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Abstract

A mathematical model for transducer arrays ie developed
which is not restricted to fixed welocity distribution trans-
ducers. The model is general enough to cover most transducers
of interest for Sonar applications., Its formulation is also
explicit and simple enough to make it readily usable in trans-
ducer and array design. It is especially well suited for
analyzing the effects of transducer head flexing. The use of
the model is illustrated by some discuesion of a spherical
array of longit;dinal vibrator transducers with rectangular
heads, Numerical calculations are given here for one trans-
ducer in air, and for this case some results related to head

flexing are obtained and discussed.
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Introduction

Mathematical models for transducer array analysis have usually been
based on the assumption of fixed velocity distribution transducers, that
is, transducers which vibrate with the same velc~ity distribution under
all condicions.1 This idealization is often an adequate approximation
for underwater sound transducers, but there are important cases where
the velocity distribution of a transducer depends significantly on te
medium in which it is immersed or on circumstances such as its location
in an array. To handle such cases we will develop here a mathematical
model without the fixed velocity distribution assumption, which is
general enough to cover most transducerc and 2xplicit enough to be readily
usable in transducer and array design. The model is based on classical
modal analysis as used by Lax2 for one circular plate with clamped edges
in an infinite, plane, rigid baffle,

We will develop the general equations ¢ the model in the first
part of this report, They can be used to take head flexing into con-
sideration in transducer and array desigu and to interpret heuad flexing
measurements such as those which are now being made by holographic inter-

3

ferometry.” 1In the se:ond part we will illv~trate how to use the mod: "~
by discussing a spherical array and the common longitudinal resonator
type of transducer. We will do numerical calculations for one trans-
ducer in air and obtain some respults related to head flexing.

It must be remembered that a general model is merely s framework

within which more specialized information can be used in s systematic way.
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Such a model for transducer arrays does not reduce the need for solutions
to all the specific elastic, acoustic and elcctromechanical problems which
are involved, We have tried to formulate the general model in such a way
that existing solutions and information about specialized problems can

be easily used. It is hoped that this will make the model readily appli-

ceble to practical problems.

The Mathematical Model

General Formulation

Consider an arbitrary array in which the radiating surface of each
transducer is an elastic body such as a membrane or plate which we will
refer to hereafter as the head. One side of each head is in contact
with an acoustic fluid medium, while the other side is isolated from
the fluid medium but is i. contact with the other parts of the trans-

ducer such as the electromechanical drive mechanism, tie rod and edge

seals. Thus, acoustic forces act on one side of the head from all the
transducers in the array and from sources outside the array. Acting
on the other side are forces from the electromechanical driver plus
constraints exerted by the various connections with the rest of the
transducer when the head moves.

The equation of motion for harmonic vibrations of the jth head

in an array of N transducers can ba written
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N

D,,‘- , . . '
| [-‘-a-d-swnw(a)]v'(ri) = #(l})-p( ) ) Jn ,2,... N (1)
where

r; . = the position vector of a point on the jth head

D; = a linear differential operator, the form of

which depends on the type of head
w = angular frequency |
~(?;) = mass per unit area of the head
v(#;) = normal velocity of the head

-f-(v'-‘i) = normal force per unit area exerted on the

head by other parts of the transducer

P(‘-'.,;) = acoustic pressure on the head

Some specific examples of D are:

3
D= A & S a4 for an elastic plate (2a)

G- e*)

Y = Young's modulus

¢ = Poisson's ratio

t = ithickness
2

DTV for a membrane (2b)
T = Tension per unit length
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2 gM
for an elastic bar 2¢
D= YeK oW or an (2¢)
K = radius of gyration of cross section

(= :/?TT for a bar of rectangular cross section)

These three examples are the simplest forms of the differential operators
for the given elastic vuuiws., More general operators ..n also be used;
for example ', if shrar and rotatory inertia are included for an elastic

bar we have for harmonic vibrations

:

v dY af _a YpTKT ) 4 w3 P 2d
D= Yek o +w (,tx-v a )“t*w PN T (2d)

4’ = dimensionless numerical factor (= 2/3 for
" rectangular cross section)

/s. = ghear modulus

f = density

We can write .he acoustic pressure in the form
N
=Y -
p(F) = Z _”*'(r";) G(#,7)dS, + ¢ (7)) , (3)
(3 1
where each term of the sum is the contribution from one of the trans-
ducers in the array. ¢, the appropriate Green's function, is a
convenient representation for the preseat, but the formulation is not

restricted to Green's functions. We will soon express the acoustic
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terms in such a way that they can be evaluated by any method for calcu-
~ lating sound fields which suits the specific situation. The term p. (¥;)

represents sound waves from sources outside the arrav including dif-
fraction from the transducers and baffle of the array. This term does
aot depend on the velocity distribution of any of the transducers in
the array.

Similarly, we can separate the forces exerted on each head by the
rest of the transducer into a part which depends on the transducer

velocity distribution and a part which does not:

£ = n(F)E - fj\r(i:i') (7, 70 dS; . (&)

The first term is the blocked force per unit arca where n(F; ) 1is the
electromechanical transfer function, and E; is the voltage at the
terminals of the alt;ctromechanical element of the jth transducer. The
second term accounts for all the mechanical constraints between the

> !
,F; ) is an acousti-

head and the other parts of the transducer, where }(?‘-
cal transfer impedance function.

