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Abstract

A mathematical model for transducer arrays is devEloped

which is not restricted to fixed velocity distribution trans-

ducers. The model is general enough to cover most transducers

of interest for Sonar applications. Its formulation is also

explicit and simple enough to make it readily usable in trans-

ducer and array design. It is especially well suited for

analyzing the effects of transducer head flexing. The use of

the model is illustrated by some discussion of a spherical

array of longitudinal vibrator transducers with rectangular

heads. Numerical calculations are given here for one trans-

ducer in air, and for this case some results related to head

flexing are obtained and discussed.
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Introduction

Mathematical models for transducer array analysis have usually been

based on the assumption of fixed velocity distribution transducers, that

is, transducers which vibrate with the same veleity distribution under

1
all conditions. This idealization is often an adequate approximation

for underwater sound transducers, but there are important cases where

the velocity distribution of a transducer depends significantly on he

medium in which it is immersed or on circumstances such as its location

in an array. To handle such cases we will develop here a mathematical

model without the fixed velocity distribution assumption, ,hich is

general enough to cover most transducern and explicit enough to be readily

usable in transducer and array design. The model is based on classical

modal analysis as used by Lax2 for one circular plate with clamped edges

in an infinite, plane, rigid baffle.

We will develop the general equations c the model in the first

part of this report. They can be used to take head flexing into con-

sideration in transducer and array desig&L and to interpret he~d flexing

measurements such as those which are now being made by holographic inter-

ferometry.3 In the se';ond part we will illi'trate how to use the modr'

by discussing a spherical array and the common longitudinal resonator

type of transducer. We will do numerical calculations for one trans-

ducer in air and obtain some results related to head flexing.

It must be remembered that a general model is merely a framework

within which more specialized information can be used in a systematic way.
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Such a model for transducer arrays does not reduce the need for solutions

to all the specific elastic, acoustic and elcctromechanical problems which

are involved. We have tried to formulate the general model in such a way

that existing solutions and information "bout specialized problems can

be easily used. It is hoped that this will make the model readily appli-

:Pble to practical problems.

The Mathematical Model

General Formulation

Consider an arbitrary array in which the radiating surface of each

transducer is an elastic body such as a membrane or plate which we will

refer to hereafter as the head. One side of each head is in contact

with an acoustic fluid medium, while the other side is isolated from

the fluid medium but is i,, contact with the other parts of the trans-

ducer such as the electromechanical drive mechanism, tie rod and edge

seals. Thus, acoustic forces act on one side of the head from all the

transducers in the array and from sources outside the array. Acting

on the other side are forces from the electromechanical driver plus

constraints exerted by the various connections with the rest of the

transducer when the head moves.

The equation of motion for harmonic vibrations of the jth head

in an array of N transducers can be written

-2-
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T= -i riia,.

where

.r the position vector of a point on the Jth head

- a linear differential operator, the form of

which depends on the type of head

£0 = angular frequency

~0 - mass per unit area of the head

(r;) - normal velocity of the head

- normal force per unit area exerted on the

head by other parts of the transducer

- acoustic pressure on the head

Some specific examples of P are:
3

P I t V4 for an elastic plate (2a)

Y - Young's modulus

r - Poisson's ratio

t - Thickness

D) T V7 for a membrane (2b)

T a Tension par unit length

-3-
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'D - Y*K -a for an elastic bar (2c)

K radius of gyration of cross section

(- /t for a bar of rectangular cross section)

These three examples are the simplest forms of the differential operators

for the given elastcc uuus. More general operators -n also be used;

for example 4, if shiar and rotatory inertia are included for an elastic

bar we have for harmonic vibrations

V - dimensionless numerical factor (" 2/3 for

rectangular cross section)

- shear modulus

- density

We can write #he acoustic pressure in the form

Srjfu(r) (51,) L + r P(3)

where each term of the sum is the contribution from one of the trans-

ducers in the array. Cr. the appropriate Green's function, is a

convenient representation for the preseat, but the formulation is not

restricted to Green's functions. We will soon express the acoustic

4I
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terms i.n such a way that they can be evaluated by any method for calcu-

lating sound fields which suits the specific situation. The term Pr ( Z

represents sound waves from sources outside the array including dif-

fraction from the transducers and baffle of the array. This term does

not depend on the velocity distribution of any of the transducers in

the array.

