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ABlSTRACT

A general theory of elastic stability is presented. In contrast
to previous works in the field, the present analysis is augmented by
an investigation of the behavior of the buckled structure in thc I
..wediatce neigfborfOOid ot the bifurcation point.. ThiN investigation
explains why some structures, e.g*, a flat plate siupported along its
edges and subjected to thrust in itA planep, are cepable of ca-ryin&
loads considerably above the buckling load, while other structures,
e.g., an axially loaded cylindrical shell, collapse at londs far
below the theoretical critit-al load.
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SUMMARY

The theory of elastic stability has already been the subject of numerous Investigations.

Of the rase~rches ddealing. with the general theory those made by Bryan [3], Southwell

[41 , Biez'eno avd He . c12y (1, Trofitz 17, $], Marguerre [9), Kappuajt11 .a nd BlD. ot

[1141 tnay be mentioned. For a survey of the many special problems that have

been discussed, reference may be miade to Thnoshenko's well-known book [431.

Hitherto. the general theo~ries of stability have been restricted, howvever, to the investi-

gation df neutral equilibr~im; they aimn partioularly at the determination of the stability

limit. The phenomnra occurring on reaching and posibly on murpassing this limit

wore left out of account. This restriction as to the ext*)nt of the investigations is

o4ed by two 'circumstandei., First of all,, there must be mentioned the great mathe--

matical difficultieo that obstrulct the theoretical treatment of elastic behaviour aftfir

surpassing the stability limit. Whsreas the investigation of states of neutral equi-

libritim is still possible by means of linear diferential equatlond, the equations

describing elastic behaviour after surpassing the stability limit are no longer linear.

Moreover engineering has long been satisfied with the knowledge of the stability limit

(critical or buckling logd). The recognized principle, based on conaiderationo of

*. . safety, was that the load on a structure dhould always be kept below this limit so that

an investigation of the phenomena occurring above this limit seemed superfluous.

However, it has been known for a long time that some structures, e.g., a flat plate

supported along its edges and subjected to thrust in its plane, are capable of sustainig

considerably Ilarger loads than the buckling ane without exceeding the elastic limit at

any point of the structure; in modern engineering, especially in aircraft engineering

where saving on structural weight to of paramount importance, these higher loads are

actually allowed. The theoretical treatment of this plate problem has among others



been given by Marguerre and Trefftz 119, 201. Their results agree very well with

-- P,- v,, U-2.,AuAAu ,u U not toO great.

On the other hand, it has been noted that the experimentally determined buckling loads
of some shell structures, e.g., axially compressed thin-walled cylinders, lie con-
aiderably below the theoretical stability limit. Moreover the experimentil results
are widely divergent. Flugge's [21] and Donnell's [22] exnlanatlon, based on initial
deviations of the test specimen from the true cylindrical form in consequence of
which the yield point of the material would soon be reached, is called in question by
Cox [23] and Von kirmin and Tsien [24]. The latter authors remark that the initial
deviations should have to amount to a multiple of the wall thickness; such deviations
could scarcely have escaped the notice of the investigators. Besides., Cox as well as
Von Karman and Tsien point out that Fljgge's and Donnell's explanation requires a
gradual appearance of buckles with increasing load whereas ie the experiments a
sudden, almost explosive buckling occurs; neither does this explanation satisfactorily
account for the great divergency of the experimental results. Cox, on the other hand,
has suggested a strut model to illustrate the possibility that the be3haviour of the
cylinder may be explained purely elastically; in a somewhat modlfied form this model
has also been suggested by Von Kirman, Dunn and Tslen [251.

From the above-mentioned examples it clearly appears that the general theories of
stability framed so far do not suffice. They have to be completed in such a way that
the so divergent behaviour of various structures in the case of loads in the neighbour-
hood of the theoretical buckling load can be described' as well. The present treatise
aims at such an extension.

The loads acting upon a otructure can usually be represented by the product of a unit
load system and a load parameter A, as yet indeterminate. It is then required to
find the states of equilibrium that occur at a given value of X and also to investigate
the stability of these states. Of particular importance in engineering is the state of
equilibrium that is obtained continuously from the unstrained" state by monotonously

vi i



increasing X from zero. For sufficiently small values of X this so-called fundamental

*to+,n 12 nl...on. n. a... .t. ...m. ... ,,. ........... ,,-u.... U.. Lm on iw imiqueeas oz I
solution (cf. [39) and Sect. 31 of the present paper). On the other hand, in many cases

the fundamental state becomes unstable on exceeding a critical value X1 ' The load

belonging to this value X, , for which the equilibrium is at the stability limit and

hence neutral as well (cf. 110]), is called the buckling or critical load. Consequently

at this buckling load there exist, in addition to the fundamental state, neighbouring

Infinitesimally deviating states of equilibrium. It is then to be expected that likewise

at loads differing slightly from the buckling load, neighbouring states of equilibrium

exist that are obtained from the fundamental, state by means of small but now finite

displacements.1 Next the presumption arises that the discrepancy in elastic behaviour

of various structures in the case of loads in the neighbourhood of the critical load is

connected with a discrepancy in character of the possible states of equilibrium going

with these loads. From a preliminary tentative investigation it appeared that the

character of these states of equilibrium is essentially dependent on the stability of

equilibrium at the buckling load, i.e., on the question whether the limiting case of

equilibrium at the critical load should still be reckoned among the stable or already

among the unstable states of equilibrium.

First of all, therefore, the equilibrium at the stability limit had to be subjected to a

closer examination. Before entering upon this, however, it seemed advisable to give

a brief survey of the theory of elasticity for finite deformations (Ch. 1); for the investi-

gation of stability belongs essentially to the domain of the non-linear theory of

elasticity.

'For an illustration of this possibility see Fig. la-d (p. 93). Here a is a measure
of the displacements from the fundamental state to a neighbouring state of
equilibrium.

2 Some possibilities for neIghbouring states of equilibrium are given in Figs. la- d
(p. 93). Figures la, b, d relate to cases in which the equilibrium at the buckling
load is unstable; Fig. Ic relates to a case in which this equilibrium is stable. The
characteristic difference is that neighbouring states of equilibrium in the former
cases do exist at loads below the buckling load whereas in the latter case they
do not.



Following Thomson [2] the general equations of motion are derived by means of

Hamilton's principle, using the elastic potential or strain energy function to describe
the elasticity of the body. The equations of equilibrium are obtained by putting zero
all inertia foresa. They Are in complete agr eemenft wtth Kappus's equation, [10],
obtained by equating to zero the resultant of all forces acting upon an element of the

elastic body.

In Chapter 2 the general theory of stability is dealt with. Section 21 gives a precise

definition of stability by means of the energy criterion, while Sect. 22 treats of its

practical application. In accordance with Trefftz it leads to two conditions of stability.

The first condition iF dhat the first variation of the potential energy is zero for any

kinematically possible variation of displacement; it is identical with the well-known
principle of virtual displacements. The second condition requires that the second

variation of the energy cannot be negative for any kinematically possible variation

of displacement. After a reproduction of Trefftz's treatment of the latter condition
in Sect. 22, some assumptions introduced along with it are looked into more closely
in Sect. 23; it appears that these assumptions are justified for all practical purposes.

In the following articles the equilibrium at the stability limit is considered in more
detail (Sect. 24 - 27). It appears that the equilibrium at the stability limit is

"generally" unstable (Sect. 25). In Sect. 28 the method of investigation developed

here is connected with Mayer's researches [31] on minima of functions of a finite

number of variables. Finally in Sect. 29 some formulae are given that are necessary

for the application of ihe general theory of stability to problems of elasticity.

In Chapter 3 the states of equilibrium at loads in the neighbourhood of the buckling

load are investigated. The approximative method used to this purpose gives better
results accordingly as the load differs less from the critical one. The character of

these states actually appears to be governed by the stability at the buckling load

(Sect. 35, 36). However, a restriction regarding the type of problems treated must

be made that is inherent to the method of investigation. This method exclusively

enables to deal with buckling problems corresponding with a so-called point of

x



bifurcation; so-called oilcannlng problems 1 are left out of account (Sect. 37). Finally

in Sect. 38 an extension of the theory to loads further removed frnm thA hunklino inad

is discussed. The most important result of Chapter 3 Is that with stability of the

eq lib rim- at the critical load the bucking or critical .ate) r'eigibr nuug isiaiem of

equilibrium exist only for larger loads; these states are stable. Therefore, apart

from the possibility of exceeding the elastic limit of the material, larger loads than

the buckling load can be sustained. With an unstable buckling state, on the contrary,

neighbouring states of equilibrium do occur at loads smaller than the buckling load;

these states are unstable. Though in some cases with unstable buckling state there

also exist stable states of equilibrium at larger loads, these loads can only be reached

by passing the unstable buckling state so that their practical importance is, to say 'the

least of it, doubtful.

The theory of Chapter 3 does not yet give an explanation of the fact that for some

structures the experimental buckling loads are considerably smaller than the theo-

retical buckling load. To come to such an explanation the influence of small deviations

of a real structure from the simplified model, designed to represent the structure, is

considered in Chapter 4. The necessity of this consideration is demonstrated on the

basis of the example of the prismatic bar subjected to combined bending and com-

pression. The method of investigation is similar to that of Chapter 3, the only

modification being the allowance for small deviations; the smallness of these deviations

is expressed by neglecting all second order terms in these deviations. The most

important result of this investigation is that with an unstable buckling state of the

model the buckling load of the structure may be considerably lower in consequence

of very small differences between structure and model (Sect. 455) 2 Hence the

discrepancy between theoretical and experimental critical loads can be explained

1 This term was introduced by. Von Karman and Tsien [24].
2 This drop of the critical load is illustrated by Fig. 2 (p. 137). Here c is a measure

of the magnitude of the initial deviations, Al is the buckling load of the mode], A*
the buckling load of the structure. Note the vertical tangent to the c - X* curve in
the point of transition of structure to model E = 0, A* Al

xi
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purely elastically by assuming small deviations of such a st'ucture from the corre-

sponding model; moreover, the great sensibility of the buckling load of the structure

fo-r zn, -,ariatu~i, j*z h L; inuguiiude oi the deviations explains too the wide divergency

of experimental results. It is self-evidcnt that the collapse is precipitated by elastic
failure of the material; this complication, however, is not further considered.

The most interesting example for application of the theory developed here is the axially

compressed thin-walled cylinder; for in this technically important case the great

discrepancy between the theoretical and experimental buckling loads has up to now

not been accounted for satisfactorily. To apply the general theory it is necessary

to dispose of the knowledge of the elastic energy of the thin-walled cylindrical shell

for finite displacements. With a view to the possibility of application to other shell

structures as well, a general theory of thin shells for finite displacements is given

in Chapter 5. It is based on the same assumptions as the well-known technical theory

of shells for infinitesimal displacements (Sect. 51). After calculating the strains and

the elastic potential (Sect. 53, 54) the consequences of these assumptions are looked

into more closely in Sect. 55. The most important conclusion to which they lead is

that the elastic energy is the sum of stretching energy and bending energy. Finally,

in Sect. 57 the influence of small deviations is again considered.

Before passing on to the already rather complicated theory of the thin-walled cylinder

it seemed advisable to deal first with some simpler applications to elucidate the

general theory (Ch. 6). The well-known problem of the elastica was chosen as a

first example (Sect. 61). Next, in Sect. 62 Cox's problem [231 is dealt with.

Finally, in Sect. 63 the problem of equivalent width of compressed flat rectangular

plates is considered. In this case the general theory supplies a justification of the

theory of Marguerre - Trefftz [19], based on more arbitrary assumptions.

The last application iw Chapter 7 concerns the axially compressed cylindrical shell.

Neglect of boundary conditions leads to the same result for the buckling load as

known from existing literature (Sect. 74). The same neglect 'leads to the conclusion

xii



91UL equiiibrium in the Ducking state is unstable (Sect. 7b). In Sect. 76 the neighbouring

states of equilibrium at loads in the neighbourhood of the critical load are investigated.

It Is found that all existing neighbouring states of equilibrium are unstable. As far as

possible the results obtained are compared with a paper by Von K rman and Tsien

(Sect. 51), which became available during the compilation of the present treatise.

Because the displacements assumed by the above-mentioned authors are less general

their results are less good at least for loads in the neighbourhood of the critical load.

In Sect. 77 the influence of small deviations from the true cylindrical form is discussed.

As the investigation is rather complicated, the detailed calculations are restricted to

one form of deviations. In this case a very marked decrease of the buckling load is

found already with very small deviations. This result is in striking contrast to that

of Donnell [221 as the amplitude of the initial deviations, required to explain the

discrepancy between the mean value of the experimental buckling loads and the

theoretical buckling load, according to the present theory amounts to about 10% of

the amplitude required by Donnell. Although of course it is desirable to extend the

investigation to other forms of deviations, at this stage already the conclusion may

be drawn that the theory given here supplies an explanation of th, large discrepancy
between theoretical and experimental critical loads. The wide divergency of experi-
mental results is likewise satisfactorily accounted for by the extreme sensibility of

the critical load for small variations in the magnitude of the deviations.
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INTRODUCTION &. U

For a long tine vaiiuuu investigators have been interested in the problem of elastic

stability. Euler's pioneering investigations of the elastica [ 1) have probably become

most widely known.

If some brief remarks by Thompson 121 are disregarded, the first attempt to derive

a general stability theory seems to have been undertaken by Bryan [3]. His considera-

tions are based on the energy criterion according to which an equilibrium state is

stable or unstable depending on whether or not the potential energy possesses a true

minimum in that state. However, when calculating the elastic energy, he takes into

account only terms which are quadratic in Lhe displacements. In that case the second

variation is of the same form as the energy itself, and thus is always positive, If

the displacements are prescribed at all points where forces are acting on the body, in

which case the constant energy of the applied forces can be equated to zero, then it

follows that the variation of the total potential energy is equal to the variation of elastic

energy. Hence, the second variation of the total potential energy is always positive
1

so that instability wolKd be excluded in such cases. This conclusion is contradicted

by experionce, for instance, in the example of the axially compressed prismatic bar

which is subjected to a prescribed end shortening.

Southwell [4] has derived equations which govern the so-called neutral equilibrium of

the uniform state of stress and deformation. He considers a neighboring deformed

state which is derived from the uniform state by infinitesimal additional displacements

u, v, w. Apart from the loads given by the initial force field, which are required

for the maintenance of the initial state, additional loads should be applied to the body

Thomson [2] pointed already at this circumstance.



in order that it is again in equilibrium. On account of the smallness of the displacements
u, v, w these extra loads are homogeneous in and linearly dependent on u, v, w and
their derivatives. Equilibrium in the initial uniform state is called neutral if a neighboring

; U d LWIA tID r U&it,. &tAU1U 1omi UV r PU Uy the iI. force iieid.
The equations and boundary conditions which hold for the neighboring state are linear and
homogeneous in the displacements u, v, w and their derivatives. The equilibrium of

the initial state will be neutral only when the equations admit a nontrivial solution - which
in that case is determined apart from a constant factor on account oi the homogenity of

the equations and boundary conditions. For the description of the state of stress and
deformation, Southwell chooses as independent variables the coordinates of a point of the

undeformed body. He also relates the stresses to the surface elements of this state.

Biezeno and Hencky [5] have made an extension of Southwell's considerations in dealing

with the general state of stress with a corresponding force field acting on the body.
Consideration is given to a body in a supposedly known state of stress I, and to a stress
state II that has been derived from I by means of infinitesimal displacements. Equilibrium

in state I is again neutral if there exists a state of equilibrium I such that the required
additional loads, which are homogeneous and linear in the additional displacements, are

again supplied by the external force field. Again, the equations of neutral equilibrium
are homogeneous and linear. The coordinates of a point in state I are chosen as inde-
pendent variables while the stresses are always related to the surface elements of the
corresponding state. Consequently, it is not necessary to know the manner in which
state I has been obtained from the undeformed state. It is only necessary to formulate

an elasticity law for the transition of state I to state H.

L"In some cases the equations possess several independent solutions (uj , vj, wj). The

general solution (2 cjui, etc.) possesses in that case a corresponding number of
undetermined coefficiebts. Such a case can occur for an axially compressed, elas-
tically supported bar (see [521). For some ratios of the stiffness of the elastic sup-
ports to the bending stiffness, the bar possesses at the same load two buckling modes
which differ in the number of waves.

2



Ii

Reissner [0) has tried to improve on Bryan's argument which utilized the energy

Tref/tz [7,81 has developed a fstuzlq"y tbr-y uasod on th te-",, of -les.i-Ity J'Ar

finite deformations. He also makes use of the energy criterion for the prediction of

stability. A sufficient condition for stability is that the second variation of the total

potential energy should b positive for every kinematically possible variation of the

displacements. The stability limit will be reached if the second variation becomes

positive semi-definite; i.e., th!,t the second variation is zero for one or more suitably

chosen displacement variations, but non-negative for any other possible displacement

variation. In his first ',4per, Trefftz chooses as independent variables the coordinates

of a point in te undefo.med state. In his second publication he chooses as independent

variables the coordinates of R point in the deformed state I the stability of which is to be

investigated. In agreement with this, the stresses in state II vhich deviate from state I

are in his first publication related to the surface elements of the undeformed state and in

his second publication to the surface element of state I. The tractions in state I are

decomposed in the directions of those line elements which are parallel to the coordinate

axes in the undeformed state and state I, respectively, The stability equations (derived

from state H1 which deviates from state I in an infinitesimal sense) then take a rather

simple form.

In connection with the treatise of Trefftz, Marguerre 19] has examined the relation

between the various minimum principles as they are applied to stability problems in

engineering, and the general principle of the minimuni of the potential energy. He

also gives a detailed illustration by means of the example of the axially compressed

bar.

3
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A A 1ss!kav" .. , h u eory oi eiasutuy for finite displacements, only briefly

indicated by Trefftz, has been given by Kappus [10]1 He derives the equations for

neutral equilibrium from the general equations of equilibrium. It appears along with

this, that the equilibrium state is neutral in the sense of Southwell and Biezeno-

Hencky when the stability limit, as defined by Trefftz, is reached.

Also Blot [11-14) has derived equations for neutral equilibrium from a theory of

elasticity for finite deformation. 1 For simplicity he introduces a new way to

describe the deformed state, With this, he succeeds in bringing the stability equa-

tions to such a form that it is possible to render a mechanical meaning of the various

terms in the equations, This improved lucidity can be of much value in the search

for those terms which may be neglected in the application of these equations to a

special problem.

The stability cousiderations which have so far tLeen established and which were dis-

cussed in the foregoing, are restricted to the analysis of neutral equilibrium. They

aim in particular at the determination of the stability limit. The phenomena which

occur am this limit Is reached or possibly exceeded were not considered. This

limitation of the extent of the investigations was caused by -two circumstances. First,

the great mathematical difficulties should be mentioned which obstruct the theoretical
treatment of the elastic behavior beyond the stabi'ity limit. While it is still possible

*' to analyze the neutral equilibrium states with linear differential equations, the equa-

tions describing the elastic behavior beyond the stability limit are no longer linear.

In addition, for a long time engineering science was satisfied with the knowledge of the

stability limit (buckling load) alone. The point of view had been adopted that for safety

1 Neither Kappus nor Blot seem to have been acquainted with the older literature about
finite deformations of an elastic body. Already in 1839 Green expressed the assump-
tion of the existence of an elastic potential for finite deformations; by use of this
assumption, Kirchhoff [16] andThomson [2] derived the equilibrium equations. Other
publications in the field of finite deformations are of minor importance for the stability
analysis following here, but those by Hamel [17] and Murnaghan [18) should still be
mentioned.

4



reasons the load on the structure should always be kept below this limit, so that an

investigation of what occurs beyond this limit seemed superfluous. However, it has

been known for some time that certain structures are able to withstand loads uignifi-

oantly above the buckling load, and this without stresses in excess of the elastic

limit nf the material. (For instance, the flat plate -imply uprt.d along Its adge

and subjected to an inplane thrust.) Indeed, in modern engineering - especially in

aeronautics where economy of weight is of primary importance - loading in excess

of the buckling load has already been tolerated. The theoretical treatment of this J

plate problem is presented by Marguerre and Trefftz 119,20]. The agreement of

their results with experimental results is vevy good if the loads are not too far in

excess of the buckling load. On the other hand, it has been established that experi-

mentally determined buckling loads of several shell structures (such as axially

compressed thin-walled cylinders) are considerably below the theoretical stability

limit. Moreover, the experimental results show much scatter. An explanation for

this given by Fligge (21] and by Donnell 122] has been questioned by Cox [231 and by

Von K rman and Tsien [24]. The explanation is based on the initial. deviation of the

toot model geometry from that of the perfect cylinder, which deviations will cause

stresses beyond the yleld limit at moderate loads. The last two of these authors

remark that the initial imperfections must be several times the wall thickness of the

cylinder in order to serve as an explanation of the low experimental values; such a

deviation would not have escaped the attention of the investigators. Further, Cox,

Von Kaz'm'n and Talen point out that the explanation given by Fliigge and by Donnell

implies a gradual occurrence of buckles, while experiments have shown that buckling

takes place in a sudden, almost explosive manner. Also, the great scatter in the test

results has not been cleared up satisfactorily by this explanation. On the other hand,

the possibility to explain. thb behavior of the cylinder from a purely elastic point of view

was illustrated by Cox [23] by means of a suggestive bar model. Von Karmin, Dunn and

Tsien also proposed this model but in a somewhat different form 125J.

The examples mentioned above show clearly that the stability theories so far estab-

lished do not suffice. They should he supplemcentd with a theory which describes also

I5



the different behavior of the structure at loads in the neighborhood of the theoretical

ouukiing Load. The present treatise intends to give such an extension. It is assumed

that the loads which act on the structure can be represented by a product of a unit

load system and an as yet undetermined load parameter X. One seeks equilibrium

states corresponding to a given value of X as well as the stability of these states.

Of particular importance in engineering are those equilibrium states which are

obtained by continuous deformation from the undeformed state as X is monotonically

increased from zero. This so-called fundamental state is always stable for sufficiently

small values of A, in agreement with the uniqueness theorem of Kirchoff (see [39], and

Sect. 31). On the other hand, the fundamental state in many cases becomes unstable

as X exceeds a certain critical value X 1" The load corresponding to this limit value,

(equilibrium is at the stability limit and hence also neutral, see 1101) is called the

buckling load or critical load. Consequently, apart from the fundamental state,

infinitesimally near states of equilibrium exist at the buckling load. It is then to be

expected that neighboring equilibrium states also .xist, which are obtained by small

but now finite displacements, at loads slightly differing from the buckling load.1

Further, the suspicion arises that the difference in elastic behavior of various struc-

tares is connected with the different nature of the neighboring equilibrium states

corresponding to these loads. From a preliminary tentative investigation, it appears

that the character of the equilibrium states is essentially dependent on the stability

of equiJibrium at the buckling load; i.e., on the question as to whether the limiting

case of equilibrium should still be reckoned among the stable or among the unstable

states of equilibrium.2

1For an illustration of this concept see figures la-d (page 93). Here (a) is a measure
of the displacements from the fundamental state to an adjacent state of equilibrium.2 Some possibilities for neighboring equilibrium states are shown In figures la-d
(page 93). The figures la,b,d relate to cases in which equilibrium is unstable at
the buckling load, fig. Ic relates to the case in which equilibrium is stable at the
buckling load. The characteristic difference is that in the cases first mentioned,
adjacent states of equilibriun for loads smaller than the buckling load do exist, while
in the latter case such adjacent states do not exist.

6



Therefore, in the first place, equilibrium at the stability limit should be examined 4

more closely. However, it seemed desirable to give first a brief summary of the theory

of elasticity for finite deformations as the stability analysis belongs essentially to thA

domain of the nonlinear theory of elasticity (Chapter 1).

In Chapter 2 the general stability theory is treated. After an account of the theory of

Trefftz in the first two sections, some of its assumptions are examined more closely

in Sect. 23. The following sections consider equilibrium at the stability limit

(Sect. 24-27); it appears that "in general" this equilibrium is unstable (Sect. 25).

In Sect. 28 the method of analysis develo--ed is related to Mayor's investigations on

the minima of functions of a finite number of variables [31].

In Chapter 3, the equilibrium states at loads in the neighborhood of the buckliig load are

investigated; the approximate method used for this purpose yields better results accord-

ingly as the load is closer to the buckling load. The nature of these states of equilibrium

indeed appears to be governed by the stability of equilibrium at the buckling load (Sect. 35,

36). However, a restriction should be made with respect to the nature of the problems

treated which is inherent in the method of investigation (Sect. 37). By this method one is

only able to treat buckling problems corresponding to a so-called branching point of

equilibrium; consequently the so-called snapthrough problems are not considered. Finally

an extension of the theory is possible, with loads further removed from the bucklUng load.

This is treated in Sect. 38. The most important result of Chapter 3 is that for stable

equilibrium at the buckling load (the critical state), neighboring states of equilibrium can

exist only for loads greater than the buckling load; these states are stable. Therefore,

disregarding the possibility of stresses in excess of the elastieity limit, loads above the

buckling load can be sustained. For in unstable critical state on the other hand, neighboring

equilibrium states do exist at loads smaller than the buckling load; these states are unstable.

It is true that in some cases stable equilibrium states also exist a t loads greater than the

buckling load, but these states can only be reached by passing through the unstable critical

state, Eo that their practical significance is to say the least doubtful.

.. . . . " i . .. . . .J ... i " ' i " J .. .. .. J . . .i .. .. .. . . . . i. . . . . ... I .. ..i .. .. . . J .. i.. .. . .. ..i . .. .. w.. .. ; .. .. .. .. .. .: .. -... .. .



I

The theory of Chapter 3 does not yet give an explanation of the fact that for some

structures the experimental buckling loads are considerably smaller than the theo-

j retical buckling loads. Such an explanation is obtained in Chlupt 4 --. tudy

of the influence of small imperfections in the actual strdcture in comparison to an

idealized model. The necessity of this consideration is illustrated by the example of

the straight bar subjected to combined bending and compression. The most important

result of this analysis is, that if the critical state is unstable, the buckling load of the

structure may be considerably smaller than that of the idealized model due to the

presence of small deviations; consequently the difference between theoretical end

experimental buckling loads can In principle be explained under purely elastic condi-

tions by use of the assumption of small deviations between the real structure, and the

model. It goes without saying that the collapse of the structure will be precipitated if

there are stresses in excess of the eastic limit. This complication will rot be further

considered.

The most interesting application for the theory developed is given by the example of

an axially compressed thin-walled cylinder, as the great difference between theo-

retical and experimental buckling loads for this very important case in engineering

has never been explained satisfactorily. The application of the general theory requires

an expression for the elastic energy of a thiti-walled cylindrical shell undergoing finite

displacements. In view of a possible appl .cation to other al ell structures, a general

shell theory for finite displacements is given in Chapter 5. This theory is based

on the hsasumptions of the well-known shel. i.heory-for infinitesimal displacements

(Sect. 51). After calculation of the deformations and the elastic potential (Sect. 53

and 54) the consequences of these assumpti.ons are studied more closely ir Sect. 55.

The most important consequence is that the .- astic energy ,s the sum of the mem-

brane and bending energies. MTally, in Sect, 57 consideration is again given to the

influence of small imperfections. %

As the analysis of the thin-walled cylinder is already rat - -iUated, it seemed

desirable to treat first some simpler cases for illustrati.. ,j ,)nc general theory

(Chapter 6)- The first example chosen is the well-known ;.:.,b!em of the ehstica

8



(Sect. 61). Further, in Sect. 62 the problem of Cox is dealt with. Chapter 6 Is con-

cluded in Sect. 63 with consideration of the problem of tie simply supported flat plate

subjected to a uniformly distributed in-plane edge thrust. In this case the general theory I
gives a justification of the theory of Marguerre-Trefftz [9] which was based on more

intuitive assumptions. As a last application,the axially compressed cy'indrical shell is

treated in Chapter 7. The "classical" result for the buckling load, as is well known

from the literature, is found if boundary effects are neglected. For this case the equi-

librium is unstable in the critical state (Sect. 75). The equilibrium states at loads in the

neighborhood of the buckling load are investigated in Sect. 76. It is found that all neighbor-

ing states of equilibrium are unstable. The results obtained are, as far as possible,

compared to those published by Von Karman and Tsien 152J which became available during

the preparation of this treatise. As the displacements assumed by these writers are less

general, their results are less accurate, at least for loads in the neighborhood of the

buckling load. The influence of small deviations from the true cylindrical form are

investigated in Sect. 77. As this analysis is rather complicated, the evaluation remains

restricted to one form of imperfection. It is found that a very marked decrease of the

buckling load occurs even for small imperfections. Although it is of course desirable to

extend the analysis to other forms of imperfections, at present it can already be con-

cluded that the theory presented gives an explanation for the large discrepancy between

theoretical and experimental results; also the great scatter of the experimental results

is satisfactorily explained by the sensitivity of the buckling load to small differences in

the magnitude of the imperfections.

Cd
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Chapter 1

THEORY OF ELASTICITY FOR FINITE DISPLACEMENTS I

11. DEFORMATIONS BY FINITE DISPLACEMENTS

In this section a short summary will be given of the theory of deformations

[26, 27].

The cartesian coordinates x 1 X , x 3 of a point in the undeformed body are intro-

duced as independent variables.

Every point P(xi) is subject to a displacement with components ui in the direction

of the coordinate axes. Hence, the coordinates of this point in the deformed state

will be xi + ui * The deformations in the immediate neighborhood of the point P

are completely described by

3f

8u I i  + 3 uh 8Uh i = 1,2,3. (11.1)

yii ii -OJ 9x a Bi ax j = 1, 2,3.

The new length dl, of a line element through P, which originally had the length di, and

whose orientation in space is given by the angles a, , can be expressed by

(dfl') 2 =(CV) 2 (1 + y11 ) cos 2 al + (1 + v22 ) cos 2 a2 + (1 + 733) cos 2 a 3

+ 2712 coo a 1 coo a 2 + 2723 cosa 2 Cos 0 3 + 2731 cos a co al. (11.2)

The number e = (di' - d)/di corresponding to the direction of d is called the

specific strain. If this direction is parallel to one of the coordinates axes, it follows

that

10
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In the defor..ied state thio lIne elereeni which originally were parallel to the coordinate

axes xi and x (i 0 J) will enclose the a.4gles (p, = (Pji determined by

Cos (Pij -- (I D ) n4
-( Y Ti( + "ji)

The relations (11. 3)" and (11. 4) describe geometrically the components of deformation.

In the literature mentioned before, proofs are given that there exists at least one
system of mutually perpendicular directions at the point P for which among the six
deformation components the quantities vhk(h 0 k) are identically zero, These axes

are called principal axes and the corresponding deformation quantities rhk = 0 for
h P k and rhh = rh determine the principal extensions Eh. The latter quantities

are determined by

Eh = l + rh - 1, (11.5)

while the rh represent the three real roots of the cubic equation

Y1- r "2 ^1

Y2 7 Y22 0 r 723 0. (11.6)

Y3 i Y32 3s - r

The magnitude of the principal strains is independent of the choice of the coordinates.

This leads to the conclusion that the following three Invariants exist

11J



IA "I 1 ^22 3 3 I + F2 + 173 (1.1

--- rr + r r3 + r r ' (i7

12. THE ELASTIC POTENTIL

In general, the law of elasticity offers a relation between the deformation and the

internal stresses. However, it can elso be formulated in an indirect way by means

of the introduction of the elastic potential. It is assumed that each volume element

.of the body possesses a potential energy which depends on the local state of deforma-

tion, As the state of deformation is completely described by the components of

deformation (11. 1) the elastic potential energy per unit of volume can be written as

A = A(yij )  (12.1)

where thermo-elastic phemonena are left out of consideration.

,Experiments have shown that the elastic behavior of most construction materials is

described with sufficient accuracy by an e!sticity law of the form (12. 1) e For

iniitesimal deformations, A is a homogeneous and positive definite quadratic
function of its arguments. With some exceptions, for instance cast iron, for

-small bNit finite deformations it has so far not appeared that terms of order higher

han t.he second play a significant role; this should not be surprising as in the elastic

[ range the components of deformation are very small for most materials (order of

I magnitude 0. 001). Consequently, in the following it will be assumed that the elastic

potential is a homogeneous and positive-definite function of the deformation compo-

nents. It follows from (11. 1) that it will be a function of the fourth order of the

12



displacement derivatives. Alternatively to the use of the deformation componenta

,y , the deformed state can be completely described by the direction and magni-
tie =z .--....rl; -. . rur -u, iouiropic material, the elastic potential must

be independent of the directions of the principal strains. Furthermore, the magnitude
01 uhe principal stresses is fully determined by the invariants (1. 7), which leads to

the proposition

A = A( 1 , 12 , 13 ). (12.2)

The only homogeneous quadratic function of the deformation components of the form

(12.2) is given by

2

A = I + a j, (12.3)1 2

in which a 1 and a 2 are material constants i -the case of a homogeneous material.

If the material Is inhomogeneous the quantities otI and a 2 will generally be func-

tions of the coordinates x, . By use of (11. 7), it is possible to write (12. 3) in the

form

A = jr +r + r 3+ (rIr 2 r  r 3 +r. r
1)

This expression is positive definite if and only if [33]

2 c + a2

> -a< <2,

from which follows that

a1 > 0 >a 2 > -'3a 1 . (12.4)

13...
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For infinitesimal deformations, (12. 3) must reduce to the elastic potential of theI linear theory of elasticity. Comparison of (12.3) with [341 yields with the usual
dejuiltion OfL Me Constants of elasticity 0 and mn

I rn- .
ell =4 r'T 2 'u2  2 G

It follows then that with G > 0 and m > 2 inequaliP., (12.4) are satisfied. Thus,
the elastic potential takes the following form

A= G 1 2 (m - 1) 12 2(m - 2) 12 (12.5)

13. HAMILTON'S PRINCIPLE AND THE EQUATIONS OF MOTION

Thie equations of motion can be derived from Hamilton's principle [2]. Following

this principle, the natural motion of holonomio, mechanical system between the

time points to and t1 Is determined in such a,%"y that

ti ti

6 f (T V) dt +f 6W dt 0. (13.1)
t 0 t

This variation correspondsn to the variation Of the natural mnotion to a neighboring

monioln wh~c differs from thu ilginal one in an infinitesimal sense and which yields

* the roal'oonfiguration at the r -tnts to and t . The neighboring motion, as well as

the natural ~n9','should satisfy the kinematical conditions imposed on the mechanical

system.. Th~s tqiantitieo T and V are the kinetic and potential energy of the system

reaupedvaky; 4W. is the work that would have been done by the external for~ces at the

Unie t if the. mpohanical system wire brought into the corresponding state, which

differs from~ the original state in infinitesimal sense.

14



The kinetic energy of the elastic body is given by l(

T- 'P -- dxzdx2dx .  (13.2) .

,a

In this expression p stands for the mass density of the undeformed body and integra-

tion should be carried out over the volume of the undeformed body,

According to (12. 1), the elastic potential energy is determined by

v = fff A(.ij) dx 1dx2dx3 , (13.3)

where integration should be carried out over the volume of the undeformed body.

If pXi are the components of body forces in the deformed state which are related to

the volume elements of the undeformed body, then the work done by these forces on

transition to the neighboring state is given by

4 W f = _ p X,6,'dxldx2dx3. (13.4)

In this expression 6u. represents the variation of the displacement to the neighboring

state.

It is assumed that surface tractions are working on a part 0 of the surface, of which

the components pi are related to the surZace elements of the undeformed state. On

the remaining part 0' of the surface the displacements are supposed to be prescribed.

During transition to a neighboring configuration the surface tractions perform the

work

15)a
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6W, fi Pi6u idf.p1 5u 5W2. (13.5)

0

The work done by the surface tractions acting on the part 0' of the surface is zero

votause Me dlsplacement variations oui of thaL part of Lhe surface are zero.

Hamilton's principle is now formulated

tjt

dtjJ p JP L' Odxdx d
dt~ ~ a at a "Y ~d~d 3 - d 7Jdxldx2dx3 +

to  f to NLJ J a'iO 12

tl 3 tl 3

+ f dtfff p X Xi6uidx 1dx2dx3 + f dtff pi6ujdf = 0. (13.6)
to t 0 0

in the second integral, summation should be carried out over the six combinations

of i andi.

After the use of

6ui =0 for t= t and t =t 1

and of integration by parts, the first integral reduces to

t f 
tI 1 

Ouj u 
3 29

dt !-' 6-u-' dxldx2dx3 = - dt p -- 6uidxldx2 dx3 .

to to  i=1

(13.7)

Here use was made of the interchangeability of the sequence of the operations 6 and

8/at.

16
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For the reduction of the second integral the following expression is derived from (11. 1)

OU (3 U 8%_ U1~_ h\O1J-- h.\X 'X 1  !UX I.

h=1

Next, all terms with variations of the derivatives of u m  are lumped together. For

m =1 these are
I 1_

2 BA + + 8A L +BA_ !
8y1  O 1  '71.2 2 8713 O 3  x1

_jA(1 !u 1 \ + BA '1 BA !U1 1 Iul

+ 2 x I ^y2 2 Ox2  "723 "x3 j Nx
DA /1 + 8u\, B jA uA Du

ax B-' - +- 2---- 6- 138
SI1 \ x1  "32  "B33' : 3  ')x3 (

For m = 2 and m= 3 similar forms are found.

For brevity is introduced

1A k A O A = kj (i J). (13.9)
"11 2 11 ay By1

Expression (13.8) can now be written

It follows that the second integral of (13.6) can be written

17
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t1

at N 'afI fij 6 + 'j klh6xldxdx

J 4 +1 1 (13.10)
to =1 '= h=1 h

If the normal to the surface is denoted by n, where the outward direction is assumed

to be positive, then, after interchanging the sequence of variation and differentiation

and after application of Gauss's theorem, (13. 10) becomes

ti dt I A 6'yldxi2dx,

t2 au. 1to  1,j

tj 3 3 3 1

1dt C + kJh +YX - p (xj 6udd +

to 1 j lh= l

- dt y k6h udx dx dx3 (13.11)

ti /

- J dt ji + kJh o - P uidf =0, (13.12)

to i.=)=jxl)h1

18
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Since (13. 12) should be satisfied for arbitrary variations Zu1 the coefficients of 8u

in the integrals must be equal to zero.

For the points in the interior of the body it follows that

Sk + + X- p - 0, 1 1,2,3. (13.13)ki Ix Jh dt
J=l h=l t

and for points on the part of 0 of the surface the boundary conditions

kji I kh _ i.)os(xjtn) - Pi 0, i 1,2,3. (13.14)

On the part 0' of the surface

ui  prescribed (13.15)

Equation (13. 13) and (13. 14) should of course agree with the equations of Kappus (101
which were derived by consideration of the equilibrium of tensile and inertial forces
acting on an infinitesimal element of the body. Indeed the principal equations and

boundary conditions of Kappus for his stress components kij are formally identical

to equations (13.13) and (13.14). At the same time, in order to ensure the exist-

ence of an elastic potential, Kappus' stress components should satisfy conditions

which are expressed by equations of the form (13.9). .The clastic potential is then also

the specific energy of deformation.

The equations governing the elastic equilibrium can be obtained from (13.13) if one

equates to zero the derivatives with respect to time; they read

3 / 3>t k + h + pX. = 0; 1 1,2,3. (13.16)
J =1 h=1

The boundary conditions remain identically valid.
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Chaptar 2
STABILITY OF EQUILIBRIUM

21. THE STABIUTY CRITERION

For the analysis of the stability of a mechanical system, the method of small

vibrations or tho energy method are commonly used. The method first mentioned

consists of the derivation of equations of motion for small displacements from the

equilibrium state. The smallness of the displacements makes it possible to take into

account only terms which are homogeneous and linear in the displacements or their

derivatives. The homogeneous and linear equations derived in this manner have

solutions whose dependence on time is characterized by their common factor ep t .

The equilibrium state under consideration is stable if and only if, for all solutions

of this form, the real part of p is nonpositive (the possible complication of

multiple roots of the characteristic equations are herewith disregarded). The stability

analysis by Southwell [41 and Biezeno-Hencky [51 can be related to this method; they

investigate under which circumstances the quantity p becomes zero.

The energy criterion states that an equilibrium configuration of a mechanical system

is stable if and only if the work done by the external loads during transition to a

neighboring kinematically possible configuration is not greater than the increase of

the internal potential energy. The application of this criterion is considerably simpli-

fied if the assumption is made thb " +he external forces also possess a potential energy.

In that case, the work done by these forces is given by the difference between the

potential energy of the forces in ie state of equilibrium and that of the neighboring

state. Then, the energy criterion demands that for stability the total energy, con-

sisting of :he sum of internal and external energies, should possess a minimum in the

eqailibrium state.

20



In the case of an elastic body for which the potential energy consists of a sum of one

or more integrals, whose integrands are functions of the displacements and their

derivatves. this minimum condition rAquirAn yt rnnIa n*M.Or, d_14_i n_" If *hn

displacements of the equilibrium state are denoted by Ut and those of neighboring
by Ui + u I the potentIal energy Pkv ) iU>Aseant a winimum for v = U

if and only if it is possible to find two positive constants g. and h such that from the

inequalities

Ju l < g; I-11 < h

which are valid throughout the body, it follows that

P(Ui + Ui) k P(Ui) . (21.1)

The methods for the determination of the stability limit [4, 5, 7, 8 J as developed

from the theory of small vibrations and from the energy criterion are basically

identical [10] . Nevertheless, when,in the following, preference is given to the energy

criterion, it is because of the possibility offered by this criterion of an extension of

the analysis to a closer inspection of the stability at the stability limit.

22. APPLICATION OF THE STABILITY CRITERION

In the application of the energy criterion the assumption will be made that the

integrands of P(Ui + ui) maybe expanded into a power series in the displacements

and their derivatives according to Taylor's formula. If the sum of the integrals, (the

integrands are complete homogeneous functions of the mth order *n ui and their

derivatives) are denoted by P mu] , thea the stability criterion is
mI

P(u i + ui) - P(Ui ) E Plu] = P1Iu] + P2[u] + P3[u] + .. 0 . (2.1)

In the following the subscript I of the coordinates xj, the displacements Ui and

ui etc. are left out for as far as ambiguity can be excluded.
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Besides, it is also assumed that the kinematic conditions to which the extra displace-

ments are subjected, are linear homogeneous relations for the displacements ui and

their derivates. This assumption ts satisfied if the kinematic conditions are linear

in the total displacements U + u . Every linear combination of kinematically pos-

sible displacementm ip in itseIf appain a ki nmatinaiv n gisgbah ,,..,u M f i44rMn.t- .

Consequently, every possible configuration of U + v can be understood as a sample

from a bundle of possible configurations U + a u , in which a represents a param-

eter independent of the coordinates 1 . Then condition (22. 1) requires that it must be

possible to find a positive number k for every kinematically possible system of dis-

placements u , such that from the inequality I&I < k it follows that

Pl[aU + P +[u] 4 P 3 [au] + ... * aP1 [UJ +

+aP2[u] + a P3[u] + .... 0 (22.2)

This requirement leads to the following necessary conditions

P1 [ul = 0 , (22.3)

P2 [u] ' 0 . (22.4)

Relation (22.3) is identical to the principle of virtual work applied to the equilibrium
state. For, according to this principle, the first variation of the potential energy,

i.e., the first term of the Taylor expansion

P(U i + 6U) - P(u i) - P16U] = P1 [6U] + P2 16u] + ...

is zero for all kinematically possible, infinitesimal displacements. It is equivalent

to requirement (22.3) because of the homogenuity of the condition

aP a PI[6U] = 0

in the displacement variation 6U.

