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THE CHEMICAL EQUILIBRIUM PROBLEM

I. Formulation

Consider a beaker, into which we will put known amounts of
various atoms, ions, radicals, molecules, or other chemical entities.
These entities, called 'inputs' will have the property that no combination
of more than one can react together to form other inputs. Thus if we were
to load the beaker with H+ ion and OH 1ion, we could not also use H20
as an input. i.e. We assume that the entities when expressed as vectors

are linearly independent. We order the inputs 1 = 1,2,...,m and enter

the amount in moles of the ith input into the ith component of a vector b.

These inputs may react with one another in fixed proportions

to form various chemical species. If we number the species j = 1,2,...,n

then species j may be represented by a vector P, with m compenents,

3

specifying in its ith component how moles of the ith input are consumed

in the reaction which forms one mole of species j . Then, 1f x, = the

3

number of moles of species j 1in the solution, conservation of mass demands

that the following vector equation be satisfiled:
n
P =b 1.1 '
PR L)

If we define:

n

X = (1.2)

X
y=1 3

then j/§ is the concentration, in mole fractions, of the jth speciles.




There is a function, called the Gibbs Free-Energy function, which
expresses the total electro-chemical potential of the solution, This

function in the single compartmented case i1s proportional to z ; where

n Xy - 1
z = Z x, c, +log “/x (1.3)
j=1 b

1. Theory tells us that for an ideal chemical solution, the partial

molar electro-chemical potential of a species J takes the form:

u + RT log c, + z, FX

AL 175
where cj is the molar concentration of species j , zj the electric
charge on each molecule of species j , and X the electrical potential.

R, T and F have their usual meanings.

On the range of concentrations for which ideality is a good
approximation to the real world, there is a constant o , approximately
X4 )=
the same for each species, such that: cj = q J/x (to be read

'approximately equal to '). Clearly then,

We let: uo +2z FX
cJ = -i__—i%-—- + log a

Then the actual Gibbs free-energy function becomes

o b S
c, + log j/x

G= ) RTx 3

3

= RT 2z
Thus 2z 1is indeed proportional to the Gibbs free-energy.

Also, our constants c¢, include any electrical potential

J
impressed from outside upon the compartment. The number ug is the
standard partial molar free-energy, and can be found in the literature.
The constant o converts mole fractions to molar concentrations. In

dilute aqueous solutions o will be approximately 55.5 moles/liter.
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Willard Gibbs showed that our beaker will be at equilibrium when the

chemical solution achieves the composition x = (xl,...,xn) and Min z

satisfying:
n X
z b S c, + log J/x = z(x) (Min)
N I
n
s.t. 321 P, x, - b (1.4)
xj > 0', LI 87 PSySsR 8

- n
where x = Z x
g=1

Methods for finding equilibrium solutions to chemical
problems based on this formulation have had much success. R. J. Clasen [1]
at Rand Corporation, for example, has devised several procedures for solving
(1.4). However, all such methods have so far run into trouble whenever
degeneracy has occurred during the computational procedure, i.e. whenever
some x, becomes zero or nearly zero. This paper will propose a method

3

not at all discommoded by degeneracy.

J1. Method of solution

Suppose we had an initial feasible solution x = (xl,...,xn)

to (1.4) with the property that each component x, of x were strictly

3

positive.* Then by following the stops given below, one can successively
improve the solution, and ultimately find a solution as close to the

optimal solution as desired.

* Before the method in this Section can be applied it 1is necessary to have
at hand an initial solution with all xj >0 . How to find such a solution
when it exists is discussed in Appendix”1l. If for certain j, x = 0 must
hold, Appendix 1 gives an algorithm for determining which x, must be dropped
so that the above algorithm can be initiated on a subset of J the variables.

3




Step 1:
Letting 9:l --i- ; j=1,2,...,n,
]
and [ -% ’

find the unique y satisfying the quadratic program: Find y:l 20,

Min 2z:
l[e y2 + ] [e, - 1-1og (6,/8)]|y, =2
2 k| ] ] 3
ZPjy:l = b

This is equivalent to solving

y Yy ==== ¥ | S - — -
goiy 2 n . r el/-
el -Pl e, - 1l- log 92 ] 9
T /=
2, Fa | 4|2t loeg "8 o
. T 3 n,_ : (2.1)
: 6n -Pn ¢ =-1-1log ] %
P1 P2 — Pn _J -b 0 _J
YJ .Z 0 ] oj : 0 ’ j Ll 1,2,...,1‘1.
and n
o, =0
321 71 %3
Step 2:
Form the weighted average solution U,
u= Ax+ (1-1)y (2.2)

e
<

.‘ '-4



where X 1s chosen to minimize the value of z(u(})) for all values
of A for which (2.2) is non-negative. Notice from (2.1) that y is
a feasible solution to (1l.4), and since x 1s feasible, so must u be

feasible.

