¥lz,].
By (5.24), we bave, with respect to the K[z ]-structure,

(O'g*) 'gz = a'(i*.ga))

[}

o-(ny-gy),

= (l + Tx,‘.)"gl,

gl‘

This proves that 8> generates both Y and 2Z; that is, 8> is

a cyclic generator for X endowed with the K[z, ]-structure. The

proof of Lemma (5.18). is now complete, .0
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It should be clear that Theorem (5.13) is not a purely module-
theoretic result, but depends on the interplay between module theory,'
vector-spaces, and elimination theory (via (5.21)). For instance,
the fact that ! can be extended from Y to X, which was needed

in the proof of Case 2, is a typical vector-space argument.¥¥

There are many open (cr forgotten) results concerning cyelic
modules which are of interest in system theory. For instance, it
is easy to show that an n X n real matrix is cyclic iff a certain
polynomial ¥ € Rl Zys +ees zn2] is nonzero at F; the polynomiel
¥ is roughly analogous to the polynomial det in the same ring,
but, unlike in the latter case, the general form of ¥ does not seem
to be known.

We must not terminate this discussion without pointing out
another consequence of cyclicity which transcends the module frame-

work. Since X = cyclic with generator g 4s isomorphic with

K[z]/X'gK[z],. it is clear that X also has the structure of this

commitative ring, tirat is, the product is defined as

xXy = tgxng = (En)-g = (f)-g.

If 'X.g = irreducible, then X is even a field. Hence, in particular,

X has a galois group. No one has ever given & dynemical interpreta-

tion of this galois group. In other words, there are obvious algebraic
facts in the theory of dynamical systems which have never been examined
from the dynamical point of vi=w. For some related comments in the

setting of topological semig.oups, see DAY and WALLACE [1967].
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6. TRANSFER FUNCTIONS

{6.0) PREAMBLE. There has been & vigorous tradition in engineer-
ing (especially in electrical engineering in the United States during
1940-1G60) that seeks to phrase all results of the theory of linear
constant dynamical systems in the languvage of the laplace transform.
Textbooks in this area often try to motivate their biased point of
view by claiming that "the Laplace transform reduces the analytical
problem of solving a differential equation to an algebraic problem".

When directed t¢ a mathematician, such claims are highly misleading

because the mathematical ideas cf the laplace transform are ncver in

fact used. The ideas which are actuelly used belong to classical
complex funciion theory: properties of rational functions, the
partial-fractiog expansion, residue calcuwlus, ete. More importantly,
the word "algebraic" is used in engineering in en archaic sense and
thé actual (modern) algebraic content of engineering education end
préctice as related to linear systems if very meager. TFor example,

the crucial concept of the transfer function is usually introduced

via heuristic arguments based on linearity or "defined" purely formally
as "the ratioc of laplace transforms of the output over the input". To
do the jobt right, and to recognize the transfer function as a natural
and purely algebraic gadget, requires & drastically new point of view,
which is now at hand as the machinery set up in Sections 3-5. The

essential idea of our present treatment was first published in

KAIMAN [1965b].
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The first purpose of this section is to give an intrinsically
algebraic definition of the transfer function associated with a
discrete-time, conctant, linear input/output map {see Definition (3.10)).
Since the spplications of trensfer functions are standard, we shall not
develop them in detail, but we do want to emphasize their role in relat-
ing the classical invariant factor theorem for polynomial matrices to
the corresponding rodule theorem (4.34).

Consider an arbitrary K{z)-homomorphism f: 2 - ' (see lemma
(g) following Theorem {L4.2)). Then as & "mathematical object" f is

equivalent to the set {f(ej), i=1, ..., m, e, defined by (4.6)},

J

since

(6.1) f(w) = 321 wﬁ-f(ej).

(The scalar product on the right is thet in the X{z}-module I, as
defined in Section 4k.) By definition of I, each f(ej) is a formal
power series in 21 with vanishing first term. We shall try to
represent these formal power series by ratios of polynomials {which

we shall call transfer functions*) and then we can replace formula (6.1)

by a certain specially defined p;oduct of a ratic of polynomials by a
polynomial. Some algebraic sophistication will be needed to find the
correct rules of caleulations. These "rules" will conzititute o
rigorous {and simple) version of Heaviside's so-called "calculus".
There are no conceptual complicaticns of any sort. (However, we are

dodging some difficulties by working solely in discrete-time.)

*This entrenched terminology is rather uneilightening in the present
algebraic context.
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Let X, = 0/kernel £ be the state set of f regarded as
a K[z]-modu.lé. Wé assume that Xf is a torsion module with nontrivial

minimal polynomial V. Then, for each j =1, ..., m we have
. = . == . - it o = 0.
(6.2) v f(ed) £{¥ ej) n(lv ed]) (¥ [ejl)

By definition of the module structure on I, (6.2) means that the
oré.ina.rx product of the power series f{e .‘!) by the polynomial V¢ is
& (vecter) polynomial. Hence (6.2) is equivalent to (motation:

a0 dot = ordinary product)

(6.21) ‘Iff(ed) = @

s € ¥lz), 4 = 1, ..., m.

Intuitively, we can solve this equation by writing f(e 3) =@ d/w.
There are two ways of making this idea rigorous.
Method 1. Define

(6.3) f(ed) = od/w

as the formal dvision of © 3 by ¥ intc ascending powers of 2”1

Check that the coefficiert of z° is always O. Verify by computation

that the power series so obtained setisfies (£.2').

Method 2. $iply both sides of (6.2') by 2z ®. Write
N - s ~ - L FS - -
‘#(z-l) =z N(z) and Oj(z 1) = 27%(2). Then ¥ € Kz 1] CK[[z l]]

and (6.27) becomes
(6.2") Ve J) = L ®z"1).

Moreover, the O-th coefficient of ¥ is 1 (because of the convention
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thet the leading coefficient of ¥ is 1), ‘aence $ is a unit in

K[[z'l]] and therefore
(6.3 f(ey) = e A Ca

Note that (6.3) and (6.3') actually give slightly different defini-

tions of f(ed), depending on whetner we use a transfer function with
¥ respoct to the variable 2z or 2L (Both notations have been used
in the engineering literature.) For us the formalisn of Method 1 ié
preferatie. (The calculations of Method 1 can be reduced by Method 2
5;1 | to the better-known calculations of the inverse in ihe ring K[[z'1]].)

Summarizing, we have the easy tut fundamentel result:

? (6.4) EXISTENCE OF TRANSFER FUNCTIONS. There is a biijective

: correspoandence between K[z]-homomorphisrs f£: © - I’ with minimal

polynomial ¥ and transfer function matrices of the type

Z = [ol/»;', cee, om/w],

where Oj € Kp[z], deg Od <deg ¥, and V¥ is the least common

denominator of Z.

In many contexts, it is preferable to d:=al with the Z_ corres-

f r
ponding to f ravher than with f itself. Because the correspondence
is bijective, it is clear that all object:s induced by f are well-

defined also for Zf and conversely. Thus, for instance,

ue>

dim Zf dim £ % dim X

\A

£l

least common dencminator of 2,

4

minimal polynomial of fz'

A .
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(6.5) REMARK. In view of Propositions {4.20-21), the natural
realization of 2, namely X, 4 X, , 1is completely reachable es

A
well &5 compleiely observable. FRot having this fact avaiiable before 1960

has caused a zreat confusiaz. Questions such 3s thos:resolved by Theorez (5.13)
tended to be attackszd zlgcerithzmically, using special tricks amcunting

to elementery algebraic manipulavions ol elements of Z. Very few
theoretical re~dts could be conciuzively established by this rouce
until the conceptual fouw.dations of the theory of reachability and

observability were develored.

The preceding results may be restated as "rules™ wvhereby the

values of f may be computed using Z. We bave in fact, f{w) = Z.w, whcre

I
(6.6} Zw 2 (VZ)/fv,
= mltiply the polyno .ial matrix ¥Z consisting of
the numerators of Z with w, reduce to minimal-

degree rolynomials modulo ¥ and then divide
formally by ¥ as in Method 1 above.

We can 2lso compute the entire cutput of the system 2:2 (that is,

all output values following the applicetion of the first nonzero input
value) by tke rule

6.7) o 2 (zlfv,

= pame a8 above, but do not reduce modulo V.

In this second case, the output sequence will begin with a positive
pover of 2. (The coefficients of the positive powers of 2z are

thrown away in the definition of f {zee (3.7)) and in the definition
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of the scalar product in I, in order to secure 2 simple formuia

for X, = Nfzernel £.)
I Many other applications of transfer functions may be found in

KAIMAN, FALB, and ARBIB [1969, Chapter 10, Section 10].

1 It is easy to show that the transfer functiou associated with

the syctem I, = (F, G, ¥) is given by 2, = H(zI - #)Ye. (This is

just the formal ILeplace transform computed from the constant version

of (1.12) by setting z = d/dt or from (1.17) by setting
| x(t + 1) = zx(t).) Probably the simplest way of computing Z is

via the formala
-1
f 6.8) (21 - )L = ;5;0 zjvg‘*'ilr)(z), q = degV,

where WF is the minimal polynomial of the matrix F and the super-
script denotes the special polynomials defined in (5.5). The matrix
identity (6.8) follows at once from the classical scalar identity

4 [WEBER, 1898, ) '

Sy

m(z) - m(w)

-1
e gy A6, g - e,

upoti setting w=F, T

I

wF, and invoking the Cayley-Hamilton theorem.
Much of clsssical lincar system theory was concerned with computing

Zf. In the modern context, this problem "factors" into first solving

the reslization problem f — I_ and then applying formula (6.8). See

f
Sectins 8 and 9.
One of the mysterious features of Rule (6.6) (as contrasted with

the conventional rule (6.7)) is the necessity of reducing modulo V.

The simplest way of understanding the importance of this
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aspect of the problem is to show how to relate the module inveriant
factors occuring in the structure theorem {4.34) to the classical

facts concerning the irvariant factors of a polynomial matrix.