When Eqs.(3) and {4) are combined with Eq.(1) we have

¢ " -

Pe S -n(f‘-)Ej -[i-?:;-q-'sm(?i\]v(?‘.)-j‘jv(;jl)}(‘f ,F,’)JS; .Zf;v(;o 6(;‘.QJS;
(<Y}

The other member of the usual pair of transducer equations expresses

the current in terms of the voltaga and the velocity. ~For reciprocal

transducers {t is

(6)
LY, &[] vFanfhas,

(5)

| #
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where Y;; is the blocked electricz:l admittance. These equations corre-
spond to the general transducer equations of Foldy and Primakoffs, except
that they use velocity and current as the independent variables. We

have also specified the nature of the transducer to a somewhat greater
extent, and we are treating arrays rather than a single transducer.
Note that the extension of the general transducer equations to arrays
has recently been discussed by Hickman, Martin and Schenck.6 Hick:nan7
has also given a general mathematical mode]l for sonar transducer array
systems which includes amplifier-delay line networks and domes.

In the usual modal analysi58 all the terms in Eq.(5) which depend
on w(Ff}would deiine the eigenvalue problem to be solved. 1In the
present case this set of coupled integro-differential equations is tco
difficult to be solved directly. Instead we start with the relatively
simple eigenvalue pfoblem formed by omitting the integrals from Eq.(5).

The solutions of this problem, which we'll call the normal modes of the

head and denote by 'Ln(?j) , satisfy

D, (f) = “nsa I, (7)) (M
plus boundary conditions. For convenience, we will let the single sub-
5Cript » represent the double subscripts which would be required for two
dimensional elastic bodies. This problem, although it ccnsists only of
the simplest part of the whole problem being congidered, still has known

solutions for only a few elastic bodivs with simple shapes and simpic

boundary conditions., Fortunately, many of these are useful for practical

transducers, Thecuni in EQ.(7) are the natural frequencies of the modes
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of the head. These modes form a complete set of orthogunal functions

which we'll normalize such that

[[m@En. EqLFpds; = My 5,0, @)

3 ]

where M; is the total mass of the head, Note that the Qv‘(?;) are then
dimensionless.
The normal modes of the head can be used as the basis for expanding
the general solution of Eq.( . Thus we write
o0
(F) = > ? (9)
v rj - V“S qn("j) ’
nzH
where the mode velocities, V,.; , are to be determined. We now substitute
E.(9) into Eq.(3), multiply dy 0, (¥;), integrate over the surface of

the jth heac, and use Eqs.(7) and {8) to obtain

(iqu- { M—L“-’;L\)Vm; =ejjjn(;.pqm(:i) as; = T v [T a3 (5 4] ds;
) (10)

It will be understood that sums overn or w include all the modes,
while sums over L or ) include all the transducers .in the array. All
the integrals on the right of Eq.(10) are calculable from knowledge of
the transducer mechanism and construction, the array geometry, and the
operating conditions., This set of algebraic equations can be solved

for the ij after truncating to a finite number of modes. If we use N
modes we have NfV' equations to solve, The modes of each head are

coupled mechanically and acoustically by the second and fourth terms on
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the right of Eq.{13). The fourth term also couples the modes of each
head to the modes of every other head in the array.

We now define the modal pressure function,

?ni(?i) * Jrj‘zu(?s) G(FJI ?\.) JS\. » (11)

which is the sound pressure produced at the point ?} per unit velocity

awplitude of the nth mode of the ith head. Using Eq.(ll) we can write
the last integral on the right of Eq.(10) as

(12)
Zpis = ][ 1n B BRI, (E)sS; = [ @ m (B S5

} - ® -

ns my

which is the mutual radiation impedance between the nth mode of the ith
tead and the mth of the jth head. From the acoustic reciprocity theorem
we find

znm&,j = z'mnj(. . (13)
Further, since p,. is symmetric (antisymmetric) if'ln is symmetric
(antisymmetric), we also have

anii. =0 (14)
when n andwm refer to different synmetries. The quantity p,. is
expressed in terms of Green's functions in Eq.(ll) only for analytical

convenience., It may be calculated by any method available, and the

results can then be used inr Eq.(12) to calculate the mutual radiation
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impedances and later in Eq.(20) to calculate the sound pressure in the

near or far field.