1 The cases for which this assumption has not been satisfied require a closer inspection.
This could, for instance, result from consideration of an arbitrary kinematically pos-
sible configuration U + v as a cample of a system of possible configurations U + u(a).
Here a is a parameter independent of the coordinates.
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Condition (22.4) requires that the second variation nf tt, !enrl n '-- W -l.

become negative for any kinematically possible system of functions. As it appears
from its derivatinn condltion (229.4) cn foA, t-an t*-- b-i''- oiy be appreciated as ±.

necessary condition for stability. The question how far it can at the same time be

considered as a sufficient condition will be investigated in See. 23.

For the analysis of the second variation,Trefftz 1 7] writes the integrand of P 2 [U]

as a difference between two homogeneous positive definite quadratic forms of its

arguments. P2 [u] is understood to be a homogeneous quadratic form in which all

arguments are the displacements u and their derivatives appearing in tWe integrand

of P fuj . In general, this separation sball be different at different points of the

body. If the corresponding integrals are denoted by T' [ul and T. [u] , then it

follows that

P2 Ju]-- T[u] - T,[ul = T[U(u ] l) [u

The sign of the second variation is governed by the second facdr so that the -etermina-

tion of this sign leads to the analysis of the minimum problem

T' (ul),=Min 2
T" [u]

Naturally, instead of this problem it is possible to consider the modified problem

CL Min i t
= M 2tv lul ,

or when written in another form

W m P2[u](2;5
SMin T2 [u] (22.5)
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Here, for simplicity in notation, T2 [u] is written in the place of T ju] For this

problem let w1 be the solution which is obtained for the function u =M Then

it iouLows Ehat r2 juJ is positive deiiite ii w1 is positive; on the other hand, ii "!

i negative P2 [d]i posseses negative values. According to Trefftz, in the first case

equilibrium is stable, in the second case unstable. According to Trefftz the limiting

case w = 0 corresponds to the stability limit. In that case no decision about

stability can yet be made because with P 2 [u
(1 )J = 0 nothing can yet be said about

the sign of the lefthandside of (22.2). By use of a kinematically possible but other-

wise arbitrary system of functions C and an arbitrary constant c , the minimum

condition for the functions u(1) can be expressed as

P 2 u + C 2[

T2 u + ] ]7 Y [

or

P 2 tu(' + -Ed oi oT Ju(') + ct] 6: 0. (22.0)

In general, for an integral Sm[ul whose integrand Is a complete homogeneous function

of order m in the arguments u and their derivatives, the following expansion for

u v + w holds

Sm[V + w] f SM[vI] + Smi,([V, W ] + Sm_ 2 , 2Ev w] + .... +

+ Slim-l[V'w] + Sm[W] (22.7)

In this expression S _n,wnVW] is the integral of all terms which are obtained through

development of the integrand of Sm[ v + w] , and which is homogeneous of the nth

order in" the functions v and their derivatives and homogeneous of the (m - n)

order in the functions w and their derivatives. The integrals S and Sqp are
pq q

interchanged when v and w are interchanged. Besides, the following also holds
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5 mn ,.Iv,v1 S 'D[V,V] (M~nsiv I ~ .~V] ,(22. 8)

K ~ ~ i hich ntto Mn of ) represents as usual a binomial coefficient. By use ofI

P 2[U(1)1 iT2Iu(1)1

(22.6) becomes

It plu", 1 'r 1 1 [~) ,4 + C2' P21t] -W 1 IIt 0

This relation can be satisfied for arbitrary values of c only if. u u(1) and
= ~~satisfy the equation

P11!u,C] - wT,1,ufl.] 0 .(22.9)

If in addition the second derivatives of the functions are assumed to be continuous,
then it follows that (22. 9) is equivalent to a system of differential equations and
boundary conditions for the hanctions u . This system can be derived in the same
manner as was described in Sec. 13. Because these equations and boundary conditions

are homogeneous an~d linear in the functions u and their derivatives, 'they possess. , in
gen~eral, non-zero solutions for u (the so ealled eigenfunctiors) only for specia).

values Of oi (te so called oigenvalues); these solutions contain an undete~rmined
.,onstait. The nmalleat eigenvulue ci determines the'stability.

23. FURTHER CONSIDERATION OF THE THEORY Or' TREFFTZ

TWO POiLtlE in the theory of Trefftz as disciussed In the fu;regoing Isection need further

consideration.

In the first place,it h~as been assumed that the minimum problem (22. 5) indeed possesses
a soiutton, which is by no means an established fact. On thie other hand, it can be
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established that the ratio P[u /T[u possesses a lower bound since, as It is the

difference between T1 [4] /T1fu and unity, it can never become smaller than - 1.
If this lowor bound is denoted by d4, then it follows that every kinematically possible

function u should satisfy the inequality

P[u

while for every arbitrarily small itosittve number e , it should be possible to find

yet another kinematically possible function v , for which the inequality

T 2 171 < d + e

holds. However, the existence of a minimum w cannot yet be concluded from the

existence of a lowar bound, since it Is not certain that the lower bound will correspond

to a kinemiatically possible function. 'This difficulty to the energy criterion about the

existeficeof the minimum w,,s bypassed through the replacement of W, by the

lower b&Unl d. Equilibrium ia stable or unstable depending on whether d is posi-

tive or negativ';, tit the linitting. case d -d 0 the second variation P2 1u] is at least
semi-positive, definite, but. farthzp gonalusions about the stability Oannot be drawn

for the time. bPtng. .The sightioance' of this sharper fdrmulation should not be over-

estimated. Pie practicl appl~ca#on of the energy criterion wouldmetraedf-

oulties if the bound dl's hot also equal to the minimum c., - Therefore, the application

of the stability 'aualysi aloI dependent on Trefftz 'a method whereby the eWatence of the

minimum ',has been ~assumed; in cases for which such a minimum is nonexistent,

the method is bound tr. fail.'

The second point which demandm A More extensive consideration concerns the use of

the criterion w 0 as a sufficient condition for stability (that W I 0 certainly
is not a sutfioient condition was mentioned already in Sect. 22). For concerning
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condition (22.4) it was remarked in Sect. 22 that this condition,on the basis of itsderlvationcan only be acknowlAdrwi an a n . .... ....... _ ........... .
- - ----- LVg M iibu.&M~A~ty apIU RP

cation of the criterion "j > 0 which is bsed on (22.4) then needs a further motiva-
tion. This mottvation c, be given wiout many difficulties as the partition of theIntegrand P. [u) !n two p*sitive definite homogeneous quadratic forms Is carried out
in such a way that the positive definite integrand of T [uJ r T2 [u] contains all thearguments appearing in the integrand of P[ u) (22.1) (in addition derivatives of the
function u should be considered as separate arguments).

The Taylor expansion of the integrand F of P[u] with reepect to its twelve arguments
u and Oui/Oxj which now for simplicity Will be called y A 1,2,..., 12) , can be
written as

12 ~ 12 2,-\Yl o (' ' + , /- )0 OYl YY + R £ (238.1)

122

F 'fF . ( 1"I " ,

S .OF . + (23)

are the integrande of P1 [ul and P2 (u] respectively, end

(ill, l, ) = t Y\OY3~ Ayi

1Y. Oy

GAY

, (, ) 9F F'S =1 ( y ,23.22

12 3

R = I ' ' ''-'!

u yp y



The indices 0, 0 y. attached to the derivatives of F with respect to its arguments
.... th.--c --,t^"e a ThAant for the values 0 and O y. (0 : 07, < 1;

X = 1,2,... ,12) of these arguments. For an assessment of the magnitude of the j
remainder (23. 3) the greatesi ubtuhlute value A ic considered. it enn take the form

12

Ay V y (23.4)

subject to the side condition

12
yX y 12 (23.5)

in which y ( x 1,2, ... ,12) are positive constants. As the absolute values of the1
quantities y., under the restriction (23. 5), cannot become greater than jf=, A

will satisfy the inequality

12
1

As A is at the same time the greatest absolute value which the quotient

12

V Y
OU., V)-

12
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can acquire without restriction (23. 5), it follows from here that

12 12 A 12

- j~~pP)1 P Y 1 1 VYiJ/4 ''

The positive definite integrand of G. uJ and T2 [u] IS given in the form

12
G JulI. ..,X (23,7) :i •!

(t, Y)-'YW

The positive minimum C of (23.'7) under the side condition (23.5) is at the same time

the minimum of the qotient1

12

V y2

without this restriction, so that

12 12

GJu] = c y, y 4 C y y7 2  (23.8)
(p, v)=1u~

Combination of (23.6) and (23.8) leads to the inequality

12 I

C (1, !u] ,(23.9)

The fact that C is positive is ossontially based un the oirc.mstance that the poitivo
definite integrand of T2 [u] possses all the arguimonts which appour in the integrand
of P[u] (see Sect. 22).

'9
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The absolute value of tht coefflcient A,,, can be made arbitrary small if the quan-

tities yx are chosen sufficiently small (see 23.3). Consequently, it is always

possible to choose the quantities g and h, introduced in Sect. 21, so small that

from the inequalities for the arguments v.
"A

it follows that
12 A

I,='

in which c is an arbitrarily small positive constant. It follows from (23.9) that

I R 1 ; cG [u] . (23.10)

This inequality for the remainder of the integrand of P[u] leads to

P [u] z PIul + P2 [u]- cT2 [u].

If in addition use is made of (22. 3) and of the inequality

P2 [u] k co1T2 [u]

then it is found that

P [u] z (c1 - c) T 2 jul . (23.11)

Finally, it follows from (23.11) that the condition ca > 0 is indeed a sufficient condi-

tion for stability since c can be made arbitrarily small by the choice of sufficiently

small values for g and h.

The proof given here is based on the assumption that the integrand of T2 [ul is posi-

tive definite. This assumption is unnecessarily restrictive. For, an integrand of

T*[u] which is not necessarily definite, but whose integral should of course be definite, a
2
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positive solution * of the minimum problem (22.5) is already sufficient for stability

provided that (22.5) possesses also a solution for an integral T2 [u] whose integrand

!.! dcfinftc. That £U',a lat- 6uluiiU al5u is positve rollows easily from the assumption j
of the opposite. If it were zero or negative, P2 1u] for the corresponding function and

consequently also the solution w* of (22.5) belcAging to T* jul should be zero or nega-

tive respectively, which is in contradiction with the assumption oa4 > 0. This greater

freedom in the choice of T2 [u] is useful for applications.

24. THE STABILITY LIMIT

At the stability limitie volution of the minimum problem (22.5) is '1 0. In this

case, the integral P2 [u] will become zero at last for the vector function u(1), so

that (22.2) is not immediately satfied by all functions u. Before entering upon the

derivation of the criteria which govern stability in this case, it is inportant to know

whether the integral P 2juJ cai also become zero for functiono, other than u(1) .

For investigation of this question, it is remarked in the first place that for every

kinema ica.ly p ssible vector function u can be written [29]

u = gu (1) + a with T 11(1), 4) = 0 (24.1)

in which a represents a constant. For, it follows from the identity

T 1  - = T1 1 [u(-), au(1)= T1 1 [.('), u] - IT,, [U(1), u(1)],

thpt the condition
T1[ ) (24.2)

is sptlsfied provided that the constait a is determined by

Tl 11[(), u -- aT l u( ) ,  u(I)] 0 ora =Ti [ u]

312T ()]
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Next, the integral P2 [u is written as

P 2[lu] P 2 [u(1) + e2 [()] + apl[uP'), "I + P2

the first term of this development is Identically zero; with use of (22. 9) for u u ,

S- w1, = ,- , and use of (24. 2), the second term can be written as

aP1 l[U(1), au = aW1 Tll[u(1), i] = 0 ,

so that

P2 [u] P2 [- + = P 2J (24.3)

remains.

Consequently, the integral P2[u] can only become zero if it is zero for a vector func-

tion i that satisfies (24. 2). In order to Investigate whether the integral P 2[C] can

indeed become zero under the condition (24.2), the following problem will be considered

P 2fu] r 1
= Mn T 2"u, under the side condition T11 Lu u] = 0 . (24.4)

Let u = u(2 ) be the function for which this minimum wo2 has been established. 1

Then, for every function n1 satisfying

Tll[U =), 1 0, (24.5)

and for an arbitrary constant c, it follows that

P2 [u(2) + t] p2[u(2)]

Tju 2 2 (D orT2Iu (2) + E T[u (2)] o2 o

P [u(2 ) + er] - T + 071 a 0

2~ 2 2

From this it follows In a manner analogous to the-derivation leading to (22.6),

P ., u(2),ii &- c0T,,[u(2), 1]1 0. (24.6)

,just as for the analysis of P?, [u] in Sect. 22, the existence of a solution will be

assumed here and in all the following minimum problems.
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This equation is derived under the restriction (24. 5) for the functions 7. Yet, it is

also valid for functions t which are not rest'ieted by (24. 5). In order to show this,

an arbitrary function C is written as

tu (1) + 17 with T1 I1 U(1) ,1] = 0.

The possibility of this decomposition has already been explained. After replacement

of the vector function 17 by a 'vector function 0 = tu(1) + i , the left hand side of

(24.6) becomes

pli[u(2) ~J-w 2Tii Ju( 2) t] t (P DPIU( 2) (1)1 W L2 T iiJu( 2) , U 1 1 +

+ P1 [u(2) - °T,(U(2) ,

IHere

T 11ju(1) , u (2)]  = 1[ (2) . (1) o
r

on account of the side condition (24.4). After application of (22.9) for u =' P )

w = and = u(2), it follows from this condition thit

P11[u( 2), u(1)] =(0

By use of these relations and of (24.6) it follows that u u (1 ) and U = w2 satisfy

(22.9)

Plfu , - wT1 1Eu ,t] = 0

so that the solution of the problem (24.4), as well as u(1) appear to be an eigen-

function of (22. 9).
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Since the set of admissible functions u is more restricted for the problem (24.4)

than for the problem (22.5), w2 a w, should always hold. If &2 becomes positive

at the stability limit for which w, = 0 , the investigation of P2uJ/T 2ru; can be

abandoned because in that case P 2u] cannot become zero for functiods other than

u'' ; neither is the knowledge of the functions uW necessary in that case. However, if also
€o,=0 , then the question arises if P2[m can also become z,rn for functions other

than u( a) and u . In the same manner as is described above it can be shown that

this can only be the case if P 2(u] can be zero under the side conditions

T,,[u(1) , u = 0 , Tl[u(2) ,u] =

The posed question will in that case be answered by the solution of the problem

P2IuJ
o = Min, under the side conditions

T 2[u]

T uj] 0 [u(2) =, 0 (24.7)

On the same manner as is described in the above, it is proved that the function u

for which the minimum &o3 of (24. 7) is obtained, is an etgensolution of equation (22. 9)

belonging to the eigenvalue w3 . The analysis of the minima

P2 [.UJ
co = Min - under the side condition

T2 [u]

u] =0 = 1,2,. h - 1) (24.8)

should be continued until a positive minimum w) h has been found.

The eigenvectors u ) , u(2) all contain a constant still undetermined factor

since they are the solutions of the homogeneous equation (22. 9). The conditions (24. 8)

do not determine this factor. It is assumed that this factor is available, for instance

by enforcement of a normalization condition of the form
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T = , (24.9)

in which C is a positive constant. It follows from (24. 8) that

]= C C (24.10)

Further, from relation

T , u = 0 for h #k (24.11)

and by application of (22. 9) for u u )  = h and C = u ) , it follows that

Pll[U( h) , u(k)] = 0 for h., k (24.12)

In some cases, the complete set of eigenfunctions belonging to Fq. (22.9) and to the

minimum problem (24.8) respectively, can easily be determined. Although not neces-
sary, the knowledge of all etgenfunctions can be of advantage for the execution of the

calculations. For this purpose, the set should be complete and such that an arbitrary
kinematically possible vector function f can be developed in terms of the eigenvectors

f = Chuh) , (24.13)

h=1

whereby the operations carried out on f may be applied to each term of the series

separately.

In general, the eigenvalues &h and the elgenvectors u ) depend on the form which
was chosen for the Integrand of T2u . However, if an eigenvalue zero has been

found, then also for other forms of the integrand of T21u] the eigenvalue zero will be
found as well as corresponding eigenfunctions. (See also Sect. 23). The correctness
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of this asnnrtion follows immediatelv from the variational eauation (22.91. which for

an eigenvalue wh = 0 transforms into the form

Pj1[u,9] = 0 (2.4.14)

which is independent of T2 [u] . This equation is identical with the equation for neutral
equilibrium an derived by Kappus [10]

6P 21u] = 0;

consequently, equilibrium is neutral in the sense of Southwell and Biezeno-Henky as

soon as at least one. eigenvalue w h is equal to zero. Conversely, the existence of a

solution of (24.14) results into at least one eigenvalue w h equal to zero. It is generally

true that if n etgenvalues wh are zero, equation (24.14) will possess n independent

solutions. Conversely, it follows from the existence of n linearly Independent
solutions of (24.14) that n eigenvalues are zero. As a proof of this, it is noticed

that the n solutions of (24.14) are also n solutions of (22.9) for the case that W = 0 .

By means of linear combination, n new linearly independent solutions of 22. 9) can be
constructed which solutions also b0oog to W) = 0 . The solutions last mentioned can

always be chosen in such a way that they satisfy

Tll[1(t u(i ) ]

so that they aan be identified with the n eigenfunctions u (I), i 1,2,..., n which

correspond to the n eigenvalues

z =  "n =0.

For details of this so called orthogonalization process see [48)
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25. STABILITY AT THE STABILITY LIMIT

This -section concerns the investigation of the stability at the stability limit. At first I
it is assumed that w to positive; how the foiluwing considerations must be changed

in the case that &2 is zero will be shown in Sect. 27.

A set of necessary conditions for stability 34n immediately be derived from (22.2).

Because of P 2[u(1 = 0 , for sufflciently small absolute values of

a. p3 1u(1 + pu( + ... >0

should hold, which can only be satisfied with

P.[u 0 ; P4[u(1)] : 0 , (25.1)

and if in the last relation the equality sign holds, with

P5 IFu(I = 0 ; P6 [u(1)] ; 0 , and soon

It already appears from (25. 1) that equilibrium at the stability limit shall "in general"

be unstable.

For the derivation of necessary and sufficient conditions of stability, in agreement

with (24.1), an arbitrary kinematically possible vector function is put equal to

u =au(' ) + G with Tllju('),] n

For stability is required that-two positive constants g and i exist such that

(22.1)
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I°°,IP[uj =Pau (1) a]11 = P 1 1!U(1) + z +

+ P2 aum + U1+ P,[a' + 111 + g. o (2r5.2)

follows from the ineuaitiesu

luil < K, ONx <h 2,'

Instead of this, it can be reauired that there-should exist three positive constants A,

and R such that (25.2) follows from the inequalities

IIA (u~j - < h (25.2')

That this modified condition is a necessary condition follows immediately from tle fact

that (22. 1') results from (25.2').

That it Is also a uffiolent condition follows if It is shown that in reverse (25.2')

follows from (22.1'). From the relation

a T11 [u(1) , u]i
0

J ~ 2T2u(1) ]

it follows that a is bounded if u and its derivatives are bounded; the same holds true for

and its derivatives because
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Evaluation of the integrals in (25.2) by use of the symbols introduced in (22. 7) yields

P[uj =SPfu j + P 1 iij + a P2 u'j + aP1 1 [u(', U] +

+ P2 [aj + a3 P3 [u (1 ) ] + . 2 p2 1 [u(l), fi] + ap uP), rIj +

+ P3 [U) + a P4 [u 1 )j + a3 P31 [u(1), ijj + 2 P2 2 [u(1 ), Q] +

+ aP13 [u(1), a] + P l ...

or somewhat differently arranged

Pfu] = aPI[u(1 )] + a2 P2 u(1l) + 13P 3 [u()j + a4 p4[u(1)J + .... +

+ P [Q] + aPl [U('), f] + a2 P21 [u (1 , Gj + a3P31 [u (1 ), i] +.. +

+ P2 (Cj+ aP 12[u1 ), + a2 P [u() +... + P fai +

+ aP13[u (l ) , ] +..' + P4 [il] +... (26.3)

In these expressions,the integrands of the terms following after P2 [U] are either of

the second order in a and contain in that case one or more factors a, or they are

of higher order in U and its de rivatives. It is,thereforq to be expected that these

terms are of minor significance in comparison to P2 [ ] . To prove this supposition,

again the Taylor expansion of the integrand F of PfuJ with respect to its arguments

will be considered. When, for brevity, these arguments are denoted by

y =y(1) + yX(X = 1, 2,... 12),
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F
this expansion can be written

12

a . ( 2x (1=IL +0//at1

ay (1

+() 1 a

(AIto, P)=l

Just as in Sect. 23, the indices of the derivatives of F indicate with respect to which
argument these derivatives are taken. The coefficients of the second order terms in

YX can once more be expanded in a Taylor series with respect to a

'~ y/. <Y - -- \175 0 - ka \TVJU5Y/_ (1)
( OYV)ayX(1) 0 _ _ +1~(~ )9a

- ai y y a( 1 ) + a(I) , () ( I).

0 P=1

so that the expansion of F can also be written in the form

Fj~ + U1] (F) (1) + SYI +
y=l Kip) ayX

(PD( Y3 + (
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in which
12 12 3i
12 I / aF (1) +

( A,1 p P=1 !;4 04Y'

12

6 6pZ=1 Yv bY 6Y)-ay1)+ Y YP I yo , 1y A " y v  (2 5 . 5) 1

By a mutual comparison of the order of the functions 5 and their derivatives, the

contributions in (25.4)

12
(F) and

PJ=1 . ',

can be identified as the integrands of

aP Iu1 )1 + a2 p [u(1 )] + a3 P 3 [u(1 j + g4 P 4 [u(1 )j + .... and

-12-22- 4a3 '-

P1 [i] + aP 1  
1 + [a 2  u(1 , P i + It3 P3 1 (l +

in (25.3) respectively. By comparison to (23. 2),lt appears that

2

is the integrand of P 2[(] In (26.3). Consequently, the remainder must b~e equal I

to the integrand of the remaining part of (25.3) I
9 12 [u( 1) ,  uJ + a2 P2 2  a ] + . + P3  [a] P 1 , +

+ ... + P 4 [  + . .
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The coefficients A t -can be made arbitrarily small by the choice of nufficiently

small values for A, g and h (the bouuds of the absolute values of a , u and

Hence It can be shown in exactly the same way as in Sect. 23, that for an

arbitrarily small positive constant 0 the remainder muet satisfy

in which G 15 stands for the tntegrand of T2 [i]. For the integrals in that case it

follows that

IP 12 [Lu( , u + a2P2 2 [u(1 , il + ... + P3 [l + apl [u(1) , a' +

+ P4 0[ ] + 3T2 [i]
"

As sP2 kW 
2 T2 [MI

and with 02 > 0 another arbitrarily small positive constant Y = P/c 2 can be

defined such that

SaP fu (1 ) . a] + a2 p2 2 [u, i + . + P I + -'13 ( 1 )  ] +

.. + P [ l + ... [ yP 2 [i "  (25.6)

Inequality (25.6) gives the confirmation of and exact formulation of the conjecture

stated earlier, that the terms following P 2 ["1 In (25.3) are only of minor importance.

In (25.3) several simplifications can yet be introduced. Due to (22. 3)

P1 
[uJ -- P1 [a] -0

and an w 0 (see (22.5)) it follows that

P2 [u(1 ) 1 0.
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After uae of the side condition for the functions u it follows from (22.9)

u)  ---w.T.. fu( ).).] = a

while in (25.1), the requirement already was Imposed that

P3 [u(1)] = 0

With these simplifications and with use of (25.6) for P[u], the following inequalities

hold

P u] a a4 P4 [u1 ) + .. + a2P [U ( ]) + a3P 1 [U(1), a] +

+ + (1--/) P2 
[ ], (25.7)

P u] ga 4p 4 [u(1)] + .. + 2P21 [u( ) . " ] + i3 P31 [u( ) a] +

+ +(1 +7') P 2 [J • (25.8)

For the derivation from (25.7) and (25.8) of the necessary and sufficient conditions for

stability, the minimum will be determined of the expression

a2 P2 1 [u(1), i] + a3 P3 1 [u(l), 5] + .... + &P2 [i (25.9)

Here, a is a constant and due consideration must be given to the qide condition

T11 [UM1 ) , i] = 0 , (25.10)

whereas a is a positive constant which replaces 1 - y in (25.7) and 1 + y

in (25. 8).

Let ii = be the vector function for which the minimum is obtained. Then, with an

arbitrary kinematically possible vector function 1 which satisfies

Tz iuMz , -1 0f 0, (5 Z

43

a i ii i iii i i i



and an arbitrary constant E the inequality

a2P21u (I ) , + +~ a3P31 [u (I ) , +]+...+

+1 .1 E]I a2P2 u',0 +O 1[) a+ al,. [ + ] a2P2 i [ui )  1 + aP 1 p~ [ui)] + ... +ap2 [ ],

should be satisfied. After development of the left hand side

e I LL2P2 1 1u tfl + a3 P31 (u~) + +.. +ap 11 [FP, 17 + C2
'1P2 [a;

This inequality can only be satisfied for arbitrary values of c, if for every function

7, ui = satisfies

aP 21l u(i),t ] + _aP31 Iu(i), 4 + .... + aP:L I,I n] = 0 . (25.12)

However, this condition ia also sufficient as P2 [1i1 a 0.

Due to the restriction (25.11) for the functions n, (25.12) is not yet equivalent to a

system of differential equations and boundary conditions of the functions i. In order

to obtain this equivalence, the left hand side of (25.12) is calculated by means of a

replacement of the functions q by the kinematically possible functions t not sub-

jected to the restriction (25.11). For these latter functions it can again be stated that

tu( ) + 1 with T 11 [uP "),7j = 0 and t = T 1 [uM j
11 Ts [u(i ) ]

Substitution in the left hand side of (25.12) yields after some development

aP 2 [Puz ) , Ci + alP [uP ) , r] +.... + ai1[, ( 1

t I a2P2 [u21 ), U l)J + a3P3 .1 [u( i ) , u(1)] +.... + iP~l [ii, u(i j +

+ a2 Piu , +21  [u1 i +aa 3 1u)] +.... +0t, 11 [a, ,11 . (25.13)
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I
In agreement with (22. 8) the fo)lowing identities exist

P2 1 
u (1), u( 1 ) ] = 3P 3 ju (1 )  P3 1 Ju 1 ), U 1  4P4 lu(1)) etc.

Application of (22.9) for u =u ( 1) , W= w, and C = yields with use of (25.10)

P i (1 ) , 5j J lT 1  
, I ] l ia = 0.

Yet, if use is made also of (25. 12), it follows from (25.13) that

a2 P21 [u (1) ,  + a 3 P 31[u( ) ,  j + .... + P 1 [9, C I +

-t13a2p3 [u( ) 3 + 4aP4 [u(1 ) 1 + 0,

or after elimination of the value t and use of (25.1)

a2P2[u (1 ) , t j+ a3 P3 1 [u(1), U] + .... +

2T 2 [u I T .. [u (1 ) , t j + ap -i, ] 0. (25.14)

From equation (26.14) a system of differential equations and boundary conditions can

be derived in the same manner as the equations of motion could be derived from Hamil-

ton's principle in Sect. 13. These equations, together with condition (25. 10), possess

at most one solution. For, if (P, and q" were two different solutions, (25.10) and

(25.14) would both be satisfied by (P' as well as by f1. Subtraction then yields the

rdlations

P1 1 1, ti- Pl 1 [€,, = P Ill[ - , v ]= 0 ,

T 1  ] j - Tll[u( 1 ) ' ] T ill[U, )' 91 1 = 0 ,
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from which with (22.8) and t = 91 - 9" it should follow that

P 2[ 1- P" 1 0 and T11 [u (1), P- P"] = 0

which contradicts the assumpton w. > 0 (see (24.4)). That the solution of ePout.in

(25.14) and (25.10) indeed determine a minimum was already stated above.

Equations (25.14) and (25.10) are linear in the unknown functions a, so that its solu-

tion can be written in the form

I (a + 3 + ,..) ( (25.15)

in which p(2) 9P) etc. are the solutions of the equations

P21 4.... + P11 [i, t 1 0;

0(1) ) 0 . (25.16)

(1) 4P 4 [u 1 )

P31 'u -(1) 1T n  u'', T1 +. 1 [u, t1 = 0
2T 2 u

T1 1 [u (M, i j] 0. (25.17)

The functions 9'(2), 9(3), etc. are independent of a, so that there is always a possi-

bility to choose the constant A so small that the inequality 1aI < A leads to the

inequalities I < jf l ; with this it has been proved that the func-
tions f also belong to the class of functions U which are admitted for the analysis

of P[M].

The calculation of the minimum of (25.9) can still be simplified if use is made of

(25.14) for t = 0

aP21[u 1 + a3 P 1 [u), +.... =- P 1 [, ]=-2ap2 [ 1 ,
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so that the desired minimum i

-apa2 P !(1). 1 3Psl ...

-a2 (a;] = 2 P fiS1  IP +a .(P Z+

By use of (25. 15) this expression can be written as

i- =-a 11 (2 (2) + a3q (3) +...

-1 f a4 P2 1.(2), + a5 gplP (2) P (3), + a6 (P[10(2), 0(4)1 +

+ P2[1 (3)]) +.... j . (25.18)

Substitution of the minimum (25.18) in the inequalities (25. 7) and (25.8) yields

F[ul I a4 P 4 
[u(1) 1 p2[0(2)j1 +

+ a P5 (P) I P1 P11 0
(2), (3) + (25.19)

Min P Jul (withg const.) a4 -4 1 p '-I- (2 ) +

+ 5  P5fu(1) ( + (2)(i(a)

Here 1 + Y and I -) has been reintroduced for the parameter a

If, for brevity

P 4 fu (1)] - P2 1,7(2) 1 A 4, (25.21)

then it follows: at the stability limit equilibrium is

stable, if A4 > 0

unstable, if A4 < 0 (25:22)
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If the first condition is satisfied, there is always a possibility to choose I so small

that at the sarae tinne with A 4

P4 [ u (1M 17 p2{o(2)]
4 1 p

is also positive. One the other hand, if A4 is negative, Y can be chosen so small

that

P4 [U I - v 2 [ (2)1

is also negative. Only the limit case with A4 equal to zero does this expression

fail to give a decision about stability. In general, the solution u = 9(2) of (25. 16)

is also dependent on the form which has been chosen for the integrand of T2 [u].

That A4 , the factor which determines stability is not influenced by this, follows

from comparison of the solutions u and u' corresponding to the integrals of the

different forms T2 [u] and T2 [u) . Subtraction of the equations (25.16) governing
2 2

both solutions yields

P11 .[ - ' ' ] = 0 , (25.23)

from which it can be concluded that

b~

S- =u(1 (25.24)

where c. is an arbitrary constant. If (25.23) also possessed a solution - i' dif-

ferent from (25.24), then it would again be possible to state

= tu (1 ) + U with T1 1 [u (1 ) , U) = 0,

from which it follows that (see 24.14)

11 j 0 [u, 11l 0

Then, for C Ui it would hold that

P1 1 [U, ii] = 2P 2 1] 0, T1 1 [UP ) , =  0,
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which contradicts the assumption that w 2 > 0. With (25.24) it finally follows that

A,- A' -P 9 
[ a] + P2 [ -cu 1 I

- -P 2 u I + P21[i - cP 1I, u(1) ] + c 2P2 lu(1)] = 0

It is noticed also that for the calculation of ((2) and A4 no use is made of the as-

sumption that the Integrand of T 2 u ] is positive definite. Consequently the same

result will be obtained for A4 if this assumption has not been made provided that the

integral of T2 Lu ] is still positive definite. This greater freedom in the choice of

T2 [u I shall be of use for the application of the theory (see Sect. 23).

26. APPLICATION OF THE CRITERION (25.22)

For the application of the criterion (26.22) only the knowledge of the functions P(2) is

required, so that only the system of differential equations and boundary conditions re-

sulting from (25.16) must be solved. The differential equations and boundary conditions

again can be derived from (25.16) in a manner analogous to that described in Sect. 13.

When the complete system of eigenfunctions u(h ) is known, this solution can most

simply be carried out by expansion of 0 (2) as well as 9, in ceries of these eigen-

functions. In this way, the derivation of the differential equations and boundary condi-

tions will not be needed

00 go

P(2) 1> c uh I d 'h u(h (26.1)

h=1 h=1

The second relation (25.16) yidlds after use of (24.11)

T 1[1 1 )  ch u
(h ) ]  2c1 T2 [ u

( 1) = 0 or 1 = 0,

h=1
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I
while the first equation (25.16) becomes

0000 00 -
h=l h=l k=1

or with use of (24.10) and (24.12)

dh P2 1 Iu(l), u(h)I + 2 dhohwhC = 0

h=l h=1

The latter equation can only be satisfied for arbitrary values of db if, for h 9 2

(1)u(h)]

el = - C P2 1 [u ( ) ,u (26.2)

The condition for h 1 is already satisfied because

P21 ,
( l ) u l = 3P 3 [ul oand wo 0.

For A4 it is found that (see (25.21))

A4 = 14 u()]- P2 [ ichu(b)]

00

(1) - 2 P2 (h) - 0 pl (h), u(k) (26.3)
P4 u] z. h P2 [u h j chklL .I u 1;(63

h=1 h=k

the last sum should be calculated for all combinations of h and k such that h # k.

With use of (24.10), (24.12) and (26.2) the result is

A4  P4(~~ -UW 1- p [1 UM, u(b)11 (26.4)

h=2
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However, this consideration has more than a formal significance only if the possibility

of the series expansion and the admissibility of the operations applied on these series

has been established.

In many cases, the system of eigenfunctions is not completely known and an exact solu-

tion also in a different manner, will appear to be impossible. An approximate solution

at least must be possible for such cases since (25.15) represents the solution of the

minimum problem (25. 9). If (25.9), after substitution of (25.15), is expanded and re -

arranged according to increasing powers of a (this expansion starts with the fourth

power of a ), then the function i (2) dotermined by (25.16) appears also to be the

solution of the minimum problem

2 (1).Lu I + P 2 1 iI minimum under the side condition

T I] = 0. (26.6)

In that case it is obvious that an approximate solution of problem (26. 5) can be folb4

for instance, by means of Ritz's method [30]. It is inherent in this method that the ap-

proximation of the minimum of (26.5) thus found Is greater than the exact minimum.

For the exact solution, it follows from (25.16) for = V (2) that

P2 1 [u(1 ' IV(2) ] + P2 [9 (2 )] P (2)  (26.6)

Hence the approximate minimum of (26.5) is at the same time an approximation (too

large) for "P2 [q( 2 )] . The expression

P [u M + P2 1
[[u ), i + P ] (26.7)

in which E is the approximate solution of (26.5), then also yields a too groat,

approximate, value of A4 . Therefore, stability will alweys be overestimated by use

of (26.7) instead of (25.21). If, in a certain case, the expression (26.7) would turn
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out to be tegative, i.e. ,according to the approximation equilibrium would be unstable,

ihon equiib.ium . .....-- Lz .. .a... . .. . n.. 4• 1.... .,i,, tfvia valiI, nf

(26. 7) does not always imply that equilibrium is stable.

27. SPECIAL CASES

In the foregoing, stability at the stability limit was analysed under the assumption

that the solution w of the problem (24.4) is positive. Along with this, as necessary

conditions for stability were found to be that (see (25.1), (25.22) and (26.6))

A3  P3 u(' ) ] = 0 ; A4 = P4Lu(I ) - p 2 [ (2 )] =

= P 4 uc1) + P21 [u(), q,(2 )] + p .[,P(2)] a 0 , (27.1)

which conditions are at the same time sufficient if in the second condition the upper

sign holds. It has yet to be investigated which additions to these conditions will be

needdif A4 = 0 or W2 = 0

27.1 The Case A4 = 0

For the analysis of this special case the assumption o2 > 0 will be maintained.

According to the considerations of Sect. 25

u = au(1) + E with Tll[U(1), .] =0u 01

Thus by use of (25.16), the functions 71 presently are written

B29(2) + ii with T 1 1[u (1 ) , ] 0 . (27.2)

Introduction of (27.2) in (25.3) yields after some reduction
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P(ul = a5 P 5 [u1 1 + P3 1 1u 1 , + P 1 2
[u 1 )  €(2)l +

+ a6 fP iu(1)1 + () ,(2)] + p22 u(
11 , (2)) + p1[F(2)1 +

Iru(i) ~ P (i),'41 (2) =I

31[ 111 1
(1 2. + P [U , 2 )

+ 4P41[() + 211fu1), ] + 211"2, I

+ .... + P2 [ii] + _ 1 2 [u (1) U= + a P 2 ,[u(1) l + P1 2 [,( 2), i1 +

.... + 3pal + al3U , U1 +... + P .... , (27. )

in which use has been made of the identities

u(1)] a P f[(2)] 2 , P3[u
(1)1 = 0

1 P 1[u) = 0 P u 1 ] 2 -0 3f

A4 = P4 [u(1 )j + P21 [u (1) p(2)] + p 2 (V 2 )1 = 0

as well as of the equation (25.16) which also holds for r = . . The integrals

belongiug to the development of P inn , ] for U = V + @ are written as

m,n-q,q [u(1) N, 1 analogous to the manner described in (22.8). The integrands

of these integrals are homogeneous functions of the order n - q in V ard its

derivatives and of the order q in w and its derivatives. Again, expression (27.3)

possesses a minimum for u . 0 if and only if it is possible to find a set of positive

quantities A, g and h such that from the inequalities
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it follows that

PLul . 0. .1
A set of necessary conditions may immediately be derived by the specilization

u= 0. As all integrals depending on u then become zero it follows that

A5 = P [u(.1 + p 31[u() ,(2)] + P 12u (1) , p(2)] = 0 , (27.5)

P6 lu(1)1 + P 4 1 1'(1) ,V(2)] + p22( ( , (2 )] + p 3 14( 2 )] a 0 (27.6)

Since the positive definite integrand of T2[u] can again be assumed to be of the form

(23.7), it can be shown in exactly the same manner as in Sect. 25, that it is possible

to choose the quantities A, g and E so small that it follows from inequalities (27.4)

that the terms after P2 (] satisfy

-U , U 2 P [(1) ,= + P '2)!J

l,12" + ,2 2r u 1PP ', + . + P300 +

+ aP [U(1) , U] + + P4[O] + lYP2 ] (27.7)+ a 13u 4 ..... .

Here v is an arbitrarily small positive constant. By use of (27.5) anrd (27.7) the

following inequalities follow for P[u]

Piul a fP6u (1) 1 + P41 (P)) , (2)] + + p31P (2)] +

+.... + j 3 I P 1 u(') , + Pjl[u(1), (2) (] +

+ i+' fp,,t, <'>, + P23 ,Io(u1  ,' (2) u] + P2 1[,(, JI +

+ .... + (1 - ,)P 2[;1 , (27.8)
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311

P n] O ~ 6[~ ) + P4 1[u i , (J) + P22 [u~i , (I + P3 [f ()JJ +

(....) + , *((2 ),U" +
+4 +4 a3lu( I)  1+ ll[U

+ a4 IP41 [u(1 ) 
, ] + P 2 1 1 2(1),9(2),Uj + p2 1  uij +

+.... + (1 +Y) P 2UI (27.9)

For the derivation from (27.8) and (27.9) of stability requirements sharper than the

already established conditions (27.5) and (27.6), the minimum of the following expres-

sion will,as was done in Sect. 25, be determined

3 , 2

a I P 3 1
[ 1u (1 ) , = + Plll [u(1 ) , (2) , 1

, I ) U + P2 ru(1) (2), ( 2 P+ 21 , 1 i 1+

+... + aP 2 11] (a > 0), (27.10)

with due consideration of the side condition

() , ) 0 (27.11)

and with a considered a constant. As in the derivations in Sect. 25 it is shown that

the function 2 = o, for which the minimum of (27.10) has been obtained, can be

written in the form

90 Ca~t 3 Vi ~ fr 4 + ... ),(27.12)

in which 1
3) ,V(4) etc. are the solutions of the equations
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P., [UM) C I p--- ru( ) .,P'2)i, +

4P (2)
41) [u(l)] + 2P Mu~ 0(2)]

2T2 [ u(1)]  T 1 ) u' ] + P1 1 ,T = 0

T11=[u 0 ; (27.13)

p 41[u1) + P2 11u(), p(2), + p 2 1 [ ('., 2 j +

5P5 [u(') l + 3l3[u(l) 4,(2)i + p12[u )  (2)] T+2T2[u(l1 21]  '9( T11[u(1) , ]+

+ Pl 1[ , ] = 0 ; T 1 (U(1 ) , 05= 0 , (27.14)

etc.

By use of the identity (26.6)

4P4 fu( 1 )] + 2P 2 1 [u(), J (2)] 4.' P4[uI = 
- P H 4A 4  0

Hence the set of equations (27.13) can be simplified to

(1 )  + P1 pU (1) ,(2), ] + p , = 0 ; 1 , ] 0

(27.15)

Also, the minimum of (27. 10) is determined in the same manner as described in

Sect. 25. It is found that

- o (pJ - I p.(3), + a7p l i*(S) 0( 4 )] + ... ,
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so that finally from (27.8) and (27.9) it follows that

P(u] g. a6 P6 (u(1)] + P 4 1 [u(1) 9(2)] + P2 2.u(1) ,q (2) + p3 q(2)] +

1 (3)] + a7 (27.16)

Min P [u] (with a const.) 5 a6 IP 6 u(1)] + P41 [u (1) 9(2) ] +

+ P 22 u (u() ,p(2) + p3 1(P()J - l-l-. [0(3)JI + 7

(27.17)

If, for brevity

P6[u(1)j)] , + P2 2 [u (1),V(2)] + PS[(2)] _ p214(3)1 = A= ,

(27.18)

then it follows, again analogous to the derivations in Sect. 25, that equilibrium is stable

or unstable depending on whether A6 is positive or negative. Only if A6 = 0 does the

form (27. 18) fails to yield a final decision about stability. In that case the investigation

must be continued; this can be done by the introduction of

= a (3) + u with T11[u( 1 , 0

Then, the analysis proceeds further analogous to the foregoing.
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27.2 The Case of w = 0

-. , . ..... _ U, av ... Ww, , i u ut unvinu w,be uwumed that w 3 i
positive. If one writes u( 2 ) =v ( 1) in behalf of a more symmetrical notation then for
an arbitrary :inematically admissible function u, it is possible to set

u au ( ) + bv ( ) + U with Tl1[tIu() , U] = T3 l[V(1 ) , U] = 0 , (27.19)

in a manner analogous to (24. 1). The possibility of this separation again can be shown

by calculation of the constants a and b . Substitution of (27. 19) in (22. 1) with

Pl[U] = 0 yields

P[u) = P2A01) + b, (1) + U] + P3[au(1 ) + by(1 ) + ul +

+ P4 Lau (1  + + UJ ' .... (27.20)

In general, for an integral S [z] the following expansion holds for z = u + v + w

Sm[u + v + w] Sa, V[ [ , W] (27.21)

where the integrand of Sm [z] is an homogeneous and complete function of the order m
in the argument functions z and their derivatives.