X; -V
Now compute =16, + -i—;——l . If each |nj| is small

n
U N A
enough then u 1s a close approximation to the optimal solution. If

not, go to Step 3. We can decide if each Inj]is small enough by the following.

It will be shown that x° = (xo,...,xo) is an optimal solution
1 n

to problem (1.4),

X
+ log j/i)

Min z(x) = ) x
(x) = ] et
s.t. P.x = b
zjj
X > 0
j -
if and only if there is a vector n° satisfying:
o
xj - .
cj +log “/x -1 Pj =0 J=1,...,n,
We have assumed here that xg >0, j=1,2,...,n.
1 1 1
Let x = (x;,...,X_) be the optimal solution to the similar problem.
1 n
1 3
Min w(x) = z xj <y + log “/x
8.t. P.x = b
zjj
X > 0

3

Clearly, the feasible solution x of both problems are the same. Further-

more, if x 1s feasible, then:




[w(x) - z(x)| <) x

- C

lex - ¢, |
373 b

Suppose that we have a bound °/2 on the right-hand side of the above, or:

Z lec; - cjl < ®/2

for all feasible x.

Then
[wix) - z(x)| < €/2

Furthermore, recalling that x° yielded the minimum value of z(x) , and

x! the minimum value of w(x) for all feasible X, 1t is easy to see that:

lwxd) - 2x°)| < /2

Thus:

|z(xl) - 2(x%)| = |z(x1) - w(xl) + w(xl) - 2(x%) |

< Iz(xl) - w(xl)l + |w(x1) - z(xo)l

< €
1 = 1
Now notice from eqn. (2.1) that since 6j = /xj y B2,
we have that:
y X
c -/6 +1--]+ 10gL-p =0
3 \J X, x b
2,
= - n | +1 3/x - 1P
17 =5 ;
If we let:
! - c, = n
h| 3 h

then the current solution x is the optimal solution to:




n RIS et ea o g g, ot ety s Mt ) —ha e —

Min w(x) = Z xj c; + log xj/i
s.t. 2 ijj = b
xJ >2 0
Hence, by the foregoing:
lz(x) - z(xo)l‘i B,

where B 1s any bound which satisfies:

2 z tjlcj = le = 2 Z tj|nj| <B

for all feasible solutions ¢t = (tl,...,tn) .

Such bounds are not usually hard to find. For example, one

can usually determine a bound Em on t = Zt ; by inspection. If the

inputs may combine together but in no species does an input split into two

or more parts, then the sum of the inputs is such a bound Em on t.

Then 1if N, = max | n we can let:

il

t
B=2 mnm

Alternately, a separate upper bound on each species may be

b
i
m = m;n /aij | biaij >0, a5 4 0}
= o if no such bi and aij

where a is the ith component of the vector P, . If all these numbers

i3 3

mj are finite, then we can set '

]
found by: i
i

B=2
EARN
Whatever B 1is finally decided upon, the following will be true:

! z(x°) > z(x) - B

Hence we will be able to estimate how close the solution u = Ax+(1-A)y

is to the optimum, 1




Step 3.

In theory, since x 1s strictly positive, then u will also
be strictly positive (see Section 3). If the computations are made in

practice, it may be that some component of u, say u,, is so small as to

j’
be negligible. In this case, set uJ at some small lower bound and

continue the computations. If there are several such uj, they can be made

- c,).

I

all small and at the same time proportional to exp (IIP

Alternatively, column j could be deleted from the problem
entirelv, This of course, means that the jth species will not appear at
all in the final solution, and so it is treated as if it were zero in the final

solution to the original problem,

Step 4.

Let the strictly positive solution u, modified as in step 3,
take the place of x in step 1 and in (2.1).

One will repeatedly cycle through these four steps until the
convergence criterion of step 2 is satisfied. At that point, the last

solution found will closely approximate the actual optimal solution to (1.4).