It is also convenient to define

. (15)
3"‘"‘5 ? fjff 'l"(?j')} (é:" ":if)ﬂm(a) ASJ' d'si ® } mny 0

Mg = H n(Tdq,. (F) dS; (16)
i ® ff pr () (7)) 45; _ (i7)

Then Eqs.(10) and (6) become

2
. Mi mi WV, '! WV, ¢ - ) 18
[W““s“ - "'Z: oy Fomy* Z); Vouj Zmu]"ms 3 iy €5 Fpny , (19)
Y
(19)

I; = Zvni " v Yo B

Eqs.(18) and (19) are the main results of the general formulation.
From them the transducer and array behaviour can be determined without
knowing the velocity distributions of the transducers. It is necessary,
of course, to determine the normal mode functions, the transfer impedance
function, and the electromechanical transfer function and to solve the
associated acoustics problem., To make these equations look more familiar
we can rewrite them for the case of one transducer vibrating in one mode

where we drop the {,j subscripts and let nam=z 0 ;
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fo 2 "Z,Vy+ & (18a)
1 s nV, *+ VYE | (19a)
where
hﬂw:

ZM= (WM"- w +3°°.z"°a
is the total mechanical impedance of the transducer.
The sound field produced by the earray at any point ii in the medium

is

p(ﬁ) = Z Ij v (7)) G(ﬁ,:}) d5;

= T Y vl B R 7ads; = T L v o (R (%)
i n

In this linear superposition note that the dependence on how the trans-
ducers are driven enters only through the V,:, since the py: are
independent of the driving.

The total time average acoustic power radiated by the array can
be obtained by integrating the product of the pressure and the norma’
velocity over the entire surface of the array:

PegRe [§o*pas.

For transducers mounted in a rigid baffle this reduces to the sum of

integrals over the individual radiating surfaces:

- 10 -
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PR Y [T (B)pd)ds;
J

21
ERTTLT e 2 @
i m i

n

The quantity

"9- V'Vm. Amii

m n
is the power radiated by the jth transducer when all the others are
vibrating. It can also be calculated from the total radiation impedance

of each mode,

Ve
g; v:: Zamii -

[

The power

\ ¥
? . —_ v \I ﬂe.z. by Re ?g ji.‘vnl\ani ;zvumii

ln; mi i mJ
is associated with the mth mode ox the jth transducer including the
coupling of the mth mode to all the other modes of all the transducers.

Thus the total power radiated by the jth transducer is
Z Pmi © P; .
wm

Note that Z ... and Z_; are the useful radiation impedances,

and that they are defined with reference to the mode velocities.

Summary of General Procedure

The mathematical model consists of Eqs.(18) and (19) with the
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preceding equations from which quantities such as Z“mi.l can be calcu-

lated. The following steps are involved in using these equations:

1) Treat the radiating surfaces of the transducers as elastic
bodies and determine appropriate normal mode functions, Um (?3) )
and frequencies, &, , from Eq.(7) and the boundary conditions at the

edges of the radiating surface.

2) Determine the acoustic pressure functioms, p,: , in Eq.(11)
for the baffle and array geometry in question and calculate the mutual

radiation impedances, Z in Eq.(12). For a receiving problem

nmiy
calculate the ,3 in Eq.(17).
3) From the transducer structure determine a transfer impedance
-2 - ! . e
function, }(f's L ) , and an electromechanical transfer function, n(®),

and calculate the } nmj in Eq.(15) and the n,,; in Eq.(16).

La) For transmitting put these quantities in Eq.(18), limit to a
finite number of modes, specify the transducer voltages, Ej , and golve

for the mode velocities, Vm.i .

Lb) For receiving specify the electrical termination (for example,
open circuit with the I1; = 0 ), use Eq.(19) to eliminate the €; from

Eq.(18), and solve for the V, ..
5) The velocity distribution can now be calculated from Ea.(9).

6) The sound pressure in the near or far field can be found from

Eq.(20) and the radiated power from Eq.(21).

- 12 -
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7) Eq.(19) gives the transducer currents for transmitting or the
transducer voltages for receiving. It also gives the electrical admit~

tance which is often needed in analyzing measurements,

The first three steps show how the analysis has been divided into
three parts (elastic, acoustic, transducer structure and mechanism) which
can be studied separately. The influence of the three parts on each
other enters in the fourth step where the mode velocities are calculated,
The remaining steps determine particular aspects of the transducer and
array behaviour,

In the second part of this report we will discuss particular ex-
amples of the three parts of the problem. We will alsb consider the
simple case of one transducer and two modes and illustrate solving
BEq.(18) and interpreting the results. These examples are intended to
clarify the steps I;sted above and to help make the general model readily

usable in practicsl problems.

Examples of Use of the Model

Example of an Array

As a particular example consider a spherical array of identical
transducers with flat, rectangular radiating surfaces as illustrated
in Fig. 1. The acoustic part of the analysis of such an array has been
formulated for the case where the individual radiating surfaces are much

smaller than the radius of t..e sphere and the spherical baffle is rigid.9

- 13 -
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Figure 1. Spherical array of transducers with rectangular heads

It is Lhen a good approximation to replace the flat radiating surfaces
by the slightly curved portions of a rigid spherical surface. With this
simplification the modal pressure functions can be found by the classical

method of expansion in orthogonal functions. The result is

. ©0 S i\»(kﬂ V( ) (22)
PR p Rt 0= LSy 3 2 Yot ey YA (8

Ml Yo
where

'. 17;* 0.

%vnl *

hd ! ’ ¢ ¢ ¢
"o 'l.\(ad, P Y,: (o, ‘P,) sin §, d8;dy.
"% e .