{6.9) INVAEIANT FACTOR THEOREM FOR MATRICES. Let P bea p Xm

matrix with elements in an arbitrary principal-ideal domain R. Then

{6.10) P = AlB,

where A and B are pXp and m Xm motrices (not necessarily

unigue) with elements in R and det A, det B units in R, while

(6.11) I = adiag (7\1, o o8 Aq, 0, ..., 0} with Aie R

i=1, “ray q-l, .B._r_l.g:

is unique (up to units in R) with ?\_L] ?\5+1’

qa = rank P, The 7"1 ‘are called the invariant factors of P.

As anyone weuld expect, there is & correspondence between the
module structure theorem (k.34) and the matrix structure theorem (6.9)

and, in particular, between the respective invariant factors \]fl, oy ‘;"r

and 7\1, eey Aq' Let us sketch the standard proof of this fact foilow-

ing CURIIS .and REINER [1962, §13.3]) who also give a proof of (6.9).

PROOF COF (k.34). Consider the R-homomorvhism from R

onto M given by u: e, v gy where the e, are the standuard

i i
basis elements of KT (recall {k.6)) and the g; generate M.

Clearly, M~ RS/N, where N = kernel u. It can be proved that

N RJ is a free submodule of Rm, with a besis of at most Z <m

elements. Write each basis element f.‘] of N as L pi;j.ei’ pj_:j € R.
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Apply (6.9) to the R-matrix P. Define }‘J =z ¢yt C=37,

»

~

33 %;“13'“1" By (6.10-11), £, = ?\i-ei. Hence
¥ = AR ? ?ArR‘

Then, by "direct sum",

W .
M = R/J\rne... en/-hlnen y 1= 1, ..., r.

That is, (4.3%) holds with ¥ =N &nd r=rank P= £ ' o
By the same type of calculations, we can prove also

(6.12) THEOREM. Let Aoy wee Aq be the invariant factors of
VZ given by (6.9), and let (Ai, V) = ®, i=1, ..., ¢ Then the
invariant factors of X, are

Wl = ‘1”’
Yo = ¥/9,
wr = v/ 0z"'

where r is the smallest integer such that | 7\1 for

i=r+1, .., q = rank ¥,

PROOF. Conéider the E{z)-epimorphism u: © - xz: W - [""]2'.'

Clearly, o € [0]Z = kernel u iff Z:w =0 (gee (6.6)). Equi\}alently,

(¥Z)w = 0 (moa ¥). Using the representation whose existence is claimed
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by (6.9), write VZ = CAD (C, A D = matrices over K[z].) Define }

W= D']'Y, where ‘
Y = di&g (wl, wa, rany vr' 1, LY 1)v

Then AY =0, (VZ)W =0, and W has clearly maximal rank among K[z]-
P motrices with this property. So the columns of the metrix W consti-

tute a basis for kercel p. The rest follows easily, as in the proof
of (4.34). a

(6.13) REMARK. The preceding proof remains correct, without any

modification, if the representation VZ = CAD, det C, det D = units

is teken in the ring K{z]/¥K[z], rather than in K[z]. The former :
representation follows trivially from the latter bul may be easier to 1

compute.

(6.14)  REMARK. Theorem (6.12) shows how to compute the invariart
factors of xz from those of VZ. We must define the invariant

factors of Z to be the same as those of XZ {because of the

bijective correspondence 2 XZ). Consistency with (6.12) demands

that we write

(6‘15) 7\1/‘# = (7\1/01)/(1#/01): gi = (7\1; (i:))

where /  is defined as in (6.3). In other words, the ¥, _q._z_'_.g

the denominatcers of the scalar transfer function 7\1/11! a’ter cancellation

of all common factors.

Theorems (4.24) and (6.12) do not fully reveal the significance
of invariant factors in dynamical systems. Nor is it convenient to

deduce all properties of matrix-invariant factors from the representation
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theorem (6.9). It is interesting that the sharpened results we present
below are much in the spirit of the original work of WEIERSTRASS, H. J. S.
{ SMI''H, KRONECKER, FROBENIUS, and HENSEL, &s summarized in the well-known

monograph of MUTH {[1899].

L

(6.16)  DEFINITION. Let A, B rectangular matrices over a unique fact-

orization domain R. AlB (read: A divides B) iff there are matrices

L V, W (over R, of appropriate sizes) such that B = VAW.

This is of course Just the usual definition of "divide" in a ring,
specialized to the noncommutative ring of matrices.

The following result [MUTH 1899, Theorems IIIa-b, p. 52] shows
that in case of principal-ideal domzins the.correspondence between
matrices and their invariant factors preserves the divide relation

(is "functerial" with respect to "divide"):

3 . . e e & princival-ideal domain. en
(6.17) THEOREM. Let R b incival-ideal domai Then A|B

if and only if )\i(A)l )\i(B) ell i,

fax
AT TGd.

PROOF. BSufficiency. Write the rejresentation (6.10) as

A = VAW, B = VAW,

——rs .

By hypothesis, there is a AB (diagonal) such that A.AB = A,. Hence
oL

B

Vot AH,,
1. -1
AR AR

i ‘ (V¥DAM A, .
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Necessity. This is just the following

(6.18) LEMMA. For an arbitrary unique-factorization
domain R, AlB implies li(A)IAi(B).

FROOF. By elementary determinant manipulations, as in

This completes the proof of Theorem (6.17) ' 0

(6.19) REMARK. Since (6.9) does not apply (why?) to unique factori-

gation domains, for purposes of using Lemma (6.18) we need WEIEKSTRASS's

definition of invariant factors: if A j(A) = greatest common factor of
a1l J X J minors of & matrix A, with AO(A) =1, then

7\1(1\) " Ai(A)/Ai_l(A). Of course, this definition can be shown to be

equivalent (over principal-ideal domains) to that implied by (6.9).

In anslogy with Definition (6.16), let us agree (note inversionl) on

(6.20) DEFINITION. Let 31, Z, be transfer-function matrices

zllz2 (resa: Z, divides 22) iff there are matrices V, W over K[z)

such that Z, f AL (Note that zllz2 implies at once: wzliwza.)

(6.212) THEOREM. 21122 if and only if wi(zl)lwi(za) for all 1{.

PROOF. This is the natural counterpart of Theorem (6.16), {
and follows from it by & simple calculation using the definition of

wi(z) given by (6.15). 0
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{6.22) DEFINITION. 21”:'2 (read: I, cen be simlated by 22)
iff xz Ixz » that is, iff Xz ig isomorphic to a submodule of i
1 "2 1

%

2

[or isomorphic to & quotient module of X’: ]
2

This definition is alsc functorially related to the definition
of "divide" over 8 principal ideal domain R because of the follecwing .

standard result:

(6.23) THROREM. Let R be a principalrideal domain and X, Y

R-mc.ules. Then Y is (isomorphic) to a submoduvle or quotient module

of X if and only if

i, 1 =1, .., r(¥) £ rix).

PROOF. Sufficiency. Take both X and Y in canonical

form (Lk.34), with Xys eess ) generating the cyclic pieces of X,

*(x
and ¥, e Yp(x) (eith v; =0 if 1> r(Y)) those of Y. The
assignment A (wi(x)/ﬁri(Y))-l:ci defines a monomorphisz Y — X, that
is, exhibits Y as (isomorphic to) & submodule of X. Simjlarly, the
assignment X3¢ ¥y definers an epimorphism X — Y exhibiting Y as
(isomorphic to) a quotient module of X.

Necessity (following EOURBAXI [Algebre, Chapter 7 (28 ed.),
Section L, Exercise 8]). Let Y be & submodule of X. By (%.34),
X~ L/N where L, N are free R-modules. By a classical isomorphism
theorem, Y is isomorphic to & quotieni module M/N, where L OMODN

and M is free (since submodules of & free module are free).

R PR
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From the last relation, z(Y) < r(X). Now cbserve, sagain using (4.34)

Jmt, for any R-module X a.nd'.a.ny TZR, |
r(m) <k => y (X7
and therefore
' R\Fk(x) = ideal generated by (m: r(mX) < k].

8ince 7Y is a submodule of 7X for all TE R, it follows that
Nk(X) DRWk(Y) , and the proof is complete for the case when Y is

o submodule of X. ‘The proof of the other case is similar. 0
(6.24) commr. wi(zz)wi(z), 1=1, ., r(25).

PROOF., Immediste from the fact that )sz is & submodule

of £ (see Section 7). o
‘Now we can summarize main results of this section as the

(6.25) ' PRIME DECOMFOSITION THEOREM FOR LINEAR DYNAMICAL SYSTEMS,

The following conditions are ecuivalent:

(1) 2, qiviaes Zy-

(1) ¥,(2,) divides v,(z,) for all 1.

(111) E, ¢an be similated by I, .
1 2

PROOF. This follows by combining Theorem (6.21) with Theorem

(6.23), since Wi(Z) = wi(zz) by derinition. 0
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(6.26)  INTERPRETATION. The definition of Z,| Z, means, in system-
theoretic terms, that the inputs and outputs of the machine whose transfer

function is 22 are to be "recoded": the original irnput @, is replaced by

an imput o, = B(z)ml and the output v, is replaced by an output

A will act like

& nmachine with transfer function Zl. In view of the definition of a

trangfer function, the equation Zl w2 AZEB is always satisfied whenever

A, B are replaced by A, B (reduced modulo ¥y, }. This means that the
2
coding operations can be carried out physically given a delay of

T, = A(z)’ra; with these "coding" operations, Z

d = deg ¥, units of time (or more). No feedback is involved in coding
: 2

it is merely necessary to store the d lasc elements of the input and

output sequences. Hence, in view of The =m (6.25) and Corollary (6.24),

we cen say that it is possible to alter th:z dvnamical behavior of a

system 22 arbitrarily by exteraal coding involving delay but not

feedback if and only if the inveriant factors of the desired external

behavior (Zl)_ are divisors of invariant factors of the exterral

behavior (Z.ED) of the given system. The invariart factors may be
called the PRIMES of linear systems: <they represent the atoms of system
behavior which cannot be simulated from smaller units using arbitrary
but feedback-free éoding. In fact, there is a close (bot not isomorphic)
relationship between the Xrohn-Rhodes primes of automata theory (see
XALMAN, FALB, and ARBIB {1969, Chapters 7-9]) and ours. A full treat-

ment of this part of linear system theory will be published elsewhere.
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T. ABSTRACT THEORY OF REALIZATIONS

The purpose of this short section is to review and expand those
portions of the previous diécuss;on which are relevant to the detailed
theory of reallzations to be presented in Sections 8. and 9. The seme
issues are examined (from a differsnt point of view) also in KAIMAN,
FALB, and ARBIB [1969].