Similarly, we can separate the forces exerted on each head by the

rest of the transducer into a part which depends on the transducer

velocity distribution and a part which does not:

The first term is the blocked force per unit area where n( r;) is the

electromechanical transfer function, and 9i is the voltage at the

terminals of the electromechanical element of the jth transducer. The

second term accounts for all the mechanical constraints between the

head and the other parts of the transducer, where F(i, -')is an acousti-

cal transfer impedance function.

When Eqs.(3) and (4) are combined with Eq.(l) we have

The other member of the usual pair of transducer equations expresses

Lhe current in terms of the voltage and the velocity. Zor reciprocal

transducers it is

(6)

-5-
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where Y+j is the blocked electrical admittance. These equations corre-

spond to the general transducer equations of Foldy and Primakoff5, except

that they use velo..ity and current as the independent variables. We

have also specified the nature of the transducer to a somewhat greater

extent, and we are treating arrays rather than a single transducer.

Note that the extension of the general transducer equations to arrays

hab recently been discussed by Hickman, Martin and Schenck.6 Hick7ma

hab also given a general mathematical model for sonar transducer array

systems which includes amplifier-delay line networks and domes.

In the usual modal analysis 8 all the terms in Eq.(5) which depend

on r(';) would define the eigenvalue problem to be solved. In the

present case this set of coupled integro-differential equations is teo

difficult to be solved directly. Instead we start with the relatively

simple eigenvalue problem formed by omitting the integrals from Eq.(5).

The solutions of this problem, which we'll call the normal modes of the

head and denote by o,( j) , satisfy

D L k ) (7)

plus boundary conditions. For convenience, we will let the single sub-

script n represent the double subscripts which would be required for two

dimensional elastic bodies. This problem, althoigh it cfnsists only of

the simplest part of the whole problem being confidered, still has known

solutions for only a few elastic bodiLs with simple shapes and timpic

boundary conditions. Fortunately, many of these are useful fo'. practical

transducers. The ,; in Eq,(7) are the natural frequencies of .he modes

-0-
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of the head. ThQse modes form a complete set of orthogunal functions

which we'll normalize such that

(F*) r; as M(8

where M; is the total mass of the head. Note that the r,(-r) are then

dimensionless.

The normal modes of the head can be used as the basis for expanding

the general solution of Eq.(.j. Thus we write

00 oo /9)

"to
where the mode velocities, V; , are to be determined. We now substitute

Eq.(9) into Eq.(5), multiply .y Ir, (Fi), integrate over the surface of

the Jth head, and use Eqs.(7) and (8) to obtain

" (no)

P, £5 Fi) ~ I ~iV~fffJ~ %.rz o;

It will be understood that sums overv% or Yn include all the modes,

while sums over L or j include all the transducers in the array. All

the integrals on the right of Eq.(l0) are calculable from knowledge of

the transducer mechanism and construction, the array geometry, and the

operating conditions. This set of algebraic equations can be solved

for the V . after truncating to a finite number of modes. If we use N

modes we have NN equations to solve. The modes of each head are

coupled nerhunically and acoustically by the second and fourth terms on

-7-
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the righL of Eq.(lO). The fourth term also couples the modes of each

head to the modes of every other head in the array.

We now define the modal pressure function,

S!(n1)

which is the sound pressure produced at the point 'r; per unit velocity

amplitude of the nth mode of the ith head. Using Eq.(ll) we can write

the last integral on the right of Eq.(lO) as

(12)

- '/.vrc jvV wi.r~Jni

which is the mutual radiation impedance between the nth mode of the ith

head and the mth of the jt.h head. From the acoustic reciprocity theorem

we find

S7(13)

Further, since ?. is symmetric (antisymmetric) if 1. is symmetric

(antisymmetric), we also have

whenn andri refer to different symmetries. The quantity I is

expressed in terms of Green's functions in Eq.(ll) only for analytical

convenience. It may be calculated by any method available, and the

results can then be used in Eq.(12) to calculate the mutual radiation

8 B
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impedances and later in Eq.(20) to calculate the sound pressure in the

near or far field.