- 14 -
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h, 1is the spherical Hankel function, h; is its derivative, j;: i8 the
~ normalized spherical harmonic, a is the radius of the sphere, p 1is
the density of the medium, ¢~ 1s the speed of sound and W = wfe
In Eq‘(;2)'§i is referred to a spherical coordinate system with origin
at the center of the array and oriented so that the point Rza & = T2,
¢, =o 1s at the center of the rectangular head of the ith transducer.
The normal modes of the head, which would natrcally be expresased in
rectangular coordinates (x‘_ , '3") with origin at the center of the head,
can be expressed in this coordinate system by the transformation
Xtz ey, ,
yiz a(%-8) .
The angles 9° and @Y, are related to the length,.z , and width, w~,
of the head by
&, = ur/aq_ ,
$o = &/20a.

To calculate the mutual radiation impedances we use Eq.(22) in

Eq.(12) and obtain

Y 'x." W) o
L : .
Zymis * L Pw ™ f Gooni bz Cnay Yo (0N (8,950 84835 ()

It is necessary to express Y;: (8,,4;) in terms of the angles 0; and
¢; of the coordinate system for the jth head which is rotated with
respect to the coordinate system for the ith head. The transformation

required can be written

- 15 -
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vl
b’?l. Z (du: ps’i: D'il) Y/A (03- ‘?3) » (21‘)

Vieu

M
where the general expression for Dv'v is given in reference 9. In
practical arrays the transducers would usually be oriented with the

sides of their radiating surfaces parallel. In that case ¥;;=0 and

/‘ -'lv".';
D,-, (dij. Pu-O) = e dv’v («Bdﬁ
Yy \ )z ey’ \v'—v
M | uen R e (cos30;; (-sing 85
where  dyq (B = [( MITMEYSY
peVIERY S (v'-¥)!

X F.(v'-,u,-v-/a ; vieve R -Ta.n"% 8:.;), va2v,

A;.‘, 3 (-)y"'d;‘;c , V<V

F is the hypergeometric function (a finite polynomial), e.; is the
angular difference in arimuth and @:; is the angular difference in

latitude (see Fig. 1). Using Eq.(ck) in Eq.(23) we find

_ = b (kq » - R
Zm“u: \fv“ﬂ. X z pVN; &(k‘) DV'V (“" » P\'J B 0) Uﬂv'm" A (‘5)
M0 Vau

Eq.(25) gives all the acoustical quantities required for solving
Eq.(13), while Eq.(22) gives the modal pressire functions needed in

Eq.(20). Since these series are complicated and slowly converging for

- 16 -
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Ra >> { , their transformation to rapidly converging residue series
~or a more numerical approachll should be considered.

There has been little done on the many specialized radiation
impedance problems which are involved in considering non-uniform velocity
distributions. Mangulisla discussed the rocking mode of a rigid circular
disk in an infinite, rigid plane and compared the results to the familiar
piston mode. He defined the radiation impedance of the rocking mode in
terms of moments, but the result is consistent with our general definition
in Eq.(12). In our notation, with n:zo representing the piston mode and
na1  the rocking mode, Mangulis included the impedances Z s0ii and Z, ..
He did not discuss Z,,:.; = Z .., but Eq.(14) shows that these vanish.

13

Another example is Porter's ~ calculation of the self and mutual
radiation impedances of flexural circular disks in an infinite rigid
plane. 1In this casé the quantities under discussion are Z,45{} and Z,,¢;
with nweo representing the piston mode and h= 2 the first axisymmetric
bending mode. Approximate expressions were used in tnese calculations

for the bending norr~1l mode functions for supported and clamped edges.

These boundary conditions prevent the piston mode from accompanying the

bending wmode; so that the coupling impedances zouil and Z_,:; 4&re not
Tequired.
Example of a Transducer

The longitudinal resonator transducer driven by a piezoceramic ring

with a concentric tie rod is a good case for {llustrating the transier

- 17 -
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impedance functionm, }(?J, i'-‘,' Y, and the electromechanical transfer
function, "(#13 + Such a transcucer usually has waterproof seals
between the head and the housing, but since measu-ements show that
these seals have little effect on the vibration, except to add damping,
we will neglect them here, We assume that the tie rod contacts the
inside of the radiating surface at a point which we take as the origin
of coordinates. We also assume that the ceramic ring is thin enocugh
to consider that it contacts the radiating surface in a circle of radius
o about the origin. We do not have to specify the type of head, its
shape or its boundary conditions for this [ of the problem.

When the surface moves the tie rod exerts a force on it at the
point where the two are in contact. This force is proportional to the
velocity of the surface at that pcint. We can write the part of }(?‘ ,'F;')

contributed by the tie rod as
vhere Z  is the mechanical impedance at the end of the tie rod attached
to the head,

The cersmic ring exerts a force ~t all points of the circle where

it contacts the head. One part of this force is sl-ctromechanical, and

the corresponding transfer function can be writtes

n(’r‘"j = z#—-&'(rj-ro) » (26)

vhere (; {is the radial polar coordinste and N s the electromechaaical

transfer ratio. The other part of the force exerted by the ceramic at

- 18 -
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any point of the circle depends on the velocity of the head at all other
polnts of the circle, because of elastic coupling through the ceramic.

