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A general theory of elastic stability is presented, In contrast
to previous works in the field, the present analysis ie augmented by
an investigation of the behavior of the buckled structure in thc
jusediate neighbornood ot the bifurcation point.. This investigatiom
. explains why some structures, e.g., 8 flat plate supported along its
v edges and subjected to thrust in its plane, ara capshle of carrying
: loads considerably above the buckling load, while other structures,
o €.g., an axially loaded cylindrical shell, collapse at loads far
below the theoretical critiral load,
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c [11 - 14] may be mentioned. For a survey of the many speniul problems that have
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SUMMARY

The theory of elastic stability has already been the subject of numerous investigations.
Of the resesrohes déaling with the genergl theory those made by Bryan [3), Southwell
[4], Biezeno and Hetcky [6), Trefftz (7, 8], Marguerre [8], Kappus [10] and Blot

. il

been disnussed reference may be made to Timoshenko's well-known book (43 .

AERERY 3 LN

Hithertq {he general thasries of stability have been restricted, however, to the investi-
gation cf neutral equilibrium; they aim particularly at the determination of the siability
limit. The phenomena occurring on reaching and possibly on surpassing this limit

wore left out of aocount. This restriction as to the exient of the investigations is

caqned by two circurnutandel., Firnt of all, . there must be mentioned the great mathe-. :
matical dlfﬂoulties (hat obatruot the theoretical treatment of elutlc behaviour after
surpauuing tho utability limit. Whereas the investigation of states of neutral equi-

' librium in stlll posslble by meansg of llnenr differential aquations, the equatlons

desoribing elastic behaviour after surpassing the stability limit are no longer linear.

. Motreover engineering has long been satisfied with the kmowledge of the stability limit

(oritical or buckling load). The reccgnized principle, based on considerations of

 safety, was that the load on a structure should always be kept below this limit so that

an investigation of tho phenomena nccurring above this limit seemed superfluous.

However, it has been known for a long time that some structures, e.g., a flat plate
supported along its edges and subjected to thruat in its plane, are capable of sustaining
coneiderably larger loads than the buckiing one without exceeding the elastic limit at
any' point of the structure; in modern engineering, especially in aircraft engineering
where saving on structural weight is of paramount importance, these higher loads are
actually allowed. The theoretical treatment of this plate problem has among others

et it e~ it e i L L Ak e




been given by Marguerre and Trefftz {19, 20). Their results agree very well with

oswvnawinnan {f dha ncnnee £

2PLICNTC L Wi CRTSsT of the b&ékﬂu& iuud iB noi wo great.

On the other hand, it has been noted that the experimentally determined burkling loads
of some shell structures, e.g., axially compressed thin-walled cylinders, lie con-
aiderably below the theoretical stability limit. Moreover the experimentsl results
are widely divergent. Flﬁgge's [21) and Donnell's [22] exnlanation, based on initial
deviations of the test specimen from the true cylindrical form in conseguence of
which the yield point of the material would soon be reached, is called in question by
Cox [23] and Von Kirman and Tsien [24]. The latter authors remark that the initial
deviations should have to amount to a multiple of the wall thickness; such deviations
could scarcely have escaped the notice of the investigators. Besides, Cox as well as
Von Karmin and Tsien point out that Fluigge's and Donnell's explanation requires a
gradual appearance of buckles with increasing load whereas i% the experiments a
sudden, almost explosive buckling occurs; neither does this explanation satisfactorily
account for the great divergency of the experimental results. Cox, on the other hand,
has suggested a strut model to illustrate the possibility that the bshavicur of the
cylinder may be explained purely elastically; in a somewhat modified form this model
has also been suggested by Von Karman, Dunn and Tsien [25] .

From the above-mentioned examples it clearly appears that the general theories of
stability framed so far do not suffice. They have to be completed in such a way that
the so divergent behaviour of various structures in the case of loads in the neighbour-
hood of the theoretical buckling load can be described as well. The present treatise
aims at suck an extension.

The loads acting upon a structure can usually be represanted by the product of a unit
load system and a load parameter A, as yet indeterminate. It is then required to
find the states of equilibrium that occur at a given value of A and also to investigate
the stability of these states. Of particular importance ia engineering is the state of
equilibrium that is obtained continuously from the unstrained state by monotonously

viii




increasing 2 from zero. For sufficiently small values of A this so-called fundamental
gtate ia ahwaws stabls  in agzrsomeont with Hrchhiofl's Weorem on ibe uniqueness oi
solution (cf. [39) and Sect. 31 of the present paper). On the other hand, in many cases
the fundamental state becomes unstable on exceeding a critical value )‘1 . The load
belonging to this value 11 , for which the equilibrium is at the stability limit and
hence neutral as well (cf. [10]), is called the buckling or critical load. Consequently
at this buckling load there exist, in addition to the fundamental state, neighbouring
infinitesimally deviating states of equilibrium. It is then to be expected that likewise
at loads differing slightly from the buckling load, neighbouring states of equilibrium
exist that are obtained from the fundamental state by means of small but now finite
displacementsl Next the presumption arises that the discrepancy in elastic behaviour
of various structures in the case of loads in the neighbourhood of the critical load is
connected with a discrepancy in character of the possible states of equilibrium going
with these loads. From a preliminary tentative investigation it appeared that the
character of these states of equilibrium is essentially dependent on the stability of
equilibrium at the buckling load, i.e., on the question whether the limiting case of
equilibrium at the critical load should still be reckoned among the stable or al.zeady
among the unstable states of equﬂibrium.

First of all, therefore, the equilibrium at the stability limit had to be subjected to a
closer examination. Before entering upon this, however, it seemed advisable to give -
a brief survey of the theory of elasticity for finite deformations (Ch, 1); for the investi-
gation of stability belongs essentially to the domain of the non-linear theory of
elasticity.

1For an illustiration of this possibility see Fig., la—d (p. 93). Here a is a measure
of the displacements from the fundamental state to a neighbouring state of
equilibrium.
Some possibilities for neighbouring states of equilibrium are given in Figs. 1a—d
(p. 93). Figures 1a, b, d relate to cases in which the equilibrium at the buckling
load is unstable; Fig. 1lc relates to a case in which this equilibrium is stable, The
characteristic difference is that neighbouring states of equilibrium in the former
cases do exist at loads below the buckling load whereas in the latter case they
do not.
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Following Thomson [2] the general equations of motion are derived by means of
Hamilton's principle, using the elastic potential or strain energy function to describe
the elasticity of the body. The equations of equilibrium are obtained by putting zero
all inertia forees. Thay are in complete agreement with Kappus's equations [10],

obtained by equating to zero the resultant of all forces acting upon an element of the
elastic body.

In Chapter 2 the general theory of stability is dealt with, Section 21 gives a precise
definition of stability by means of the energy criterion, while Sect. 22 treats of its
practical application. In accordance with Trefftz it leads to two conditions of stability.
The first condition ig that the first variation of the potential energy is zero for any
ldnerhatically possible variation of displacement; it is identical with the well-known
principle of virtual displacements. The second condition requires that the second
variation of the cnergy cannot be negative for any kinematically possible variation

of displacement, After a reproduction of Trefftz's treatment of the latter condition
in Sect. 22, some assumptions introduced along with it are looked into more closely
in Sect. 23; it appears that these assumptions are justified for all practical purposes.
In the following articles the equilibrium at the stability limit is considered in more
detail (Sect. 24 — 27). It appears that the equilibrium at the stability limit is
“generally" unstable (Sect. 25). In Sect. 28 the method of investigation developed
here is connected with Mayer’s researches [31] on minima of functions of a finite
number of variables. Finally in Sect. 29 some formulae are given that are necessary
for the application of ihe general theory of stability to problems of elasticity.

In Chapter 3 the states of equilibrium at loads in the neighbourhood of the buckling
load are investigated. The approximative methed used to this purpose gives better
results accordingly as the load differs less from the critical one. The character of
these states actually appears to be governed hy the stability at the buckling load
(Sect. 35, 36). However, a restriction regarding the type of problems treated must
be made that is inherent to the method of investigation, This method exclusively
enables to deal with buckling problems corresponding with a sc-called point of




bifurcation; so-called oilcanning problems! are left out of account (Sect. 37). Finally
in Sect. 38 an extension of the theory to loads further removed from tha hunkling lnad
is discussed, The most important result of Chapter 3 is that with stability of the
aquilihrium at the critical lead {(the buckling or critical state) usighbouring sinies of
equilibrium exist only for larger loads; these states are stable. Therefore, apart
from the possibility of exceeding the elastic limit of the material, larger loads than
the buckling lcad can be sustained. With an unstable buckling state, on the contrary,
neighbouring states of equilibrium do occur at loads smaller than the buckling load;
these states are unstable. Though in some cases with unstable buckling state there
also exist stable states of equilibrium at larger loads, these loads can only be reached
by passing the unstable buckling state so that their practical importance is, to say the
least of it, doubtful,

The theory of Chapter 3 does not yet give an explanation of the fact that for some
structures the experimenial buckling loads are considerably smaller than the theo-
retical buckling load, To come to such an explanation the influence of small deviations
of a real structure from the simplified model, designed to represent the structure, is
considered in Chapter 4. The necessity of this consideration is demonstrated on the
basis of the example of the prismatic bar subjected to combined bending and com-
pression. The method of investigation is similar to that of Chapter 3, the only
modification being the allowance for small deviations; the smallness of these deviaticus
is expressed by neglecting all second order terms in these deviations. The most
important result of this investigation is that with an unstable buckling state of the
model the buckling load of the structure may be considerably lower in consequence

of very small differences between atructure and model (Sect. 455)2 Hence the
discrepancy between theoretical and experimental critical loads can be explained

lThis term was introduced by. Von Karman and Tsien [24] .

2This drop of the critical load is illustrated by Fig, 2 (p. 137). Here ¢ is a measure
of the magnitude of the initial deviations, A; is the buckling load of the mode], A*
the buckling load of the structure. Note the vertical tangent to the ¢ —A* curve in
the point of transition of structure to model ¢ =0, A* =21 .




purely elastically by assuming small deviations of such a structure from the corre-
sponding model; moreover, the great sensibility of the buckling load of the structure
fz2r small variatioins in e magniiude ol the deviations explains too the wide divergency
of experimental results, It is self-evidcnt that the collapse is precipitated by elastic
failure of the material; this complication, however, is not further considered.

The most interesting example for application of the theory developed here is the axially
compressed thin-walled cylinder; for in this technically important case the great
discrepancy between the theoretical and experimental buckling loads has up to now
not been accounted for satisfactorily. To apply the general theory it is necessary

to dispose of the knowledge of the elastic energy of the thin-walled cylindrical shell
for finite displacements. With a view to the possibility of application to other shell
structures as well, a general theory of thin shells for finite displacements is given

in Chapter 5. It is based on the same assumptions as the well-known technical theory
of shells for infinitesimal displacements (Sect. 51). After calculating the strains and
the elastic potential (Sect. 53, 54) the consequences of these assumptions are looked
into more closely in Sect. 55. The most important conclusion to which they lead is
that the elastic energy is the sum of stretching energy and bending energy. Finally,
in Sect, 57 the influence of small deviations is again considered.

Before passing on to the already rather complicated theory of the thin-walled cyiinder
it seemed advisable to deal first with some simpler applications to elucidate the
general theory (Ch., 6). The well-known problem of the elastica was chosen as a
first example (Sect. 61). Next, in Sect. 62 Cox's problem [23] is dealt with.

Finally, in Sect. 63 the problem of equivalent width of compressed flat rectangular
plates is considered. In this case the general theory supplies a justification of the
theory of Marguerre — Trefftz [19], based on more arbitrary assumptions.

The last application is Chapter 7 concerns the axially compressed cylindrical shell,

Neglect of boundary conditions leads to the same result for the buckling load as
known from existing literature (Sect. 74). The same neglect leads to the conclusion
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thai equilibrium in the buckiing state is unstable (Sect, 7). In Sect. 76 the neighbouring
gtates of equilibrium at loads in the neighbourhood of the critical load are investigated.
It is found that all existing neighbouring states of equiiibrium are unstable, As far as
possible the results obtained are compared with a paper by Von Karman and Tsien
(Sect. 51), which became available during the compilation of the present treatise.
Because the displacements assumed by the above-mentioned authors ere less general
their results are less good at least for loads in the neighbourhood of the critical load.

In Sect. 77 the influence of small deviations from the true cylindrical form is discussed.
As the investigation is rather complicated, the detailed calculations are restricted to
one form of deviations. In this case a very marked decrease of the buckling load is
found already with very small deviations. This result is in striking contrast to that

of Donnell [22] as the amplitude of the initial deviations, required to explain the
discrepancy between the mean value of the experimental buckling loads and the
theoretical buckling load, according to the present theory amounts to about 10% of

the amplitude required by Donnell, Although of course it is desirable {o extend the
investigation to other forms of deviations, at this stage already the conclusion may

be drawn that the theory given here supplies an explanation of th:: large discrepancy
between theoretical and experimental critical loads. The wide divergency of experi-
mental results is likewise satisfactorily accounted for by the extreme sensibility of

the critical load for small variations in the magnitude of the deviations.
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INTRODUCTION

TFor a long time various invesiigators have been interested in the problem of elastic
stability. Euler's pioneering investigations of the elastica [ 1) have probably become
most widely known,

If some brief remarks by Thompson [2] are disregarded, the first attempt to derive

a general stability theory seems to have been undertaken by Bryan [3]. His considera-
tions are based on the energy criterion according to which an equilibrium state is
stable or unstablie depending on whether or not the potential energy possesses a true
minimum in that state. However, when calculating the elastic energy, he takes into
account only terms which are guadralie in ihe displacements, In that case the second
variation is of the same form as the energy itself, and thus is always positive. If

the displacements are prescribed at all points where forces are acting on the body, in
which case the constant energy of the applied forces can be equated to zero, then it
follows that the variation of the total potential energy is equal to the variation of elastic
energy. Hence, the second variation of the total potential energy is always positive

so that instability wounld be excluded in such ca:sze:s.1 This conclusion is contradicted

by experience, for instance, in the example of the axially compressed prismatic bar
which is subjected to u prescribed end shortening.

Southwell [4] has derived equations which govern the so-called neutral equilibrium of
the uniform state of stress and deformation. He considers a neighboring deformed
state which is derived from the uniform state by infinitesimal additional displacements
u, v, w. Apart from the loads given by the initial force field, which are required
for the maintenance of the initial state, additional loads should be applied to the body

———

1Thomxscm [2] pointed already at this circumstance,
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in order that it is again in equilibrium. On account of the smallness of the displacements :
u, v, w these extra loads are homogeneous in and linearly dependent on u, v, w and
their derivatives. Equilibrium in the initial uniform state is called neutral if a neighboring
Statc CALBLS 10T WILGH Wit foquiica adalilunal lvads are suppiied by ihe iniiial force iieid.
The equations and boundary conditions which hold for the neighboring state are linear and
homogeneous in the dispiacements u, v, w and their derivatives. The equilibrium of
the initial state will be neutral only when the equations admit a nontrivial solution — which
in that case is determined apart from a constant factor on account o1 the homogenity of

the equations and boundary conditions .1 For the description of the state of stress and
deformation, Southwell chooses as independent variables the coordinates of a point of the
undeformed hody.- He also relates the stresses to the surface elements of this state.

Binzeno and Hencky [ 5] have made an extension of Southwell's congiderations in dealing
with the general atate of stress with a corresponding force field acting on the body,
Consideration is given to a body in a supposedly known state of stress I, and to a stress
state II that has been derived from I by means of infinitesimal displacements. Equilibrium
in state I is again neutral if there exists a state of equilibrium II such that the required
additional loads, which are homogeneous and linear in the additional displacements, are
again supplied by the external force field, Again, the equations of neutral equilibrium
are homogeneous and linear. The coordinates of a point in state I are chosen as inde-
pendent variables while the stresses are always related to the surface elements of the
corresponding state. Consequently, it is not necessary to know the manner in which
state [ has been obtained from the undeformed state. It is only necessary to formulate
an elasticity law for the transition of state I to state II.

' l'ln some cases the equations possess several independent solutions (u;, vy, wi). The
general solution (3 cjuy, etc.) possesses in that case a ccrresponding number of
undetermined coefficients. Such a case can occur for an axially compressed, elas-
tically supported bar (see [562]). For some ratios of the stiffness of the elastic sup-
ports to the bending stiffness, the bar possesses at the same load two buckling modes
which differ in the number of waves.




-

Reissner [6] has tried to improve on Bryan's argument which utilized the energy

nritarinn
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‘I'refitz {7, 8] has develuped a stability theory bass
finite deformations. He also makes use of the energy criterion for the prediction of
stability. A sufficient condition for stability is that the second variation of the total
potential energy should ba positive for every kinematically posslblé variation of the
displacements, The stability limit will be reached if the second variation becomes
positive semi-definits; i.e., th.t the second variation is zero for one or mOre‘_sulﬁbly
chosen displacement variations, but non-negative for any other possible displacement
variation, In his first | .per, Trefftz chooses as Independent variables the coordinates
of a point in the undeformed state. In his second publication he chooses as independent
variables the coordinates of a point in the deformed state I the stability of which is to be
investigated. In agreement with this, the stresses in state II which deviate from state I
are in his first publication relatad to ihe surface elements of the undeformed state and in
his second publication to the surface element of state I. The tractions in state II are
decomposed in the directions of those line elements which are parallel to the coordinate
axes in the undeformed state anc state I, respectively. The stability equations (derived
from state II which deviates from state I in an infinitesimal sense) then take i« rather
simple form.

on
on the wu-’ Va WalSvevaly

In connection with the treatise of Trefftz, Marguerre {9) has examined the relation
between the various minimum principles as they are applied to stability problems in
engineering, and the general principle of the minimuni of the potential energy. He
also gives a detailed illustration by means of the example of the axially compressed
bar.




A fupthaw dovslocmicnt of e lhvory of elasticity for finite displacements, only briefly
indicated by Trefftz, has been given by Kappus {10] } He derives the equations for .
neuiral equilibrium from the general equations of equilibrium. It appears along with v
this, that the equilibrium state is neutral in the sense of Southwell end Biezeno-
Hencky when the stability limit, as defined by Trefftz, is reached.

s s i i i

Also Biot [11—14] has derived equations for neutral equilibrium from a theory of ; ' §
elaéticlfy for finite deformation.l For simplicity he introduces 4 new way to v
describe the deformed state, With this, he sucoeeds in bringing the stability equa- _
tions to such a form that it is possible to render a mechanical meaning of the various 2
terms in the equations, This improved lucidity can be of much value in the search

for those terms which may be naglected in the application of thege equations to a g
special problem, it -

The stability considerations which have so far Leen established and which were dis-
cussed in the foregoing, are restiricted to the analysis of neutral equilibi‘ium. They
aim in particular at the determinaticn of the stability limit. The phenomena which
occur as this limit i8 reached or possibly exceeded were not considered. This
limitation of the extent of the investigations was caused by two circumstances, First,
the great mathematical difficulties should be mentioned which obstruct the theoretical
treatment of the elastic behavior beyond the stabi?ity limit, While it is stili possible
to analyze the neutral equilibrium states with linear differential equations, the equa-
tions describing the elastic behavior beyond the stability limit are no longer linear,

In addition, for a long time engineering science was satisfied with the knowledge of the
stability limit (buckling load) alons. The point of view had been adopted that for safety

1Neithm' Kappus nor Biot seem to have been aocquainted with the older literature about
finite deformations of an elastic body. Already in 1839 Green expressed the assump-
tion of the existence of an elastic potential for finite deformations; by use of this
assumption, Kirchhoff [16] andThomsaon [2] derived the equilibrium equations. Other
publications in the field of finite deformations are of minor importance for the stability

analysis following here, but those by Hamel [17] and Murnaghan [18] should still be .
mentioned, b
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reasons the load on the structure should always he kept below this limit, so that an
investigation of what ocours beyond this limit seemed superfluous, However, it has
been known for some time that certain structures are able to withstand loads signifi-
cantly above the buckling load, and this without stresses in excess of the elastic
limit of the material, (For instance, the flat plate simply supported along its ad

and subjected to an inplane thrust.) Indeed, in modern engineering - espevially in
aeronautios where economy of weight 18 of primary importance — loading in excess
of the buckling load has already been tolerated. The theoretioal treatment of this
plate problem 1is presented by Marguerre and Trefitz [19,20]. The agreoment of
their results with experimental results is vory good if tho loads are not too far in
excess of the buckling load, On the other hand, it has been ea;abllqhed that experi-
mentally determined buckling loads of several shell gtructures (such as axially
compressed thin-walled uylinders) are considerably below the theoretical stability
limit, Moreover, the experimental results show much scatter. An explanation for
this given by Flugge {21) and by Donnell [22) has been questioned by Cox [23) and by
Von Karman and Tsien [24], The explanation ls based on the initial deviation of the
tost model geometry from that of the perfect oylinder, which deviations will cause
stresaes beyond the yield limit at moderute loads. 'The laat two of these authors
remark that the initial imperfections must be Beveral timas the wall thickness of the
cylinder in order to serve as an explanation of the low experimental values; such a
deviaifon would not have escaped the attention of the investigators., IFurther, Cox,
Von Karmén and Talen point out that the explanation given by Flugge and by Donnell
implics a gradual occurrence of buckles, while experiments have shown that buckling
takes place in a sudden, almost explosive manner. ‘Also, the great scatter in the teat
results has not heen cleared up satisfactorily by tliis explanation. On the other hand,

the possibility to explain the behavior of the cylinder from u purely elastic point of view
was illustrated by Cox [23] by means of a suggestive bar model, Von Karman, Dunn and

Tsien also proposed this model but in o semewhat different form (26].

The examples mentioned abovoe show clearly that the stability theories 8o far estab-

lished do not sutfice, They should be supplemented with a theory which describes also
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the different behavior of the structure at loads in the neighborhood of the theoretical
buckiing load. ‘Ine present treatisc intends to give such an extension, It is assumed
that the loads which act on the structure can be represented by a product of a unit

load system ard an as yet undetermined load parameter A. One seeks equilibrium
states corresponding to a given value of A as well as the stability of these atates.

Of particular importance in engineering are those equilibriuin states which are
obtained by continuous deformation from the undeformed state as A is monotonically
increased from zero. This so-called fundaraental state is always stable for sufficiently
small values of A, inagreement with the uniqueness theorem of Kirchoff (see [39], and
Sect, 31). On the other hand, the fundamental state in many cases becomes unstable

as A exceeds a certain critical value 7\1 . The load corresponding to this limit value,
(equilibrium is at the stability limit and hence also neutral, see [10]) is called the
buckiing loud or critical load, Consequently, apart from the fundamental state,
infinitesimally near states of equilibriuin exist at the buckling load, It is then to be
expected that neighboring equilibrium states also exist, which are obtained by small
but now finite displacements, at loads slightly differing from the buckling lm'.d.1
Further, the suspicion arises that the difference in elastic behavior of various struc-
tures is connected with the different nature of the neighboring equilibrium states
corresponding to these loads. From a preliminary tentative investigation, it appears
that the character of the equilibrium states is essentially dependent on the stability

of equilibrium at the buckling load; i.e., on the question as to whether the limiting
case of equilibrium should still be reckoned among the stable or umong the unstable
states of ec.'zuilibrium.2

1For an illustration of this concept see figures la-d (page 93). Here (a) is a measure

2of the displacements from the fundamental state to an adjacent state of equilibrium.
Some possibilitias for neighboring equilibrium states are shown in figures la-d
(page 93). The figures 1a,b,d relate to cases in which equilibrium is unstable at
the buckling load, fig. lc relates to the case in which equilibrium is stable at the
buckling load, The characteristic difference is that in the cases first mentioned,
adjacent states of equilibrium for loads smaller than the buckling load do exist, while
in the latter case such adjacent states do not exist,




Therefore, in the first place, equilibrium at the stanility limit should be examined -
more closely. However, it seemed desirable to give first a brief summary of the theory ‘
of elasticity for finite deformations as the stabilily analysis belongs essentially to tha
domain of the nonlinear theory of elasticity (Chapter 1).

In Chapter 2 the general stability theory is treated. After an account of the theory of
Trefftz in the first two sections, some of its assumptions are examined more closely
in Sect. 23, The following sections cungider equilibrium at the stability limit

(Sect. 24-27); it appears that "in general" this equilibrium is unstable (Sect. 26).

In Sect. 28 the method of analysis develoed is related to Mayer's investigations on
the minima of functions of a finite number of variables [31].

In Chapter 3, the equilibrium states at loads in the neighbourhood of the buck!liag load are
investigated ; the approximate method used for this purpose yields better results accord-
ingly as the load is closer to the buckling load. The nature of these states of equilibrium
indeed appears to be governed by the stability of equilibrium at the buckling load (Sect. 35,
36). However, a restriction should be made with respect to the nature of the problems
treated which is intierent in the method of investigation (Sect. 37). By this method one is
only able to treat buckling problems corresponding to a so-called branching point of
equilibrium; consequently the so-called snapthrough problems are not considered. Finally
an extension of the theory is possible, with loads further removed from the buckling load.
This is treated in Sect. 38. The most important result, of Chapter 3 is that for stable
equilibrium at the buckling load (the critical state), neighboring states of equilibrium can
exist only for loads greater than the buckling load; these states are stable. Therefore, |
disregarding the possibility of stresses in excess of the elasticity limit, loads above the '
buckling load can be sustained. For an unstable critical state on the other hand, neighboring
equilibrium states do exist at loads smaller than the buckling load; these stutes are unstable.

It is true that in some cases stable equilibrium states also exiet st loads greater than the
buckling load, but these states can only be reached by passing through the unstable critical
state, =o that their practical significance is to say the least doubtful.




~ The most important consequence is that the #lastic energy is the sum of the mem-

The theory of Chapter 3 does not yet give an explanation of the fact that for some
structures the experimental buckling loads are considerably smaller than the theo-
retical buckling loads. Such an explanation 1s obtained in Chapior 4 thrsugh o otudy
of the influence of small imperfections in the actual structure in comparison to an
idealized model., The necessity of this consideration is illustrated by the example of
the straight bar subjected to combined bending and compression. The most imporiant
result of this analysis is, that if the criiical state is unstable, the buckling load of the
structure may be considerably smaller than that of the idealized model due to the i
presence of small deviations; consequently the difference between theoretical and )
experimental buckling loads can in principle be explained under purely elastic condi-

tions by use of the ussumption of small deviations between the real structure and the

model. It goes without saying that the collapse of the structure will be precipitated if

there are stresses in excess of the elastic limit, This complication will riot be further

considered,

The most interesting applicatioti for the theory develoned is given by the example of

an axialiy compressed thin-wallied cylinder, as the great difference batween thea-
retical and experimental huckling loads for this very important case in engineering '
has never been explained satisfactorily, The application of the general theory requires
an expression for the elastic energy of a thin-walled cylindrical shell undergoing finite
displacements. Inview of a possible application to other stell structures, a general
shell theory for finite displacements is g"i'ven in Chapter 5. This theory is based

on the assumptions of the well-known shelt theory for infinitesimal displacements
(Sect. 51). Afier calculation of the deformations and the elastic potential (Sect. 53 ]
and 54) the consequences of these assumptions are studied more closely in Sect. 55.

brane and bending energies. Finally, in Sect. 57 consideration is aguin given to the
influence of small imperfections, o

As the analysis of the thin-walled cylinder is already rar 1 ~ aclivated, it seemed
desirable to treat first some simpler cases for illustratic . ot ‘no general theory
(Chapter 6). The first example chosen is the well-known ;::2hlam of the elustica




(Sect. 61). Further, in Sect. 62 the problem of Cox is dealt with. Chapter 6 is con-
cluded in Sect. 63 with congideration of the problem of tlie simply supported flat plate
subjected to a uniformly distributed in-plane edge thrust. In this case the general theory
gives a justification of the theory of Marguerre-Trefftz [9] which was based on more
intuitive assumptions. As a last application,the axially compressed cy:indrical shell is
treated in Chapter 7, The ""classical'” result for the buckling load, as is well known
from the literature, is found if boundary effects are neglected. For this case the equi-
librium is unstable in the critical state (Sect. 75), The equilibrium states at loads in the
neighborhood of the buckling load are investigated in Sect, 76. It is found that all neighbor-
ing states of equilibrium are unstable. The results obtained are, as far as possible,
compared to thcse publighed by Von Karman and Tsien (52] which became available during
the preparation of this treatise, As the displacements ussumed by these writers are less
general, their results are less accurate, at least for loads in the neighborhood of the
buckling load. The influence of small deviations from the true cylindrical form are
investigated in Sect. 77. As this analysis is rather complicated, the evaluation remains
restricted to one form of imperfection. It iz found that a very marked decrease of the
buckling load occurs even for small imperfections, Although it is of course desirable to
extend the analysis to cother forms of imperfections, at present it can already be con-
cluded that the theory presented giﬁ'es an explanation for the large discrepancy between
theoretical and experimental results; also tire great scatter of the experimental results

is satisfactorily explained by the sensitivity of the buckling load to small differences in
the magnitude of the imperfections,




Chapter 1
THEORY OF ELASTICITY FOR FINITE DISPLACEMENTS

11. DEFORMATIONS BY FINITE DISPLACEMENTS

In this section a short summary will be given of the theory of deformations
(26, 27].

The cartesian coordinates Xy . X9 Xg of a point in the undeformed body are intro-
duced as independent variables.

Every point P(xi) is subject to a displacement with components u in the direction
of the coordinate axes. Hence, the coordinates of this point in the deformed state
will be X, + v . The deformations in the immediate neighborhood of the point P
are completely described by

3
8u du ou, du i=1,2,3.
e | __1+§__.h_.£ (L 1)
1,2,3.

The new length di' of a line element through P, which originally had the length d¢, and
whose orientation in space is given by the angles « {» can be expressed by

(dl')2 = (d.¢)2 l(l + 711) cosz @ + (r+ 722) cosz Q@ + (1 + 'y33) cosz Qg

+ 2712 cosa, cosa, + 2723 cosa, cos Gy + 2731 cos &g co8 al‘. (11.2)

The number e = (d' - df)/d? corresponding to the direction of d¢ is called the
specific strain., If this direction is parallel to one of the coordinates axes, it folloaws
that

10




e =y1l+vy,-1. (11 2

In the deformed state the line eleinenis which originaily were parallel to the coordinate
axes X, and xj (i # j) will enclose {he angles zp” = tpj i determined by

%y
Va+ )@+ %)

i=]. (11.4)

cos ¢y =

The relations (11.3) and (11. 4) describe geometrically the components of deformation.

In the literature mentioned before, proofs are given that there exists at least one
system of mutually perpendicular directions at the point P for which among the six
deformation components the quantities 'yhk(h # k) are identically zero. These axes
are called principal axes and the correésponding deformation quantities 1"hk = 0 for
h = k and I"hh = rh determine the principal extensions Eh' The latter quantities
are determined by '

E, = y1+1p -1, ~ (11.5)

while the I}, represent the three real roots of the cubic equation

M- T 12 "13
21 Y%g =T Y3 | =0 (11.6)
Y31 Va2 Ya3 = T

The magnitude of the principal strains is independent of the choice of the coordinates.,

This leads to the conclugion that the following three invariants exist




L =71 % Y " Y3 =) + T +Tg, 3

Ip = Y12 * Yao¥ag * Yaa¥iy - (Viz + ’éa * ");1)
b (1L 7)

1‘11‘2 + FZPB + l"al‘l,

I3 = N1 %pYag + 27157937 - (711"23 + Tty + "33’%2) = I)T,Ty J
12, THE ELASTIC POTENTIAL
In general, the law of elasticity offers a relation between the deformation and the

internal stresses., However, it can 2lso be formulated in an indirect way by means
of the Introduction of the elastic potential. It is assumed that each volume element

.of the body possesses a potential energy which depends on the local state of deforma-

tion. As the state of deformation is completely described by the components of
deformation (11.1), the elastic potential energy per unit of volume can be written as

A= A(Yij) ‘ (12.1)
where thermo-elastic phemonena are left out of consideration.

Experiments have shown that the elastic behavior of most construction materials is
described with sufficient accuracy by an elasticity law of the form (12.1). For
infinitesimal deformations, A is a homogeneous and positive definite quadratic
function of its arguments. With some exceptions, for instance cast iron, for

smail but finite deformations it has so far not appeared that terms of order higher
taan the second play a significant role; this should not be surprising as in the elastic
range the components of deformation are very small for most materials (order of
magnitude 0. 001). Consequently, in the following it will be assumed that the elastic
potential is a homogeneous and positive-definite function of the deformation compo-
nents, It follows from (11, 1) that it will be a function of the fourth order of the

12
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displacement derivatives, Alternativelytothe useof the deformation componentss

vy the deformed state can be completely described by ‘the direction and magni-
tnda of tha nrinsieal stissse5. Tur an isoiropic material, the elastic potential must
be independent of the directions of the principal strains. Furthermore, the magnitude
of ihe principal stresses is fully determined by the invariants (1.7), which leads to

the proposition

A= AL, L. (12.2)

The only homogeneous quadratic function of the deformation components of the iorm
(12,2) is given by

A=ar+a]

11 %ty (12.3)

in which a, and o, are material constants ia the case of 2 homogeneous material.
If the material is inhomogeneous the quantities oy and o, will generally be func-
tions of the coordinates X;. Byuse of (11.7), it is possible to write (12, 3) in the
form

A = r2+r2+r2+za1+—a—"’-(rr+rr +T,T,)
=ity tlptig a 1te T halg T gty -

This expression is positive definite if and only if [33]

20 + ay
<“"‘—‘a‘1—'<

a1>0 0 - 1i

2,

from which follows that




For infinitesimal deformations, (12.3) must reduce to the elastic potential of the
linear theory of elasticity. Comparison of (12.3) with [34] yields with the usual
delipition oi the constants of elasticity G and m

1t follows then that with G > 0 and m > 2 inequali{’:s (12.4) are satisfied. Thus,
the elastic potential takes the following form

A=-1-Gm1_'2[(m-1)1?-2(m-2)12]. (12. 5)

13. HAMILTON'S PRINCIPLE AND THE EQUATIONS OF MOTION

The equations of motion can be derived from Hamilton's principle [2]. Following
this principle, the natural motion of holonomic mechanical system between the
time points t, and t, is determined in such a way that

of (T - V)dt +f SWdt = 0. (13.1)
t .
' bo ty

"_’Ihls vuriatlon oorresponds to the vnriatton of the natural motion to a2 neighboring

motioln wh!cb differs from the orlglnal one in an infinitesimal sense and wkich yields
the roal conﬂguration at the 1 ints to and t; . The neighboring motivn, as well as
the natura: ons', shouli satlufy the kinematlcal conditions imposed on the mechanical
sysuem. Thy quantities T and V are the kinetic and potential energy of the system

. xeupecuraly. oW is the work that would have been done by the external foices at the

{me t if the mechanloal system ware brought into the correeponding state, which
differn from the original state in infinitesimal sense.
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The kiretic energy of the elastic body is given by

roe 3 2
if1, \ (3%

T = jjl E‘p 2 Ty d"ld"zd"a‘ (13.2)
/ i=1

In this expression p stands for the mass density of the undeformed body and integra-
tion should be carried out over the volume of the undeformed body. ’

According to (12.1), the clastic potential energy is determined by

v=|f | A(yy) dx dxydx (13.3)
where integration should be carried out over the volume of the undeformed body.

If pxi are the components of body forces in the deformed state whiéh are related to
the voiume elements of the undeformed body, then the work done by these forces on
transition to the neighboring state is given by

3 o :
SW, = f [ f pigl X, budx, dx,dx, . ‘ (13.4)

In this expression '5“t represents the variation of the displacement to the neighboring
state. '

It is assumed that surfuce tractions are working on a part 0 of the surface, of which
the components p; are related to the surface elemenis of the undeformed state. On
the remaining part 0' of the surface the displacements are supposed to be prescribed,

During transition to a neighboring configuration the surface tractions perform the
work



g = ————

HZ p,ou,df. (13. 5)

The work done by the surface tractions acting on the part 0' of the surface is zero

M ! 2 . « s ) [ o oee e s e s
pocHuNY l-‘llﬁ dlsplucemem varisuons UUi OI LUt part oI Lne suri'ace are zero.

Hamilton's principle is now formulated

! 3 o
fdtﬂfpz 8—3 Si dx dx,dxg /dtfffz i Oty dnydng
i i=1
0
tl 3
+ f dtfffpz Xiéuidx1
; =1
0

In the second integral, summation should be carried out over the six combinations
of { and j.

dt H): pdudf = 0. (13, 8)

After the use of

6u =0 for t=t0 and t=t1

" and of integration by parts, the first integral reduces to

j ﬂf 2-5— -a—dxdxdx = -fdtfﬂpz ;;2—5“1""1“"2‘1"3'
0 i=1 to i=1

(13.7)

Here use was made of the interchangenbility of the sequence of the operations & and
a/ot.




For the reduction of the second integral the following expression i8 derived from (11. 1)

3
my - a2, S (2,2, 2, 2
1) crxj oxy e \ux‘ axi a:\(i 'axj/

Next, all terms with variations of the derivatives of u,, are lumped together, For
m = 1 these are

8’)'31 Bx1 8732 sz 8‘)'33 ax3 ax3

2 .__BA (1 + 221) . L L BA aul + ..B_A_. .i..‘.l_l. 6,3‘_‘.!'. +
8')1“ lF)x1 8“/12 Bx 8')'13 Bxa Bxl
.l oA <1+°“1>+28A buy , ea O] 04y
8721 ox 8722 ax 8‘)’2 3 ex ax2
du du du ou
+ i(l .|._1.>+._§‘5____1+2_§.é_._.1: (5""}'. (13.8)

For m = 2 and m = 3 similar forms are found,

For brevity is introduced

.8.‘.\_ = l .Qé— = ..&2_6_ = = |
B, - 2 ky o oy, ~ o Ry = Ky @) (13.9)

Expression (13, 8) can now be written

i 3 Bu1 Bu
k,, + Ky = §o - .
i1 2 h 8x ax

1 1e I %% 3

It follows that the second integral of (13.6) can be written
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9A
I ‘fﬂz'a‘?" 6% ydx dxpdxg =
tO ij 1
i1 3 (3 3
) = bu du
= J[ dt,”, Z IE kyy + 2 kjheTi\° a—xildxldxzdx,_,. (13.10)
io NI & 15\ k= h/ "]

If the normali to the surface is denoted by n, where the outward direction is assumed
to be positive, then, after interchanging the sequence of variation and differentiation
and after application of Gauss's theorem, (13.10) becomes

h 3 ¢ 3 3 -
= [ dtj]} IE kji+ 2 kjhé;ﬂ cos (xj,u) (5uidf +

to i=11j=1 h=1
4 f 3 (.3
i
- f dt[)f 2 2 r k 2 kjha ou, dxldxzdx3 (13, 11)
tO i=1 j=
With (13.7) and (13, i1) equation (13.6) reduces to
Y .
/’ g 3 3 5 3 ou, azui .
2 E a kji + z kjh—é;(; + pXi - p—3 " 6u, dxldxzdxa
tg i=1]j=1 h=1
3 3 Bui
dt ﬂ’ k + jh"é-x; cos (X, , n) - P 6uidf = 0, (13, 12)
i=1 =1
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Since (13.12) should be satisfied for arbitrary variations 6 u the coefficients of Gu‘
in the integrals must be equal to zero.

For the points in the interior of the body it follows that

& 9 N '5‘_‘1_ ’2“1
Bk, + N k, & +p¥, ~p —=L =0,1 = 1,2,8. 13.13
Z a"j ji z jh B.:h) P&y — P o2 ' ( )
j=1 h=1 .

and for points on the part of (0 of the surface the boundary conditions

3 3
( Z kin 3% )‘“‘x»n) -p =0, 1=1,23 (13.14)

Or the part 0' of the surface

u = prescribed (13.15)

Equatior (13.13) and (13.14) should of course agree with the equations of Kappus [10],
which were derived by consideration of the equilibrium of tensile and inextial forces
acting on an infinitesimal element of the body. Indeed the principal equations and
boundary conditions of Kappus for his stress components kij are formally identical
to equations (13.13) and (13.14). At the same time, in order to ensure the exist-
ence of an elastic poteutial, Kappus' siress components should satisfy conditions

which are expressed by equations of the form (13.9). The elastic potential is then also
the specific energy of deformation.

The equations governing the elastic equilibrium can be obtained from (13. 13) if one
equates to zero the derivatives with respect to time; they read

3
) =0: 1 = )
jZ:l a( z b axh> pX, = 03 i = 1,2,3. (13.16)

The boundary conditions remain identically valid.
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Chaptar 2 .

STABILITY OF EQUILIBRIUM

21. THE STABILITY CRITERION

For the analysis of the stability of a mechanical system, the method of small
vibrationa or the enorgy method are commonly used. The method first mentioned
consists of the derivation of equations of motion for small displacements from the
equilibrium state. The smallness of tae displacements makes it possible to take into
account only terma which are homogeneous and linear in the displacements or their
derivatives. The homogeneous and linear equations derived in this manner have
solutions whose dependence on time is characterized by their common factor Pt
The equilibrium state under consideration is stable if and only if. for all solutions

of this form, the real part of p is nonpositive (the nossible complication of
multiple roots of the characteristic equations are herewith disregarded). The stability
analysig by Southwell [4] und Biezeno-Hencky [5] can be related to this method; they
investigate under which circumstances the quantity p becomes zero.

The energy criterion states that an equilibrium configuration of a mechanical system

is steble if and only if the work done by the external loads during transition to a

neighboring kinematically pessible configuration is not greater than the increase of

the internal potential energy. The application of this criterion is considerably simpli-

fied if the assumption is made tha: the external forces also possess a potential energy.

In that case, the work done by these forces is given by the difference between the .
potential enexgy of the forceg in the state of equilibrium and that of the neighboring b ."y
state. Then, the energy criterion demands that for stability the total energy, con- -
sisting of the suin of internal and external energies, should possess a minimum in the

equilibrium state.




In the case of &n elastic body for which the potential energy consists of a sum of one
or more integrals, whose integrands are functions of the displacements and their
derivatives. this minimum condition requiraas vat mara nranige definition T tha
displacements of the equilibrium state are denoted by Ui and those of neighboring

atadn l“'y U + u

puve A i i ] i

if and only if it is possible to find two positive constants g and h such that from the
inequalities

the potential snergy F(v)) posseésses uminimum ior v = U

Buy

ij < h

lwl < 83

which are valid throughout the body, it follows that
P(Ui + ui) z P(Ui) . (21.1)

The methods for the determination of the stability limit {4, 5, 7, 8] as developed
from the theory of small vibrations and from the energy criterion are basically
identical [10] . Nevertheless, when,in the following, preference is given to the energy
criterion, it 18 because of the possibility offered by this criterion of an extension of
the analysis to a closer inapection ¢f the stability at the stability limit.

22. APPLICATION OF THE STABILITY CRITERION

In the application of the energy criterion the assumption will be made that the
integrands of P(Ut + “i) may be expanded into a power series in the displacements
and their derivatives according to Taylor's formula. If the sum of the integrals, (the
integrands are complete homogeneous functions of tle mth order in u, and their
derivativee) are denoted by 1""m[u]1 , then the stability criterion is

P(U, + u) - P =P[u] = Pl[u] + leu_] + Pa[u] + ... 0. (22.1)

1In the following the subscript i of the coordinates x;, the displacements U; and
y; etc. are left out for as far as ambiguity can be excluded.
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Besides, it is alao assumed that the kinematic conditions to which the extra displace-
ments are subjected, are linear homogeneous relations for the displacements u, and
their derivates. This assumption is satisfied if the kinematic conditions are linear

in the total displacements U + u . Every linear combination of kinematically pos-
sible displacements ir in itralf again n kinematioally nosaible aystem of displacements,
Consequently, every possible configuration of U + v can be understood as a sample
from: a bundle of possible configurations U + au , inwhich @ represents a param-
eter indopendent of the coordinafeul. Then condition (22.1) requires that it musi be
poestible to find a positive number k for every kinematically possible system of dis- 1
placements u, such that from the inequality |a|] < k it follows that ‘

Pylau] + Pjlou]l + Pglau] + ... =aP[u] +

3
+ azpz[u] + a P3[u] + ... 0. (22. 2)

This requirement leads to the following necessary conditions

Pilu] =0, (22.3) *
Pz[u] z 0. (22. 4)

Relation (22.3) is identical to the principle of virtual work applied to the equilibrium
state. For, according to this principle, the first variation of the potential energy,
i.e., the first term of the Taylor expansion

P(U; + §U) - P(U) = P[8U] = P,[6U] + P,(6U] +...,

is zero for all kinematically possible, infinitesimal displacements. It is equivalent
to requirement (22. 3) because of the homogenuity of the condition

8P = P [6U] = 0

in the displacement variation 46U,

1 The cases for which this agsumption has not been satisfied require a closer inspection.
This could, for instance, resuit from consideration of an arbitrary kinematically pos-
sible configuration U + v as a sample of a system of possible configurations U + u(x).
Here a is a parameter independent of the coordinates.
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Condition (22.4) requires that the second variaiion of tha notantial snargs d555 nGh
become negative for any kinematically possible system of functions. As it appears
from its derivation condition {22 .4} gan foi the iline beirg oniy be appreciated as 2
necessary condition for stability. The question how far it can at the same time be
considered as a sufficient condition will be investigated in Sec. 23.

For the analysis of the second variation,Trefftz [ 7] writes the integrand of P, [u]
as a difference between two homogeneous positive definite quadratic forms of its
arguments. l>2 [u) is understood to be 2 homogeneous quadr-atic form in which all
arguments are the displacements u and their derivatives appearing in tne integrand
of Plu] . In general, this separation shall be different at different points of the
body. If the corresponding integrals are denoted by Té [u] and Ty [u] , themit
follows that

Pyfu] = Ty[ul - T#fu] = Tg[q(iz'-'-lﬂ - 1)
- T3 ful

The sign of the second variation is governed by the second facter so that the -etermina-
tion of this sign leads to the analysis of the minimum problem

Ty (u]

A= Min 57 'r"[u]

Naturally, instead of this problem it is possible to consider the modified problem

Ty
s ] 1} .

