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ANNOTATION

This volume sets forth the laws of hydrostatics, the general
equations of hydraulies, fluid-flow regimes in pipes, and the
laws of outflow of fluids through holes and mouthpieces; it pre-
sents methods for hydraulic design of pipes.

Special sections are devoted to aviation-type centrifugal
and displacement pumps, hydraulic drives and transmisslons.

It is designed as a textbook for students in the aviation
higher educational institutes and some of the mechanical-engin-
eering schools.

" There are 6 tables, 263 illustrations, and 36 source cita-
tions,

Reviewer: Prof. N.Ya. Fabrikant

Scientific Editor: Docent A.S. Shifrin, Candidate
of Technlcal Scilences
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FOREWORD

The present textbook 1s based on the author's book Hydrau-
lics (Voyenizdat, 1960). The present edition has been exten-
sively revised and expanded with new material.

The program of a hydraulics ccurse may have a more or less
specific slant, depending on the profile of the aviation-engin-
eering school: design, production engineering, or operations; it
may also vary in accordance with the specialization of the fac-
ulty.

It is the author's feeling that the present textbook can be
used 1n all of the aviation schools,

. In additlion to the fundamentals of general hydraulics, with
which the aviation engineer must be familiar, the text also in-
corporates the fundamentals of the theory of hydraullic machines
(centrifugal and displacement pumps and hydraulic motors) and
other hydraullc devices used on alrcraft. These units include
hydraulic-transmission (hydraulic-drive) systems and their ele-
ments (subassemblies of aircraft hydraullc systems).

The fundamentals of mathematical design for gas lines are
considered 1n a speclal section.

The book casts light on a number of new problems not pre-
viously touched upon in student literature on hydraulics. They
include laminar flow of a fluld with large pressure gradients,
improvement of the laws of turbulent flow, outflow through noz-
zels, the elements of hydraulic automation (chokes, valves, flap
nozzles, and pressure and flowrate regulators), motion of fluid
under conditions of welghtlessness, the classification, general
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properties, and theoretical fundamentals of rotor displacement
pumps and hydraullc motors, the hydraulic servodrive, hydro-
mechanical transmissions, and, finally, a method for the mathe-
matical design of gas lines that can be used for arbitrary di-
mensions and arbitrary subsonic velocltles with adiabatic or
isothermal flow.

Where the book sets forth theoretlcal fundamentals of hy-
draulics, the basic relatlionships for fluid equilibrium and for
the case of motion of an ideal incompressible fluid (the Ber-
noulli equation) are derived by two methods — a simplified method
that follows directly from the physics of the phenomenon and a
more rigorous method in which the general Euler differential
equations are integrated.

In setting forth the material, the author has made an ef-
fort to graduate it from the simple to the complicated, from the
particular to the general,and from the ldeal to the real.

Professors N.Ya. Fabrikant, K.F. Kosourov and S.S. Rudnev
helped review the manuscript. Docent A.S. Shifrin, Candidate of
Technical Sciences, performed yeoman service in the sclentiflc
editing of the manuscript. Further, the author was assisted with
specific problems in preparation of the manuscript for the print-
er by Doctor of Technical Sciences V.N. Prokof'yev, Candidates of
Technical Sciences V.V. Shul'glin and B.Ya. Shumyatskly, and En-
gineer B.P. Borisov.

The author extends his heartfelt thanks to the above per-
sons.,
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CHAPTER 1

INTRODUCTION

§1. HYDRAULICS AND ITS USE ON A1RCRAFT

The division of mechanics that studies the equilibrium and
motion of flulds and the dynamic interaction between flulds and
bodies around which they flow or surfaces that restrict them is
known as hydromechanics.

Hydraulics 1s one of the applied branches of hydromechanics.
Usually, hydraulics is defined as the sclience of the laws of
fluid equilibrium and motion and the application of these laws
to the solution of practical problems. This definition requires
a certain amount of refinement and qualification.

Hydraulics 1s concerned chiefly with fluid flows that are
bounded and directed by solid walls, 1,e., flows in open and
closed channels. In our terminology, "channel" will include
all walls that 1imit and direct the flow, and hence not only the
channels of rivers, canals, and millraces, but also the various
kinds of pipes, mouthpieces, and elements of hydraulic machines
and other devices 1in which a fluid flows.

Thus, we might say that hydraulics is basically concerned
with internal fluld flows and solves the so-called "internal"
problem, as distinguished from the "external" problem, which in-
volves flow of a continuous medium around bodies, such as occurs
when a solid body moves in a liquid or gas {air). This "exter-
nal" problem is examined in aerohydromechanics and has been
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developed essentially in connection with the requirements of aero-
nautical and marine engineering.

We should note that the term "fluid" is often understood in
a broader sense in hydrodynamics than we are used to in our
everyday life. The "fluid" concept includes all bodies that have
the property of fluldity, i1.e., the ability to change shape with-
out limit when acted upon by infinitesimally small forces. Thus,
the notion includes both ordinary "dropping" liquids and gases.

The former are distinguished by the fact that they acquire
spherical shape in small volumes and usually form a free surface
in large ones. An important property of dropping fluids is that
they undergo negligibly small changes in volume under a change in
pressure, and are therefore usually regarded as incompressible.
Gases, on the other hand, are capable of very large volume reduc-
tion under pressure and unlimited expansion in the absence of
pressure, 1.e., they are highly compressible.

In spite of this difference, the laws of motion of dropping
fluids and gases can be considered identical under certaln :on-
ditions. Fundamental among these conditions is a small value of
the flow rate of the gas by comparison with the velocity of
sound 1n it.

Hydraulics is concerned chiefly with the motions of dropping
fluids and regards them as incompressible in the overwhelming
majority of cases. As for internal flows of gas, they come into
the jurisdiction of hydraulics only when their flow velocities
are much smaller than the speed of sound and, consequently, the
compressibility of the gas can be disregarded. Such cases of
gas motion are encountered quite freauently in practice. An
example 1s the flow of alr in ventilation systems and certain
other gas lines.

In the exposition that follows, the term "fluid" will mean
a dropping liquid or a gas when the latter can be regarded as
incompressible.

Investigation of the motion of 1liquids — not to mention
gases — 1s a more difficult and complex problem than study of
themotion of an absolutely rigid body. Galileo himself sald that
it was much easier to study the motion of celestial bodies in-
finitely distant from us than to study the motion of water in a
rivulet at our feet. This becomes understandable when we remem-
ber that in the mechanics of the solid body we have a system of
rigidly interconnected particles, while in fluid mechanics we are
dealing with a medium that consists of a multitude of particles
that have mobility with respect to one another.

Owing to these difficulties, the historical development of
fluild mechanics took place in two different directlons.

The first trend — exact mathematical analysis based on the
laws of mechanics — was purely theoretical. It led to the

FTD-HT-23-242-69 -2=-



creation of theoretical hydromechanics, a scilence that long re-
mained an independent discipline with no direct relation to ex-
periment. This method 1s a highly seductive and at the same
time highly effective sclentific research instrument. However,
i1t does not always answer the problems advanced by practice.

As a result, another science concerned with the motion of
liquids arose out of the pread-and-butter problems of practical
human englneering actlvity — hydraulics, in which the investlga-
tors took the second approach, that of extensive recourse to ex-
periment and the accumulation of experimental data for use in
engineering practice. In the early phase of its development,
hydraulics was a purely empirical science. Now, however, the
methods of theoretical hydrodynamics are coming into increasing
use wherever possible and expedlent for the solution of specific
problems, and the theoretical branch 1s beglnning to resort more
and more often to experiment as a criterion for testing its con-
clusions. Thus, the distinction in the methods of these two
scilences is gradually disappearing and the boundary between them
1s being effaced.

The method used in contemporary hydraulics to investigate
fluld motions consists in the following. First, the phenomena
to be studled are simplified and 1dealized and the laws of theo-
retical mechanics are applied to them. The results are then com-
pared with experimental data, the extent of the discrepancles de-
termined, and the theoretical conclusions and formulas improved
and corrected to adapt them for practical use.

A whole series of phenomena that are so complex as to resist
theoretical analysis quite stubbornly are investigated in hydrau-
lics by purely experimental means, and the results of this research
are presented in the form of empirical formulas. Hydraullcs 1s
therefore a semlempirical sclence.

It gives us methods for the mathematical design and construc-
tion engineering of a wide variety of hydraullc structures (dams,
canals, slulces, pipelines to carry all types of liquids), hydraul-
ic machines (pumps, hydraulle turbines, hydraullc transmissions),
and other hydraulic devices that are used in many branches of en-
gineering.

Hydraulics 1s especlally important in mechanical englneer-
ing. Thus, at any modern machinery plant, we find the hydraulic
drive in widespread use on metalcutting machine tools and forging-
press equipment, along with applications of hydraullcs in founding
and plastics molding, etc.

One of the distinctive features of contemporary aeronautical
engineering is the steadlly increasing role of various types of
equipment on the airplane, including hydraulic equipment - hydrau-
1ic transmissions (hydraullc systems), fuel systems, oll systems,
air-and-oll shock absorbers, etc.

FTD-HT-23-242-69 -3-



Aircraft hydraullc-drive systems have become considerably
more complicated in recent years and have been made more power-
ful. While hydraullc transmisslions were used on aircraft of the
Second World War only to raise and lower landing gear, dozens of
functions and more are performed by hydraulic transmissions on
contemporary aireraft.

Hydraulic transmissions (hydraulic systems) on the airplane
are usually used for flight control (deflection of tall control
surfaces and allerons), ralsing and lowering landing gear, steer-
ing the nose wheel, lowering and retracting flaps and airbrakes,
operating wheel brakes, engine control (regulation of intake unit,
exhaust nozzle, antisurge devices); control of doors and hatches;
rotation of antennas, and so forth. There is a tendency to
broaden the field of application of hydraulic transmissions even
further on both airplanes and hellcopters.

The largest and most crucial hydraulic transmission system —
the airplane's hydraulic controls (hydraulic-amplifier or booster
system) — 1s a finely tuned power servosystem on. whose proper
operation the possibility of flight depends.

The hydraulic drive is used successfully on aircraft as a
synchronous-generator drive and thereby helps solve the problem
of conversion of aircraft to alternating current with stable fre-
quencies.

The fuel systems of modern Jet aircraft have grown, owing
to the very high fuel-consumption rates, into complex systems
consisting of a number of tanks, a whole network of pipelines,
a number of main and auxiliary pumps, and various other acces-
sorles.

The fuel-supply systems of 1liquid rocket engines, which con-
sist basically of combustion chambers and these fuel systems, are
particularly intricate and, at the same time, powerful. In turn,
the fuel system is usually made up of two subsystems: one for
supplying the fuel (for example, kerosene), and the other for
oxidizer (for example, nitric acid or liquid cxygen). The two
systems are coordinated by an automatic device that ensures
supply of the propellants in the proper proportions with the
engine operating under varilous conditions.

The lubricating systems of turbojet [TJE]J(TPA) and propjet
[PJE]J(TBA) engines are crucially important hydraulic systems,
each containing a number of pumps and speclal hydraullc acces-
sories to cool and filter the oil, separate out water, ete.

Stationary and mobile fuellng systems at airports are also
hydraulic systems with high-delivery pumping units. And as for
in-flight refueling of alrcraft, successful solution of this
problem is determined to a substantial degree by the use of ade-
quately powerful and, at the same time, compact hydraulic equip-
ment.

-4



This by no means complete list shows how extensively various
types of hydraulic devices are used in aeronautical englneering.

To understand the operation of these systems correctly and
use them knowledgeably, to be able to dlagnose trouble and find
ways to correct it, and the more so to design and calculate these
systems, 1t 1s necessary to have appropriate preparation in the
field of hydraulics.

§2. FORCES ACTING ON A FLUID. PRESSURE IN A FLUID

Hydraulics, and hydromechanics in general, dissociate them-
selves from the molecular structure of matter and treat fluids
as continuous medla that fill space without gaps and vacanciles,
i.e., as continua.

Because of the fluidity of the fluld
AR (the mobility of its particles), concen-
trated forces cannot act in 1t, but only
2 forces that are distributed continuously
- through 1its volume (mass) or over its
surface. As a consequence, forces that
T act upon subject volume: of fluid and are

~ external forces with respect to it are
classified as mass (volume) and surface.
Flg. 1. Resolution forces.

of surface force

into two components. Mass forces are proportional to the

mass of the fluld beody, or, for homogen-

eous fluids, to the volume of the fluid.
They include first the force of gravity and then the inertial
forces of translational motion, which act on a fluid at relative
rest in an accelerating container or one in relative motion in a
channel that is subject to some form of acceleration.

The mass forces also include forces that are introduced by
the D'Alembert principle in writing equations of fluid motion.

Surface forces are distributed continuously over the surface
of a Tluld and are proportional to the area of this surface (as-
suming uniform distribution). These forces are governed by di-
rect action of neighboring volumes of fluid on a glven volume or
by the action of other bodies (solid or gaseous) that are in con-
tact with the fluld body in question.

In the general case, the surface force AR acting on an area
AS 1s directed at a certain angle to 1t, and AR can be resolved
into normal AP and tangential AT components (Fig. 1). The former
is known as the pressure force if 1t 1s directed into the volume,
while the latter is the force of friction.

In hydromechanics, both mass and surface forces are usually
treated in the form of unit forces, i.e., forces referred to ap-
propriate units. Mass forces are referred to a mass unit and
surface forces to a unit area.



Since any mass force is equal to the product of a mass by an
acceleration, it follows that the unit mass force is numerically
equal to the corresponding acceleration.

The unit surface force, which is known as the stress of sur-
face force, like the total force, 1s decomposed into normal an
Tangential stresses,

The normal stress, i.e., the stress of the pressure force,
is known as the hydromechanical (or, for the case of rest, hydro-
static) pressure or simply the pressure, and is denoted by the
letter p.

If the pressure force AP is uniformly distributed over ele-
mentary area AS or it 1s necessary to find the average value of
a hydromechanical pressure, the latter is determined by the for-
mula

P | (1.1)

Generally, however, the hydromechanical pressure at a given
point is equal to the 1limit to which the ratlo of the pressure
force to the area on which it acts tends as the area tends to
zero, 1.e., as the area contracts to a point.

A
pe-jlim-ls (1.2)

If the pressure p is reckoned from zero, it is called abso-
lute pressure, but if it is reckoned from atmospheric, 1t is
known as the excess or gage pressure. Consequently, the absolute
pressure is equal to the atmospheric pressure plus the excess
pressure, l.e.,

Pabe=Pa‘l Pm6.

The unit of pressure in the International System (SI) 1s the
uniformly distributed pressure at which a force of 1 Newton acts
on an area of 1 m?, 1.e., 1 N/m?. The following derived units
are also used: the decanewton per per m? (daN/m<?), the kilonewton
per m?® (kN/m?), and the meganewton per m?* (MN/m?). Thus, we have

1 N/m? = 10”! daN/m? = 10-® kN/m® = 107° MN/m?.
The MKGFS (meter, killogram-force, second) system, in which the
unit of pressure 1s 1 kgf/m?, 1s still used in englneering. A
nonsystem unit is also widely used — the technical atmosphere,
which 18 equal to one kilogram-force per em?, 1.e.,
1 atm = 1 kgf/cm? = 10 000 kgf/m2.

The relation between the pressure units in the SI and MKGFS
systems is as follows:
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1 N/m? = 0,102 kgf/m? or 1 kgf/m?® = 9,81 N/m2,

The tangential stress in the fluid, 1.e., the frictional
stress, 1s denoted by T and expressed, like the pressure, as a
limit:

et AT
veollm e (1.3)

while the units used for it are the sane as those for pressure.

§3. BASIC PROPERTIES OF DROPPING FLUIDS. FLUIDS USED IN AVIATION
AND ROCKET ENGINEERING

Let us examine the basic physical properties of dropping
fluids, with which hydromechanics 1s chilefly concerned.

The fundamental mechanical characteristlic of a fluid 1is its
density.

The density p is the mass of the fluid enclosed in a unit
volume (for a homogeneous fluid), i.e.,

o = M/W [kg/m*] or [kgfes?/m"], (1.4%)
where M is the mass of fluld in volume W.

We shall call the weight of a unit volume of fluid its
specific or volume weight vy, i.e.,

vy = G/w [N/m®] or [kgf/m?], (1.5)
where G is the weight of the fluld and W is its volume.

Thus, specific weight is a dimensional quantity, and its nu-
merical value depends on the units in which it 1s expressed.

Thus, we have for water at 4°C
y = 1000 kgf/m® = 0.001 kgf/cm® = 9,81+10° N/m?,

The relation btetween the specific weight y and density p is
easily found when we remember that G = gM; we have

-L-L. (1.6)

If the fluid is inhomogeneous, Formulas (1.4) and (1.5) de-
fine only the average value of specific weight or density in a
glven volume. To determine the true y or p at a given polnt, it is
necessary to examine a vanishing volume and find the limit of the
appropriate ratio.



The notion of the spezific gravity & of a fluld is also in
use; this is the ratio of the specific welght of the fluld to
that of water at 4°C, i.e,,

o Yo
" Yaos (1.7)

Yaox

Let us examine the following physical propertles of dropping
fluids: compressibility, thermal expansion, tensile strength,
surface, tension, viscosity, and volatility.

1. Comgressib111t¥ or the ability of a fluid to change its
volume under pressure is characterized by the volumetric coef-
ficient of compression Bp, which represents the relative volume
change per unit of pressure, l.e.,

P,==—T:,—o-5zzp-'[m2/N] or [em2/kgf]. (1.8)

The minus sign in the formula is explained by the fact that
a negative increment (1.e., a decrease) 1n the volume W corre-
sponds to a positive increment of the pressure p. .

Considering the pressure increment Ap = p - Dy and the
volume change AW = W - W,, we obtain from Expression (1.8)

We=Wo(1- PpAp)

or, applying (1.4),
&

= nep' (1.9)

where p and p, are the density values at the pressures p and p,.

The reciprocal of the coefficient Bp 1s the bulk elastic
modulus K.

Expressing volume in terms of density and converting from
finite differences to differentials, we obtain instead of (1.8)

Koo 80_ .o er.
) od (] )» “° (1.10')
e .
or
K _ _dp
e - a2
Q " ' (1-10)

where a is the velocity of propagation of longltudinal waves in
an elastic medium, and is equal to the speed of sound (see physics
textbooks).
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For dropping flulds, the modulus K 1ncreases somewhat with
increasing temperature and pressure. For water, it averages
20 000 kgf/cm?. Consequently, on a 1 kgf‘/cmz pressure increase,
the volume of water decreases by 1/20 000, i.c.,, most insignifi-
cantly. The elastic moduli of other dropping fluids are also of
the same order (see Table 1).

It follows from (1.9) that the density of AMG-1l fluld in-
creases by only 3% when the pressure is raised to 400 kgf/cm?.

In most cases, therefore, dropping flulds may be regarded as
practically incompressible, 1.e., their densitles p as indepen-
dent of pressure. But at very high pressures and in elastic
vibrations, the compressibility of flulds must be taken into ac-
count.

2. Thermal expansion 1s characterlzed by the coefficient of
volume expansion Bt’ which represents the relative change 1n

volume on a 1°C change in the temperature t:

B AW
' Wg At : (1'11)

Considering that AW = W = W,, we have from the above equa-
tion

V7= Wo(1-1 Bebl),

and, applying (1.4), we obtain

[
7 e (1.12)

where p and p, are the values of density at temperatures t and t,.

For water, the coefficient Bt increases from 14 - 10'6 to

700 - 10”° as the pressure 1s raised from 1 to 100 kgf/cm? or the
temperature from 1 to 100°C. The coefficilent Bt for AMG-10 avia-

tion fluild may be assumed tc average 800 + 10-®* in the pressure
range from 1 to 150 kgf/cm?.

3. According to molecular theory, tensile strength may be
quite considerable in dropping fluids — up to 10 000 kgf/em?,
Ephemeral tensile stresses of up to 230-280 kgf/cm? have been ob-
tained experimentally in thoroughly purifled and degassed water.
However, technically pure liquids, which contain suspended solid
particles and minute gas bubbles, do not withstand even insig-
nificant tensile stresses. We shall therefore assume henceforth
that tenslle stresses are impossible in dropping flulds.

4. Surface tension forces act on the surface of a fluld,
tending to impart a spherical shape to the volume of fluid and
glving rise to a certain additional pressure in the fluid. How-
ever, this pressure makes 1ts presence felt only in small
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volumes. In small-diameter pipes, this additional pressdre
causes the level to rise above (or drop below) the normal level
of the fluid in what 13 known as the caplllary effect.

The height h to which fluid rises in a glass tube of dia-
meter d 1s determined by the formula

A .
I[\::-d—[mm] '|

where k has the following values in mm2: +30 for water, =14 for
mercury, and +12 for alcohol.

The caplllary effect must be dealt with when glass tubes are
used in instruments to measure pressure and in certaln cases of
fluid outflow. Surface tension becomes a maJor factor 1n a
welghtless fluid (see §44).

5, Viscosity 1is the property of a

} i fluld to resist shear or slip between
—_—— Fo——— its layers. It manifests in the appear-
,,"__,T:Ejj' ance of tangential stresses 1n the fluld
e under certain conditions. Viscosity is
£ the opposite of fluidity; more viscous

fluids (glycerine, lubricating oils, etc.)
are less fluid and vice versa.

~ -

,235/7/7:’,,77/777//7//'77/7/7/7
- When a viscous fluild flows along

a solid wall, viscosity decelerates the
flow (Fig. 2). The rate of motion y of
the layers decreases with decreasing dis-
tance y from the wall, down to v = 0 at

y = 0, and slip, which 1s accompanied by
the appearance of tangential (frictional)
stresses, takes place between layers.

Fig. 2. Velocity
profile in flow of
viscous fluid along
a wall.

According to a hypothesis first advanced by I. Newton in
1686 and then confirmed experimentally by Prof. N.P. Petrov in
1882, the tangential stress in a fluid depends on the kind of
fluid and the type of flow and varies in laminar flow 1in direct
proportion to the so-called transverse velocity gradlent, i.e.,
(for an infinite flat wall),

dv
.,__,,;;, (1.14)

where p 1s the fluid's dynumic coefficient of viscosity and dv is
the velocity increment corresponding to the coordinate increment
dy.

The transverse velocity gradient dv/dy defines the change in
viscosity per unit length in direction y and, consequently, char-
acterizes the intensity of shear between layers of the fluid at a
given point. If the wall 1s not infinite, i.e., 1f there is also
a velocity gradient in the direction normal to the plane of the
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figure (see Filg. 2), the total derivative in Formula (1.14) must
be replaced by the partial derivative av/3y.

Inthe case of constant tangentlial stress over the surface
area S, the total tangential force (friction) acting on this sur-
face 1is

Tz, S (1.15)
To determine the dimensions of the viscosity coefficlent,
let us solve Eq. (1.14) for u. We obtain
u = t(dy/dv) [N+s/m?] or [kgfes/m?].

K In the CGS system, the vis-
[ "1 lemter’ cosity unit 1s 1 poise = 1 dyne x
2o-b ] a2 8 x s/em?,
T
h ‘ 5 |
]

T

v o
acewee ]
V1
000 1
' 2’ -5

[N Since 1 dyne = 10°° N =

E V1 28 = 1,02 » 10~ kgf, and 1 m? =
26 = 10* cm?, we have 1 poise =
= 0.1 N*s/m® = 1/98.1 kgfes/m2,

saanA Sl

A

|42 In addition to the viscosity
coefficlent u, the so-called kine-
matlic coefficlent of viscosity

e v is also used; 1t equals

1ed [ VIO

N
- ——— i

——— -y
’

o
pd
<

y = J‘_
Fig. 3. Diagram of viscosity ¥ ¢ [m2/s]. (1.16)

coefflcient v as a function

of temperature. The dimensions of this coef-
KEY: (a) em?®/s; (b) water; ficient contain neither force nor
(e¢) air; (d) machine oil; mass, and thils makes it easier to
(e) oil, convert from cne system of units

to another.

The customary unit of measurement of the kinematic viscosity
coefficient is 1 stoke = 1 c¢cm?®/s. One one-hundredth of a stoke
is a centistoke.

The viscosities of dropping fluids depend heavily on tem-
perature, diminishing as the latter increases (Fig. 3). As for
gases, however, thelr viscositles, to the contrary, rise with
rising temperature. This 1is explained by the difference in the
very nature of viscosity in liquids and gases.

In liquids, the molecules are much closer to one another than
in gases, and viscosity 1s produced by forces of molecular cohe-
sion. These forces diminish with rising temperature, so that vis-
cosity drops.

In gases, viscosity is governed chlefly by dlsordered thermal
motion of the molecules, whose intensity increases with

-11-
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temperature. As a result, gases become more viscous with increas-
ing temperature.

The influence of temperature on the viscosity of fluids can
be evaluated by the formula

e e 1), (1.17)

where yu and u, are the viscosity values at temperatures t and t,
and A 1s a coefficlent whose value varies from 0.023-0.033 for
oils; for AMG-10 aviation fluid, A = 0.028 1s assumed.

The viscosity of fluids also depends on pressure, but this
relationship is manifested substantially only with relatively
large pressure changes., With increasing pressure, the viscosities
of most fluids rise, as we see from the formula

p.:‘}t“{"l(l'-ﬁ" (1-18)

where u and W, are the values of viscosity at pressures and p,
and a is a coefficient whose value varies in the range 0.0023-
0.003 for oils.

It follows from the law of friction (1.14) that a frictional
stress 1s possible only in a moving fluid, i.e., the viscosity of
a fluld 1s evident only when it flows. We shall assume the tan-
gential stresses in a quiescent fluid to be zero.!

All this leads us to the conclusion that friction in fluids,
which 1s governed by viscosity, 1s subjJect to a law that differs
fundamentally from the law of friction for solids.

6. Volatility 1s inherent to all dropping fluids, but the
rates of evaporation differ for different flulds and depend on
the conditions prevailing for 1it.

One of the indicators that characterize the volatility of a
fluld 1s its boilling point at standard atmospheric pressure. The
higher the bolling polnt, the lower the volatility ot the fluid.
In alrcraft hydraulic systems, standard atmospheric pressure is
only a particular case; usually, it is necessary to deal with
vaporization and sometimes even boilling of fluids in closed
volumes at various temperatures and pressures. Hence the satura-
tion vapor pressure Py given as a function of temperature, must

be regarded as a more complete characteristic of volatility. The
higher the saturation vapor pressure at a given temperature, the
higher the volatility of the fluid. The pressure Py increases

with temperature, but to different degrees in different fluids.

While the p; = f(t) relationship 1s quite definite for a
glven simple fluid, the pressure Py depends in complex flulds,

;.e,, multicomponent mixtures such as gasoline, etc., not only on
ee page 15 for footnote.
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Fig. 4. Vapor pressure of
gasoline as a function of
phase ratlo and tempera-
ture.
KEY: (a) mmHg; (b) % of
total volume occupied by
liquid phase.

their physicochemical properties and
the temperature, but also on the pro-
portions by volume of the liquid and
vapor phases. The saturation vapor
pressure increases with the part of
the volume ocrupled by the liquid
phase. By way of example, Fig. 4
shows the saturation vapor pressure
of gasoline as a function of the pro-
portions of liquid and vapor phases
for three temperatures.

The baslc physical properties of
certain fluids used in aviation and
rocket engineering are given in Table
1.
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Footnote

!There are certain so-called anomalous or nonnewtonian
fluids (suspensions, colloids), in which tangential
stresses are possible even at rest and the viscosity
coefficient 1s found to depend on flaw velocity.
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6 acc abs absolute

6 nag izb excess

8 x zh fluid

8 BOX vod water
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CHAPTER 1II

FUNDAMENTALS OF HYDROSTATICS

§4, PROPERTIES OF HYDROSTATIC PRESSURE

As we noted above, only one type of stress is possible in a
fluid at rest: compressive stress, l.e., hydrostatlic pressure.

Fig. 5. Illustrating
discussion of prop-
erties of hydrostatic
pressure.

The following two properties of
hydrostatic pressure in a fluid must be
remembered:

1. On the outer surface of the
fluid, hydrostatic pressure is always
directed along normals into the volume
of fluid under consideration.

This property follows directly from
the definition of pressure as the stress
of a normal compressive force (see §2).

The external surfaces of a fluid
should be understood as including not
only the interface between 1t and the
environment, but also the surfaces of
elementary volumes that we abstract from
the total volume of fluld.

2. At any point inside a fluid, the hydrostatic pressure 1s
the same in all directions, 1.e., it does not depend on the 1in-
clination angle of the elementary area on which it acts at a par-

ticular point.
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To demonstrate this property, let us isolate an elementary
volume in an immobile fluid in the form of a right tetrahedron
with sides parallel to the coordinate axes and equalling dx, dy,
and dz, respectively (Fig. 5).

Let a unit mass force whose components equal X, Y, and Z act
on the fluid in the neighborhood of our chosen volume.

Let us denote by Py the hydrostatic pressure acting on the
face normal to the ox-axis, by py the pressure on the face normal

to the oy-axis, and so forth. The hydrostatic pressure acting on
the inclined face will be denoted by Pn and the area of thls face

by dS. All of these pressures are directed along normals to the
corresponding surfaces.

Let us first write the equilibrium equation of our selected
fluid volume in the direction of the ox-axis.

The projection of the pressure forces anto the ox-axis 1s
1
Pey dyda—pdScos(x: x).

The mass of the tetrahedron is equal to the product of its
volume by its density, i.e., l.dxjydi.; consequently, the mass
force acting on the tetrahedron along the ox-axis equals

1 axdyinex.

The equilibrium equation of the tetrahedron is written in the
form

dydzp,— p.dScos(n,. 345 dxdyduoX=0.

We divide this equation term by term by the area-%dydawhich

is the projection of the inclined face dS onto the yOz plane and
is therefore equal to

3 dyde—dScos(n, »).
We have
Pa—Put - €XX =0.

As the dimensions of the tetrahedron tend to zero, the last
term of the equation, which contains the multiplier dx, will also
tend to zero, but the pressures p, and Pn will remain nonzero
quantities.

=18~



We therefore obtain at the limit
Pr—Pr™ 0,

or
P~ Pn.

Writing the equations of equilibrium along the Oy and Ox axes
in the same way, we obtain by similar reasoning

Py™Pr Bs™Pn

or
Px=Py>Ps> Pn- (2.1)

Since the dimensions dx’ d_, and dz of the tetrahedron were

taken arbitrarily, the slope of area dS is also arbitrary and,
consequently, the pressure at the point to which-the tetrahedron
shrinks at the limit will be the same in all directions.

This proposition can also be proven easily on the basis of
strength-of-materials formulas for the stresses 1in com?ression
along two and three mutually perpendicular directions. For this
1t is sufficient to set the tangential stress equal to zero 1n
the above formulas to obtaln

ox:—:qy::o‘:L -— p‘

This prope~ty of hydrostatic pressure in an immobile fluld
also applies for an inviscid fluid in motion. In motion of a
viscous fluid, however, tangentlal stresses arise, with the re-
sult that hydromechanical pressure does not, strictly speaking,
exhibit this property in a viscous fluid.

§5. FUNDAMENTAL EQUATION OF HYDROSTATICS

We shall examine the fundamental case of fluid equilibrium
in which gravity 1s the only mass force acting on the fluid, and
derive for this case an equation with which we can find the hydro-
statlc pressure at any point in a subject volume of fluid. As we
know, the free surface of the fluid in this case 1s a horizontal
plane.

Suppose that the fluid occupies a container (Fig. 6) and
that a pressure p, acts on its exposed surface. Let us find the
hydrostatic pressure p at an arbitrarily chosen point M, which is
situated at depth h.

With point M as its center, let us take -an elementary hori-
zontal unit area dS and construct a vertical cylindrical volume
of height h on it. We shall examine the equilibrium conditlon of

TSee page 36 for footnote.
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this fluid volume in isolation from the total mass of fluid. The
pressure of the fluid on the lower base of the cylinder will now
be an external pressure and will be directed along normals into
the volume, i.e., upward.

Let us write the sum of all forces acting on this volume in
the vertical direction. We shall have

PdS—pedS—yh dS=0,

where the last term is the welght of the fluid in our volume. The
pressure forces on the sides of the cylinder do not appear 1in the
equation, since they are normal to this surface.

Cancelling dS and regrouping terms,
’-’°+hy (2-2)

This equation is known as the funda-
mental equation of hydrostatics; it en-
ables us to compute the pressure at any
point on a quiescent fluid. As we see
from the equation, this pressure has two
components: the pressure on the outer sur-

face of the fluid, p,, and the pressure
Zﬁé%@ﬁ“&;blﬁﬁ0/ governed by the welght of the superjacent

Fig. 6. Illustrating layers of fluid.
derivation of funda-
mental equation of
hydrostatics,

The quantity p, 1s the same for all
points in the fluid volume; we can there-
fore say, considering the second property
of hydrostatic pressure, that the pressure
applied to the outer surface of the fluid
is transmitted to all points of this fluld and equally in all
directions (Pascal's law).

As we see from (2.2), the fluid pressure rises linearly with
increasing depth and is constant at a given depth.

A surface at all of whose polnts the pressures are the same
is called a level surface. In this case, the level surfaces are
horizontal planes, and the exposed surface 1s one of the level
surfaces,

Let us select, at an arbitrary height, a horizontal compari-
son plane from which we shall reckon the z-coordinate vertically
upward. Denoting the coordinate of point M by 2z and the coordi-
nate of the exposed fluid surface by z, and substituting Zy - 2
for h in (2.2),

P o
Z-I-.—ng 000
¥ ol )

But since we took M arbitrarlily, we can state that for the
entire volume of immobile fluild under consideraticn

-20=-



2} .:_. s consl, (2.3)

The z-coordinate 1s known as the level helght. The quantity
p/y also has the dimensions of length an s known as the piezo-
metric height. The sum z + (p/y) is called the hydrostatic head.

Thus, the hydrostatic head is a constant for the entire
volume of an immobile fluid.

The same results can be derived more rigorously by integrat-
ing the differential equatlons of equilibrium of the fluid.

§6. DIFFERENTIAL EQUILIBRIUM EQUATIONS OF A FLUID AND THEIR INTE-
GRATION FOR THE SIMPLEST CASE

We shall derive the differential equations of equilibrium of
a fluld for the general case, in which the fluid 1s acted upon
not only by gravity, but also by
z) other mass forces, such as inertial
] forces of translational motion in a
[ e state of so-called relative rest
i & (see Chapter III).
o /
{ / 0P Let us take an arbitrary point
ot M/ v Pax M with the coordinates, x, y, and_z?
lii - and pressure p in an immobile fluid.
/4 In the fluid, we isolate an element-
™ ary volume in the form of a rectangu-
2y lar parallelepiped with its sldes
LT, eri- Pparallel to the coordinate axes and
sisiog oilé?z;:::tgiag 1 equalling respectively dx, dy, and
equations of equilibrium dz. Let point M be one of the ver-
of a fluld tices of the parallelepiped (Fig. 7).
' Let us examine the equilibrium condi-
tions for our isolated fluid volume.
Let the fluid in this volume be acted
upon by a resultant mass force whose components, referred to the
mass unit (see §2), are X, Y, and Z. Then the mass forces acting
on the isolated volume in the directions of the coordinate axes
will be equal to these components multiplied by the mass of the
isolated volume.

[ ]
N P

The pressure p is a function of the coordinates, X, y, and
z, but it 1s the same near point M on all three faces of %he par-
allelepiped, as follows from the property of hydrostatic pressure
proven above (see §4). On passage from point M to, for example,
point N, only the single coordinate x changes by an infinitesimal
amount dx, with the result that the function p acquires an incre-
ment equal to the partial differential

AN
M
TSee page 36 for footnote.
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The pressure at point N will therefore be
L2
Py dx,

where 3p/3x is the pressure gradient in the direction of the x-
axis near point N.

Examining the pressures at other corresponding points on the
face normal to the x-axis, for example, at pointsN' and M', we
see that these pressures differ by the same (accurate to higher-
order infinitesimals) amount, which is equal to

ﬁ—(p -|-—:£-Jx)— —%dx.

As a result, the difference in the pressure forces acting on
the parallelepiped in the direction of the x-axis will be equal
to the above value multiplied by the area of the face, i.e.,

..%E-lxdydt

The differences of the pressure forces acting on the paral-
lelepiped In the directions of the other two axes are expressed
similarly, but in terms of pressure giadients 3p/3dy and 3p/dz.

Only the indicated mass forces and the pressure-force dif-
ferences will act upon the isolated parallelepiped. Thus the
equilibrium equations of the parallelepiped in the directions of
the three coordinate axes will be written

de:dydr—%%dkd&d&-m
)’dedplz-%s- dxdydz=0; (2.4)
debetb-%dedbtu-Q

We divide these equations by the mass pdxdydz of the paral-
lelepiped and let dx, dy, and dz tend to zero as a limit, 1i.e.,
let the parallelepiped shrink to the original point M. We then
obtain the equations of equilibrium of the fluild referred to
point M at the 1limit:

19p o
X odx"o

__Iép'_ .
' 4 'y 0; (2.5)

~19
4 . ueo,
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The system of differential equations of hydrostatics (2.5) is re=-
ferred to as the Euler equations.?®

For practical use, 1t 1s helpful to replace equation system
(2.5) by a single equlvalent equation that does not contain par-
tial derivatives, For this we multiply the first equation of
(2.5) by dx, the second by dy, and the third by dz and add all
three equations to obtain

XdstYdy+2dz - (0 axt % dy + L te)wo. (2.6")

The trinomial in the parentheses is the total differential of
pressure, l.e., of the function p(x,y,z). Equation (2.6') can
therefore be rewritten

Xdx4YdytZdz -oif-c 0
or
Ci- o Vda! Yy, 7oz, ' (2.6)

The resulting equation expresses the pressure increment dp
due to changes in the coordinates by dx, dy, and dz in the most
general case of fluid equilibrium.