S [u, v, w] is the integral of all terms which arise from the development of the

integrand of Sm[U + v +w] and they are homogeneous, of the order a, # and Y
in the functions u, v, w and their derivatives respectively. For brevity the following.

notations are used

s Sa[U. V, w] S [vw ); S ,m[u, w -- Si [w]
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Furthermore the symmetry relations .
S (uV, W1 S Ov, u, W1 etc.

hold together with the relations corresponding to (22.8)

C1, P "S , l uuw] = 1 r , u, wi

s , , u, :] (a ) (ae + + Ysa++(UI = P ^/I m.

By use of (27.21), (27.20) can be written

PIUI = a3P3 [U( 1 )I + a2 bP2 1[u(1) , v(1), + _b2P v) +

+ b3 P3 [v(1) ] + a4P4u(1) J+ a3 bP31 [u(1 ) , v(I ) j + a2b2 p [u(1) , V() +
3 4 u () - 22

+ ab 3P1u(1) , v(1) ] + b4 P 4 [v(I ) ] + .... + R2 P2 1[u(1) , u ] +

+ abP uM v() , a] + b2P21 [v(1) +a2p u(1 ) +

111 , + 
- , +

+ a2 bP 211 ( 1) , v ] + ab2P121[u(1 ) , v ( , u5 + b 3 s[v , u]j +

+ ... + P2[i] + aP12 [u( 1 ) ,] + bP 12[v( 1 ) ,] + a2P2 2[u(1) ]j +

+ abP 1 2[u( 1 ) v(1) iij + b2P22 [v(1) i] + + p3[N] +

+ aP 13 U(1) iij + bP 1 3 [v{1) , ui + .... + P4ii] + .... (27.22)
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In this expression (24. 10) and (24.12) have already been utilized tor the elgentunctions

u and v as well as the relations below which from (22.9) and (27.19) "1

P[U(), ] T wTl[U1 , u] = 0 , P I v() , u = W TI[V(1) , u] = 0

111 11 2 11

Expression (27.22) again possesses a minimum for u - 0 if and only if it is possible to

find a set of positive quantities A, B, g and h such that from the inequalities

lal < A , IbI < B , < , - < h (27.23)

it follows that

P [u] Z 0

A set of necessary conditions may be derived immediately by the specialization U - 04
As all integrals depending on U become zero, for all values of p, and b the

relation

a3P [u(1)] + a 2 bF u1) + MbZP2(1) , 
(1 ) + b3p[(1)= 0

should hold. It follows that

P[u = ,21[u
(I ) v( 1) ] = P1 2 ( 1 , v11) ] = P3 [v (I ) ]  0 • (27.24)

In addition the following inequality should be satisfied for all values of a and b

a4P4u(')] + a bP 1 [U (I ) , v (1 ) ] + a2 b2 P2 2 [u[ 1u , v (I )] +

+ ab3P 1 3
[u (1 ) , v(1) + b4 P4

[v(1 ) ] 0 (27.25)

Since the integrand of T 2 [u] again can be assumed to be of the form (23. 7), it may be

shown in the same way as in Sect. 25, that it is possible to choose the quantities A

B , I and E so small that from inequalities (27.23), for the terms following P 2 Wa]

in (27. 22) it follows that
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ul + bP 12 [v(), u] + a2P2 2 [u( 1) , U] + .... + P3 [ii +

S -13 - I , U] +A.... + p4 -uI + .... i , 27.2,)

in which Y is an arbitrarily small positive constant. By use of (27.24) and (27.26)

for P[u], the following Inequalities are established

P[u] a a 4P4[u(1)] + abP [u(') , v(')] + a2b2 P , v 1 ] +

31 221U(1.-31 v 12 )

+ abP 1 3(u('), v )] + b4 P 4 [v( ' ) ] + + a2 P2 1 [U()1 )  ] +

+abPlll[U( 1 ) , v(1) , U) + b2P2 1 [v (1 ) , i] + a3P3 1 Lu(1 ) , I-J +

+ a2 bP 2 1 1 [u(P ) , v(1) , U] + ab2 P 1 2 1 [u(') v(1) , u] + b3 P3 1 [v(1 ) , U] +

+ .... + (1 -v)P 2[U J (27.27)

P[u] 5 a4P4[u
(I)] + a3 bP 3 1lu (1) , v( ] + a2b2 P 22 [u(1) , v( 1) ] +

+ a 13 [u(1), v()] + b4 p4 [v (1 )] + .... + a 2 p2 1 [u(1), U] +

+ abPlu[u() , v(1 ] + b2 P 2 1 [v(1 ) , Ul + aP 3 1U(1)_ , -U] +

+ a2bP2 (P ) , v(1) , -] + ab2p [u(1) , v ) , -l + b 3 P3 1[ v (1) , U] +

+ ... + (1 + -Y)P2 [U) (27.28)

For the derivation of stability conditions sharper than conditions (27. 24) and (27.25)

in analogy with derivations in Sect. 25, the minimum of the expression
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a2 P1U(1) , i] + abP 111[u
(  , (1) U1 + b2Pzl[v(1) , 21 + a3P 31 u

(1) UJ +

+ a2bP211 u(I) , v(1) , + ab2P121ju()v (1) , +

+ b3P31[v
(1) ,] + .... + aP 2 [ul (a > 0) (27.29)

will be determined for constant values of a and b under the side-conditions

Tl] 0 , Tv( 1) , i,] f= 0 (27.30)

Likewise analogous to derivations in Seat. 25,it is shown that the solution of this

problem can be represented by

2l 2(20) + ab 11) + 2210)+a3(0 (21) +

+ a2.(12) + b3V(03) + J , (27.31)

in which u go (pq) for arbitrary kinematically admissible functions t satisfies the

equations

PpqJEU 1  ( , - (P+1)P+ (1) v(1) T11 [u
1) , +

iT2[u(1)

(q +,l)Ppq+iIu (1) v 1
) T + 0

2Ts[V (1) 1]1V1 u

T11 [i ( ) ,.U] 0 1, [v(1) , u] 0 (27.32)
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For p + q = 2 , and after use of (27.24) these equations are simplified to
P2i[u'i ), L+ piL 0,T 1 [u ), = 0 Tll[V(') .il m21uIl] +Pii,, ]~ = 0 Tilif

P[ + 0 Tt 0V 1TU -- 0 . (27.33)

P21 IV +i) , [,t1 0T u() TnI [vi,4 0i,
J+P[, = T1 i[U u ]0, I T0[.

The calculation of the minimum (27.29) is carried out in the same manner as is
described in Sect. 25. Introduction of the result into (27.27) and (27.28) yields

P[u] a a I P41u(1) 1 1" P 2[0(20)t +

+ a~b2 ~ P1[u 1 ) (1) 1 ]" - PI. [ (20) (I) I +

+ a 2b 2 1 P 22u1'V1P1 [,F(20). 9(02)] 1 2 IF,(11),+- 22u()'v( f - -YPl 1 -Y 2'

+ ab 3 p1 3 [u(i), v(1)] 1 p.p [(11), (0 2), +

+ b4  {P4 [v(1) I I P2 [q(02)]I + (27.34)
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MinP[u] (with a - const. and b = const.)

4 I Lfl. 1... .. 120) + 1
+~ jkb's[' v( - 1 +1 ~~ 'U :1 [(o (1]I

a J +

a2 b2  JP2 2 [u( 1) v(1)]  1 p +7 (2O) 9(1)

+ ab3  pi1 (1)' V( ) ]  1+ ,P(119) +

^1 2[ 0) + (27.35)
+b4  1 P4[v(l ) ]~ 1 , + 7~ 02 ] .... (2.-

Finally, after the following shorthand notation is introduced

C40  = 1P4[u
(1) - p2 ['( 2 0)]

Ca1 = P , (1) _ p ill[,(20) 0 9(1)]

.C22 = 22 u 1) , v(
1)] P1119(2 0 ) , V(02)] _ p2[p .)] (27.36)

C13 = p 1 3 [u (1), v (1) l1[(1l) ,q)(0 2 )],

C04 = p4[v(1  - p2(02)

it follows that equilibrium will be stable if the quarttc form

C4a 4 + C3 1 a3 b + C2 2 a2 b2  + C13 ab3 + C0 4 b4  (27.37)
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is positive definite; for in that case it will always be possible to choose Y so smal

that the quartic form in the right hand side of (27.34) also is positive definite.

Conversely, if (27.37) can be negative, equilibrium will be unstable since in that case

V can be made sufficiently small to makA the quartl_ form in the right hand side of

(27.35) to be negative. Only when (27.37) is semipo;3itivedefinite this form cannot

give a decisive conclusion about stability. This very special case,which is of little

practical significance, will not be further discussed.

The treatment of the cases w = 0 etc. does not offer new difficulties. If the first

w > 0 is given by w h then for the displacement field u it can be stated

h-1

u = ajuU + uwith Tl[u ) ,]= 0 0 1,2 .... h - i) .
J (27. 38)

After this the analysis proceeds in complete analogy with the foregoing, but with

considerably more labor. Again, necessary conditions for stability are that the form

of the third order obtained by substitution of

h-i

u a u(J)  (27.39)

j i

in P3 [u] is identically zero and that the form of the fourth order which is obtained by

substitution of (27. 39) in P4 [u] shall not admit negative values.

28. CORRELATION WITH THE INVESTIGATIONS BY MAYER

The theory of stability at the stability-limit as developed in the foregoing can be

connected with the investigations of Mayer[311 about the minima of a function F of n

independent variables x4 A 1,2,..., n) in the case that the second variation of
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this function is semidefinite. Without loss of generality the origin of the independent

*i coordinates x can be chosen at the point where the existence of a minimum is

analysed. From the Taylor expansion

= F(O) + +ex ( i )=' ax exv
(Ao1$A P)0

+ 3 8F x +

n n n

F (0) + I A 'AXI + > Ax, + I V_ X + ... +
A = (IA,,V)-- (JA, V, P) =

= F(O) + F1 (X) + F 2 (x) + FS(x) + .... (28.1)

it can be concluded in the well known way that a minimum can only he present if the
first variation satisfies

F(X) = 0 , (28.2)

and if the second variation satisfies

F 0 (28.3)

for all values of the variables x V Besides, if the lower sign in (28.3) holds only when

all x are zero, i. e., if the second variation is positive definite, then conditions

(28.2) and (28.3) are also sufficient for a minimum. In order to obtain an understand-

ing of the conditions governing the existence of a minimum in the case of a semi-

definite second variation, Mayer sets
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x,= Q 1) + + 2 t(2 + + ..... (28.41

wher the coffictent 1 = 1, 2, . . ar a.. -tr U4Uon Of

(28.4) the function F ts expanded in terms of increasing powers of t, it is a neces-

sary and sufficient condition for a minimum of this function that the first term of this

expansion Is of even order and i positive (provided all values of the coefficient AJ)

are not being simultaneously zero). Mayer has left no doubts about the necessity of '

this condition. He has also in every respect demonstrated the likelihood of this condi-

tion being sufficient, although he did not succeed to prove this conjecture rigorously.

The application of this method yields criteria for the ordinary minimum problem analo-

gous to those of (25.1), (25.21), (27.24), and (27.37).

Without difficulty, Mayer's method can formally be applied to the variational problem

(21. 1) of stability. For this purpose an arbitrary kinematically possible vector func-

tion is written as

u = tv(1) + t2 v(2 ) + t 3 v (3 ) +.... (28.5)

and subsequently the left hand side of (22.1) Is expanded in increasing powers of t.

For stability It is a necessary'and sufficient condition that for all kinematically pos-

sible functions vA the expansion starts with a positive term of even order in t.

That this condition is actually sufficient is less evident than it is in the case of the

ordinary problem of the minimum of a function of a finite number of variables. For,

as in contrast, a positive definite second variation of a variational problem is not

always a sufficient condition for the existence of a minimum [32]. For this reason no

use was made in the foregoing of the seemingly obvious extension of Mayer's theory

to variational problems. On the other hand, Mayer's results can be motivated in a

rigourous way by considerations analogous to the theory developed here.
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[I
29. APPLICATION TO THE THEORY OF ELASTICITY

For aplication 4)f the stability theory to the elastic equilibrium, the knowledge of the

Taylor expansion of the total potential energy (22.1) is required. As far as the elastic

potential energy is concerned, this can easily be given if the elastic potential accord-

ing to Section 12 consists of a positive homogeneous quadratic function of the strain

components. Expressed in the displacement v, this potential can-be written

A(v) = A2 (v) + AS (v) + A4 (v), (29.1)

where expression Aq(v) stands for a homogeneous polynomial of the order q in the

derivatives of v. Expression A2 (v) corresponds to the elastic potential of the lin-

ear theory of elasticity. It is a positive semidefinite function of the derivatives of

the displacements that is zero only if the linear contributions of the displacement de-

rivatives in the strain components 8v i/9x + Bvj/ax i all vanish simultaneously. The

elastic potential in the equilibrium configuration for the displacements v = U follows

immediately from (29.1). In a configuration v = U + u

A(U+u) = A2 (U+ u) + A3 (U+u) + A4 (U+u).

From this, by expansion with respect to the derivatives of U and u, it follows

A (U+u) =-2 + A + + Al + 2 + +
0 0 0 1 1 1

+ A0 +A1 2 0 +A1 +A0 (9222 2 Ai + 3  4 292

Here AP is the sum of all terms that are homogeneous of the order p in the deriva-
q

tives of U and homogeneous of the order q in the derivatives of u. Thus, this

* form is obtained through expansion of AP+qi(U+U). The symbol AP in (29.2) is

* apparently equivalent to the symbol AP in (29, 1). By interchange of U and u the

terms AP and are also interchanged so that represents a semi-positive
q p

definite function of the derivatives of u. This function will become zero only if all
the relations -g + 81 0 are simultaneously satisfied. If in addition
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then the Taylor expansion for the elastic potential energy reads

V(U+u) - V(U) = V1 ul + V2 ul + V. [ul + V4 [u] (29.4)

with1 2 +

V1 [u] = V, + V1  '
0 +v 1 + 2

V2 = V2 + 2 V ,
(29.5)

0 1V3 [u] = Va + V3

V4 [ul = V4

The stability analysis by use of the energy criterion can be carried out in a simple way

only if there exists also a potential for the external loads, which in that case is repre-

sented by (the negative of) a work function W. If it is assumed that the increment of

this function corresponding to the transition of an equilibrium-configuration U to a

configuration U + u, can be expanded, then

W(U+u)- W (U) =W 1 u] + W 2 [u] + W3 [u] +.... , (29.6)

Is obtained, in which series Wq[u] is the sum of the integrals whose integrands are

homogeneous functions of the order q in the displacements u and their derivatives.

In the frequently occurring case of loads given by magnitude and direction with respect

to volume and surface elements of the undeformed state, the following holds

3

lIfffPX ui dxi dx dx 3 + ffpi u Idf for q = 1,q/\ (2 9.7)

0 for q > 1.
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Finally, after use of (29. 6),lt follows that

V. [~u) W.[u) for 1 s q 94 , i

Pq[UJ= - for q>4. (29.8)
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Chapter 3
EQUILIBRIUM STATES FOR LOADS IN THE
NEIGHBORHOOD OF THE BUCKLING LOAD

31. THE BUCKLING LOAD

In the preceding chapter the stability of a supposedly known equilibrium state has been

investigated. However, in engineering, stability problems are usually posed in a

somewhat different form. It is a question hero of the stability of an equilibrium con-

figuration occurring under influence of a given load system. Hencethe state of equi-

librium corresponding to this system of loads must first be determined before the

stability theory can be applied. For this purpose, differential equations (13.13) with

boundary conditions (13. 14) or the variational equation (22.3) may be utilized.

In principle, aside from the difficulties connected with the solution of non-linear

differential equations, the problem of such a nature appears to lead to a peculiar diffi-

culty which is related to the determination of the loads. A necessary condition for a

possible state of equilibrium is that the loads constitute a self equilibrating system.

In the framework of the linear theory of elasticity, this requirement is satisfied if the

loads which act on the undeformed, supposedly fixed body constitute an equilibrium

system; the conditions ior the loads which result from this can be written down

explicitly. However, as soon as finite deformations are taken Into account the loads

must satisfy the requirement of equilibrium with respect to the deformed state of the

body; as long as this state is unknown, the conditions for the load system cannot be

formulated explicitly.

Fortumately, this fundamental difficulty has little significance in most important technical

problems. A structure is usually supported in such a way that in any state of small (but

finite) deformations in which the body is held fixed, an infinitesimal displacement of the

body is excluded. Consequently, the equilibrium conditions fof the body as a whole can

always be satisfied. Besides, in the following it is assumed that the support reactions
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... ~... h...~. +1 ,v%+ n,,nl PnArirv nf the vatem is then the sum of the elastic energy
of the applied loads.i

The following considerations will be restricted to cases in which the given loading

oontplns a still undetermined proportionality factor X ; in that case it can be represented

as a product of X and a urt load system. For different values of the supposedly posi-

tive load parameters X , existing equilibrium states are sought.1  The question

of the stability of these states is also posed. The general solution of this problem,

i.e, the determination of al possible equilibrium configurations for a given value of X,

is almost always impossible. However, in many important cases in engineering it is

possible to find one solution that continuously approaches the undeformed state as the

value of X approaches zero. This equilibrium state and corresponding displacement

U(X), the so called fundamental state, is assumed to be known in the following. More-

over, for the range of A under consideration this fundamental state is assumed to be

uniquely determined. In general the following can be observed about the slability of

the fundamental state. If the body is supposed to be fixed in the deformed stat,any

infinitesimal uniform displacement or rotation can be excluded. This means that the

additional displacements from the fundamental state u i cannot satisfy the six relations

138) 8ui  - = 0 throughout the interior of the body. In that case, as was shownax axi

in Section 29, V[u] is positive definite. The remaining contributions in P2 [u]

approach zero together with X and U(X) (see Section 29). Accordingly it is assumed

that it is possible to find a positive value for X 1 such that P 2 [u] is positive definite

for X < X1 " The solution w of the minimum problem (22.5)

P2 [U] (31.1)
W MinT 12

lIf it is necessary to take negative loa.. into consideration as well, this can most simply
be done by substitution of the unit load system by its opposite; , is then also posi' re.
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whose existence again is assumed, is then also positive, which mears that the equilib-

rum is stable for A < Xi1 ' This reasoning follows closely the uniqueness theorem of

Kirchhoff 39]. In some cases, for instance the bar under pure tension, the solution ol

(31.1) is positive for all positive loads. In other cases w, becomes negative after

the load parameter exceeds a critical value X1 . Equilibrium in the fundamental state

becomes unstable after the load corresponding to A is exceeded, and thus the funda-

mental state has no practical sig1 4ficance for A > X Of particular importance is

the determination of the limit value A1 , beyond which the fundamental state becomes

unstable. This is determined as the smallcst value of X for which the solution W

of (31.1) is zero. 1 Equilibrium in the f.rdamental state corresponding to X is,

therefore,at the stability limit. In i.at case the homogeneous variational equation

(24.14) possesses a non zero solution. The load corresponding to A, is called the

buckling load; the correspondfing fundamental state U(,\) is called the critical state.

The existence of equilibrium states infinitesimally near the fundamental state for

loads equal to the critical load gives rise to the expectation that there are also neigh-

bouring equilibrium states for Icads slightly different from the critical load, which

can be derived by consideration of small but still finite displacements from the funda-

mental state. The stability of the critical state at the stability limit is of decisive

significance for the character of the neighbouring states. These adjacent equilibrium

states are the subject of the following considerations.

32. THE POTENTIAL ENERGY

It is assumed that in the neighbourhood of X = A 1 the displacement U(N) and its

derivatives may, according to Taylor's formula, be expanded into a series with increas-

ing powers of A - A1 . This implies that for parameter values of A > A1 the

existence is assumed of the fundamental state also in the neighbourhood of the buckling

load. The consequence of this assumption with respect to the nature of the problems

under consideration will be dealt with in Sect. 37.

'It is in principle not excluded that the fun-'-mental state becomes stable again after

the load parameter has considerably exci ded A,;in this case the solution of (31. 1)
should become zero also for a larger value of A . This case can occur when a coil
spring is subjected to axial compression (see [53] ).
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In the following, the integrals introduced in (22. 1) will be denoted by P (fu] for the

general fundamental state UIA) . They can now also be expanded in terms of X - X1

p* u - (A-A 1 ) t[UJ + ... (32.1)

In the following, the symbol Pro(ul exclusively refers to the critical state U(A1)

In agreement with (22. 3), PFl[uJ is equal to zero for all values of X .

If, for the time being it is assumed that the solution w of the minimum problem

(24.4) in positive for the critical state, then the general solution of (24.14) reads

(see also sect. 25, in particular (25 .23) and (25.24))

u = au (32.2)

The additional displacements of equilibrium states infinitesimally near to the funda-

mental state correspond to infinitesimal values of a. The displacements from the

fundamental state to neighboring states for loads slightly different from the critical

load will presumably differ somewhat from the form (32.2), so that it is expedient

to write them in the form (24.1)1

u 1 + U with Tu. u l ,u = 0 ; (32.3)

consequently It Is expected that the functions U will be small compared to au1

After use of (32.3), the energy increase,on transition from the fundamental state U(A)

to another state U(A) + u, is written

1 Since there can be no confusion with the indices i used for the distinction of the dis-
placement components, the indices of the eigenfunctions will in the following also be
written to the right and below the symbol.
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1 "u] + + [ \[

p, [u] + (X- i \1 + (A-A) 2 p2 "'

+ P3 ful + (;-k1 ) P3 [u] + ... + P4 [u] +

2]p fullj+ I f

a-2P2 Eu] 2 'n[l + P.[]

+ (AX.~) I LL[u1  +aP1 (u 1 1 JP( +

2 "2+(A - X1)2 jaP2 [ui] 4, !'li [u11 u] + P)9 riii +

+ aP 3 ful] + a P fuiu] + -P12 (lui'3 ] + Ps [ ] +

4 3
+a-[u 1 ]) aP 3 (ull + '  .. +p 3+

' ~+ a4P4U]+aP1 [U1' ]j + + P4 +

By use of the relations which follow from w1 0

P2 ful - 0 and PI1 (UUli = 0

it follows in a somewhat different arrangement that
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P41u S (A- A) +'2 jul ]  a (A- A1) k'2 ju j + +

+ a4P3(uI +a3 (X -AN) P3 u] + ... +a 4P4 [u] + ... +

2 2t+ (X - X1 Pl 1f[ U'] +  a (X - X P 11 [ul ] +  "" +

+ aP2 1 u1 ,]+a (A- A) P 1(UX,U + +

3 l( u , +... + P 2 [u l + (X- NJ) P2 u

( - X 1)9 P2 [u] + .P 12 [ull, 1 +

+a(,- 1 ) P12 u1 ,ul + "'" + - u.,l + ... +

+ 1 + ( - N) P3 u] + .. + aP 1 3 (u 1 ,] + ... +

+ P4  
1 + "' (32.4)

From this expression of the energy the equilibrium equations are deri,,ed In conven-

tional manner by application of the principle of virtual displacements. This applica-

tion can most readily be carried out in two steps. First, the stationary values of

(32.4) are determined for arbitrary constant values of a. By this condition the

dependence of the functions u on the parameter a is determined. By substitution of

(32.4) the energy will then be known as a function of a, P (a). The values of a

for which stationary values of this function are obtained and the corresponding

functions U then yield the displacements for the equilibrium configuration.

The exact execution of this method encounters great difficulties due to the nonlinearity

of the equations for u. In order to obtain at least an approximation, the terms in

(32.4) which follow P2 [u] are neglected; with this the equations for u are artifically :
linearized. The following is intended as a motivation of this approximation.
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The integrands of the terms in (32.4) which follow P 2[i are of the second order in

and contain one or more factors X - X, or a , or they are of higher order

in E and its derivatives. If the considerations are restricted to small displacements
from a imdlanmantl uitnte whirh diffe n!ughtiy frnm t.A ertica! state, so that A - Xi

a and E are small, then it is to be expected that these terms are of minor impor-

tance in comparison to P 2[] . As a proof of this supposition the integrands of the
terms which follow P2 [E are combined into one homogeneous quadratic form of E"

and its derivatives. The coefficients of this form are functions of A - I a ,

and its derivatives, and they all approach .ero as X - l , and its deriva-

tives approach to zero. In analogy with the content of Section 25, it follows then that
for sufficiently small absolute values of X - kl 'a and its derivatives the

absolute value of the terms which follow P2 [fi] is smaller than an arbitrarily small

fraction of P2[i'] . Consequently, the smaller I ,- X,1I, IaL and jl are the better
is the approximation of the potential energy obtained by omission of the terms following

P [uL . The approximation of the energy is
2

PIN u] =PX [au(i) + U I = a 2 (h - X ) lou I + a2 (X- _ A)2 P "[U J +

[U I 4 3(
+...+aP u]+ _ (A-A) P3[u] + .. +_ I[uI+

' Xi)~2 " uit "
+.. + a (X - X1) Pi1 [u*i'] + a (A - A1) P 1u 1 ii +

21.. +_P iu, 3 ] + a (Ax -, 1) P2 1 [u ] + ""+

+ a3P [U ++ (32..)
-31 1 2 (25

It is important for what follows to notice that the principal neglected terms are given

by

(A - A 1 ) P2 [u], aP 1 2 [UlU], P3 [U. (32.6)
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33. CA-U-O OF AI

The application of the equilibrium condition to the whrgy appk-9,mation 132. 6% t a)lso

carried out in two steps. For the determination of the stationary values corresponding

to a constant'value of a, the energy increment Is calculated. This Increment is due

to the transition of the function u to a kinematicrily admissible function u + 17 which

also satisfies (32.3)

T11 [u,1 = 0 . (33.1)

After expansion of the integrals depending on u + n, it is found that j
2tp [au i + i + P El x aul + =a (h - xl) Pll [ Ul' $11 +

+ )2 P P+ _a1 , Pn ul,'7) +  9 2 2" +- 'g~ u,' +

a(- 1-) P2 tu 1 ,)i1+... +alU 1 ,,iJ. ,2. +

+ Pn 11 H I + P2  . (33.)

The flrst variation, given by the terms of (33.2) w~lch are linear in I , must always

be zero for a stationary value of (32. 5). As P2 [,7w is positive under condition (32.1)

the sought stationary value Is a minimum.

By analogy with Section 25,the condition obtained by equating \ '&.i, _ :,riaton to zero

Is made equivalent to a system of differential equations with L: i .  aquations. For

this purpose, an arbitrary idnematically possible function t k" 'mbjected to restric-

tiol, (33. 1), is written as

= tu + 7 with Tl[Ulf??= 0 and t = 1 1  
1

1 T11[ 1 n 2T 2 [u 1 1
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With due ont~OlaraiAmnn fn +6" iAa.A+m

P 1 [ulul] = 2P2 [u1J , p2 1 [u1,u 11 = 3P3 [Ul, etc.,

it is then Possible to write

2ai; - A1 ) P1 1 [ul't] + £(A- A) P11 [ulf +
a2p1 lur + 82(k

[U ] + . A1) P 1 [Ulft] + " + &3p [Ul,] +

+ "'" + P11 [i,1 t fa(A - A 1) 2P2 [ull +

2 " 2

"a(A- Al) 22P2 [u I + " +a 23P 3 [ull +
2- 3

a2 X _ 3PL lull + a4P [U .+ PiiU 1
14 + 11 ii

+ aL. - A1) Pl [u 1 '?l + a(A - A 1)u2  " + "'" +

+ a2P [Ul'q] + a2 (A _ A1 ) P21 [Ul'ii + ... +

+ a3 P31 [u11,7 + "" + P [u'?] .

In this expression the terms which depend on t are identical to the terms linear in
n of (33.2), and thus the sum of those is zero. With use of

P 01 u7 =o

* 7 9



and after substitution of t.it follows that

. a A 3£) PI-Ul 2T2 L~lTl1 IUl£ " +

It+ a2 I,' P2 lull2 ,l "ul T11  u ,t l +

+a2 ("  - [u) 1 ] -u 1, ] T lj

+ - X 2 1u 1'] 2T [u ] TI

+ atIi - P21 [U ] ( 1 2T 2 L T +[Ulp 0 + +

+P11 T = 0.

(33.3)

Similarly, analogous to Sect. 25, it can be shown that this equation, together with

the condition

2 ~ (3.5

+TPllr Plu [Ul,9t] + 334

- A1 )212  ,+ i a -f i T + at- I +  .. +

a2( -x 92 "" + a3 13 la 0' . s
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where 0 ' 1 2 etc. are the solutions of

2 2P [u1 I
rIi1, 1 PIUI,bJ ']- jj- "T-1 1 (ul,ii = u; I

(33.6)

P1 * +P 11 [ul ]  
1  '[ ] = 0

l 12 [u 1 ]

TP [u I ] ii 0

P1 1  + P full - 3T 3 u11 T ull 0
1212T 2  [u1] 1  f1 i = 0(33.7)

T 1 l, - 0

4P 4 [u 1 I

Pl11 + P 31 (Ulptl] 2T 1 Tl4 [UI 1  (Wl] = 0 } (33.8)

From (33.5) follows the confirmation of the expectation expressed in Sect. 32 that for

small values of A - A1 and a the functions ii are small compared to au1 . From

comparison of the first equation (33.7) with (25.16), it also follows that if P [u I3 1
is zerothe functions 92 are identical to the functions (2) introduced in Sect. 25.

The minimum of (32.5) is calculated by application of (33.3) for = u (see also

Sect. 25, in particular (25. 18)). By use of (33.5) it is found that
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2 ( - '[1u + a2 (- 1 )2 P ul + " + a3P [U] +
1 2 12 1 -3 1

+ P, lu + ... + a4 P [u] +... - p[

"1'3 1 -4 1 2 *

*1 It t
2  2... lull_a(k - x) P 2 I'l+a Xx) 2P 91

+.. +adp3 fu I + a3(?L 1 J 3 [ 1] lull'~ 2I +

+..+a4 P4[lull - 2 19'2 1 + *.(33.9)

Here in accordance with (32.6) and (33.5), the following terms have already been

neglected

a 2('X - 1
3 p2  1a(A _ X)2 Pl jk'1'q'2I

a u pA- .021 5P12  2'

Hence it would be meaningless to include any terms of the fifth or higher order in

A-A 1 and a . If, for brevity

t ttrt It 1
P2 [U1  A2 , P fu1 I~ p j A2l P3 (u]= A 3

(33.10)

P3 lu 1 ]- P1 1 [ 2  A3 , P4 (u1J - P2  2 ] -- = 4

then, a a first approximation for the minimum of the energy for a constant value

of a , it fLnally follows

2 2 12 2 32La,- A-A)e + (11-A11) Aa + A +

+ (-A A 3 + a4
+O 1 A3 4 A (33.11)
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I
it Iottows from (33.10) that only the terms quadratic in A. - 1and a_ of (33.5),

(a( - ki)('j , and a 2 , are significant so that the corresponding apnmximat!ion.

of the function U is given by

1( a + (33.12)

It is seen from (33.10) that the constant A3 is identical to the quantity which in the

first place is decisive for stability (see (25. 1)). If it is zero, then it follows from the

identity of the functions p2 and p(2 ) , that A4 (33. 10) is idontical to the quantity

introduced in (25.21), which in that case governs stability of the critical state.

34. IMPROVEMENT OF THE APPROXIMATION

As already has been remarked in Sect. 32, expression (32.5) represents an approxi-

mation of the energy which becomes more accurate with values of decreasing 4 -hI

a and u. Consequently, (33.11) yields an approximation of the stationary value

of P %) for small values of \ - ;L1, a and U , which is a better approxima-

tion the smaller A -k1 and a are; the required smallness of the function 5 is In

that case automatically ensured by (33.5) or (33.12). However, it is desirable to

know in what manner the approximation, when necessary, can be improved. For this

purpose, it is noted that (33.12) yields an approximation for the function U which

determines the stationary value of (32.4). This approximation is again more accurate

the smaller A - and a_ are taken. Now, if

a(A -A 1 ) I+- 2 +U with T11 [ulU] = 0, (34.1)

then as a consequence, u is expected to be small in comparison to the first two

terms.

Introduction of (34.1) in (32.4) yields after expansion and after arrangement of the

terms according to increasing order in ' and its derivatives
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Eul~ 2AA)~ L(~?~~ A a 3 +( )A Aa ' " 3 +3
(l -X XI) Ag + (X Pl 9' + 3- 13

A4  + 
2  1Z~ ( 1 1 1 1

+lp - 1
4 t' u + P Ivii + P 2~

+ 2(A - X1 ) 41w" [u + 1l1 luv'iI + ?i2 19l'1 + +

+ [U 2 1 IU11 O' I + '12 tu.j+ 3 '~~if1 ' 2  +

+ P , 2  + P1 1 1 _u,~2 + J~ lp+ll

u p2 11 1 I'''p + 3I~'2 ' ~~

+ **1.uli + Ul 2 [u11 + 3 1'F11+ P1 11 u 1  +

+ (A 1 ) +P [ + Pt4 1  P'4 lul + P3 1  Ju+

+ p21l [U92 + P1  j u .' 21 + P 1 2 a'2(91 ++

+ a4( 1- Xi l + P 31  U 1 j + P22 lu l +P I2] + .+

+ + !5(A - A 1) 1 + 31 [] + P 12 Cu"P1 +

+ A1)3  l ul + P 1  + P3'1 u'p +

!(X X A) ~ 1. Eu] +P 11 Jui',=] I ++
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+ -a2(-A) 1P21 [ulU + P111 [u 1'¢3',] + PU

t Piiti# 2u1"!2 + +ll L[ 31 2' ]  + P" u~ 2 u~ 1
+ 19.f. (A-. 1' _']+ .

+ ~ ~ ~ ~ ~ u" '42 p t 1 ii ' P 1  u1 l

t P + + a ' -

il4 1 1P3 -"U il u'2

i1 r'~I P 1  1 [UP 1 ,9 '',i " ~I + ..

-Il 1 P'1+pl 21 '2'j'U1

+ P2 ful + (? ' -X' 1
) P2 U + +

+ ap 2 [u11A + a(Ak - A1)I1  [UI+ 1 {,j +

-P2 2 1ulu] + P12 r, 9 2 } + . +P3  ... (34.2)

Here use has been made of the properties of the function V and ' 2 through

combination In expression (33.11) of all the terms which are independent of U
and which are of the third or fourth order In A - A Iand a. Further, due to

the first of equations (33.6) and (33.7) which hold for ( and (p respectively,= 2
the terms linear in u and its derivatives with coefficients a(,\ - A1 ) and a

are omitted.

In the same mamer as in Sect. 33, It lan be shown that the terms which follow P2 MJ for
small values of X- A1 , a and U and its derivatives are small in comparison to

P 2[W and that they consequently can be neglected. Next, the stationary values of the
remaining approximation of the energy are determined for constant values of a .
31nce this analysis proceedo completely parallel to Sect. 33, it will suffice here to
indicate the results. Again, the required stationary value appears to be a minimum,
while the uniqueLy determined function E for which thts minimum is obtained can be

written

2 " 2 ( X +

u a_( - ) V +. (X,-. 1 )0 2 +a a 3 + (34.3)
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I
Terms of the fourth and higher order in -A 1 and a have no significance in this

expression. They yield a contribution to the minimum whose lowest order terms are
A .n" Ui. I... ......... .. 0 4- 4U-... . 9, A

to terms of the same orderin ( A- XA1 ) and a . The functions 0 1 1'0 2' and ' 3 03

are, respectively, the solutions of the equations

P1 1 NL
't) + P [ul I 1  + 1 t +

2 P ( u 1 + P 'lIv u2 T 2 [u i  T11 [1'al] = 0 ; TI, [lj'U= 0 .(34.4)

11 1 + IUl't + P 1 1 1 1Ull' ' + Pll 1',P2 +

3P 3 [tl] + 2P 2 1 ll + [11102 -UlT

-2T2 1 1  T 11 lull lC] = 0

T. 1 ru1, ) = 0. (34.5)

Pll [u,, r] + P3 1 fullC] + P 1Ill 41"P2 ' q +

4 , [u1  + 2P 21  1 T1 1 T [ul = 0; Tl ru, 1 .] = 0. (34.6)

A comparison of (34.6) with (27. 13) reveals that the Identity of the function 2 2 and

V (2) for A3 = 0 also results in the identity of the functions 4' to the functions 0(3)

which were introduced in Sect. 27.
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After introduction of the notations i I

P2 fu 1 P 1 [ul 99I +1 191 1~ All

P2 [u ] + Plu I ' °1] + P2 P = 2 
10f,11 A"P3 lul + ' I R "

P3  1 + JP1ful'J + P 1 2 Iul,' + +

+ E'1 2 3t' =

fit It [ ] 0,] ' i

P3 LUli + P21 ul "P + P12 Juli'I + P[ +

+"p01 " 2] -P , ; 01 A"'+ Pl [ul 2 1 + P11 H°i - UI' = A3

P4 [Ul] + P31 ul qI' + P2l u1 ,ul P1+ Pll I*ui9'uI' 21 +

, ,2 (34.7)
+P 2 [ '2 A4 ,

P4 [u I + P 31 JUl + P22 'uI + P21 [l-21 +

+ P111 [ui1,' 2 1 + P2 1 ,p'1'21 + P+2 o'p2] +

Poll I ", 0ai -. 02 1 -~ A"
P4

I [ui3 + P3 1 (u1 9 '21 + P12 lu 1 '21 = A5

P8[U]+P 1 [u1 9J + p 1 [U,92 ; l [u1 'P21 +
5 1+ P4 3 p ,lll'1+P1

. P12 [ul'9 21 P+ 
1 2  , "P- I A6

P6 [Ull + P 4 1 [ul "P21 + P2 2 [Ul, ' 2 1 + P3 [9q21 - P2 (031 A6
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the minimum of the approximation of (34.2) becomes

IA-X_ .Aa 2 + i 2 A.. 2 +(XX)3 A a2  -

+a) ( -(AX + A f. 2 • _ a _ +

A2 3 +( - 1) A 3
,,Aa3  +_ A 4

2 t 3'4
+ (AA) 2 A3 a + (X-A 1)3 A3 a3 +A44 + (XA 1 )A e +2" 4 5' 5 A6

(A-A1) 2A 4 a + A5 a + (A-A)Aa (34.8)

In this expression terms of an order higher than six are consistently left out.

It appears from (34.7) and (34.8) that by inclusion of terirn of the fifth order, it is

even possible to improve (33. 11) without the knowledge of the functions 01 1 02 and

03 . Further, if A3 is equal 'L- zero, the coefficients A5 and A6 are identical to

the quantities (27.5) and (27.18) introduced in Sect. 271, which successively govern

stability in the critical state if A3 as well as A4 are zero.

It requires no proof that the described process of improvement can be continued by

writing the functions U as

20 1" a2  , aXX33

a(),- )  (- 1)02 +a_, +U with T11 [u1 ,u] = 0.

This manner yields for small values of A - A1 and a a power series

for the statiunary value of (32.4). Of course in general nothing can be said about the

region of convergence of this series.

35. THE EQUILLBIUM STATES

In this section the stationary values of PX(a) as functions of a_ will be determined

in the case that P(a) is given by the expressions (33.11) and (34.8) as a first and

second approximation respectively. The corresponding values of a and the
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functions u (33.12) and u (34.3) yield in that case an approximation for the

displacements in the equilibrium states. The analysis of the stability Involves

Now, if the stationary value of P a) as a function of a, is again a minimum,

then tie approximation of the energy (32.4) or (34.2) also possesses a minimum

with respect to varied functions u or U= and simultaneously varied values of a.

Equilibrium in the corresponding displacement configuration is then stable. In

reverse, the approximation of the energy does it possess a minimum If the

stationary value of !P,(a) is not a minimum, and in that case equilibrium is unstable.

For the derivation of a first approximation expressions (33.11) and (34. 8), representing

respectively the first and second approximation as proposed in Sect, 34, may be con-

siderably simplified. For this purpose it is noted that equilibrium in the fundamental
stat,9 is stable for < X so that

P [ui - P2 (u] + (W- 'XI) P2 [u] + ....

should hold. Because P2 [Ul]= 0 it follows that

(A-A 1 ) P u1].+ ...

This relation can be satisfied for A <, 1 only If the constant A2 (33.10) is non positive.

The limiting case in which A2 is equal to zero does not occur in applications thus far

considered, so that in the following it is assumed that A2 is negative. For small

absolute values of X - A and a all terms containing at least one factor A - A

are small in absolute value compared to the absolute value of the first term

-1 A2a , and in a first approximation they may be neglected. Further,

among the terms which contain no factor of X - 1 the term of the lowest order in a

is the dominant term. Let this term be Anan (in which case the stability of the critical
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state is governed by the quantity An) Then (33. 11)and (34.8) lead to the expres-

sion

P(a) = (A- 1) A 2!
2 + An. n 3. (35.1)

A simple procedure for the construction of (35.1) can now be given. By use of

Chapter 2 stability of the critical state Is analysed. The quantity An which governs

stablity appears in (35.1) as a coefficient of an . Calculation of At which coefficient

Ji -is given by (33. 10),does not offer any difficulties.

The states of equilibrium are characterized by stationary values of (35.1), I.e., by

dP (g) = 2(- A' + nAnn- 0. (35.2)
= 12 3 nna1

Stability is governed by the second derivative of (35.1)

d - 2 A , ) A' + n (n -1) Ann ' 2  (35.3)
d a 

-

Equation (35.2) is satisfied by the s6lution a = 0 in which case the functions 71

and ; become also zero. This solution yields the already known fundamental state.

The second derivative (35.3) is positive for A<,% and negative for X >X1 , so that

equilibrium in the fundamental state is staL1. or unstable depending on whether X is

smaller or greater than X 1 , (in agreemet with what already was known). The other

solutions of (35.2) which determine the nelgiiouring istates, should satisfy

n-2 2 A2 (
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i n (35.3), it follows for the second derivative of !Aa) In these states 

d2 P (35.5)S= - 2 n -2) (A -A 1) A
2 2_

Consequently, a neighboring equilibrium state Is always stable for A A 1 A and

always unstable for X <A'

In a discussion of pobsible neighboring states of equilibrium, distinction must be made

between even and odd values of n and, in the tatter case, between negative and posi-

tive values of A as well. For odd values of n, A can alwys be taken positive since,n
according to (35.4) and (35.5) an equilibrium value a corresponding to positive An
corresponds to the same type of stability behavior as does -u ina system with

negative An. Consequently (35.4) possesses a real solution for both positive and

negative values of A - A1. This is determined by

1
n-2

a ( A) ( i- 2  (35.6)

and it follows from (35.5) that the equilibrium is stable for A >A and unstable for

For even values of n , (35.4) possesses real solutions only for negative or only for

positive values of A - A 1 0 depending on whether A n is negative or positive respectively.

These solutions are determined by

1 1
,n-2 1 n-2. 1

a = A. ( 1  A)n and a = ) (-x 1 ). (35.7)

91



F

1r& 0.t- i. € m... m% +ho. 6a4h ahttIjina firt inantinnAd Anriannnd to unstable. ahe

last mentioned to stable equilibrium.

According to the considerations of Chapter 2, equilibrium in the critical state is unstable

if the governing quantity A corresponds to an odd value of n or if it is negative andn
corresponds to an even value of n. Equilibrium is stable if the governing constant

An corresponds to a positive n and is even. The results obtained can be summarized

as follows. If equilibrium in the critical state is unstable, and stability is governed

by a quantity with odd subscript (A3 , A5 etc.), neighboring states of equilibrium

exist for loads greater than as well as for loads smaller than the bucklingload; the

equilibrium states for loads greater than the buoklingload are stable and those for

loads smaller than the bucklingload are unstable. If equilibrium in the critical state

is unstable and stability is governed by a quantity with even subscript (A4 ,A 6 etc.),

neighboring states of equilibrium exist but only for Loads smaller than the buckling load;

these states are unstable. If equilibrium in the critical state is stable, in which case

stability is always governed by a quantity with even subscript, neighboring states of

equilibrium exist but only for loads greater than the buckling load; these states are

stable.