W = ———— -
Min [ Tg[u]

or when written in another form




Here, for simplicity in notation, Tz[u] is written in the place of Tg[u] . For this
problem let wy be the solution which ie obtained for the function u = u(l) . Then
it iollows that P2 {uj 1s positive definite ii w is posiiive; on the oiner hand, ii wy
is negative P'2 [u] posseses negative values. Aoccording to Trefitz, in the first case
equilibrium is stable, in the sccond case unstable. According to Trefftz the limiting
case w, = 0 corresponds to the stability limit. In that case no decision about
stability can yet be made because with P, [ua)] = 0 nothing ¢an yet be said about
the sign of the lefthandside of (22.2). By use of a kinematically possible but other-
wise arbitrary system of functions { and an arbitrary constant ¢ , the minimum
condition for the functions u(l) can be expressed as

B )]

Tz[um + €C] e T ‘uﬁ’.l “

or

P a® + eg] - cusz[u(l) ve|w o, 22.8)

In general, for an integral 8 [u] whose integrand is a complete homogeneous function
of order m in the arguments u and their derivatives, the following expansion for
u =v + w holds

Sm[v + w] = Sm[v] + 8 [v,w] + 8

m-1,1 m-g,2l VW] * e

+8 wl o+ 8 [w] .

1,m-1L7s (22.7

In this expression Sm -n, n[v w) is the integral of all terms which are obtained through
development of the integrand of 8 [v + w] , and which is homogeneous of the nth
corder in the functions v and their derivatives and homogeneous of the (m - n)

order in the functions w and their derivatives. The integrals Spq and qu
interchanged when v and w are interchanged. Besides, the following also holds
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e e e e p— —— =

m m
Sm_n,n[v.v] =8 m-otVoVl = (m _n) 8, = ( n) g vl . (@2.8)

m
in which ( " \

\i13 ™ 1y
this notation and of the relation

m
= ( 5 ) represents as usual a binomial coefficient. By use of

eau®] = wyrfu)

(22. 6) becomes
c{Pn[u(’-),c] - “’1T1ll“m"‘” s {p) - o) e 0.

This relation can be satisfied for arbitrary values of ¢ onlyif u = ua) and
w = wl satisfy the equation

Pu[u,cl - w'ru{u,g] = 0. (22.9)

If in addition the sacond derivatives of the functions are assumed to be continuous,
then it follo_Ws that (22. 9) is equivalent to a system of differential equations and
boundary conditions for the functions u . This system can be derived in the same
manner as was described in Sec. 13. Becauese these eq_uations and boundary conditions

are homogeneous and linear in the funotions u and thelr derivatives, 'tl;ey possess, in
gereral, non-zero eolutions for u (the so called eigenfunctions) only for sb’ehial.-
values of w (the so called eigenvalues); these solutions contain an undetermined
constant. The smalleat eigenvalue W, determines the stability.

23. FURTHER CONSIDEPATION OF THE THEORY Oi’ TREFFTZ

Two poiite in the theory of Trefftz as discissed in the furegoing‘ séctgqp need further
consideration. ' '

In the first place, it has been assumed that the minimum problem (22.5) indesd possesses
a solution, which i8 by no meaus an established fact. On the other hand,it can be
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estsblished that the ratio Pz[u] / Tz[u] possesses a lower bound since, as it ia the
difference between T [u] /™ [u] and unity, it can never become smaller than - 1. i
If this lower bound is denoted by d, then it follows that every kinematically possible

function u should satisfy the inequality i
Pyju] |
T |
1
while for every arbitrarily amall positive number e-, it should be possible to find {l

yet another kinematically possible function v, for which the inequality

P,v]

-'T——[;’r<d+e
2

holds. However, the existence of a minimum w, canmnot yei be concluded from the ' ’
existence of a lowor bound, since it is not certain that the lower hound will correspond

to a kinematically possible function. This difficulty in the energy oriterion about the

existence of the minimum wy s bypassed through the replacement of w by the

lower bound d . Equﬁibﬂum ia stable or unstable dependlng on whether d is posi-

tive or. negative, in the ltmittng case: d = 0 the second variation Pz[u] is at least

eemt-positive deflnlte, but furﬂmr gonaluelone about the stabmty ca.nnot be drawn

| “for the time: being The sig:hlflcance of this sharper formulation should not be over-
E oetimated The praotical appllcation of the energy criterion would meet grave diffi-

cultiee tf l.he bound d ls hot also equal to the minimum w - Therefore, the applicution

. of the etahility analyals is dependent on Trefftz'e method whereby the existence of the

minimum Wy hnx_e been assumed; in cases for which such a minimum is nonexistent,

the method is bound tc fail,”

The second point which demands a more extensive copsideration concerns the use of
the criterion w; >0 asa eufficient condition for stabillty (that w y = 0 certainly
is not a sufficient condition was mentioned aiready inSect, 22). For concerning
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condition (22.4) it was remarked in Sect. 22 that this condition,on the basis of its

derivatlon.can only be Mh\OWIﬂdgM ag o nanosauwe oonditie~ 2. ;tabmt;,’ The appii_

cation of the criterion 4y > 0 which is based on (22. 4) then needs a further motiva-
tion. Thia motivation can ba given wiihout many difficulties as the partition of the
Integrand P2 {u] in two pesitive definite homogeneous quadratic forms is carried out
in such a way that the positive definite integrand of T'z'[u] = Tzlu] contains all the
. arguments appearing in the integrand of P{u] (22.1) (in addition derivatives of the
-, function u should be considered as separate arguments). 4

The Taylor expansion of the ipteg_rand F of Plu] withrespect toits twelve arguments
u, and 6&11/6!16:j which now for simplicity will be called Y (A= 1,2,...,12) , can be

w_ritten as '
12 12 2
= \ LF .1_' ____6 ._F,__ y
D) <3Y# b T2 2, 53,0%, f YuIr TR (23.1)
#=1 ' iy V)Bl R ‘
whereby
12 32 P
= OF ] =4 O F
u=l 0 (i 2)=1 v}

are the integrande of P1[u] and Pz[u] respectively, gnd

2 g
R = F (— yy,y, =
)
? (1, ¥,0)1 %y, yﬂdypey
| AT
|

12

12 12
3 .
1 o'F _
t ) 2 6 Z <FY;‘ g?yayp)g y yﬁ y#yV " z Am'ypyv ‘ (23.3)
i (=11 p=1 ATA (pov)=L




The indices 0, 0, ¥, attached to the derivatives of F with respect to its arguments
at the dorivativeas ava meant for the values 0 and 6.y, (0 =6, = 1;

iudi\}até :huu aavs
A=1,2,.,,,12) of these arguments, For an assessment of the magnitude of the I
. 1

remainder (23. 3) the greatesi aubsoluie value A is considered, It nan take the form

12

A= 2 A Y, (23. 4)

(n,v)=1

subject to the side condition
12
2 W -
Yu y“ =1, (23- 5)
p=1

in which ‘YA(A =1,2,...,12) are positive constants. As the absolute values of the
.quantities ¥y under the restriction (23. 5), cannot become grceier than J—y—l—- ,
will satisfy the inequality A

12
1
Ax Z IA#UI m
(i, v)=1

As A is at the same time the greatest absolute value which the quotient

12

2 Ay Yo
(1, V)=1

12

2
E YuYy
u=1




o T ——

can acquire without restriotion (23. 5), it follows from here that

| 12 I [ 12 ] 12
kX d > S <] 5 | ]E wnl.  eLe
(n, =1 (uy V)=1

The positive definite integrand of G ju| and Tz[u] iz given in the form
12
Glu} = Z CIW Vo ¥y (23.7
(nyv)=1

The pesitive minimum C of (23. 7) under the side condition (23.5) is at the same time
the minimum of the quotlent1

12
PR

(3, V)=1
2
2 Tu¥u
p=l

without this restriction, so that

12 12
= M I 2 ¢
G u] Z c‘uv Y ¥,38C 5‘: Yu¥p - (23.8)
(u, V)= p=1

Combination of (23.6) and (23.8) leads to the inequality

12,
IRisk Z S ST (23. 9)
(1, =1 ‘pryu

—————

The fact that C is positive is essontially based on the olroumstonce  that the pesitive
definite integrand of To[u] posacsses all the argumaits which appoar in the integrand

of Plu] (sece Bect. 22),
29
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The absnlute value of the ceefticiant Ap y can be inade arbitrary small if the quan-

tities y, are chosen sufficiently small (see 23.3). Consequently, it is always
possible to choose the quantities g and h, introduced in Sect. 21,

so small that
from the inequalities for the arguments v,

du, |
luil < B 6!(; <h
it follows that
1 li | Auv | <o
¢ (#, M)=1 'Yp,'yll

in which ¢ is an arbitrarily small positive constant. It follows from (23.9) that

|R| % cG [u] . (22.10)
This inequality for the remainder of the integrand of Plu] leads to
Plu] 2 P, u] + P, [u] - T, [u) .
If in addition use is made of (22. 3) and of the inequality
P, [ulz T, fu] ,
then it is found thai
Pu] 2 (wl ~ ¢) Tz [u] . {23.11)

F(nally, it follows from (23.11) that the condition wy >0 is indeed a sufficient condi-

tion for stability since ¢ can be made arbitrarily small by the choice of sufficiently
amall values for g and h.

The proof given here is based on the assumption that the integrand of Tzlu] ig posi-
tive definite. This assumption is unnecessarily restrictive. For, an integrand of

'1‘§[u] which is not necessurily definite, but whose integral should of course be definite, a
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positive solution wi‘ of the minimum problem (22.5) is already sufficient for stability
provided that (22. 5) possesses also a solution for an integral Tz[u} whose integrand
ig dafinits, That the latiesr suluiivu aisv is posiuve foliows easily from the assumption
of the opposite. If it were zero or negative, Pz[u] for the corresponding function and
consequently also the solution w{ of (22. 5) beleaging to Tg [uj should be zero or nega-
tive respectively, which is in contradiction with the agsumption w* > 0. This greater

1
freedom in ihe choice of T2[u] is useful for applications.
24, THE STABILITY LIMIT
At the stability limit,the golution of the minimum problem (22.5) is wy = 0. In this
cage,the integral P2 [u] will become zero at lrast for the vector furction um. 80
that (22. 2) is not immediately satt;fied by all functions u. Before entering upon the
derivation of the criteria which govern stability in this cage, it is important to know

whether the integral leu] ca. algo become zero for functions other than o),

For investigation of this question, it is remarked in the first place that for every
kinematically pessible vector function u can be written [29]

o = + gwmr, L, @ = o, (24.1)
in which a represents a constant. For, it follows from the identity
- 1 1 1
T, [‘,a), u] - Ty, [uu)’ u~ aul )] =T, [ua), u]_ aT,, [u< ) b )],

that the condition
1, [u®, @)= o (24. 2)

is srtisfied provided that the constaut a is determined by

Tll[um, u] - g.Tu [u(l), u 1)] =0orga =
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Next, the integral Pz{u] is written as
Pylu] = P, [Q“a) * ‘_‘] - &°p, [“(1)] * 2Py [“(1)’ '—‘] + Py [a].

the first term of this development is identically zero; with use of (22.9) for u= ua),
w - Wy ¢ = 14, anduse of (24.2), the second term can be written as

2Pyy [“a)' i = s, Tu[“a)' ﬁ] =0,
so that
P, [u] = P, [_g.u(l) +a| = p,[a) (24. 3)

remaing.

Consequently, the integral P2[u.] can only become zero if it i8 zero for a vector func-
tion u that satisfies (24.2). In order to investigate whether the integral Pz[t[] can
indeed become zero under the condition (24. 2), the following problem will be considered

—_ : PZ[u] d 3 3 o (1) = A
@ = Min ;i‘zlu] under the side condition ’lll[u ' u] =0, (24,4

Let u= u(z) be the function for which this minimum Wy has been established. 1
Then, for every function 7 satisfying

Tn[um,n} = 0, (24. 5)

and for an arbitrary constant €, it follaws that

Pz[u(z) + eq] 5 Pz[u(z)]
— e T % e T W, or
Tg[u(2)+ en] Tz[u (2)] 2

Pz[u(z) + en] - wZTzlu(Z) + en] 0,

From this it follows in a manner analogous to the-derivation leading to (22.6),

l?’11 [u(z), 11] - m2T11 [u(z), n]

1J ust as for the analysis of P [u] in Sect. 22, the existence of a solution will be
assumed here and in all the following minimum problems,

32
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This equation is derived under the restriction (24.5) for the functions n . Yet, it is
also valid for functions ¢ which are not restricted by (24.5). In order to show this,

an arbitrary function ¢ is written as
t=u® +1 wih Tu[u‘l’ | =0

The possibility of this decomposition has already been explained. After replacement
of the vector function n by a vector function ¢ = tu(l) + n , the left hand side of

(24. 8) becomes
P11[u(2) ' g] - w2T11[u(2) .L’] =t {Plllu(z) ’ u(l)] - m2T11lu(2) ! u(l)” *
+ Pn_[uw) . 71] - wZTu[u(z) s ul

Here

@, u®] =1 @, W] <o,
-

on account of the side condition (24.4). After application of (22.9) for u = u(l) ,

w = w and t= u® , it follows from this condition that

pli[u(z) , u(1)] =0

By use of these relations and of (24.6) it follows that u = u(l) and w = Wo satisfy
(22.9)

P11[u yt] - leltu |§] =0 »

so that the solution of the problem (24.4), as well as um , appear to be an eigen-

function of (22.9).

33




TR w—

Since the set of admissible functions u is more restricted for the problem (24.4)

than for the problem (22. 5}, Wy 2 Wy should always hold. If Wy becomes positive
at the stability limit for which @, = 0 , the investigation of P2[u]/ T, Mu} } canbe
abandoned because in that case P [u] cannot become zero for functloua other than
u“' ; neither is the knowledge of the functions u( 4) necessary inthat case. However, ifalso
w, = 0 , then the question arises if Pz[ul can also become zaro for functions othor
than u(“ and u‘® . In the same manner as is described above it can be shown that
this can only be the case if P2[u] can be zero uader the side conditions

Tu[u(]') , u.I =0 , TllE'(z) s u] =0

The posed question will in that case be answered by the solution of the problem

P u]
©w = Min T‘z'[[.ﬁr under the side conditions
2

Tu[u(l) , u] =0 Tll[u(z) , u]= 0. (24.7)

On the same manner as is described in the above, it is proved that the function u(3) ,

for which the minimum Wg of (24.7) is obtained, is an eigensolution of equation (22.9)
bolonging to the eigenvalue wg - The analysis of the-minima

Pz[.“
w = Min under the side condition
Tz[u]
Tul.:‘(” : u] =0 (¢ =12 ....h - 1) (24.8)

should be continued until a positive minimum wy has been found.

The eigenvectors um » u(z) . all contain a constant still undetermined factor

since they are the solutions of the homogeneous equation (22.9). The conditions (24. 8)

do not determine this factor, It is assumed that this factor is available, for instance
by enforcement of a normalization condition of the form
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Tz[u(h)] =C, (24.9)
in which C is a positive constant. It follows from (24. 8) that
h)] -
Pz[u “C . (24.10)
Further, from relation

Tu[u(h) , u""] =0 for hFK (24.11)

and by application of (22.9) for u = u(h) » W= and ¢ = u(k) , it follows that

Pu[u(h) , u(k’] =0 for h #Kk. (24.12)

In some cases, the complete set of eigenfunctions belonging to F:j. (22.9) and to the
minimum problem (24.8) respectively, can easily be determined. Although not neces-
sary, the lcnowledgé of all eigenfunctions can be of advantage for the executiocn of the
calculations. For this purpose, the set should be complete and such that an arbitrary
kinematically possible vector function f can be developed in terms of the eigenvectors

£ = z o ut | (24.13)
h=1

whereby the operations carried out on f may be applied to each term of the series
separately.

In general, thc eigenvalues oy and the eigenvectors u(h) depend on the form which
was chosgen for the integrand of Tz[u] . However, if an eigenvalue zero has been
found, then also for other forms of the integrand of Tz[u] the eigenvalue zero will be
found as well as corresponding eigenfunctions. (See also Sect. 23). The correctness

sy 3 " T
-3
o

R




of this assertion follows immediately from the variational equation (22.9). which for

an eigenvalue w, = 0 transforms into the form
Pn[u,g] =0 (24.14)

which is independent of Tzlu] . This equation is identical with the equation for neutral
equilibrium as derived by Kappus [10]

6P2[,u] =0 ;

consequently, equilibrium 1is neutral in the sense of Southwell and Biezeno-Hencky as
soon as at least one eigenvalue Wh is equal to zeio. Conversely, the existence of a

solution of (24.14) results into at least one eigenvalue “y equal to zero. It is generally

true that if n eigenvalues w, are zero, equation (24.14) will possess n independent
solutions. Conversely, it follows from the existence of n linearly independent
solutions of (24.14) that n eigenvalues are zero. As a proof of this, it is noticed

that the n solutions of (24.14) are also n solutions of (22.9) for the case that w = 0.

By means of linear combination, n new linearly independent solutions of (22.9) can be
constructed which solutions also belong to @ = 0 . The solutions last mentioned can
always be chosen in such a way that they satisfy

T, u“’,u‘h’] =0, i £h

so that they can be identified with the n eigenfunctions u(i) , 1 =1,2,...,n which
correspond to the n eigenvalues

For details of this 80 called orthogonalization process see [48] .
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25. STABILITY AT THE STABILITY LIMIT

Thx

This .section conceras the investigation of the stability at the stability limit. At first
it is assumed that w, ig positive; how the foll wing consideratiuns must be changed
ig zero will be shown in Seot. 27.

in the case that Wy

A set of necessary conditions for stability san immediately be derived from (22,2),

Because of leua)] = 0 , for suffiriently small absolute values of

a3P3[u(1)] + a4P4[u(1)] +...2 0

l . should hold, which can only be satisfied with

1 1
Pa[u( ’] =0 pJu®] 20, (25.1)
and if in the last relation the equality sign holds, with

P5[u(“] =0 ; PGEl(l)] 2 0, andsoon

It already appears from (25.1) that equilibrium at the stability limit shall "in general"

be unstable.

For the derivation of necessary and suffirient condiiions of stability, in agreement
with (24.1), an arbitrary kinematically possible vector function is put cqual to

u = ?:u(l) + i@ ‘with Tn[_u(l) . ﬁ] =0 ,

For stability is required that two positive constants g and h exist such that

(22.1)




Pl = pfa® +a] = B [au® 4+ d]

+ Pyfau® + 3] + pofaul® 4w 4+ .20 (26.2)

—A|< n . (22.1"

Initead of this, it can be required that there-should exist three positive constants A,
g and h such that (26.2) follows from the inequalities

8-.-
lgi<Ao|-ﬁt|<gl ui

———————

axj <h . (26.2"

That this modiﬂed condition is a necessary condition follows immediately from the faoct
that (22.1Y) results from (25.2").

That it is also a sufficient condition t‘olloﬁru if it is shown that in reverse (26.2")
b follows from (22.1'). From the relation

A | M
- Ty, o

» Ul
R E e
S 2T, [u{)

Z it follows that a is bounded if u and its derivatives are bounded; the sume holds true for

u and its derivatives because

u u-x_m(l).
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Evaluation of the integrals in (25. 2) by use of the symbols introduced in (22.7) ylelds

. pial = ap. il + a2p 1ut® @ 5
; Piuj gyliu jo+ P1[uj + 8 leu ] + gPu[u , a] +

+ Pz[ﬁ] + §3P3[u(1)] + 32P21[u(1). 4] + gPlz[u(l), a] +
+ Byl) + a*p, M + p @, 6l + $p ™, ) 4
v aplulD @) + pyLal ...,

or gomewhat differently arranged

Plu] = g.Pllu(l)] + §2P21u(1')j + g3P3[u(1)] + g4P4[u(1)] +.0.. +

2 8 1)

+ P (A + aP [0, @) + a?py, u®, ) + ¥y 0@, a) 4.+
o+ Pz[ﬁ] + ng[u(.l). i) + _gszz[um. 4] +... + Palﬁ] +
+ gPlul a) .+ Pl +... (26. 3)

In these expressions,the integrands of the terms following after Pz[ﬁ] are either of
the second order in U and contain in that case one or more factors a, or they are
of higher order in @ and its derivatives. It is,therefore to be expected that these
terms are of minor significance in comparison to leﬁ] . To prove this supposition,
again the Taylor expansion of the integrand F of Plu] with respect to its arguments
will be considered. When, for brevity, these arguments are denoted by

- (1) v o “
y}\ - QYA + yA(A 1, 2, ... 12);




this expansion can be written

' 12
' 3

* 1(_9o N .

' DY (_‘TLayM y,,a‘“yp) 0. T 02 6 s1) .

sy, 0)=1 ay, "+ 8y,

Just ag in Bect. 23, the indices of the derivatives of ¥ indicate with respect to which
argument these derivatives are taken. The coefficients of the second order terms in
¥o can once more be expanded in a Taylor series with respect to a

o%r A SR I 62F)
O9udYv/ gy, M) Oyudyu ), ~ = |d& \Owdy ay,

fa

i o 2 12 3
] ! = 5 ¥ + a F - , (1) <9<
3 <5y“6yv)o a pzl (6}'“6%33&)) gayh(l) Yo', (02021).

go that the expansion of F can also be written in the form

T T BT

e,

i' 12
{ . (1) - (OF -
% Figu"’ + 4 = (F)fyxm + z(‘”u)av o v
{ u=1 A
i 12 52
1 F) .- =
DI <ay,16yv> Vu¥v * R, (25-4)
(#,v)=1 0

e R




in which
12 12
R = 1 &F (1)
" 2 ‘452 (ay 8y, ¥ >9ay(1) oot
(B )=1 p=1
12
12 g
J,_l_'(“/aF\ _I*_,I= S 555 s
6 y, oY, OY (1) o yp ’;lyv A‘ upyuyvt(“ . B)
L R T (i1

By a mutual comparison of the order of the funotions a and their derivatives, the
contributions in (26. 4)

ayx ) nd Z <ay“) @ Y

k=1

can be identified as the integrands of

aP; [u(l)] + QZPZ [u(l)] + g3P3 [um] + n4P4 [u(l)] +. ... and

P+ apy, D, @+ g%, W@ A+ gty M) v

in (25.3) respectively. By comparison to (23.32),it appears that

12

20
1 o) ) 73 _
E 5 ¥ =F, [i]
2 Y, Mu 2
(1, v)=1 (6y“ %% o

ig the integrand of P2[G] in (26.3). Consequently, the remainder R must be equal
to the integrand of the remaining part of (25.3) '

2
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The coefficients Ayy can be made arbitrarily smal! by the choice of sufficiently
small values for A, g and h (the bounds of the absolute values of a, @, and
g_l_ll Hence it can be shown in exactly the samv way as in Sect. 23, that for an
oay/

arbitrarily small positive constant g the remainder muest satisfy
I%l s gc @,

in which G{u) stands for the integrand of T2[6]. For the integrals in that case it
follows that

6P, ®, 3 + 4%, w®, & +. ...+ Py [ + gp, WM, E
+...+P4[ﬁ] + ... Is BTzlﬁ]-

As -
P2 @] = szz [l

and with wy> 0 another arbitrarily small positive constant v = ﬁ/w2 can be
defined such that

|9P12 @, @ + a2

Pyy [u(l). al +....+4 P, [u] + aP,, [u(l), a)] +

LI N 1 L. A R (25.6)

Inequality (25.86) gives the confirmation of and exact formulation of the conjecture

stated earlier, that the terms following P, @] in (26.8) are only of minor importance.

In (25.3) several simplifications can yet be introduced. Due to (22.3)
(1) = =
P, ™ =P [0 =0
and as W = 0 (see (22.5)) it follows that

P, [u(l’] = 0,
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After use of the side condition for the functions u it follows from (22.9)

.. u? @ = wr. W a =oa, l
L 4l

.
41 -

while in (26.1), the requirement already was imposed that
iy =
Py [u*] 0.

With these simplifications and with use of (25.6) for P{u], the followlng inequalities
hold

Plu] 2 54P4 [u(l)] ... .+ 32P21 [u(l),ﬁ] + 9'3P31 [ua),ﬁ] +

t....+1M P, fa , (25.7)

Pl 5 a'p, M) ..+ 2%y W6+ 2% WM

to. . (1 +Y) pzlil . (25.8)

For the derivation from (25.7) and (25.8) of the necessary and sufficient conditions for
stability, the minimum will be determined of the expression

a®p, ™, @ + o%py W, d) 4. ... 4+ ap,fd] (25.9)

Here, a isa constant and due consideration must be given to the side coudition
T, b, @ = o, (25. 10)

whereas o is a positive constant which replaces 1~ v in (25.7)and 1 + ¥
in (25.8).

Let @ = p be the vector function for which the minimum is obtained. Then, with an
arbitrary kinematically possible vector function 7 which satisfies

T, u®, 0 = o, (25.11)
43




T

- — p— e -

and an arbitrary constant € the inequality
azP‘)‘l [u(l)’ $+€n] + §3P31 [u(l)p a"‘eﬂ] +, [

- 2 )y - 3 1) - -

+aP, [6+en] 2 2Py W, 3] + 2P,y u I +ap, [gl,

should be satisfied. After development of the left hand side

2 1 3 1 - 2
¢ |a®Py M, 0] + oy )+ vap (5ol + Pa, nizo

This inequality can only be satisfied for arbitrary values of ¢, if for every function
1, U= 7 satisfies

2 1 3 1 -
a"P,, Bn) + 8 Pgy p®,n) +.... ¢ ap, [a,n) = o. (25.12)
However, this condition is also sufficient as P2 M =o.
Due to the restriction (25.11) for the functions 7, (25.12) is not yet equivalent to a
system of differential equations and boundary conditions of the functions u. In order
to obtain this equivalence, the left hand side of (25.12) is calculated by means of a

replacement of the functions 7 by the kinematically possible functions ¢ not sub-
jected to the restriction (26.11). For these latter functions it can again be stated that

= @t +n with T, [u(l),n] =0and t =

Substitution in the left hand side of (26.12) yields after some developmént
Ezl’zl[nm. b+ §3P31 W, g+ P, (@, ¢
= t | o, (0™, u®] + e, @®, @) ¢ v o 6w ¢

+ %2y @, 1 + 2% wMim] 4o wepy @] (26.13)
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In agreement with (22. 8) the following identities exist
1 @), - @) @ @O - g D
P21 fut™’, u’} 3P3[u 1, Pal[u , U7 4P4[u ] ete.

Application of (22.9) for u = um, W= wl and £ =u yields with use of (25.10)

1)

P ™, u)= &T

Yet, if uze is made aldo of (25.12), it follows from (25.13) that

a?p, u®, £1+ Py 0] . ap 1, £

11

~t {3a%p, @] + 4a®p @) 4.

il
(=]

or af*er elimination of the value t and use of (25.1)

52P21[u(1), £l + §3P31[ua). El+.... 4

4g3p4lu‘1)1 .o

0. (25.14)

(1) =
- T u ’ g + ap u, K
2T2[um | 1l ] 11l ]

From equation (25.14) a system of differential equations and boundary conditions can

be derived in the same manner as the equations of motion could be derived from Hamil-
ton's principle in Sect. 13. These equations, together with condition (25.10), poasess
at most one solution, For, if ¢' and ¢'" were two different solutions, (25.10) and
(25.14) would both be satisfied by ¢' as well as by ¢, Subtraction then yields the
relations

pl].[ 'y L) P11[¢"s t] = P11[¢' -, r]=0,

)

T, @, orj— 1, 0@, ey = T @, 9 - eny =0,
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from which with (22.8) and = ¢' - ¢" {t should foilow that
t 1 = (1) 1] 1" =
P,[¢' — ¢"]= 0and T,[u", = ¢"] =0,

which contradicts the assumption Wy > 0 (see (24.4)). That the solution of aquationa
(25.14) and (25. 10) indeed determine a minimum was already stated above.

Equations (25.14) and (25.10) are linear in the unknown functions ii, eo that its solu-
tion can be written in the form

=1 (2@ + 38 ., (26.15)

in which ‘P(z), cp(a) etc. are the solutions of the equations

P, (ul, g1+, +P [, L= 0;
T, w?, @ =o0. (25.16)
4P, ) '
Q) o, "4 _ (1) = =0
Pl 217 2 Cay) T s 1+ gy la £1= 0
Tu[u(l). i] =o0. (25.17)

The functions ¢(2), 0’(3), etc. are independent of a, so that there is always a posasi-~
bility to choose the constant A 8o small that the inéquality |§| < A leads to the
inequalities |$1| < g: and |-g-gL| < h; with this it has been proved that the func-
tions @ also belong to the class “of functions T which are admitted for the analysis
of Plu].

The calculation of the minimum of (25.9) can still be simplified if use is made of
(25.14) for ¢ =7

2 .o ~ = -
a lelua’. #l+ gsl’sllum, #1t....=- 0P, [7, §]=-20P,[7],
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so that the desired minimum is

—aP, (@] “-;- a Pm(u( ), o1+ aP..,lum, w1+....l .

By use of (25.15) this expression can be written as

_apz [;] =_aP2I1 @ ’(2) + a¢(3) ‘. )] _

=_1

24

it (0@ + % (6D, o) + & @, 16®, 0¥) 4

+ 2,1¢@) +l . (25.18)

Substitution of the minimum (25.18) in the inequalities (25.7) and (25. 8) yields

Pl = 2t |, (] - L pre®n} 4

+a,5

Py uV) - 25 2y, 16®, o) } +.... (25.19)

Min P [u) (with a2 = const. )=a

p ) - = Pzw(z)J, +

@, -

5[“ 1+y 11[¢(2)’¢(3)]} +....(2b.20)

Here 1 +7 and 1 -Y has been reintroduced for the parameter o .

If, for brevity

p, ™) - p,1e®)

!
%

4, (25. 21)

then it follows: at the stability limit equilibrium is

stable, if A4 >
unstable, if A4 <

o ©

(25: 22)
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If the first condition is satisfied, there is always a possibility to choose Y 80 smail

that at the same time with A 4
@, . 1 __ 69
P 4[u ] =5 P2 A

is also positive. One the other hand, if A 4 is negative, ¥ can be chosen so small
that
M — L p (@
P ™ = 375, Fple™
is also negative, Only the limit case with A 4 equal to zero does this expression
fail to give a decision about stability. In general, the solution u = cp(z) of (25.16)
is also dependent on the form which has been chosen for the integrand of Tz[u] .
That A 40 the factor which determines stability is not influenced by this, follows
from comparison of the solutions u and u' corresponding to the integrsls of the
different forms T2[u] and T'Z[u] . Subtraction of the equations (25.18) governing

both solutions yields
Pu_[ii -i',t)=0, (25.23)

from which it can be concluded that
1), (25.24)

where c¢. is an arbitrary constant. If (25.23) also possessed a solution 4 -d' dif-
ferent from (25.24), then it would again be possible to state

i-a = w® + & with 1, (0, ) = 0,

from which it follows that (see 24.14)

P4, t]=0, Tn[um, u] = 0.

Then, for & =1 it would hold that
P, 4= 2P,[E] = 0, Ty, [u
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which contradicts the assumption that w 2 > 0. With (25.24) it finally follows that

=-P, [u] + PZ[ﬁ—cu(l)] =

>
1

>
I

- lefl] + PZ[G] - cpu[ﬁ. u(l)] + (_"21,2[‘1(1):I = 0.

It is noticed also that for the calculation of ‘P‘z) and A4 no uge is made of the as-
sumption that the integrand of T2 {ul is positive definite. Consequently the same
result will be obtained for A 4 if this assumption has not been made provided that the
integral of T, [u] is still positive definite. This greater freedom in the choice of

T2 ] shall be of use for the application of the theory (see Sect. 23).

26. APPLICATION OF THE CRITERION (25.22)

For the application of the criterion (25.22) only the knowledge of the functions ‘?(2) is
required, so that only the system of differential equations and boundary conditiona re-
sulting from (26.16) must be solved. The differential equations and boundary oconditions
again can be derived from (26.16) in a manner analogous to that described in Sect, 13.

When the complete zystem of eigenfunctions u(h) is known, this solution can most
simply be carried out by expansion of 02 as well a8 ¢ in ceries of these eigen-
functions. In this way, the derivation of the differential equations and boundary condi-
tions will not be needed

oD =S o, -
h=1

g u® . (26.1)
1

A s

The second relation {25.16) ylélds after use of (24.11)

T11 [u(l), z oy u(h)] = 201 T2 [u(l)] = 0 or c; =0,
h=1
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while the first equation (25.16) becomes

“h*21

A D {“(1)’ ._.‘(h)} + }: z d ckpll {u(k}; u(h)} =0,
1 h=1 k=

N8

or with use of (24.10) and (24.12)
2 d Py, u®), u®) 4 z 2d, 0w, C = 0.
h=1 h=1

The latter equation can only be satisfied for arbitrary values of dh if, for hg 2

o = ~ ﬂ}}; ¢ Py (@), o®y @8.2)

The condition for h =1 is already satisfied because

P, (u®, 0™y = 35, ) = oanaw = 0.

For A4 it 18 found that (see (25.21))

a, = B u®y- Pz[ > chu(h)] .
h=1

= p,[u®)- 2 o2 B, (u®) - z o ¢ Py1u®™, u®; 6.3
h=1 h#k

the last sum should be calculated for all combinations of h and k such that h # k.
With use of (24.10), (24.12) and (26.2) the result is

[ -]
2
= )y _ 1. 1
Ay = Pylu™] wz ”
h=2

p,, u®, u®) (26. 4)
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However, this consideration has more than a formal significance only if the possibility
of the series expansion and the admissibility of the operations applied on these series
has been established.

In many cages, the system of eigenfunctions is not completely known and an exact solu-
tion aiso in a different manner, will appear to be impossible. An approximate solution
at least must be pessible for such cases since (25.156) represents the solution of the
minimum problem (25.9). If (25.9), after substitution of (25.16), is expanded and re-
arranged acoording to increasing powers of a (this expansion starts with the fourth
power of a ), then the function ¢ @) dotermined by (25.16) appears also to be the

golution of the minimum problem

P21 [u(l). uj+ P2[ i) = minimum under the side condition
T, w®), a1 = 0. (26.5)

In that case it is obvious that an approximate solution of problem (26. 5) can be found
for instance, by means of Ritz's method [30]. It is inherent in this method that the ap-

‘proximation of the minimum of (26.5) thus found is greater than the exact minimum.

For the exaot solution, it follows from (25.18) for | = 0@ that

Py [0, 0@ 1+ B, (o®) = —p (0@ (26.8)

Hence the approximate minimum of (26.5) is at the same time an approximation (too
large) for —Pz[:p(z)] . The expression

p, p®; + p,, 0@, @ + By, (26.7)

in which u 1is the approximate solution of (26.5), then alao ylelds a too great,
approximate, value of A 4° Therefore, stability will always be overestimated by use
of (26.7) instead of (25.21). If, in a certain orse, the expression {28.7) would turn
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out to be uegative, i.e.,according to the approximation equilibrium would be unstable,
then equiiibrium wiii Gertainly be usstable in reality. In ravarss o nasmitive vaina of

(26.7) does not always imply that equilibrium is stable.

27. SPECIAL CASES

In the foregoing, stahility at the stability limit was analysed under the assumption
that the solution w, of the problem (24.4) is positive. Along with this, as necessary
conditions for stability were found to be that (see (25.1), (25.22) and (26.8))

Ay = Py =0 5 4, = P @ - 1P -

P4[ua)] . Pleum o@ . pz[cp(z)] 20 , (21.1)

which conditions are at the same time sufficient if in the second condition the upper
sign holds. 1t has yet to be investigated which additions to these conditions will be

needed if A4 =0 or w2 =0.
27.1 The Case A4 =0

For the analysis of this special case the assumption w, > 0 will be maintained.
According to the considerations of Sect. 25

u =au(1) + u with T (1),.ﬁ]=0.

3 n
Thus by use of (25.16), the functions % presently are written

i = a%@ + 3§ witn T @, 5 =0 . @7.2)

Introduction of (27.2) in (25. 3) yields after some reduction
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Pl = & { a1 + 2y @, 0@+ 2@, 0@}y

{
o0 4 Rt 0B 4 p o 4 oo ‘+

oot a_13 Pgqlu

+a4

P41[u(1) , ) + Pznfu(l) A P21[¢(2) , l +

$ovk Poli] + P M F) 4 6P

Poou®, & + pe® L W l +

oot PlH] + gplafu(l) V8] 4 P L, @7.3)

in which use has been made of the identities
(1) (29 - = = 1y = 1), .
Pllu ] = PIW ] Pllu] 0, leu ] 0, P3[u ] 0,

A, = 2+ 2y w®, 0@ 4 pe®) =0,

as well as of the equation (25.16) which also holds for £ = @

u .- The integrals
belongiug to the development of P__[u!), @) for T = ¥ + W are written as
[u

m,n-q,q W, W] analogous to the manner described in (22.8). The integrands
of these integrals are homogeneous functions of the order n - q in ¥ and its

derivatives and of the order q in w and its derivatives. Again, expression (27, 3)

possesses a minimum for u = 0 if and only if it is possible to find a set of positive
quantities A , ¢ and h such that from the inequalities

lgi<A, |ﬁi|<_lE‘, :f; <-l=1 (27.4)
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it follows that
Plul 2 0 .

A set of necessary conditions may immediately be derived by the specilization
u = 0. As all integrals depending on u then become zero it follows that

4

TS NI N I N ) I S )
1 2 2

Pl + P ® o® 4 2y u® 0@y 4 @1 20 . @)

Since the positive definite integrand of T2[u] can ngain be assumed to be of the form

(23.7), it can be shown in exactly the same manner as in Sect, 25, that it is possible

to choose the quantities A, E and h so small that it follows from inequalities (27.4)
that the terms after leﬁ’] satisfy

12)

= = \ -
ap 0@, 8 + o [P ,®, @ * Prae L E1fe ¢ pyE) ¢

22l
I N LN IS i I 1PT% ) B )
8Pl n altl

Here vy is an arbitrarily small positive constant. By use of (27.5) and (27.7) the
following inequalities follow for P[u]

Plu & 8° [Pgla® + B @ 0@ 4 ppu® 0@ 4 pp®) |
4.+ g0 ,p31[u(1) JE o+ Pnl[u(l) @ & | +
+ 8t [pg® 81 vy e ® B pye® T |
+o..+ (- NP, (27.8)
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Plu) 5 o° | Bgla@) + P, 0@ + B, ## 4 Pl | 4
o Ealpaﬂ“a) 81+ Py, @, ’(2)’ﬁ]_l i

+at|p ™, m o+ By w®, 0@ 8 4 py (0@, T 4

+....+ (@ +'Y)P2[l_1] . (27.9)
For the derivationfrom (27.8) and (27.9) of stability requirements sharper than the

already established conditions (27.5) and (27.6), the minimum of the following expres-
sion will,as was done in Sect. 25, be determjned

W, o® 5 |+

3 1) =
a l Pgylu™"y U]l + Pyyy

ey [pg® @+ py @, 0@ 4+ B, 0@, W |

tooterl (@50, (27.10)

with due consideration of the side condition
1) =
T, [u ), 81 =0 @27.11)

and with a considered a constant. Asinthederivations in Sect. 25 it is shown that

the function ©@ = @, for which the minimum of (27.10) has been obtained, can be
written in the form

?=La%® ey, (27.12)

in which l/l(a) . 1/1(4) etc. are the solutions of the equations
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p.u® ) 2@ @ 0 .
va - 111 : e

LAY 1‘ 2
ap,[u®] + 2p, [, o)

- (1) % =0 -
21, T, Jut™ Bl + P, E] =0
'rn[u(l’ L8l =0 ; (27.13)
Pﬂ[um £+ qulum o@ e+ Pm[w‘m o1+
i 5P5[u(1)] + 3P31[u(1) 28 4 Plzluﬂ) , 9@ o w® &) 4
) 11 '
2T2[u ]
+ Pl ] =0, 'ru[u‘l) 81 =0, | (27.14)
ete.,
By use of the identity (26.86)
2 M) + 22, u® 0@ = 4p, V] - P |- aa, =0 .
Hence the set of equations (27.13) can be simplified to
P fu® o) + P @ 0@ e+ B E,0 =0 T, G =0 .
(27. 15)

Algo, the minimum of ({27.10) i8 determined in the same manner as described in
Sect. 25, It is found that

- apy[Bl= - 1| B, v@®) + oTm @, W] o
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so that finally from (27.8) and (27.9) it follows that

= fypzw“‘”][ + 47( e, (27.16)

Min P [u] (with & = const.) 5 a8 lpelu(l)] + By, [u® 0@y

+ Py 0@+ p o] - Lo ) ea”| L

27.17)
If, for brevity
plu®) + 2 u® 0@ 4 pyp® 6@ 4 pp®) - B = 4
(27.18)

then it follows, again analogous to the derivations in Sect. 25, that equilibrium is stable
or unstable depending on whether A6 is positive or negative. Only if AG = (0 does the
form (27, 18) fails to yield a final decision about stability. In that case the investigation
mugt be continued; this can be done by the introduction of

q = §3¢(3) + U with Tll[u(l), al=o0 .

Then, the analysis proceeds further analogous to the foregoing.
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27.2 The Case of wz =0

. e - 5
Por the annlysis of this special Gasc it will, 1oy e mumeni, be assumed that w3 18
2 1 .
positive. If one writes u( ) = v( ) in behalf of a more symmetrical notation then for

an arbitrary kinematically admissible function u, it is possible to set
w=a® o ® v o 0™, 8 = v W =0, e
in a manner analogous to (24.1). The possibility of this separation again can be shown
by calculation of the constants & and b . Substitution of (27.19) in (22.1) with
P1[u] = 0 ylelds
Pu) = Pz[g.u(l) + bv(l) + U] + Pa[g.u(l) + v 4 u] +
+ plan® 4o e (27. 20)
In general, for an integral Sm[z] the following expansion holds for z = u+ v +w
Slu + v +wl = z Sa, gy vo W (27.21)

a+B+Y=m

where the integrand of Sm [z] 1s an homogeneous and complete function of the order m
in the argument functions z and their derivatives.

Sa' 8 ;Y[“’ v, w] is the integral of all terms which arise from the development of the
integrand of Sm fu + v +w)] and they are homogeneous, of the order a,8 and Y

in the functions u, v, w and their derivatives respectively. For brevity the following.
notations are used

So, By [0 v WI = 8.0 [V W] 5 8 o gl Vo W] = (W]




Furthermore the symmetry relations

sa,Bv‘Y (u, v, w] = SB,a,’y (v, u, w] ete.

hold together with the relations corresponding to (22. 8)

a+3
So“ﬁ'.y [u, u, w] =( 8 SMB’., [u, w] ,

a+ g\ fa+pg+y m!
Sa.ﬂ,‘)' [u, u, u] = 8 y Sa+[3+7["] = Wsm[u] .

By use of (27.21), (27.20) can be written

+ bop ()] + a%p Ju® ]+ b, ® | vy, a*%p, ™, v) +

+ ‘.‘bapla[“a) ’ v ]+ b4P4[va‘)] o+ gzp @) , 1) +

21(%
+abe @ v® ) wpPp (v ) 4 a®p ™, 5 +

+ a%p, ®, v g 4 §b2P121[u(1), v G+ bpg, vV | a) +
+... 4+ Pz[ﬁ] + gpmlum , U] + me[v(l) s uj + gzpzzlu(l) , a)] +

+ ‘i‘bPuz[“m v age b2P22[v(1), G+ ...+ Pa) +

+aP @), g + bP v E) e . P ld] + ... (27.22)
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In this expression (24.10) and (24.12) have already been utilized tor the eigentunctions
ul®) and e as well as the relations below which from (22.9) and (27.19)

Pu[u(l), u] = wlTu[u(l) ,ul =0, Pn[v(l) ,ul = wZTn[v(l) ,ul =0

Expression (27.22) again possesses a minimum for u = 0 if and only if it is possible to
find a set of positive quantities A, B, g and h such that from the inequalities

Bﬁi
oy

laj< A, bl<B, [T <8, <h (27.23)

it follows that

Plul 2 0 .

A set of necessary conditions may be derived immediately by the specialization @ =0 .

As all integrals depending on 1 become zerc, for all values of & and b the
relation

a%Plu®) + a%ory, w® , vy 4 e ®, v 4 pie vy <0,
should hold. It follows that
Palu(l)] = p,, ™, vy - Plz[u(l) v = pgv®) =0 . erizg
In addition the following inequality should be satisfied for all values of 2 and b
_:_9.4P4[u(1)] + gabPSI[ua") : v(l) ]+ gzbzpzz.[um s v(l)] +

+ gbaPm[u(l) , v 14 pip 4[v(l)] z0 . (27. 25)

Since the integrand of Tg[u] again can be assumed to be of the form (23.7), it may be
shown in the same way as in Sect. 25, that it is possible to choose the quantities A ,
B, g and h so small that from inequalities (27.23), tor the terms following Pz[ﬁ]
in (27.22) it follows that
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|2Py,

®, g + b"P12[va) , U] + gzpzz[ua) vB] 4+ Pyld] +

[ 1(1) 1 D
+ :1313{-. LBl 4+ ...+ F

in which v is an arbitrarily small positive constant. By use of (27.24) and (27.26)
for P[u], the following inequalities are established

Plu]

Plu) = §4P4[um] + gabpmlum . v(l)] + gzbzpzz[ua) ) v(l)] +

+ Ebapls[um L b4p'4["(1)] oo a le[u ¢

+ avpy ® V@ gy 4opPey W ) + ey

+ f'szzlllu(l) , V(l) , ﬁ] + _a‘bzplzllu(l) . V(l) . 'l—l] + b3P31[v(l) . ﬁ] +
R R A I 27.27)
s a'P,uM) + Popgu®, v ]+ FuPp @, v@) 4

+ Ebsplslua) , V(l)] + b4p4[v(i)] + ..., + Ezpzl[u‘(l) . u] +

+ abp (0@, V@) a) v pPey v a4 a'pg u, ] +

+ f‘szznlua) cv® g+ gbzpml[u(l) , v w4 b3P31[vm , W]+

+ 0+ (14 ‘Y)Pz[ﬁ] . (27.28)

For the derivation of stability conditions sharper than conditions (27.24) and (27. 25)
in analogy with derivations in Sect. 25, the minimum of the expression
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afp, ™ o+ wpy, v @+ b, v 4+ alpy (W, )
+ azbl)zu[u(l) L I T UL
+ b2, W™ 1) + ...+ aB,fEl (a > 0) (27.29)

will be determined for constant values of a and b under the side-conditions
1) - -
T u®, 8 =0, 1,0, 5 =0. 7. 30)

Likewise analogous to derivations in Sect. 25,1t is shown that the solution of this
problem can be represented by

o220 4 11 4 p2,02) , 3G0) 2 (21) 4

=_ 1
= a

303 ,

+ ab% 12 4 p% , (27.81)

in which u = v(pq) for arbitrary kinematically admissible functions ¢ satisfies the
equations

P, 4

ptl,q T

(pt+1
qul‘“m v - ! 1
2T2[u( )]

) @+ -1)pp.qL+1[u(1) , v('l)]

) ael =
2T, [v@®) Tylvo R+ Pyl =0,

Tu[um vil =0, T, v =0, (27.32)




For p + q = 2, and after use of (27. 24) these equations are simplified to

P, M, 1] + P [E,t] =0 Ty Mg =0, T,vM8 =0,

Bfu v Bl ep tat) w0, T,e®al=0, 1 v a 0. @

P, v, g + P @t =0 v Ty g =0, 'ru[v‘”,u] =0 .