If we assume that gravity is the only mass force acting on
the fluid and direct the z-axis vertically upward, then X = Y = 0,
Z = -g, and instead of Eq. (2.6) we obtain for this fundamental
particular case of fluld equilibrium

dp= —ogdz= — ydz. (2.7)
Integration ylelds
P —-w+C.
The constant of integration C is found from the condition

z = z, on the exposed surface, at which p = p, (see Fig. 6), so
that

C=psty2o
Hence
P=pt (H—2)y (2.8")
or
Mepmatl oo (2.8)

Substituting h, the deptn of point M, for the difference
z, - z in Eg. (2.87), we obtaln another form of Relatlon (2.8):

YSee page 36 for footnote.



p=pothy.

We have arrived at the same fundamental equation of hydro-
statics (2.2) and (2.3) that we derived by another method 1n the
preceding section.

Subsequently, we shall examine integration of (2.6) for
other cases of fluid equilibrium (see §13).

§7. PIEZOMETRIC HEIGHT. VACUUM. MEASUREMENT OF PRESSURE

The piezometric height p/y 1s the helght of a column of a
glven fluld that corresponds to a given pressure p (absolute or
excess). The plezometric height corresponding to the excess pres-
sure can be read from a so-called pilezometer, a rudimentary de-
vice for pressure measurement. A plezometer is a vertical glass
tube whose upper end is open to the atmosphere, while 1ts lower
end 1s attached to the volume of fluid in which the pressure is to
be measured (Fig. 8).

(

Fig. 8. Piezometer
connected to tank., fluid by piston.

Applying Formula (2.2) to the fluld in a plezometer, we ob-
tain

Pacempatlyy,

where Pabs is the absolute pressure in the fluid at the level of
the plezometer connection and Pa is atmospheric pressure.

Hence the fluid in the plezometer rises to a height

h,-_-;.’.'if‘_;_:f/! :-_;!!"&!l, (2.9)

where Pygp is the excess pressure at the same level.

Obviously, if atmospheric pressure acts on the exposed sur-
face of the quiescent fluid, the piezometric helght for any point

-2l



in the subject volume of fluid is equal to the depth of that
point.

Pressures in liquids or gases are often expressed numeric-
ally in the form of the corresponding plezometric-height pressure
according to (2.9).

For example, one technical atmosphere corresponds to

’/ '_..’I-:. .")(.I,.L, M
1‘ o o 10 mHzO,
SUURY DU L
ha \';u' Lty 0,726 mmHg.

If the absolute pressure in a 1liquid or gas is below atmos-
pheric, we have an underpressure or vacuum. An underpressure or
vacuum is expressed as a pressure difference, i.e.,

o pas P

or _ Hor REPRODUG) g

I LA

B .
LAEY

Let us take, for example, a tube with a piston fitted tightly
to it, lower the bottom end of the tube into a container of fluid,
and gradually raise the piston (Fig. 9). The fluid will follow
the piston and rise with it to a certain height h above the ex-
posed surface, which is under atmospheric pressure. Since the
depth of points under the piston 1s nega ive with respect to the
exposed surface, the absolute pressure of the fluid under the
plston will, according to Eq. (2.2), equal

(2.10)

and the vacuum will be

or

As the plston rises, the absolute pressure of the fluid under
it will decrease. The lower limit for the absolute pressure in
the fluid is zero, and the maximum value of the vacuum is numeric-
ally equal to atmospheric pressure; consequently, the maximum
height to which the fluld can rise in thls example, i.e., the
maximum "suction" height of the fluid, will be determined from
(2.10) if we set p = 0 (or, more precisely, p = pt) in 1it,

Thus, without consideration of the vapor pressure Py we
have
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Under normal atmospheric pressure

2
(1.033 kgf/cm®), the helght h . 1is

10.33 m for water, 13.8 m for gasoline
(y = 750 kgf/m?), 0.760 m for mercury,
and so forth.

The glass tube, two varslons of
which are shown in Fig. 10, can serve
as an elementary vacuum-measuring de-
vice. The vacuum in fluid volume A can
be measured elther with the U-tube (at
the right in the drawing) or with the
inverted U-tube, one end of which is
immersed in the container with the fluid
(on the left in the flgure).

Fig. 10. Elementary
vacuum gages.
KEY: (a) alr,

In addition to plezometers, various
types of manometers, which are classi-
fied as 1liquid and mechanical types, are
used to measure fluid and gas pressures
under laboratory conditions.

Figure 11 shows dlagrams of liquid manometers. The so-called
U-tube manometer (Fig. lla) is a mercury-filled bent glass tube.

Fig. 11. Diagrams of liquid manometers.
KEY: (a) kerosene; (b) mercury.

For measurement of low gas pressures, the mercury is replaced by
alcohol, water, or sometimes tetrabromocethane (§ = 2.95). If the
fluid pressure is being measured at point M and the connecting
tube is filled with the same fluid, 1t is necessary to take the
height of the manometer above point M into consideration. Thus,
we have for the excess pressure at point M

baim Fi—hys

If the pressure Py to be measured is qulte large and the

height h corresponding to it does not diminish within a single
U-tube, several U-tubes are connected in series, containing, for
example, mercury (yrt) and a fluid with a smaller speciflc weight
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Y,. For the two tubes shown in Fig. 11b (X is a cock or clamp for
releasing air), we have

Proo ) AL DD

or, in the general case for several tubes,

AR B

| SRR T IN VRNS

The dish manometer (Fig. llc) 1is more convenient than the
foregoing, in that it is necessary to record the position of only
one fluid level. When the dish dlameter is large enough by com-
parison with the tube dlameter, the fluld level in the dish can
be regarded as constant. A dish-type micromanometer with an in-
clined tube is used for high precision in measurement of low gas
pressures. The length of the fluid column to be measured is then
increased in inverse proportion to the sine of the tube inclina-
tion angle, and the accuracy of the measurement lncreases accord-
ingly.

Differential manometers, simplest among which is the U-tube
manometer (Fig. 11d), are used to measure pressure differences be-
tween two points. If a mercury-filled manometer of this type 1s
used to measure the difference between pressures p; and p; in a
fluld of specific weight y that completely fills the connecting
tubes, it 1s evident that

P py B A

A two-liquid micromanometer is used to measure small water-
pressure gradients; this device is an inverted U-tube with oll or
kerosene at the top (Flg. lle). We have for thls case

PR PR G

The two-liquid dish manometer (Fig. 11f) 1s designed to
measure alr pressures or vacuums in the approximate range from
0.1 to 0.5 atm, i.e., when the alcohol or water manometer has too
high a 1iquid column and is therefore clumsy to use, while the
mercury marometer does not yield the required accuracy because
the mercury column 1s too short. Manometers of thils type are
used, for example, in experiments in high-speed wind tunnels.

Mercury 1s poured into the dish and alcohol, kerosene, or
some other fluid into the tube. Kerosene is highly recommended
ty its low volatility.

By appropriate selection of tne diameters of the upper and
lower segments of the tube (d, and d,), we can produce any effec-
tive specific welght (Yef) in the formula

I ‘I"\',;‘

where p 1s the pressure (or vacuum) to be measured and H 1s the
manometer reading.
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We find the expression for Yer from the followlng eduations

(see Fig. 10f): the equilibrium equation of the mercury and kero-
sene columns at p = p,

IIOY»: = ,’qu'.:
the equilibrium equation for p > p,
ot (Hy-- 115 AR, = (o 373

and the equatlon of volumes (the volume of kerosene that has
transferred from the upper tube d, to the lower d, is equal to
the volume of displaced mercury)

Il'(’? . ‘\,’m’z‘

BLE
Substituting and rearranging, NOT REPRODUCI

“"i‘ \ rI'I')
Yoy d; Yo 1( P Y.

For example, we have for d, = 2d;: Y ¢ * 0.25 « 13 600 +
+ 0.75 + 800 = 4000 kgf/m*.

Spring or membrane-boX mechanical manometers are used to
measure pressures above 2-3 atm. Their operating principle 1s
based on the deformation of a hollow spring or a membrane under
the pressure to be measured. A mechanism transmits this deforma-
tion to a needle, which indicates the measured pressure on a dial.

Manometers are used on aircraft to monitor the pressure of
fuel being supplied to gas-turbine engine nozzles or piston-en-
gine carburetors, oll line pressures, ete.

The most common type of aviation manometer at the present
time 1s the electrical manometer, and mechanical types are used
less often. The sensitive element (sender) of an electric manom-
eter is a membrane. Under the action of the pressure to be meas-
ured, the membrane deforms and, working through a transmission
linkage, moves the wiper of a potentiometer, which is connected
into the electrical circult together with an indicator.

§8., PRESSURE FORCE OF FLUID ON FLAT WALL

Let us use the fundamental equation of hydrostatics (2.2) to
find the total pressure force of a fluid on a flat wall that is
inclined at an arbitrary angle a to the horizontal (Fig. 12). We
calculate the pressure P exerted by the fluid on a certain area
of this wall that is enclosed by an arbitrary contour and has an
area of S.

We direct the ox-axis along the line of intersection of the

wall plane with the open fluid surface and the oy-axis perpendicu-
lar to this line in the plane of the wall.
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First, we write an expression for the elementary preaéure.
force applied to an infinitesimally small area 4as:

dPm pdS =(py-t 1)dS = pdS+hydS,|

where py 18 the pressure on the exposed surface and h 1s the depth
at which elementary area dS i1s located.

To determine the total force P, we integrate over the entire
area S:

P=p, f as+ vy fhdsm poS-l-\'slna;de,
. : |

where y 1s the coordinate of the center of area dS.

As we know from mechanics, the last integral represents the
static moment of area S about the ox-axis and is equal to the pro-
duct of this area by the coordinate of its center of gravity
(point C), 1i.e.,

; ydS=ycS.
Consequently,
P = p,S-}-ysinaycS=pS-IyheS |
(here h., is the depth coordinate of the center of gravilty of area

s), or ¢

P= (polyhe) S =peS, (2.11)

f.e., the total pressure force of the fluid on the flat wall equals
the product of the wall area by the hydrostatic pressure at the
center of gravity of this area.

If the pressure p, 1s atmospheric, the force of the fluid
excess pressure on the flat wall is

Pus=heyS= Pc n6S. (2.11')

Let us now find the position of the center of pressure, i.e.,
the coordinate of the intersection of the fluid pressure force on
the wall with the plane of the wall.

Since the external pressure p, 1s transmitted ldentically to
all points on area S, the resultant of this pressure wlll be ap-
plied at the center of gravity of area S. To find the point of
application of the fluld excess-pressure force (point D), we use
an equation of mechanics whose import is that the moment of the
resultant pressure force about the ox-axis equals the sum of the
moments of the component forces, i.e.,

Pu:oy0=§ ydpum!
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Fig., 13. Diagram of
pressure on rectangular
wall.

Fig. 12. Illustrating
determination of fluid
force on flat wall

wall indicated in two
projections). where yD is the coordinate of the

application point of force Pizb'

Expressing P1zb and dP1zb in terms of Yo and y and determin-
ing ¥p» we have
yslnuiy?ds

#p=—C" o T ¢

vslogy S ycS'

where J,=Iyﬁds is the moment of inertia of area S about the ox-
axis.

Remembering that
fo”:ﬂ'l"%s .

(Jxo is the moment of inertia of area S about the central axis,

which 1s parallel to ox), we obtain finally

10
— ofe L 2.12
¥o=yc'l Vs, (2.12)

Thus, the point of application of force Pizb is below the

center of gravity of the wall area; the distance between these
polints 1is

J
Ay e,
Y %S

If the pressure p, is atmospheric and acts on both sides of
the wall, point D will also be the center of pressure. When p,
is above atmospheric, the pressure center wlll be found according
to the rules of mechanics as the point of application of the re-
sultant of two forces: hcyS and p,S. Here, the greater the second
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force 1s by comparison with the first, the nearer, obviously, will
the center of pressure be to the center of gravity of area S.

We have defined only the one center-of-pressure coordinate
Yp* To determine the other coordinate Xp, we must write the equa=-

tion of moments with respect to the Oy-axis.

In the particular case in which the wall is rectangular, and
one of the sides of the rectangle coincides with the exposed sur-
face of the fluid, the center-of-pressure position 1is very easy
to find. Since the diagram of the fluid's pressure on the wall
1s a right triangle (Fig. 13) whose center of gravity lles at 1/3
of the helght b of the triangle, the fluld's center of pressure
will be at 1/3 of b, measuring downward.

It 1s frequently necessary to deal in aviation engineering
with the action of a fluld-pressure force on flat walls, e.g., on
the walls of pistons in various hydrostatic machines and devices
(see, for example, Chapter XIV); here the pressure Po 1s usually
so high that the center of pressure can ke regarded as coinciding
with the center of gravity of the wall area.

§9. PRESSURE FORCE OF FLUID ON CYLINDRICAL AND SPHERICAL SURFACES.
ARCHIMEDEAN LAW

In the general case, solution of the problem of the pressure
force exerted by a fluid on an arbltrarily shaped surface reduces
to determination of three components of the resultant force and
three moments. It 1s usually necessary to deal with cylindrical
or spherical surfaces having a vertical plane of symmetry. In
these cases, the pressure of the fluld is reduced to an equiva-
lent force lying in the plane of symmetry.

Let us take a cylindrical surface AB whose generatrix is per-
pendicular to the plane of the drawing (Fig. 14) and attempt to
determine the pressure force of the fluid on this surface in two
cases: fluld above (a) and below (b) the surface,

In case "a," we 1solate a volume of fluid that is bounded by
the subject surface AB, by vertical planes passing through the
boundaries of thils area, and the exposed surface of the fluid,
l.e., volume ABCD, and examine its equilibrium conditions for the
vertical and horizontal directions. If the fluld acts on surface
AB with a force P, surface AB will also exert the same pressure P
on the fluid, but in the opposite direction. Figure 14 shows
this reaction force decomposed into two components: horilzontal P
and vertical Pv' g€

The equilibrium condition for velume ABCD in the vertical
direction takes the form .

l’,? Ilcg“"’ (." (2.13)

where p, 1s the pressure on the exposed fluld surface, Sg is the
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area of the horlzontal projection of surface AB, and G is the
welght of the isolated fluld volume .

Fig. 14. Pressure of fluid on cylin-
drical surface.

The equilibrium condition for the same volume in the hori-
zontal direction 1s written with consideration of the fact that
the pressure forces of the fluid on surfaces EC and AD cancel
one another, leaving only the pressure force on area BE, 1l.e.,
on the vertical projection SV of surface AB:

iy Skt pS. (2.14)

Using Formulas (2.13) and (2.14) to determine the vertical
and horizontal components of the total pressure force P, we find
this force:

YA
ATl (2.15)

When the fluld is below the surface (case "p," see Fig. 14),
the hydrostatic pressures at all points of surface AB will have
the same values as In case "a," but the opposite directions, and
the resultant forces Pv and Pg will be given by the same formulas

(2.8) and (2.9), but cheir signs will be the opposlite. Here, G
should be understood, as in case "a," as the welght of the fluid
in volume ABCD, even though this volume 1s not filled with fluld.

The position of the center of pressure on a cylindrical wall
is easily found if the forces Pv and Pg are known and if the center

of pressure on the vertical projection of the wall or the center
of gravity of the isolated volume ABCD 1s determined. The problem
is substantlally simpler when the cylindrical surface under con-
sideration is circular, since the resultant force then intersects
the axis of the surface. This follows from the fact that any
elementary pressure force dP is normal to the surface, i.e.,
radially directed.

The above method of determining the pressure force on cylin-

drical surfaces 1s also applicable to spherical surfaces. In
this case, the resultant force also passes through the center of

_.3‘)_



the surface and lies in the vertical plane
of symmetry.

Let us apply the above method of
finding the vertical fluid-pressure-force
component on a curvilinear wall to prove
the well-known law of Archimedes.

Suppose that a body of arbitrary
shape and of volume W 1s immersed in a
liquid (Fig. 15). Let us project this
body onto the exposed 1iquild surface and
draw a projecting cylindrical surface

fﬁg. igéfIi%u:§£§§: tangent to the surface of the body along
megegn law a closed contour. This curve separates
' the upper surface ACB of the body from its

lower surface ADB., The vertical component
of the fluld excess pressure force on the
top part of the surface, Pv , 1s directed downward and equals the

1
weight of fluid In volume AA'B'BCA. The vertical component of
the fluld pressure force on the lower part of the body's surface,
PV » 1s directed upward and equals the weight of the fluid in

voiume AA'B'BDA.

This implies that the vertical resultant fluild pressure force
on the body will be directed upward and will be equal to the weight
of the fluld in a volume equal to the difference between the above
two volumes, i.e., in the volume of the body:

Pac i Iy Guers V.

This 1s the Archimedean law, which is usually formulated
thus: a body immersed in a 1iquid 1oses a weight equal to the
weight of the liquid that is displaces. The law of Archimedes
is, of course, also valid for bodies that are partially immersed
in a liquid.

2
3
-

=

o

-
N

BT P R

Fig. 16. Diagram of hydraulic
press (Jack).

The force P_ as known as the Archimedean force or buoyant
force, and the point of its appllcation, i.e., the center of
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r gravity of volume W, as the center of dis-
placement.

1 Three cases are possible, depending
on the relation between the body's welght
G and the Archimedean force P,: 1) G > Pyo

|

!

body sinks; 2) G < Pys body emerges from
liquid; 3) G = Pys body floats.

A
>~

In addition to the force equality G =
= PA’ equilibrium of a floatlng body also

requires zero resultant mcment. This last
Fig. 17. Diagram of condition 1s met when the body's center of
hydraulic multipller. gravity is on the same vertical as the

center of displacement. The problem of

equilibrium stabillity of floating bodles
will not be discussed here.

-

Example 1. Figure 16 is a schematic diagram of a hydraullc
press and can also be used to represent a hydraulic jack. For
the jack case, body 1 is the load to be raised, while for the
case of the press it 1s a statlonary support attached to a founda-
tion by columns 8 (indicated by dashed lines); body 2 then becomes
the material to be pressed.

Hand pump 3, which is fitted with intake 5 and delivery 4
valves, sets up in cylinder 6 a pressure that acts on system 7
and produces a force P along the piston.

Determine this force for the following data: R = 20 kgf;
a/p = 1/9; D/d = 10.

Solution.

. P
IHAL-'n (;,)="2w1w1nu19mmvkgf.

Example 2. A hydraulic multiplier (Pig. 17) is used to raise
the pressure p, obtained from a pump or accumulator. Pressure p,
is applied to cylinder 1, which contains a sliding hollow cylin-
der 2 of weight G and diameter D. The latter slides along sta-
tionary plunger 3, whose diameter 1s d and whose bore ducts fluid
under an increased pressure p,.

Determine pressure p, for the following data: G = 300 kgf;
D = 125 mm; p, = 100 kgf/cm?; d = 50 mm.

Disregard friction in the packings.

Solution. We have from the equilibrium condition for cylin-
der 2

)
i

.’4 l’n“"“—l‘z'l ¢,
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from which

Dy 40 1252  4.300
= —_ - == W) == 2 )
1 P:(d ) iR (su) g - B0 kgf/cm
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Manu-
script
page

13

21

23

Footnotes

These formulas are as follows:
0= Ox COs? ¢ + @ Sinle; T -—;— (€x — o) sin .

2ye attach the coordinate system rigidly to the vessel
containing the fluild. ‘

3leonard Euler (1707-1783) was a famous mathematiclan,
mechanician, and physicist. He was born and educated at
Basel (Switzerland). He lived for more than 30 years at
St. Petersburg, working at the Russian Academy of Sci-
ences,
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Symbol List

Manu-

script Symbol English equivalent
page

24 aéde abs absolute
24 naé izb excess

25 BOZ vod water

25 PT rt mercury

25 BakK vak vacuum

27 el ef effective
28 K k kerosene
31 r g horizontal
31 B v vertical
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CHAPTER III
THE FLUID AT RELATIVE REST

§10., BASIC CONCEPTS

In the preceding chapter, we were basically concerned with
the equilibrium of a flulid when acted upon by a single mass force
— 1ts own weight. This is the case only when the fluid is at
rest in a contalner that is not in motion relative to the earth,
or in a container in uniform rectilinear motlon.

If, on the other hand, the contalner with the fluld is in
nonuniform or nonrectilinear motion, then all particles of the
fluid are acted upon, in addition to their own welght, by the
inertial forces of the translational motion. Under these forces,
assuming that they are constant in time, the fluld assumes a new
equilibrium position, i.e., 1t becomes stationary relative to the
walls of the container. This case of equilibrium is, as we noted
in §6, known as relative rest.

In this state, the exposed surface of the fluid and other
level surfaces (see §5) may differ substantially from the level
surfaces when the fluid is at rest in a stationary container,
i.e., from a family of horizontal planes. Determination of the
shape and positicn of ihe exposed surface of a fluid at relative
rest 1s guided by the basic property of all level surfaces ac-
cording to which the resultant mass force always acts normal to a
level surface.

Indeed, if the resultant mass force were not in fact normal,
but acted at some other angle to the level surface, the tangentlal
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component of this force would cause motion of fluid particles
along the level surface. At relative rest, however, there are
no fluid-particle displacements either relative to the contalner
walls or with respect to one another. Consequently, the only
possible direction for the resultant mass force 1s the normal to
the free surface and to other level surfaces.

It must also be remembered that level surfaces cannot lnter-
sect, since otherwise we should have along the line of intersec-
tion of two such surfaces a row of points at which the pressure
had two different values at the same time, which 1s impossible.

Let us examine two characteristic cases of relative rest of
a fluid:

a) in a container in rectilinear and uniformly accelerated
motion;

b) in a container rotating uniformly about a vertical axis.

§11. RECTILINEAR UNIFORMLY ACCELERATED MOTION OF A CONTAINER OF
FLUID

Suppose that a container of fluid, such as an alrcraft fuel
tank, 1s in straight-line motion with a constant acceleration a.
In this case, the resultant mass force acting on the fluid is
found as the vector sum of the inertial force, which 1s dlrected
oggositely to the acceleration a, and the force of gravity (Fig.
18).

- Using J to denote the resultant mass
f;,fﬁ ﬂu force referred to unit mass, we have
< By jeatg '
) e
Y . The resultant mass forces are paral-
=8 U, lel to one another for all particles in
©XEY g ] the volume of fluid under consideratlon,

i\ and the level surfaces are perpendicular
to these forces, so that all level sur-

Fig. 18. Relative faces, including the free surface, are
rest of fluid in varallel planes. The angle of inclina-
container in recti- tion of these planes to the horlzon 1s
linear uniformly determined from their perpendicularity to
accelerated motion. the force J.

To resolve fully the question as to
the position of the fluid's free surface 1in a container in
straight-1line uniformly accelerated motion, it 1s necessary to
complement the above condition with the equation of volumes, i.e.,
1t 1s necessary to know the volume of the fluid in the container
and express 1t in terms of the container dimenslions B and H and
the original fluid level h.
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An equation that can be used to find the pressure at eny
point in the fluid volume can be derlved in much the same way as
was done 1in §5.

For example, we take at point M an elementary area dS paral-
lel to the free surface and construct on this area a cylindrical
volume whose generatrix is normal to the free surface. The equi-
1ibrium condition for this fluid volume in the direction of the
normal to the free surface will take the form

PdSw=pod$ 4 oldS.

where the last term represents the total mass force acting on the
isolated fluid volume and 2 is the distance from polnt M to the
free surface.

On cancelling the dS, we obtain

P=Do+tidl. (3.1)

In the particular case with a = 0, J = g and Formula (3.1)
becomes the fundamental equation of hydrostatics (2.2).

In analysis of cases in which an inertial force acts, it 1s
customary in aviation practice to use the notion of the load fac-
tor, which is equal (in stralght-line level flight) to

a
Ny o=,
L

When the airplane maneuvers in flight, the load factor may
be tangential (nx or normal (n_). The latter case occurs in

curvilinear flight (entering and pulling out of a dive, furning),
but relative rest of the fluid, as in the alrplane's fuel tanks,
is then possible only in a steady turn in the horizontal plane.
In this case, the unit mass force of translational-motion inertia,
which is numerically equal to the acceleration, is glven by

eV,

R

where V 1is the airplane's speed and R is the radius of the turn.

We should note that the normal load factors are usually sub-
stantially larger than the tangential factors for airplanes (by
factors of 8-10).

If large load factors are acquired when the fuel in the tanks
1s low, the fuel-system pickup may be starved and the fuel supply
cut off. Special devices are provided around the pickup hole to
prevent this.

§12. UNIFORM ROTATION OF CONTAINER OF FLUID

First, let us take an open cylindrical vessel that contains a
fluid and set it in rotation about its vertical axis at a constant
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angular velocity w. The fluid gradually acquires the same angu-
lar veloclty as the container, and 1ts free surface changes shape:
the fluid level drops at the center and rises at the walls, and
the entire free surface of the fluild becomes a surface of revolu-
tion (Pig. 19).

In this case, the fluid will be acted
upon by two mass forces: gravity and cen-
2] trifugal force; rererred to the unit mass,
these will be g and w?r, respectively.

z .

}
|
\V/% ~nll The resultant mass force J increases
ETINTU T with increasing radius by virtue of 1ts
TN 4
J h o).
[ '

N second component, while i1ts inclination
T My angle to the horizon becomes smaller.
! Q ! ] This force 1s normal to the free surface
- J; Ty of the fluid, with the result that the
I inclination of this surface increases with
increasing radius.

Fig. 19. Rotation of

open contalner of Let us find the equation of curve AOB
fluid about its ver- in z, r-coordlnates with the origin at the
tlcal axls, cenfer of the bottom of the contalner. Re-

membering that the force j is normal to
curve AOB, we find from the drawing that

foru g, P%‘
S 1
From this,
dz- -
r
or, after integration,
z AQ“-[C

It follows from the condition for the intersection point of
curve AOB with the rotation axls that C = h, so that we filnally
obtain

C oy W
Z=','! ;. ’ (3-2)

i.e., curve AOB 1s a parabola, and the free surface of the fluld
is that of a parabolold of revolution.

Applying (3.2), we can determine the position of the free
surface in the container, e.g., the maximum height H to which the
fluid rises and the height h of the vertex of the paraboloid at a
given speed w. However, this also requires use of an equation of
volumes: the volume of the stationary fluld 1s equal to 1ts volume
during rotation.
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In practice, the case most frequently encountered is that of
rotation of a container of fluld with the axis horizontal (or in an
arbitrary position) and the angular velocity w so high that grav-
ity can be disregarded by comparison with the centrifugal forces.

Pig. 20. Rotation of container of
fluid around a horizontal axis.

The law of pressure variation in the fluid is easlly obtained
for this case by considering the equilibrium equation of an ele-
mentary volume with base area dS and helght dr, taken along the
radius (Fig. 20). This fluid element 1s acted upon by pressure
and centrifugal forces. Denoting the pressure at the center of
area dS on radius r by p and that at the center of the other
base of the volume (at radius r+dr) by p+dp, we obtain the f-ollow-
ing equilibrium equation for the 1sclated volume in the radicl
direction:

PAS —~(p+dp)dS | irdrdSe=0

or
dp==guirdr,
Integration ylelds

We find the constant C from the condition that p = p, at
r =r,, so that

C=po—u? 2"

Finally, we obtain the relation between p and r in the form
p.=p°+q%j—.."r’——rf,), (3.3)
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Obviously, the level surfaces in this case will be circular
cylindrical surfaces with a common axis - the fluid's axis of
rotation. If the container is only partly filled with fluld, its
free surface, as a level surface, will also be cylindrical, and
it will be convenient to denote its radius by ro and the pressure
on 1t by pg.

It is often necessary to compute the pressure force exerted
by the fluid rotating with a container on a wall normal to the
axis of rotation (or on an annular segment of this wall).

This requires first writing an expression for the pressure
force acting on an elementary annular area of radius r and width
dr, Using (3.3), we obtain

dP = pdS= [po-l- Q -';- (r? —rg)] nrdr,

and then integrate between the appropriate limits.

A quite considerable resultant pressure force can be obtalned
on the walls of a container by setting the fluid in it rotating
at high speed. This effect is used in certain friction clutches
in aviation engines where large nocrmal-pressure forces are re-
quired to engage two shafts, The method indicated above i1s used
to compute the axlal-pressure force of the fluid on the impellers
of centrifugal pumps.

The same formulas can be derived for these cases of relative
rest by solving the fluld's differential equations of equilibrium.

§13. INTEGRATION OF DIFFERENTIAL EQUATIONS OF EQUILIBRIUM OF A
FLUID FOR PARTICULAR CASES OF RELATIVE REST

Here we shall use the general differentlal equation of fluld
equilibrium (2.6), as derived in §6, to analyze fluids at relative
rest.

Writing this equation,
dp=g(Xdx+ Ydy+2dz;
and examining it, we see that the trinomial in the parentheses,
like the left member of the equation, must be a total differen-
tial of a certain function U(x,y,z).
This function must have the following property: its partlial

derivatives with respect to the coordinates x, y, and z must equal
X, Y, and Z, respectively, i.e.,

u LUy, QU _
-O—X-X' -‘Z:}’,a—; 2.
The function U 1s known as the force function. As we know from
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theoretical mechanics, this function is equal to the potentlal
of the forces taken with the opposite sign.

We may thercefore conclude that equilibrium of the fluid is
possible only under the action of mass forces that have a poten-
tial.

Introducing the function U into the fundamental equation
(2.6),

' T '
o e ) (3.4)
or Q“C'
W
wo'! (3.4)
After integration, we obtain in the general form
b (3.5

We find the constant of integration from boundary conditlons:
let p = py at U = U,; then

ot U, (3.5)

The surface that satisfles the condition

oovor o )

‘

will also satisfy the condition

Cooborply, i Fy ond

Consequently, such a surface is a level surface or an equi-
potential surface. This means that a surface of constant pres-
sure 1is at the same time a surface of constant mass-force poten-
tial, and that the pressure in the fluild can be changed only by
changing the force potential and vice versa.

We may also conclude from the above that the density of an
inhomogeneous dropping fluid must be a function of U:

¢ o4

For this case, Formula (3.4) is written

A coey (3.6)

t » / t v !
or, after integration,
! ‘.’. Ry (3.7)
For an inhomogeneous dropping fluld, therefore, the level

surfaces will also be surfacez of equal density. This means that
an lnhomogeneous dropping fluld at equilibrium has layers of equal

.



density corresponding to 1ts level surfaces, and that higher pres-
sures correspond to higher density values and vice versa. This
property 1is used to separate lnhomogeneous liquid mixtures in de-
vices known as centrifuges.

Let us introduce into consideration the resultant unit mass
force J, whose projections onto the coordinate axes equal X, Y,
and Z, 1.e., let us take the total acceleration caused by the ac-
tion of all mass forces at a given point. We note then that dx,
dy, and dz are the projections of an infinitesimally short seg-
ment d&, which represents the distance between two closely spaced
points M and M' (see Fig. 7), onto the coordinate axes.

On this basils, we can write the equations

Y S AL A
X jeo (7,05 Ve jeos(f, o) 70 jo ()
and

A A s
da. dlea (o) s dTea (), dxe dlcos(dl, z).

“

We now apply a formula used in analytical geometry to deter-
mine the cosine of the angle between two straight lines and, not-
ing the foregoing expressions, write

N
R IR E or REPROD

A Wb ot RN
L Gy b (e ) -

I3 ho s . P
S (1Yo @l i s (G a),

Substituting the expression obtained for dU into (3.4), we
have

A,
’ I t:

dpocito Ui (3.8)

We see from (3.8) that the largest pressure increment is ob-
tained in the direction of the resultant mass force j], since

i
coa{f, "'j)1s then equal to unity.

For any segment df on a level surface, the increment dp = 0.
But in the general case ] and d& are nonzero, so that

s
o {i, @'} 6, 1,e., the resultant mass force is normal to the level
surface. Thils important property of the level surface has already
teen derived (§10) on the basis of simple reasoning.

Let us carry out the integration of the differential equa-
tions of fluid equilibrium for the two cases of relative rest ex-
amined above.

1. Let the fluid be in a container that is in straight-line

uniformly accelerated motion, 1.e., let it be at relative rest,
as considered in §11. 1In this case, it 1is convenicnt to use
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(3.8), placing the direction & along the resultant mass force J
(see Fig. 18).

. R ‘
We then have o
L
cosl, ¥g =0
and, consequently,
p el
On integration,
p=0jl+C)

Since p = p, for & = 0, we have C = p, and finally arrive at the
familiar equation

=petjel.

2. Let the fluid be in a container that is in uniform rota-
tion at angular velocity w about its vertical axls, l.e., let it
be in the state of relative rest examined in §12. Placing the
origin at the center of the bottom of the container and poilnting
the z-axis vertically upward, we obtain the following expressions
for the components of the unit mass force:

A
X =wrcos (r, x)= 02X;
A .
Y =’ cos(r, y)=vy;
Z=—g.

Substituting these expressions into the general equilibrium
equation (2.6),

dpmo(WPxdx 4 Sydy—gilz)
or
dp~—-—:— P (xdx-| gl y) — vdz.
If we remember that
xde g ydy=d(2
+, y 2 1
we obtaln after integration
=Xutrr— 3
P b r2eyx +C.

At r = 0 and z = h, p = p,, 80 that
Ce pyt-hy.
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Finally, therefore,

o oAl e )Y 2
Peporly(h - 2) e w?r?, (3.9)

Formula (3.9) enables us to determine the pressure at any
point in a volume of fluid rotating about a vertical axis (see

Fig. 19).

The equation of the fluid's free surface can be obtained by
setting p = py iIn (3.9). After cancelllng and rearranging, we
have

27

2 ’lz '? ’

<

which agrees with the earlier Formula (3.2).
If we disregari gravity (z = 0) in the

N
.pf'?él__A above derivation and determine the constant
p ﬂ 2 of integration from the condition p = p, at
i I [P r = r,, we obtain Formula (3.3): '
A él é 2
Tl g p=pobig (1)
ﬁg Thus, the relationships already known
R to us for relative rest of a fluld are ob-
N{p tained more rigorously by integrating the

- differential equations of fluid equilibrium.
Fig. 21. Illustrat-

ing determination of Example. Determine the axial-pres-
axial force in cen- sure force of a fluid on the impeller of a
trifugal pump. liquid-rocket-engine centrifugal pump on

the assumption that the fluid between the

impeller disks and the casing of the pump
(in spaces W, and W,) 1s rotating at an angular velocity equal to
half the pump speed and that negligible fluld passes through
clearance A (Fig. 21).

The excess pressure at the impeller exit is p, = 38 atm, and
p:» = 0 at the inlet. The pump speed n = 16 500 rev/min. The pump
dimensions: r, = 50 mm, r, = 25 mm, r = 12 mm. The specific

welght of the fluid y = 918 kgf/m®.
Solution. The pressure forces of the fluid on surfaces AB
and CD cancel one aznother. Only the force of axial pressure on

surface DE, i.e., on an annular surface bounded by circles of
radii r, and Tys remains uncompensated. Consequently, the un-

known force is directed from right to left and equals

Ty
F 23 :i;r“ pede,

s
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where, on the basis of (3.3) with p, and r, substituted for p, and
r,, we have

2 (3-n)
P"I’z“SQ‘ 7
(wzh 1s the angular velocity of the fluid).

Hence
e 2/, Aer
Pe "'S.["— Y (A=—r2)| rar wx (}—r3) [',.. ,;—;- (,;_ J_i_ ;)]
Substituting numerical values,

P —1, ; _’.‘..'_""529)9_’_ 284 1.22Y)
PL Y 121)[:‘—0‘-«( e 2.9“(5: : )._4sokgf.
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Symbol List

English equivalent

shaft
fluid
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CHAPTER IV
THE FUNDAMENTAL EQUATIONS OF HYDRAULICS

§14. PUNDAMENTAL CONCEPTS

In turning to study of the problems of fluid motion, it must
be noted that we shall first examine the motion of a so=-called
ideal fluid, i.e., an imaginary fluid that has no viscosity at
all, and only then pass to a study of real flows. 1In such an in-
viscid fluid, as in real fluids at rest, only one form of stress
is possible: the normal compressive stress, i.e., hydromechanical
pressure or simply pressure.

In a moving ideal fluid, pressure has the same properties as
in a astationary fluid, i.e., it is directed along inner normals
on the outer surface of the fluid and is the same in all direc-
tions at any point inside the fluid.’}

Fluid flow may be steady (stationary) or nonsteady (nonsta-
tionary).

Steady flow is flow that does not change in time, with the
hydromechanical pressure and velocity functions only of the coor-
dinates and not of time. Pressure and velocity may change as
fluid particles move from one position to another, but at a given
point that 1s stationary with respect to the channel, the pres-
sure and velocity do not change in time during steady motlion.

This can be written mathematically as follows:

TSee page 74 for footnote.
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where the velocity subscripts denote the projections of this velo-
city onto the corresponding axes, which are rigidly attached to
the channel.