III. Derivation:

The chemical equilibrium problem (1.4 or 3.1 below) is
difficult to solve because its objective, the function z(x), 1s non-linear.
Linear problems being easy to solve, we will attempt to replace this problem
with a linear one. We do this in two stages: first, we find an approximating
problem with a non-linear separable objective which in turn is approximated by
a quadratic program with a convex separable objective. The first step is

accomplished by theorem 1.

VAN
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Theorem 1 Consider the following two problems:

n X, _
Min z = ] x (c + log j/x )
0 N
n
s.t. jz ijj = b (3.1)
xj > 0
_ n
where x = z X
j=1
and: Min w = Z xj cj + K + log xj
s.t. Zijj = b (3.2)
X. > 0
i =

Then there is a particular value of K for which the optimal solution

x° = (xi,...,xﬁ) to (3.2) is also optimal for (3.1).

Proof: Look at the optimality conditions for the two problems: x°
is optimal for (3.2) if there exists a vector n° = (Hi,...,ﬂ;) such that
(xo, Ho) satisfies:
[
3 [w(xo) -1° z kak - 4] "
k = cj + 1+ K+ log xJ -1 Pj
ij

20 j=1,...,n (3.3)




Similarly, it is optimal for (3.1) 1if there is a ﬂl = (Hi,...,ﬂ;) such
that (xo, Hl) satisfies:
3 |2(x% - Hl z Px =-b x°
Kk =0 .1
k = c, + log /x° - n°p
™ h| h|
]
>0 j=1,...,n (3.4)
=0 if x2 > 0
*3
Now let:
K =-1- log x° (3.5)

Substitution of (3.5) into (3.3) shows that (xo, Ho), for this value of

K , satisfies the optimality conditions (3.4) of problem (3.1). Of course 4

this also shows that:

(3.6)

QED.

If we did happen to know the value of x° » then theorem 1
states that the solution to problem (3.2), with K as in (3.5) would be the

desired solution to (3.1). In addition, (3.2) is separable, as we wished.

Unfortunately, x° 1is not known. Instead, we will use the
value of x in the current solution to (3.1) to approximate K 1in (3.5) and

(3.2).

If our current feasible (but non-optimal) solution to (3.1)

is % = (ﬁl,...,ﬁn) , so that x = Z %, , we let:

3

10




dJ = cj -1 - log x (3.7
and then consider the problem:
Min w = ) X (dj + log xj)
At P = b 3.8
s L Py (3.8)
X 20

3

The approximating quadratic program could be obtained by
expanding u log u 1nto a Taylor series about u = Mo * However, it is
also possible to '"linearize" (3.8) by replacing it with an equivalent

generalized linear program:

Min ¢ (x,0) = z xj(dj - log 6,)

3
s.t. ZPij = b I (3.9)
ejxj <1 : (-yj)
xj 2 0

where 0, > 0 1is a variable that can be chosen independently of x

3 -

It is easy to show that from any feasible solution of either

(3.8) or (3.9), a feasible solution to the other can be found. Furthermore,

the same holds true for optimal solutions.

A moments thought will convince one that if (x,0) is a

solution to (3.9) which does not satisfy:

ejxj =1 (3.10)

11




for each xj >0, then it can be improved by increasing their respective

0, 's.
J

The NI and -yj appearing to the right of the constraints
of (3.9) are Lagrange Multipliers. The multipliers II corresponding to
equality constraints, are unrestricted in sign, but the -yj corresponding

to inequalities of the sort < must satisfy:

TN E 0 (3.11)

We will assume that the current solution (x ,0) =

~ ~ ~

(xl,.,.,xn o 61,...,6n) is strictly positive, and that (3.10) is satisfied

-~

for each j . Now consider the 6, as constants. For the given 6 assume

b
*
X = x 1s an optimal solution to (3.9); then, there must exist multiplier

~

n, yj) which satisfy the Lagrangian conditions (3.1.) and:

] ~ *
3 [¢(x, 8) - I (E PX - b

+] ;k CRE lj )
K - £(8

axj ]

)

~ ~ ~

= dj - log ej - IIPj + yj OJ = 0 (3.12)

i = 1,2,..4,n.