The relation between the parameter a , which represents a measure for the dis-

placement from the fundamental state and the load parameter A as given by equations

(35.6) and (35.7), can be represented in a diagram. Fig. la gives the graph for a posi-

tive value of A3 (the graph for the negative value can be obtained from this by taking

its mirror image with respect to the X -axis). Fig. lb and Fig. 1c respectively give

the diagrams belonging to the negative and positive value of A4 in the case in which

A3 - 0 . Finally, Fig. ld gives the diagram for the case in which A3 = A4 = 0 and

A5 is positive. In these graphs the stable states of equilibrium are represented by

heavy lines, the unstable equilibrium states by dotted lines. The boundary between

the area in which equilibrium must be stable and the area in which it must be unstable

is a curve obtained by equating to zero the expression (35.3). It is given by a dash -dot

line.

At the critical load equilibrium states exist which deviate from the fundamental state

in an infinitesimal sense and which are determined by (32.2) for infinitesimal values
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of a. If this solution is conceived as an approximation valid for small but finite

values of _, it follows that its image in the diagram is given by the straight line

X A 1 . It follows from (35.4) that this approximation determines the tangent to the

curve X versus a of the neighboring states of equilibrium at the point A = NJ ' a = 0

for n > 3. In these cases, already the first approximation leads to some insight

into the character of the neighboring states of equilibrium. However, for A 3 * 0 the

method fails to describe the real behavior even approximately (see also Fig. la).

It is noted that for A 3 = A4 = 0, the use of approximation (33.11) also leads to the

straight line X = Al in the graph X versus a; for, in that case the derivative of

expression (33.11) with respect to a contains the factor. X - X' Consequently,

for a better insight in the real behaviour, it is necessary to consider the improved

approximation (34. 8) or what amounts to the same, to continue the -analysis of the

critical state until a nonzero quantity A n has been found.

The considerations in the foregoing are based on the simplified expression of P X(a)

(35.1). In principle, an improvement of the approximation can easily be obtained by

use of the unabbreviated expressions (33.11), (34.8) respectively. This is illustrated

by the application of the equilibrium condition to (33.11) for the case A3  0 4
,? ,,3

d P (a) 2 A A 2
da 1(01) 2( - )2 _  33 +

d"'a+ i - 'a2+4
1 3- 44

In addition to the trivial fundamental state, the following solution exists
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I

3A-. +3 IX- X. A-.
a- 8A4

, 2 , Al)2
9[A3 +(Q-Ap)A 3 ]  1(--. 1 )A 2 +(-A ) A2

2- 2A464.A;

3A 3  A3

8A1 + - 1) A -- + . I 82

A3

Al 2 A2 4 2 'A4+ 3X.1~ 2 A l AA34...22 2 A -

3 A3

The second root approaches -3- as X approaches ; this is not a small quantity

in the neighbourhood of the buckling load and it need, therefore, not be considered.

Expansionof the first root in terms of X - XI gives

A+A2  2A

(IA A 'I I! 2A

+(2 .3 2 2 16 A2_ 24

\A 3
2  -3A 3 - 27 )/ + ... (35.8)

Terms of third and higher order can be omitted in this expansion because their contri-

butions to the expression (33.11) are at least of fifth order; such contributions are

already neglected in the improved approximation (34.8).
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derivative of (33. 11). After substitution of the value of a as given by (35.8), this

derivative becomes

/ 12
d 2 A= ~ ~16 A 2 A 24
- 2 -A2 -T ((-X2)2

It appears from (35.8) that approximation (35.6) determines the tangent to the curve

which for a neighbouring state of equilibrium represents the relationship between X

and a . Furthei . it appears from (35.9) that for not too great values of I X -X 1 I

the conclusiona concerning stability as deduced from (35.5) remain valid. Therefore,

the improvement leaves the character of the first approximation unaltered. In cases

for which A3 is equal to zero, corresponding conclusions hold. Consequently, the first

approximation following from (35.1) will at least suffice for a qualitative analysis of

elastic behaviour in the neighborhood of the buckling load. Such a restriction can also

be justified on another basis. As mentioned in Sect. 34, the region of convergence is

unknown for the series expansion obtained for IPX(a) through the successive approxima-

tion. Therefore, in general, the region of validity of the approximate solution cannot

be extended at will by use of a greater number of terms. Also, this improvement has

sig-lficance only for a region of X values in the neighbourhood of the buckling load.

This region is different from case to case. As has been said above, in this neighbour-

hood the behaviour in the large is described by the first approximation.

36. SPECIAL CASES

The foregoing considerations were based on the assumption that w2 , the solution of the

minimum problem (24.4) for the critical state, is positive. Here the changes will be

discussed which correspond to the case in which this condition is not satisfied; for the

time being w3 is assumed to be positive.
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The general solution of the variational equation (24.14) for neutral equilibrium is in

that case

u = au1 + bv I . (3.1)

Here, for the sake of a more symmetrical notation u(2 ) =V is introduced. If (24. 14)

would possess a solution differing from (36. 1), then it would always be possible to write

it as

u = au1 + bv I + u with T11 [ulu] = T11 (v1 ,u = 0 (36.2)

Sabstitution in (24.14) leads to the following conditions for

P 11 
[ u'  ] = 0, T11 [uiil = T1 1 [v1 ,u) = 0

which for = contradict the assumption w3 > 0 . On the basis of considerations

identical to those of Sect. 32, the displacements in the analysis of equilibrium states

in the neighbourhood of the critical state are written in the form (36.2). Substitution

in (32.1) gives, after use of the relations following from w= 2 0 and after

expansion and arrangement according to increasing order in u

pACu] = a2 )(L- y P 2 _u] + (A ' A1 )2 P2 [ul] + ""1 +

+ ab ( x- A,) P11 [u 1,v1J + ( A- 1
2 P1h [u1 'v1] + '" +

22
2  31 )P2 [vi] +(X-X 1 ) P2 [vl1  +.""j +

+a3~~~~~~ P3u1  +(-A)P1u]+. +a~ +PiuvJ ..
+ a4~ P 1 2 [u 1 v] + A . + b P [lv 1  + ... I +
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+4a2 b 2  p [U I,"V + J + ab3.1 p 3 [u .,v1  + " + J"
+b'0IP 4 i] +..IV I + ... +

a x -A ) P t u1"u] +  A -" A P1 [ut'Ul + ... I +
b ((A-A 1 ) P VU] + (A- 2 pi [VU] +  +

+a. P21 tu,U) + (X-X, P',, (u1,,i + +

+ ab PIll [U1 0V11 U] + ( A- 1) PX11 [uVl] + "'' +

+ afP 3 1  tuIX + ( a .b1 P 21 [(lu 1 1v ] +

+ ab2 112, uI vUl + ... I+ ,3 IP3, [v,a1 + +

+.. + P 2 1ul + (\-: ) P 2 Ju] + ... +

+ aIP12 uIX + .. +b jP1 [viu] +... I+
+ + p [ 3 +*... (36.3)

For the application of the equilibrium conditions, the stationary value of (36.3) will
first be determined for constant values of a and b in a manner analogous to that of
Sect. 32. After tha% the stationary values of the functions so obtained P (ab) will
be established with respect to a and b . In this process, omission of the terms
following P2 (U] in (36.3) are justified in the same manner as in Sect. 32. The ap-
proximation of the energy thus obtained again appears to have one stationary value
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for constant values of a and b and this value is at the same time a minAmum. The

functions U~ for which thi minimum is obtained nin be written in the form

U (~ 7)~ +2 2
1 10 b(- 1) 0 1 + q20  +b +

- r -(36.4)

where 10 *O " 20~ '*, an 9 02 are given respectively au the solutions of the

* equations

P tum + P, ~ 2P2 lull1 ] u
p1 1 [jJ+ 11  ffi~1 - ' [ 1 T11 [ 1 C

P 112  [uv 1 T1  [v i ~ P t o 0 T 1  [u1 1191 T -1  [ v u ] 0

2P 2 (v1  1

2T [ t+'lv 1J T 11 L 1~ T 0U I T+ u,1 T v 3 1

2T2 full i1 i1 ~

-2T, V T1 1V 0; T 11 (ui OU] -P T 11 [v13ul 0

111t P2[lg . .- .1-.-.-. 11.



ITr '1 .1. D ,, 'rl . 2P2 1 [u 1,v11 T.. [U.,] +

_2T2 v1  T1 1 [Vi,t) = 0 ; T 1 tUl,'1 T1 l (v!,fl1 = 0

21 [ul'vl

11 + P2 [v -12 1,V1 T+
21 1 2T 2 full T +

'P3 [v]
- Tll [v1,] = 0 ; T1 1 uifUl,] TII [v11 ,] = 0 . (36.5)

Here the contribution to (36.4) which are of the third and higher order in (X - A1 ),

_ and b have already been omitted since together with the contributions in (33.5),

they are of no significance in the present approximation. The derivation of equations

(36.5) is completely analogous to that in Sect. 272 and in Sect. 33, so that its execution

can be omitted here. By comparison of the last three equations of (36.5) with (27.33)

it can be shown that the functions (20) (11) and (0 as defined in Sect. 272

agree with the functions introduced here, provided the condition,(27. 24) Is satisfied.

Also, the calculation of the approximate stationary value of (a, b) is analogous

to the preceding analysis. If for brevity is introduced

P 12 Wl ,v 1  - P 11 19 10 9 0'21 - P1i1~'i "O"11 = Cl'2

P 3 [V1  - [ll ,Ol' 1 02  
= C0 3

P 4 1U] - P 2 [ C2 01 = CO I P 3 1 uO3v11 - P1 1 [P20' 111 C31 ' (36.6)

P22 [U1pV 1 P2 ['11] - Pil 1920'9021 = C 22

P
13 Lul 11 ] - Pil [' 1 1 q' 0 2

] = C 13 , P 4 [Vl] -P2 ["021 = C04
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P2 [ul] 
= C20,' P1 1 [u='v20 = P2Lv 1 [ = 002,

it I It j | w t 'P2 (Ul 1- P211[= C 2 ,Pl(lV]-Pi I' 1 l':

PIVII -P 190] = c02 (36.6)

P3 [u1] = C3 0  P 21 Uo'vl] = C21 P P12 [Ulvt] = C12' P3 [v] = C03

P3 [Ul] - i1 I'lO'201 = C30

P21 (u1 Vll - P11 j( 1O.'11J - P11 1'0o192o 0 21

this approximation becomes

(a, b) (A-A 1 ) (C20 + Cl1 b + C0 2b ) +

+- 2 t, 2 I't 2)

1(A (C2 0 a + C01 ab + C0 2 b ) +

+ C30 a3 + C2 1 L2 b + C 12ab
2 + C0 3 b3 +

,3 '2 ' 2 '3

+(A- 1 ) (C 3 0a C21 + C12ab +C 0 3 b) +

+ C40 4 + C31a b + C22a 2b2 + C 13-b + C04b4  (36.7)

Terms of the fifth and higher order in X - Al, a and b are here insignificant,

even more so then in Sect. 33

From (36.6) it is seen that the terms of- second order in a and b in (36.7), which

contain one factor A - A1 , and the terms of third order which do not contain a

factor A - A 1 depend exclusively on the eigenfunctions u1 and v Further, if

the conditions (27.24)

C30 = 21 = 12 = 03 0
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are satisfied,then it follows that the fourth order terms in a and b of (36.7) are

identical to the form (27.37) which governs stability in the critical state.

;IThe general case

02 3 =. = Wh.I =1O wh> 0

can be analysed in a similar manner, by use of

h-i

u = ajuj + ii with T11 [uj,U] = 0 . j 1, 2 ... h - 1. (36.8)
j =1

In this csJse, the approximation corresponding to (36.7) can be written

PX(al) - ( -, 1 )P 2 (aj) + (A,-X 1 )2 P2 (a) + (aj) +

In this expression, P2 and F3 are completely determined by the h-1 eigenfunctions

U i 
h-1 h-1 

P2 (aj) = P2  aU = aha- Pll [u,'up ]  (36.10)

2 1 21t a[av=I j il =1 PB=I

hI h-1 h-1 h-i

P (aj) = 3 j auct aaayaPiii luU,USUV
a=1 1=1 =1.
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For calculation of the remaining terms in (36.9), the solution is required of a set
fequations anlogous to (43t. Ifl. i....-.cy...---------L,,,

the present case corresponds to condition (27.24) for the case with w3 > 0, then

P4 (a ) will again be identical to the expression which governs the stability at the

stability limit. The form (36.10) can never assume a positive value because, in

analogy with Sect. 35, it would otherwise be possible to conclude that the fundamental

state can be unstable also for X < XI .

As a first approximation, in (36.9) the second and fourth terms are neglected in com-

parison to the first and third. Besides, if (36.11) is not identically zero, the last

term will be neglected in comparison to the third. In both cases the result is

(aj) = 1) P2 (a) +Pn(aj) . n = 3 or n = 4 (36.12)

The stationary values of (36. 12) are determined by the equations

S( ,- 2. i + a. n = 0 , i = 1, 2, ... h - 1, (36.13)Dai 1OR i 8a 1

while the stability of the corresponding equilibrium state is governed by the form

h-i h-1 h-I h-1 2 y
81 a Aa aj = (Aa +

i=l j=l i=lj=l

h-i h-i 2-
+ -_J-AaAa (36.14)
+=13=l 8aia. I 3
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Although the solutions of (36.13) cannot be given as easily as those of (35.2), they do
admit some general conl.IuRinniq. Tn the firt plaee.(36, 131 rossesses the solution
aI = 0 which yields the already known fundamental state. It follows from (36.14) that

the stability of this state is governed by the form

h-1 h-1 a 2 _ 3.5
(AA)hl- 2' Aai Aa = 2( X-A ) P A) (36.15)

Xa, 1 a- i 1 2

Therefore, the fundamental state is stable for X < X 1 unstable for X>X1 , in

agreement with what was already known. 1

Furthermore, it appears from (36.13) that for n = 3 , the existence of a solution a
for the load parameter X implies the existence of a solution - ai for the load param-

eter 2A 1 -A . Thus, for n = 3 no neighbouring states of equilibrium exist at all or

neighbouring states exist for loads greater as well as for loads smaller than the criti-
cal Load.

Multiplication of the ith equation (36. 13) by ai and summation yields

h-i h-i

h- ~ 2 -,
(x-NJ) i a ~+ I a1 -ijB 2( A- \J) P(~

i=1 =1

+P (aj) i 0 . (36.16)n

1Here the case that (36. 10) is semi ,iegative definite is disregarded; although it is in
principle not excluded, the stability decision for X < 1 is then not sufficiently
substantiated by (36.15).
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When n = 4 and P4 (aj) is positive definite, I. e., when equilibrium is stable in the
critical state, (36.16) can only be satisfied for A > A ; therefore, in this case.

neighbouring states of equilibrium exist only for loads greater than the buckling load.

If the solution of (36.13) is substituted for A a then, after use of (36. 16), (36.14)

becomes

h-i h-i 2 h-i h-i 2* (-x)~ P2 + I....ana
(A -X- aiaj + aiaj =

il j=1 i=1 j=1 a

= 2 (X- AI) P2 (a) + n(n - 1) Pn (a.) - 2(n -2) (X- A1)P 2 (a)

This expression is negative for X < 1 . Consequently, all possible neighbouring

states of equilibrium for loads smaller than the buckling load are unstable.

37. NATURE OF THE PROBLEMS DISCUSSED.

It was pointed out in Sect. 32 that the assumption of a possible Taylor expansion for

the displacement U(X) and its derivatives with respect to A - A1 implies that the

fundamental state exists for loads greater than the buckling load. This fundamental

state approaches continuously the critical state as A approaches AI. In addition
to the fundamental state in the neighbourhood of X1 other equilibrium states appear

to exist which approach the critical state as X approaches A 1 (See Sect. 35). The
state of buckling represents a so called bifurcation point of equilibrium; the
significance of this term is illustrated for instance by the Fig. 1.

Now, the question arises whether under the assumption mentioned above all possi-

bilities are exhausted which occur in practice. This question must be answered in the

negative. There are structures with load systems for which no equilibrium states
exist which can be obtained by gradual increase of A in excess of a critical value A *

and which when X is monotonously decreased, pass continuously over into the original
fundamental state corresponding to A * (see [401). If equilibrium states are considered

which vary continuously with A in the neighbourhood of the critical value, A *

105



renrnAfita a . bf t p, ibLun A vaiues. In a graph of a displacement

component v at a point in the body as a function of A, this is generally indicated by

a horizouLal Wagent to the k versus v curve. The equilibrium state corresponding

to the critical value x * represents a so called snapping point. In particular, Biezeno,

has analysed several snap-through problems ([411).

A snapping point has in common with a bifurcation point that equilibrium is neutral

([40]) and thus the snapping points can be determined by use of the conventional

theory of neutral equilibrium. If the solution of the minimum problem (22. 5) is

positive for A < A* as A is gradually increased from zero to ,*, i.e., if

equilibrium is stable for A < A*, then it follows that the state of equilibrium

determined by X* is at the stability limit; X* coincides with the parameter value

%1 for the buckling load. Likewise, the considerations given in Sect. 2 retain

their significance for the analysis of stability of the critical state. In summary

the stability theory given in Sect. 2 is generally valid; the theory discussed in

Sect. 3 dealing with states of equilibrium.for loads in the neighbourhood of the

buclidug load is essentially restricted to buckling loads corresponding to

bifurcation points.

38. EXTENSION OF THE THEORY.

It has been remarked more than once in the foregoing that the developed theory is

valid only for loads in the neighbourhood of the buckling load. However, In engineer-

ingone cannot always be satisfied with this restriction. Consequently, for some

important plate problems,several writers already have developed methods which yield

useful results considerably above the buckling load (see [46]). By introduction of

some simplifying assumptions, which all are satisfied for these plate problems, the

methods mentioned above can be combined in an extension of the theory developed in

the foregoing.

The first assumption concerns the external loads; the direction and magnitude of these

loads are assumed to be known with respect to a rigid frame of reference. The energy

of the loads is then linearly dependent on th3 displacements (see Sect. 29).
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Further, the displacements in the fundamental state are supposed to be so small that

quan'tiLle of the second and higher order in these displacement, U(A), and its deriva-

tives may be neglected in comparison to quantities which are linearly dependent on

U(A) and its derivatives. A first consequence of this assumption is the linearization

of the equations of equilibrium for the fundamental state so that the displacements of

this state are proportional to the loads

U(I) = xU . (38.1)

In the increment of the elastic energy (29.4) corresponding to transition from the

fundamental state (38. 1) to a neighbouring state U(A) + u, the terms whose integrands

are of an order higher than the first in the derivatives of U(A) can be neglected.

The total energy increment on transition from U(A) to U(;Q + u then is

P 'u] = V Jul - Wi lui + VO Jul + V2 Lu] +2 2

+v0 [ul + V [ul +v 4 u! . (38.2)
V3 [ 3 0 u

The sum of the terms linear in u must be equal to zero as the fundamental state is an

equilibrium state. Furthermore

V0 [u PO [u] , m = 2, 3, 4m m

and after use of (38.1)

V1 Eu[ Apt u! , m = 2, 3.

Hence (38.2) becomes
P"Jl P 0 (3.3

u] -- P2 Ju] + XP2 [u] + P3 JuJ + AP3 [ul + 4, fu] . (38.3)
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In this expression, as in Sect. 31.

P0  l V u - ul
2 2 u

is positive definite.

The fundamental state (38. 1) is uniquely detormined so that the buckling load will be
determined by the smallest value X 1 of the load parameter X for which the homo-
geneous variational equation (24. 14) for neutral equilibrium

PI [u,l = P 1 (u, t + Pl 1 [u, t = 0 (38.4)

possesses a non-zero solution.

This equation in general has non-zero solutions for a sequence of increasing A values

X1 I A, 1391, the so called eigensolutions. It is evident that the solution corre-

sponding to A1 is identical to the eigenfunctions u1 of the minimum problem (31. 1)
corresponding to the buckling load A 1 However, the remaining eigensolutions of
(38.4) can be correlated with the eigenfunctions u2 , u3 , ... of the minimum prob-

lems (24.8) corresponding to the buckling load A 1 if

T2 IV] = P)2 [ul (38.5)

This is always possible as p0 Ju] is definite. The problems (24.8) in that case are

formulated

0
P Ju] + 2 [ulW h = inh P2 0 ul

(38.6)
with the side conditions

P0 0[,u] =0. j - 1,2... h-i
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The homogeneous variational equation (22.9) for the elgenfunctions uj then becomes

(1W P) [u,t + A1P 1 [u,] 0

which, by the substitution of

X.,

S= -- (38.7)

becomes identical to (38.4) and consequently has the same solutions. The sequences

X1 4 2 A3 , ... and IW, "2 ' w3 .... are both monotonically increasing; this is

only possible if (38.7) is valid with identical subscripts on w and A

Wh 1 - (38.8)kh

Thus the eigensolution of (38.4) corresponding to Xh must be identical to the elgen-

function uh corresponding to wh

1This does not imply that the set of eigensolutions of (38.4) corresponding to positive
values of A are identical to the set of eigenfunctions (22. 9). On the contrary,
eigensolutions of (38.4) corresponding to possible negative values of x are also
represented in the eigenfunctions of (22.9). In the subsequent considerations, nega-
tive values of X have as before bcen disregarded since these cases can easily
be reduced to those which are being treated by replacement of the unit load system
by one with opposite sign.
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Use of (38.5) also gives the advantage that a vector function u satisfying the

condition

P [u =u 0 (38.9)

on account of (38.4), also satisfies the relation

P 1 1 .ijui] 0 (38.10)

and vice versa.

The integral P 2 [ul can also assume negative values. If it Is definite negative and

of a more simple form than P 0 u] , it is even more advantageous to set
2!

T2 [u] - P2 [u] . (38.11)

In that case6 the identity of the eigensolution which corresponds to X h and the eigen-

functions uh of (22.9) can again be shown in analogy with the foregoing. Also, the

equivalence of the relations (38.9) and (38.10) remains unchanged.

For the analysis of the equilibrium states at loads in the neighbourhood of the buckling

load separation (32.3) has successfully been utilized. Again, if for the time being the

solution W 2 of the problem (38.6) is assumed to be positive, then to make also ise

the usefulness of (32.3) is obvious for the analysis of equilibrium states at loads

further removed from the buckling load. Introduction of

au +u with P0 NIi X] = 0 (38.12)

110

S- ~--i



in (38.3) yields after expansion and rearrangement I

SN u) a a2 kpO [u1  + Ap" [u1] I + a3  PO [u,] + XP3 lull +2 3

4 0 a2 fr 0  [u a] + Np 1  
3+- 4 1u,1+ t° + 112 21 l 1 .a31 u,

+ [u) +AP 2 
[ u] + a I12 [u I  +XP 1 2 [uI +

I2 2 UlU] + pu [] + pU] +aP13 ul'u] + P4 ( ]

(38.13)

In this expression use has already been made of (38. 10) which follows from (38.12).

With use of (38.12) it follows from (38.6) that

0 ] + 0 [] 0P2 W2 P2 lu

or with use of (38.8) that

P 0 [(u + AP2[ - 2 ( ]  (38.14)

Consequently, the left hand side of (38.14) is always positive for X < 2

Now, if it is assumed finally that the displacements u from the fundamental state are

small, so that a and u are also small, then omission of terms which lollow AP2 [ ]

can be justified in the same manner as In Sect. 32. 'he integrands of these terms are

either of the second order and contain in that case one or more factors of a, or are
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in (38.-3) yields after expansion and .- Iarralgem:rnt

P ul a2  Pi [U' uI I + a3  tuJ lul+j 2 u1  + 2 ± V P3 lull

+ a 4 p P 0 4 a 2 IJp1 ru1,u + XP ' Jul 1 1 + a3 P3  fu1,ul +

+P Jul + AP2p Rul IP1i2 Jul ,U + "Pl 2 (ul',u] +

+ a 2 2 Jul o~i + P0 3' 3 JulR + aP1 lul,ul + P u

In this expression use has already been made of (38. 10) which follows from (38.,12).

With use of (38. 12) it follows from (38.6) that

0 00-P 2u ul + x P ul +3P [UU

I ' I

2 1 2 2 2 ,l

ith use of 38.e second oe adontai8.in that cot

002 [u] + 'P 2 2u 1- P 3.4

Consequently, the left h~nd side of (38.14) is always positive for X<x 2

Now, if it is assumed finally that the displacements u from the fundamental state are

small, so ', dt a and u are also small, then omission of terms which follow XP 2 (U)

can be justified in the same manner as in Beet. 32. The integrands of these terms are

either of the second order and contain in that case one or more factors of a , or are



II
0-+2U0

P fu, l + AP 1I (u,tI + a' 1P 2 1 [ulC] + AV +Pll 22

3P0 [UlI + 3AP 3 ful] )

• 0. . 11
k2 lull

+a [u1 u] - P [u' C1 0. (38.18)~31 2 0 u1 11
P2 11

This equation should, together with the condition

0-P1 1 [Ulfu 0 (38.19)

determine the functions u . Indeed, the solution is uniquely determined for

X:# xh , h = 1, 2,3... For, in view of (38. 18) the difference between two solutions

should satisfy the homogeneous equation (38.4) which only has a zero solution for

x h " The solution Is uniquely determined also for A =X 1 For the difference

between two solutions u' and u" condition (34.4) can be obtained from (38.18) by

subtraction. It is true that this coddition admits u' - u" cu, , but thi, solution

is incompatible with the condition (38.19) which holds for u' and u.

The circumstance that for 7, * -h the functions u are already uniquely determined

by equation (38.18) gives the impression that these functions are subjected to too

many requirements after addition of the condition (38.19). This is apparent indeed,

because by application of (38.18) with 0 = uI and of (38.4), it folowq that

U, I (u, = - Pll fu,U 1 J 0

so that for X#?A condition (38.19) is implied by (38.18).
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of higher order in u and its derivatives so that their absolute values are small Li

comparison to the terms in the left hand side o1 (ati. Ii) The svu o whilUh it ulw a

positive for X < X9 . The approximation of the energy in that case becomes

2 0I a2  --fM "l-"21 1,+ -01P0 t[u,. + P.I lul,+_,.,1+ u]pa [~u+~ uI + a 1 PO u1 +XP I ]j+ I~ P'[1,l
4 21 1- 21 2

+P i IX"u (38.15)

Equilibrium configurations are again characterised by stationary values of the energy.

Just as pre~viously, the stationary values of (38. 15) are first determined for arbitrary

constant values of a . For this purpose the increment of (38. 15) is determined on

transition to a function ui + 1 such that

P ulqI=0. (38.16)

P (u +,q] - P u = a 2 1 u nI+'2flT 31

11~ P1 ,[RiI +XP2

For a stationary value of (38.15) it is required.that the sum of the terms of (38. 17)

which are linear in ig should be zero. This stationary value is always a minimum for

A A2as

P2 2t]+P (ill

The derivation of a variational equation with kinematically possible functions t which

are not subjected to restriction (38. 16) is carried out in exactly the same manner as

before. The result is
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Fo X =h h 2-, 3, . he homogeneous equatio.i (38.4) corresponding to (38. is)

has a solution which satisfies condition (38.19). In that cane the nonhontogeneour,

equation (38.18) does generally not have a solution. By restriction of the analysis to

X< X'2 which was done through the approximation applied iu (33. 13), .

would be insignificant, except that in general it manifests itself by a rapid increase of

the solution u of (38. 18) as X approaches X2 * In that case tans solutiin does not

satisfy the requirement of smallness. How this difficulty with the resLriction 7, < A2

previously Intr-iduced can be overcome, will be explainted later. For the time being,

the considerations will be restricted to values of X sufficiently far below X 2'

Because of the linearity of (38. 18) and (38. 19), their solution can be written in the

form

u = a 2 V + a3X. (38.20)

It is not possible here to express the dependency of (38. 20) on A in a simpler way

because A appears also as a coefficient of the unknown functions u in (38.18). When

use is made of (28. 18) for t = u It follows for the minimum of (38.15) that

a 2n]+~ 2 I 1  -+ ! 3  1 3 '~1u1

+ a4 P [U - P 0  2 , '+ a3 [] A +

In the above expression terms of the fifth and higher order in a can be omitted since also

the L..-'ns neglected in (Q9. 13) would yield terms of th 'ifth order after substitution of

(38.20). By use of the identity following from (38.4)

P2 ll X P0ll

PLUl] = - ~ (2U1]
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or X X h 2, 3. the homogeneous equation (38. 4) corresponing to (38.18)

has a solution which satisfies condition (38. 19). In that case the nGnhurnogeneouk;

equation (38.18) does generally not have a solution. By restriction of thn analysis to

A< 2 which wan done through the approximation applied to (38. 13), this singularity

would he inRirnifiennt, iwept that in gner.1 it mAnifent itn~f hy Ai ranid iner'Amp of

the solution u of (38. 18) as X approaches A In that case this solution does not

satisfy the requirement of smallness. How this difficulty with the restriction A < A2

previously introduced can be overcome, will be explainted later. For the time being,

the considerations will be restricted to values of X sufficiently far below X2 .

Because of the Unearity of (38. 18) and (38. 19), their solution can be written in the

form

U = _2 3- (38.20)

It is not possible here to express the dependency of (38. 20) on A in a simpler way

because X appears also as a coeffiient of the unknown functions u in (38. 18). When

use is made of (38.18) for = i it follows for the minimum of (38. 15) that

1; a 0 21 + Al] EI v+ P In 1 4 XP3 (UlJ I+

a4 full - l'2 k 2  9 AL,+ Xj Xp2 112 Aaq,2 3 3

In the above expression terms of the fifth and higher order An a can be omitted since also

the terms neglected in (38. 13) would yield terms of the fifth order after substitution of

(38.20). By use of the identity foilowing from (38.4)

'1 P0 Ul

P 2 [u 1] = - 2--- P u 1 ]
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arid by introduction of the notation

0 0 0 0 tP2Iu]= A., P3 [u,= A.) P. [u1 ] = A.,
(38.21)

it follows for the minimum of (38.15) that

0 )Aa 2 (A30 3 +AR
(it) 1- AA 2 +(A 0 +AA') 3 +A 4 a. (38.22)

In view of (38. 21) the terms of (38. 22) up to and including the third order are already

completely determined by u I . Consequently, for cases In which a sufficiently accurate

approximation has been obtained with the inclusion of these terms already, the

solution of (38.18) and (38.19) is not nceded.

Possible equilibrium configurations are determined by the values wnich yield stationary

values of (38. 12) and the corresponding functions u . Since at constant values of a

expression (38.22) is a minimum of (38.15), equilibrium is stable or unstable depending

on whether the stationary value corresponding to (38.22) is or is not a minimum.

It was previously mentioned that In general, the function u does not remain small

when A approaches A 2 * The elimination of this difficulty will now be treated. For

this purpose it is remarked that the homogenised equatlon (38.18) for the case A:: A2

possesses the solution cu2 . Thus, an obvious step seems to be the replacement of
(38. 12) by

-0 -. 0 -u = a1u1 + a2u2 + u with P 1 1 [u Pli0 [u2,u] = 0 . (38.23)

The case W02 wl = 0 , which so far has been disregarded, will at the same time be

treated. In this case A 2 A1  so that (38. 23) rather than (38. 12) should be used for

] .5
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values of A in the neighbourhood of X1 (see also Sect. 36). Substitution in (38.3)
yields after expansion and rearrangement

tP l [--- a JP+ (til +P uI 4 Iu (ul.+P [u211 +

+aaiPu 1I +aP 3 [U1 ]j+

2 I 1 XP 2

ala2 p2 1 [U1, U2' + [u21[U, U2 +

1a12 I2 2 2U1, U2 + A P 2u luu211 +

"+ 1 l ful +X ,,.P3 [u I1+
4 3 0 22 +0

a1 4 
P u1 + ala 2 P3 1 [u1 , U2 ] + afauP 2 2 u1 uI 2 ]+

30 40
+aa 9P 13 fu1, u2] + a2P4 "2] +

+ a '2 1  u21 u + Pu21 EuI-i a ~ u1 u+ 1 a I40i , u ] + a1 2 a 2u1 02+ I

1 41. 2 31± 1' 2 u
S 0 0

a ~~ 9P1 [12U3 lull 21 2, ]  + a21 3 +UU

21 [u 1 u + 21 full

0 -

a2P31 [u2, u] + P2  ul +P 9 [u] + ... (38.24)

Here use has been already made of the properties of. the functions ul, u2 andu

P1 1 (U1,U2 ] = P 11 [UU 2 ] i Pl [Ulul = l

0 2 -&. 1P 1 2 121 1, 2

= p r[u20U] = P 1 U2 fu] = 0 u
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By analogy to the ioregoing in the case that X A 31 it is also possible to justify the

omission of the terms in (38. 24) which follow X P6f G]. Also the determination of the
st'tlonary value, which aimears awain to hi iimnr 'I I X n w .... ..-- '--

The functions u corresponding to the minimum are again sufficiently small only I
when X stays s....... blW . Agaleu, for ihe minimum itself the functions u

do not contribute terms of lower order than the fourth in a1 and a2 - Hence, in
cases for which terms of the fourth order may be neglected,it is sufficient to know the

elgenfunctions u 1 and u2 .

It need not be said that the difficulty which arises as A approaches 13 can be over-

come in the same manner by separation of the component of the third eigenfunction

in the displacement u from the fundamental state. Thus in principle, this method can

be extended to arbitrarily large values of A provided that the assumption concerning the

smallness of the displacements u remains satisfied. As A is increased very far in

excess of A,, a large number of elgenvalues Xh will be passed. In that case, he

analysis becomes very complicated and will usually appear to i e impractical unless

the approximation of the encrgy is sufficiently accurate even if the series expansion is

brokwn off after the third order terms.

Once the approximate expansion of the energy P" (aJ) is available, the determination

of its stationary values does not coiitrlbute any new points of view beyond those pre-

sented in Sect. 35 and 36. The stability analysis also proceeds entirely in agreement

with the conventional scheme.

Finally, it is noted that the first assumption introduced in this section regarding the

nature of the load system is unnecessarily sharply formulated. It is sufficient to

assume Instead that the displacements U(X) remain so small that their Influence on

the direction and magnitude of the load which is acting upon a body element may be

neglected. The increase of the load energy on transition from the fundamental state

U(X) to a neighboring state U(') + u is then independent of U9)

-w , -W I[u] - W2 [u -

-2wjui -XW 2 [u] - ... (38.25)
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Accordingly, the terinr -XW m Jul , m ;& 2 should be added to expression (38. 3).

Th;-ccd! atlyz ! 1 n he aavnp Tnanvffr sin Ora1'fdy has been described.
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Chapter 4
THE INFU L UENCE 4 L

The geometric form of a structure, the elastic properties of its material,and the

forces acting on it are never exactly known. Such a structure is made accessible to

analysis by design of a model which represents the structure as well as possible and

to this model the theory of elasticity is applied.

When the difference between the real structure and the idealized model are small and

when the displacements are so small that the classical theory of elasticity may be

applied, then the behaviour of the model yields a good approximation of the elastic be-

haviour of the real structure; this approximation improves as the differences between

real structure and model become smaller.

On the other hand, in the case that the displacements are not small enough that the

linear theory of elasticity can be applied, the model doea not always yield a satisfactory

approximation of the elastic behaviour of the structure. It is true that the approxima-

tion improves when differences between structure and model decrease, but the small

differences which appear in reality may have a significant influence. This is clearly

illustrated by the example of the axially compressed bar. The model used here is tLe

true prismatic and homogeneous bar loaded by central axial compression. When the

load is not too far away from the buckling load of the model, a small deviation of the

axis at the real bar from the straight line or a small eccentricity of the loading will

cause considerable bending of the real bar, while the axis of the niodel bar will remain

straight under the given load.

The stability theory belongs essentially to the field of the non-linear theory of elasticity

and, therefore, it is necessary to take into consideration the influence of small deviations

between structure and model. The smallness of the deviations makes it possible to omit

all terms except those which are linear in these.
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41. THE DEFORMATIONS

In the undeformed state a point p0 of the structure is given by its coordinates xi with
: respect to a rigid orthogonal frame of reference. 1 Vh~lea Lahi point tais .. to a

displacement with components ui in the direction of the axes, the deformation in the

immediate neighbourhood of PO is described by the six components of deformations

(See (11. 1)).

au U 3u o ut
,lie= o - + ax (41.1)

Points of the structure are mapped uniquely and reversibly into points of the corre-

sponding model if the coordinates of a point P0 of the real structure are written.

0 0 (41.2)xi = xi + ui •

Here, xi are the coordinates of the corresponding point P of the model. The geo-

metrical differences between structure and model are small when the functions u0 are

small. In that case the requirement of reversibility of the mapping is always satisfied

[ because the functional determinant obeys

( =  hj + ah > 0 (6 1for h ) (41.3)

C(x1 1 x CT hj 0h Ofor 1b (4.3

and is therefore always nonzero.

0
The description of the deformed state of the structure is given with x, as independent

variables. It is also possible however, to introduce, by use of transformation (41.2),

1 The superscript 0, used here and in the following section to indicate the real structure,

shoidd not be confused with the superscript used in Sect. 38.
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I
x the coordinates used for the analysis of the model as independent variables. It is

obvious then that the comparison of elastic behaviour of structure and model will be

consilerably simplified. In view of (41.3), -o can be solved from relationsaxo

ou but /4 3 N i (= 1 ,2 3
Ox 0h 0a ) =x 1,, 2 3

h=1 Xh I h=1 X, h

For j = I it follows that

Ou. Ou. +0u 0  au 0  lu 0  a u2 Ou.'1 2 3 2 3

a Ox2 Ox ' x2  Ox2 x2 ex

9u Ou. 0I 0U 0  0-- 1+~1 O~1 u

01 a e2~

aX ' 1a 2+ L.
Ox3  Ox3 3  O x. OX3

or with terms of second and higher order disregarded in the derivatives of u0

ax _ hl/- a_ 0 Out
1 "xi h=1 '9xi Oxh

For j = 2 and j 3 an analogous result follows, so that in general

Oui  au, 3 ho1 - (41.4)

2c j h=1x.O a-ON
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Substitution of (41. 4) in (41. 1) yields, again after omission of terms of second and

higher order in the derivatives of uh

0" ~ 3 / 3~-N U0O 1

where the ViU are the strain components (11.,1) at a point P in the model which
corresponds to a point pO in the structure, provided that 1~he displacements of the

points in the structure and in model are equal; the A~jare the differences in the

strain components caused by the differences in geometry between structure and model.

42. THE POTEN4TIAL ENERGY

The elastic potential of the model is a homogeneous quadratic function of the strain
quantities (11.1)

2
ACvij) = E1 3i 1  (42.1)

where summation should be carried out over the six combinations of t and J . It is

~assumed th the elastic potential of the real structure is also given by a homogeneous
quadratic function of the strain components which, now however, are determined by

(41..5)
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iiThe coefficients ci= ci + Aci differ slightly from the coefficients of (42. 1).

Expansion of (42.2) yields,if only linear quantities of the differences between structure
anti mml.I anka ta t

A" (,ijo) = ,C1 j I + 22 "cij V1t Ald + ZMVC 1 j v1J2 = A (yj) + iA . (42.3)

The total elastic energy of the structure is given by the tategral

fff A o )dO d0 dO

where integration is carried out over the volume of the structure, By use of (41.2)

this Integral is transformed into an integral which extends over the volume of the model.

fffAo (ij) d30 = A i /. x23 ) dxlff dx3.

Finally, by expansion and by omission of second and higher order terms

in the differences between structure and model, for the elastic energy it

follows

fffAo (Yo) dxo dxO

fff A (Yij) dxdx 2 d +Jff AA dxdx 2 dx3 +

+JJJ A (Y1j) /8 2~ 3 dx:1 dx x (42.4)
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It is assumed that the load PXdxldx% 3 which is acting on a volume element at an
4.,...I- .. ... ,d, 4.- , 4 +1 .hA,. 1 , ,+o, . ,a . Ioc | V .1. A mY" 11 Aly #. A. aonl-ie

. .. -- the "i .. r --- .... 1 AV L A I- A - A . ......

at an interior point x0 + Ax 0 of the structure. Let x, + Ax i be the point in the

model corresponding to xI + Axi • The quantities Axi can be understood to be
eccentricities of the loads which are acting on the structure, in reference to the georn-

etry of the model. Likewise, it is assumed that the load pidf acting on a surface

element in the point x! of the model corresponds to loads (p1 + Ap,)df acting on the

surface of the structure. If the magnitude and direction of the loads are given with

respect to the rigid coordinate system, the potential energy of the loads for the struc-

ture is (see (29.7))

- fJ PXt dxldx2 dx 3 " J Piuidf +

fff Iff
-if E(pX1 ) uidxidx2 dx3 - F a &Ap udf +fir I f I

3 3 But x d 3 3 O

The total energy is given by the sum of expression (42.4) and (42.5). All possible

deviations of the structure with respect to the model are here taken into account. In

the following however, the differences of elasticity constants and magnitude of the

loads will be disregarded so that only the influence of the geometrical deviation and of

the eccentricity of the loads will be taken into consideration. The total energy in that

ase is
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ci ,J d, fff 3:
fff cijYi% - f .x3pX u _ %dx, dX2  - ff pli df+

2 3au 1

+ 2J Ci Yij~ 1~Yjj~ ~ Ec j y-jdX dx2 dx +

3 3 out 3( ~%u-tx ~xbi -~~df. (42.6)jjfff J= i Jul 1=1i jj

The first three terms represent the energy of the model, the fourth term the energy

increase as a result of the geometrical deviations, and the last terms the energy

increase caused by the eccentricities of the loads. It is noted also that the integrand

of the fourth term as well as that of the first term is a polynomial in the derivatives

of u, with terms of the second, third, and fourth order. The integrands of the lastI

term, as well as those of the second and third term, depend linearly on the displace-
ments ui . For the following it is advantageous to write the geometric deviations
and the eccentricities in the form

0 v0
Ui = C , Ax1 = CAY1  (42.7)

0
The last three integrals then have a factor c in common. The quantities vi and

yi characterise the nature of the differences between structure and model. The
factor c determines the magnitude of these differences and is accordingly named the
deviation parameter.

43. SIMPLIFICATION OF THE ENERGY

As in Chapter 3 the loading is assumed to be given as a product of a unit load system
and a load parameter X. If the model possesses an equilibrium configuration for a
certain value of X, then, for small differences between structure and model, it can
be expected that the structure possesses an equilibrium-configuration for the same

value of A with displacements which differ slightly from the equilibrium displacements
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of the model. In the limiting case that the deviation parameter e converges to zero,

the equilibrium states of the structure should of course approach those of the model.

Thiaw, i he structure snall in general possess an equilibrium state whose displacements

differ slightly from the displacements U(A) of the fundamental statA nf the model.