In a particular case, steady flow may be uniform, in which
case the velocity of each particle does not change with a change
in its coordinates.

In the general case of nonstead* flow, pressure and velocity
depend on both the coordinates an me, 1.e.,

pohiGa oz v Pl n o t).

As examples of nonsteady fluid flow, we might cite the grad-
ual drainasge of a container through a hole in 1its bottom or mo-
tion of a fluid through the intake or delivery pipe of a simple
piston pump whose piston executes reciprocating motion.

Examples of steady flow: outflow of fluid from a container
in which constant level 1s maintained; motion of fluid in a closed
plpe due to the action of a centrifugul pump turning at constant
speed.

Investligation of steady flows is a much simpler matter than
that of nonsteady flows. Below we shall be concerned chiefly with
steady flows and only a few particular cases of nonsteady flow.

The trajJectories of fluid particles in steady flow are curves
that do not vary in time, :

In nonsteady flow, the trajectories of different particles
passing through a given point in space will have different shapes.
Hence the concept of the streamline 1s introduced for purposes of
examining flow patterns formed at particular points in time.

A streamline is a line in a moving fluid the tangent to which
at any poInt coincides with the veloclity vector of the particles
on this line at the particular point in time (Fig. 22).

In steady flow, the streamline will obviously coincide with
the trajJectory and will not change shape with time.

If we take an elementary closed contour in a moving fluid and
pass streamlines through all of its points, the result is a tubu-
lar surface known as a stream tube. The part of the flow enclosed
within a stream tube is called a filament (Fig. 23).

As the transverse dimensions of a filament tend to zero, the
filament becomes a streamline.
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At any point on the lateral surface of a filament, i.,e., on
the stream tube, the velocity vectors are tangential and there are
no velocity components normal to this surface; consequently, no
fluid particle can escape the filament or enter it at any point
on the stream tube. Thus, the stream tube is a kind of impene-
trable wall, and the elementary filament is a kind of independent
elementary flow.

W W
- s 3
V", .;{'31__‘_' iy
iy

Fig. 22. Streamline. Fig. 23. Filament.

We shall at first regard flows of finite dimensions as aggre-
gates of elementary filaments, i.e., we shall assume the flow to
be filamentary. As a result of the velocity difference, adjacent
filaments will slip on one another without mixing.

An effective section or simply a section of the flow 1s
generally a surface inside the flow that passes normal to 1its
streamlines. Usually, zones in which the filaments may be re-
garded as parallel and the effective sections, therefore, as plane
are considered in the flows.

Ramming and nonramming fluid flcws are distinguished. Ram-
ming flows are flows in closed channels with no open surface,
W] e nonramming flows are flows with a free surface. In ramming
flows, the pressure 1is usually variable along the flow, while in
nonramming flows it is constant (usually at atmospheric). Examples
of ramming flows are flows in pipes with elevated (or lowered)
pressure and flows in hydraulic machines and other hydraulic
accessories. Nonramming flows occur in rivers, open channels,
and millraces. In the present textbook, we shall be concerned
almost exclusively with ramming flows.

§15. FLOW RATE. THE FLOW RATE EQUATION

The flow rate 1s the quantity of fluld that passes across
the effective flow (filament) section per unit of time. This
quantity can be measured in units of volume, weight, or mass, so
that a distinction arises between the volumetrlc Q, gravimetric G,
and mass M flow rates,

For an elementary filament that has infinitesimally small
cross sections, we can regard the velocity v as the same at all
" points in each section. Consequently, the volume flow rate for
an elementary filament will be

dG = vdS [md/s], (4.1)
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where dS is the sectional area of the filament; the gravimetric
flow rate

i, v [N/s] or [kgf/s) (4.2)

and the mass flow rate
diats ). corS Lke/s] or [kgf-s/m). (4.3)

For flows with finite dimensions, velocity is generally dif-
ferent at different points in a cross section; hence the flow rate
must be computed as a sum of elementary filament flow rates, i.e.,

Q- 1‘ LIAR (4.4)

Usually, the velocity averaged over the cross section 1is
introduced; 1t equals

Q, | (4.5')
S

Ve
from which .
Q. S (4.5;

On the basls of the law of conservation of matter, the hypo-
thesis of continuity of the flow, and the above property of the
stream tube, by which it is "impermeable," we can say for steady
flow of an incompressible fluid that the flow rate is the same in
all cross sections of an elementary filament (see Fig. 23), 1.e.,

(4.6)

This equation 1s known as the flow rate equation for the ele-
mentary fllament.

A similar equation can also be written for a flow of finite
dimensions bounded by impermeable walls, except that average velo-
cities must be introduced instead of the true ones; then

(4.7)

It follows fromthls last equation that the average velocl-
ties in a flow of incompressible fluld are inversely proportional
to the cross-sectional areas, i.e.,

St S (H.77)
V"; S;

Obviously, the flow rate equation is a particular case of
the general law of conservation of matter, as well as a condition
of flow continulty.
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§16. ggg%VATION OF BERNOULLI EQUATION FOR A FILAMENT OF IDEAL
D

Let us examine steady flow of an ideal fluid acted upon only
by a single mass force, gravity, and derive for this case the
fundamental equation linking the pressure in the fluid with the
velocity of its motion,

Let us take one of the filaments
composing the flow and isolate a
filament of arbitrary length from
this filament with sections 1 and 2
(Fig. 24). Suppose that the area of
the first section is dS,, the velo-
eity in it 1s v,, the pressure is p,,
and the height of its center of
gravity, reckoned from an arbitrary
horizontal plane, is z,. In the
second section, we shail have d48,,
il V2, P2, and gz,, respectively.

Pig. 24, Illustrating
derivation of Bernoulll
equation for a filament,

During an infinitesimal time
segment dt, our segment of filament
moves to position 1'-2' under the ac-
tion of external forces.

To this segment of the filament, we apply the theorem from
mechanics to the effect that the work done by the forces applied
to the body is equal to the kinetic-energy increment of this body.
In our case, these forces are pressure forces acting normal to
the surface of the fllament segment under consideration, and only
one of the mass forces — gravity.

Let us calculate the work of the pressure forces and gravity
and the kinetic-energy change of the filament segment during
time at.

The work of the pressure force will be positive in the first
section, since the direction of the force coincides with the
direction of motion, and it will be expressed as the product of
the force (p,dS,) by the distance (v,dt), i.e.,

p.dS wldl.

In the second section, the work of the pressure force will
have the minus sign, since the force 1s directly opposed to the
direction of motion; it will be expressed as follows:

—p,dS,v,d 1.
The pressure forces acting on the sides of the filament seg-

ment will not perform work, since they are normal to this surface
and, consequently, also normal to the displacements.
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Thus, the work of the pressure forces will be
PIiAS dt- p,v,dSqdlt, (4.8)

The work of gravity is equal to the change in the position
potential energy of the filament segment. We must therefore sub-
tract the position energy of the fluid in volume 1l'=2' from the
position energy of the fluid in volume 1-2. In this subtraction,
the position energy of the intermediate volume 1'-2 cancels out,
leaving only the position-energy difference of filament segments
1-1' and 2-2'. If we use the flow equation (4.6), we see at once
that the volumes and hence the weights of segments 1-1' and 2-2'
are equal, i.e,,

UG =y dSydl: Yo d S, (4.9)

Hence the work of gravity will be expressed as the product
of the height difference by the weight dG:

(21—2))iG. . (4.10)

To calculate the kinetic-energy increment of this filament
segment during time dt, 1t is necessary to subtract the kinetic
energy of volume 1-2 from that of volume 1'-2', On subtraction,
the kinetic energy of the intermediate volume 1'-2 cancels, leav-
ing only the potential-energy difference of filament segments
2-2' and 1-1', each of which welighs 6G.

We thus obtain the kinetic-energy increment, which will be
a 117
('Ui_.'u‘:)zT, (ucll)

Adding the work of the pressure forces (4.8) to the work of
gravity (4.10) and equating this sum to the kinetic-energy incre-
ment (4.11), we obtain

PSTUdt— ppdSipad (1o 2 V6 (- o) (4.12')

Let us divide all terms of the equation by the welght dG.
After appropriate cancelling,

2 )
P Py N
[l |
Y

Y T —':’.»,' o "

Grouping terms pertaining to the first section in the left
member of the equation and the terms for the second section in
the right member,

1

2
)
v
L
:

R R I (4.12)

s '
el e g
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where g 1s the levelling height or geometric head; p/y is the
plesometric height or piezometric head, and vi/2g is the velocity
height or velocity head.

The rolultint equation is known as the Bernoulli equation for
a :tligone of §¥ deal 1n$om2rolnible fluid. was derive y
anie rnou n .

The terms of the Bernoulli equation in the form (4.12) have
the dimensions of length.

is known as the total head.

The Bernoulli equation (4.2) has been vritten for two arbi-
trarily chosen filament sections, the first and second, and ex-
presses the equality of the total heads H in these sections.
Since they were taken quite arbitrarily, the total head will have
the same value for any other section of the same filament, 1.e.,

#4242 Hmconst (along s filasent),

Thus, for an i{deal moving fluid, the sum of three heights,
lov:lling. plezometric, and velocity, is constant along a fila-
ment.

: This statement 18 illustrated by the diagram in Fig. 25,
which shows the variation of all three heights along a filament.
The curve of piezometric heights 1is called the plezometric line;
it can be regarded as the geometric locus of levels in pliezometers
set up along the filament.

It follows from the Bernoulll and flow rate equations that
if the cross-sectional area of the filament decreases, l.e., the
filament tapers, the fluid flow velocity increases and pressure
decreases; conversely, if the filament expands, velocity dimin-
ishes and pressure rises.

By way of example, Fig. 25 shows a filament whose cross-sec-
tional area decreases by a factor of 4 from section 1l-1 to sec-
tion 2-2, with the result that the velocity head increases by a
factor of 16 and section 3-3 has the same area as 1-1. The dashed
curve 1s the plezometric line for a flowrate increase by a factor
of Y2, with the result that the velocity heights increase by a
factor of 2 and the pressure drops below atmospheric 1in the narrow
section of the filament.

Let us examine the physical or, more precisely, energetic

of the Bernoulll equation. Let us adopt the term specific
ee page 74 for footnote.
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energy for the energy of the fluid per unit weight, 1.e.,

c‘“"‘:‘c

G

1
T AN = s,
whd L ‘H

\ // Is 7
IR 7304552077707
/
S

Fig. 25. Curve of varlation

of levelling, plezometric, and
velocity heights along filament
of ideal fluid.

KEY: (a) plezometric 1line.

Specific energy has the dimensions of length, like the terms
of the Bernoulll equation. It is easily shown that the terms of
the Bernoulli equation are various forms of the fluid's specific
mechanical energy, and namely:

z 1s the specific positlon energy, since a fluid particle of
welght AG situated at helght z has a posiiion energy equal to AGz
and, per unit weight, AGz/4G = Zz;

p/v 1s the specific pressure energy of the moving fluid,
since a fluid particle weighing AG and under a pressure p can
rise through height p/y and thereby acquire a position energy
AG(p/Y); on division by AG, we obtain p/v;

z + (p/y) 1s the specific potential energy of the flulg;

v2/2g is the specific kinetlc energy of the fluid, since the
kinetic energy per unit weight of the same particle AG is

AG 'I':-‘_ s AG =
2

Y
%

f’“’“Y-:~¥;: is the total specific energy of the moving fluid.’
YSee page 74 for footnote.
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Thus, the energetic sense of the Ber-
noulli equation for an elementary filament
of ideal fluid consists in constancy of
the fluid's total specific energy along
the filament. Consequently, the Bernoulll
equation expresses the law of conservation
of mechanical energy in an ideal fluid.

| The mechanical energy of a moving
Pig. 26. Cylinder fluid may take three forms: position,
with piston and rod. pressure, and kinetic energies. The
first and third forms of mechanical energy
are known from mechanics, and they are
equally inherent to solids and fluids, As for the pressure energy,
however, this form is specific for moving fluids.

During motion of an ideal fiuid, one form of energy may be
transformed into another, but the total specific energy, as fol-
lows from the Bernoulli equation, remains unchanged through this.

Pressure energy is easily transformed into mechanical work.
An elementary device that brings this transformation about and
is widely used on aircraft is the cylinder-and-piston group (Fig.
26). Let us show that in the transformation, the work per unit
welight of fluid is numerically equal to the pilezometric height.

Le’ us denote by S the piston area, by L its stroke, and by
the excess pressure admitted to the left chamber of the cylin-
er; the excess pressure on the other side of the piston is zero.
Then the resultant pressure force of the fluid, which is equal to
the force P that is overcome in moving the piston from the extreme

left to the extreme right position, will be

P -Psn
and the work of this force
E=pSL.

The welght of fluid that must be supplied to the cylinder to
perform this work is equal to the weight of fluid in the volume
of the c¢ylinder, i.e.,

G=SLy.

Consequently, the work per kilogram will be

e=E St P
a SLy v

The Bernoulli equation is often written differently. Multi-
plying all terms of (4.12) by y, we obtain

: o
20+ byt =za oty (4.13)
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Now the terms of the Bernoulli equation have the dimensions
of pressure: zYy is the weight pressure, p is the hydromechanical

pressure (or simply the pressure), and

pressure, "

y .. o% is the dynamic
2% 2

It is easily seen that the terms of (4,13) represent various
forms of the fluid's mechanical energy per unit of its volume.

The Bernoulll equation for a filament of ideal fluid can
also be derived easily by integrating the differential equations
of motion of the ideal fluid.

§17. DERIVATION OF THE DIFFERENTIAL EQUATIONS OF MOTION OF AN
IDEAL FLUID AND THEIR INTEGRATION

Let us take an arbitrary point M with the coordinates x, y,
2z (Fig. 27) in an 1deal fluid and isclate an element of fiuld at
this point in the form of a rectangular parallelepiped with point

M at one of its vertices.

Let the sides of this parallelepiped

be parallel to the coordinate axes and equal, respectively, to

8x, 8y, and 6§z.°%

Let us write the cquations of motion of this isolated fluid
element, whose mass equals péx8yéz,

As in our examination of the equilibrium of a similar fluid
volume (see §6), we shall assume that the fluid in this volume is
acted upon by a resultant mass force whose components, referred

to the unit of mass, are X, Y, and Z.

Then the mass forces act-

ing on the isolated volume in the dir-=ctions of the coordinate
axes will be equal to these components multiplied by the mass of

the isolated volume.

Fig. 27. Illustrating
derivation of differ-
ential equations of
motion of an 1deal
fluid.

“3¥See page 74 for footnotes.

If p 13 the pressure at point M,
we find by reasoning similar to that
in §6 that the difference between the
pressure forces acting on the parallele-
piped, e.g., in the direction of the x-
axis, will be

or
L0 TIPS

or

The velocity of the fluld at point
M will be denoted by v and its compon
nents by Vs vy, and vy Then the pro-

Jections of the acceleration with which
the 1solated volume is moving will be

dv, vy (AN
S

2

. e
« I

Or
R
“hop U,
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and the forces that must be introduced into the equations of mo-
tion by the d'Alembert principle are determined as the products
of these forces by the mass of the parallelepiped.

The equations of motion of the 1solated fluid volume are now
written as follows in the projections onto the coordinate axes:

ehrtgte oo Xourtpx — Lasappz;
S SE riits — L
ez e Zotatgh — 2 Letge,

We divide these equations term by term by the mass péxdylz
of the element and pass to the limit, letting éx, 8y, and &z
vanish simultaneous.y, i.e., letting the parallelepiped shrink to
the original point M. Then at the limit we obtaln the equations
of motion of the fluid referred to point M:

dv, 1 0p . ’
=X e
w _y_Lto, } (4.14)
/] e "' '

v z_19
[ z 'YTHh

The equations of this system of differential equations of mo-
tion of the ideal fluld are known as the Euler equations. The
terms of these equations represent the corresponding accelerations,
and the sense of each of the equations is as follows: the total
acceleration of a particle along a coordinate axis is composed of
the acceleration of the mass forces and the acceleration of the
pressure forces.

The Euler equations are valid in this form for both incom-
pressible and compressible fluids, and for the case in which only
gravity among the mass forces is in operation, and for the general
case of relative motion of the fluid (see §u4l4). Here the accele-
ration components of the translational (or rotational) motion must
be introduced into the quantities X, Y, and Z. Since we did not
impose the condition of steady motion in deriving Eqs. (4.14),
they are also vglid for nonsteady motion.

Considering steady motion of the fluid, let us multiply all
equations of (4.14) by the corresponding projections of the ele-
mentary displacement, which equal

dx=v.dl, dy= v dt, dz=od!.

and add the equations. We have

Xdx+Ydy+ Zdz -‘—-l—(:%dx-k:i;-dy +L dz)héi{,..dtv,-l-o,f!v,.{.b,dv;. (4.15")
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Remembering that the expression in parentheses is the total
differential of the pressure and that

l"z
odi il ).
“'“ '(2)'

v

w5 1,
: A,

el o (.p") é:o

N T « 0
2 00
and 62>
Gk e %e

we can rewrite (4.15') in the form

Syt .y .l bt .
X Yy b 70 e d :.(‘) (4.15)

1 (R
I- . I'n ’
al o drle (?),

where§U %s the force function with which we are already familiar
(see §13).

We integrate this equation for the fundamental particular
case of steady motion of an i1deal fluid, when the fluid 1s acted
upon only by a single mass force, gravity.

or

For this case, with the z-axis pointing vertically upward
X~-0; Y- 6,2 g

Substituting these values into (4.15),
gl (l(' id (;A) 0

or . -
(v-p”u-;ﬂ(‘ )A(L
Y 2

Since y = const in the case of an incompressible fluild, the
above equation can be rewrlitten

afc T4 o

This equatlion signifies that the increment in the sum of the
three terms in the parentheses in displacement of a fluld particle
along a streamline (trajectory) is zero. We infer from thls that
the above trinomial 1s a constant along a streamline, and hence
also along an elementary filament, 1i.e.,

"

2 -F S o,
‘ Yy '
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Thus, we have arrived at the Bernoulll equation for a fila-
ment of ideal fluid, which we derived in the preceding section
by another method.

If we write this equation for two sections of the filament,
1-1 and 2-2, it assumes the form already familiar to us (4.12).

§18. BERNOULLI EQUATION FOR VISCOUS-FLUID FLOW

On passing from the elementary filament of ideal fluid to a
viscous-fluid flow that has finite dimensions and is bounded by
walls, it will be necessary to remember, firstly, the nonuniform-
ity of velocity distribution over the cross section and, secondly,
the energy (head) losses. Both are consequences of the viscosity
of the fluid.

In motion of a viscous fluid along a solid wall, as in a
pipe, the flow 1s decelerated by viscosity and by the action of
molecular cohesive forces between the fluid and the wall. As a
result, veloclty reaches its highest value at the center of the
stream; as we approach the wall, velocity drops practically to
zero. The result is a velocity distribution similar to that
shown in Fig. 28,

Nonuniform velocity distribution
implies slip (shear) of some layers
or parts of the fluld with respect to
others, giving rise to tangentlial
S — stresses, i.e., frictional streasses.

2
/4’ ~- 4 In addition, the motion of a viscous
7' fluid is often accompanied by rota-
~ i R tion of particles, eddy formation,
and mixing. All of this requires ex-

gtgiosainv:%:::;y distri- penditure of energy, so that the

* specific energy of a moving viscous
fluid (its total head) does not re-
main constant, as in the case of the
ideal fluid, but is gradually expended in overcoming resistances
and, consequently, decreases along the flow.

As a result of the nonuniform velocity distribution, 1t 1is
necessary to introduce the velocity Vo averaged over the cross

section (see §15) and the average value of the fluid's specific
energy in a given cross section.

Before turning to an examination of the Bernoulli equation
for a flow of viscous fluid, we shall adopt the following assump-
tion: within the flow cross sections under consideration, the
fundamental law of hydrostatics is valid, for example, in the
form of (2.3), i.e., the hydrostatic head is the same for all
points in a section:

z + (p/y) = const (within the section).
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In so doing, we assume that individual filaments in the mov-
ing fluld exert the same pressure on one another in the trans-
verse direction as layers of the fluid do at rest. This 1is re-
alistic, and can be demonstrated theoretically in the case of
parallel-filament flow in the cross sectlons under consideration.
We shall therefore be examining precisely these cross sections
(or closely similar ones).

Let us introduce the concept of flow power. The flow power
in a given cross section is the total energy that the stream
carries through this section per unit of time. Since the fluid
particles have different energles at different points in the flow
cross section, we shall first express the elementary power, i.e.,
the power of an elementary filament, as the product of the total
specific energy of the fluid at the particular point by the ele-
mentary gravimetric flow rate:

The power of the entire flow 1s found as the integral of this
expression over the entire area S, 1i.e.,

N Trcl'l” Yoo
)
or, applylng our assumption,

oyl I e Y (e
2w e e

&

or
R
%0000/

Let us find the average total fluid specific energy over the
cross section by dividing the total flow power by the gravimetric
flow rate. Applying (4.4),

Multlplying and dividing the last term by V;r’ we obtain

| e L (4.16)
S ] N [

!
% [ B

where a 1s a dimensionless coefficient that takes account of the
velocity-distribution nonuniformity and equals

. (4.17)

If we multiply the numerator and denominator of (4.17) by
p/2, we shall see at once that the coefficlent a is the ratio of
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the actual flow kinetic energy in the given cross section to the
kinetic energy of the same flow in "he same section, but with &
uniform velocity distribution.

For the usual type of velocity distributian (see Fig. 28),
the coefficient a 1s always greater than unity,® but it 1s unity
for a uniform velocity distribution.

Let us take two sections through a real flow - first and
second — and denote the average speciflc energy values (total
heads) of the fluid in these sectlons by Hsrx and Hsrz’ respec-

tively; then : »
Hcpl=H:pz +‘Z". (ls.18' )

where Lh is the total loss of specific energy (head) on the seg-
ments between these sectlons.

l Fy
TTTTITITIT T TIIN T T T

Fig. 29. Graphical illustration of
Bernoulli equation for a real flow.

Applying (4.16), we can rewrite the above equation as fol-
lows:

: o
2t 2t o=z kB e+ B (4.18)

This is the Bernoulll equation for viscous=-fluid flow. It
differs from its  analogue for an elementary filament of ideal
fluid in the term representing the specific-energy (head) loss

and the coefficlent that takes account of velocity-distribution
nonuniformity. In additiocn, the velocitiles that appear in this

equation are averages over the sections.
t3ee page T4 for footnote.
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The Bernoulll equation (4.18) is applicable not only for
liquids, but also for gases, assuming that thelr velocities are
considerably below that of sound.

This equation can be represented graphically in much the
same way as was done for the ideal fluld, but with consideration
of the head loss. The latter also represents a certaln height,
which increases steadily along the flow (Fig. 29).

While the Bernoullil equation represents the law of conserva-
tion of mechanical energy for a filament of ideal fluld, it is
an energy-balance equation with consideration of losses for the
real flow. The energy lost by the ‘fluid on the segment of flow
under consideration does not, of course, vanish without a trace,
but is simply converted into another form: heat. The thermal
energy 1s, of course, continually being dissipated, so that the
temperature rise is often hardly noticeable 1n practice. This
process of conversion of mechanical energy into heat is irrevers-
ible, i.e., one that cannot reverse its course (with conversion of

heat to mechanical energy).

The decrease in the average total specific energy of fluid
flow along the stream, referred to unit stream length, is known
as the hydraulic gradlent. The change in specific potential
energy of the flu%d per unit length is called the plezometric
gradlent. Obviously, these gradlents are the same in a plpe of
constant diameter with constant velocity distribution.

§19. HYDRAULIC LOSSES (IN GENERAL)

Specific-energy (head) losses or, as they are commonly called,
hydraulic losses, depend on the shape, dimensions, and roughness
of the channel, flow velocity, and the viscosity of the fluid, but
are practically independent of the absolute pressure in the fluid.
Although it 1s the root cause of all hydraulic losses, fluid vis-
cosity by itself influences the losses substantially in far from
all cases. This will be discussed in greater detall below.

Experiments have shown that the hydraullc losses are in many
cases approximately proportional to the square of velocity, and
for this reason hydraulics has long made use of the following
general method of expressing hydraulic total-head losses in linear

units:
v?
Ee U2 (4.19')
7

or in pressure units

"

: &

ap- by T- " ':.::n..q'._
I \ 7":\ 0

This expression is convenient in that it incorporates the di-
mensionless proportionality factor ¢, which is known as the
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coefficient of resistance, and the velocity head, which apﬁears
In"the Bernoulll equation.’

Thus, the coefficlent of resistance { is the ratio of the
Tost head to the velocity head.

Hydraulic losses are usually classified into two forms: local
and frictional.

.-EV~"‘
‘_gFEHE-.

— e
a) - D) d)
. e) -
Fig. 30. Diagrams of local hydraulic
resistances,

Local energy losses are governed by the so-called local hy-
draulic resistances, i.e., local changes in the shape and dimen-
sions of the channel, which cause deformation of the stream. Dur-
ing passage of the fluid through local resistances, its velocity
changes and eddies usually form.

The devices shown in Fig. 30 may serve as examples of local
?egistances: the check (a), diaphragm (b), elbow (¢), and valve
d).

The local energy losses are determined by Formula (4.19')

= (4.19)
h, ‘"2:

or

v?

2
Apu-(u%'\"’:(uo P
This last equation is often referred to as the Weissbach formula.

In 1t, v is the average velocity over the cross section in
the pipe in which the particular local resistance has been in-
stalled.® If, on the other hand, the pipe diameter and, conse-
quently, the velocity in it vary lengthwise, it is more conven-
ient to take the higher of the velocities as the working velocity
— 1.e,, the one that corresponds to the smaller pipe diameter.
Each local resistance is characterized by 1its own resistance coef-
ficient cm’ which “n many cases can be assumed approximately con-

stant for a given local-resistance shape. Local hydraulic resis-
;agngs will be examined more closely in Chapter VIII,
»"See page 75 for footnotes.
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The frictional losses or length losses are energy losses
that arise in pure form in straight constant-section pipes, 1i.e.,
in uniform flow, and increase in proportion to pipe length (Fig.
31). Losses of this type are governed by internal friction in
the fluid, and therefore occur in pipes nc matter how smooth
thelr walls are.

The frictional loss of head can be
expressed by the general formula for

N ] hydraulic losses (4.19'), 1i.e.,
. o
(' 4 "u':‘cn-i{;," (4.20')
—t el -L:?.L__
1 r but it will be more convenient to relate
—1 > the coefficient ctr to the relative pipe
length &/4.

Fig. 31. Frictional

loss of head in pipe. Let us take a segment of round pipe

whose length 1s equal to its diameter and

denote by A its coefficient of resistance,
which appears in Formula (4.20')., Then the resistance coefficient
for the entire pipe of length & and diameter 4 (see Fig. 31) will
be larger by a factor of 2&/d, i.e.,

!
-_:).-»-—
Gty
and Formula (4.20') becomes
1 v
”nﬁfl}“z; (4.20)
or
[
A[)”.“')-’d 9!." . (u.21)

Formula (4.20) is usually known as the Darcy formula.

The dimensionless coefficlent A will be referred to here as
the coefficlent of frictional loss or the coefficlent of friction-
al resistance. t can be regarded as a coefficient of propor-
tionality between the frictional head loss on the one hand and
the product of relative pipe length by velocity head on the other.

We can easily establish the physical significance of the
coefficlent A by examining the condition of uniform motion in a
cylindrical pipe of length 2 and diameter d, i.e., zero sum of
two forces acting on the volume: the pressure and friction forces.
This equality takes the form

"2 '
E"T Apg,-- vl 0,
where 1, is the frictional stress on the pipe wall.
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From this, applying (4.21), we guickly obtain

47, 47,
 WESP.A.{ L S
»u v (4.22)
y?g ¢ 2

i.e., the coefflcient A is proportional to the ratio of the frlc-
tional stress on the pipe wall to the dynamic pressure, the lat-
ter calculated from the average velocity.

In rammed flows (see §14), hydraulic losses occur owing to
a decrease 1n the speciflc potential energy of the fluid
(z + [p/y]) along the stream. Here, even if the specific kinetic
energy of the fluld (v?/2g) changes along the stream at a glven
flow rate, this 1is not due to energy losses, but results from
changes in the eross-sectional dimensions of the channel, since
1t depends only on velocity ana velocity is determined by flow
rate and sectional area:

-
S

On a constant-cross-section pipe, therefore, the average velocity
and specific kinetic energy remain strictly constant despite the
presence of hydraulic resistances and head losses. In thls case,
the head loss 1s determined as the difference between the readings
of two plezometers (Figs. 30 and 31).

Calculation of hydraullc losses for various specific cases
represents one of the basic problems of hydraulics. The next two
chapters are devoted to this problem.

§20. EXAMPLES OF APPLICATION OF THE BERNOULLI EQUATION IN ENGINEER-
ING

The Bernoulli equation, which we derived in the preceding
sections, is o fundamental law of steady-state fluld motion. It
enables us to analyze and understand the
operation of a number of devices whose ac-
tion is based on utilization of this impor-
tant law. Let us consider these devices.

]

1. The choke-type flowmeter, or Ven-
turi flowmeter, is a device that is in-
stalled in pipelines and restricts or
: T chokes the flow (Fig. 32). The flowmeter
F ?'| consists of two sections: a smoothly tap-

‘Tll § ered section (the nozzle) and a progres-
sively expanding section (diffuser). The

flow velocity increases in the narrow sec-

tion, and pressure drops. The result 1s

a pressure difference (gradient), which 1s

measured by a palr of plezometers or a U-

tube differential manometer and is related

% | h
HHThran
MR mP
Fig. 32. Diagram of
choke-type flowmeter,

KEY: (a) plezometers;
Let us

(b) mercury manom-
eter.

in a definite manner to flow rate.
find this relationship.
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Suppose that we have veloeity v,, pressure p,, and sectlonal
area S; in section 1-1 of the flow immediately ahead of the con-
striction and v,, p,, and S,, respectively, in section 2-2, 1.e.,
at the narrowest point of the flow.

Let us write the Bernoulll and flow-rate equations for the
first and second flow sections (assuming the velocity distribu-
tion to be uniform):

2 L ]
IR RN BT
VF% v*u !
Sy~ 1Sy

where hm is the head loss between sections l1l-1 and 2-2.

Remembering that

h 4 u;‘ and At — P I
Y .4 B e Y
” 27 ¥

where AH 1s the difference between the readings of the piezometers
connected to these sections. From this equation system, we find
one of the velocitles, e.g., v,:

Hence the volume flow rate is

Q”*/ "—2'2‘}{)'? - (h.23)
: 1t

(s,

or .
Q"CI/A/| (u.23')

where C 1s a constant for a given flowmeter:

Knowing C and watching the plezometer readings, we can
easlly determine the flow rate in the pipe at any point in time
by Formula (4.23'). The constant C can be calculated theoretic-
ally, but it 1s found more accurately from experiment, i.e., by
calibrating the flowmeter.

The relation between AH and Q is found to be parabealic. If

we plot the square of flow rate along the axls of abscissas, the
graph of this relationship will be a straight line.
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Fig. 33. Diagrams of metering nozzles
and diaphragms.

Quite frequently, a differential mercury mancmeter (see Fig.
32) is used instead of the pair of piezometers to measure the
pressure gradient in a flowmeter. Since the same fluid with 1its
specific welght y occupies the tubes above the mercury, we can
write

AH=8k E}Y—.'

It should be noted that the choke flowmeter can be made with
the nozzle alone, which may be press-fitted into the pipe (Pig.
33a) or clamped between flanges (Fig. 33b). In this case, the
same smooth constriction of the flow as in Fig. 32 will result,
but the expansion of the flow beycnd the nozzle will occur spon=-
taneously and be accompanied by eddying. Hence the resistance of
such a nozzle is higher than that of a nozzle fitted with a dif-
fuser.

Flowmeters can also be made in the form of diaphragms (Fig.
33¢). It must be remembered here that the smallest section of
the flow will be to the right of the diaphragm plane owing to the
additional constriction and will be somewhat smaller than the
hole in the diaphragm.

Formula (4.21') also applies for these devices, but with
certain correction factors, which can be found in the appropri-
ate handbooks for the standard flowmeter forms.

These choke-type flowmeters are the most accurate types and
are used to calibrate (test) aircraft flowmeters.

2. The carburetor of the piston-type internal-combustion en-
gine has the function of aspirating gasoline and mixing it with a
stream of air (Fig. 34). The stream of air drawn into the englne
narrows at the exact position of the gasoline jet (at the cut end
of the tube). In this cross section, the velocity of the air
rises and the pressure drops in accordance with the Bernoulli law.
The vacuum also draws gasoline through the jet into the air
stream.

Let us find the relation between the gravimetric flow rates
of the gasoline Gb and air Gv for given dimensions (D and Q) and
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resistance coefficients of the air intake
(upstream of section 2=2), €, » and the

i
P ﬂ! J Lﬂf?' Jet Szn (disregarding the resistance of
;jf‘xyllﬁﬁ = the gasoline line),
7 |- %

1 =
Ly L l‘a’. ChlgiTTiI
Ol .:__{'(h'.‘lu;'v

Writing the Bernoulld equation for
the air stream (section 0-0 and 2-2) and
then for the gasoline stream (section

RINESACU
4dlalnjntPﬂﬂmm{%4 © 1-1 and 2-2), we obtain (for Z, = z, and
cgl AN . a=1)
0-—9e3yy . R
Pr Yo . Pa.m v Vi,
| b RcE
Fig. 34. Diagram of P N -
carburetor, A 4*--”%-;(mfw.
KEY: (a) gasoline; (b) AL %

Jet (czh); (¢) air.

from which ”orﬁtge
X II?" l . ',;-:_. . . ODUC/Rl
Vg ‘.-C.)==\'6;‘,»6-, (-] ). ' ’ 3

Remembering that the gravimetric flow rates equal

ale 2
G,: ‘~-‘~-,— Yy, and G ~’"l it

we obtain

Go o foN ey
G (f/ V(i

3. The jet pump (ejector pump) consists of a smoothly nar-
rowing mouthplece A (Fig. 35), which constricts the flow, and a
progressively expanding pipe C, which is set up at a certain dis-
tance from the mouthpiece in chamber B. Owing to the flow-velo-
city increase the pressures in the jet and throughout chamber B
are lowered considerably, In the expanding pipe, velocity de-
creases, and pressure rises to about atmospheric (1f the fluid is
flowing out into the atmosphere ) ; consequently, the pressure in
chamber B will normally be below atmospheric, l.e., a vacuum will
be produced.

-. g ] (‘\ .
NN LA
Q,_ o -:_ — 4
¥y tiee
£ ffe
n. !
Fig. 35. Diagram of Fig. 36. Diagram of

ejector pump, Pitot tube.
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Fig. 37. Diagram of alrcraft speed-in-
dicator head.
‘? . . vt This vacuum draws fluid from the tank
-t ]‘h*ﬂﬁa}f at the bottom through line D into chamber
-{~ B, where the two flows merge and then mix.
] As a result, the fluld flow rate in
LT i pipe C is found to be equal to the sum of
S | the flow rates Q, in mouthpiece A and Q,
I in induction pipe D. EJectors are used in
liquid rocket engines [LRE] (XPA), and in
Fig. 38. Diagram of various other branches of engineering.
velocity pressuriza-
tion. 4, The Pitot tube can be used to meas-

ure flow velocity. Suppose that a fluld

1s moving in an open channel at velocity v
(Fig. 36). If a pipe bent at a right angle 1s inserted in a -
stream with its orifice A facing into it, the fluid in this pipe
will rise to a height equal to the veloclty head above the free
surface, The explanation for thls is that the velocity of the
fluid particles entering the orifice of the pipe drops to zero,
so that the pressure is increased by an amcunt equal to the velo-
city head. The flow veloclty 1s easily determined by measuring
the height to which the fluid has risen in the pilpe.

Alrcraft airspeed indicators are bullt on the same principle.
Figure 37 shows a diagram of an alrcraft veloclty tube (head) for
low flight speeds (low by comparison with that of sound).

Let us write the Bernoulll equation for an elementary fila-
ment that enters the tube along its axis and then spreads out
over its surface. Taking sections 0-0 (free stream) and 1-1
(where v = 0), we have
v
PR

Since the side-facing holes of the tube sense the approximate
pressure of the free stream, we have p, = Po3 consequently, the
above ylelds



5. Velocity pressurization (Fig. 38) is extensively used on
aireraft to pressurize fuel and other tanks. At low flight
speeds, the excess pressure in the tank 1is approximately equal to
the dynamic pressure calculated from airspeed and air density.
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Footnotes

1This last statement is proven in much the same way as
for the stationary fluid (see §4): the equations of
motion of an elementary tetrahedron are written with
consideration of the d'Alembert forces, which are then
allowed to vanish together with the mass forces as the
tetrahedron shrinks to a point.

2Daniel Bernoulli (1700-1782), son of Johann and nephew
of Jacob Bernoulli, the famous Swiss sclentists, mathe-
meticlans, and mechanicians. D. Bernoulll also worked
in the flelds of mathematics and mechanics; in his work
entitled "Hydrodynamics" (1738), he laid the theoreti-
cal foundations of hydraulics as a sclence. D. Bernoulll
spent a considerable part of his 1life at St. Petersburg
as an active and, later, an honorary member of the Rus-
sian Academy of Scilences.

