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ABSTRACT

A discussion of the geodesic on the oblate spheroid (refer-

ence ellipsoid) is given with formulae of geodetic accuracy
(second order in the flattening, distance and azimuths) for
the noniterative direct and inverse solutions over the hemi-
spheroid, requiring no root extraction and no tabular data
except S-place tables of the natural trigonometric functions.

Forms are presented for use with any ellipsoid of reference
and the formulae are adaptable to high speed electronic
computers. Instructions for use of the forms in desk comp- -
utations are given with the parameters for ten known ellipsoids
of reference and the radii of spherical approximations.

A discussion is included-of the computation of a long reference
line in stations and of reference systems in the vicinity of a4
station .as may be useful in oceanography, se!smology, or.
other geophysical disciplines. ~ - #

~ While the formulae mtroduced are satisfactory for short as
well as long lines, the emphasis is on long lines out to maxi- .

~ mum spheroidal geodesic length under the shortest distance -
property of the geodesic. The use of certain types of map
projections for such base line work is also discussed.

The direct and inverse solutions as presented here have been.
‘adapted to high speed computers by the Earth Sciences Div-
ision of Teledyne, Inc., Alexandria, Virginia under the direction

of Dr. E. F, Chiburis. The Fortran statements for the inverse
solution are given in Appendix 4. ;
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FOREWORD

This report Fills a void in the theory and computation of long geodetic
distances on the reference ellipsoid. The results will be perticularly useful to
long range navigation systems such as the Omega, and to several geophysical
disciplines such as oceanography, seismology, and geodesy.
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PREFACE

The exposition of the computation of geodesics on the reference ellipsoid (oblate spheroid with small
eccentricity) is based on the mathematical investigation | have conducted and included as Appendix 1 to this
report. The mény papers which have appeared on the subject since the early work of Legendre and Bessel
are evidence of the dissatisfaction with the classic methods, This paper is no exception. It isq ‘fresh” in-
vestigation, but shows the influence of literature search. Where results were identifiable in other treatises, I
have made reference to them. All the published works consulted are listed in the bibliography. Many of
the results presented here are new, The emphasis is on long lines, based upon somewhat arbitrary criteria,
i.e., an accuracy of at least 1 meter in position-geodetic length within 1 meter; latitude, longitude, and
azimuth within .035 second—over the longest possible hemispheroidal geodesics employing no tables except
8-place natural trigonometric for desk computations—in any case meeting the 1/100,000 distance and 1
second azimuth requirement as specified by ACIC in their special studies (bibliographical reference [22]
of this report), easy adaptation to any reference ellipsoid by merely changing the defining parameters; no
root extraction or iteration with formulae limited to first and second powers of the flattening and which are
compatible with both desk and large electronic computers,

Since the investigation included the longest rossible geodesics, the following questions had to be re-
solved in the evaluation: If we take an arbitrary point on a given nonplanar spheroidal geodesic, can we
find a second limiting point on the geodesic beyond which the unique shortest distance property fails?
While Euler’s differential equation is a necessary condition, is it sufficient? For example, in a limiting case,
the equator as well as a meridian on the spheroid are geodesics (both satisfy Euler’s condition) and both
contain a common equatorial diameter—is there an arc of the equator which satisfies the shortest distance
criteria? Are there more than two consecutive geodesic vertices or more than two nodes (equatorial
crossings) in a hemispheroid? Are there any antipodal points on nonplsnar spheroidal geodesics? What
happens antipodally in a family of geodesics each having a vertex in @ common meridian? How can we
independently check approximation equations for very long geodesics?

In the 1957 report of the study group No. 2 on long lines, International Association of Geodesy,
we find the statement: “Consequently, if two points are situsted near the equator and are separated
by nearly 180° of longitude there is a certain ambiguity as to what is meant by the geodesic between
them.” In his paper “The distance between two widely separated points on the surface of the earth”
(Bibliographical reference [17] below), Dr. W. D. Lambert stated (concerning the ambiguity): “There
appears to be no comprehiensive treatment zeadily available in English. The author hopes to publish one
shortly.” This was never done.
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From my investigation (Appendix 1) it was concluded that the maximum lengths of all oblate
spheroidal geodesics, under the shortest distance property, each having a vertex in a common semimeridian
{pole to polej are contained in a hemispheroid (on the same side of the meridian orthogonal to that con-
taining the vertices). This permitted determination of maximum distances over which approximation
formulae to geodesics need hold under assumed accuracy criteria.

The antipodal zones were investigated for such a family of geodesics (each with a vertex in a common
meridian) and formulae developed for determining the axes of the geodesic evolutes {envelopes). A formula
Jor the latitude of the conjugate of an arbitrary point on the spheroidal geodesic (the point beyond which
the unique shortest distance property fails) waz found,

Formulae were developed in terms oy sie veiex latitude of the geodesic for longitude difference and
length to serve as control checks on approximation formulae, and to check already published lines to be
used for comparative purposes. A new direct solution was developed, and the inverse solution (previously
published in NAVOCEANO TR-182, 1966) improved in form layout, azimuths to second order in the
flattening were added and the quadrant search for azimuths eliminated. Where possible or feasible the
formulae presented were developed through at least two different analyses, the details of which are pre-
sented in Appendix 1.

No apology is made for including the computations of a large number of numerical results throughout
the discourse of Appendix 1, or for those included ar a group in Appendix 3. One of the disappointing
aspects of the literature review (Bibliography to this report), was the frequency of a single or at mcst two
numerical examples presented in verification of formulae, such formulae being subsequently unacceptable
when applied to lines differing considerably from those presented. The numerical results of Appendix 3 are
also useful as checks, should individual programming of the equations be attempted, and all the ACIC test
lines, already publishedin reference [22] , have been included in Appendix 3 for check purposes. Appendix 2
contains the parameters for ten reference ellipsoids, the radii of spherical approximations, antipodal zone
axes and areas, coordinate systems and other useful formulae.

The formulae presented here for the direct and inverse (reverse) solutions of geodesics in terms of
parametric latitude have been programmed (Fortran) by the Earth Sciences Division, Teledyne, Inc.,
Alexandria, Virginia, under the supervision of Dr, E. F. Chiburis. The Fortran statements for the inverse
solution are given in Appendix 4, and the card deck is available.

Finally, it seemed desirable to devote a section to a discussion of the use of forms presented for desk
computations, and in applications such as the computation of reference lines and local associated geometry
in the neighhorhood of stations on the base line as i1nay be needed in geophysical surveys and studies.

Paul D. Thomas, Staff Mathematician
Research and Development Department
U. S. Naval Oceanographic Office
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HISTORICAL NOTE

The French Mathematician, Legendre, published papers in 1806 and 1811 on the theory of spheroidal
geodesics, consolidating and extending his work in the Traité des Fonctions Elliptiques, 1825.
The German astronomer, Bessel, published an approximation solution to the spheroidal geodesic in
1825, [1].* and since that time an almost endless stream of publications on the subject has appeared. Otner
famous 19th century scientists who studied the problem include Bennet (1850, '51), Christoffel (1868),
Hansen (1868), Cayley (1870), Jacobi (posthumous publication), Halphen (1888), Darboux (1894), A.R.
Forsyth (1895). Cayley was the first to use the term “‘parametric latitude™ for the eccentric angle of the
meridian ellipse, [25] , preferring it to Legendre’s “-educed latitude.” Two outstanding 19th century
treatises, in each of which the geodesic problem is presented with approximaticn solutions (iterative), are
those of the British geodesist Clarke and of Helmert, the German contemporary, both volumes appearing in
188C, {2}.
: The Bessel-Helmert rnethod, which is an iterative type computation of the development of the pro-
; jecticn on the sphere of the spheroidal geodesic, has been modified by some investigators to eliminate the

s iterative process and the use of tables other than natural trigonc.netric, but usually involving root exirac-
; tion, {3}, [4]. Others have followed Clarke’s method which in seneral involves tables for s particulas
reference ellipsoid, and may involve root extraction, {S).

Since the difference in length between the elliptic normal sections or the grest elliptic section and the

i geodesic is of the 4th order in the eccenuricity of the meridian ellipse, formulae have appeared computing

‘ these lengths rather than the geodesic, some using also azimuths of these scctions rather than geodesic

azimuths and with the option, in some cases. of applying difference or differentisi correction formuise for

% finally converting to geodesic length and geodesic azimuths, {6]. [7]. [8]. [9]. Particularly with respect to

; long geodetic lines, the literature is quite extensive, [10]. (11], {12], (13], {14]. Many of these formuise
. ' as published were developed to give distancr - up 10 # fixed predetermined maxisnum length with a given

accuracy and fail almost immediately on lines in exvess of that meximum. Mary involve coufTicients of
many terms in powers of the eccentricity of other amocuted parameter. None of thes examined appeared
capable of supplying the vermtility required under the criteria adopted for the present study.

THE GEODESIC ON THE OBLATE SPHERUID

The loagest plane closed curve on the oblate elipsoid of revolution is the circular equator, snd the
shortest closed curve, which is also a geodesic, is the mevidian. The equator and the meridians are the naly

*Sracketed sumbers tefcr 10 the bidliography sttached (o this report.
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plane geodesics and the only <iosed geodesics. All other geodesics are three dimensional space curves, that
is they have at each point two principal radii of curvature (a radius of curvature ard a radius of torsion),
The nonplanar geodesic oscillates symmetrically between tangencies to its two associated symnietric
parallels with respect to the equator, and because of the flatening retrogresses through each revolution
about tne spheroid and thus cannot close on itself, as shown in Figure 1.

The geodesic is fundameatally defined as the curve of shortest distance between two points on a
surface. From the integral for arc length we may, by the calculus of variations, determine the conditions on
the integrand for the arc length t be a minimum. Actually maximum or minimum (extrema). That is the
distance by way of the geodesic around the back side of the oblate spheroid, between two points within a
hemispheroid, would be the longest geodesic distance. In Figure 1, note the geodesic arc P, Py where P, is
a first point of crossing after onc .¢volution <bout tae spheroid. Around the backside, the geodesic dis-

ance from P; to P; is the lonr geudesic arc P, CDEFP,.

—_—
Q\ }
‘_—_————“~o—&‘=~ .’I
’_,.——- "'\.n“_‘:n
Y
e e e G men emm awan cww s e ame e G s G wm—

If the geodesic is traced from a point A, a node, on the equator in the direction of
tire iangents as shewn it .. 1not gm again through A after a complete revolution but
will cross the equator at a point E as shown, The ccurse is AP4P{CDEFP,G,,..;P;
is the first point where the geodesic crosses itself,

Figure 1. Pictorial representation of the nonplanar goedesic on the oblate ellipsoid of revolution.

8 MR T A

S o . _— .
- T D N N R




M TR S o L o £ T e T

From the results of the extremal conditions may be deduced the property that the osculating plane at
esch point of a geodesic contains the normal to the surface, or equivalently that at each point of a geodesic
the principal normal to the curve must coincide with the normai to the surfece, [16]. But from simple
mechanics, considering a string stretched under tension between two points o a smooth spaeroid, we can
show that the curve assumed by the string is » geodesiz, [15].

Analogy with the subsatellite trace.

The normal projection of the orbit of an earth artificial sateilite upon a» ellipsoid of reference simu-
lates the geodesic. The normal projection of an equatorial orbit is very near the equator and that of a polar
orbit is close to a meridian. For other orbits, the satellite responds in greater degree to the flattening (the
equatorial bulge) of the geoid (sea level surface) which is approximated by the reference ellipsoid. This
effect on the s.tellite (sustained by its velocity-falling very slowly back to earth) with the rotation of the
earth under the orbit, causes the trzce of the trajectory (orbit) as projected normally upon the reference
ellipsoid to oscil'ate between two paralleis symmetric with respect to the equator as shown in Figure 2,
The symmetric parallels are in latitude £ 48° zorresponding to the satellite inclination (the angle between
the orbit and the equator). Note also in Figure 2 that the longitude difference between successive equato-
rial traces is 30°. Hence for esch half revolution of the satellite the earth tums 15° to the east under the
orbit which is itself in an easterly direction. Hence the lorgitude difference, node to node (N; to N;) of
the <ontinuous trace is 165° as shown. The orbit also retrogresses but only about 3° per day as shown at
the injection point of the orbit. Now a geodesic on the Clarke 1866 ellipsoid with vertex parametric lati-
tude 48° has a longitude difference r.ode to node, of about 179° 36’ (see TABLE 8), and no geodesic on it
can have a longitude difference, node to node, of less than about 179° 24’ and this is along the equator
itself, Hence the subsatellite trace is not a geodesic on the reference ellipsoid but it behaves like one,
oscillating between two symmetric parallels in latitude equal to the inclination of the orbit, and with no
more than two nodes or two vertices (of the trace) within a hemispheroid (on the same side of a meridian).
But this digression is useful to remind us that the nonplenar geodesic tries to climb to the nearest pole.

Geodesic antipodal zones.

The behavior of the geodesic, when the geodesic ar: end points are nearly antipodal has been dis-
cussed in several sources [17], [24], [25]. Clearly if the two points are 180° apart on the equator, then
the shortest distance between them on the surface is the meridional semilength. In fact the shortest dis-
tance on the surface between the end points of any diameter of the spheroid is either of the two equal arcs
of the meridian subtended by the diameter—that is the meridians are the only antipodal geodesics. This is
clearly so because of all the plane elliptic sections through any diameter of the oblate spheroid, the one with
the largest eccentricity and therefore shortest length is the meridian,

Only the circular lengt nb along the equator belongs to the hemispheroidal family of geodesics (a
vertex of each geodesic in a common meridian) and it is the shortest member. There are no antipodal poinis
on nonplanar spheroidal geodesics. See Appendix 1 to this report for the proofs.

If the difference in longitude of two points on the equator is not # radians but n(1-k) radians, whers
k is a small quantity, k <f (f is the flattening of the spheroid) then there are two geodesics, symmetric with

)
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respect to the equator, which take zivantage of the flattening and climb toward the poles. Note the
geodesics (1) and (2) in Figure 3. If k = £, the geodesic consists of the equatorialarc DD' = CC' =
na(1 - ¢ )"’ =na(1- )

Continuing the discussion, with the help of Figure 3, we suppose that T T' is an equatorial diameter
of the spheroid urthogonal to a fixed meridian as shown. An arbitrary point P on the meridian has the
symmetric R’ with respect to the equator, the symmetric R witk respect to the polar axis, and the sym-
metric P’ with respect to the spheroidal center. There are thus four equal geodesics, two each with vertex
latitude % 8,, determined by every point P and all are orthogonal to the fixed meridian. In the limit as
k - f, geodesics (1) and (2) coincide with the arc D D’ of the equator and znalogously geodesics (3) and
(4) coincide with the arc C C'. Whenk - 0,0, = 1/2, -8, = - n/2 and then geodesics (1) and (3), (2)
and (4) respectively coincide with the upper and lower halves of the meridian ABA'B’ (plane of the paper

in Figure 3),

Figure 3. Pictoriel rapresentation of the two geodesic antipodal zomes with respect to a gives

meridien of the oblate spheroid.
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It has been shown that this family of geodesics, as depicted in Figure 3, has two evolutes. Cayley,
[25], called these geodesic evolutes with respect a given meridian. These are shown pictorially in Figure 3
as the figures ABCD, A’B'C'D’ and they resemble the evolute of the meridian ellipse or a hypocycloid
of four cusps since the eccentricity of the meridian is small with respect to earth reference ellipsoids. See
alao Figure 12 of Appendix 1. (The evolute of a given plane curve is the curve tangent to all normals or
perpendiculars to the given curve—also called the envelope of the normals, On the spheroid, arcs of geo-
desics correspond to straight line segments in the plane relative to the shortest distance property.,) Determi-
nation of the meridional arc axes of the geodesic evolutes (AB = A'B’ of Figure 3) requires the solution of a
transcendental equation and is discussed in Appendix 1.

The spheroidal areas enclosed by the geodesic evolutes are called the geodesic antipodal zones with
respect to a given meridian, Note from Figure 3 that only two consecutive nodes (equator crossings) occur
in a hemispheroid and that they always lie in the geodesic antipodal zones with respect to the meridian con-
taining the geodesic vertex. Because of the symmetry about the equator, the distance between consecutive
nodes is the same as between consecutive vertices. Hence we may within a hemispheroid (on the same side

of a meridian) have 3 maximum of two consecutive nodes and the vertex between them; or a maximum of
two vertices and the node between them. For proof see Appendix 1 to this report.

Other properties of the geodesic.

The differential equation of the spheroidal geodesics may be found using the property of coincidence
of principal normal to the curve and the normal to the surface at an arbitrary common point and it can be
shown that the integral arc length depends on the evaluation of an elliptic integral. Since the eccentricity
snd the flattening are small quantities for earth reference ellipsoids, the series expansion of the integral in
terms of eccentricity, flattening, or other associated parameter converges rapidly and evaluation is usually
made in this way rather than by interpolation in elliptic integral tables,

An easily demonstrated but very important well known property of the geodesic on the oblate
spheroid (or of the geodesic on any revolute) is thet at esck point of the geodesic the product of the redius
of the parallel and the sine of the angle which the geodesic makes with the meridian is constant. The
mathematical demonstration is found in Appendix 1. '

The peroblem of determining azimuths or geogrephic position of an end point of a geodesic arc in-
volves solution of a polar spheroidal triangle and is usually approximated by solution of a corresponding
sphetical triangle or s sequence of them (iteration).

ACCURACY CRITERIA FOR COMPUTATIONS

While sophisticated computer systems are becoming more available universlly, there is s need addi-
tionally or alternatively to have some computing forms which will give a reasonable geodetic accuracy over
hemispheroidal geodesics for both direct or inverse (reverss) solutions with minimum requirements of a
desk computer, only S-placs tables of natural trigonometric functions—no iteration or root extraction.
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Accordingly the follawin: criteria were adopted relative to the mathematical study included as Appendix 1
L 3
to this report:

1. Anaccuracy of 1 méter in position-geodetic length within 1 meter; latitude, longitude, and azimuth
within .035 second-over the longest possible hemispheroidal geodesics, but in any case equalling the
1/100,000 distance and 1 second azimuth féquirement adopted by ACIC, [22].

2. No tabular data required except 8-place natural trigonometric for desk computations.
'y :
3. @ No jteration or root extraction with formulae also adaptable to large electronic computing systems.

4,  Easy adaptation to any reference ellipsoid by merely changing the scele parumeters a, f, etc.

DIRECT SOLUTION

All direct solutions of the spheroidal triangle involve approximations b+ ane or more spherical tri-
angles. They differ with respect to the variables, parameters, required tabular data, arithmetic cperations
and subsequent accuracy. The formulae to be presented here involwe corrections to a single spherieal tri-
angle. The variables are longitude, A, parametric latitude, 0. Purameters are a, f, 8o where ., f are the
semimajor axis and flattening of the reference ellipsoid and 04 is the parametric latitude of the jeodesic
vertex. The cnly tabular data required is a table, such a3 Peters, of the natural trigonometric functions. No
root extraction or iterstion is required in arithmetic operations.

We are given the point P, (¢, A, ) on the spheroid, where ¢, , A, are geodetic Istitude and longitude
(geographic coordinates); the forward azimuth a, ., and distance S to a second point P; (¢, A,); snd from
these we are to find the geographic coordinates ¢, A; and the back azimuth a,.,. The given quantities are
61, \1,6,.3,8.

Formulee. (The derivations are given in Appendix I)
Second Order in f.

Tan @, -(l-f)uno..“-eou. =c0sf, tina,.;,

N=cosd, cosa;.3,¢; * MM, ¢c; = (1/4) K1 ~M?), Du() -c3)() ~c3 =, M),

P=cy[1 +(1/2)c,MPD,cos0, = sin#,/sin 8,,d = S/a D, u= Ao, -d),
We)l.2Pcosu, Vacos(utd)=cosucosd-sinusind, Xvel sindcosd(2V? -1),
Y=2PVWiind Ao=d+X-Y, Zo* 20, - A0,

tan a;.; = MA(N cos &0 -sin 8, sin A0),

tan ¢y = ~(sin &, c0s 40 + N in A0) sin a3, (1 - NM,

tan An = sin Ao tina,.;cos ¥, cos A0 -sin 0; ain Ad cos a, ),
Heey(1-¢) A0 -cicasindocos To, A= An-H, Ay = )\, + A

',
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First Orderinf (f* =0)

We place terms in f2 equal to zero in the above equations which will remain the same except for the
following:
D=1-2¢;~c;M,P=¢;/D,X=0,40=4d-Y,H=¢,A0.

Spherical (f=0)

If we place f = 0 in the above equations we have tan ¢, =tan 8,, ¢, =6,,
M=cosd, sina;.; =cosy,N=cos8, cosa,.,,
Ao=d=S/s tana,;.; = M/(N cos d - sin 8, sin d),
tan ¢ = -(sin 8, cosd + N sin d) sina,-, /M,
tan A\ = gin d sin a, -3 /(cos @, cosd -sin &, sind cosa,.;)
Az = Ay + A\;a may be the radius of a spherical approximation such as given in Appendix 2.

Sign Coaveations for Azimuth and Longitude

We take the initial point to be west of the terminus in the direct solution and then always
180° € a,., <360°. We also have O < An < A\ <. If two arbitrary points are both in the southern
hemispheroid (both in negative latitude), we solve as though both were in the northern hemispheroid and
write symmetric elements with respect to the equator. While not necessary, these conventions simplify
somewhat the determination of azimuth and longitude difference in desk computing.

From the quantities above in the formulse we find the first quadrant angles u and v given by
ianu= ltan a,., |, tan v = ltan Anl

iftanay., >0, then ay., = 180° + u; if tan a,., <O, then a,., = 360° - u. If tan An > O, then
An=v;if ton An <O, then An = 180° - v,

The conventions are sufficient, under the assumptions, as demonstrated by the following:

Always O € a,., < 180°. When tan a;.; > 0, then a,., is in the third quadrant and is of the form
180° + u, since tan (180° + u) = tan u. When tan a,., <O, then a,., is in the fourth quadrant and is of
the form 360° - u, since tan (360° - u) * - tan u,

Since always O € An € A\ €< »; when tan 4 > O, An is in the first quadrant and An = v. When
tan A <0, 4y is in the scond quadrant and is of the form 180 - v, since tan (180 -v) = -tan v.

The srrangement of the direct formulse into & computing form is shown in Figure 18, Appendix 1.

INVERSE (REVERSE) SOLUTION
The published inverse solutions have been more varied than the direct. The series expension for the
goodesic length in the fattening f, spherical length d (with reference to the geodetic latitude of the vertex
of the great eliptic arc) in the form
Seajd-Fy(a) + Fy(d)* + . )
wes published by AR. Forsyth in 1895, {20]. Errors in Fy(d), meking untensbie the use of the sscond
order term, remained undetocted until 1965, [21]. The more recent examinations aleo revesled that the
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Andoyer-Lambert expansions to first order in the flattening are merely those of Forsyth to first order in f,
(18]. An independent verification of the corrections to Forsyth’s equations was found in the work of
Gougenheim, [23) . Gougenheim's work has apparently gone unnoticed although he has had a correct ex-
pansion in terms of geodetic latitude to second order in the flattening since 1950.