However, also, the neighboring states of equilibrium of the model, which exist for

loads in the neighborhood of the buckling load, will correspond to equilibrium states of

the real structure whose displacements will differ sLightly from the displacements of

the mode!, and consequently, will differ slightly from the displacements U(A) of the

fundamental state of the model. It is, therefore,appropriate for the analysis of all these

equilibrium states to write for the total displacements of the structure (at present1
indicated by v )

v = U(X) + u. (43.1)

After introduction of (43.1) in (42.6), the integrands are expanded. Through a series

expansion in agreement with (22.1) the sum of the first three integrals, which together

represent the energy of the model corresponding to the displacements (43. 1), are

found to be

P (U (A) + U) P (U (N) + P PX u] + P IX P[u] + PX [u] , (43.2)

Here the dependency on the load parameter is expressed by use of the index A. In (42.6)

there are no integrals with integrands of an order higher than four in the displacements

and their derivatives. Therefore

P [u] = 0 form >4 ; P4[u] = P[u]
In 4 4[]

lIn the following, the subscripts I etc., which indicate the components of the dis-

placements, are again discarded.
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should hold (see also Sect. 29). Besides, the fundamental state of the model Is an

equilibrium state and thna 199 54% h--1d- he atiafl-A I
P[ 7u] 0= 0

The remaining integrals of (42.6) are treated in an analogous manner. The result to

of the form

CQ (U(4) + u) = IEQ (U(k)) +

+ f{x[u] + Q) [ + QX [u] + QX [u] (43.3)

which, unlike (43.2), in general should contain the linear term in u , QX[u]. This

term results partially from the fourth integral and partially froin the last two integrals

of (42. 6). The integrand of the first part is a linear polynomial of the derivatives of

the displacement u , whose coefficients all contain at least one of the derivatives of

U (A) as a factor; the integrand of the second part contains the factor X.

For small displacements u the term of the lowest order in (43.3) will be most signifi-

cant so that for a first approximation to the influence of the differences between struc-

ture and model it is sufficient to take only this term into account. The energy of the

structure then is

P [u] + 'EQ[u] = P [u] + PX[U] + P4 [u] + E'u), (43.4)

wiL il an unimportant contribution independent of u, and representing the energy corre -

sponding to the displacements U(X), has been disregarded.
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It is of course of particular importance to determine how the structure behaves at loads

in the neighborhood of the buckling load of the model. For this purpose, just as in

Sect. 32, the integrals occurring in (43.4) will be expanded in terms of A -

pX[ui + QAuJ = P2 ( ul + (A- A1) P2'Ju] + (X - X1)2 P [uJ +

+ .. + P3Jul + (A- A1 ) P3'Jul + .. + P4 u l +

+ ( IQ1 [u + (X- A1 ) Q1, u] + (43.5)

As in Chapter 3, the assumption of the existence of this expansion implies that only

stability problems can be treated, for which the critical state of the model constitutes

a bifurcation point of equilibrium.

For the analysis of equilibrium configurations in the neighbourhood of the buckling load

in the case that the solution w2 for the critical state of problem (24.4) is positive,

it was stated that 1

u = au 1 + U with T 1 1 [u 1 ,a] = 0

It is to be expected that also for the analysis of the structiure this decomposition will

be useful. Introduction in (43. 5) after expansion and rearrangement (see also (32.4))

gives

1As confusion about the indices of the coordinate directions can be excltded, the
indices for the eigenfunctions are again placed right below the symi-ol.
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PX[U] + E-QX[U] PC Q, lull + (A-A 1)Q '[ul + .... +

.. 2-, - I
L&I A -- All r2 'u.1 J A,) I- lull + ..

+ I' . ) .i i aj 3 ui+( -1 ) , P3 u1  + '.I4 + .... ) +

+a 1P 3 lul] + (A-X 1 ) P31'[Ul + .... a 4 a4 [l

+ +
"+C IQ, [a] + x; - x1) Q1'[ ul + .. +

" a (At -l Pl [ul U] + (A 2Pl [Ul U) ...

"- 2i [21 ul U + IX-lp 21.'[l, Ul + ... +

"a 3 P 31 [l , I" + P,2[U1 + (- lP2[]+ ... +

+ aP 1 2 [ 1 ' +.... +P 31UU + .... + P 4 IU] (43.6)

In agreement with Sect. 32 the omission of the terms which follow P2 [U] is justified.

It follows that

PA [u] + CQ [u] Q [ull + ( - 1) Q1 [u] + +

+2ku]+ 1)2 p,,jull +[u+

+ a 3 P 3 [Ul] + (X+ P3 'jul+.... + a 4 p 4 [u1 ] +

+ 1 Q, [U] + (k- A1) Ql'[U] + . +

+ a (A- A1) U [ U] + (A- A1)2 Pl'[ul, U] + .... +

+ a 2  p 2 1  ' U] + (A- A 1) P 2 1 '[u 1 , U1 + .... +

+ a3 P3 i u1 ' U] + P.[U] (43.7)
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Furthermore, it is noted also that the simplifying assumption with regard to the nature

of the load system, as was introduced in Sect. 42, is not essential. For more general

ioad systems the increment in the energy on transition irom the dispiacement configu-

ration U(A) to U(X) + u can always be expanded in terms of X - X1 ' For that case

the terms to be added to (43.2 and 3) are of the same form as those already considered,

so that the previous considerations do not undergo essential modifications.

44. CALCULATIONS OF THE FUNCTIONS a

The equilibrium configurations of the structure are determined from the stationary

values of the energy (43. 7). This procedure is again applied in two steps. First,the

stationary values of (43. 7) are determined for an arbitrary constant value of a. Next,

the stationary values of the func+ton l a) thus obtained are determined.

The first step is carried out through calculation of the increment of (43. 7) as the func-

tion d is replaced by the functions U + 11 under the restriction

T 1 lU 1 (]. = 0 (44.1

The result is

P[U +,j+ fQA [u + 1 - P A[u) - EQ XLul

f Q1
[1711+ ('- A") Q1' + .... H+

+ a iA -A 1) P 1 1'[u 1 i] + (A- A1 )2 P I " 1 ?] + +

+ 21P 111 ,'j + ON - A ) P 1'u 1 '41] + .... +

+-a3 P3 1 lu1 ,. j + P11 cu- ,1I] + P 2 I]. (44.2)

130



4

The condition for a stationary value of (43.7) requires that the terms in (44. 2) which are lin-

ear in i should be zero. The stationary value so determined must be a minimum because

P2 [17] is always positive due to condition (44.1). In analogy to developments in Sect. 33,

the condition obtained by equating to zero all terms of (44.2) linear in 71 is made

equivalent to a set of differential equations and boundary conditions. This is done

through introduction of an arbitrary Idnernatically possible function t which is not

restricted by (44. 1). The execution of this derivation does not offer any new difficul-

ties and the result may immediately be written down

IQ, 1] T (ul1 tI d2T 2 [U]1

+ E 1 ) T T 2[u1 +

2P 2' Lu.]
a(X-X) [P1 U1 1 I 2T7Ili T1 [l .tII

2P" [u]
4 a((N .- 1 )2 1Pt"i, + - 2 T11LuI , '] .... +

+ P21[ul 2T 2lu ] Tll pul, r +0

2 321

The functions ui are uniquely determined by (44.3) together with the requirement

T4P4u1 ]ij 0. 4)
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On account of the linearity of (44.3) and (44.4) this solution can be written in the form

2I

u = (Pn + C ( X - .. ..pA' + a ( ;k - + a ( A - ; , X . ,
-- • - . - .1 A.

+ . + a 2 92 + a2(A- 1)P2'+. + a39 3 , (44.5)

ir whichq ,q" etc. , etc. and 43 are the solutions of (33.6), (33.7) and

(33.8) respectively. The solutions q o 1 1 etc. ,are the solutions of the equations

Q u.t

P 1 1[ut]+QI[]- +1[ T1 1 [u1 ,l = 0 ; T1 1 [u1 1 u] = 0

1lE, + Q1 []- 2T 2 [u] T1 1 [ul'] f 0 T T11lU] = 0 etc.

(44.6)

By application of (44.3) for t =, the minimum of (43. 7) is found to be

aEIQ [uJ I + (X -X1 Q'[] +

1 1S+ a2I(;k-_ A ) P [Ul] + (A - A,1)2 Pit ul . .}

+ a3 P3 [u I + (A-X 1 )P3 U1 ] + .... + a4 P 4[Ul]- P2 [ui.

By introduction of (44. 5) and by use of the constants (33. 10),this expression becomes

F A(a) -A 1 )A 2
-  (A-A ) A2 _ + .... + A3 a +

+ 13- +A+A'a 3 +... + aQ u1] +

+ ca(X- 1 ) IQ [Ul] - Pl1 [' 0 '])+ - 2P1 1 [qO' p2I -' "" +

- P 2[1o0 ] - (A 1 1:P11 [q0, k ')] - .... (44.7)
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Here, as in (33.11), the terms of higher order than the fourth in A - 1 and a are

disregarded. The terms independent of a have no influence on the derivatives of

F A (a) and can, therefore,be disregarded. The most important influence of the differ-

ence between behavior of structure and model i represented in (44.7) by the first

term with factor e . Unless Q1 [ul] is zero for all possible kinds of geometrical

deviations and eccentricities, which case will not be considered in the following, it is

sufficient as a first approximation of this influence to take into account only the first

term.

In analogy to Sect. 34 approximation (44.7) may be improved. This improvement is

again necessary when A3 as well as A4 are zero. No improved approximation of

the influence of the differences between structure and model will be derived here. The

energy of the structure is then given by (34.8) augmented by the correction term

EaQ 1 [u ] = eBa. (44.8)

In (44.7) and in the second approximation ((34.8) augmented by (44.8)), the first term

is of dominant importance in comparison to all terms containing a factor A - 1

Further, the dominant term among those which do not contain a factor X - X 1 or E

is given by the one which is of the lowest order in a. Let this term be An an

then F A(a) can be simplified to

SF (a) = Bl + (X - x1) A2'an2 + Ana. (44.9)

(See also Sect. 35.)

45. THE EQUILIBRIUM CONFIGURATIONS

The equilibrium configurations are characterized by stationary values of the energy,

thus, on account of approximation (44.9) by

dF ()
f(a) da -cB + 2(AX-x) A'a + nAa n  =0.
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Becauae F "(a) is the minimum of (43.7) for a constant value of a, the stability

requirement determined by (45.1) will be satisfied if and only if the corresponding

ii. unury VUuLe 01 U _ja 1 aLo a nuMmum 111e ueuIive qUUL~iy auuum MUWiiii~y

is,thereforethe second derivative of (44.9)

d2 F0-() dfA () + n (n - 1) A an - 2 (45.2)
d2 da 1 2n

It appears from (45.2) that in a A versus j diagram for the structure, the stable

combinations of A and a are separated from the unstable combinations by the same

line of partition holding for the model (see Sect. 35). Consequently, an equilibrium

configuration of the structure which for e -0 0 approaches an equilibrium configura-

tion of the model is stable or unstable depending on the stability of the model configura-

tion. Equilibrium of the structure is at the stability limit if the image point in the

A versus a diagram appears on the partition line. The third derivative of (44.9) is

nonzero, except in the case that a = 0. Consequently, equilibrium at the stability

limit is unstable, except perhaps in the case a = 0, = A1 , and the above men-

tioned partition line must belong to the unstable region.

According to Sect. 35, A'2 is always negative. B1 may always be taken positive as

differences of opposite sign between structure and model are already represented by

negative values of c . However, distinction must be made between odd and even

%alues of n, and in the latter case also between positive and negative values of An .
For odd values of n an equilibrium value of a corresponding to E and A is- n
equivalent to an equilibrium value of - a corresponding to - e and - A . In view of- n
(45.2) the stability is also the same for the equivalent states so that it is sufficient in

this case to restrict the considerations to positive values of A . For even values of

n, it is sufficient to take into account only positive values of c , since an equilibrium

value of a corresponding to c and an equilibrium value of -a corresponding to - c

exhibit the same type of stability. The treatment of (45.1) and (45.2) may consequently

be restricted to the following four cases
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a. n odd , A > 0. c> 0;

h- n even A > 0. <0:
n

h.n iM A > O.E <O:

c. n even , An < OC > 0;
d. n even ,A n > 0, E 0.

For the cases a. to c. the equilibrium of the model is unstable in the critical state;
while in case d. it is stable.

451 Case a.

From (45. 1) it follows that f a) is positive for values of a corresponding to the

fundamental and the neighboring states of the model

1
n-2

a 0 and a = -| 1n (45.3)

From (45.2) it follows that

>f~ 0 for a >n-
for a= - 1) A (45.4)

< 0 for a <

Consequently equation (45. 1) can have at most two roots and those lie between values
of a determined by (45.3). For the values of a determined by (45.4),

reaches its minimum. The roots of (45. 1) are real if the minimum of fA_),
corresponding to a value of a determined by (45.4), is negative or equal to zero.
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An)..lA - I

n-1
+ n~n 2(X- XA1)n-2

n-1 1 .n-1
= B, - 12( X- A; Wn-2 n- n-2l(n - ) -2 (n -2) An  n-2. 0.

This condition to satisfied if and only if

()Bnn-2o

2ifAa ( X- X1 21n'2 z(B1 2o

n (n -1 ' A n

nn-

Inn- (n -)(n -2 '- - (eB1)n-1 (45.5)
1 2 - A2 1

The inequalities (45. 5) determine two values X * and X, ** such that equation (45. 1)
has two real solutions for A d< <X1 and A **>if" For i=f* and X

it has a real double root and for X < X, < \** it has no real roots. In the X versus
g graph the equilibrium states which exist for 5 A * and X _ X ** form two separate

branches which for X = X,* and A = A ** have a maxidmum and a minimum respectively.

These branches both consist of one part that approaches the fundamental state of the

model trod a part that approaches the neikhboring states of the model when C - 0 (see

also Fig. 3a, page 93 ).

From (45.2) and from use of (45.4), it follows that equilibrium is stable In the state

corresponding to the greatest value of a and unstable in the other state. Equilibrium

is at the stability limit for X X A and X,- A**.
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Of particular interest is the equilibrium configuration which, for loads below the

buckling load, approaches the fundamental state of the model when E - 0. This state,

the so-called natural state, will be obtained from the undeformed state by gradual in-

crease of the load parameter X . As for A < X * both equilibrium values of a are

negative It follows that the greatest of these equilibrium values corresponds to the

natural state which is stable for X <A * For X = X * the stability limit is reached

and A* determines the hrcklinq load of the structure. This buckling load is lower

than that of the model. It follows from (45.5) that

dA* 1 _ In(n - 2 )An n-i B1  -n-(.
dc -- I -A~ -i,(45.6)

_ A2t

so that in a graph of the buckling load of the structure as a function of the deviation

parameter c , the tangent in the point E = 0, * = 1 coincides with the A * axis

(Fig. 2).

FIG. 2

Consequently, for a small but finite value of E, i.e. ,for small differences between

structure and model, the buckling load of the structure may lie considerably below

that of the model. This decrease is mainly governed by the exponent of E in (45.6);

it is more pronounced the smaller n is.
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452. Case b. (n odd, An > 0 , < 0)

From (45.1) it follows that fA(a) is negative for values of a icorresponding to the

fundamental state and the neighboring state of the model (45.3). In this case (45.4)

also holds. There are consequently always two equilibrium values of a which are

separated by the equilibrium values of the model (45.3). The state corresponding to

the largest value of a is always stable, the other unstable. Also in this case, the

x versus a diagram consists of two separate branches, of which one is now com-

pletely stable, the other completely unstable. Both branches consist again of one part

that approaches the fundamental state and one part that approaches the neighboring

state of the model when e -- 0 (see also Fig. 3b, page 145).

The natural equilibrium state, which for X < X , approaches the fundamental state of

of the model as c approaches zero, corresponds to the largest value of a

and lies consequently on the stable branch. Therefore, as the load parameter A is
gradually increased the buckling load of the model will be passed without occurrence

of buckling.

453. Casec.(n even, An < 0, e < 0)

For k> X 1I (45.2) is always negative. As fX (a) is positive for a = 0, equation

(45.1) has one real root; the corresponding equilibrium state Is un.table.

For A < 1 it follows from (45.1) that f X(a) is positive for

a = 0 and for an - 2  2 ( ,-XI)A 2  (45.7)
nAn

which correspond to the fundamental and neighboring states of the model. It follows

from (45.2) th'at

df(a) > 0 for an-2 < 2 (X- X '1) "k2(=fr 1 2. (45.8)da < - > n (n-) An
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Conseouentlv. eouation (45. 1) alwavs has one positive root for which the corresponding

state of equilibrium is unstable. This root is greater than the positive valte of a for
1-- 11 . 1 - .. .. F",-. . .k1% ethboring C-ul" V AAum at""M Gfl'.' *An'.&

Moreover, equation (45.1) can also have two negative roots which lie between

1

S=- and a =o. (45.9)a nAn

A necessary and sufficieut condition for the existence of these roots is that the mini-

mum of f'(a), which lies between the values given in (45.9) and which is obtained for

values of a determined by (45. 8) is negative or zero

2
n-2A _ X A_'

Minf X(a) =B - 2 X- A11A n  +

n-l

-nAn 2 ( -" 1 21 n

n-I I n-i 1

= eB 1 - 2 X2 -X1AL2A1 n-2n n-2 (n-) n-2(ln- 2) (-A n) n-26 0

139



This condition is satisfied if and only if

S1 I n-1 (n - 2)n-2

n~' "1 (n A)

or

1 n-2 1n- n- An) n-1 n-2
X- A 1 -l(n - 1) (n - 2) l (45n-I10)

A2

The inequalities (45. 10) determine a value A * such that equation (45. 1) has one posi-, A* = *

tive root for A > A one positive and two negative roots for A < . For A =
the two negative roots coincide. In the X versus a graph the positive and negative

equilibrium values of a form two separate branches. The branch for negative a values,
has a maximum of A for A = A . Both branches consist again of one phrt which

approaches the fundamental state and one part which approaches the neighboring state

of the model as c - 0 . (See also Fig. 3c, page 145).

From (45.2) it follows, after use of (45.8), that the smallest negative root determines

•an unstable state of equilibrium, and the largest negative root a stable state of equilibrium.

For A .X* equilibrium is at the stability limit. The natural equillbrium state is in this

case determined by the largest negative value of a. This configuration is stable A < A*;

for A = A* the stability limit is reached and thus the buckling load of the structure is

determined by X*. This buckling load is again lower than that of the model. In analogy

to (45.6) it follows from (45.10) that

1
dA* 1 -n(n - 2)An n-1 B 1  -

d 2 B1  A2
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For (45. 11) the same conclusions can be drawn as was done in the discussion of (45.6);

in particular fig. 2 holds also in this case.

454. Case d.(n even, A > 0 , > > 0)

For X < A 1 9 (45.2) is always positive. Since f (a) is always positive for a = 0,

equation (45.1) possesses one real negative root; the corresponding state of equilibrium

is always stable.

It follows from (45. 1) that for X > X , f '(a) is always positive. It follows from (45.2)

that, for values of a (45. 7) which correspond to the fundamental and neighboring equi-

librium state of the model,

di A (a fo n - 2  A- A 1 ) A2n
0 for 2( ~(45.12)

Consequently, equation (45. 1) always has a negative root which corresponds to a stable

equilibrium configuration.

Besides, equation (45.1) can also have two positive roots falling between

S2( X.-X 1)A2 n- :"
a 1 1

a = 0 and a= nA l (45.13)

The minimum of fX(a) which lies between the values of a indicated in (45.13) corre-

sponds to positive values of a as determined by (45.12).

It is necessary and sufficient for the existence of the two positive roots that this mini-

mum of fX(a) is negative or equal to zero. In analogy with the foregoing case this re-

quirement leads to the condition
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n-2 1
n-1 An-i A n-2

x1 i In n (n-1) (n-2) n (B)n-1 (45.14)

1 2.- AI

Inequality (45.14) determines a value A ** such that equation (4b. 1) has only one nega-

tive root for X < X ** , one negative and two positive roots for X > X ** . For

X = ) ** the positive roots coincide. In the X versus a graph the positive and nega-

tive equilibrium values of a form two separate branches. The positive branch

has a minimum for A A **= . Also in this case both branches consist of one part

which approaches the fundamental state and one part which approaches the neighboring

state of the model when c - 0 (see also Fig. 3d, page 145).

It follows from (45.2) that the largest positive root determines a stable state of equi-

librium, the smallest positive root determines an unstable state of equilibrium; for

A = A ** equilibrium is at the stability limit.

The natural equilibrium configuration in this case is determined by the negative root

of (45.1) and lies therefore on the stable branch. Consequently, by gradual increase

of the load parameter X the buckling load of the model will be passed without the occur-

rence of buckling.

455. Conclusions

The results obtained in the foregoing may briefly be summarized as follows.

For the model the A versus a graph has two branches which intersect at A = X

the fundamental state and the neighboring states. Small deviations of the structure

from the model cause these branches to decompose in two completely separated

branches. Both branches consist of one part which yields the fundamental state of the

model and one part which yields a neighboring state of the model when the deviations

approach zero. One of these branches represents the so-called natural equilibrium

state of the structure which, on gradual increase of the load, ts obtained from the

undeformed state. The following considerations are restricted to this most important

natural branch.
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t4 -nemflih ,itm is unstable at the critical point, and the stability is governed by

a quantity with odd subscript (A3 . A5 , etc.), then, for positive values of the -
I deviaLloa par'aviver c , the buckling load of the itr.unture tat considerably smaller

than the buckling load of the model. This decrease of the buckling load is larger for

smaller values of n. On the other hand, for negative values of c , a gradual in-
crease of the load on the real structure does not result in buckling when the critical

load of the model is passed.

When equilibrium of the model i unstable in the critical sate and the stability i gov-

erned by a quantity with even subscript (A4 , A6 , etc. ), for positive as well as negative

values of c , buckling load of the str ticture is considerably below the buckling load of

the model. This decrease is again more significant for smaller values of n

When equilibrium of the model is stable in the critical state, increase of the load on the

real structure does not result in buckling as the buckling load oi the model ts passed.

Not only the magnitude of the buckling load is considerably influenced by deviation of

the structure from the model, but also the character of the buckliug phenomenon in struc-

ture and model is completely different. While the buckling load of the model corre-

sponds to a bifurcation point of equilibrium, the buckling load of the structure as a

maximum corresponds to a snapping point. As the model can be considered a special
case of the real structure (the case that E = 0 ) , it seems that the buckling problem

corresponding to a bifurcation point should be considered as a special case of the more

general problem of a snap buckling. 1

A possible decrease in the buckling load caused by the presence of small deviations in

the case of an unstable critical state of the model is of great importance in engineering.
The greatest allowable load is determined by the buckling load of the structure for the

most unfavorable deviations between structure and model. The calculation of this

1 Thi s conjecture can generally be maintained if and only if in the case d (Sect. 404),
the minimum ?,** of X corresponding to the second but not natural branch of the
X versus a diagram is also called a snapping point.
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admissable allowable load is,therefore,only possible on the basis of an analysis which

includes the existing differences between structure and model. Of course, the buckling

load of the structure can also be determined experimentally. However, because of the

strong dependency of the bucklivg load on the magnitude of the deviations (see Fig. 2),

the risults of these tests will show a rather great scatter,. so that a fairly large num-

ber of tests will be needed for & reliable determination of the buckling load which cor-

responds to the most unfavourable case.

456. Examples

Some typical examples of X versus a graphs are represented in Figs. 3a to 3d, for

the cases

A3 > 0, > 0; A3 > 0O, < 0; A3 = 0, A4 < 0, > >0;

A3 =0, A4  0, > 0.

respectively. In these figures, the curves indicating the model behavior are also

shown. The stable branches are, just as in Fig. 1, indicated by heavy lines;

the unstable branches by dotted lines. The boundary between the stable and unstable

combinations of X and a are indicated by a dash-dotted line.

Of the curves, oDly -the part in the neighborhood of A = A1 is drawn. This is motivated

by the fhat that, the results of this section are valid only In a more or less restricted

neighborhood of the buckling load of the model.

46. SPECIAL CASES.

The preceding considerations are based on the assumption that for the critical state of

the model the solution c2 of the minimum problem (24.4) is positive. The influence

1 Along with this it is yet once more stressed that all considerations are based on the

assumption that the elasticity liml.t is not exceeded anywhere in the material.
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of the deviations between structure and model on the minimum of the energy for a
constant value of a is then expressed by the addition of the term (B 1a to the form

(35.2).

The case

€o2 = o3  ... = h. =0, Wo > 0

"2 '3 IO-
can correspondingly be treated when the displacement u is written as (see (36.8))

h-i

u I ajuj + ii with T1 1 [uj*] 0 i = I, 2 .... h - 1. (36.8)

After introduction of this expression in (43. 5), the -nilnimum of the energy is again

determined for constant values of aj . This treatment, which is a synthesis of the

considerations of Sect. 36 and Sect. 44, does not offer new difficultieu, so that the

expression for this minimum is immediately written

FA(aj) = EQ1 (aj) + (A - l.) P2 (aj) + P (a,'; n = 3 or n = 4. (46.1)

The difference between structure and model is here expressed by the term

h-1i i'

E (aj) = -E aQ U).
J=1

The equilibrium states are characterized by stationary values of (46.1), 1. e., by the

OFA 1 + OP 2' +P n

1a~ -C a, Oa == + )a 6 (46.2)
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The stability of the equilibrium configuration determined by (46.2) to governed by the J
form

h-1 h-1 2 A h-1 h-1 a2-

8aa J=1 Da aj =(- 1  Ta T+j
1=1 ja 1J=a

h-1 h-1 2 -

+ 2. 2 8ai3 - a a (46.3)

i=1 J=1

In this case, the general analysis of the states of equilibrium leads to great difficulties

and will be omitted here. One special case will be discussed in Chapter 7.

47. EXTENSION OF THE THEORY

The theory developed in the foregoing, as well as the general theory of Chapter 3,is

restricted to a small neighborhood of the buckling load which differs from case to case.

This isfor instance,expressed by equation (45. 1) which for A = 0 does not have the

solution a = 0 corresponding to the fundamental state. Consequently, it is here of

importance also to extend the theory to loads further removed from the buckling load.

As well as in Sect. 38, the possibility for this exists if the displacements U(A) of the

fundamental state of the model are so small that quantities of the second and higher order

in U(X) and its derivatives may be neglected in comparison to quantities which are linear

in U(X) and its derivatives. Likewise, the displacements u from the fundamental

state U(X) should remain small, and it is assumed that magnitude and direction of

the loads are given with respect to a fixed coordinate system. By use of (38.3), (43.4)

can now be written
0 2[ ] + 0 x s u  0 Qt

PX[u] +E QAu] = P0[u] + API[u + P 3 [u] + XP[u] P4 [u] +CQXIUj.

(47. 1)
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In Sect. 43 it was remarked that Q Jul consists of one part containing X and one part

whose integrand is a linear polynomial of the derivatives of u with coefficients which 3
contain as a factor one or more derivatives of U(X) . In this latter part, only the co- ii
efficients which are linear in the derivatives of U(X) must now be taken into account.

After this, by use of (38. 1),it follows that

Q ul - X 'Jul. (47.2)

Under the assumption that the solution w 2 of the first problem (38.6) is positive,

again is introduced

u = auI + U with Po ll° Q = 0. (47.3)

Introduction of (47.1) gives, after expansion and rearrangement,

P Iu + t!ul = ,.aQj full + a2  P [U I 1 + NP2' tu1J +

+_- a 3 1pp,u + XP',ull + , 4 P o u.] + ,Q 'M +

+a 2 ' 121u + [u. u, - P31 3 1

+ :P Ju] + AP2' (. (47.4)

The.omission of the terms which follow XP. (] (see (38.12)) may be motivated here for

A < X 2 in the same way as in Sect. 38.

States of equilibrium are characterized by stationary values of the energy. For a

constant value of a, (47.4) appears to have a minimum for X < X 2 This minimum

is obtained for the functions

i = a+2 A  3 (475)
4+ a 7 3  +X 0
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where the first two terms form together the solution (38.20) of (38.18) and (38.19).

The last term is determined as the solution of

P)Ql'[Ull
Da, N +A ' fa, cl + ex I, I -PO Iu 0212 I u 1

PoJula] -- 0 (47.6)

The derivation of these results, which is in complete agreement with Sect. 38, are

omitted here. The calculation of the minimum proceeds in the same manner as

in the foregoing. Through introduction of the notation

Q1' full = B (47.7)

and by use of (38.21),it follows that

In hi F~a)=O~~a(1 .. A~a +(Aj A) + # (47.8)

In this expression, Just as in(38.22),terms of the fifth and higher order in a are

neglected. Furthermore, among the terms which contain a factor c only the term of

the lowest order in a , the linear term, is taken into account.

The difficulties which successively arise when X approaches 7,2 ' X
3, etc., are dealt

with in the same manner as in Sect. 38, s! that it is not necessary to look into this

matter more closely. Also, the determination of the stationary values of (47.8) and

the stability analysis of the corresponding equilibrium states meet no difficulties, so

that it is sufficient here to refer to Chapters 6 and 7 in which some applications will be

discussed.
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Chapter 5

SHELL STRUCTURES UNDER FINITE DISPLACEMENTS

51. SIMPLIFYING ASSUMPTIONS

The technical shell theory for infinitesimal displacement is usually based on the follow-

tug three approximations concerning the state of deformation and stress [35]:

1. points which initially lie on the same normal to the undeformed middle

surface, remain after deformation on the corresponding normal to the

deformed middle surface;

2. change in distance between two such points may be neglected; 1

3. normal stresses on planes parallel to the middle surface may be neglected.

Although the assumptions of this theory are mutually contradictory for an isotropic

material, the results which are obtained for thin shells are in satisfactory agreement

with experience. Also,the more rigorous investigation of Love [36], in which the

resuits obtained from the assumptions mentioned above are considered to be a first

approximation, confirms that at least for thin shells these contradictions are of no

practical significance.

In view of this experience gained in the analysis of infinitesimal deformations, it

seems Justfied to base the shell theory for finite deformations on the same assump-

tions. Thia theory could be obtained by means of a slight extension of Love's analysis.

Nevertheless, whenin the following, preference is given to a different derivation,it has

mainly been done to avoid the assymmetry which was introduced by Love in the defini-

tion of the changes of curvature of the middle surface and which detracts from the

lucidity of his results.

lIt is true that Flfge [35] does not mention this second assumption; howeverhe

makes use of it in calculating the deformations.
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A surface is described by the coordinates xi with respect to a rigidly fixed rectangu-
lar coordinate system. The coordinates are functions of two parameters a and P

x= xt ( , ) (52.1)

For a line element on the surface [37]

d12  Ed 2 + 2Fdodl + Gd$ 2 , (52.2)

where E, F and G are the so-called quantities of the first order. 1 2

2x 1 Ei 2 -, o"i 2

E=A = ),, =I~ -L~,G =B L (52.3)

The direction cosines of the normal of the surface with respect to the rigid coordinate

system are given-by

3xj exh 8"h 8XJ
a1  ea8 -a ' (52.4)

in which I, j and h are the cyclic sequence of the coordinate axes. The positive
direction of the normal is determined by (52. 4). The coordinate system formed by
the tangents to the parameter curves 0 = const. and a = const. in the direction
of increasing values a and P together with the positive normal is, in this sequence,
oriertated in the same sense as the xi system.

1 For these quantities the usual notation has been retained since confusion with the
elasticity constants E and G is excluded.

2Unless it is explicitly stated differently, summation should always be carried out over
1= 1to3.
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Thi; curvature of the surface is completely described by (52.3) and by the so-called

quantities of the second order

2i

2 't Olt

Ba1 8x 1

28x a"1  ax, n 1
a 2xi x

N-n n-- - , (52.5)

The radii of curvature through the tangents to the parameter curves 3 = const.

and a = const. are determined by

SL L N(56)

R 1  E 2  (52.8

where R * and I2 become positive or negative depending on whether the center of

curvature lies on the positive or negative part of the normal.

The formulas are considerably simplified if the parameter curves coincide with the
lines of curvature so that F =f M = 0 . It ib assumed that thir is the case for the

undeformed middle surface.

The following calculation of the strain components is most clearly demonstrated after

a set of unit vectors is introduced in the directions of the tangents to the lines of

curvature 3 = const. and a = const. and the positive normal to the surface. For

the components of the two vectors first mentioned, it holds that

a b- 1  ax
i= A 8c , B= 8/ (52.7)
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while the components of the normal vector are given by the direction cosines nt .

The orthogonality of these vpntM- =, W a- 4 Ly the reiations

/ atb i -0 b, n1 = 0 niai = 0. (52.8)

The fact that the length of these vectors is equal to unity is expressed by the relation

af 1=i n =1. (52.9)

Each vector (consequently also the derivatives of the unit vectors) may be expressed

as a linear relation in the three unit vectors so that for the components

MW (o a pIt)

such a derivation can be represented by

api . fpi

Bpi = lAni + p1 bi + "n, 2-i-= A"a + ittbi +vn

For the constants A', A" , 1 " ,, aud v' , i" with use of (52,8) and (52. 9), it is

found that

' apt 8 b P-i , V1  
Pi

at Ba =In, au)
(52.10)

A P P i ,, apt
:- . at D-o - biD- V DO ..n I.

Thus, for a further reduction it is necessary to know the scalar products (52.10) in

the cases that P = at , bi , ni. In this way it follows from (52.9) that

aai La
i

a, ,y-ai - = 0 etc.
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Furthermore,

h. a 1 O -'Ox, all 80,
4. 1 a 44 -i0of c va fW-

_LOB exi -Ki , 0 -xi
AB2

from which after use of F = 0 it follows that

8 a ~ Oba 2~j

In the same manner,

In addition

OnO Ox iOniL A

ni Pa i?- = - -A-. zra

Finally, as M = 0

ai  a t f A #x 810=Ii

An'- O e, (I 0

niO= b B -idOX"  0.
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For the derivatives of the unit vectors, then, it follows

Oa t  0hOa
49a &OA, A. 183B.

Ob i  bi
=L a =a, + A-N2 (52, 11) /

=- all =w~ii

AN A 'i i n22k

Naturally, it is also possible to derive these relations from the well known general

formulas of Gauss and Weingarten [37] by means of the specialization F M = 0.

53. THE DEFORMATIONS

In the undeformed state, an arbitrary point P of the shell is defined by its projeo-

tion Q on the middle surface with coordinates x, and the distance z .from the

middle surface. The coordInates yi of P are then given by

Yl" XI+ ni;

where x, and n t are fdoctions of the parameters a and j • The square of the

length of a line element dA determined by the evdpoints P (i p, z) and

P(a + da, + d ,z + dz) is given by
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d*2 mF (' d + 'd + ' dzj =

+C)\ Ox an. /n \ 2  +

2 2Ox i n 2 /o,
+8V + 2z- - +z d3fd - +

+~x zx ( Ox. On, x n2 Ox, Ori,+ndz2 + Ci ctj

2 En On, j OnX i+z nn
+ Z2 .  -, 2dadp + n1  + z '- 1  2dadz -

+ I F xn i + zF 'n i t 2dfdz. (53.1)

By tee of the results of Sect. 52, (53. 1) is simplified to

S " 2(lf)2 d2 + B( _A) 2  2 + dz 2 . (53.2)

Duaing deformationthe material point Q of the middle surface undergoes displace-

ments At in directions of the axis, so that the coordinates of this point in the deformed

state are.

xi =xi + u•

If the direction cosines of the normal to the deformed middle surface are denoted by

4, then, by use of the first two assumptions, the coordinates of the material point P

in the deformed state are

Yi i+zn "
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In the deformed state, the line element determined by the material points P(a,3,z) and

P(a + dk, 0 + do, z + dz) (whose length in the undeformed state is given by (53. 1),
(53.2) respectively) is then determined by

Cjf2 Oxia' j
dfV2 = -- + 2z - i-- + z2 ~ d2 +

+ ( ~~ 2 (~ 2 ~2 / X O Ox' z2 n x' 2

+dz

2 z2 Oiiv O 2d+ dE3 (53.3)

In this expression use has already been made of the relations

a n Oni a 8 _ " ' a nnE 8- I SnI - n -

which are valid also in the deformed state.

The direction cosines fa , 1P, I of the line element in the undeformed state are

defined with respect to the parameter curves 03 conast. and a = const. and the
normal. They are given by

A2(1 )z 2 dW 2 B2( R)'2
2B2z ) 2p

2 2 2  2 d2d?2 d12 z df 2
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and it follows from (53.3) that

,,',, r:t " .A2("1=' ,"' )

+ (.2at

(V f2V

B2 1 (1 _ z

I x OxOni)0 z2 Oni 2n2.

By comparison with (11.2) it follows that the strain components are given by

(+',)- + 2.z 76- + z2r

A2 +2

1 Z- .) + 2" z N + N

I +7 /3 B2(1 _ .,.)2

l a I- Ox On'an On!

12++Z+ i* + Z ~' 9
zAB 1 , (1 -"z J

. Xa z -p 0. (53.4)
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For thin shells, z is always very small and it is natural to expand expres3ions (53.4)

In a series with increasing powers of z . When terms of the third and higher
order are omitted, the following expansior is obtained

2pc +2z + 2

2z, + z2 0
yflo-YPPO R2 Op1o

Yap YC -o 
2zP,, + (-i + z)C/3 + (535

in which the quantities

ciao -1,

I~jx (53.6)

represent the strain components of the middle surface.
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The quantities

2 1 i 1

II jj O a

2,..,o O + n, (5,

are closely connected to the changes of curvature of the middle surface. Therefore, in

what follows, they will be termed changes of cauvature. In addition, for brevity the fol-

lowing notations are introduced

2 2xOn

R1

B 2 )2

n.,o,, , o, On,' /
2 R 2

2

On' an'

+ (F x +_.n; + 1o 0 a nt"
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14. THE ELASTIC POTENTIAL

The determination of the deformations above was based on the first two assumptions

introduced in Sect. 51. The third assumption will now be used for the formulation of

the relation between stresses and deformation or, equivalently, for the construction

of the elastic pomential. A prismatic volume element is considered, which is deter-

mined by the parameter values a, a + da, , + dp and the ordinates z and

and z + dz and with two surfaces in the deformed state parallel to the middle surface.

For equilibrium of this element, the requirement must be satisfied that during a

virtual change of the deformation, the increase of the deformation energy should be

equal to the work done by the tractions acting on the element. This requirement

should also be satisfied for virtual deformations that consist exclusively of changes

of length of the line elements perpendicular to the middle surface. During such

deformation, which is completely described by a variation of the deformation compo-

nent yzz ' the tractions do no work. Therefore,

&A
= 0 (54.1)

ozz

must hold, where A is the elastic potential. 1 Application of this condition to (12.3)

yields

vZZ= - 1 +- (va + •o). (54.2)

The third assumption is,therefore,in general incompatible with the first two assumptions

(see (53. 4)). This contradiction will be further discussed in Sect. 55.

1 The symbol A representing the elastic potential has here a different meaning from

that in the preceding and in the following sections.
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By use of the first two assumptions it was found in Sect. 53 that VYz and Y are zero.

In view of this result and of the relation (54.2) which is required by the third assump-

tinn. the elastic notential (12.5) becomes

Gm )2 m . .y c 2 )

4 (m 1) 1 PP4.In

55. CONSEQUENCES OF THE ASSUMPTIONS INTRODUCED

From expressions (53.5) for the strain components, it is immediately clear that for

thin shells the third term is always very small in comparison to the first ones. It is

also to be expected that the fourth term which contains z 2as a factor is small as com-

pared to the second one. Therefore, these terms are often omitted. However, Fluigge

[ 35] remarks that they cannot be deleted without interference with the logical structure

of the theory. This appears justified for the calculation of strain components by use of

the first two assumptions. However, for the formulation of the law of elasticity, use

is also made of the third assumption which is in general in contradiction with the first

two assumptions. This contradiction reduces the importance of Fluggels argument.

To form a better founded opinion on this matter, one must study the significance of

the second and third assumptions which lead to the contradiction. The third assump-

tion states that axial stresses on planes parallel to the middle surface are small as

compared to axial stresses on planes perpendicular to the middle surface; it has

therefore a clear mechanical significance.

On the other hand, the second assumption is based on the consideration that the relative

displacements in the direction of the normal to the middle surface are of the order of

magnitude of the product of the strain measure in that direction and the shell thickness.

Hence, in a mechanical sense there is no objection to the admission of displacements

of this order of magnitude; they are omitted only for simplification and because no

important influence can be expected from them. Nevertheless, in order to get some

insight in the order of magnitude of this influence, corrections are calculated which

should be imposed on the deformation components (53.4) if the second assumption were
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not considered. Expressions (53.4) are herewith accepted as a first approximation.

Th, order of magnitude ot these correcion umn thuu 'U V ..

magnitude of the third and fourth term of (53. 5). If it should appear that these orders
of magnitude are the same, it would be consistent to neglect the third and fourth term

of (53.5).

If t is used to denote the change in distance to the middle surface, then the difference

in value between the coordinates of the endpoints of a line-element in the deformed

state is, as y'1 
= x'1i + (z + C)nj

d y ++ + n ) dI, +

Oae I

+ t+z - +, - -n,' dP + n,+-!-nf dz.

Thus by use of the direction cosines 1 , , I and of the identities

2 !n' On Ox Ox'

the square of the ratio between the line -elements in deformed and undeformed state can

be written in the form
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L \ v.Lz i -2 0, 2 ] +

A 2 (1 - z)l2

[ a,\2 ,Ox,, ot2 2

+ 2 -2 ++

+2 2 )

2 a On' al 2o

+ •. i+. z2 (
F, +- .. .... . .. .. -6 - F 6#i+

11161 + 2- + Li, 1+ + E 7a +
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The corrections to expression (53.4) are determined by the terms in (55. 1) that contain

The relative displacements t are always very small so that terms of second Bnd

higher order in t may be neglected. Furthermore, the considerations are for the time

being restricted to small displacements of the middle surfann,. 'T'h '-eAto- -

may then be approximated by their corresponding values for the undeformed middle

surface. By use of (52. 11) the "nrreetions of thetraln compor, ent tr. obiained as

AV = 1E =-- - -A____C, +

AT n' O1 ' R2 A, A 3 z ,

1 E2

Azz 4z 'Yz 1 za A 67 &Yz O

and, if in these expressions z/R I and z/H 2  are neglected with respec~t to unity

it follows that

H 1 IVpp 2  [(55.2)
-28t ~jI

ATZ z ATa AMA'Y #z Bf BP

Condition (54.2) in the form

Azz =FY +Mpp)

which, in connection with the first approximation, may be considered a corrective

formula for -yzz , together with (55.2) yields

+y)
az 2(m -1) (7aa
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or with 0 for z = 0 , and with use of (53.5) as a first approximation for

V and 'I

- ~i ~ Vao'~Z+ -i-i~ ap z2  IRA.(5.3
-_ __ _ D 'oao 1B 2 (m 1)1 I'd~a ./,,

The corrections A4y and ___/Pp then are

z 1 z
1.1A~ a' = m - 1L ~ T t + 7 ,0 m -oR Z (P a oa P,8) . .....

(55.4)

S z 1 z
A ,-- - l2'^('aao +Ypp o 1  M- 1R2 zlPC'C+ POP) + ..