31t must be remembered that internal energy, which is
characterized by the temperature of the fluid and does
not change along a stream of 1ldeal incompressible fluid,
is not incorporated here into the concept of the total
specific energy H of a fluid.

It must be remembered that the pressure p is the only
really existing pressure in the stream, i.e., the only
stress of normal surface force. However, the other two
quantities (zy and p(v%/2)) can easlily be converted to
corresponding pressures p and for this reason are also
referred to conventionally as pressures.

sThese arbltrary elementary segments should not be con-
fused with the projections of the elementary displace-
ments dx, dy, and dz.

6This can be proven by expressing the velocity v in For-
mula (4.17) as the sum v = v_, + Av, breaking the lnte-

gral up into four integrals, and analyzing the numeri-
cal value of each of them,

“Th-
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"The structure of these formulas can be obtained by di-
mensional analysis.

®From now on, the subscript "sr" to the symbol v will
be used only when the average velocity might be con-
fused with the local veloclty.
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Symbol List

Manu-

script Symbol English equivalent
page

53 cp sr average

66 M m local

67 TP tr friction

71 X zh jet (carburetor)
71 B v air

71 o b gasoline
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CHAPTER V
FLUID FLOW IN PIPES. HYDRODYNAMIC SIMILARITY

§21. FLOWS OF FLUIDS IN PIPES

Experiments have shown that there are two possible regimes
or two forms of liquid (and gas) flows in pipes: laminar and
turbulent.

Laminar flow'® is layered flow without mixing of fluld par-
ticles and without velocity pulsations. In such flows, all
streamlines are fully determined by the shape of the channel
through which the fluld is flowlng. In laminar flow of a fluld
in a straight pipe of constant cross section, all streamlines
are parallel to the pipe axis, 1l.e., straight; there are no
lateral movements of fluld particles and hence no mixing of the
fluld as it flows. A plezometer connected to a pipe with a
steady laminar flow indicates a constant pressure (and velocity)
and the absence of oscillations (pulsations). Thus,a laminar
flow is a fully ordered and, at constant head, strictly steady-
stat§ flow (although 1t may also be nonsteady in the general
case).

However, a laminar flow cannot be regarded as irrotational,
because even though 1t does not contain distinect eddies, the
translational motion is accompanied by a simultaneous ordered
rotational motion of the individual fluid particles around their
instantaneous centers at quite definite angular velocitles.

TSee page 92 for footnote.
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Turbulent flow? 1s flow accompanied by vigorous mixing of
the fluid and by velocity and pressure pulsations. In a turbu-
lent flow, the streamlines are determined only approximately by
the shape of the channel. The motions of the individual par-
ticles are disordered, and the trajectorles sometimes take the
form of intricate curves. This 1s explained by the fact that in
a turbulent flow, the fundamental longitudinal fluid displacement
along the channel 1s accompanied by transverse displacements and
rotational motions of individual fluid volumes.

m

Fig.'39. Diagram of &evice used
to demonstrate flow regimes.

These fluid-flow regimes can be observed in the apparatus
shown above (Fig. 39). It consists of water tank A, from which
is run a glass tube B with a cock C at its end, and a contalner
D with an agqueous solution of a dye, which can be fed through
tube F into glass tubes B in a thin filament.

If cock C 1s cracked open, allowing water to flow slowly
through the tube, and cock E is then opened to admit the dye
into the stream of water, we see that the dye introduced-into the
tube does not mix with the water stream. The dye filament will
be clearly visible dcwn the entire length of the glass tube, in=-
dicating that the fluid flow 1s laminar and that there is no
mixing. This is the laminar flow regime.

As cock C 1s opened further, the water flow velocity in the
tube increases, but the flow pattern does not change immediately;
only at a certain flow veloclity does a rapid change 1n the flow
regime take place. The filament of dye exiting from the tube be-
glns to oscillate, and then fades and mixes with the stream of
water, with noticeable eddying and rotational motion of the fluld.
The flow regime has become turbulent (see Fig. 39, top).

Laminar flow can be restored by lowering the flow velocity
again.

The flow regime of this fluid in the tube changes at a de-
finite flow velocity, which 1is known as the critical velocity
(vkr)’ Experiments have shown that this veloclty ls directly

proportional to the kinematic coefficient of viscoslty (v) and
*Tee page 92 for footnote.
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inversely proportional to tube diameter (d), 1.e.,

v
ﬂ."k—‘—.
We find that the dimensionless proportionality coefflcient k

that appears here has a universal value, 1.e., it is the same for
all 1iquids and gases and all tube diameters.

This means that the flow regime changes at a quite definite
relationship between viscosity, diameter, and the viscosity v; it
1s

ro

v

This dimensionless number 1s known as the critical Reynolds
number after the English scientist who established this criterilon,
and is denoted by

ke, ' (5.1)

Experiment has shown that the critical Reynolds number is ap-
proximately 2300,

However, we may speak not only of the eritical number Rekr’

which corresponds to the change of regime, but also of the actual
Reynolds number for any particular flow, expressing 1t in terms
of the actual velocity, 1.e.,

| A (5.2)

A

Thus, we obtain a criterion by which we can judge the fluild-
flow regimes in pipes. The flow 1s laminar for Re < Rekr and

usually turbulent for Re > Rekr‘

Knowing the fluid flow velocity, the tube diameter, and the
fluid's viscosity, we can calculate the fluid-flow regime; this 1is
highly important for later hydraulile calculations.

In practice, laminar flows are encountered when highly vis-
cous fluids, such as lubricating oils, glycerin mixtures, ete.,
move through pipes.

Turbulent flow usually occurs in water lines and in plpes
carrying gasoline, keroseue, alcohols, and acids. Thus, both
laminar and turbulent fluld-flow regimes in plpes must be dealt
with on ailrcraft; the flows are most often laminar in alrcraft
011 and hydraulic systems and turbulent in fuel systems.

The change in flow regimes on reaching Rekr is explained by
the fact that one flow regime loses stability, while the other
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acquires it, For Re < Rekr’ the laminar regime 1is quite stable;

all types of artificial turbulization of the flow and disturbances.
to it (shaking of the pipe, insertion of vibrating bodies into

the flow, etc.) are damped by the effects of viscosity and lami-
nar flow is restored. The turbulent regime is unstable under
these conditions.

At Re > Rekr’ on the other hand, the turbulent regime is
stable and laminar flow is unstable.

As a result, the critical number Rekr’ which corresponds to

the transition from laminar to turbulent flow, may prove to be
somewhat larger than the Rekr for the reverse transition. Under

special laboratory conditlons, in the total absence of factors
that contribute to flow turbulization, it is possible to obtain
laminar flow at Re substantially larger than Rekr' But in these

cases the laminar flow 1s so unstable that, for example, a slight
Jolt is sufflcient to transform the laminar flow'quickly into a
turbulent flow. In practice, and particularly in aircraft pipe-
lines, we usually have conditions that promote turbulization -
vibration of the pipes, local hydraulic reslstances, nonuniformity
(pulsations) of flow rate, ete., so that the above fact 1s of
fundamental rather than practical importance in hydraulics.

The question as to the stability of laminar flow and the
turbulization mechanism has not yet been fully resolved theoretic-
ally. However, research has shown that such factors as dlstance
from the wall, velocity, and 1its transverse gradient dv/dy tend
to promote turbulization in a given section through a cylindrical
pipe. The greatest wall distance and the highest velocity occur
at the center of the stream, but the gradient dv/dy is zero there.
At the wall, on the other hand, the veloclty gradient 1is greatest,
but the velocity and distance y are minimal or even zero. As a
result, the initial turbulization of a laminar fluid in a
stralght pipe of constant cross section intervenes somewhere be-
tween the pipe axis and the wall, but closer to the wall.

Flow turbulization does not occur in the same way in vari-
able-section pipes as 1n the cylindrical pipe. In expanding
pipes, we observe deceleration of the flow and an increased ten-
dency to transverse mlxing, and Rekr becomes smaller. In taper-

ing pipes, flow is accelerated and the velocitles are equalized
over the cross sectlion, there 1s less tendency to mix, and Rekr

increases.
§22. HYDRODYNAMIC SIMILARITY
The Reynolds number derived in the preceding section 1s of

great importance in hydrualics, and also in aerodynamics, since
it is one of the basic criterla of hydrodynamic similarity.

YSee page 92 for footnote.
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Hydrodynamic similarity is similarity of incompressible-fluid
flows and incorporates geometrical, kinematic, and dynamic
similarities.

Fig. 40. Similar flows.

Geometrical similarity, as we know from geometry, means
proportionalify of corresponding dimensions and equality of cor-
responding angles. In hydraulics, we shall take geometrical
similarity to mean similarity of the surfaces that bound the
fluld flows, i.e., similarity of the channels (Fig. 40).

Kinematic similéfity is similarity of streamlines and pro-
portionality of corresponding velocities. Obviously, geometrical
similarity of the channels 1s required for kinematic similarity
of flows,

Dynamic similarity means proportionality of the forces act-
ing on corresponding elements of kinematically similar flows and
equality of the angles characterizing the directlons of these
forces.

A varlety of forces are usually in operation in fluld flows
— pressure, viscosity (friction), gravitational, and other forces.
Observance of proportionality of all these miscellaneous forces
signifies what 1s known as complete hydrodynamic similarity.

For example, proportionallty of the forces of pressure ? and
friction T acting on corresponding volumes in flows I and II can

be written
(V;') )l L (—;—:)ll )

It 1s extrémely difficult to bring about complete hydro-
dynamic similarity in practice, and we therefore usually deal
with partial (incomplete) similarity, in which proportionality
of only the principal and basic forces 1s observed. For ramming
flows in closed channels, 1.e., flows in pipes, hydraulic
machines, etc., calculations indicate that these principal forces
are the forces of pressure, friction, and thelr resultants, 1.e.,
forces of inertia. As can be shown for similar flows, the.latter
are proportional to the product of dynamic pressure pv¢/2 by the
chara:teristic area S.
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Actually, for a fluld particle one of whose dimenslons is
AL, the force is equal to the product of its mass by its accele-
ration, 1l.e.,

AlY. Te(a’) v ke (Al)“ L /-'L‘(.\’)"v“ ,
das 3 ds

where Kk is a dimensionless proportionality coefficlent that de-
pends on particle shape and ds is an element of the particle's
path.

Let us multiply and divide the last expression by 22 and vsr’

i.e., introduce, in addit’on to the quantities that pertain to
the particle, similarly named quantities that characterize the
flow as a whole; we shall have

L . AN /A 2w v 2
A ke U1 ) v”d ”.)oth

The five dimensionless multipliers in the expression for AF
have the same values for geometrically and kinematically similar
flows and similar particles. Consequently, by substituting the
proportionality sign for the equals sign, we can wrlte for these
flows

AF~au3h,
or, since 22~ S and AF ~ F, we finally obtain
F ~qut,s. (5.3)
For similar flows I and II,

f, (qu ),
(9" S)u

(evr 5) (‘!’crr )

The latter ratio, which is the same for similar flows, is
known as the Newton number and denoted by Ne.

or

We note in passing that the forces that the flow exerts (or
could exert) on obstables such as solid walls, vanes of hydraullc
machines, bodles washed by the flow, etc., are proportional in
similar flows to this same product pv S. Thus, if a fluld flow

strikes an infinite wall (Fig. 41) that has been erected normal
to it and changes direction by 90° as 1t spreads out over the
wall, the momentum theorem of mechanics tells us that the per-
second impulse of the force equals

PegQu=¢v?S. (5.4)
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This is the force that acts on the
obstacle. If the wall is set at a dif-
ferent angle or has different shape and
dimensions, the proportionality coeffi-
clent will be other than unity.

Foagud Let us examine the simplest case

_ e first — that of rammed flow of an ideal
fluid, 1.e., a motion in which there are
no viscous forces and the action of
gravity 1s manifested in pressure.

For this case, the Bernoulll equa-
tion for sections 1-1 and 2-2 (see Fig.
40) takes the form

—
R e Y Ly L e

.

Fig. 41. Action of . o
flow on obstable, L’L.i_,‘_.,:.’i:'..-{.,.l.
Y 2% v %
or

3

e g S

v'é s§

0

For two geometrically similar flows, the right member of the
equation has the same value; consequently, the left members are
also the same, 1.e., the pressure differences are proportional to

the dynamic pressures:
() (el (5.5)

Thus, geometrical similarity alone is sufficlent to. ensure
hydrodynamic similarity for rammed motions of an ldeal incompres-
sible fluid. The dimensionless quantity that represents the
ratio of the pressure difference to the dynamic pressure (or of
the plezometric-head difference to the velocity head) is known as
the pressure coefficient or Euler number and is denoted by Eu.

Let us see what condition must be met by the same geometric-
ally and kinematically similar flows to ensure their hydrodynamic
similarity in the presence of viscosity forces and, consequently,
energy losses = 1.e., the condition for which the Eu will be the
same for these rammed flows,

The Bernoulli equation will now take the form

4l vi_»p vz v:
Y ' v ault ‘e

mﬁ“—zﬁucq,- c.%—-{-‘. (5.6)
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As we see from (5.6), Eu will be the same for these flows and
the flows will be similar to one another hydrodynamically if the
resistance coefficlents  are equal (equality of the coefficients
a, and a, for corresponding sections of the two flows follows from
their kinematic similarity). Thus, the coefficients ; must be the
same in similar flows, and this means that the head losses for
corresponding segments (see Fig. 40) are proportional to the velo-

city heads, 1.e.,
LIS WER IS
% ) 2% Ju

Let us consider a case of fluid motion that is very impor-
tant in hydraulics — motion with friction in a cylindrical pipe,
for which (see §19)

31
e he—,
¢ dq

The ratios %£/d are the same for geometrically similar flows,
and, consequently, identical values of the coefficient A for these
flows 1is a hydrodynamic-similarity condition in this case. On
the basis of (4.22), this coefficient is expressed in terms of the
frictional stress 1, at the wall and the dynamic pressure, as
follows:

Consequently, we can write for twc simllar flows I and II

(&) =GR (5.7)

i.e., the frictional stresses are proportional to the dynamic
pressures.

If we apply the third law of Newton and conslider that v =
®* Vop in (5.7), the above ratios, denoted by the letter k, can

be expressed as follows:
ke (5F), 1%

where the subscript y = 0 indicates that the derivative is taken
at y =0, 1.e., at the pipe wall.*

After multiplying and dividing by the pipe diameter 4 and
regrouping factors, we obtaln

k= (:“) l : ’(?ﬁ}’! — — v
y Jymo vq, e v.,l d(y/a) vepd v d
¥See page 92 for footnote.
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Here ¢ denctes the expression in the square brackets, which
represents the dimensicrless veloclty gradient at the wall. The
quantity ¢ 1s the same for kinematically similar flows, so that
after cancelling the c, the dynamic similarity condition for the

flows (5.7) will be rewrltten

R A

or, converting to the reciprocals,
KIS (5.8)

This is the import of the Reynolds similarity law, which can
Le stated as follows: with consideration of viscosity forces,
equality of the Reynolds numbers calculated for any pair of cor-
responding sections through geometrically similar flows is re-
quired for hydrodynamic similarity of these flows.

NOT REPRODUCIBLE

It now becomes understandatle why the transition from one
flow regime to the other takes place at a definite Re, and the
physical significance of this number for pipe flows has also
been clarified, 1.e., Re 1s proportional to the ratio of the
dynamic pressure to the frictional stress or, which 1s the same
thing, to the ratio of the inertial to the viscosity forces. The
higher the velocity and the larger the transverse dimensions of
the flow and the lower the viscosity of the fluld, the greater
will Re become. Re 1s infinite for ideal-fluid flow, since the
viscosity v = 0.

In nonramming flows (§14), the similarity question is compli-
cated by the difference between levelling heights, since it 1s
necessary to introduce one more slimilarity criterion — the Froude
number, which takes account of the influence of gravity on fluid
flow. But for the overwhelming majority of the problems that
interest us in the fleld of aviation engineering, this criterion
1s unimportant and we shall not dwell upon it,

In similar flows, therefore, we have equality of the dimen-
sionless coefficients, the numbers «, &, A, Eu, Ne, Re, and cer-
tain others that will be introduced and examined below. A change
in Re signifies that the relationships among the principal forces
in the flow have changed, with the result that these coefficients
may also change. Thus, all of these coefflclents must be regarded
in the general case as functions of Re (although they may remain
constant in certain Re ranges).

Example. Determine the flow regime of AMG-10 fluid in an
aircraft hydraulic line with a diameter d = 12 mm if the flow
rate @ = 0.25 1/s and the fluld temperature is 0°C (see Table
1 on page 12). At what temperature does the flow regime change?

Solution. 1. From Table 1 we find v = 42 ¢St = 0.42 cm?/s.

2. We determine the Reynolds number:
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o= *-“?P‘ .’-‘c-

The flow regime is laminar.

3. We find the viscosity corresponding to the flow-regime
change:
L4
4Q 4.950 °
AdRe,,  #1,2:2300

Yy =0,115 cme/8.

4. Using the data in Table 1 for AMG-10 fluid, we plot a

graph of the coefficlient v as a function of temperature and use
it to find tkr = hoe°cC.

§23. CAVITATIONAL FLOW REGIMES

In certair. cases, phenomena associated with changes in the
physical 3tate of the fluid, i.e., with its vaporization and with
liberation o dissolved gases from the fluild, occur as fluids
move in closed channels.

}or :.ample, in flow of a fluid through a local constriction
in a pipc, velocity lncreases and pressure falls., If the abso-
lute pressure reaches a value equal to the saturation vapor pres-
sure of this fluid at the particular temperature, intensive
vaporization and liberation of gases, i.e., local boiling of the
fluid, begins at this pcint in the flow. In the expanding part
of the flow, velocity decreases, pressure rises, and the boiling
stops; the vapor that has been released is partially or totally
condensed and the gases are gradually dissolved.

This local bumping of the fluid, which is governed by the
local pressure drop in the flow with the subsequent condensation
of vapor in a zone of higher pressure, is known as cavitation.

] . 1 'l

[y B[]
L l*ihhruuw i O

Fig. 42. Diagram of pipe for demonstrat-

ing cavitation.
KEY: (a) cavitation.

This phenomenon can be demonstrated impressively with a
simple device (Fig. 42). Water or some other fluid 1s fed to
regulating cock {(valve) A at a pressure of several atmospheres
and then allowed to flow through the glass tube, which first con-
stricts the flow smoothly and then allows it to expand more
smoothly until 1t discharges into the atmosphere through cock B.
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When the regulating valve 1s cracked open and, co.cequently,
the flow rates and velocities are low, the pressure drop at the
throat of the tube 1is insignificant, the stream is quite trans-
parent, and there 1s no cavitation. As cock A is progressively
opened, velocity lncreases and the absolute pressure drops in the
tube.

At Paps = Py where Py is the saturation vapor pressure, a

distinct cavitation zone appears in the tube, and its dimensions
increase as the valve is opened further.

Cavitation is accompanied ty a characteristic noise, and,
1f it continues long enough, alsc by erosion damage to metal
walls. The latter is explained by the fact that the vapor
pub! les condense rather rapidly and the fluid particles fllling
the cavity of the condensing bubble rush toward its center,
creating a local hydraullc shock as condensation culminates,
i.e., a substantlal local pressure increase. In cavitation, the
material is damaged not where the bubbles are formed, out where
they condense.

cavitation is usually an undesirable effect and cannot be
permitted in pipelines and other hydraulic systems. Cavitation
csuses a considerable increase in the resistance of the plpelines
and, consejuently, diminishes their throughput.

Cavitation may arise 1in any device 1in which the flow under-
goes local constriction with subsequent expansion, e.g., in
:ocks, valves, gates, dlaphragms, nozzle jJets, etc. In some
cases, cavitation can occur even without expansion of the flow
after the constriction, or in constant-sectlon pipes on an in-
crease in level helght and hydraullc losses.

Cavitation can occur in hydraulic machines (pumps and hy-
draulic turbtines) and on the blades of high-speed waterscrews,
In these cases, 1t results in a sharp drop in the efficiency of
the machline and then gradual destruction of the parts subject to
cavitatien.

In aircraft hydraullc systems, cavitation may arise as a re-
sult of a decrease in the external pressure as the airplane
elimbs. In this case, the cavitation reglon extends through a
considerable part of the low-pressure pipeline (induction line)
or even over its entire length. The result is a two-phased flow
in the pipe, with ligquid and vapor phases.

In the initial stage of vapor evolution, the vapor phase may
take the form of minute bubbles distributed approximately uni-
formly through the volume of the moving fluld (Fig. 43a). On
further release of vapor, the vapor phase increases and the
pubbles grow, moving preferentially along the top of a horizontal
pipe (Fig. 43p}. Finally, the vapor and liquid phases may sepa-
rate completely and move in independent streams: the former along
the top of the line and the latter along the bottom (Fig. 43c).
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Formation of vapor locks and motion of the phases in alternating
slugs (Fig. 43d) are possibilities in small-diameter pipes.

Pig. 43. Diagrams of fluid-end-air flows.

Obviously, the throughput of the line 1s reduced substan-
tially as the vapor phase increases. Condensation of the libe-
rated vapor (partial or complete) takes place in pumps, where
the pressure is increased substantially, and in the delivery
pipes through which the fluid moves under high pressure from the
pump to the appliance.

The cavitation phenomenon unfolds differently in single-
component (simple) and multicomponent (complex) flulds. For a
single-component fluid, the pressure corresponding to the onset
of cavitation 1s fully determined by the saturation vapor pres-
sure, which depends only on temperature, and cavitation proceeds
in th manner described above.

A multicomponent fluid consists of so-called light and heavy
fractions. The former have higher vapor pressures than the lat-
ter, so that the light fractions boil out first on cavitation,
and then the heavy ones. Condensation of the vapor, on the other
hand, takes place in the reverse order: the heavy fractions first,
and then the light fractions.

In the presence of 1light fractions, multic>aponent fluids
have a stronger tendency to cavitation and their vapor phases
persist longer, but the cavitatlon process is less consplcuous
than in single-component flulds.

A dimensionless number known as the cavitation number 1s
used to characterize flow regimes in respect to cavitatlon; 1t
equals

P A /1
o2 '

where p and v are she absolute pressure and velocity of the flow,
respectively.

The sense of the cavitation number 1s obviously similar to
that of Eu (see §22). However, it is sometimes more convenient
to use a slightly different expression for the cavitation number,
i.e.,

e=xu-}1 N Sl + (%2 =£)‘_—_-_[r,_

vl 3,2
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where H 1s the total head of the flow (z = 0).

It 1s clear from the above exposition that x = 0 and ¢ = 1
where cavitation arises. However,the cavitation number « (or o)
is usually determined at the entry into the unit in which cavita-
tion 1s a possibility.

The value of k {or o) at which cavitation begins in the unit
1s known as the critical cavitation number., For k > Kkp? the re-

sistance coefficient § of the unit does not depend on x, but when
K< Kpens & increases with decreasing K.

An effort is usually made to prevent cavitation in hydraulic
systems. Sometimes, however, this phenomenon may be useful. For
example, it 1s utilized in the so-called cavitational flow rate
regulators.

The operating principle of such a regulator can be appre-
ciated from the diagram of Fig. 42. Suppose that the pressure in
section 1-1 (p,) is constant (the percentage opening of cock A 1s
constant), and that the pressure in section 3-3 (p,) 1s gradually
lowered by increasing the percentage opening of cock B. The re-
sult is that the flow rate through the pipe increases and the
pressure in the throat section 2-2 (p,) decreases.

QorYeee

|, #

B Lt

F

Fiil g g

| o®
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Lig ]

Fig. 44, Flow rate through cavitation pipe
as a.function of pressures at entrance and
exit.

KEY: (a) em?/s; (b) kgf/cm?.

This will be the situation until the pressure p, 1s made
equal to the saturation vapor pressure p, and cavitation begins
in section 2-2. When cock B is opened fﬁrther, the region of
cavitation in the throat of the pipe will become larger and pres-
sure p, will become equal to Py - The flov rate will remai» con-

stant through this despite the drop in pressure p,.
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This makes it possible to stabilize the fluid-flow rate
through the regulator under conditions of variation of the back
pressure p, from critical (p’)kr’ which corresponds to the onset

of cavitation, to zero.

Figure 44 shows results of tests of a cavitation flow rate
regulator made in the form of a Venturi tube with an axisymmetric
throttle needle for adjustment of the throat-section area.

Figure 44a shows curves of flow rate Q as a function of exit
pressure p; = pvykh for various entrance pressures p; * P, and

one regulating-needle position, while Fig. U4db shows the same
curves replotted in dimensionless coordinates Q/Qmax =

= f(pvykh/pvkh)' which yilelds a single curve.

The diagrams indicate that the precision of flow rate sta-
bilization is very high.

The value of the critical pressure ratio, which corresponds
to the onset of stabilization, is easily found from the following
equations (we shall assume a, = a, = a, = 1).

1) The Bernoulli equation for sections 1l-1 and 2-2

: 2 3 3
Pl _ P Y
\r+21: y "2 a ‘o’

2) Bernoulli equation for sections 1l-1 and 3-3

2
LI 0. PO TY.
v Vo N F,‘-PGL F‘Jit-

3) The flow rate equation
Y5, =12.5,.
Here S and Ly are the respective resistance coefficients of
the nozzle (segment 1-2) and the diffuser (segment 2-3).

Simultaneous solution of these equations on the assumption
that p, = Py and v, = v, ylelds

&) s ({"fm_) I ISl S
Pilvy Pux lip 14 (: PR s} S‘i‘ '
where ¥'=2g/ /N

For the tested regulator, we can assume Si/S? = 0; moreover,
k' & 0, since the tests were run on cold water (pt £0).

Since the regulator has a diffuser cone angle o = 10°, the

1 am of Fig. 72 indicates cd = 0,19, while g_ was found
ee page 92 for footnote. 8
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grom the tests to be 0.07, which corresponds to the data in
4e.

Substituting these values into our formula, we find

which agrees with the test results.
This stabilization of flow rate through cavitation is simi-
lar to the effects observed when a gas flows out througn a hole

or mouthpiece and the outflow velocity is made equal to the local
speed of sound (see §77).
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Footnotes

'From the Latin for layered.

*From the Latin for stormy, agitated.

’More precisely, turbulent flow in pipes is fully de-
veloped at Re > Rekr = 4000, and a transitional criti-
cal region occurs at Re = 2300-4000.

*Newton's law of friction is applicable only for laminar
flow. As will be shown below (see §28 and 29), however,
a thin laminar layer within which Newton's law of fric-
tion is valid usually forms near the wall in turbulent

pipe flows. Hence the frictlonal stress T, at the wall
can also be determined by this law for turbulent flow.

SThe regulator was tested by B.L. Dzhikayev.
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CHAPTER Vi
LAMINAR FLOW

§24. THEORY OF LAMINAR FLUID FLOWS IN A ROUND PIPE

As we noted in §21, laminar flow 1s a strictly ordered
layered flow without agitation of the fluld; it is subject to
the Newtonlan law of friction (see §3) and is fully defined by
this law., Hence the theory of laminar fluld flow 1s based on

Newton's law of friction.

Flg. 45. Illustrating theory of
laminar fluid flow in a pipe.

Let us conslder a steady-state laminar fluld flow in a
stralght circular-cylindrical pipe with an inside diameter d =
= 2r. To exclude the influence of gravity and thereby simplify
the derivation, we shall use a horizontal pipe. At a sufficient
distance from the entrance, we isolate a flow segment of length
g between sections 1-1 and 2-2 (Fig. 45).
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Let the pressure be p, in the first section and p, in the
second. Owing to the constancy of pipe diameter, the velocity
and the coefficient a will be constant along the flow, so that
the Bernoulll equation for the selected sections takes the form

Py _. P
v = : 'l'll"u
where htr 1s the frictional loss of head.
From this,

hoeo b ba P
n . Ly
¥ ¥

which 1s indicated by plezometers attached at the sections.

In the fluid flow, we isolate a cylindrical volume of radius
r coaxial with the pipe and having its bases in the chosen sec-
tions,

We write the equation of uniform motion of the isclated fluid
volume in the pipe, 1.e.,, we set the sum of the two forces acting
on the volume — pressure and resistance -~ equal to zero. Using t
to denote the tangential stress on the side of the cylinder, we
obtain

(pr— plar?—2.rle==0,

whence
Pl
T= 2% .
We see from the formula that the tangential stresses in a
cross section of the pipe vary linearly as functions of radius.
A dlagram of tangential stress appears at the left in Fig. U5.

Let us express the tangential stress T in accordance with
Newton's law of friction in terms of the viscosity coefficient
and the transverse velocity gradient [Formula (1.14)]; here we
substitute the present radius r for the variable y (distance
from the wall):

The minus sign is due to the fact that the measuring direc-
tion for r (from the axis toward the wall) i1s the opposite of
that in which y is reckoned (from the wall).

Substituting the values of T into the above equation,

Fur RS
2 !‘_', :

From this, we find the velocity increment dv:
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A negative increment (i.e., a decrease) 1in veloclty corre-
sponds to a positive radius increment, in agreement with the
velocity profile shown in Fig. U45.

Integrating, we obtain

ﬁ 7 '
U= —%-{:'-c.

We find the constant of integration C from conditions given
at the pipe wall, where v = 0 at r = r,:

t:.._:,‘! .

The velocity on a circle of radius r 1s
_ by ) ’
0—-‘7‘; (r;—r’). (6-1)

This is the law of velocity distribution across a circular
pipe section in laminar flow. The curve representing the velocity
dlagram is a second-degree parabola.

The maximum velocity at the section center (at r = 0) is

fro

4..:'3- ' (6.2)

Y=

The ratio ptr/l that appears in (6.1) represents, as we see

from Fig. 45, the hydraulic (plezometric) gradient multiplied by
Y. This quantity is constant along a straight pipe of constant
diameter.

Let us apply the velocity-distribution law that we have de-
rived (6.1) to compute flow rate. For this purpose, we first
express the elementary flow rate across an infinitesimally small
area dS:

dQ=vdS

Here, v is a function of the radlus that 1s determined by

(6.1), and Tt is expedient to take the area dS in the form of a
ring of radius r and width dr; then

dQ—’-‘%(ro’-— r*)2ardr.,

On integration over the entire cross-sectional area, 1l.e.,
frompr = 0 to r = r,, we have
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We find the veloclty averaged over the cross section by
dividing the flow rate by the area:

4
Q o Py
P, T e eiT e EERIE I 2 6.‘4
p ‘"Z £, 'é §.1 Te. ( )

Comparing thils expression with (6.2), we conclude that the
average velocity 1s half the maximum in laminar flow, i.e., that

Uy ® 2 CPRI

To obtain the law of resistance, i.e., an expression for

the frictional head loss htr in terms of flow rate and pipe dl-
mensions, we determine p, from (6.3):

840
Py =—ima-.
T g

Dividing the equation by y, we obtaln the head loss:

2.
RS

Y _-;rr;“y :

Substituting ve for u and gep for vy and passing from r, to
d = 2r,, we obtaln finally

1’,:._.vo

l-‘- . (6‘5)

Iy == e

This law of resistance indicates that in laminar flows in
round pipes, the frictional head loss 1s proportional to the
first powers of flow rate (velocity) and viscosity and inversely
proportional to the fourth power of diameter. This law, which is
frequently referred to as the Poiseullle-Hagen law, is used in
calculations for pipelines in which flow 1s laminar.

Earlier (§19), we adopted the convention of expressing
frictional head losses in terms of average veloclty by Formula
(4,18). Let us bring the law of reslstance (6.5) to the form

2
[

wo o

/

To do so, we substitute the product wdzvsr/M for the flow
rate in Formula (6.5); after cancelling,

-97-



Multiplying and dividing the right side of the equation by
2vsr, we obtaln after regrouping factors

1 v
| o=l iy (6.6)
where
L=pt. (6.7)

The subscript "1" to the A stresses that we are speaking of
laminar flow.

It must be remembered that the frictional head loss 1in
laminar flow 1s proportional to the first power of velocity. Nor
should it be forgotten that the square of velocity in Formula
(6.6) for laminar flow was obtained by artificial multiplication
and division by Vops and that the coefficient xl is inversely

proportional to Re and hence to the velocity vs;.

Knowing the law of velocity distribution over the pipe cross
section (6.1) and the relation between average velocity and head
loss (6.4), it is easy to determine the value of the coefficient
a, which takes account of the velocity-distribution nonuniformity

in the Bernoullil equation for the case of a stabilized laminar
fluid flow in a round pipe.

In Expression (4.17), let us substitute the velocity accord-
ing to (6.1) and the average velocity according to (6.4), remem-
bering also that

S=ar}
and
dS=—=2ardr.

After cancelling,

Lo
1 j 3.0C. vi 2 \3rdr
g=-—— | ©WS:=16 | /1 -5) -~ .
vis ) é'\ ,g) s

Substituting the variable

”
l —_ —-2-=TZ.
T

we obtain
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o
a8 [ 2] feen. (6.8)
1

Thus, the true kinetic energy of a laminar flow with a para-
bolie velocity distribution is twice that of the same flow when
the velocities are uniformly distributed.

We can therefore show that the per-second momentum of a
laminar flow with a parabolic velocity distribution is B times
greater than the momentum of the same flow with uniform velocity
distribution, and that the coefficient B 1s constant:

p._ Sl"l'-’l'_' .’.

s N
3 \“S 3

In general, the above theory of laminar fluild flow in a round
pipe is nicely confirmed by experiment, and the resistance and
velocity-distribution laws derived normally require no correction,
except in the followlng cases.

1. For the flow at the start of the pipe, where the parabolic
velocity profile 1is gradually established. The resistance 1s
found to be higher on this segment than on those that follow 1t.
However, this fact is taken into account only in calculatlions for
very short pipes. This problem will be set forth in greater de-
tail in the next section.

2. In flows with considerable heat transfer, i.e., when the
fluld 1s heated or cooled while in motion (see §27).

3. For very high pressure gradients (see §27).
§25. THE INITIAL SEGMENT OF LAMINAR FLOW

If fluid runs from a tank into a straight constant-diameter
pipe and thence along the pipe in a laminar flow, the velocity

e

Fig. 46. Shaping of parabolic
velocity profile.

distribution is found to be practically uniform at first, espec-
1ally if the entrance has rounded edges (Fig. 46). But then,
under the action of viscous forces, the velocities are redistrib-
uted over the cross sections as follows: the layers of fluld next
to the wall are slowed down, while the center (nucleus) of the
flow, where the uniform velocity distribution still persists,
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moves with an acceleration owing to the necessity of rassing a
definite flow rate through the constant area. Here the thick-
ness of the decelerated fluld layers gradually increases until
1t becomes equal to the tube radius, l.e., until the layers on
_opposite walls meet at the axis of the pipe. Only then is the
parabolic velocity profile characteristic of laminar flow estab-
lished.

The distance from the beginning of the pipe at which the
parabolic velocity profile 15 established (stabilized) is known
as the initial flow segment (znach)' Beyond the initial segment,

we have a stabilized laminar flow; the parabolic velocity profile
remains unchanged no matter how long the pipe, provided that it
remains straight and its section remains constant. The laminar-
flow theory set forth above 1s valid for precisely this stabllized
laminar flow and does not apply to the initial segment.

| -

Fig. U47. Diagram showing varia-
tion of the coefficients K and a.

To determine the initial-segment length, we can use the ap-
proximate Shiller formula, which expresses this length, referred
to pipe diameter, as a function of Reynolds number:

"'f"‘ =0,029Re. (6.9)

Substituting Re . = 2300 into (6.9), we obtain the maximum
possible length of the initial segment at 66.5 diameters.

As we noted above, the resistance 1is found to be higher on
the initial segment of the pipe than on later segments. This 1s
because the derivative dv/dy at the wall of the tube 1s larger on
the initial segment than on the segments with stabilized flow, so
that the tangential stresses defined by Newton's law are also
larger and increase the closer the section under examination 1is
to the beginning of the pipe, i.e., the smaller the x-coordinate.
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The head loss on a segment of pipe whose length & < lnach is

determined by Formula (6.5) or by (6.6) and (6.7), but with a
correction factor K greater than unity. The values of this coef-
ficient can be found from the diagram (Fig. 47), in which the
coefficient K 1s represented as a function of the dimensionless
parameter (x/Re d) * 10°. As this parameter increases, the coef-
ficient K becomes smaller, and at

£l 000,

Red  Res

l.e., at x = Enach’ becomes equal to 1.09. Consequently, the re-

sistance of the entire initial segment of the pipe 1s 9% higher
than the resistance of the same length of pipe taken in the re-
gion of stabilized laminar flow.

For short pipes, as we see from the dlagram, the correction
factor K differs very greatly from unity.

When the pipe length & is greater than the initial-segment
length lnach’ the head losses will be composed of the losses on

the initial segment and the losses on the stabllized-flow segment,
it.e.,

Iy = [1 0%, "d' ot _0] o
« 2u

Applying (6.7) and (6.8) rearranging, and solving, we obtain
finally
.. oy 61 °
o= ﬁmcd“kc'i)l (6.10)

e

If the pipeline length ratio &/d is large enough, the addi-
tional term 0.165 in the parentheses 1s small enough to be disre-
garded, However, this term should be taken into account in pre-
cision calculations for pipes whose length is comparable with
Enach'

For the initial segment of a tube with a flared entry, the
coefficient a rises from 1 to 2 (see Fig. 47).