Let £: 0 — T be & fixed input/output mep. Let us recall the
construction of x g 85 8 set and a3 carrying e Klz]-module structure

(Sections 3 and 4). It is clear that (i) £= ¢ poHpr where

Bl = xf: w - [w],

Lot xf-» I [m]fl-.; flw) -

are Klz)-homomorphisms, and (ii) p ¢ = epimorphism while ..

We have also seen that

He = epimorphism <=> xf is completely reachable;

{7.1)

i ¢ = monomorphism <<==> xf is completely observable.

These facts set up a "functor" between system-theoretic notions and
algebra which characteriza Xf uniquely. Consequently, it is desirable
to repiace also our system-theoretic definition of a rsalization (3.12)

by a purely algebraic one:

(7.2) DEFINITION. A reslization of a K[z]-homomorphism f: @ ~ T

is any factorization f that is, any commutative disgram

Y] > T
=7
\ /
iy
X

= monoriorphism.
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of K[z]-homomorphisms. The K[z]-modulg X 1is celled the state

module of the realization. A realization is camonical iff it is

completely reachable and completely observable, that is, u is

surjective and ¢t 1s injective.

A realization always exists becavse we can take X = 0, u= 19,

(7.3) REMARK. It is clear that a realization in the sense of (3.12)
can always be obtained frum & realization given by (7.2). 1In fact,
define Z = (F, G, H) by

Fi X Xt x+b z-x
G = u restricted to the submodule (w: [w] = 1J.

H = ¢ followed by the projection v ~ v(1).

It is easily verified that these rules will define a system with

f, x=f. Glven any such Z, it is also clear that the rules

x = KE,
H: © P t;() thsz(t),

Vi X (Hzx’ HpFpx, oo )

define a factorization of f. Hence the correspondence betwee1 (3.12)

and (7.2) is bijective.

The quickest way to exploit the algebraic consequences of our

definition (7.2) is via the following arrow-theoretic fact:

it i
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(7.4) ZEIGER FILL-IN LEMMA. Let A, B, C, D be setsand o, B, 7,

and & set maps for which the following dia.grﬁm commtes:

4 g > B
> |
S
;f
Y o B
7
”~
c“" 5 > D

If a is surjective and & ie injective, there exists a unique get

map ¢ corresponding to the dashed arrow which preserves commutativity.

This follows by straightforward "diagram-chising", which proves
at the same time the

(7.5) COROLIARY. The claim of the lemms remains velid if "sets"

are replaced by "R-modules”" and "set maps" by "R-homomorphisms".
Applying the module version of the lemma twice, we get

(7.6) PROPOSITION. Consider any two canonical realizations of a

fixed f: the corresponding state-sets are isomorphic as K([z)-modyles.
7

Since every K{z]-module is automatically also a K-vector space, (7.6)
shows that the two state sets are K-isomorphic, that is, have the same
dimension as vector spaces. The fact that they are also K[z]-isomorphic
i.mplies;, via Theorem (4.34), that they hLave the same invariant factors.
We have already employed the convention that (in view of the bijection

between f and Ef), the invariant factors of f and X, are to be
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identified. In view of (7.6), this is now & general fact, not dependent
on tke -gpecial construction used to get Xf. We can therefore restate

(7.6) as the

(7.7) ISOMORPHISM THEOREM FOR CANONICAL REALIZATIONS. Any two

canonical realizations of a 1.ved¢ [ have isomorphic state modules.

The state module of a canonical 1. Yization 1s uniquely characterized

{up to isomorphism) by its invariant factors, which may be also viewed

as those of f.
A simple exercise proves also

(7.8) PROPOSITION. If X 1s the state module of a canonical

realization f, then dim X (as a vector space) is minimum in the

¢lass of 8l] realizations of f.

This result has been used in some of the literature to justify
the ter.dnology "minimal realization" as equivalent to "canonical
reelization". We shall see in Section 9 that the two notions are
not always equivalent; we prefer to view (T.é) as the basic defini-

tion and (7.8) as a derived fact.

(7.9) REMARK. Theorem (7.7) constitutes a proof of the previously
claimed (4.2%). To be more explicit: if I = (F, G, H) Qnd

g - (?, E, ﬁ) are two triples of matric 1efining canonic;1 realiza-
tions of the same £, +then (7.7) implie. the existence‘of a vector-

space isomorphism A: X - X such that
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L g
il
g

(7.10)

m> oY
]
, &
=

A .
If we identify X and X then A is simply a basis change and it

follows that the class of 211 matrix triples which are canonical

-

realizations of a fixed £ 1is isomorphic with the general linear

' group over X.

The actual computation of a canonical realizatlon, that is,

of the abstract Nerode equivalence classes [w] go Tequire a consider-
able amount of aprlied-mathematical machinery, which will be developed
in the next section. The critical hypthesis is the existence of

a factorization of f£ such thet dim X <, (this is sometimes
expressed by saying that f has finite z:ank.) Glven any such reali-
zation, it is possible to obtain a csronical one by & process of

reduction. More precisely, we have

(7.11)  THEOREM. Every realization of f with state module X

contains & subguotient (a quotient of & submodule, or equivalently,

a submodule of & quotient) X, of X which is the state-module of

8 canonical reslization of f.

FROOF., The reachable statecs xr =image W are a submodule

of X and so are the unobservable states Xo = kernel .. Hence

X, X r/xrf“xo is & subquotient of X. It follows immediately that
! X, 1is a canonical state-module for f£. [The proof may be visualized
J via the following commutative diagram, where the j's and p's are

o canonical injections and projections.) O
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N\

(7.12) REMARK. ©Since any subquotient of X 1s isomorphic to a

X /%, %

submodule (or a quotient module) of X, it follows from Theorem {5.23)
that X can be state-state module of a realization only if wi(f)lvi(x)
for a1l i (recall also Corollary (6.24)). This condition, however, is
not enough since the Wi are invariants of module isomorphisms and not

isomorphisms of the commutative diagram (7.2).

The preceding discussion should be kept in mind to gain an over-

view of the algorithms to be developed in the next sections.

F
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8. CONSTRUCTION OF REALTZATIONS

Now we shall develop and generalize the basic algorithm, originally
due to B. L. Ho (see HO and KAIMAN [1966]), for computing a cancnical
realizetion I = (F, G, H) of a given input/output ﬁap f. Most of
the discussion will be in the language of matrix algebra.

Notations. Here and in Section 9 boldface capltal letters* will
denote block ﬁatrices or seqpencés of matrices; finite block ma%rices
will be denoted by small Greek subscripts on boldface capitals; the
elements of such matrices will be denoted by ordinary capitals. This
is intended to make the practical aspects of the computations self-

evident; no further explanations will be made.

let £: 0 — I be a given, fixed K[z]-homomorphism. Using only
the K-linearity of f we have that

(8.2)  f)(1) = B A,,0lt),

where the Ak (k>0) are p Xm matrices over the fixed field K.

We denote the totality of these matrices by
A(f) = (Al, Ay .o ).

Then it is clear that the specification of a K[z]-homomorghism f

is equivalent to the specification of its matrix sequence é(f). More-

over, if L realizes f (8.1) can be written explicitly as

(8.2)  fl)(1) = F wta(t).

*Note to Printer: Indicated by double underline.




T

R.E.Kalman

Comparing (8.1) and (8.2) we can translete (3.12) into an equivalent
matrix-language

{8.3) DEFINITION. A dynamical system Z = (F, G, ') realizes a

{matrix) infinite sequence A iff the relation

Ay, = B, k = 0,1,2 ..

is satisfied.

Let us now try to obtain also a matrix criterion for an infinite

. sequence A to have a firite-dimensional realization. The simplest

way to do that i1s to first write down & matrix representation for the

map f: & —» [. So let

AL A AL L
!AE A, B e
H(a) = Ay A A

and verify that H(A(f)) represents f when ® € 0 is viewed as an

® column vector with elements (u)l(O), v, mm(o), u:l(l), eee )e

Classically, H(A) 1is known as the (infinite) Hankel matrix associated

with A. We denote by HP ) the u X v biock submatrix of H appear-
= = > =

ing in the upper left-hand corner of H.

(8.4) PROPOSITION.  Let I De any realization of A. Then

rank E].L,'V(é) 5 dim £ for all 4, v 2oL

Lt

= e
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(8.5) COROLLARY. An infinite sequence A has a finite-dimensionel

realization only if rank H y(&) 1s constent for all u, v sufficiently
=u, V'S L
large.
P/O0F. If d&im I ==; the claim of the proposition is

vacuous (although formally correctl). Assume therefore that Qin & < =

[ and define from I the finite tlock matrices

lgv = (G, FG, ..., F' ¢

9, = [y, BUFY, ..., B (F1)P"1].