The calculation of the minimum (27.29) 18 carried out in the same manner as is
descrtbed in Sect. 25. Introduction of the result into (27.27) and (27. 28) yields

Pl s st |2 1__17_1,2[420),, .
+ &% Py, @), v®) . I—}_—yPu['r(zo). 1) , +
+ a%? P ™), v@) . s Py, R0, 9002 _ T Pl 4
+ ab® P @, O . T-Ly‘Pu (o1 4(02), ] +
+ pt P4[v(1)3 -1 _17 P2[¢(°2)]’ + o, (27. 34)
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MinPfu] (with a = const. and b = const.)

NN EAOUEE o b T
. By ® , v®) - P (6@, QD) |
L R B I L L R e T AT

3 1
+ ab |P13[u(1) s V(l)] - mplll"’al)’ ‘P(Oz)] +

vt |00 - 35 P, 100

Finally; after the following shorthand notation is introduced

¢,y = PV - Pt w
Cqy = Paﬂ“m , V(1)] _ Pn["’(zo) ’ ¢(11)]

Cpp = p22[u(1) AT p11[¢(20) pl02)y P2[¢0'1)] ’ !
Cpy = Ppglu®, v - B 1D 00F)

Coq = Pgbr™® 1- 2yl ‘

it follows that equilibrium will be stable if the quartic form

4 2,2 4
Cygil’ + Cgya’d + Cpyad” + Cpgab” + Cypb
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(27.36)

(27.37)




is positive definite; for in that case it will always be possible to choose ¥ so small
that the quartic form in the right hand side of (27.34) also is positive definite.
Conversely, if (27.37) can be negative, equilibrium will be unstable since in that case
¥ can be made sufficiently small to make the quartic form in the right hand stds of
(27. 35) to be negative. Only when (27. 37) is semipousitive definite this form caunot
give a decisive conclusion about stability. This very special case,which is of little
practical significance, will not be further discussed.

The treatment of the cases w 3 = 0 etc. does not offer new difficulties. If the first
w > 0 isgiven by w h then for the displacement field u it can be stated

h-1
u = Z ajum + @ with Tu[ud),'ﬁ] =0¢ =12.... h =1

& " (27.38)

After this the analysis proceeds in complete analogy with the foregoing, but with
considerably more labor. Again, necessary conditions for stability are that the form
of the third order obtained by substitution of

h-1
u = z a um (27. 39)

i
j=1

in P3 [u] is identically zero and that the form of the fourth order which is obtained by
substitution of (27.39) in P 4 [u] shall not admit negative values.

28. CORRELATION WITH THE INVESTIGATIONS BY MAYER
The theory of stability at the stability-limit as developed in the foregoing can be

connected with the investigations of Mayer[31] about the minima of a function F of n
independent variables X\ A=1,2,..., n) in the case that the second variation of
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this function is semidefinite. Without loss of generality the origin of the independent

2 coordinates x v\ca.n be chosen at the point where the existence of a minimum is

[ analysed. From the Taylor expansion

S n 2
AF 1 9°F
F(;)gx) = F(0) + (;—) x“ + E E(—_) xva +

ua ¥l =t %y /o

(s ¥4p)=1

n n n
SEO D AX D AgrE, v Y Aonmm, o s
u=1 (»,v)=1 (“’ v,p)=1

= F(0) + Fl(x) + Fz(x) + FS(x) + ..., (28.1)

it can be concluded in the well known way that a minimum can only be present if the
firat variation satisfies

Fix) =0, (28.2)
and if the second variation satisfies

Fox) 2 0 (28. 3)
for all values of the variables X, Besides, if the lower sign in (28.3) holds only when
; all x, are zero, i.e.,if the second variation is positive definite, then conditions
,‘ (28. 2) and (28.3) are also sufficient for a minimum. In order to obtain an understand-

ing of the conditions governing the existence of a minimum in the case of a semi-
definite second variation, Mayer sets

66




x, = g+ 13,0 4 3 8 . 28.4)
where the coefficients g;\‘j) #=1,2...,) arearbitrary. If after introduction of

(28. 4) the function F is expanded in terms of increasing powers of t, it is a neces-
sary and sufficient condition for a minimum of this function that the first term of this
expansion is of even order and is positive (provided all values of the coefficient £ AU)
are not being simultaneously zero). Mayer has left no doubts about the necessity of
this condition. He has also in every respect demonstrated the likelihood of ,this'vcondi-
tion being sufficient, although he did not succeed to prove this conjecture rigorously.
The application of this method yields criteria for the ordinary minimum problem analo-
gous to those of (26.1), (25.21), (27.24), and (27.37).

Without difficulty, Mayer’s method can formally be applied to the variational problem
(21.1) of stability. For this purpose an arbitrary kinematically possible vector func-
tion is written as

u = tvil) + &A@ 4 3@ 4 (28.5)

and subsequently the left hand side of (22.1) is expanded in increasing powers of t.
For stability it is a necessary 'and sufficient condition that for all kinematically pos-
sible functions vm the expansion starts with a positive term of even order in t.

That this condition is actually sufficient is less evident than it is in the case of the
ordinary problem of the minimum of a function of a finite number of variables. Fer,
as in contrast, a positive definite second variation of a variational problem is not
always a sufficient condition for the existence of a minimum [32]. For this reason no
use was made in the foregoing of the seemingly obvious extension of Mayer's theory
to variational problems. On the other hand, Mayer's resulis can be motivated in a
rigourous way by considerations analogous to the theory developed hare.
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29. APPLICATION TO THE THEORY OF ELASTICITY

For applisation of the stability theory to the elastic equilibrium, the knowledge of the
Taylor expansion of the total potential energy (22.1) is required. As far as the elastic
potential energy is concerned, this dan easily be given if the elastic potential accord-
{ng to Bection i2 consiats of a positive homogeneous quadratic function of the strain
components. Expressed in the displacement v, this potential can.be written

AE) = A2 + A2 + At (), (20.1)

where expression Aq(v) stands for a homogeneous polynomial of the order ¢ in the
derivatives of v. Expression Az(v) corresponds to the elastic potential of the lin-
ear theory of elasticity. It is a positive semidefinite function of the derivatives of
the displacements that is zero only if the linear contributions of the displacement de-
;‘ivatlves in the strain components avi/ ij + ij/ 9x, all vanish simultaneously. The
elastic potential in the equilibrium configuration for the displacements v = U follows
immediately from (29.1). Ina configuration v=U + u

AU+u) = A2(@U+u) + A U+u + At (U +y).

From this, by expansion with respect to the derivatives of U and u, it follows

2
0

3 4 1 2
+A0+A0+A1+A1

A@U+u = A +Ai’+

0 1 2 0 1 0
+A2+A2+A2+A3+A3+A4.

{29.2)
Here Ag' is the sum of all terms that are homogeneous of the order p in the deriva-
tives of U and homogeneous of the order ¢ in the derivatives of u. Thus, this
form is obtained through cxpansion of Ap+q(U+u). The symbol Ag in (29.2) is
apparently equivalent to the symbol AP in (29.1). By interchange of U and u the
terms Ag and Ag are also interchanged so that Ag represents a semi-positive
definite function of the derivatives of u. This function will become zero only if all

u u
the relations -g-,-‘-;- + —g—,—ql =0 are simultaneously satisfied. If in addition
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v = [[ng dx, dx, dxg (29. 3)

then the Taylor expansion for the elastic potential energy reads

VU+yy -V = V1 [u] + V2 fu] + V3 [u] + V4 [u] (29.4) '. ‘
with

1 2 3

Vl[u] =V1 +V1 +V1 '
0 1 2

V2[u] =V2 +V2 +V2 ,

) (29.56)

= 0 1

V3 [uf = V3 + V3 ,
0

vy [v] = Vs ‘)

The stability analysis by use of the energy criterion can be carried out in a simple way
only if there exists also a potential for the external loads, which in that case is repre-
sented by (the negative of) a work function W. If it is assumed that the increment of
this function corresponding to the transition of an equilibrium-configuration U to a
configuration U +u, canbe expanded, then

WU+W —W(U) = W [u] + W[ + Wyl +...., (29.6)

is obtained, in which series Wq[u] is the sum of the integrals whose integrands are
homogeneous functions of the order q in the displacements u and their derivatives.
In the frequently occurring case of loads given by magnitude and direction with respect
to volume and surface elements of the undeformed state, the following holds

3

/Z {fffpxiuidxldxzdx3+ ffpiuidflforq=1’

w = 171 29.7)
q \ 0

for ¢ > 1.




Finally, after use of (29.6),it follows that

. V u - W [u] for 1sq%54,
P uj= * -
1 —Wq[u] for q> 4.
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Chapter 3

EQUILIBRIUM STATES FOR LOADS IN THE
NEIGHBORHOOD OF THE BUCKLING LOAD

31. THE BUCKLING LOAD

In the preceding chapter the stability of a supposedly known equilibrium state has been
investigated. However, in engineering,stability problems are usually posed in a
somewhat different form. It is a question hero of the stability of an equilibrium con-
figuration occurring under influence of a given load system. Hence,the state of equi~
librium corresponding to this system of loads must first be determined before the
stability theory can be applied. For thig purpose, differential equations (13.13) with
boundary conditions (13. 14) or the variational equation (22.3) may be utilized,

In principle, aside from the difficulties connected with the solution of non-linear
differential equations, the problem of such a nature appears to lead to a peculiar diffi-
culty which is related to the determination of the loads. A necessary condition for a
possible state of equilibrium is that the loads constitute a self equilibrating system.
In the framework of the linear theory of elasticity, this requirement is satisfied if the
loads which act on the undeformed, supposedly fixed body constitute an equilibrium
system; the conditions tor the loads which result from this can be written down
explicitly. However, as soon as finite deformations are taken into account the loads
must satisfy the requirement of equilibrium with respect to the deformed state of the
body; as long as this state is unknown, the conditions for the load system cannot be
fermulated explicitly.

Fortunately, this fundamental difficulty has little significance in most important technical
problems. A structure is usually supported in such a way that in any state of small (but
finite) deformations in which the body is held fixed, an infinitesimal displacement of the
body is excluded. Consequently, the equilibrium conditions fo? the body as a whole can
always be satisfied, Besides, in the following it is assumed that the support reactions
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of the applied loads.

The following considerations will be restricted to cases in which the given loading
contains a still undetermined proportionality factor A ; in that case it can be represented
as a product of A and a unit load system. For different values of the supposedly posi-
tive load parameters A , existing equilibrium states are sought.l The question
of the atability of these states is also posed. The general solution of this problem,
i.e, the determination of all possible equilibyium configurations for a given value of A ,
iy almost always impossible. However, in many important cases in engineering it is
possible to find one solution that continuously approaches the undeformed state as the
value of A approaches zero. This equilibrium state and corresponding displacement
U(»), the so called fundamental state, is assumed to be known in the following., More-
over, for the range of A under consideration this fundamontal state is assumed to be
uniquely determined. In general the following can be observed about the stability of
the fundamental state. If the body is supposed to be fixed in the deformed state,any
infinitesimal uniform displacement or rotation can be excluded. This means that the
additional displacements from the fundamental state u; cannot satisfy the six relations
aui 3_9:1

[38] 5;:; + 5%, = 0 throughout the interior of the body. In that case, as was shown
in Section 29, Vg[u] is positive definite. The remaining contributions in Pz[u]
approach zero together with A and U(A) (see Section 29). Accordingly it is assumed
that it 18 possible to find a positive value for 7\1 such that Pz [u] is positive definite
for A <« Ay The solution Wy of the minimum problem (22.5)

Py 4]

w = MinTZ o (31.1)

llf it is necessary to take negative loac. into consideration as well, this can most simply
be done by substitution of the unit load system by its opposite; A 1is then also posi’ ve.
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whose existence again is agsumed, is then also positive, which means that the equilib-
rium Is stable for A< A 1 This reasoning follows closely the uniqueness theorem of
Kirchhoff [39]. In some cases, for instance the bar under pure tension, the solution oi
(31.1) is positive for all positive loads, In other cases wy becomes negative after
the load parameter exceeds a critical value A - Equilibrium in the fundamental state
becomes unstable after the load corresponding to Al is exceeded, and thus the funda-
mental state has no practical sigr ‘ficance for A > Al . Of particular importance is
the determination of the limit value Al ,» beyond which the fundamental state becomes
unstable. This is determined as the smallest value of A for which the solution w
of (31.1) is zero. 1 Equilibrium in the fundamental state corresponding to A s,
therefore,at the stability limit. In i.at case the homogeneous variational equation
(24.14) possesses a non zero solution. The load corresponding to Al is called the
buckling load; the corresponding fundamenial state U(Al) is called the critical state.

1

The existence of equilibrium states infinitesimally near the fundamental state for
loads equal to the critical load gives rise to the expectation that there are also neigh-
bouring equilibrium states for icads slightly different from the critical load, which
can be derived by consideration of small but still finite displacenients from the funda-
mental state. The stability of the critical state at the stabilily limit is of decisive
significance for the character of the neighbouring states. These adjacent equilibrium
states are the subject of the following considerations.

32. THE POTENTIAL ENERGY

It is assumed that in the neighbourhood of A = >‘1 the displacement U(A) and its
derivatives may,according to Taylor's formula, be expanded into a series with increas-
ing powers of A - 7\1 . This implies that for parameter values of A > 7\1 the
existence is assumed of the fundamental state also in the neighbourhood of the buckling
load. The consequence of this assumption with respect to the nature of the problems
under consideration will be dealt with in Sect. 37.

*1t is in principle not excluded that the fun“zmental state becomes stable again after
the load parameter has considerably exce:ded Agin this case the solution of (31. 1)
should become zero also for a larger value of A . This case can occur when a coil
spring is subjected to axial compression (see [53] ).
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In the following, the integrals introduced in (22.1) will be denoted by pgltu] for the
general fundamental state U()\) . They can now also be expanded in texrms of A - 7‘1

A M
Pm [u} = Pm [u) + (A m|,u] + ... 82.1)

In the following, the symbol Pm[u] exclusively refers to the critical state U@y -
In agreement with (22. 3), P’l‘[u] 18 equal to zero for all values of A .

If, for the time being it is assumed that the sclution Wy of the minimum problem
(24.4) is positive for the critical state, then the general solution of (24.14) reads
(8ee also sect. 25, in particular (25:23) and (25.24))

u = aum . (32.2)

The additional displacements of equilibrium states infinitesimally near to the funda-
mental state correspond to infinitesimal values of a. The displacements from the
fundamental state to neighboring states for loads slightly different from the critical

load will presumably differ somewhat from the form (32, 2), so that it is expedient
to write them in the form (24.1)

u = gu + 1 with Tu[ul.t"il =0 ; (32.3)
congequently it is expected that the functions U will be small compared to au, .

After use of (32.3), the energy increase,on transition from the fundamental state U(})
to another state U(A) + u, is written

1Slnce there can be no confusion with the indices i used for the distinction of the dis-

placement components, the indices of the eigenfunctions will in the following also be
written to the right and below the symbol.
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P u) = P} [u) +P§‘[u] +P;‘[u] .., =

P, [u] + (A - A) B lul + (A - A2 Pjlul + ... +
+ Py [u] + (A= 1) P:; (u) + ... + P;[u] + ... 0=
= gzpz [u,] +aP,, [ul,ﬁ']+ P, [u]+
+ (-2 |g2P2' lu,] + g.l'{llul.il + Pz'{'iill +
+ -y |§2P'2‘ fuy] + 2Py, Lo, 31+ P, [T +
+ 8%Pg [u,] + a%Py, [u), 8] + &P, luy,8) + ¥y W] +
+ (A~ A1)|§3P3' fu +... + Pa'[t'i'll +* ...+
+atp, (u)) + &%y lu @1+ ... + P (TN L

By use of the relations which follow from W, = 0

P,[u] = 0 and Py, [ul.ul = 0

it follows in a somewhat different arrangement that
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... 4 t.oo 2 A 9 _uw_ |
Prlul = a” (A - AD Bylugl + g (A=A Polwgd Tt
+ 2%p [u]+aa(A-A)P;[u]+ + afp [u] + +
=73ty = L R - St A
+a(A-A)P. . fu,ul+a(Ar 2p" u]+
a(A-A) Py, (u,ul+a(r-a) lllul,u] os +
+ a%P,_[u El+a2(A-A)P' fu,,ul+ +
il 5 ik & - Y 21t
3 - - 1 -
+§P31[u1,u]+ cos Py lul+ (A-2)) P2{u1+
- A 2P"[__]+ —
(A-A)"Pylul+ aPy, lu),ul +
] - 2 -
+a (A= A) P fu,,ul+ ... +§P22!ul.u]+ ver
—_— 1 —
+P3[ul+ (A=A Bylul + ... +aPg(u,u]+ ...+

+ p4[61+ (82.4)

From this expression of the energy the equilibrium equations are derired in conven-
tional manner by application of the principle of virtual displacements. This applica-
tion can most readily be carried out in two steps. First, the stationary values of
(32.4) are determined for arbitrary constant values of a. By this condition the
dependence of the functions u on the parameter a is determined. By substitution of
(32, 4) the energy will then be known as a function of a, PA(g). The values of a

for which stationary values of this function are obtained and the corresponding
functions U then yield the displacements for the equilibrium configuration.

The exact execution of this method encounters great difficulties due to the nonlinearity
of the equations for u. In order to obtain at least an approximation, the terms in
(32.4) which follow P2[ﬁ] are neglected; with this the equations for u are artifically
linearized, The following is intended as a motivation of this approximation.
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The integrands of the terms in (32.4) which follow letT] are of the second order in
u and contain one or more factors A - A, or a , or they are of higher order

—_—

PRTYINCE UV E %

.in u and its derivativea. If the considerations are restricted to small displacemerts |
from a fundamentsl atate which diffars slightly from the oritical state, so that A - .\1 . 1

'_ a and u are small, then it is to be expected that these terms are of minor impor-

tance in comparison to chT 1. As a proof of this supposition the integrands of the
terms which follow Pz[ﬁ ) are combined into oue homogeneous quadratic form of u
and its derivatives. The coefficlents of this form are functions of A - 7‘1 , & , U
and its derivatives, and they all approach zero as A - Al , & , u andits deriva-
tives approach to zero. In analogy with the content of Section 25, it follows then that
for sufficiently small absolute values of A - )‘1 , & , U andits 'dqrivatives the
absolute value of the terms which follow P2 (@) is smaller than an arbitrarily small
fraction of PZIE] . Consequently, the smaller |7t— A1| , |§| and |E| are the better
is the approximation of the potential energy obtained by omission of the terms following
leﬁl . The approximation of the energy is

PPl = PP laut +@1= o (A -2 Byly) + 82 (A~ AP, lu ] +
t P lul + 8 (oA Bylug) L vt lul

' - 2
Faota(d-ny) Pu[ul.ul *a(d-ay) Pu[u1

Jul+
+... +a%P, [u,,T3]+ a2 (A-A) P [u,bl+... +
o T 2Py luy,ul+a 1) By fupul + e

3

+ 2Py [ul,El * .+ P, (ul. {32.5)

It is important for what follows to notice that the principal neglected terms are given .
by

(A=) B[, 8P, [u,,al, By la]) . (32.6)
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33. CALCULATION OF T

FRTTER  TAY TRT I, o
n5 NUA‘anH “.

Tke application of the equilibrium condition to the wiergy approximation (32 6) is also
carried out in two steps. TFor the determination of the stationary values corresponding
to a constant value of a, the energy increment is calculated, This inerement is due

to the transition of the function u to a kinematicelly admissible function u + 7 which

 also satisfies (32.3)

Tn[“r’” =0 . (83.1)
After expansion of the integrals depending on u + 7, it is found that
P"‘[au- +3+n]-PMau, +1l = a(A-A)P' fu,,n]+
et | | 2 1) F11 W7
?
A TR NS A (L) L fuy 1 +-
2 ' %) _
+a" (A=A By luy i+ ... 48Py [ul+ . L+
(33.2)

+Pyy (u,n] + P, [n]).

The first variation, given by the terms of (33.2) wrich are linear in 1 , must always
be zero for a stationary value of (32.5). As P, [7] is positive under condition (32.1)

the sought stationary value is a minimum,

By analogy with Section 25 the condition obtained by equating \ ='¢.. % “sriation to zero
is made equivalent to & system of differential equations with Low - squations. For
this purpose, an arbitrary kinematically possible function & , .ot wubjected to restric-

tion (33.1), is written as

=t +n with Tn[ul.n] =0 and t = W .
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With due conaidaratinn to tha idantities

Py, [ul'“ll = 2P, lull v Pyy [ul,ull = 3P, [ull ete. ,
it is then possible to write

a(A - Al) Pil [ul.t] + g(A - Al)z P11 [“1’

£y +... +

+ 2%, [u,t] + g% - Ap Py lug, b + .., + ¢%p tl o+

a1 14y

tooe # Py LEED =t a2 2P) ] +

" [y
ta( - AP 2Py fu) + ...+ 2% [u) +

2 ' 3 -
+a%(d - 1)) 3P, [“1] MERRI X ) [“1] ¥+ P [u,u1] +

L e O i

1 2 "
TAA AP Py () 4 A - ADT Py ugun] 4L+
+a?p, Tu ) +a20 -A) P lum) + ... +
8 Fop tupmd +a™( URPYRLT

+ a3P31 lugml + ...+ Py, (u,n] .

In this expression the terms which depend on 1 are identical to the terms linear in
7 of (33.2), and thus the sum of those is zero. With use of

P, [ul.ul =0
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and after substitution of t.it follows that

1 .
2P, lu.)
! 2 1
2P, [u.]
9 " u
+ &(A - Al) pll [“11 t] -_ZT-:-rqu]— Tll [ullt]l +,.. +
3P, [u,)
2
+ 87 1Py luyt) - 2T, [4,] T [“1’“5 *
'
3P, [u,]
2 ! 3 1
+a (A -ay) 1Py lu, bl - 2T, [,] Tyq [ul,tll + .0+
3 4P, [u,]
+a Pa1 [ul,t] —jz-rr—z—[u—lr Tll [ul,t] + 0.+
+ Py [a,¢] = o,

(33.9)

Similarly, analogous to Sect. 25, it can be shown that this equation, together with
the condition

T11 [ul,u] = 0 (33.4)

possesses at most one solution. Due to.the linearity of (33.3) and (33.4), this solution

can be written
a= '+ e A 2o 4 +ae, +
U=a-A)e +ald-A)"¢ +... +a ¢

+ a?(A - Al)tp'z +oa.+ a3¢3 + e (33. 5)
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where P11 P10 Py etc. are the solutions of

- a1 -
I 4 U,61 * ¥
1'%

11

P [5,8] + Py fug,t] -

11

tt
P, [ul.tl

2P lu] L
ZT T 1 Iy luy,ed
- [ 4
T)q tup
2P [u,]
_(JT T), [u;.¢]
lu1
3P [u]
2'_"'"r fa,] AL
Ty Iy
4P, [ull
"I, Tu,] Ty (g€
Tip Iy

=0;

:‘-1] =

=O;

i)

= 0.

y

4

(33. 6)

(33.7)

(33.8)

From (33.5) follows the confirmation of the expectation expressed in Sect. 32 that for

small values of A - Al and a the functions u are small compared to au, .

From

comparison of the first equation (33.7) with (25.16), it also tollows that if P [u ]
is zero,the functions ¢, are identical to the functions ¢( ) introduced in Sect 25

2

The minimum of (32.5) is calculated by application of (33.3) for £ =1 (see also
By use of (33.5) it is found that

Sect. 25, in particular (25.18)).




a®(h - a) By lu)) + 2P - a)2 By lud + ...+ PP [u] +
+a3a - a) P, lu] +...+ap, [w] +... - P, [d] =
. PPy luyl +eeov Py lu] v - Py

_ 2 ' 2 2 [ '
=% - 2D By () +a(a-a)? (P, (uy] 'P2["1“+

3 ] 1
e @Byl + @A [Py ) - Py feepl] ¢

4+

R L AT IR A TR Ry (33.9)

Here in acobrda.nce with (32.6) and (33.5), the following terms have already been
neglected

2 35" [ o3 25" |,
sfa-apP e, o], P20y (o]
a4(A-A)P'[ ] a’p fu,,9,]

o 1) T2 ¥l » T F12 %2

Hence it would be meaningless to include any terms of the fifth or higher order in
A=Ay and a . If, for brevity

! t U f ot " .
P lu,) = Ay, Py ltu) - P, [¢)] = Ay, Py u)] = Ay,
(33.10)

1 ) ]

ther, as 2 first approximation for the minimum of the energy for a constant value
of a , it finally follows

ooy a2 2,2 3
PMa) = (A-2,) 48" + (A=A A" + Aja” +

1 3 4
*(A-2)Ase” +AE", {33.11)
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it lollows from (33.10) that only the terms quadratic in A - A and a of (33.5),

1
(a(r - 7«1)¢*1 , and gzv,,) , are significant so that the corresponding apnroximation
of the function U is given by

L ' 2
u = a(A - Al) 2 +a ¢2 . (33.12)

It is seen from (33, 10) that the constant A3 is identical to the quantity which in the
first place is decisive for stability (see (25.1)). If it is zero, then it follows from the
identlty of the functions v, and ¢, that A, (33.10) is idontical to the quantity
introduced 1n (25, 21y, which in that case governs stability of the critical state.

34, IMPROVEMENT OF THE APPROXIMATION

As already has been remarked in Sect. 32, expression (32.5) represents an approxi-
mation of the energy which becomes more accurate with values of decreasing A - 7\1 ,
a and u. Consequently, (33.11) yields an approximation of the stationary value
of PMg) for small values of A - A;» & and U, which is a better approxima-
tion the smaller A '7“1 and a are; the required smallness of the function U is in
that case automatically ensured by (33.5) or (33.12). However, it is desirable to
know in what manner the approximation, when necessary, can be improved. For this
purpose, it is noted that (33.12) yieids an approximation for the function i which
determines the stationary value of (32.4). This asppraximation is again more accurate
the smaller A - A and a aretaken. Now, if

- \ 2 = 81 -
U =a(A-A)e +a"g +U with Ty, [ul,ﬂl 0, (34.1)

then as a consequence, 4 iz expected to be small in comparison to the first two
terms.

Introduction of (34.1) in (32.4) yields after expansion and after arrangement of the
terms according to increasing order in 1 and its derivatives
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A = 12 2 \" 2 3, . '3
PMul = (A=A A0 (A= AT Agd + A8 (M- A)Aqga T

+Aa4+2x 3‘|P"'[u]+P" u‘P' +P' ||+
2 TR -2y T 11 g9l + Py (9]

2 4 " n 1" 1 1" 1
(-t [Py eyl v Py bper] + 25 afle oo v

3 2 1" t n '
+at(A -2y tps (u) + Pyy [“1’“’1l *Fla 1“1"’1] *

" L 1 3 3 (1}
* Py [upepl * Py ool + fa-ap” |7y tu +

1t 1] [ ] L ] "t
+ Py l“1'¢1] + Pig l“1""1‘ + Py “’1]* Py, @l

" 1 [ 4 ¥ tl
Py l"’1'¢2“ o ta(A-Ry) ‘P4 [u)] + Pgy 1“1"’1 *

] 4 1 +
+ Py [ug:95] * Ppyy [“1"”1”’2] + Py [“’zll

" 1] "" 1

+atn-ap? [B ) + Py [1p@] * Pa AR

" - t [ ] +P 1 + P" ‘ +
+ Pyy (i8] * Pryy “1"’1""2] 21["1""2] 2 (%]

- |

soovw [Pgluy) ¢ Py (U221 * Ppp [up.e5) +

5 f 1 1]
v - Ay [P lug] + Py oy 93] * Pay ool *
+ P lu ' ]+Pi [u o) + P l‘tp”+ +

231 [Y1°%1°%2 12 1'% 12 19192

6
+ 8 tps [u) + Py fu),ep) + Pyy lu; 05} + Py [qul} o

g | = 1 ' -

+ad-2y) lpn (u;,8] + Pyy ["1’“” *
. 3 " = " ! = }
ta(A- Ay lpn lu,,ul # P11["1'“] F e ¥

2 1 - - 1 =} .
+ 87 - Ay) IPZI [u,8] + Py l“l'”r“] + Py [95:0]
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. 2 2 ‘ " = +P' t . ‘ L. .
(A=A [Py [ug8] + Pyyy [“1’”;’“] Pa1 ["1'“'
+ P (9,,8]) ¢ + o |Pg, [u,,8] + P, [u,,9,,8]] +
111983} ¢ oo +a® Py, [uy, 111 [91,%.8]|
+a®(A-np) [Py [u 8] + B, [u,9,8] +
a P 1Fa1 vy 211 My %y
: _ .
+ P111 [ul,sz,u] + Pul[fﬁl.‘f’z,u], + ...+
4 = = =
+a IP41 fu;,u] + Py,y [4,,9,,u] + Py [4’2,\1]} +L..0f
= LI
+P2[u] + (A—Al)Pz[u] + ...+
+ uj] + ' u '3
8Py, lug, Ul +8(A-2y) [Py fuy 81 + Py o8] + o s

+ g% {P% [u, ] + P, [wz,‘ﬁ]} +o 4 P[]+ 34.2)

Here use has been made of the properties of the funciion go'l and 2 through
combinatior in expression (33.11) of all the terms which are independent of u
and which are of the third or fourth order in A - 7‘1 and a . Furtber, due to
the first of equations (33.6) and (33.7) which hold for qoi and @y respectively,
the terms lnear in U and its derivatives with coefficients a () - A;) and gz
are omitted,

In the same manner as in Sect. 33, itsanbe shown that the terms which follow Py [u] for
small values of A- A;» & and U and its derivatives are small in corparison to
ch"ﬂ and that they consequentiy can be neglected. Next, the stationary values of the
remaining approximation of the energy «#re determined for constant values of &

Since this analysis proceeds completely parallel to Sect. 33, it will suffice here to
indicate the results. Again, the required stationary value appears to be a minimum,
while the uriquely determined function U for which this minimum is obtained can be
written

= _ 2 n ) t 3
U= a(A-a,) ¥, t 8 (A--A1)¢2+t_t¢3+... (34.3)
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Terms of the fourth and higher order in A-A, and 2 have no significance in this
expression. They yield a contribution to the minimum whose lowest order terms are

P AN . e ecdle omBen mashil a medambd -~
ot S sEveinih oraer, whils cubstituticn ¢f 124,9) in the neslactad tarma of (34 9) leada

to terms of the same order in (A - }‘1) and 2 . The functions ap'l' s P '2 , and ¥g
are, respectively, the solutions of the equations

= " [
P, 1881+ Py fuy, 8] + Py 9] +

1} 1 1
2P, [u) +P [qp N
2 7)Y 1171’71 ; -1 . =y
- 2.1.21“11 T11 [ul,t] = 0; T11 [ul,ul = 0.,(34.4)

= 1 ' '
Py, (8,81 + Py fu,8) + Py [u.epe] + Py loput)

1 t 1)
3P, [uy] + 2P, Iul.fPl] + Py logouy)
- 2T, ([u

(=]

" T, vy, L) =

Tyq |u1,\=11 =0. (34.5)

Py [0 61+ Pyy Juy, 8] + Pyyy 19,9508

4P4 [u1] + 2P21 [u1,¢2]

__._,..___,h,‘:[,z_[.‘q_---_'r11 (u,.8 = 0; Ty [ul.ﬁ] =0. (54.6)

A comparison of (34.6) with (27.13) reveals that the identity of the function ?y and
#@ for A, = 0 slso results in the identity of the funotions ¥ ; to the functions v @
which were introduced in Sect. 27,
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After introduction of the notations

2 "

]

"ne + 1 ] ] q"
Py ly) + Py, “1""1] + Pz[ 1]

"t [LR1}

Hn + ] . W 1] n
Py lug) + Py |u. %) + Py l¢1l = Py [”"1] =4,

" ] H ¢ ] "
Py lu) +Pyy [us® |+ Py !“1"’1' Pyl Gl

¢

t ] ! 1]
TP ffs = Ay

" Ul '

Py iu)} + Py, [u,.0 | + P, lul'q,:'l.] * Py I¢’ll *

<+

'1'1 ["1"’2] - P [‘p;‘"”'z] = A;' '
Py l“l'ﬁ'] + p;n ['“1”2].*' P l“i"’"l"’zl *
' \ (84.7)
4 ¥

-+

"
Pn {ul.fPZ] + P

+

Py [u]

+

' .
B, [¢2] = A

+

ft 4 ¥ .| 1t ,
Pylyl + Py [“1’“’1] * Poy [“1"71] * Pyy [ug, %] +

14 tt
Pin I“r"’l"’z] * Py l"l'“’z] * Py (] *

- Pu_l"’;"pa] - Py l“"zl A: '

<+

)] =
Py lugd + Pgy [u, %] + Pryluy, 40 = Ay,

t t L \
Pg ] + Py [“1"’1] * Pyylu Bl + Pypy ["&""’1"’2]'+
L] L ] 1] []
* Py lu), %) + Py ["’1'“’2] P [’4’2"”3] = Ag .

Pg [yl + Pyylu;,0p] + Pyy lu;, 4] + Ple] - P, (4] = A,

)
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the minimum of the approximation of (34.2) becomes
=A t 9 2 12 "t
Ph@ = (A=A Aa” + (A-a P AT+ (a-n B Ag R 4

4 Hl!z 3 I3
A PTA, A%+ Ag® ¢ (M- Mg’ +

9 ng 3 .13 ' 4
sa-ap?aga® e aap?ay e v agt s (aapaat s

2 ," 4 5 ' 5 6
(A=A A" + AR+ (A-A) AR + AL . (34.8)

In this expression terms of an order higher than six are consistently left out.

It appears from (34.7) and (34.8) that by inclusion of terrrs of the fifth order, it is
even poasible to improve (33.11) without the knowledge of the functions 4:'1' ) w'z and
¥g. Further, if A3 is equal i zero, the coefficients A5 and A6 are identical to
the quantities (27.5) and (27.18) introduced in Sect, 271, which successively govern
stability in the critical state if A3 as wellas A 4 are zero.

It requires no proof that the described process of improvement cun be continued by
writing the functions @ as

= 2" 2 ' 3 = =
a = E(A-Al) ¥y +a (A-Al)zpz + 8 :pa +u with T11 [ul.u] =0.

This manner yields for small values of A - A , and & apower series
for the staticnary value of (32.4). Of course in general nothing can be said about the
region of convergence of this series.

35. THE EQUILIBRIUM STATES

In this section the stationary values of PM(a) as functions of &  will be determined
in the case that 'ﬁl(a) is given by the expressions (33.11) and (34. 8) as a first and
second approximation respectively. The correspending values of a and the
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functions u (33.12) and u (34.3) yleld in that cage an approximation for the
displacements in the equiiibrium states. The analysis of the stability involves
Ulnmrdnn ne difflonltas  sinos exnmassione (23 11) and /24 8) ava hoth minimom
Now, if the stationary value of ?A(g) as a function of a, 18 again a minimum,
then the approximation of the energy (32.4) or (34, 2) aiso posgesses a minimum
with respect to varied functions u or u and simultaneously varied values of a. P
Equilibrium in the corresponding displacement configuration is then stable. In ;
reverse, the approximation of the onergy does not possess a minimum if the
stationary value of ﬁ}‘(g) is not a2 minimum, and in that case equilibrium is u.nstable.

T e et ot oWl S

For the derivation of a first approximation expressions (33.11) and (34. 8), representing
respectively the first and second approximation as proposed in Sect, 34, may be con-
siderably simplified. For this purpose it is noted that equilibrium in the fundamental
stata is siable for A < >‘1 s Bo that

A t
P2 [u} = P2 fu) + (x-xl) 1:'2 u] + ....%0
should hold. Because P2 [“1] = (0 it follows that

1
(A=A Pyl + ... 20,

This relation can be satlsﬂed for A<A only if the constant A é (33.10) is non positive.
The limiting case in which A is equal to zero does not occur in applications thus far
considered, so that in the following it is assumed that A is negative. For small
absolute values of A - A ; nd a all terms contamlng at least one factor A -A 1
are small in absolute value compared to the absolute value of the first term

(A-27y) - A;gz , and in a first approximation they may be neglected. Further,

among the terms which contain no factor of 7\ A , the term of the lowest order in a

is the dominant term. Let this term be A a (in which case the stability of the critical
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state 18 governed by the quantity An) . Then (33.11)and (34. 8) lead to the expres- : '
sion )

‘ . g 5"(&) = (A=A A‘zg.z + Angn . hE 3, (36.1)

A simple procedure for the construction of (35.1) can now be given. By use of ;
Chapter 2,stability of the critical state is analysed. The quantity An which governs ’
. stabllity appears in (35.1) as a coefficient of &n . Calculation of A; which coefficient :
I As given by (33.10),does not offer any difficulties. ’

The states of equilibrium are characterized by stationary values of (356.1), i.e., by

A
dP (@) _ ' n-1 _
—&= z(k-kl)Azg"'nAne =0. {85.2)

Stability is governed by the second derivative of (35.1)

di;;@l = 2(A-1)) A'z +n@ - 1)Angn'2. (85.3)
Equation (35.2) is satisfied by the sélution a = 0 in which case the functions =
and u become also zero. This solution ylelds the already known fundamental state.
y The second derivative (35.3) is positive for A<A1 and negative for A >A1 , 8o that
' equilibrium in the fundamental state is stai:}e or unstable depending on whether ) is
smaller or greater than A, (in agreement with what already was known). The other
solutions of (35.2) which determine the neiginouring states, should satisfy

A
N : n-2 — 2 2
v a = -z (a-2)) x—n . (35.4)
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By substitution in (35.3), it follows for the second derivative of ?A(;a) in these states
that

25 A \
- 2m-2(a-apa;. (85-5)

Consequently, a neighboring equlhbrium state is always stable for A SA 10 and
always unstable for A< 7\1

In a discussion of poasible neighboring statee of equilibrium, distinction must be made
between even and odd values of n and, in the latter case, between negative and posi-

tive values of An as well. For odd values of n,:"sn can alwzys be taken positive since,

according to (35.4) and (35, 5) an equilibrium value a corresponding to positive A n
corresponds to the same type of stability behavior as does -y in.a system with
negative An. Consequently (35. 4) possesses a real solution for both positive and

negative values of A - Xl. This is determined by

f n
13> (A- Al) (35.6)
n

-

and it follows from (35.5) that the equilibrium is stable for A >A 1 and unstable for
A<Ag

BIN

For gven values of n, (35.4) possesses real solutions only for negative or only for

positive values of A=2 1 depending on whether An is negative or positive respectively.

These solutions are determined by

1 1
. -2 1 y =2 1
A A L,
a= *(339 (g -2 and a = <%K§> (- ™2 @50
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& follows from (28.8) thot the anlutions firet mantianad corrasnond to unstable, the

last mentioned to siable equilibrium.

According to the considerations of Chapter 2, equilibrium in the critical state is unstable
if the governing quantity An corresponds to an odd value of n or if it is negative and
corresponds to an even value of n . Equilibrium is stable if the governing constant

An corresponds to a positive n and is even. Thse results obtained can be summarized
as follows. If equilibrium in the critical state is unstable, and stability is governed

by a quantity with odd subscript (A3 .A'5 etc.), neighboring states of equilibrium

exist for loads greater than as well as for loads smaller thun the bucklingload; the
equilibrium states for loads greater than the bucklingload are stable and those for

loads smaller than the bucklingload are unstable. If equilibrium in the critical state

is unstable and stability is governed by a quantity with even subscript (A 4'A6 etc.),
neighboring states of equilibrium exist but only for loads smaller than the buckling load;
these states are unstable, If equilibrium in the critical state is etable, in which case
stability is always governed by a quantity with even subscript, neighboring states of
equilibrium exist but only for loads greater than the buckling load; these states are

stable.

The relation between the parameter a , which represents a measure for the dis-
placement from the fundamental state and the load parameter A as given by equations
(36.6) and (35.7), can be represented in a dlagram. Fig. la gives the graph for a posi-
tive value of A3 (the graph for the negative value can be obtained from this by taking
its mirror image with respect to the A-axis). Fig. 1b and Fig. 1c respectively give
the diagrams belonging to the negative and positive value of A 4 in the case in which

A, = 0. Finally, Fig. 1d gives the diagram for the case in which A3 = A 4 =0 and

3
A_ is positive. In these graphs the stable states of equilibrium are represented by

B
heavy lines, the unstable equilibrium states by dotted lines. The boundary between
the area in which equilibrium must be stable and the area in which it must be unstable
is a curve obtained by equating to zero the expression (35.3). It is given by a dash-dot

line.

At the critical load equilibrium states exist which deviate from the fundamental state
in an infinitesimal sense and which are determined by (32. 2) for infinitesimal values
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of a. If this solution is conceived as an approximation valid for small but finite
values of a, it follows that its image in the diagram is given by the straight line
A=A It follows from (35.4) that this approximation determines the tangent to the
curve A versus a of the neighboring states of equilibrium at the point A = }‘1’ a=0
for n > 3. Inthese cases, already the first approximation leads to some insight
into the character of the neighboring states of equilibrium. However, for Ag » 0 the
method fails to describe the real behavior even approximately (see also Fig. 1a).

It is noted that for A3 =A 4= 0, the use of approximation (33.11) also leads to the
straight line A = 7\1 in the graph A versus a; for, in that case the derivative of
expression (33.11) with respect to a contains the factor. A - 7\1 . Consequently,

for a better insight in the real behaviour, it is necessary to consider the improved
approximation (34.8) or what amounts to the same, to continue the -analysis of the
critical state until a nonzero quantity An has been found.

The considerations in the foregoing are based on the simplified expression of P A(g)
(35.1). In principle, an improvement of the approximation can easily be obtained by
use of the unabbreviated expressions (33.11), (34.8) respectively. This is illustrated
by the application of the equilibrium condition to (33.11) for the cuse As £0

g_'rf (a)

- _ 1 9 .1 2
da 2(A-A1)A2§+2(A-A1) Aza_v.+3A3§ +

' 2 3
*3(A-A ) Aga” +4a” =0

In addition to the trivial fundamental state, the following solution exists
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. t
3A. +3{x -2V AL
3 : i° 3

a = - . +
2 W)
A '2 1 2 ot k :
N 9 3+(A-11)A3] i (A-2y) Ay +(A-1)7 A, _
smi' 284
1 !
3A A
3 3
=-=E 1+ A-A)T=+
eA, V&,
Al 2 | ALA A"A '
23 32, 27432 o _ . .2 02%
+ 1+().-A1)A3 o AW 5% * -2 -—_Az
3 3
A

The second root approaches -2—-—3 as A approaches Al ; this is not a small quantity

in the neighbourhood of the buckling load and it need, therefore, not be considered.

Expansionof the first root in terms of A - A, glves

1

t
2
A—a(k-hl) +

1o

§='-

3,2 "8A, "2T 3
3 Aq

'2
AA A ASA .
+<2 273 22 16 “+2 4-> (r-2 1)2 ... (35.8)

Terms of third and higher order can be omitted in this expansion because their contri-
butions to the expression (33.11) are at least of fifth order; such contributions are

already neglected in the improved approximation (34.8).




The stability o1 the equilibrium siaies deiermined by {(85.93) ars gasvorned by tha ganand

derivative of (23.11). Afier substitution of the value of & as given by (35.8), this _ l
derivative becomes ;

12
[N AJA
@5t ' w1684y 2
7 - 'ZAz““M)'(zAz"'s' A2 )““7‘1) '
a 3

it appears from (35.8) that approximation (35.6) determines the tangent to the curve
which for a neighbouring state of equilibrium represents tae relationship between A

and a . Further, it appears from (35.9) that for not too great values of | A - 1
the conclusiona concerning stability as deduced from (35.5) remain valid. Therefore,
the improvement leaves the character of the first approximation unaltered. In cases
for which A3 is equal to zero,corresponding conclugions hold. Consequently, the first
approximation following from (35.1) will at least suffice for a gualitative analysis of
elastic behaviour in the neighborhood of the buckling load. Such a restriction can also
be justified on another basis. As mentioned in Bect. 34, the region uf convergence is
unknown for the series expansion obtained for -f’)‘(g) through the successive approxima-
tion. Therefore, in general, the region of validity of the approximate solution cannot
be extended at will by use of a greater number of terms. Also, this improvement has
sigaificance only for a region of A values in the neighbourhood of the buckling load.
This region is different from case to case. As has been said above, in this neighbour-~
hood the behaviowr in the large is described by the first approximation.