It is also convenient to define

(15)

. ff , - ,. (17)

Then Eqs.(1O) and (6) become

[ i -L 4. z v!V, an" (18)

V.1 'nl 1,;(19)

Eqs.(18) and (19) are the main results of the general formulation.

From them the transducer and array behaviour can be determined without

knowing the velocity distributions of the transducers. It is necessary,

of course, to determine the normal mode functions, the transfer impedance

function, and the electromechanical transfer function and to solve the

associated acoustics problem. To make these equations look more familiar

we can rewrite them for the case of one transducer vibrating in one mode

where we drop the Cj subscripts and let .n m a 0

-9
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f*- ZMv. 4 ho 6 (18a)

e + * , (19a)

where

Mw

is the total mechanical impedance of the transducer.

The sound field produced by the array at any point in the medium

is

- Z v~~f ~~R (20)

In this linear superposition note that the dependence on how the trans-

ducers are driven enters only through the VaL., since the ?, are

independent of the driving.

The total time average acoustic power radiated by the array can

be obtained by integrating the product of the pressure and the norma"

velocity over the entire surface of the array:P.2't SS I
For transducers mounted in a rigid baffle this reduces to the sum of

integrals over the individual radiating surfaces:

4

-10
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(21)

The quantity

is the power radiated by the jth transducer when all the others are

vibrating. It can also be calculated from the total radiation impedance

of each mode,

The power

is associated with the mth mode ot the jth transducer including the

coupling of the mth mode to all the other modes of all the transducers.

Thus the total power radiated by the Jth transducer is

P P, :

Note that Zm, and Zm are the useful radiation impedances,

and that they are defined with reference to the mode velocities.

Sunmmary of General Procedure

The mathematical model consists of Eqs.(18) and (19) with the

- 11i-
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preceding equations from which quantities such as Z,.Li can be calcu-

lated. The following steps are involved in using these equations:

i) Treat the radiating surfaces of the transducers as elastic

bodies and determine appropriate normal mode functions, 1 (76) '

and frequencies, wro ; from Eq.(7) and the boundary conditions at the

edges of the radiating surface.

2) Determine the acoustic pressure functions, p, , in Eq.(ll)

for the baffle and array geometry in question and calculate the mutual

radiation impedances,Z.., in Eq.(12). For a receiving problem

calculate the -i in Eq.(17).

3) From the transducer structure determine a transfer impedance

function, ( r ) , and an electromechanical transfer function, n C

and calculate the in Eq.(15) and the nM. in Eq.(16).

4a) For transmitting put these quantities in Eq.(18), limit to a

finite number of modes, specify the transducer voltages) E; ) and solve

for the mode velocities, V,, .

4b) For receiving specify the electrical termination (for example,

open circuit with the I; = 0 ), use Eq.(19) to eliminate the Ei from

Eq.(18), and solve for the V,,.

5) The velocity distribution can now be calculated from En.(9).

6) The sound pressure in the near or far field can be found from

Eq.(20) and the radiated power from Eq.(21).

- 12 -
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7) Eq.(19) gives the transducer currents for transmitting or the

transducer voltages for receiving. It also gives the electrical admit-

tance which is often needed in analyzing measurements.

The first three steps show how the analysis has been divided into

three parts (elastic, acoustic, transducer structure and mechanism) which

can be studied separately. The influence of the three parts on each

other enters in the fourth step where the mode velocities are calculated.

The remaining steps determine particular aspects of the transducer and

array behaviour.

In the second part of tbts report we will discuss particular ex-

amples of the three parts of the problem. We will also consider the

simple case of one transducer and two modes and illustrate solving

Eq.(18) and interpreting the results. These examples are intended to

clarify the steps listed above and to help make the general model readily

usable in practic&l problems.