Then

%y = L, &)
by the definitic- (8.3) of s realization. It is clear that rank R,
and rank g“ are at most n = dim Z. Thus our claim is reduced t;o
the sta.xida.ird matrix fact

rank (AB) < min (runk A, rank B]. )

Our next objectlve 1s the proof of the converse of the corollary. This can be

done in several ways. The original proof is due to HO and KAIMAN [1966];
similar results were obtained independently and concurrently by YOULA

and TISSI [1966] as well as by SILVERMAN [1966]. Two differert proofs

ere analyzed and compared in KAIMAN, FALB, and ARBIB [1969, Chapter 10,
Section 11]. All proofsdepend on certain finiteness arguments. We

shall give here a variant of the proof developed in HO and KAIMAN [1969].
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(8.6) DEFINITION. The infinite Hankel matrix H associated with

the sequence é has finite length A = (A', A") iff one of the follow-

ing two equivalent conditions holds:

forall kv =1, 2, ...} <w

= [ A X . =
A = min {£: rank Hy, -, =renk H,

A" = {min £": rerk H = rank H

=, " =p,£“+k forall «, p = 1, 2, ... }J<m,

A' is the row length of H and A" is the column length of H.

The equivalence of the two conditions is immediate from the
equality of the row rank and column rank of a finite matrix. The proof
of the following result (not needed in the sequel) is left for the reader
as an exercise in familiarizing himself with the special pattern of the

elements of a Henkel matrix:

(8.7) PROPOSITION. For any H, the following inequalities are

either both true | H has finite length] or both false [otherwise]:

A < rank l={m7\“, AV < mAY,
C A § rank E?\',p?\' < pA',

The most direct consequence of the finiteness condition given by
(8.6) is the existence of a finite-dlmensional representation § and
Z of the shift operator ¢, acting on a sequence A. The "operand"
will be the Hankel matrix associated with a given A. As we ghall see

soon, this representation of the shift opcrator induces a rule for
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computing the matrix F of & realization of é. This is exactly what

we wculd expect: module 'theory tel1s us that, loosely speaking,

‘S',g“crA“z”F.

(8.7) DEFINTTION. The shift operator s onen infinite scquence
é is given by

o':: (Al’ Aa, cee ) (Al-l-k’ Ayyr oo );

the corresponding shift operator on Hankel matrices is then

k k
s E(4) » g(axé).
(or course, crH is well-defined a2lso on submatrices of a Hankel matrix.)

(8.8) MAIN LEMMA. A Hankel matrix H associated with an infinite

sequence g has finite length if and only if the shift operator Ty

bas finite-dimensional left and right matrix representations. Precisely:

H bag finite Jength A= (A", A") 4if and only if there exist £! X £

and " X £" Dblock matrices S and Z such that

(8.9)  ogl, (&) = SH, ,.8),

X
= By, (A5

and furthermore the minimum size of these matrices satisfying (8.9) is

At X AI &.;d A X AP,

PROOF. Sufficiency. Take any £" X £" block matrix Z

H, g2t
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(8.10) A#‘,,ﬂ = A3+1z12" + Aﬁazeg,, + ... +AJ+£,,Z‘,,£“

for a1l 3 =0, 1, ... (where Zuv is the (g, V)th element block

of E) Belation (8.10) proves that

rank H

nk Heoq,m rank H

=K+1,£" fOI‘ 3-11 K = 0, l’ LR ;

the general case follows by repetition of the same argument. Hence the
existence of the claimed Z implies that the column length A" of H
cannot exceed the size of E If actually A" is smaller tha.n the size
of the smallest 5 which works in (8.9) , we get a contradiction from
the necessity part of the proof. The claims concerning S are proved

by & strictly dual argument.

Necessity. By the defindtion of A", each column of the

. 1ytR
(A +1)"" block column of B, a1

colvmns of the preceding block columns of H P
=u, A +1

property is true for 8ll integers i, no matter how large. So there

is linearly dependent on the
moreover, this

exist m Xm matrices Z,, ..., ZN, such that the relation

1)

+ *e e +A

(8.11) A gy 7 Ag

3+1Z'A" + AJ+227\"+1

holds identicelly for all J =10, 1, ... . Now define Z to be an
AN' X N' block companion matrix of m Xm block made 'up from the Zi

Just defined:
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[0 o o ... o 27_‘"7

I 0 0 [N ] 0 ZA"_-J.
0 I 0 .. 0 Zy,
Z = . - L] - L) -

The verification of {8.9) is immediate, using (B.11). The existence
~of M XM bleck matrix § verifying (8.9) follows by a strictly

dual argument. a

Now we have enough material on hand to prove the strong version

of Corollary (8.5):

(8.12) THEOREM. An infinite sequence A has & finite-dimensional

realiza.tion of dimension n 1if and only if the associated Hankel

matrix H has finite lemgth A= (W, A").

PROOF. Sufficiency. Let By 1 be a2 A" X 1 block
— ?

column matrix whose first block element is an m X m wnit matrix and

3

the other blocks are m X m zero matrices. Usirg (3.9) with 2" <"

define
F = E,
(8.13) E =( ¢ = En v
H = 51,7\".
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Then, for all k g 0, comput:

G = Ey By g
. it

the second step uses (8.9). By definition of T,

th k
matrix is just the (1, 1) element of E(qA(é)), namely A, ..

and E, the last

Hence the given L  is a realization of A.
Necessity. This is immediate from Cor. ary (8.5). i

Now we want to attack the problem of finding a canonical realiza-
tion of A, since the realizaticn given by (8.13) is usually very far
from canonical. Qur succeeding consideratiorshere and in Section 9
are made more transparent if we digress for a moment to establish
another consegquence of (8.8).

By outrageous abuse of language, we shall say that A has finite

length iff H(A) has finite length. We note

(8.14) DEFINITION. An infinite sequence B is an extension of

order N of (the initial part of) an infinite sequence A Aff

A = B for k=1, ..., N

(8.15) THECREM. No infinite seguence of finite length (A', A%)

has distinet length-preserving extensions of any order N > A' + A",

PROOF. Suppose E is a length-preserving extension of order
N of A, the length of both sequences teing (A', A"), with N > A + A",

By (8.8), both sequences sttisfy relation (8.9), with suitable Sy and EB'




i

— 106 —
R.E.Kalman

The sequence A is uniquely determined by §, acting on E?\',?\"(é)
from the left and the sequence B is uniquely'r determined by §B
acting on the matrix L{N’N(__B:) from the right. The two matrices
are equal by hypothesis on N. Moreover,

%R',N’(ﬁ) = ahﬁxn’)\n(ﬁ)
and ..

Do ®Zp = o ()
are also e;[ua.l, since the matrices on the right-hard side depend only

on the 2nd, ..., H-th member of each sequence. Using only this fact

and the associativity of the matrix product

57\',7\"51; = B, wEp

-1
= §.A§-R',)\= ’

-

] -157\', nZp

= _AI,)."' .

4, 44

i

80 [ =

Heo

. a

Now we can hope for & realization algorithm which uses only the

first A* + A" terms of a sequence of finite length. Ir fact, we have

(8.16) B. L. HO's REALIZATION ALGORITHM. Consider any infinite

sequence A of finite lerngth with associeted Hankel matrix H. The

following steps will lead to a canonical realization of -:*,:
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(1) Determine A, A".

(41) Compute n = rank 57\',7\"; in doing sg,j determine
nonsingular pA* X pA' and aA" X mA" matrices P, Q such that
(8.17) S

PH

=A" A"Q = 0 0

(4ii) Compute

i n

F o= RPlui, ]
(8.18) < G = Rnné}\l’hucm’
n
LE = Ry, e

where Rp, CIn are idempotent "editing" matrices corresponding to the

operations "retain only the first p rows" and "retain only the first

m columns".
We claim the

(8.19) REALIZATION THEOREM FOR INFINITE SEQUENCES. _For any infinite

sequence A whose associated Hankel matrix H has finite length

(A, A"}, B. L. Ho's formules (8.17-18) yield a canonical realization.

PROOF. If L defined by (8.17-18) is a realization of A,
then it is certainly canonical: by (3.") I hes minimal dimension in
the élass of all realizations of é and so it is canonical by (7.8)ﬁ

The required verification is interesting. First, drop all

gsubseripts. Observe that E‘x = QCRF is a pseudo-inverse of H, that
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hEE
II:E;t

is, = H. Then, by definition of F, G, H, snd Eﬁ,

G = (RHQC) (RP[o,11C) " (REEC),

R CUCEHRT S

by repeated application of (8.9),

Re(*1z)

rsi(atiz) e,

It

RS"HC,

]

Rlo HIC.

The last equation calls for picking ocut the first p rows and the

first m columna of cﬁg, which is Jjust A

145 &S required. d

(8.20) COMMENT. This is a considerably sharper result than Theorem
(8.12), in two respects:
| (1) It is nc longer necessary to compute 5: we simply
use the metrix EA,,K“(UAQ), which is part of the data ot the problem.
(11) Formulas {8.18) give the desired realizaticn in minimal
form: there is no need to reduce (8.13) to a minimal realization (recall
here (7.11)).
Notice also ehat the proof of (8.19) does not require (8.12)

but depends (just like the latter) on direct use of (8.8).
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An apparently serious limitation of the algorithm (8.16) is the
necessity to verify abstractly that "é has finite length". Of
course, this can be done only on the basis of certain special hypotheses
on A, glven in advence. (Examples: (1) A =0 forall k>gq;
(11) A = coefficients of the Taylor expansior of & rational function.)
¥Yortunately, the difficulty is only apparent, for the preceding develop-

ments can be sharpened further:

(8.21) FUNDAMENTAL THEOREM OF LINEAR REALIZATION THEORY. Consider

any infinite sequence A and the corresponding Hankel matrix I={

Suppose there exist integers £!, £" such that

(8.22) rack gp,gu(é) = rank §£s+1,31|(§):

= rank §£=,£"+1(§)'

>

Then there exists unique extension
guch that }\1;2 <2 and ?\i < #v; morgover, applying formulas (8.17-18)

of A of order £' + £"

||:_n->

with A* = £', A" = £" gives a canonical realization of

FROOF. Exactly as in the necessity part of the proof of

(8.8), condition (8.22) implies the existence of § and Z such that

(@.23)  off,, o8 = 88, (&) = H; LR

Define an extension

ne>

of é of order &'+ £ by

?ﬁlﬂ‘ﬂ"(é) e gk§£|zn(é)) k> 1-
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By repeated application of (8.23), it follows that we have also

A k
cﬁﬁzt,zn(é) = Ez:,gn(é)é , k > 0.