36, SPECIAL CASES

The foregoing considerations were based on the assumption that Wy the solution of the
minimum problem (24.4) for the critical state, is positive. Here the changes will be
discussed which correspond to the case in which this condition is not satisfied; for the
time being w, is assumed to be positive,
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The general solution of the variational equation (24. 14) for neutral equilibrium is in
that case

T N I o Yo

u = gu, + bv1 . (36.1)

. ]

Here, for the sake of A more symmetrical notation ul® = vyis introduced, If (24.14) !
i

i

would possess a solution differing from (36.1), then it would always be possible to write
it as

u = au, + bvl +u with T11 [ul,u] = T11 [vl.u] =0, (36.2)

Substitution in (24.14) leads to the following conditions for u

P, k] = 0, T11 [ul,u] =T, [vl,ij = 0

identical to those of Sect. 32, the displacements in the analysis of equilibrium states
in the neighbourhood of the critical state are written in the form (36.2). Substitution
! in (32.1) gives, after use of the relations following from w 1=
l expansion and arrangement according to increasing order in u

‘s
i ' which for &= u contradict the assumption wg > 0. On the basis of considerations
|
i
|

Wy = 0 and after }

P u) = o2 (A-1) P, [w] + (r-2 %P, [u,] + | +
+ ab (A—Al) P'u [ul,vl] + (A~A1)2 Pll'1 [ul,vll + I +
' 2 1
+b (7&-7\1)P2 [vll +(A-A1) P, [v1] PR IR

! ] 2
t +a° [Py [w) + (A-A) Py [w) +...] +a% [P, tu.v] T

3
Py Tu;,v] +‘ +b ‘Ps vl * e f

+§4 P4[u1] +l +g.3b lPal [ul'vll +| +

E 917
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4 .
+b |1=‘1 [v,] * ... |+ +

11 1%y

+

tal(r-ap)P A) + (A=A Py fu,ul 4+

1 " —
+b | (A=A B [v, @]+ (A-a 2P [v 6] + l +

+a® | By, fu), 8 + (x-A) By [u,T + el

+§b|p a] "'(7""1) P111

+

111 [ullvli [ulpv]...ﬁ] + so e |
2! - ! al +
07| Py, v W1+ (A=A ) Py, v, 0] + .o, I +

3 - 2 -
+ a_. lP31 [ulou] + -o-l +_a blP211 [ulovltu] + ..

———
-+

+_§b2|P

+

- 3 _
121 [ul.v.l,u] + I + b lPsl lvl.u] + ...

—— ' —
+ . +P2[u]+(h-ll)P2[u] + ...+
+§|P12 lu,, 8} + ... | +b |P12 [v,Tl + ... | +

+...+P3[ﬁl + ... (36.3)

For the application of the equilibrium conditions, the stationary value of (36.3) will
firat be determined for constant values of a and b in a manner analogous to that of
Sect. 32. After that the stationary values of the functions so obtained f’A (a,b) will
be established with respect to a and b . In this process,omission of the terms
following P, (U] in (36.3) are justified in the same manner as in Sect.32. The ap-
proximation of the energy thus ohtained again appears to have one stationary value
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for constant values of & and b and this vaiue 18 at the same time a2 minimum. The
functions U for which this minimum is obtained aan he written in the form

L ' v, o2 2
© = a(A-R))@10 * D(A-2 )0y * 870y * 8Dy, + DTG, +
(36.4)

] ] .
where ¢ 10" Po1° P20 'Pl 1 and ¢02 are given respectively as the solutions of the
equations

i , 2P,
Py L8 8]l + Pyy [yl - 2T—[u—] Tyy [ug 81+

1
Pll {“l’vll

TET, v 1 by 81 =05 1y, (w8 = Ty, by @ =0,
Pi,la,,v]
"
ZP2 [v1] ]
“gr, ] T lpd =0 Ty W= T, Tl =0,
3P [u ]

P @, £l + Py fuutl - zT“[ﬁ“T TR

Poy [upv

]
o

1
1 _ -
- '—*‘F"TT g Mp#l =05 Ty fu@l = Ty, v, 0

[ WL

ERLRE W



R e e —

2P, [u,,v,]
—21 11 g [u,.E] +

2T2 lul] il ]

lvloc] = 0; Tll [ull-ﬁ] = Tll [Vlgu] =9 B

n fe 1 . D fn v £l .
- 1 - L R

2Py [8)0¥)]

T
2'1‘2 [v1]

11

e = e

Pyg lug.vy)

Pll (w,8] + le [Vl.“ - -W Tll [ul.rl +
3P, [v,]
" Tv Ty, v, 8 =0, Tyy fu @l = T v, @ = 0.  (36.5)

Here the contribution to (36.4) which are of the third and higher order in (A - 7\1),

i a2 and b have already been omitted since together with the contributions in (33.5),
they are of no significance in the present approximation, The derivation of equations
(36.5) is completely analogous to that in Sect. 272 and in Sect. 33, so that its execution
i _ can be omitted here. By comparison of the last three equations of (36, 5) with (27.33)

| it can be shown that the functions ¢(20)' ‘P(ll) and <p(°2) as defined in Sect. 272
agree with the functions introduced here, provided the condition (27.24) is satisfied.

x Also, the calculaticn of the approximate stationary value of '15*(5, b) is analogous

to the preceding analysis. If for brevity is introduced

' 3

- ' , ' ' ]
: Pig layvy) - Pu[“’lo"’oz] - Pn["or"’ul = Cig»
1 ] |
Py vyl - Py ["’or"’oz] = Coz
Pylugl - Py logg) = Cyor Py lupevyd - Py [8900%13] = C50 ¢ (36.6)
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P, [v1] - P, [¢02] = 004

Pig iupsvyl = Py 1919431 = Cy3»
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P, [u;] = Coy s Py [ugvy] = Cyys Py lvyl = Cpyp s

” [ 1 1] (1] [ 4 [] L] v (1]
By lu) - Py joyo] = Cog v Pyylupuvyd - Pyy 0160 89] = Cpp 0

"

Py Iv,] - P, I“’c'u] = Coz»

. (36. 6)
Py [u;] = Cga» Pyy luguvy] = Cyyh Py luy,myl = Cppy Py lvyl = Cogs
1 1 ) _ Cl
Pg lul - Py l"’m"i’zol = Cg9 »
1 1
Pyy (vl - Pyy [“’10""1'1] Fi1 [*’01"’20] 21 ] J
this approximation becomes
SA _ g 12
P7@,b) = (A-2)) (Cypa” + Cyjab + Coob) +
+ (A - Al) (C a +C ab+C b)+
3 2 2 3
* Cgga” + Cyra'b + Cy 8" + Cogb™ +
1 3 1 2 T 2 1 3
* (A1) (Cgpa” + Cypa'b + Cpoab™ + Coab7) +
+Cygat + Cypa’h + C, ab +C, ab3+c b4 (36.7)

40- 31

Terms of the fifth and higher order in A - A
even more so then in Sect. 33

10 2 and b are here insignificant,

From (36.6) it is seen that the terms of second order in a and b in (36.7), which
contain one factor A - A 1 and the terms of third order which do not contain a
factor A - A 1° depend exclusively on the eigenfunctions u, and vy Further, if
the conditions (27.24)
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are satisfied,then it follows that the fourth order terms in a and b of (36.7) are

identical to the form (27.37) which governs stability in the critical state.

The general case
w2=w3=-no=wh_1=0,wh>o

can be analyged in a similar manner, by use of

-2
1
-

u= ajuj+uwlth'r11[u,u]=o.j=1,2....h-1.

i
=1

[

In this case, the approximation corresponding to (36.7) can be written

Pl@) = a-a )P, @) + (A-2)? By ) + By ) +

I LEEWE RIS JCH

(36.9)

In this expression, f’; and f53 are completely determined by the h-1 eigenfunctions

u

)

h-1 h-1 h-1
- _ ! _ 1 )
1}‘2 (aj) = P2 z Byl =3 z Z 2,8 P11 [ug.ugl .,
a=1 a=] B:]_
h-1 h-1 h-1 bh-1
P = = -]L
P, @) = Py z aglg 5 Z z 84852y P 4y [ua,uB,u-y]
=] a=1 B=17v=1.
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For calculation of the remaining terms in (36.9), the solution is required of a set

of squations analogous to (36, 8). If {86.11) isidentically zars, which condition for
the present case corresponds to condition (27.24) for the case with wg > 0, then
P4(aj) will again be identical to the expression which governs the stability at the
stability limit, The form (36.10) can never assume a positive value because, in
analogy with Sect. 35, it would otherwise be possible to conclude that the fundamental

state can be unstable also for A < 7‘1 .

As a first approximatldn, in (36.9) the second and fourth terms are neglected in com-

parison to the first and third. Besides, if (36.11) is not identically zero, the last
term will be neglected in comparison to the third. In both cases the result is 1
Py = P, +P (a)
(aj_ = (A-A 1) P2 (aj) Pn (aj; . n=3o0orn-=4¢g (36. 12)
The stationary values of (36.12) are determined by the equations
A 8P, &P
|t Nl -
s, (Akﬁaﬁ-hmi—o,i 1,2,...h -1, (36. 13)
while the stability of the corresponding equilibrium state is governed by the form i
h-1 h-1 82§A h-1 h-1 azl—,é i
Z Z 8__8138. Aa1 Aaj = (A-A 1) 2 2 _—Baiaa Aa,iAaj +
{=1j=1 J i=1§=1 ]
h-1h-1 82'13
+ ———p—aai 5 ajAaiAaj . (36.14)
i=1j=1

103




T T T Weeme——

Although the solutions of (36.13) cannot be given as easily as those of (35.2), they do
admit some general conclusions. Tn tha first place (36.13) nosgasses tha anlution

a = 0 which yields the already known tundamental state. It follows from (36.14) that
the stability of this state is governed by the form

(A=A z z Aa Aaj = 2( A1) ]5'2 (Aaj) . (36.15)

Therefore, the fundamental state is stable for A<A 1° unstable for A>A
1
agreement with what was already known.

l,m

Furthermore, it appears from (36.13) that for n = 3, the existence of a solution a

for the load parameter A implies the existence of a solution - a; for the load param-
eter 2A1 -A. Thus, for n = 3 no neighhouring states of equilibrium exist at all or
neighbouring states exist for loads greater as well as for loads smaller than the criti-
cal load.

Multiplication of the 1th equation (36.13) by a and summation yields

h-1 =' h-1

8P, 8P
%% _ 5!
(A=2y Z 1 B8, +Z % a, ~ 2(A-2y) Py (ap *+
i=1

+ n1'>n (a (36.16)

y =

Here the case that (36.10) is semi uegative definite is disregarded; although it is in
principle not excluded, the stability decision for A < 7~. is then not sufficiently
substantiatcd by (36, 15)
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When n = 4 and 34 (aj) is positive definite, i.e., when equilibrium is stable in the :
critical state, (36.16) can only be satisfied for A > Ay therefore, in this case,
neighbouring states of equilibrium exist only for loads greater than the buckling load.

If the solution of (36, 13) is substituted for Aai then, after use of (36.16), (36.14)
becomes

h-1 h-1 25! h-1 h-1
%P &b
% _
(- 7‘1)2 z Ba, aa Z ba,0a, ady =
i=1j=1 i=1j=1

It

= 2(A-A1)F'2(aj) tn@m- 1P, @ -2(n-2)(>.-7t1)§'2(aj).

This expression is negative for A<A ;1 + Consequently, all possible neighbouring
states of equilibrium for loads smaller than the buckling load are unstable.

37. NATURE OF THE PROBLEMS DISCUSSED.

It was pointed out in Sect. 32 that the assumption of a possible Taylor expansion for
the displacement U(A) and its derivatives with respect to A - )\1 implies that the
fundamental state exists for loads greater than the buckling load. This fundamental
state approaches continuously the critical state as A approaches >‘1 . In addition
to the fundamental state in the neighbourhood of 7\1 other equilibrium states appear
to exist which approach the critical state as A approaches .\1 (See Sect. 35). The
state of buckling represents a so called bifurcation point of equilibrium; the
significunce of this term is illustrated for instance by the Fig, 1.

Now, the question arises whether under the assumption mentioned above all possi-
bilities are exhausted which occur in practice. This question must be answered in the
negative. There are structures with load systems for which no equilibrium states

exist which can be obtained by gradual increase of A in excess of a critical value A *
and which when A is monotonously decreased, pass continuously over into the original
fundamental state corresponding to A * (see [40]). If equilibrium states are considered
which vary continuously with A in the nsighbourhood of the ecritical value, j *
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reprasanta a mavimum of L pospibie A vaiues. Ina graph of a displacement

component v at a point in the body as a function of A ,this is generally indicated by

a horlzoniul tangent to the A versus v curve. The equilibrium state corresponding

to the critical value A * represents a so called snapping point. In particular, Biezeno
has analysed several snap-through problems ([41)).

A snapping point has in common with a bifurcation point that equilibrium is neutral
([40] ) and thus the snapping points can be determined by use of the conventional
theory of neutral equilibrium. If the solution of the minimum problem (22.5) is
positive for A <A* as A is gradually increased from zero to A*, i.e., if
equilibrium is stable for A < A*, then it follows that the state of equilibrium
determined by A* is at the stability limit; A* coincides with the parameter value
7‘1 for the buckling load. Likewise, the considerations given in Sect. 2 retain
their significance for the analysis of stability of the critical state. In summary
the stabillty theory given in Sect. 2 is generally valid; the theory discussed in
Sect. 3 dealing with states of equilibrium for loads in the neighbourhood of the

buclking load is essentially restricted to buckling loads corresponding to
bifurcation points,

38. EXTENSION OF THE THEORY.

It has been remarked more than once in the foregoing that the developed theory is
valid only for loads in the neighbourhood of the buckling load. However, in engineer-
ing,one cannot always be satisfied with this restriction. Consequently, for snime
important plate problems,several writers already have developed methods which yield
useful results considerably above the buckling load (see [468]). By introduction of
some simplifying assumptions, which all are satistied for these plate problems, the

methods mentioned above can be combined in an extension of the theory developed in
the foregoing.

The first assumption concerns the external loads; the direction and magnitude of these
loads are assumed to be known with respect to a rigid frameof reference. The energy
of the loadr is then linearly dependent on tha displacements (see Sect. 29).
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Further, the displacements in the fundamental state are supposed to be so small that
guantities of the second and higher order in these displacement, U(A), and its deriva- ’
tives may be neglected in comparison to quantities which are linearly dependent on

U() and its derivatives. A first consequence of this assumption is the linearization
of the equations of equilibrium for the fundamental state so that the displacements of

this state are proportional to the loads

1)
U = AU . (38.1)
In the increment of the elastic energy (29.4) corresponding to transition from the
fundamental state (38.1) to a neighbouring state U(A) + u, the terms whose integrands

are of an ¢rder higher than the first in the derivatives of U(A) can be neglected.
The total energy increment oni transition froma U(A) to U(A) +u then is

PMu) = v, (u] - Wy Tu) ¢ VO )+ V) [+

0 1 0
+Vp ] +Vy [ul +V, [u] . (38.2)

The sum of the terms linear in u must be equal to zero as the fundamental state is an

equilibrium state. Furthermore

VO =P?n[ul. m = 2,3, 4

0
m

and after use of (38.1)

fu] = AP;n fu], m = 2, 3.

BI—‘

Hence (38.2) becomes

Pl = PJlu) + AP, [u] + P [u] + AP ] <P M]. (8.3
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In this expreseion, as in Sect. 31.
Py [u] = Vj (u]

i8 positive definitu.

The fundamental state (38. 1) is uniquely detormined so that the buckling load will be
determined by the smallest value A 1 of the load parameter A for which the homo-
geneous variational equation (24.14) for neutral equilibrium

Pt = BY) (w81 + AP, fuE] =0 (38. 4)

possesses a non-zero solution,

This equation in general has non-zero solutions for a sequence of increasing A values
ApsA PRIRER [39], the so called eigensolutions. It is evident that the solution corre-
sponding to A 1 18 identical to the eigenfunctions u, of the minimum problem (31.1)
corresponding to the buckling load A 1° However, the remaining eigensolutions of
(38.4) can be correlated with the eigenfunctions Up s Ugy oo of the minimum prob-
lems (24.8) corresponding to the buckling load A 1° if

T, [v] = pg M . © (38.5)

This is always possible as Pg [ul is definite. The problems (24.8) in that case are
formulated

0 1
P, [u] +AP, [u]

Py (4]
{ (38. 6)
with the side conditions

0 — =
Pll [uj,u] =0, j=1,2... h-1
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The homogeneous variational equation (22.9) for the eigenfunctions uj then becomes
1 P +A.P =0
( "w) 11 [u)t] 1711 [up CI = ’

which, by the substitution of

W = ] - — (38-7)

becomes identical to (38.4) anc consequently has the same solutions. The sequences
ApsAgs Agy ovr and @, 0, wgs -+ are both monotonically increasing; this is
only possible if (38.7) is valid with identical subscripts on w and A

Wi 120 ] e . (38-8)

Thus the eigensolution of (38.4) corresponding to )'h must be identical to the eigen-
function w, corresponding to W, © 1

1This does not imply that the set of eigensolutions of (38.4) corresponding to positive
values of A are identical to the set of eigenfunctions (22.9). On the contrary,
eigensolutions of (38.4) correspending to possible negative values of A are also
represented in the eigenfunctions of (22.9)., In the subsequent considerations, nega-
tive values of A have as before bsen disregarded since these cases can easily
be reduced to those which are being treated by replacement of the unit load system
by one with opposite gign.
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Use of (38.5) also gives the advantage that a vector function u satisfying the
condition

P21 [uul =0 (38.9)

on account of (38.4), also satisfies the relation

L
P11 _[uj,u] = 0 {38.10)
and vice versa,

t
The integral l-"2 fu] can also assume negative values. If it is definite negative and
of a more simple form than Pg {u] , it is even more advantageous to set

T, [u] = - P'2 (u] . (38.11)

In that case the identity of the eigensolution which corresponds to A a and the eigen-
functions u of (22.9) can again be shown in analogy with the foregoing. Also, the
equivalence of the relations (38.9) and (38.10) remains unchanged.

For the analysis of the equilibrium states at loads in the neighbourhood of the buckling
load separation (32.3) has successfully been utilized. Again, if for the time being the
solution w, of the problem (38.6) is assumed to be positive, then to make also use
the usefulness of (32.3) is obvious for the analysis of equilibrium states at loads
further removed from the buckling load. Introduction of

- - 0 = .
u = au +u with P,y {ul,u] =0 (38.12)
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in (38.3) yields after expansion and rearrangement

Ar 21,0 ! 3 |50 '
P [u) = o [P tu) +ap, ()] + o [Bd 1wyl + ARy uy]

4,0 2 |50 = ! = 3 -
+a'P, ] +a |P21 [uy,u] +AP,, lul.u]I +a"Pgy [u,,u) +

0 - L —— o - ! -
+ PY ) + AP, @ +a [P, (W + 2P, [ul.ull +

— — t - - -
+ gngz [ul,u] + Pg [u] + APa [u] + gpga [ul,u] + Pg [u) .

(38.13)
In this expression use has already been made of (38.10) which follows from (38. 12).

With use of (38.12) it follows from (38.6) that
P ] +A.P, (6 zw,P? (@)
2 i~ 2 272 i
or with use of (38.8) that
0~ v - A 0~
P, [u] + AP, [u]z <1 —-x;>P2 [u] . (38.14)

Consequently, the left hand side of (38.14) is always positive for A<A 9

Now, if it is assumed finally that the displacements u from the fundamental state are
small, so that a and u are also small, then omission of terms which follow AP; [Q}
can be justified in the same manner ag in Sect. 32. The integrands of these terms are
either of the second order aud contain in that case one or more factors of 2 , or are
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in (38.3) yields after expansion and -earrangemncat

Np oy 2 ],0 ' 3 |0 -
PUlud = a® |P) tu) +any )]+ o® B 1) + AR g v

4.0 2
+aP,ul +a

0 - ' - 3 -
[P, tup @+ apy fuy @]+ o%Py, 1w+
+ PO [ +AP. [@ + 0 u ' u

P) (@] +AP, (@l +a [P, (w1 + 2P, () +

20 . =

0 — vo- 0
+a Pzz [usu] + Py [v] + 2P, [u] + aP

— 0 -
aP.q [ul.ul + P4 [u) .

(38.13)
In this expression use has already been made of (38.10) which follows from (38.12).

With use of (38. 12) it follows from (38.6) that
PO @] +A.P, (@ =zw, P (W)
2 172 2" 2 ’
or with use of (38. 8) that

P) (@) + AP, @]z <1 -:—2)9‘2’ [ . @38. 14)

Consequently, the left hrnd side of (38.14) is always positive for A<A 9

Now, if it is assumed finally that the displacements u from the fundamental state are
small, so taat a and u are also small, then omission of terms which follow AP; fu)
can be justified in the same manner as in Sect. 32. The integrands of these terms are
either of the second order and contain in that case one or more factors of a , or are
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P(l)] (u,t] +)\P11 (u, ) + t_iz P 1 [ul,t] + AP, [ul,C) +

. !
i 3P, (ull +3AP, [ull

0
——0. - P (U,.Cl|+
iPgy Uyl l
4P% (u,)
+ a3 |PS b1 - —4Lp% [u,c1= 0. (38. 18)
- 1
22E’2 lull
This equation should, together with the condition
o -—
Py, fu,ul = 0 (38.19)

determine the functions u . Indeed, the solution is uniquely determined for

AF# Ay h=1,2,3,,. . For, inview of (38.18) the difference between two solutions
should satisfy the homogeneous equation (38, 4) which only has a zero solution for

AH£A h* The solution is uniquely determined also for A=A 1° For the difference
between two solutions u' and u" condition (34.4) can be obtained from (38, 18) by
subtraction. It is true that this coadition admits u' - u'" = cu, but this solution

is incompatible with the condition (38.19) which holds for u' and u".

The circumstance that for A = }"h the functions u are already uniquely determined
by equation (38, 18) gives the impression that these functions are subjected to too
many requirements after addition of the condition (38.19). This is apparent indeed,
because by application of (38.18) with ¢ = u and of (38.4), it follows that

/ *
0~ v - _ _A 0 _
P11 [u,ull +7\P11 [u,u1] = (1 7\—1>P11 fu,ulj = 0

so that for A#A 1 condition (38.19) is implied by (38. 18).




of higher order in u and its derivatives so that their absolute velues are small i.i
comparison to the terms in the left hand side ol (33. 14) the strm pi witich is aiways
positive for A < A, . The approximation of the energy in that case becomes

A = 2]lp0 ' 3(..0 '
PMul = a?|Bd w1 + APy (u] |+ o3 |PY (w1 + AP} [ 1]+
4,0 2{50 — ' e ) =
+ a*B{u) + o®[P]; 10y T+ ARy, (u T1|+ oPG fuy 1
0,= fo—
+ Pz[u]+AP2[u] . (38. 15)
Equilibrium configurations are again characterised by stationary values of the energy.

Just as previously, the stationary values of (38, 15) are first determined for arbitrary
constant values of a . For this purpuse the increment of (38.15) is determined on

transition to a function u + n such that

1=~‘1’1 [u,n]=0. (38. 16)

A Aroq o 21o0 * 3.0
P%u +19) - PMu] = a% Py, [u ,n]+ 2Py [u,,n]j+ a"Pg, [u;,m] +

0 _— | — 0 |
+ Pu[u,n-]+AP11 [u,n] + Pz.[nl +AP, [n]. (38.17)

i For a stationary value of (38.15) it is required that the sum of the terms of (38. 17)
| .
' which are linear in n should be zero. This stationary value is always a minimum for {

A< 7\.2 as
0 rny1+ AP, 2

P, [N]+AP, 1] 20 . i

| The derivation of a variational equnrtion with kinematically possible functions ¢ which

are not subjected to restriction (38.16) is carriedout in exuctly the same manner as

before. The result is
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Far A =Ah h=23,... the homogeneous equation (38.4) corresponding to {18, 14)
has a solution which satisfies condition (38,19). In that case the nonhomogeneous
equation (38.18) does generally not have a solution, By restriction of the analysis to
A< ).2, which was done through the approximauon applied w (65.13), this singelarite
would be insignificant, except that in general it manifests itgelf by a rapid increase of

the solution u of (38.18) as A approaches A,. In that case this solutivn does not

9
satisfy the requirement of emallness. How this difficulty with the resiriction A < AZ
previously intr~rduced can be overcome, will be explainted later. For the time being,

the considerations will be restricted to values of A sufficiently far below A 2"

Because of the linearity of (38,18) and (38.19), their solution can be written in the
form

u = 2% e e} (38. 20)

1t is not possible here to express the dependency of (38.20) on A in a simpler way
because A appears also as a coefficient of the unknown functions u in (38.18). When
use is made of (38.18) for £ = u it follows for the minimum of (38.15) that

P @) = a®{Pd1uy) + AP, (w1 |+ 3PS tu,1 + A2, 1wy |+

4.0 7\] I ]
+§P4[u1] lacp2+a¢ AP2a¢2+a¢3
In the above expression terms of the fifth and higher order in a can be omitted since also

the u.*ms neglected in (2R8. 13) would yleld terms of th~ fifth order after substitution of
(38.20). By use of the identity following from (38. 4)

1 0
-7‘—1-1?2 [u

Py lu ] = L

= |
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For A= Ah h= 214, .., the homogeneous equation (38. 4) corresponding to (38. 18)

has a solution which galisfies condition (36,19). In that case the ncnhomogeneous

equation (38.18) doss generally not have a solution. Dy restriction of th» analysis to

A< >‘2 , which wag done through the approximaiion applied to (38.13), this singularity l
would he ingignificant, axcent that in ganaral it manifeats itaelf hy a ranid {norease of

In that case this solution does not

the solution u of (38.18) as A approaches Ay
; satisfy the requirement of smallness. How this difficulty with the restriction A < Az
“ previously introduced can be overcome, will be explainted later. For the time being,

the considerations will be restricted to values of A sufficiently far below 7\2.

Because of the linearity of (38, 18) and (38, 19), their solution can be written in the
form

1 = gzqoz"+ et (38. 20)

It is not possible here to express the dependency of (38.20) on A in a simpler way
because A appears also as a coefficient of the unknown functions u In (38.18). When i
use 1s made of (38.18) for ¢ = u it follows for the minimum of (38, 15) that

T)A(g.) = 2.2 Pg [ul] + AP'Z [u1] |+ _aang [u1} + AP; [u1] |+

* ﬁaP|uj—Pla¢2+a¢3lAP2[a¢2+a¢J]

In the above expression terms of the fifth and higher order in a can be omitted since also
the terms neglected in (38. 13) would yield terms of the fifth order after substitution of
(38.20). By use of the ideniily foilowing from (38. 4)
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and by introduction of the notation

0 ' t
Pg [ull = Ag; P3 [uli = Ag’ P?. [ull = A3I ]
\ (38.21)
o R 0 A _ ! @ _ A
Py o)) le"’z] AP[? |- a,
it follows for the minimum of (38. 15) that

Py =1 -3 )a%2 +(AY £ 2aaly e + AM gt (38.22)

@) 1]822 g tAAglR +A a. y

In view of (38.21) the terms of (38.22) up to and including the third order are already

completely determined by v, . Consequently, for cases in which a sufficiently accurate
approximation has been obtained with the inclusion of these terims already, the

solution of (38.18) and (38.19) is not nceded,

Possible equilibrium contigurations are determined by the values which yield stationary
values of (33.12) and the corresponding functions u . Since at constant values of a
expression (38.22) is a minimum of (38. 15), equilibrium is stable or unstable depending
on whether the stationary value corresponding to (38.22) is or is not a minimum,

It was previously mentioned that in general, the function u does not remain small
when A approaches A 9 The elimination of this difficulty will now be treated. For
this purpose it is remarked that the homogenised equation (38.18) for the case A=A 2
possesses the solution cu, . Thus, an obvious step seems to be the replacement of
(38.12) by

- = 0 =1 . pl = -
u = au; + a5, +d with P, lul,u] = P, fu,, ul = 0. (38. 23)

The case Wy = Wy = 0 , which so far has been disregarded, will at the same time be
treated. In this case A, =1, 80 that (38. 23) rather than (38. 12) should be used for
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values of A in the neighbourhood of >‘1 (see also Sect. 36). Substitution in (38, 3)
yields after expansion and rearrangement

PMl = af [Pg tuyl +AP, tut] + af [P w14 AP, ()] +
+ aglpg [ull +?\P;3 [ull‘ +
+ afazlpgl [ul,uzl + AP;l [ul,uZ] |+
+ a1"§ |sz luy, up] + }‘P'IZ [“1’“2]| +
+ ag IPg [u2] +7\P;3 ['12] l+

4 0 3

2 2
2y 4[“]”‘1231[“ 1Upl + 2,a,P

2 fugyupd +
3,0 4.0
+ alasz [ul,uZ] + 9.2P4 [u2] +
2 [0 = ' -
a; le1 [ul,u] + APZI [ul,u] |+
0 =~ ' -
+ a1a2| P111 [ul,uz,u] +7tP111 [ul,uz,u]l+

+a, |P21 [uz,u] + AP21 [u ,u} |+ alPsl ,u] +

o 0 Z -

1 b f

RPUMTRLL T S b 121 [uy, ugy ul

+ 2P0 [u,,u] + PO (@] + AP, (U] + (38. 24)
2Py [ug 2 9 :

Here use has been already made of the properties of the functions Uys Uy and u

0 - L0 - ! -
Pyy lupupl = Py lupup) = Pyy Iuyyul = Pyy fuy,u] =

0 o= oo o=
Pyy [ugrul = Pyy [ugul = 0.
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By analogy to the {oregoing in the case thal A < >\3, it is also possible to justify the

omission of the terms in (38. 24) which follow A P‘zlﬁ]. Also the determination of the

stationary value. which appears again to he unimme for 2 < ;_3 , Sptns nS now angies.

The functions u corresponding to the minimum are again sufficiently small only l
when M\ stays sufficiontly bolow fg Agaiu, for ihe minimum itself the functions u
do not contribute terms of lower order than the fourth in a, and fy . Hence, in
cases for which terms of the fourth order may be neglected,it is sufficient to know the

eigenfunctions uy and u, .

It need not be said that the difficulty which arises as A approaches A5 can be over-
come in the same manner by separation of the component of the third eigenfunction

in the displacement u from the fundamental state. Thus in principle, this method can
be extended to arbitrarily large values of A provided that the assumption concerning the
smallness of the displacements u remains satisfied. As A is increased very far in
excess of A;» a large number of eigenvalues hh will be passed. In that case,ihe
analysis becomes very complicated and will usually appear to he impractical unless

the approximation of the energy is sufficiently accurate even if the series expansion is
broken off after the third order terms.

=A
Once the approximate expansion of the energy P (aj) is available, the determination
of its stationary values does not contribute any new points of view beyond those pre-

sented InSect. 35 and 36. The stabllity analysis also proceeds entirely in agreement
with the conventional scheme.

Finally, it is noted that the first assumption introduced in this section regarding the
nature of the load system is unnecessarily sharply formulated. It is sufficient to
assume instead that the displacements U(A) remain so small that their influence on
the direction and magnitude of the load which is acting upon a body element may be
neglected. The increase of the load energy on transition from the fundamental state
UQ) to a neighboring state UQ) + u is then independent of UQ)

I

-Wu] -Wl [u] - W2[u] = ee. =

i

AW, [u] AW [ul - ... (38. 25)
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Accordingly, the terme —J\Wl'n ful , m z £ should be added to expression (38.3}.

ML o —cmlosmin mwannads thon in the anma mannar as alreadyv has been described.
A BO “ln‘:l’lb r&\lvv“\aw PO M s o m——— e === = - I
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The geometric form of a structure, the elastic properties of its material,and the
forces acting on it are never exactly known. Such a structure is made accessible to
analysis by design of a model which represents the structure as well as possible and
to this model the theory of elasticity is applied.

When the difference between the real structure and the idealized model are small and
when the displacements are so small that the classical theory of elasticity may be
applied, then the behaviour of the model yields a gond approximation of the elastic be-
haviour of the real structure; this approximation improves as Lhe differences hetween
real structure and niodel become smaller.

On the other hand, in the case that the displacements are not small enough that the
linear theory of elasticity can be applied, the model does not always yield 4 satisfactory
approximation of the elastic behaviour of the structure. It is true that the approxima-
tion improves when differences between structure and model decrease, but the small
differences which appear in reality mayhave a significant influence. This is clearly
illustrated by the example of the axially compressed bar. The model :sed here is the
true prismatic and homogeneous bar loaded by central axial compression. When the
load is not too far away from the buckling load of the model, a small deviation of the
axis at the real bar from the straight line or a small eccentricity of the loading will
cause considerable bending of the real bar, while the axis of the model bar will remain
straight under the given load.

The stability theory belongs essentially to the field of the non-linear theory of elasticity
and, therefore, it is necessary to take into congideration the influence of small deviations
between structure and model. The smaliness of the deviations makes it pogsible to omit
all terms except those which are linear in these.
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41. THE DEFORMATIONS

In the undeformed state a point P° of the structure is given by its coordinates x? with

respect to a rigid orthogonal frame of reierence. 1 When (his point 15 subjectedto e
displacement with components u, in the direction of the axes, the deformation in the
immediate neighbourhood of P° is described by the six components of deformations

(See (11.1)).

3
o .o <’5‘ui aui aui aui
'yij = ')in = 5_6 + —a—o + ——6 5—5 . (41-1)
X %X - 0xh Xy

Poiuts of the structure are mapped uniquely and reversibly into points of the corre-
sponding model if the coordinates of a point P2 of the real structure are written.

L2=x + o (41.2)

Here, X are the coordinates of the corresponding point P of the model. The geo-
metrical differences between structure and model are small when the functions uf are
small. In that case the requirement of reversibility of the mapping is always satisfied

because the functional determinant obeys

gi—————ax:xgxg) oy 1for h =
= : = =
(%)) %51 %) Oy * a;j. >0 (ahj = Ofor b # j) (41.3)

and ia therefore always nonzero.

The description of the deformed state of the structure is given with xf

variables. It is also possible however, to introduce, by use of transformation (41.2),

as independent

1 The superscript 0, used here and in the following section to indicate the real structure,
should not be confused with the superscript used in Sect, 38.
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X, the coordinates used for the analysis of the model as independent variables. Itis
obvinus then that the comparison of elastic behaviour of structure and model will be

Ou,
considerably simplified. In view of (41.3) , ——;— can be solved from relations
*y
3 &u, 0x° 8 °\ 8u
= z —1 _..,fh_ = S-‘ + ____uh _i fi=1,2,3
°5x & \mtg )oo l=1.2,3
1 9% 0% pm Xy/ ©%,
For j = 1 {it follows that
0 0 o o
ox, 8% 9%, oxy ox, 9%
0 o o 0 o
i T L S B PRI
ox | 9% 0%, 0%, 0%, Ox, 0%,
0 0 0 o
R | I OO
T X oy D%y

or with terms of second and higher order disregarded in the derivatives of uﬁ

L
|.-.:Fo
I.“

HO

For j = 2 and j = 3 an analogou- result follows, so that in general

3 o
6 Ou, Su
. o z il il (41.4)
xj x et axJ th
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Substitution of (41. 4) in (41.1) yields, again after omission of terms of second and
higher order in the derivatives of uﬁ

= 'Yij + A'YU (41.5)

where the 'yij are the strain components (11.1) at a point P in the model which
corresponds {o a point P° in the structure, provided that the displacements of the
points in the structure and in model are eqyal; the A’yij are the differences in the
ptrain components caused by the differences in geometry between structure and model.

42, THE POTENTIAL ENERGY

The elastic potential of the model {8 a homogeneous quadratic function of the strain
quantities (11.1)

Ay = Tey 7112 (42.1)

where summation should be carried out over the six combinations of 1 and §j. It is
assumed thst the elastic potential of the real structure is also given by a homogeneous

quadratic function of the strain components which, now however, are determined by
(41. 5)

. 2

0 (o] o 2]

A (vﬁ) =z . (42.2)
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The coefficients cfj = ¢ + Acy, differ slightly from the coefficients of (42.1).
Expansion of (42.2) yields,if only linear quantities of the differences between structure

and mndal ava talran intn nooount

Ay
]

0 o\ _ , 2
K0 =z m® + 2mey v an, v Zae % = A + AL (42.9)

The total elastic energy of the structure is given by the iategral

/ [ / A% (") e

where integration is carried out over the volume of the structure. By use of (41.2)
this integral is transformed into an integral which extends over the volume of the model,

[ tiss sz - [ [0S e

Finally, by expansion and by omission of second and higher order terms
in the differences between structure and model, for the elastic energy it
follows

=///A(j)dx1dxdx+/ffAAdx1dx2dx3+
6u} Ouy Ouj ‘
+ A(yij) Eg+5_€+-—x_;> dxldxzdxa. (42.4)
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It is assumed that the load pX, dxldxzdx3 which is acting on a volume element at an

dmtnniAnw naint v nc #Ln -nnnrlnl nnw'nunnnr‘a tn o 1:\01‘ §AY 4 AlaY AL Av Av r‘v anting
adawdall el pet-4x8) L S U 1 By B aclting

at an interior point xi + ﬁxi of nthe structure. Let X+ Ax be the point in the
model corresponding to X+ Axi' . The quanttties Ax1 can be understood to be
eccentricities of the loads which are acting on the structure, in reference to the geora-
etry of the model. Likewise, it is assumed that the load pidf acting on a surface
element in the point X of the model corresponds to loads (pi + Api)df acting on the
surface of the structure. If the magnitude and direction of the loads are given with
respect to the rigid coordinate system, the potential energy of the loads for the struc-

ture 18 (see (29.7))

£ oxiny i - [[ B o
- Ifjiﬂp R |
3 3
- f f 1§1A('PX1) uy dx, dx,dxg - I iglAp‘ udf +

8 6!11 3 3, Ou
ﬂ 2 Z=) axyax axyaxg - || Tpy ]I__;la—‘;ijdf. (42.5)

The total energy is given by the sum of expression (42.4) and (42.5). All possible
deviations of the structure with respect to the model are here taken into account. In
the following, however, the differences of elasticity constants and magnitude of the
loads will be disregarded so that only the influence of the geometrical deviation and of
the eccentricity of the loads will be taken into consideration. The total energy in that

case is
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fj L oy 1y dny dxy sy - _”f &Py g dy Oy g - [fi:,pt“td“

((f - .23 o)
N RE S E ey B au’}‘l_idx‘dxzdxs '

3 3 Ou 3
- Jf I DY E‘1ijdx1dx2dx3 f E fa—Ax df . (42.6)

1=1 =1 77

The first three terms represent the energy of the model, the fourth term the energy
increase as a result of the geometrical deviations, and the last terms the energy
increase caused by the eccentricities of the loads. It is8 noted also that the integrand
of the fourth term as well as that of the first term is a polynomial in the derivatives
of u with terms of the second, third and fourth order. The integrands of the last
term, as well as those of the second and third term, depend linearly on the displace-
ments u, - For the following it is advantageous to write the geometric deviations
and the eccentricities in the form

o __0 _
u' o= evy Axi = eAyi- (42.7)

The last three integrals then have a factor ¢ in common. The quantities v;’ and
L\yi characterise the nature of the differences between structure and model. The
factor ¢ determines the magnitude of these differences and is accordingly named the

deviation parameter.

43. SIMPLIFICATION OF THE ENERGY

As in Chapter 3 the loading is assumed to be given as a product of a unit load system
and a load parameter A. If the model possesses an equiiibrium configuration for a
certain value of A, then, for small differences between structure and model, it can
be expected that the structure possesses an equilibrium-configuration for the same
value of A with displacements which differ slightly from the equilibrium displacements




of the model. In the limiting case that the deviation parameter ¢ converges to zero,
the equilibrium states of the structure should of course approach those of the model.

Thus, ine structure shall in general possess an equilibrium state whose displacements
differ slightly from the displacements U(A) of the fundamental state of the model,

However, also, the neighboring states of equilibrium of the model, which exist for
loads in the neighkorhood of the buckling load, will correspond to equilibrium states of
the real structure whose displacements will differ suightly from the displacements of
the mode', and consequently, will differ slightly from the displacements U(A) of the
fundamental state of the model. It is,therefore,appropriate for the analysis of all these

equilibrium sta{;es to write for the total displacements of the structure (at present
indicated by v )

v = URA) + u. (43.1)

After introduction of (43.1) in (42, 86), the integrands are expanded. Through a series
expansion in agreement with (22.1) the sum of the first three integrals, which together

represent the energy of the model corresponding to the displacements (43.1), are
found to be

PUM +uw = PUM) + PMu] + PY[u] + PAfu] + P}[u],  (43.2)

Here the dependency on the load parameter is expressed by use of the index A. In (42,6)

there are no integrals with integrands of an order higher than four in the displacements
and their derivatives. Therefore

P&[u] =0 for m >4 ; Pi[u] = P4[u]

1n the following, the subscripts i etc,, which indicate the components of the dis-
placements, are again discarded.
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should hold (see also Sect. 29). Besides, the fundamental state of the model ig an
equilibrium atata and thus (22 3) shaunid ho satiafiad

Ayl =
Py [u]= 0.

The remaining integrals of (42.6) are treated in an analogous manner. The result is
of the form

€Q(U(A) + u) = €Q(U(A) +

+efe}iul + @Yl + @} rul + @} ful} (43.9)

which, unlike (43.2), in general should contain the linear term in u , Q%[u] . This
term results partially from the fourth integral and partially froim the last two integrals
of (42. 6). The integrand of the first part is a linear polynomial of the derivatives of
the displacement u , whose coefficients all contain at least one of the derivatives of
U (A) as a factor; the integrand of the second part contains the factor A .

For small displacements u the term of the lowest order in (43.3) will be most signifi-

cant so that for a first approximation to the influence of the differences between struc-

ture and model it is sufficient to take only this term into account. The energy of the
structure then is

PAu] + €Q*[u] = PA[u] + P3[u] + P, [u] + €@} [u], (43.4)

wr.. "+ an unimportant contribution independent of u, and representing the energy corre-
sponding to the displacements U(A), has been disregarded.
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It is of course of particular importance to determine how the structure behaves at loads
in the neighborhood of the buckling load of the model. For this purpose, just as in
Sect. 32, the integrals occurring in (43. 4) will be expanded in terms of A - .\1

PA[ul +€QAu) = Pyfu} + (M- A Pfu] + (A-AD° Py [u +
oot Ps[u]+()‘-}‘1)p3'{u] A P4[u] +
+ ¢ Q1 fu + (A - )\1) Ql'[u] S P S (43. 5)

As in Chapter 3, the assumption of the existence of this expansion implies that only
stability problems can be treated, for which the critical state of the model conatitutes
a bifurcation point of equilibrium.

For the analysis of equilibrium configurations in the neighbourhood of the buckling load
in the case that the solution Wy for the critical state of problem (24. 4) 18 positive,

it was stated that!

u = zu +ﬁwithT1[u1,ﬁ]=0.

1
It is to be expected that also for the analysis of the structure this decomposition will

be useful. Introduction in (43. 5) after expansion and rearrangement (see also (32.4))
glves

1As confusion about the indices of the coordinate directions can be exciuded, the
indices for the eigenfunctions are again placed right below the symtol.
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PA [u] + EQX[u] = ae in [ul] + (A - Al) Ql'[ul] + ... i +

¢

' 211\ Y TR TN S B, |
a )w\ TuAg) Ep iUyl T (A = Ay) "2"1“1' + ... ; +

<+

933 Py ) + (A= M) Pylu) + ... z +atp, ) +

+

€ 3Q1 (@] + \A—)\l) Ql'[i‘l] PP g +

+

a

(A - I\l) Pll'[ul y )+ (A - Al)z Pll'.'[ul , T+ "“$ +

* §2§P21 [y o W+ (A= Ag) Poyluy 0 + .o }*

-+

B Py fu, ) ¢ P, (a] + (A -A) PJla] + ... +

<+

§P12[u1,ﬁl+....+P3[ﬁ]+...,+ P, (u] (43. 6)

In agreement with Sect. 32 the omission of the terms which follow leﬂ] is justified.
It follows that

Ph il + €@M = ge §Q fu) ¢ - Qlug + | v

+ g2 % (A=A Pylu) + (- Ap? Prlw) + ... } +

+ g,s;Pa[uI] + (A=A Prlugd ... z " §4P4[u1] +

+ € 3Q1 [@) + (A-,\l) Ql'[u] + §+

+a %(;\- Ap Pl 84 (A - PR ey T §+

+ 52§P21[u1 LT (A A Pylluy L T 2 +

+ 53 Py, lu, 86 + P, (@ . (43.7)
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Furthermore, it is noted alsc that the simplifylng assumption with regard to the nature
of the load system, as was introduced in Sect. 42, i3 not essential. For more general
load sysiems the increment in tne energy on iransition irom tie dispiacement coniigu~
ration U(A) to U()) + u can always be expanded in terms of A -~ 7‘1 . For that case
the terins to be added to (43.2 and 3) are of the same form as those already considered,
80 that the previous considerations do not undergo essential modifications.

44, CALCULATIONS OF THE FUNCTIONS u

The equilibrium configurations of the structure are determined from the stationary
values of the energy (43.7). This procedure {8 again applied in two steps. First,the
stationary values of (43.7) are determined for an arbitrary constant value of a . Next,
the stationary values of the function F)‘(g) thus obtained are determined.

The first step is carried out through calculation of the increment of (43.7) as the func-
tion @ is replaced by the functions u + 7 under the restriction

Tu[u1 o]l = 0 . (44.1
The result is

PA[u+nl +€QA[u+nl -P}‘iu] -eQA [ul =

=e| Qi+ (A-2) QY * ...+
+ a IU\ - a) Pyylugamd o+ (- 7\1)2Pu"[u1 , o+ ' +
+ 22|P21 lul.n] + (A - ;\1)P21'[u1 ]+ l+
+ 8% Pyl 0l + By M)+ Pylnl. (44.2)
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The condition for a stationary value of (43.7) requires that the terms in (44, 2) which are 1in-
ear in nshould be zero. The stationary value so determined muatbe a minimum because

P, [n] is always positive due to condition (44.1). In analogy to developments in Sect. 33,
the condition obtained by equating to zero all terms of (44.2) linear in 7 is made
equivalent to a set of differential equations and boundary conditions. This is done
through introduction of an arbitrary kinematioally possible function { which is not
reatricted by (44.1). The execution of this derivation does not offer any new difficul-
ties and the result may immediately be written down

u,}
Q ] - .2_'1_‘_[31_]_ 11(u1.§]+

oy L St
+€(A-A1)|Q1lt] 2'1‘ [u] [u l|+....+

2P'[u
+a(A-a) Py, E)- W T
+a(h-A2 | liieg, £) - ':%"[ﬁ;f:"ru R [
+ %|pg 00 :‘:’2‘% Tyylog 1)+
+ 52“‘"‘1"1’21'[“1"1 ;—;——[[Tuﬁ] [u, tl|+.... +
+ 2Py g, - :—:—:—Ei—]] T, B+ Py [, 2] = (44.3)

The functions u are uniquely determined Ly (44. 3) together with the requirement

Ty [ u} = 0. (44. 4)
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On account of the linearity of (44.3) and (44.4) this solution can be written in the form

G =€0y +C(A-Ay)og+ ooee + (A=A )q + (A - AP0

2 2 3
+....+§¢2+g(lvx1)¢2'+....+z_a¢3, (44.5)

in which ¢ '1 ,¢'1' ete. ?, .¢-'2 etc. and ¢g are the solutions of (33.6), (33.7) and
(33.8) respectively. The solutions ¢ o .cp:), etc.,are the solutions of the equations

- (t Q, {ull ! -
Pn[u.é'] + Ql ) - W T11[u1,t1= 0 ; Tn[ul.u] =0

'[ull

P, Tu,t]+ Q ]—El———'r fu, ,¢l=0: T..lu ,ul = 0 ete
11t p [ 2T 00,1 T11eE 7 05 Tyl .