Further, by use of the assumptions of small displacements,the order of magnitude of

the quantities 6 etc., are determined. From the general formulas of Weingarten

1371

On E  (FM - GL) Ox1 + (FL -EM

SEG - F 2

Ox1 C OXt
On i  (FN - GM)- + (FM -EN)

EG -F 2
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after introduction of primed symbols to denote the deformed state

qQ
v' Ian, LT( G+ WIP'i,' - 2T,1'Mf'-'

= ETG' - F 2

'2 E NvlG' - 2N'M'F'

Onll On1i L'M'G' + NMEI - (L'N' + M, 2 ) F'

." OU OP = E' G' - F'2  (55.5)

The smallness of the displacements justifies the omtssion of the quadratic terms in thd

changes of the fundamental quantities E' - E * etc., LI - L, etc. With F = M = 0,

it follows that

2 22
On, N'

"ni n' L -M +-N M'--LNF

Further, in view of (53. 6) and (53.7) it follows that

E' = A2 1 + Y ) , G' = B2 (1 +YfO )' F' = ABWao

L'= A2/  ) , N' B2 1  ) M'(556)

167

*



so that (55.5) leads to the approximations

/nf \2

R I
2d

__.=AB _ +1557

@R0 2PR2 R R2  T o"

The calculation of the remaining contributions from qo, etc., is carried out as follows:

4 4

IR, R

R 1  R1  /+PO!

axn

4 1i N'4 4B2

V p-= --- =

R2 2 (R2 R

axo,+ 8X;on) -2 2(+ -I) M' -2AB(#+)P

f22

= (2 2- + -- CIO

2 R R2 R 2R' R

1 2

+- -- + 12 ~
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so that the result is given by

21

3 - ~(p -1 -YVP0 ),

The technical theory of shells is founded on the admissibility of omission of contribu-

tions to the strain components that are of the form (55.4). On comparing (53.5), (55.4)

and (55.8) it thus appears to be pointless to take into account the third and fourth term

of (53.5); perhaps one exception should be made if Yaa o + VA O is small in compari-
son to o, o andp *pP is smal in omparison to p ,

Po . Therefore, in general the omission of the third and fourth term in (53. 5) should

be accepted as a consequence of the schematization introduced, and hence

ea = Yaao - 2zpC/,

"go = 0o - 2zPoo

, = go "2zp- (55.9)

The considerations that lead to the simplified expressions (55.9) hold strictly speaking

only for infinitesimal displacements of the middle surface. However, as long as there

is no reason to assume that for finite displacements the order of magnitude of the third

and fourth term of (53.5) is different from that of the neglected influence of the displace-

ment t , these expressions may also be applied for finite displacements.

By use of (55.9) the elastic energy per unit surface of the undeformcd middle-surface

can be obtained through integration of (54.3). The area of a surface element
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z = const. is given by the absolute value of the vector product of the vectors with
__ .. es.. J~n ^ ... ,..,hlnh ,n fr* T.OUP.*IiUA

1 R Idl~nt.tv
components Oyi/Ca ' ' .JV-1-

+a \2 / -8 2

(8dY1 Y2  1 2 3)02-3 1 dc2df3i
=

n ~da d#

Here

ax 1  2x _ n1 1 a 2

2 / ax an1  2 2a

aiaYi 49Xa (ain a3 xi) n 1 ~ 0,

so that for the area of the surface element it holds that

df = AB(1 - )(1 Z-) dadp (55.10)

Because quantities of the form z/R 1 YaaO z/R 1 zP 0a' etc., are already neglected in

expressions (65.9), the factors. 1 - z/R I and 1 - z/R 2 may be replaced by unity
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in (55. 10). The elastic energy in a shell element of thickness h , bounded by the

MrIxai pianes a cont., q conet., a + da1 = const., t3 + d# = const., thenis 

h
2

-2ddf z + YZpUU z ( pa + 2z p) 1 2 z ) +I

4(m f +ai

h ,'

2

from whicii, after execution of the integration and division by ABdad, for the elastic

energy per unit area of the undeformed middle surface is obtained

-- m -- 2)1 +
4 rn-i 1 V(yY 3 0  m

1 3rni (Poa+ )- - P P P2)
+ -L Gh m Pci P10' 2 2
123 Gh m - 1 ~ ~ T Pu 33-U (55.11)

It appears from this result that the elastic energy is the sum of two terms of which the

first exclusively depends on the deformations in the middle surface and the second ex-

clusively depends on the changes of curvature of the middle surface, or more briefly,

that the elastic energy is the sum of the membrane and bending energies.

56. THE STRAIN -DISPLACEMENT FUNCTIONS

The components of strain (53.6) and the changes of curvature (53.7) can easily be

expressed in terms of the displacements ui i xt x1 .
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I
For clarity of the results, it appears worthwhile to express the vector component u

representing the displacement at a point of the middle surface in terms of the three i
unit vectors a, bi , n.

ui  uai + vb i + wni; (56.1)

It will then be possible in the formulas for the strains to express the properties of the

middle surface exclusively in terms of the quantities A, B , R 1, R2 .

By use of formula's (52.7) and (52.11) it follows from (56.1) that

( A + uA w
90 = A + - F + AB 00 R I j ai  +

+ A &iA+ B(9Anb

(56.2)
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so that the strain components are

/uv A w 1JOu\ 2  + &V2 + (0~~ I

R1 A2 B2 0 '-A ''

1 1'o a A (- O R, 2u Y I w w__)2A2 2 2 2

Do OB +B +

2 _L 9 2+W2+v \+M + 2- O 1 Ou

AB Bag R A 2  B 2 ,...2. B 1 w *AB B w

1 +u v 2u -A v OIai#o 2 ( A.L AB w + 1 i +

u B 2 2 Ow w\ u2 v 2 oA B uv

+ t . _ + 2v+ L +'- -&- +, A 2  -R- !

Bj alce B2/ 2 2  AB3 a B Op

u _Aw vXB w +u aBu1 vB - A A +

_!Lu OA1u v B lu u OA v Ov
+ u 1 u + v 1L +w w 1 w 1 v

+R 1 BA ROw 2 .' (56.3)

173



In these expressions the terms which are linear in u, v, and w agree with Love's

results for 2c1 , 2r 2 , and wo [36, 3261.

For the calculation of the changes of curvatures of the middle surface, formula(52.4)

and(52.5) are used (vee 0.io [371).

~2 (e ox~ Ox, Ox1L2x n1L Det. --

L=N oa2  /E - F2 ~ \2' 'Oi!'~2 EG V 2

2_2xi ____ Dt. (2xi Ox Oxi

M n 1 (Oe xi ,xi
MEG - F2

from which, after use of (55.6),it follows

1t (0 2 x; a x,, Ox',

1 1 e2 x; O N1 !P.( =  /EG; p ,2  Det. t) (Z'O -R-"

Pc'P = XAB rEIGI - eae"  OC''

By use of the relation following from (55.6)

E'G' F'2 = AB j1 4 YCoV0 ) (1 +vg o ) -vyo,0 0
2
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these expressions become

,> , _ _,__ ________.___________________________________

22

.. A3p Y/( + (1( + 70)-7 o2  t(Oa 2 C IC 0 0  R1

AP+ YU-I 'Poet.P

pop= 1e.(; De. x0 1

+< %-a o) (i+ 'Yfo) - flo Xo o

1a Det. ,2?)

AB 3  Op2  8a : 0 p R2

12 B~2 2x act
22+ Y V o t. + -pc 1160 11

PaA B t. " Ooe ' 0j7 (.

By means of (56.4) the changes of' curvature are rationally expressed in the displace-

minants in (56.4) take the simplest possible form if, alter the differentiattions have been

carried out, the fixed xi-system is chosen to coincide Witth the a , b , n system,.

so that
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a. = I . a- = 0 a - = 0

b= 0, b2 = I ,3= 0;

nI =0, n2 =0 , n3 =1 (56.5)

The first row of the determinants (56.4) is then given by the formulas

a _A _ "1_ 2 A _ Aw iA
Z- a aa B So a -- U 1 3a R+

1

Ox -A+ v _i -O~ w_ 8,O v
2j 2A (

A dA
+ B R1 R

a 2 R1  - 2R Ba, -_ , (56.6)
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2,
9 B8B D 2 aB Ov A2 (B) 2  '1 (iD)

W- v

w Bj &B 
|

A R 2 Ba'

2- +J a# 2- T 2a R 2 a # 9p A (6.7)

R2

a2x3 = _ 82w . B v u B2+ (B ,

= P + +2 -- - + L B 2- + v 8 1  ) B2

8/2 R 2 + 0 2 R 8 A R2 aa -wR2

2,aX. A +82u 1 8B v + I A av A 8w

a8ae 8p 8c81 A. Ba 8cr B 8 813 R- 8

+ _A A DB + vBA (L (A A'
~AB 813 8ar VD(3B 8/3 8/3 R

a222x2  8B + 2v 1 8B 8u 1 8A u Bw (568)
8a83i- - ep 48a8 A Da 8ca B8/3 81 R2 8,

ea u A 8am AB 8 8r F 2

X3 3w A 8u B 8v
8cr81 Te- 8cr8 R1  8/P R 2  801
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Here use has already been made of the identities

a ( 49 + 6

R 1 R2 R R 1(56.9)

which resulted from (52.11) and of the identities

2 2
6 9ai a 2 ni  a2nI

The second and third rows are the same for all three determinants (56.4) and are

determined by the formulas (56.2) respectively, if (56.5) is substituted. Thus, they

are

I+La 4._ OA w 9V u&A

.A X w +  and

1 au v 9B\ B I _ 12.v + u O9B w
~B8 B ace B BOp A B~ Ta/R2/

B(~ OW +v (56.10)
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"Ie changes of curvature for infinitesimal displacements follow from (56.4) and (56. 6) to

(56.10) after omission of second and third order terms in the displacements u. v. and w

1__w4 3+ u 1 v 1 8A Ow
Paa A2 aa2 AR 1 V- BR 3

+_1 OA aw + u a +

+ _L!A 4 + - - +

I102w 1 9u 3 Ov

2 2 AR Oc" BR 2 oPB 49, 22

+ 1 B9w 1B w uB (1 + '+A2"- ' 3 + A' B " R
A B 1 A H 2

+ v I \ + ABR 2 ft -2  + H '

L02w O + 1Ov 1 OA -w+Pcv3 A B &49p BR 1  AR 2 a - A2B

1 OB Ow u 6A v OB
A ABRI B2 a (56.11)

AB 2  1pXBBTl KR2 J
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These expressions differ from Love's [36 art. 329] as follows

11 2 -+ AB L +B + A B

P2XR 1 A daB R \B ZI3 AB 0a 2/

4Ou +1 v u eA v OBPao IT B a11 A" +  a W'" B 3p AB '&a

and as the displacements are assumed to be infinii.,!simal they can be written

"o 1 R 2R0

Pa a 2R 2 R,

2 2 R2

These differences are of no significance as the terms y- v o , etc., were

omitted already in the expressions for the strains.

57. THE INFLUENCE OF SMALL DEVIATIONS

For applications of the theory developed in Chapter 4 to shell constructions, it is

necessary to know the jhange of the elastic energy which results from small geometri-

cal deviations. It is assumed that the coordinates xi of poivts of the middle surface

of the structural model are given as functions of the two parameters m and such

that the lines const, and a = const, determine the lines of curvature of this

surface. The previous theory can then immediately be applied to this model.
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I
An arbitrary surface can in general be obtained from a given surface if each point of

the latter svrface is subjected to a displacement in the direction of its normal. It is

assumed that the middle surface of the structure Is derived in this manner from "ve

midd", surface of the model by displacement.R w( .. re, in the drccton off thc nodel'

normal

x. = I + w n.;

the middlh surface of the structure is then also given by its coordinates x as func-

tions of c, and P. If it is assumed also that the shell thickness of structure and

model are equal, points on equal distances z from the middle surfaces of structure

and model, whose projections on the respective middle surfaces are given by the

same values of ce and (3, can be regarded as corresponding points.

The square of a line element in the undeformed state of the model is given by (53. 2).

If the structure is regarded as a "deformed" state of the model, the square of a line

element of the structure can be written as

di 0  Yi () )A2 ( R - ) da 2 + (1 + yo f0) B R2(122(1i R / 2 +

+ 27y 0 AB - L - --L dad + dz2 ;(57.1)

where o etc., are the "strain components" (53.3), (53.4) in the point (o, /3, z)

of the model for the displacements o , o , 0 in the direction of the unit vectors

corresponding to the middle surfact, of the model. After use of (55. 9),the "strain-

components" are written

0 0O n
2zp , etc. (57.2)
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Here yo ,ecdrvdiHere a f o°  ,O ,o° are obtained from expressions for o etc. derived in
Sect. 56 by setting u , v equal to zero and w = w

The square of a ine element of the structure in the deformed state, which state is .1
characterized by the coordinates xi' of the middle surface, is written as

dP 2  ( + A2  
- do + + IB2  dP +

+ 2Vd AB k1 Z - dtadp + dz 2  (57-3)

in which 7' etc. , are the "strain-components" at a point ( , , , z) of the model
for the "displacements"

I 0

ui -- - =U - U

The quantities u, are here the real displacements that occur during deformation of the

structure. The "strain components" may again be written as

= - 2zP i, etc. (57.4)

If the displacements ui are also expressed in terms of the unit vectors which corre-

spond to the middle surface of the model

u = ua + vbi + wni , (57.5)

then y co, Paa ' etc., are qbtained from the expressions y ao, p , etc., of

Sect. 56 by replacement of u , v , w by u , v , w + wo
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The actual deformed state of the structure is completely described by the ratio between
(57.3) and 157. 1). To calntui frn mth-e- rtt, gcthcr.... i. 1. -

aents of strain along the three initially mutual orthogonal directions in the structure

(57.1) is reduced to

di = (1 + X(: CYo Ad

a ) (1 +-Ya)(1 +v - d'Y ±

+ (( +( A (1 ) ) dz2

From this formula it appears that the three directions

B (I - dj3+ ) d 0, dz 0

dz 0 , do = 0

do = 0 , B (1 - z di3 + 1 °oP 0 A (1- -) doe = 0 (57.6)T2 + 1

are mutually perpendicular. The smallness of the differences between structure and

model justifies the omission of quantities of second and higher order in 'YO , etc.

The direction cosines of the line element d-° with respect to the directions determined

by (57.6) are
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2I
S d2

= y ~ A2 ( - da2

0i +I

B (1 - z d +Yf, I zd

S  dz2  (57.7)

dz

By use of (57.7) da, dP , and dz are eliminated from (57.3). The result is, after0
omission of quantities of second and higher order in Yo t, etc.,

1v a

y 2 o) j Ya ° + + z '

1 (1 e)(1 + 1 o).

For small deformations of the structure which slightly deviates from the model, the

quantities -y' , etc., are likewise small. Consequently, if quantities which are
0

quadratic in vY , etc., and in 1Y. , etc., are also neglected, the deformation

components of the structure with respect to the directions determined by (57.6) are

0 'Yp=p'-PO0'a ' 'a 0
_aaV p 1 o 3Vap =a -a^a 3

az 7fz=Yzz = 0. (57.8)
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By use of (57 2) and (57. 1)

-. ' , - .. , .. 0 _. * * ..
I a" -r - aao Pa ' Paa -rao -2zpa a  ec * *.aI

The quanti'ies Va 'p , etc. , follow from the expressions for T 'Pan , etc.,
Cao ' aa ao'a

given in Sect. 56 by replacement of w by w0 + w. In this procedure,terms of second

and higher order in w and its derivatives will again be omitted. The quantities 0 1

PO , etc., are obtained from ' aa' etc., by replacement of u , v , w byaa aao 'a

o , o , w. respectively, whereby terms- of the second order in wo and its derivatives

are likewise disregarded. The following rule can be given for the determination of
Yaao , etc.: replace w by wo + w in the expression for V Pn etc., of

Sect. 56 and take into account only those terms in wo and its derivatives which are

linear in wo and which contain at least one of the displacements u , v , w or one of

their derivatives.

if -y etc., are disregarded in comparison to unity, the area of a surface element

z = cost. is determined by (55. 10). This omission is justified, as contributions of

0

components. Thr, elastic energy per unit ares of the structure or model is then withmit

modification given by (55.11), but with the modified strain components.
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Chapter 6

APPLICATION TO BAR AND PLATE PROBLEMS

61. THE INCOMPRESSIBLE BAR (PROBLEM OF THE ELASTICA).

611. The Potential Energy.

The ends of a prismatic bar of length A are supported In such a way that displace-

ments perpendicular to its axis may be excluded. It Is clear that the straight unde-

formed state of the supposedly incompressible bar is always an equilibrium state if

the bar is loaded by compressive forces N acting on the centers of the endpoints;

this equilibrium state is called the fundamental state.

It is assumed that points on the bar axis can only undergo displacements which lie in a

plane spanned by the beam axis and one of the principal axis of Inertia of the cross-

section. Let x be the distance from a point P on the undeformed beam axis with

respect to one of the supports and let u and w be the displacements of this point in

the direction of the axis and in the direction normal to it respectively. The origin of

the rigid xi system is fixed at the support x = 0 ; the x1 axis coincides with the

bar axis, the x3 axis lies in the plane of bending of the bar. The coordinates of the

point P in the deformed state are

X =x + U , X2 = 0 3  W ,

so that the length of an element of the bar axis in the deformed state, which Initially

had a length dx, is given by

18\/ /dx) + d2
cIA2  + ,+ki-+k) /dx + jldj /2 dx2 .
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The curvature of the bar axis Is determined by the formula

dx d 2x dx3 d2'x
1 31

dx dx2  dx dx2

Idx~\ +fd3\ 2

from which it follows by use of (61. 1)

In agreement with the classical bending theory, the elastic energy of a bar element is

assumed to be proportional to the square of the curvaturc. The total elastic energy

then is

1f2

V = P 2 dx,

0

in which a represents the bending stiffness of the bar. The potential energy of the

axial loads N is, with compression, considered positive

-W Nu = N dx.

0.
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After substitution of (61. 2) the total potential energy V - W is expressed in terms

oi the displacements. These arehowever, related by the inhomogeneous condition

(6i. i), so iwmai i geuevjL iLeory utumuL iamiieduLawLy 'M, ajplOd ( O 44L. 2 2 p. 1TO

difficulty disappears as the displacement component u is eliminated "-y use of (61. 1)

du (d)

Substitution in (61. 2) gives

d2w

dx
2

so that apart from a trivial constant, the total energy is given by

V - W .w 1x+ ( x . (61.3)

When the quantities appearing here are made dimensionless by

=of, N A V- W Pi2

and if for brevity, differentiation with respect to is denoted by a dot, then (61.3)

becomes

1 1

PA. ti + 21r24, -4 2d . (61.4)

08 0
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Expansion of the intogrands and omission of terms of higher than fourth order in the

derivatives of h and of a trivial constant yields

II1
p A f]_ (..2 _ r 2 2) d ,(18

0

1

PX, J(o .20-.2 1 r2 o4d

0

It appears also from (61. 5) that the first variation of the energy is Identically zero

for the straight configuration of the bar, in agreement with the above statement that

this state Is always an equilibrium state.

612. The Buckling Load.

It follows from Sect. 31 that the buckling load is determined by the smallest value

of A for which the variational equation (24.14) to satisfied for an arbitrary kine-

matically admissible function C that consequently vanishes at 0 = and at = 1

a1

P ,11 1(0"" -2 A' ') d 0.

0

Integration by parts yields

1I

20 2(0"' +fr 2 A4) + 2 J i".+1r2A4t)d4 0.
0 0
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As the function t is arbitrary for 0 < 4 < 1 ,b should satisfy the differential

equation

+ 0. (61.6)

The requirement that t ' Is arbitrary at 4 0 and at 4 = 1 further yields

= for = 0 and = 1, (61.7)

while the kinematic conditions at the supports lead to the requirement

0 = 0 for = Oand = (. (61.8)

The general solution of (61.6) Is

-A + 1 + C cos r,'T + D sin r'-.

The boundary conditions (61.7) and (61.8) admit a nonzero value for D only. This

value exists if and only if

irs- = k7r. (k = 1, 2, ... ,

and remains in that case undetermined. The smallest value of the load parameter

for which (61.6) (61.7) and (61.8) pcssess a nonzero solution is therefore A,, 1 with

the corresponding eigenfunction

1= sln~r ; (61.9)

this function is normalized by introduction of the condition *1 = 1 for 4 = 1 The

corresponding buckling load is the well know'i Euler load.
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In the series (61. 5) no term of the third order occurs so that P 3 0 1I] as wE"l as

P, fo,. ti are zero. Consequently.the quantity which governs stability in the

critical state would be (see Sect. 25)

A 4  = j(42*. -0 1 2* )d

0

6 sin ir cos2ir - 4cos rC dt =-. (61.10)

0

As it is a positive quantity equilibrium at the buckling load is stable.

613, Equilibrinm States for Loads in the Neighborhood of the Buckling Load.

It follows from (61. 5) that

1

2 /

P2 [4] =- 4' d ,

0

to that the constant A2 is
1

A2 =P 2 [I1 = -iT] cos2rd = -- (61.11i)

0
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It follows then from (35. 7) that the amplitude of the eigenfunction (61. 9) for loads in

the neighborhood of the buckling load is given by

a \/2 2 A = -1 (61.12)

321

This result agrees with the approximate solution of von Mises (42] which was obtained

in a different way.

It appears from (61.10) that the displacements from the fundamental state grow very

rapidly as the load is increased. For a load which exceeds the buckling load only by

5% the largest deflection at the middle of the bar amounts to about 20% of the length

of the bar. Consequontly, there is little sense in applying the theory of Sect. 38 for

loads further removed from the buckling load. Indeed, the present theory does not

yield improved results for greater loads, but the opposite will be the case. This

should not be surprising in the present case as for such loads and the corresponding

large displacements the assumption of Sect. 38 oncerning the smallness of displace-

ments is not in the least satisfied.

614. The Influence of a Small Eccentricity of the Load.

Up till now it was assumed that the resultant of the compressive forces in the end-

points act in the neutral axis of the cross-section. The influence of a small eccen-

tricity 1A of the loading can be taken into account by application of two moments NC*

of oppositL. sign on the ends of the bar in addition to the compressive loads N. These

moments are understood to be positive if in the absence of the compressive loads, the

curved bar axis turns its concave side towards the positive x3 direction. Let 0 be

the rotation of a cross section of the bar, positive in the direction from the x3 - axis

towards the x1 - axis. The energy of the moments then is

Nef 1(0)" - (0)-o= - .=01
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This energy should be added to the sum (61.3) of the elastic energy and the energy of

the compressive loads. On account of the Incompressibility of the bar axis, the

angle 0 is determined by

- - . 1 dw -

acG"dx

or after expansion

0 1 3

After devision by - the total energy can be written as

P[ + CQ - EQ + P2 [01 + P ' [ p+ •, (61.13)

in which P2 [ and P4 [4] are determined by (61.5) and

2- 1

Q1A [] = - 272V (61.14)
=0

In agreement with Chapter 4 only the linear influence of the eccentricity in the dis-

placements Is taken into account.

For loads in the neighborhood of the buckling load for the centrally compressed bar,

te equilibrium states are determined by the stationary values of (44. 9). The coeffi-

cients A and A2 are given by (61. 10) and (61. 11) respectively. B is determined

by

I1

B1 Q1  1 = - 27 X 43 (61.15)

=
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For the problem under consideration It le also of interest to know the equilibrium

states for loads which are considerably smaller than the buckling load of the centrally

compressed bar. For this purpose use Is made of c ipression (47.8). In order to obtain

connection with equilibrium states of the centrally loaded bar as treated in Sect. 613.,x
in expression (47. 8) the coefficient A is replaced by A This yields no significant

inodiication in me immedlate neighborhood of the buckling load of the centrally corn-

pressed bar. For greater or for smaller loads it rapidly becomes either so large

iLat it violates the assumption regarding the smallness of the displacements on which

(47. 8) is based or it becomes so small that the fourth order term in (47. 8) is of

minor importance. Therefore, whenevei- (47. 8) can be applied to the present case,

there is no objection to the replacement of AX by A1 . The remaining constants

are determined by

= 1

1 4 0  1 14
B1  Q11i = - 1 = 4 2 , A X A--

so that (47.8) becomes

3 14 a2 1_64FIX (a )  47r 43 ea + _17 (I - X) a2+ I a 6.6
. 2 _ .) 32 - (61.16)

The equilibrium states are determined by

dF1a 4E +'-?+ 7 6 3

dF1a r36A+i 1-A Lr6a = 0.(61.17)

The stability of equilibrium is governed by the sign of the second derivative of (61.16)

d 4 (M (1 - x) +7 3 _l+ 6a . (61.18)

d19
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In view of the fact that the variations 60 , for 0 < < 1 are arbitrary, the differen-

tial equation

6" +r .A.lnO - A (6i.2u)

must be satisfied, while for 0 and 1 the boundary conditions must hold

0' 0 (61.21)

By restriction of the considerations to deviations which are symmetric with respect

to the midpoint of the bar, the boundary condition for e 1 may be replaced by the

condition

0 = 0 (61.22)

holding for =

As is well known the integration of (61. 20) can be performed by use of elliptic integrals

(see appendix). The result, the dimensionless deflection /3 at the midpoint of the bar

(the value b for = -) as a function of the load parameter A Is represented in

Fig. 4 for the centrally loaded bar (curve I) as well as for a bar with the eccentricity

parameter F = 0. 01 (curve Ia). Furthermore, in this figure the approximate solu-

tions (61. 12) and (61. 17) are drawn for C = 0 and for E = 0. 01 ; the values of 9

corresponding to these solutions are directly given by %. The boundary between

the stable and unstable regions of the approximate solutions is also indicated. This

boundary is obtained when (61. 18) is set equal to zero. X, 2

1 In order to avoid crowding of the figure, a relatively large eccentricity has been
assumed.

2The analysis of the stability of the exact sol, tion (61.20) is very complicated and
it will not be persued.
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615. Comparison with the Exact Solution

It is possible to give the exact solution for the problem treated above. The energy of I
thc ccccntrlcity moments amounts to

4= 1 4 = 1

la2

-0 0 -

By use of (61.4) after devision by ± , the total energy can be written22

1 - ,"

o= oa

By substitution of 4" = - sin 0 this expression becomes

4j= 1 1
A A 2+f 02 2P t0] +EQ [0] = 2r 2AO + 2+ Xcoo)d.

=0

(61.19)

Equilibrium states are determined by stationary values of the energy, therefore,also

by stationary values of (61. 19). The first variation of this expression is

61p'[o +cQA o I  2 X60cAO + (26'60' - 2ir2 sinOCO) d4
, -0 0D

=

2(7r2 x+ 0)6O 2 ](0"" +r 2 \sinO)d60d..

o0 0
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I
Moreover, in Fig. 4 the solution of the well known beam column theory is represented

(curve IIIa, b for c = 10. 01). This solution is obtained by omission of all terms of

an order higher than two in (61. 13). In order that the energy so approximated

-2 2CX . + f 0".2 _ T2X0.2 ) d
-- 0 0

would hvq,,c 9t!tton1ry value, € must satisfy the differential equation (61.6) with

boundary conditions

= and O= 1: = 0 and " 7r 2 CX. (61.23)

By u'je of (,61. 23) the four integration constants of the general solution of (61. 6) are

determined. For the dimensionless deflection at the middle of the beam, it is found

- - sec " r (61.24)

This result is well known (see for instance [ 43] , eq. 27). As c - 0 this solution

becomes O= 0 for X , 1' while for X = A1 the deflection is undetermined

(curve IIl). The latter solution can also be obtained if the solution a for neutral

equilibrium of the equation (61.6) with boundary conditions (61.7) and (61. 8) which

holds for X = X 1 and infinitesimal values of g., is regarded as an approximate

solution for finite deflections (see also Sect. 35).

It appears from Fig. 4 that the approximate solutions II and fa are close to the exact

solution if the deflection at the midpoint of the bar does not exceed 20% of the length

of ti-, .,tr. The approximation by the beam column theory is satisfactory if this

larf1j-- deflection remains smaller than 10% of the bar length. In the case of eccen-

tric loads, the approximate theory developed here may be applied to the natural

equilibrium state for loads below the buckling load for the centrically loaded bar, and

the beam column the.ry holds for loads up to 90% of this buckling load. The extension
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)3
I. Exact solution without eccentricity.

Ia. Exact solution with eccentricity.
IL Approximate solution without eccentricity.
a. Approximate solution with eccentricity.
I. Approximate solution corresponding to the assumption

that neutral equilibrium is applicable for finite
displacements.

Ia, b. Beam-column theory (with eccentricity)
IV. Boarder between regions of stable and unstable

equilibrium for the approximate Solutions II and ha.
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of the region of validity of the beam coiumn theory is small In this example; this is
due to the small value of A resilting in a very rapid increase of the deflections as

the bucklin_ load of the nntrnslly edAhd haa Im iinmaa d

62. COX's PIInonEM , 231.

The ends of a prismatic, suppooedly incompressible bar of length A , are simply
supported such that displacementsi perpendicular to the bar axis are excluded. Agapn,
consideration will be given to bending which takes place in a plane through the bar axis
and a principal axis of Inertia of the cross-section; the same notation will be used as

in Sect. 611.

At the middle midpoint C of the bar AB (Fig. 5a) two identical compressible bars
are attached through hinges. The end points of these supporting bars which lie In a
plane perpendicular to AB, are simply supported at the rigid points D and E
The plane of symmetry of this support coincides with the plane of bending of AB. It
is further assumed that the point C cannot undergo displacements in the direction of
the AB bar axis. The distance between the points D and E is denoted 2b, the dis-
tance from C to the midpoint o, the line DE is denoted by d (Fig, 5b)

DAX1
2b /2

EED
2b

(b)

FIG. 5
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it is clear that the straight undeformed state of the bar, which corresponda to unde-

formed supports, is always a possible state of equilibrium when the loading consists

of two opposing compressire iorces N Thio uiuLe v! ............ ,& t -i .... CtI

state.

62t. The Potential Energyi

Let y be the displacement of the point C in the direction x. . It follows then that
the lengt of the supports amounts to b2 + d In the undeformed state, andto

Vb + (d-y)2 in the undeformed kitate (see fig. 5b). If, for the moment, a rigid

coordinate system x 1 , x2 , x3 is conceived ah fixed with the x1- axis along one of the

supporting bars, then the deformation component y11  of this bar is (see Sect. 11)

b2 + (d - )2 1 - 2dy y2
V11  b2  2 + ~ 2 2

'Il b 2+d 2b 2+ d 2 b 2+d2

The elastic potential for the support is then given by expression

T1 2 with E = 2G m+ (62.1)

This result can easily be derived from (12. 5) as the deformation components 7Ij

(I - J) are zero while the absence of normal stresses Jn planes parallel to the support

axis, by analogy to Sect. 54, leads to the conditions

8A 0 or =
8V 22  M/3 3  Y22 Y33 = 11

Substitution in (12.5) then gives (62. 1).

The total elastic energy in the supports is

2 =-. F V d(d 2 y2  dy + y8 11 V d -- 1y3
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where F is the area of the supporting bars. With

EF1 3 d 2

.i - =M and v B v 1B

in which a is the bending stiffness of the bar AB and M a constant introduced by

Cox 1231, the energy of the support is written as

Bir 2M Z~l _ 1 3 +LI!04) (r'2. 3)d d2  /

For the sum of the elastic energy of the beam and energy of the loads, It can by use of

(61.4) be written

1

V - W f 2 + 2r 2 1- d =

0

1 1
= z (*€. - d + bZ¢ ' -T2 "  d

Here a trivial constant has been disregarded and the series has been terminated after

the terms of the fourth order. By restriction of the considerations to symmetric

deflections with respect to th midpoint C of AB, the total energy is

Energy P II+ P [AI + A
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with _I I2

/ 2 2 2 d + 82 M o2

p3X [*] ffi 8ir2 M 03

1

P 2 0 2 - 7 20' 4 d + 2r 2 M . (62.4)

0

1

It should be noted also that in view of (62. 2), /3 is the value of 0 for R = -. It
appears from (62. 4) that the first variation of the energy l. identically zero for the

state In which the bar remahis straight, in agreement with the fact that this state is

always a possible state of equilibriunm.

622. The Buckling Load

Accord.rng to Sect. 31,the buckling load is determined by the smallest value of X for

which, with an arbitrary kinematically possible function t , the variational equation

(24. 14) is satisffed

1

2

0 2

(62.5)
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After restriction to deflections which are FymmetrIc with respect to C, the kinematic

conditions for the function t are given by

~1
= 0 for 4= 0 and " 0 for 4-

Through integration by parts it follows from (62. 5) that

1_

2

+ 2 / 1P...., + 7 ")rd2 0

0

1

Since the function is arbitrary for 0 < t < -, 4 should satisfy the differential

equation

. + i 0 AO ; (62.6)
1

due to the fact that V is arbitrary for 4 = 0 and t for 4 = itfollows

0 =0for 4 - 0 and -7r" - + 8 r M  =  for 1

(62.7)

Moreover € should satisfy the kinematic conditions

f= 0 or 4 = 0 and 4" = 0 for 4 - . (62.8)
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The general solution of (62.6) is given by

= A + Bt +0 cos 7rVX'+ D sin 7rv/4. (62.9)

The boundary conditions for = 0 yield

Af=fC = 0

The remaining constants with 7/r=g 'tre determined by the boundary conditions at

2

B + g D eosp = 0-

M3Dcos-A + 8Tr2M B + D sin = 0. (62.10)

These equations possess a non-zero solution if and only if the determinant of the coef-
ficients is zero. This condition becomes after some manipulation

3 1
JA COO -y.4 A - AM = - fI =-- (62.11)

8 12 (sin 1U CO1 U1

The buckling load is determined by the smallest value j1 = v1 which satisfies

(62.11). If M increases beyond bounds from zero, IA grows from 7 to the value

8.986 ... determined by the equation

t.. -. A = 0. (62.12)

The value A for the buckling load lies consequently in the region

8. 9862
1 < 8.18

1 2
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The elgenfunction belonging to X 1 is given by

i n= 5ln/1 - jI1
{ cosoJA1 ; (62.13)2l

it is normalized in such a way that its value for = is

(si)n=I I 1  1A (62.14)= 1 sn2" 1 2 1

2

Stability at the buckling load is in the first place governed by the quantity

A3 = 8 M1 3 r 8 2  d (sin 2 1 2 31
ASJA[bl 3 Cr -1pl =snLA -" y"~ -1I21 (62"215)

3 1 22

This quantity is zero only If one of the factors of (62. 15) is zero, i.e. when Ju = r

or when I1 is equal to the value determined by (62. 12); the corresponding values of

M are zero and infinite respectively. Consequently, for values of M between these

bounds, equilibrium at the buckling load is always unstable.

623. Equilibrium States for Loads in the Neighborhood of the Buckling Load

It follows from (62. 4) that

2

P' [b] 'I 2 / 2d

0
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!I
so that the constant A2 is found to be

1

2 2

A2  P 2 [1 = - r I I

6

2 2/ I 3sin lA

= +  4 'B1) "  (62.16)

It follows then from (35.6) that, at loads in the neighborhood of the buckling load,

!the amplitude of the elgenfunction (62.13) is given by

7r2 A2 ( 1 +1 COOA i nlfU)

( 1 )2 ( 2- " 4 1 " (62.17).L 3dA coo P J 1 1sn _ 1*8 OS.JA

The deflection at the midpoint of the bar is

w 1 = a*(s 1  2 1 c 2

When this deflection is made dimensionless by

w = rd,

then it follows from (62.17) that

2 ( 1/LO. ,
2. c: 71 :in - / ifls ) (A-k1 (62.18)
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I
For loads further removed from the buckling load, the theory of Sect. 38 may be applied.

If the displacements from the fundamental state are still nn ,mall that W J,

fourth order in (38.22) may be neglected, it follows, after the derivatives of (38.22) are I
set equal to zero,

a =-!2 1( 2.219)

A3 + XA3

Here (see also (62.4))

0 = 0 A
A 2 = P2 [ I -X11 P2  %, -; 1 A2 ; A3 = P3 ['] 0

and thus (62. 19) agrees completely with (35. 6). Therefore, the theory of Sect. 38 does

not cause important modification of (62. 18), even If the load is considerably different

from the buckling load.

624. The Influence of Small Deviations

At present it will be assumed that In the undeformed state the bar axis AB slightly
deviates from the straight line, while the undeformed state of the supports remains

unchanged. The deviation will be such that In the undeformed state the coordinates

of a point of the bar axis are given by

X = X, x 0 =w 0 . (62.20)

The deviation of the undeformed state from the model with coordinates x= x,

x= 0 which was considered above is small if the quantity w0 is small. In agree-

ment with Chapter 4, this smallness justifies omission of quantities of second and
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higher order in w and its derivatives. The length of a line-element of the unde-
fn! . .1nhai Awn In

dCU =V1 + dx = dx. (62.21)

It is assumed that at x = 0 and at x = I the function w becomes zero.

If the point (62.20) undergoes displacements u and w in the directions of the axes,

then the length of a line element of the deformed bar axis Is

3I + du'\+ /dwo dw'di V + _ V + + dx.

The incompressibility of the bar axis is consequently expressed by the condition

+ + 1 . (62.22)

The curvature of the. bar axis in the undeformed state is

o~x d2 0 o o 2 o
1 d x3 dx 1 d xI

p 0 dx dx 2  dx x L d2Wo

{ ( o 2 (+ ) 2} 2 d x 2
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I
and ii the deformed state it is

pw =4.2 + dw +
X/\dx2 .bc'/ d dx d2f~~ pw 1( +)+ )J3 /2

Alter expansion and omission of terms of the fifth and higher order in the derivatives

of wo and w as well as of terms of the second and higher order in wit follows

2 2 22
2~2~2~\dx dxdx2 2~x

The energy in a beam element is taken, to be proportional to the square of the change
of curvature p _ pa If terms of the sixth and higher order in the derivatives of

o  and w , as well as terms of the second and higher order in w are neglected,

J{(.) dw 22 2-+d

0 0

dwWo /2 \2 d 2w
+ 2f - di \ /

21 d 2 + )j. (22.23)
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The energy of the loads is

Nu N d d.

1 x= o
0

for which, after use of 162. 22) and expansion with omission of terms of the sixth and

higher order in the derivatives of w and w and terms of the second and higher0

order in the derivative of w , it follows0

N 1 (2+ ) -1 }dx =

II - N d + )2+ d + dx (62.24)V dK dx dx4 d

01

For the energy of the supports, (62.3) remains valid without change. These quantities

are again made dimensionless by

2
x= ~ , =C0 0, w =01I N X~

Here ois a function which describes the form of the deviation of the bar axis from

the straight line; c is the deviation parameter which determines the magnitude of

the deviations. At 0 and 1,0 0 Is equal to zero. Differentiations with

respect to j are again denoted by a dot. When the considerations are restricted to

symmetric deflections with respect to the midpoint of the beam then the total energy

as a sum of (62.2 3), (62.24) and (62.3) is

Energy = c' P2X [4+ P3X []+ P4 ;' + 'c ' ]+ 6Q3 (62.25)
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in thl R AY2VnAM 01. . 4-- .
.......... . UL... - urns are given by (62.4), the remaining terms by

1/2
27? X 0 O'd

0

2 .(62.26)

Q3A L1 ~4~/ + 20- 0' 4 - rx0'* 3 )d
0 0 0

For small values of '0 , the conditions given in Sect. 47 for the extended theoryare satisfied. If terms of the furth order in the displacements are omitted,the
coefficients of (47.8) follow immediately (see (38.21), (62. 4) and (62.26))

Ao = o

2 0r [oil = -A1 P2 '[Ol =

)L 2 A 2(1 + 00o 8 4 JAI
2 4 4 Aul

A 0  p 1 p

S3 1 2 (62.27)coo sln - cos- )
A3 = 03

!A 3  - 0 ,

Blf '101 0 1/2
B1  =A f1 f 1  -0 coo~p f ~ c j - 2 d

0
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In agreement with the work by Cox it ts assumed here that the undeformed beam I
consists of two straight parts which are connected to each other in an angle at the mid-

point C. The deviation function o is chosen in such a way the midpoint C lies on a

distance d under the line AB

d0= 2T for o 9 S • (62.28)
o 2

The constant then is

2 d 1 1 1
B1  - 41r -(stn- 1  - Icosp) (62.29)

The deflection at the midpoint is

1 1 1
a|p = af(sinEl - , 1 cIiosl4l)

After substitution of

aPA = rd

instead of a, a new variable r is introduced which determines the deflection at the

midpoint of the beam as a multiple of the distance d. Expression (47.8) can then be

written
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lA 3 Cos_ 

1 1 ___+"s pO j7J4~~ - r sr$ +
BD J I ..... ..

+ 7rV 'Al JAI4r2 r}

2- Rr 3 + (%, - 1 )R.'r2 +c ,Rlr (62.30)

As it appears from (62.30) the introduction of the new variable r offers the advantage

that the influence of the ratio d/I has been eliminated. The equilibrium states are

characterized by stationary values of (62. 30), i.e.,by

3R r2 + 2(X X 1)lR2 r +c XR' 0 (62.31)

The solutions of (62,31) are

r 3 .1X - XB'2 R3' (62.32)
3 c

These solutions are real if

t2
2 2 ..E%

. 1) 2  3R (62.33)
R 23 3
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As the values of 1A lie between 7r and 8. 986 all coefficients R of (62.31) are negative.

Consequently for njaltive values of c , (62.33) is always satisfied. The roots deter-
-- a.^,a , -. d--' 0% ,",waan-t in a X varnt r wrnnh twn ona-armt.p hrnnchAs 1see also

fig. 6, page 219) Only the branch which is obtained by continuous deformation from

the unloaded, undeformed state is of practical imporiance. Thias braii:, tle natural

branch ,or responds to use of the lower sign ir front of the square root in (62. 32).

For pscitive values of c two limits -* < X 1 and X** > X 1 are determined such

that the solutions (62. 32) are real for X < X* and for X > X ** Here only the branch

for which X < X * is of practical importance.

Stability of the equilibrium is governod by the sign of the second derivative of (62.30)

1
6R 3r + 2(X - X1)R2 (62.34)

In view of (62. 32) this derivative is always positive for the solution of (62. 32) which

corresponds to the negative square root with the exception of the limit values X* and
%** determined by (62.33) for positive values of c . Consequently, the natural

branch is always stable for negative values of E . For positive values of e , as the

natural branch pases through ,*,the stability limitwill be reached. In view of (62.3),

this buclding load is determined by

22I'R3 RR 9 2 R 2 R3

2 R 2 R2

625. Comparison with the solution by Cox

In the derivative above, all terms were disregarded in the energy (62. 25) which
correspond to the bar and are of. a higher order than two in the derivatives of
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&1L j

"Ai; Ia1 ii jucst'ud Ui SUM 6i6 for the case in whichi the maximum deflection
does not exceed 10 percent of the len~th of the bar. In that casa the'energy is given

byI

1/2

Energy I(2 _i2.2 +7~ Q

0

+'87 Mi2(qt !2 LP~ 1  (62.33)

fouiriu lsfntons ar whichesaiey the ineatioion nausof(23)thsb

1/1
2 Oo 2 0 2ad Ofr

beealfncon here, prpotinaft the squeaec ofneitrincmoet hs ifr

encest= fr~oeero ior imporan. =Ogr
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F1

Through integration by parts it follows from (62. 37) that 0 should satisfy the

differential equaiiun

2 77 + 2 1rX*r U (6I2.38)I

with the boundary conditions

"P=0 for =0,

. d 2 .

The kinematic conditions for read

O= 0for 4 = 0 and 0' = 4 for fib=!I (62.40)
2

For the deviation function (62.28),equation (62.38) bewcmes identical to (62.6). This

equation with boundary conditions (62. 39) and (62. 40) can be solved rigorously. Two

integration constants of the general solution (62.9) follow immediately from the

conditions at = 0

A=C =0.