We will show that we can find an improved solution to (3.9) if and only if

1

l,...,ei) , which satisfy:

1
we can find a new vector of constants 6 = (6

f(e;) <0 J = 1,20 .0,0 (3.14)

12
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for which the inequality is strict for at least one j .

of 6, which minimizes £(0,) . Since f(8

3 3 ]

has a unique minimum, occuring at ej 9; where

1 1
£7(6,) =0 === +
Thus we pick
61 = i if y, > 0, otherwise
b Yy 3

B (some arbitrary large number)

~

1
1oy

Z Pjyj = b

13

9 =0 would correspond to a new feasible solution to (3.9).

If we are trying to satisfy (3.14), we look for that value

) 1is strictly convex, it

(3.15)

So far, we have only asserted the existance of multipliers
(I, y) satisfying (3.11) and (3.12), Conditions (3.11) and (3.12) in
general are too few to determine their values. But equations (3.15) suggest

that yj be interpreted as an amount of species j , which together with

Thus we

ask that in addition to (3.11) and (3.12), the multipliers satisfy:

(3.16)




to show that there is a unique solution

If the matrix [Pl’ P2’°"’Pn] has rank m , it is easy

Writing
1 Yo 77T g L
—— o
Fé p.T d
1 1
g T
6, -p, d
1] E +
6 o d
n n
P, P, P_
L e S

—

- log 91

log 62

- log en

_|

_

(3.12) and (3.16) in matrix form gives:

iy

(Hly) to (3.17). However, that

(3.17)

solution need not satisfy yj > 0 . Thus we relax the restrictions
slightly.
—— i 1
2! Y2 n
. - =] [~
6 P T T; log © 5 |
1 1 17 %% % 1
6 -p,T d, - log © 6
2 2 2 & %2 2
K : & : : (3.18)
. ~ T . ~ L]
C P d - log 6 én
P P, -—- P -b 0
1 2 n
. — —— —-J — e
YJ _>.O ] dj lo j - 1,2,...,!\
§, =0
L vy J

14




It can be shown by the application of complementary pivot
theory, or by noting that (3.18) 1is equivalent to a positive definite

quadratic program, that (3.18) has a unique solution (Il,y) .

Theorem 2: If the feasible solution to (3.8) vy + x found by solving

(3.18) then y vyields a lower value of w than the current solution

= (*l""’ﬁn) :
Proof: Taking (M,y) from (3.18), we have that:

f(éj) = dj - log éj - HP_-] + éjyj = Gj >0

We have shown that

- log ej + yjej > log yj +1

Now:
0<]J ;chj Z;j(dj - log éj - TR+ yjéj)
= w(x) - b+ Zyj
since 8j = i- . Similarly, summing all j for which yj >0,
3

0= Zyjdj = Z yj(dj - log ej - IIPj + yjej)

3_Zyj(dj + log y:| - IIPJ +1)

> w(y) - 1Ib + Zyj

15




Thus: w(;) - Tb + Z Yj 2 w(y) -Tb+ Z ¥y

Or: w(y) < W(;t)

1

And the inequality is strict if there is any yj > 0 such that ej + 5
3

Q.E.D.

However, problem (3.8) is not the problem we are

interested in. We must show:

Theorem 3: y found by (3.18) yields a lower value of z 1in (3.1)

than does the current solution x .

Proof: Inserting dj from (3.7) into f(éj) i
f(ej) = cj-l - log x - log ej - nPj+yjej = Gj
Evaluating Z X f(é ) and Z y f(l-) we find
A h i Yy ’
Z;j f(éj)-z(;)-;-f-Zyj- nb-z;jsj;o

Zyj f(%) = z(y) - Tb + § log (§/§)5o
3

) andZy:l f(%) in

~ j j
terms of w(x) and w(y) . Simple algebra shows that:

In theorem 2, we expressed Z xj f(8

(@) - 26 =) SG) +5 | 2= 1= log

= w(R) - w(y) + §g

<G 2D

16




where g(u) = u -1 - log u is defined for u > 0 .

It is easy to check that the strictly convex functions g(u) has a

minimum at u =1 of g(l) =0,

Thus: g(u) >0

Since: y =) Yy >0,
and from theorem 2, w(;) - w(y) > 0 , we have

z(y) < Z(;c)

As in theorem 2, the inequality is strict if for any yj >0, the
corresponding 6, % by -
Iy
Q.E.D.
So far then, we have a procedure for finding an improved
solution y for (3.1), starting from a non-degenerate solution x .
In order to apply the method again, we must find a new non-degenerate

solution.