A simple approximation for the corresponding part of 3(1’%, l'“;) is to
assur-. that the force exerted on the surface et T-‘J is proportional to
the velocity at i’j . In this locally reacting approximation we denote

the comtribution to 3 (%, ?3') by

z, S(H - 6(n-1p)
where Z. is the mechanical impedance at the end of the ceramic attached
to the head,

The locally reacting aspproximation is similar to considering the
ceramic ring divided lengthwise into many separate thin rods with ne
elastic co ling between them. It is not clear how adequate this ap-
proximation is, but it is very convenient, because it avoids treating
another elastic problem associated with head flexing. The motion in
the ceramic is usually treated as a one dimensional wave depending on
position along the length of the ceramic. But when the head bends the
motion in the ceramic also depends on position around the ring except
for circular heads undergoing axially symmetric bending.

It is consistent with the locally reacting approximation to use

14

expressions of the form

Z +ipuc A Tan bk, L

Z‘fc A
mom fmcmh-viz‘_vsnhm\.

for Z, and Zg& ., In this way other structural features of the transducer

.19 -
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such as a segmented ceramic stack, & tail mass and presaure release
material can be included in the analysis. 1In this expression P ia

the density, € is the longitudinai spaed of sound, A 1is the cross
sectional area, and L 1is the length of the ceramic or tie rod; ZL

is the mechanical impedance at the end opposite the head, and R_ = w/c .

Combining these expreasions gives

}(# -r?;) - Z‘ S(ﬁ"?j)é.(?j)*aff‘\'c ZC é(ﬁ’_ Fs) S(VS’\'Q)- (27)

Using this result in Eq.(15) we find

Inm; = Z, w0 N (0) + Z. b (28)

nm} ?

where

W

\ > 2
b“mi - hmhj = 2—“7_-0-}0]',2" ('.‘.) Qh(rJ)S(r‘.-ro)de H E‘a."f 'lh(l"‘a) 'lm (ro,a) 46 . (29)
°

The last step, in which one integration is done in polar coordinates,
holds for heads of any shape as long as they entirely cover the end of

the ceramic ring. Similarly, using Eq.(26) in Eq.(16) gives

")

ra1
i = I 0, (T, 8746 . (30)
o .

Eqs(28)-(30) give all the transducer parameters which are needed in

Eq.(18).

Example of Normal Mode Functions

Metal plates are often used for the radiating surfaces of underwater
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sound transducers. For circular plates the three familiar boundary
conditions have all been treated to some extent (clamped,15 aupportedl
.and freelT). For rectangular plates only the supported edge case has
been solved exaccly,18 and it is sometimes used as an approximate model
for plates fastened in such a way that the edge displacement is zero
but the other conditions are not known, The rectangular plate with free
edges is an imporctant case for transducer applications, but the normal
mode functions must be determined by approximate methods.lg
Another boundary condition, different from the familiar three and
leading to a simple, exact solution for rectangular plates, consists
of vanishing of the first and third derivatives of the displacement in
the direction normal to the edge. This condition might serve as an
approximate model for plates with edges which can move, but are not
completely free of forces and moments. However, it is quite different
from the true free edge condition.
Although free edge rectangular plates do not have truly one dimen-

sional modes?o

they do have nearly one dimensional modes when one side
is much longer than the other. The known normal modes for the bending
vibrations of bars with free ends could be used as an approximation for
the latter case. We will take these bar modes as a specific example
which is simple enough to be discussed here. We thus imagine the type
of transducer discussed in the previous section having a rectangular

head with wr<<f and also remember that f, < w* for the ceramic ring

to fit on the head.

- 21 -
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For a thin bar in which shear and rotatory inertia can be neglected
the appropriate differential operator is given by Eq.(2c) where % denotes
position along the length of the bar. Using this operator in Eq.(7) and
assuming that the bar is uniform and has a rectangular cross section we

T
aav«

(31)

Taking the origin at the center of the bar the boundary conditions for
free ends are

d¥n. 43,

(32)
d«® T Tax 3 = % ‘e/z .

"
o

The normalization condition in Eq.(8) reduces to

&

7

(33)

Meirovitch'521 discussion of the normal modes of the free bar is
one of the most useful, because it includes the two zero frequency modes
representing rigid body transverse translation and rigid body rotation
about the center (note that Meirovitch takes the origin at one end of
the bar)., Any linear combination of these two .e modes is also
a normal mode. The solutions of Eqs.(31) and (32) also include an infi-
nite sequence of bending modes with increasing natural frequencies.

The normalized normal mode functions for the two rigid body motions

- 02 -
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are:
7 = )
°
: < %
ist de) is sy
.y .ode <ing mode) is
The bendii. aoc 1 be divided
are:

cot -
= Qa — s —
n, (%) n [eos\a R, X + o B
2
where hn is a root of
R R.AL
tu\k—;— + tan ;_ -
and
L
2 cos® Rn=
2 2
a.“ = " hnl " .2 ’
cosh —; *cos"—“é—
The antisymmetric bending modes are
kL
(%) \ sinh :
X) = & |sinhk, % =%
(& " " sin —2—
e
where hn is a root of
kL R, &L
Tanh 2 - tawn ; = 0
- 23 -
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(3b)

(35)

with respect to the center,
:isymmetric.