-The deflection at the midpoint of the beam is determined by

1B + Dsin! ) with = r VT.2 2
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Under the condition 4" 0 at =

B + D/Acosl ;A 0

the constants B and D may be expressed in terms of

p Icos 1 Ji D=
B 1 1 1 -D i

sin - pcosI sin! - 1 6 0

Finally g is determined by the second condition (62. 39)

t 3 12 d_____ 1_ 1CS2 22 +

sin1 P - IAsCosl4- 
2p E

2 2 - 2MO~L

+ 8r2 M(3 3A 2 + P3

(62.41)

An equation for the deflection at the midpoint of the beam as a multiple of the distance

d follows from (62.41) by substitution of 3 1/d = r

r - 3r 2 + 2 + L r 0 (62.42)2M 2tg' -IA) 2

This result agrees completely with that by Cox who neglected

r
RZ + 1

in comparison to unity in his equation (18) [23, in particular p. 264].I

1For the derivation of (62.42) Cox developed the functions 00 and tP in Fourier-series.
This detour is shown to be unnecessary by the solution method given here.
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The stability of the equilibrium states determined by (62.42) are governed by the

second variation of the energy (62. 36)

1/2 .1.

17r X ) d + 87rM(+ - 2 2 )=

00
1/2
f W'. _TX 2 d t+ 281M (1- 3r +-r/ :

(62.43)

This is of the same form as the second variation (62.4) for the initially straight beam.

The condition for neutral equilibrium can therefore immediately be derived from.

(62.11)

8w2rM1-3r+§-r2 1'1A 0 or

2 2 I

3r2 -- 6r. + 2 + 2M 0. (62.44)

In a A versus r diagram, the neutral states of equilibrium for different yalues of

c are all represented by the curve determined by (62.44). This curve, according to

(62. 11), goes through the point A = X, r = 0. For the points A < X I, r = 0

and for A > A 1 . r = 0 representing possible equilibrium states at c = 0, equilibrium

is stable and unstable respectively. The transition from a stable to an uustable state of

equilibrium always takes place at a state of neutral equilibrium. Therefore, the

equilibrium states are stable and unstable respectively depending on whether they are

represented by a point on the same or the opposite side of the curve given by (62.44)

as A<A 1 , r=0 and A> I , r-O. In passing along the natural branch from the point
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Ia. Solution of Cox c = 0
1b. Solution of Cox e - 0, 1.
le. Solution of Cox e = -0, 1.

Id. Partition between stable and
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Ha. Approximation e = 0.
UIb. Approximation e - 0.1.
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Ild. Partition between stablr and

unstable region accord~ig to the

approximation.
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I

which represents the undeformed, unloaded state X = r = 0 , the buckling load is

rea ,h~d at the first intersection with the curve (62.44). The corresponding value

%* of the load parameter i obtained by elimination of r from (62. 42) and (62.44).

As (62.44) is also the condition for the occurrence of a double root of (62. 42), the

tangent to the curve A. versus r is at the point X* , r* parallel to the r-axis.

In Fig. 6 some X versus r curves are drawn for the case M = 1 ; in view of (62.11),

the value of the load parameter corresponding to the buckling load of the initially

straight beam is X 4.

Curve Ia is valid for the initially straight bar, the curves Ib and Ic are valid for

the values 0. 1 and -0. 1 of the deviation paramneter e respectively. Of the last

mentioned curves, only those branches are represented which are obtained continu-

ously from the undeformed state. The line of partition between the stable and unstable

regions to given by curve Id . The stable parts of the X. versus r curves are given

by heavy lines, the unstable parts by dotted lines.

Further, in Fig. 6 some X versus r curves are drawn for the approximate solution

for M = 1. Curve Ha holds for the initially straight beam (see (62.18)), the curves

U1b and Io hold for the values 0.1 and -0.1 of the deviation parameter e respectively

(see (62.32)). The line of partition between the stable and unstable region is given by

curve lid; this curve is obtained when (62.34) is set equal to zero. It appears from

the figure that the approximation is good if r does not exceed the value 0.4, i.e. Af

the deflection at the midpoint of the bar is not larger than 40% of the distance d .

In Fig. 7 the buckling load A* of the bar is given as a function of f for the case of

positive values of c . Curve I corresponds to Cox's solution obtained by elimination

of r in (62.42) and (62.44), curve II corresponds to the approximate solution

(62. 35). Also in this case the agreement is very satisfactory.
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Finally, it may be noted that the analysis of Cox's problem is also based on the

assumption of a completely elastic material. As a consequence, the considerations

have significance only as long as the occurring deformations are very small. In

view of the results of Sect. 621, the strain components in the supportig bars are of

an order of magnitude of d2 (b2 + d2 ) if the deflection at the midpoint of the beam is

of the same order of magnitude as the distance d . Consequently, in the foregoing

it has tacitly been assumed that the angle ECD of the supports differs little from

1801 (see Fig. 5b).

63. THE PROBLEM OF THE EFFECTIVE WIDTH

The simplest case of the problem of the effective width may be formulated as follows.
The edges of a flat rectangular plate are simply supported such that edge displace-

meats can only occur in the plane of the plate. If the plate is loaded in compression

on two opposite sides, buckling of the plate will take place as a certain critical

load (the buckling load) is exceeded. Below the buckling load, a linear relation exists

between the compressive load and the end shortening; after the buckling load is ex-

ceededthe end shortening increases more rapidly than the compressive load. This

is expressed by use of the concept of effective width defined as follows: the ratio of

the effective width to the total width ol the plate is equal to the ratio of the compressive

load sustained by the plate to the load on a similar but not buckled plate which has the
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same erd shortening. The extensive theoretical literature about this subject (see [46])

yields good results for loads not %oo far in excess of the buckling load; on the other

hand the theory is still unsatisfactory for loads far in excess of the bumcung ioai.

For loads not too far in excess of the buckling load the best theory is given by

Margurre-Trefftz [191. After a short survey of their considerations (Sect. 632),the

general theory of Chapter 3 will be applied in Sect. 633 here. The restc-'* thus ob-

tained agree very well with the results obtained by Marguerre-Trefft.

631. The Elastic Ener

The elastic energy in an initially flat plate cen be calculated by application of the

general theory of Chapter B. In this particular case, it is simpler, to make use

of the results already obtained by Marguerre and Trefftz 1191.

A point in the middle surface of the undeformed plate is described by its coordinates

x and y with respect to a fixed system of orthogonal coordinate o, whose origin

is at the midpoint of the plate. For a plate of length I and width b the longitudinal

edges are given by y b and the tranuverso edges by x -it . As the plate22is deformed a point in the middle surface undergoes a displacement with components

u and v in the directions of the x and y axi3 respectively and a component w normal

to the surface of the plate. If differentiation with respect to x and y is denoted by

indices x and y placed at right below the arguments, then the total elastic energy is

* [19, eq. 361

-13I b
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632. The Theory of Marguerre-Trefftz

An infinitely long plate which undergoes an average compression C is considered. I
~~The displacement component u is i

C= - 6x + a, (63.2)

where the second term ts a periodic function of x. For the displacement component

v is written

v = e .y + (63.3)

The transverse displacements of the longitudinal. edges (which remain straight) are

2 1 2b . Also 4 is a periodic function of x. Along the longitudinal edges

(x b) 'O. (63.4)

For the cdge values of the displacement component i it is also required that

" U(X, -1 b) - 0 .(63.5)

This implies that the longitudinal edges are connected to stringers of such a stiffness

that they do not noticeably deform under the shear stresses induced in the plate.

This assumption appears to be of minor hiportance; almost the same result may be

obtained if it is assumed that the longittidinal edges are not subjected to loads in the

x-direction, i. e., that no shear stresses act on the lojngitudinal edges.

Marguerre and Trefftz consider e 1 as an independent parameter or to put it differ-

ently, they consider a plate with a prescribed end shortening. The compressive load

which is (at infinity) acting on the plate then does not contrbutd to the potential

energy. Further, they consider the two limiting cases that the longitudinal edges
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are completely free to move in the y-direction and that the edges are completely restrained

=m- -c y. neither is# tth-!! esee. 4^ Cho lnnAmi An fhA Mnul-

tudinal edges contribute to the total potential energy; in the first case because the

total load on the edge Is zero, in the second case because displacement of ihe lungi-

tudinal edges is zero. The total potential energy is then determined by (63. 1). By

use of (63. 2) and (63.3) this expression becomes

.... Gh m2 I.+2 +2+W + wy]2 dxdy +
4 ~ j 1 l2 (fi xj

- iGh 2c + 2ft, + w 26 + 2' + 2

(O Vx + w w)2 ]dxdy +

+. IGho m _1+y - 1m--! 2Wxyy w  dxdy,

(63.6)

States of equilibrium are characterized by stationary values of the energy (63.6).

It is known that, as the stability limit is reached the displacer.ient components

and are zero while the component w is given by [471

W Co 7x Co T (63.7)w = a cos-2--cos (3)

if the longitudinal edges are free, and by

w =&Cos A 7 cos with I A -2 (63.8)
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if the longitudinal edges are restrained from displacement in y-direction [19, eq. 9211

An approximation is now introduced by the assumption that the displacement corn-

vonent perpendicular to the surface of the plate, also after the buckling load has been

exceeded, is given by (63. 7) or (63.8). The still unknown components 0 and 0 are

d- ermIndI if th e first v..tion of toa-21% is set equal to zero for .-re-.'e r--sib!e vart-
ation of' U and .This'leads to the differential equations (see [ 191], see. V) ,

A + A ++1 a + +_ y m 8 (W2 2)

ugx+ +xy - W- +

(63.9)

A yy + - + m y 2

W y xx WX xy 0

After restriction of the considerations to free longitudinal edges with the buckling

mode (63. 7), a particular solution of (63.9) can immediately be written down [19,
eq. 50

22ra 2 ir + m -

sin (os- V +m-Up 16b b CI

^ - _ cos2 x~ 1(63.10)
Vp 16b sin'+( b

The requirement of periodicity is satisfied by this solution. However, the boundary

conditions are not yet satisfied. For this purpose a solution of the homogeneous

equations (63.9) must also be added. It appears,however, that this addition is not

numerically significant [19, see. V and VI] so that it will not be further considered.

This is even more justified in view of the fact that in reality the boundary conditions

1 2
Equation 92 contains a typographical error, it should read -=

12 m
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(63.5) are only approximately valid ard that (63. 10) represents the exact solution if,

instead of (63. 5), absence of shear stresses along the longitudinal edges is required.

Introduction of (63.7) and (63.10) in (63.6) determines the energy as a function of the

three parameters E1 ,'2 ' a. Fxecution of the integration over the length b of a

half period yields 119, eq. 69 )]

V h 1m (C C) 22 m + 1 E lr2 +2 m -+1 1 2) 4b2

m 1 h22 -44

M 12 m(mn - 1) 64 - (63.11

In the case of free lateral edges the conditions

9V av
I. 2 -0 , -= 0

should be satisfied for a stationary value of (63. 11). These conditions are

22
2m __

Imn 1 - 2 ) + 2c 1 + m + 1 r = 0- m - 1 4b2

2 42
In + 7r a m r h2L

4b m- 12b4

+ (3m - 1) (m + 1) 4 _ 0 (63.12)
m(m - 1) 64b4

rm 4h2f2

'The last term of eq. 69 contains a typographical error; it should read M - 7r

12b
4
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"The second equation is satisfied by a 0 with which from the first equation it followo

that E2 = C 1  For this solution (63. 11) becomes

22n+1 2
V Ghb m (63.13)m 1

This solution yields the unbuckled state of the plate. With the known value 1= E*

for the buckling load (see [471)

r 2  m2  h2
m -lb3 m 2 - 1 b 2

the remaining solutions of (63.12) are written

= 1 M + 1 2.
2 M L1 I

mlb
(63.14)

2a2

4b 2  1

This solution is apparently only real for E> c In that case the energy (63.11) is

found to be

2Ghb m 2 C1 + CE * _- 2) (63.15)

Knowledge of the stress distribution in the plate is notneeded for the calculation of

the effective width. For a variation 6c 1 of the average cGmpression, the work of

the load N acting on a strip of the plate of the length of a half period and the width

equal to b is equal to Nb6c 1 . This work should be equal to the increase of the

elastic energy so that

N ~1 dV
b dE1
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should hold. For the unbuckled plate follows from (63.13) that

I, - Ghb2P- €
m 1 

*

for !he buckled plate from (63.15) that

m+1
N = Ghb -m +

The ratio of the effective width to the total width is given by the quotient of these

expressions

bm 1 (1+ ) (63.16)
b 2

in agreement with the result of Marguerre-Trefftz [19, eq. 861

633. Application of the General Theory of Chapter 3

It is assumed that in-plane loads on the edges of the plate which remain straight can

only act in a direction perpendicular to the edge. Moreover, it is assumed that the

total load on the longitudinal edges of the plate y = . b is zero. Let N be the

resultant of the compressive load acting on a tranerse edge, then the energy of the

loads is

x

Nu (63.17)

1
2

This Is in agreement with the case treated in Sect. 632.
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I
The displacements in the fundamental state are assumed to be

U = - ex, V = fy, W = 0, (63.18)

while the displacements of a neighboring stite are written as

U +u = - ex +u, V +v = fy +v, W +w w. (63.19)

After introduction of (63, 19) in the total energy [the sum of (63. 1) and (63.17)] and

after series e:-pansion, it is found for the linear terms in u, v and w (the first

variation of the fundamental state) that

1 Gh m 1 I - 8 (e (ux + vy) 8 m- fu. +8- - evy dxdy +
4 - 1 M _1

+ Nu 2Gh (f - V +

x=- y=-2

2

It appears thus that the state (63.18) is indeed an equilibrium state if

f =-!-e and 2Gm_.__-+ 1 bhe = N .
m m

To the load parameter

= nP N (32Ebh 2(m + 1) Gb
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therefore belongs the fundamental state

In

U = -Xx, V -- Ay, W = 0 . (63.21)

The expansion of the increase in the energy during transition from the fundamental

state to a neighboring state, obtained by substitution of (63.19) into (63.1), is now

written in the form

XA[u 0 0 02[] XP 2 [u] +P 3 [u] +P 4 [u]

with

P [ Gh m-- i (u + vy)- 2 m uxVy (uy+ v2]

JJmIf - 11 w2

P2[uh2=[Ghm+wj m2 x2md '(,w -w )]ddi4

P [u] = Gh m  f (uX+ (w w2

- 2 2y

m- 1[UxW 2 +V W ( +V) ] 2d

m ffl_2-

P [u] = Ghm m-iJf I(wx+ w) ddy. (63.22)

The buckling load is reached when the second variation

2 U] = P2 [u] + P2 [u]
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Wi'

is semi-definite. Becauie the displacements in the plane of the plate and those per-

pendicular to the plane of the plate yield mutually independent contributions, these

contributions should separately be equal to zero. The integrand of the contribution

first mentioned is also semi-definite so that for the first system of elgeniunctiotls at U
the buckling load thp folnwlnu aho uld hold

ix ly ly Vx

from which by use of the boundary conditions

u const. for x v const, for y 2 b (63.23)2'

it follows that

U1 = v1 = 0.

The variational eqUation (38.4) for neutral equilibrium then is

GhIn1  fih2t[2 + W )+ )+
M - 1-=0 .W xx

.. m-___I+w - . : -2 m- 1 Xw~ JCJ fdy o2 m (Wxx ryy +Wyy rxy 2 xy) m 2 1 _wxC dd

After division by the factor in front of the integral sign and integration by parts it

follows that
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b

2

MM r

X--

+ f+h 21Wyy+-L 2 t + }d +
h ym xx m Wxytx +

1g

dx -f-h+ yy
2

+ 2m wxx dxdy = ( (63.25)

The kinematic conditions for the displacements w are

w = 0 for x = 4I andy - (63.26)2 2

so that in addition

t=0 for x =:Ell and y = :k-lb.2 2dbb
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From this it also follows that

afv - h nd t =0 for x .

Furthermore,the function is arbitrary so that for lxI < - 1 and IYI < b the j
differential equation

ii i~~1 h2 (Wx 2

h (w + w + wyY + 2m - AWXX 0 (63.27).

with boundary conditions

Wxx +-mWyy = 0 for x = .I W m- = 0 for y = db.

should be satisfied. By use of (63. 26) it follows that

Wyy = 0 forx = F-1., w =0 for y= Llb

and thus the boundary conditions become

Wxx = 0 for x = w11 , Wyy = 0 for y :- -b. (63.28)
2 2

The solution of (63.27) with the boundary conditions (63.26) and (63.28) may be

written in the form [47]

w = ACOS.i lrX Cosw=sin -I-sin j

where the cosine or sine functions are used depending on whether i and j are odd

or even respectively. However, this solution exists only if X attains a value deter-

mined by
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I= m2  ,r h 2 b 21+2 CiL~ (63.29)
12 2  2 2 2 2'

The smallest value of A. corresponds to

A
J =1 andi = b'

For long plates, the latter con~ton can always be satisfied with good approximation.

It is assumed to be satisfied for an odd value of i so that the buckling load and the

corresponding eigenfunotion are given by

= m2  r 2h2

1 2 w u E"x c ob bl (63.30)
m - 13b2  b

which Is in agreement with Sect. 632.

For the analysis of the neighboring states which belong to the fundamental stute,the

following is introduced in agreement with the general theory,

u au1 + v av1 + V V, w =aw 1 + . (63.31)

As (68. 22) is of the form (38.3), the extended theory of Sect. 38 may be applied pro-

vided that the displacements u, v, w are small. Some of the coefficients in expres-

sion (38.22) can readily be determined (see also (38. 21))

0A 2 - 1 A 2  ')~1 P2 [lull

_-9_ w . d = m (63.32)
1 m - IJ 1x ~ mh - 12b3

00 +=P ul
Ai 3 P3 u P 3 u] .
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a---- -h .. .a .~ 2 ..

AI --
.,. ci-6 uuai[ O A - te fttons er 2 must be known. Thes are determined

by the variational equation resulting from (38.18), which holds for arb!tra-,k.y ,c

matically possible functions t, 1

+h -- f-. + WA (J. +

2 mh U-- a + ly' Cl + +n

In y +?1x)l dxd y (6. 8)

together with 'the condition (38. 19) which her'e takes the form

2h .~j~12I i (Wf (Vy +cy + +

2 M xx + Wyy Wx-2w WI ddy =0 6.4In ~l yy y x ±y j

In the formulation of this condition use haa already been made of (63. 24). By analojy

to the foregoing (63. 33) is reduced through inteoration by 'arts

2.36

2%M



+ M 1 (u+ V. +2wxwY) 10dy 1 +
m (U - l i I1

2

2b

+ f 2 y)t +. +

f~~ ~ 1 1IX WYl

1=1

22

+~~~~~~ I 2 +~ .1a (~ wft

m +

+ +v+ww d +
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,l y -- b2

ffm-y(-irn+
h- + W~ (w + w + Wxiy-a ~~xI~dd

ff (w + w~+. 2 w- 1 ,- a 2

1

2w2 2  2 w 2 ,
a_ W.. + ly +a Vlx lyy - ly Ixy dxdy+

m- -- i= + Y MyF x Y

(f on1t. 2Wan + o+et. I t dxdy = 0.
(63.35)

The kinematic conditions for the functions U and 7, and tj follow from (63. 23)

c"=oanst. and ficonst, for x =f le'

(63.36)
=coast. and cI= onst, for y- :L -b .

As the functions a and q7 are arbitrary, U and V should satisfy tho differential

equations
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m+l aux + Ujy +n M +1 a~ (7ux + vy +

xx - w x0
+ In a2 __ W 2 + W iv 2 - wlx w -2 v W xv 0

+M +____ yv + vy + n 1ix yy (Ux +  --)

+ M a 2  (w 2+w 1 
2 +a 2 WW 2  0 (63.37)

with the boundary conditions

I b

x = -Lf: u = const., 2 (u m.L +

__ b
2

* 2a, 2 + Iw,2 dy = 0 uy+ V+ W~ l 2 = 0

Jf -(63.38)

+a2w /[w<jY., ii 1 a
= 1 2+

'y = b: V =  const. ,2( V +1-- +

1 -~M 2

+ a2(Wly2+ -±lWl2)] - i a 2 WxWI  o* l2dx = 0 , yi + + a 2o.Wy

The last conditions in (63 37) and in (63.38) transform, by use of (63.30) and (63.36),

into

1 1-x -

x j : = 0 and y 2 b u 0y = (63.38)

238



For the function w is obtained the same differential equation as that which followed

h2 w+ 2) + + 2 M -Ix; 0 (63.39)

with the boundary conditions

x= w =  -- andy =-01. (63.40)
Sanyyy

Equations (63. 37) are identical to (63. 9) so that they also have the same particular

solution (63. 10). In order to satisfy the boundary conditions (63.38) this solution is

combined with a solution

u. = cx, v = dy

of the homogeneous equations (63.37). It follows then from the integral condition

(63.38) that with

262
c = =

8b

all boundary conditions (63. 38) are satisfied. The resulting solution of (63.37) is

12 *x 2 2-_i x- _ + m-_
16b b b -- miv / 2x'

(63.41)

V= _ sinLY cos2X CM+ m - 216b b -b m / 8b 2
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Equation (63. 39) with boundary conditions (63.40) is identical to (63.27) with boundary

conditions (63.26) and (63.28). There.ore, it smilarly alwyR has the solution

= 0 (63.42)

and in addition a non-zero solution for the particular values of X determined by

(63.29). The solution eorresponding to the smallest value X 1 is incompatible with

condition (63.34). Therefore, as long ae X remains below the second smallest

value X2 , there are no nonzero solutions of (63.39).

Substitution of (63. 24), (63.30), (63.41) and (63.42) yields after integration for the

term A 4 a of (38.22)

A 4 j aPO[u1 - POL 2 i [9~ 2' xj~ 1  i-

-
0 Li- P m Gh~-m 2 -1I .r.j&

- 2 P2 Gh m - 1 2 64b3  (63.43)

The coefficient of this term is always positive, thus also for X % so that

equilibrium is stable at the buckling load.

The equilibrium condition is

4A"a 3 + 2A I -(1 0

with the solutions

(41) AO

a 0and a for X X 1
2A4
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By use of (63.32) and (63.43) the second solution becomes

2 = 8b2 (X _ XI) for X 1  (63.44)

The average shortening of the plate is

2

1el - (au +U)

which, after use of (63.24) and (63.41), can be written

2 2

8b
2

2
Substitution of the values of e (63.20) and of a (63. 44) gives this shortening as a

function o! the load parameter

= 2X- X ' X 1) (63.45)

If the quantities related to this case are denoted by a dash,lt follows by analogy for the

unbuckled plate

= - =

The ratio of the effective width to the total width of the plate (which is equal to the

ratio of load sustained by the buckled plate to the load on a similar unbuckled plate
under the same average shortening) is then given by

n 1 + 1]- (63.46)
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This result is the same as that of Marguerre-Trefftz on account of the identity nf

with C

That the same result has been obtained is due to the circumstance that the function w

which determines the change of the buckling mode with respect to wI , appears to be

zero, 1.e., that the general theory confirms the assumption which was introduced by

Marguerre-Trefftz concerning the form of the buckling mode. This is due to the facts

that the diffcrential equation in ; and its boundary conditions have no kiown terms

and also that there are no terna containing W in P21 [ul'Z ] and P', fu ,-1

Strictly speaking the application of the theory of Sect. 38 as given here, holds only

for values of X smaller than )2 ' Since A2 for long plates is only a little greater

than A- for an infinitely long plate, the particular A values actually represent the

continuum X k X1 - the practical significance of the result would appear to be

little. In spite of this, the result (63.46) for the effective width appears to represent

a good approximation also for A values exceeding A2 ' There is no doubt that this is

caused by the circumstance that the buckling modes which correspond to X 2 , A3 etc.

differ only a little from the buckling mode (63. 30).

242



Chapter 7

THE THIN WALLED CYLINDER UNDER AXIAL COMPRESSION

71. THE DEFORMATIONS AND THE POTENTIAL ENERGY

The two sets of lines of curvature for the cylinder are formed by the generators and

the parallel circles which are introduced as the parameter lines P = const. and

a = const., respectively. The positive directions of the parameter lines are chosen

in such a way that the positiv direction of . normal to the cylinder is pointed outwards.

A point of the middle surface of the undeformed cylinder may be described by its

coordinates with respect to a rigid system of coordinates of which the xl- axis coincides

with the cylinder axis

x = Ra, x2 = R sla, x3 = Rcos.

The quantities A and B defined by (52.3) are

A= ; zk-/ = R, B (n (71.1 )

while the principal radii of curvature are

R1 = , R 2 = -R; (71.2)

the minus sign in the last relation expresses that the corresponding center of curvature

lies on the negative part of the normal.
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If for simplicity differentiation with respect to a and with respect to are denoted

bv a Drime and a dot resuectivelv. then the deformation components of the middle sur-

face take the form see (56. 3)]

7a 0 = 2ul + _L (u' 2 + v 2 + w2),

3jo 2(v" + w)+1 u 2 +(v, + W)2 +(w, - V)2 1 (71.3)

j(U + v') + -1 [u* + v, (v, + w) + W, (w" v) V

The changes of curvature follow from the formulas (56. 4) to (56. 10). If terms of the

third order In the displacement components and their derivatives are disregarded In

the development of the determinants,it follows

11 1 3 F wR U" - (w, - v) v" + (U' + v, + w) w"J

u- - 3v' - 2w + w")+

+ [- wt u" - (w' - v) (v" + 2w' v) +

+(u' + v + w) (w" -2v -w)-u'(v + w) + u' v

pw V1 + -w'u" - (w - v) (v'" + wl)+
cv R R

+ (u' + v" + w) (w" - v'>1.
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1

By calculation of these expressions terms,of the form - 'yo, etc., are disregarded.
R12 900~

Consequently, there is no objection to the simplification of these expressions when-

ever possible by the addition of a part of the disregarded terms. Accordingly, if

Sand are added to p , the changes of curvature of the middle surface
21 '6 a Rd B 1po O
are

W i + -wt - (w - + (ut + v. + ,
Pa B R

p 1- (w 131.2 1.2 1.2

+ u' 2 _ 2u'(v' + w) + u'V - w'u" + (71.4)

+ (w - v) (V + w)" + (u' + v, + w) (w' -v),

1 1 [_Wr V
P - (w - v)' + wo-i - (w" - v) (v" 4 w), +

+ (u' + v' +w) (w'- v)'J.

The contributions to the changes of curvature which are linear in the displacements and

its derivatives will suffice for the determination of the buckling load (see [49, 50J).

Use of this simplification will be made also for the analysis of equilibrium for the

buckling load as well as for the neighboring states and the analysis of the influence of

small initial deviations. Hence,

o= --R ,", P 0 0 w - -(w V) Pa (w - v)'. (71.5)

The justification of this simplification will later be given by use of expressions

(71.4) (see Sect. 782).
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The elastic energy In the cylinder 15e calculated through Integration of (55.11) after sub-

• * .

stitution of 171. 3%and 171 _-1 If - , ., -- 1 -- .%J- YAL " UW, rgy in;

21.1
V hj da d 4u ' +4(v +w) vu ' (v'+w)+

. +2.. . . - )(u v1)2 k " 2(w ) 2
1W|

+ "w" )(+2(1-Y(w"-v)2]1 +

,R 2wr

+ +w)+ du j -14ul(u' 2 + v w,2)"q_

+ 4v+ W)[u.2 + (V +w) 2 +(w, .)2

+ 4ul (O +W)+ (W. ~V)] + 4v (v' )(

+4(1-') (u' + v',) +u +(v'+w)+w' (w -v)] +

2ir

4 1- R 2 4 f

+[u.2+(V.+w)2+(w. V)2]2 +

+ 2v (u'2 + v12 + w' 2 ) u2 + (V" + w) 2 + W -v)2 +

+2 (1- V) l U + V,' +.W) + W,(W* -v)]21 (71.6)
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Here for, brevity

1 h2  k!

n , 2  k. (71.7)

Let N be the axial load per unit length of the circumference which is acting on the

cylinder edges, then with the load paravneter defined as

N N
=Eh 2G (I +)h' 71.8)

the energy of the loads is

W = 2Gh (1 + V) R Ud4P R X2Gh(1 + V) R ut datdf. (71.9)
C&ff 0 " "

72. THE FUNDAMENTAL STATE

The fundamental state Is assumed to be of the form,

U -eRa, V 0, W fR. (72.7)

The increase in the energy on transition from tbe fqndamental state to the state

U + u =., e +u, V av.= v, W + w fR + w (72.2)

is obtained by substitution ot (72.1, 2) in:(71. 6)and (71.9). After division by I Gh-

and after expansion, this increment is

PX [ul P1 L u] + P X [U] + P k (u) + P4 [u) . (72.3)
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For the moment only the first term, which represents the first variation of the energy

in the fundamental state, will be defined

P Jul Rff[(- 8e + 8Pf + 12e 2 + 4vf 2 - 8vef - 4e3 - 4vef2 ) u' +

+ (8f - 8ve + 12f 2 + 4ve 2 - Svef + 4i3 + 4ve 2f) (v" + w)l dado +

2J
+ 8 (1 - v2) ,Rif u' dad3.

The equilibrium eondit'-is for the fundamental state are obtained by setting the first

variation. equal to zero, and consequently e and f should satisfy

-8e+ 8vf+12e2 +4 Of 2 -8ef-4e -4vef 2 + 8 (1- V2) X= 0,

! , .... (72.4)

Bf• 8e + 3.2f 2 +4ve 2 -Sef+4 + 4ve 2 f = o.

In the elastio rang, ekind f areyery small and the equation nay .be linearized; its

sOlA.tm 1,'

'e ~X, f = . (72.5)-

Also, nIthe integrals 1, Ju], terms of the second and higher order in e and f are

disregarded. After use of (72. 5),they take the form

P(U+ Pn mu.
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Here

P 0[u = 4uf 2 + 4 (v* + W)2 + 8vu, (v* + w) +

.4 2 *1 1 V,,2 2I

+ (w* - -.. 2 2vwl" (w' -v)+

+2(1 - P)(w)' ]1davd#, (72.6)

p~t u 2

+~~ 4v) V,2 ++i (

44 (lv )u[2(v +w) 2 ( - v)2] -4(

44u (12 -w) -s.(w - 4)1 + af,(27

(U,2V,2 W,) +

+ 4 (1- + ) (u + (v') + W + ' V 2] +w'(-v)dd, (7.)
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ri
P3 '[ul = j f 4u' (u'2  V  +W 2)

+ 4P W" + w) iu'- + (v ' + w )7 + (w. -v )2 +

-Ou, I ,,.2 + (,. + w)2 + (w' - ,,)21 +

4 2 (v2 2+4v 2 (v " +w) (u' +V +w t )+

-4 (1 -v) (u' - vv') 'uu +v (v +w) +w t (w" -'v) ldad, (72.9)

P40u]lf 1 (u12+2+W2)2 + u *2+(v +w)2+(w -v)21 2

+21(U, 2 +v' 2 +w' 2)1 U 2 +(v+W) 2 +(w " -V) 2 +

+2 (1- v)Iu* + v'(v" +w)+w' (w- )J2 Idado, (72.10)

P4 'Iu] = 0. (72.11)

The second term of the second variation

pul] = P2
0 u) + XP2 '[u

contains the small factor A. Therefore, those contributions In the Integrand of P2 ' [u]
which have a counterpart of the same arguments u t , v, w u, vt in the integrand
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of P2,uj appear to be negligible. However,such a simplification may lead to a corn-

pletely incorrect result. This is due to the circumstance that the integrmnd of P0ul

-, ---- de-F.tc n !- I- -, v'", w, u , v, so mat the contributions depending

on these arguments in P2 'juJ may become large In comparison with contributions '

depending on the same arguments in the integrand of P[ul ; in that case,the omission

of the first mentioned contributions in XPP2 'Ju] can no longer be justified. 'this objectio

is not valid if in the integrand of P2 1[u] terms are neglected which exclusively dapend

on u', v" + w and u" + v1, because the integrand of PO[uJ is definite in these argu-

ments. Iie integral P2 iuJ now becomes as simple as possible if the contribution
depending on uv".+ w and u" -i t

(12- 4V2) u, 2 - 8u(v " +W) 2 +8v(1 - Y) u'(v " +w) +

+ 2 (1 - ') 2 (u" + v') 2  (72.12)

is added to its Integrand. The result is then given by

P2 tju] =f - (1- v2) (2u2 + 2v2+ 4w2) dad#. (72.13)

73. THE BUCKLING LOAD

The buckling load is determined by the smallest value of A for which the homogeaeous

variational equation for neutral equilibrium (38.4) has a nonzero solution. With

arbitrary, kinematically possible functions 1 , t this equation takes the form
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ff 8u'4' +8 (v " + w) (1" + l + 8vu , +r t +

i8v (v' +w) 4' + 4 (1 - V) (u" + v') (" +l') +

+ k I 2w"T" + 2 (w" - v)' ( 7'-')' + 2vw" ( "+

+ 2v (w' - v)+ 4 (1 - ) (w" - vw (' -7)' +

- V(-v2 )A (4u' +4v'rI+8w t 1) dcad3 0. (73.1)

As ? , (just as u, v, w) are periodic functions of p with period 2 7, (73.1)

after integration by parts becomes

27r[8u +8 v" w) + [4(1-v)(u' +vl)+

+k I2w" +2v(w -v)' '- 2kwI'"+2kv(w -v)'" +

+4k(1-v) (w -v)" +8 (1- ) )vj 2 j dpl +

l= O

+1- 4 (1 +P) u' - 4 (1 -v) v" - 8v" - 8w' +k{- 4 (1 -v) v"+

- 2v- + (4 - 2v) w" + 2w- } + 4 (1 - v 2 ) Xv" +

+ 8pu t + 8v" + 8w + k -(4 - 2y) v"" - 2v-" + 2wllll +

+4w"" +2w. }+8 (1 -v2) Xw"] tjdadp 0. (73.2)
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It Is assumed that the cylinder edges are supported In such a way that the displacement
t!

components v and w In the plane of these edges are zero; at Flugge remarked 150]

these boundary conditions, or at least the one concerning the displacement w, mlay

Lake effect oniy after the toaa tor me unaamentai state ras been appued as otherwise

they would be inconsistent with the assumed form of the fundamental state (4. 1). In

agreement with theec kinematical conditions also 77 and C should be zero at the edges

of the cylinder. Besides from these restrictions, the fuuction , t are completely

arbitrazry so that u, v, w must satisfy the differential equations

8u" +4(1-v) u" +4(1+v) v" +

2+8w t -4(1-v )A u - = 0,

4 (1 + v) u" + 4 (1 - v) v" + 8v- + 8w + k [4 (1 - v) v"1 +

+2%- -(4 -2)w" - 2w" - 4(1-1 2 ) Av, = 0,

8vu'+8v" +8w+k [- (4- 2v) v" -2v +

+ 2w1111 + 4w""* + 2w*- + 8 (1 - v2) w . 0

with the boundary conditions for a = 0 and a

v = w = u' + v(v" +w) = w" + v(w -v)' = 0.

" &v bouuuary conditions are reduced to

u, = ' = w = w" 0. (73.4)
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An arbitrary funiwtlon of c and 0 with a continuous mixed second derivative cail be

exptued into a double Fourier 8erien. In viewof the boundary conditions (73.4), these

series can be written in the form

u = Z (Ap coB pa cos np + A coo pa oin n),

v = E(Ppn sin pa 3in n+B sin pacos np), (73.5)

w = .(C sinp cos np+ C sinpa sin no);
pn pn

where

p = h 1r

while summation should be carried out over all integer values of i and n, including

I = 0 and n = 0. Under the assumption that differentiation of u,. v, and w may be

applied to the series term by term, the first equation (73.3) becomes

1 p2_4 (1 - v ) n2+4(1v2 ) n2 Apn

+ 4 (1 + v) pnBpn + 8vpcpn coo pa ooS nA +

22 2 21-~
+ I8p24 (1 -v) n 4 4(1l- Y)XnJA

-4(1+Y) pnB~ pn48vpC pn Icos pa sin np= 0.

The validity of this equation for all values of a and 13 implies that -coefficients of
coo pa reop no and coo pa sin rp8 must all be zero. The remaining equations (73.3)
are treated similarly. The coefficients A, B, C, whose indices will henceforth be
left out, should thus satisfy the three homogeneous linear equations
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22 + (1 -)n 2  -I P2) 2 A- v) pn B

- 2 (1+)pnA +I2 (1-v) p +4n

+ k(2(1-v) p2 + ai}_ 2 (1- 2 )Xp 2 JB + (73.6)

I4pA 4. 4n + k +(2k- v) p 2n +n}B +r

+ 14 + k(p 2 + n2)2 - 4(l-v 2 )Xp2IC = 0.

The equations for A, B and C are obtained from this by replacement of n by -n.

These equations have a nonzero solution if and only if the determinant formed by their

coetficients is equal to zero. Thus, tie states of neutral equilibrium are characterized

by the values of A satisfying the equatiou

2p 2 + (1 -v) n - (1 -'v 2)n 2 -(1 +v) pn

2 2) 2 2 1 2) X2
- 2(1+P)pn 2 (1 - v) p +4 + k [2 (1 -v)p+n2]- 2(-v)p

- 4vp 4n +m [(2 - v) p2 +n 2

- 2vp

4n+kn[(2-v) p2+n 2] 2 0. (73.7)

4+k(p2+n2)2-4 (1-v 2 ) Xp 2

Expansion of the determinant yields, If terms of the second or higher order in the

small quantities X and k are disregarded,
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, 1,2%,.4 .! , tr rg. , I,% n , .,21 ]F. 1 1,,, 2 4. n2 1
'- ' ' - _ - t - ' " " - "

2 . 2 2 2 2. .2 2.41-2n R2- ) p +n (2+)'}p + n i +p U -) -

(1V 2 ) (1 V) p4 + p2n2 + p2 (p2 + n2) 2 (73.8)

After the omission of A, k, kp2 and kn2 in comparison tc unity (see also Sect. 781)

the ratio of the coefficients A, B and C are calculated from the first two equations

A P(6p 2 -n 2 ) B nR2 +V)p 2 4 n2 ]  (73.9)
- =.(p2 +n 2  2 ) U (p2 + n2)

The buckling load is determined by XI the minimum of (73.8) for integer values of I
and n and with p = ir R/2. The corresponding eigenfunctlons are given by (73. 5) and

the ratiob of the constants A, B and C determined by (73.9). The constants A, B,
and C are taken -to be zero.

74. SIMPLIFICATIONS

It appears from experiments that p is large for cylinders with very thin walls [491; In

that case equation (73. 8) may be simplified to

22 22
A 2~2 2 2(74.1)

(p + n) 4 (1 - v) p

This equation is only dependent on the ratio

(P + n )
2
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I
and thua the minimum is obtained for

4 p + k

2p ( +n =p (74.2)

The corresponding minimum of X is (491

= (74.3)
1P2

Here no attention has been given to the conditions that n should be an integer and thatR
p should be multiple of 7 r- . However, the latter condition is of little importance

unless the cylinder is very short, as the values of p corresponding to i and to i + I

differ very little for large values of I. This conclusion is supported by experiments

[25], from which it appears that the buckling load is independent of the length of the

cylinder and of the boundary conditions as long as the cylinder is not too short

(I/R > 0.75). Accordingly, in the following influences of edge restraint will be

neglected and p will be regarded as a continuois variable. For each integer value

of n, (74.2) then yields two values of p

4 2 -r

1n,2 1 - - 
- n (74.4)

these value)s are real and unequal if

n I 2j k - (74.5)
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If in

I - V 2 (74.6)

-. .. .. .. . .............. .
111L~aii11L~~LJI~I 4C VLILUUM 01 pJ UULIV JUUAUIUM LU 11 ILI 1AUUV

4

= M. (74.7)

In view of (73. 5), the combination n = p = 0 determines a rigid body displacement of

the cylinder In the direction of its axis and it can therefore be disregarded. Thus for

n = 0, only the solution

4 4 (1 - ,2)
Po =  k (74.8)

need be considered. If (74.6) is satisfied, then in view of (74. 7)

M Po" (74.9)

The displacements (73.5) were established with due consideration to the boundary con-

ditions (73.4). However, these boundary conditions are again ignored if p is regarded

as a continuous variable. Strictly speaking this implies a restriction of the considera-

tions to infinitely long cylinders. The condition of periodicity for the particular solutions

replaces in that case the boundary conditions. The latter condition as well as the differ-

ential equations are also satisfied after Interchange of sin pa and cos pa In (73. 5).

Therefore, the general solution of the equations of neutral equilibrium for the displace-

ment component w is
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w= a 0sino a + b.cos pP +~ (anlsin p n coo nji+

+ b sin Pna sin n + COs p 1 a coB n + dn cOB pnl sin no +

+ a sinp a cos no+b sinpa sin o L
n2 n2 bn2 n2a

+ C0 2 Cos Pn2a cos no + dn2 cos Pn2a sin nf) +

+ a sin ma cos mg +b, a1n ma sin mg +inI

+ CM, cos mai cos mp + d cos ma sin mO, (74.10)

with the understanding that the last four terms are only present, if (74. 6) has been

satisfied and that summation should be carried out over all Integer values of a which

satisfy (74.5).

The displacement components u and v are completely determined by (74. 10) and by

the equations (73.3). In view of (73. 5). terms of the form sin pa coo no in (74. 10)

correspond to terms of the form co pa coo no and sin pa sin no for u and v,

respectively. The coefficients for these terms are determined by (73.9). The terms

in u and v which apply after replacement of sin pa and/or co no by co p# ad

sin n in (74.10), are obtained through replacement of sin pa and/or crs nft

cos pa and sin no respectively. The ratio of the coefficients is again given uy (13. 9)

in which now p is replaced by -p and/or n Is replaced by -n. The general solution

for u and v then is
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n Pnl 2 +n

+ bul Cos Pnla sin np - Cnl sin pnl a Cos no - d ra sin Pnla sin n3 +

+ n2 + nn22 a Pnco cos no+ bn 2 coo pn2a sin no +

-c.2 'in pn2a Cos n3 - dn2 sin Pn2o sinn) +

41 am nos ma cos mp + bm cos ma sin m3 +

- Cm sin ma cos mp - dm sin ma sin nip) (74.11)

2 2IS I (, -a sin p lacin no +

n COl n/

+ b. n2 ac ono-c1Cos pPnla sin no + dn Cos Pnla Cos no) ++ [(2 + vi) P2+n2 a2i i no + bn sin pn.2vCos n
+ (pn22 n2)2n2 nv

-C. CoB n sin nlt3+ d 2CosBn CoB o4

+ -! am stn ma sin mp .:.b sin ma coo mf3+

- cm cos ma sin mg + dm cos ma cos me). (74.12)
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The same remark as was made about (74. 10) holds here with respect to the last four

terms of (74. 11) and (74.12).

In view of the above, the general solution of the equations for neutral equilibrium at

the buckling load is a linear combination (with coefficients a., b., anl, etc.) of a

number (suoose q of linearly independent particular solutionm IL . Vh wh* f

T 11 [Uh, Vh, Wh; UP Vi, wi]= 0 for h / i (74.13)

is satisfied, these solutions are also the solutions of the first q minimum problems

(24.8); according to Sect. 24 these first q minima should all be zero. Now with1

Tr1 -Rp 0 u or Tu] Ap[I
2 [U] f 0[u] [U] P2' u

it appears that condition (74.13) is satisfied for an infinitely long cylinder. This follows

easily from the relations

Cos hSp c Idg = 0 for h # i, cos hp sin hp d 0,

11w RJCOS co=0 fo(7.4

J sin sin h I
0 0

lira Co Cos(4.14
sin ph s o, sin Pi do, = I for h i, 7.4

llm cos poe sin pa da 0.