Examples of Use of the Model

Example of an Array

As a particular example consider a spherical array of identical

transducers with flat, rectangular radiating surfaces as illustrated

in Fig. 1. The acoustic part of the analysis of such an array has been

formulated for the case where the individual radiating surfaces are much

smaller than the radius of tie sphere and the spherical baffle is rigid.
9

- 13 -
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Figure 1. Spherical array of transducers with rectangular heads

It is Lhen a good approximation to replace the flat radiating surfaces

by the slightly curved portions of a rigid spherical surface. With this

simplification the modal pressure functions can be found by the classical

method of expansion in orthogonal functions. The result is

where

.9 . Cog, n i

- 14-
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is the spherical Hankel function, is its derivative Y is the

normalized spherical harmonic, a. is the radius of the sphere, P. is

the density of the medium, c is the speed of sound and k u W/CV/

In Eq,(.2) RL is referred to a spherical coordinate system with origin

at the center of the array and oriented so that the point '- a.

Vj= o is at the center of the rectangular head of the ith transducer.

The normal modes of the head, which would natreally be expressed in

rectangular coordinates (%e ) with origin at the center of the head,

can be expressed in this coordinate system by the transformation

X : o. (' -

The angles 8o and %0 are related to the length, , and width, wo

of the bead by

8o= "-/.a. ,

To calculate the mutual radiation impedances we use Eq.(22) in

Eq.(12) and obtain

'Z L w fI (23)

It is necessary to express Y V 9L,, 4 in term. oi the angles 6 and

of the coordinate system for the Jth head which is rotated with

respect to the coordinate system for the ith head. The transformation

required can be written

- 15 -
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(V IIj ) ~. V i.)(24)

where the general expression for ',, is given in reference 9. In

practical arrays the transducers would usually be oriented with the

sides of their radiating surfaces parallel. In that case YZ =0 and

.-#, , , ,.,o)- d,,, o"

(CO[ (,um)Uv..') Sir I pzI ) -V
where .v)i) a V I -

F. A, d•

P is the hypergeometric function (a finite polynomial), a Z is the

angular difference in atfimuth and P;is the angular difference in

latitude (see Fig. 1). Using Eq.(;4) in Eq.(23) we find

LssLitW, .L 'OI Vy ,,~b v (25)

Eq.(25) gives all the acoustical quantities required for solving

Eq.(l), while Eq.(22) gives the modal pressre functions needed in

Eq.(20). Since these series are complicated and slowly converging for

-l16
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. >2 i , their transformation to rapidly converging residue series
10

or a more numerical approach should be considered.

There has been little done on the many specialized radiation

impedance problems which are involved in considering non-uniform velocity

distributions. Mangulis 12 discussed the rocking mode of a rigid circular

disk in an infinite, rigid plane and compared the results to the familiar

piston mode. He defined the radiation impedance of the rocking mode in

terms of moments, but the result is consistent with our general definition

in Eq.(12). In our notation, with i'o representing the piston mode and

h aI the rocking mode, Mangulis included the impedances Zoo. and Z.,

He did not discuss 7..1ZL = 7_1oil' but Eq.(14) shows that these vanish.

Another example is Porter's13 calculation of the self and mutual

radiation impedances of flexural circular disks in an infinite rigid

plane. In this case the quantities under discussion are ZooZ and 7L

with h, o representing the piston mode and h-4? the first axisymmetric

bending mode. Approximate expressions were used in tnese calculations

for the bending norwrl mode functions for supported and clamped edges.

These boundary conditions prevent the piston mode from accompanying the

bending mode; so that the coupling impedances Zo, and Z1o. are not

required.

Example of a Transducer

The longitudinal resonator transducer driven by a piezoceramic ring

with a concentric tie rod is a good case for illustrating the transfer

- 17
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impedance fuction r, j , and the electromechanical transfer

function, n (rjO . Such a transducer usually has waterproof seals

between the head and the housing, but since measu-ements show that

these seals have little effect on the vibration, except to add damping,

we will neglect them here. We assume that the tie rod contacts the

inside of the radiating surface at a point which we take as the origin

of coordinates. We also assume that the ceramic ring is thin enough

to consider that it contacts the radiating surface in a circle of radiu&

C. about the origin. We do not have to specify the type of head, its

shape or its boundary conditions for this p of the problem.

When the surface moves the tie rod exerts a force on it at the

point where the two are in contact. This force is pr~portional to the

velocity of the surface at that point. We can writ the p irt of (, "i'

contributed by the tie rod as

where 1 ., is the mechanical impedance at the end of the tie rod attached

to the head.