Forsyth had the expansion in parametric latitude to first order in the flattening. This was extended
to second order as .2ported in [18]. The formulse for distance to be used here are basically those from
{18]. The azimuth formulae are adaptations of those presented by Gougenheim in [23]. See Appendix 1,
Equations (143).

We are given the points Py (¢;,A,), P2 (¢2, A1) on the spheroid and are to find the distance S
between the points and the forward and back azimuths, a;-; and a;-,. Given quantities are ¢;, A, ¢,,
A2. Itisassumed that east longitudes are positive and that P, is west of P;.

Formulae
Second Order in f

tan 6, =(1 -f) tan ¢y, i= 1,2
O =(1/2)0, +03), 80y, = (1/2)(03 - 8,), AN =23 =}y,
A\, =(1/2)A\, H = cos® Ay, - sin? 8, = cos® O, - sin? A0y,
L =sin® Afy + H sin? A\, =sin® (1/2)d, ! - L= cos® (1/2)d,cosd =1-2L,
U = 2sin? 0, cos® A0 /(1 L), V= 25in? A8, cos? 0, /L, X=U+V,
Y=U-V,T=d/sind,D=4T? E=2cosd, A=DE,B=2D,
C=T-(1/2XA-E); check: C-%E+AD/B=T.
n, = X(A + CX), ns = Y(B + EY), ny = DXY,8,d = (1/4)KTX - Y),
5,d =(f*/64)n, -n; +ny), S, =asind (T ~8,d),S; =asind (T -5,d +8,d),
F=2Y-E(@4-X),M=32T-(20T -A)X~(B+4)Y,
G = (1/2)0T +(* /64)M, Q = - (FG tan AAV4, AN'y, = (1/2)(AN ¢ Q),
¢ ®~5in A0y /080y tan ANy, u=atctan Ic; L2, ®v-u,
€1 = CO8 Afy /sin 8, tan AN'y, v = arc tan eyl @y =v ¢y,

< 3] Qy-3 By -

- + a, 360-ay .

+ + a; 360 - a,

- - Iw-d, lw'cl

+ - l&O-a. Iw")
. FrtOnder i f(f* = 0)

tand =(1-Nng,i= 1,20 =(1/2N0, +9,), &by = (1200, - 0,),
Al'l; ’)g,& '(ll!)dl,ﬂ't“‘ M. “h’ .- .m, .. "“, “‘,
L=sin® &g + Hein® A\, =sin’ ¥d, 1 -L = cos’ ¥d, cosd= 1 - 2L,
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U=21in? O cos® 89 /(1-L), V = 2 5in?® Ay, cos? O /L,

X=U+V,Y=U-V,T=d/sind,8,d=(1/4TX-Y),

S=asind(T-5,d),F=2[Y-(1-2L}4-X),G=(1/2)T,

Q=-(FG tan A\)/4, ANy, = (1/2)(AX + Q); the rest of the azimuth solution is the ssme as for
the original formulse sbove.

Spherical (f = 0)

With { = 0 in the above formulae we have:
tan ¢y = tan 0;, ¢y = 0y, 0 = (1/2)(0; + 0;), A0 = (1/2)(9; - 6:),
: A=)y =)y, ANy = (1/2)AN, H = cos? OBy, ~ sin? O, = cos® 6y ~12in? Aby,
L=sin? Af, +Hsin’? ANy, cosd=1-2L,S=ad,Q=0, ANy = A,
) = - 8in Al /008 Oy tan ANy, C; ™ cO8 Ay, /sin 85, tan Al ; the rest of the azimuth solution
is the same a3 above.

Aszinwth Determination—Elimination of Quadrant Search

In the sbove formulse we find two firsr quadrent angles given by u = arc tan Ic, |, v = arc tan lc,|. We
then form a, = v-u,a; *v+u and determine the szimuths according to the signs of ¢, and ¢, from the

sy
1] 7 3 ad B 8
i - + a, 360 -a; |
V + + a3 360-0.
- - 180 -4, 180+ a,
+ - 180 ~a, 180+ a,

This, in effect, eliminates the quadrant ssarch since it has been done in advence. For the development
of thess expressions 3ee Appendix 1.
The arrsngement of the inverse fornulse into a computing form is shown in figure 25, Appendix !.

. DESK COMPUTATIONS OF DIRECT AND INVERSE SOLUTIONS

For a demonstration of the direct and inverse forms, Figures 18, 25— Appendix 1, the long line
published in reference {4] will be used. Its cloments as ghven there are:

ORIGIN ¢, = 20°, ), = 0;S = 964941 2.505 meters

TERMINUS ¢, = 45°, ), = 106°; a, 4 = 42° 36’ 30".03S.

f= 003367003367, 2 = 6376388 meters, a,., = 295° 17" 187600

To provide a check for this line we use equations (49), (50) of Appendix 1 to make an independent

computation as follows:
= 003367003367, 2= 6378388 m, cos 8y = 64042078, sin #, = 76802423,
¢y v ooy » 215629892 X 107 A =c,() -cscq) = 215522628 X 107
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¢; = (1/4)f sin? 8, = 49651618 X 107, B ={1/2);cacy = .53606 X 107
¢y = 1 +¢; cos 8y = 1.0013809386, D = 2 + cy(c} + c) - (1 +¢3) ¢4 - c5 = 9976269631
Cq ®C3 +Cy = 1.0018774548, E = ¥ic, [2 + cy(cy - 1) - ¢]]2.49685942 X 107°
0, =72° 23 367933, F = %ci(2c, - 1) = 6186 X 1077
Ny ®33°47° 367695, In=1n. +n; = 106° 11’ 137628 = 1.8533148482 rad.
01 = 63° 38° 267269, Lo = 0, + 0, =86° 50’ 297583 = |.5156709899 rad.
03 =23° 12' 037314, sin o = 99848098, A0 = 0, - 0; = 40" 26’ 227955,
cos A = 76108893, sin 2Zo = ,11002746, p = 2 sin Eg cos Ao = 1.51986564,
cos 200 = 15851273, q = 2 sin 2Z0 cos 240 = 034881506,

In 18533148482 DIoc 15120742467
-AZo - 0032666139 +Ep  + 0007551596
1.8500482343 1.5128294063
+Bp  + 0000008147 Fq -. iz
aNrad) 18500490490 Sl 15128294041
AN 106° 00' 007009 s 9649412917 m

Figures 4 10 9 are respectively the direct snd inverse solutions of this line - second order in f, first
order in f(f* = 0), and spherical (f = 0). The cromes in spaces of the fini ceder and spherical examplss indi-
cate values to be omitted in the computstion.

Conpmbnoflhdhdm
Second order in . We first &nﬁyhm{mmdwtohusdnt!hetopofmﬁumandum

_ the indicated spheroidal constants from Appendix 2. The given quantities ¢,, 8,3, S, X, are then entered

in the spaces provided with heavy underline as shown in figure 4; sin a, 5, €08 4.3, tan ¢, are found from
the Puters (o other) 8-place tables of natural trigonometric functions; tan ¢, is multiplied by 1 - f to gat
tan &, as shown, and then sin 8, , cos 8, are found from the tables. In using linear interpolation in the
Peters Tables, always take the tabular difference at the particular second in the table uniess the difference
1s constant for the particular column as marked top and bottom. Fuor instance, at 41° $2' the tabuler dif-
ference is 3 ronstant 361 for the sine column s indicated top and bottom, but this is ssidom s0. Con-
venient checks are provided by the identities sin #/cos 0 = tan 0, sin’ # ¢ cos 0= 1,

Aftes 31, N, 04, 5in ¢4 have been found we compute the Sonstants ¢ , ¢y, D, P. We may compute ¢,
in two ways sinoe § - My = sin? #y. We next find 0, then & = $/aD which is in radiens. At the top of the
form find | radien = 2062648061 seconds. This actor is multiplied by & (radiant) acd then divided by
3600 seconds (| degree) which will give an integral aumber of degrees phus & decimal part of s degree.
This decimal part is multiplied by 60 to get an integral sumber of minwiss plus s decirasl part of & minwie.
The decisnal part of & misute is multiplied by 60 to et sconds setaining three decimals. If the total
number of seconds is less than 3600, but more then 60, we divide by 60 10 grt miautes and then contimee
as above. Always check by reversing the process o get the redians d.

With 0, and d in degrees we form v = o, -d)ulﬁndud.emd.-:.au. These are chackad
by sin’ x +cos’ x = 1. Vand W may aow be computed and then X snd Y. Note that X mey be igaored if
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it is less than .3 X 10™. Next Ao is computed from the radian values of d, X, Y and converted to degrees.
Ao and d always differ by only a few minutes. Zo is formed in degrees and then sin Ao. cos Ao, cos Zo
found from the tables. We are then able to compute tan a;.;. The first Guadrant solution for tanu =
211661579 is u = 64° 42' 417399, Since the sign of tan a,-; as computed is negative, we have a;., =
360° - u = 295° 17' 187601; sin a5, = sin (360° - u) = - sin u = - sin 64° 42’ 417399 n - 90416831, We
may now compute tan ¢; which is found to be 1.00000003 = 1 + (3 X 10°*) and from the table ¢, =

45° 00' 007003. Next find tan An = - 3.4449133. From the Peters tables we find for tan v = + 3.4449133,
that v = 73° 48’ 467375, but since the sign of tan An is negative, An = 180°-v = 106° 11’ 137625, Now
the computation for H is in radians and conveiting to angular value, H= 11’ 137620, We subtract H from
An and add the difference, AX, to A, to get A; = 106° 00° 007005 as shown.

First order in f{f? = 0). The input quantities are the same as shown in figure 4. We *‘cross out” the
quantities to be omitted as shown in Figure 6, and the computational procedure is then the same.

Spherical (= 0). We must adopt a spherical radius. For figure 8 we have adopted the great normal
radius for ¢ = 20°, see Appendix 2, equations (11) and (22). The quantities to be omitted are then “crossed
out™ and the simplified computations made as shown.

Comguistion of the inverse swolutios.

Seccnd order in f. We enter the name of the refcrence ellipsoid to be used and the corresponding
spheroidal constants from Appendix 2. The given quantities ¢, , 9. Ay, A; are entered in the spaces with
heavy underline as shown in Figure 5. We find tan ¢, and ¢, from the tables and compute tan 6, . tan 8,
as shown; then back 10 the tables to find 8,, ;. We then form 8, and A8y, and check by adding, since
0q + A8, =0,. Next find A), &), and then from the tables sin 8, , 08 8, : 5in A8, 005 My, | tin Ady, .
tan AA. We next compute two values of H as shown which should agree within 5 in the 9th place of
decimals, Take the meen and retain 8 decimls. L is then computed retaining 8 decimals.

With the value of L, we form | - L, cos d = 1 - 2L as shown; then find 4, sin d from the tables. Now
compute U, V, X, ¥, T.E.D,B,A,C. Notethat B=2D, A= DE, D =4T?, C = T - (1/2)XA - E), 0 that
these are relatively sssy tn compute. The check is given by T = C - KE + AD/B = d/iin 4.

Compute n; . 0,. 0y, nd than 8,4, 8,d. We can not compute S, (first order for competison) ot go '
dicectly t0 §; for the second order distance as shown in figure 5.

For the azimuths, we compute in order F, M, G, Q, A\, tan AN, Then ¢, ¢, u. vand in that
order. We add and subtvact the quantities . vlo geta, " v-u.a, = v+ 4. Now the signs of ¢, . ¢, are -,
+ 53 shown in figure 5. Hence the azimuths are a,.; = a,,0;., * 360 - g, as shown. ‘

First order in J. The heeding information to first order in £ and input quantities are the same as in
figute 5. The quantities to be omitted sre “crossed out™ as shown in figure 7 and then the computations
are done 83 before computing S, after finding the first order correction §,d.

Sphericcl (f = 0). We teed a 1adius spproximation to the ellipsoid and use that determined for the
wpherical direct solution which is the great nocmal lesgth for ¢ = 20°, r = 6380897.5 meters (internstional
ellipwoid). The omittad quantitics are then “cromed vut™ as shown in figure 9, and the smplified computa-
tion made analogously 23 shown.
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DIRECT POSITION COMPUTATION FORM FOR LONG LINES. Given ¢,,A;. 0. Stofind ¢;. Ay, 0y East
longitudes positive; azimuths clockwise from north. no root extraction; only -place trigonometric natural tables
(as Peters) required for desk work.

TN TELYVATIONAL stvEroD 2 4372388 m (L0 3267 0037367
1-f _._ZZ.“_M_ 1 radian = 206264.8062 seconds

une_ TH/ITIA L ] T0_ TELM IV S -
6202 02 9 tan¢, 237 2023 wan6,=(1-Ntang, . g L7
o2 L Th PR03Fn0, I//Q0R6T wsb, . FHO0 63330, 19 6 16106
sina, ; of s TSR M=cosdy=cosl, sina, b0 2078 o, s 1O 16568
cos Q) 3 L3200 4755  N=cosh, cosa, ., MZML sin 0, Jémzﬂi
¢ =M.2/SL 2800 D=(l-coHl-c;-c\M. PP 2 2696/3
G =40 M) LS b2 , Pra(l+ke,MiD 98041103
cos 0, =sin 8, /sin O, ‘ﬂlzs_ﬂt_i_ o, 6.3. _.Zf,v»_ZLZ?/

d=S/aD L S/ 69X 7 T¥% 1 d &_“ﬁ___ﬁw S P4UYT &R v
sin d‘.f_ZLS_,Z& 0 u= 2oy -d) ff‘, ,Zf_wsm u- J!Aikillé.-__.
cosd ‘ﬁw_w_ W=i-2Pcosu -MMZZZ cos u ,Aﬂ?y9¢/ﬁ’w“
V = cosucosd - sinusin dWL Y= 2PVWsand M?Sé 95—5..? ——m
X=clsndcosd (V- a202 /0 Yeonare) so=aex-y LS 1562099/ _ i
oo ALRY L0 cnoo OISO L2 % _to L. SO 29583
cosYo . 26060 28T . Lys 20, - 00 fg 3’6 .2 2‘; 269
tan ay , = MAN cos Ao - sin G sin Oo) -_3_,_{&5_{_{_2_2__ a; .,

_(Slﬂa m’“'ﬁuh.‘nl;srn i / _i) l 3 < ok
tang, = ' 0) T (s 1‘[.’([0 sin o, ;'Wp o

(1~ M
‘ -}

l.nAn [y mA@i"\Q' > ‘-MM— 6])

cos 8, cosdo-unf, undocma,

He2g(l -¢: 180 <¢¢; un dacos !Iomm_{rad) H

L. 13402

Man-NWs06 020 . 00.008
A 2. . .2 2

CHECK

M=ousfo2conl, wna, ; =cosd; sn{1R0 ¢ a, ,)

Figum 4. Direct computation—second omles in {.

13

i

e




INVERSE POSITION COMPUTATION FORM FOR LONG LINES. Given ¢y, Ay 03, N t0find S, ay;. a; ..
Azimuths clockwise irom north; east longitudes positive: no tables except 8-place natural trigonometric (Peters). no
root extraction.

/N TERNATIONAL spueroin + 6372288 m b 62569P2/-9%S _m

1-f=bjaIF 66329966 i .20L68350/7 . v .o000L8Y /250288
P64 L 2712602 x0°C 1 radian = 206264.8062 seconds

'Y __3} é_ (2] \._ NI T/AL A °0 b ;

b KE O O 1 _TELIUNIS \LRb 2 __CQ

tan ¢, . 3639 202 3 1. always west of 2. Y EP R W 26°
tan ¢, / tan8=(i -fNwng¢ Mg =%\ _S2 —

8, _y_ﬁ.__.fi/__é.l_&f tan, . G766 3200  snt\, 2986355/

L9 S /6. 706 tan 8, 2627 Y475 :anm;MZilj’Y__

0 -‘/2(0 +8,)&_ ZS ‘(ﬁw sinby, _ . S26/ /%4 cosb P YY/ 2452
=10, -6,)/2 A% sZ 22/ sit: Ay, ,zzé / ﬁﬁf 7 cos Mg 7 763 £/20

H= cos’ABm ~5in?0, = cos®8py, - sin’ M e i-L__ . S>es ¢2327

L=sin?Ap + Hsin? O\, Y /Y 0663 cosd=1-2L _t_éﬂ_/_fé Vi A

U= 2sin?6,, cos? M /(1-1) L D26 795027 4 fb g2 17.950

V= 25in200y, c0s? 0 /Lo L3567 Y sind . FLEI 6350 4 (rad) WL-
X=U+VLLLZ£.ZZLZ£Z_ T=d/smdl¢_ﬂéﬁmj E= ..cosd_-.[lﬁm_
Y=U-V_. £9ST0890]2 D=41'9 /27444 B2 B=-1D [(BE.IL74EL FC

A=DELDS/S20 858/  C=T-%(A-E)L0Y24ESFb CHECK C-%E+AD/B=T

n =X (A+CX)2.6T2204325, =Y (B+ EY)[AA:Z?&,ZAQ_? vai_é_ZZf/__Z,?__&.

8,d='/4f(TX-Y) o002 429 = (f/64)n, -n,+n,)_'_Z.Za’_&/é__.
-asind(T 5.0) 24474/ 2. ¥24 -as.nd(T 5,d+8,d) LY TYLA.- 792 m

=2Y-E(4- =32T-(20T-A)X-(B+4) Y-ML&MQ?
= WIT + (17 /64) MﬂjﬁL_LL_ o = - (FG tan ANY/4 1/ 43.628
Axm % (DX + Q) _::L__af_ié_&.? tan Oy, L. 3375 463247
v = arctan I, | _.S_'Q_ZLSL_ZL7 = 05 My /(sin Opy tan OA,) 2L 36 265729y

u = arctan le, ! #~4§4§Q3 ¢y =-sin Aem/(cosa tan 37\,,,)__[22.2.’_26&
m=v-u _Y¥ S ID.O3Y a =v+u __44/ ¢ /%00

L I 0 ’ " L2

==ERT - B DL Bz 4 v
-t o Ny Sb 30.039 Te0-0, 294 17 12600
+ + ay 360-01
- - 180-m 180 + o
+ - 180 - a; 180 + o,

Figure 5. laverse computation—second order in £,
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DIRECT POSITION COMPUTATION FORM FOR LONG LINES. Given ¢y, Ny, ;3.5 to find ¢,. Ay, a, ;. East
longitudes positive. azimuths clockwise from north: no root extraction; only &-place trigonometric natural tables
(as Peters) required for desk work.

LNTERNATION AL spHEROID 2 6278388 m (_ 003367 003367
1-f _._MZZ‘L— 1 radian = 206264.8062 seconds

LINE _ N/ T L To_ZELM NS

Y 17 :Q ;b tan¢, 63T 7623 1and, =(1-Nan¢, _._.;éw

.o L2 T6 LIS, IY/0 027 coss, M_molw

Singy , bF/T §282  M=cosfp=cosh, sina, ., LYY 078 0, 30 10 .58
cosay o232 4785 N=cosb,cosa,.; P8/ JPZR  sinb, 26802423

c-M_2/562900s0- % p- ot M s9202403

¢ =% -MY .Y FeS6 D 210" P=cy (1 +%/D=QZD_.ZZZLM_3
coso, =sin8,/sinb, . YL 327 9987 o, JEMH/

d=SfaD [ SL6XRF36 [ ) o £b $3 pboof 5 26 TY2-F'V m

sind. 7985 229 % u= o, -d) =% 29 /9.92% sinu =225 29(/

cosd .O5Y3 Y01F  W=1-Wcosu FFDILYeTI  cosv t LEBEY Gl0%

V=cosucosd-sinusind_ 26 /SEPE/T7  Y=2VWsind 222756 %325

X=c}sindcosd(2V? -1) X Ao = dV(Y‘Q"r Z- SlszgzL(rad)
sinto_. 92 8Y 20D  costo OSSO 957 ro_ & " _;‘:2___ZZ_£E_7’
cos Zg X 20 =20, -O0 - X . ~

tan ;. =M/(N cos Ao -sin 0, sindo) ~2. //66 062Y o, a9¢ 17 12940

tan ¢, _-(sin 8, cos A:li—_:l):;n Bo)siner 29999 L33 Sin a2 g’ov/' 6 76"5”
7] _lﬁ__i_____z_______ﬂ__;___ﬁo___

- ..—...—-.____.-__-.—_

tan An = sin 8o sin &; 5 ’Lﬂm._ An _[2& // /6’0/33'

cos 8 cos Ao - sin 0 sin Ao cos a; _,

H=c.u-X)Aa-c|c:mszoM3mmd) H il 19.02Y

CHECK

° / y”
M=cosf =cos0, sina;_, =cos, sin(180+ ;) A =N +A>\_=é@é__£__2_2_____£ézl__é

Figure 6. Disoct computation--first order in f.
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INVERSE POSITION COMPUTATION FORM FOR LONG LINES. Given ¢y, Ay: ¢y, A tolind S, ay 5. 0 4.
Azimuths clockwise from north; east longitudes positive: no tables except 8-place natural trigonometric (Petersy no
root extraction.

//VTA:(“/Vﬂ'7/ﬂ/V/L SPHEROID s 6228788 m b 6325 69//- 745

1-f=be . @7 66229966 ' _ 2076823017 YW _.Lo00LY(750&FS” _

/64 Qo 1 radian = 20620-4.8002 seconds

° ‘ “ T T T a ’ v
6 __20 Q o I, SN T/AL N 2 o e
¢ Q Q0 » T ERMINYS N, L2
tang, 28627 2023 1. always west of 2. =N -NLOE
tan g, L tan 6 = (1 - ) tan ¢ DAy =WON &2

#M tan8, . 9266 3790 _ sinnn, J_ZZ?_G_.Z;YS/____
o, (96 1(6-706  anb, _ 2627 Y475  untn _=32.4822% 14
m =40, +8;) i T i bm _S26/ 32/ Y e o5y _ FYYL 2YSO
m = %(02 -0,) Sinlfm . 226/ 4487 sy, . F7262 /20
H = cos? A8y, - sin®8yy, = cos? 8y, - sin? Ay, ShSEYYS - . sa228 9237
L=sin* A0y, + Hsin* O\ ¥ 20 2663  cosd=1-1L _£.05 7/”?5 7Y
U= 2sin8,, cos 8, /(1 - L) LOPTYE0I? T 4 AR 12.25C
V= 2sin?A, cos’ﬂm/L._(_"fZJ:musin dw d (rad) L_MZZM
X=U+VLLDZDGRIUIE  T=disind fSILDS FHO05 E=2c0sd L1422 7298
Y=U-V_. 895 S08407 =41 )(' B=> X __
A=DE X c=T-na-5_K CHECK C-%E+AD/B=T
Xx(a+cxy___ X ny =Y (B +EY) ny = DXY
8, d UETX-Y) 8;d =(f*/64)}n; = n; +ny) )<_

Su=asnd (1-6,0) ZhLLYZLIE  m 5.=2snd(T-b,0 40300 X

M=32T-(0T-A) X-(B+4)Y__ X _
-»srrm’M)M 007-5'6'2?{& Q = - (FG tan AN)/4 2 12.904
'/Z(N\*Q)_.fl_u_.f&.?

tan A\ _ L 32/S 4506
v = arctan lc, | w

¢ =cosA0m/(sin 8, tan AN, ) £ /. 7676 S6 00
u = arctan Ic, | _LQJ\?JM } ==sin Mm/(cosﬂm tan A)\ ) Pl /927’742?
a =v-u 4’7’ 3"6 29. ff/

1=v+u _A_Y___Y_k__.ng_QS'

Y1 G ﬂ=‘_;_é 0 ' " 012 1

- ¢ o _ &2 €6 29.957 360 a _Zl‘:__/l._m
+ + a; 360 - a;

- - 180-qa, 180 + a,

+ - 180-¢ 180 + a;

Figure 7. Inverse sotution-first order in f.
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DIRECT POSITION COMPUTATION FORM FOR LONG LINES. Given ¢;,7;,a, ;.S 10 find ¢,. A;, &, ;. East
longitudes positive; azimuths clockwise from north; no root extraction; only 8-place trigonometric natural tables
(as Peters) required for desk work.