Now it is clear, from (8.8), that }% S emd M < 2", The unique-
ness of the extension follows immediatély from (8.15). Moreover,
Theorem (8.19) is still valid, even though (£!, £") is not necessarily
minimal, because the proof of {8.19) depended only on (8.9) and not on

the minimality of (£t, £"). ‘ 0

Theorem (8.21) says, in'effect, that a canonical realization of

some extension of g is alwaeys possible as scon as (8.22) is satisfied.

Mcreover, (8.22) can be used as a practical criterion for constructing

by trial and error a canonical realization of any g known to have

finite length (but without being given Ar, A").

(8.2%) EXAMPLES. - (i) There is no scalar infinite sequence (p =m = 1)
A for vhich (8.22) is never satisfied.

(11) If §£|,£n
in the scalar case), then (8.22) is automatically satisfied.

is square and has full rank (for instance,

(iii) If the algorithm (8.16) is appiied without any informa-
tion concerning condition (8.22), the system I defined by (8.18) will

always realize some extension of A, at least of order 1. It is not

known, however, hov to get a simple formula which would determine the

Utgoen b
———— E.

| maximal order of this extension of A.

The remaining interesting question is then: What can be said if

r r (6.22) 1is not satisfied for a finite amount of data Ay ...y Ay end
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any £', ¢" satisfying £' + £" = N. This problem is the topic of

the next section.

(8.25) FINAL COMMENT. An essential feature ¢ 1, L. Ho's algorithm

js that is preserves the block structure of the data of the problem. Of

course, one can obtain parallel resuits by treating gp’ o as an
ordinary matrix, disregarding its block-Hankel structure. Such &
procedure requires looking at a winor of § of maximum rank, and was
described explicitly by SILVERMAN [1966] and SILVERMAN and MEADOWS [1969].
There does not seem to be any obvious computationzl advantage associated

with the second method.
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9. THECRY OF PARTIAL REALIZATIONS .

In one obvious respect the theory of reslizations developed

in the previous section is rather unsatisfactory: it is concerned

with infinite sequences. From here on we call a system satisfying

(8.3) a complete realization, to distinguish it from the practically

more interesting case given by

3 (9.1)  DEFINITION. Let A = {A,, Ay, ... ) be an infinite

sequence of p Xm matrices over a fixed field K. A dynamical

1 system L = (F, G, H) is a partial realization of order r of

A iff

A, = WG for k = 0,1, ..., r.

We shall use the same termim logy if, instead of an infinite
sequence A, we are given merely a finite sequence A_ = (Al, ceay As),
82 r. The reason for this convention will be clear from the dis-
cussion to follow. We shall call the first r terms of A a partial

aequence {(c® order r).

The concepts of canonical partiel realization and minimal

pa&tial realization will be understood in exactly the same sencse as for

a complete realization. We warn the reader, however, that now these

two notions will turn out to be inegquivalent, in that

minimal partial = canonical partial

but not conversely.
Our main interest will be to determine all equivalence classes

' of minimal pertial realizations; in general, a given sequence will,
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have infinitely many inequivalent minimal partial realizations if
r 1is sufficiently smell.

According to the Main Theorem (8.21) of the theory of realiza-
tions, the minimel partial realization problem has a unigue soclution
whenever the rank condition (8.22) is satisfied. If the length r of the
partial sequence is prescribed a priori, it wmay well happen. that (8.22)
does not hold. What to do? Clearly, if we have a minimal partial
realization (F, G, H) of order r we can extend the partial
éequence of ér on which this realization is based to an infinite

sequence canonically realized by (F, G, H) simply by setting
'y 2 wly, k>r.
Consequ- ntly, we have the preliminary

(9.2) PROPOSITION. The determiration of a minimal partial

realization for ér is eguivalent to the determiration of all

extensions of a partial sequence ér such that the extended

sequence is

(1) finite-dizensicnal :né, more strongly,

(1i) 1ts dimension is minimel in the class of all extensions.

It is trivial to prove that finite-dimensional extensions exist
for any partial sequence (of finite length). Hence the problem is immediately
reduced to determining extensions which have minimel dimension. The
solution of this latter problem consists of two steps. First, we show

by a trivial argument that the minimal dimension can be bounded from
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below by an examination of the Hankel array defined by the partial
sequence. Second, and this is rather surprising, we show that the
lower bound can be actually attained. For further details, especially
the characterization of egquivalence classes of the minimal partial

realizations, see KAIMAN [1969c and 1970b].

(9.3) . DEFINITION. By the Hankel array E(ér) of a partial .
sequence gr we mean that r X r block Hankel matrix whose (i, j)th

block is if 1+ J-1<r &nd nndéfined otherwise.

Ay .
In other words, the Hankel array of a partial sequence ér

consists of block rows and columns made up of subsequences

Ap, vees A (L<p<r) of A and blank cpaces.

(9.%) PROPOSITION. Let no(.Er) be the number of rows of the

Harkel array of Ar which are linearly inderendent of the rows
above them.. Then the dimension of a realization of ér is at least

no(ér)'

FROOF. The rank of any Hankel matrix of an infinite
sequence A 1is & lower bound on the dimension of any realization
of A, by Proposition (8.4 ). By Proposition (9.2}, it suffices
to consider a suitable extension A of ér' This implies "filling
in" the blank spaces in the Hankel array of ér' Regardless of how
'E(ér) is filled in, the rank of the resulting r X r block Henkel

matrix is bounded from below by no(ér). 0

By the block symmetry of the Hankel matrix, we would expect

to be able to determine no(ér ) Yy an analogous examination of the
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columns of the Hankel array of ér’ thereby obtaining the same
lower bound. This is indeed true. We prefer not to give a direct
proof, since tha result will follow as a corcllary of the Main
Theorem (9.7).

The critical fact is given by the

(9.5) MAIN IEMMA. For a partial sequence ér defipe:

?\'(ér) = smallest integer such that for k'> At every
row of E(ér) is linearly dependent on the
rows above it.

7\"(1___&1.) = smallest integer such that for k" > A" eve

¢ 'mn in the k-th block column of I;!(‘__Ar)

is linearly dependent on the columns to the

left of it.

Every partial sequence ér mey be extended to an infinite

sequence A in at least one way such that the condition
(9.6) renk E JWB) = n(A) forall w>N(A), v>A(a)
is satisfied.

PROOF. The existence of the numbers A'. A" is trivial.

It suffices to show, for arbitrary r, how to select A 1 in

such a way that the numbers A', A', 'and n remain constant.

Consider the first row of A o+ -and examine in turn all the

1
first rows of the first, second, third, ..., Alth block rows in
ggxr) If the first row of the first block row is linearly depen-

dent on the rows above it (that is, 0), we fill in the first row
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of A

.1 Using this linear dependence (that is, we make the first

rowof A, all zeros). This chnice of the first row of A,
will preserve linear dependencies for the first row of every block
row below the second block row, by the definition ef the Hankel
pattern. If the first row in the first block row is linearly
independent of those above (that is, centritmbes 1 to nb(ér))’
we pass to the second block row and repeat the procedure. Eventually
the first row of some block row will become linearly dependent on
those above it, except when A = r; in that case, choose the first
row of Ar+1 to be linearly dependent of the first rows of
Alf vaey Ar' Repeating this process for the second, third, ... rows
of each block row*, eventually Ar+1 is determined without increas-
ing A' or .

To complete the proof, we must show that the above definition

of A

" also preserves the value of A\ That is, we must show

that nc new independent columns are produced in the Hankel array of
éf when Ar+l ig filled in. This is verified immediately by noting

that the definition of A implies the conditions

r+l
rank Er, 1 = rank !={ r+1, 7
rank Er-l,e = rank I={r,2,
rank El,r = rank ge,r f rank 51,r+1' |

*0f course, now linear erendence.in the first step does not
imply.that the corresponding row of Ar+1 will ve 211 zeros.
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With thz: aid of this simple but subtle observation, the problem

is rednced to that covered by the Main Theorem {8.21) of Section 8. We have:

(9.7) MAIN THEOREM FOR MINIMAL PARTIAL REALIZATIONS.* Let A

Le & partial sequence. Then:

(1) Every minimal realization of A, has dimension no(ér)'

(ii) A1l minimel realizations may be determined with the aid

of B. L. Ho's formulas (8.17-18) witk A* = A*(4) and A" = A"(4)

as ziven by Lemma (9.5).

(1i1) If r > A(4,) + A"(A)) then the minimel realization

is unique. Otherwise there are &s meny minimal raslizetions as

there are extensions of A  satisfying (9.6).

=r

PROOF. By the Main Lemma (9.5), every partial sequence ér
has at least one infinite exteusion which preserves A', A" and
n . So we can apply the (8.21) of the preceding section.
It follows that the minimal partial realization is unique if
rz N (ér) + h"(ér) (the A (ér)'+ }‘"(ér) + 1 Hankel matrix can be
filled in completely with the availuble data); in the contrary case, the
minimal extensions will depend on the manner in which the mitrices

A have been determined (subject to the requirement

Pl'l, XX A}\""Nl
(906))- O

In vies of the theorem, we are justified in calling tL: integer

n (& ) the dimension of A.
o] -‘Ir s s !lr

*¥A similar result was obtainad simultaneously and independently
by T. Tether (Stanford dissertation, 19¢9).

" AT
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(5.8) REMARK. The ecsentiu) point is that the quantitie. n
Ay and ) are uniquely determined already from partial data,
irrespective of the possible nonuniqueness of the minimal extensions
of the partial sequence. We warn, however, that this result does
not generalize to &ll invariants of the minimal realization. For
instance, one cannot determine from ér how many cycllic pieces &
minima] realization of ér will have: same minimal realizations
may be cyclic and others may not [KAIMAN 1970%].