The ceremic ring exerts a force st all points of the circle where

it contacts the head. One pirt of this force i6 al-ctromechancal, and

the corresponding transfer function can be vrittati

N, r4 - ro,, (26 )

where rj is the radial polar coord'nate and N is the electrowchanical

transfer ratio. The other part of the force exerted by the ceramic at

- 18 -
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any point of the circle depends on the velocity of the head at all other

points of the circle, because of elastic coupling through the ceramic.

A simple approximation for the corresponding part of F , is to

assur that the force exerted on the surface at rj is proportional to

the velocity at j. In this locally reacting approximation we denote

the contribution to V . ri by

Ze ri a' W . r!-

where Z. is the mechanical impedance at the end of the ceramic attached

to the head.

The locally reacting approximation is similar to considering the

ceramic ring divided lengthwise into many separate thin rods with no

elastic co ling between them. It is not clear how adequate this ap-

proximation is, but .it is very convenient, because it avoids treating

another elastic problem associated with head flexing. The motion in

the ceramic is usually treated as a one dimensional wave depending on

position along the length of the ceramic. But when the head bends the

motion in the ceramic also depends on position around the ring except

for circular heads undergoing axially symmetric bending.

It is consistent with the locally reacting approximation to use

expressions of the form
14

Z L  + L f v, e. V A "T . % k o L
~z P C€ A . .

AM C A+ l. a k L

for Z.€ and Z+ . In this way other structural features of the transducer

-19-
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such as a segmented ceramic stack, a tail mass and pressure release

material can be included in the analysis. In this expression 'p., is

the density, cm is the longitudinal speed of sound, A is the cross

sectional area, and L. is the length of the ceramic or tie rod; Z.

is the mechanical impedance at the end opposite the head, and It n W/C

Combining these expressions gives

, z- r;)S( 2 rj-r.) (27)

Using this result in Eq.(15) we find

Z Z (o) V1,(0) + z( ~ , (28)

where

b~, b,,,i: . . )( .o~~j - Cr,).toS)+ (29)

The last step, in which one integration is done in polar coordinates,

holds for heads of any shape as long as they entirely cover the end of

the ceramic ring. Similarly, using Eq.(26) in Eq.(16) gives

0

Eqs(28)-(30) give all the transducer parameters which are needed in

Eq.(18).

Exale of Normal Mode Functions

Metal plates are often used for the radiating surfaces of underwater

- 20 -
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sound transducers. For circular plates the three familiar boundary

conditions have all been treated to some extent (clamped,
15 supported 16

and freel7). For rectangular plates only the supported edge case has
18

been solved exactly, and it is sometimes used as an approximate model

for plates fastened in such a way that the edge displacement is zero

but the other conditions are not known. The rectangular plate with free

edges is an important case for transducer applications, but the normal

mode functions must be determined by approximate methods.
19

Another boundary condition, different from the familiar three and

leading to a simple, exact solution for rectangular plates, consists

of vanishing of the first and third derivatives of the displacement in

the direction normal to the edge. This condition might serve as an

approximate model for plates with edges which can move, but are not

completely free of forces and moments. However, it is quite different

from the true free edge condition.

Although free edge rectangular plates do not have truly one dimen-

20sional modes, they do have nearly one dimensional modes when one side

is much longer than the other. The known normal modes for the bending

vibrations of bars with free ends could be used as an approximation for

the latter case. We will take these bar modes as a specific example

which is simple enough to be discussed here. We thus imagine the type

of transducer discussed in the previous section having a rectangular

head with kr"2 and also remember that r <vl* for the ceramic ring

to fit on the head.

- 21 -
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For a thin bar in which shear and rotatory inerLia can be neglected

the appropriate differential operator is given by Eq.(2c) where ' denotes

position along the length of the bar. Using this operator in Eq.(7) and

assum,.ng that the bar is uniform and has a rectangular cross section we

ha-;.!