.r:y§ the symmetric ones

Rn 7‘] y NEEA

(36)

o (37)
ns 2,4 (38)
sin R, ¥ n=3,5.. (39)
(ko)
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and
k. £
3 Sin" ;
(3
o, * n=3 ¥ .., (k1)
n .13 Rpd Ly kR ) ’
sinh 5 = $in —-“—-a
The natural frequencies are related to the R, by
R L (42)
wy = "/ p -

and the values of kR, are given by
ol = Ls06 TT
haz = 25007
kot = (n-%)m , h= 45,0
Since the hyperbolic functions greatly exceed the trigonometric
functions, the expressions for o, simplify and the exact normal mode

functions above can be written approximately as

cos h:! - (36.)
R = Ve ;sT;:r: coshlk, x + cos k, xJ , mraMe

sin k"zl . “ (39a)
(M= Ve W sinh Ry % - sink, X, we3E.

Since the first normal mode is a constant it follows from the orthog-

onality condition :hat
3
f v;_m(x)clx =0 |
-

-2k -
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This means that the volume velocity of all the rocking and bending modes
is zero, and these modes are relatively poor acoustic radiatoers when

R4 A where A is the acoustic wavelength.

Evaluation of Modal Velocities

We will illustrate solving Eq.(18) for the modal velocities by
considering one traneducer. Then we can omit the i.j subscripts, and

Eq.(18) becomes

R TR (A RS )

" "m

We consider the transducer to comnsist of a tie rod and ceramic ring
attached at the center of a rectangular head which can be described by
the bar normal mode functions. Since the transducer structure is sym-
metric only symmetric normal modes will be excited by an applied voltage.
Coupling of modes by the transducer structure and by the sound field will
also excite only symmetric modes. Using Eq.(34) for the piston mode in

Eqs.(29) and (30) we find
boo * 1
Ne = N.
Now using Eq.(36) for the symmetric bending modes in Eq.(30) gives

amw cosh —2

. 2

N ® N%‘% cosh (i, rp cos 0) + ——mrx— = cos (R, F, cos 0)} 46
°

k4
cosh >
eNam[Io(hmro)-P:;—;:T J.(hmrﬁ:l , me 2N b,
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vwhere Jo is the zero order Bessel function, and Io is the zero order

. modified Bessel function. When Eq.(36) is used in Eq.(29) the inte-

grations can be carried out, but the complicated formula that results
probably offers no advantage over direct numerical integration. Note
that for these normal mode functions
Pom 2 n,,,/ N
because v-o =i,
Table 1 summarizes some of the numerical results which are required

for solving Eq.(18) for one value of the ratio "*/j .

Table 1. Numerical parameters for "0/_3_ = 212

brm

v e wlPAR a, (@ "y mes mez men
0 0 d 1 1 1 1 -.833 .089
2 1.506T 2.28 11‘" 184 1.21 -.833 -.833 .T73 -

4 2.5007 6.25T" 0082 - .28 ,089 .089 - -

Using the results in Table 1 in Eq.(28) we have

3e0 * Z.+ Z, ,
Jaw = WM Z  + 773 2.

Toa 2 }aol‘ -\.2\2.".333Zg.

The fact that ny {2 much smaller than n, orn, is understandable

in termr of the zeros «f the modes and the relative size of the ceramic

ring and the head. The ¥iw © mode has no zeros, while the wn=2 mode
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has zeros at X = 1.2762 . Since the ceramic ring, with radius r, = , 212 ﬁ,
lies between the zeros of the n*2 mode the driving force exerted by the
ceramic is entirely in phase with this mode, and it, as well as the n=z o
mode, 18 strongly excited. The n=aY , and higher order, modes have more
zeros, the ceramic ring extends over out of phase regions of the head,
and these modes are not strongly excited.

Thus it will be a reasonable approximation to consider that only

two modes exist. Then Eq.{44) gives two equations which are, using w, = ¢

v

(LM + 300+ 200 Ve * (Juo * 230 Vp = g € (¥5)
. Muwg -
(3°3+ Z“.)Vo * (':“M w7 331 * Zzz) V?. AT (L6)

where }“ = }oa and: Z.“l ] Zoa' This two mode approximation is similar
to the two part disk used by Woollett and Power322 to simulate a flexing
transducer head since both are two degree of freedom approximations to
infinite degree of freedom systems. To emphasize the similarity and the
differences the circuit diagram corresponding to Eqs.(45) and (L6) is
shown in Fig. 2.