§26. LAMINAR FLUID FLOW IN GAPS

Let us consider laminar flow in a gap formed by two parallel
flat walls separated by a distance a (Fig. 48). We shall place
the coordinate origin at the center of the gap and direct the ox-
axis along the flow and the oy-axls normal to the walls.

Let us take two normal cross sections of the flow at a dis-
tance £ from one another and examine a unit flow width. We iso-
late a volume of fluid in the form of a right parallelepiped
rositioned symmetrically with respect to the ox-axls between the
selected flow cross sections and having the side dimensions
£ x 2y x 1, We write the condition of uniform motion of this
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volume along the ox-axls:

- d
29Pyp=—1 ,—: 2,

where Pyr a p, -~ p, 1s the pressure difference between these sec-

tions.

‘l_llﬁ- ais b g R 5- Ve e g lE
E o5

-

|

1 I—
'I;. I:l L =
LT&fff?iL;'fﬂ' FIFTEE

Fig. 48. Illustrating theory of lami-
nar flow in gap.

The minus sign appears because the derivative dv/dy is nega-
tive.

From the above, we find the veloclty increment dv correspond-
ing to a coordinate increment dy:

Pwp
do=—— ydy.
W yay
Integration ylelds
=t *4-C.
Since v = 0 at y = a/2, we have C=;€?;{},from which, finally,
{1
_ Py [a
"’—;J(T—y’)- (6.11)

Now let us calculate the flow rate per unit width by taking
two elementary 1 x dy areas symmetrically about the oz-axis and
expressling the elementary flow rate

dQ=vdS="0" (—i"— - y") 2dy,

w4
whence -
P T " \ P al
L N Y iy it i
Iy 5(4 5 dy 121l * (6-12)
From the above, we express the pressure loss in terms of the
average velocity v_,, = Q/a:
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12plv,
ru_”‘"

a2 . (6.13)

Py

When one of the walls forming the gap
is in motion parallel to the other and the

’-mvzaa&zzaazz pressure in the gap 1is constant over its
) length, the moving wall will draw fluid
@2l with i1t, giving rise to what is known as
a >t - nonramming frictional motion. Let us iso-
N late an element from such a flow, as shown
,Afﬂzlv_:; - in Fig. 49, and examine the forces acting
Vo on it. Since the pressures p applied to
the left and right faces of the element are
Fig. 49. Velocity the same, equilibrium of forces requires
profile in gap with that the tangential stresses on the lower
moving wall, and upper faces also be the same. This im-
plies that dt = 0 and v = C, where C i3 a
constant.

Using Newton's law of friction, we obtain

T== —ft -ili == C
dy

(the minus sign 1s taken because dv < 0 when dy > 0), and, after
integration,

U — < !/':'Cl-
P

We find the constants C and C; from the condition on the
boundaries of the flow: v =0 at y = a/2 and v=U for y = -a/2,
where U 1s the speed of the wall. From this,

C= " ang ¢, Y,
T 5

After substitution into the integral, we finally obtain the
linear velocity distribution law

“(l',)“ (6.14)

The fluld flow rate per unit gap width 1s determined from the
average veloclty kU, 1.e.,

Qf'gwu (6.15)

If, however, this displacement of the wall takes place in the
presence of a pressure gradient in the fluid filling the gap, the
velocity distribution law in the gap will be found as the sum (or
difference, depending on the direction of wall motion) of Expres-
sions (6.11) and (6.14), i.e.,
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Fig. 50. Velocity profile in gap
with moving wall and pressure
gradient.

Two variants of the velocity distribution in a gap appear in
Fig. 50: one 1in which the direction of wall motion coincides with
the direction of fluid motion under the influence of the pressure

Bl

Fig. 51. Diagrams of concentric
and eccentric gaps.

gradient (a), and one in which the direction of wall motlon is
opposite to the fluid flow (v).

In this case, the fluld flow rate through the gap will be
determined as the sum of the flow rates expressed by Formulas
(6.12) and (6.15), i.e.,

a3
=..’:p_+.£.a_

122 7 2

The first term in this formula 1is known as the ram flow rate
and the second as the frictlonal flow rate.

These expressions can also be used when the gap 1s formed by
two cylindrical surfaces, €.g., 2 piston and cylinder, provided
that the gap between them 1s small by comparison with the
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diameters of the surfaces and the surfaces are coaxial (Fig.

5la).

If the piston has a certain eccentricity e in the cylinder

(Fig. 51b), the gap a betwe

easily seen that

en them will be varlable, and it 1s

e=R4-ecosg—r= cy()-1-ceosg),

where a, = R - r and € = e/a,.

Regarding an element of the gap of width rd¢ as a plane slot,
we obtain the following expression for the elementary flow rate:

Integrating around the circle, we obtain

3

f,r

Q--Mm¢
12!

2;.71'3,1‘.,‘
where Qu=—1=7~

der.

1 4] p“?

Q=== ==t b (1) s cos Py 1

Pyt :
12!
- >

i(i Feasgpd Q1) %(@
]

1s the flow rate for the coaxlal piston and cylin-

It follows from the expression obtained for @ that at maximum

eccentricity, i.e., €

7 fe
PN
F q({idlllﬁ

Fig. 52. Diagram of oil
line.
KEY: (a) pump.

Q=-25%.

Example. To check out the alti-
tude capability of an oil system, de-
termine the absolute pressure at the
entry into the pump in mmHg in level
flight at 16 000 m of altitude (py/

/Yrt = 77.1 mmHg). The length of the

{ntake o1l 1line & = 2m, d = 18 mm, the
oil level in the tank 1s at a height

z = 0.7 m above the pump, and the
pressure 1n the oil tank is atmos-
pheric (Fig. 52). The required oll
delivery rate, found from the amount
of heat that must be dissipated into

the oll at maximum englne power, is Q = 16 1l/min; the viscosity of

the MK-8 o1l is v = 0.11 cm

/s, Y, = 900 kgf/m*, and head losses

in local resistances need not be taken into account.

Solution. 1. The velocity of thedl in the line is

Q416

ne1,8000 e IS cm/S .
TAedyt
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2. The Reynolds number

lc--';s-- “i':;. - 1T,
N ¢ ]

o — e

-~

3. The frictional loss of head 1n the intake pipe 1is

B 64 0 10
By o s T oo

— = . . 0n,2 N
PR TR W RN ekt

4. We find the pressure at the pump entrance from the Ber-
noulli equation for sections 0-0 and 1-1:

P 4] v?
SA g
z = G+ My
+ L "I [ + 2¢ "
whence
? 13,6 21052
. Pa_ _u__,, —70 < —_ -
™ z+4 ™ u,gl w=70+7,71 09~ .88l 23,2:=152¢m
or

hpy = l"le—g'—z = l0ame=100 mmHg.

§27. SPECIAL CASES OF LAMINAR FLOW

1. Flow with Heat Transfer

In the cases of laminar flow considered above, no considera-
tion whatsoever was given to temperature varlation or, consequent-
ly, to viscosity changes either within the cross sections or along
the flow, 1.e., constancy of temperature at all points of the flow
was assumed. Such flows are sald to be isothermal, as distinct
from flows accompanied by change in fluid temperature.

If a pipeline carries a fluld whose temperature is substan-
tially higher than that of the environment, the flow will be ac-
companied by dissipation of heat through the pipe wall into the
environment and, consequently, cooling of the fiuid. If, on the
other hand, the moving fluid 1is cooler than the environment, there
will be an influx of heat through the pipe wall and the fluid will
be heated as 1t flows.

In both of these cases, fluid flow is accompanied by exchange
of heat with the environment and, consequently, the temperature
and viscosity of the fluid are no longer constant and the flow 1s
nonisothermal.

Formulas (6.5) and (6.13), which we derived above on the as-
sumption of constant velocity over the flow cross section, require
correction for flow with heat transfer.

In flow accompanied by cooling of the fiuid, the layers of

fluid directly adjacent to the wall are cooler and more viscous
than those in the main nucleus of the flow. The results are
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sharper deceleration of the wall layers of fluid and a drop in
the veloclty gradient at the wall.

On the other hand, 1f the flow 1s accompanied by heating of
the fluld, the heat influx through the wall heats the wall layers
of fluid and lowers their viscosity, so that the velocity gradient
rises at the wall.

Thus, the normal parabolic velocity
distribution is disturbed as a result of
heat exchange through the pipe wall be-
tween the fluld and the environment. Fig-
ure 53 shows the velocity distribution in
isothermal flow (1), in a flow in which
the fluild 1is cooled (2), and in one in
which it 1s heated (3). As we see from
the figure, cooling of the fluid results

Fig. 53. Velocity in increased nonuniformity of the velocity
distributions in distribution (a > 2), while heating reduces
isothermal and non- this nonuniformity (a < 2) by comparison
isothermal flows. with the ordinary parabolic velocity dis-

tribution (a = 2).

The change 1in the veloclity profile in nonisothermal flow
causes a change in the law of resistance.

Exact solutlon of problems of fluid flow with heat transfer
1s extremely complex, since it is necessary to consider the vari-
ability of fluid temperature and viscosity over the cross section
and along the pipe, and to analyze the heat flows in various sec-
tions of the pipe.

For laminar flow of viscous fluids in pipes with dissipation
of heat (cooling), the resistance 1s found to be higher than in
isothermal flow, but 1t is smaller for flows with heat influx
(heating). The basic reason for this 1is that the viscosity of
the fluid in the layers next to the wall differs from the average
fluild viscosity in the cross section.

This can be taken into account approximately by the follow-
ing formula for the frictional loss coefficlent Al in Formula
(6.6). The expression -

A )
i, R S, '
1s recommended instead of (6.7); here, Rezh is the Reynolds num-
ber computed for the average fluid viscosity, Von is the fluid'’'s
average viscosity, and Vst is the fluld viscosity corresponding to
the average wall temperature.

For more accurate calculations for small Reynolds numbers,
it 1s necessary to use a formula due to Academician M.A. Mikheyev,
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which is presented in [19].
2. Obliteration

A phencmenon that cannot be explained by the laws of hydraul-
ics is sometimes observed when fluld flows through capillaries
and small gaps. In this phenomenon, the flow rate of the fluid
through the capillary or gap decreases with time despite the fact
that the pressure gradient under which the fluid is moving and
the physical properties of the fluid have not changed. Its cause
1s to be scught in a kind of plugging or coating of the channel
by solid particles under certaln conditions. Clearances and
capillaries smaller than 0.01 mm may be clogged completely and
the flow rates reduced to zero. Thils process 1is known as obliter-
ation and consists in a so-called adsorption process that takes
place on the interface between the solid and fluid under the ac-
tion of molecular and electromagnetic forces that arise between
the wall and the fluild, i.e., condensation of the fluid to a prac-
tically solid condition on the surface of the wall.

The extent of obliteration depends on the molecular struc-
ture of the fluld, and 1t is more conspicuous in complex, macro-
molecular flulds. This is the precise nature of the kerosene-
based fluild mixtures used in aircraft hydralulc systems.

The thickness of the absorption layer 1s several microns for
these fluids. Thus this layer can substantlally reduce the cross-
sectlonal area of the passage in flow through capillaries and
small gaps, and even block it completely.

The intensity of adsorption and hence of obliteration de-
creases with rising temperature. On the other hand, an in-
crease in the pressure gradient under which the fluld is moving
through the gap or capillary increases the extent of obliteration.

If one of the walls forming the gap is set in motion, il.e.,
if shear occurs, previously formed absorption layers are broken
up, obliteration 1s corrected, and the original flow rate of
fluid through the gap is restored. However, this shear usually
requires considerable effort. In general, obliteration does not
occur 1n clearances between moving and stationary walls.

To prevent obliteratlion in nozzle jets and chokes, the holes
should be maie-no smaller than 0.2-0.4 mm, Sometimes a recipro-
cating rod 1s passed through the choking orifice to provide for
automatic clearing of the orifice and destruction .. the adsorbed
layers.

3. Laminar Flow at High Pressure Gradients

Experience has snown that the head loss along the stream is
substantially nonlinear in laminar flows through small gaps and
caplllaries under the influence of large pressure gradients of
the order of several hundred atmospheres, and that Polseuille's
law glves a rather large error.
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This i1s because the fluld flow rate Q is proportional in
laminar flow to the pressure gradient Ap, while the energy loss,
which equals the product QAp, is proportional to the square of
the pressure gradient. Hence the energy loss per unit of fluid
flow rate increases in proportlion to the pressure gradient. This
results in heating of the fluild at high pressure gradients and a
decrease in its viscosity; the influence of this factor will be-
come stronger along the stream of fluld.

On the other hand, since fluid viscosity rises with increas-
ing pressure, the viscosity at the beginning of the flow will be
higher, but it will diminish along the flow as a result of the
pressure drop. Thus, fluld viscosity becomes a varlable along
the flow and, as a result of the simultaneous operation of these
two factors, the longltudinal pressure gradient dp/dx, which 1is
governed by friction, will be larger at the beginning of the flow
and smaller at the end than would follow from Polseullle's law.

As for flow rate, a rise in temperature tends to increase 1t,
and a high pressure in the fluld decreases 1t below the value ob-
tained from Poiseullle's law, i.e., these two factors influence
flow rate in opposite directions. However, total compensation is
not normally the case, especially when there is a substantial
amount of heat being dissipated through the wall and, conse-
quently, the temperature increase 1s small.

This form of laminar flow 1s encountered particularly often
in high-pressure hydraulic machines, in which a viscous fluid
flows through small clearances under large pressure gradlents.

Let us examine the problem of laminar flow in a gap of span
a, length £, and width b, with conslderation of viscosity as it
varies with pressure and temperature. Here we shall assume that
the density of the fluld does not depend on pressure or tempera-
ture and that the dimension ratio of the gap a/b =+ 0.

To take the effects of pressure and temperature on fluld
viscosity into account simultaneocusly, we shall use the following
relationship in accordance with (1.17) and (1.18):

e l'.l{"(."fx"'\(""’l" (6.16)

Here the subscript 1 is attached to the quantities at the
origin of the stream. Values of a and A were given in §3.

Placing the coordinate origin in the initial flow cross sec-
tion (Fig. 54), we isolate an elementary fluid volume in the form
of a rectangular parallelepiped positioned symmetrically about
the x-axis and having the dimenslons 2y x 1 x dx, where the unit
dimension is much smaller than the gap width b.

If the pressure acting on the left face of this volume 1s
denoted by p, the right face will be acted upon by a pressure



y The upper and lower faces will be

acted upon by tangential stresses equal

3 to
. I '=’£

AT — - - dy

! 1

B Filp
1% and opposed to the motion.
E?m%bWﬁj
l

The tangential stresses on the front
and rear faces are zero, because veloclty
Pig. 54, Illustrat- does not vary in the direction normal to

ing the theory of the xoy-plane and, consequently, there 1is
laminar fluid flow no velocity gradient.

with variable vis-

cosity. Hence the equilibrium equation of our

selected volume will be written

[p—(p—dp)) 2y—2 ffdx=0

or
dv_ 1dp
dy g ax ¥
It must be remembered that both of the derivatlves are nega-
tive, since negative increments dp and dv correspond to positive
increments dx and dy.

Integrating the equatlion within a flow cross section, and
hence considering dp/dx and u to be constants, we obtain

=4° 1 ac
v dx 29y+'

Since V= 0 at y = a/2, we have

and, therefore,
14 y
Rarn ;;;('J"T)- (6.17)

We determine the flow rate per unit gap width by proceeding
in much the same way as in the preceding section. Applying (6.17),

a

== — __‘_"1‘_ L W S L. .
Q"' ".’ds_—. .dx ,;5(4 "’)“J' ot (6.18)

This expression differs from (6.12) in that dp/dx and u are
in this case variables that depend on X. Here, 1f Q = const (the
fluid is absolutely incompressible), eTther variable 1s propor-
tional to the other. .
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Let us now write the energy equation, l.e., set the fric-
tional energy losses in the form of heat equal to the fluid's
heat-energy increase per unit of time:

Qoe (- 4)=k(p,— p)Q. (6.19)

Here ¢ 1s the heat capaclity of the fluid in SI units, i.e., in
J/kgedeg; p 1s the pressure in N/m?; k 1s a coefficient that

takes account of the fraction of the work of viscous forces that
goes into heating the fluid.

For k = 1, no heat is dissipated through the wall and all of
“he work of vlscous forces goes to heat the fluid. At k = 0, we
have intensive dissipation of heat through the wall, and the fluid
temperature is not raised (iscothermal flow).

From the atove, we have
3
’—ll:_'e_c(pl_'p)v
which yields, on substitution into (6.16),

(r—p2) (- + :‘) (6.20)

r=e S
We use the relation obtained between u and p (6.20) to inte-
grate (6.18).

On separation of variables, we have instead of (6.18)

or
2

1204 .. (Fa=p) fet - -
L Tt a2 P
After integration,

- e
3 F 32
a ad - -
(Y2

)
- oy tud
Qe ] L )-l-(.- (6.21')

We find the constant of integration from the condltions in
the initlal flow cross section, where p = p, at ¥ = 0 and, con-
sequently,

In the final flow section at x = &, p = Pigp = 0. Thus we
finally obtain

-111-



¢ 0 |een )

) R &
O © ¥ -
(83

(6.21)

It must be remembered that the u, that appears here 1is the
viscosity in the initial flow cross section, i.e., that at p = p)
and t = t,; it can be expressed In terms of u,, the viscosity at
P = Pyyp = 9 and t = t,, in acccrdance with (£,16):

Bz ruo {6.22)

In the particular case of isothermal flow, it is necessary to
set k = 0 in (6,21). With ccnsideration cof the above, we then
obtailn

Yoo T it pmen
(‘ |;:...‘v'.‘ ¢ ) (6.23)

We find the relative flow rate Q,, which equals the ratio of
the flow rate with variable viscosity to the flow rate at u = pp=
= const. For this purpose, we divide Eq. (6.21) by

(nzA_fft. NOT

We shall have

b, G e -[-”r'(!::{‘)‘ 1]

A

Calculations were made by Formula (6.24) for a series o.
pressure values p,; from 0 to %00 kgf/cm?® (7840 N/cm?) with the
following values of the constants: a = 1/430 em?/kgf (1/4210
em?/N), X = 1/36 deg=!, ¢ = 9.5 kecal/kgfedeg (2.1 ki/xg-deg),
and v = 850 kgf/m® (5330 N/m?).

(6.24)

The results are presented in Fig. 55 as curves of Q as a
function of p; for two values of k: k = 1 {no heat exchange) and
k = 0 (isothermal flow).

As we see from the diagram, the curves corresgonding to the
two extreme conditions diverge quite widely. Feal processes
would bte reflected by curves running somewhere between these ex=-
treme curves., Since the fluid flow velocities in gaps are very
high at such high pressure gradients and the stay time of each
particle in the gap 1s very shcort, the flow regime in which k » O,
i1.e., heat transfer 1s a minor factor, appears more probable.

But it must bte remembered that with lncreasing relative gap
length £/a, Reynolds number, and Prandtl number, the latter equal
to



(¢ 1s heat capacity and A is the coefficient of thermal conduc-
tIvity), the importance of heat transfer increases and the flow
process may approach isothermal.

If Eq. (6.21') is divided, with the value found for the con-
stant C, by Eq. (6.21), we obtain a formula linking the relative

coordirate x/& and the pressures_p and p,.

By assigning various values to at constant p,, we can cal-
culate the corresponding values of x/& and construct a diagram of
the pressure along the gap for a serles of constant pressure
values p, at the beginning of the gap.

The results of calculations of this kind are shown in Fig.
56 in the form of curves of p/p, versus x/& for three constant
p, and k = 1.}

T 2
i Jll'—l 4{-‘ ,"5 = T la I
@ os N\‘Qr’,"?”wk?’ -
a Xr{‘,s N N ackid xlfer?
08— AN e —4—+ -
v g SN p=T8k0
(| x=0 g S SN S
[ £ J -\ — ‘v—T__] —t
o 02 \%‘ -
Iz ="
O 002333 433 %09 wa g, wTjewta, 4 L 2
Fig. 55. Influence of Fig. 56 Diagram of pressure
variable viscosity on along gap with conslderation
flow rate. of variable viscosity and

KEY: (a) kgf/cm?. density.
KEY: (a) kgf/cm?.

TSee page ll4 for footnote,
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Footnote

lcalculations performed by V.N. Prokof'yev and B.P.
Borisov on the basis of their solution of the problem
of laminar flow in a gap with consideration of vis-
cosity and density variation.
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English equivalent

friction
average
laminar
initial
oil
mercury
fluid
wall
excess
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CHAPTER VII
TURBULENT FLOW

§28. TURBULENT FLOW OF FLUID IN SMOOTH PIPES

We sald in §21 that turbulent flow 1s characterized by
mixing of the fluid and by veloclty and pressure pulsations
during the flow process. If we were to use a highly sensitive
automatic recording instrument to measure and register the pulsa-
tion of, for example, velocity as a function of time, we would
obtain a pattern similar to that shown in Fig. 57. The veloclty
oscillates chaotically about a certaln time-average value Vosp?

which in this case remains constant.

—-M-*ﬁ;!"'(:fflfﬁ’vhi-- ===

v

= Saall -
tee g
Fig. S57. Velocity pul- Fig. 58. Nature of
sations in turbulent streamlines in turbu-
flow. lent flow.

KEY: (a) seconds.

The trajectories of particles passing through a given flxed
point in space are represented for different points in time by
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curved lines with different configurations, even though the pipe
is straight. The nature of the streamlines in the pipe at a
given point in time is also characterized by a great deal of
variety (Fig. 58). Strictly speaking, therefore, turbulent flow
1s a nonsteady flow, since the velocities and pressures vary 1in
time along with the particle trajectories. However, such flows
may be regarded as steady in calculations provided that the time-
averaged values of the velocity and pressure and the total flow
rate of the flow do not vary with time. Such fluid flows are
quite often encountered in practice.

g '_._'JI
W W B G2upee

P I

Fig. 59. Velocity pro-

files in laminar and Fig. 60. Diagram of
turbulent flows. coefficlient a as func-
KEY: (a) turbulent; tion of Re.

(b) laminar.

Since turbulent flows are not layered and the fluld mixes,
the Newtonlan law of friction 1s inapplicable. Because of the
agitation of the fluild and the continual lateral transfer of mo-
mentum, the tangentlal stress on the pipe wall 1s substantlally
higher in turbulent than in laminar flow for identical values of
Re and the dynamic pressure, as calculated from the average flow
velocity. .

The (time-averaged) veloclty distribution in a cross section
through a turbulent flow differs markedly from the characteristic
distribution in laminar flow.

If we compare the velocity distribution curves in the same
pipe and at the same flow rate (the same average velocity), but
for laminar and turbulent flows, the difference in these curves
will be quite substantial (Fig. 59). Under turbulent conditions,
the velocity distribution is more uniform, and the velocity rise
toward the wall is steeper than in laminar flow, for which, as we
know, a parabolic velocity law 1s characteristic.

Thus, the coefflclent a, which takes account of the velocity
distribution nonuniformity in thc Bernoulll equation (see §18),
i3 much smaller in turbulent than in laminar flow. In contrast
to the laminar regime, where a does not depend on Re (see §25),
the coefficlent a.1s a function of Re in this case, diminishing
with increasing Reynolds number from 1,18 at Re = Rekr to 1.025

at Re = 3 « 10%., As we see from the diagram of Fig. 60, the
curve of a vs. Re makes an asymptotic approach to unity.l In
TSee page 136 for footnote.
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most cases, we can assume a = 1 for turbu-

/ lent flows.
The energy losses in turbulent fluid

]
sy Aypbyrewnad  £low in constant-section pipes (i.e., the
frictional head losses) are also different
from those in laminar flow. In turbulent

L]
; E- flow, the frictional head losses are sub-
J stantially larger than in laminar flows
1th the same dimensions, flow rates and

Fig. 61. Diagram of w ’ ’
htr as function of viscositles.
v and Q. This increase in losses 1s caused by
REY: (a) laminar; eddying, mixing, and the curvature of the
(b) turbulent. trajectories, While the frictional head

loss increases in laminar flow in propor-

tion to the first power of veloclty (and
of flow rate), transition to turbulent flow 1s accompanied by a
certain discontinuity of resistance and then by a steeper in-
crease in htr along a curve closely approximating a second-de-

gree parabola (Fig. 61).

In view of the complexity of turbulent flow and the diffi-
culty encountered in 1its analytical investigation, we do not yet
have a sufficlently rigorous and exact theory of this flow. In-
stead, there are the so-called semiempirical, approximate turbu-
lence theories of Prandtl, Karman, and others, one of which will
be examined in the next section.

In most cases, purely experimental data that have been codi-
fied on the basis of hydiradynamic similarity theory are used for
practical calculations involving turbulent fluid flows in pipes.

The basic working formula for turbulent flow in round pipes
is the universal formula (4.20) derived above, which follows di-
rectly from similarity considerations and takes the form

i v
hyp=:) v
or
Y S (4]
Ry w=d — e N
WUt g 9gmde

where A, is the coefficient of frictional loss in the turbulent
regime.

This fundamental formula 1s applicable to beth turbulent and
laminar flows (see §24); the difference consists in the values of
the coefficilent X.

Since the frictional head loss in turbulent flow 1is approxi-
mately proportional to the square of velocity (and the square of
flow rate), the frictional-loss coefficient in Formula (4,20) may
be regarded as constant 1n first approximation for a given plpe.
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| But it follows from the law of
4=£ |’ hydrodynamic similarity (§22) that,

1like Al’ the coefficient At must be

a function of the fundamental simi-
larity criterion, i.e., the Reynolds
A number, which incorporates velocity,
- — diameter, and viscosity, i.e.,

!
Ay (WsipgRe1sy|

7
f

~; -

T S * L-I(Re)=/(‘{‘:-)-!

= -

F o=
2

«?
[ |
»s
o
[ -
(7Y
!

] 3 685 57 8 8 121110
._f___;_ R There are a number of empirical

and semiempirical formulas that ex-

Fig. 62. Diagram of xl press this function for turbulent

and At as functions of flow in smooth pipes; one of the most

Re convenient and widely used 1s that of
* P.XK. Konakov, which takes the form

x 1
N =GR —Top : (7.1)

and 1s applicable from Re = Rekr to Re ranging into the millions.

The old Blasius formula

Y =0.316‘l
ke (7.2)

can also be used for Reynolds numbers in the range 2300 < Re < 105

We see from this that the coefficient At decreases with in-

creasing Re, but that this decrease 1s much less substantial than
in laminar flow (Fig. 62).

This difference in the curves of A results from the fact
that the direct influence of fluld viscosity on resistance is
much weaker in turbulent than in laminar flow. While the fric-
tional head loss in laminar flow 1s directly propo:rtional to vis-
cosity (see §24), these losses are proportional to the 1/4 power
of viscosity in turbulent flow, as follows from Formulas (4.20)
and (7.2). As a matter of fact, mixing and momentum transfer are
the basic factors in turbulent flow.

The above formulas (7.1) and (7.2) for determination of the
coeffliclent of frictional loss At in terms of Re are valid for

the so-called technically smooth pipes, i.e., for pipes whose
roughness is so slight that it has practically no influence on
resistance. Seamless pipes drawn from nonferrous metals (includ-
ing aluminum alloys) and carefully made seamless steel pipes can
be classified as technically smooth without incurring any major
error. Thus, the pipes used as fuel lines and for hydraulie
transmissions (hydraulic systems) on aircraft can, under normal
conditions, be regarded as smooth, and calculations for them can
be made by the above formulas. Steel and cast-iron water pipes,
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on the other hand, cannot be regarded as smooth, since they usu-
ally offer higher resistance, and Formulas (7.15 and (7.2) do not
apply for them.

U

Qfgnurapmnd crod

Pig. 63. Laminar layer at wall
of pipe in turbulent flow.
KEY: (a) laminar layer,

The resistance of rough-walled pipes 1s a problem that will
be examined later (see 530?. )

As follows from similarity theory, and as the experiments of
a number of investigators (I.I., Nikuradze, G.3. Gurzhiyenko,
Reichardt, and others) indicate, turbulent flow of fluid in pipes
is usually accompanied by a so-called laminar layer directly at
the pipe wall (Fig. 63). This is a very thin layer of fluid in
wh:;h the motion is slowest, stratified, and without mixing, i.e.,
laminar.

In this laminar layer, velocity rises steeply from zero at
the wall to a certain finite value vy at the layer boundary. The
thickness 61 of the laminar layer 1s extremely small, and we find
that the Reynolds number Re, calculated from the dimension 61, the
velocity Vi and the kinematic viscosity coefficlent v, is a con-
stant, 1i.e.,

9% const. . (7.3)

v

This is a universal constant, like the critical Reynolds
number Re for pipe flows. Thus, on an increase in flow veloclty
and, consequently, in Re, the velocity vy also increases, while

the thickness 61 of the laminar layer decreases. The laminar
layer practically vanishes at large Re.

§29. FUNDAMENTALS OF SEMIEMPIRICAL THEORY OF TURBULENT PIPE FLOW

It follows from the description of turbulent flow glven in
the preceding section that the true local velocity at a glven
point in time in a turbulent flow must be regarded as the sum of
the time-averaged velocity and a certain positive or negative in-
crement known as the pulsation velocity (see Fig. 57). As a
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convention, we shall denote time-averaged quantities by the over-
bar and pulsation velocities by the prime; we can then write for
the component of local velocity along the pipe axis (the gfaxia)
0, v, + U

where

e - ' !

'l-v-— [”‘dll

Ly

t 1s the time segment over which the velocity is averaged.

Since there is no averaged flow along the y- and z-axes in a
straight pipe of constant section, vy =v, = 0 and v = v;. v, "
- vé. Obviously, the averaged value of the pulsation velocitles,

obtained by the same method over an adequate length of time, will
be zero, i.e.,

- - -t
Opr=0,rm 1, =0,

To find the relation between tangential stress in a turbulent
flow and the pulsation velocities, let us take an elementary area
dS of the flow that lles parallel to the pipe wall (Fig. 64).
Owing to the presence of the pulsation velocity v;, a mass of

liquid equal to
dm=cv,dSdt.

passes through area dS during time dt.

Since at the same time this mass acquires an additional velo-
clity v; along the stream, the corresponding momentum increment

will be
vidn = 91’;1';!18(”.

As a result of transport of this momentum through area ds
from one layer into another, a tangential force ttdS whose im-

pulse over time dt is equal to the transferred momentum, i.e.,

% dSdi =i, dSd!,
arises along this area.

After cancelling, this ylelds the absolute value of the local
tangential stress due to turbulent mixing at a given time:

:—_'Q"" Y
v taAty

The tangential stress averaged over time interval 1 is found
as follows:
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R fowit

or - T ! (7 “)
Ty=oriy! -

where v;v; 1s the averaged value of the pulsation-velocity pro-
duct.

To convert from the pulsation velo-
cities v; and v! to the averaged velo-

cities (V; e V) and thereby render the

above formula suitable for practical
use, we reason as follows. Let a fluid
particle be displaced transversely as &

result of turbulent mixing from_layer A,

TITTTII7777 77777777 where the averaged velocity is v, into

layer B (see Fig. 64).! If the disvance
Fig. 64. Illustrat- between layers A and B is denoted by Ay,
ing theory of turbu- the averaged velocity of layer B will be
lent mixing.

X3

a7
a

- dv
v —Ay;;-
(we have omitted the subscript x to the average velocities).

Carrying the velocity excess Ay%% with 1t into layer B, the

particle will cause a pulsation v;, as well as a vi.

We can assume that these pulsation velocities are propor-
tional to the indicated velocity excess, 1.e.,

. /1.' v d;l
v sy a— [ ORI Y .
g~ v, and¢ % yd”

(here A~ is the proportionality sign).
Applying (7.4), therefore, we can write

o\
T, ~0 (ﬁ) (7.5")

or, incorporating the proportionality factor in a certain linear
quantity &,

= (i:')’. (7.5)

This expression is named after L. Prandtl® and is a law of
turbulent flow that 1s used in turbulent-flow theory in the same
way as Newton's law of friction is used in laminar-flow theory.

T,%5ee page 136 for footnotes.
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The quantity &, which 1is known as the "mixing length," is
proportional to the time-averaged particle displacement in the
transverse direction. The mixing length may be regarded as a
notion that s to a certain degree analogous to the concept of
molecular free path in the kinetic theory of gases (1t must be
remembered that turbulent mixing involves the displacement not of
individual molecules, but of fluid particles consisting of large
numbers of moleculeas.

Obviously, ¢ takes different values at different points in
the pipe cross sectlion. At the wall of the pipe and within the
laminar layer, where there are no transverse particle displace-
ments, L is zero,

As we move away from the wall (more precisely, from the
boundary of the laminar layer), the possibility of transverse
particle displacements increases, turbulent mixing becomes more
vigorous, and the mixing length £ increases.

L. Prandtl proposed that & should be regarded as increasing
linearly with the distance y from the wall, 1.e.,

l=xy, (7.6)
where « 1s a proportionality coefficlent, which experiment indi-
cates to be the same for all cases of turbulent flow (of the
order of 0.4), and which is therefore known as the universal con-
stant of turbulent flow.

Then, in an analysis of flow along an infinite plane, Prandtl
set the tangential stress in the turbulent flow constant and
equal to the stress 1, at the wall.

With these assumptions, we obtain from (7.15) [sic)

and, after integrating,

v::—}l/-fz-lny-l-c (1.7")

(here, and from now on, we shall omit the average bar on the velo-
cities).

According to the Prandtl theory, therefore, the law of velo-
city distribution in turbulent flows is found to be logarithmic.

Formula (7.7') can be brought by simple modification to the
dimensionless form

Yol const
v, = v
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Pig. 65. Universal law of
velocity distribution in
turbulent flow.

KEY:

(a) laminar layer;

(b) experimental points.

or

e=Algn-|- B,

where

v
?"v.

tance

(7.7)

?.==l//{f is a quantity with the dimensions of velocity;

is dimensionless velocity; n==€?-1s the dimensionless dis-

from the wall, which is expressed in the same way as the

Reynolds number; A and B are constant coefficlents whose numeri-

cal values, on the basis of I.I. Nikuradze's experiments.~

A =5,75 and B = 5.5,

Y[al Ip ¥ ]
.30 Ilakuj nac | ! cl . =
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Fig. 66. Universal law of
velocity distribution in semi-
logarithmic coordinates.

KEY: (a) laminar layer; (b)
region of viscosity influence;
(¢) turbulent region; (d) ex-
perimental points.

¥3%3¢ce page 136 for footnotes.

are

In the form of (7.7), the
velocity distribution law 1s
said to be universal, since ex-
perimental points obtained in
various pipes at various Re lie
on the same ¢ = ¢(n) curve (Fig.
65). The dlagram of ¢ as a func-
tion of log n (Fig. 66), where
most of Nikuradze and Reichardt's
experimental points® 1lie along
the straight line corresponding
to Formula (7.7), 1s even more
indicative. Deviation from lin-
earity is noted only for cmall n,
i.e., near the laminar layer,
where viscosity makes itself felt,
and inside it, where a totally
different law of frictlon, that
of Newton, applies.
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On the basis of the above results of Prandtl theory, let us
derive the law of resistance for turbulent flow in round pipes,
i.e., obtain a theoretical relation for the frictional loss coef-
ficient xt as a function of Reynolds number,

The following expression is easily derived from (4.22):
i B X
ve Pep 2"/‘"- (7.8)
and we shall henceforth make use of it.

I.I. Nikuradze found experimentally that

Ymay == 4y
.__._14.--%n“-;wl 1,03, (7.9')

3
LY

and we have found theoretically® that while this quantity is a
function of Re, it equals for large Re

':ml‘ == Vep _.3_
et (7.9)

.

Let us now appiy (7.7) to points on the pipe axis:
?n;\x'; A l;,' ‘l .:x"‘ B

or

T, r,
Ymew o ANk
. v

and then replace °max by its expression in terms of °sr according
to (7.9). We then apply (7.8) after replacing L by its expres-
sion 1in terms of At’ and multiply and divide by ZVSP the quantity

Mmax under the logarithm sign.

We have

2 ]/’—2: -{:: = Alg (ffii'_'__ L).{-B

tep
or, after rearranging and taking the constant factor cutside the
logarithm sign,

‘_ A’ “,,"_-_-J
iTﬁ"" lg(l\ 1 )')I iy (7.10)

where A' and B' are constants determined by the values of K, A,
and B and improved on the basis of Nikuradze's experiments: A = 2,
B = -0.8.

Formula (7.10) is not conveniently put to practical use,
since 1t gives the unknown coefficient in implicit form. 1In

*See page 136 for footnote.
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practice, therefore, the xt formulas given in the precodinﬁ sec-

tion are preferred, However, Formula (7.10) is of fundamental
interest as the first theoretically founded relation between xt

&nd Re.

The Prandtl semiempirical turbulent-flow theory set forth
above does not take account of the laminar layer at the wall or
the viscosity tangential stress in the turbulent flow, and, as a
result, the velocity-distribution law (7.7) or (7.7') is invalid
near the wall (see Fig. 65) and does not satisfy the boundary
condition at the wall., Aty = 0, Pormula (7.7) gives v = - &,
which makes no sense. Moreover, the resistance law (7.10) ylelds
a certain error for small Re,

The Prandtl theory can be improved by consideration of vis-
cosity and the laminar layer.’