Yt" j"&~r~ (31)

Taking the origin at the center of the bar the boundary conditions for

free ends are

The normalization condition in Eq.(8) reduces to

Cbar is (32)

Meirovitch's 2 1 discussion of the normal modes of the free bar is

one of the most useful, because it includes the two zero frequency modes

representing rigid body transverse translation and rigid body rotation

about the center (note that Meirovitch takes the origin at one end of

the bar). Any linear combination of these two e modes is also

a normal mode. The solutions of Eqs.(31) and (32) also include an infi-

nite sequence of bending modes with increasing natural frequencies.

The normalized normal mode functions for the two rigid body motions

- 22 -
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are:

- ,0 = (34)

• ,(35)

,st, de) is S. v.:;th respect to the center,

.ode cing mode) i, Ji..;yruuetric.

The bendi aio.. be divideu .y, the symmetric ones

are:

00acs~ VI V%% *A an-] n L (36)
I.

where k. is a root of

4n .9 L (37)

~+ t9 n 0

and

a. =Cos i off (38)
€.t:s k'- I ..

The antisymmetric bending modes are

N) . SN 35. (39)

where I. is a root of

(40)
a cv, 0

- 23 -
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and

2 , , • o f. (41)

The natural frequencies are related to the kn by

and the values of k are given by

* .g. Ob "IT

k 2.500 Tr

It - (n->Va)r ) T ,;...

Since the hyperbolic functions greatly exceed the trigonometric

functions, the expressions for o,, simplify and the exact normal mode

functions above can be written approximately as

N) aI .XCos w,, -A+ (36a)

$i " (39A)

47___ ih k" I - S; .

Since the firaL normal mode is a constant it follows from the orthog-

onality condition T:hat

f LJ)~ ~' 0 >l) 0. (43)
-w 2

- 24 -
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This means that the volume velocity of all the rocking and bending modes

is zero, ard these modes are relatively poor acoustic radiators when

£ where . is the acoustic wavelength.

Evaluation of Modal Velocities

We will illustrate solving Eq.(18) for the modal velocities by

considering one transducer. Then we can omit the L, ; subscripts, and

Eq.(18) becomes

M - V% V., (44)

We consider the transducer to consist of a tie rod and ceramic ring

attached at the center of a rectangular head which can be described by

the bar normal mode functions. Since the transducer structure is sym-

metric only symmetric normal modes will be excited by an applied voltage.

Coupling of modes by the transducer structure and by the sound field will

also excite only symmetric modes. Using Eq.(34) for the piston mode in

Eqs.(29) and (30) we find

oo £

Now using Eq.(36) for the symmetric bending modes in Eq.(30) gives

+os cos k,,__ _I.

.o ,,r o s ) CO M. k ~ o C O S+ a, ,o s . .

co - 1

-25-
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where J. is the zero order Bessel function and 1o is the zero order

modified Bessel function. When Eq.(36) is used in Eq.(29) the inte-

grations can be carried out, but the complicated formula that results

probably offers no advantage over direct numerical integration. Note

that for these normal mode functions

bo" n/N

because

Table 1 summarizes some of the numerical results which are required

for solving Eq.(18) for one value of the ratio 1/ .

Table i. Numerical parameters for L - .212

0 0 0 1 1 1 1 -.833 .089

2 1.5o6Tr 2.281T .184 !.21 -. 833 -. 833 .773 -

4 2.50oT 6.25 W .0082 - .28 .089 .089 - -

Using the results in Table 1 in Eq.(28) we have

100 N Z %+ z-C1
lta izt~+ .173 ZCI

1 a o &0V- %.v Z' - . 933 ZC.

The fact that Y% AJ much smaller than Y%, or n. is understandable

in termr' of the zeros o&f the modes and the relative size of the ceramic

ring and the head. The Yw o mode haa no zeros, while the Ya mode
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has zeros at -X: ±.7T . Since the ceramic ring, with radius r, - .212 A.

lies between the zeros of the -az mode the driving force exerted by the

ceramic is entirely in phase with this mode, and it, as well as the n o

mode, is strongly excited. The h -& , and higher order, modes have more

zeros, the ceramic ring extends over out of phase regions of the head,

and these modes are not strongly excited.