1 The factor R/f is included because T2 [u] would otherwise become infinitely large
for the infinitely long cylinder.
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The general solution (74.10, 11, 12) Is then Immediately given in the form which is
known from the general theory.

75. STABILITY OF THE CRITICAL STATE "

According to the general theory of Sect. 272, stability of equilibrium at the buckling

load is in the first place governed by the quesUon whether or not the third order

form, which results from substitution of (74. 10, 11 and 12) In

P 3 ruj - P3
0 [u] + X1 P 3 ' [u), (75.1)

is Identically zero. The Integrand of (75. 1) consists of a sum of products of the form

cos cos cos cos cos cos
sin Ph sin P G sin pjo sin sin sin J P (75.2)

where % PIP PJ each have one of the values determined by (74.4) corresponding to

values of n = h, i, j respectively. Each of these products may be reduced to a sum

of products of the form

coo coo

sin (Ph Pi k PI)csn (h + I : J)P . (75.3)

The products (75.3) must be Integrated over the cylinder wall. Since

coo
in npdp = 0 for n90,

0

such a product can only yield a nonzero contribution if

h • I : J = 0. (75.4)
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The integration with respect to a does in general not yield such a simple result.

However, if in all contributions of (75. 1) the common factor 27r' is divided out and
Rl~ -its carried ou4th en as

It
lim os p ad 0 for py' 0,

it follows that a product (75.2) can only yield a nonzero contribution if

SPi * Pj = o. (75.5)

For the buckling nodes considered here (p >> 1), application of this result obtained

for infinitely long cylinders to cylinders of a not too small but finite length (.e/R > 0. 75)

is justified because no influence of the length of such cylinders has been detected experi-

mentally. Besides, the simplification already introduced, whereby p was regarded as

a continuous variable, is also exactly valid only for infinite cylinders.

The number of possible combinations of values of h, 1, j and ph' Pi, P3 which satisfy

(74.2) or (74.4) is drastically reduced by the conditions (75.4) and (75. 5). First of all

it is noticed that

h +l+j = 0 or ph +pi+pJ f 0

is not a possible combination if only positive values of h, I, j and Ph' P1' P, are

included (negative values give no extension of the solutions (74.10, 11, 12) and there-

fore need not be considered). Further, the considerations may be restricted to the

two cases

h + I - - 0, Ph + Pi-P = 0 and (75.6)

h + I - J = Ph - pi + pj = 0 (75.7)
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h, land J.

Also, it appears the possibility (75.6) may be eliminated, as substitution of j and pi

(75. 6) in relation (74.2) which holds for n = J, yields

4

22(Ph + Pt)2 + (h + )2 -- (P + Pj)

from which, with use of (74. 2) for n = h and n = 1, it follows that

phPi + hi = 0.

Thus, only the possibility (75.7) remains. Elimination of i and pi from the relation

(74. 2), holding for n = 1, yields

PhPJ - hJ = 0.

The relation (74. 2) for n = j then may be written in the form

4
• 2 1+ h = j_ k V'2)

from which, with use of (74. 2) for n = h, it follows that j = h. The combinations of

n and p, which together determine a product (75.2) that may yield a nonzero solution,

are thus given by

,n = 00 n I =-- h 11 n -- h (7 .8

P =f Po P =Phl P = Ph2
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This result can simply be illustrated by a p versus n graph. Here the combinations

of p and n for the buckling modes (74. 4) are represented by the intersections of the

,iruis e- (. wi... tav 'TU , ',wd vMntm ,wf intinfintJlnnu

belonging to the same value of n and the point n = 0, p = p0 determine together a 1
term of the integrand of P3 jul which after Integration can yield a nonzero quauuity.

Except for n = 0, p = pc, the assumption p >> 1, allows ouly relatively large t
values of n as only in that case this assumption has been fulfilled,

Still more simplifications can be introduced in the calculation of (75. 1). From (74. 10,

11, 12) it follows that u and v are small in comparison to w while their first deriv-

atives may be of the same order of magnitude. Further wl In large in comparison

to w, while w" may be of the same order of magnitude as w'. The most important

terms of the integrand of Po [u] (72. 8), in comparison to which the remaining terms

may be disregarded, are then given by

4uw' 2 +4(v + w) w2 *w2 + 4vv w) w2 +

+ 4 (1- v) (u" +v')w'w" = 4[u' + v (v' + w)] w'2 +

.2+ 4(vu' + v" + w) w + 4(1-v)(u" + v')w'w. (75.9)

The most Irportant terms of (72. 9) are of the same form so that, as Al << 1, the

contribution A1Pj [u] may be ueglected in comparison to P3 [u]

Although the corresponding amount of writing is quite extensive, the execution of the

calculation of the third order terms now yields no more difficulties, and thus the final

result only is reported

PIE ajuj] LAI (I- 2 ) 3n2 [bo a -b b +c +
3 1.jJ 2 nla 2  n n2 ' 'n %12

+ dnl dn 2) + ao (an1 cn 2 + an2 c n1 + bn1 dn 2 + bn2 dnrl)] +

+1 2 ab (-am2 -b 2 +c 2 +d. + 2ao (amm + bmdm) (75.10)
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Here summation should be extended to all sufficiently large integer values of n which

satisfy (74. 5I. It appears from (7/5. 10) that terms of the third order do 
exist so that7&

equilibrium at the critical state Is unstable.

76. EQUILIBRIUM STATES AT LOADS IN THE NEIGHBORHOOD OF THE BUCKLING
LOAD STATE

?,'

Since, in view of (72.6 to 11), the energy increment (72.3) is of the form (38.3) the

theory of Sect. 38 may be applied. If the considerations are restricted to displace-

ments from the fundamental state of such a small magnitude that already terms of the

fourth order may be neglected, then the stationary value of the energy PA(aj) for

constant values of aj takes the form corresponding to (38.22)

PX(aj) = (A- A1) P2 la1 ) + P (aj) + AP3 '(a) (76.1)

where

P2
1 (aJ) = P21 [za~uJ

P03 (a9) = P3 [Zau 1J

P 3 (aj) P3 ' [Zalu1] (76.2)

As already has been remarked In the previous section, P 3 [u] is of the same form as

pLI u] so that in (76. 1) the last term may be disregarded as A<< 1. Furthermore,

the second term agrees with (75. 10) so that only the first term needs be calculated.

In the in ,nd of (72.13) u" 2 and v,2 are again negligible in comparison to w,2

so that

P2
1(a = - 4 (1- v2 ) ff(Zalw j ') dada;
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P2'(a f -4(1- zA) aj2 wj ' 2 dcad3

2= r " (- v21 2 2Po2/o2 + bo2 +

+ n. l~l (a2 +b1 2 +01112 +n1+

+ Pn 2 an,2
2 + bn2 + on, + dn2) +

2 (am2+bm2 2 dm2)

+ m 2aM2+b + cmI + dM21(76.3)

Hence (76. 1) becomes

Alaj 2rA 2 -i x [2.2 (..2 +b+

"+ Pnl2(n + nl2+ c ni + d ),.

2 (a2 2 2 2\ 2 ( m  2 2)]
+ n+ bn2 n2+12+ .m2  b c

n=1 l

+ 3 Pn22[b (a 1 a. - b++ b + dd +a= I -bnln2 +Cnl cn2 n

+ a0 (anl cn2 + a%2 Cn] + bnl dn2 + br2 dnl ) +

+ 31m2 [bo (a 2 bin2 +c2 +din2 ) +2a

n +cm + + 2In .m m + brad ,1 76.4)
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The equilibrium states are characterized by stationary values of (76.4) as functions of

the parameters a0 , b , an1 etc. Differentiation with respect to a, and b- leads to

the conditions

4R(\ - ) poao 0+ 3 a 1 C 2 +a.2C + Nldn2 + bn2d nl)

n=l

2+ 3m 2 (amc. + b md M) =0,

(76.5)
-4R(-, 1 )p 2 b+ 3 n2 (- nan2 - bnbn2 + Cal2+ dnid 2) +

n=l

32 2 2 2 2+fm (-am -bm +Cm +d 2 ) = 0.

It appears from these conditions that a and b0 cannot have a nonzero value unless

at least one pair of the remaining coefficients differs from zero.

Differentiation with respect to anl, an, C1 'ln2 leads to the conditions

2 2- 2R ( I) pnl2 anl + 3n -b 0 an2 + a0 cn2) = 0,

- 2R (- 1) Pn22 an2 
+ 3n ( b0an, + a0 cn1) = 0,

(76.6)

-2R (N-k 1 ) pn , On+3n2 ( b0 cn2 +a0 an 2 ) = 0,

-2R (x-, 1)p22 cn2 +3n ( b0 cn, +aoanl) = 0.

The conditions obtained from differentiation with respect to bnl, bU2, dn1 , dn2 have

the same form and follow from (76.6) through replacement of anl, 2 and Cnl 2 by

bnl, 2 and dnl, 2 respectively. Differentiation of (76.4) with respect to am and

leads to the conditions
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2R - m2a + 3 m 2 (-boa +ac) 0,

-2(XA1 m m 0 In 0 om
(76.7)

-2R(X-Xi)m ' c
m +3m ( bocm+aoaim ) = 0. I

The condition obtained by differentiation with respect to bm and d follows from

(76.7) through replacement of am  and cm. by b and dm respectively.

The conditions (76.6) may be regarded as a system of homogeneous linear equations

for a,,, aD,2 , cnl, cn2. These equations have a nonzero solution if and only if the

determinant formed by its coefficients

2R 2  - 3n 2 b 0 3n 2 a

3n 2 bo - 2R (A -1) p2 2  3n 2 ao 0
(76.8)

0 3ru 2R I P. 1 n 2  3n 2bo

3n2 a 0 3n2 b -2R (X -X

is equal to zero. Expansion of the determinant leads after use of

2
Pnl Pn2 n (76.9)

to the condition

n8[4R2 (A - 1)2 9 (ao2 +b 2 )] = 0,

from which it follows that

2 2 4 2 2.

a o R .h- (76.10)
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Likewise, the conditions (76.7) as a system of linear homogeneous equations has a

nonzero solution if and only if the determinant

222 2
"2R (x - X1 ) m2 -3mbo 3ma0

3m 2 a. - 2R (A.- A,) m2 +3m2bo

is equal to zero. Expansion of this determinant leads again to the condition (76.10).

A surprising feature of condition (76. 10) is Its independency of a, so that the result

of its satisfaction is that all equations (76.6 and 7), as well as the equations obtained

from these by replacement of

anl ,an C n2, am, cm' by b n, bn2, dnl, dn2, bm , dme

have simultaneously a nonzero solution. On the other hand, if (76. 10) is not satisfied,

then (76.6 and 7) have only the trivial zero solution. In that case a0 and b° are
also equal to zero in view of (76.5). This solution which represents the -fundamental

state cam be left out of further consideration.

For the values of ao and b° determined by (76. 10), the determinant (76.8) is of the

rank 2, . e., all the determinants of the third order formed from its rows and columns

are zero, while at least one of the determinants of rank two is unequal to zero. The

general solution of (76.6) Is,therefore,

an 2R ffi(- b0 ani + a0 cni),
n2 2R (1, - 'Y ) Pn2 2 bn On

(76.11)
Mn2

cn2 =2R (X '.(2 aOa12 bonl),
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in which anl and o, are arbitrary constants. The corresponding solutions for b

and dn2 are obtained through replacement here of a and cn, by bnl and dn,

resaectively. The solution of 76.7) is

31 (A-X 1 )-3boaoam (76.12)

unless ao is equal to zero; in the latter case the solution is given by

b0 = R(X- ) or bO = R  - . (76.13)

depending on whether bo determined by (76.10) has the value

am = 0, c M  arbitrary, resp. am arbitrary, cm 0. (76.14)

The corresponding solutions for bm and dm are obtained from this through replace-

ment of am and cm by bm and dm respectively.

By 3ubstitution of (76. 11 and 12), (76.5) becomes

21" n 2 2 2

-4E (X- 1 ) a 0 +9 2 (a., 2 4 b., +cl + dn-I 2R (X - Y Pn2

m2a
R ( - 1 ) - 3bO  

2 + bi2

... n4o
4R (A~ 2,P n

(- 1) p 0 b2 (a b 2 2l n!2n-1 2R (A - ? 1 ni i n

+ m2l9, 2 2+b 2 ) 0.
272 (,x - X 

° "

2.72



By use of (76.9) the first condition becomes

a o -4R (X- ) po + 2R(- A) p'22 +02 + %I J

9-. __ 2 2 2
+ 9- - 3b o  (am2 +b 2 ) = 0. (76.15)

0!

By use of (76.10), the second condition can be reducedto

9 2 2  2 2

+ 2R( - X,)- 3b m (am +bm = 0. (76.16)
- 0

Except if a°  b= 0, which case may be disregarded, these conditions are only

satisfied by

- 4R ( - 1 ) P 2  9 - Pn 2 (n 2 bnl 2 + Cn 2 +d 2 ) +

9 2 2 2
+2R(A-A 1 ) - 3b o m (am + m2 ) = 00(76.17)

The case ao = 0 must still be considered separately. The first condition (76.5) is

then immediately satisfied by substitution of (76.11 and 14). Depending on whether

the first or the second relation (76.13) is satisfied, the second condition (76.5) by

substitution of (76.11 and 14) becomes

8R22 (X - )2 P 2 2 + 1 nl + l2+nl2 2
n=l nn +

+-m 2 {C2 +d 2 ) m 0, or (76.18)
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8R 2 ~ (X - XI) 2 po2 + 9_. pnl 2 (a%12 1 b nz + n2 + dul )+

9 2 2 2 2 2

+=-m2 (a 2 +b 2)0 (76.19)

respectively.

The resulta obtained may be summarized -s follows. The displitcements (74. 10 to 12),

for neighboring states of equilibrium deviating from the fundamental state, should

satisfy (76. 10 and 17) and (76.11 and 12). In the case that ao = 0 one of the condi-

tiche (76.18 or 19) takes the place of (76. 17), while (76.12) is replaced by the corres-

ponding relation (76.14). It appears from these results that the displacements in the

neighboring equilibrium states are far from uniquely determined. This is partially

caused by the fact that the contributions to the displacements with coefficients a, b,

c, d with the same indices, all determine the same buckling mode, although with a

relative "phase-shift". On the other hand,the indeterminancy between the coefficients

with different Indices cannot be attributed to this fact. It is to be expected that this

latter indeterminancy would, at least partially, disappear if in the energy also terms

of the fourth order in the displacements were taken into account. This possibility of

improvement of the theory would introduce a considerable complication of the analysis

and will not be further explored.

The stability of the neighboring states of equilibrium is governed by the second varia-

tion of (76.4)

p&2p2 (Aa'2 +Ab 2 2
Xg (aj) = (- ) -R(A - X,1) 1 p2a2 + 4bo)+

+ I pn
12

2 (A an 12 + Ab n12 + &on 12 + A dn 2) +

n1n
+ n Pn2 2 ("an22 +b £n22 + Ac n2 2 +Ad n2 21

, .274



U "I

2 2 2 2 21SIm2 (Aam + b 2 + AcmI + Adm )I +

+ 3n ben 2 Dot a2 n bo " n2 +nl " b An2 + d'n2 "be "dnl

2 i

+ anI A Cn + nAa & n + an Aad d~l O I A ° An

+ (ZnI O fn2 n2 aO  n n2 + dn2 n Ia n2

"al 2 Ab a - a 2 "Abm2 +a,- Are + A 2 - ZAo

-a A b o  +a -n 2b A bo & b m + dc m Ab o Am d+Un

n2 ni ni n0 n2 L2nij

+adAao Ac m + 2a m  Ac + A d +Aba +

+ ai b&Aao Ad aoAb + m b.2AboAd. I Ah Abn+ +

0 D.2 + 0 i12~l

+cI1 2 Abo -ac A2 +A b + &bd,2 +d A

2 m 2

thanthebucli 2 loa arintbecn miately inue.Frte tecofiin

+ 2a, (A a Ac +Ab Akd)+
o in ol

-2a Ab Aa - 2b Ab 6b + 2c Ab0 Ac +
In 0 In In 0 In n 0 im

+2d Abo Ad i2a ra c e2 . A 2a eia +
In 0 In in 0 Di In 0 In

+ 2b InAaO Ad I + 2dma Aobmn (76.20)

The general conclusion of Sect. 36 that neighboring equilibrium states at loads smaller

than the buckling load are unstable can immediately be used. Further, the coefficient
of~or astnceAa 2 is negative fbr loads greater than the buckling load. Counsequently

(76. 20) is negative only if & a0 io different from zero. Therefore, the neighboring
states of equilibrium, as well as the fundamental state, are unstable at loads in excess

of the buckling load. Since an unstable state of equilibrium cannot be realized experi-

mentally, the above analysis offers an explanation why, at least for small deformationa,

the thin wallee, cylinder cannot carry loads greater than the buckling load.
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The neighboring equilibrium states for a cylindrical shell were investigated by

von "urintU U.11 L. mUL& LUJ. j * ~UWL~kbLu aU MWhIM W4 £.D b~w vm

ment component

w ao + a coo pa coN no + a, (cos 2pa + coo 2n#) . (76.21)

The displacement components in the axial and tangential directions are then determined

by application of-the equilibrium conditions in the plane of the shell. The three param-

eters in (76.21) are fin.lly found from the condition that the potential energy should he

a minimum.

The displacements assumed by von Kirman and Tsien cannot represent the general

solution in the crttical state. Consequently, their results will presumably be less

accurate for loads reasonably close to the bucklLng load. This supposition is con-

firmed by the shape of their curves giving the amplitude a1 of the critical mode as

a function of the load. At the point which represerts the critical state X = X1
a1 = 0, the tangent to the curve is parallel to the a1 - axis. According to the general
theory (76. 10),however, the amplitude of the critical mode in the neighborhood of the

buckling load increases linearly with the changes in the load. On the other hand, the

theory developed here yields improbable results for loads further removed from the
buckling load. It leads for instance for the unloaded state, X = 0, to equilibrium

states with nonzero values of the coefficients a, b, c, d. There is no doubt that

this is caused by the omission in the calculation of the energy of terns of the fourth

order in the displacements (see also Sect. 783).

77. THE INFLUENCE OF SMALL DEVIATIONS

It is assumed that the undeformed state of the middle surface of the structure can be

derived from a cylinder by displacements w. in the direction normal to the cylinder

surface. The coordinates of a point on this middle surface are then given by

x. = Ra, x2  = (R+wo) sinp , x3  = (R+w) cos
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It follows from Sect. 57, that the strain components of the middle surface are deter-

mined by (see also (56.3))

Vro* (u2u' 2 U +v, 2 + w,2 ) + °w"
R i2 i2o

po 2(v +w) + U.+ (V +W +(w V) +

+ = 2w" (v + 'w) +2w- (w )- ( )V 11.

(U' + (I - ,U +V V4 ) 1(*V

+ v)wVu'u +V'(V' w)w,(w v)J +

R I 2 + o 0o 0 -) ' ]"

The expressions (71.5) for the changes of curvature remain unchanged.

Just as the extended theory of Sect. 38 could be applied to the perfect cylinder, use

can here be made of Sect. 47. In the energy incrament (47.1) on transition from the

displacement configuration U(x), which determines the fundamental state of the model,

to a displacement configuration U(X) + u, the influence of small deviations between

structure and model is expressed by the term (47.2) only. This term, originating

from the elastic energy, is obtained from terms which are quadratic in the total

displacements U(.X) + u. If for the time being these total displacements are called

u, v, w, it follows from Sect. 57 that these quadratic terms are obtained by

substitution of (77. 1) in (55. 11). Thus, they are
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SGhl 18%u'w'+ 8w0 (v+ °I

+ 8w (v' + w) (w -v) + 8Bw w' (v' + w) +
0 0

+ Bywu' v' + w) + 8 U,
Wo VW0 (w- v) +

+ 4 (1 - v) w, (u' + v') v' + 4 (1 - v) wo' (u' v') - v) +

+4(1-V) w o (u' +v')w' , dad. (77.2)

In the following U (A) + u represents the total displacements, of which the components

are

-ARi +u, v, XvR +w.

The desired expression (47.2) is then obtained by expansion of (77.2) including only

terms which are linear in u, v, and w. After division by 1 Gh

CXQlU (u] I-8Awo'wI+16Y wO (v " +w)+

+8v w6 (w -v) + 8v 2 Xw I w' - 8V wo (v + w)+

2+8u2 A~o' -8~w ° (w'-v)Jdadf =

f 8 1 -v P w' + 8vw o (Vu' + v" + w) dadp.
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If it is assumed alsb .hat w0 is zero along the edges of the cylinder, then, through J

integration by parts, this expression may b? reduced to

EXQI' [uj = 8N ffw o [(1- v2 ) wI +P (vu' +v' +w)] dnidp. (77.3)

The considerations are restricted to displacements froib the configuration U(X) of

such small magnitude that terms of the fourth order in u, v, w and their derivatives

may be disregarded. The statiqnary value of the energy FA(aj) for constant values

of aj then takes the form

FA (aj) =EA I (aj) + P' (aj), (77.4)

which is derived from (76. 1) and (77.3) and which corresponds to (47.8). In this

expression P\(aj) is determined by (76.4) and

CXQ 1 ' (aj) = 'EQ' Zauj 1, (77.5)

where the components of Zau are determined by (74. 10 to 12). SInce p2 is always

supposed to be large in comparison to unity, the first term between brackets dominates

in (77.3) and all the other terms may be omitted. For (77.5) then follows

EX'(a = 2i 2 12
ExQ-- (aj) 72 (1 - v ) 8R a I po 2 (Aoa o + Bobo) +

o#Pnl
2 (Anjan, + Bnbj+ Cn I+ DVnldnl) +

n=1 nblCln

+ j pn 2 2 (An2an2 + Bnibni + CnCn2 + Dnidn2) +

+ m2 ( BA b + bm + } D d)n=1 n2 n2 n2 + n2cn2 n2 +

+i2(Aa +Bm b +Cc I Dd) . (77.6)
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7 where ior brevityU

~~si fwap a dadje c Ao,27 ff Wo I

. V sin Pn1 a cos nd dp = E A 1 , etc. (77.7)

The equilibrium states are characterized by stationary values of (77.4). Differentiation

with respect to ao and b. leads to the conditions

BR p2 (XX)P2 a
Ao - 4R(- )po ao +

n nJn2 n2nl bnl dn2 + n2d

2+3m (amc m +b dM ) = 0,

2 2-8RACPo B
o -4R (X - X) po

b
o +

+3 n2 (-a a u2 -  b n1 bn2 + on, cn2 + dn, dn2) +
n=1

+In (-am -bn 2 +c 2 +d ) = 0. (7 7.8)

Differentiation with respect to anl, an;?, cn 1 , 0a2 leads to the conditions

8RAc 2 Anl -2R (A -A 2 a. + 3n 2  b a +a = 0,

-8RA cPn2 2 A n2 - 21 (A - X1 ) Pn22 an2 + 3n2 (-boanl + aoc) =0,
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C_ R 2 2- ,) P., C. 3n2 ( hoe + a,2) 0,

- . 2z2 2 n R(\-X.)+n 2 ( boo., +a n 1) =  . (a'n.9) 1 0-~~a f 'zk,,s.n,,? "z2 - " 2R (X ,- ki

The conditions obtained from differentuo'ion with respeot to bnl, bn, dnII dn2

foLLOW from (77.9) after replacement of Anl,2, Cul,2, 2nl,2, Onl,2 by Bnl,2,

Dn,2, bnl,2 dnI, 2 ,respectivel. Differentiation with respect to am and Cm

leads to the conditions

-8Rm 2Am-2R( 2am+3m 2 (' boam+ a cm) = 0.

8RX cm2 Cm 2R (X - X1) m2cm 4 3m 2 ( bocm + aoam) (77.10)

The conditiois obtained by differentiation with respect to b. and dm follow from

(77.10) after replacement of Am, Cm, am, cm by Bm, Dm, bin, dm respectively.

The solution of the equilibrium equations can in principle be carried out as follows.

Again, (77.9 and 10) may be conceived to be Oystems of )inear equations for a.l,2,

0 nl,2, am, c m which then are inhomogeneous. The solution of these equations is

always uniquely determined as long as the determinant (76.8) differs from zero, and,

as it will appear later, this is always the case below the buckling load. Substituation

of this solution, which is still dependent on the parameters a and bo , in (77.8)

yields two non..lnear equations for ao and b o .

However, the solution method described above is difficult to apply and the conaidera-

tions will be restricted to a simpler, special- case. For this,the following choice is

made

A n1, 2 =Bnl2 = Unl, 2  D Dn1,2 Am =Bm =Cm =Dm=0.
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This case occurs for instance for an ininitely long cylinder if

0 =hIn n -r (77.11)0 "*O- O"

The remaining constants (77.7) then are

1 hcooco B h in a (77.12)2 o o 2 o

Equations (77. 9 and 10) now have only the trivial solution unless the determinant (76. 8)

is equal to zero. For this zero solution,it follows from (77.8)

2X cAo  A
a° = _ 01 =  l" ch coo
a0  X 1 X A -X

2N eB0 k
-0 o X ). ch sin% . (77.13)

It appears from (77. 13) that for X - a0 andb also approach zero. The solu-

tion obtalnedtherefore, corresponds to the undeformed state of the structure when
X-0, I.e, it determines the natural oquilibrium state.

The stability of the equilibrium for A < X 2 is governed by the second variation of

(77.4) which is identical to the second variation (76.20) of the expression (76.4). Sub-

stitutlon of the zero solution of (77. 9 and 10) gives

AF (aj)  =)p 2 (Aa 2 +Ab 2)l
2?rA 2I 2- _X P o 4

R
2 (1 -V

+ jR(%-.X) jPn12 (Aani +AC 2 ) + n 2 (4an2 + &Cn2, +

n=2
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2+3n b 0-Aa1 An 'iA 2+

+3 0  ;1 An2 +an aCIII

+ % .2 (A"2 A%2) + 2 2 + d21 +

2A.

+ 3nb (A

0o- bnlA bn2 +Ada Adn2)+

+ 3n2a 0(Ab Ia d2 +A baAd) I +

+ &aR 2 + C2 )+3m2a &
2Q.Xl 0(Aam 0~ In

+ IR Qq- A)m2 (Ab m 2+Ad 2) +

+ m2b (_A b2 +&d 2) +Sma Ab adj (77.14)

The forms of the second order in As 0 Ab b, etc., placed between curly brackets are

not mutually coupled and,thus,thoy can be considered separately.

The first form is positive definite for X < X 1' semidefinite for A.= x and
negative definite for X > X

The second form is, for sufficiently small values of X , positive definite because ao
and b 0 approach simultaneously zero along with X . On the other hand it can certainly

admit negative values for A > X 1 This form is semi-positive definite if its mini-
mnum (with the value zero) is ilso reached for a set of values A a.1, 21A Cnl, 2 differ-

ing from zero. For this purpose, the equations

2 22R (A1 -;x)pnj &anj I3n (- bOAan+2 c 2  =0ec (77.15)
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which express the minimum conditions, should possess a non-trivial solutiou.

These equations are, however, identical to (76. 6) so that they possess a lion-zero

solution if and only if (76. 10) has been satisfied

2 2 4 2 2a + b = R ( 1 -x)* (77.16)

The second form thus can be made semipositive definite by increase of the ioad

parameter A to a value smaller than X, for which (77.16) Is satisfied. Ellmlna-

ticn of a and b by use of (77.13) gives for this limit value the equation

2  2
- h2 R2 (%j -X)2

(x1  9)2

which has a solution between 0 and X

3ch - ch 9C2h2'
X + - h R- +  (77.17)12 1R V R 16 2S1R

for positive values of e, and

3 ch 3 C/. h +9 2h2'

1' -" R 16 12

for negative values of c. This latter solution is the same as that for the positive

value I c i so that the considerations may be further restricted to positive values

of C .

Furthermore, the determinant (75.8) is different from zero for values of A smaller

than the limit value (77. 17) so that the assumption used in the solution of (77.9 and 10)

has been fulfilled.
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The third form of (77. 14) to completely equivalent to the econd so that it is also
D o stiLv e d o fin ita M r v a ll- a n f 4 , .. , 1 .6 = . at. &a (7 . 7

The fourah and £LILh Zorms oi (Cc!. i4) are also positive definite for small values of A

and they can also assume negative values for X > X I * They are semipositive

definite if the minimum (with the value zero) determined by the equations

2R(kI -A6 )am + 3(- boAam + a Acm) = 0

2R(j -A )Acm  " 3 (boACm + aoAam) = 0

also corresponds to a set of non zero values of As m , Acm . This requiremeiit

leads again to condition (77.16) which rgain leads to the value of % determined by

(77.17).

It follows from the foregoing that the second variation (77.14) is positive definite for

values of X between zero and the value determined by (77.17), while it is semi-

definite for the value last mentioned. Hence, this value determines the buckling load

of the structure. With

it can be written in the form

-); 2((77.18)
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and with ' = 0.3 it is given by

r - .-
! =)1 11 + 1.24 C- V1.Z4c(2 + 1.24c) (77.19)

The great sensitivity of the buckling load for small deviations from the perfect

cylindrical shell Is clear from this last formula (see Fig. 9).

1.0

0.8
A _

-- 0.6FIG.9
0.4

0.2

0
0 0.1 0.2 0.3 0.4 Q5

For instance, the buckling load amounts to 61 percent of the buckling load for the

perfect cylindrical shell for C= 0.1 , in which case the -amplitude of the deviations

(77.11) is 10 percent of the wall thickness. For E= 0. 5 the buckling load 0! cnly

34 percent of its original value. The experimentally determined valu:.& a bru! 25 per-

cent of the buckling load for the perfect cylinder with a radius to wall W_ , n katio

of R/h = 1000 corresponds to E= 0. 9 . This result forms a stri!i. i ast to the

theory of Donnell [221 which can explain thie experimentally determined 0-d1Wu only if

the amplitude of the deviations is about ten times larger. Although it is,of course,

desirable to extend the investigation to deviations of other forms than (77.11), it may

be concluded now that the theory presented here gives an explanation for the large

differences between theoretically and experimentally determined buckling loads. Also.
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the wide scatter in the experimental results is satisfactorily explained by the great

sensitivity of the buckling load to small changes in the magnitude of the deviations.

In the previous analysis it was consintently annume tat fhe e-ea 1imit of the

material would not be surpassed at any point of the structure. This assumption may

be examined after the calculation of the greatest absolute value of the strain component
2 2V/,. When u 2 and V1 are disregarded and the substitution of

.Ra + -- (aoCosp - bsinpa)andVAl+ a sinpo a + b cosp o, (77.20)P0 0 0 0 0

for the total displacements in axial and radial direction is made, then the deformation

component of the middle surface (77. 1), by use of (77. 11) and (77.13) becomes

' 0 =" 2h- 2v , eh sin(poa - ad +

+ 2(-po -- ) E2  cos 2 (Poo- +

2 X 2 h2  2+ 2p cos (pa' - a) , (77.21)
0PO - 0 0)

while the change of curvature is

A _, R stn(Poa - a0 ) (77.22)
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The greatest (negative) total component'of deformation is reached for sin(p a - a =

and for Y - 1/2 h It is (see(57.9))

2N -- 2P X h A -  7.23)

-X1 R X

The greatest absolute value is reached at the buckling load A = A* ; after substitution

of (74.8)

Y VC A 2~kaa 2X* - 2  -r R-3( v 6k

For R/h = 1000, ' = 0. 3 and the values found in experiments

S 1  = 15 = 0.941 R .

it then follows that

The specific sWain is consequently smaller than 0. 001 so that it is not to be expected

that excess of the elasticity limit will occur if the cylinder is made of steel or dural

alumin.

78. CLOSER CONSIDERATION OF SOME SIMPLIFICATIONS

In this section some of the simplifications which were introduced will be more

closely examined. Justification of omissions, which have been discussed else-

where in the literature will not be attempted here.
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781. Formulas (73. 9)

In th', derivation of these formulas, kp2 and knz are disregarded in comparison to

u.11y. FuL J bucki ing modes considered in Sect. 74 and thereafter, this omission--

is indeed motivated since kp2 and kn 2 , in view of (74. 8), cannot be greater than

2k(1 - ;thus, the omission is equivalent to the omission of X in comparison

to unity (see 74.3).

782. Formulas (71.5)

It is sufficient to Justify these simplified formulas for the calculation of (75.10). For

this purpose it is remarked that, when use is made of the more accurate formulas

(71.4), the Integrand of the third order term in (71.6) should be supplemented with a

term containing the factor k. With use of the displacements (74.10 to 12),the order

of magnitude of the most important part of this term appears to be 1ww" . Then,

again by use of (74.10), a contribution in (75. 10) of the form

2211 4
V kp aoanlan2 etc

is found, or after use of (74. 8)

2A, 4(1- P 2) aaa etc. (78.1)

Because p 1 and P2 can only become large in comparison to unity if n is large,

terms of the form (78.1) may be neglected in (75.10).

783. The Omission of Boundary Influences

This omission is best Justified by the experiments which show no dependency of the

buckling phenomenum on the length of the cylinder or on the boundary conditions. But

it may also be made plausible theoretically.

The influence of the boundary conditions were first disregarded in Sect. 74, where p
2

was conceived as a continuous variable; moreover, p was supposed to be so great

that unity could be neglected in comparison to p 2. Under those assumptions, at the

buckling load, infinitesimally close neighboring states of equilibrium were found for
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each value of n satisfying (74.5) by use of the two corresponding values of Pni, 2

(74.4).

In reality, the smallest value for the solution A of (73.7) generally corresponds to a i
completely determined set of values n* and p* = irR/L . Naturally, this value

p* will not deviate considerably from the values p* or P2 determined by
ni n

(74.4) which correspond to n = n* , Further, (73. 7) has a solution that differs

only slightly from x1 for other values of n and for values of p which differ slightly
from the values given by (74.4). In reality, the general solution (74.10),which was

obtained through the simplifications, is for X = A 1 dissolved in a set of single
valued solutions for values of A (x i ) with small differences between them. The

result of this is that the third order terms determined in Sect, 75, each composed

of three buckling modes, are absent. Equilibrium at the critical state then does not
necessarily have to be unstable. However, this will only influence the neighboring

states of equilibrium If A1 - is much smaller than ki - XI with i = 2,3, etc.,

and this is only the case in a very small neighborhood of the buckling load.

The same holds for the analysis of the influence of small deviations; only when the load,

for very small deviations can approach the buckling load very closely, a different
elastic behavior may be expected. It is,therefore,not surprising that, for such devia.-

tions as occur in reality, nothing of this kind has been observed.

784. Omission of the fourth order terms

The admissibility of the omission of terms of the fourth order may be examined through
calculation of (7M. 10) and comparison with the remaining contributions in the energy.
This calculattilai t i eat executed for a particular neighboring equilibrium state

a0 nl,2 nl,2 nl,2
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These coefficients do satisfy (76.10, 14 and 18). The most important terms of the

int~wrand of (72. 10) are

+1 2wW2 + w. 4  W 2 + w.2)2

Substitution of (74. 10) and use of (78. 2) gives for this integrand

2
m4 

1(2b. sin 2mci + .msin macos mp) + cm~ cos masin m1-

zM4Ib 120 + 2- 2b 2 cos4mci +

+ 2bocm(cos maE - coB 3majG 00n m (3 - jc. coo 2m dos 2m 2

Execution of the integration gives

P~(aj) 2 ri 1 4 4+1 4
42jJ R - 0  om 16 In

Through substitution of (78. 2) it finally follows from here that

-jo (a_ 211L__mR o (78.3)
4 Ra) 2  271

For the third order terms after use of (78. 2)

- 1 V264 23 X X3
3~)=--( - 9-m (X- 1  (78.4)
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so that the fourth order term may indeed be neglected if

L5m25(A - ) V2

In view of (74.3, 8 and 9) this requirement is

1*K- L ( - V,(78.5)

It appears from this condition ihat the omission of the fourth order terms restricts

the validily of the analysis of Sect. 76 to loads in the tmmodiate neighborhood of the

buckling load.

The circumstances in the analysis of Sect. 77, at least for the form of the deviations

which was considered (77.11), are much more favorable. By use of (77.13) the radial

displacement component

w =a% sin poa + bo cospa

can be written in the form

w = 2 + b sinjpo _ )

so that the most important contribution of (72. 10) is

F4
0(aj) = ff P" (a 2 + b 2)200s 4 (poce c- )doidp

27rt 3 P._ -(a2 + bo2 ) 2  (78.6)

R2 8  R 0
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In this case the third order terms are absent; the second order terms are

P~(a.) (.R, 2 + h~ 2(78.7)

Therefore, the terms of the fourth order may be neglected if

4 2
R2 (A, b2 _

After substitution of (77. 13) and use of

p2= 2  1 h 2XF( 2

this requirement becomes

S2 A A2

8 i  3 (78.8)

The maximum of the left hand side o.1 (78. 6) occurs for the buckling load' (A *)
By use of (77. 16) instead of (77.13), the condition is

1- < 6(1 - . (78.9)A'1

This condition is reasonably well satisfied and there is no justification, at least for the

deviations considered in Sect. 77, to improve the theory.
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APPENDIX

As far as the writer knows, in the literature (e.g. [45]) the solution of equation (61. 20)

0"4. r s ) = 0 (1)

with boundary conditions (61.21) and (61. 22)

O: - cA; 0 7: 0 0 (2)

has only been determined for the case in which 0o (the value of 0 for 4 0) has

the same sign as c . However, for Section 615 it is also necessary to know possible

solutions for the case with opposite sign of 080 and E. It is assumed now, just as

previously, that C is positive.

Equation (1) may be written

0,2 +7r 2 in 0

from which, by use of (2), it follows through integration

+ 2 21r A, (cosa - cos 0. (3)

0).

In view of (2), o' is negative for =0. As 0' must be a continuous function of

t, it follows then from (3) that

0"=- ' 27I 2 + 2(cos 0 -cog0 0 (4)

as long as the expression under the square root sign remains positive.
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First the case will be considered in which 0 is positive; (4) then definitely holds

for values of 6 between 0 and 6. If further considerations are restricted to

curved beams for which 0 is equal to zero only if . = then integration of (4)

yields

0

which can be written

so+ dO
S 1/1wr2AE2 +sin 2 10 sin2 101
0o 4 i0-

It is assumed that 0o  7r still is so small that

1 2 +2  21 (6)

As 110 < 0 < 7r it is then always possible to set

sin 6 1 sin 0 (0 9 1 Ir) (7)

Herewith (5) becomes

fI 2k oos6 de1 P

cos- _____d___-_

2 2 = (8)
k '  k2 sin2 ' C \[I - k2 sin2 ( '

0

with
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I

TIM -lntvg,i -appo-.'ius lu (a) its ile eiiipiica integral oi i.he first kind i-(k,q).

The dimensionless deflection / at the middle of the beam is determined by

= f-sin Od = J 0 :"d

00

0=0

Cos - 2k (0_r 0)__ =c(0+.2(cos0 -c's0o )

It follows from (6), (9) and (10) thot

k/ 1.i 2 00 = -E

while from (8) and -(10) it follows that

k G(- ) F (k,q)

The relation between and A is then given by the parameter representation

Cos (-) F (k, q) , W = F (k,q) . (11)

It remains to be seen to what extent assumption (6) has been satisfied. According to

(11) the undeformed, unloaded state 3 = 0, A = 0 represents an equilibrium state

with k = 0 and ( - 0. Assumption (6) will therefore be satisfied for all loads below

the limit value for which k becomen 1 for the first time. For k 1, F(k.e) can

he expressed in terms of elementary functions

F(,,) =/1,(P lntg +/1 - in4O
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I

The value of o corresponding to this limiting case isaccording to the first two

relations, determined by

cos = Elntg(7 + 19) (12)

For small values of e, (12) has a solution which slightly differs from 17r; A is in

that case large, on account of the last relation (11). For instance, in the example

treated in Section 615 these quantities were given by c = 0.01, IP = 0.975 j, and

= 6.26. The limiting case remains consequently outside of ihe range of X con-

sidered in fig. 4.

Next the case is analysed in which 00 i negative. It follows from (2) that for small

values of 4 , 0* is negative. In order that the condition 0 = 0 be satisfied at the1
middle of the lUam, 0" must change sign for a value 41 (between 0 and -).

This -ill be the case if the expression under the root sign in (4) becomes zero as in

view of (1), 0" is positive at that point. The integration of (3) must therefore be

carried out separately for A < and 4 1 "

Let 01 be the value of 0 for tit then it follows in analogy with (5) that

0

dO= 2 7r . '' (13)j 7r2 X E2 + sin2 1o sin2 1

IV420 2

in which 6 is determined by

sin2 1 I = _1 r2  2 + sin 2 0o  .k, (14)

The existence of a solution with a negative Initial value 0 does imply, in view of
0

(14), that k i 1. Substitution of

aln9 = - 10 (10
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with
... " 1 k - . 1 - , _ ,- u,, y

S k 0 " 1 v L, uutquLLCy 1 2 f

transforms (13) into

-

[ =/ d7 = (15)

J l-k2stn2 9 ] F -k 2 sin2o
2

in which p is determined by

sin4'-p -in 1 .O 9( 11 )(6k 2 ( 7r). (16)

In the interval < < 1 it holds that

1 2 2+2 ~

0 7r 2X,2 + 2 cos 0- cos ,

from which, by integration, it follows that

0
d6 2 27rV(- >

1227, 2 1 .
,L~2 X 2 sin -1 S in' -0

By use of the same substitution this can be written

o
fdO f_ dO " y -( i " (17)

S 1 - k2 sin2 6 1 - k r inO 1
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Addition of (15) and (17) climinates 1 the result is

2F F (, ,) v , (18)

in whic~h F(l-1 v) Is the complete elliptical Int"'al -O' the first -d

The dimensionless deflection at the middle of the beam is determined by

1

2 1I

P - siO d~ fsin 0OdO
I \ 11 I 2 + 2 (cos 0 - cos 0

0.

_/ sin 0 d 0fi
j 72XE2 + 2 (CosO -. Cos 0,

Oi

1 2X + 2 (cos0 - Cos
7/r 6 00

+ 1 2 X 2 + 2 cos 0 - 0=0) (19)

7r VT OE,0 0=01

Now, on account of (14),

2A 2 + 2 Cos 01 - COa 0o  - 4k2 - 4 sin2 1 0 0

so that it follows from (19)

17TXE f+ aT 10 2k (20)
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It follows from (14), (16) and (20) that

so in C ___

V k 2  2-0 2k 1E

while from (18) and (20) follows

k =(-) f2F (k. 1r F (k. 9)

The relation between 13 and x is then given by the parametric-presentation

cos = - , k= (t3-) f2F (k, -1r) - F (k,0)}

= F (k, iF )k - F .(k, ) (21)

From the latter relation it follows that

F (k, 9) I de =

0

so that (21) certainly does not have a solution for X < I. As was to be expected, for

the case of a centrally loaded bar (e = 0), the relatiohs (11) and (21) yield identical

results

€ = j, k F 3F (k, 7r), = F(k, i). (22)

The numerical treatment of (11) and (21) does not offer any difficulties. After (p is
assigned a value, 1 can be calculated from the first of these relations; next the sec-

ond relation, which forms a transcendental equation for k, is solved; the third rela-

tion yields the corresponding value of A .
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The result for C 0.01 is represented in fig. 4 (Curve Ia). The branch of negative

values results from (11), the branch of positive values of 3 belongs to (21).

The numerical treatment of (22) is even simpler; after k is assigned a value, a

corresponding set of values3 uf and ,X are immediately found. The result is the

curve I of Fig. 4.
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