SPHEELE SPMERQID 2z bIFOETSm |__ O

1-f (7] 1 radian = 206264.8062 seconds
LINE __ /NIT/AL 0. TERMINIS
# )LQ i 0 tan ¢, X lan9, =(I—ﬂtan¢.

O 7 "

01-2124__2% JLAdsin 6, ’35/1020@“’501 ‘_Z.f_’féi?_‘.ke.’félﬁ_ﬂ e _
sino, ; o8/l $2S 3 M=cosbo=cos0, sina, , Y2/ EBF/ 0, X

cosay., «ZLAL? 4755 N=cosh, cosa,_, M sin 8 X

¢ =M X D=(1-cX1-c5 -, M) X
2 = (1 - M) X P=cy (1 +%e,M)/D X
o / ”
¢os 0y =sin 8, /sin 8, X 0,

TNy A VLY I % & AT X s .9/% o
snd— X u=Xo-d) X sinu X

cosd X W=1-2Pcosu X cos u )‘ e

V=cosucosd -sinusind X Y = IJPVWsind - X

X=c} sindcosd(2V? - 1) X Bo=d+X-Y ______X_,-__m_ (rad)
d +H

B PIEVES TS sl OSES 2943 rord Bl 2% 90.79%.

cos g Jﬁ( Lo =20, -0

T T T T

tan a,.; = M/(N cos Ao -sin 8, sin Ag) -2./28S 2,37 a, 2925 1L ié z;;
tan%:-(sine. cos Ao + N sin Ag) sinay ¢ 22224222 sinag., _= '_ZQ‘/?éi/‘/ .

(1 -OM o 7 w
¢: M

[ / 4

- sin Ao sina, -2. zzz.fé.f'z X
tan A} cos @, cosAo~sinf, sindocosa, ., an

H=¢ (1 -¢;) Ao - ¢ ¢y sin Ao cos Lo Qo (rad) H e e A___H_-._.___.

AN ~dmarht /o.{ ,__6:2 74778
A Ll .0 o

—

CHECK

M=cos0p=cos0, sina,.; =cos@, sin(180+aq; )

e e e bt L

Figure 8. Direct Computation-spharical.
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INVERSE POSITION COMPUTATION FORM FOR LONG LINES. Given ¢, A;; 5, A; to find S, @, ;. a;.,.
Azimuths clockwise from north: east longitudes positive; no tables except 8-place natural trigonometric (Peters); no

root extraction.
SWBROLQ an b A m

SPHEELE

1-f=bfa X e X Yf X

A

f2/64 X 1 radian = 206264.8062 seconds

& zog o O \._ /YL TIAL A __:g é 42
-2 0 2 TERMWYS w6

tan ¢, X 1. always west of 2. AN =) =), Mé_.__,_.____

tan ¢ )f . tan 8= (1 - tan ¢ OAp = %A\ _ 3

0, X tanf, X sind\, 2986 255/

9, x. tan 0, X tan A X

Om =%(8,+6,)_22 1'0 “ sinby, _,S22% 944 / cosby, __R¥729/45
Do =0 -00)22 20  sindbp 206 294/ costhn . 926v UL/
H = cos? My, - 5in*Opp = c08*8py - sin? A0, BT 3081 - L X

L =sin*Afy, + H sin? A)«m..m_z__ cosd-l-’L.;M 7.?73

U= 2sin*0,, cos? M /(1 -L) X d _aé_.)_f__aﬂd:ﬁi_

V= 2 5in? My, 0050, /L X sind X d(rad) L S2224586Y
XsU+V__X T=d/sind X E=2cosd_X

Y=U-V X D =4T? X p=p X

A=DE 'd CeT-%(A-E)_X CHECK C-%E+ AD/B=
n=X(A+CX) X ns=Y(B+EY)___ X ny = DXY X

Sy d =% (TX-Y)— X

WW‘-—

6;d-(f:/64)(n. ~n; tny) X

§;=a sind(T-b.d*&,d)m,Lm
X

M-32T-(20T-A)X-‘B+4)Y

"

Q= -(FG tan AN)/4 ).

F-’Y E(4-X)
G = WIT +(f*/6d) M 5 X' .
AA..-%(AMQ)_::.Z

v = arctan lc; | __u_ﬂ_bm
u = arctan Ic, | _M_L‘_.M

un o\, 20 ddy, L2704/ 82

€3 ™ co3 Ay, /(sin 0, tan AM)LLMM

¢) ®~sin &0y /(c08 0 tan Ary) . L9323 PY63
o ’ -~

vy g2 64 VM ameveu L& ¢f 1/.3Y/
G & o, o . ~ a . , -
- + a 2& ! 2 2 Znaa 360-0, A‘L_._Ll___zz_w
+ + ay 360-0.
- - 180-a, 180 + a,
+ -« 180-aq 180 + a,

Figam 9. laverss computation-sphericel.
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Table 1 gives a comparison of the given line elements, the control computation, second order, first
orders, and sphesical computations. See Appendix 3 for more examples ¢t direct and inverse solutions for
several line lengths and in several azimuths. Also see the evaluation and comperison in Appendix 1.
NOTE: Appendix 4 gives the Fortran statements for the inverse solution as presented here. The card
deck including the arctangent library function (ATAN2) is available.

DISCUSSION OF PROBLEMS INVOLVING LONG GEODETIC LINES, LOCAL COORDINATE
SYSTEMS, AND ASSOCIATED \'SOMETRY

General Remarks.

If we wish to compute reference lines connecting islmids, continents, shoals in ocean areas, there are
several alternatives available depending on the purpose for widch the reference is needed and the accuracy
required. Direct scaling from a large accurate globe may bse used. If a mean spherical representation of the
reference ellipsoid can be tolerated, then a plot of computad great circle intervals on an suthalic (equal
area), autogonal (true angles about points), or aphylact.c (neither authalic nor sutogonal) projection msy
auffice. Within a radius of 10 n.m. of a station, simpix plane ciordinates, appropriately scaled, will be
adequate for most geodetic work, and small relative errors will be incurred as far as 100 n.m. See Table 14,
Appendix 2, for errors in distance from the oriyin swociated with plane coordinates involving several types
of goometric projection. Also included there is a discussion of plane coordinates. See also reference [9].

For track line reference, the azimutha’ eqriidistant c7 doubly equidistant peojection may be useful,
although both are aphylactic. Approdix 2 has s disct'wion of the doubly equidistant projection with its
equations. The Department of Scientific .nd Industria) Reseai ch, New Zaaland, has found the azimuthal
equidistant projections useful in their - 1th Pacific studies, so¢ reference (34] .

I T [ [ [
!..”.i.?“.|¥mg.?“.|.'f‘*.
Given, Reference (4] o 108 i seava12.508 |4 6 Jo.oslem 17 18600
N i 2
L an g I 4 LA
Coatral °“"', '1os 00 00.008! ! ‘
| | | |
i ! } )
Disect e 0 00.003 00,005, | i 601
taverse f | { ! ml 00
1 B 1 ]
Direct ¢ o8 59 so.m30! onl | | 960
: —y 4
lovern ¢ | | 1| 1951} a9
—1 -t T 1
Disect (sphere) 0 |4 st 12238105 9 4198, | |1 oams
taverse (sphes) 0 : }mmn lr 4 n.m} 1 40689

Table 1. Compusiten of dbect snd iverse detk computolives,
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. distance and forward azimuth of the base line, the coordinates of the first station and back azimuth sre

o S

The diagonal (skew, oblique) Mercator (cylindrical) projection, is often useful, since the base line (the
track) is one of the reference axes for rectangular coordinates, the scale may be held true along the base line
or along two parallels symmetric to the base line, and the projection is autogonal. A mathematical de-
velopment is given in reference [16]. General tables exist to provide coverage for route charting, see
reference [33].

For detail and greater accuracy in local area survey: connected with a base line, rectangular spherical
coordinates may be more convenient, particularly for point to point computation away from the base line.
The formulas for this kind of computation are inchuded in Appendix 2. Appendix 2 elso includes trans-
formations from local rectangular spherical coordinates to space rectangular at a point of the ellipsoid
referred to the noemal, great normal section tangent, and meridional tangent, and this system in turn re-
ferred to the rectangular system at ellipsoid center, with the axis of rotation a coordinate axis. These may
be useful relative to the adoption of the World Geodetic Reference System, 1967, see Appendix 2,

For oceanographic surveys, the positioning problem may not be essentially different from the naviga-
tion track plot. The gnomonic linesr plot, with projection center on the track, gives the geographical
coordinates of the great circle which can then be transferred to any suitable projection, the resulting curve
being the great circle track. Distances may then be scaled from the map or chart, azimuths or bearings
messured directly, if the map is autogonal, etc. Where accuracy requirements are not high, the possibility
of using existing maps and charts should be considered since U. S. Government agencies such as AMS,
GIMRADA, ACIS, C&GS, USGS, NAVOCEANO:; the National Geographic Society: the State governments;
mapping and charting sgencies of other countries, collectively publish large numbers of maps, charts and
grids on various projections and at several scales. Direct scaling from « lerge globe may suffice. ,

For world reference, positions may be expressed in terms of the Universal Tvansverse Mercator
coordingte system, refevence [35]. See slso an extensive study of world plane coordinate reference tys
tems and recomnmendations as given in reference [36]. Positions may also be referenced in rectangulne
coordinates at eBipsoid center, e Appendix 2.

If the end points are in triangulation neis on different spheroids, one station can be transtesred to the
eflipeoid of the other or both can be tramsferred 10 a third. The equations as uted in the NASA tracking
system will be found in refersnce [37]. See sbo references [9] and [38].

With the end point coordinates on the same ellipsoid, an inverse computation will give the distance and
szimuths. This may be done by use of a form such a1 Figure S, dehpmitMmdiqma
peeplot of the bass Line on s globe, into stations to it islands, shosl sress, etc. Beginning with the first

computed by a divect solstion using the form of Figure 4. For best accuracy us the order * computation,
keep the initial aghmiuth and position tut increase the distance incrementally as pastitioned until the
terminal point is reasched. The desk computing could be formidable if the line is very long and the stations
numerons. Use of s lage scale computer is then indiicated if available.




Alternatively one may compute from station to station along the base line, but this requires addi-
tional computation, even if first order in f suffices, since all input elements change for each succeeding

computation.

Spherical case.

A method of computing stations along a great cizcle and parallels to the great circle simultaneously is
given in reference {18]. Alternatively the forms as givea in Figures 8 and 9, can be used. See also refer-
ence [39]. The best sphericai radius to use is probably the ellipsoidal mean radius computed for the mean

latitude of the base line terminals, see Appendix 2, equation (12).

Problems in local geometry.

Problem. To compute the geographic coordinates cf a point at distance S frcm a base lne station and at
angle a with the base line. The geographic coordinates ¢, A;, and azimuth q; at the particular station are
known, which with given S and a, provide the input ¢;, A;, a; + a, S for a direct solution from the form as
shown in Figures 4, 6 or 8, depending on the magnitude of S and accuracy required. For a point at dis-
tance S on the perpendicular io the base line, a = 90°. If S is constant and a = 90° at each base station,

the dirsct computation at each station provides points on a parallel at a given distance S from the geodetic
base line (this geodesic parallel is not itself a geodesic). If the base line is a great circle, a circle parallel 1o

it is generated. If geographic coordinates alonig a partitioned spherical base line with corresponding
coosdinates along two symmetric parallels are required, the method as given in reference [18] may be used.

Prodlem. Given the geographic coordinates Q,(¢,. My ), Q1($1, A2 ) of two stations of a sphericel base line,
to find the perpendicular distance s from an arbitrary third point plé,, Ny ) 1o the base line.
From equations {3) and (4), page {13), reference [18) solve for ¢, Ao:
1an Ay =(tan ¢, cos X, - tan @, cos Ay )/(tan @, sin Xy -tan @, sin X))
Col @o = cot @y cus(Ag - A; )= cot @y cos{Ag - A3).
From the two figures, page (27) of reference [ 18], using the spherical formula cosa*cosbcosc+ sind-
sinccos A, witha = 3, lind
sins = 2 [5in ¢y COS g - CO3 G, 5N Pp cOS (Ao ~ Ay ).
where the ¢ sign corresponds to k = p, the - sign to k = p’, relative 1o the points p(@y. Ay ), pllgy. Ay ) re-
spectively as shown in Figure 3, page 26, reference [18].
Note also the solution in Appendix 2 following equations {47). with reference to the distance s of
Figure 34. Additionally s ~+ y<oordinate of the doubly-equidistant projection, see the discassion (ollowing
equations (56), Appendix 2.

Probdlem. An observer at the known station Q (@e. Ao ) he meters above the spherics! surfsce (asmumed sea
level), Figure 31, measures a linear distance D to S (target on 2 hill, island mountan pesk, etc.) st s
measured angie of elevation 8, and in measured or known azimuth a. If the spheroid at Q is approximated
with a sphete of radius Ny (the great normal length for &, equation 11, Appradix 2) find the rectangular

space coordinates of S, referred to the normal and tangents to the paraliel and mendian at Q, the geographic
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coordinates of the normal projection P of Sy upon the sphere, the spherical distance d = PQ and the height
hof Sy above the sphere (ses level). We have a, D, Ny, 5, ¢, Ao, fig, to find X, Y, Z, h, d, ¢, \. From
Figure 31, and some trigonometric identities we have D; =D cos8, X=D; cosa,Y=D, sina, 2=
ho+Dsind,tanr =D, /(No + Z),d = Ngr (radians), h=(Ng + Z) sec7-Ng, h= Dy csc7-Ng, sin ¢ =
cos d sin ¢g + sin d cos ¢, cos a, cot AX = (cos @ cos d ~sin @, sind cosa)/sind sina, A = \g - AN,

These problems illustrate the use of the geodetic line computing forms, and the formulae of Appendix
2, for solving local problems of computation for a station configuration. For very long base lines, it may
be desirsble to compute the positions of the stations along them very accurately, but in the vicinity of a
particular station, a spherical approximation or plane coordinste configuration may suffice. Additional
formulse such s for dip; maximum separation, chord-arc; geographic coordinates of poirt of maximum
separation, etc. will be found in reference [18]. Other coordinate problems are discussed in Appendix 2.
For uniform high accuracy over s considerable extent of the spheroid, a plane rectangular coordinate sys-
tem based on one of the autogonal projections as used for geodesy may be more appropriste, see refer-
ences [9], {16], {36).
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MATHEMATICAL DISCUSSION OF THE SPREROIDAL GEODVESIC

In Figure 10, a is the angle which the differential arc length, ds, makes with the meridian at P;. The
radius of the parallel in parametric latitude 6 is a-cos 8. Then a-cos 6-dA is the differential arc length along
the paralle! in latitude §. Now the element of arc length along the meridi<~ is Jefined a: Rd¢ where R is
the radius of curvature in the meridian given by R = {1 ~ 2?)/(1 - ¢? sin? ¢)¥?, see refersnce (16}, page
59. The transformation between geodetic and parametric latitude is tan ¢ = tan 8/(1 - ¢?)"?,

From the differential right u'in.nsle PP, P; we have ds® = a® cos® 0 d\? + r2af?
where r* = a3(1 - ¢? cos® 0).

Figure 10, Differential arc length on the oblate spheroid as obtained from a differential right triangle.
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whence (1 -¢? cos? 9)¥?

(1-¢3)» ,dp=(1-¢%)"2d0/(1 - ¢* cos® 9),

1/(1 -€* sin® §)*? =

a(l -e?)(1-¢? cos? 83¥% (1-€2)"2d0
(1-¢*)¥? (1 -¢? cos? 6)
or Rdg = 1d@, where r = a(1 - ¢? cos? 8)"2 = R(i - e?)¥2/(1 - e? cos? 8).

and Rdg = a(1 - *)do/(1 -e? sin® 9)*? =

NOTE that r is not the radius of curvature in the spheroidal meridian, but rd9 is the differential arc length
along the meridian in terms of parametric latitude and applying the pythagorean theorem to the right
differentis! triangle P, P P, we have at once the formula for the general differential arc length on the
spheroid in terms of parametric latitude:

; ds? =a?[(1 - e? cos? 6)d8? + cos 9dA?]. )

Differential equation from Euler’s Condition
We may write (1) as
s=/Hdo @)
; where H=a[l -¢? cos? 6 +cos?OA'] V2 A" = dMN/do.
Now along geodesics, the Euler equation d(2H/0)")/d8 - 3H/dA = 0 must be satisfied.
Since 311/9A = 0, the equation is d(dH/3\")/d6 = 0, a first integral being then

| 9H/a\’ = ¢ (constant). ?3)
( i From (2) 3H/0\' = (a)’ cos® 8)/H and this value placed in (3) gives
, aX’ cos? 8 = cH=ac[l - e cos® 9 + cos® GA'2] /2 )

Solving (4) for \' and then placing A’ = dA/dd gives
¢ (1 -¢? cos?® 9)1?

= cos8 (cos® 6 -c?)? ©)
From (2), H=ds/dd and this value place in (4) gives
' a cos® 9 d\/ds = ¢, or a® cos® 8d\/ds = ac. 6)
From the differential right triangle P P, P, of Figure 10
cos (90° - a) = a cos 8dX/ds = sin a. Q)
The value from (7) placed in (6) gives
cos @ sin a = c, or a cos 8 sin a = ac. 8)

o : Since a cos & is the radius of the parallel in latitude 9 and a is the angle which the geodesic makes
with the meridian as shown in Figure 10, equation (8) states that the product of the radius of the parallel

; and the sine of the azimuth, a, is a constant along the geodesic.

: Now the geodesic will be orthogonal to a meridian when a = 90°, and using this value in (8) we have
‘ c = cos 8, wherse 8 Is the parametric latitude cf the vertex of the geodesic. With this value of c, equation

(5) becomes
2 800 (1-¢?cos® )2
| paRfe (-t Oy ©)
J cosd (cos® 0 -cos® 0,)
{ where always
: cos 8 sin a = cos 8. (10)
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With the differential equation to the geodesics in this form, equation (9), we can make several observa-
tions concerning the behavior of the geodesic. The substitiition of + 8 does not alter the coefficient of dé,
since cos £ 8 = cos 8 and therefore the curve is symmetric 1bout the equatorial plane. When 8= £ 8,,
d8 =0, which means that the geodesic is tangent to the parallels 0 = 8o and hence undulates alternately

between tangencies to them.

From (10), with 8 = 0, we have sin ay = cos 8o. That is at a node (a point where the geodesic crosses
the equator) the sine of the angle which the geodesic makes with the meridian is equal to the cosine of the

parametric latitude of the vertex, or a = 90-0,.

For reference in the developments to follow we include here a short resume of elliptic integrais and

functions to be used, [26].

Elliptic Integrals (Legendre Forms)

S = F(k, 0) J-a do fad" k<1
= ,0 - T ————————ca— —-’
o (1-k*sin? 0)'* Jo Ao

o 0
E(k, a)=f (1-X%? sin? a)"’do=j Aodo
(] ()

e, & )_J'” do f" do
b (I +nsin? o)1 -k sin® 0 Jo Bodo

Complete Elliptic Integrals

Jnr/z do fwlz do
K=F(k,n/2)= —_———— _
&, =/2) b (1-k%sin?0)V? Jo Ao

n/2 ”/2
E = E(k, n/2) = f (1 -k? sin? 0)"? do =f Aado
0 0

Elliptic Functions

In the elliptic integral of the first class, o is called the amplitude of S = F(k, o) and k< 1 is the

LIPED ek
e

e R R s T

(11)

Cp o

CLASS

2 (12

CLASS

1 (12

modulus. sin o, cos 9, Ao are called the sine, cosine, delta of the amplitude of S and we have the following:

Definitions {Jacobi)
o = amS, sin ¢ = snS, cos 0 = cnS, tan 0 = tnS,
Ao = (1 -k? sin? ¢)"? = dnS.

Identities
sn?S + cn®S = dn?S + k?mn?S = 1, tnS = snS/cnS,

dn?S-k3n?S =k =1 o k* k<l(k?=cc'=1-c=k")
sn(S'  S) = (snS'cnSdnS £ cnS'sSdnS")/(1 - k?sn?S'sn’S),
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E(k,0,) * E(k, 0;) = E(k, 0; *0;) 2 k? sno, sno, sn(o; ¢ 0,)
(S +5") = (cnS' cnS - snS’ dnS’ snSdnS)/(1 - csn?S'sn?$)

E(x, + 2K, k) = E(x;, k) + 2E, E - ¢'K = 2¢¢'dK/dc (13p
X3
E(xy, k) = ¢'xy =cJ; cn® x dx
Special Vaiues:
S =0, am(0) = 0, cn(0) = dn(0) = 1, sn(0) = tn(0) = 0;
forS=X; snK=1,cnK=0,dnK =k’ =(1-k?)"3; (13)b
for S = 2K; sn2K =sn(0) = 0, cn(2K) = -cn(0) = -1, dn(2K) = dn(0) = 1;
on(S + 2K) = —cnS.
Differentials:
damS = do = (1 - k? sin? 0)"? dS = dnS dS
dsnS=cosodo=cnSdnSdS
dcnS =-sin 0 d 0 =-snS dnS dS
d dnS = dAo = -k? sin 0 cos ¢ (1 -k? sin® 0)V*do (13)%

= %k?snS cnS (dnS)™' dnS dS
ddnS =_k?snS cnS dS
d tnS = sec’0 do = do/cos? o = dnS dS/cn®S
Note that the elliptic functions as determined by (13) have an analogy with trigonometric functions
but S is not an angle a3 is clear from its integral definition, (12). Like trigonometric functions they have a
real period and like exponential functions have a pure imaginary period and are thus doubly periodic.
If we define K’ = F(k', #/2) where k' = (1 -k?)"?, that is K’ is the complete integral K of (12)a
with the modulis k replaced by k' then the periods of the elliptic functions snS, cnS, dnS are:

Periods
ms 4K, 2iK’
cnS 4K, 2k + 2iK’ (14)
dnS 2K, 4K’

where i=o/~T, K=F(k,#/2),K = F(k',7/2),k' = (1 -k*)"? k< 1.