Theorem &: If y 1is a degenerate solution to (3.1), and x 1is a
non-degenerate solution to (3.1), then there exists X > 0 such that

the solution p defined by:
= (1-A)y, + Ax
My ( )YJ Xy
satisfies z(u) < z(y), Au=b ,n>0,

A

( 4 1is non-degenerate since x 1is , and A > 0 .)

17




Proof: Consider 2z a function of ) . Then:

u, (1)
J
\) ‘Cj+log /u/(x)) .

Taking the derivative, and evaluating at A =0 (i.e, u=y),

z(\) = ] u(A)j
3

Yy -
GO0 - f oy -y oy 10 455

Since y 18 degenerate, we will suppose Y = 0 . Then

Y =
R =Yy > o, and log /y= -
Thus: dz(u())) - -«
da A=0

Since 2z and %% are continuous functions of X , for 1 > A >0,

there will be an interval (0, B) in which %f is negative. Thus:

z(u(B)) < z(0) = 2z(y) .

Q.E.D.

Corr: If there exists a non-degenerate feasible solution to

(3.1), then the optimal solution will be non-degenerate.

We would like to show that the value of 2z in (3.1)
computed using the solution u 1s strictly lower than 2z computed

using R .

18
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Theorem 5: Either y = x, in which cane x is the optimal solution
to (3.1), or y % x, in which case there is a solution of the

form (3.20) which yields a value of 2z strictly less than 2z evaluated

A

at x .

Proof: If y=x, then:

f(éj) = Cj - 1- 1log éj ~ log i - HPJ +yjéj
- ¢, + log Ik - ey = 6y
remembering that 5j -'% . Since ; is non-degenerate, so is y . I
3
Thus J

ZYjGJ =0 => GJ =0 » j 'l,2,...,n.

Hence:

2.
C, + log Iz - Py o= 0, = L2n (3.2D)

But (3.21) are the optimality conditions for (3.1).

Thus if y = x , then x 1s optimal. '

If y + X , and y 18 degenerate, we have from theorems

3 and 4 that there is a u of the form (3.20) satisfying:

z(u) < z(y) 5z(;)

If y + x and y 1s non-degenerate, then the concluding

remark of theorem 3 holds, so that

l 2(y) < z(x)

In this case the best value of A might be either A > 0 or A = 0 ,

19




jndpterc

Our process, then, is an iterative one. We start with
a non-degenerate solution x = (xl,...,xn) to (3.1) and find (y,N)

satisfying (2.1), which is repeated here as (3.22); ]

{
Yy Yo == ¥ I

(3.22)

Problem (3.22) can be easily derived by replacing the constants dj in i

=0

(3.18) by their values given in equations (3.7).

Then we form the new non-degenerate solution u to (3.1)

by equations (3.20), choosing ) to minimize the value of the function

A

z(u(r)). The new solution u replaces x , and the process is repeated.

Y

~

Each iteration produces a strict improvement in 2z , or, if x 4is optimal 4

reproduces the current solution x and the corresponding value of =z

(See Sec. 2)

20




The only remaining question is whether the process

converges, and if it converges to the optimal solution,

Theorem 6

Proof:

This process converges to the optimal solution.

For any real chemical problem, the set of feasible solutions

x to (3.1) is bounded. Thus the possible values of =z are bounded. In

particular, z 1is bounded from below, by zo, the optimum,

sequence

of z ,

Suppose successive applications of the method yielded a

xl, xz,...,xm,... of solutions to (3.1) with corresponding values

LD @) (n)

>z > vee > 2 > e

1z}

Since the sequence is monotone decreasing and

A

(o)

bounded from below, it must converge. Suppose it converges to z > z .

The sequence {x(n)} has elements taken from a compact subset
(n)
of n-space. Thus it possesses a subsequence {x } which converges,
(n,)
and of course, {z } also converges, to 2 .
(n)
Let 1lim x = % . Clearly, since z 1is a continuous
k

function of x , we can say that

And since

2 = ZI@y .
2 > zo, % cannot be optimal.

Thus, by Theorem 5, if we apply our method to % , we will

~

find a solution u to (3.1) such that z(u) < z(R) .

21




a

Let z(G) = z(8) - h , for some h > 0 .

I claim however, that & is a continuous function of &

Let % be as in (3.26). Clearly § 1is a continuous

function of & . And:
i = Aoﬁ + (l-AO) 9

where AO is that value of X at which:
z(@ (1)) = Min,

By a theorem by Dantzig,et al [2] on the continuity of the minimum set
of a function, d is a continuous function of % . Thus z(u) 1is a

continuous function of 2z(%) .