(44.6)

By application of (44.3) for £ = u, the minimum of {43.7) is found to be

aefQu )+ (A2 QIw ]+ ... }+
. + g2 fa-apP Il + (A=A 2P0l ]+ ... b+
g & A Tty U L LI
3 4 -,
+ 2Pyl 1+ (A=A P u] + ... + a®P,fu ] - B, lal.
[N
By introduction of (44.5) and by use of the constants (33.10),this expression becomes
Fk(g) = (A —Al) A2"§2 + (A‘Al)z A'z' §2 + ieee + A3§3 +
+ (A =ay) "93 + + A a2ty +eaQlul +
1 Aa_ * e a0 4_ ¢+t s 00 pod 1 1
2.
+ea(r-1) {Ql’[ull - Pu[rpo,w]:]h vees = @@ Pleg @l -t
—e?p [9.1- (A -1) P, [0y, o] - (44.7)
2°°0 17 711Y%70° 70 teer *
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Here, as in (33.11), the terms of higher order than the fourth in A - }‘1 and a are
disregarded. The terms independent of a have no influence on the derivatives of

F 7‘(8.) and can, therefore,be disregarded. The most important influence of the differ-
ence- between behavior of structure and model is represented in (44.7) by the first
term with factor ¢ . Unless Q1 [u1] is zero for all possible kinds of geometrical
deviations and eccentricities, which case will not be considered in the following, it is
sufficient a8 a first approximation of this influence to take into account only the first

term.

In analogy to Sect. 34 approximation (44.7) may be improved. This improvement is
again necessary when A3 as well as A 4 are zevo. No improved approximation of
the influence of the differences between structure and model will be derived here. The
energy of the structure is then given by (34.8} augmented by the correction term

ean [“1] =¢B

12 (44.8)

In (44.7) and in the second approximation ((34.8) augmented by (44.8)), the first term
is of duminant importance in comparison to all terms containing a factor A - 1
Further, the dominant term among those which do not contain a factor A - 1 OF€
i given by the one which is of the lowest order in a. Let this term be An gn ,
then F A(a) can be simplified to
FMa) = ¢ B '

A+ (A=) A)a ¢ Angn. (44.9)

1
(See also Sect. 35.)
45, THE EQUILIBRIUM CONFIGURATIONS

The equilibrium configurations are characterized by stationary values of the energy,
thus, on account of approximation (44.9) by

A
dF (@) -
A = = ‘ - ' n-1
fr(a) da EB1 + 2(A Al)Azg. + nAne_l

= 0. (45.1)
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Because F A(a) is the minimum of (43.7) for a constant value of a, the stability
requirement (;etermined by (45.1) will be satisfied if and only if the corresponding
staiionury vuiue of T k(t_t) is ailso 4 minimum. Toe decisive yuaniity sbout stabiiity
is,therefore,the second derivative of (44.9)

drie) _ di@)

da? da

= - ’ _ n-2
= 2(A Al) Az + n(n -1) Ang . (45.2)

It appears from (45.2) that ina A versus g diagram for the structure, the stable
combinations of A and a are separated from the unstable combinations by the same
line of partition holding for the model (see S8ect. 35). Consequently, an equilibrium
configuration of the structure which for € -~ 0 approaches an equilibrium configura-
tion of the model is stable or unstable depending on the stability of the model configura-
tion. Equilibrium of the structure is at the stability limit if the image point in the

A versus a diagram appears on the partition line. The third derivative of (44.9) is
nonzero, except inthe case that a = 0, Consequently, equilibrium at the stability
limit is unstable, except perhaps in the case a = 0, A = ll , and the above men-
tioned partition line must belong to the unstable regiou.

According to Sect. 35, A'z is always negative. B, may always be taken positive as
differences of opposite sign between structure and model are already represented by
negative values of ¢ . However, distinction must be made between odd and even
values of n, and in the latter case also between positive and negative values of An .
For odd values of n an equilibrium value of a corresponding to € and An is
equivalent to an equilibrium value of -a correspondingto -¢ and - An . Inview of
(45.2) the stability is also the same for the equivalent states su that it is sufficient in
this case to restrict the considerations to positive values of An . For even values of
n, it is sufficient to take into account only positive values of ¢ , since an equilibrium
value of a corresponding to € and an equilibrium value of -a corresponding to -€
exhibit the same type of stability. The treatment of (45.1) and (45.2) may consequently
be restricted to the following four cases
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a. n odd , An>0.€-> 0;

td
13

add An>0,£<0:
c. n even |, An<0,e>0:

d. n even , An >0,e>0.

For the cases a. to c. the equilibrium of the model is unstable in the critical state;
while in case d. it is stable.

451 Case a.

From (45.1) it follows that f )‘(s_t) is positive for values of a corresponding to the
fundamental and the neighboring states of the model

1
2(x-2,)A.) 272 |
a=0anda=-\—"7F""— (45.3
2 nA_
From (45.2) it follows that
-
>0 for & > ;) D=2
A - 2(A -2ay)A,
@) _ = |12
da 0 for a 2@ - 1) An (45.4)
< 0 for a

Consequently equation (45.1) can have at most two roots and those lie between values
of a determined by (45.3), For the values of a determined by (45.4), fA ()
reaches its minimum, The roots of (45.1) are real if the minimum of & @,
corresponding to a value of a determined by (45.4), is negative or equal to zero.
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|22~ 2y) 49 I"'Z
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This condition is satisfied if and only if
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n@ - ot A

[2( -2 ) Az'\“'l z B2 or

1 _n2 = n2
|A-A1| : i@ -y -2 21 A—;—' (eB, " (45.5)
)

The inequalities (45.5) determine two values A * and A ** such that equation (45.1)

has two real solutions for A < A * <A 1 and A>A **>A,;, For A=A* and A =)**
it has a real double root and for A* < A <A** it has no real roots. Inthe A versus
a graph the equilibrium states which exist for A £ A * and A z A ** form two separate
branches which for A =A* and A =A ** have a maximum and a minimum respectively.
These branches both consist of one part that approaches the fundamental state of the
model and a part that approaches the neighboring states of the model when € —~ 0 (see
also Fig. 3a, page 93),

From (45.2) and from use of (45.4), it follows that equilibrium is stable in the state

corresponding to the greatest value of a and unstable in the other state. Equilibrium
is at the stability limit for A =A* and A = A**,
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Of particular interest is the equilibrium configuration which, for loads below the
buckling load, approaches the fundamental state of the model when € — 0. This state,
the so~-called natural state, will be obtained from the undeformed state by gradual in-
crease of the load parameter A . As for A<A* both equilibrium values of a are
negative. It follows that the greatest of these equilibrium values corresponds to the
natural state which is stable for A <A*, For A =A* the stability limit is reached
and A% determines the huckling load of the structure. This buckling load is8 lower
than that of the model. It follows from (45.5) that

1

n-1 1
B - —
L, nl, (45. 6)

1 n(n - 2)An
- Bl

@
de

8o that in a graph of the buckling load of the structure as ‘a function of the deviation
parameter ¢ , the tangent inthe point € = 0, A* = }‘1 coincides with the A * axis

(Fig. 2). -
A

Al

FIG, 2

Consequently, for a small but finite value of €, 1i.e.,for small differences between
structure and model, the buckling load of the structure may lie considerably below
that of the modei. This decrease is mainly governed by the exponent of ¢ in (45.86);
it is more pronounced the smaller n is.
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452, Case b.(n odd, An > 0,¢€ < 0)

From (45.1) it follows that fi‘(g.) i8 negative for values of 2 corresponding to the
fundamental state and the neighboring state of the model (45.3). Inthis case (45.4)
also holds. There are consequently always two equilibrium values of a which are
separated by the equilibrium values of the model (45.3). The state corresponding to
the largest value of a is always stable, the other unstable. Also in this case, the

A versus a diagram consiats of two separate branches, of which one is now com-
pletely stable, the other completely unstable. Both branches consist again of one part
that approaches the fundamental state and one part that approaches the neighboring
state of the model when € - 0 (see also Fig. 3b, page 145).

The natural equilibrium state, which for A< A] approaches the fundamental state of
of the model as ¢ approaches zero, corresponds to the largest value of 2a

and lies consequently on the stable branch, Therefore, as the load parameter A is
gradunally increased the buckling load of the model will be passed without occurrence
of buckling.

4583. Case c.(n even, An <0, e<0)

For 7\>h1. (45.2) is always negative. As fx(g.) is positive for a = 0, equation
(45.1) has one real root; the corresponding equilibrium state is unatable.

For A<A, it follows from (45.1) that £'(a) is positive for

- t
n2__2(}‘ }\I)A2
nAn

©
]
<
=%
=
S
-]
J
|

45.7)

which correspond to the fundamental and neighboring states of the model. It follows
from (45. 2) that

ar@)

e

- 1
2(A-2,) A

n-2
" n@m - 1) Ap (45.8)

0 for a~

Altv
VviA
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Consequently. eaquation (45. 1) alwavs has one positive root for which the corresponding

state of equilibrium {s unstable. This root is greater than the positive value of a for : l
the neighboring equilibrium stats of thc modsl as determined by (45 7). L

N

Moreover, equation (45.1) can also have two negative roots which lie between

1
n-2
and a = 0, {45.9)

2(A~-A) A
a=_\_ 2y 4
- n

A necessary and sufficieut condition for the existence of these roots is that the mini-
mum of ng). which lies between the values given in (46.9) and which is obtained for
! values of a determined by (45.8) is negative or zero

A
A 2( A-ap)Af) 2
Minf(g)=€Bl —2(A—A1)A2' W +
n
1
2(A-A)Ar] 22
—nA -——l—A-g- =
n|-n{n - 1) 0
-l | 1 1 1

eBl - |2( A- 7\1) A2'| mn ) nTz(n- 1) n-2(1:1- 2) (-An)-n_zs 0.




This condition is satisfied if and only if

-2
ll)lx_\ VA n-1 (_n -__2)n e = teR \n"2
2422y a-1 T €B))
n{n - 1) (-An)-
or
1
1 n-2 —
L o1 i AT B2
A-Ay s -3gn @ -1 - 2) —'_—A-g-— (eBl) (45.10)

The inequalities (45.10) determine a value A * such that equation (45.1) has one posi-
tive root for A > A* » one positive and two negative roots for A < 7\* . For A= A
the twc negative roots coincide. Inthe A versus a graph the positive and negative
equilibrium values of a form two separate branches. The branch for negative a values
has 2 maximum of A for A = A' . Beth branches consist again of one part which
approaches the fundamental state and one part which approaches the neighboring state
of the model as ¢ -~ 0 . (See also Fig. 3c, page 145).

From (45, 2) it follows, after use of (45,8), that the smallest negative root determines

an unstable state of equilibrium, and the largest negative root a stable state of equilibrium.
For A =A* equilibrium is at the stability limit. The natural equillbrium staie is in this
case determined by the largest negative value of a. This configuration is stable A <A*;
for A = A* the stability limit is reached and thus the buckling load of the structure is
determined by A*. This buckling load is again lower than that of the model, In analogy

to (45.6) it follows from (45, 10) that

1
1, nl (45,11)

[}
[}
DO | =

[-n(n -2)A
1
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For (45.11) the same conclusions can be drawn as was done in the discussion of (45.6);
in particular fig. 2 holds also in this case.

454, Case d.(n even, An >0, € > 0

For A< A 1 (45.2) is always positive. Since f)’(g) is always positive for a = 0,
equation (45.1) possesses one real negative root; the corresponding state of equilibrium
is always stable.

.
It follows from (46.1) that for X > A ,{(a) is always positive. It follows from (45. 2)
that, for values of a (45. 7) which correspond to the fundamental and neighboring equi-
librium state of the model,

A _ 2(AA)A,)
%ﬁ(ﬂ 3 0 for g.n 2 g - a '(-n_—i')—xz- (45.12)
= n

Consequently, cquation (45.1) always has a negative root which corresponds to a stable
equilibrium configuration.

Besides, equation (45.1) can also have two positive roots falling between

1
2( A-A 1) A2' n-2
a=290 and a =|- nAn (45.13)

The minimum of ng.) which lies between the values of a indicated in (45,13) corre-
sponds to positive values of a as determined by (46.12).

It is necessary and sufficient for the existence of the two positive roots that this mini-

mum of f>‘(§) is negative or equal to zero. In analogy with the foregoing case this re~
quirement leads to the condition
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Inequality (45.14) determines a value A *¥ guch that equation (40.1) has oniy one nega-
tive root for A <A ** , one negative and two positive roots for A> A **, For

A= A** the positive roots coincide. Inthe A versus a graph the positive and nega-
tive equilibrium values of a form two separate branches, The positive branch
has a minimum for A =A ** . Also in this case both branches consist of one part
which approaches the fundamental state and one part which approaches the neighboring
state of the model when € — 0 (see also Fig. 3d, page 145).

It follows from (45. 2) that the largest positive root determines a stable state of equi-
librium, the smallest positive root determines an unstable state of equilibrium; for
A = A ** equilibrium is at the stability limit.

The natural equilibrium configuration in this case is determined by the negative root

of (45.1) and lies therefore on the stable branch. Consequently, by gradual increase

of the load parameter A the buckling load of the model will be passed without the ocour-
rence of buckling.

455. Conclusions
The results obtained in the foregoing may briefly be summarized as follows.

For the model the A versus a graph has two branches which intersect at A = ) 1°'
the fundamental state and the neighboring states. Small deviations of the structure
from the model cause these branches to decompose in two completely separated
branches. Both branches consist of one part which yields the fundamental state of the
model and one part which ylelds a neighboring state of the model when the dew{iations
approach zero. One of these branches represents the so-called natural equilibrium
state of the structure which, on gradual increase of the load, is obtained from the
undeformed state. The following considerations are restricted to this most important
natural branch.
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1t ermiliheium is unstable at the critical point, and the stability is governed by 2
a quantity with odd subscript (AS’ A5, etc.), then, for positive values of the
devialion parameter ¢ , the buckling load of the atructure is considerably smaller E
than the buckling load of the model. This decrease of the buckling load i8 largar for 3
smaller values of n. On the other hand, for negative values of ¢ , a gradual in- *
crease of the load on the real structure does not result in puckling when the critical

load of the model is passed.

g,

When equilibrium of the model 18 unstable in the critical state and the stability is gov-

erned by a quantity with even subscript (A4, As, etc. ), for positive as well as negative
values of ¢ , buckling load of the structure is8 considerably below the buckling load of

the model. This decrease is again more significant for smaller values of n .

When equilibrium of the model is stable in the critical state, increase of the load on the
real structure does not result in bucklim; as the buckling load ot the model i8 passed.

Not only the magnitude of the buckling load is considerably influenced by deviation of

the structure from the model, but also the charact:.er of the buckling phenomenon in struc-
ture and model is completely different. While the buckling load of the model corre-
sponds to a bifurcation point of equilibrium, the buckling load of the structure as a
maximum corresponds to a snapping point, As themodel can be considered 2 spacial
case of the real strncture (the case that € = 0), it seems that the bucklinE problem
corresponding to a bifurcation point should be considered as a special case of the more
general problem of a snap buckling. 1

A posstible decrease in the buckling load caused by the presence of small deviations in
the case of an unstable critical state of the model is of great importance in engiceering.
The greatest. allowable load is determined by the buckling load of the structure for the
most unfavorable deviations between structure and model. The calculation of this

1Thm conjecture can generally be maintained if and only if in the case d (Sect. 454),
the minimum A** of A corresponding to the second but not natural branch of the

A versus a diagram is also called a snapping point.
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admissable allowable load is,therefore,only possible on the basgis of an analysis which
includes the existing differences between structure and model. Of course, the buckling
load of the structure can slso be determined expcrimentally. However, because of the
strong dependency of the buckling load on the magnitude of the deviations (see Fig. 2),
the rasults of these tests will show a rather great scatter,. so that a fairly large num-~
ber of tesis will be needed for & reliable determination of the buckling load which cor-
responds to ihe most unfavourable case, 1

456. Examples

Some typical examples of A versus a graphs are represented in Figs. 3a io 3d, for
the cases

respectively. In these figures, the curves indicating the model behavior are also
shown. The stable branches are, just as in Fig. 1, indicated by heavy lines;

the unstable branches by dotted lines. The boundary between the stable and unstable
combinations ¢f A and a are indicated by a dash-dotted line.

Of the curves, only the part in the neighborhood of A = )‘1 {s @rawn. Thia is motivated
by the fact that the results of this section are valid only in a more or less restricted
neighborhood of the buckling load of the model.

46. SPECIAL CASES.

The preceding considerations are based on the assumption that for the critical state of
the model the solution wy of the minimum problem (24. 4) is positive. The influence

lAlong with this it is yet once more stressed that all considerations are based on the
assumption that the elasticity limit is not exceeded anywhere in the material.
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of the deviations between structure and model on the minimum of the energy for a
constant value of a is then expressed by the addition of the term cBlg to the form
(85.2).

The case

g T W3 T e T,y =0, 0,20

can correspoudingly be treated when the displacement u is written as (see (36.8))

i
[y

w=) aju +i with Tu[u’,u]=0,1=1,2....h—1. (36.8)

ke
il
[

After introduction of this expression in (43. 5), the minimum of the energy is again
determined for constant values of a.j . This treatmont, which is a synthesis of the
considerations of SBect. 36 and Sect. 44, does not oifer new difficulties, so that the
expression for this minimum is immediately written

F'\(aj) =€Q, (@) + (A-A) Pya) + B @din=30rn=4. (61

The difference between structure and model is here expressed by the term

h-1
€Qq () =  2Q .
1

The equilibrium states are characterized by stationary values of (46.1), i.e., by the

A iTa) 0P, 08P
oF" _ 1 2 n o_
a_a.._i__e-a—aq +(A'A1)-éTi+—éa—i-—0. (46.2)
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The stability of the equilibrium configuration determined by (46.2) is governed by the

form

-1 h-~ - - —
hzl z1 )2 oA hl bl 25,
89,‘851j Ay Aaj =(2-2,) z z 98, aa AaiAaj +
=1 j= =1 j=1 )
h-1 h-1 a2 f,n
+ Aa, Aa (46.3)

In this case, the general analysis of the states of equilibrium leads to great difficulties
and will be omitted here. One special case will be discussed in Chapter 7.

47, EXTENSION OF THE THEORY

The theory developed in the foregoing, as well as the general theory of Chapter 3,is
restricted to a small neighborhood of the buckling load which differs from case to case.
This is,for instance,expressed by equation (45. 1) which for A = 0 -does not have the
golution a =0 corresponding to the fundamental state. Consequently, it is here of
importance also to extend the theory to loads further removed from the buckling load.

As well as in Sect. 38, the possibility for this exists if the displacements U(A) of the
fundamental state of the model are so small that quantities of the second and higher order
in U(\) and its derivatives may be neglected in comparison to quantities which are linear
in U(A) and its derivatives. Likewise, the displacements u from the fundamental

state U(A) should remain small, and it is assumed that magnitude and direction of

the loads are given with respect to a fixed coordinate system. By use of (38.3), (43.4)
can now be written

PMu] + € QMu] = Pylu] + APy [u] + Pg(u] + APy [u] + Pju] +eQ]Mul.
(47.1)
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In Sect. 43 it was remarked that Qi‘ [u] consists of one part containing A and one part
whose integrand is a linear polynomial of the derivatives of u with coefficients which
contain as a factor one or more derivatives of U(A) . In this latter part, only the co-
efficients which are linear in the derivatives of U(A) must now be taken into account.
After this, by use of (38.1),it follows that

Q') = AQ) [u]. (47.2)

Under the assumption that the solution w
again ig introduced

2 of the first problem (38.8) is positive,

= 1 o u] =
u au, + U with P11 [u1 , 1) 0. (47.3)
Introduction of (47.1) gives,after expansion and rearrangement,

PA[u] +e QA [u] =eA§Q1'[u1] + z_;zl P‘;[ull + APZ' [u1] +

+ f'al Py lu) + APy (u;] |+ ‘341’?1 [u

1 +erqlul +
2| po - = 3 po -
A BT R O B S A T

+ ﬂ’z [@) + AP,'(d] . (47. 4)

The.omission of the terms which follow hP'z (@] (see (3%.12)) may be motivated here for

A< 7‘2 in the same way as in Sect. 38.

States of equilibrium are characterized by stationary values of the energy. For a
constant value of a , (47.4) appears to have a minimum for A<A g This minimum
is obtained for the functions




where the first two terms form together the solution (38.20) of (38.18) and (38.19).
The last term 18 determined as the solution of

The derivation of these results, which is in compiete agreement with Sect. 38, are
omnitted here. The calculation of the minimum proceeds in the same manner as
in the foregoing. Through introduction of the notation

Q' l w] = B (47.7)

and by use of (38.21),it follows that

1

In this expression, just as in(38.22),terms of the fifth and higher order in a are
: neglected. Furthermore, among the terms which contain a factor ¢ only the term of
the lowsst order in a , the linear term, is taken into account.

The diificulties which successively arise when A approaches A 2 7\3. etc., are dealt
with in the same manner as in Sect. 38, s~ that it is not necessary to look into this
matter more closely. Also, the determination of the stationary values of (47. 8) and
the stability analysis of the corresponding equilibrium states meet no difficulties, so

that it is sufficient here to refer to Chapters 6 and 7 in which some applications will be
discussed.

:; . 149

(¢] Ql'[ull (o]
Pll [a,t] + APH'_ [@,6] +€r Ql' [t - 2p°2 o Pll [ul.tl =0;
1
pfl fu,, T = 0. (47. 6)

A _ _ A\ 0.2 o 3 A4 '
F%(a) = €ABa + <1 X )Azg. + (A5 + AA3') a” + A4g . (47.8)
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Chapter 5
SHELL STRUCTURES UNDER FINITE DISPLACEMENTS

51. SIMPLIFYING ASSUMPTIONS

The technical shell theory for infinitesimal displacement is usually based on the follow-
ing three approximations concerning the state of deformation and stress [35):

1. points which initially lie on the same normal to the undeformed middle
surface, remain after deformation on the corresponding normal to the
deformed middle surface;

2. change in distance between two such points may be neglected; 1

3. normal stresses on planes parallel to the middle surface may be neglected.

Although the assumptions of this theory are mutually contradictory for an isotropic
material, the results which are obtained for thin shells are in satisfactory agreement
with experience. Also,the more rigorous investigation of Love [368], in wkich the
results obtained from the assumptions mentioned above are considered to be a firat
approximation, confirms that at least for thin shells these contradictions are of no
practical significance.

In view of this experience gained in the analysis of infinitesimal deformations, it
seums justified *o base the shell theory for finite deformations on the same assump-
tions. Tmsltheory could be obtained by means of a slight extension of Love's analysis.
Nevertheless, vhen,in the following, preference i8 given to a different derivation,it has
mainly been done to avoid the assymmetry which was introduced by Love in the defini-
tion of the changes of curvature of the middie surface and which detracts from the

] lucidity of his results.

111: is true that Fldgge [35] does not mention this second assumption; however, he

makes use of it in calculating the deformations. )
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£2. NIFFERENTIAT. QFOMETHY OF SIRPACE

A surface i8 described by the coordinates X; With respect to a rigidly fixed rectangu-
lar coordinate system. The coordinates are functions of two parameters o« and f

X = X (a,B). (62.1)

For a line element on the surface [37]

d = Edo® + 2Fdad8 + GdB2, (52.2)

where E, F and G are the so-called quantities of the first order. 12

ax, \2 ox, ox ox\2
= A2 N (i =S 1 i g -p? N
E = A ‘Z(a«) \F =) 5a 5 G=B Z(M) (62.3)

The direction cosines of the normal of the surface with respect to the rigid coordinate
system are given by

‘8_)(1 ax.h 0 9
n = .sz (52.4)
VEG - F2

in which i, ] and h are the cyclic sequence of the coordinate axes. The positive
direction of the normal is determined by (52.4). The coordinate system formed by
the tangents to the parametor curves § = const. and & = const. in the direction
of increasing values a and g together with the positive normal is, in this sequence,
orientated in the same senae as the X, system.

1For these quantities the usual notation has been retained since confusion with the
elasticity constants E and G is excluded,

2Unlessl it is expiicitly stated differently, summation should always be carried out over
i=1to3,
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The curvature of the surface i8 completely described by (52.3) and by the so-called
dquantities of the second order

azxi y 8xi
L =z n -—-—2 = .-Z _— =
i sal o da

2
a :\:1 ~ 8|11 8:\:i _ Bni axi
M’Z“i 5abf - "L B P "'Za B
2
axi an, 8x‘
NQm ST lWm W ©2.5)

The radii of curvature through the targenta to the parameter curves # = const,
and ¢ = const. are determined by

QlZ

hl- = % ’ (52. 6)

1

» -RL' =
2
where R1 and R2 become positive or negative depending on whether the center of

curvature lies on the positive or negative part of the normal.

The formulas are considerably simplified if the parameter curves coincide with thc
lines of curvature sothat F = M = 0. It is assumed that thiz is the case for the

undeformed middle surface.

The following calculation of the strain components is most clearly demonstrated after
a set of unit vectors is introduced in the directions of the tangents to the lines of
curviature g8 = const. and o = const. and the positive normal to the surface. For
the cumponents of the two vectors first mentioned,it holds that

9 9
% , b = —aﬁﬁ, (52.7)

- L 1
& = A 1 =B
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while the components of the normal vector are given by the direction cosines o .
The orthogonality of these ventore 1= sx=rz555d Ly the reiations

Zaibt -0 Z bn, = 0 .Z na =0, (62.8)

The fact that the length of these vectors 18 equal to unity is expressed by the relation

Z 8 b2 ,z nf = 1. (62.9)

Each vector (consequently also the derivatives of the unit vectors) may be expressed
as a lirear relation in the three unit vectors so that for the components

8n; ap,
Ta \°F B 0 Py T by

such a derivation can be represented by

9P, op
.-._L= 1 ! ' 1 _ .n " "
Ba = MYt B * ving, gg o= Alay 4wy vy

For the constants A', A", u', u" aud ', v" with use of (52.8) and (52.9), it is

found that
- 8p op ap
1 Pt § v ol |
=>.ai 9 * 2‘% Ba ' 7 'Zni oa *
(62.10)
, ap; P o o
"’2“1'5;?' ZIBE ' o

Thus, for a further reduction it is necessary to know the scalar products (52.10) in
the cases that P =38, bi » By, In this way it follows from (52.9) that

oa, . oa
i . -1 -
zaiaa 0 .zai Y, 0 etc,
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Furthermore,

Oa ob o {1 &\
y . - AN o1 %%
z"i*&'"Z"tﬁ&L AL & da\B /"
D.. N [ ) '\2
1 9B\ Y% s
vl DX A DX

from which after use of ¥ = 0 it follows that

2
zb--a“* ab.__L_iza"t - .1 9A
1 oa 4 da 2AB g da B 8 °

In the same manner,

In addition
o 6n Ox, On
| N L A
2uza = 2hE - klEe se KA
ob, On On
4 i N _ B
AT RIOLE SEEE DX I EE TF «

Finally, a8 M = 0

8 an1 1 ax‘ an‘ )
zni'gp?-=- aiaé-:'Astéﬁ-'o’
ob an Ox, On

= --—-——--L —-x.’_' —
“i%l b 5a = 323 5o = 0
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For the derivatives of the unit vectors, then, it follows

L T B

Oa Oa,
1 _ 10A, . A %% 1 9B, 3
da "B RN OB A 82"t
an, b _
i _ 1 @A % _ 108 B
Oy A& L _ B, |
da " Rlat ' B8 R, )

Naturally, it is also possible to derive these relations from the well known general
formulas of Gauss and Weingarten [37] by means of the specialization F = M = 0,

53. THE DEFORMATIONS

In the undeformed stata, an arbitrary point P of the shell is defined by its projec-
tion Q on the middle surface with coordinates X and the distance z.from the
middle surface. The coordinates y, of P are then given by

PP,

R

where x, and n, are functions of the parameters o and #. The square of the
length of a line element d£ determined by the erdpoints P (w, g, z) =nd
§(a+da, g+ dp,z + dz) 1is given by
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Oy Oy o 2
a? =Z(3—1da + zp-de + é—y‘—dz) .

[ox.\? /fﬁ\zm ,
?-'\aa/ nEgd g “Z\a) (o +

On

ox, ox, 2 __1_2 2
+{E-6—B— +2z§43—3—i 226/3 }dﬁ +
\ [
. 0 ax Ox, 0O 0

T da” + {Eaﬁ 7 * =<§33’2 el % é‘?) +

2 an an 0ni
+ Eaa T 2dadg + Za n + zza-&- n ¢ 2dadz +

x1 ani

+ 237111 + ngb—ni 2d8dz . (53.1)

By use of the results of Sect. 52, (53.1) is simplified to

a = A2<l - ﬁz—>2dd2 + 32( - i‘—)z ap>

1 2

N
[N

(53.2)

During deformation,the material point Q of the middle surface undergoes displace-
ments w, in directions of the axis, so that the coordinates of this point in the deformed
state are.

If the direction cosines of the normal to the deformed middle surface are denoted by
n;, then, by use of the first two assumpiions, the coordinates of the material point P
in the deformed state are
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In the deformed state, ihe line element determined by the material points P(x,3,z) and
P(x + da, 8 + d8, z + dg) (whose length in the undeformed state i& given by (53.1),
{53.2) respectively) 1s then determined by

‘ox \: oxy Onl ont \2
a? = {Z(?’-;l—) + ZzEaxl -5-07+ 2 E(é::) }df +
foxt \2 ox 8 ooy \2
+ {E(T‘;l) + 2223— ;; e zz Z(_%._) }dﬁz +
9 9x; ox| Ox{ ony  _Ox Ony
vda 4 Zaa ZT'E_EW aa

2 an' ani
+ Zaa % 2dads . (63.3)

In this expression use has already been made of the relations

an =1 znr :':Z“' a_li=2n ax' —E am .
Oa ! oB iaa 163

which are valid also in the deformed state.

The direction cosines la » 4 8 ] 2 of the line element in the undeformed state are
defined with respect to the parameter curves B = const. and @ = const. and the
normal. They are given by

2
2 A 2
B 1 - e dB
R 2 _ < Rz) y2 . dz
] 3 ?
e ar’ B a2 4
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and it follows from (563.3) that

F ox\ 2 &x! On! ont\ 2 l
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|
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FE(&: DY i, IRV )

z L+
B? (1 - L #
RZ
oxy axi ( Sxi an; ox/ an" 2 On On
IR Y - - A 3333)”2%552“
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By comparison with (11.2) it follows that the strain components are given by

2z 3, .%%—{_; zzz(%%)

Y

2

2
+

()

1 +%a

(8x{)2 Zaxi On! o 6ni)2
A + 2 + z
1 +7ﬁﬁ = E ﬁ : E‘ .33-1 @.
B2(1 - &
R,
| axi axi ( 1 6_!1{ ox! én! 2 ani ani
| Y = taw e g Tg w) it
AB (1 -&\(1 - -
; R
| oy
E Yaz %y -yﬁz -0 (53.4)
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For thin shells, z is always very small and it is natural to expand expressions (63. 4)

in a series with increasing powers of z . When terms of the third and higher

order are omitted, the following expansior is obtained

= _ 2z 2
Yoo = Yago~ %Pyt R, Yoo ¥ 2 Paa ’
2z 2
= - + = 3
'YﬁB yﬁﬁo ZZpﬁB R2 ‘YBBO + z oﬁﬁ ’
Vou = Vypn - 28pgp * (= + 2Y Vg, * 20
op — ‘afo Pag " \E, " R, ) apo aB

in which the quantities
. 3
o
o1 (%
"aao -_AZZ(aa) - b

2
ax;

o - 2Zlm) -1
ox, Ox
o * A5 T B

represent the strain components of the middle surface.
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(63.5)

(63.8)
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The quantities

o o’

1 Y 1

faa = - 525 5a R,
p - . lzax;. an;_ 1

BB B2~ % R '

(63.7)

\ ] \ ]
ox) ony Ox, n )

2005 = - ﬁ'ﬁ(E'a? F LW

are closely connected to the changes of curvature of the middle surface. Therefore, in
what follows, they will be termed changes of curvature. In addition, for brevity the fol-
Inwing notations are introduced

on\?  , _ox om ox\?
eaa=${2(ﬁ}) +§I£3&'5§*;{£('&5‘)
PR P I L T . U
W = 12\ TR, LB Rgz a8
On] On! 8x On ox; on}
w (TR R (R RS TE R
ax ox!
+ .l.+.—1_+ 1 >Z—xl.i}
<Rf Rg R1R2 v %
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64. THE ELASTIC POTENTIAL

The determination of the deformations above was based on the first two assumptions
introduced in Sect. 51. The third assumption will now be used for the formulation of
the relation between stresses and deformation or, equivalently, for the construction
of the elastic potential. A prismatic volume element i8 considered, which is deter-
mined by the parameter values o, a+da, g, f+dB and the ordinates z and
and z +dz and with two surfaces in the deformed state parallel to the middle surface.
For equilibrium of this element, the requirement must be satisfied that during a
virtual change of the deformation, the increase of the deformation energy should be
equal to the work done by the tractions acting on the element, This requirement
should also be satisfied for virtual deformations that consist exclusively of changes
of length of the line elements perpendicular to the middle surface. During such
deformation, which is completely described by a variation of the deformation compo-~
nent 'yzz , the tractions do no work. Therefore,

OA
OA _ ., (54.1)
6')'22

must hold, where A is the elastic potential. 1 Application of this condition to (12. 3)
yields

- L
Yoz = " o1 Oaa t M) - (54.2)

The third assumption is,therefore,in general incompatible with the first two assumptions
(see (53. 4)). This contradiction will be further discussed in Sect. 55.

1 The symbol A representing the elastic potential has here a different meaning from
that in the preceding and in the following sections.
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By use of the first two assumptions it was found in Sect. 53 that yaz and Y, z are zero.
In view of this result and of the relation (54.2) which is required by the third assump-
tion. the slastic potcntial (12.5) becomes

G 2 m-1 (

__Gm _ ) 2
A=4(ml?1)3(yaa+%p) S 2= Yy Mg Tap ) | B4:3)

55. CONSEQUENCES OF THE ASSUMPTIONS INTRODUCED

From expressions (53.5) foi' the strain components, it is immediateiy clear that for
thin shells the third term is always very small in comparison to the first ones. It is
also to be expected that the fourth term which contains 22 as a factor is small as com-
pared to the second one. Therefore, these terms are often omitted. However, Flagge
[356) remarks that they cannot be deleted without interference with the logical structure
of the theory. This appears justified for the calculation of strain components by use of
the first two assumptions. However, for the formulation of the law of elasticity, use

is also made of the third assumption which is in general in contradiction with the first
two assumptions. This contradiction reduces the importance of Flﬁgge's argument.

To form a better founded opinion on this matter, one must study the significance of
the second and third assumptions which lead to the contradiction, The third assump-
tion states that axial stresses on planes parallel to the middle surface are small as
compared to axial stresses on planes perpendicular to the middle surface; it has
therefore a clear mechanical significunce.

On the other hand, the second assumption is based on the congideration that the relative
displacements in the direction of the normal to the middle surface are of the order of
magnitude of the product of the strain measure in that direction and the shell thickness.
Hence, in a mechanical sense there is no objection to the admission of displacements
of this order of magnitude; they are omitted only for simplification and because no
important influence can be expected from them. Nevertheless, in order to get some
insight in the order of magnitude of this influence, corrections are calculated which
should be imposed on the deformation components (53.4) if the second assumption were

162




SN T

not considered. Expressions (53.4) are herewith accepted as a first approximation.

ad cudil dha amdaw AF w

Th- order of magnitude of these correciions can ien e Goipaisa wiw the Srder of
magnitude of the third and fourth term of (63.5). If it should appear that these orders
of magnitude are the same, it would be consistent to neglect the third and fourth term

of (63.5).

If t is used to denote the change in distance to the middie surface, then the difference
in value between the coordinates of the endpoints of a line-element in the deformed
state is, as y'1 =xy+ (z + c)n.i

. axi an‘ an ot
o) =(gm ottt W) G

ax an 3n; ot ot
(“‘“aﬁ*za—” T')df**(ni*a?“i) dz .

Thus by use of the direction cosines la , !ﬁ » R z and of the identities

2 On!
Ly = E“iaa ~Zoz =Ly "Eniia"bi“’

the square of the ratio between the line-clements in deformed and undeformed state can

be written in the form
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The corrections to expression (53.4) are determined by the terms in (55. 1) that contain
t . The relative displacements ¢ are always very small so that terms of second and
higher order in ¢ may be neglected. Furthermore, the considerations are for the time
being restricted to small displacements of the middie surfnce. Tha anefficiants of -
may then be approximated by their corresponding values for the undeformed middle
surface. By use of (52.11) the corrections of the strain componenis ure obiained as

1 -2 1 171 2 2 2
R, B,
N TR WP W I o118t
R1 R2

and, if in these expressions z/R1 and z/R2 are neglected with respect to urity
it follows that

—3 - gi = - g,{ =

AYpo R, A%Yge R, ’ A% = 0
(65.2)

= .23 - 18 - Lof '
A'Yzz oz '’ A'chz Ade’ Ayﬁz BoB
Condition (54, 2) in the form

Av,, = == (v, *+ Vg,
bAA m-1‘Yao 'YﬁB '

which, in connection with the first approximation, may be considered a corrective
formula for Yoz * together with (55, 2) yields

8 1
e "2 1) Yoot Tae)
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orwith £t = 0 for z = 0, and with use of (63.5) as a first approximation for
Yoo 8nd 7B_B

1 ay e 1 2
£= g DYoot Ypo ! 2 T T - D PontRgglE P B53)
The corrections Ayaa and A‘Yﬁﬁ then are
= ——1'— .—z-. + 1 _z. + + )
Alaa™ - 1R1(7aao 'YBﬂo) “m - 1R1 z (Paa Ppﬁ) creny
( (55.4)

1 Z 1
A¥g= - IR;('YaaOHBBO) "m - 1ﬁz—zz(paa+ Pag) oo

/

Further, by use of the assumptions of small displacements,the order of magnitude of
the quantities 6,4 etc., are determined. From the general formulas of Weingarten
(37)

ox o
oo (FM - 6L) L + (L - Emg} '

da EG - F2
axi axi
_f?ﬂ ~ (FN - GM)B-E + (FM - EN)—>p-
o8 EG - F2
166




after introduction of primed symbols to denote the deformed state

2
< /am \ _ 1%+ m'® - ar'M'F
L\aa/ E'G' - Fz

2 2 2
_NE' + M'“G' - 2N'M'F'
EIGI F'

> (%

z ony Ony  L'm'g'+ N'ME' - (LN + MZ) F 55.5
aa aﬁ = E| G - F|2 * ( . )

The smallness of the displacements justifies the omission of the quadratic terms in the

changes of the fundamental quantities E' - E, eto., L' - L,etc. With F = M = 0,
it follows that

1 2 2 1 2 2
6ni L 6ni N
2 oa /  E! '2 /) &

On; On
0 Ly Ny o LNp
oz o8 _EM toM - Eef

Further, in view of (53. 6) and (53. 7) it follows that

. a2 - ne =
E'= A"Q1 + yaozo) » G = B7Q +yBBo ), F= AB'yaBo
- A2/ 1 _ n2fl o
L'= A <-§I+paa> , NN =B Gr2+ pBB) , M = ABp (65. 6)
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go that (55, 5) leads to the approximations

=

[ /an' \2 al o n
1 — & XL - 1 l
2' \Ba/ = A ;5 + Tfl'paa '_R'E 'yaaol
1 1
v 2
— 8n"
-, = plll., 2. _1
Z (\5-/%) =B &2 R, Pap 3 '8po
2 pA
1 1]
&n,0n
) —L—l = : . _1_. _]_-_ - 1
2 8003 -= AB (Rl + R2>Paﬁ R1R2 'Yaﬁo‘ (65.7)

The calculation of the remaining contributions from @aq etc., i8 carried out as follows:

] t
Ox%.0On, t 2
2 5ase " (Rt
1 ada 1 1 1
R, & T8 TRy, Ry <R2 +pBB>
8x.0n, 9x.6n,
1 1 1o X,0n,
il gl R —— = . —];. 1 f
o) (5 S30)- i - o e
2
t
ox 3
Lz(_!.) —_3...E'——3‘5—(1+ )
2 da) - 3F =3 Yawo )
R} Rj R}
ox, 2 z
3 z( 1) __a.G'=_3_13_1<1+ )
5 2\08) =2 2 \* ¥ Yape)
32 R2 R2
t ]
._1..+.l+. 1 iila_x_l-=—]-'—+_l.+ 1 F'=
(Rf R PRz oad3 \r? g3 Fif
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so that the result is given by

2 1
- = (P - ==Y ) o
P‘l ao Rl (57570}

oaa

2 - L
% =~ R, e " &, AR

1 1 i 1

The technical theory of shells is fcunded on the admissibility of omission of contribu-
tions to the strain components that are of the form (565.4). On comparing (53.5), (55.4)
and (566. 8) it thus appears to be pointless to take into account the third and fourth term
of (53.5); perhaps one exception should be made if ')& ao v Apo is small in compari-
a0 * Tﬁ:ﬁo s Ya,eo and Py + pBB is small in comparison to Py * pﬂp ’

Py g * Therefore, in general the omission of the third and fourth term in (53. 5) should

be accepted as a consequence of the schematization introduced, and hence

son to Ya

Yaa = Yago - 2%Paq *

Y8 = Ygpo ~ Z%Ppg

~
|

ap = Yapo = 2%Pap

(55.9)
The considerations that lead to the simplified expressions (55.9) hold strictly speaking
only for infinitesimal displacements of the middle surface. However, as long as there
is no reason to assume that for finite displacements the order of magnitude of the third
and fourth term of (53.5) is different from that of the neglected influence of the displace-
ment ¢, these expressions may also be applied for finite displacements.

By use of (55. 9) the elastic energy per unit surface of the undeformed middle-surface

can be obtained through integration of (54.3). The area of a surface element
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z =const. is given by the absolute value of the vector product of the vectors with

componenis Oy;/0a Gu and S7/8¢ ap , for which dueto Lagranga'a identity
- 2 2 '
o 0y 8y, 0% 0¥\  [0¥,8Y; O¥0¥5\  [9¥30y; 9y,0v, 2
J da 98 OB da % % %o * \@me o) ¥

2 2 2
By, oY, oy, v,
. 2(3:) S (797;’) ( 3‘:'@) dadg

s -5G) 555 3E) )

oy, oy axax ox,omn; on, on
1 9y s s W
Ba OB aa ap (Z aaaﬁ aaaa>”26 o= 0

so that for the area of the surface element it holds that

& = AB(l - zl) (1 -RZ;) dadg (55. 10)

Because quantiities of the form z/R1 Yaag * z/R1 Zpuqs €tC., are already neglected in
expreasions (£6.9), the factors. 1 - z./R1 and 1 - z/R.2 may be replaced by unity
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in (55.10). The elastic energy in a shell element of thickness h , bounded by the
uurmai pianes « = const., § = const., « + do = conet., J + dB = const,, then is

Gm 2
ABdadp ; dz ”'YMO + Vggo = 22 (Pog + Pog) +

(m - 1)

(1
'\‘Nlr

2
- 2 m l;! 1 [('Yaao - ZzPaa) (YGBO - ZZPﬁﬁ) - (Vdﬁo - 22%) “l

from which, after execution of the integration and division by ABdadB, for the elastic
energy per unit area of the undeformed middle surface is obtained

- _lg, _m 2_,m-1 .2
A = 400 22 | Mago™apo ) = 25— Vg o880 ~Yape | *

1 3 m 2 m-1.p 8P P2
+—1—2-Gh m -1 I(paa+ pBB) -2 ™ ("aa "BR-"ap )l . (65.11)

It appears from this result that the elastic energy is the sum of two terms of which the
first exclusively depends on the deformations in the middle surface and the second ex-
clusively depends on the changes of curvature of the middle surface, or more briefly,
that the elastic energy is the sum of the membrane and bending energies.

56. THE STRAIN - DISPLACEMENT FUNCTIONS

The components of strain (53.6) and the changes of curvature (53.7) can easily be

expressed in terms of the displacements w = x; - x .
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For clarity of the results, it appears worthwhile to express the vector component u
representing the displacement at a point of the middle surface in terms of the three
unit vectors ai , bi , I

i
1.

w = uai + Vbi + w"i; (56.1)

It will then be possible in the formulas for the strains to express the properties of the
middle surface exclusively in terms of the quantities A, B, Rl , R2 .