Solving Eqs.(s5) and (46) for v, and V, gives

2
Mw
n,(imw\-g, w‘ *Yut %) " " (3ea*t Za6a) (&7)

Y
Mu‘

(int}'.ol..)(in-i w '}u,"zl.l)'(in‘*'zo.‘)

V. » E
° 2
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v o6 Ny ({wM + Yoo+ Zog) - nO(}u«»Z,a) (48)

Mw?
(iUMO}o,Q'an)(iUM -i ‘_4_53*923"'2'23) = (}oa_. *z_a)z

These are the modal velocities that are produced by driving the trans-
ducer with the voltage £ at the frequency w. All aspects of the

transducer behaviour can be derived from these velocities.

| 3eo ¥ Z0e " }oa* Z0n JatZn* e,

M
v, “Yor” Faa Va ym w?

Figure 2. Circuit diagram corresponding to Eqs.(L5) and (46)

for a transducer with a flexing head.
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This two mode approximation gives the first two normal modes of the
transducer by setting £ = 0 . The two mode frequencies are the solutions

of

_ Mw? 2
(CwM*}“v ZOOX(LwM-t. s +}u+zu)- (},,,+z°,_1 2 0, (L9)

obtained by equat.ng the determinant of Eqs.(45) and (46) to zero. To
solve this equation for w it is necessary to specify the impedances Z
and Z, and the radiation impedances. As an approximation which holds
for a heavy tail mass and a short ceramic stack and tie rod we take Z
and Z‘ to be pure compliances:

Ty ~ ;/w €t

2. -~ we, .
We also neglect the radiation impedances which holds for the transducer

in air. The solucZons of Eq.(L49) can then be written

- +

3 2
Wtz L i[mw‘t . 12 (0 - baa Mo (& hoc:’

2 %
Ce Ce Ce Ce (50)
by . M, -%
3 a — A ~a
’[Mu‘v A () - | T - n, (o - b“‘] ;y\\( 3 <. \,l }
b Ce Ce Co Ce MU'*"‘!“) . -:3}. - e v, JJ
‘ A e L
. < . ¢

Expanding the radical givees

a
Loy na
2
a o[ b (c,._ Cq . (51)
3z - — . L]
Y Y 1, MO b b v
M Mw, + - -
2 Ce <, Ce Ce
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and

(LC“ . nzco»)z

2
S b . C
U?=U§¢L{ 2 +_£:.-I+ - : h 4o oo (52)
P"\L C. Cc M'M 4 i)  bj, nd o) b"}
w - - =28
L 2 C.‘, < Ct C‘

ad is the longiiadinal resonance of the transducer (resonance of
the mass of the head with the compliance of the ceramic and tie rod).
The first term of Eq.(51) is the usual expression for this resonance
(siace rz_z(ﬂ:b“ = | ), which would probably be used in a design neg-
lecting head flexing. The other terms are modifications caused by head
flexing since this mode is coupled to the bending mode. ‘*’z'. is the
resonance of the first symmetric bending mode of the transducer. Eq,(52)
shows that this resonance, which is w; for the head alone, is raised
by the stiffening effect of the tie rod and ceramic (the second term),
and further raised by coupling with the other mode (the additional terms).
Tne velocity distributior for these two wi-des of the transducer can

be determined from the rati~

V‘ . N - fo ) \
M oL M, L Yoz , (53)
Vo Yoz {wm - R

w T2

{

. ]
evaiuated at W, ard at w, -

Discussion of the Ixample

We will not attempt a cosmprehensive discussion of the ecffects of

head Ilexing in this report. However, to illustrate the use of the
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results in the previous secticn we will mention some aspects of the
P P
transducer behaviour.
If we had analyzed the transducer on the assumption that the head

was rigid we would have found the velocity cf the piston mode to be

nyE (54)
Gr ]
twM 3.+ Z

(-2-]
and, of course, there would be no other modal velocities such as V, .

5q.(47) can be rewritten as

T ‘ he P02 ¥ %oa
- - . M
n, (lwM-i % t Ja*t %, (55)
Vo = Ver N

<
- (302 * Z,2)
2
] (LM g2, MioM-L M9 o 5,0 v 2500

showing that the faqtor in square brackets gives the effect of head
flexing on the piston mode wvelocity,

The effects of head flexing on the directivity pattern and the
radiated power are of great practical importance. Under the rigid

head assumption the radiated power is
\ “ =7\
Pe e | Vor| Roo (56)

where Roo is the radiation resistance associated with Z.“ . For the

flexing head Eqg.(21) gives

| 2 | 2 %
P= ?IV° Roo + '7:’ Va' Roz + Re(V, Vo) R,,
(57)
-Pl'v, ol aR“‘-l»a. Vo [ V2| Roa cos §
- \"[ Vor Vor' Rco Vor VOI’ Roo o
- 31 -
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where &,, is the phaen difference between V, and V, . 4gain the

factor in square bvackets shows the effect of head flexing. Quenti-

tative evalvation of these z2ffects obviously requires knowledge of tim
radiation impadances 8y a function ~f f£requancy which must be calculated
numerically.