Thus it is possible to pick a k so large that the

n n
solution u k derived by our method from x s is as close as desired
n
to u, since x ke will be close to % ; and the value z(u ) will

n
be as close as desired to z(d) . Let z(u k) < z(4) + ¢ , for some

small 0 < € < h . Then:

R
z(u ) < z(@) + € <z(R) - h+e < z(®) .

n nk+l n, +1

But u = x , and z(x . ) > z(R)...contradiction,

n 0
Thus z converges to z

Since the optimal solution x° to (3.1) is unique,

n o
{x'} must converge to x .

Q.E.D.

22




APPENDIX 1

AN INITIAL NON-DEGENERATE SOLUTION

Before the method given in section 2 can be applied, an
initial non-degenerate feasible solution to the problem must be found.

That is, we must find x = (xl,...,xn) such that:

] P.x = b
i3
(Al.1)
X, >0
]
To do this, first define the vector Q , where:
Q = ZPJ. (A1.2)
Then consider the problem:
Max vy
s.t. Qy + ) Py = A (Al.3)
>0

|

Let (yo, ui,...,uz) be the optimal solution.

Suppose yo > 0 . Then a strictly positive solution to

(Al.1) would be:
o
& + Al.4
xj ug *y ( )

If, on the other hand, there were no feasible solution to

(A1.3), or if yo < 0, then there would be no feasible solution to
(Al.1). This statement is clear since 1f there were a feasible x to

] b
with y = 0 to (Al.3).

23

This is a simple linear program, and therefore easily solved.

(Al.1), then by setting u, = x, in (Al.3), we would have a feasible solution




Finally, suppose Max yo =0 ., We must find at least one

My which is constrained to be zero by the equations (Al.l), (for other-

wise we could reduce all u, by ZX = Min p

] 3
(o} Z& (o} (o}
y o+ , implying y  1is not maximum.) Now let X be the vector

and replace yo by

of multipliers assoclated with the optimal solution (yo, uo) to (Al.3).

Pricing out,

1+ 2% = 0 (A1.5)
2°P. < 0 (AOP Ju, = 0 and j=1,2,...,n.
- S =)
From the duality theorem 2% = —yo, hence the equation:
\°Qy + | (Aon) . -y° (AL.6)

is an equation which must be satisfied by all solutions to (Al.3). Since

yo =0, and AOQ = -1 , we have:

~y + 1 0% by = 0 (AL.7)
But 7 Aon = 1°Q = -1, by (Al1.2),
h|

so that tor at least one j we can say that:

x°Pj < 0 (Al1.8)

[¢]

Letting o, = - A Pj , we have from (Al.7),

3

y + z aguy = 0 (Al1.9)

We have argued that we should only consider solutions to (Al.3) which

satisfy y > 0 , so that (Al.9) becomes:

Z ajuj <0 (Al.10)
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where aj >0 for each j , and aJ > 0 for at least one j . That
is, a positively weighted partial sum of non-negative variables must
be less than or equal to zero. This can only occur when those variables

are zero.

Thus we delete those columns j from (Al.l) for which
Aon < 0, and again apply the method. The process will continue either
until we have found a reduced problem (Al.3) with y°> 0, or until we have
deleted all but m of the columns of (Al.1). If the latter occurs, then

there is only the one feasible solution to the original problem, and it

must be optimal.
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APPENDIX 2

MULTIPLE COMPARTMENTS

Suppose that our beaker, in section 1, were divided into
several different compartments, each set off from the others by semi-
permeable membranes. Some species would exist in all compartments,

others would be excluded from some of the compartments.

This method can readily be extended to find the equilibrium
distribution of the inputs among the various species in the different

compartments. The mass balance equations, while still taking the form:

YPx, =b A2.1
L ij ( )

are by species into the various compartments, thus:
n
1 2 I AT
+ ) PxT o+ ..+ ] Pyx
je1 3 j=1

k .
j b (A2.2)

where species j 1in compartment i has vector description P; in terms
of the inputs. Now, however, an extra equation must be added to the
system (A2.2) for each compartment beyond the first., This new equation

will state that the net electrical charge within a compartment is zero;

J ai, xe =0, 18935 ok (A2.3)

where ai is the charge per mole of the jth species in compartment 1 .