By use of formula's (52.7) and (62.11) it follows from (56.1) that

ox!
._a.._i'.=A<1 +.K%%.+.A_v_%__%v_1.>ai+

1 Ov u_ OA 1 8w u

+A<xa—a-—37)bﬁ‘*<7%a+‘ﬁ;) By
ax{:B 1?—?—- v .Q.:é +
YR B Jg  AB da /U
1dv u OB w 1 0w v
* B(1+’E"E+“&'Bb_a"1{—2)bi+3(f5? Rz)ni '
(66.2)
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80 that the strain components are

_p.u_0A1 ov zllﬂ.pzlla_w-zl OA
AB 88 A9a " *R Aoa ' R X oa “ 2R AB 55
y, =2(i8v, u 0B w\, 1 ﬂ2+<_312+.6_w2 +
BBo Bos " ABda "R, )" L2l\as 8 o8
: 2 2 2 2 2 2
' + u aB + v .a_B_ +L+L+2—u..a_B_Lﬂ+
A232 (60 Asz a Rg Rg AB 8a B 98
@ vy 0B 1 9u _ w1y, ,v1gw ,u OB w
E ‘2ﬁ‘é‘&§5ﬁ'znzn 3*213213&3 ey « By
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| ¢ A(Qudu Ovov owow) W¥+vPoaeB . uyv |
g AB\Bo 08  8a OB Ha OB a2p2 9P de R R,
S OAw v OBWw u 8Bl gy
f +ABaﬁR2+AB aR1+AB o A 62
+ L OALQOu v OB1 du__u 8A1dv |
‘ AB 98 B g8 ~ AB o« A ja B 68 B 68
‘i s+t lOw, v1dw _w 108u_w1dv
= R B R,Aga "E B38 R, a (56.3)




In these expressions the terms which are linear in u, v, and w agree with Love's
results for 261 . 2€2, and w' [36, 326].

For the calculaticn of the changes of curvatures of the middle surface, formula(52. 4)

and{52. 5) are used {eee aiso {37} ).

2
T . 1 Det(izﬁ_%_ aﬂ),
‘ i 6a2 VEG - F2 aaz da 0B
2 2
R JEG - F° 9%’ 8 ' 98
2 2
M=z n axl: ——L.-—Det<?_x_i_,?x_i a_x.i_>
laaap JEG - F2 PadB Sa 8P
from which, after use of (55. 8),it follows 1
, 1 5 <62x; ox  ox) ) ;
= -5 Det. ’ ’ - [
@ "% Jpe - F? da? ' §a ' B8 Ry
8% ox!  oOx!
P - __1_ 1 1 i i - __1_
BB 5 Det 2 R ’
B E'G' - F 93¢ Oa Op 2
A S (azx; ox a*-l)
P ey Y Det. * ’
@ =38 JE'G - P2 2ads Oa ' 08

By use of the relation following from (55. 8)
\/ 2 2
E'G' - F'“ = AB V(l 4 Yaao) (1 +‘VBB°) "YaBo .
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these expressions become

2.,
e L 1 D /?_i‘zi,a_’i,"’_"i\-_nl_
AP/ * Yomo) @ * -yﬂﬁo) " Vago \aa Oa 6/3/ 1°
Papo L 1 Det. az"i’ ‘9";',8”‘; L
AB VIt ) @ * Vg 'Vapoz 882 60 08/ R
] axl axl
paﬁ= 21 ) L 3 Det. __"1' —'l: "‘l
ABY ML+ 0 Y50~ a0 Sadp Oa O

After omission of Yaao * Yo and Yazﬁ o in comparison to unity, it finally follows
that

°x! o8x ox
Paa=—§— Det. 21 , i' i _T%" s
A’ da® ' Oa ~ O 1
2' 1 ]
Ppge L per, (O, 0% &) 1
T a3 \gg2 ' 6e ' o8 R, °
o8
2' 1
dXx X
Pag= ——, Det. [ —L, o W (56.4)
A°B 0283 8a OB

By means of (56.4) the changes of curvature are rationally expressed in the displace-
ments W o= x; - X . This is achieved through differentiation of (56.2). The deter-
minants in (56.4) take the simplest possible form if, after the differentiations have been
carried out, the fixed xi-system is chosen to coincide withthe a , b, n system,

so that

175

e e i ot ottt . A




!

D e s Tt

n=0,n=0,n8=1. (66.5)

The first row of the determinants (56. 4) is then given by the formulas

2

]

%% .0, 0%, 2 oA av _,a aw A%, 1 fea)?],
5o da 902 B 38 da R1 o Rf BZ 8p

2 (1L 8a o (A

¥ Vaa (B ag) Yoa (R1>’ 4

2.
. _Ava, oA 2 0au_ (18} v (paV |
8(!2 B ap aaz B 88 da 8a \B & BZ 8f

+ W A dA

BR.l J: B
2;
9°x! 2 2 2
__a,é_+a_w+2ﬁ;gu+u_q_<_¢>+xﬁ_§ﬁ_wﬁ_ 6.6)
302 R1 aaz R1 da da R1 B Rl o] Rf
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9_g=-§2§+u_a@a_v_1(a_3.) _VB(LQE)+
88 Ada” p92 " A Bba 38 ,2 \da 8 \A dn
L ¥B 8B
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92x' 2
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| 8adp = 9B ~ badp A 8ad ba " BB 8 " R B
|
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Here use has already been made of the identities

i
/ [ . .

9 (LoB) 06 (106A)  _AB _
da \A da 88 \B 98 RR ’

B8 (A\ 1 0A &8 (B)_ .1 OB 4
o8 31‘11225?'3'& R nlaa ’ (56.9) _

which resulted from (562.11) and of the identities

629,! ) azai azni’ ) azni
O0adB ~ O0adB' Oadp a9poQ ”

The second and third rows are the same for all three determinants (66.4) and are
determined by the formulas (56.2) respectively, if (66.5) is substituted. Thus, they {

18u, v OA w 10v u 0OA
A<1+KEE+K§7'§‘)' A<A33-A35§> -

B(% %% + -I%’-) (56.10)
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‘L'he changes of curvature for infinitesimal displacements follow from (56.4) and (58. 6) to
(56.10) after omission of second and third order terms in the displacements u, v, and w

|
!
|

. o =L 8w, 3 Pu, 1 9v 1 0Adw,
! we” 7 5.2 AR13-07 BRIB',a‘ 43 8o da
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-1 0w 1 8u 3 9v
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1 0 (1 1 9A w (1 . 2
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1 _6Bow __u O6A _v OB (56.11)
Ape 02 OB ABRIB‘B‘ ABR, Oa - ‘
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These expressions differ from Love's {36 art. 329] as follows

- ' /. ol D oa \ - o~ - — l
S K, = idu v YA w ), 19y,  u OB W
Pue = %1 R1|2\A6a+AB6[3 Rl)*BBﬁ*ABaa RZI’
ok =L |18u, v OA w 16v,  u 6B w
Rag = X2 R2{A6a+AB3—E'R +2<Baﬁ+ABaa'R2>'
oy =L | 16u 19y u OA v OB
Pap R, | B ~ Ada AB O ~ AB Ba |’

and as the displacements are assumed to be infinivesimal they can be written

Y, Y
P - K =_g(}.2.+_§@.

’
(74" 1 R1 2R1
Y Y
Pon - K, =220 , _BBo
BB 2 2R R
2 2
Y
_r . Jepo
Pug - R *
1
These differences are of no significance as the terms T’?‘ v » ete., were
y oo

omitted already in the expressions for the strains.

57. THE INFLUENCE OF SMALL DEVIATIONS

For applications of the theory developed in Chapter 4 to shell conatructions, it is
necessary to know the change of the elastic energy which results from small geometri-
cal deviations. It is assumed that the coordinates X of points of the middle surface
of the structural model are given as functions of the two parameters « and 38 such
that the lines 3 = const. and o = const. determine the lines of curvature of this
surface. The previous theory can then immediately be appiied to this model.
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An arbitrary surface can in general be obtained from a given surface if each point of
the latter surface is subjected to a displacement in the direction of its normal. It is
assumed that the niddle surface of the structure is derived in this manner from the
middic surface of the model by displacements w (,

B3 in the direction

~ Qs 1

normal

[&]
X, = Xx + wn.,
1 i ol

the middls surface of the structure is then also given by its coordinates x? as func-
tions of ¢ aund B. I it is assumed also that the shell thickness of structure and
model are equal, points on equal distances z from the middle surfaces of structure
and model, whose projections on the recpective middle surfaces are given by the

same values of o and f, can be regarded as corresponding points,

The square of a line element in the undeformed state of the model is given by (53. 2).

If the structure is regarded as a ""deformed' state of the model, the square of a ]ine
element of the structure can be written as

2 2
2
de° = (1 +W,M°)A2 <1 - {—) dd? +<1 +ym3,°)!32 (1 - Fz-) a® +
1 2

+ z«,a; AB (1 - -Rz—l) (1 - R"‘—g) dadf + dz* ; (57.1)

where Vaao etc., are the "strain components" (53.3), (53.4) in the point («, 8, z)
of the model for the displacements o, o, % in the direction of the unit vectors
corresponding to the middle surface of the model. After use of (55. 9),the "strain-
components' are writien

- o _ 0
Yoa = Yaao zzpo:a , etc. (67.2)
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0 0 :
T ined from expressions for v ete., derived in
Here Yoo * Pao 2TC obta o pre Yvao ' Paa )

Sect. 56 by setting u , v equal to zero and w = w

The square of a line element of the structure in the deformed state, which state is

characterized by the coordinates x; of the middle surface, is written as

\

2 2 2
2 - "V A% (1 - 2) ddf v VB2 (1 - &) d
P, ( R1> ARG Ry) T

* 2y AB ( - 'R%) (1 - ﬁz_z) dwdg + i (67.3)

in which 4' oo etc., are the "strain-components'” at a point ( @, g, z) of the model
for the "displacements"

The quantities w are here the real displacements that occur during deformation of the
structure. The "strain components" may againbe written as

f

1
Yoa~ Yaao ~ 2zpaa, ete. (67.4)

If the displacements u are also expressed in terms of the unit vectors which corre-
spond to the middle surface of the model

u, = ua, + vbi + wn, , (87.5)

] ]
then yaao , paa , etc., are gbtained from the expressions 7aao , paa , etc., of
Sect. 56 by replacement of u, v, w by u, v, w + W,
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The actual deformed state of the siructure is completely described by the ratio between

(57.3) and (57.1). To calenlate from thess ratios together wi

+h /11 N
- v ALAA Ao

LY e u-S BN
{11, 2}, the actial cowpu-

nents of strain along the three initially mutual orthogonal directions in the structure
(57.1) is reduced to

@+ 1,0 (1 +y R

2 2 2
df = +a 01 - LT - ] A? (1 - i) do? +
ps ) .

' Y. a0 2
Nl B -2 )4+ —aB___ 4 S 2
+ (1 +YﬁB )[ (1 Rz) B : +'YB,3° 1 -ﬁ]- do| +4dz° ,

From this formula it appears that the three directions

\ Y L0
B1 --2)dpg+—-2F _a (1-2lda=0, dz=0;
< -R;) 1+‘Y[3/3° Ry

o,
N
W
[~}
o
Q
4
o

z YOZBO z
daa = 0, B 1-—dﬁ+—4——A 1_R_d 0, (57.86)
< R2> 1 +%° ( 1> i

are mutually perpendicular. The smallness of the differences between structure and
model justifies the omission of quantities of second and higher order in ‘yg o ete

The direction cosines of the line element d&° with respect to the directions determined
by (57.6) are




e P——

P T ey e g——r——— g ¢ - e

 ————— % ~o——————————— e =~ —m

2 A? (1 - az—\ dd’
_ o \ "1/
Lo =0 +7,.0) 5 '
a®

w

i
<)
™
o

[

(67.7)

[
i

By use of (67.7) da, df, and dz are eliminated from (57.3). The result is, after
omission of quantities of second and higher order in 72 @’ etc.,

1 +'}’BB !

02
o s

+

o —

1 ""Vﬁﬁ

4 ' '

ag - L+ Vg - 9., © | g 02
o2 L 47,0  Yap %aB a
at aa

[}
Y,
‘aB
+ 2 s -7
[\ﬁl R T

For small deformations of the structure which slightly deviates from the model, the
quantities 7'a - etc,, are likewise small, Consequently, if quantities which are
quadratic in 'y'a o etc,, and in 'y‘; o °tc., are also neglected, the deformation
components of the structure with respect to the directions determined by (57.6) are

0o 0,0 2
]Razp"'!z‘

' o

- o _ ' o _ '
Yaa “Yaa “Yaa Y88 =Yg Y88 Yap “Yap “ap

Vag =Vgz= Yoz = 0. (57.8)
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By use of (57 2) and (57. #)

.,. n,: ' .’. v 24 - t . n (¢} N L - * e ey
- - - G T Lz - - Ui
au aao aao Hra Paa "ago ~4%Pga €€ . ’

The quanticies y' , etc., follow from the expressions for ¥ , etc.,

aao ' paa aao 'Paa
given in Sect. 56 by replacement of w by Y + w. Ip this procedure,terms of second
and higher order in L and its derivatives wﬂl again be omitted. The quantities ‘Y
za * ©tCs by replacement of u, v, w by

aao '’
o, 0, W, respectively, whereby terms:of the second order in w, and its derivatives

pza , etc., are obtained from ¥

are likewise disregarded. The following rule can be given for the determination of
* *

Yaao 1Pag etc.: replace w by W, tw in the expression for 'Yaao Waq ete., of

Sect. 66 and take into account only those terms in LA and its derivatives which are

linear in W, and which contain at least one of the displacements u, v, w or one of

their derivatives.

If 'Y?)zcx , etc., are disregarded in comparison to unity, the area of a surface element
z = const. is determined by (55.10). This omission is justified, as contributions of
the form v° oa + Vo a » etc., have already been omitted in the calculation of the strain
components. The elastic energy per unit ares of the structure or model is then without
modification given by (55.11), but with the modified strain components.
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Chapter &
APPLICATION TO BAR AND PLATE PROBLEMS

61, THE INCOMPRESSIBLE BAR (PROBLEM OF THE ELASTICA).

611. The Potential Energy.

The ends of a prismatic bar of length £ are supported in such a way that displace-
ments perpendicuiar to its axis may be excluded. It is clear that the straight unde-
formed state of the supposedly inccmpressible bar is always an equilibrium state if
the bar is loaded by compressive forces N acting on the centers of the endpoints;
this equilibrium state is called the fundamental state,

It is ussumed that points on the bar axis can only undergo displacements which lie in a
plane spanned by the beam axis and one of the principal axig of inertia of the crosa-
secition. Let x be the distance from a point P on the undeformed beam axis with
respect to one of the supports and let u and w be the displacements of this point in
the direction of the axis and in the direction normal to it respectively. The origin of
the rigid X system is fixed at the support x = 0 ; the X, axis coincides with the
bar axis, the Xg axis lies in the plane of bending of the bar. The coordinates of the
point P in the deformed state are

' ! !
1=x+u,x2=0,x = w,

x 3

so that the length of an element of the bar axis in the deformmed state, which initially
had a length dx, is givenby

o 5 o ()
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The incomnraaaihility of the har axia ig tharefore cymrogeed hw the oonditisy

A - amsnvas sh :
' ’
!: .

(2 + g—;“-) + (g-‘;c’!) =1, (61.1)

) 2
p=*[<1+g—:>9—‘;-g";"2-%]. (61.2)

In agreement with the classical Llending theory, the elastic energy of a bar element is
assumed to be proportional to the square of the curvaturc. The total elastic energy
then is

in which o represents the bending stiffness of the bar. The potential energy of the
axial loads N is, with compression, considered positive




After substitution of (61.2) the total potential energy V - W is expressed in terms
oi the displacements. These are however,related by the inhomogeneous condition

Substitution in (61, 2) glves

dw

dx2

\ 2
dw
- (%)

so that apart from a trivial constant, the total energy is given by

2

¢ [dw 2

dx® w2

V-W=s#a —’i——gdx+N 1-~<d—‘!) dx . (61.3)
dw X

When the quantities appearing here are made dimensionless by

[ 1

2
T 1a. A
x=§!,w=¢!,N=l——“‘2,V-W=EIP '

and if for brevity, differentiation with respect to is denoted by a dot, then (61.3)

1 1
"2
PA[Y = ‘/-}f——‘b—.—z-d§+21r21/\/l -yt (61. 4)
0 - ()
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Expansion of the integrands and omission of terms of higher than fourth order in the

derivatives of ¢ and of a trivial constant yields

P M= By 9]+ 2 (] *
1
Pz"[¢1=f(¢“2-r2w2)d£, |
o
1
P 4] f‘¢'2¢"2-%nzkw'4)d€ )
¢}

(61. 5)

It appears also from (61, 5) that the first variation of the energy is fdentically zero
for the straight configuration of the bar, in agreement with the above statement that

this state is always an equilibrium state.

612, The Buckling Load,

It follows from Sect, 31 that the buckling load is determined by the smallest value
of A for which the variational equation (24.14) is satisfied for an arbitrary kine-
matically admissible function ¢ that consequently vanishes at &= 0 and at & = 1

1
Pu7‘[¢,§] = 2/(¢"t" —WZAIP'G')dE =0,
[+]

Integration by parts yields

1 1 1

gyt | -2t +riavye| + 2/(¢"" +mlagtybdE = 0.

] o )
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As the function ¢ is arbitrary for 0 < £ < 1, § should satisfy the differential
equation

bt srlagt = 0. (61. 6)
The requirement thut ¢ is arbitrary at € = 0 andat & = i further yields
p** = 0 for ¢ = 0 and £= 1, (61.7)
while ths kinematic conditions at the supports lead to the requirement
Y = 0 for £ = 0and £= 1. (61, 8)
The general solution of (61.6) is
b= A+Bé+Ccosmd ME+ D sin nJX €.

The boundary conditions (61.7) and (61.8) admit a nonzero value for D only. This
value exists if and only if

n A= k. (k': 1, 2, ooo)i
and remains in that case undetermined. The smallest value of the load parameter
for which (61.6) (61.7) and (61.8) pcssess a nonzero solution is therefore A = 1 with
the corresponding eigenfunction

"JJI = ginné; (61, 9)

this function is normalized by iniroduction of the condition ¥, = 1 for ¢ = % The
coxresponding buckling load is the well know-y Euler load.
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In the series (61.5) no term of the third order cccurs so that P, [wl] as weil as

P, i ¥ss ¢} are zero. Consequently,the quantity which governs stability in the

critical state would be (see Sect, 25)

1

_ _ 2.2 12 .4\
Ay = Pyl = /<¢1 ¥ - am "1"’1)“‘

o

1

0

‘ 6
x5 /(sinzrr&coszw& - i—cos%r&)d& = %—2- .

As it is a positive quantity equilibrium at the buckling load is stable.

613, Equilibrium States for Loads in the Neighborhood of the Buckling Load.

It follows from (61.5) that

1
so that the constant A2

b -

1

P, [4] = -wzjﬁvzds,

is

=By ly] = -7

4

(o]

1
4
/coszw€d€ = - .’.72_
[0}

101

(61.10)

(61.11)




It follows then from (35.7) that the amplitude of the eigenfunction (61. 9) for loads in
the neighborhood of the buckling load is given by

[ 1,4

[ )

. 2 _ 2ve A _
g_i\/-zLWG\/A—-T;—:h T\[A 1. (61.12)

32

This result agrees with the approximate solution of von Mises [42] which was obtained
in a different way.

It appears from (61.10) that the displacements from the fundamental state grow very
rapidly as the load is increased. For a load which exceeds the buckling load only by
5% the largest deflection at the middle of the bar amounts to about 20% of the length
of the bar., Consequeontly, there is little sense in applylng the theory of Sect. 38 for
loads further removed from the buckling lead, Indeed, the present theory does not
yield improved results for greater loads, but the opposite will be the case. This
should not be surprising in the present case as for such loads and the corresponding
large displacements the sssumption of Sect, 38 noncerning the smallneas of displace-
ments is not in the least satisfied.

614, The Influence of a Small Eccentricity of the Load.

Up till now it was assumed that the resultant of the compressive forces in the end-
points act in the neutral axis of the cross-section. The influence of a small eccen-
tricity €l of the loading can be taken into account by application of two moments NeZ£

of opposit. sign on the ends of the bar in addition to the compressive loads N . These

moments are understood to be positive if in the absence of the compressive loads, the
curved bar axis turns its concave side towards the positive Xq direction, Let ¢ be
the rotation of a cross seciion of the bar, positive in the direction from the Xg- axis
towards the Xy- axis. The energy of the moments then is

Nel ‘(G)C =1 (G)E =0] .
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This energy should be added to the sum (61, 3) of the elastic energy and the energy of
the compressive loads. On account of the incompressibility of the bar axis, the

angle 8 is determined by

smm b B2 | pmn oinah
— - aiv pan d QIT 2y,
X

or after expansion

After devision by —é—% the total energy can be written as
PMy) + €@ ly] = @My + PN+ PRIV L, (61. 13)

in which P [$) and P (4] are determined by (61. 5) and

§=1
Ql"lwl = - 21r2w‘ . (61. 14)
§=0

In agreement with Chapter 4 only the linear influence of the eccentricity in the dis-
placements is taken into account.

For loads in the neighborhood of the buckling load for the centrally compressed bar,
the equilibrium states are détermined by the stationary values of (44.9). The coeffi-
cients A, and A'2 are given by (61.10) and (61.11) respectively. B, is determined

by

_ _ 2. B
B, = Qllwll = -2 A = 47 . (61. 15)
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For the problem under consideration it ic also of interest to know the equilibrium
states for loads which are considerably smaller than the buckling load of the centrally
compressed bar. For this purpose use is made of ¢ spression (47.8). In order to obtain
connection with equilibrium states of the centrally loaded bar as treated in Sect. 613.,
in expression (47. B) the coefficient A); is replaced by A 4 This yields no significant
modification 1n the immediate neighborhood of the buckling load of the centrally com-
presased bar. For greater or for smaller loads it rapidly becomes either so large

that it violates the assumption regarding the smallness of the displacements on which
(47, 8) is based or it becomes so small that the fourth order term in (47, 8) is of

minor importance, Therefore, wheneve. (47. 8) can be applied to the present case,
there is no objection to the replacement of Ai by A4 . The remaining constants

are determined by

§=1
' .o - 2. o438 A0 _ 1 ,' _ 14
Bl—Qllr.bl] = - 277 =45 , Ay = 'XIA2—2’T ,
§=0
so that {47, 8) becomes
FM @) = ar%era + 318 1 - n)a® g5t (61.16)
The equilibrium states are determined by
ar’(a) 3 4 1.6.3
—a§—=—=41rek+.1r (1—-7\)§+§ a = 0. (61.17)

The stability of equilibrium is governed by the sign of the second derivative of (61.186)

224
d__F_zi;'l = ot (1 -a) + 2n%2, (61.18)
da
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In view of the fact that the variations 66 , for 0 < £ < 1 are arbitrary, the differen-
tial equation

.sing = O (61, 20)
must be satisfied, while for £= 0 and £ = 1 the boundary conditions must hold

Zex =0 (61. 21)

0° +mw
By restriction of the considerations to deviations which are symmetric with respect

to the midpoint of the bar, the boundary condition for £ = 1 may be replaced by the
condition

0 =0 (61. 22)

holding for § = ;—

As is well known the integration of (61. 20) can be performed by use of elliptic integrals
(see appendix). The result, the dimensionless deflection 3 at the midpoint of the bar
(the value ¥ for £ = %) as a function of the load parameter A is represented in

Fig. 4 for the centrally loaded bar (curve I) as well as for a bar with the eccentricity
parameter € = 0,01 (curve Ia). Furthermore, in this figure the approximate solu-
tions (61.12) and (61, 17) are drawnfor € = 0 and for € = 0,01 ; the values of 8
corresponding to these solutions are directly given by a . The boundary between

the stable and unstabie regisns of the approximate solutions is also indicated, This
boundary is obtained when (61, 18) is set equal to zero. 1,2

1In order to avold crowding of the figure, a relatively large eccentricity has been
assumed.

zThe analysis of the stability of the exact solution (61.20) is very complicated and

it will not be persued.
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615. Comparison with the Exact Solution

It is possible to give the exact solution for the problem treated above. The energy of

the cceontricity moments amounts Lo

Net @

Lad]*]

2r7 eXg

o

By use of (61, 4) after devision by -%- % , the total energy can be written

1
£€=1 2

P}‘[lﬁl +6QA[¢] = 2nleAd + [l‘p =y + or?V 1 -w'ﬁ ld&.
§= 0 o 1 “lb

By substitution of §* = - sin 6§ this expression becomes

£=1
P'lo] +eq [0] = 2rfero + [(9'2 + 212 Acos8) di .
0
(61.19)

Equilibrium states are determined by stationary values of the energy, therefore,also
by stationary values of (61.19). The first variation of this expression is

k= 1 1
sl 0] +eQ 10]] = 2a2erd0 + / (20°66° - 2r°Asind80) d& =
§= [0} o
tE= 1 !
= 2(rer+ 6°)86 -2 / 6" +12xsin 960 dt ..
£E=o¢ 0




Moreover, in Fig. 4 the solution of the well known beam column theory is represented
(curve Il0a, b for € = 0,01), This solution is obtained by omission of all terms of
an order higher than two in (61.13). In order that the energy so approximated

1

2

(2‘” _ N2Nb.2) dE

]

oo

3

MI\D

P
€

+

O

wouid have ~ stationary value, § must satisfy the differential equation (61. 8) with
boundary conditions

£= 0 and &= 1: p= 0 andy ' = T2€A, (61.23)

By uuse of {61.23) the four integration constants of the general solution of (61, 6) are
determined, For the dimensionless deflection at the middle of the beam, it is found

B=€ (1 - sec-éw \/'7'\1) . (61. 24)

This result is well known (see for instance [43], eq. 27). As € -~ 0 this solution
becomes B= 0 for A £ A 1° while for A = A 1 the deflection is undetermined
(curve III). The latter solution can also be obtained if the solution ay for neutral
equilibrium of the equation (61. 6) with boundary conditions (61.7) and (61. 8) which
holds for A =2 1 and infinitesimal values of g, is regarded as an approximate
solution for finite deflections (see also Sect. 35).

It appears from Fig, 4 that the approximate solutions II and IIa are close to the exact
solution if the deflection at the midpoint of the bar does not exceed 20% of the length

of #»:: -ar, The approximation by the beam column theory is satisfactory if this

larg. - deflection remains smaller than 10% of the bar length. In the case of eccen-
tric loads, the approximate theory developed here may be applied to the natural
equilibrium state for loads below the buckling load for the centrically loaded bar, and
the beam column theory holds for loads up to 90% of this buckling load. The extension
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Exact solution without eccentricity.

Exact solution with eccentricity.

Approximate solution without eccentricity.
Approximate solution with eccentricity.

Approximate solution corresponding to the assumption
that neutral equilibrium is applicable for finite
displacements.

Beam-~column theory (with eccentricity)

Boarder between regions of stable and unstable
equilibrium for the approximate Solutions IT and Ha,
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of the region of validity of the beam coiumn theory is small in this example; this is

due to the small value of A 4 resuliing in a very rapid increese of the deflections as
the buckling load of the centricaliy ieadad hasm iz anrnagsed. '

The ends of a prismatic, supposedly incompreasible bar of length £ ; are simply i
supported such that displacements perpendicular to the bar axis are excluded. Agaln,
consideration will be given to bending which takes place in a plane through the bar axis

and a principal axis of Inertia of the cross-section; the same notation will be used as
in Sect, 611,

are attached through hinges. The end points of these supporting bars which lie in &
plane perpendicular to AB, are simply supported at the rigid points D and E .
The plane of symmetry of this support coincides with the plane of bending of AB. It
is further assumed that the point C cannot undergo displacements in the direction of :
the AB bar axis. The distance between the polnts D and E is denoted 2b, the dis- . !
tance from C to the midpoint of the line DE is denoted by d (Fig. 5b) 1

|
'. At the middle midpoint C of the bar AB (Fig. 5a) two identical compressible bars !

N ot

199




it is clear that the straight undeformed state of the bar, which corresponda to unde-
formed supports, is always a possible state of equilibrium when the loading consists
—bal

of two opposing compressive iorces N . This sisie ol equiliviiuin ja the fundamaontal
state,

621. The Potential Energy

Let y be the displacement of the point C in the direction Xg + It follows then that
the length of the supports amounts to\/ b% + d the undeformed state, and to

b2 + (d-y)2 in the undeformed state (see flg, 6b). If, for the moment, a rigid
coordinate system Xy) X9y Xg is conceived aB fixed with the X, - axis along one of the
supporting bars, then the deformation component Y11 of this bar is (see Sect, 11)

B4 -y)2 2y y2
”11‘_"2'(—‘;')_“"2 Tt 3
b +d h™ +d

b +d

The elastic potential for the support is then given by expression

1 2 _ m + 1
%Evy,, with E = 26 =—=. (62.1)

This result can easily be derived from (12.5) as the deformation components ')'u
(1 = J) are zero while the absence of normal stresses in planes parallel to the support
axis, by analogy to Sect. 54, leads to the conditions

dA A
8729 9733

Subatitution in (12, 5) then gives (62.1).

The total elastic energy in the supports is

1oy 20\fi2 - EF 22 .3 1.4
2. 5By, F\b" +d° = (dy dy +;—y),

sz + dzl
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where F is the area cf the supporting bars. With

)]
[}
=
»
=
[= N
«
n

LB (R

in which o is the bending stiffness of the bar AB and M a conatant introduced by
Cox [23], the energy of the support is written as

2
2 2 4§ .3 45 4
87 Mf—(ﬁ -5 P +i~dzﬁ). (62. 3)

For the sum of the elastic energy of the beam and energy of the loads, it can by use of
(61, 4) be written

1

.2 .
%%—/ Ht 2ar'A ML - w'“]dg =
1 -y

o

<
=
]

1 1
%%l/(#ﬂ"z-wzlw'z)dﬁ /(w‘zab"z--i—nzw"‘)di-
o] ’ o

Here a trivial constant has been disregarded and the series has been terminated after
the terms of the fourth order. By restriction of the considerations to symmetric
deflections with respect to the midpoint C of AB, the total energy is

Energy = -3‘- PA [+ PAI + P 47* (4]

iz

el



with

1
2
PAN) = / w2 - 2%apd de + s’ Mp2,
%

P = - e M &A%,
Py
r 2
PA [ = /(w'zzb"z -2t ae v 2 M-‘Z—Z-ﬂ‘*. (62. 4)

o]

It should be noted algo that in view of (62.2), B is the value of § for & = % It
appears from (62. 4) that the first variation of the energy ir identically zero for the
state in which the bar remaius straight, in agreement with the fact that this state is

always a possible state of equilibrium,

622. The Buckling Load

Accord.ng to Sect. 31,the buckling load is determined by the smallest value of A for
which, with an arbitrary kinematfcally possible function ¢ , the variational equation
(24. 14) is satisfied

1

2
Piilwt] = 2] WL - mIAp E)dE+ 1677 M@y L =0,
§=3
(o} 2

(62. 5)
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After restriction to deflections which are rymmetric with respect to C, the kinematic
conditions for the function ¢ are glven ty

t;=0forg=0andg;’=0for£=—i,—.
Through integration by parts it follows from (62. 5) that

=1 =1

€= 2 { 2

o oo vee . 2
29" ¢ -2 AP + 1670 M (gg), 1+

- - £=3

E=o E=o0

1
2

+ 2 /(w"" + 2AY)EdE = 0.
5

Since the function ¢ is arbitraryfor 0 < ¢ < —%-, Y should satisfy the differential
equation

S e Agt = 0 ©2.6)

due to the fact that ¢ is arbitraryfor ¢ = 0 and ¢ for ¢ = % it follows

" = 0 for £t = 0 and -3'"°’ -1r27up“ +81r2Mw=0 for § =-§— .

(62.7)

Moreover % should satisfy the kinematic conditions

y=o0ior £ =0and y = 0for § ==, (62. 8)
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The general solution of (62. 6) is given by
¥= A+B§+Ccos1r\/r€+D1nn\/x€. (62. 9)

The boundary conditions for &= 0 yield

The remaining constants with 7vX=u <re determined by the boundary conditions at
1

£=3
2

B+chos~%u =0,

w3 D cos g4 + 81°M (%B +D sin%u) = 0. (62.10)

These equations possess a non-zero solution if and only if the determinant of the coef-
ficlents is zero. This condition becomes after some manipuiation

M I.ta cos-%-u A (6
= - = - 2- 11)
2 1 1 1 1
o (singu - g cosgk)  8(tegu - Fu)

The buckling load is determined by the smallest value u, = wﬁ;‘ which satisfies
(62.11). If M iacreases beyond bounds from zero, B, grows from = to the value
8.986 ... determined by the equation

g5 H -gh =0, (62.12)

The value A, for the buckling load lies consequently in the region

1

8.9862 _
2

ls A1< = 8.18 .
x
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The eigenfunction belonging to A, 1s given by
= i, . :
¥, = smulé—ulﬁcoszul. (62. 13) :
it is normalized in such a way that its value for § = %- is : !
- = i, .1 i
By = (a/:l)g 1 Binz p) - GH; COBFH, . (62. 14)
2

Stability at the buckling load is in the first place governed by the quantity

3

_ - 2,08 03 L _ o 2yA A, 1 1 -
Ay = Py(9) = - e Mghy = - 87 Mg (singu, - g4, cosgu,)
b3 1 1 1 1. \2 )
= g#; cosgu (singhy - Fu; cosgh, ) . (62.15)

This quantity is zero only If one of the factors of (62, 16) is zero, i.e. when By=T

or when Ky i8 equal to the value determined by (62. 12); the corresponding values of
M are zero and infinite respectively. Consequently, for values of M between these
bounds, equilibrium at the buckling load is always unstable.

623, Equilibrium States tfor Loads in the Neighborhood of the Buckling Load

It follows from (62, 4) that

'y
2

P'2 [#]= -n? /w'zdﬁ,

o




]
so that the constant A2 is found to be

1

' 2
z[ A =P (4] = —7~1r2 2 (005 £~ cos s ‘ZdE = ' l
r- 2= P %y #1 #1 7#1) '
, 8
:
! sinp

= - 2211 -3 _1

~ - nouy (3t geosky - ). (92.16)

Ky

1t follows then from (35.6) that, at loads in the neighborhood of the buckling load,
.the amplitude of the eigenfunction (62.123) is given by

sin “1)

1.1 3
™k (§+Z°°’“1 "1

2—( A-A 1) . (62.17)
Lua cos Lt (sln1 -3 cosiy )
dk1C83H ghy " gH COBTH,

The deflection at the midpoint of the bar is

w
=3
§—2

1 1
= a8 = at(singk, - 5H cos 31

When this deflection is made dimensionless by

we 1 rd ,
2
L then it followe from (62, 17) that

: sinu
2{1 1 3 1
m (E*Zc“#l ™ )
1 1
2 2

r=2 ) (A=2,). (62.18)

1 1
By coszhy (B‘nﬁ"l -




For loads further removed from the buckling load, the theory of Sect. 38 may be applied.
If the displacements from the fundamental state are still 8o amall that the o3 of the
fourth order in (38.22) may be neglected, it follows, after the derivatives of (38.22) are
set equal to zero,

a= __g_ - . (62, 19)
A3 + AAa
Here (see also (62. 4))
0. 01 o n = P, W] =
Ag = Polyl = ~M By Wl = -A Ay Ay = By Bl =0

and thus (62.19) agrees completely with (35.6). Therefore, the theory of Sect. 38 does
not cause important modification of (62. 18), even if the load is considerably different
from the buckling load,

624, The Influence of Small Deviations

At present it will be assumed that in the undeformed state the bar axis AB slightly
deviates from the straight line, while the undeformed state of the supports remains
unchanged. The deviation will be such that in the undeformed state the coordinates
of a point of the bar axis are given by

=X, X4 = W, (62. 20)

The deviation of the undeformed state from the model with coordinates Xy =X,
= 0 which was considered above is small if the quantity W 18 small. In agree-
ment with Chapter 4, this smallnegs justifies omission of quantities of second and
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higher order in L and its derivatives. The length of a line-element of the unde-

formad har cxia then ia
(62.21)

N
o V1L (™)
A = 1+ -a-’T' dx = dx.
It is assumed thatat x = 0 and at x = £ the function L becomes zero,

If the point (62. 20) undergoes displacements u and w in the directions of the axes,
then the length of a line element of the deformed bar axis is

. 2 /d 2"
dal =\/<]+g%> +(—a;3+g¥> dx .

The incompressibility of the bar axis is consequently expressed by the condition

2
2 dw
<1 +-‘a’§> +<3x£+%¥> =1, (62. 22)

The curvature of the bar axis in the undeformed state is

o 2.0 0 2.0
dxldx3-dx3d_x_1_ 0
2 dwo

ax o dx ax® _
-+ —2,

(). (&)

o jes
g

P°=i




and in the deformed state it is

2
+duvdwo dw\ ( o, dw\dh
duy_ < ! dw ——_,,_

™ Nax* &/

R

By use of (62.22) the function u can be eliminated. The result is (see also sec. 611)

2W &2
5+
dx

p' = & - dw. =7
\/1 - (_.D + gﬂ.)
dx dx

After expansion and omission of terms of the fifth and higher order in the derivatives

ofw and w as well as of terms of the second and higher order in w o it follows

2 2 2
, dwo d2w dw(;“.v_)2+dw°.ﬂ,dw+l(g“_’)2dw
2

E

&
ro|€

il B s R oy & & 2 3

dx & dx® |\ dx dx d / gx
The energy in a beam element is taken: to be proportional to the square of the change
of curvature p' - p° . If terms of the sixth and highar order in the derivatives of

w, and w , as well as terms of the second and higher order in w, are neglected,

the total energy in the bar is

2° !
2 2:\2  d%w 2 2
0 o_1 d
o (o - o) ao= ga () —e(a ey
dx dx
0 o
2 a . 2
dw 2 2
+g—0dw (dw) | (dw) {dw & . (62.23)
dx \ g dx dx2
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The energy of the loads is

for which, after use of (62.22) and expansion with omission of terms of the sixth and
higher order in the derivatives of w, and w and terms of the second and higher
order in the derivative of Wo it follows

!
dw 2
() dw -
N \/'(ET*dx) 1 & =
]
¢
dw, 2 dw 3 4
=1 odw , (aw)®  “To(dw ldll
2N lded:c+(d:c> +dx<dx> +4(dx |odx . (82.24)
0

For the energy of the supports, (62.3) remains valid without change. These quantities
are again made dimensionless by

Herey  isa function which describes the form of the deviation of the bar axis from
the straight line; € is the deviation parameter which determines the magnitude of
the deviations. At{ = 0 and ¢ = 1,zp° is equal to zero. Differentiations with
respect to £ are again denoted by a dot. When the considerations are restricted to
symmetric deflections with respect to the midpoint of the beam then the total energy
as a sum of (62.23), (62.24) and (62.3) is

A A

Energy =% [Py [+ Py [+ P4A [¢]+€Q1A l'll#]+¢='Q3A W1} (82.25)
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In this avpraseton the fisot e, wrms are given by (62. 4), the remaining terms by

1/2 ]
QA W= - 27 A /zp‘ yag
o
° r (62. 26)
1/2 .
A - ve 02 .. c g2 L v g
G b= [ W A SV A TT
o
For small values of ¥ , the conditions given in Sect, 47 for the extended theory
are satisfied. If terms of the fn,

urth order in the displacements are omitted, the
coefficients of (47. 8) follow immediately (see (38.21), (82.4) and (62. 26))

A =P [y] = S AR =

sinp‘ |
.xlwz,&ze + Loony, - 2—4) .

4 Ky
o = o = =
As = Pgl4] = pyiu]
> (62.27)
= £, 3 .1 i _1 1..2
=4 “1 °°°2“1(’"‘2ﬁ 25110082;&1) ,
1
A3 =90,
1/2
!

- 2"2“1 /% (coa;&& - coa-;-li)df_.
)

J
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In agreement with the work by Cox it {s assumed here that the undeformed beam
consists of two straight parts which are connected to each other in an angle at the mid-
point C. The deviation function ¢o is chosen in such a way the midpoint C lies on a
distance d under the line AB

b, = 2%§for 0s §% 2. (62.28)
The constant B; then is
' 2d 1 1 1
Bl = - 47 T(Bingul - 5#10085#1) ‘ (82.29)
The deflection at the midpoint is
26t = at(sinlh - 2u coslh) .

After substitution of
afl = rd
instead of a , a new variable r is introduced which determines the deflection at the

midpoint of the beam as a multiple of the distance d . Expression (47.8) can then be
written
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[ 3 .1
B, cos M
1 2'1 .

[
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1 1 1
1sln-§ By - Eul cosEMI

\

W
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FEETY PP S

1 1 fink

N 2“2§+E°°°"1 w1

& -NTH T I 1
Mn'i"l - Eul cosgﬂl)

-3
!

- Ru® + (A -A )R 't° +e AR, 'r 62. 30)
2 |Bs 152 1 ' (2.
As it appears from (62.30) the introduction of the new variable r offers the advantage
that the influence of the ratio d/4 has been eliminated. The equilibrium states are
characterized by stationary values of (62.30), {.e.,by

8Ryr? + 2(A - A R,'r +EAR' =0 . 62. 81)

3

The solutions of (82.31) are

1 R,' 1 g By'2 R
r = - s(h-ll)—R'?iJ"g(A —Al)—R—T-GA's"R—a—- . (62-32)
3

12
R R.' ‘
1o o3 22 _3er 4 -
(A = 2y) ! SR, (62.33)
3
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As the values of #1 lie between 1w and 8.986 all coefficients R of (62.31) are negarive.
Consequently for negative values of ¢ , (62.33) is always satisfied. The roots deter-
mincd by (89 29) renvogant ina A varana r granh twn sanarate hranchea (see also

fig. 6, page 219 ) . Only the branch which is obtained by continuous deformation from
the unloaded, undeformed state is of praciical imporiunce. This brauch, the aatura
branch corcesponds to use of the lower sign ir front of the square root in (62. 32),

For pcaitive values of € twolimits A*< A ; and Adk s A § are determined such

that the sclutions (62.32) are real for A < A* andfor A > A** ., Hereonly the branch
for which A ¢ A * is of practical importance.

Siability of the equilibrium is governad by the sign of the second derivative of (62.30)
1
+ - g
6R3r 2(A -~ A 1)R2 . (62. 34)

In view of (62.32) this derivative is always positive for the solution of (62.32) which
corresponds to the negative square root with the exception of the limit values A* and
A*x  determined by (62.33) for positive values of ¢ . Consequently, the natural
branch is always stable for negative values of ¢ . For positive values of € , as the
natural branch passes through A*the stability limit will be reached. In view of (62.35),
this bucklinug load is determined by

2 _al
R.'R R,'R, R'“R )
. Moo=+l e 23 gL 8,2.2°2 3 (82.35)
17272 RiZ 4 gy
: 2 2 2

625. Comparison with the sclution by Cox

In the derivative above, all terms were disregarded in the energy (62.25) which
correspond to the bar and are of a higher order than two in the derivatives of ¥ ;
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this cmiission 16 Jusiiied in Seci. 010 for the case in which the maximum deflection

does not exceed 10 percent of the length of the bar. In that case the energy is given
1

by

1/2
Energy =;_x /(zp”z -wz'hqp'z - 21r2€ h@b')df +
[+
2 (.2 #.3 . 14% 4
terM\BT - —B% + 4 5B (62. 33)
d

Equilibrium states are determined by the stationary values of (62.36), thus by

1/2
2 (¢":"—1r27\ op't'—wze}«ﬂ; tag +
0
¢ a2yl 2 2 g2 -
+ arMlzet - 33 % +:§¢":)e=% =0 (62. 37)

for all functions ¢ which satisfy the kinematic conditions

!=0for§=0&ndt'=0for§=%.

The energy formulation used here deviates somewhat from that of Cax {n which the
compressibility of the bar has been taken into account. Furthermore, Cox puts the
elastic potential proportional to the square of the specific strain ard not, as it has
been done here, proportiional to the square of the strain component. These differ-
ences are,however,of minor importance.
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Through integration by parts it follows from (82.37) that ¥ should satisfy the

differential equaiion

ARREE LN w'h"'ewo“ =y {82. 38)
with the boundary conditions
y' =0 for € =0 ,
LD WS VA
+ 81r2M<lP -34.2. %£;¢3>= 0 for § =2 (6%. 39)
d

The kinematic conditions for ¥ read

¥=0for £ =0and ¥ =0 for £=3 . (62. 40)

For the deviation function (62.28),equation (62. 38) becomes identicsl to (62.6). This

equation with boundary conditions (62. 39) and (62.40) can be solved rigorously. Two
integration constants of the general solution (62.9) foliow immediately from the

conditions at § = 0

-The deflection at the midpoint of the beam is determined by

B +Dsln-;- powith g =71 YA

[ ST

B:

e

‘ . e —
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Under the condition ¥+« = 0 at & =

1 =
B + Dyucosg k=0

the constants B and D may be expressed in terms of 3

m Bcos% B 8
By 1 7+ P~ 11—
sin-.z K- FucosGp sing p ~ Gucosgp
Finally g is determined by the second condition (62. 39)
pd
—i 1 1 ﬁcos%u- zpze% +
sm§u - EHCOSE#
vortm{p- 2462 4 15,3) -y
T 2 d 2 2

(62. 41)

An equation for the deflection at the midpoint of the beam as a multiple of the distance
d follows from (62.41) by substitution of 8 ‘Q/ d=r

r3-3r2+ 2+_Z‘..-__p'__ r--L€=0. (62. 42)
1 2M
2M2tg§u-ﬂ

This result agrees completely with that by Cox who neglected

r
R2 + 1
in comparison to unity in his equation (18) [23, in particular p. 264]) 1

1For the derivation of (62.42) Cox developed the functions ¥ and ¥ in Fourier-series.

This detour is shown tobe unnecessaryby the solution method given here.




- The stability of the equilibrium states determined by (62.42) are governed by the
second variation of the energy (62.36)

1/2 / . .
' 2
& ) (6% -n 2aghate oa M( - sde + 2L 2% | -
d /=3

%{ /(t 7"‘" lt )d5+[81r M(1-3r+-3—r)t2]‘1

2
(62. 43)

This is of the same form as the second variation (62.4) for the initially straight beam.
The condition for neutral equilibrium can therefore immediately be derived from. g

(82.11)
3.2 us
oMl -sr+3:%) ———— =00
2¥) T1 1
gk -5 H
ar? . 6r+2+£ﬁ——-——13———=0. (62. 44)
2tgy K-

Ina A versus r diagram, the neutral states of equilibrium for different values of
¢ are all represented by the curve determined by (82.44). This curve, according to

(62.11), goes throughthe point A = Al , *=0. Forthe points A < 11 , =0

and for A > 7\1 » T =0 representing possible equilibrium states at € = 0, equilibrium
is stable and unstable respectively. The transition from a stable to an unstable state of
equilibrium always takes place at & state of neutral equilibrium. Therefore, the
equilibrium states are stable and unstable respectively depending on whether they are
represented by a point on the same or the opposite side of the curve given by (62.44)

as A <Al. r=0 and A > 7\1 , ¥ =0, In passing along the natural branch from the point




EFEF

Ila.
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Solution of Cox ¢ = 0
Solution of Cox ¢ = 0,1.
Solution of Cox ¢ = -0,1,
Partition between stahle and
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Approximation € = 0.
Approximation ¢ = 0,1.
Approximation ¢ = 0,1.
Partition between stable and
unstable region accordiog to the
approximation,
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which represents the undeformed, unloaded state A = r = 0, the buckling load is
raached at the first intersection with the curve (62.44). The corresponding value
A* of the load parameter is obtained by elimination of r from (62.42) and (62.44).
As (82. 44) 13 also the condition for the cccurrence of a double root of (62.42), the
tangent to the curve A versus r is at the point A* , r* parallel to the r-axis.