Expression of longitude and arc length in elliptic integrals.
If we let cos 0 = cnS = sin 8/sin 0 we have then:
1-¢% cos® 6= (1 - cos® o)1 -k? sin? 0) = (1 - ¢2 cos® §,) A0?
cos? 0 - cos? 0, = sin? 8y sin® 0
d8? = gin? 0, sin? o do?/cos® 8
cos’ 0= 1 -sin? = 1-2in?,cos’ omcos? 6o (1 +nsin? o) = 0 cos? 8,
cos® 0= cac?0, sin? 6 = csc?0, (1 -cos? 6) (15)
= c3c20 = cot?8, (1 + n sin? ) = csc?8, - S0 cot?l,
sin? 0= | -cos? o= ~cot?@, + cot’ 6, (1 +nsin? g)= -cot?@, (1 -50)
k? = ¢? sin? 64/(1 - ¢? cos? 6p), n = tan?0,.
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Eliminating d\ between equations (1) and (9) we have
a(1 -¢? cos® 8)V? cos 0

i (cos? 8 - cos? 8,)V? 4 (16)

i Applying the transformation equations (15) to (16) and (9) we get

in 6 ] easinf
g o o1t o.f (1 -K* sin? o) do = °rAada.
K o k (]

etan@, [?(1-k? sin? o)"’da’etanoo Ao

ax k o l+nsin’o k 0-5;

(17

In the second of (17), multiply numerator and denominator of the integrand by (1 - k? sin? o)*?
and in the resulting numerator replace sin? o with its value from (15) which then allows the integral to be
written in the form

A\ = (e tan 6o/k) [(l +k? cot? 8,) f —fo—--k’ cot? 8, f 2] (18)
b0 Ao Ao
Now comparing the first integral of (17) and the integrals of {18) with the elliptic integrals (12) we
can then write
_easin 0,
Tk
etanf,

S

E(k, 0), (%)

Al =

[(1 + k2 cot? 8,) N(n, k, 0) ~k? cot? 8,F(k, 0)],

' Where the modulus is k = ¢ sin 8o/(1 - ¢® cos® 8o)V%; n = tan? 8y; and th* emplitude is
0 = arc cos (sin 8/sin 0, ) or the spherical length from the vertex of the geodesic in perametric latitude 0o
: to a point in paremetric latitude 6 on the geodesic as shown in Figure 11,16 | <10, |. That is, the formulse
{19) give longitude and distance along the geodesic messured from the geodesic vertex in terms of the
spherical distance.
The elliptic functions in terms of the amplitude o and modulus k; o = arc cos (sin 8/sin 8, ),
k=esin0o/(] -e? cos® 0,)V2.
; From the definitions (13) we have:
enS = 08 o = 5in 8/sin ; $nS = sin 0 = (sin* O - sin? 6)*/sin 8;
v tnS » tan 0 = nS/cnS = (sin? 0, - sin? )V /sin 0;
Ao =dnS = (1 -k? sin® 0)V? = (1 - e? cos® 6)"?/(1 - ¢? cos® §,)"?;
So=1+nsin’ o=l +nn’S=eec’ @5 cos’ 0,n=tan’ 8,.
Since 0 = arc cos (sin 8/5in 8,), we have the correspondences § = 0,0 = %/2;8 »8,, 0 = 0. From
(13)c, (17) and (19)a, we may write for the geodesic, vertex to vertex or node to node:

g v e

(19

w2
So = 2a(1 ~¢* cos? 8,)"? ‘L dn?sS ds
(19%

! A1 - ¢ cos® 8,)V? J"” dn*S ds
: Adg = -
o | +nsls

MOQ
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P is an arbitrary point on the geodesic, Py is the geodesic
vertex, and 0 is the amplitude of the elliptic functions. Inthe
right spherical triangle PoPN as shown we have:

sin 0 = si1 8, cos 0, 0= arc cos (sin 8/sin ), cos =
tan 0/1an 0y, 0= arc cos (tan /tanByp), tan 0= cosfp tan
7= arc tan (sec O tar: 0).

Figure 11. The amplitude of eltiptic functions expressed 2
sphezical distance from the geodesic verex 1o s arbitrary
point on the geodesic.

When 6 = 0, = 0, we have from (19)a that 1 + n 3n?S = dnS = 1, and from (19)d,

e
Ay = X1 -¢?)V? ds=x(1 -¢?)V2 = gb/a,
o

So =an(l - ¢?)"* =xb; where a, b are the semimajor, semiminor axes of the spheroid. This shows that en
&rc of the equator of length =b is e limiting position of pheroidal peodesic: and that there are no anti-
podal points on nonplensr sphearoidal geodesics

Since the vertex, 8,, may be negative and internal or external to a segment S, ., of the geodesic, all
alternatives are included from the first of (19) by writing

S14 --E Isin 84 [E(X, 0,) £ E(k, 01)} Q0

and by use of the addition formula for elliptic integrals of the second clas with the same modulus, from
(13)s, we may write (20) as

Si.a == lin 0, {E,0, £.0,) 2K* tin 0, sino; s (0, £op)} | )

where 0; = arc cos (sin 8, /sin 94), 0 = arc cos (sin 9, /sin 6,), kS e sin 0, /(1 - ¢? cos? 8,)V°.
Similar expresions may be written for the longitude difference from the second of (19).

Integration of differential squations
Since many tables of the elliptic integrals exist it would appear that evaluation of expressions like
(21) would be simple. But (21) is in terms of 84, the parametric latitude of the vertex of the geodesic, and
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not obtainable directly from the geographic coordinates of two given points on the nonplanar geodesic.
Interpolation in the tables is not easy. Since the eccentricity and flattening of oblate spheroids, as used
for the earth representation, are small, series expansions in them converge rapidly and numerical evalua-
tion is then relatively simple. Now the elliptic integrals themae!ves can be expanded in series of e or [
since the modulus k is a function of e—see equations (19)—but we will first expand the differential equa-
tions (9) and (16) in powers of e and of f and integrate term by term. The eccentricity, ¢, and flattening,
f, are connected by the relation 1 - f= (1 -¢?)¥? ore? = 2f . 13,
From (9) and (16) we write again for reference

cos By (1 -e*cos? )V &9
) cos9 (cos® @ - cos? 8o)"?
acos® 8 . a cos 8(1 - ¢ cos® 6)V2 d0

cos 8 (cos® 8 - cos? 8,)V?

da

(22

ds =

The expansion by the binomial formula of (1 - ¢? cos? 8)¥2 to sixth order in ¢ is
(1 -¢* cos? 8)1% =1 -~ (1/2)e? cos® @ - (1/8)e* cos* 6 - (1/16)e® cos® O - . .. (23)
If we place e = 2f - 2, ¢* = 412 - 4f°, ¢* = 8f° then
(1 -e*cos? 8)3 = | -fcos® 6 +(f?/2)(cos® 8 -cos® B)+(f*/2)(cos* 0 -cos* §) + . .. (29)
Substituting from (23) and (24), in (22) we find
Ah=1, -(e?;2)cosfy I, ~(e*/8) cos 8y 15 - (e*/16) cos b Iq ~. .
=1y -fcos@o I3 +(2/2) cos 8o (I - 13) + (/2X15 - 1) cos 0 + . .
S=afly -(e?/2)ly - (e*/8)4 - (e*/16)I5 - .. ]
=l =Ml +(/2XK1 ~ 1) + (12Xl - 15) + .. ]

(29)

(m’O)“
cos 0y do j‘ tan 8, . (lln 0‘)
® arc sm halt N

w30 (cos? @ -cos? )3 (n tan? )"' tan 0o
- lln: 00

tan @
(2
s cos 6 44  \1in &,

i %in 8

J (cov® 0 -cor® 8,)7 J(n n‘n’!)"‘-“‘n(ﬂnh)."
sin? 8,

"~ cos’ 849 . (I-sin®@)cos8d8d [(1-x')dx
J cos? 0 <003 8o)" ] (sin® 84 - sin? 0)"” (e? - x?)¥?
r con*8 s . (1-5in'0) cos0dd ((1-x*)dx
J (o’ 8-co8 05)" ) (sn? 0, - sin’ )7 ) (@ —x1)
f cos’0 0 (1-5n20)’ c0s0d0 [(1-x*) dx
Jcor 0-cor 00" ) Gin' 0o - un? )7 ) (& a1y
asndwhere x gin @, c = sin 6,.

(26}

(27
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We let x = ¢ sin fin the three last integrals of (27), whence dx = ¢ cos § d8, (¢* - x?)*? =c cos f and
the integrals may be written
Iy = J(1 - ¢* sin® )dB , 14 = f(1 - ¢? sin® §)*dB, I5 = (1 - ¢* sin £)°d8 (28)
where ¢ = 3in 64 and f is the integral I; of (26).
Now sin® 8= (1/2X1 - cos 26)
sin® §=(1/8)(3 - 4 cos 28 + cos 4F)
sin® = (1/32)(10 - 15 cos 28 + 6 cos 48 - cos 6§) (29)
By expanding the integrands in equations (28) and using the identities (29) we are able to integrate
term by term and we find that the ititegrals (28) are
13 = (1/4)[2(1 + cos® 8,)8 + 5in® 6, sin 26],
Lo =(1/32)[4(8 cos® 8 + 3 sin* 0o)8 + 8 sin’ Bo(1 + cos’ B,) sin 28 + sin B, sin 46],
Is = (1/192) | 12(1 + cos® 8o)X8 cos® 8 + S sin* 6,)8
+9(16 cos’ @4 + S sin® 6,) sin? 8, sin 28 (30)
+9(1 + cos® 8¢) sin® @, sin 48 + sin® 8, sin 68,

where sin 0
ﬂ‘l;'"cm( ).

.

nnﬂo

Formulse referred to a node

If we place the values of the integrals 1, ,1,, 1[5, 14, I5 from (26) and (30) in (25) we may write in
terms of ¢
e? et
A=y oosOoﬁ~-3-2-cos8,,(2(! + cos® 8,)8 + sin® 8, sin 28}
e‘
- 555 3o [4(3 c08? 8o + 3 sin® B,)8 + 8 sin? (1 + cos? 8,) sin za]
+sin* 8, sin 48 ,

3
S/--a-%(z(nm' 8o)8+ sin® 8, sin 20)] 31)
et :
-Ez[«sm' 8o+ 3sin® 04)8+ 8 sin? B, | + cor? 6,) sin 23]
+ sin? 8 sin 48

(' i ] H
_-_73 'u"“”QXSWIOQQSﬂI‘OQ”
+ 916 c0s? 8 + Ssin® 8,) sin® 0, 3in 28
+ 91 + cos® 0,) sin® 0, sin 48 ¢ 5in* 8, sin 68,

and in terms of {

1
M-'y-l'eow.ﬁ*%cosﬂ. sin® 84(28- sin ) 3

f)
0-6—40030. sin® 0o [4(2 + 3 cos® 8,8 - 8 cos? 8, sin 28 - sin® &, sin 4],
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S/a=B-(f/4){2(1 + cos® 8o)8 + sin’ 8, sin 26)]

f 2 v] : 2 .
+6-;sin’ 80l4(1+ 3 cos? 8,)8 - 8cos® Bysin 28 - sin® 8, sin 4]
f’
+—-sin’0o 12(l+2eos’0°*5m‘0°”
=3(1 + 3 cos® B X5 cos® 8o - 1) sin 28
—3(1"'3603’ OQ)“: 00“1\”‘@‘09“!\66
tan € i

Whete yY=arcsin —— ,f=arcsin -
“tan B s Uy
Limiting cases of integral aquations

We first make soms preliminary evalustions of equations (32). First we find the values of A), S
between 8 = 0, @ = 8, or from & node to the first vertex. For6 =0, s ysarcsin0=0. For 8 =8,,
B=y=arcsin 1 = 2/2, and from (32} we have (doubling the resuit)

Ay = w1 ~fcosfg + (12/4) cos 8, sin? 84 +(f*/16) cos Ag sin? 84(1 + 3 cos® 8,)],
So = ax[1 - (f/2X1 + cos® 8o) + (1/16) sin® 84 (14 3 cos* @) (33)
+(£2/32) sin? 66 (1+ 2 cos® B + 5 cos® 8,)],
which will subsequently be shown to give all hemispheroidal geodesics, vertex to vertex or node to node;
compare (19)b.

The expressions (33) are even functions of 8,, {80) = (8,), which would be expected from the
discussion of symmetry folluwing equation (10). Therefore, the expressions (33) give ‘ongitude and dis-
tance between successive vertices end eiso between successive nodex

From the first of equations (33) we have ¥ - A\, = #f c08 8, « [} ~(f/4) sin® 0,
~(f3/16} sin® 84{1 + 3 cos? 8,)], which shows agsin rhet except for the mevidian (8, » /2), two
consecutive vertices of the peodesic on the oblate ipheroid cannot e antipodal (end points of a
diameter)

From equations (32) and (33) we have with

6020  Agma(l-N=x(l-ct)?aabfa
So=an(] -f=wb=ad),; (4
Go=x/2 A, ' '
Sepz =ar(1=12402/164 02132+ ..},
If we take the derivative of S¢ with respect to 84 and place equal to zero we obtain
30 0y c0s 04 [151° cos® 0y ¢+ 6{2 -1 cos® 8 ¢ 16-4F -] 0,

The discriminant of the quadratic factor in cos® 0 is 4817 {21 ¢ ) - 17] <O, since f < 1, hence
the only real values are given by sin 84 = 0,008 8o = 0, 0r by #, = 0, 84 = #/2; equations (34) e scamilly
the upper end lower limirs to kemispheroidul geodesic length (vestex 1o next vertex of node 1o next aode.)
Along the aquator, only the arc wb satisfies the fundamnental deflnition of the geodesic, i.e. the longest
Remisy . .eroidal gendesic i3 the sernimeridien, the shortest is the phevicel wre nb. The values of So, A
from: (33) mtisfy the inequalities

ax(1 -2+ /164 £2132) > Sy > b, 2 2 A)y > 2d/a %)
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If derivatives of the second and third order terms in equations (33) are placed equal to zero, we find that
for the Clarke 1866 ellipsoid:

Ag: Aho(f?)(max) occurs at 8, = 54° 44’ 087197
Ag(f* Xmax) occurs at 6, = 43° 28’ 31" 1)
So: So(f? Xmax) occurs 2t 8 = 54° 44° 057197 (

So(f* Xmax) occurs at 8y = 43° 23" 31"
With the values of 8, from (36) placed in 23) we find the maximum cositribution of second and
third order terms over the Clarke 1366 hemispheroid:
Ako(f? Xmax.) = 3474.2 X 19°? radioni ~ 3.5 seconds
Ao(fP)max.)= 68X 17? radianz = 0012 seconds
So(f?)max.) =  19.19C meters
So(f*Xnax.) = 040 meters

(3N

Foemalee referred 1o 8 vortex
Now equations (31) and (32 ive referred to a node, (equator crossing) of the geodesic.
If we substract, respectively, the equations for longitude and distance in (32) froiu those of (13)
than place ¥ = (#/2) - n, 0 = (%/2) ~ B w= huve:
A\ =1 -{cos8q0 + (*/8) c03 8, sin? 64(20 + sin 20)
+(f*/64) cos @, sin® 8o [4(1 + 3 cos? 8o)0 + B cos® 6, sin 20 - sin? 6,4 s:nf!a}

% = 0 - (f/4)[ A1 + cos® o) - sin° 8, sin 20]

+{1*/64) sin® 8o [4(1 + 3 cos’ BoJo + 8 cos® 6, sin 20 - 3w’ 2 £n do) (38)
+(0'/384) sin? 0 | 121+ 2008’ B¢ + S cos* Lo)c ]
+31+3co? B )X5cou’ 8- isin’ 0
- ¥} +3 0¥ 3,)m=e,méum‘o,sin6oj
where now 3 = ar¢ cos (3in 8/r 84), 1 = arc cos (tan 8/tan 8, ). md ke foramipe (38 give kingitude endt
Mvhomtkmoﬂhpoddrmawﬂmr&g delc in perewetric aticnde 9. where ‘
{0!1<M,..
Noluh'qwomwwwwwkﬂdmmﬁmm;w#skmx,mw
11. To show: Lme).mdemﬁm(N)mnfmthumumotmum(m we write from
the fi:st of (17) using he dinomial fermula,

5".”’."' (l‘k'in‘ oV do

o= 'J [u ‘(znn'm o~ (xm:‘m e-(3/iek® snt o . )4:] (39

: ¢ sin ~ .
=3 f[——;——'-(u_z)agao. sin’ 0 -{1;80ek® sn #, sin® 2 -(1/16)ek’ sin 9y sin® o}dﬁ

From (15), k = ¢ sin 8o/(! - ¢® cos’ #,)*?, and
(OIR)'..‘(I -e’oox'i.)"‘*l—(ll‘)c’.m’o. (1/8p* st 8, - (1/150* co® 0,
ekrin g = e sin? 01+ (/207 con® 0y ¢ (30 cou® 8] (40)
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ek® 5in 84 = ¢* sin® 641 + (3/2)e? cos? 8]
ek® sin 8, = ¢® sin® 9,.
Necw from (29), with § replaced by o, we have
{sin® ada = f(1/2X1 - cos 20) do = (1/4X20 - sin 20)
f sin® o do = [(1/8X3 - 4 cos 20 + cos 40) do = {1/8)(30 - 2 sin 20 + (1/4) sin 4o] 41)
fsin® o do = f(1/32)(10 - 15 cos 20 + 6 cos 40 - cos So)do
= (1/32)(100 - (15/2) sin 20 + (3/2) sin 40 - (1/6) sin 6o]
With the valucs from (40) and (41) we may evaluate (39) and we have then
S/a=[1-(1/2%? cos® 8 - (1/8)e* cos* 34 - (1/16)e® cos® O4]0
= (1/8)¢* sin? 8o (1 + (1/2)e? cos? 8, + (3/8)e* cos* 8,] (20 - sin 20) (42)
-(1/64)e* sin® 6,1 + (3/2)e? cos® 0,! ;30 - 2 sin 20 + (1/4) sin 40}
=(1/512)e® sin® 04100 - (15/2) =i 20 + (3{2) sin 4o - (1/6) sin 60]
Collecting the coefficients of the terms in like puwers of e, letting e* = 2f - 2 ¢* = 4f? - 4f*,
¢® = 81, and using some elementary trigonometric identities in the coefficients of the powers of f, we find
that equation (42) becomes exactly the second of equations (38).
Similarly from the second of equations (17} we have:
_ctand, J"’(l -k? sin? 0)¥? do_etando
k o

Tvnan o " Iy -(1/2)ek tan 8,4 1,

- (1/8)ek? tan B,ly - (1/16)ek® tan dols (43)
Where o do
l.'f ———T-mso'uctm(ucoquno)-'cow.n,(mFtuui!)
v Ttnsn® o
9 5in? 0 do

Iy = e n cot? §, (0 -1 44
L Tenaie e(0-iy) (44)

9 sin o do st e 3 . T
I, s —~ = cot® BefuifIXtan® 8¢ - o~ (1/4) tan® 64 sin 20+ 1,]

14aw @
: 9 sin® oda e f. ..
[ l—-;«-**&r;‘mf B iili8N3tan by -4 tan? 8, ¢ 8o -1,
f s
’61‘4}&39‘ gn(l—ﬁﬂ’ Og)mbﬁﬂlii" “Qﬁl“o

Now k » e :n 8./01 - ¢ co8® 8)¥7, 0 tan 857K = sec 8,41 - ¢® cos® 84)Y" and expanding by the dinomial
formula to sixth order térmsin ¢ we have '
2tané : ! ' )
~—;—3 = sec 8 - (1/2R% cos 8, - (181" o05® 8, - (1/16)® cos® 8,)
—(i2ek tan Bp =~ (? i) uindy tand, {141/ 200% con? 0,4 (3B con' 0]  (495)
~(1iShk?® tan 8g = - (1/8)e* 3in® 0, tan By {1 * (3/2)e® con® 8,
-1 f16)k’ tan 8 = ~{1/15%*® sin® 9, tan 04
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Placing the values from (44) and (45) in (43), collecting like terms and employing sume trigonometric

identities we have
e? et
A\=17 ) cosby o -Ecos 8o {2(1 + cos? 6,)0 - sin® 8, sin 20]
a (46)
" cos B¢ [4(8 cos® 6 + 3 sin* 05)0 ]
-8sin? 8, (1 + cos® 8y) sin 20 + sin® 8, sin 4o

Placing e? = 2f - {2, &* = 4f? - 4f*, ¢® = 8f* in (46) find
2
Ah=n-fcosfy0 +-8— cos 8o smn? 0, (20 + sin 20)
3
+-6—4 cosfo sin? 8, [4(1+3cos? By )o +8 cos? 0 sin 20 - sin? 8 sin 40]

which is exactly the first of equations (38).
Collecting like terms in § and @, equations (32) and (38) may be written with longitude and arc length

measured from the geodesic node;
AN = v~ Af - B sin 28 - C sin 48, v = arc sin (tan 8/tan 9,),

47
S/a=DB-E sin 28 - F sin 48 - G sin 68, § = arc sin (sin 8/sin 6,), “7
longitude and arc length measured from the geodesic vertex;
AX =17 - Ao + B sin 20 - C sin 40, = arc cos (tan 8/tan 8, (48)

$fa =Do +E sin 2¢ - F sin 40 + G sin €0, 0 = arc cos (sin 8/sin 6,)
and where in both cases with ¢y = f cos 8y, ¢3 = (1/4)f sin? 89, ¢c3 =1+ ¢; cos B¢, cq =3 + 3, we have
A=cy (1-c5¢4), B=(1/2)cc2¢5,C=(1/4)cy ¢y,
D=2+ ca(ca® +€22)~(1 +c2) ca-ca, E=(1/2)c; [2+¢3(c5 - 1) -¢c,?%), (49)
F=(1/4)¢;? (2¢4 - 1),G = (1/6)c, >,
and ¢, ¢, ¢ satisfy ¢, 2 = 4ca(c; - 1) +c3(2-c3) = 1.

Formulae for longitude and arc length between two arbitrary points on the hemispheroidsi geodesic
From (48), for a geodesic arc containing a vertex
A=Zn-AXo+Bp-Cq In=ntny,20=0,+0;,40=0, -0y,
Sfa=DZo + Ep -Fq-Gr p = 2sin Zocos Ao, q=2sin 2Zo cos 240, (50)
r = 2sin 3Zo cos 3Aa, 1; = arc cos {tan 8;/tan 8,), 6; = arc cos (sin 8;/sin 6,;)
Also from (48) for a geodesic arc containing neither node nor vertex
AN=An-AAo+Bp-Cq M=ny-n,00=0;~0(,Z0=0,+0,
S/a=DAo + Ep - Fq-Gr p = 2cos Zosin Ag,q=2sin 2A0 cos 2Zo (63))
1 =2 cos 3Z0 sin 3A0, n; = arc cos (tan 6;/tan 8,), 0; = arc cos (sin 0;/sin 8,)
From (47) for a geodesic arc containing a node

A\ =Zy-AZfs-Bp-Cq, Zy=71+7,Z8=0y +B;,86=8, -B,
S/a=DZf-Ep-F1-0Gr, p = 2sin ZBcos A8, q = 2sin 2LP cos 243, (52)
= 2 sin 3Xp cos 348 4, = arcsin (tan 8/tan6,), ; = arc sin (sin 8;/sin 8)
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Also from (47) for a geodesic arc containing neither node nor vertex

AA=Ay-AA8-Bp-~Cq Ay=9y -7;,88=6, -$2,Z8=0; +6,,
Sfa = DAB - Ep - Fq-Gr p =2 cos ZBsin AR, 1 = 2 cos 2Zf sin 248 (53)
1 =2 cos 3Z8 sin 3A8, 7, = arc sin (tan 6;/tan 8, ), B = arc sin (sin 8;/sin 6o

The constants A, B, C, D, E, F, G, of formulae (50), (51), (52}, {53) are given by (49). Since (51)
and (53) should give the same results one should transform into the other if we make the substiiutions re-
spectively from o + §=a/2, 7 + v =7/2. For instance in (53)

Ay=yyov2=@[2) -~y - (/) 4 0y =13 ~my = A7,
A=, -B,=(m2) -0y -(n[2) +0;, =063 -0; = A0, ZB=) +B,=n-Zo.
These substitutions in AX and S/a of (53) give

A\ =An-Alo+Bp-Cq p=2cos Zosinlo, ¢ = 2cos 220 sin 240
S/a=DAc+ Ep-Fq-~Gr r=2cos 3%o sin 340
Which are formulae (51).