Finally, let us note alsc a second consequence of the Main
Theorem:

(9.9) COROLIARY. Suppose nl(ér) is the mumber of independent

columns of the Hankel array of A = (defined amalogously with

x:lo('lLr))' Then dim ér = n1(&:')'

PROOF. If nl(ér) > no(ér) then, using the Main Theorem,
we get a contradiction to the fact that the rank of any Hankel matrix
of an infinite gequence is lower bound for the dimension of any reali-

{
zation (Proposition (8.4)). 1If ILl(.&r) < no‘ér) then extending A

to any é?\' +xu) Ve contradict the fact that rank is at least

SUBY
equal to no(ér). DO
In other wc-ds, the characteristic property of rank, that
counting rank by row or column dependence yleics identical results,

is preserved even for incomplete Hankel arrays.
It is useful to check & simple case which illustrates some of

the technicalities of the proof of the Main Lemma.

(9.107  EXAM’LE. The dimension of ©, 0, ..., O, Al) is precisely

r X p. where p = rank Ar and A' = A" =r.
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10. GENERAL THEORY OF OBSERVABILITY

A e T R PP s et

In this concluding section, we wish to discuss the problem of
| observability in a rather general setting: we will not assume
linearity, at least in the beginning. This is an ambitious program
and leads to many more problems than results. Still, I think it ia
interesting to give some indication of the difficulities which are
conceptual as well as mathematical. This discussion can also -
serve ag an introdvction to very recent research [KAIMAN 1969a,

1970a] on the observability problem in certain classes of nonlinear

gystens.

The motivation for this section, as indeed for the whole theory
= of ob-servability, stems from the writer's discovery [KAIMAN 1960a]
that the problem of {linear) statistical prediction and filtering
can be formulated and resolvec very effectively by consistent use
of dyramical conce~ts and methods, and that this whole theory is a
strict dual of the theory of optimal control of linear systems with
quadratic Lagrangian. For those who are familiar with the standard
classical theory of statistical filtering {see, for instance, YAGIOM

[1962]), we can summarize the situvation very simply by saylng that

Wiener-Kolmogorov filter

+ theory of finite-dimensional linear dymamical systems

= Kalman filter.

For the latter, the original papers are [KAIMAN 1960a, 1963a] and

! [ KALMAN and BUCY 1961].
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The reader interested in further details and & madern exposition is
referred especially to the monograph of KALMAN [1969o].

We shell exzmine here only one aspect of this theory (which
does not involve any stochastic elements): the strict formulation
of the "duality principle" between reachability and observability.
This principle was formally stated for the first time by KALMAN [196Cc], but
the pertinent discussion in this peper is limited to the linear cese and
is somewhat ad-hoc. Aided by research progress since 1960, it is
now possible to develop a completely general approach tc the "duality
principle”. We shall do this and, as a by-product, we shall obtain
a new and strictly deductive proof of the principle in the now
classical linear casse.

We shall introduce a general notlon of the "dual" system, and
use it to replace the problem of observabllity by an equivalent
problem of reachability. In keeping with the polint of view of the
earlier lectures, we shall view a system in terms of its input/output
map f and dualize f (rather than I). The constructibility
problem will not be of direct interest, since its theory is similar
to that of the observability problem.

Let &, I' be the same sets as defined in Section & and used
from then on. We assume that both & and ' are K-vector spaces
{K = sarbitrary field) and recall the defirition of the shift
operators 0, and o, on @ and T (see (3.10)). We denote
both chift operators by z b&t ignore, until later, the K{z]-

module structure on 0 and T.
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By a constant (not necessarily lirear) input/output map

f: il -I' we shall mean any mep f which commutes with the shift

dpevators, that is,
f(z-w) = z-(£(w)).
Let us now formulate the general problem of this section:

(10.1) PROBLEM OF OBSERVABILITY. viven an input/output map £,

its canonical realization Z, and an input sequence v € @ applied

after ¢+ = 0. Determine the state x of £Z at t = 0 from

the knowledge of the output sequence of Z after t = 0.

This problem camnot be solvea in general: To see this, recall

that the state set Xf of f may be viewed as a set of functions

(£lwe-)(1): 8 =K': v s £wev) (1))
since ' 1is Nerode-eguivalent to w iff
flw'o-)(1) = flwe+)(1)

Givaing v € 1 and the corresponding output sequence amounts to
giving various values of f{wo+)(1) (namely those corresponding
to the sequences B, V., ZV_+ V_ ., ..uy V, 2ZV, zav, .e.), and

r r r-1
it may happen that these substitutions do not yield enough values of
the function f{we+)(1l) to determine the function itsely. This

situation has been recognized for a long time in automate theory,
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vwhere, in an almost self-explanatory terminology, one says that

"L is initial-state determirable by an infinite multiple experiment
{possibly infinitely many diffzrent V's) but not necessarily by a
single experiment (single V chosen at will)." See MOORE [1956].
The prouviem is further complicated by the fact that it may make a
difference whether or not we have a free choice of v. KAIMAN,
FALB, and ARBIB [1969, Section 6.3)] give some related comments.

A further difficulty inherent in the preceding discussion is
that the problem is posed on & purely set-theoretic level and does
not lend itself to the introduction of more refined structural
assumptions. We shall therefore reformulate the problem in such

a way as to focus attention on determining those properties of the

initial state which can be compul:d from the combined knowledge of

the input and output sequence occurring after t = 0.

For simplicity, we shall fix the value of v at 0O (no loss of
generality, since f is not linear). Then the output sequence
resulting from x after t = O is given simply as f(w), where
X = [a)]f.

We shall use the circumflex to denote zertain classes of

functians from a set into the field K. For the moment, this

class will be the clsss of all functions. Thus

I' = ({all functions T —KJ.

An element © of D is simply & "rule" (in practice, & computing

algorithm) which assigns to each possible output sequence y in T
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a numier in the field K. If vy resulted from the state x = [w]f,

then
) = T(2@) = (Fe)(w)

gives the value of & certain function in a and, by definition of
the state, also the value of a certain function in ¥. This suggests

the

(10.2) DEFINITION. An element x € & is an observable costate

if? there is a ?; € P such that we have identically for all

we
x(loly) = Tale(@).

in other words, no matter what the initial state x = [m]f is,
the value of X &t x can always be determined by applying the
rule ??c to the output sequence f(w) resulting from x. Note,
carefully, that this definition subsumes (i) a fixed choice of the .
class of functions denoted by the circumflex, and (ii) a fixed input
sequence after t = O (here v = 0). For certain purposes, it
may be necessary to generalize the definition in various ways
{RAIMAN 1970 a], but here we wish to avoid all unessential complica-
tions. | 7 '
According to Definition (10.2), we shall see that & sys;tem is

completely observable iff every costate is observable. This agrees

with the point of view adopted earlier (see Section 4) in an ad-hoc

fashion. Alsc, the vague requirement to "determine x" used in
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(10.1} is now replaced by & precise notion which can be manipulated
(via the actual definition of the circumflex) to express limitations
on the algorithms that we may a.pply to the ocutput sequence of the
system.

The requirement "every costete is observable" can be often
replaced by a much simpler one. For instance, if X 1is a vector
space, it is enough to know that "every linear costate is observable”
or even just that "every element of some dual basls is an cbservable
costate"; if X is an algebraic variety, it is natural tuv interpret
"camplete obgervability" as "every clement of the coordinate ring of
X 1is an observable costate" [KAIMAN 1970a].

He can now carry out a straightforward "dualization" of the
setup :anlved in the ¢efinition of the input./out.put map f: O -T.

First, we adopt (again with respect to a fixed interpretation of the
circumflex): -

(10.3) DEFINITION. The dual of an input/output mep f£: Q =T

is the map
3: f - s ? H?of

Wote that £ 1is well-defined, since the circumflex means the class
o.f all functions.

As to the next step, we wish to prove that constancy is inherited
under dualization. To do this, we have to induce a definition of the

shif% operator on T ana 3. The only possible definitions are the

obvious ones:
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~

Y H[cf\?: T H?(UFT)];

Lo P
W, fc-aw: w HEB(UQUJ)].

1

The reason for this notation will become clear later.

Now it is easy to ve'rify:

(10.4)  FROPOSITION. If f is constant, so is 1.

PROOF. We apply the definitions in suitable sequence:

#2719 (w)

ol
and so we see that f

= hD() (def. of 3),
= Y(ze£(w)) | (gef. of op),
= ?(f(z-m)) (f is constant),
= 3P (z-w) (def. of %),
= (LI @) (det. of op),
commutes with 2 whenever f docs. a

~
At this stage, we cannot as yet view f as the input/output map

of a dynamicel system because concatenation is not yet defined on T,

and therefore I is not yet a properly defined "input set™.

In other words, it 1s necessary to check that the notion »f time is

also inherited under dualization. In general, this dnes not appear

~
to be poesible without some strong limitation on the class I'. Here

we shall look only at the simplest




Y
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(10.5) HYPOTHESIS. Every function ?‘ in fy satisfies the

finiteness condition: There 1s an Integer I?I (dependent on ?)

such that for all r, & € I' the condition

rk = Bk, k = 1, ooy I?l
implies

rr) = 7).

In cther words, we assume that the value of each ? at r

is uniquely determined by some finite portion of the output seguence
Yo .

Assuming (10.5), it is immediate that [ 2dmits a concatenmabion
mltiplication which corresponds (at least intuitively) to the usual

one defined on 0Q:
(10.6) ?08 = Z-Igl-? + 8.

We can now prove the expected theorem, vhich may be regarded

ag the precise form of the "duality" principle:

(10.7) THEOREM. Let f be an arbitrary constant inpv.ﬁ/ output

map and f its dusl. Suppose further that (10.5) holds. Then

each observable costate ¢cf £ (relative to I satisfying (10.5})

may be viewed as a reachable state cf ;‘, and conversely.