In Fig. 6 some A versus r curves are drawn for the case M =1 ;in view of (82.11),
the value of the load parameter corresponding to the buckling load of the initially
straight beam is 7\1 - 4.

Curve Ia is valid for the initially straight bar, the curves Ib and Ic are valid for
the values 0.1 and -0.1 of the deviation parameter ¢ respectively. Of the last
mentioned curves, only those branches are represented which are obtained continu-
ously from the undeformed state. The line of partition between the stable and unstable
regions is given by curve Id . The stable parts of the A versus r curves are given
by heavy lines, the unstable parts by dotted lines.

Further, in Fig. 6 some A versus r curves are drawn for the approximate solution
for M = 1. Curve IIa holds for the initially straight beam (see (62.18)), the curves
Ib and Ilc hold for the values 0.1 and -0.1 of the deviation parameter ¢ respectively
(see (62.32)). The line of partition between the stable and unstable region is given by
ourve I1d; this curve is obtained when (62.34) is set equal to zero. It appears from
the figure that the approximation is good if r does not exceed the value 0.4, i.e. .if
the deflection &' the midpoint of the bar is not larger than 40% of the distance d .

In Fig. 7 the bucklirg load A* of the bar is given as a function of € for the case of
positive values of € . Curve I corresponds to Cox's solution obtained by elimination
of r in (62.42) and (62.44), curve II corresponds to the approximate solution
(62.35). Also in this case the agreement is very satisfactory.
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Finally, it may be noted that the analysis of Cox's problem is also based on the
assumption of a completely elastic material. As a consequence, the considerations
have significance only as long as the occurring deformations are very small. In
view of the results of Sect. 621, the strain components in the supportiog bars are of
an order of magnitude of dz/(b2 + dz) if the deflection at the midpoint of the beam is
of the same order of magnitude as the distance d . Consequently, in the foregoing
it has tacitly been assumed that the angle ECD of the supports differs little from
180° (see Fig. b6b).

63. THE PROBLEM OF THE EFFECTIVE WIDTH

The simplest case of the problem of the effective width may be formulated as follows.
The edges of a flat rectangular plate are simply supported such that edge displace-
ments can only occur in the plane of the plate. I the plate is loaded in compression

on two opposite sides, bucklihg of the plate will take place as a certain critical

load (the buckling load) is excecded. Below the buckling load, a iinear relation exists
between the compressive load and the end shortening; after the buckling load is ex-~
ceerded,the end shortening increases more rapidly than the compressive load. This

is expressed by use of the concept of effective width defined as follows: the ratio of
the effective width to the total width of the plate is equal tc the ratio of the compressive
load sustained by the plate to the load on a gimilar but not buckled plate which has the
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same end shortening. The extensive theoretical literature about this subject (see [46])
yields good results for loads not too far in excess of the buckling load; on the other
hand ihe theory is still unsatisfactory for loads far in excess of the buckiing iocad.

For loads not too far in excess of the buckling load the best theory is given by
Marguerre-Trefftz (19]. After a short survey of their considerations (Sect. 632),the
general theory of Chapter 3 will be applied in Sect. 633 here. Tle res.:.s thus ob-
tained agree very well with the results obtained by Marguerre-~Trefft7.

831. The Elastic Enezg

The elastic energy in an initially flat plate cen be calculated by application of the

“general theory qf Chapter 5. In this particular case, it is simpler, to make use

of the results already obtained by Marguerre and Trefftz [19].

A point in the middle surface of the undeformed plate i8 described by its coordinates
x and y with respect to a fixed system of orthogonal coordinate ¢.2*1 whose origin

is at the midpoint of the plate. For a plate of length § and width b the longitudinal
edges are given by y = *-;-b and the transvers: edges by x = t%l . As the plate
18 deformed a point in the middle surface undergoes a displacement with components
u and v in the directions of the x and y axis respectively and a component w normal
to the surface of the plate. If differentiation with respect to x and y is denoted by
indices x and y placed at right below the arguments, then the total elastic energy is
[19, eq. 36] .

1
2
vela-2_ (29, + 2 +w2+w2)2+
4 m-1 Y vy X y
1

- ZEE'—J: {(Zux + w,z‘) (2vy + wi) - (uy + vy + wxwy)2 ]+

+%h2[(wxx+wyy)2 - -1 (wnwyy-wiy)”dxdy. (63.1)
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632. The Theory of Marguerre-Trefftz

An infinitely long plate which undergoes an average compression €, 1s considered.
The displacement component u is

u.= - Elx+ﬁ, (63.2)

where the second term is a periodic function of x . For the displacement component -

v is written

vV = &Y +9 . (63.3)

The transverse displacements of the longitudina) edges (which remain atraight) are
:!:%6 o0 . Alse { is a periodic funciion of x . Along the longitudinal edges

o(x , t-%b) = 0. (63.4)

For the cdge values of the displacement component G itis also required that

ﬁ(x, .-k-%b) =0. (63.5)

This implies that the longitudinal edges are connected to stringers of such a stiffness
that they do not noticeably deform under the shear stresses induced in the plate.
This assumption appears to be of minor iwportance; almost the same result may be
obtained if it is assumed that the longitndinal edges are not subjected to loads in the
x-direction, i, e., that no shear stresses act on the lungitudinal edges.

Marguerre and Trefftz consider €  @san independent parameter or to put it differ-
ently, they consider a plate with a prescribed end shortening. The compressive load
which is (at infinity) acting on the plate than does not contributé to the potential
energy. Further, they consider the two limiting cases that the iongitudinal edges
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are completely free to move in the y-direction and that the edges are completely restrained

from motion in $ic 7 divcction, In neithar of those csses do tha lnads an tha langi-

tudinal edges contribute to the total potential energy; in the first case because the
total load on the edge is zero, in the second case because dispiacement of ine lungi-
tudinal edges is zero. The total potential energy is then determined by (63.1). By
use of (63.2) and (63.3) this expression becomes

vrvi'»=”1‘rGh m - 2¢, +2¢, + 20 + 9 +w2+w22dxdy+
16b § *25 x TV T W Wy

-%Gh//[(— 2€1+2ﬁx+wi) (2€2+2€'y+w3) +

- (ﬁy + GX + wxwy)2]dxdy +

+—Gh3 *1]/[ -éln—éi(wnww-wiy)]wzdy.

(63.6)

States of equilibrium are characterized by stationary values of the energy (63.6).

It is known that, as the stability limit is reached the displacerient components u
and vV are zero while the component w is given by [47]

w = gcoélrs’-‘- cos%x 83.7)
if the longitudinal edges are free, and by
w = gcosu%’-‘- cos? with p = 'ﬂ-;;——z (63.8)
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il the longitudinal edges are restrained from displacement in y-direction (19, eq. 921] >

An approximation is now introduced by the assumption that the displacement com-
ponent perpendicular to the surface of the plate, also after the buckling load has been
exceeded, is given by (63.7) or (83.8). The still unknown components i and 9 are

determined if the first variation of (82,8) {e get aqual to zexp for avery noaaihle vari-

v L AU 14 WAL asdw - AM AW L Ve (T v ey v =

ation of i and ¢ . This leads to the differential equations (see [19], sec. V)

3

A + b m+1 9 a A m 8 /(2 2
Uxx uyy+m-18x(ux+vy)+m-18x(wx+wy)+
+tww _ -ww =0,
xyy Cyxy
2 o {63.9)
A m+1 § 4 A m 8
vxx+6yy+i'n_-—'i W(ux+vy)+'ﬁ_'-—i.3§(wx+wy)+
+twWWwW. - W W =0

y xx X Xy

After restriction of the considerations to free longitudinal edges with the buckling
mode (63.7), a particular solution of (63.9) can immediately be written down [19,

eq. 50)

2

7a

A o = 2rx 2ry . m -1
up 16bsmb (cosb + m),

(63.10)

2
Gp =%sin3%! (cosgg—xi'm—é—l) .

The requirement of periodicity is satisfied by this solution. However, the boundary
conditions are not yet satisfied. For this purpose a solution of the homogeneous
equations (63.9) must also be added. It appeérs.howev'er, that this addition is not
numerically significant (19, sec. V and V1] so that it will not be further considered.
This is even more justified in view of the fact that in reality the boundary conditions

2 :
lEquation 92 contains a typographical error, it should read -:—2- =12 !;3 .
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(63.5) are only approximately valid and that (63. 10) represents the exact solution if,
instead of (63.6), absence of shear stresses along the longitudinal edges i8 required.

Introduction of (63.7) and (63.10) in (63.6) determines the energy as a function of the
three pa:ameters €11 %91 8- I'xecution of the integration over the lengith b of a
haif period yields (19, eq. 69%)]

i e e ey m—— pp—

m+1 "252

camtl M ey _mtl, o, TR
' v Ghblm-l(el T2 w16 % 3

~

+

+

m  rin%? +Bm - 1) (m +1) Ig_‘, (63.11)
m -1 gt mm = 1) gapt

In the case of froe lateral edges the conditions

' v

962

w2
L]
o

should be satisfied for a stationary value of (63.11). These conditions are

2 2

m-=-1

2
m : 0,
4b

‘ m—l(el
L 2

- - 62) + 2€1

, 4 2
' +1 Ta m 7 h
. 2B T e - g)——=+2

m-1%Yv1 24b2 m-112b4

+

4 3
Bm-1) m+1ymrg” _
+ 4 mm - 1) 6_4b4 0. (63.12)

m-l L

{ L he 1ast term of eq. 63 contains a typographical error; it should read m_ 22
12b
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The second equation is satisfied by a = 0 with which from the firsi equation it followe

that €, = For this sclution (63. 11) becomes

—

61-

8

V = Ghb>

m+1 2
= €1° (83.13)

This solution ylelds the unbuckled state of the plate. With the known value € = c¥
for the buckling load {see [47))

the remaining solutions of (63.12) are written

1 m +1 12g2

—_—¢€ —_—— ’
m -1 m &b
(63.14)

This solution is apparently ouly real for €
found io be

1> ¢* , In that case thie energy (63.11) is

2 *x -1 %2
€] + et - e ) (63.15)

_ 2m +1
V = Ghb —m( )

ol

Knowledge of the stress distribution in the plate is not needed for the calculation of
the effective width. For a variation é&¢ 1 of the average compression, the work of
the load N acting on a strip of the plate of the length of a half period and the width
equal to b is equal to Nbbe1 . This work should be equal to the increase of the
elastic energy so that

N =

o

av
d€1
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should hold. For the unbuckled plate follows from (63.13) that

J = h .Z.n +1
N Ghb 2 o €
for the buckled plate from (63.15) that
N = Ghbm;1(€1 +e¥) .

The ratio of the effective width to the total width is given by the quotient of these

expressions

m =—g(1 £, (63.16)

in agreement with the result of Marguerre-Trefftz [19, eq. 88] .

633. Application of the General Theory of Chapter 3

It is assumed that in-plane loads on the edges of the plate which remain straight can
only act in a direction perpendicular to the edge. Moreover,it is assumed that the

total load on the longitudinal edges of the plate y = & —;— b is zero. Let N be the
resultant of the compressive load acting on a transvarse edge, then the energy of the

loads is

Nu (63.17)

This is in agreement with the case treated in Sect. 632.

228




The displacements in the fundamental state are assumed to be

U=-ex, V=1fy, W=0, (63.18)

while the displacements of a neighboring state are written as

U+tu =-ex+u, V+v =fy+v, W+w =w, (63.19)

After introduction of (63.19) in the total ¢nergy {the sum of (63.1) and (63.17)] and
after series expansion, it is found for the linear terms in u, v and w (the first

variation of the fundamental state) that

=1 =1
x—zl y=5b
+ Nu = 2Ghr?l_t%__i (f '% )V +
=1 ~ud
x—-le y= 2b
x=%.¢
1
- 12Gh l(e--af)-Nlu
x=-%l

It appears thus that the state (63.18) is indeed an equilibrium state if

eand2Gm+—}bhe=N.
m

8w

f =

To the load parameter

A =N . __m N _ (63. 20)
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therefore belongs the fundamental state
U=-Ax,V=%Ay,W=0. (63.21)

The expansion of the increase in the energy during transition from ths fundamental
state to a neighboring state, obtained by substitution of (63.19) into (63.1), is now
written in the form !

P (o] = P (u] +AP, [u] +P)[u] + P [u]

with
0 _ m 2 m-1 1 2
.Pz[u] —GhF_I//[(ux+vy) -2 {uxy-z(uy+vx)]+ i
1 .3 2 m -1 2
+12h [(wxx+ww) -2——m (wxxwyy'wxy)] dxdy ,
' _ m . mz—l 2
Pz[u] -Ghm-l. - g— W, dxdy,
_ m
0 - m 2 2
PJ u] —Ghm_lj/[(ux+vy)(wx+wy)+
m -1 2 2
- [uxwy + vywx - (uy + vx) wxwy] } dxdy ,
0 m 1/ 2 22
AN Gh;n—_—-lffz(wx+wy) dxdy . (63. 22)

The buckling load is reached when the second variation

Pylu = P [u] + AP, u] |
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is semi-definite. Because the displacements in the plane of the plate and those per-
pendicular to the plane of the plate yield mutually independent contributions, these
contributions should separately be equal to zero. The integrand of the contribution
f_ first menttoned is also semi-definite so that for the firat system of eigeniunctions at

L o i S e R B

Uhx © vly = “ly Vix T 0.,
from which by use of the boundary conditions
= 1 L1
u = const. for x = :l:§! , Vv = const, for y = *Eb (63.23)
{ it follows that
b
E u, =v, =0

The variational eqiation (38.4) for neutral equilibrium then is

m
Gh—-——m_l/

2

m~ 1 m- -1
+ -2 - =0.
= (wxx :yy wyy Ex awxy ‘:'xy’ 2 —3 wa tx dxdy 0

-2

After division by the factor in front of the integral sign and integration by parts it
follows that




TR S N— S WU = s ~ WY 4

1
2b
~ 1 r
1.2 1l m-1
J \Gh [(w’“+mww)zx+ m Vayly *
1
--2-b
x=+14
m -
..(wm-o-wxw);] -27-wa§ dy +
x=-%l
1
21
1,2 1 m -1
* fﬁh[(wyy+ wxx)ty"' m nytx
1
_.2.1
=-1-
2b
1,2 |
..(wxxy+wwy)t]dx +ff‘6h W +2wxxyy+w ) +
=-1
e
m2-1
+ 2= Aw tdxdy = 0 . (63.25)
mz XX

The kinematic conditions for the displacements w are

w =0 for x =¢%1 and y =t%b 63.26)

so that in addition

iy,

|

L‘=0forx==e-%l and y = &
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From thie it also follows that

* =l_\fqrv=d:-:}-h and £ =0 for x = x5 4
bx v Y y &
1 1
Furthermore,the function & 1is arbitrary so that for |x| < 32 and |y| < 3 b the
differential equation
1.2 m2 -1 ,
Eh (w +2wxxyy+w ) +2 mz wax-o (6327)
with boundary conditions
wxx+mwyy 0 for x *21’wyy+mwxx 0 for y = £3h.
should be satisfied. By use of (63.26) it follows that
w =0for~x=¢-3-z w =0f0ry=:h—1-b
Yy 2% Txx 2
and thus the boundary conditions become
w. =0forx =%8, w_ =0 fory = +1b (83. 28)
XX 27! y 2" '

yy

The solution of (63.27) with the boundary conditions (63.26) and (63.28) may be
written in the form [47)

= ACOB.,TXCOB . W
hd Asin i 2 sin ) '

where the cosine or sine functions are used depending on whether i and j are odd

or even respectively. However, this solution exists only if A attains a value deter-
mined by
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2 2 2 2 4 2

The smallest value of A corresponds to

. 1
j =1 and i b

_ For long plates, the latter condétion can always be satisfied with good approximation.
1t is assumed to be satisfied for an odd value of i so that the buckling load and the
corresponding eigenfunotlon are given by

2 22
A =-D__Th

1 21

» Wy 5 cos%cos% s (63.30)

which is in agreement with Sect. 632.

For the analysis of the neighboring states which belong to the fundamental state,the
following is introduced in agreement with the general theory,

u=au +T =T, v=ay +V=V, w=uaw +W. (63.31)

As (68. 22) is of the form (38.3), the extended theory of Sect. 38 may be applied pro-
vided that the displacements u, v, w are small. Some of the coefficients in expres-
sion {38.22) can readily be determined (see also (38.21))
0 B - ! =
A2 7\1 Az [u

APy luy)

2
Ay Gh —— o “‘ '1 1 dxdy = Gh——-—’ﬁh—&n (63.32)
X 1 gp°

0 44 0 ' -
AJ + Mg = Pglu] +APglu] = 0.
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- v

by the variational equation resulting from (38, 18), which holds for arhitrery kinc -
matically posstble functions ¢, 7 ,¢

thl‘_‘—if[‘zﬁxwy)(exwyw

m

-1 1 - :
m [ux”y * vygx "’Z(ﬁy * v (gy +"x)] +

-2
+-l-1izlz@' +w + +
12 XX yy)(c:a: cyy)

m-1 — - . _ oz - )
- 2B Wty ¥ Wby Nwtxy)l]dxdy+
m m2~1-;-
+Ghm————_1/-2>~ 3 W, ¢y dxdy +

m 2
+Ghsa-:'i&.ff

_m-1(2 2 . . -
“m ‘wly b * Wix Ty = Yix"1y “y + "x)] dxdy = 0, (68.38)

(wix + w?_y) &y + ny) "

together with the condition (38.19) which here takes the form

m 1.2 _ - —

Ghm-l_//lzh [2‘w1zoc+w1yy”‘"xx+wyy’ *

, _ - _ _ ]
-2-—nl—(\vluwyy+w1yywxx-2wlwwﬂ)] dxdy = 0. (63.84)

In the formulation of this condition use has already been made of (63.24). By analogy
to the foregoing (63. 33) is reduced through integration by narts
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i

l

|

=1
2 X 21
1,2/ m -1,
-[—éh(wm+wm)+ 2-—lnrxwx]:ldy +
x--%!
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As the functions § end
equatious

- |72
. 1 8/ o
3 --gh \wxxy+w /sidx +
if yl:_-%b

! - .'_n__-__l m I _@_:___!-__Q_ v

// = +uyy+m- ax(ﬁx+vy)+
( m_ 2 p (.2 2 2 2
' *m-18 5x (‘”1x’ * ‘”1y) TRIWWgy T B Wy Wy £ dxdy +

9 (.2 2 _ 2
(w + wly) +a wlyw1 aw, W Ndxdy +

2 _ 4 _
p M= 2 X tdxdy = 0 .
(63. 35)

[ ' The kinematio conditions for the functions U and &, ¥ and n follow from (83.23)

congt. and & = const. for x = :I:%l ,
' (63. 36)

const. and 7 = const. for y = :h%b.

n are arbitrary, U and V should satisfy tho differential
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T * Ty "1 o Gy T T
* mm ;o %(w..xz*' ¥ 2,)+ 2 VixViyy Ezwlywlxy -0
Vex Py TR TR @ ) ¥
+ mnf 1 g.z a—";—(wlx2+ w1y2)+ gzwlywlxx - Ezwlxwlxy =0 (63.37)
with the boundary conditiona
5 |
X = k-é—! u = conmst., [ [2 (ﬁx +'rln_vy) +
_%b
+ 1_12 (w1x2 ﬁwlyz)]dy =90, ix'y +—\7x + zilzwlxw1y 03
1, | (63.38)
2 -
y = *—;-b: v = const., / 2(Vy +—rlr—x—6x) +
Ve
* 52 (w1y2+ _:1;1 wlx?‘)-dx =0, l—ly + vx * gzwlxwly =0. J

The last conditions in (62. 27) and in (63.38) transform, by use of (63. 30) and (63. 36),
into

.1 -— 1 H
x==-2-l:vx=0andy=t-2-b: = 0. {63. 38)
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. For the function w is obtained the same differential equation as that which followed

frnrnemm 82 DR\ fAw o
AT R Ta

A
SC ey &

2
1.2 = - = m® - 1,=
= == A = .
6h (w , + 2w y+w ) +2 mz W ¢ (63.39)
with the boundary conditions
x=:il:W=w_=0ady=sib:wW=w,_ =0, (63. 40)
2"’ xxX 2°° yy

Equations (63.37) are identical to (63.9) so that they also have the same particular
solution (63.10). In order to satisfy the boundary conditions (63.38) this solution is
combined with a solution

u=-cx, v =dy

of the homogeneous equations (63.37). It follows then from the integral condition
(63.38) that with

all boundary conditions (63. 38) are satisfied. The resulting sclution of (63.37) is

2 2 2
= . ng 2mx 2r m-1\ =«
- o B (cos B e o) I,
(63.41)
V:Iﬂ?—sinm 082ﬂ+_m -_._1. _.ﬂ.fai
16b b (" b m ) ob2 y-
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Equation (63. 39) with boundary conditions (63.40) is identical to (63.27) with boundary
conditions (63.26) and (63.28). Therefore, it similarly alwayva has the solution

W= (63.42)

and in addition a non-zero solution for the particular values of A determined by

(63.29). The solution corresponding to the smallest value Al is incompatible with

condGition (63,34). Therefore, as long ag A remains below the second smallest

value 7~2 , there are no nonzero solutions of (63,39).

Substitution of (63.24), (63.30), (63.41) and (63. 42) yields after integration for the
term AA4§4 of (38.22)

Ad o 40 o0 A DI AIL = o%p0
a P4[u1] letpzl lerpzl gP4[u1] +

A4_e_1
2 4, 4
- POlE) - APIT) = oh =B M= 1TRA gy g
2 2 m-1 _2 3
m®  64b

The coefficient of thig term is always positive, thus also for A = 7\1 , 8o that
equilibrium is stable at the buckling load.

The equilibrium condition is

>
(X}

0
ahg 2" v 28 (1 -5 )a =0

with the solutions

a =0 and a =1 - for A 2z A
a a o 1
2A
4
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By use of (63.32) and (63.43) the second solution becomes

2
2 _ 8, _ .
a = ) (A )\1) for A = ).1. (63.44)
The average shortening of the plate is
x=%l
€=% e.t—(gu1+ii) .
x=--2-£

which, after use of (63.24) and (63.41), can be written

2 2
= e+l .
8b

Bubstitution of the values of e (63.20) and of 1_12 (63. 44) gives this shortening as a

function of the load parameter

€= 2A-A . (A zA) (63. 45)

1
If the quantities related to this case are denoted by a dash,it follows by analogy for the

unbuckled plate

€= ¢ = ,

The ratio of the effective width to the total width of the plate (which is equal to the
ratio of load sustained by the buckled plate to the load on a similar unbuckled plate

under the same average shortening) is then given by

% =%[1 +%1] (63. 46)




E——— T

This result is the same as that of Marguerre-Trefftz on account of the identity of A
with €% .,

That the same result has been obtained is due to the circumstance that the function W
which determines the change of the buckling mode with respect to W, » appears to be
zero, 1.e., that the general theory confirmse the assumption which was introduced by
Marguerre- Trefftz concernirg the form of the buckling mode. This is due to the facts
that the differential equation in W and its boundary conditions have no khown terms
and also that there are no termg containing W in Pgl [ ui,fx] and Pz'1 [“1 .

Strictly speaking the application of the theory of Sect. 38 as given here, holds only
for values of A smaller than Xz . Since A2 for long plates is only a little greater
than Al- for an infinitely long plate,the particular A values actually represent the
continuum A AI ~ the practical significance of the result would appear to be
little. In spite of this, the result (63. 46) for the effective width appears to represent
a good approximation also for A values exceeding Az . There is no doubt that this is
caused by the circumstance that the buckling modes which correspond to Ao oA

etc.
3
differ only a little from the buckling mode (63.30).
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Chapter 7
THE THIN WALLED CYLINDER UNDER AXIAL COMPRESSION

71, THE DEFORMATIONS AND THE POTENTIAL ENERGY

The two sets of lines of curvature for the cylinder are formed by the generators and

the parallel circles which are introduced as the parameter lines g = const, and

a = const., respectively, The positive directions of the parameter lines are chosen

in such a way that the positive direction of 2 normal to the cylinder is pointed outwards.
A point of the middle surface of the undeformed cylinder may be described by its
coordinates with respect to a rigid system of coordinates of which the X, - axis coincides
with the cylinder axis

X; = Rua, Xy = R sin 3, X5 = R cos 8.

The quantities A and B defined by (52.3) are

ox 2 2
( x!) (Bxi
A= E'é"&' =R, B = 2—8-5) = R, (71. 1)

R, = o, R, = -R; (71.2)

the minus sign iu the iast relation expresses that the corresponding center of curvature
lies on the negative part of the normal,
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v Y= 7

If for simplicity differentiation with respect to @ and with respect to 8 are denoted
bv a prime and a dot respectivelv. then the deformation components of the middle sur-
face take the form [see (56.3)]

1 12 2. 2
Yoo © §2“'+;2'(“' + v wr),

Vigo = R 2V * w)+;1§[u'2+(v’ swiew -wf]s | o

1 . 1 L L] L]
Yaﬁo = g + v+ ;—2[u'u FvI (Vo w) oW (W - v)] .
The changes of curvature follow from the formulas (56. 4) to (56.10). If terms of the

third order in the displacement components and their derivatives are disregarded in
the development of the determinants,it follows

Poa = —1—2w" +—1§[- whu' - (W = V) v+ (u+ v o+ w)w"],
R
0,, = —L(-u' -3y - 2w +w'') +
[
+-l§[-w' w' - (W o- V(v o+ 2w ) 4
R
+u AV F W)W -2V - w) —ut (Vo w) +ul v'],
= v e[ wet - - (v s
paB 2 w R3

+ o+ VW)W - v')].
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By calculation of these expressicns terms,of the form -1% Y 840’ etc., are disregarded,
Consequently, there is no objection to the simplification of these expressions when-
aver possible by the addition of & part of the disregarded terms. Accordingly, if

& A
3R Yaao and R YBB o &re added to pﬂ g the changes of curvature of the middle surface
are

\
Pac = “g %" +—1§I'w' w - (W - vt (VW) w"]:
R R
1 . 4., 101, 1,2 1.2
pﬁﬂm Rz(w V) +R3[2u' +2V' +2W' +
+u - 20"V + W)+ uY - what o+ b (71. 4)
+ (W V) (V+EW + VW (W - v)‘],
Pap = S -+ ‘15[‘“"“" @ - V) (VWY 4
R R
+ U +v' +w(w - v)']. J

The contributions to the changes of curvature which are linear in the displacements and
its derivatives will suffice for the determination of the buckling load (see [49, 50]).
Use of this simplification will be made also for the analysis of equilibrium for the
buckling load as well as for the neighboring states and the analysis of the influence of
small initial deviations. Hence,

....._1. 1 1 . o __l . _
faa = 2% pﬂB'Rz W - ) Pap-nz W - v,  (7L5)

The justification of this simplification will later be given by use of expressions
(71.4) (see Sect, 782).
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The olastic epergy in the cylinder is calculated through integration of (56.11) after sub-
stitution of (71.3) and (71.K). If 1 denstes the loogih of ths oy

‘+4(1(' +w) [u‘

.. A_ .. aw [,
i Ua W UYLLUOL Uit CUCTRY 18

[--11.18

9w
%Gh‘l-%—v j da I dg {«m‘2 +4 (v +w)2 + 8 (v' +w)+
b4 Q

421 -+ kW w -v 2y
+20W" (W -y)  +2(1 -y (W - ")'2” '

2
R 2n

daj a8

(o}

4u' (u'z + vy w’z) +

el

1
<
=

o

2+(v‘ +w)2+(w' —-v)z] +

o+ 4vu"[u' 2, v + w)2 + (W - v)2J +4v (v' +w) (\1'2 24 w'2) +

+4.(1-v) (u" + v) [u' v+ Vv W) W (W -v)] +

daf dg (u'2 + v'2+w'2)2 +

lop L 1
+3Ch 55 2J
Q
: 2
+ [u'z+(v‘ +w)2+ w* - v)z] +
+ 2y (u'z+v'2 + w'z) [u.z + (v’ +w)2+ (w* - v)2] +

+2(1-v) {u' v (v AW W (W - v)]zl . (71. 6)
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Here for, brevity
1
_— = v’ c—— k. (71.7)

Let N be the axial load per unit length of the circumference which is acting on the
cylinder edges, then with the load parameter defined as

NN
A= En " 2WB@a+iph’ (71.8)
the energy of the loads is
2n ot -
«W = A2Gh(1+1 R j udg R, A2Gh (1 + u)R[fu' dadB. - (71.9)
C a=o J .
0

72. THE FUNDAMENTAL STATE
The fundamental state is assumed to be of the form ;
U= - eRa,.‘l-‘ v 0, W = fR ,‘ (7‘2.1)
The increase i_n the enargy on transition ff.oﬁi th?--_funﬂémgntal state to the slﬂte
U‘+u=,_y-_e=.~_Rq+g,V+v.f= Vv, Wiw=fR+w (72.2)

is obtalned by substitution of (72.1, 2) in (71.6) and (71,9). After divislon by } Gh 1>
and after expansion, this increment is

PAu) = pll [u] + pzl ) + p3l ) +P 47t[u] . (72.3)
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For the moment only the first term, which represents the first variation of the energy
in the fundamental state, will be defined

= Rff[-Be+8vf+1292+4vf2-8vef—4e3-4vef2)u'+

+ (8f - 8ve +12f2 + 4v02 - Bvef + 4f3 + 4ve20 (v: + w)] dadp +
' 1

+8(1-v? mf[ u' dads.

The equilibrium conditi~ns for the fundamental state are obtained by setiing the first
variation equal to zero, and consequently e and f should satisfy

- 8e + _vi_+ 1292 + 4vf2E-~_ 8vef - 4e3 - 4vef2 +8 (1~ y?) A= 0,

(72. 4)

' 8£ - Bv.e + 12[2 4{4ve2.— Bvef+ 4f3 + 4v921. 0. .

the elastip range e nud f are very small and the equation may be llnaarized' its

aoluuon 18’
e=% f=u - (72’.5).

Alsg, in‘the integrals I'm[u], terms of the second and higher urder in e and { are
disregarded. _ After vse of (72. 5), they take the form

p_A M= m %l e P,
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Here

P2°[u] = [”4u'2 +4 (v + vv)2 +8v' (v +w) +
JJ N

R ["V"z S -V S 2w - ) 4

+2(1-v) W - v)'z] dads, (72. 6)

P,'[u] =[f{(- 12+ A ussn (v +w)l+

e Y RTUN R I, Y L U WL Y S L

4 @-vluv-4Q- uz)w'zl dadg, 72.7)

4’ (u'2-+ v? +w'2) +

POl = & f f

+4 (V' +w) [u'z + (v +w)2 +(w' - v)2] +
+ 4pu! [u' 2 + (v + w)2 + (W' - v)2] +
+ 4u(v’ + w)_(u'z +v'2 + w'z) +

+4(1-v) @ +v" [u'u' FVV AW W (W - v)] dadp, (72.8)
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PS'[u] = %‘[f{- 4u' (u’2 4 v'2 +w'2) +

(4 2 ~ -
av (v W) |urT (v W) (we - )4+
- 4vu’ [u‘2+ (v +w)2+(w' - v)zl +
r 4 (v v w) (u'2+v'2+w'2)+

-4 (1-v)(u -vvhY l'u‘ v +vV (v +w)+w (w —'v.)] ldadﬁ, (72.9)

2
(u'2+ v'2+w'2)2+ [u'2+(v' +w)2+(w' —v)z] +

+ 2y (u'2 + v'2

+w'2) [u'2+ (v* +w)2 +(w' - v)2 ]+

+2(-v) [u' u o+ vV o+ w) +w (W - v)Jz dadg, (72. 10)

P,'lul = 0. (72.11)
The second term of the second variation
Pz"[u] = P2°[u] + AP,'[u]

contains the small faclor A. Therefore, those contributions In the integrand of Pz'[u]
wkich bave a counterpart of the same argumerts u', v', w, u’, v' in the integrand
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of I’g(u] appear to be negligible. However such a simplification may lead to a com~
pletely incorrect result. This is due to the circumstance that the integrand of Pg[ul

ic not dafinits in the arguiicais u’, v', w, u', v' 80 that the contributions depending
on these arguments in Pz'lu] may become large in comparison with contributions
depending on the same arguments in the integrand of P‘z’[u] ; in that case,the omisseion
of the first mentivned contributions in APZ‘ lu] can no longer be justified. This objectio
is not valid if in the integrand of P2'[u] terms are neglected which exclusively dapend

i onu', v + w and u’ + v', because the integrand ot Pg[uj is definite in these argu-
l v ments. The integral PZ'[u] now becomes as simple as possible if the contribution

‘\ . depending on u', v' -+ w and u* -+ v’

e e g o T T

| (12 - 4v2) u'2 -8p(v’ + w)2 +8r(1-wyu' (v’ +w)+

|
| 2 (1-0)2 @ +yn2 (72.12)

is added to its integrand. The result is then given by

| .
| P[] = I J - (1-vY @ur?+ 20 + 4w'?) dadp. (72.13)
i
|
| 73. THE BUCKLING LOAD

; The buckling load is determined by the smallest value of » for which the homogeuaeous
5 variational equation for neutral equilibrium (38.4) has a nonzero golution. With
arbitrary, kinematically possible functions £ ,7n , ¢t this equation takes the form
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jf ‘Su'£'+8(V' +W) (' + )+ Beu {nr + )+
18DV AW E 44 (L-v) (@ + V) (@ 40+
+k lzw"g" F2 W -v) (L ) W (T -m) +
FWW -V LT L - (@ -

-V +avn + 8wt} dads = o (73.1)

As £, n, t (justas u, v, w) are periodic functions of A with period 2, (73.1)
after integration by parts becomes

2r
f l[su'+8u(v’ Lw)] £+ [4(1-u)(u' + V) +
0

-4k (1 - v} (w* —v)'-4(1-v2)7\v' ]'n+

+k [2w 4 20 (w0 -v)'] £ - [2iow 4 2kt -+

R
brﬂn

+4k (1 ~v) W' - V)" +8(1—v2)7uv'] tlds

a=o
+ff{{- 8u" = 4 (1 ~p) U™ - 4 (L4p) V" 'BVW'+4(1-v2)Au"]g .
+"4(1+")“" -4 (@1-p) V-8V -8w +k{-4(1-v) V' +

-2y + 4= W s2wtt } +4 (1 _vz) 7*""]1?+

+ [Bvu' + 8V + 8w+ k{-(4-20) V" - 20" 42w 4

AW 2wt } 48 (L - v?) Aw"] gl dadg = 0. (73.2)
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It is assumed that the cylinder edges are supported in such a way that the displacement
1t

components v and w In the plane of these edges are zero; as Flugge remarked [50)

these boundary conditions, or at least the one concerning the diaplacement w, may

take eifect only afier the load for the lunaamental siate has been applied as otherwise
they would be inconsistent with the assumed form of the fundamental state (72.1). In
agrecment with thesc kinematical conditions also 7 and ¢ should be zero at the edges

of the cylinder. Besides from thesc restrictions, the function £, 7, ¢ are completely

arbitrery so that u, v, w must satisfy the differential equations
gu"+4(l-v)u” +4 (1 +y) v’ +
+ 8vw! - 4 (1 - v2) ae” = 0,
4(1+v)u” +4(1-p) v +8v" + 8w +k [4 (1-v) v+
+2" - d-2n W -2w ] -4(1 - 112) Av' = 0,
Svu' + 8v' + 8w+ k [— 4-20) v - 2v" 4+

+ 2w 4 AWttt 4 2wt ] +8(1 - vz) aw'l = 0

S

with the boundary conditions for o = 0 and «a =

v=w=u+ p(v+w) = w' +p(w -v) = 0.

"eac bounuary conditions are reduced to
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Anarbitrary funcon ol o and § with a continuous mixed second derivative can be

expanded into a double Fourler series. In viewof the boundary conditions (73.4), these

serles can be written in the form

u= % (Apn cos pacos ng + Apn cos pa 8in nﬁ),]
v=ZX (Ppn sinpoa sin nf+ Bpn sin pa cos nf), (73. 5)
w = E(Cpn sinpa cos ng + Cpn gin pa sin ng);

where

while summation should be carried out over all integer values of i and n, including
i=0 and n= 0. Under the assumption that differentiation of u, v, and w may be
applied to the series term by term, the first equation (73.3) becomes

ZI[' 51’2 ~4Q-v) n2 +4 (1 -vz)Anzl Apn ¥

+4 (1 +v) pann + iiupCpn cos pa cos nf +

+Z||-8p2- 4(1-v)n2+4Q1- vzmz]xp“

-4(1 +y) pann 1+ Svpcpn cos pa sinng = 0,

The validity of this equation for all values of o and B implies that coefficients of
cos por cor nfi and cos pa min P8 must 2ll be zero. The remaining equations (73.3)
are treated similarly, The coefficients A, B, C, whose indices will henceforth be
left out, should thus satisfy the three homogeneous linear equations
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22 4 1-p)n® - (1- %) An2|A - (1 +p)pnB +

- 2y‘pC - 0,

- 2(1+p) pnA +l2(1-—v)p2 +4n% +
+ k{20 -0 0% +nf)- 20 -0Bap%]B 4 | (73.6)

+[m + k{@-v)p?n + n}c = o,

~ 4ypA + [4n + k{2 -v) pzn +n3}]B +
B - aa-vhaflc = o

s

+|4+ k(p2+n

ey

The equations for A, B and C are obtained from this by replacement of n by -n.

; These equations have a nonzero solution if and ounly if the determinant formed by their
' covificients Is equal to zero. Thus, tne states of neutral equilibrium are characterized

[ ' ' by the values of A satisfying the equatiou

2p2 + (1 ~ v) 0% - (1 - p%) An® -~ +v)pn

~2(L+p)pn 2(1-v)pe+dn+ k(2 (L -v)pZ+ni]-2 (1 - v)Ap?

‘ - dyp 4n + kn ({2 - v) p? +0°]

- 2vp
0. (73.7)

"

4n+kn (@ - ) p° + 2%
4+ k@ +092% - 4 1 -vHap?

Expansion of the determinant yields, if terms of the second or higher order in the

L small quantitles X and k are disregarded,

1




- 0" [ -v) PP+ 0 T2 4 v p7 + 0l ] + v 0t

M- 121 + ) o+ p2n? + p2 2 + 12 (73. 8)

After the omission of A, k, k'p2 and kn2 in comparison tc unity (see also Sect. 781)
the ratio of the coefficlents A, B and C are calculated from the first two equations

A_=p(vp2~n2)’_g=_£ 2 +v) p® + n’] (73. 9)
C pfind? (@ +n°)

The buckling load is deterinined by A, the minimum of (73.8) for integer values of i
and n and with p = irR/2. The corresponding eigenfunctions are given by (73.5) and
the ratios of the constants A, B and C determined by (73.9). The constants A, B,
and C ave take_n to be sero,

74. SIMPLIFICATIONS

It appears from experiments that p is large for cylinders with very thin walls [49); in
that case equation {73. 8) may be simplified to

o 2 22
n gy | e D) (74. 1)
(" +n%) 4(1-v) P

This equation is only dependent on the ratio
2 .22

(P~ +n’)

p
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andg thus the minimum i8 obtained for

4

k
- TL_EA + -3 =0,
P+’ a@-w)
onr
4
2_|
p?enl = p\/EEZV) (74.2)
The corresponding minimum of A is [49]
A= k . (74. 3)
1-v

Here no attention has been given to the conditions that n should be an integer and that
p should be multiple of 7 R . Howrver, the latter condition is of little importance
unless the cylinder is very short, as the values of p corresponding to i andto i +1
differ very little for large values of i. This conclusion i8 supported by experiments
[25], from which it appears that the buckling load is independent of the length of the
cylinder and of the boundary conditions as long as the cylinder is not too short

({/R >0,75). Accordingly, in the following influences of edge restraint will be
neglected and p will be regarded as a continuous variable. For each integer value

of n, (74.2) then yields two values of p

YT \/"r—T’ﬁ
_ 1. /a@-v 1./1-v 2
Pni,2 © 2\/4"1(_") * 2\/"k— " " (74.4)

these valu2s are real and unequal if

—
2 1./1-~-¢
n < E\/;E— . (74.5)




if in

WEES = (74. 6}

_ 1[4 @Y
py = T\ ) = m, (14.7)
n

In view of (73, 5), the combination n = p = 0 determines a rigid body displacement of
the cylinder in the direction of its axis and it can therefore be disregarded. Thus for
n = 0, only the solution
4
2

p, = iﬁ.&ﬂ (74.8)

need be considered. If (74.6) is satisfied, then in view of (74.7)

=1
m=5p,- (74.9)

The displacements (73.5) were established with due consideration to the bourdary con-
ditions (73.4). However, these boundary conditions are again ignored if p is regarded
as a continuous variable, Strictly speaking this implies a restriction of the considera-
tions to infinitely long cylindere. The condition of periedicity for the particular solutions
replaces in that case the boundary conditions. The latter condition as well as the differ-
ential equations are also satisfied after interchange of sinpa and cos pa in (73.5).
Therefore, the general solution of the equations of neutral equilibriuin for the displace-
ment component w is
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w = ao sin POt + h0 cos p o + nzl (anl sin pnlot cos nf +

+ bnl ginp .o sin nf+c_, cos Py @ co8 ng+ dnl cos p qo sin ng +

nl

+a,8inp 0 cos ng + bn2 sin Ppo® sin npg ~

+ ¢, cO8 pnza cos ng+ dn2 CO8 p, o0 sin nﬂ) +
i i

+ 8., 8ih ma cos mpB +bm sin mo sinmg +

+ ¢, €08 My cos mg + dm cos ma sin ma, (74.10)

with the understanding that the last four terms are only presant if (74. 6) has been
satisfied and that summation should he carried out over all integer values of n which
satisfy (74.5).

The displacement components u and v are completely determined by (74.10) and by
the equations (73.3). In view of (73.5), terms of the form sginpa cos nB in (74.10)
correspond to terms of the form cos pa cos ng and sinpa sinnf for u and v,
respectively. The coefficlents for these terms are determined by (73.9). The terms
in u and v which apply after replacement of sin pa and/or cos ng by cos pr  ind
sinng in (74,10), are obtained through replacement of sin pa and/or cos np

cos pa and sin ng respectively. The ratio of the coefiicients is again given wy (73.9)
in which now p is replaced by -p and/or n is replaced by -n. The general solution
for u and v then is
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u

- b_ sl
-3 2, COB Py - Osnpocv)+

ip (vp 2 ng)
ni *nl ~ (
+Z ’ a _Co8p .« cosnp+
=1 (sz + n2 2 nl nl

+ bul cosp o sinng - Cn1 sin Py, cos ng - dnl 8in P12 sin nﬁ) +

Pag ('2g” - 1)

<+
2
(B 2

= Cyo sin Pp,¢ co8 ng - dnz sin P o0 sin nﬁ) +
- = — (am £08 ma co8 mp + bm cos ma sinmp +

- ¢, sinma cos mg - dm sin mo sin mﬁ),

n kz + ) pnl‘o" + nzl

(p n12 ")2

Ngh

-a . sinp «asinng+
o ( nl nl

2§2 (an2 co3 p o co8 ng+ bn2 COE p .0 sin ng +

+ b[11 sin p 1% o8 ng - €, €08 P @ sinng+d L1 COB P & cos nﬁ) +

2
nl(2+v)p," +0°) N
+ -a _sinp ,asinnf+
2\2 ( 2 n2
(pnzz"n) 2 "

= C o COB Pho@ sinng+ an cos Py cos nﬁ) +

3+

34w _
+ m \ a. gin ma sin mg - bm sin ma cos mpB +

- €, cos ma sin mg + dm COo8 ma Co8 mﬁ).
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(14.11)

(74.12)




The same remark as was made about (74, 10) holds here with respeci to the last four
terms of (74, 11) and (74.12),

In view of the above, the general solution of the equations for neutral equillbrium at

the buckling load {s a linear combination (with coefficients a_, b_, 2.1 etc.) of a

o' "o
number (suppose q) of linearly independent particular solutions Ws Vi Wi "
. 12
Ty Wy Vi Wi Up Vp Wyl= 0 for h # 1 (74.13)

is satisfled, these solutions are also the solutions of the first @ minimum problems
(24. 8); according to Sect., 24 these first q minima should all be zero. Now with?

T, [u] = % P2° [u] or T, [u} = - % P2' [u]

it appears that condition (74.13) is satisfied for an infinitely long cylinder. This follows
easily from the relations

2 T W
§f: hA :;’: igdg = 0 for h ¥ i Z cos hg sinhgdp = 0,
L3 ,
R —7 cos cos - : 74,14
ll_l’n;! / sin P o gip Pj@da = 0 for h# i (74.14)
1
R
lim — }cos pa sin pa da = 0,
f—~=2 g J

LT he factor R/ 1 is included because Tz[u] would otherwise become infinitely large
for the infinitely long cylinder. '
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The general solution (74.10, 11, 12) is then immediately given in the form which is
known from the general theory,

76. STABILITY OF THE CRITICAL STATE

According to the general theory of Sect. 272, stability of equilibrium at *he buckling
load is in the first place governed by the cuestion whether or not the third order
form, which resulis from substifution of (74.10, 11 and 12) in

-
Py Tul = pg° [u} +2,P,' [u], (76.1)
is identically zero, The liategrand of (75.1) consiste of a sum of products of the form

cos cos co8 cos cos cos
sin Ph? stn Pi%gin Pj® sin 2P gin 1B gpn 1P (75. 2)

where Pys Py pj each have one of the values determined by (74. 4) corresponding to

values of n = h, i, j respectively. Each of these products mey be reduced to a sumn
of products of the form

oin By * Py * Pj’“:f: h£ixj)p. (75. 3)

The products (75, 3) must be integrated over the cylinder wall, Since

2r
cos -
c[ oin BB = 0 for n # 0,

such a product can only yield a nonzero contribution if

h+xi+j=0 (75. 4)
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The integration with respect to o does in general not yleld such a simple result.