Thus it will be a reasonablc approximation to consider that only

two modes exist. Then Eq.(44) gives two equations which are, using wo* 0,

(i . M }.4ao }. + ZQL.o +Z Lo V -W ,% L ( w
W (46)

where Zo: and Z., Z Zo*. This two mode approximation is similar

to the two part disk used by Woollett and Powers to simulate a flexing

transducer head since both are two degree of freedom approximations to

infinite degree of freedom systems. To emphasize the similarity and the

differences the circuit diagram corresponding to Eqa.(45) and (46) is

shown in Fig. 2.

Solving Eqs.(45) and (46) for V0 and V. gives

aJ
(41

n o ( ,owM - - -- , % (4.e) . (7)

-27
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V g LZw + 00 *7-0) -r%,( 61 + ZOL) (48)

1.1 + Z %) - ()62~

These are the modal velocities that are produced by driving the trans-

ducer with the voltage E at the frequency W . All aspects of the

transducer behaviour can be derived from these velocities.

M

Figure 2. Circuit diagram corresponding to Eqs.(i.5) and (46)
for a transducer with a flexing head.
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This two mode approximation gives the first two normal modes of the

transducer by setting E =0 . The two mode frequencies are the solutions

of

Z L - L W jj+ .Z) -(402- *ZOO 0, (49)

obtained by equat..ng the determinant of Eqs.(45) and (46) to zero. To

solve this equation for &j it is necessary to specify the impedances Z.,

and Z, and the radiation impedances. As an approximation which holds

for a IEeavy tail mass and a short ceramic stack and tie rod we take Z.,

and Z to be pure compliances:

We also neglect the radiation impedances which holds for the transducer

in air, The soluc'.ons of Eq.(49) can then be written

[MW- ";L1,( .) ., + I

C C (50)

4 6Oet(0 9 %*a) bee,

Expanding the radical gives

* Mt Ct a ~L~

-29
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and

Z i+ - -.-- +'" (52)

Ct cc C ¢

4JO is the longiLoainal resonance of the transducer (resonance of

the mass of che head with the compliance of the ceramic and tie rod).

The first term of Eq.(51) is the usual expression for this resonance

(since ro~Co0 s 0 ), which would probably be used in a design neg-

lecting head flexing. The other terms are modifications caused by head

flexing since this mode is coupled to the bending mode. w ' is thez

resonance of the first syimetric bending mode of the transducer. Eq.(52)

shows that this resonance, which is 4JL for the head alone, is raised

by the stiffening effect of the tie rod and ceramic (the second term),

and further raised by coupling with the other mode (the additional terms).

The velocity distributior for these two u='Ues of the Lransducer ;an

be determined from the rati-

v_______o -oL (53)

evaluated at ca an~d at wa

Discussion of the 2xa.-nle

Wve will not attempt a zomprehensive discussion of the effects of

head flexing in this report. However, to illustrate the use of the

3-
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results in the previous section we will mention some aspects of the

transducer behaviour.

If we had analyzed the transducer on the assumption that the head

was rigid we would have found the velocity of the piston mode to be

___ ___r_ ____: 
(54)

. o M * + Zo

and, of course, there would be no other modal velocities such as V& .

Sq.(47) can be rewritten as

h2 Foz +  Zoa
I- o - I

V%~ (LM+ rw t55)

VO = z ) j.4L)'

showing that the factor in square brackets gives the effect of head

flexing on the piston mode velocity.

The effects of head flexing on the directivity pattern and the

radiated power are of great practical importance. Under the rigid

head assumption the radiated power is

, -L ROO (56)

where Roo is the radiation resistance associated with 7-,,. For the

flexing head Eq.(21) gives

I

P r V Cos3(? VI+4Ir o rf; J0 Vor .N ;or R o

-31



where is theb phas'* dif fercace betveen V,, and Va Again the

factor in square b'zaclkets thow. the effect of head flaxing. Quanti-

tative evaluation of these effects obviously requiree knowledge of th4

radiatlion impedancesa s a function of frequency which must be calculated

numerically.

We will diacuss the shape of the velocity distribution for the

transducer in air 'where the radiation~ impedances can be neglected.