PROOKF. First we determine the Nerode equivalence classes on

T induced by ?. .By definition

£ e (?)? ire B(E.5) = 'i’:‘(?o%)
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for all € €L, Now ¢ is linear (!); in fact, direct use of

the definition of f and (10.6) gives

§¢ (!;)% 128 (Fof)(®) = (Bof)(w), w € Q.

*

So ?of and Bof are equal as elements o1 ¥X: rhey define the

same observable anstate. TIn fancier language, the assignment

(10.8) a4 x:r,_,ﬁf: (?)g,»?-.f

i1s well defined and constitutes a bijection between the reachabdle
states of % and those costates of f which are observable

~

relative to the function class “. a

Thus (10.5) is & sufficient condition for the d&uality principle
tc hold. However, tiue fact that the canonical realization of ? is.
completely reachable is not quite the same as saying thet the canonical
realization of f is completely observable because the latter depends
on the choice of I and therefore is not an intrinsic property of f.
Moreover, Theorem (10.7) does not give any indication how "big" X? is
and it may certainly happen that the observability problem for f .is
wruch more difficult than the reachability problem. Tnese matters will
be 1llustrated later by =some examples.

Now we deduce £he original form of the duality principle from
] Theorem (10.7). The sssential point is that (10.5) holds automati-
cally as a result of linearity. l

Wew definition of the function class: let the circumflex cenote

the class of all K-lirear functions. (All the underlying sets with the

K-vector spaces, so the definition makes sense.)

' —
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The following facts are well known:

(10.9) PROPOSITION. Let * derote duality in the sense of

K-vector spaces. Then:

we>

(P27 N)* = ¥P[271),

S (@®zl)* = ®[z]].

R

o

Now we can state the

(10.10) MAIN THEOREM. Suppose f is K-linesr, constant, finite-

dimensional. Suppose further that “ means K-linear duality. Then:

A -
(1) T is K-linear and constant, that is, a K[z"%)

-homomorphism
(and therefore written as f*) and finite-dimensional.

(ii) The reachable states of * are isomorphic with the

K-linear dual of 'xf; hence every costate of Xf is observable.

PROOF. The fact that I’ is K-linear implies, by (10.3),
that ? is K-linear; the constancy of f always implles that of
?’, by Propositios (10.4). (Caution: ¢ 1is not the XK[z]-linear
dusl of the K[z]-homomorphism f, and the construction given here
cannot be simplified. See Remark (4.26A).)

To prove the second part, we note that by Proposition (10.9)
Hypothesis (10.5) holds and thus £ = £* is a well-defined input/output
map of a dynamical system. We must prove that the reachable states
of f£* are isomorphic with X7, the K-linear dual of X_.. This

T f
anounts to proving that the K-vector space of functions

X > ?(hf(x), he(z.x), ... )
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is igomorphic with the K-vector space X;. It suffices to prove

that the K-vector space generated by the K-linear functions
(10.11) (A xw» [hf(zi-x)]J, i =201 ... &nd J = 1, ..., m)

is iscmorpnic with X;. Suppose that, for fixed x, every A(x) = O.
Then x =0, by definition of the Nerode equivalence relation induced
by f (recall here the discussion from Section 3). Since X_. is

b g
finite-dimensional by hypothesis, it follows from this property of

the functions [A}] thet they generate x*f‘.. Obviously, dim x;. = an X,

'so that everything is proved. 0

In other terms, the fact that f = K[z]-homomorphism together

with the appropriate definition of “~ implies that

£ Pzl - Bllz]]

is a K[z'l]-homomorphism. Since (10.5) holds, we can interpret

? in a system-theoretic way, as follcws: the output of the dual

system at % = - k due to input ? is glven by the assignment
T 3E)N- K),

which is a linear function defined on the k-th term of the input

gequence. In fact, we have

%(?)(m),
A(¥otf) (),

LA@ (- ).

7(r)

I

]
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(17.12) REMARK., It is essentially a consequecce of Proposition {10.9)

that T turcs out to be %he sace kied o7 algebraic cbject as f. Hote,

however, that

under duality the imput and ocutput terminaiz are

interchanged and t is replaced by -t (herce z

by z'l) |

In terms of the pictorial definition of & system, this
statement simply emounts to "reversing the directions of the arrows"”,
which is the "right™ way to define duality in the most general
methematical context, namely in category theory. We would expect
that the duality principles of system theory will eventuzliy become
a part of this very general duality theory. This has not happened
yet beceuse the cPr:ect categories to be considered in the study of
dynamical systems have not yet been determined. It is likely that
eventually many different categories will have to be looked =t in
studying dynamical problems.

We shall now present an example whi-h should help “c¢ interpret
the previcus results. We emphasize, however, that the theory sketched

here is still in & very rudimentary form.
(10.13) EXAMPIE. Consider the system ¥ defined by

x(t + 1)

2x(t) + u(t), y(t) = x(¢), ¢ € Z;

0 if 0 < x(t) <1/2,

y(t) {

1 if 1/2<x(t) <1,
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with X=U=Y=Rmod 1, i.e., the interval [0, 1). (1 1is to
be thought of as identified with 0.) We let wu(t) = 0. We view

x through its binary representaticn
(-] .
X = kgbgk(x)E , §k(x) = 0 or 1.

It is cleer from the definition of the system thst the output

sequence due to any x is precisely

v, = (5,00, 8,00, .o ).

X

If x 1is irratioral, infinitely many terms are nceded to identify

it. Consequently, the x's &are isomorpnic with the Nerode equiva-

lence classes induced by fy. So L cannot be reduced.
Relative tc " = . functions”, every. costate of f

z
observable, provided that Hypothesis (10.5) is not satisfied. If

‘is

it is, then only those costates defined on fixed-length rationals
are observatle (more precisely, these are functions which depend only
N

on a fixed finite subset of the §k(x)'s). Thus: either f does

not define a dynamical sysitem or not all costates are observable.

Now let us reﬁiace the set [0, 1} by its intersection
with the rationals. It is clear that ther: is row a finite algerithm
for determining x: we simply apply the results of partial resliza-
t;on theory of the previous section. (We take X = Z, and the
problem is to express x from (§1(x), ceey §2(x)0 as a ratio
of poiynomials in '52[2]——which is alweys possible since each x

is rational.} However, x 1is not "effectively computable” in the
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strict sence since there is no way of knowing when the algorithm

has stopped. In other words, given &n srbitrary rostste x -there exists
no fixed rule ?; such that the applicaticn of ?'i to fx gives
x(x) for all x. On the other hand, substituting into % the
reaults of the partial-realization algorithm wili give an approxi-
zstior to the value of Xx(x) which always converges in a finite
(but & priori unknown) mumber of steps as more values of the output
sequence are observed. In snort, the costate-determination algorithm
has certain pswudo-random elements in it and thez;efore cannot be
deacribed through the machinery of deterministic dynamical systems.
{Is there some relation here to the conceptual difficulties of
Quantum l;!echa.nics?)
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11. HISTORICAL COMMENTS

It is not en exaggeration to say that the entire theory of linear,
constant {ard bere, discrete-tizme} dynamical systems can be viewed as
a systematic development of the equivalent algebraic conditions (2.8)
and (2.15).

Of course, the us2 of modules {over K[z]) to study a constant
square matrix (see (4.13)) bas been "standard" since the 1320's under
the influence of E. NOETHER and especielly after the publication of

the Modern Algebra of VAN DER WAERDEN. Condition (2.15), bv itself,

must be also quite old. For iastance, GANTMAKHER (1959, Vol. 1, p. 203]
attributes to KRYIOV [1931] the idea of computing the characteristic
polynomial of & square matrix A by choosing a random vector b and
computing successively b, Ab, Aab, ee. until linear dependence is
obtained, which yields the coefiicients of det (zI - A). (The method
will sacceed iff X l

A
merger of (4.13) with (2.15), which is the essential idea in the alge-

is cyclic with generator g.) However, the

braic theory of linear systems, was done explicitly first in XAIMAN [1965b].
We shall direct our remarks here mainly to the history of conditions

(2.8) and {2.15) as related to controllability. See also earlier

comments in KAIMAN [1960c, pp. 481, 483, 48h] and in KALMAN, 110, and
NARENDRA {1963, pp. 210-212]. We will have to bear in mind that the
development of modern control theory cannot be separated .from the develop-
ment of the concept of controllability; moreover, the technological
problems of the 1950's and even earlier had a major influence on the
genesis of mathematical ideas {just as the latter have led to many

new technological applications of control in the 1960's).
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The writer developed the mathematicsl definition of controllability
vith applications to control theory, during the first part of 1955.
(ﬁgpublished course notes at Johns Hopkins University, 1958/59.) These
first definitions were in the form of (2.17) and (2.3). Formal presenta-
tions of the reswlts were made in Mexico City (September, 1959, see
KAIMAN [1960b]), University of California at Berkeley (April, 1969, see
KATMAN [1960d4]), and Moskva (June, 1960, see KALMAN [1960c]}), and in
scientific lectures on many other concurrent occasions inlthe U.S5. As
far as the writer is éware, 8 conscious and explicit definition of
controllability which combines a control-theoretic wording with a
precise mathematical criterion was first given in the above referenzes.
There are of course many instances of similar ideas arising in related
contexts. Perhaps the comments below can be used es the starting point
of & more detailed exarination of the situation in a seminar in the
history of ideas.

The following is the chain of the writer's own ideas culminating
in the publications mentioned above:

(1) In KAIMAN [1954] it is pointed out (using transform methods)
that continuous-time linear systems cen be controiled by & linear

discrete-time {sampled-data) controller in finite time.¥

D -

*It is somelimes claimed in the mathematical litcrature of optimal
control theory that this cannot be done with & linear system. This is false;
the correct suatement is "cannct be done with & linear controller producing
control functions which are contimuous (and not merely piecewise continuousi)
in time." Such a restriction is completely irrelevant from the technological
point of view. As a matter of fact, computer-controlled systems have been
proposed end built for many years on the basis of linear, time-optimal control.