€]
f£quations (A2.3) can be appended to (A2.2) by including the charge per mole
of species } 1in compartment 1 as another component of Pi

'K
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An equation of the sort (A2,3) is not needed for one of the
compartments because presumably the inputs b are themselves neutral,
forcing the entire system to electrical neutrality. If all but one
compartment are individually neutral, and all compartments together are

neutral, then the remaining compartment must also be neutral,

Remember also that if a species, say water (HZO)’ is
permitted to enter more than one compartment, its vector representation

PH o mMust be reproduced in each compartment where it is allowed. If
2

a species is represented by its column P in only one compartment, it

3

will never occur in any other.

The entire multi-compartment formulation becomes:

n, & 1 n, e 2 0 - k
Min z = Z x1 C%+log :%— + z x2 Cz+log :%— + 00 Z x? Ck+log :%—
jm1 3 {3 X jard | 3 X jap 4 {3 X
1.1 2 2 k _k
i N P + P + . t+ P b
s.t. By x L7y % L7y %,

x;io, L=l L= lk  (A2.4)

* Now, of course, as well as reflecting the relative free energies
of the various species with respect to the inputs, the c§ must reflect

any forces applied to the entire compartment. A voltage inposed from

outside on one compartment but not another, or a difference in mechanical

e va——

i
pressure between compartments or the outside will alter the ¢

K

Once the problem is formulated, the method for solving it

becomes the same as in section 2. Now, however, we let:
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where

Then (2.1) becomes:

(y, ) satisfying:
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The modifications of the theorems in section 3 and their proofs necessary
to handle the multi-compartment case are obvious, except perhaps in the

case where all quantities in a compartment vanish.

For example, consider the case below:

Compartment 1 Compartment 2 RHS
H,0 Sugar H,O
2 2 - (10
1 1
10
1
with all free energy constants cj = 0 . The second compartment vanishes

in the optimal solution for this problem. However, it 1is important to

note that the concentration of H20 in the second compartment is never
zero. In any solution in which there is a positive amount of H20 in
compartment 2, the compartment 2 concentration of H20 is 1. Thus in the
limit, as we tend toward the optimal solution, the concentration of H20

in compartment 2 is still 1.

In general, if a given compartment has not vanished, then
the sum of the concentrations of the species in that compartment will be
unity. Thus, in the limit as the compartment vanishes, the concentration
of species in the compartment must still sum to unity. The problem is

only to apportion this total concentration of one among the species.

Suppose, at some iteration, all the quantities y; in
(A2.6) either vanish or become so small that they may be considered to

have vanished. That is, all of compartment 1 is gone.
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Harking back to the optimality conditions to the original problem, we

would like the concentrations of species in compartment 1 to satisfy:

1 1
Cj + 108 nj - nPj i 0 ’ j - 1,2,...,'[11 (A207)
?. where nj is the concentration of the jth species in the first
[ compartment, and the I we use in the one we have available--the one
%;' computed in (A2.6). In addition, of course, we demand that:
)
) ny =1 (A2.8)
j=1
and nj >0, l,2,...,nl (A2.9)
Suppose we let:
n, = exp [P} - cly/s (A2.10)
b| A 3
where n
1 1 1
S= ) exp[mp - C!] (A2.11)
K=l k k

Then clearly (A2.8) and (A2.9) are satisfied. Furthermore, from (A2.6)
every species in compartment 1 must satisfy:

61

1 1 j/Ll 1
C,-1+y,0, -1lo 8" - TP, » 0O A2,12)
3 Y48y = log 3= (
Since the compartment has just vanished, every species must have either
decreased in amount (if it were above the minimal allowed level previously)

or at least not increased (if it were at the minimal allowed level). Thus

for each j , we have y§6}~: 1 so that:

' 1
§ - log ®1/5t > HPj - C;
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Exponentiating and summing:

! M .
1= ] = > ] explipy-cl=s (A2.13)
kel oy ~ kel i

Thus, substituting (A2.10) into (A2.7) and using (A2.13) we find:

1 1
C,+1logn, - NIP,= - 1log S >0
b 8 ] h| RS

Equations (A2.7) are also satisfied.

The rest is simple. To enter a new iteration of (A2,6),

compute the new 61 by choosing an appropriately small quantity for

3

1l -
/6l , and using n, as in (A2.10) in the equation:

3

-

(A2.14)

joot
[ ]
3

@
-
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