To do so, let us apply instead of (7.6) the following ex-
pression for the mixing length: .

l==x(y—t,), (7.11)

which provides for zero mixing length at y = 61, i.e,, at the
laminar-layer boundary. -

Then the total tangential stress in the turbulent flow will
be regarded as the sum of viscosity and turbulence stresses, with
the former expressed in accordance with Newton's law and the lat-

ter b§ the Prandtl law (7.5) with consideration of Expression
(7.11). We shall have

vep 20t () L (1.12)

Needless to say, this expression is valid only in the turbu-
lent-flow zone, i.e., outside the laminar layer.

Converting to the already familiar dimensionless quantities
and considering t = t, = const as before, we obtain

\BLE PYSURIPRTY [ ATNTE.L SN Py}
1 REP“OD“C ¥l ()(du) Id“ ! EZiiﬁ)

where u==3{?~ is the dimensionless thickness of the laminar layer

or the universal constant introduced by T. Karman. Solution of
the quadratic equation (7.12) for d¢/dn, followed by integration,
gives

1 F T T ot ¥
[V e T 2 (= 0)] —.— 20
=" [VEFm=cy T -+25(m—0)] TRy e, (7.13)

*See page 136 for footnote.
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The constant of integration is found from the conditions at
the boundary of the laminar layer, where forn = a

a: Y
L& v,

Assuming a linear velocity distribution inside the laminar
layer and applying Newton's law and the expression for a, wo ob-
tain

s vy, 'S,
To=W-— Or Lm0,
o v .4 L9 v '

Hence ¢ = n for the laminar layer, and ¢ = a for its boundary.
Consequently, the integration constant in (7.13) equals C = qa,

For large n, i.e., at a sufficient distance from the wall
and large enough Re, Formula (7.13) reduces to the Prandtl velo-
city distribution law (7.7), where

Az—.?':‘—(\l; B:—;."“‘E‘ In L ...!--t a.

* Y : )

With the approach to the wall and at small Re, the quantity
n approaches closer and closer to a, so that the velocity effect
increases and Formula (7.13) diverges increasingly from the Prandtl
law.

By solving (7.12) approximately, we can obtain a simplified
form of the law of veloelty distribution in turbulent flow with
consideration of the laminar layer and viscosity:

e=--llx(1-a)+1)-1a (7.14)

Like (7.13), Eq. (7.14) satisfies the boundary condition for
n = a and agrees well with Reichardt's results of experimental
velocity measurement near the wall (see Fig. 66). However, this
equation is much simpler and more convenient to use than the re-
sult of exact solutlon (7.13).

Let us apply Eq. (7.13) to the center of the plpe section
and use (7.8) and (7.9) in the same way as in deriving (7.10).
Here, we disregard the units under the radicals and in the de-
nominator of the second term in (7,13), so that this term reverts
to 1/k.

Simple modifications yleld an improved resistance law in the
form

where



tc.“+';-‘- ‘— J
e 3 !

ot

At large Re, Formula (7.15) becomes the Prandtl resistance
law (7.10), but for small Re it gives values of A that are some-
what on the high side owing to the direct viscosity effect.

Thus, the constant coefficients in (7.13) and (7.15) (velo-
city-distribution and resistance laws) are expressed in terms of
the two universal constants « and a, determinations of which from
velocity-distribution and resistance experiments yields practic-
ally identical results, namely: from the velocity distribution
K g 0.401 and o = 6.82, and from resistance x = 0,407 and a =
= I93'

Thus, consideraticn of viscosity and the laminar layer in
the Prandtl theory has made it possible to obtain improved laws
of velocity distribution and resistance, has made the veloclity-
distribution law satisfy the boundary condiltion near the wall,
and has enabled us to express all constant coefficients in terms
of the two universal constants x and a.

§30. TURBULENT FLOW IN ROUGH-WALLED PIPES

While the frictional-loss coefficient is fully determined by
Re for smooth pipes, the At of rough pipes also depends on the

roughness of the pipe's internal surface. What is important here
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Fig. 67. Dependence of log (1000A)
on log Re for artificlally roughened
pipes according to I.I. Nikuradze's
experiments.

is not the absolute dimension k of the roughness peaks, but the
ratio of this dimension to pipe radius, i.e., the so-called
roughness ratio k/r,. A given absolute roughness may have no
effect at all on resistance 1n a large-diameter plpe, but be
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capable of increasing it substantially in a small-diameter pipe.
Further, resistance is influenced by the nature of the roughness:
distance between peaks, height nonuniformity, etc. The simplest
case would be that in which all roughness peaks had the same di-
mension k and the same shape, i.e., the case of so-called uni-
formly distributed granular roughness.

In the case of uniformly distributed granular roughness,
therefore, the coefficient At will depend on both Re and the

ratio k/r,, li.e.,
[ -13 e -k.«
ll /(Rto ’.) o!

The manner in which these two parameters influence pipe re-
sistance 1s distinectly evident from a diagram representing the
experimental results of I.I. Nikuradze (Fig. 67), who tested a
series of pipes with artificlally created roughness for resis-
tance. Uniformly distributed roughness was obtained by gluing
gralns of sand of uniform size to the inside walls of the pipes.

The pipes were tested in a broad rang2 of relative rough-
nesses (k/r, = 1/500 to 1/15) and Reynolds numbers (Re = 500-
10*). The test results are plotted on a logarithmic diagram in
the form of curves of log (1000A) as a function of log Re for
a series of k/r,.

The inclined straight lines A and B correspond to the resis-
tance laws of smooth pipes, i.e., to Formulas (6.7) and (7.2).
On multiplying by 1000 and taking logarithms, we obtain the equa-
tions of the lines in log (1000\A) = f(log Re) coordinates:

Ig (1000%,)=- 12 61 000~ 1e Ne

and
Ig (10002,)--1£316,4-- -1 Iz Re,

The curves for pipes with various roughness ratios are
dashed.

The following basic conclusions can be drawn from analysis
of the dlagram:

1. In laminar flow, roughness does not influence resistance;
the dashed curves corresponding to various roughnesses practic-
ally coincide with 1line A.

2. The critical Re 1s practically independent of roughness,
The dashed curves deviate from line A at about the same Re.

3. In the turbulent-flow -ange, but at moderate Re and k/r;,
roughness does not influence resistance; the dashed lines coin-
cide with line B on certain segments. As Re increases, however,
this influence begins tc make itself felt, and the curves for
rough pipes begin to deviate from the line corresponding to the
resistance law for smooth pipes.
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4, At large Re and large relative roughnesses, the coeffi-
clent kt ceases to depend on Re and becomes constant for a given

roughness ratio. This corresponds to the segments of the dashed
curves on which, after rising slightly, they run parallel to the
axis of abscissas.

Thus, we can discern the following three ranges of Re and
k/r,, which differ from one another in the way in which the coef-
ricient At varies, for each of the curves corresponding to rough

pipes in turbulent flow.

The first range, the range of small Re and k/ry, in which
the coefficient xt 1s independent of roughness and 1is determined

only by Re, as in the case of smooth pipes. This reglon does not
appear for the largest roughness values in I,I. Nikuradze's ex-
periments.

A second region, where the coefficient xt depends on two
parameters simultaneously: Re and surface roughness.

A third region of large Re and k/ro in which the coefficient
At does not depend on Re and 1s determined only by roughness

ratio. This regilon is known as the self-gimilarity reglon or the
square-law resistance zone, since & At that 1s independent of Re

signifies that the head loss is exactly proportional to the square
of velocity [see Formula (4.20)].

For better understanding of these resistance properties of
rough pipes, it 1s necessary to take account of the presence of
the laminar layer (see §28). .

As we noted above, the thickness 61 of the laminar layer de-

creases with increasing Re. For this reason, when we have a tur-
bulent flow in a rough pipe, the laminar-layer thickness at small
Re is greater than the roughness-peak height, the peaks are in-
side the laminar layer and are washed smoothly (without separa-
tion), and hence do not affect resistance. With increasing Re,
the thickness 61 decreases, and the roughness helghts begin to

project outsicd2"the layer and ‘nfluence resistance. At large Re,
the laminar-layer thickness becomes vanishingly small, and the
roughness peaks are washed by the turbulent flow with separation
and eddying at each peak; this explains the square-law resistance
curve that applies in this region.

I.I. Nikuradze's diagram can be used to construct an approxi-
mate Reynolds-number curve of the so-called acceptable roughness,
i.e., of the maximum value of k/r, at which the roughness of the
pipe still does not influence its resistance. For thls purpose,
it is necessary to select the points on the diagram (see Fig. 67)
at which the rough-pipe curves begin to deviate from line B for
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smooth pipes. Obviously, the acceptable roughness figure becomes
smaller with increaslng Re.

I.I. Nikuradze ran his experiments on pipes 1llned with an
artificial, uniformly distributed granular roughness. For natu-
ral rough pipes, the variation of At with Re is found to be some-

what different, without the rise in the curves after their devia-
tion from the smooth-pipe law. Figure 68 presents the results of
very careful experiments conducted by G.A. Murin at the All-Union
Institute of Technology.

On this diagram, the coefficient xt for natural rough pipes

1s given as a function of Re for various values of d/ke, where ke

1s an absolute roughness equivalent to the granular roughness 1in
Nikuradze's experiments. G.A. Murin recommends ke = 0.06 for new

steel pipes and ke = 0,2 mm for used plpes.

The difference 1n the character of the Nikuradze and Murin
curves 1s explalned by the fact that the roughness peaks 1n a
natural pipe have varying heights and, as Re 1s increased, begin
to project outside the laminar layer not simultaneously, but at
different Re. As a result, the transition from the curve corre-

TABLE 2

a - Matepiiax 1pybu b l?::

¥ .

¢ Crekao o 0.0
( Tanyrse TpyOu H3 AATYHI, CBHHUA, MEAK 0.0
¢ Becmobnuwe craishue TPYOH TulaTEABHOrO HITOTORIENIS 0,6~2,0
f Craasune Tpybéu . 10
o Uyryunue achamtuposanisic 1pyou 1025
i, Wyrywide Tpydu 25—50

“EY: (a) pipe material; (b) 10* k', mm; (c)
glass; (d) brass, lead, or copper seamless
pipes; (e) carefully made seamless steel
pipes; (f) steel pipes; (g) asphalted cast-
lron pipes; (h) cast-iron pipes.

sponding to the reslstance of smooth pipes to the horilzontal lines
corresponding to the square law takes place more smoothly for
natural plpes, without the trough in the typical curves of the
Nikuradze diagram. The boundary of the square-law resistance
range 1s indicated on the diagram (see Fig. 68) by the dashed
line; this boundary is determined by the limiting Reynoclds number,
which 1s larger the smaller ke/d.
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Fig. 68. Diagram of A, as a function

of Re for naturally rough pipes accord-
ing to G.A. Murin's experiments.

KEY: (a) rough pipes; (b) smooth pipes;
(c) Reynolds number Re,

For practical calculations to determine the resistance of
real rough pipes, we might also recommend the following new uni-
versal formula of A.D. Al'tshul' [5]:

1 Re
—.—=1,8]g— - N
I (7.16)

where d 1s the pipe diameter and k' is a dimension proportional
to the absolute roughness.

The limiting values of k' for various pipes are listed in
Table 2.

For values of Reﬂ-smaller than 7, Fermula (7.16) becomes the
Konakov formula (7.1) glven earlier for smooth pipes, while at
large Re£ , 1t becomes the formula for fully roughened pipes,
1,e., for the square-law resistance mode (self-similarity):
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1 4

Thus, by comparing the numerlcal value of the product Re;-

with 7, we can establish the boundaries of the above regions
(regimes) of turbulent flow in rough pipes.

§31. TURBULENT FLOW IN NONCIRCULAR PIPES

We have now considered turbulent flow in pipes of round
cross section. However, it 1s sometimes necessary to deal with
turbulent flow in nonround pipes, such as are used, for example,
in cooling devices.

Let us consider calculation of frictional losses for turbu-
lent flow in a pipe with a cross sectlion of arbitrary shape.

The resultant frictional force acting on the outer surface
of a stream of length & can be expressed as follows:

T-le..

where I is the section perimeter; 1, is the tangential stress at
the wall, which depends basically on dynamic pressure, 1,e., on
the average flow velocity and density of the fluld (see §17 and
25).

At a given cross-sectional area and a given fluld flow rate
(and hence at a given average velocity), therefore, the friction
is proportional to section perimeter. Thus, to reduce friction
and the energy lost on friction, it is necessary to make the sec-
tion perimeter smaller. The smallest perimeter for a given area
is the circular section, which 1s therefore optimal from the
standpoint of minimizing energy (head) losses due to friction in
the plpe.

The so-called hydraulic radius Rg, which is equal to the

ratio of the pipe's sectional area to its perimeter, is introduced
into the calculation for quantitative evaluation of the effect of
sectional shape on head loss:®

i s_
ﬁﬂ»‘ii. (7.18)

The hydraulic radius can be figured for any cross sectlon.
For example, we have for a circular section

202 d
R'_Uum T

from which
d=AR., (7.19)

¥See page 136 for footnote.
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for a rectangular cross sec:tion with sides axb

ab
Re=sa+n"’

and for a square with side a

For a gap of dimension a, we obtain from the above (regard-

ing a as very small by comparison with b):

[
R=2.

Substituting the hydraulic radius (7.19) for the geometrical
diameter d in the basic formula for frictional head loss (4.20),
we obtain

1 v
,l,’=ltiﬁr—'2::.‘ ' (7.20)

Since this formula 1s a more general expression of the loss
law (4.18), it should be valid not only for round, but also for
nonround pipes.

Experiment has confirmed the valldity of (7.20) for pipes
with any cross-section formula. The coefficient A 1s calculated
from the same formulas (7.1) or (7.2), but the Reynolds number 1s
expressed in terms of Rg, i.e.,

Re,:‘_’?_:"“_v_ o (7.2D)

Example. Determine the .frictional pressure loss in the cy-
lindrical part of the combustion-chamber cooling Jacket of the
"Rheintochter" 1liquid rocket engine [LRE] (xpn) [25]. The Jacket
takes the form of an annular gap with § = 2 mm and length & = 500
mm; the inner circle diameter {s D = 155 mm. The coolant {(nitric
acid) flow rate is G = 10 kgf/s, and the specific welght Y *

= 1510 kgf/m®.

Assume that the acid temperature is constant in thils zone
and averages t . = go°C (v = 0.25 ¢St).

Solution. 1) The flow velocity in the gap

G 10
Lm/s .
V= TxDv = 1510-5-0,105-0,002 =6.tm/8

2) The hydraulic radius of the Jacket 1s

AO+2P=D) _ 2 oo

Re="x0v21D) =2
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3) The Reynolds number

Re 4Ry 4-0,1-680
= oy Sm——

== 110000,
0,0025 n

4) The pressure loss due to friction

) A ..".'_ . 1 .G.Q.O 6.62
Po=trir, "ag YU (LBigRe— 1,52 4.1 2.0,8

= 0.8 kgf/cm? = 78 500 N/m2.

1510-10~4 =

The pressure losses in the conical segments of the cooling
passage are much larger, but their calculation is more complex,
since 1t 1s necessary to carry out an integration.
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117

122

122

124

124
125
126
133

Footnotes

!See the author's paper "O sootnoshenil skorostei i
koeffitslyente Koriolisa pri turbulentnom techenil v
trubakh" (Velocity and Coriolis coefficient relation-
ships in turbulent pipe flows) (Trudy VVIA im. N.Ye.
Zhukovskogo [Transactions of the N.Ye. Zhukovskily
Alr Force Engineering Academy], 1944, No. 104), where
the Re curve of a was obtained theoretically.

27t will be understood that we can speak only conven-
tionally of layers in turbulent flow.

'Ludwig Prandtl (1875~1953) was a noted German scien-
tist in the flelds of aerohydromechanics, meteorology,
and elasticity theory and a professor at G8ttingen Uni-
versity.

*I.I. Nikuradze was a colleague of Prof. L. Prandtl and,
at Gottingen, carried out a series of meticulous experi-
mental studies of fluid flow in pipes the results of
which have won wide recognition (see also §30).

SZAMM, Vol. 20, No. 6, 1940.

$See footnote to page 117.

"The author's results are cited below.

®The notion of the hydraulic diameter, which equals

Dg = uRg, is also in use.
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Symbol List

Manu-

script Symbol English equivalent
page

116 ocp osr averaged
117 KD kr critical
118 Tp tr friction
118 T t turbulent
119 J 1 laminar
125 cp sr average
131 3 e equivalent
133 r g hydraulic
134 K k acid
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CHAPTER VIII
LOCAL HYDRAULIC RESISTANCES

§32. LOCAL RESISTANCES IN GENERAL. ABRUPT EXPANSION OF THE
CHANNEL

It was stated above (§19) that hydraulic energy losses are
classified into two categories: local losses and losses to fric-
tion. We have already considered frictional losses 1in straight
constant-section pipes for laminar (Chepter VI) and turbulent
(Chapter VII) flow regimes. Let us nov examine the losses gov-
.erned by the so-called local hydraulic resistances, i.e., those
elements of the pipelines in which flow velocity changes and
eddies usually form as a result of changes in the dimensions or
configuration of the channel,

In §19, we cilted examples of certain local resistances and
gave a general method for expressing them based on experimental
data (4.19), namely:

160*

=0, Eag, 100
Yog M vganas

The problem is now to find a way to determine the cm coef-
ficients for various types of local resistances.

Elementary local hydraulic resistances can be classified
into the following groups and subgroups:

1) expansion of the channel — abrupt, smooth;
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2) constriction of the channel — abrupt, smooth;
3) turning of the channel - abrupt, smooth.

More complex cases of local resistance are combinations of
the elementary forms listed above. Thus, the fluid llows through
a gate valve (see Fig. 30d), the stream curves, changes direction,
narrows, and, finally, expands to its original size; this 1s ac-
companied by intensive eddying.

Let us examine the elementary local resistances for turbulen.
flow in the order in which they are listed above. It should be
noted that the coefficlents cm are determnined almost exclusively

in turbulent flows by the shape of the local resistances and
change very little with changes in channel dimensions, stream
veloclty, or fluid viscosity, l1.e., with changes in Re. They are
therefore usually assumed to be independent of Re, which signifies
a square-law resistance curve or self-similarity. We shall touch
upon local resistances in laminar flow at the end of the chapter.

Values of the local-resistance coef-

I ficlents ¢ are usually obtalned by experi-
= ment and then used in experimental formulas

T or graphs.

-z However, the head loss can be found ac-
1% curately enough by a purely theoretical
route for the case of abrupt expansion of
_m“ the channel in turbulent flow,
r ]

- Figure 69 shows a sudden channel
Fig. 69. Abrupt ex- (pipe) expansion and the flow pattern that
pansion of channel. corresponds to 1it. '

The flow does not detach at the corner
and expand abruptly, like the channel, but does so gradually, with
formation of eddies in the annular space between the stream and
the pipe wall; 1t 1s these eddies that cause the loss of energy
in this case.

Observations have shown that there is a continuous exchange
of fluild particles between the main stream and the rotational
zone of the flow.

Let us take two sections through the flow: 1-1 in the plane
of the plpe expansion and 2-2 where the stream, after expanding,
has filled the entire section of the wilder plpe. Since the stream
expands between these sections, 1ts veloclty decreases, while the
pressure rises. As a result, the second plezometer indicates a
height AH greater than the first; however, if there were no head
losses at this polint, the second plezometer would indicate a
still greater height. The "missing" height h 1s the local head
loss due to expanslon.
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Let us denote the pressure, veloclty, and sectional area of
the stream in section 1-1 by p,, v,, and S,;, respectively, and
those in section 2-2 by p,, V2, and S,. We write the Bernoulli
equation for these sections on the assumptlion that the distribu-
tion of velocity over the sections is uniform, i.e., setting a, =
=a, = 1.

We obtain
2 2
BLy B P @
Y +2§ = Y +2§ +l'pmn'

We then apply the momentum-change theorem of mechanics to
the cylindrical volume enclosed between sections 1-1 and 2-2.
For this, we determine the impulse of the external forces acting
on this volume in the direction of motion, assuming zero tangen-
tial stresses on the side of the cylinder. Remembering that the
left and right bases of the cylinder have the same area S, and
assuming that the pressure p, in section 1-1 acts on the entire
area S,, we obtaln the per-second force impulse in the form

(P1- -p2) Sa.

The change in momentum corresponding to this impulse is
found as the difference between the per-second momenta: that
transferred out of the volume under consideration and that trans-
ferred into 1t; with a uniform velocity distribution over the
sectiors, thils difference equals

Qe(r,— ).
Equating the two,

(s p) Sy= =),

We divide the equation by S,y, remembering that Q = S,v,,
and rearrange the right member:

M:ﬂ(¢-2~1’1)=_.ﬁ~|_fi_221.!7;.+_'i__‘i
Y £ % % 2 "2 9°
Grouping terms, we obtain

2 2 .
2y Y I DR Sl 1
vy ‘2z v '2% ' 2%

Comparing the resulting equation with the Bernoulll equation
that we wrote earlier, we see that they are quite analogous; from
this we can conclude that

"p:(‘u::g_’!'::"':):- (8-1)

i.e., that the head (specific energy) loss on an abrupt channel
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expansion 1s equal to the velocity head calculated from the velo-
city difference. This statement is often referred to as the
Borda-Carnot theorem after two French sclentists - one a hydrau-
licist and the other a mathematiclan.

If we take into consideration that, according to the flow
rate equation,

S =13Sy,

the result obtailned can be written in still another form corre-
sponding to the general method of expressing local losses:

sy o! ol
Ei 5j-= ﬂ?? (8.17)

n,,.,,=(| -
Consequently, the resistance coefficient for the case of a
sudden channel expansion equals

-8 an

As we should expect with the assumptions adopted, the theo-
rem that has been proven agrees well with experiment for turbu-
lent flow and is used extensively in calculations.

In the particular case In which the area S; 1s very large
by comparison with S, and, consequently, velocity v, can be set
equal to zerc, the expansion lass equals

%
.’.e.-;‘_ .
1.e., the entire velocity head and all of the kinetic energy of
the fluid is lost; in this case, the resistance coefficlent { = 1,
One such case 1s that of fluid running through a pipe into a suf-
ficlently large reservolir.

It must be stressed that this head (energy) loss on an
abrupt channel expansion can be thought of as going entirely into
formation of the eddies assoclated with flow separation from the
walls, i.e., into maintenance of the continuous rotational motion
of the fluid masses and their continuous replenishment (exchange).
For this reason, energy losses of this type, which are propor-
tional to the square of velocity (flow rate), are known as eddy-
ing losses.

They are also often called impact losses, since we have here
a rather sharp velocity decrease, a kind of impact of rapidly
moving fluid on fluid that is moving slowly or not at all.
§33. DIFFUSERS

A progressively expanding pipe 1s called a diffuser. Fluid
flow in a diffuser 1s accompanied by a decrease In veiocity and
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an increase in pressure. Particles of the moving fluld overcome
the increasing pressure at the expense of their kinetic energy,
but the latter diminishes along the diffuser and in the direction
from the axis to the wall. The fluid layers next to the wall
have so little kinetic energy that they are often unable to over-
come the elevated pressure; they stand still or even begin to
move backward. The main stream comes up against these back cur-
rents, eddies form, the the flow separates from the wall (Fig.
70). The intensity of these effects increases with increasing
expansion angle of the diffuser, and the eddying losses in the
diffuser increase concurrently. In addition, the diffuser is
subject to the usual frictional losses, which resemble those that
arise in constant-section plpes.

Fig. 71. Dlagram of
Fig. 70. Eddying in a diffuser used in
diffuser. calculations.

The total head loss hdif in a diffuser will be regarded con-
ventionally here as the sum of two terms:

"‘r_:.:‘"‘".p'l' ,‘y;rm' ( 8.2 )

where htr is the head loss due to friction and hrassh 1s the head
loss due to expansion (formation of eddies).

The frictional head loss can be calculated approximately as
follows. Take a circular-section diffuser with a straight gene-
ratrix and an angle o at 1ts vertex. Let the radius of the dif-
fuser entry orifice be r,, and its exit radius r, (Fig. 71).
Since the section radius and the velocity of fluld motlon are
variable along the diffuser, 1t 4s necessary to take an element-
ary segment of the diffuser of length d& along the generatrix and
express the elementary frictional head loss for 1t by the baslc
formula (4.18):

dl v
dli,,= ¥ oo .

where v 18 the average velocity in an arbitrarily chosen section
of radlus r.

It follows from the elementary triangle that



We can then write on the basis of the flow rate equation

(2
where v, 1s the velocity at the beginning of the diffuser.

Let us substitute these expressions into the formula for
dhtr and integrate from r, to r,, i.e., over the entire length
of the diffuser, on the assumption that the coefficlent At is
constant:

2
dr SRS
dll";:--).‘, - (-7'—) é—} .
2r sin — ¢
2

from which

]

or, finally,

h';=__ll__'1__L u
oz )i (8.3)

. 2
where n=—ss-3==(%) is the so-called expansion ratio of the dif-
fuser,

The second term, the expansion (eddying) head loss, 1s of
the same nature in a diffuser as in an abrupt expansion, but is
smaller and 1s therefore usually expressed by the same formula
(8.1) or (8.1'), but with a correction factor k that is smaller
than unity, 1i.e.,

q a9
P ek ) LYY DU L W 4 DR i
hrew=k Ok (1 2 k(1 f L (8.4)

Since the impact 1s "softer" in a diffuser than in an abrupt
expanslon, the coefflclent k is often referred to as the impact
softening coefficient. The numerical value of this coefflcient
for diffusers with taper angles a of the order of 5-20° can be
determined by the following experimental formula of I.Ye. Idel'-
chik:

) . . x' -
k"‘;lt"tu -2 l/ tb- - (8-5)
or from the approximate Fligner formula

(8.6)

k=.sina.
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Using Formulas (8.3) and (8.4), we can rewrite the original
expression (8.2) in the form

2 2

L T

8$lu—;-A

and the diffuser's resistance coefficlent can finally'be expressed
as follows:

o (1= (- 2 5.9

[ S e
o -1 1zi-]
"R
A
o “ L
T .Zt"l‘f.\ ‘
0 2 666 1912115
Fig. 72. Diagram of TFig. T73. Diffuser with Fig. 74. Stepped
cdif as a functlon constant pressure diffuser.
gradient.

of angle a.

From this we see that the coefficient ;dif depends on the
angle a, the coefficient Z., and the expansion ratio n,

It 1s important to ascertain the manner in which Z44¢ de-

pends on &. With increasing angle o, the first term in Formula
(8.8), which 1s governed by friction, decreases for glven A, and

n, since the diffuser is made shorter and the second term, which
is governed by eddying and flow detachment, increaseés.

On the other hand, when a becomes smaller, eddying decreases
but friction increases, since for a given expansion ratio n, the
diffuser becomes longer and its friction surface larger.

The function Lgip = £(a) has a minimum at a certain optlimum
angle o (Fig. 72).

The value of this angle can be found 1in approximation from
Formula (8.8) after replacing-sh;%-by % sings @8 follows: differ-
entiate Expression (8.8) with respect to o with consideration of
(8.6), equate to zero and solve for a:
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When a frictional-loss coefficient of the order of At =

s 0,015-0.025 and area ratlios in the range n = 2-4 are substituted
into this formula, we obtain an average of about 6° for the opti-
mum diffuser angle; this agrees with experimental data.

whence

In practice, somewhat larger angles o (a = 7-9°) are usually
used to shorten the diffuser at a given n. The same a values can
also be recommended for square diffusers.

For rectangular diffusers with expansion in one plane (flat
diffusers), the optimum angle is larger than for the round and
square diffusers, amounting to 10-12°. .

If near-optimum angles a cannot be used because of bulk con-
siderations, 1t is advisable to abandon the straight-generatrix
diffuser with a > 15-25° and go over to one of the special dif-
fusers, e.g., a diffuser that provides for a constant pressure
gradient along the axis (dp/dx = const).! The approximate out-
lines of such a diffuser are shown in Fig. 73.

The decrease in energy loss 1n these diffusers by comparl-
son with the straight-generatrix types 1s larger the larger the
angle a, and ranges up to 40% at o of the order of 40-60°. 1In
addition, the flow in a curvilinear diffuser is more stable.

Good results are also obtained with the stepped diffuser,
which consists of an ordinary diffuser with the optimum angle in
series with an abrupt expansion (Fig. 74). The latter does not
give rise to large energy losses, since the velocitles are com-
paratively low at its position. The total resistance of such a
diffuser 1s considerably smaller than that of an ordinary diffuser
of the same length and expansion ratio. More detalled informa-
tion on special diffusers will be found in [12].

§34. CONSTRICTION OF CHANNEL

An abrupt constriction of the channel (pipe) (Fig. 75) usu=-
ally causes a smaller energy loss than an abrupt expansion with
the same area ratio. In this case, the loss is due, firstly, to
friction at the entrance into the narrow pipe and, secondly, to
eddying losses. The latter occur because the stream does not
wash the entrance corner, but detaches from 1t and tapers; the
annular space around the constricted section of the flow 1s filled
with sluggish eddying fluid.

Tqee page 157 for footnote.
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Subsequent expansion of the stream is accompanied by a head
loss that can be determined by the theorem for abrupt pipe ex-
pansion. Consequently, the total head loss equals

2 k |
R TN (iad 2) Y S
han=Yoor + 0 ,Q’”zr'l (8.9)

where [, 1s the resistance coefficlent governed by the friction
of the stream as it enters the narrow pipe and Ve is the velo-
c¢ity at the constriction.

i Lo The resistance coefficient of an
& : ; abrupt constriction depends on the con-
- el 1 striction ratio, i.e., on n = 8,/S,, and

f—'r‘m— »can be determined from the following
: semiempirical formula, which was proposed

by I.Ye. Idel'chik:

Flg. 75. Abrupt con-

striction of pipe. "‘“a%(l - ;;.T.)=.;_ (1 — .:_) (8.10)

It follows from this formula that in the particular case in
which we may set S,/S, = 0, i.e., when the pipe empties into a

large enough reservoir and the entrance corner is not rounded,
the resistance coefficient is

tcym =faxe 0,5.

The head loss at entry into the pipe can be lowered sub-
stantially by rounding the entry corner (entry edge).

RS

S e . e

—

Fig. 76. Confuser. Fig. 77. Nozzle.

A gradual constriction of a pipe, i.e., a converging conical
pipe, 18 called a confuser (Fig. 76). The fluid flow in a con-
fuser is accompanied by a velocity increase and a pressure de-
crease; the fluid moves from higher to lower pressure, so that
there 1s no cause for the formation of eddies or flow detachment
(as was the case in the diffuser). The confuser has only fric-
tion losses. Accordingly, the resistance of a confuser is al-
ways smaller than that of the identical diffuser.

The pressure loss to friction in a confuser can be calcu-
lated in the same way as for the diffuser, i.e., the loss is
first written for an elementary segment, and this 1s followed by
integration. This yields the formula
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(LN . ‘ a ‘ . .
: by (1= ) o (8.11)
2.

where n 1s the constriction ratio.

Minor eddying and flow separation from the wall with simul-
taneous constriction of the stream occur only at the exit from
the confuser, at the point at which the conical pipe Jjoins the
eylindrical pipe. To eliminate this vorticity and the associated
losses, it is recommended that the conlcal segment be coordinated
smoothly with the cylinder or that it be replaced by a curvilinear
segment that merges smoothly into the cylinder (Fig. 77). This
solution ylelds a very large constriction ratic on a short axial
length and very modest losses.

The resistance coefficient of a smooth constriction of this
type, which is known as a nozzle, varles in the approximate range
r = 0.03-0.10, depending on constriction ratio, smoothness, and
Re (small values of f correspond to larger Re and vice versa).

§35. TURNS IN THE CHANNEL

An abrupt turn in the channel (pipe) or unrounded elbow
(Fig. 78) usually produces considerable energy losses, since
flow separation and eddying take place in 1t; these losses are
larger the larger the angle 8. The resistance coefficient ;kol

of a circular-section elbow increases very steeply with increas-
ing & (Fig. 79) and reaches 1.0 at 6§ = 90°.

In view of the large head losses of un-
rounded elbows, it 1s not recommended that
they be used in pipelines.

A smooth turn in the pipe, or rounded
$ - elbow (Fig. 80), 1is also known as a bend. The
- S smoothness of the turn reduces the scale of the
eddying substantially and, consequently, also
lowers the resistance of the bend by compari-
Fig. 78. Elbow. son with the elbow. This decrease will be
larger the larger the relative radius of cur-
vature R/d of the bend, and flow detachment and
the assoclated eddying will be eliminated altogether if 1t 1s
made large enough. The resistance coefflcient of the bend de-
pends on the ratio R/d, the angle &, and the cross-sectional
shape of the pipe.

The following experimental formula can be used for circular-
section bends with the angle § = 90° and R/d > 1:

G =0,051 4 o.w—k‘ﬁ- . (8.12)

For angles § < 70°, the resistance coefficlent equals
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(,,.==0.9$lu&:;,,,] - (8.13)
and for § > 100°

3 '
tonﬁ“__(oj 1‘6?.35) cMu': (8.14)
g EssagaannTad
nf-
FT __?H T |
ENNS : ; Fig. 80. Smooth turn
z in pipe (bend).

0 20 40 60 L3 100 1200°
It must be remembered that the

Flg. 79. ckol as a head loss defined by these coeffi-

function of angle §, clents Cotv? l.e.,

v2

h=0, 52:

is the difference between the total head loss in the bend and the
frictional losses in a straight pipe whose length is equal to that
of the bend, i.e., the coefficient Cotv takes account only of the

additional resistance due to the curvature of the channel. In the
design of pipelines containing bends, therefore, the lengths of
these bends must be included in the total length of the pipeline,
which is used to figure the frictional losses, and then the addi-
tional loss due to curvature, which is determined by the coeffi-

client cotv’ must be added to this frictional loss.
N ‘ g pie woe e ewws L 4
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Fig. B8l. Diagram of Fig. 82. Diagram of b

a as a function of R/d. as a functlon of &,

We have based the above formulas (8.12), (8.13), and (8.14)
on diagrams plotted by Prof., G.N. Abramovich, who reduced a large
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compilation of the most reliable experimental studies of the re-
sistance of bends and proposed the following expression for the
reslstance coefficient:

Lo 070800 (8.15)

where a is a function of the relative radius of curvature and is
given by a curve of a = f,;(R/d) (Fig. 81); b is a function of the
turn angle, which is given by the b = £,(8) curve (Fig. 82) and
equals unity at § = 90°; ¢ 1s a function of the pipe's cross-
sectional shape, equals unity for round and square sections, and
is given by a ¢ = f,(e/d) curve for rectangular sections with
gi?es e and d (side’e 1s parallel to the axis of curvature) (Fig.
3).

We see from thls last diagram that the function ¢ has a mini-
mum when the sides of the rectangle are related as e/d = 2.5.
This 1s because a so-called "paired vortex" forms in the rectan-
gle as the stream turns in it. The reason for this is that cen-
trifugal forces act on all particles of the fluid as 1t moves
through the curved channel. But since the velocity distribution
1s not uniform over the cross section (the velocities are higher
at the center and lower at the walls), the centrifugal force,
which is proportional to the square of velocity, will be consider-
ably larger at the center of the stream than at the walls. As a
result, centrlfugal-force moments arise about the axes 0, and O,
(Fig. 8Y4) and set the fiuld in rotation. At the center of the
stream, fluld is displaced from the inner wall toward the outer
wall, i.e., along the radius of curvature, while the fluid at the
lateral walls moves in the opposite direction., The pair of vor-
tices is formed in th’s way. The stream divides into two helical
flows as a result of addition of the eircular motion of the fluid
to 1ts translational motion.

Energy cf the fluid is continuously
"H LLLILLINTEL]  being expended on the formation of the
“H..,. J "paired vortex," 1.e., head is being lost;
i

L

this loss 1s proportional to the moment of
inertia of the vortex cross-sectional area.
‘ﬂ 4_ The smallest moment of inertia is that of
td i _1:1 a clrcular vortex section, which may occur
i 3 when the sides of the rectangle stand in
¥ o  the ratio e/d = 2. Hence the smallest el-
bow resistance is obtailned when the sides
gigé 23%u222%g2m0?f ratio of the rectangle is of the order of
e/d. two or slightly larger. In this case, the
cross section of each of the vortices has
the natural, i.e., circular shape; in all
other cases, the vortices will be flattened in one direction or
the other.

!
1
@
¥ -,L
I AT TT
111

Thus, while the circular pipe cross section is the optimum
shape from the standpoint of reducing frictional losses, the
rectangular section with a 2.5 sides ratio (longer side parallel
to the axis of curvature of the bend) 1s most advantageous for
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the purpose of minimizing Soty® The resistance coefficient of a
bend with this sectional shape 1s

t-oﬂﬁﬂv

where cotv 1s the resistance coefficient of a circular-section

bend with the same R/d and §.

. . _— )| — ‘\
[ & D | -
s Y - b)

— Fig. 85. Vaned elbows.

L
)
Pz [ Thus, the curvature losses
% L@ can be rec,luced by a factor of 2.5

below those of the clrcular cross
Fig. 84. Diagram showing for-  section by using the optimum chan-
mation of vortex pair. nel-section shape at the turn.
In certain critical cases, when it
is particularly important to mini-
mize losses, it is advisable to
use this special section s™ape, and this is done, for example, in
the alr intakes of certain aviation engines.

ﬁ

In addition, gulde vanes are sometimes installed in large
elbows (as in wind tunnels) to reduce resilstance. Installation
of unprofiled vanes that have been bent along circular arcs (Fig.
85a) lowers the resistance coefficient of the elbow to § = 0.4;
profiled vanes (Fig. 85b) reduce { even further, to ¢ = 0.25.
More detalled information on vaned elbows can be found in the
specialized literature [12].