Now in (50) with 6; =6, = 0, we have Zo =Zn=u,p =q =r=0. Analogously for (52) with
0; =6, =0, we have Ty = Z8 =n,p=q=r=0 and both therefore give for length and longitude of
hemispheroidal geodesics, node to ncde or vertex to vertex,

Axg = (1 - A), So = maD. - (54)

Equatiors (54) are thus a shorter version of equations {33). Referring to equations (49), (54), when
8o=m/2.¢,=0,c3=(1/4),c3=1,cs =1 +(1/4)f,A=0,D=1-£/2+(1/16)f* + (1/32)f*, and again for
the semi-meridian AN ==, S = an[1 - /2 + (1/16)f* + (1/32)f*). When 8, =0,cy =f,c; =0,¢3 =ce=1+f,
A=f.D=2-(1+f)=1-(and we have again the equatorial limiting arc A\ = n(t -f), S=an(1 -f).

Throughout this discussion Ao has been used to represent two quantities, When dealing with elliptic
integrals and functions, Ao = (1 ~k? sin? ¢)2, see equations (12). When dealing with computational
formulae for distance and longitude, Ao = g, - 7, see equations (50), (S1). The usage is clearly indicated
in each case, and no ambiguity occurs.

We now have equations to third order in the flattening which may be used to check approximation
formidae to the geodesic and to check known or published geodetic lines. After a discussion of the
spheroidal triangle. some of these formulae will be used in the derivaiion of the direct solution for the long
geodetic line. But we next examine the antipodal zones and conjugate points with respect to the nonplanar
geodesic.

Antipodal zones

The hemispheroidal geodesic is that part included between two consecutive vertices or two consecu-
tive nodes since no more than iwo consecutive of either nodes or vertices can be contained in the same
hemispheroid (on the same side of a meridian),

The antipodal zones are the two equal areas bounded by the two syinmetric geodesic evolutes
(envelopes) of all oblate spheroidal geodesics which have a vertex in a common fixed meridian. Cayley,
reference [25].

NOTE: The evolute of a given curve is the curve tangent to all normals (perpendiculars) of the given
curve, or the envelope of the normals. The normal to the meridian ellipse in terms of parametric latitude
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8 (eccentric angle of the ellipse) is F(9) = ax/cos 8 - by/sin 8 - (a® - b?) =0, where a, b are semimajor,
semiminor axes of the spheroid, x and y are rectangular coordinates in the plane of the meridian, the
y-axis coinciding with the ellipsoidal poler axis. The evolute (envelope) is obtained by eliminating 8 be-
tween F(0) = F'(8) = 0 where the prime denotes differentiation with respect to 8. The result is the equa-
tion a¥® x¥3 + b¥3 y¥3 = (4% - b?)%?, its graph resembling the geodetic evolutes as displayed in

Figure 12,

antipodal zone —

~ " antipodal zone

¥, "
\

[y

The geodesic evolutes are the figures ADBC,AD B ¢’ which xeumble the meridional evolute
EFE'F’. Geodesic arcs PN, OM are equal. Location of the nodes N, N’ within the antipodal zones is
known fmm equatiom (33). WhenP(9y, n/2) - 0(0 n/2), then 60 >0,and Q> N-D,

Q' >N'>D"; wienP+Ny, then N> T,N' =T, and Q-+ A, Q' > A",

Figure 12. Geodetic evolutes and antipodal zones on the oblate spheroid (pictorial).

Two consecutive nodes are in the geodesic antipodal zones with respect to the meridian containing
the included verter of the geodesic. From the first of the inequalities (35) we have, when 8, =0,
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Se¢ = nb = an(l - ). Hence the equatorial arc axis of the geodesic evolute is then aw - an(1 - f) = anf as
shown in Figure 12.

The distance from node to node (N to N’ in the diametrically opposite antipodal zone) is given by
equations (33) and by symmetry this is the same distance as that between two consecutive vertices. Is the
geodesic distance thus obtained the maximum under the shortest distance property of the geodesic?
Apparently this is so from the limits given by inequalities (35). But for any point P on a given gevdesic, is
there a point P’ on the geodesic beyond which the unique shortest distance property does not hold? Before
we attempt to answer this question we find the length of the meridional arc axis of the geodetic evolute
(antipodal zone), the segments AB = A'B’ of Figure 12.

In Figure 12, note that for the geodesic witk vertex P(6o, n/2) we have

AN =(7/2) - (1/2)AN,. (55)
Asf@o > /2, N- T, Q- A, and there exists the value +8 which is the parametric latitude of A as given
by (55). From equations (32), (33} and (55) we have to terms in f2:

v -fcosbof + (f*/8) cos 6, sin® By (26 - sin 28) = nf2 - n/2 + (n/2)f cos B,

~ (m/2X(f*/4) cos 8, sin® 8,

or F(9,60) = (7/cos 8o) - f(8+ n/2) + (£2/8) sin? 8 (7 + 28 -sin 26) = 0. (56)
Where ¥ = ar¢ sin (tan § cot 8), f = arc sin {sin 6 csc 8,).
We must therefore solve for 8 in the equation remaining by taking

lim

60> m/2F(6,0,)=0.
Only the first term of (56) is bothersome in determining the required limit:

lim lim : lim :
¢ sin (tan 0 cot 8 d/dée tan 9 cot 8
8o 12 v =00->1r/2ar in ( c o)=0°_’"/2(/ o) arc sin (tan 9 cot 8,)
cos 0o cos B¢ (d/dBo) cos 8¢
lim tan 8 (57
= 00 —*1[/2 =tan 6,

sin® 64 (1 - tan? 8 cot? 8,)"?
We have then from (56) and (57)

lim
0o = /2 F(9,0,) = tan 8  (f/2)(m + 26) + (f*/8)(m + 20 - sin 26) = 0,
or tan 8 - B sin 20 = A(n + 20) (58

B=f?/8, A=(f/2)-B
In(58)let tan 8 = 6, B = 0, to get the approximation

20 = af/(1 ~ ). (59)
With the value f = 003390075283 (Clarke 1866 ellipsoid—Appendix 2), 7= 3.14159265136, (59) gives
6 = 18’ 22”121 which fails to satisfy (58) by .00000457, i.e.

tan @ - 2A0 - B sin 20 > A 7 by .00000457.
Now the tangent different for 1 second at 18’ 22" is .00000485 (Peters Tables). For 1 second change,
2A4 changes by 2 X 10°8 but there is no change in B sin 20. Hence we take 459/485 = 946 second and
reduce the first estimate by that amount since tan 8 > 8 >sin 8, i.e. 0 = 18' 227121 - /946 = 18’ 217175.
This last values checks (58) to 1 in the 8th decimal.
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Since the flattening does not vary much among the 10 reference ellipsoids of Appendix 2, we may
alter the approximation (59) to give a solution for any reference ellipsoid. This was accomplished by
changing .946 second to radians, factoring nf, writing 1/(1 ~£) =1 +{+ .. . and then adjusting for the varia-
tion in f among the values as given in Appendix 2. The resulting solution to terms in {2 is

20 = nf(1 + .7495f). (60)

Seven of the values of 6 computed from (60) checked (58) exactly to 8 decimals and 3 were within 1
in the 8th decimal, The computations are included in Appendix 2, where the axes and approximate areas
of the antipodal zones for the 10 spheroids are also given.

Conjugate points on spheroidal geodesics

For an arbitrary point P, on a spheroidal geodesic there exists a second point P, on that geodesic
beyond which the unique shortest distance property fails. Forsyth, citing Jacobi, called such pairs
conjugate points, reference [28].

Because of symmetry, the distance, node to node is the same as vertex to vertex, or point P, to P,
in numericaily equal but opposite signed latitudes when the longitude difference is the same as node to node
or vertex to vertex. But consecutive nodes are not conjugate since there exist two equal geodesics sym-
metric with respect to the equator with these common nodes, see Figure 12. Again, but in the meridian,
any diameter bisects the meridianal arc length, hence the diametral end points are both antipodal and
conjugate. Hence by inference two consecutive vertices should be conjugate.

That this is so may be demonstrated in Figure 13. The equal symmetric nodal hemispheroidal
geodesics are Ny QN;, N;RN;. Arc lengths N, Py, N, P;, P, T are equal, hence the hemispheroidal geodesics
P,QP;, P, SP; are both equal to N,QN; or N;RN;. By symmetry the longitude difference, A\,, node to
node, is equal to that from P, to P,. Again, the arc lengths V, P}, V,P3, P} U are equal and therefore the
geodesics Py OP3, PyMP3, V,0V,, N,QN; are all equal and the longitude difference, P to P}, is Ao, the
same as from N; to N,

For the mathematical demonstration we will maximize the equation for longitude difference between
two points on the geodesic. As a preliminary, note from the inequalities (35), that for hemispheroidal
geodesics we have the longitude difference and length satisfying

72 Ao # b/a

ar[1-(£/2) +(/16) + £3/32] 3 S, > nb,
i.e. along the equator from a given point one can extend the length to b before two equal and symmetric
geodesics of length shorter than the subtended equatorial arc exist, In Figure 13 we can extend the dis-
tance along the equator from N, to T;, N, T, = nb, before the two symmetric geodesics N;QN,;, N, RN,
exist, ThatisN;N; >N, QN; = N, RN, >N, T, = nb and the points Ny, T, are conjugate.

From equations (17) we may write

AN=]F,F=3ecf, (1-¢ cos? 85)"? =etanfo/k,

%t Aa
I= f —do,Ac= (1 ~csin® 0)¥? 5o =1 +nsin’ o, (61)
0, S0
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Figure 13. Conjugate points on the oblate spheroid.

n=tan? 8, c=e? sin? 8, /(1 - e? cos? ) = k?,
g; = arc cos (sin 8;/sin 8,), 10,1 <18, 1.
Now dax dI dF

or equivalently
1dAA dI | dF
- —— R e— - — 2
Fde, db, Fdi,

Since 0y, 02, Ao, 80 are all functions of 64, we have
dl % 9 Ao d *AO; doy Ao, do,
— — —— a I —— | — ——
4o Yo, 30y b0 b0, d8y &0, d6,
9 /Ao 1 dao dso
(=) — 60— -Q0—).
80, \b80/ 80°

From (61) we have

ddo  sin®o dc dc  2c%(1 -¢?) 8o csc? §
o elitrcretrv e vl [s] ,
@, 280 A0y’ d8, e 0 & Fo

(62)

(63)

(69




% _ ot o, cot (1/F) i (c/e*) csc 8o sec 8
— = COt g; CO N — = (C/e") csC secC
dd, i 0 dd, 0 0

With the values of do;/d8 from (65) the last two terms of (63) may be written

Aﬂ] dal Mz dog (Ml AO; )
=cotfo | — cot 0y -——— cot o,

S0y 801

(66)

t0 fo' d(A" ¢ )da
=C0 o=l =-——Ccoto
)5, do\so®

With the values of Ag, 50 from (61) we find
d(Aocoto) Ao ccos’ o 2tan’ 8, cos’ 0 Ao 7
do o Sosin’o Aodo §0®
With the values of dAo/dfy, d50/df, from (65), we may write (64) as
? [Ac ¢ (1-¢ Ao
3_0-;(3;).-“}7(&1—60_)&“0 csc? 8, sin® o -2 tan 8, sec? Bos—-sin’a (68)

02
With the value of (1/F) dF/d8, from (65) and the value of I from (61) we have

1¢, " (c/e?) sec By csc B, ﬂJ-da. (69)
Fddo o, 80

Now with the value of (67) placed in (66) axd the result returned to (63), together with the value of

9/30o (Av/8c) from (68) for the first term of (63), we may, with the resulting value of dI/d6, and the

value of (I/F)dF/d6, from (69) write the condition {62) as

0 do M 2
cot 8 J - " c2(1 -¢*) csc? 0, b0 sin® 0 + 2e*nsec? G, Ad® sin* 0] (70)
0, ¢ Acbdo’sin®o
3) 4
{ +e%b0 Ao® +ce?bosin?ocos’ ¢ \=0
®) (6)
L+ 26°n 80” 3in® 0 cos® o -csec® 6, Ac® Sotin® 0 )
where n= tan? 85, Ac® = 1-cain® 0,60=1+nsin’ o,c=e?sin? 6o/(1-¢* cos? 8,).
In (70), within the braces, we first conibine the terms (2) and (5) to get
(2) +(5) = 2¢*n Ad? 30 4in® 0. m
We next combine terms (1), (4), end (6) to get analogously
(1) +(4) +(6) = - ne*8u gin® o + cne? 5o 5in* 0. (72)
With the values from (71) and (72) retumed to (70), we now have for the quantity within ths braces
{Ao(e?n Ac? sin? 0+ ¢* Ad? 60 -¢’n Ao’ sin? 0)} = {¢? A0? 507}, (713)

where in the reductions we have used the identities given with equation (70). The valus from (73) placed
in (70) gives




01 ¢? Ag? 0% do
(1/F) QAN08, =(e1/d8o)+ (/FX QR =-cot O | Srte 90
0; ¢ Aode’sin®o

%1 Aodo
= ~cot 00 o) =0.
o, SIN° 0
Since the equation to the geodesic evolute will be given by the elimination of 8, between dANdd, =0,
and A\ = FI, equations (61) and (74), we should be abie to get an equation for determining the parametric
latitude of the meridional vertex of the geodesic evolute and thus provide a check for equation (58). In
fact the equation shouid be given by (74), that is from

(79

lim nj2+0
0072 Aodo/sin? 0= 0.
«n/2+0)

With 6, = 1/2, c=¢*, Ao =(1 - ¢* sin® 0)V?, we have
Ad/sin® 0 = csc? o1 (1/2)¢? sin® 0-(1/8)¢* sin* 0 -..] =csc? a-f(1 ~f/4)+(1/4)? cos 20.
Integrating this last expression with respect to o and evaluating for the limits #/2 + 0, - (n/2 + 8) we
obtain equation (58).
In equation (74), the factor cot 8, = O implies the meridian, 84 =(1/2r. Now from (13) and (13)c,
Ag = dnS, sin* ¢ = :?S, 0 = amS, do = d amS = dnS dS and the integral (74) may be written

S,
dn?S dS/sn?S = 0. (75
S

By mznipulation of the idzntities (13)a and differentials (13)c, we can write the integral (75),
indefinite, as
JdS(c' - dn?S + dn?S + ¢ cn?S + cnS dn?S/sn?S) = [c'dS - fdn?S dS - fd (cnS dnS/anS), (76)
fdn?S dS/sn*S = ¢'S - fdn?S dS - cnS dnS/snS. n
From (i2), (13), (13)c we have

0 s
E(k, 0) =f Acdo= f dn?SdS = E(S, k). (s
(] 0
From (77) and (78) the definite integral (75) may be written
S St
fs dn?S dS/sn?S = [¢'S - E(S, k) - cnS dnS/mS) =0, (79)
] S2

We expand (79) and write the result in the form

c'(Sy - S3) = E(S;,k) - E(S3, k) - [(cnS; dnS;/snS;) -(cnS, dnS, /snS,)]. (80)
Using the difference formula for two elliptic integrals of the second class with the same modulus, and the
difference formula for the sine amplitude from (13)a, we can write the right members of (80) respectively
as

E(S,, k) - E(S;,k) = E(S, -S;,k) ~canS, snS; (S, - S;)

[-(cnS; dnS, /snS;) +(cnS: dnS; /3nS3)] =sn(S; -S; X1 - ¢n?S, n?S,;)/snS; nS,,
Placing the values from (81) in (80) and solving for sn(S, - Sy) we find

(S, -S3) = nS, mS, [E(S, -8;,k) -c'(S) - S,)], (82)
where ¢'=lecml-k¥u(l-e?)/(1-¢® cos? By),cme? sn® 8,/(1-¢? cos® 8,).

(81)
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If we place S; = S; in equation (82), the equation is satisfied since from (12) and (13)b, sn(0) = E(0, k) = 0.
If we place, in equation (82), S, = 2K, S, =0, the equation is satisfied since sn2K = sn(0) = 0. Hence the
value of §; required is the root of (82) next greater than S, where 0 <§, < 2K. Note that K is a complete
elliptic integral, see (12)a.
For an approximatior: we write x for S, in (82) and consider the intersection of the functions (curves)
y=sn(x - S;)/sn(x)snS; = E(x - S,,k) -¢'(x-S;),¢'=1-k?
=(1-¢e*)/(1-¢€* cos? 8,)< 1.
As shown in Figure 14, the next value of x for which equations (83) are satisfied is S; and we have
0<x; <2K-~S,,where x, = 8§, -(S; +2K). (84)
If we solve (84) for S, and place thisvalue,x =S, =x; + 8§, + 2K, in (83), we may write, using the values
from (13)b
y1 =sn(x; + 2K)/sn(x; +8S, + 2K)snS; = snx, [sn(x; +S;)snS,
= E(x, + 2K, K) - ¢'(x; + 2X). (85)
Using the appropriate identities from (13)a, we transform the right member of (85) as follows:
E(x, + 2K, k) -c'(x, + 2K) = E(x, k) ~c'x; + 2(E -¢'K) = E(x,, k) -¢'x; +4cc'dK/dc

(83)

(86)
X
=c J- cn’ x dx +4cc’dK /dc.
0
Using the value of K from (12)a, we have
ad %2
dK/dc = L = (1 -csin® x)"2 dx =(1/2) L (1-csin® x)¥? sin? x dx. (87
c
From (85), (86), cnd (87) we have, for the determination of x, , the equation
L3
y; ®sax, /sn{x, + S;)nS; =¢ f cn?x dx
0 (88)

"
+2¢(1 - ¢) f (1 -csin® x)™? sin?® x dx.
o

Since c = ¢® sin? 8o/(1 - cos® 8o) = 2 sin® 64 + ..., and 2f =e? + {3, then always 2f > e? > ¢. For
earth reference ellipsoids 2f - e = f* = | X 10°°. We consider here that 2f, ¢?, ¢ are of the same order and
reject terms of second and higher order in c or f. Since x, snx, are of the same order as ¢, we place

X, = X, m(x; +S;)=nS; and write (88) as

L ¥ »f2
Y1 =X, /30?8, = ¢ f G-.)dx+2 J; (/2. )dx=0+(1/2)cn,

(]
and we find
x; =(1/2cx n*S,. (89)
Placing ¢ = 2f sin® 8, in (89) we may write
x, = nfsin? 8y n?S; = y,8n*S,, y, = nf sin? 6. (90)
From (84) and (90) we obtain
S, =2K+S, +x, = 2K 485, +nf 5in? 6, tn*5,. (91)




Xy = yysn’Sy = sin? B 7Sy, y, « W sin 8,

Figure 14. Graphical otution of equations {83).

Note that the vaiue given by (91) is analogous to that obtained by Foryyth, see reference 28], By direct
integration of the integral for K, equations {1 2a, we find to first ordet in [ that 2K = a1 #1/ 2 sin® 8,)
=x +(/Dy,. Substitution in{91) gives S, - S, = 7 + %, H1/Dy, s thown in Figure 14,
From (613,(13), {12)a,(13)> we have
cnS; = cos oy = sin §;/4in 8, cn{2K + 8y = - coS, S = | - en*S, (92)
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We write from (91), with the help of (92)

enSy =cn[2K +(S; +1,)} =-onfS; + x,),

sin 8; =-sinfg cn(S; + %1 ). X, =#fsin? 8, ;*S, = nf{sin? §, -sin? 8,), (93)
which to first order in f relates the parametric latitudes 6 ;, 8 ; of conjugate points on spheroidal geodesics.

When 8; =0, a geodesic vertex, thenx, =0, cnS; =1, and we have sin 8, =~sin 94,018, =-08,.
That is the conjugate of 2 vertex of the geodesic is the next vertex, a result obtained by another argument.
See the discussion following equations (33) and the geometric demonstration, Figure 13. A special case of
this last 1s given Uy 0o =(1/2)w, whence sin 8, = -1,8, = -(1/2), i.c. the poles are conjugate as well as anti-
podal for the meridian, a known result. When 8, = 8; = 0, then @; = 0 and we have the end points of the
equatorial limiting geodesic arc nb, the segment N, T, of Figure 13,

Since along the geodesic |85 1< |8, |, therange of x, for a particular geodesic s 0K x, <#fsin’ 65 =y,
and over the spheroid is 0 < x, <nf. Note that nf is the equatorial central angle subtended by the equatorial
arc axis of the geodesic evolute, see Figure 12, or to first order in f, nf is the meridional central angle sub-
tended by the meridional arc axis, see equation (60). Consistent with the approximations used to obtain
(89), we have

sx; = x,,cnx; =dnx, =1, 2f sin? 9, sn’x; = ex} = 0. (94)
From (13)a, the addition formuls for the cosine amiplitude, we may write (93) as

5in 8. = -sin 8, (cnS;cnx, - snS; duS;snx,dnx, )/(1 - 2f sin® 8, sn’x,n?S,)
and using (94)

$n 8; =- in Go(cnSy - x,3nS,dnS, ). (95)
Now from (19)s, with ¢? = 2f and retaining terms in f, we have

S, = (sin® 8, - sin? 8,)"?/sin 8y, daS; = [1 - 2f (sin? 8, - ¥'n? &;)] 12,

cnS, = gin 8, /sin 8,. (96)
The values from (96), and the value of x; from (93), placed in (95), retaining terms of first order in f,
give
nf, =-und, +uf(sin’ ¢, ~sin 6,)7 .18, I<18, |, N

which to first order in [ i tAc equetion releting the parosictric intitudes 8, &5 of conjupate poinis su
spheroidel geodesics but free of elliptic fumctions. Note that (97} siso gives the special cases discussed
following equations (93), as it should, ']

Discussion, We have demonstrated mathernatically and geometrically (pictorially in Figure 13) that along
the equator, the end points of the segment b are conjugate. We have proved that consecutive vertices are
conjugate from both (93) and (97). Now if we ignore the term in f in equation (9/), wa have 8, = - 8,
with the longitude difference that of the hemispheroidal grodesic in vertex parametric latitude 8, whence
we get two equal geodesics as deronstrated in Figure 13. Hence to test approximation {ormulse to the
grodesic we need not exceed the length of the hemispheroidal geodesic (node to node or vertex to vertex)
since it is maximum uader the unique shortest distance criterion.