We will discuse the shape of the velocity distribution for the
rrangducer in air where the radiztion impsdances can be megiected,
Such caliculetions are required for interpreting holographic intere

ferometry measursments which, sc fer, have only been mede accurately

in air. Thke velocity amplitudes |V,

& l i

,i V,i and ;vgi are glven az a
function of frequency for constant voltage in Fig. 3 where we have
plotted the velocity amplitude divided by the constant quaatity CcNE ,
The computationi wede aege of the aumbers in Fsble 1 and the valies

MC‘ s oeTx 10 C ’

2 2 so‘

wa
o o,
all of which are typical of common types of Sonar transducers.
I€ the head was considered rigid there would be 2 velocity maximum
at the frequency &, . whera the impedance wwM + }os varishes. Tkis
frequency corresponds to the first term in Eq.(5l;, that is

8
R (58)

w",'-'M C¢+C‘
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Figure 3 shows how the single resonance w,,. for a rigid head is eplit
‘ into a higher and a lower resonance w‘; and wa'_ when one bending mode
is considered. It aiso shows how the two head mode frequencies w,
and @&, sre raised to w; and “'af. when the head is attached to tue reat
of the rransducer,

Figure 3 shows that for the flexing head at low frequenc; V, 18
very similar tc V,, and V, 1is very small. At the frequency w; Vo
and ‘«J2 go through & maximum together, because the modes are coupled,
ard when tae velocity of one mode is high it causes the other mode
velocitiza to slso be high. This is shown by Eqa.(L7) and (48) for Vv,
and V:,_ which have the same denominator and thus the same maxima. Note
thet if 5“. +Z“ = 0 , corresponding to no coupling between modes, these
equations would not have the same denominator. If resistance was included
in the calculatiox'\s.a maximum in V, would still be accompanied by a
maximum in V?. , but at w; the meximum value of V, would exceed that
of V, at least for small coupling (301-& Z.“_ £< tuM-lﬂw;/w +§“+Z“_)
ae can be seen from Eqs.(L7) and (48). Similarly, both V, a.d V,
have maxima at wé and with resistance the maximum value of Vz would
exceed that of V, .

V, goes to zero when the numerator of Eq.(47) vanishes, which
occurs in this case at a frequency close to but not the same as Wy
The numerator of Eq.(48) shows that V, does not vanish in this frequency
region. At high frequency Ve A’z approaches "%z - La, In Fig. 3

there is s phase change at each peak and at the zero of Vo « Thus at

-33-
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high frequency V, and V, are out of phase.

The velocity distribution of the head is

() = Vo e (%) + Yy, (0. (59)
The velocities at the center, v (o) , and at the ends, u'(‘c/a) ; of the
head are given as a function of frequency in Fig. 4. At very low
frequency the motion of the head is almost uniform, but as the frequency
comes closer to wé bending increases and the velocity at the ends exceeds
the velocity at the center by a factor of two or more, At a frequency
slightly above wol the velocity at the center goes to zero. As Fig. 3
shows this is the frequency where V, = I,21 \/a and the two modes cancel

each other. Above this frequency the velocities of the ends and center

are out of phase, and there is a node in the velocity distribution. In
the vicinity of w; _the velocities of the ends and center have almost
the same magnitude. At higher frequencies the velocity at the center
exceeds that at the ends and the ratio u-(o)/u- (‘%) approaches -3 .

To show how the calculations can be related to eiectrical admittance

measurements we note that Eq.{(13) becomes in this case

T = VongrVon, + Y, E, (60)

If we take Yb 2 bW Cb , where <y is the blocked capacitance, and use

Y2 I/g e can .ewrite Eq.(60) as

Y lwC,y h vV, ng Ve (61)

z R o e o

¢CN' CN® N CNNE N CNE
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where " and ™ are given in Table 1 and the ratios Vs
ere Mo/ /N 8 /e NE
‘and v%/thJE are given by Eqs.(47) and (48). The magnitudes of these

ratios are shown in Fig. 2. Note also that

Cb "ht

-
- »

CeNa hzcl-!- c‘/c‘)

where R is the electromechanical coupling factor. From Eq.(61) and

the results in Fig. 2 it is clear that, when we neglect all resistance,
we have large peaks superimposed on the blocked susceptance curve atcu;
and tu;. 1f resistance was included in the calculations we would have
admittance circles in the vicinity of these freﬁuencies. In general

we would have admittance circles at each of the coup.ed mode frequencies

of the transducer.

Conclusion

A general mathematical model not restricted by the fixed velocity
distribution assumption has been presented, It should be adequate for
most transducer array problems, and it should be especially convenient
for problems connected with transducer head flexing. The application
of the general model to typical situations was discussed in order to
further clarify how it can be used. This part of the discussion also
focused attention ou some of the more specialired types of problems

which must be solved before general models can be used.
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A ABSTAACY

A mathematical model for transducer arrays is developed which is not
restricted to fixed velocity distribution transducers. The model is general
enough to cover mcst transducers of interest for Sonar applications. its
formulation {s also explicit and simple enough to make it readily usabie
in transducer and array design. It i{s especislly well suited for snalyzing
the effects of transducer head flexing. The use of the model is illustrated
by some discusasion of a spherical array of longitudinal vibrator transducers
with rectangular heads. Numerical calculations are given here for one trans-
ducer in air, and for this case some results related to head flexing are

obtained and discussed,
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