Such calculations are required far iaterpreting holographic inter-

ferometry. measurements whicbh, so far, have only been made accurately

in air. The velocity ainplitudeg IV.,, , 1 V. and V, are given aa a

function of frequency for constant voltaig3 in Fig 3 where we have

plotted the velocity amplitude divided by the constant quantity CNE

The computation3 u~ade usee of the numbers in Table 1 and the values

MCC Od01 %I

all of which are typical of coumon types of Sormar transducers.

Tf the head was considered rigid there wou.ld be a velocity maxcimum

at the frequency w. whevxt the impedance 4,M + vanishes. This

frequency corresponds to the first term in Eq.(5L', that in

-32-
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Figure 3 shown how the single resonance 6dor for a rigid head is split

into a higher and a lower resonance Iand w when one bending mode

is considered. It also shows how the two head mode frequencies W.

and Wa re raised to Wo and ' when the head is attached to tue rest

of the transducer.

Figu, re 3 shows that for the flexing head at low frequenc V. is

very similcr tc V., and V. is very small. At the frequency w., V.

and V2 go through a maximum together, because the modes are coupled,

ard when the velocity of one mode is high it causes the other mode

velocitiea to also lie high. This is shown by Eqs.(47) and (48) for VO

and V which have the same denominator and thus the same maxima. Note

th6t if + Z o0 , corresponding to no coupling between modes, these

equations vould not have the same denominator. If resistance was included

in the calculations a maximum in V. would still be accompanied by a

maximum in V, , but at w. the maximum value of V. would exceed that

Of V~ at least for small coupling '07+Z 4<' WM.LM0 iV % L.z

as can be seen from Eqs.(47) and (48). Similarly, both V. a.d V.

have maxima at w and with resistance the maximum value of V would

exceed that of V\.

Vo goes to zero when the numerator of Eq.(47) vanishes, which

occurs in this case at a frequency close to but not the same as WV

The numerator of Eq.(48) shows that V2 does not vanish in this frequency

region. At high frequency VOA approaches " &- I.a. In Fig. 3

tnere is a phase change at each peak and at the zero of V. . Thus at

.33
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high frequency VO and V2 are out of phase.

The velocity distribution of the head is

'r N Vo W.1 , Va j; " (59)
The velocities at the center, %Po) , and at the ends, u-(A/1) , of the

head are given as a function of frequency in Fig. 4. At very low

frequency the motion of the head is almost uniform, but as the frequency

comes closer to 4Uo bending increases and the velocity at the ends exceeds

the velocity at the center by a factor of two or more. At a frequency

slightly above Wo the velocity at the center goes to zero. As Fig. 3

shows this is the frequency where V. = I.ai Va and the two modes cancel

each other. Above this frequency the velocities of the ends and center

are out of phase, and there is a node in the velocity distribution. In

the vicinity of tl the velocities of the ends and center have almost

the same magnitude. At higher frequencies the velocity at the center

exceeds that at the ends and the ratio 0 /0 approaches

To show how the calculations can be related to electrical admittance

measurements we note that Eq.(19) becomes in this case

- V0 K a + V2. v ?. . (60)

If we take y : o C6 , where C is the blocked capacitance, and use

y I/E we can .ewrite Eq.(60) as

r._ _ 0  V (61)

CCN' C Na N CcNC N CcNE
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where "./N and "a/N are given in Table 1 and the ratios "/CNE

and va/CNU are given by Eqs.(47) and (48). The magnitudes of these

ratios are shown in Fig 2. Note also that

C 4 I- In I _NI

C, N2 ( I+ C/C,)

where k is the electromechanical coupling factor. From Eq.(61) and

the results in Fig. 2 it is clear that, when we neglect all resistance,

we have large peaks superimposed on the blocked susceptance curve at w.

and w . If resistance was included in the calculations we would have

admittance circles in the vicinity of these frequencies. In general

we would have admittance circles at each of the couped mode frequencies

of the transducer.

Conclusion

A general mathematical model not restricted by the fixed velocity

distribution assumption has been presented. It should be adequate for

most transducer array problems, and it should be especially convenient

for problems connected with transducer head flexing. The application

of the general model to typical situations was discussed in order to

further clarify how it can be used. This part of the discussion also

focused attention on some of the more specialized types of problems

which must be solved before general models can be used.
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