Note that equation (74) provides through the subsequent discussion, the sufficient condition for
maximum gendetic length under the shortest distance property, the Euler equation, equation (3) abowe,

b
1
}

|
i
|
|
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Also note that the parallels 8 = £ 8, are envelopes of 21} the geodesics whose vertex latitndes are
t 64, and the points V, V, (verti-=3), Figure 13, ar¢ points of tanger.cy to the envelopes. But any conju-
gate point, accosding to B2 @i Jdefinition, is & contact point of an envelope, reference [29] page 34.
Finally note that two tynr- i cavelopes are involved. The envelope of all the geodesics having the same
#estex parame’:ic {atitude | 8y | are the paraliels @ = + 84 ; the envelopes of all gendesics with a vertex ina
common meridian a:e the two symmetric geodesic evolutes as shown in Figure 12,

Hemispheroidal geodesics under the shortest distance property

With the help of equations (33), (34}, (35),(97) we establish that the nonplanar geodesic distance
between two given spheroidal points, under the shortest distance property of the spheroidal geodesic, lies
on an arc of one of the four equivalent spheroidal geodesics, as shown in Figure 15, where 8, is the vertex
parametric latitude of the geodesic through the two given points.

Graphically, if 3 wire frame were constructed connecting the semiequator, the semimeridian m, the
meridian NTST’ and the four hemispheroidal geodesics with vertex latitude @, as shown in Figure 15, then

ot N 4

c03fg e cos s The arc DD = aml - )= ba.

Figure 15. The four equal aoapitnat homisphercidel geod=sics determined by 5 given verin: pammetric aGtude.
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the rotation of the eilipsoid about the potar axis under this frame would bring the two given points into
coincidence with one of these four equal nonpianar wheroidal geodesics. Note that when 8, ~ 0, all

four geodesics coincide with the equatorial limiting distance DD’ and when | 64 | -+(1/2)r both spheroidal
geodesics (1) and {2) coincide with the semimeridian m while the spheroidal geodesics (3) and (4) coincide
with the meridian NTST’,

We may then construct a table of possible cases of hemispheroidal geodesics to be considered in the
testing of approximation formulae to the geodesic. With the help of equations (32), (33), (35), (38),
(50)(54), (97) the possible cases are listed in Table 2.

Note in Figure 15 that hemispheroidal geodesics (2) and (4) are the reflections in the equator of (1)
and (3). Also the meridian NQS bisects all four hemispheroidal geodesics with the same vertex latitude 8.
We can treat a geodesic in the southern hemispheroid as though it were in the northern and translate com-
puted elements symmetrically with respect to the equator. Thus al! possible cases required to test approxi-
mation formulae to a geodesic with vertex latitude 8, are as shown in Figure 15. Note that arc AB con-
tains a node, arc CE contains a vertex, and arc CF contains neither vertex nor node.

Table 2. Hemispheroidal geodesics.

Al is the longitude difference, node to node or vertex to vertex, of the sphercidal geodesic whose vertex
parametric latitude is 69, see equations (33) and Table 8,

e
I

CASE

L 185 1#16;1,A\ £ AN <AN General ~ the geodesic arc may not include either
2. 100 1>0,>0,20 a vertex or a node; may include one vertex or
b, 18,1>8,>0,20 one node,

¢ 8,<0,0,>0
1. 1801>16,1>68,20
2. 1601>0,>10, 120
d. 8, <0,0,>0
L 1061>10,1>08;20
2. 1851>6,>16,120

IL 10,1=10, |, AN, =2 AX; <(1/2)A) Symmetric — with respect to a node or vertex but
a. 161>8,>0,8,=-0, not maximum; contains one node or one vertex.
b. 6, <0,8,=10, 1<|0y | Special case of 1.
c.0,=0,,1001>86,

I AN =1 AN, =(1/2)A), Maximum - between two consecutive vertices or
2. 10,1=10,1=10o1#0 two consecutive nodes or between two points
b.0,=0,=0,00#0 asinIllc. Special case of 11,

C. 01 --OQ,AA- Mo
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Some numerical considerations

Since there are 206264.8062 seconds in one radian, a 6 in the ninth decimal place of one radian repre-
sents .001 second. Maximum hemispheroidal radian geodesic length is the semimeridian which is slightly
under n radians. Table 3 shows the effect of radian decimal places and significant figures in computing
geodetic distances over the hemispheroid, Note that with 10 decimal places of radians there will be some
uncertainty in the third decimal of meters at maximum hemispheroidal geodetic length.

The spheroidal triangle

We first indicate some analogies between spherical and spheroidal right triangles. From the defini-
tions, equations (13), we have sin ¢ = snS, cos ¢ = cnS, tan ¢ = tnS; where o = amS, amplitude of the elliptic
integral of the first kind, S = F(k, 0), and where the modulus is k = e sin 00 /(1 - e? cos® 8)"* —see equations

Table 3. Effect of radian decimal places and significant figures in computation of geodetic
distances over the hemispheroid

Clarke 1866 ellipsoid, a = 6378206.4 meters

significant

radians decimals meters (a-radians)
figures
n/32= 0981748 7 6 626179
Kz 8 7 8.9
.04 10 9 949
..... 25 12 11 94904
njd= 7853982 7 7 5009432
.16 8 8 1.6
.3 9 9 59
.4 10 10 592
72 = 15707963 7 8 10018863
; 3 8 9 3.2
27 9 10 19
.68 10 11 185
7 =3.1415927 7 8 20037727
! .65 8 9 6.3
‘ 4 9 10 37

...36 10 11 369

v,
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(15) =nd (19)s. Hence for the spherical end spheroidel triangles N'PL P, NP, P as shown in Figure 16, we

have the following analogies
Spherical Spheroidal
Al c0s 8o * cos @ sin a + equation (10) + cos 8y = cos O sina
A2 cot 8, =tan asin ¢ cot = tan a snS
A3 sin & = sin 8, cos o sin § =sin 8,4 cnS
Ad tan o = cos 0, tan n tnS = cos 8, tan AA
=cotfcosa

From Figure 10 and the identity (98) (A.1 = B.1) we have respectively:
n dd
a=sin{~-al=a1-e? §)V? (___)’
cos sm(2 ) a1 -¢*0) 3

sin @ = cos @ secd,

whence

[} 00 ds

as= .
o(1-¢? cos® )V* _cosf df

B.1
B.2
B.3

B4

¢ is geccentric latitude for the sphere, parametric
for the ellipsold; ¢ is geodetic latitude

Figure 16. [ustrating snalogies between sphsrical and spheroidal
tight triangies.
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From (98),B.3 and (13)c

~cos 8 d8 = sin 6, snS dnS dS (100)
From (13) and (15)

(1 - €2 cos? 8)V2 = (1 - e? cos? 04)"? dnS (101)
From (13)c and (17)

ds= €a sin ookdn Sds (102)
From (100) and (102), with k = ¢ sin (1 - ¢? cos® 85)"2,

s (1 - e? cos? 9,)"? dns (103)

~cos f d sin 8, snS

Substituting from (101) and (103) in (99) find
cos 8o 1 a(1 -¢? cos? §5)"2 dnS cot 8,
an a = . . —— IR e——— s
(1 -02 C(')S2 00)"2 dnS n’noo snS snS

or cot 6y = tan a snS 0 (104)

which is (98) B.2 and becomes (98) A.2 whene—+0,k~+0,S > J do = g, see equations (12), and
snS -* sin 0, cnS - cos ¢, where o is then the spherical distance fro?n the vertex of the geodesic (parametric
latitude 8,) to a point on the geodesic in parametric latitude, 8, i.e. ¢ = arc cos (sin 8/sin 8,) or (98) A.3;
see also Figure 11,
To find an expression for A\ in (98) B.4, we have from equation (17)
(k/e)cot 8, dA=(1 -k?sin?® 0)"? do/(1 + n sin*c),n=tan? 8, (105)
and from (13)c and (19)a find
(1-Kk? sin? g)? =dnS, sin? o= sn* S, do = dnS dS,
whence (105) becomes
(k/e) cot 84 d\ = dn?S dS/(1 + n sn?S) (106)
If we let tan U = sec 84 tnS, then
sec? U dU = sec 0o d(tnS) = sec 8, dnS dS/cn’S (107)
where we have used d(tnS) = dnS dS/cn®S from (13)c.
Now sec’ U=1+tan® U=1 +sec? 0, tn?S
=1 +(1 +tan? 6,) tn3S
=(cn?S + S + tan? 8, sn2S)/cn®S
sec’ U=(1+nsn?S)/en’S. (108)
(from the identities (13)a, sn?S + cn?S = 1, tnS = snS/cnS)
From (107) and (108) we have
c08 0o dU = dnS dS/(! + n #n?S), n = tan? §,. (109)
Subtracting respective members of (106) from (109), find
dnS - dn?S &
l+nm?s '

S dnS - dn?S
M-(eﬁndglk)u-(euntolk).‘; -l—:;-:%-gds (110)

d\ = (e/k) tan 8 [cos 6, dU -

or

3
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where U = arc tan (sec 0, tnS), k = e sin 8, /(1 ~ ¢ cos® 8,)"?, n = tan? 0,. Solving for U, (110) may be

written

S dnS - dn’$ ] i
14+nsn®S

When e - 0, k/e sin 8, - 1 - dnS, tnS - tan o and (111) becomes the spherical formula tan 0 = cosf, tan AX

where AX = n, the spherical longitude, i.e. (111) becomes (98) A.4 when e - 0. Thus the analogies (98 are

implicit in the spherical approximation to the spheroidal triangle as demonstrated in Figure 11.

tnS = cos §p tan [(k/e 8in 0)AN +sec O, j
0

The approximate solution for geodesy
Direct Solution

For the direct solution we are given the geodesic length S from a given point P- (¢4, A,) in given
azimuth @, _; to find the geographic coordinates ¢, , A, of a point P;(¢,, A;) and the azimutha,.,. A
solution, reliable over the hemispheroid, will be sought consistent with the following criteria:

1. An accuracy of 1 meter in position—geodetic distance within 1 meter: latitude, longitude, azimuth
within ,035 second over the longest possible hemispheroidal geodesics; at least, in the limiting case,
equalling the 1/100,000 distance and 1 second azimuth requirement adopted by ACIC, reference [22].

2. No tables required in the computations except natural trigonometric as Peters 8-place for desk
computing.

3. Easy adaptation to any reference ¢llipsoid by merely changing the ellipsoid defining parameters.

4. No root calculation or iteration and formulae adaptable to both desk computation and large
electronic computers with terms no higher than second order in the flattening.

Now the parametric latitude @, of P, may he computed from tan 8, = (1 - f)tan ¢, and from equa-
tion (10) or (98) we have

cos8, =sina, ; cos B, =-sina,.; cosd,. (112)
Weplace d=S$/aD, (113)
and from equations (48) write
£, =S, /aD = ¢, +Psin 20, - Q1in 40, + R sin 60, (114)
$3=d~§, =S;/aD =0, +Psin 20, - Q 1in 40, + R 3in 60, (115)
where 0y =arc cos (sin 8, /sin 6,), 03 = arc cos (sin 8, /sin 0,)
ad P=E/D,Q=F/D,R=G/D,

with D, E, F, G from equations (49).

Since we have cos 8, from (112), the constants ¢;, ¢3, ¢3, ¢ and A, B, C, D, E, F, G may be com-
puted from (49). Since we have 6, and 6, we can compute g, and then §, from (114), 2 from (115),
i.e. from §; = d - §,. But we need 0, and therefore the series (115) must be reversed. Figure 17 shows
the spherical triangle being used.

Now the ranges of ¢;,¢3,C35,Co Wefor 0€ |80 1€ 0/2;f2¢, 20,0€c, /4, 1+f>cy; >,
1 +f>cq > 1+{/4. Since the maximum hemispheroidal geodesic length under the shortest distance
criterion is the semimeridian, given when 8, =(1/2)w, we have for this value of 8,:
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A=B=C=0,D= 9983056819, E = 8475185 X 10 F=.1799 X 107,
G=1X 10", P=E/D= 8489569 X 10°°,Q=F/D = 1802 X i, (116)
R=G/D =1.001X 10, where f = .3390075283 X 107 (Clarke 18£6).
The maximum contributions of the terms E gin 20, F sin 40, G sin 60 are: 2aE = 10,811.296m,
2aF = 2,295m, 2aG = .0013m. An examination of Table 3 shows that there will bs a maximmum angular
error of .001 second in holding 8 decimals of radians. We arbitrarily reject all decimal radian terms of the
order .3 X 10™® or less in the analysis to follow. We have at once from (116) that G=R = 0.

We write (115) as
§2=0;+Z,Z=Psin 20, ~Q sin 40, (1m
whence  sin 2§, = gin 20, cos 22 + cos 20, sin 22
sin 4§, = sin 40, cos 4 + cos 40, sin 42 (118)

We use the series approximations, sin X = X - X*/6,
cos X = 1 - X?/2, and find, rejecting terms of the order of .3 X 10’

7 S
NS -
Sy \
<7
> Y \ 4
A p
/ E
/ ) P > ]
- 0 ]
A2 = Lo=%" L3 (ez,hz) )
—
— \
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Figwe 17, Spherical triangle used in spproximating the spheroidal triangle. Azimuths are from nosth with
oast longitudes positive.




or less (using the values of P and Q from (116)):
gin 2% = (P sin 20; - Q sin 40;)
co8 2% = 1 - 2P? sin? 20, 19)
sin 42 = 4(P sin 20, ~Q sin 40;)
co3 42 = | - 8P? sin? 2¢,
The values from (119) returned to (118), with the help of some trigonometric identities, give
sin 2§, = [1<(3/2)P? - Q] sin 20, + P sin 40, + [(1/2)P? -Q] sin 60, (120)
sin 4§, = - 2P sin 20, +(1 - 4P?) 5in 40, + 2P sin 60, + AP ~Q)sin 80, (121)
If we multiply (120) by P, rejecting terms of the order .3 X 10°® or less, with the values of P and Q
from (116), we get

P sin 2¢, =P sin 20, +P? sin 40, (122)
Now subtract respective members of (122) from (117) to get

¢ -Psin2¢; =0; ~(Q +P) sinde, (i23)
Next muitiply (121) by Q + P?, rejecting terms of order .3 X 10" or less, to get

(Q+P?) sin 4¢; =(Q + P?) sin 4o, (124)
From (123) and (124) we have then

03 =§; - Psin 2§, + M sin 4f;, (125)
where M=P? +Q.

Now from (116),Q - F = .3 X 10®, hence we may place Q = F and we write from (114),(115), and
(125) withG=R=0,Q=F,P=E/D,M=P? +F,d = §/aD,
03 = U-Pgin 2U + M ain 4U
U=d-§, =d-0, -Psin 20, +F sin 4¢,.
We next examine owur fundamental coefficients for exclusion of terms of order .3 X 107 8 or smaller.
From (49),
C=(1/4) cyca?, ¢y =fcos8y, ¢ = (1/4) fain? 0,

(126)

- =(1/4) L+ 2% ’\-0 ‘= feind dey (1/2)f5in 8y cosd
—— c — r— ‘—--_ ’-——-. / ,
a6, ! c’do., ‘dao/ dfo o dé, o o

and we find
daC
= @ (1/4) ¢yl sin 8y (~¢3 + ¢, cOsBy) =0,
dd,

whence the minimum is given by 8, = 0 (the equatoris! limiting arc), and the maximum by ¢, = ¢, cos 0y
ot {1/4)f sin® @, = f cos® 8,, whence tan 8y = 2,0, = 63° 26’ 057816 and maximum value of C is
C=(1/4)cycy? = 174 X 10, Hence we place C = O with respect to our rejection criterion .3 X 10,
Since c;® = (1/64)° sin® 0, the maximum value is st 8, = #/2, when c,* = .6 X 10”* (Clarke 1866).
Hence we neglect terms of the order ¢, * in the coefficients D and E and write:

A=cy(1-caca), B=(1/2cieac3, D = 2 ¢ ca0a(cs = 1) = (c3 +c4).

E=(1/2)c; [2+c5(cs = 1)), F=(1/4);* (24 - 1),

¢, =fcosfy,cy =(1/4)sin? 0y, cy = 1 +¢; cO88,cq =y *Cy.

(127
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We next consider the effect of omitting the terms in * in the coefficients. If this is done they
become
A=ci(1-¢;),B=(1/2)c,c2, D= (1 - ¢ 2-¢c3 ~¢3), E=(1/2)c;(1 * ¢3),
F=(1/4)c,?, ¢, =N, c; = (1/A(1 -N?),c3 = 1 + IN* N =cos 6, (128)
identity: ¢, ~4cy(cy -1)+cs(2-¢c3)=1.

Now we form the differences of coefficient values from (127) and (128) and examine for maximum
values:

’AAISC'C"(c"l“‘(l/m)faN(l-N’Xl+3N’)=-il?——|AD|

1+3N?
IN? N? aN :
AB|=(1/2 1-¢5)1=(1/8)f*N3(1 -N*)= —— | AA|= ¢ —_—
| 8B 1= (1/2)ex62 1(1-c3) =(UBPN(1 -N*) = —— 1 AR I= ——y + ——5 | AD!
1AD | = ¢ {ca(2~ca) = 1] 1= (1/64)F3(1 + IN?)* (1 - N?) (129)

2N? 4N

|AE|=(1/2)c; 1263 =1-¢3%) 1=(1/8)*N*(1-N*)=N|AB|=N ey 1aD|
lAFl=(l/2)cz’l(l-c.)|=(lll28)f’(l-N’)’(l+3N’)=—l—-—N-2—IADl *
2(1 + 3N?) :
Since <2, 0<N = cos b < 1,06 N — < 5
’ TUX1+3NY) T
0< —31:—-<.5 0< —-iN—<| 2, we have
143N 77 pe3Nt T
from (129) that
1AA | <(1.2)| AD imax, | AB | <(0.6)| AD Imax, | AE | €(.6) i AD | max, Y
| &F | €(0.5) | AD | max, .f

Thus we have only to find | AD | max and show that both it and | AA | are lem than the rejection criterion,
23X 10", We find

diaD|
]
whence N = 0, (9o = #/2), N' = 0, (8o = 0), N* max = $/9. With this last value | AD | max = .2 X 107,
1AA1€(1.2) | AD I max » .24 X 107 which is sufficient to justify the values (128).
Now tinf; »sin0y cos oy, tan¢y s tan 8, /(1 - N0,
5N gy * co3fy/cos §y mcon By sna;.y/cos b, (130)

= (f3/64)« A1+ 3IN')NN'(S -9N?*) =0,

From (50)
Inen tm,Zo%0, 405,80%0, -0y,
P=2sinXocos 89, AAw Zn-AZo ¢ BP )y =), ¢+ A), ‘
n; = arc cos (tan 8y/tan 8,) = arc cos (cos 84 cos 0;/c0s 8)) (131
¢; = arc cos (sin 4,/5in 8,).
Summary of first direct solution, given ¢, A, ,8,G,.3.
§. Convert ¢, iopamne:dchthud: from tan@, =(1 -Ntan ¢,

1

o ey R e

.

AL)._._..A_A




2. Compute cos 8, = ncs 0, sina, _; (geodesic vertex)

3. Compute o, = arc cos(sin 8, /sin 8,), sin 20, , sin 40,

4. Compute A, B, D, E, F from (128) and (132)

P=ED,M=F +D? d=S/aD

5. From (126), U=d - 0, -P sin 20, +F sin 40,, sin 2U, sin 4U
‘ 6. 02 =U - P3in 2U + M sin 4U, cos 0,
! 7. 03 =arc sin (sin 8, c08 0,),a;_, =21 -arcsin (cos 0,y /cos6,)
! cos 0;,tan 8,,tan ¢, = tan 6, /(1 ~ f)
8. ny =arc cos(tan 8, /tan 8,), n; = arc cos (cos 8, cos o /cos 0,)
9. From(131), Zn=n, +n;,Z0=0, +0;,A0=0, -0,,

P = 2sin Zo cos Ao, AN=Zn~AZg +Bp,\, =), + A\

Alternative trigonometric formulae, reference {19].
When Zo = ¢, + 0, has been found
tan a;., =cos@o/(sin Zosin 0, -Ncos £a), N=sinf, sin 0, = cosf, cos @y,
tan @, =(cos To sin 8, + N 1in Zo) sinay_, /(1 - f) cos O, {133)
Zn = arc tan [tin Lo cos @o/(cos Zo -sin 8, sin 6,))
= arc tan [sin To sina; 3 /(cos 8, cos To-sind, sin Lo c0s ¢ ;)]
We make the following changes for a geodesic arc that will contain no vertex, but will contain a node:
| @y, =¥ +a=n+arctin(cos8,/c0s6,),
| U= g, -d +Psin 20, - F 1in 40,
tan An = tan(n ~n,) = tin Ao sing, ., /(c0s8, cos Ac-siné; sin Agcosa,_y)
A= An - AAg + 2B sin Ao cos Xo, from (51).

(139)

Geners] kemispheroidsl direct solution. (First form).
Now the formulse (132), (134) reapectively, suggest the following general direct soluticn over the
hemispheroid:
from U=ng, -d+Psin 20, - F sin 40,
0, =*U+d-Psin 29, + Fiain do,

03 = U~Pisin2U + M sin 4U .
wehave Ao = 0, -0y = d + P (sin 2U - 3in 20,) + F sin 40, - M ain 4U (135)
Now %n 2U = ¢in X0, - d) o8 2L + cos Ao, ~ d) tin 2T

sin 4U = 3in 4(0, - d) cos 4L + cos 40, - d) tin 4%, {136)
where L =Piinlo, -F sindo,.

With the approximations sin x = x - x*/6, cos x = 1 - x?/2, whore x = 2, 4% and rejocting terms whose
coefficikents wre .3 X 10°* ot less in using the values of P, ¥, M = Phofromms).mﬁad
P 3in 2U = P sin A0, - d) ¢ 2P? din 20, cos Xo, - d)
MundUs(F+P)gn&o, -
| Thonhafm(!mpwh(lﬁ)mduno!mﬁewmmksmwnnowme

- (13D
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Ao =g, -0y =d-2Psindcos(20, ~d) [1 -2Pcos Xo, -d)] + 2F sin2d cos A20, ~d)
(138)
Xo=0, t0y =20, -A0.
From equations (128), (133), and (138) we assemble the formuiae for the general direct hemispheroidal
sclution:
tand, =(1-~-f)tang, M=cosf,=cosd, sina;_, N=cosb, cosa,_;,
¢y =M, cy = (1/4)() ~M?),A=¢c; - 2B, B =(1/2)c;¢3,D =(1 - ¢3)* -AM,
E=c, + BM,F = (1/4)c;?,P=E/D,Check: AM~2BM+D+2E-4F =]
0y =arc cos (sin 8, /sin 8,4), d = S/aD,
Ao =d-2Psind cos(20, ~d)[! ~ 2P cos X0, - d)] + 2F sin 2d cos (20, ~d)
cos (20, - d) = cos 20, - ) cos d - sin 2(0, ~d) sin d, (139)
cos A20, -d) =2 cos* (20, ~d) ~ 1,
Zov = 20, - Ao, tan a3, = M/(N cos Ao - sin 8 sin Ag)
tan ¢, = -(sin & cos Ao + N 2in Ao) sin a;, /(1 -NM,
tan An = sin Ao tin @, .4 /(cos 8, cos Ag ~sin &, sin Ao cosa, )
AX= An-AAo + 2B sin Ao cos 2o,Check: M=cos6, sina,_y = cos®; sin(x +a;.;)
We arrange equations (139} as follows for construction of a computing form:
tan 8, =(1-f)tan ¢, , M =cosfq = cosv, sina, 3, N=cosf, cosa, ;,
¢ =M, c; =(1/4)1-M?),Da(l -3 X1 ~c3 ~c, M), P=¢; [1 +(1/2), M]/D,
cos g, »sinb, /tin 8y, d=S/sD,u=Ao, - d),W=]-2Pcosn,
Vacos{utd)=cosucosd ~sinusind, (140)
X=cisindcosd(2V? - 1), Y = 2PVWsin 4,
Ag=d+X-Y,Zo=20, - Ao, tena,. *MEN cos Ao -~ sin 8 sin Oa),
n gy ® -(3in &, cot Ao ¢ N sin Aodainay , 1 ~-NM,
tan An = tin Ag tin @, 3 /(cos 84 ¢cos A1 ~3in 8, sn Ao cosay ),
Hao(lecy)Ao-c ey tinAocos Zo, A= An~H, Ay = Ay +AA,
Check: Msocosd,mcosb, sina, 4y »cosd; an(r +a;,)
Figure 18 shows equations (140) arranged in a2 computing form.