§36. LOCAL RESISTANCES IN LAMINAR FLOW

All material set forth in preceding sections of thls chapter
pertains to local hydraulic losses in turbulent flow. As concerns
laminar flow: firstly, the local reslstances are usually unimpor-
tant here by comparison with friction and, secondly, the law of
resistance is more complex in thls case and has not been investi-
gated as thoroughly as for turbulent flow.

While the local head losses can be considered proportional
to the square of velocity (flow rate) in turbulent flow, and the
resistance coefficlents ¢ are determined basically by the shape
of the resistance and are practically independent of Re, the head
loss hm in laminar flow must be regarded as the sum
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Ay=hyy+Roagy, : " (8.16)

where htr is the head loss due directly to friction (viscosity)

at the particular local resistance, and is proportional to the
first power of fluld viscosity and veloclity; hvikhr is the loss

due to flow separation and eddying in the local resistance itself
or downstream of it, and 1s proportional to the square of velo-
city.

Fig. 86. Diagram of Fig. 87. Two types of local
Jet tube. resistance.

Thus, for example, in flow through a jet tube (Fig. 86), a
frictional head loss occurs to the left of section 1-1, and an
eddying loss to 1ts right.

Applying the law of resistance for laminar flow (6.6) and
(6.7) with a correction for the initial segment, and Formula
(4.19), we can write the same sum in the form

A v v?
== —, (8.16")
%’M 2z
where A and B are dimensionless constants that depend on the
shape of the local resistance.

After dividing (8.16') by the velocity head, we obtain a
general expression for the coefflclent of local resistance in
laminar flow:

A
C,=E;-+ B. (8.17)

The relation between the first and second terms in Foriulas
(8.16) and (8.17) depends on the shape of the local resistance
and on Reynolds number,

In local resistances where there ls a narrow passage whose
length 1s considerably greater than its transverse dimension and
which has smooth entry and exit outlines, as shown in Fig. 87a,
and the Re are small, the head loss 1s determined basically by
friction and the resistance law is close to linear. In this case,
the second term in Formulas (8.16) and (8.17) 1s zero or very
small by comparison with the first.

If, on the other hand, friction has been minimized in the
local resistance, e.g., by providing a sharp edge (Fig. 87p),
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and flow separation and eddying occur, and the Re are quife large,
then the head losses are approximately proportional to the
squared veloclty (and flow rate).
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Fig. 88, Diagram showing ¢ of dia-
phragms as functions of Re:
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When Re varles widely in a given local resistance, both
linear (at small Re) and square-law (at large Re) resistance
curves are possible; there may also be a transitional resistance
range between them at moderate Re. Figure 88, which shows the
results of tests on four dlaphragms in logarithmic coordinates,
represents a typlcal g-Re relationship for a broad Re range of
this type.? The sloping lines correspond to linear resistance
varlation (coefficient [ inversely proportional to Re), the
curving segments represent the transitional range, and the hori-
zontal straight lines the square law or self-similarity (coef-
ficlent { independent of Re). Diagrams of this type are usually
plotted on the basis of experimental data for specific local re-
sistances.

Occasionally, the binomial form of the expression for local
hydraulic losses 1s replaced by a power monomial of the form

hx"kQ'-"q

where k 1s a dimensional quantity; m, the exponent, depends on
TSee page 157 for footnote.
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the shape of the local resistance and Reynolds number and varies
from 1 to 2.

For local resistances and Re for which the resistance law is
nearly linear, the local hydraulic losses are often expressed in
terms of equivalent pipe lengths, i.e., the actual pipe length is
increased by the length whose resistance is equivalent to the
local resistance. Thus, we have

l'a«:"(mn""un J (8.18)

and

Bl o 1
Dh=pr % gt " (8.19)

The numerical values of the equivalent lengths (referred to
pipe diameter) are usually found experimentally for the various
local resistances.

The thecrem of head loss on an abrupt expansion of the chan-
nel that was proven in §32 for the case of turbulent flow 1s in-
valid for laminar flow. This 1s because the assumptions made in
proving this theorem, namely, the hypotheses of uniform velocity
distribution in sections 1-1 and 2-2, constant pressure over the
entire area S, in section 1-1, and zero tangential stresses (see
Fig. 69) are no longer admissible in this case.

Very recent experimental studies have shown that at very
small Re (Re < 9), the abrupt-expansion resistance coefficient
depends little on the area ratio and 1s determined basically by
Re in a relation of the form

This means that the flow is nonseparating, and the expansion
losses are proportional to the first power of velocity. For
9 < Re < 3500, the resistance coefficient depends on both the
Reynolds number and the area ratio. For Re > 3500, we may regard
the Borda-Carnot theorem, 1.e.,, Formula (8.1), as completely
valid.

When the pipe conducts fluid at velocity v, to a large tank

(v, = 0), we can assume loss of all of the fluid's specific kin-
etlc energy, which equals

for stabllized laminar flow in a round pipe.

If, on the other hand, the flow is not stabilized, 1i.e., if
the pipe length 2 < lnach’ the coefficient a should be taken from

the diagram (Fig. 47).
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Example. Find the resistance coefficient of a jet tube of
diameter dzh = 1 mm and length & = 5 mm as a function of Re when

it 1s installed in a pipe of diameter d = 6 mm (see Fig. 86).

Solution. Regarding the jet tube as the initlal segment of
the pipe and assuming that all kinetic energy is lost as the jet
expands, we represent the head loss in the Jet tube as the sum
(disregarding the constriction losses)

' 64 1 v,
‘x=h1p+"pnmu(k'k_cm'd'-l‘ﬂ)'?‘e‘.

Converting from the veloclity Voh in the Jet tube to the velo-

city v in the pipe, we find the resistance coefficient of the Jet
tube:

s\t
puct o
“0-‘ RE?RO b= -(,‘ Rey d +e 4’
Assigning a series of values to Re in the pipe, we find the
Reynolds number Rezh in the jet tube from the relation

"'z.'f'.u: . __4__0___

d d
Re, t= iR —.
S d‘ )

v  ady d

We then use the dlagram (see Fig. 47) to find the coeffi-
cients k and o and, carrylng out the calculations, we enter the
results in the following table:

TABLE 3
Re ‘ 10 | 100 200 300 ‘ 4 | 500
I3 I 9300 l 3140 2:00 I 2200 | 2030 I 1583

§37. LOCAL RESISTANCES IN AIRCRAFT HYDRAULIC SYSTEMS

Aircraft hydraulic systems (hydraulic transmissions) usually
have local hydraulic resistances in. the form of filters, cocks,
gate valves, elbows, and other units and pleces with a wide var-
iety of geometrical shapes. The flow of fluid through these re-
sistances may be either laminar or turbulent, depending on fluid
velocity and temperature (viscosity); the Reynolds numbers vary
over a rather broad range, which may even include Rekr‘ As a re-

sult, the coefficlents ' of these res.stances must be regarded
as functions of Re.

Figure 89 shows curves of the coefficient Ly 88 @ function

of Re in logarithmic coordinates for the most typical local re-
sistances of aircraft hydraulic systems, as obtained in experi-
mental studies by N.V. Levkoyeva [Moscow Aviation Institute (MAI)].

-154-



The Reynolds numbers Re and the coefficlents ch were calculated
from the velocity in the pipe and its diameter.

r

w = o W

Fig. 89. Diagram of
t as a function of
Re for the following
units: 1) felt fil-
ter; 2) shutoff
valve; 3) split
valve; 4) 90° elbow;
5) check valve.

Our attention is drawn to the Re
curve of the zm for the felt filter,

which 13 linear all the way up to Re =

= 5000. This is explained by the fact
that there is quite a great deal of
friction in laminar flow through the pores
of felt, and practically no eddying. The
linear segments are much shorter for the
petcock, valve, and elbow; they are fol-
lowed by a long transitional segment and,
finally, by a range of square-law resis-
tance or self-similarity (cm = const).

The steeper curve for the check valve
as compared to the other resistances is
explained by the fact that the opening of
the valve increases with increasing Re
owing to the increased flow velocity, i.e.,
its geometrical characteristie changes.

In aircraft fuel lines, the Re are
usually considerably larger than in hy-
draulic systems. It can therefore be

TABLE 4
- @ Bng conpotumicuna [
brubkoe coennenne 1py6 0.3
_gCranaapinuli yroavmic 80° (kepnyc cacpaenudt) 1,2-1,3
{d Tpoltiuk-otrcysaenne 3.5
Kpan tonausnuit . 1--2,5
OGpamuil xaanan 2,0
QuALTP ceTeaTHi 1,5--2,5
gjlnwm: pacxoaoneps:
4 npx- spawanuicics KpuIssaTRe 7,0
g' npn 33TOpMONEennofl KpMALRITRE n—12
204 B Tpy0y (suxox na Gaxa) 0,5~-1,0
Eluxo; #3 Tpy6u (oxox ® 6ax) 1.0 i

KEY: (a) type of resistance; ‘b) flexible
pipe joint; (¢) standard 90° elbow (drilled
body); (d) tee branch; (e) fuel valve; (f)
check valve; (g) felt filter; (h) flowmeter
sender; (i) impeller turning; (j) impeller
arrested; (k) pipe entrance (pickup from
tank); (1) pipe exit (feed into tank).

assumed without incurring any major error that the local-resis-
tance coefficients of fuel lines are independent of Re.
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Table 4 shows values of the coefficlents cm for self-similar

flows in the most commonly used hardware components of fuel lines
(11]). The 9% values are referred to the velocity head in the

entry pipe of the unit (part).
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Footnotes

!The pressure gradient in a straight-generatrix diffu-
ser varies along the axis, with its maximum in the
initial cross section.

2pccording to the experiments of N.V. Levkoyeva [18].
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Symbol List

Manu-

seript Symbol English equivalent
page

138 M m local

140 pacm rassh expansion
142 auod dair diffuser
142 by tr friction
143 T t turbulent
145 ont opt optimum

146 cyx suzh constriction
146 BX vkh entrance
147 KOJX kol elbow

148 oTB otv bend

151 BUXP vikhr eddying

152 a d diaphragm
153 pacu rasch calculation
153 daxTt fakt actual

153 SKB ekv equivalent
153 a 1 laminar

153 Hay nach initial

154 x zh Jet
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CHAPTER IX
OUTFLOW OF FLUID THROUGH HOLES AND MOUTHPIECES

§38. HOLE IN THIN WALL

In this chapter, we shall examine various cases of fluid
outflow from reservoirs, boller tanks, holes, and mouthpleces
(short pipes of various shapes) into the atmosphere or, in gen-
eral, into a space filled by gas or by the same fluid. It 1s
characteristic of this case of fluid motion that the potentlal-
energy reserve of the fluld In the tank is converted, with some
degree of loss, into the kinetic energy of a free Jet or drop
during the outflow process,

In aerocnautical engineering, fluid
outflows must be dealt with in analysis
of fuel feed into the combustion chambers
of gas-turbine and liquid-rocket engines,
The shock-damping processes when an alr-
plane lands or fires cannon also take
place basically by expression of fluid
through small holes.

Fig. 90. Outflow Moreover, the flow of fluid through
from reservolr the various jet tubes and nozzles used in
through small hole. fuel and other systems is essentially a
case of outflow through holes or mouth-
pleces.

The basic problem in which we shall be interested in this
case 1s that of determining the outflow velocity and flow rate
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of the fluid for the various hole and mouthpiece shapes.

Let us take a large storage tank containing fluid under a
pressure p, and having a small hole in its wall at a rather great
depth Hy below the exposed surface (Fig. 90). Fluid flows out
through this hole into an air (gas)space with a pressure p,.

Fig. 91. Outflow through round
hole. a) in thin wall; b) with
sharp edge.

Let the hole have the shape shown in Fig, 83a, i.e., let it
pe drilled in the thin wall without finishing of the entrance
edge, or let it have the shape shown in Fig. 91b, i.e., let it
be made in a thick wall, but with the entrance edge countersunk
sharp from the outside. The condltions of fluid outflow will be
quite identical in these two cases: fluld particles approach the
hole from the entire communicating volume, moving with accelera-
tion along various smooth trajectories (Fig. 9la); the jet sepa-
rates from the wall at the edge of the hole and then contracts
slightly. The jet acquires a cylindrical shape at a distance of
approximately one hole diameter. The contraction of the jet 1is
due to the necessity of smooth transition from the various direc-
tions of motion of the fluid particles in the tank, including
those moving along the wall in a radial direction, to the axial
direction of motion in the jet.

Since the hole dimension is assumed small by comparison with
the head H, and the dimensions of the tank and, consequently, the
side walls of the tank and the exposed fluid surface do not affect
the inflow of fluid to the hole, we observe what 1s known as per-
fect contraction of the jet, i.e., the greatest degree of contrac-
tion, as opposed to imperfect contraction, which will be examined
later.

The degree of contraction ls evaluated in terms of the con-
traction coefficient e, which equals the ratio of the Jjet cross-
sectional area to the area of the hole, 1.e.,

e (). (9.1)

-160-



Let us write the Bernoulli equation for motion of the fluid
from its free surface in the tank (section 0-0 in Fig. 90), where
the pressure 1s p, and velocity can be set equal to zero, to one
of the jet cross sections (1-1) in the zone in which the jet has
already become cylindrical, so that the pressure in it has reached
P1. Assuming uniform velocity distribution in the jet,

HtBali @ o2t
'+'v v'+ﬂz.+ %
where 7 is the resistance coefficient of the hole.
Introducing the theoretical head H, we obtain
2
H==— (1410,
2 1O
where

"H=H.+ﬂ;—'-.

Using the above, we write for the outflow velocity

v = VogHi=¢ VI, (9.2)

Here ¢ 1s the so-called velocity coefficlent, which equals

1
=T (9.3)
In the case of outflow of an ideal fluid, ¢ = 0, so that
¢ = 1 and the theoretical outflow velocity is

v'=]‘ 2gH_ (90“)

Thus, we can conclude from analysis of (9.2) that the velo-
city coefficlent ¢ 1s the ratio of the actual to the theoretical
outflow veloecity:

vml
=V e (9.5)
The actual outflow velocity v is always somewhat smaller
than theoretical because of resistance, and hence the velocity
coefficient is always smaller than unity.

It must be remembered that the velocities are uniformly dis-
tributed over the Jet cross section only at its center (at the
core of the jet); the outer filuid layer is slowed down slightly
because of friction against the wall (see Fig. 91b). Experiments
have shown that the velocity in the nucleus of the jet is prac-
tically equal to the theoretical velocity (vt = /2¢gH) so that our

veloclity coefficient ¢ should be regarded as an average-velocity
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coefficient. If the fluid flows out into the atmosphere, the
pressure 1s equal to atmospheric over the entire cross section
of a cylindrical jJet; this 1s also confirmed by experiments.

Let us now figure the fluid flow rate as the product of the
actual outflow velocity by the actual Jet cross sectional area,
and then apply (9.1) and (9.2):

Q=S SV igll. (9.6')

The product of the coefficients € and ¢ is usually denoted
by u and called the flow rate coefficient, i.e.,

p=cq.
Then Formula (9.6') is written finally in the form

Q::‘ ‘l g“ "’QZ‘I;’
’0 s .6
wot Re? Q=:1S, 1/?? -:—. ‘ (9.6)

where p is the calculated outflow pressure.

Expression (9.6) is the basic one for this section, since it
solves the basic problem — that of determining flow rate; it 1is
applicable for all cases of outflow. The difficulty of using
this expression consists in determining the flow rate coefficient
u accurately enough.

It follows from Eq. (9.6) that

N S
S TR N

This means that the flow rate coefficlent is the ratio of
the actual to the theoretical flow rate, i.e., to the flow rate
(Qt) that would be the case in the absence of jet contraction and

resistance. It must be remembered that the theoretical flow rate
°t = S°/§§H is not the flow rate for outflow of an ideal fluid,

since the jJet would contract even in the absence of hydraulic
losses.

Since the actual flow rate is always smaller than theory,
the flow rate coefficient u is always smaller than unity because
of two factors: Jet contraction and resistance. The former pre-
dominates in some cases and the latter in others.

The contraction (e), resistance (), velocity (¢), and flow
rate (u) coefficients that we have introduced are primarily func-
tions of the type of hole or mouthpliece and, like all of the di-
mensionless coefficients of hydraulics, of the fundamental cri-
terion of hydrodynamic similarity, Re.
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Pigure 92 shows a diagram® of the coefflcients ¢, €, and u
of a round hole as functions of Reynolds number, which was cal-
culated from the theoretical outflow velocity, i.e.,

ror
Re.='ﬂ=mf""{= Rey
v

e
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Fig. 92. Diagram of €, ¢, and u as
functions of‘Ret for a round hole in

a thin wall.

We see from the diagram that with lncreasing Ret, i.e., with

decreasing influence of viscosity forces, the coefficient ¢ in-
creases owing to a decrease in the resistance coefficient g, while
the coefficlent ¢ decreases as a result of faster flow at the

edge of the hole and the increase 1n the radii of curvature of
the jet surface on the segment from the edge Lo the beginning of
the cylindrical part. Both coefficients (¢ and €) approach as-
symptotically to the values corresponding to ideal=fluld outflow,
i.e., as Ret + o, ¢ + 1; here, the contraction coefficlent €

tends to the value 0.61, which can be arrived at theoretically
for an ideal fluid.

The flow rate coefficlent u, which is determined by the pro-
duct of € and ¢, first increases with increasing Ret becausge of
the steep rise of ¢ and then, after reachinga maximum (umax =
= 0,69 at Ret =z 350), diminishes because of the substantial de-

crease in ¢ and becomes practically constant at u = 0.59-0.60 for
large Ret.

TSee page 107 for footnote.
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In the region of very small Reg (Ret < 15), the importance of

viscosity 1s so great and the deceleration at the edge so consider-
able that the jet does not contract (¢ = 1) and ¢ = p. The flow
rate Q in this range is proportional to the first power of head
loss, so that the flow rate coefficient is approximately propor-
tional to Ret' In this case, the following theoretical formula,

which has been confirmed by experiments [4], is more accurate:

—pme R .
LAl S et (9.7)

The formula of A.D. Al'tshul’' is recommended for Re, > 10%:

=0,59 425 .8
» +|’RT. (9.8)

For high-viscosity fluids (water, gasoline, kerosene, etc.),
outflow usually takes place at rather large Re, so that the out-
flow coefficients vary in narrow ranges; the following averaged
values are usually taken 1in calculations:

¢=0,63; 9=0,97; p=0,61; {=0,065.

In outflow of low-viscosity fluids through round holes in a
thin wall, there 1s considerable contraction of the jet and very
1ittle resistance. Hence the flow rate coefficlent u is found to
be substantlally smaller than unity, chiefly owing to the influ-
ence of Jet contraction,

§39. IMPERFECT CONTRACTION OF JET. OUTFLOW BELOW LEVEL

Imperfect contraction of the jet occurs when the outflow of
fluid through the hole and shaping of the jet are influenced by
the proximity of the tank's lateral walls and the hole 1s situ-
ated at equal distances from these walls,
i.e., on the axis of symmetry of the tank
(Fig. 93). Since the side walls glve
some direction to the fluid motion as 1t
approaches the hole, the Jet contracts to
a lesser degree on issuing from the hole
than in the case of outflow from an un-
bounded tank, as 1t was examined above for
perfect contraction.

Fig. 93. Diagram of
imperfect contrac- Owing to the reduced contraction of
tion of Jet. the jet, the contraction coefficient in-
creases and, consequently, so does the
flow rate coefficient. The theoretical
solution to the problem of ideal-fluid outflow from a flat reser-
voir of finite width and infinite length through a slit hole in
its end wall, i.e., the solution for the case of imperfect con-
traction in plane flow, was found as early as 1890 by Prof. N.Ye.
Zhukovskiy.
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When low=-viscosity fluids flow out of a cylindrical circul-
ar-section tank through a round hole in lhe center of the end
wall, the contraction coefficient €, can be found from the fol-
lowing empirical formula as a fraction of the contraction coef-
ficient € for perfect contraction:

B2, (9.9)

where n = 5,/8, 1s the ratlo of the hole area to the cross-sec-
tional area of the reservoir.

The reslistance coefficient § of the hole and the velocity
coefficlient ¢ in imperfect contraction may be regarded as inde-
pendent of the area ratio n (provided, of course, that n is not
too close to unity) at the followlng approximate values for low-
viscosity fluilds:

t=0,065 and ¢=0097.

Hence the flow rate coefficient u; is easily found from the
relationship

[ad 213
and the flow rate 1s determined from the formula
Q=‘Nso ]/ ﬁﬁ .

However, when thls formula is used in the case of imperfect
contraction, 1t must be remembered that the theoretical head H
that arpears in the formula represents the total head, which
equals

7
He=21"0 2
Y ‘%

This means that the velocity head in the tank must be taken
into account in addition to the hydrostatic head. But since the
velocity head 1s usually also unknown when the flow rate 1s being
determined, it is desirable to have a formula that expresses the
flow rate for imperfect contraction not in terms of the total head
H, but in terms of the hydrostatic head.

This formula is easily obtained by writing the Bernoulli and
flow rate equatlons for sections 1-1 and 2-2 (see Fig. 93), i.e.,

LT AT P
£'1+’-‘- '+2‘+t2‘.

'§ﬁ=vﬁ§‘
This ylelds
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and then

(9.10)

where
I.L;z.———-f;—;_-_—.._g.:‘;. (9.11)

It is often necessary to deal with out-
flow of fluid not into the atmosphere, but
into a space that is fllled with the same
filuid (Fig. 94). This case 1s known as
outflow below level or outflow through a
submerged hole.

In this case, all of the jet's kin-
etilc energy 1s lost to eddying, as in the
case of abrupt expansion. Hence the
Bernoulli equation for sections 1-1 and
3-3 (where we assume the velocitles to
equal zero) is written in the form

Fig. 94. Outflow be-
low level.

P, PN N v v
zy - Dve 2y + 221N 0 B e
1 2 2 T 3 2

or )
He=Hod- Py 2
104 v ( .1)2g ,

where H is the theoretical head, v 1s the outflow velocity in the
compressed section of the Jet, and ¢ 1is the resistance coefficlent
of the hole, which has about the same value as 1in outflow into the
atmosphere. From this,

Y T e VRl
iz e V21 5 V2
V=TT Vg : V2glt
and

Q=vS.=-e9S, Vigil=pS, Vgl

Thus, we have the same working formulas as for outflow into
alr (gas), except that the head H represents in this case the
difference between the hydrostatlic heads on the two sides of the
wall, i.e., velocity and outflow do not depend on the height of
the hole in the wall.

The contraction and flow rate coefficients in below-level
outflow can be assumed to be the same as for outflow into the

air.
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§40. OUTFLOW THROUGH MOUTHPIECES

A short pipe whose length 1s a few times its diameter [{ =
= (2-6)d] and whose entry edge 1is not rounded is known as an ex-
ternal cylindrical mouthpiece (Fig. 95a). 1In practice, such
mouthpleces are often formed when a hole 1s drilled in a thick
wall and 1ts entry edge 1is not ground (Fig. 95b).

Fig. 95. Diagram of outflow through
c¢ylindrical mouthpiece.

Elther of two outflow regimes may be observed in outflow
through such a mouthpiece into a gaseous medium. The flow dia-
gram corresponding to the first regime appears in Fig. 95, a and
b. On entering the mouthpiece, the jet 1s compressed for approxi-
mately the same reason as in outflow through a hole in a thick
wall. Then, since the compressed part of the Jet 1s surrounded
by eddying fluid, the jet gradually expands to the size of the
hole and emerges full-section from the mouthplece.

Since the jet dlameter is equal to the hole diameter as it
emerges from the mouthpiece, we have € = 1 and hence H=¢.

The flow rate coefficlent of an external cylindrical mouth-
plece in the first outflow regime depends on the relative length
2/d of the mouthpiece and on Re. An experimental graph 1llu-
strating this relationship appears in Fig. 96 [4].

The averaged coefficlent values for this outflow condition
are as follows for low-viscosity flulds (large Re):

K =¢=0.80and ¢ = 0,55,

Comparison with the hole in the thin wall indicates that in
cutflow through a cylindrical mouthpiece (first regime), the
flow rate is higher than ir outflow through the hole because of
the lack of compression at the exit from the mouthpiece; the
veloclty, on the other hand, is iower owing to the substantially
higher resistance.

Let a fluid flow out under a pressure p, into a gaseous me-
dium at pressure p,, e.g., into a liquid rocket engine [LRE] (XxPa)
combustion chamber. In this case, the theoretical head for per-
fect contraction equals
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Fig. 96. Flow rate coefficient of cylindrical mouth-
plece as a function of Re.
KEY: (a) flow rate coefficient; (b) Reynolds number.

Since the pressure in the Jet 1is p, at the exit from the
mouthpiece, the pressure p; in the constricted zone of the Jet
inside the mouthpiece, where the velocity 1s elevated, 1s lower
than p,. Here, the larger the head under which outflow occurs
and, consequently, the greater the flow rate through the mouth-
plece, the smaller will be the absolute pressure in the contrac-
tion inside the mouthpiece. The pressure difference p, - in~-
creases in proportion to the head H. We can demonstrage thls by
wriging the Bernoulll equation for sections 1-1 and 2-2 (see Flg.
95a):

pi.

2
Py | 12 1 (v )
¥ 2n )

A
2 ¥ 2

Here the last term represents the head loss on stream expan-
sion, which takes place in approximately the same way here as in
an abrupt channel expansion and, consequently, 1s determined by
Formula (8.1). The contraction of the jet inside the mouthplece
is evaluated by the same contraction coeffilcient € as in the case
of the hole, so that we can write on the basis of the flow rate
equation

LI

.
) ¢
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Using this relation to exclude the velocity v, from the
above Bernoulli equation and replacing the velocity v, by its
expression 1in terms of the mouthpiece velocity coefficient v, =
= ¢v/2gH, we find the pressure drop inside the mouthpiece, 1.e.,

L L [0 1)) (9.13)

Substituting ¢ = 0.80 and € = 0.63 in the above,
Pa—pym G0N (9.13")

At a certain critical head (Hkr)’ the absolute pressure in-

slde the mouthpiece (section 1-1) vanishes (or, more precisely,
becomes equal to the vaporization pressure), and

Ilu-":'-l-'. . (9.14)

Coroy

With H > Hkr’ therefore, the pressure p,; would have to be nega-

tive, but since negative pressures do not usually occur in a
fluid, the first outflow regime with H > Hkr becomes impossible.

Experiment confirms this, indicating that an abrupt change in
outflow regime and a transition from the first regime to the
second take place at H =z Hkr (see Flg. 95¢c).

The second outflow.regime is characterized by a jet that
no longer expands after contracting, but remains cylindrical and
flows out of the mouthplece without touching its walls. The out-
flow becomes 1dentical to that from a hole in a thin wall, with
the same outflow-coefficient values. On transition from the
first outflow regime to the second, therefore, velocity increases
and flow rate diminishes owing to compression of the Jet.

If water flows out through this mouthpiece into the atmos-
phere,

a Pa VT
”””"onﬂy' L z. 14 m,
If the saturatlion vapor pressure Py of the outflowing fluid

is comparable with the pressure p, in the medium into which 1t is
flowing, it 1s necessary to set p, = Py in Formula (9.13) and ob-

tain for the critical head instead of (9.14)

5, ol
[ 0-";'
The second outflow regime is also possible at H < Hkr’ i.e.,

when elther the first or the second outflow regime is realized in
accordance with the conditions under which the outflow begins.,
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In below-level outflow through a cylindrical mouthpiece, the
first flow regime will not differ from the above description.
But when the absolute pressure inside the mouthplece drops to the
saturation vapor pressure as a result of an increase in H, cavi-
tational outflow begins; flow rate ceases to depend on the pres-
surgagz, i.e., the effect 1s to stabilize flow rate as described
in .

Thus, an external cylindrical mouthplece has substantlal
deficiencies: high r-sistance and inadequate flow rate coeffi-
clents in the first regime and a very low flow rate coefficlent
in the second. Another shortcoming of this mouthplece is the
two possible regimes of outflow into a gas at H < Hkr and, con-

sequently, the two-valued flow rate at a given H and the possi-
bility of cavitation in outflow below level.

E
\|

I @ Kafumagus I 2
Fig. 97. Nozzle. Fig. 98. Diffuser mouthplece.

KEY: (a) cavitation.

When cylindrical mouthpleces (holes drilled in a thick wall)
are used, for example, as Jjet tubes, chokes, or nozzles (see
example), these deficlencles must be taken into account. This
mouthplece can be improved substantially by rounding the entry
edge (see dashed line in Fig, 95b). The greater the rounding,
the larger will be the flow rate coefficient and the smaller the
resistance coefficient. In the limit, at a radius of curvature
equal to the wall thickness, the cylindrical mouthplece approxi-
mates the so-called conoldal mouthpiece or nozzle.

The conoidal mouthﬁiece or nozzle (Fig. 97) has an outline
that approximates e shape of a naturally contracting jet, and
this ensures nonseparation of the flow inside the mouthpliece and
a parallel jJet in the exlt cross section. This mouthpiece 1is
used very extensively because 1t has a flow rate coefficient
near unity, very small losses, a contraction coefficient € = 1,
and stable outflow conditions without cavitatlon.

The resistance-coefficient values are the same as those
given for the smooth contraction (§34), 1.e., ¢ = 0.03-0.10
(small ¢ correspond to larger Re and vice versa). Accordingly,
ue=¢=0,99-0.96.
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The diffuser nozzle represents a combination of a nozzle and
a diffuser (Fig. 98). Attaching the diffuser to the nozzle
lowers the pressure in the throat of the mouthpiece and, conse-
quently, increases the velocity and flow rate of the fluid
through it. The diffuser mouthpiece may deliver a substantially
higher flow rate than the nozzle (by a factor of up to 2.5) at
the same throat diameter as the nozzle and the same head.

Mouthpieces of this type are used when the throat-section
diameter and head are specified and 1t 1s necessary to obtain
the highest possible flow rate, However, the diffuser mouth-
plece can be used only at very modest heads (H = 1-4 m), since
otherwise cavitation arises in the mouthpiece throat. Cavitation
results in increased resistance and lowered throughput of the
mouthpiece.

Figure 99 shows the drop in flow rate coefficient of a dif-
fuser mouthplece with increasing head owing to cavitation in-
1tiated in the throat of the mouthpiece (flow rate coefflcient
referred to throat section area).

This curve was obtained by testing a diffuser mouthplece
with the optimum angle and expansion ratio, i.e., those that en-
sure the largest possible flow rate coefficient (author's experi-
ments) .
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Fig. 99. Diagram of flow rate
coefficlent as a function of
head.

Example. So-called jet nozzles, i.e., simple drilled pas-
sages, are used to supply propellants into the combustlon cham-
bers of certain 1liquld rocket engines. Determine the necessary
number z of these nozzles for oxidizer supply to the rocket en-
gine if7G = 1.6 kgf/s, the pressure drop across the nozzle Ap =
= 6 kgf/cm?, the chamber pressure p, = 25 kgf/em?, the hole diam-
eter d, = 1.5 mm, and the ratio of wall thickness to hole diam-
eter §/d, = 0.5. The oxidizer is nitric acid with a specific
weight y = 1510 kgf/m® and a viscosity coefficient v = 0.02 cm?®/s.
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How many nozzles would be required if 8/d, = 2.5%
Solution. 1. The theoretical outflow veloclty

sp 6104 N
o ‘/u Y “l/"'" 1510_.‘”*"‘4

2. The Reynolds number

Uifo 28000,18
Rey =0 0.02 = 21000,

3. We refer to the diagram (Fig. 92) to find the flow rate
coefficient u = 0.62 from the Re,.

4., We determine the total hole area S, of all nozzles from
the equation
G 1,6.104

S = = = ’
0= o, 1,51.0,62:2500 0.61cm®,
5, The number of nozzles is

) 40,61 .o

-0
adl  %.0,15

6. If the hole had a ratio §/d, = 2.5, fuel outflow would
take place as from an external ¢ylindrical mouthplece.

To determine the outflow regime, we find Apkr from (9.13"):
Apyp+- 52":7, =335 xgf/cm® .

Since Apkr > Ap, we shall have the first outflow regime with
a flow rate coefficlent u = 0.82. Hence the number of nozzles 1s

0.62_ 1.

P 5
:,—:N 350.82

§41. OUTFLOW UNDER VARIABLE HEAD (DRAINAGE OF CONTAINERS)

Let us consider the process in which an arbitrarily shaped
container that communicates with the atmosphere is dralned
through a hole or mouthplece in its bottom that has a flow rate
coefficient u (Fig. 100). In this case, we have outflow under
a variable and progressively decreasing head, i.e., the flow is,
strictly speaking, nonsteady.

However, if the head and, consequently, the outflow velocity
vary slowly, the motion can be regarded as steady for any par-
ticular point in time and the Bernoulli equation can be used to
solve the problem.
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Fig. 100. Drainage of Fig. 101, Drainage of
contalner. vented tank.

Denoting by h the varlable height of the liquid level in the
container as measured from the bottom, by S the cross sectional
area of the tank at this level, and by S, the area of the hole,
and taking an infinitesimally short time segment dt, we can write
the following equation of volumes:

No

S‘,-I;:. . (\\ G

’
epgy, (9.15)
or UC/B[E

Ly s ,
S .-}:SJ]'l’zj,’f-.’l",

where dh is the drop in fluid level in the container during time
dt.

The minus sign appears because a negative increment dh cor-
responds to a positive increment dt.

Hence the time for complete drainage of a container of
height H (assuming u = const) is

R (9.16)

The integral can be evaluated 1f we known the law of varia-
tion of the area S versus helght h. For a prismatic contalner,
S = const, so that

or
A I A (9.17)
The numerator in this formula is equal to twice the container
volume, while the denominator represents the flow rate at the be-

ginning of drainage, l.e., at head H. Consequently, the total
draining time of the contalner 1s twice the time for outflow of
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the same volume of fluid at a head that remains constant at the
initial value.

Formula (9.16) and (9.17) can also be used to determine the
times to f111 containers under variable heads that decrease from
h=sHtoh= 0 as the tank 1s filled.

In aviation practice, it 1s necessary to deal with drainage
of sealed containers (tanks) that communicate with the atmosphere
only through a small-diameter hole, mouthplece, or drainage pipe
(Fig. 101). 1In this case, atmospheric air flows into the con-
tainer, in which a partlal vacuum 1s set up, as the fluid flows
out of i1t. Drainage of the container is therefore retarded, and
to a greater degree the more difficult 1t is for alr to get into
it.

Let us determine the time to drain such a container, for
which we write two Bernoulll equations: one for the motlon of
air from a stationary atmosphere into the contalner, and another
for the motion of fluid from the upper surface to the exit into
the atmosphere. Using the nomenclature of Fig. 101, we write

Fa. P01
C\B\-i Yaoz  Yons l ( l cl)

2
plo o gt
{ Y Ya l (- 1)25'

v
2’

The compressibility of the air can be disregarded in this
case; hence the volume flow rates of air and fluid can be set
equal to one another, i.e.,

Q uS§: 1S,

(if the jet contracts, it is also necessary to introduce the coef-
ficlent €,).

The above equations will now be rewritten
"
Pa=pol (11 8) '235-;:‘ Yoons
Wl po—pat 140 -y
Wl Po—= Pt (TG o - Vi
. 253
Adding these equations and determining the flow rate, we obtaln

Y A 1 P
Q /rtt},‘ B (9.18)
V s'i‘ A U S: Ya

Substituting Expression (9.18) into the equation of volumes
(9.15), determining dt from that equation, and then integrating
with h = H and h = 0 as limits, we have
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e 280
Viuinv, |

(9.19)

This formula can also be used when air
enters the tank and fluid leaves it through
pipes, but then the corresponding coefficient
¢ must be replaced by

where £ and 4 are the length and diameter of
the pipe and” ] 1s the sum of the local re-

sistance coefficients in the pipe.

The process of shock absorption when an
airplane touches down can serve as another
example of fluld outflow under the action of
a variable head. The top of an air-oil under-
carriage shock absorber (Fig. 102) contains
compressed alr, which is under a pressure p,
in flight. On contact of the airplane's
wheels with the ground, fluid flows through
holes of area S, with a flow rate coefficient
U, and the air cushion is compressed tu pres-
sure p;. The height of the alr cushion is
reduced in this process from hy, to h,.

Fig. 102. Diagram
of undercarriage
shock-absorber
strut.

To simplify the actual shock-absorbing process, let us as-
sume that a constant force G 1s abruptly applied to the shock
absorber and that the air is isothermally compressed., Let us
find the time of the shock-absorbing process, i.e., the fluid-
flow time to establishment of equilibrium,

We again have Eq. (9.15): NOT REPRODUC‘BLE

SteoLoQ

where S is the piston area and dh is the compression of the cylin-
der during time dt.

The flow rate through the holes 1is
Voo Yy T

Here p, is the constant pressure over the piston, which equals
p, = G/3, and p 1s the variable air pressure, which is determined

by the isotherm equation ; (mwliﬂ)i“- P

On substituting the expressions for p, and p into (9.15), we
have
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where b= Pot P,
=

Integrating from h = h, to h = h; gives us the unknown time

§42. FUNDAMENTALS OF HYDRAULIC AUTOMATION

A variety of hydraulic devices and systems whose operation is
automatically controlled are used extensively in aviation engin-
eering and other machine-building fields.