- 135 —
R.E,Kalman

(2) Transposing the result of KAIMAN [1954] from traasfer funchions
to state variables, an algori£hm was sketched for the solution of the
digerete-time timé-optimal control of systems with bounded control and
linear contimious~time dynemics. [KALMAN, 19571

(3) As a pppularization of the results of the preceding work, the
same technique was applied to give a general method for the desgign of
linear sampled-data systems by KAIMAN and BERTRAM [1958].

Some background comments concerning these papers are appropriate:

(1) The ideas and method presented in KAIMAN [1954] descend
directly from earlier (and very well known) engineering research on
time-optimal control. {(The main references in KATMAN [1954] are:
McDONALD [1950], HOFKIN [1951], BOGNER and KAZDA [1954], as well as &
research report included in KAIMAN [1955].) Although the results of .
KAIMAN [1954] on linear time-optimel control were considered to be new
vwhen published, it beﬁame clear later that similar ideas were at least
implicit in OLDENBOURG and SARTORIUS [1951, §90, p. 219] and in TSYPKIN's
worik in thé early 1950's. The engineering idea of nonlinear time-optimal

control goes back, at leact, to DOLL [1943] and to OLDENBURGER in 19hk,

although the latter!s work was urfortunately not widely known before 1957.

During the same‘time, there was much interest in the same problems in
other countries; see, for instance, FELDBAUM [1953] and UTTLEY and HAMMOND
[1953]. Mathematical work in these problems probably began with BUSHAW's
dissertation [1952] in wﬂich, to quote from KALMAN [1955, before equation
(40)1, " ....[it was] rigorously proved that the intuition which led to
the formulation of the [engineering] theory [quoted above] was indeed

correct." TSIEN's survey [1954] contains a lengthy eccount of this state
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of affrirs and was rzady by many.. We emphasize: none of this
exteusive literature contuins even & hint of the algebraic considerations
related to ccntrollapility.

(2-3) The critical insight gained and recorded in KALMAN [1957] is
the fol.lowing: the solution of the discrete-~time time-optimal control
problem is equivalent to expressing the stste as a linear combination
of a certa.iz; vector sequence (related to control and dynamics) with
coefficients bounded by 1 in absolute value, tﬁe coefficients being
the values of the optimal controi sequence. The linear independence
of the first n vectors of the sequence guarantees that every point
in & neighborhood of zerc can b2 moved to the origin in at most n
steps (hence the terminology of "complete controllability"); and the
condition for this is identical with (2.17) (stated in KALMAN [1957]
and KAIMAN and BERTRAM [1958] only for the case det F#0 and m=1).
A thorough discussion of these matters is found in KAIMAN [1960c; s.ee
especially Theorem I, p. 485]. A serious conceptual error in KAIMAN
{19571 occurred, however, in that complete controllability was not

assuned, an a hypothesis for the existence of time-optimal control law,

but an attempt was made to show that the controllability is almost

alweys complete [Lemma 1}. In fact, this lemma is true, with a small

technical modification in the condition. Only much later did it become

clear (see the discussion of Theorem D in the Introduction), however,

that a dynamical system is always completely controllable (in the nonconstan’
case, completely reachable) if it is derived from an external description. It was

this ditficulty, very mysterious in 1957, which led to the development
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of a formal machinery for the definition of controllability during the

naxt two years. The changing point of view is already apparent in

FAIMAN ;nd BERTRAM {1958]; the unpublished paper promised there was

delayed precisely because the algebraic machinery to prove Theorem D

was out of reach in 1957-8. <Ccasult aiso th; finding:, of the biblio- i

grapher PUDOLF [1969].

IN SUMMARY: under the stimulation ~f the engineering problems

- of minimal-time (ptimal control, the researches begun by KAIMAN [195k,

1957] ard KAIMAN end BERTRAM [1958] eventually evclved intocwhat has

come to be celled the mathematical theory of controllability (of linear

systems).

Beginning about 1955, &#nd stimuleted 'y the same engineering

problems, PONTRYAGIN.and his school in the USSR developed th:ir

mathematical theory of optimal control sround the celebreted "Maximum

Principle". (They were well aware of the survey of TSIEN [1654]

i mentionéd - stove, and referenced it both in English and in the Russian
$ translation of 1956.) We now know that any theory of control, regard-
less of its particular mathematical style, must contein ingredients
related to controllability. So it is interesting to examine how

explicitly the controllability condition appears in the work of PONTRYAGIN

and relsted research.

GAMKRELIDZE [1957, §2; 1958 §1, §2i calls the time optimal control

problem associated with tie systenm

(11.1) ax/dt = Ax + bu(t)
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"nondegenerate” iff b is not contained in a proper A-invariant

subspace of R"®. He notes immediately that this 1s equivalent to
(11.2)  det (b, &b, ..., AP ) £ o

{i.e., the special case of (2.8) for m = 1). He then proves: in

the "degenerate" case the problem either reduces to & simpler one or

the motion cannot be influenced by the control function u(+). A1l

this is very close to an expiicit definition of controllability.
Fowever, in discussing the general case m > 1, GAMKRELIDZE (1358,

§3, Section 1] defines "nondegenerscy” of the system
{11.3) ax/at = Ax + Bu(t)
as the condition

(11.4) det (hi, Ab

i’ € B,

eres An'lbi) # O for every column b,

but he does not show that this :neralized condition of "nondegeneracy" for (11.3)
inkerits the interesting characterization proved for "uondegeneracy"

in the case of (11.1). 1Iu fact, condition (11.4) is much too strong

to prove this; the correct condition is (2.8), that is, complete

controllability. In other words, in GAMKRELIDZE's work (11.4) plays

the role of & technica) condition for eliminating "degeneracy" (actually,

lack.of uniqueness) from a particular optimel control problem and is

not. explicitly related to the more bagic notiorn of complete controllability.
Neither GAMKRELIDZE nor FUONTRYAGIN [1958] give an interpretation of

(22.4) as a property of the dynamical system (11.3), but emplcy (11.k)

only in relastion to the particular prcblem of time-optimal control. See
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also KAIMAK [1960c, p. 484)., A simzlar point of view ie taken by
IAS'LIE [1950); he calls a dynamical system {11.3) satisfying (2.8)
"preper™ but then gees on to require (11.4) (to assure the uniqueness
of the time-optimal controls) and calls such systems "normal®.

The assumption of some kind of "nondegeneracy" condition was
apparently unavoidable in the early phases of research on the time-
optimal control problem. For example, ROSE [1953, pp. 39-58) examines
this problem for (11.1); by defining "nondegeneracy" [p. 41] by a
condition equivalent ot (11.2), he obtains most of GAMKRELIDZE's results
in the special case when A has real eigenvalues [Theorem 12]. ROSE
uses determinants closely related to the now familisr lemmas in control-
12bility theory but hé, too,.fails to formulate controllability as a
concept independent of the time-oﬁtimal control problem.

A similar situation exists in the calculus of variations. 'j?he

so-called Caratheodory classes (after CARATHEODORY [1933)) correspond

to a kind of classification of controllability properties of nonconstant
systems. In fact, the standard notion of a normal family of extremals
of the calculus of variations is closely related to condition (11.4),
suitably generalized via (2.5) to nonconstant systems.* Normality is
used in the calculus of variations mainly as a‘hondegeﬁeracy'condition.
It is importan’ to note that the "norndegeneracy" conditions
employed in optimel contrui: end the calculus or vuriutions play mainly the

role of eliminating annoying technicalities and simplifying proofs.

---------------

*The use of the word "normal" by IaSALIE [1960] tor (11.4) is enly

accidentally coincident with the earlier use of the "normal" in the
caleulus of variations.
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With sultable form:laticn, nowever, the basic results of time-optimal
control theory continue to hold without the assumption of complete
controllability. The sa=me iz not irue, however, of the four kindg of
theorems mentioned in the Intorduction, and therefore these results

are more relevant to the story of controllability than the time-optimal
control discussed above.

There is & considerable body of literature relevant to coatrollability
theory wkich is quite independent of control theory. Tor instance, ihe
treatment of a reachability condition in partial differential equations
goes back st least to CHOW [1940] but perhaps it is fairer to attribute
it to Caratheodsry's well-Xnown approach to entropy via the ronirntegra-
bili‘hy condi-‘:ion. The current status of these ideas as reiated to
comirollability is reviewed by WEISS {1969, Section 9). An independent
and very explicit study of reachability is due to ROXIN [1960]; unfer-
{unately, his exemples were purely geometric and therefore the paper
di4 not help in clarifying the celebrated condition (2.8). The
‘i‘fronskiasla determinant of the classical tacory of crdinary differential
equations with variable coefficients also has intersections with control-
1etdlity theory, /s pointed out recently with considerabls success by
SILVERMAN [1966]. Many problems in control theory were misunderstood
or é?en incorrectly sclved before the advent of controllability theory.
Some of these are mentioned ;I.n KAIMAN [1963b, Section 9). For relations
with automata theory, see ARBIB [1965).

Iet ue conclude by stating the writer's owr current position es

to the significance of contrallability as a subject in mathematics:




— 4] -

R.E,Kalm=n

(i) Controllability is basically an algetraic concept. (This
clajm applies of course also .to the norlinear controllabiliiy results
cbtained via the Pfuffian method.)

(2) ‘The historical development of controllability wae heavily
influenced by the interest prevailing in the 1950's in optimal control
theory. Ultimately, however, controllability is seen as a relatively
micor component of that theory. .

{3) Controllability es a conceptual tool is indispensable in
the discuszsion of the relationship between transfer functions and
Aifferential equations ard in questiohs relating to the four theorems
of the Introduction.

() The chief current problem in controllability theory 1s the
extension to more elaborate algebraic structures.

For a survey of (he historical background of observebility,
vhich would take us too far afield here, the reader sh.ould consult
EALMAN [1969b].
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