Genzral hemiphercidel direct soiution. {Second form)

With the hope of reducing the rumber of trigonometric functions involved, s second solution was
daveloped which involves sucorszive soluteons on two spheres. The formislee sre identical in some instances
to those of the first solution. The quairtities are the mrae in some ceses but sppear in Ciffernt form with
respect 1 formulse. The principal difference is (n obtaining &0. Th= solution from there on is identical.
The formulas ase:

tand; ={1-0 tang, M=cmd, =cotd, sina, ;,Nvcosd, ana, ,c, =M, ¢y «J/4H1 - M},

080y *ginfy/sinde d=S/D, T »d/xind, V= thein' &, ho(l'QI1 -0 -1 A=V]] M),

1 8) 2eind, cosd*Neind, BeVisinb, ind) C=T-cosd, LeAC+3IB. D~ 4B+ L)-Acosd,
E«B8B(B+ "L)cosd, P=2ADin? 4,02 ICA? ¢E, Ao sinaT -0/20L + (W /16)(P+Q)),

(141)
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DIRECT POSITION COMPUTATION FORM FOR LONG LINES. Given ¢, . A, .;.S 0 find ¢;. A7, az ;. East
longitudes positive; azimuths clockwise from north: no root extraction; only &-place trigonometric natural tables

(as Peters) required for desk work.

SPHEROID a m f
1-f 1 radian = 206264.8062 seconds
LINE - TO
o tan ¢, tan @, =(1 - tan ¢, - =
Q;.2 sin 6, cos @, 0, _
sina, 3 M=cos8, =cos b, sina, 0,
cos @ 3 N=cosd, cosa, sin 6,
=M D=(i -cy i -c; -, M)
¢z = %(1 -MHf P=¢; (1 +%c,M)/D
€os 6, =sin 8, /sin 8, 0, ’ ’
d=§/aD (rady d S m
sind u= 2o, -d) sinu
cosd W=1-2Pcosu cosu —
V=cosucosd-sinusind Y = 2PVWsind
X=c}sindcosd (2V*-1) Do=d+X-Y . - (rad)
sin Ao cos Ao Ao
cos Zo Zn =20, -AOc S . -
tan a;_; = M/(N cos Ag - sin 8, sin Ao) (T
tan ¢, = (sin 0, cos A;Jl'r- l;l):;ln Ao) sin @y sin @y, _ : _
$2
in Ao sin a ’ ! “
tan &9 = cos 6, cos A:l '-l sinf, si;-z&o COS @ 3 fn
H=¢ (1 -¢c;) Ao -¢, ¢, sin docos To (rad) H
AN=An-H
A
CHECK ° / ”
M=cos0n=cosf, sina,_; =cosf, sin(18C+a, ) Az = A AN N

Figure 18. First direct solution computing form.
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Za =20, - Ao, tan ay_, = M/(N cos L0 - sin &, sin Ao), (141)
tan é; = -(sin 8, cos Ao + N sin A0) sina, ., /(1 - M,
tan An = sin Ao sina,.; f(cos 0, cos Ao - in §, sin Ao cosa,.3)
H=c¢;{l -¢3)A0-¢,¢3 sin Ao cosZo, AA=An-H, A\, =}; + A\,
Check: M=cosd sina; 3 =cosf; sin(w +a;,).

In essence, cae solves for 4o through two spherical triangles. With @, 5, 0,, and d = S/b one solves
for 83 in the triangle of Figure 19, by the formuls sin 6 = sin &, cos d + N sin d. With this value of 85,
one computes the several quantities including 40 and then cne slves for a, 5, 8;, An in the triangle of 3 ,
Figure 20 as was done in the first general dirzct solutioi, equations (14G). ' J

The second method appears to be slightly less accursate than the first, and little if anything is saved in {
computation. Figure 21 shows equations (141) srranged in a computing form.

5 4 LTI S NP D

IS

Conventions for azimath and longitude
We assume the initial is west of the terminus in the direct solution and then alway: 0 < 6, ; < 180°, :
0 < 4n <AAK#. We find the first quadran: angles v and v given by tan u = |tsn a,_, |, tanv=|tan Ay, §

iftana,.; >0, thena, 4 = 180° + u;if tan ay.y <0, theng,, = 360° ~u. If tzn An> 0, then
An =v; if tan An <O, then 4n = 180° -v.

Figure 19. First spherical solution-cecond direct solution Figure 20. Second sphetical solution-second direct sobu-
method. tion mechod.




DIRECT POSITION COMPUTATION FORM FOR LONG LINES. Given ¢;,A;, ;3,5 to find ¢;, A3, 05.;. East
longitudes positive; azimuihs clockwise from north; no root extraction; oidy 8-place trigopnometric natural tables

{as Peters) required for desk work.

SPHEROID a m b i
1-f=bfa f h=%{i/bla)? <1}
I radian = 206264.8062 seconds
LINE . - - TO
@ . tan ¢,’ - tand, =(1 -f) tan ¢,
S m 0, sin 0, cos @, + —_—
a; 3 sin & oS ;.3
d(rad)=S/b + d sind +
M=cosé, sina, ; T=4d/sind + cosd
N=cosd, cosa, ., V=1+hsin’ 9, +
A=V{l-M¥)+ B=Vsin8, (Nsind +sin 9, cosd)
C=T-cosd L=AC+ 2B
D=4(L+B)~Acosd E=8B(2ZL+B)cosd
P=2ADsin* d Q=3A'C+E P+Q - —
do=sind [T -(h/2) L+ (h*/16)(P+Q)] + J— . _
sin Qe cos Ao Ao _ ’
cos Zo Zo=20,-06 ___ ___
) ’ ”
tan ay.; = M/(N cos Ag -sin 0, sin Ag) L T —
tan ¢ o - (sin @, cos A((l’tgb:in Ao) sin @y Sin @ss ) —
¢ ————
. . 0 ‘ P
tan &n = cos &, cos AS:I_A;"S;)HI o;;:AO cosay .y b ——
H‘= ¢; (1 -¢3) &o -cyc; sin Ao cos Zo (rad) H
=M A= A=lp-H __ __ ___
¢z = %f(1 - M?) A
CHECK ° / ”

M=cos8y =cos 9, sina .y =coslysin(180+ay )

l‘\z =7 +AX

e -}
e ——————

Figure 21, Second direct solutivn computing form,
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General hemispheroidal inverse (reverse) solution
The following geodetic length approximation for the inverse (reverse) soiution between two points

P64, A1), P2(6,, \q) of the reference ellipsoid, was developed by the author, following the method of
Forsyth [20] , and published in [18]:

S =ajd - (f/4)(Xd - Y sin d) + (f*/64)AX - BY + CX? + DXY -EY?)],

cosd=sin 0, sin@, +cos B, cos0; cos A\, AA =2,y =}, (142)

B=8d%/sind, A=Bcosd,D=B/2,E=2sind cosd, C=d +(1/2XE - A),

X =(sin8, +sin 8,)* /(1 +cosd) +(sinf, -sin8,)* /(1 -cosd)= 2sin? G5,

Y =(sinf; +sin8,)* /(1 -cosd) - (sin 8 -sin#,)* /(1 - cos d) = X cos(d, +d;),
where 9, is the vertex of the great elliptic section through Py, P; (contains the center of the ellipsoid) and
d,, d, are the spherical distances fpom this vertex to the points Py, P;;(d = d, ~d;). Other trigonometric

formulae may be used to obtairythe most accurate value of d. Figure 22 shows the spherical elements
involved,

03 is the parametric latitude of the vertex of tiw great elliptic section. In the Qhorhl ttuuh NP Py we
have cosd »5in 0 dnﬂgﬂmﬂ) cos 83 cos AN lnuumpmmmor..m.r,mm
respectively cos dy = sin 8; /sin 8, cos d 'dll’glﬁnOQ. Thus d, and d; are analogous to 0) and 03,
equations (114) and Figure 11, where 8 is the parametric latitude of the geodesic vertex,

Figure 22, The spherical triangies used in the inverse spproximatios.
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To assure the best trigonometric solution for d, we adapt mid-latitude formulae, reference [18),
page 87. We factor sin d out of each term and write equations (142) in the following form for computing
|

(east longitudes considered positive):

Inverse (Reverse) Solution Formulae
tan @ =(1-f)tan gy, i=1,2. O = (1/2)(0, +03), A0y, = (1/2)(92 - 6),

A\ =), =)y, AN =(1/2)AN, H = cos® Afy, -sin? 0, = cos? 8, - sin® Afyy,,
L=sin? A8, + Hiin? ANy =sin’ (1/2)d,1-L=cos? (1/2)d,cosd=1-2L,
U=21in? 0 cos* Apn/(1 -L), V= 2sin® gy cos? Opa/L, X=U +V,
Y=U-V,T=d/sind,D=4T? E=2cosd, A=DE,B=2D,
C=T-(1/2(A -E); Check: C-(1/2)E + AD/B=T.
0y = X(A + CX), n, = Y(B + EY), ns = DXY, §,d = (1/)RTX-Y),

5,d=(f2/64)n, - n, +n3),S; =asin &(T -5,d),S; =asin T -5,4 +85,d),
F=2Y-~E(4-X),M=32T-(20T -A)X-(B+4) Y,

G =(1/21T + (f*/64)M, Q = ~ (FG tan AN)/4, ANy, =(1/2)(AX +Q),
5y = -gin Ay, [(c08 0y, tan ANy) u=arc tanic; |, a; =v-u,
3 = c03 OB,y /(sin Oy tan ANy),v=arctan |c;),a; =v +u,

(143)

G C a3 L 81 .
ay 360 -a, ;
a; 360 - a,

- - 180 ~a, 180 +a,

+ - 180 -a, 180+ a, : ,

The principal difference in equations (143) and those of reference [18] page 87, is the arrangement for

Py to be always west of P,, east longitudes positive, and the addition of azimuth equations to second order

inf. The szimuths are an adaptation of Guggenheim's equations, reference [23], where conversion has

been made to parametric latitude and terms transformed into the parameters used in the lergth computa-

tions. The arrangement for identifying the azimuths without the quadrant search, as displayed in the last

of (143), will be generated in a discussion of azimuths to follow.

Azimuth determinstion in the inverse solution
With the point P, always west of P, cast longitudes positive, we must establish some conventions in !

order to determine the azimuths from north. In a spherical triangle P, NP, , as shown in Figure 23, we have
the corresponding parts as indicated: B=a, 3, A= 360-0,.,,0=90~0,,b=90-0,,C= A\'and
(1/2XA + B)= 180° +(1/2)X@1.2 =634 ), (1/2XA -B) = 180° ~(1/2)(a; 4 +a3.4),

(1/20a-5)=(1/2)(9; -0,) = Adyn, (1/2)(3 +b) = 90° (1/2X0) +03) = 900w, (144)
C/2=(2AN = AX,,.

From Guan’s equations, reference [19] page 162: _
tn [(1/2(A +B)] = oos [(1/2Xa-5)]/cos (1/2)(a +b)] tan {(1/2)C], 149

tan [(1/2)(A - B)} =tin [(1/2)(s~b)} /sin [(1/2)(a+b)] tan {(1/2)C].

Y O
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The values from (144) placed in (145) give
tan [(1/2)X@1-2 * @2.4)] = =sin Abyy /03 Oy tan A =y, (146)
tan [(1/2)(@;.-2 ~ @2-1)] = c03 OBy, [sin Oy tan ANy, = c;.
The formulae (146) were given with equations (143) where A\, is the mean longitude difference as
corrected to account for the ellipsoid.
Since | 0 1= (1/2X(8; +0;) | <90° and | A8y, | =1 (1/2)(8; ~6,) | < 90°, then always
cos (£ 0 ) > 0, cos (£ A0y, ) > 0. Always, since east longitudes are positive, with P, west of P, A\ > 0,
Ay >0, A\, > 0. Hence the signs of ¢, and c,, in equations (146) depend only or: the signs of sin A0y,
and of sin 8, respectively. Now Figure 24 shows all the possible azimuth situations, 8, # 0,, from which
the corresponding signs of sin A8y, = sin [(1/2)(0; -0,)], 5in 0 =sin [(1/2)(0, + 83)] can be determined,
A summary of sign conventions as obtained from Figure 24 and equations (146) is given in Table 4.
If we find the first quadrant angles u and v corresponding to tanu = { ¢, |, tan v=| ¢, | and then
form ay = v -u, a; = v+ u, we may determine all azimuths from Table 5.

()

&)
S (b)

1&°

Figwe 23, Asimuths in the squivalent spheriedl trlangle.
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Table 4. Summary of azimuth sign conveutions. “

f Figure Sin A8, Sin 8,, Latitude Conditions ) ]
1A, IIA + + 0:,>0,0;>10, | - - b
1 IB,IIB - + 8,>0,8,>16, | + +
& HIA, IVA + - 0, <0,18, 1>6, - -
INB, IVB - - 0; <0,10,1>0, + - ,
é
f l Table 5. Azimuth determination in the inverse solation.
: : Figure Latitude Conditions € ¢ Q. T

IAJIA 8,>0,0,>10, | - + a, 360-a,

i

: IB, IIB 8,>0,0, >0, | + + @ 360 -a, ;

1A, IVA 6, <0,18, 1>0, - - 180 -a, 180 + a, g
IlIB, \VB 0, <0,168, 1>8, + - 180 -, 180 +a, :

The last four columns of Table 5 ave given with equations (143} end in effect eliminate the quadrent '
search since it has been done in advance. Figure 25 shows equations (143) mrranged in a computing form. ;

Direct and inverse solutions of maximum sphesoidal geodesics, node to nede, vertex to westex
Vertex to vertex. The direct and inverse are identical sinca the end points of the arc are the vertices
and the longitude difference and length are given by equations (33) or (54). Azimuths are 90° and 270°,
Node to node. For the direct, 8, = 90° - a, 3, longitude and length are then given by equations
(33) or {54). The back azimuth is given by @,y = 270° + 8. For the inverse, we are given A)g =2, =1,
Le. the end points ate P, (0, A, ), P1(0, A, ) on the equator, and we have two cases: £
1. Ahg<#(1-(). The distance P,P, isS=ad), and azimuths are 90° and 270°,
2, #(1-f)<Ars <7. The nodes aze in the resective antipodal zones. In the first of equations (33)
we place sin? 8, = 1 - cos® 0, and write

: g (1 - Axo/m) =K1 ~1/4-1/16) cos By + (1/AM(1 - 1/2) cor® B + 31* con® 85/16,  (147) ;
b Using 1/(1 ~x) = #x+x? + .., we may write .
D1/ -4 £116)= (1/N[1+ {4+ 2At/4)* + X1/4)* + &LL/4)* + .. ) s : %
i We then write (147) as P e
, cos 8y + ucos® 8 = v=D{1 =« Arg/x), u = D{1/ANE(] - 112) = (/4 - (G14)?, - 1
D=(I/0[1 + 114 + Af/43], s

Mwmm been omitted.
Fioally the formuls for v is reversed in (128) and with the equation for Sy from (33) we write for the

Aoy

confy =vour’,v=D(1 ~ Ahofx), um 4~ (147, B = (1O[1 + 14 + X147, i
@11 = 90" 05, 00y = 270° # 04, Sy = an(1 - XA +(1/4)'B + Af14)°C), (149) p e
A=14+008*0,B5(1 +3 0o o1 -o0u® #),C = {1 + 200s04 + S cos* 0,)- 4
(1 - cos? 8). i
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INVERSE POSITION COMPUTATION FORM FOR LONG LINES. Given ¢y, A;; ¢2, A; to find §, a; .o, a3 4.
Azimuths clockwise from north; east longitudes positive; no tables except 8-place natural trigonometric (Peters). no

et e S b S i b e

root extraction.

SPHEROID a m b m

1-f=bfa Wf uf
/64 1 radian = 206264.8062 seconds

[ [4 ~ Q , ”
[ 1. A
0; 2. A;
tan ¢, 1. always west of 2. DA =Xy =],
tan¢,° , = tand=(1 -f)tan¢ Ay = KA
9, tan 8, sin Al
8, . - " tan 8, tan AA
Om =%(0, +8,) $in Oy cos O,
OOy = (6, -0,) sin Ab cos M,
H = cos? My, - sin*0py = c08? 0y, - Sin® Oy 1-L
L =sin’A8,, + Hsin? A\, cosd-l;ZL - .
U= 23in?0y, cos? My /(1 -1) d
V= 25in? 08, cos?0,, /L sin d d (rad)
X=U+V T=d/sind E=2cosd
Y=U-V De=4T? B=2D
A=DE — C=T-%(A-E) CHECK C-%E+AD/B=T
n, = X(A+CX) n; =Y(B+EY) ny = DXY
8,d =% (TX -Y) 8,d=(*/64)n, -y + ;)

R LIRS ——

FeldY-E(4-X)
G=WT+ (/o) M =

CREE LT TSRV AL JT ) FE—
N'32T—(20T*A)X-‘B*4)Y
Q = ~(FG tan A))/4

L

o
B\g »%(8A+Q) . = tan Ah,
v = gretan oyl 3 ™ cos Oy, /(sin 8, tan AAq)
u-munlc.l. - — c.uinM./(ogsO.,uneA.'.) —~
ay=v-u aevey
. u 0 ’ ” “ﬂ . v -
- ¢ a 360 - a,
+ ¢ ay 380 -a,
- - 180-0a, 18C ¢ o,
+ - I180-a 180 + oy

Figam 25. Inverss podiion somputation form.




Now when 6o = 0 in (149) we get B=C =0, A = 2, S = an(l - f), v=Df = | +f/4 + 2(f/4)?,
uv® = f/4+2(f/4)*, cos 8y = v - uv® = |, ay., = 90°, ay.; = 270°, which is case 1 with the equality
sign and A\g = n(1 - f). When 8, = /2, ANy, =7, v= 0, uv’ = 0,c080,=0,A=B=C=1,
Spj2 = an(1 - /2 + 12 /16 + £/32), the meridian semilength, sce equations (34).

Direct and inverse coraputation of the ACIC 6000 mile lines
To begin the evalugtion of equations (140) and (143), as arranged in the forms of Figures 18 and 25,
the nine ACIC 6000 mile lines were computed. The results are compared in Table 6 and the sctual compu-
tations displayed in Appendix 3. Note, for the meridional limiting case of the direct solution, that when
0, = 90°, then cos 0, = sin 8, = c0s(90°-8,)oro; =90°-8,,0;, =90°-0;, N=ccs by, 0= 0,
-0y =8, -0,. Using the identity cos 8, sin a;; = -cos 8, 5in 0;-,, we have
. (sin8, cos Ao +cos8, sin Ad)sina, ., _dn(O, +Aa). tin 0, -tanO,
i «(1-Ncosd; sina,_, (1-Dcos; (1-Noosdy (1-0°
and a, ; =0,a,., = 360° 8, =90° + 0, - Ao. Hence in the limit tan ¢, = tan (90° * 0, ~ A0)/(1 - f).
Table 6 shows that good results were obtained vsing only 8-place tables, (Peters). The maximum dif-
fevence in length for the control velue of 9655977.366 meters is -. 189 meter, the minimum difference is
+,004 meter, and the mean difference for the nine line positions is ~.044 meter. All the anguier values are
Jlat chacks or at most .003 second from the control value. These resuits are better, at 6000 miles, than the
adopted criteria (1 meter, .035 sec.) by a factor of 10 for both distence and enguiar quantitiss

Complete check of divect and reverss solutions over 8 hemispheroidal geodesic

In order to test for all the cases as delineated in Table 2, we construct s geodesic model as given in
Figure 26 containing the given initial and terminal points of the ACIC 6000 mile check line having the
largest vertex psramatric latitude (excdluding the meridian), i.e. ’

tan¢,

1 (initial) $; =70°,6, = 69° 56" 147390,\, = - 18°
T(terminus) ¢, = 17°08°387317,0, = 17° 05’ 217296, A, = 114° 18' 437800
#o = 76° 00' 267541, 8, = 75° 57° 427083, § = 9655977.366 mwters - (50

[ TP¥Y -‘S..O‘q =345° 17 S6'2M
From our geodesic model, Figure 26, we choos the arcx

vib ax, S A vertax end point

V,V, A\ Se Contains two vertioes (ead poiats)

PN, o S A node ead point

NPy A\, S, A node end point

?,P, A\ + AN S; +$;,  Contains » node o (18)
L Y A\, S Contaim neither node aor vertex

PP, ) 8 Contaire s node and 8 vertex

V,T A\ + &, S, +S¢ A vertex end point

m Re =Ay w200 AN, 28, ¢S, Given ACIC line—coutaing s vertex

TN; M; S, A““m

~|N, -Vgﬂl *+N, VY, Al Se Cﬂ*m“(ﬂm
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For control we compute A\g, ANy, A, 41y, )4 and Sy, Sy, S,, 83, Sa from equations (47)(54).
This provides incidentally 2 check for thc ACIC line (120). The computations are inciuded in Appendix 3.