However, if in all contributions of (75, 1) the common factor -2% is divided out and

the Umit process £ —w  is carried oui, then as

= 15:;1‘_;;}@545}.:: ’HM i ‘iﬂﬁ. “wl' *

Wl ¥y

B

2
R Rcos
m'g_fs pada =0 for p # 0,
()

W .

it follows that a product (75. 2) can only yield a nonzero contribution if
P * Py % By = 0. (75. 5)

For the buckling modes considered here (p >> 1), application of this result obtained

for infinitely long cylinders to cylinders of a not too small but finite length (&/R > 0. 75)
is justified because no influence of the length of such cylinders has been detected experi-
mentaily. Besides, the simplification already iniroduced, whereby p was regarded as
a continuous variable, is also exactly valid only for infinite cylinders.

The number of possible combinations of values of h, i, j and Py Py P which satisfy
(74. 2) or (74. 4) is drastically reduced by the conditions (75.4) and (75.5). First of all
it is noticed that

h+i+j=0 or ph-l-p1+pj=0

is not a possible combination if only positive vaiues of h, i, j and Py Py pj are
included (negative values give no extension of the solutions (74.10, 11, 12) and there-
fore need not be considered). Further, the considerations may be restricted to the
two cases

h+i-j=0 p +p -p =0 and (75. 6)

h+l-j=0,ph-pi+pj=0. (78.7)
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us all viner pupsibie combimtiions may be vbisined irom ihese by permuiasiion ol

h, i,and j.

Also, it appears the possibility (75. 6) may be eliminated, as substitution of j and pj
(75. 6) in relation (74.2) which holds for n = j, yields

4
2
2 2 4(1.-
@ + )" + B+ 0* = @y + |/ HE
from which, with use of (74.2) for n = h and n = I, it follows that

php1+h1= 0.

Thus, only the possibility (75,7) remains. Eliminationof i and p; from the relation
(74.2), holding for n = i, ylelds

phpj -hj = 0.

The relation (74.2) for n = j then may be written in the form

- 4
-j2(1+f§> _ jh 4g1£u2)

from which, with use of (74.2) for n = h, it follows that j = h. The combinations of
n and p, which together determine a product (75.2) that may yield a nonzero solution,
are thus given Ly

' R . (75. 8)
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This result can simply be illustrated by a p versus n graph, Here the combinations
of p and n for the buckling modes (74. 4) are represented by the intersections of the

circie (74.2) wilh o genevators o= 1, 2,.,, {(Fiz. 9,
belonging to the same value of n and the point n= 0, p = Py determine together a
term of the integrand of Py lu] which after integration can yieid & nonzero quuuiiiy.
Exceptfor n= 0, p=p o’ the assurnption p >> 1, allows ouly relatively large

values of n as only in that case this assumpticn has been fulfilled.

Tha fwn nainta of intaraactiona

Still more simplifications can be introduced in the calculation of (76.1), From (74.10,
11, 12) it follows that u and v are small in comparisonto w while their first deriv-
atives may be of the same order of magnitude. Further w' is large in comparison

to w, while w* may be of the same order of magnitude as w', The most important
terms of the integrand of Pg fu] (72.8), in comparison to which the remaining terms
may be disregarded, are then given by

2 .2

[»]
w4 Fww T w4y +w)w'2+

FAQ-P) U +V)W W = 4[u v (v + W] wWE 4

+40u +v +w)w'2+4(1-u)(u‘ + vHw'w', (76. 9)
The most iraportant terms of (72. 9) are of the same form so that, as Ay <<1, the

contribution 'klpé [u] may be neglected in comparison to Pg [w] .

Although the corresponding amount of writing is quite extensive, the execution of the
calculation of the third order terms now yields no more difficulties, and thus the final

result only is reported

re

PyiZau] = 2—’-'-2— 1 -vd

2
. 32n [bo (= 81 8z = byg Poo * €y a2 *

n2 n

+ dnl dnz) + a, (an:l o +an2 cnl + bnl dnz + b112 dnl)] +

3.2 2 2 2 2
+5m [bo(- a2-b 2+ 2rd Py+oa (amcm+bmdm)]|-(75.10)
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n=h

FIG., 8
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Here gsummation should be extended to all sufficiently large integer values of n which
satisfy (74.8). It appears from (75.10) that terms of the third order do exist so that
equilibrium at the critical state is unstable.

76, EQUILIBRIUM STATES AT LOADS IN THE NEIGHBORHOOD OF THE BUCKLING
LOAD STATE

Since, in view of (72.6 to 11), the energy increment (72.3) is of the form (38, 3) the
theory of Sect. 38 may be applied. If the considerations are restricted to displace-
ments from the fundamental stdte of such a small magnitude that alreb.dy terms of the
fourth order may be neglected, then the stationary value of the energy i""‘(a,) for
constant values of ay takes the form corresponding to (38, 22)

Plap = (A-2,) P,'ay) + Py (a) + \Py'tey) (16.1)
where
P2'(aj) = P,' [L‘ajuj]
Py (ay) = Py [Zau,]
53'(aj) = P’ [L“ajuj] (76. 2)

As already has been remarked in the previous sectlon, Ps'[u] is of the same form as
Pg (ul so that in (76.1) the last term may be disregarded as A << 1. Furthermore,
the second term agrees with (75. 10) so that only the first term needs be calculated.

In the in ;- --nd of (72,13) u* 2 and v'2 are again negligible in comparison to w’2
so that

Dt = 2 2 . .
Py = -4 -v?) I/ (za,w,” dadg;
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-4 - %) 2a, 2’/:/-wj'2 dadp =

—'2_% a- Vz) ; 21)02 (ao

P,'@)

2

+b2)+
o

Hence (76. 1) becomes
=A 21 2 2 9 2
P (aj)=i'é'(1-l')g~R(A-A1) [21:o (ao +bo)+

- _ 2 2 2 2 2
+ }:1 Pn1 (anl +byy tenyy +dy )"'
n=

- 2f 2 2 2 2\ .. 2
+ ngl Pyo (‘nz +b o e, + d g ) +m (am

(76.3)

2 2 2 2\| ;
+b, " +e T +d )]+

.o 2
+ 3 ngln [bo (—anl 252~ Pa1 Po2 + %n1 %z *%m d112) +

+ 8, (anl Chot Bpo bnl dnz + bn?. dnl)]'+

3.2 2 2 2 2
+ gm [bo (—am - bm +C +dm Y+ 23’0-(am°m * bmdm)]i‘(qs' 4)
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The equilibrium states are characiorized by stationary values of (76.4) as functions of

the parameters ao. bo’ 81 etc. Differentiation with respect to a, and b, leads to
the conditions

2 z 2 _ 3
“ 4RO - A Py 8y * 3 £, By Chp * BppChy * gy g ¥ Bppyy)
+3m2(ac +b d. .} =0
mm mm '
oee y (76.5)
- 2 Z 2
TARM =) By Po T3 £ 0= pBny =Py * a2 * %))
3 2 2 . 2,2, ,2 _
+§m (-am -bm +um +dm) O.J

It appears from these conditions that N and bo cannot have a nonzero value unless
at least one pair of the remaining coefficients differs from zero.

Differentiation with‘respect to 8199 8o Cp1iCpo leads to the conditions

2
S 2R (A= M) gy ay +30% (- bRy, *agea) = 0,

2 2 =
-2R( ')‘1) Py 8yp ¥ 307 (-byay, +24cp)

[
h=d

» (76.6)
2 2 _
= 2R (A - 2q) ;" oy F807 ( byey, +agan,) = 0,

2 2 =
-2R (A ~ Al) Po 2 + 3n" ( bocnl +aoanl) = 0.

The coenditions obtained from differentiation with respect to bnl’ bnz' dnl' d 2 have
the same form and follow from (76. 6) through replacement of 81 2 and a1 2 by
14 ?
b and d respectively. Differentiation of (76.4) with respect to a__ and ¢
nl,2 nl,2 m

m
leads to the conditions
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2 2
-2R(-A) m a  +3m" (- b,a, +ac )

|
o

- 2R (A-Al)m cm+3m ( bocm-o-aoam) =

The condition obtained by differentiation with respect to bm and d

(76.7) through replacement of a m

it
(=4
[N———

(76.7)

n follows from
and cm.by bm and dm respectively.

T'he conditions (76.6) may be regarded as a system of homogeneous linear equations
for 2n10 Baor Cppv o These equations have a nonzero solution if and only if the

determinant formed by its coefficients

is equai to zero. Expansion of the determinant leads after use of

2
Py Ppg = 7

to the condition

2
f[4m2 a-ap? -9 +0 3] =0,

from which it follows that
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-2R (A -a)p,°  -3n’p, 0 an’a,,
2 2 2
- 3n b0 -2R (A - Al) Ph2 3n"a 0
2 2 2
0 3r a, -2R (A - 7\1) Py 3n"b,
3n® 3rb 2R 2
na, 0 n“by ~2R A =A,) Py

(76.8)

(76.9)

(76. 10)




Likewise, the conditions (76.7) as a system of linear homogeneous equations has a
nonzero solution if and only if the determinant

I- 2R (\ - A;) m” - 3m%h_ 3m’a I
2 2 2 I
| 3m a -ZR(A-Al)m +3mb°

is equal to zero. Expansion of this determinant leads again to the condition (76. 10),

A surprising feature of condition (76. 10) is its independency of n, eo that the resuit
of its satisfaction is that zll equations (76.6 and 7), as well as the equations obtained
from these by replacement of

by b.,b

nl’ "n2’ d

nl.d b, .,d

801° ®n2* %n1’ %n2' fm Cme n2’ m' m’

have simultaneously a nonzero solution. On the other hand, if (76.10) is not satisfied,
then (76.6 and 7) have only the trivial zere solution. In that case 8 and bo are
also equal to zero in view of (76.5).. This solution whbich represents the fundamental

state can be left out of further consideration.

For the values of 8, and b o determined by (76.10), the determinant (76.8) is of the
rank 2, i, e,, all the determinants of the third order formed from its rows and columns
are zero, while at least one of the determinants of rank two is unequal to zero. The
general solution of (78.86) is,therefore,

3
2
Sn
a, = (-bya ., +a.c ),
n2 2 0 nl 0
2R (A - A) Py n nl
) (76.11)
2
3n i
., = ( aa . +b.c ),
n2 2 0™l
2R (A - A)) P, uhoomr |
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in which a_, and ¢ , are arbitrary constants. The corresponding solutions for bn2
and d Lo 2Te obtained through replacement here of a4 and i1 by b nl and dnl
reapectively. The solution of (76.7) is

- —

- 3
°m = W OC A - 3, aa, (76.12)

uniess a, is equal to zero; in the latter case the solution is given by

. 2
by = gR(A-2) or b, = -%—R(A-Al) . (76.13)
depending on whether b0 determired by (76.10) has the value

F a, =0, ¢y arbitrary, resp. a arbitrary, c = 0. (76.14)

i ' The corresponding solutions for b,, and dy, aré obtailned from this through replace-
ment of a,, and ¢y by b, and d;, respectively.

By aubstitution of (76.11 and 12), (76.5) becomes

see 1 .
2 2 . ha 2., 2 2 2
-4R (A -A)) B, 8, *+9 4 2(%1 *bnl *Cn +d111 )+
=1 2R (A - %) Ppp

2

m™g
‘ . (¢] 2 2\ _
| +&:"".I{(}‘...;\l)-3bo(a’m +bm) 0,
< ¥
2 (2 2 2 2 2
~4R(A-2)Dp. b +9 / a +b +o + )+
D P Pot 8 L B 3 (81 *Pw * 0w *
1’ *n2
2
9a
3. 2 o . 2 2) _
tsm -1 (am_ +bm)‘°-.

i
I
i
4
E
!.
1
|
!
3
|

2
[2R (A - Ap - 3bO]
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By use of (76.9) the first condition becomes

‘ 2 2 2
&y '41”7"7\1“)0 2R\ ~ A)z bnl *h +dn1)+

9 2, 2 2 | _
* R0 - A) _3b°m (& *tbhy) } = 0. (76.15)
By use of (76.10), the second condition can be reduced to

2 2
z"m (a +"m tdpy )

n=1

9 2 2 2 _
+2R(7\-)\,)'-3b°m @y *by) ]— 0. (76.16)

Except if a = b0 = 0, which case may be disregarded, these conditions are only
a satisfied by

| 2 2 2
4R (A -M) Py Y IRG - ;\)nz_lpnl @, ey rdy B+

9 .2 2 2, _
+2R(A-A1) _3b°m (am +bm ) = 0.(76.17)

The case a, =0 raust still be considered separately. The first coqdition (76.5) 18
then immediately satisfied by substitution of (76.11 and 14). Depending on whether

f ' the first or the second relation (76.13) is satisfied, the second condition (76.5) by
substitution of (76.11 and 14) becomes

22 2 2 2 2
-8R% (A -2 )% p % + 9 zlpnl By *Pyy *Cpy *dy)
n=

9 2, 2 2, _
+§-m (cm +dm) =0, or (76.18)




[T T

* A,
. ";rl”?"‘j‘.

2 22 z 2. 2 2 2 2
TERTOA) RS L Py By tByy oy )Y

9 2 2 2, _
tzm- @ _"+b_%) =0 (16.19)

2

respectively.

The results obtained may be summarized -8 follows. The displacements (74.10 to 12),
for neighboring states of equilibrium deviating from the fundamental state, should
satisfy (76.10 and 17) and (76.11 and 12), In the case that a, = 0 one of the condi-
tions (76.18 or 19) takes the place of (76.17), whkile (76.12) is replaced by the corres-
ponding relation (76.14). It appears from these results that the displacements in the
neighboring equilibrium states are far from uniquely determined. This is partially
caused by the fact that the contributions to the displacements with coefficients a, b,
¢, d with the same indices, all determine the same buckling mode, although with a
relative '‘phase~shift"'. On the other hand the indeterminancy between the coefficients
with different indices cannot be attributed to this fact. It is to be expected that this
latter indeterminancy would, at least partially, disappear if in the energy also terms
of the fourth order in the displacements were taken intc account. This possibility of
improvement of the theory would introduce a considerable complication of the analysis

and will not be further explored.

The atability of the neighboring states of equilibrium is governed by the second varia-
tion of (76.4) :

2nd 2

2352 = &7k . 2 2 2
a'FMay = 27 a - A -Ra-ap [2” aaf abgh +

2 2 2 2 2
+ nz=1 Py, (A8 " +Ab " +Ac," +Ad )+

+ 21 pmz2 (Aan22 + Abnzz + Acnzz +Adn22) +
n=
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2
m

2

+mf aa 2+ab ? + ac ? ¢ ad B+

+3 £, 0 |D (~Aa . A8 , -Ab . b o TAu &6, +ha . Al )
L T |0l gy Afpp "8y, Shpp T An) Sopp T SUn1 S¥na

+a, (Aan] Ac112 + Aanz Acnl +Abn1 Ad!12 +Abnz Adnl) +

-8, ab, ba, -8, Ab, Aa e bnl Ab, Abnz -bn4h, Abnl +
+c,;8by Ac, +ep, Aby e, + d8b,ad ,+d, Al Ad , +
ta . da Ac, *+ 2 AaoAam + LY Aao Ac , * 1 Aao Aanz +
+b,  Ba Ad,+d,Aa Ab  +b,As Ad +d . Aa b, |+

2
m

3 2 2
+tgm” b, (-4a " -4b

+he Zrad %+

+ 2a° (Aam Acm + Abm Adm) +

-2 Abo da - me Ab, Abm + Zcm Ab, ac +
+ de Abo Adm + 2am Aa Acm + 2cm Ar, Aam +
. (76. 20)

+2b_Aa Ad_+2d_Aa Ab |

The general conclusion of Sect. 36 that neighboring equilibrium states at loads smaller
than the buckling load are unstable can immediately be used, Further, the coefficient
of for i.natance,é;a(,2 is negative for loads greater than the buckling load. Consequently
(76.20) is negative only if Aa, is different from zero. Therefore, the neighboring
states uf equilibrium, as well as the fundamental state,are unstable at loads in excess
of the buckling load. Since an unstable siate of equilibrium cannot be realized experi-
mentally, the sbove analysis offers an explanation why, at least for small deformations,
the thin wallec. cylinder cannot carry loads greater thun the buckling load.
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The neighboring equilibrium states for a cylindrical shell were investigated by

s ’ som s tmae JRIT B ST T
VUL DUATINWIL iU 18460 v ), ThoEC WIlteis assumasd for the 4otn! aormat di:“"""‘

ment component
wo=a + a, cos pa cos ng +a, (cos 2po + cos 2nf) . (76.21)

The displacement components in the axial and tangential directions are then determined
by application of-the equilibrium conditions in the plane of the shell. The three param-
eters in (76. 21) are finelly found from the condition that the potential energy should he
a minimum,

The displacements assumed by von Karman and Tsien cannot represent the general
solution in the critical state. Cousequentily, their results will presumably be less
accurate for loads reasonably close to the buckling load. This supposition is con-
firmed by the shape of their curves giving the amplitude a; of the critical mode as
a function of the load. At the point which represeuts the critical state A = Aps

a; = 0, the tangent to the curve is parallel tc the a;-axis. According to the general
theory (76.10), however, the amplitude of the critical mode in the neighborhood of the
buckling load increases linearly with the changes in the load. On the other hand, the
theory developed here yields improbahble results for loads further removed from the
buckling load. It leads for instance for the unloaded state, A = 0, to equilibrium
stutes with nonzero values of the coefficients a, b, c, d. There is no doubt that
this is caused by the omiassion in the calculation of the energy of terms of the fourth
order in the displacements (see also Sect. 783).

77. THE INFLUENCE OF SMALL DEVIATIONS
It is assumed that the undeformed state of the middle surface of the structure can be
derived from a cylinder by displacements w, in the direction normal to the cylinder

surface. The coordinates of a point on this middle surface are then given by

o o
x,% = Ry, X, = ®+w)elng, x;° = R+w)cosp ..

1
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It follows from Sect. 57, that the strain components of the middle surface are deter-
mined by (see also (56. 3))

‘yaao* = %2‘1! +—12_ (ulz +V'2 +W'2) +—1§ zwol W',

R R
YB.BO* = %2("' +w) +—1§ [u'z +(v' +w)2+(w' -v)2]+

R
1 . . ' .

o fowy o 4w vom -], | (17.1)
'Y*—.l.'+|+_].;.!‘+v.- +w! (w'
ago —R(u vl Rz wu +vi (v +w+w (w -v)]+

1
[ 1 1 . . LN I
2[w°v +w ' (w v)+wo w]

The expressions (71.5) for the changes of curvature remain unchanged.

Just as the extended theory of Sect. 38 could be applied to the perfect cylinder, use
can here be made of Bect, 47. In the e¢nergy increment (47.1) on transition from the
displacement configuration U(3), which determines the fundamental state of the model,
to a displacement configuration U(A) + u, the influence of small deviations between
structure and model is expressed by the term (47.2) only. This term, originating
from the elastic energy, is obtained from terme which are quadratic in the total
displacements U(A) +u,. If for the time being these total displacements are called

u, v, w, it follows from Sect. 57 that these quadratic terms are obtained by

substitution of (77.1) in (56.11). Thus, they are
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Loy i i [fiew e o
4Gh,1-vR./j[8wo ut W 8w (v W)

+ 8wo \'a +w) w' -v) + 8vw°’ wh (v’ +w)+

+ Buw u' (v' 4 w) ¥ Bvw, u' (W' -v)+

+4(1-v) Wy u +vHvi+4 (1 -v) wo' u +v)(w -v)+

(17.2)

+4 (1 -v) w‘; (u +v)w'| dadp.

In the following U (A) + u represents the total displacements, of which the components

are

- AR +y, Vv, AVR +w,

The desired expression (47,2) is then dbtained by expansion of (77.2) including only
terms wkich are linear in u, v,and w. After division by ;liGh Ti_v-

Q' [ul = f[[-sxwo' W'+ 16VAW, (V' + W) +

+8uAW, W' - V) + 8% AWyt W' - Budw, (v +w) +

+8v2 Awou' -evkw“) (w' -v)} dadg =

! = kff[-S(l-vz)wo'w'+8vwo(vu'+v'+w)ldadp.
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if it is assumed als6 that LA is zero along the edges of the cylinder, then, through
integration by parts, this expression may b2 reduced to

TR T —— L T

€AQ,' [u; = 8 [fwo [(1 - vz) w'+ v pa' +v +w)] dad$. (17.3)

, The considerations are restricted to displacements from the configuration U(A) of

: such small magnitude that terms of the fourth order in u, v, w and their derivatives
may be disregarded. The statignary value of the energy FA (8y) for constant values
of a.j then takes the form

FA (a) =ex '61' (a) + PA (ay), (77.4)

which is derived from (76.1) and (77.3) and which corresponds to (47.8). In this
expression F"(aj) i8 determined by (76.4) and

€AQ,' (@) = €AQ,'IZaul, (17.5)

where the components of Ea.j‘uj are determined by (74, 16 to 12). Since p2 is always
supposed to be large in comparison to unity, the first tern: between brackets dominates
! ; in (77.3) and all the other terms may be omitted. For (77.5) then follows

2rd

Y = _ 2rk 2 2
eAQl' (aj) = - Rz {1 -v") BReA P, (Aoao +B°bo) +

* oo

+
n=1

2
P nl (Anla’nl + Bnlbnl * Cnlcnl * Dnldnl) +

| > p2 .
j * =1 Prz (Anofng * Byobna * CpaCng * Dnadng) *

2
+m (Amam + mem + Cmcm + Dmdm) (77.6)
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whera ior brevity

R, . < e
21l fwo sinpoadadp €A,

R
0T7 ] ffwo sin P, acos ngdadp =€ Anl ete.

(77.7)

The equilibrium states are characterized by stationary values of (77.4). Differentiation

with respect to 8, and bc leads to the conditions
-BRAep 2A -4R(A-A)P.2a +
o “o MIPy B

2
+3 nzl 0”8 Cho FBp Cpy By g TR dy) t

+3m? (a_ o, +b d ) =0,
2 2
- BRAepo By - 4R (A ~ hl) Py bQ +

2 _
*3'121“ (-8, 8,5 ~b) Do ¥ 0,y Opp tdy; dpp) *

+§m2 (-a 2-b- 2

2 2
2 m m +°m +dm) 0.

Differentiation with respect to 81 8n0 ©p10 Cpo leads to the conditions

- SRJ\epnlz A -2R(A-2) pn12 2+ an? (- b8y, +a 00) =

2 2 2 =
~ 8RA ePpp Anz -2R (A - Al) Po 80 3n" (~ boan1 + aocnl) = 0,

(77.8)




2 2 2
- ARAeD C_ﬁ; -2R(\ - Al) Pa1 Cni +3n" ( bocnz +a.°an2) = 0,

ot Sl i+ 8 A i R S

[ob 2 B L 2 2 2
The conditions obtained from differentiailon with respect t0 by, byos dpys dne :

follow from (77.9) after replacement of Apy 2, Cnl,2» 01,2 ©nl,2 by Bpi,2s :
Dni,2s Pp1,2s 9n1,2 ,respectively. Differentiation with respect to a, and Cp s

leads to the conditions

2 . 2 2 .
-~ 8RAem Am-ZR (A-xl)mam-l-am (-boam+a,ocm) = 0,

2 2 2
- 8RAcm Cm~ZR (A-Al)mcm'l-!im ( bocm+a°am) 9. (17.10)

The conditious obtained by differentiation with respect to b and dp, follow from
(71.10) after replacement of Am, Cm» 28m» ©m by By D P dp respectively.

The solution of the equilibrium equations can in principle be carried out as follows,
Agaln, (77.9 and 10) may be concelved to be systems of linear equations for an; o,
cp1,2' 2m’ m which then are inhomogeneous. The solution of these equations is
always uniquely determined as long as the determinant (76.8) differs from zero, and,
as it will appear later, this is always the case below the buckling load. Substitution
of this solution, which is still dependent on the parameters 8 and bo , in (17.8)
ylelds two non-linear equations for 8, and b

However, the solution mothod described apove is difficult to apply and the considera~
tions will be restricted to a sirpler, special cage. For thie, the following choice is

made
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This case occurs for instance for an iniiniteiy long cylinder if

l_l_lo = ¢h ain (pog —No_\ . (77.11)

The remaining constants (77.7) then are

A =

0

= .1
h cos @5, Bo = -Zhsinao. (77.12)

Boj

Equatiens (77.9 and 10) now have only the trivial solution unless the determinant (76.8)
is equal to zero. For this zero solution,it follows from (77.8)

2\ eAQ
a, = = chcosa ,
o AI-A Al—?\ o
2 eBo A
bo = Al — = - }\1 =3 ch sinao. (77.13)

|
It appears from (77.13) that for A —0, a o and b o also approach zero. The solu-
tion obtained,therefore,corresponds to the nndeiformed state of the structure when
A ~0, i.e, it determines the natural equilibrium state.

The stability of the equilibrium for A < A o 1is govermed by the second variatldn of
(77.4) which is identical to the second variation (76.20) of the expression (76.4). Sub-

stitution of the zero solution of (77.9 and 10) gives

2_A

SF @) -l -np?@e?an |+
o, 2 : ° ° o
== Q-v

2, 2 2. 2, 2 2
+2 [R g -0 [Py @y, ™ a0y, ¥y (Bag° + 200 | +

n=1
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5
*307b (- A8 ARy Y A0 AC) Y

2
+3n a, (Aanl Acn2 + Aa112 Acm) +

; 2, 2 2 .. 2, 2 2
+z1 | R by -0 [y, @0y," +ady,® royy® by, 80 | +
n=

2
307 (-aby, by, tAG) Adyg)

. .
+3n ao (AbnlAdnz +Abn2 Adnl) +

2

+Roy 0w e ®rac 4

3.2 2 2 2
+-2—m b0 (—Aam +Acm ),+3m aoAamAcm I +
2 2 P
* IR Ay =A) m" (aby, " +Ad )+
3 _2 2 2 2
+§-m b0 (-Abm +Adm ) +3m aoAbm Adml . (77.14)

The forms of the second order in Aao, a bo’ etc., placed between curly brackets are
not mutually coupled and,thus,thoy can be oonsidered separately.

The first form is positive definite for A < A ;, semidefinite for A = A, and
negative definite for A > A ;.

The second form ig, for sufficiently small values of A , positive definite because ao
and bo spproach simultaneously zero along with A, On the other hand it can certainly
admit negative values for A > A ;. This form is semi-positive definite if its mini-
mum (with the value zero) is dlso reached for a set of values A"m,z-A Cn1,2 differ-
ing from zero. Xor this purpose, the equations

2R () -A) P,,” Aay; + 30 (-byAa , +8 40 ,) = O eto. (17.15)
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which express the minimum conditious. should possess a non-trivial solution.
These equations are, however, identical to (76.5) so that they possess a rion-zero
solution if and only if (76. 10) has Leen satisfied

2 2

a +b " =
v \¥

R2 0y A )2. (17.16)

Wb

The second form thus can be made semipositive definite by increase of the load
parameter ) to a value smaller than »; for which (77.16) is satisfied. Elimina-
ticn- of ao and bo by use of (77.13) gives for this limit value the equation

Z¢h = %Rz %) -0,

which has a solution between 0 and 7‘1

2.2 '
€
A=A +%'€1%'\/%" %*'196 3 ‘ (77.17)

2.2

a8y 3, @,
2E=Me-IEC 'E".ln"eR-z

[

for negative values of €. This latter solution is the same as that for the positive
value !el so that the considerations may be further restricted to positive values

of €.

Furthermore, the determinant (75.8) is different from zero for values of A smaller
than the limit value (77.17) so that the assumption used in the solution of (77.9 and 10)
has been fulfilled.
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The third form of (77.14) is compietely equivalent to the gecond so that it is also i
positive definita for valnea of 3 smolles than & it value (77.17). ? 1

Y A
The fourth and fifih forms of (77.i4) are also positive definite for small values oi A

and they can also assume negative values for A > A 1 They are semipositive
definite if the minimum (with the value zero) determined by the equstions

2R()¢1 - x)Aam + 3(- boAam + aoAcm) =90 ,

2R(A1 -A )Acm + 3(b°Acm + aoAam) =0 ,
also corresponds to a set of non zero values of Aa m Acm . This requiremeit
leads again to condition (77.16) which egain leads to the value of A determined by
(77.17).
It follows from the foregoing that the second variation (77.14) 18 positive definite for
values of A between zero and the value determined by (77.17), while it is semi-

definite for the value last mentioned. Hence, this value determines the buckling loa.
of the structure. With

= k =h
M1 Vi -» RAQ -vD)

it can be written in the form

A* =y [1 +3V8a -vHe +

4

r 7.18
-\[% Vsa - % e[z +3 Vaq - vz)e]] 77.18)




and with v = 0.3 it is given by

14 l1
A* =A1l1 + 1.24 ¢~ V1.24¢(2 + 1.24C)J . (77.19)

The great sensitivity of the buckling load for small deviations from the perfect
cylindrical shell is clear from this last formula (see Fig. 9).

1.0

0.8
PPN
AI ' N FIG. 9

0.4 L

0.2 - —

o
O 01 02 03 04 C5
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For instance, the buckling load amounts to 61 percent of the buckling load for the
perfect cylindrical shell for €= 0.1, in which case the amplitude of the deviations
(77.11) is 10 percent of the wall thickness. For €= 0.5 the buckling lead L caly

34 percent of its original value. The experimentally determined valu: of Zx“‘z.r;uil_"zs per-
cent of the buckling load for the perfect cylinder with a radius to wall fde e :;"r_atio
of R/h = 1000 correspondsto €= 0.9 . This result forms a stritzpm . . -ast to the
theory of Donnell {22] which can explain the experimentaily determined w«ivsyd only if
the amplitude of the deviations is about ten times larger. Although it ié,of course,
desirable to extend the investigation to deviations of other forms than (77.11), it may
be concluded now that the theory presented here gives an explanation for the large
differences between theoretically and experimentally determined buckling loads. Also.
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the wide scatter in the experimental resuits is satisfactorily explained by the great
[ sensitivity of the buckling load to small changes in the magnitude of the deviations.

l' In the previous analysis it was consistantly arcsumed that the elaatie limit of the
material would not be surpassed at any point of the structure. This assumption may
be examined after the calculation of the greatest absolute value of the strain component
Yoq When u? and v'% are disregarded and the substitution of

u ul
- ARa + -ﬁ; (8,co8p @ - b sin poa) and vAR + a sinp a + bocospoa (77.20)

for the total displacements in axial and radial direction is made, then the deformation
componen’ of the middle surtace (77.1), by use of (77.11) and (77.13) becomes

- - A h -
‘yaao‘ = - 27\’ 2"‘&1_-)1_ €g sin(p,o ac) +

2 2
A__Vand 2
' Pﬁ(q‘ﬁ) R TR )T

2
! 2 A 2 h 2
| g +2p ——— € —5-cos P& - a) , 77.21
\ ® A, -» R ° ? -
[

! while the change of curvature is

* _ 2 A h
Paa = . pO -xi—_—x-' €§'§ sin(poa - oto) . (77.22)
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The greatest (negative) total component of deformation is reached for sin(po o- azo) =1
andfor « = - 1/2h; itis (see(67.9))

2
7 = - - _._L__- _n.- - z_..___l.— h- y
oo 22 2v }‘1 Y GR po Al 'y E;‘-z- \77.28)

The greatest absolute value i8 reached at the buckling load A = A* ; after substitution
of (74.8)

A h 2 h
(R e LY ("E’ﬁ vV -y ’.e'n\)
For R/h = 1000, ¥ = 0.3 and the values found in experiments
1 h
x = = — =
A 47t 0.15 R’ €= 9,9
it then follows that

Y, = - 00015 ,

The specific strain is consequently smaller than 0.001 so that it is not to be expected
that excess of the elasticity limit will occur if the cylinder is made of steel or dural
alumin,

78. CLOSER CONSIDERATION OF SOME SIMPLIFICATIONS
In this section some of the simplifications which were introduced will be more

closely examined. Justification of omissions, which have been discussed else-
where in the literature will not be attempted here.
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781. Fornwlas (73.9)

In the derivation of these formulas, kp2 and knz' are disregarded in comparieon to
unity. For ihe buckiing modes conpidered inSect. 74 and thereafter, this omission
is indeed motivated since kpa and kn2 , in view of (74.8), cannot be greater than
2vk(1l - v“) ; thus, the omission is equivalent to the omission of A in comparison
to unity (see 74.3),

782. Formulas (71.5)

It is sufficient to Justify these simplified formulas for the calculation of (75.10). For
this purpose it is remarked that, when use is made of the more accurate formulas
(71.4), the integrand of the third order term in (71.6) should be supplemented with a
term containing the factor k. With use of the displacements (74.10 to 12) the order
of magnitude of the most important part of this term appears to be Fww' . Then,
again by use of (74.10), a contribution in (75.10) of the form

278 . 4
Rz kpo - oanlanz etc.

is found, or after use of (74. 8)

(78.1)

274 2
—R-z- 4(1-v") 22,480 ete.

Because pﬁl and pﬁz can only become large in comparison to unity if n is large,
terms of the form (78.1) may be neglected in (75. 10).

783. The Omission of Boundary Influences

This omission is best justified by the expariments which show no dependency of the
buckling phenomenum on the length of the cylinder or on the boundary conditions. But
it may also be made plausible theoretically.

The influence of the boundary conditions were first disregarded in Sect. 74, where p
was conceived as a continuous variable; moreover, p2 was supposed to be so great
that unity could be neglected in comparison to p2 . Under those assumptions, at the
buckling load, infinitesimally close neighboring states of equilibrium were found for
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each value of n satisfying (74.5) by use of the two corresponding values of p
(74.4;.

nl,2

In reality, the smallest value for the solution A N of (73.7) generally corresponds to a
completely determined set of values n* and p* = irTR/t . Naturally, this valuo

p* will not deviate considerably from the values P*nl or p*nz determined by

(74.4) which correspond to n = n* ., Further, (73.7) has a solution that differs

only slightly from 2 1 for other values of n and for values of p which differ slightly
from the values given by (74.4). In reality, the general solution (74.10),which was
obtained through the simplifications, is for A = }‘1 dissolved in a set of single
valued solutions for vaiues of A (A  with small differences between them. The

result of this is that the third order terms determined in Sect. 75, each composed

of three buckling modes, are absent. Equilibrium at the critical state then does not
necessarily have to be unstable. However, this will only influence the neighboring
states of equilibrium if |7«1 -A | is much smaller than hi - AI with i = 2,3,etc.,
and this is only the case in a very small neighborhood of the buckling load.

The same holds for the analysis of the influence of small deviations; only when the load,
for very small deviations can approach the buckling load very closely, a different
elastic behavior may be expected. It is,therefore,not surprising that, for such devia-
tions as occur in reality, nothing of this kind has been observed.

784. Omission of the fourth order terms

The admissibility of the omission of terms of the fourth order may be examined through
calculation of (7%.1¢) and comparison with the remaining contributions in the energy.
This calculation is firat executed for a particular neighboring equilibrium state

B T 8,2 “Pyp TCoyp Sy T Ay Thy T4y =0,
(78.2)
b = 2R@ - Ay =& ra -
o =3 B - A, ®m = 3 B -2y)
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These coefficients do satisfy (76.10, 14 and 18). The most important terms of the

integrand of (72.10) are

wt + swtw? 4wt = w? o+ wd? P l

Substitution of (74.10) and use of (78.2) gives for this integrand

2

2 masin2 m p‘

fi

m‘;'l(zbo sin2ma + ¢ :;mmcmoe;m{;)2 + cf’; cos

2

2
m 2b0 cosdima +

_ 42 1

=m [Zbo + 3¢

+ 2b 1 2 cos 2 2
c,cm(coa;mct - cos3majcosm B - €, 8 2m c¢os 2m g

Execution of the integration gives

K-

=0 _ 0 _2m 1 4.4 2 2 4
P4 ‘aj) P4 [z ajuj] —1;2"— -R—m (6b° + 4b0 Cm + 16 &m) .

Through substitution of (78.2) it finally follows from here that

20 ) o 212 800 dp3. 4
P4= (aj)- Rz 27mR(}\1 ) B (78.3)

For the third order terms after use of (78.2)

Pyla) = LLEIP vz)%mzns(z- 7\1)3 , (78. 4)
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so that the fourth order term may indeed be neglected if
26 2 _ _ 2
I ) m (A,l A) I «1 v

In view of (74.3, 8 and 9) this requirement is

A 12 2
T" "‘-a%ﬂ - v, (78. 5)

i
1

It appears from this condition that the omiseion of the fourth order terms restricts
the validicy of the analysis of 8ect. 76 to loads in the immodiate neighborhood of the
buckling load.

The circumstances in the analysis of Sect. 77, at least for the furm of the deviations
which was considered (77.11), are much more favorable. By use of (77.13) the radial
displacement component

=g 8 a +
wo=a :I.npo bo cosp o

can be written in the form

- / 2 2 -
w =4 /a" + b, sinlpoa @)

so that the most important contribution of (72.10) is

AR -1;13 [[he2 + b B2’ Bg - adads =

p 4 )

) 2 2,2
+ b 3? . (78. 6)

-2 3 Bt
R(ao

R2

oojes
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In this case the third order terms are absent; the second order termas are .

-— 27k ., < [y
Pjm) - 56 - v92Refe - a2 v hd) (78.7)

Therefore, the terms of the fourth order may be neglected if

g 2
3 2au +bo_ 2
i-s-po 2 ~ «l1l -y .
670 R¥a, - )

After substitution of (77.13) and use of

.2
2 = _.".'_—._2.—=l_ B: - 2
P =2V % a0 R M-

this requirement becomes

2
g M

€ ———

g «1 . (78.8)
0\1 -~ )

@i

The maximum of the left hand side of (78.8) occurs for the buckling load” (A = 1 ¥%) .
By use of (77.16) instead of (77.13), the condition is

1 - %:—-« 6@ - v . (78.9)

This condition is reasonably well satisfied and there is no justification, at least for the
deviations considered in Ssct. 77, to improve the theory.




o e 1 T—— T T

S————— L e

. —

APPENDIX

As far as the writer knows, in the literature (e.g. [45)) the solution of equation (61. 20)

8" +r2rsin0 =0 (1)

with boundary conditions (61.21) and (61.22)

£=0:0 =-rfer; =1

<G
i
(=]

@

has only been determined for the case in which 6 (the value of ¢ for £ =0) has
the same sign as € . However, for Section 615 it is also necessary to know possible

solutions for the case with opposite sign of 00 and €. It is assumed now, just as
previously, that € is positive.

Equation (1) may be written
2
i(%e. )*7’2 Aainé = 0

from which, by use of (2), it follows through integration

.2
0 =w462A2 + 21r2 A (0050 - cos 00). (3)

In view of (2), @' 1is negative for £=0. As §° musthbe a continuous function of

¢, it follows then from (3) that

o = 1/h JrZre + 2(cos 0 - cos 0,) ()
as long as the expression under the square root sign remains positive.
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First the case will be considered in which 00 ia positive; (4) then definitely holds
for values of & between 0 and 6_. If further considerations are restricted to
curved beams for which 8 is equal to zero only if & = % , then integration of (4)

yiclds

& =-37 I

[
-
/ ViZae? + 2 (cos 6 = cos 5_)
9 0
[s)

which can be written

dg =ﬂ/—7\_| . )

%

[ 1,2, 2 21 21,
T“A€ ] ]

o\/4 + sin” 59, - sin” 3

It is assumed that 6 o < w still is so small that

1 2 2 21 - 1,2
red A €° + gin -2-90—1( <1. (6)
1 1 1
As Iiel < 3 6)° < E" it is then always possible to set
= 1 1 1
sin@ = Esingf) (OSSSEH'). (7
Herewith (5) becomes
¢
k2088 40 0
co8 '2‘6 de
& = 9 = T /A" (8)
2 24 [ 2 2,
. k” — k” sin” @ ) 1 - k* sin“6
with
gin ¢ = -l]-c'-sin%% (Os¢§%1r). (9)




The lutogcul appeariog in (8) is e eiiipiical integral of the first kind ¥F(K,9). I

The dimensionless deflection # at the middle of the beam is determined by

1
2 0
ﬁ=/—sin0dg= = ’mod”‘ v =
”\/;* 527\62 +2(cosO—cos-0)
o ]
()
° !
8=0
1 — m Zk
= — 2, 2 =€ — + (10)
mEA +. -
/o \/ € 2(0050 coseo) b—y, T e
It follows from (8), {¢) and (10) that
: _ —1 21 /A e
- cnscp—\/l kzain 260— 5k G-E—ﬁ’
while from (8) and -(10) it follows that
k = (¢€=B) F k, o).
' The relation between B and A is then given by the parameter representation

}
- cos ¢ = =S, k= (€=8) F (,9), VA=2F 9. )
!

It remains to be seen to what extent assumption (6) has been satisfied. According to

(11) the undeformed, unloaded state 8 = 0, A = 0 represents an equilibrium state

with k=0 and ¢ = 0. Assumption (6) will therefore be satisfied for all loads below

the limit value for which k becomes 1 for the first time. For k=1, F(k,y¢) can

he expressed in teriny of elementary functious
14

F,e) =] —28 -y (7 +

1 - sin®@

(N

¢) .
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The value of ¢ corresponding io this limiting case is,according to the first two
relations, determined by

°). a2)

1]

cos ¢ = elntg(%-ﬂ'+

For small values of €, (12) has a sclution which slightly differs from %W; A isin
that case large, on account of the last relation (11). For instance, in the exswmple
treated in Section 615 these quantities were given by €=0.01, ¥=0.975 7 and

A = 6.26. The limiting case remaina consequently cutside of ihe range of A con-
sidered in fig. 4.

Next the case is analysed in which 6, is negative. It follows from (2) that for small
values of &, 8" 1is negative. Ia order that the condition 9 = 0 be satiafied at the
middle of the Luam, ¢° must change sign for a value £1 (between 0 and %).
This ill be the case if the expression under the root sign in (4) becomes zero as in
view of (1), 0" is positive at that point. The integration of (3) must therefore be
curried out separatelyfor (< ¢, and {> £, .

Let 6, bethe valueof 68 for £ = §,» then it follows in analogy with (5) that

1
%
de
1,2, .2 2 1 T T 1
\/ZW Ae® + sin” 56, — sin” 50
1
in which 91 is determined by
21, _ 1.2,.2 21, _ .2
gin” 50, = Z7°A€” + sin 5 % k“ . (14)

The existence of a solutinn with a negative initial value % does imply, in view of
(14), that k 1. Substitution of

. 1 1 1
3in® = % sn 50 (0392—-2-11')
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with

sim o= Lol L PP
Daia vl k oL 2 vl 1, vuvunxeyuenuy 01 )
transforms (13) into
i
2

\ /1 - K sin2@ 1 - K2 sin29
- ']
2

in which ¢ is determined by

sin¢=—%sin—-0 (os¢<%1r). (16)

In the interval 51 < £ < 12 it holds that

0 =1 /A \/1;?)\52 + 2 (0080 - cos f’o).

from which, by integration, it follows that

15 2m m(%‘ t).

0

1,2, 2 21, _ i
/\/}rke +sin20° sin 20
4

=

_\
<_
>

By use of the same substitution this can be written

o
/,/l—k sinZ6 /,/l—k mna
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Addition of (15) and (17) ¢liminates 51 ; the result is

1 1
2F (&, 3™ ~ F ,9) = g7 /A, (18)
. in which ¥(k, % m) is the complete ellintical integral of the first kind,

The dimensionless deflection at the middle of the beam is determined by

[

g = - gin0 df = sin 6 d6 +
/ : / V_j V"zlf (cos 0 -~ cos Go)l

(o}

8in 6 d0

j \/—‘\/:rzhe + 2 (0059 - ¢O8 (90)j

0=01

+

1

= - _1_.. \/wzxez_ + z(cose - cos 90)
1r ! ¢

e | =0
T JLe +2(cose—coso)

\/_‘ \/ g . o o=01 (19) .

%

Now, on account of (14),
2, .2 _ - a2 21lg -
TEA €S + 2(cos 0, — cos 90) 4" - 48in” 5 0 0,

8o that it follows from (19)

2 L

R \/7’2’-5 + 4gin® 1o, = e+ 2k (20)

RV YN

[ Sy
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1t follows from (14), (16) and (20) that

e
©
@
-
{
-—
l
w
-
=]
o=
()
»N
~
fy
I
™
1
m

while from (18) and (20) follows

o k = (B—¢€¢) {2F (k, %w)- F &k, 9)

2F (k, 3™ — F (k,v)} :

‘ The relation between A and A i3 then given by the parametric-presentation
| :
! cos @ = B_E,k=(B-e)

[
| Va = % [2F 6 gm - Fee) | (21)
]
1 From the latter relation it follows that
E T o
| 2 _§
| \[nz 2 1 2
! ,AziF(k,Ew)z;/d9=l
| | o
80 that (21) certainly does not have a solution for A < 1. As was to be expected, for

the case of a centrally loaded bar (€= 0), the relations (11) and (21) yield identical

results

fp=-§,k=$BF(lc,%1r). \/x=~,27F(k.%1r)- (22)

E The numerical treatment of (11) and (21) does not offer any difficulties. After ¢ is
! assigned a value, 8 can be calculated from the first of these relations; next the sec-
ond relation, which forms a transcendental enquation for Kk, is solved; the third rela-

b tion yields the corresponding value of A .
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: The result for €= 0.01 is represented in fig. 4 {Curve Ia). The branch of negative
f values results from (11), the branch of positive values of § belongs to (21).

The numerical treatment of (22) is even simpler; after k 1is assigned a value, a
) are immediately found. The result is the

n

corresponding set of values of [ an
curve I of Fig, 4,
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