(152)

(i53)

17.947
03.723
03.723

(154)

56.217
56.277
42,053
42,053

The values obtained are:
° ' " meters
Al 179 51 07.553 So 20001779.136
A\ 46 46 49.167 S 1611471.024
o), 43 08 44,610 S: 83894i8.545
A, 4 23 J9.16 Sa 1956383,534
Axy 38 45 05.464 Sa 6433035.010
From the longitude values of (152) and the given line (150) we have the coordinates of the points:
Point 0 A
° , " o ) ”
\'A -7 57 42,053 - 151 04 18.387
P, - 69 56 1,590 - 14 17 29.220
N, 0 - ol 08 44.610
P, + 17 05 21.296 - 56 45 05.464
| + 69 1 14.550 - 18 0 0
V, +75 57 42,053 28 46 49,167
P, + 69 56 14.590 + 75 33 38.334
T + 17 05 21.296 + 114 18 43,798
N, 0 + {18 42 22944
From (150), (152) we may write the values for (151) including azimuths:
Line A S Imeters) .2 2y
° ) " ° ' " ° )
V,P, 46 46 49.167  1611471.024 90 225
Y_‘_Y_’. 179 51 07.553 20001779.136 90 270
PN, 43 08 44679 8389418,545 45 194 02
N,P; 4 23 39146 1956383.534 14 02 17947 194 42
PP, 47 32 23756 10345802079 45 194 42
Pil 38 45 05464 5433035010 14 42 03,723 225
ity 179 Si 97553 22001779.136 45 315
¥, T 85 31 54631 8044506034 90 45 17
IT 132 18 43798 9655977058 45 345 17
TN, 4 23 39146 1956383.53¢ 165 17 56277 345 57
NiN, 17¢  S1 07.553 20001779.136 14 02 17947 345 57

By coraparing the properties of the lines, as delineated in (151), with Table 2, it is seen that the

computation of hemispheroidsal geodesics and arcs of (154) is sufficient. Note that the lines V,V,, P, P,
N; N, are maximum hemispheroidal geodesics under the unique shortest distance properiy, i.e. node to
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node; veriex to vertex; points in equal but opposite signed latitudes separated by maximum longitude (that
between successive nodes or successive vertices).

We first dispose of the computation of the equal maximum hemisphercidal geodesics V, V,, N3 N,
P,P,.

¥, V3. Since the direct and inverse are identical, the end points of the arc are the vertices £ 0,; one
may compute A and D from (49) and then A)g and So from (54). This has already been done and the
computations ace given in Appendix 3. Azimuths are aiways @, .; = 90°, a»_; = 270° (sscond vertex
always east of the first).

Note in equations (143) that the term T = d/sin d grows very large when d - x. Now from equations
(142) with 8; = -8, = =8¢, ANy = 7 ~ 28y we hawe:

-Y=X=2sin? 9, = 4 5in’ 84/(; - vos &) = 2 sin® 9, /sin®(d/2).
tan 6 = sin 9,/c0s 8¢ co8 Mo, o8 (4/2) = c08 B sin Ay, cos d = 2 cos® (d/2)- 1,
8= a[d ~(f/4)X(d + sin d) + (* /64)X {X(d - sin d cos d) + 4d*(2- X) cot (¢/2)}}  (155)

wiaere @ is the vertex parametric latitude of the great elliptic section, see Figure 27.

The great elliptic section containing the geodesic vertices Py, P, has the antipodal vertices Py, P3 and
passes through the point Q as shown. Its plane has the equation tan 8 = tan 8 sec A, eos’is..Alo,udvenby
equations (33), is related to Ag by A\g = - 20g, and G ™ /2 - 8. The arc lengths Py QP2, QP;K, Q'PR
are all equal maximum hemispheroidal geodesics under the shortest distance property.

Figste 27. The great elliptic section containing two comsscutive vertices of the geodasic.
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From the control computations, Appendix 3, A\g = 179° 51’ 077554, and hence Ao = (1/2)(n - AA,)
= 4' 267223;
sin Ao =.00129069, sin 8, =.97013371, cos @4 =.24257076, cos (d/2) = cos 6, sin Ay
= 00031308,
sin (d/2) = .99999995, sin d = 2 sin (d/2) cos (d/2) = .00062616, cos d = 2 cos? (d/2) - 1
= -.99999980,
cot (d/2) = cos (d/2)/sin (d/2) = .00031308, d = 175° 57’ 507846 = 3.140966498 radians,
d-sind cosd=d +sin d=3.141592658 = n, a = 6378206.4 meters
S = 2(3.140966498 - 005011785 + .000001999) = (6378206.4)(3.135956712)
=20001779.171 m,
which is within .035 meter of the control, Appendix 3.

i1V, . For the direct solution, 8o = 90° -a, ... A, D are computed from (49) and A),, So from
(54). For the inverse we are given A),, whence we have two possible cases as described in (147). For our
case the second solution is appropriate and we solve for 8, and then Sy from equations (149). The caicuia-
tions are given in Appendix 3. Note that there are two solutions symmetric with respect to the equator for
this reverse problem.

Py P;. For the direct solution we are given 6, ,a;_; and we have 6, from equation (10), cos 6,
=cos@, sina;_3. Alg, S are then given by (54) after computing A and D from (49). 8, =-0,,

3.1 = 360° ~a, ;. For the reverse solution we are given 8,,8;,\,, A; where 8; =<8, AA=); =),

= A\y. From A\, we may solve for cos 8, and then S, from equations (149). Thensina,_;

=08 0o/c08 8;,a,.; =360° -a,_ 5. Since there are two solutions (see Figure 13) the alternative azimuths
are aj_; = 180° -a;_5,a3., = 180° +a,.,.

Compariscn of direct and inverse computations of the geodesic line segments of (154) are given in
Table 7, and the computations are included in Appendix 3. Over lengths of 1.5, 2, 6, 8, 9.5, 10, 20
megameters, maximum length error was .26 m, and maximum angular error was .018 second. All values
werea factor of 2 to 10 better than the assumed criteria.

A geometric limitation in the inverse solution

Since T = d/sin d grows large when d -» 7, some increase in accuracy is made for long almost antipodal
geodesic arcs by returning sin d to the formulae, that is using them in the form of equations (142).
However, when two spheroidal points are in nearly the same small latitude, and separated by maximum
hemispheroidal geodetic longitude difference, as shown in Figure 28, a limitation is imposed which is
purely geometric. An examination of Figure 28 shows that the separation of geodesic and great elliptic
vertices may be large where P, P, are in the same latitude and near the equator (in the antipodal zones),
because the great elliptic section through P,, P, aiways contains the diameter AA’, while the geodesic does
only in the limiting case of the meridian. In fact for the complete hemispheroidal geodesic, node to node,
the great elliptic section coincides with the equator, and S = aAA, for all such hemisphercidal geodesics as
given by equations (142) but which is true for only the limiting case of the geodesic equatorial limiting arc
when AX = (1 - f), see equations (34).
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The plane of the great now bas for equation tan & = tan @; sin Nsin A;. Hencs the vertex of the
groat elliptic is given by tan 0 = tan 8, /sin A,.

Figuse 28. The geodesic and grest olliptic section thsough two points in the comse Intitude.

This geometric limitation applies also, unfortunately, to the inverse solution a3 given in reference [4).

This geometric singulerity is also inherent in any solution based on the normal sectioa for when two points
on the geodesic are near the equator {same latitude) separated by maximum hemisphesoidal geodesic
longitude difference, the plane common to the normals st the geodesic arc end points, coutaining the com-
mon plane section vertsx, liss near the squator, whils the geodesic wertex is near the pole.

To obtain rome ssdmates of this limitation, hemispheroidal geodesics, vertax to wrtex, were com-
puted from equations (33) and (155) simultaneously for several geodesic vertex parametric latitudes as
thown in the summary, Table 8. From Figure 28 we have the vertex parametric latitude of the grest
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elliptic section given by tan 0 = tan 8, /sin \; and with 6, = 8, we have from (47), (128), and (142) the
following formulse:
0o = arc sin (sin 8, /cos d/2) = arc tan (tan 8, /sin \;), X = Y = 2 gin? 0,
sin d/2 = cos 8, cos),,
cosd=1-24gn? d/2,); =8\; +%/2-AN/2, ANy =7 = 2\,, ANg =0 - 05,
S, = a[d -(f/4)X(d - sin d) + (* /64)X{X(d - sin d cos d) - 4d* (1 -mdxz-x)/mdpm)
8A\ =7-A8-B sin 28,y = arc sin (tan 8, /tan ), 3= arc <in (sin 8, /sin 0,),
8S;/a=Df-Esin 28-Fsin 48, M=cos@,, c, =M, c; «(1/A1 -M?),A=¢, - 2B,
B=c,c;/2,D=(1-c;)* ~AM,E=c, +BM, F =¢}/4,a,., = arc sin (cos 8,/cos 6, ),
From Table 8 we have Sy and A\, for the hemispheroidal geodesics with vertex parametric Istitudes
0o =5,15,30, 45, 60,75, 85 degrees. The valuesof A9 =0 - 0, given there are for the hemispheroidal
geodesic, vertex to vertex, Since the length of the geodesic, node to node, is the same and longitude dif-
ference is the same, distances and longitude differences were computed between P (8, A, ) and
Py(0;, 7 -1,), Figure 28, as follows:

With the values of 8, = 30', 1°, 5°, 10” for each value of 6, the values of 51, , 8S; were computed from
their formulas as given in (156). Thus &, =8\, + #/2- A0 /2, AX; =¥ -2\, S = §, - 288, were
correspondingly determined which define the control for each geodetic line P, P,. Then 8, and S, were
computed from (156) and the corresponding values of AS = S, - S, Ay =0y - 05,5’ = S, /AS obtsined.
Only geodesic arcs with end points in the same lstitude and separated by meximum geodesic longitude
were thus obisined.

Table 9 gives the results of the computations. Figure 29 shows the graphs of 04 versus Ao =8, -0,
for 8, =30, 1°,5°, 10" and corresponding distance ervors over maximum geodetic lengths, 10.6 to 19.9
megamatens. Soms conclusions may be drawn from thess results. Under the distance criterion of one
meter, when two points are in sbout the same latitade, §, > 10°, ssparsted by maximmm hemispheroidel
longituds difference for that common latitude and particuler geodesic, the inverss solution holds for
geodesic vertex latitude rangs 10° <0y < 90°. Under the ACIC criterion 1/100000 for distance, the
iaverss is mtisfactory for two poin's in the seme latitude 0, > 1°, for values of geodesic vertex latitude
1° €04 < 90°, and with longitude separstion meximum for a given geodesic. The formuise will also hold
wndes the ACIC distance criterica for @, » 30’ st meximum longitude wparstion for 0 < ¢, < 30°,

82" <0y <90°. AN them values as spproximstions ss deduced from Teble 9. Obviously ¥ the longitude
wperation etwesn two points in the ssme ltituds is less then the maxisoum possible for hemispheroidel
geodeeics, the formules will give better remslts since the separstion hetween geodetic and grest efliptic
vertices will be less, see Figure 28.
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A0o(8eg)*0-0;

n_J 0.~ paramstric latitude of geodesic vartex

0y~ paramstric latitude of great elliptic vertex
Rumbers under the aolumns My, p are r.-;-
goodetic distances in megameters and 19,9 =387

11_]| cocresponding errors in waters Ry

Figwe 29. Gaphs of §, vemns My tt 0, = 30', 1", 5°, n’un-‘:nu—-um(-n-
produiie longitede sapuestion fr 2 ghen
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DIRECT POSITION COMPUTATION FORM FOR LONG LINES. Given¢,. A\, a;;.Stofind ¢;. \;. @y ,. East
longitudes positive: azimuths clockwise from north; no root extraction; oniy 8-place trigonometric natural tables
{as Peters) required fur desk work.

SPHEROID a m f
b-f 1 1adian = 206264.8062 seconds
LINE TO
[] ) ~
-1 tan ¢, tan 8, = (1 -Ntan ¢, - . =
a3 sin 6, cos 8, 8, e =
sina, ; M=cos8y =cosh, sina; 6o
cosa 3 N=cosh, cosa, ., sin 8,
=M Da(l <3l -¢; -, M)
c; = Yl - M) P=¢, (i + %c,M)/D
[ 4 ’ L4
cos 0, =sin0.lsin8° [+
d=ShD __ .. ... . {nady d S B
sin d R us No, -d) tin u
cosd W=z1t-2Pcosu CORN e
V=gosucosd -sinusind Y= 2PVWsind R
X=claundcosd(2V? -1} bo=d+ X-Y - . ——(rad)
1 #
snde_ cot 8o &o -
A Yo = -
cos Lo Lo=x2o, -00 g e v g o
anay, "M/(NCO!AO—SIO’;MAO) . ay
~(sin 8, cos 80 ¢ N un Ac) sin 0, ., ,
lang, = (“m N 0y 5 - g
]

un &0 un 0y

w'm'.uno. cos8o-wunb, mnbocosa, , an -
He=2o (! -c;) 80 ~¢;¢cy unbocos Lo {red) M e e -
Aheln-M__ . —
Y
CHECK . , ”

M=:0s8q2c0s8, nna; , "cosh, sn{l80¢ o, ;)
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INVERSE POSITION COMPUTATION FORM FOR LONG LIMNES. Given ¢,, A ¢4, Az tofind S, a3, az.;.
Azimuths clockwise from north; east longitudes positive: no tables except 8-place :atural trigonometric (Peters). no

100t extraction.

SPHEROID a —m b m

1-f=b/a ) wf
/64 1 radian = 206264.8062 seconds

L J ’ 24 o 7 "
*1 1. A
¢, 2. A;
tan ¢, 1. always west of 2. VD VI W
lmo,‘ - = tand=(l -ftan¢ ANy = KAX
9, tan 8, sin OAy,
8, tan 8, tan AA
8, = %0, +8,) " ey cos 8,
OBy = W8, -0,) sin Ay, cos M,
H = cos’ A8, - sin’y = cos’0y, - sin' A8y, I-L
L=sin’09, + Hsin’A),, cosdf-I;ZL - -
U= 23in’0, cos’ a8, /(1 -1) d
V= 25in’A8, cos’0m/L . sin d d (rad)
XsU+V T=d/und E=2cosd
Ysu.v . D=4T? B=2D
A=DE , C=T-%(A-F) CHECK C-%E+ADB=T
ngsX{A*CX) n; =Y(B+EY) ny = DXY

§,d=NI{TX - Y) -

SR L LTI IT ) ri——
FalY-E(4-X)

G=RT+(Fi6M <

Qg =¥i(dr+Q) -

»

v = arctan ik, i
u = arctan i, |

» r -
a, 2v-u
c! c! "-‘ P 2 =
- L Q‘. .
* * &y
- - !!0-0,

+ - tm-ﬁ.

§:d = (1 /64)n, -n, * ny)

U R GEILRT T RS 1) N ——
"‘32T-(20T-A)X-$804)Y -

Q= -(FG tan 8A)/4 . N
tan OA e : :
¢y * cos O, Hsin 0, an A)) —
Gr-undf loosdg an g )

”

Sevey
S . ;.
150 - ay .
360 - 0,
180+ a,
180 + @,

e L i e
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Appendix 2.
SPHEROID PARAMETERS; SPHERICAL APPROXIMATIONS: SPACE COORDINATES
AT A POINT OF THE SPHEROID; OTHER USEFUL FORMULAE
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Table 10, Spheroid pazameters.
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APPROXIMATING SPHERES FOR THE OBLATE SPHEROID

Equivalent ares or volume
The area and volume of the oblate spheroid are given by

b 12
A = 4n(alb®) f (b + (a® -b*)y? | dy
. Ite
" [’2 * (20 (T‘e)] - 2nla? + (6% /e)arc tanh e)]

]
¥ = 2n(b/a) }. (@ - x*)"*xdx = (4/3jma’b,
hit ]

where the meridian ellipse (y-axis polar), is
b2x? +a?y? =2%b?, b? =a%(I - ¢%)
The area and volume of the sphere are
A, =47R}, V, =(4/3)nRE
From: (1) and (2), the equalities A, = A, V, =V lead to
2R% =a* +(b%/e) arc tanh (e), b? = a*(1 -¢?),
R3 =a%b, b=a(] - ¢?)"2,
Now T 1 {1+e _ 2 R 61
e) arc tanh (¢) = (1/22)In \—;:) =1+e*[3+e*/5+e°fi+..
and this substitution in (3) gives
2R} =a? +a%(1-e*)1+e*/3+e*/5+e%/7+..)
which may be written, after expanding and combining like terms as
Ry =af) ~e2(1/3+e?/15 + 435+, )} 172,
Expanding the radical in (5) to 6th order terms in e leads to
Ra =a(1 -¢?/6-17e*/360 - 67¢%/3024 - . .),
From (4) we have
3= a%(1-¢%)"2 o1 Py = a1 - €?)!6
and expanding the radical to 6th order terms in e we find
Ry = a(! -e?/6 - Se*/72 - 55¢4/1296 - . .).
From (6) and (7) we have
AR =R, =R, =a(e*/45 + 23¢%/1134 + . ).
With e =2f —f, e =4f? - 4f°, ¢® = 8> we may write from (7) and (8)
Ry =a(l -f/3-f2/9-50/81-.)
AR = (4/45)af?(1 + 52f/63)
Ra =Ry + AR
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Mean spherical approximstions

1a =(1/2)a +b), 1g =(ab)*"?, 1y = 2ab/(a + b) = abfr,, (i} =14 ° rx) (10)
are respectively the radii equal to the arithmetic, geometric, and harmonic means of the ellipsoid semiaxes
and rp > 16 > ty. Since a and b differ very little, rg = (1/2)r, + ry) is 2 satisfactory formula for refer-
ence ellipsoids.

Princips! radii of curvature
The radii of curvature of the meridian and the normal section perpendicular to the meridian at a given
point of the reference ellipsoid ase the principal radii of curvature, i.¢.
Meridian: R=g{1-e?)/(1 - € sin® )2 = a(1 - €? cos? 9)*/2/(1 - ¢?)'"2
Great Normal: N=a/(1 -e? sin® §)'/2 =a(1 - ¢? cos® §)"2 /(1 -e?)'”?
= (1 +¢e? sin? ¢/2 + 3¢* sin ¢/8 + Se® sin® 9/16)
=a[1+fsin ¢-(1/2)f* sin® ¢(1-3sin’ ) ~(1/2)f* sin* 3-5sin ¢)-...] (11)
=a{1 +(1/2)¢? sin® 6 +(1/8)e* [4-(1 + cos® )] +(1/16)e® sin® §[4+(1 +cos? 0)?]
+...
sin # = sin 9/(1 - ¢? cos? 8)'?, cos ¢ = (1 -¢?)'"? cos 8/(1 - ¢* cos? )2,
tan ¢ = tan 6/(1 - ¢2)"/? = tan §/(1 - ), ® = 2f - 2.

Mean radius of the spheroid at a given point of the surface
The mean radius of the spheroid at a given point of its surface is the geometric mean of the principal
radii of curvature. From (11) we have
Ry =(RN)"2 =a(1 -¢®)"2/(1 - ¢? sin?® ¢) = b/(1 - €? sin® ¢), e? = 2f - 2,
where ¢ is geodetic latitude, or in terms of parametric latitude
Re ={2/(1 -€2)"} (1 -¢? cos? 6) = (a /X! -¢? cos® 6), 12)
see references [6], [9], or [16].
Table 11 gives the corresponding radii R 5, Ry, 14, 1, ry for each of the 10 reference ellipsoids
included here. Equations(9) and (10) above were used for the computations.

Meridional and equatorisl arc axes and area of antipodal zones
From equations (58), (60)—Appendix I-with the constants {or the 10 given ellipsoids, the parametric
latitudes of the endpoints of the meridional arc uxes of the antipodal zones were computed as shown in
Table 12,
From the second of equations (32)—Appendix 1—with 8, = n/2, and from Figure 12, we have for
the arc length of the antipodal zone axes:
Sm = a[20 - (f/2)(26 + sin 20)] (meridional),
Sg = anf (equatorial), 28 = nf{1 + 7495f).
An approximation to the area of the antipodal zone is that of the hypocycloid of four cusps, i.e.
A=(3/8)nt?, t = (1/4)XSy + Sg). (14)
With the values of @ from Table 12, Sy, Sg were computed from (13) and then A from (14) for each
of the 10 given spheroids. The computations are displayed in Table 13.
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A space coordinets system referred to the normal and tangeats to the meridian and
paralis] through a given point of the reference ellipsoid

In Figure 30, note that a change of coordinates from the center, 0, of the ellipsoid with axes x,,y,,
{ z, to the point Q on the surface with axes X, Y, Z invoives a transhation from 0 to Q in the x, z, -plane,
| and then a rotation about Q in that plane through the angle @,. If we are interested in the slant range, D,
from a point S, at a height h adove or below the ellipsoidal surface, 1o a point Q, at a height h, above or
below Q then the following derivation will give D.
{ From Figure 30, the parametric representation of the point K(x,, y,, z;) on the ellipsoidal surface
relative to the rectangular system with origin, 0, the ellipsoid center, is

X; *Ncosgcos A\, y, *Ncos¢sin A\, 2, =N(I -e?)sin ¢ 15

where ¢ is geodetic latitude, AX is the longitude computed from the meridian through Q,N =
a/(1 - ¢? sin® ¢)'"? is the great normal, see equation (11) above.
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The coordinates of any point S, at s height h sbove or below P(x;, y,, z;) on the normal to the
surface at P are
X2 =(Nth)cos¢ cos AA,y; (Nt h)cos¢sin A\, 23 = [(1 -¢*)N ¢t h] sin ¢. (16)
Now the trsasformstion equations which give the coordinates of S, rzferred to the normal and tangents to
the meridian and parallel through a point () in latitude ¢ (transigtion from 0 to Q and rotation sbout Q
through $ in the x,z, -plane) are
X = (x7 = No cos #o) sin $g - [2; ~No(1 - ¢*) sin¢o} cos g
Y=y, an
Z= (x5 ~No c08 §) c08 ¢ + [2; - No(1 - ¢*) sin ¢} sin .
Placing the values of x;, y;, 23 from (16) in (17) we have
X=u, cospcos A\ -u, sin¢ ¢,
Y=(Nzh)cosgsin AX
Z=v, cosgcos AL+ v, sing -c, (18)
u; =(N 2 h) sin ¢, u; = [N(1 ~¢*) £ h] cos ¢y, c; = Ng ¢ gin ¢ cos ¢y
vi =(N2h) cosgg, vz = [N(1 ~¢?) 2 h] sin ¢y, c; = No(1 ~¢* sin® g)
With the coordinates from (18) we have then, as seen from Figure 30,
D} =X*+Y? E;, «Z¥ ko, D=(D} + E})' = [X* + Y* +(ZF ho)]"". (19)
In the computation of the coordinates (18), the values of N, Ny may be taken from tables, if available,
or computed from the series given above in equations (11).
Now the coordinates (16), with h = o, represent a point on the ellipsoid. Hence if we solve (17) for
X1, Y2, Z3 we oblain
X3 =Z cosdg + Xgingg + Ng cO8 @
yi*=Y (20)
23 = Zsindy - Xcosgg + No(1 -¢*) sin ¢y
and Xy, ¥3, 23, with h = o, must satisfy the ellipsoid equation
(x +y})/a® +2}/b =), orsince b? = a?(1 -¢?),
(1-e)xi +yd) e 2l = a?(1-¢°). 1)
Now (21) may be writtsn as x} ¢ y] + 23 - ¢>(x] ¢+ ¥ - 2?) = a? which, when ¢ = 0, repressats the sphere
of radiue 2. Analogously, if we place x4,Y,. 23 from (20) in (21), we obtain the equstion of the allipeokd
referved fo the point ( a5 origin (See Figure 30),

3
x'w"(zm.)’-Nl-l-'-:;(xwu-lcw)’. a2

Now when ¢ = 0, equation ( 22) becomes the equation to & sphere tangent to the silipsoid at Q with
radius N, the great normal length at Q. Nence the pustificetion for using the grast normel radis et the
initiel point wihen the spherical forms of the direct and inverss peodetic ine wolutions are weed. See Fipwes
Sand 9.































































































































































































