Such systems and devices are usually controlled by regulat-
ing fluild flow, 1.e., by adjusting the pressure, flow rate, or
direction of motion of fluld.

Here we shall examine only the simplest control devlces,
those that are the basic elements of more complex hydraulic-
automation components and systems., Some of the more complex con-
trol devices, which consist of a number of elements, will be
considered later in §72 as elements of aircraft hydraullc power
systems.

Control devices are classified on the basis of functlon as
pressure regulators, flow rate regulators, and distributors; the
latter act to change the direction of motion of a fluid.

These control devices can be subclassified as chokes and
valves on the basis of operating principle. Both present local
hydraulic resistances that are deliberately inserted intd the
path of the fluid to throttle it. Throttling is a process in
which the fluid's pressure (head) is reduced as 1t moves through
a local hydraullic resistance.

The difference between a choke and a valve consists in the
following. The geometrical characteristics of a choke, 1.e.,
the dimensions of its ports (holes), in which the throttling
takes place, do not change under the influence of the fluid flow
rate passing through 1t. The geometrical characteristics of a
valve, on the other hand, do change under the influence of flow
rate.

Both chokes and valves can be made adjustable and nonadjust-
able. This means that in the former case thelr geometrical char-
acteristics can be varied by external manipulation during their
operation, while in the latter case such external adjustments are
not possible.

The Jet tube examined in §36 (Fig. 86) can be taken as an
example of the simplest type of nonadjustable choke, while any
cock, valve, slide, or flap whose aperture can be regulated manu-
ally or automatically is an adjustable choke. The adjustable
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choke can be used to vary the flow variables of a fluld (its flow
rate, pressure), but there is no back effect of the flow on the
choke that can cause a change in 1ts geometry.

The elementary valve (see Fig. 106) 1is usually pressed
against its seat by a spring or under 1ts own weight, and opens
when it is acted upon by a fluid-pressure drop. Here the open-
ing of any valve is always determined by equilibrium, i.e., equal-
ity of the force (or torque) that the fluid exerts on the valve,
which tends to open it further, to the force that resists opening
of the valve.

If the force resisting opening of the valve is constant
(e.g., the valve's own welght), or if it increases on a certain
curve with valve opening (for example, a spring force), the valve
or nonadjustable, If, on the other hand, some sort of device
acts on the valve from the outside during its operation and
changes the force that resists 1ts opening (for example, if the
spring is loaded or some other additional force 1is applied) and
the valve opening changes as a result, the valve is adjustable.

Let us examine the geometrical shapes and hydraullc proper-
ties of chokes and valves. ’

A choke 1s a local resistance that consists in the simplest
case of a more or less smooth or abrupt constriction of the chan-
nel and a narrow passage beyond which there is usually a sudden
expansion.

The hydraulic properties of a choke are determined by the
dependence of the local head loss hm on flow rate Q. As we have

already stated in §36, this relationship 1is linear for small
Reynolds numbers and a great enough relative length of the choke's
narrow passage, because the head loss is basically due to fric-
tion in laminar flow. In this case, we speak of a linear choke.
It must be remembered that the head loss in the choke varies in
direct proportion to fluid viscosity and, consequently, the hy-
draullc characteristic of such a choke depends on fluid tempera-
ture, i.e., 1s not stable.

When the length of the choke's narrow passage is minimized
and the Reynolds numbers are large enough, the head loss in the
choke 1s determined basically by eddying on the abrupt expansion,
and the curve of hm as a function of Q is practically quadratic.

The device 1s known as a square-law choke; its hydraulic char-
acteristic is more stable, i.e., practically independent of fluld
viscosity.

In this case, the optimum shape for the throttling orifice
is that of a circular hole in a thin wall (see Fig. 91). For
technological reasons, however, drilled passages with length
ratios 2/d = 1-3, i.e., external cylindrical mouthpieces, are
used more often.
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Fig. 103, Diagram of linear Fig. 104, Diagram of
choke with screw-type throt- multistage choke.

tling valve.

Very often, a choke 1s called upon to produce a large pres-
sure drop, i.e., a very substantial head loss. And thils re-
quires a very small throttling orifice, which is undesirable in
view of the possibility of plugging or obliteration (see §27).
In these cases, therefore, recourse 1is taken to chokes with ex-
tended throttling passages (in the case of the linear choke) or
several throttling orifices are placed in sequence {(for the
square-law choke).

In one practical linear choke (Fig. 103), the throttling
passage 1s the helical groove of screw 1, which 1s tightly fit-
ted to case 2.

Fluid enters the choke through hole 3, runs along the hell-
cal groove, and exits through hole 4, The length of the throt-
tling passage and, consequently, the resistance of the choke are
easily regulated during operation (or adjusted when idle) by
turning screw 1 either into or out of internal screw 5. The re-
sistance of such a choke varies in direct proportion to the turn
angle of the screw. Since the characteristic of a linear choke
depends on viscosity and hence on fluld temperature, 1t 1s es-
peclally important to be able to regulate it.

The diagram shown in Fig. 104 represents a typical nonadjust-
able square-law choke designed for a large pressure drop. The
version shown 1s a multistage type, since in 1t the fluid passes
through several elementary chokes that have been set up in series.
It is recommended that the throttling-orifice diameter d be made
no smaller than 0.5-1.5 mm, the wall thickness (1-2)d, and the
distance between the walls (3-5)d. The holes should be placed
not opposite one another on the axls of the choke, but at diamet-
rically opposite polnts, so that the path of the fluid will be
labyrinthine.

Tests run on such multistage chokes by V.V. Vakina? indicate
that the resistance coefficient of a choke with n stages 1s
smaller than that of a single-stage choke multiplied by n, and
that the flow rate coefficient y is accordingly larger. The re-
sults of these tests appear in Fig. 105, where the flow rate coef-

ficient, referred to the area of the throttling orifice, 1s given
7See page 197 for footnote.
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as a function of Reynolds number for n = 1, 2, 7, and 10 stages.
The dashed curves on the same figure were constructed on the as-
sumption that the stages do not influence one another, i.e., by

the formula
i Vn a Yoyt

where £, and u, are the resistance and flow rate coefflcients of

the single-stage choke, respectively, and C is the calculated
flow rate coefficient of the n-stage choke.
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Fig. 105. Results of tests of multistage
chokes.

KEY: (a) calculated value of; (b) experi-
mental results.

The experiments were run using AMG-10 fluid with chokes hav-
ing orifice diameters d = 1 mm, wall thicknesses £ = 1.5 mm, and
wall separations of 5 mm. The pressure drop was varied from 0.25
to 170 kgf/cm?.

The disagreement between experiment and calculation 1s ex-
plained by the reciprocal effects between stages, which consist

in less thun total extinction of the outflow velocity in the
spaces between chokes,.

We see from the dlagram that the greater the number of
stages n, the more stable 1s the flow rate coefficient with Rey-
nolds-number variation and, consequently, the more precilsely will
the choke follow the square-law resistance curve. This is be-
cause the transition from nonseparating outflow to separating
outflow in the throttling orifices, which takes place in the same
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way as 1n a cylindrical mouthpiece (see §40), does not occur
simultaneously in all of the choke orifices. The outflow-re-
gime change tLakes place first in the last orifice on the path
of the fluid, where the absolute pressure 1s lowest. As the
pressure drop across the choke increases further, and flow rate
and Reynolds number increase with it, the outflow regime changes
in the next-to-last orifice, and so forth.
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Fig. 106, Varleties of the valve.

The following expression, which defines the flow rate coef-
ficient of an n-stage choke, can be used 1n practlcal mathemati-
cal design of multlistage chokes similar to those tested:

--A B ,
)/n

where k 1s the stage interference coefficient, which can be set
equal to 1.27. .

Valves are used in the following three baslc design configu-
rations, which are shown schematically in Fig. 106: ball, cone,
and poppet or mushroom.

The ball valve (a) is simplest in design and manufacture, but
is usually used only for low pressures and not in continuous duty.

The cone (b) and poppet (c) valves are the most rellable and
can be used at high pressures and flow rates.

The diameter of a valve is usually
d;: (1,15 1%5)d,

where d is the diameter of the port at the seat; the ratio dk/d
1s larger for poppet than for cone valves.

The hydraulic characteristics of valves, i.e., thelr coef-
ficlents of resistance ¢ and flow rate u, can be determined in
two ways: by taking as the working area and velocity elther the
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constant area of the port and the variable veloclty in it or the
variable area of the slit under the valve and the approximately
constant (for a given pressure drop across the valve) veloclty of
outflow through this siit.

In the latter case, we have for the valve's flow rate coef-
ficient in accordance with the fundamental formula (9.6)
.0 .
S A
S o
i/ Ty

where for a poppet valve

(here H is the height to which the valve is lifped).

When this notation 1is used, the flow rate coefficlent can be
considered independent of valve 1ift (if it is not 1lifted too
high). However, this coefficient does depend on Reynolds number.
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Fig. 107. Results of tests on cone valve.

For large enough Re, 1.e., for
Re > (- e

the regimes of outflow through valves can be considered square-
law. In these cases, it 1s recommended that the flow rate coef-
ficlents of cone and ball valves be set equal to 0.52-0.56, and
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those for poppet valves to 0.58-0.62 [6].

At smaller Reynolds numbers, it is necessary to resort to
appropriate experimental data. Thus, Figs. 107 and 108 show
test results for cone and poppet valves in a broad Reynolds-
number range from linear to quadratic resistance laws.® The
vertical axis 1s marked off for the resistance coefficients of

the valves, which equal
Cea 2830 2
yo? v
(where v 1s the velocity in the port and h,, 1s the head loss in

the valve), while the horizontal coordinate 1is the Reynolds num-
ber computed by the formula
Rc'::_(_)_.l
ndv
The curves were plotted for various valve 1lifts referred to
the port diameter d. The same diagrams have a line of constant
load coefficient k, which 1is equal to

ke dd? | beyied?,

i 4r

where P is the force exerted by the fluid flow on the valve.
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Fig. 108. Results of tests on poppet valve.

These diagrams enable us to solve, for example, the follow-
ing practically important problem. The dimensions of the loaded
valve and spring and the properties of the fluid (y and v) are

Construct the characteristic of the valve, l.e., the

iven.
ESee page 197 for footnote.
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relation
hn;.x 9 [((.’)~

Let the spring force Ppr increase in proportion to 1ts de-

formation, i.e., in proportion to the valve 1ift H, so that it
equals

I,l‘l"' I’l:‘ﬂ I (‘,',-'

where Ppr° is the spring force with the valve closed and C is a

constant of the spring that can be calculated from the diameter
of the spring stock, the coil radius, the number of coils, and
the shear modulus.

Let us take the basic expression for the head loss in the
valve 1n the form

b e-l.Y
'l-.s ['21"

replace hkl by 1ts expression in terms of the above coefficlent
k, and express v in terms of the flow rate:

KA

16¢»
I L/ PRTL R
Iy Ipait

Cancelling and substituting the expression for Ppr in terms
of H, we solve the equatlon for Q:

On the other hand,

The two equations obtained can be used to make the calcula-
tions needed to plot the desired curve, but since the Reynolds
numbers are not known in advance, the problem must be solved by
successive approximations. We might, for example, first assign
a square-law regime, take the H/d from the diagram, and find H,
Z, and k for them. Then the resulting formulas would be used to
determine the Q and hkl for each of the H/d values, 1.e., to ob-~

tain the first-approximation curve of the valve. Then Re can be
calculated for each value of Q, the same diagram agaln consulted
to find ¢ and k, followed by use of the same formulas to deter-
mine Q and hkl in the second approximation. In the case of a sub-

stantial disagreement with the first approximation, the calcula-
tion should be continued with the same procedure.
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X The flap nozzle (Fig. 109) 1s a combina-
ZZZZ?$§h\hH—- tion of two elements: a nozzle, which usually
\%';OfII%—T consists of conical and short cylindrical seg-

3
—_——l- ,1_

N2 7 5, ments, and a flap — a round plate that 1is

giyy. I hinged on an arm long enough so that its mo-
AR
"HudkLLJHJ___ tions relative to the nozzle can be considered
translational.

Fig. 109. Diagram
of flap nozzle. Some kind of external force is usually

applied to the flap and, together with the

fluid pressure force, determines the degree
of opening of the nozzle, i.e., the distance of the flap from
the nozzle exit plane. By its operating principle, therefore,
the flap nozzle is an adjustable valve.

Devices of this type are widely used 1in the automatic con-
trol systems of aviation-type pumps (§68), 1n automatic-pilot
servosystems, etc.

The device 1s usually quite small: nozzle dlameter dS of the

order of 1 mm, diameter of outer circle of nozzle exit plane DS =
= (l.2-l.5)ds, flap diameter D = (3-4)ds, length of nozzle cylin-
drical section & = (1-2)ds.

Wwhen such a unit 1s used in hydraullic automation systems, it
138 necessary to determine its throughput (fluid flow rate) and
the force that the fluid exerts on the flap at various pressures
and various flap-to-nozzle distances.

Research has shown that the following modes of fluid outflow
through a flap nozzle are possible: separating, nonseparating,
and transitional. The separating regime (Fig. 110a) occurs at
large enough distances x from the nozzle exit plane to the flap
and 1s characterized by precsure equal to amblent in the jet at
the nozzle exit plane; the fluild does not contact the nozzle exit
plane, but impinges on the flap, spreading out over 1t in the
radial directions. The thickness of the fluid layer 1s smaller
than the distance X.

. !
—agal b ZEL
% IIJI-' . 7
: s e
“\)G\%\x _:3_, __i'- 11 —,/ . \
&aﬂw ﬁﬁﬁi-//) R
i) b)

Fig. 110. Diagrams of outflow re-
gimes through flap nozzle.
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The nonseparating outflow regime (Fig. 110b) usually occurs
when the distance x from the nozzle to the flap 1s short; in 1it,
the fluid characteristically moves in a gap-type flow between the
nozzle exit plane and the flap, filling the volume of thils gap
completely. As the flow makes its right-angle turn, local sep-
aration occurs and an eddying region b farms, but then the flow

broadens and has a thickness equal to the distance x when it
emerges into the environment.

The best way to judge the probability of a given outflow re-
gime through a nozzle flap is to compare the area of the nozzle
orifice (ﬂd;/u) with the areas of the cylindrical gap sections

directly after the turning of the flow (ndsx) and at the exit
into the environment (7D_x). With

s NOT Reppropy
& CIBLE
-\'<:“‘

the gap sectional area at the exlt 1s smaller than the area of
the nozzle orifice and nonseparating outflow 1s more probable.
With

’
P
-
+

the nozzle orifice area 1s smaller than the gap sectional area
immediately after the turning of the flow, and a separating or
transitional outflow mode is more likely.

The outflow mode observed 1s also influenced by the pressure
drop Ap under which outflow takes place and by the absolute pres-
sure p, in the environment into which the fluid is flowing.

Since the flow constricts slightly in nonseparating outflow
-immediately after the turn, its velocity rises and its pressure
drops. During the subsequent radial flow in the gap, velocity
decreases and pressure rises (as in a diffuser) to the value p,
at the exit. Thus we obtaln a phenomenon similar to that ob-
served 1n an external cylindrical or diffuser mouthplece with non-
separating outflow,

Just as in these mouthpieces, therefore, the larger the drop
Ap and the lower the absolute pressure Pys the more will condi-
tions favor the appearance of separating outflow.

In addition to the distinct separating and nonseparating out-
flow regimes, a flap nozzle can also develop outflow with partial
flow separatlion, 1.e., with separation on the part of the annular
area bounded by circles of dlameters Ds and ds’ i.e., a transition-

al reglme.

The transition from nonseparating to separating flow as x in-
creases takes place gradually, passing through a regime of partial
separation, and not all at once.
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2) Ap = 20 kgf/cm?
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4) ap = 40 kgf/cm?
Fig. 111. Results of tests
on flap nozzle.
KEY: (a) Q, cm®/min; (b)
N, gf; (c) x, mm.

The results of tests on flap
nozzles are usually presented in
the form of curves of the flow rate
Q and the force N exerted by the
fluid on the flap as functions of
the flap displacement x. The re-
sults of tests on a flap nozzle

with the dimensions ds = 1 mm, DS =

= 1.5 mm, cylindrical-section length
2 = 2 mm, and a 50° angle before it
can be cited as an example of such a
diagram (Fig. 111).

At small x, the flow rate Q in-
creases for a glven Ap 1n propor-
tion to x. This 1s because of the
increase in the gap area, which 1s
stx in the exit sectlion. On a fur-

ther increase in x,. the relation be-
comes increasingly nonlinear owing
to the appearance of local separa-
tion, and, finally, the curve runs
parallel to the axis of abscilssas
when separating flow has intervened
over the entire area.

When flow is completely separ-
ated, flow rate does not depend on
gap size, which should be qulte ob-
vious.

The force N increases with x, not from zero, but from an N

equal to

No=: —3— ndiap,

which corresponds to a nozzle orifice completely closed by the

flap.

With large x, l.e., with separating outflow, the force N,
ceases to depend on x, which should also come as no surprise.

In the separating regime, the force N can be found from the
momentum equation written for the direction of the jet. Assuming
that the pressure in the jet is equal to the ambient pressure and
that the outflow velocity has the theoretical value

= l /?;c :‘:.' v

we obtaln [see also Formula (5.4) and Fig. 4.1]

=00 .- . A o i A
Nm.\x "'QQ‘ - 'LS‘P“. . v fol e A QQ

4
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Thus, the maximum force acting on the flap 1s only twice the
minimum. In occasional cases with large Ds/ds and small Ap, it

is possible to obtain a force N that is smaller than N, owing to
partial vacuum in the gap (see pressure diagram in Fig. 110b).

We express the flow rate through the flap nozzle by the
usual formula

NoOT REPRODUCIBLE

’ B 'A‘”
Q:. lv.‘_J.S.1 [/f/; T. ,

where ué_z 1s the flow rate coefficlent of the flap nozzle, re-
ferred to the area Sz; Sz = stx is the gap sectional area at the
exit into the enviroment.

Generally speaking, the coefficient ué_ is a function of Re,

z
but, for example, for the test results in Fig. 111 it can be re-
garded as practically constant at “é-z = 0,54 in the linear range.

Multiplying and dividing the flow rate formula by £ . ! S
we rewrite 1t as follows: g

Q-p,alt s, / vt s/t
Col N 4 ‘ Y

o 4D
% 1s the flow rate coefficlent of the flap noz-

where v Py,
. ¢

-

zle referred to the constant nozzle-orifice area.

SR I ¢ Thus, the flow rate coefficient
pel® I v 4 u,_, of the flap nozzle is equal to
ort - I NP RIS the product of a practically constant

| ;/ quantity by the gap ratlio x/d, i.e.,
u is directly proportional to x/d

- 1 - s-z
for the nonseparating regime.

proportionality is violated, and with

full separation, the coefficlent He_p

i ] b ceases to depend on x/d and becomes
[ YR Y R N equal to the flow rate coefficlent ug

of the nozzle without the flap.

N R . ’
' /ﬂ L< ' In the transitional regime, this

Fig. 112. Universal char-
acteristics of flap noz-

zle. The coefficient Mg varies Jjust as

little with Re as does Mg g*
quently, introducing a relative flow

Conse-

rate coefflclent



we obtaln a quantity that is practically independent of Re and is
determined only by the gap ratio x/d.

If we plot a diagram of Ug_, 88 a function of x/d, we obtaln

a practically universal flow rate characteristic for the flap noz-
zle (Fig. 112), one that is valid for various viscosity values
and even for different flap nozzles.

Similarly, a practically universal force characteristic can
be obtained for flap nozzles by plotting the force ratio

~i N
Ne==o
No'

as a function of the gap ratio x/d.

It is clear from the atove that as x/d increases from zero
to x/d = 0.3-0.5, the values at which complete flow separation
intervenes, N increases from 1 nearly to 2 (see Fig. 112).

§43. SPRAY NOZZLES (INJECTORS)

A spray nozzle is a special mouthplece that atomizes fluid,
i.e., expels it in such a way that on emerging into the atmos~-
phere (or into a space at elevated gas pressure), the jet 1is im-
mediately broken up into minute drops.

So-called centrifugal or swirl nozzles are used extensively
in aviation gas-turbine engines and in liquid-fuel rockets to
spray fuel into combustion chambers.

The working principle of such a nozzle is as follows: the
fluld flow is first twisted and then compressed (Fig. 113). The
angular momentum (twist) set up by tangential inflow of the fluid
remains approximately constant as the fluid moves through the noz-
zle: as the flow constricts, therefore, the circumferential velo-
city component u rises considerably, and large centrifugal forces
appear and press the flow against the walls to form a thin film,
which breaks up into minute drops when it emerges from the nozzle.
This is accompanied by formation of an air (gas) vortex along the
axis of the nozzle, with nearly atmospheric surface pressure (for
ontflow into the atmosphere). This air vortex is quite similar
to the vortex funnel (Fig. 114) that forms when a contelner 1s
drained through a hole in its bottom, except that it is consider-
ably stronger in the nozzle.

Thus, the fluid flow does not fill the entire exit oriflce
of a nozzle of diameter 2r,; it is annular 1in cross section, with
the center filled by an air vortex of diameter 2rV (Fig. 115).

As a result, the contraction coefficient e of a nozzle is usually
much smaller than unity.

Because of this and the fact that the resultant outflow velo-
city V from the nozzle (see Fig. 113) is directed not normal to
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Fig. 113. Diagram of centrifu-
gal nozzle,

i
[0
i

W
th

Flg. 114, Vortex fun- Fig. 115. Cross sec-
nel (whirlpool). through vortex 1n
nozzle,

the plane of the orifice, but at a certain angle a whose tangent
1s equal to the ratio of the circumferential veloclty component

4 to the axial component v, the flow rate coefficlent of a nozzle
is always substantially smaller than unity and varies widely de-
pending on the shape and dimensional relationships of the nczzle.

To determine the throughput of a nozzle from the tasic equa-

tion (9.6)
O.. :1"\' ‘ :ll‘Y I
. .,}/ s

it is necessary to know the flow rate coefficlent u quite accu-
rately.

The theory of the nozzle developed by Prof. G.N. Abramovich
[1] enables us to find the coefficient u from the dimensions and
shape of the nozzle. We set forth this theory briefly for the
case of an 1deal fluid, for which we write the following three
starting equations:

1) the Bernoulli equation for sections 1-1 and 2-2 (see Fig.
113):



or

2
{

where H 1s the theoretical head, which equals ffu.CUT”h|§,; v and
| ¥

uy are the axlal and circumferential components of the velocity V
in section 2-2 at the surface of the alr vortex;

2) the equation of constant angular momentum of the fluld
about the nozzle axis for the same sections:

Q== Quatre

or
) R
i, 'r. ”

where r, is the radius of the air vortex in section 2-2;
3) the flow rate equation for the same sections"”
S 1S

or

L e S
\\0‘ * o 8

where
?

R R
We have from this last expression
remrg Vioos,
which gives on substitution into the second equation

’ L ..____R_
" “ fo"]- € *
Applying the third equation, we obtain

3. SR t
BT - —t . e
4 Syroll- - 1t

3

4

where A==?r 1s a parameter characterizing nozzle shape.
o170

Substituting the expression found for u, into the Bernoulll
equation (the first equation),
*See page 197 for footnote.
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from which

We can now express the flow rate as the product of velocity
by the annular area of the flow in the nozzle exit section, i.e.,

QS o, AR

T//}':A".:;

Thus, the flow rate coefficient of the nozzle 1s
< ) 1

But we do not know the coefficient €, 1.e., we do not know
the size of the air vortex (the radius r, for the given r, and A),

and it will be necessary to adopt some additional condition in
order to determine it.

For this condition, G.N. Abramovich proposed the following
hypothesis, which was subsequently confirmed by experiment: 2
stable vortex size is that which ensures the maximum flow rate Q
at a given head H or, in other words, the establishment of the
outflow regime requiring the smallest head to obtain a given flow
rate.

Let us find the ¢ that corresponds to the maximum flow rate
coefficient u; to do so, we differentiate the radicand in (9.20)
with respect to ¢ and equate the derivative to zero. We shall
have

2 VA
.- |

i ._0._‘>;
from which

A::I -?{1.:) (9.21)

This formula enables us to plot a diagram of € as a function
of A (Fig. 116), which can be used with (9.20) to calculate values
of u for a series of values of the parameter A and plot a curve of
u as a function of A.

As we see from the diagram, the coefficient u decreases with
increasing A. The physical explanation for this 1s that an in-
crease 1n A means an increase in the twist of the flow at the no2-
zle exlt, i.e., a continuing increase 1n the circumferential
velocity u as compared with the entry veloclty v, and, conse~
quently, Increased vorticity in the nozzle. As a result, the
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diameter of the vortex increases, the flow cross section de-
creases, and an increasingly large part of the available energy
H is expended in creating the fluid's circumferential velocity.
For A=0 (R=0), u =1, 1.,e,, the flow is not twisted and the
injector is functioning as a simple nozzle.

with the above formulas, it is easy to determine the fluid
spray angle (the angle of the spray cone) a. With increasing A,
the angle a becomes larger and the flow rate coefficient dimin-
ishes. In the design of nozzles, therefore, the parameter A is
so selected as to provide a large enough angle a (up to 60°) in
combination with a large enough coefficlent u.

This theory of the spray nozzle was constructed for an ideal
fluid. The effect of fluid viscosity in flow through an injector
18 to make the angular momentum decrease toward the exit from the
nozzle instead of remaining constant.

As a result, the circumferential velocity components in the
exit section are found to be smaller and the flow rates larger
than in ideal-fluid outflow; at first glance, this 1s somewhat
paradoxical.

We can reduce the viscosity effect to a certaln decrease in
the parameter A and use an equivalent parameter Ae expressed by
the following formula, which was proposed by L.A. Plyachko:

LE .
“0‘ REPRODUC‘B l\‘ = ld! .‘3/’\"' .c :
ey (a;' “)

where Ar is the coefficient of friction in the nozzle, which can

be taken from Table 5 as a function of the Reynolds number calcu-
lated from the orifice diameter and nozzle entrance velocity.

TABLE 5

1404 ‘ 2- 101 ‘ &-10t

5107 |

e

Py |lﬁdﬁw R

N | 0,'.".'!! 0.ll| 0,007 ‘ 0,055 l 0,01 l 0,03

Using the equivalent nozzle parameter Ae calculated in this

way, we determine the flow rate coefficient yu and the angle o
with consideration of fluid viscosity by reference to the same
diagram of G.N. Abramovich, where Ae is taken instead of A. Since

normally Ae < A, the coefficient u 1is found to be slightly larger
when viscosity 1s considered, while the angle a is smaller.
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Fig. 116. Diagram of ¢, Fig. 117. Diagram of
u, and o as functions spray nozzle with
of A for spray nozzle. helical swirl vanes.

Instead of tangential fluid inflow, so-called helical swirl
vanes. 1.e., two- or three-start screws inserted into the injec-
tors, are often used in 1iquid rocket engines to swirl injector
flow. The fluid passes through the helical grooves of the vane
insirt and acquires the necessary twist in the process (Fig.

17).

The spray-nozzle theory introduced above is also valid in
this case, except that the coefficlent A must be calculated by

the formula

Sofep€v
Lo SO (9.22)

Spnrg

where L is the mean radius of the helical thread, Sn is the area

of the normal effective section of the helical groove, n is the
number of screw starts, and ¢ is the splral angle of the helix.
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Fig. 118. Diagram of Fig. 119. Diagram of
two-nozzle injector. two-stage injector.
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Contemporary gas-turbine engines usually use adjustable cen-
trifugal nozzles whose flow rate coefficients (or exit-orifice
areas) are automatically varied by fuel pressure. Use of these
nozzles makes it possible to broaden the range of fuel flow rates
with a given pressure range and to maintain the required spray
efficiency.

The adjustable-injector types that have come into use in-
clude two-hole burners, two-stage nozzles, and splll burners.
They have in common a valving device that opens (or closes) an
auxiliary passage on an increase in pressure, and thereby in-
creases the flow rate coefficient or the exit-orifice area.

In the two-nozzle or two-hole injector (Fig. 118), what we
have is essentially two nozzles, one inside the other. At low
pressures, the valve is closed and the primary (internal) nozzle
operates; on an increase in the pressure Pe» the valve 1s lifted

and the secondary goes into operation at a pressure p}. Fuel
supply rises steeply.

In the two-stage burner (Fig. 119), we have one nozzle and a
common swirl chamber, but two entry passages. At low pressures,
fuel is fed through one of the passages, and at high pressures
through both, As a result, the parameter A decreases and the
coefficlent p increases.

The spill burner (Fig. 120) 1s provided with a drainage line
in which a valve is inserted. The valve opens wider the lower the
fuel pressure, and closes the drain line completely at maximum
pressure. Thus, an increased entry velocity 1s obtalned at low
pressures; this 1s equivalent to reducing the entry area and this
means an increase in the equivalent parameter Ae and a smaller u.

This 1s what is needed to broaden the flow rate range.

Qﬁ\ Fig. 120. Diagram of spill
burner.
KEY: (a) drain.

Caleculations for these adjustable injectors can be made on
the basis of the same Abramovich formula, but this requires taking
account of the pecullarities of each type (see examples).

Example 1. Construct the hydraulic characteristic of the

two-hole burner described above (see Fig. 118), 1.e., a curve of
the relation between flow rate and the pressure drop across the
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nosgle, if the secondary hole (secondary
passage) goes into operation at a pres-
sure drop of Ap,. The geometriocal char-
acteristics of both burner passages (di-
mensions and parameters A, and Aé) a

the hydraulic ohlraotoriléio of the re-
gulating valve are given. Solve the

problem in general form.

Solution. 1. From the values given
Fig. 121. Character- for A, and A,, consult the diagram (PFig.
ixtios of (two-hole)  116) to find'u, and u,.

burner.

2. Applying the formulas

o - ..,‘ '. “ o 4&
Qlu..p,.'.‘,'i/?_': "; \ .nd Q""')‘Z"a 1/’.'-' Y [

we construct the characteristics of the primary and secondary
burner passages (curves 1 and 2 in Pig. 121).

3. We add the characteristics of the regulating valve 3 and
the nozzle's secondary passage. In adding, it must be remembered
that the pressure drop Ap across the noggle is expended in the
second passage both in the nozzle itself and in the valve., In
adding the characteristics, therefore, it 1s necessary to sum the
ordinates Ap for given flow rate values. The result is curve 4,

4., To obtain the over=-all hydraulic characteristic 5 of the
burner, we add the characteristics of the primary and the second-
ary with the valve by adding the flow rates (see Fig. 121).

Example 2. PFind an expression for the parameter A, of a

centrifugal spill burner if the total fuel feed to the burner Q=
= Qf + Qn, where Qr is the flow rate through the burner orifice

and Q  1s the spill rate (see Fig. 120).

Solution. 1. We introduce the spill coefficient k , which
equals

o Qr (¢
bl g

. 2. The fuel supply to the nozzle through the entry passages
8

Q Qv Sy

3. The amount of fuel that has passed through the burner hole

o“ €SN

N
Consequently, L REPRODUC/B
L

U Y
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from which
v. '_.5!‘.;3'..!'.'.

S. Substituting the value found for v, into the angular-mo-
mentum equation and then into the Bornoulll equatidn, we find the
veloaity v in much the same way as we did previously, i.e.,

Ve - .".-:.l .:;-...’:::; )’ml,
v )
l/l-u-»,’.,i- — .
6. The fuel supply Qr through the burner is determined by
the formula
O N
¢ V.'..,i_ ‘: i ..-'....
(3 | N ]
7. Comparing this formula with (9.20), we find that

A"‘ ',.‘../'.

Nor
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Manu-
script
page

163

178
182

190

Footnotes

1The diagram was plotted by A.D. Al'tshul' [4] on the
basis of experiments of a number of authors.

2Tests conducted at Kiev Civil Aviation Institute.

ITests conducted by K.N. Popov at the Bauman Moscow
Higher Engineering School.

“We assume uniform distribution of the axial velocitles
over the annular flow section at the exit from the
nozzle. This proposition can be proven theoretically;
gsee [1], or [7].
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Symbol List

Manu-

script Symbol English equivalent
page

160 eT st wall

160 ¢ s Jet

161 T t theoretical
167 aT™ atm atmospheric
169 Kp kr eritical
174 BO3 voz air

174 x zh fluid

175 M m local

180 K k valve

182 Ka kl valve

183 np pr spring

184 c 8 nozzle

184 3 z flap

187 c-2 8-z flap nozzle
190 B v vortex

192 2 e equivalent
192 ® £ injector, burner
193 cp sr mean
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CHAPTER X
RELATIVE AND NONSTEADY MOTION OF FLUID IN PIPES

§44. BERNOULLI EQUATION FOR RELATIVE MOTION. MOTION UNDER CON-
DITIONS OF WEIGHTLESSNESS

The Bernoulli equation in the form of (U4.12) or (4.16) 1s
valid in those cases of steady fluid flow when gravity is the
only mass force acting on the fluid. In aviation and rocket en-
gineering, however, we encounter flows in the calculation of
which it is necessary to take Znto account the inertia forces of
translational motion in addition to gravity. Cases in point are
those in which the channel (for example, a pipeline) along which
the fluid is moving is itself moving in space with a certain ac-
celeration. If the inertial force that results is constant in
time, the flow of the fluid relative to the channel walls may be
steady, and the Bernoulli equation for i1t can be derived in the
same way as in §16. The difference will be that we must add the
work of the inertial force acting on a filament of weight dG as
it moves from section l-1 to section 2-2 to the work of the pres-
sure and gravity forces (see Fig. 2i). Then we divide all terms
of (4.12) by 4G, i.e., we refer it to unit weight and, obtaining
a certain head, transpose it to the right member of the equation.
This will be the Bernoulli equation for relative motion, which
assumes the following form in the case of a real flow:

" -
1 )

R T I R T YR ) (10.1)
2, Vl(1WJ LR z N»yxl,uhlA,nn

where AHin is the so-called inertia head, which 1s the work of
the inertial forces per unit weight, taken with the opposite
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sign. The sign reversal is accounted for by the fact that we
transposed this work from the left to the right member of the
equation.

Let us determine the inertia head for the following basic
cases of relative fluid motion.

Straight-1ine uniformly accelerated

. motion of channel. If the channel through
. Ly e which the fluid is flowing moves 1n a
L3 straight line with a constant accelera-
— L tio. a (Fig. 122), all fluid particles
;l;;,

moving through this channel are acted upon
by the same time-constant inertial force
of translational motion, which may work

o R . either with or against the flow.

Fig. 122, Flow 1in Referred to unit mass, this force is
channel moving with equal to the corresponding acceleration a
acceleration. and i1s opposed to the acceleratlon; each

unit weight of fluld will be acted upon by
an lnertial force

La.
I3

The work done by this force in moving fluld from the first
section to the second (like the work of gravity) does not depend
on the shape of the path, but is determined only by the differ-
ence between the coordinates measured in the direction of the ac-
celeration a; it therefore equals

AIIm" ':‘ lan . (10.2)

where la is the projection of the channel segment under considera-
tion onto the direction of the acceleration a.

To avoid glving AHin the wrong sign in the right member of

the Bernoulll equation, we can hold to the following rule, which
proceeds directly from the physlcs of the phenomenocon.

If the acceleration a 1s directed from section 1l-1 to sec-
tion 2-2 and the inertial force in the opposite direction, this
force will work against flow of the fluid and the ilnertia head
must be given the plus sign. In this case, the inertia head will
lower the pressure in the second section by comparison with the
first and, consequently, will have an effect similar to that of
the hydraulic losses Lh, which always appear in the right side of
the Bernoulll equation with the plus sign.

If, on the other hand, the acceleration a 1s directed from

the second section toward the first, the inertla force assists
the flow and the inertia head must be given the minus sign. In
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this case, the inertia head will raise the pressure in the second
section, i.e., it will have an effect opposite to that of the
hydraulic losses.

The Bernoulll equation for this case of relative 1ldeal-fluid
motion can also be obtained by integrating differentlial equation
(4.15). We have in this case

Xeag Yo asZ: 00 18,

where 8y 8., and a, are the projections of the unit inertia force
of translational motion onto the coordinate axes.

Equation (4.15) can be written

auexl atpl @ g) ot dy L (D)

or
as-| d\'.' 4o (':;ﬂ)‘c (aix-} aply | oei2) :' dU,,
where dUa is the increment of the force function of the lnertila
force (the potential of this force with the opposite sign) and
equals (see §13)
A
dU s=adl s (a, 7).

On integrating the differential equation in the range from
section 1-1 to 2-2, we obtaln

2 9
.o vie A,
Lyt ipn REN -|-—<~'~«-'~ el Scos(v,r Vel --"--1,,‘
¥ 2 & £
: [
or
2
v L &
e ! ’1.|_ l_ @ . .I‘_p_ 2L 5
L, ”I\'I'/.l.' r

Thus we have obtained the same inertia-head expression as
before. The minus sign appears before AHin because the value of

h
cos{c, ") was assumed positive for integration, i.e., force a was
assumed to coincide with the flow direction projected onto this
force, and thlis means that the force a assists the flow. The
slgn abtained conforms to the sign rule given above.

Rotation of channel about vertical axis., Let the channel
through which the fluid is moving be in rotation around a verti-
cal axis at constant angular velocity w (Fig. 123). The fluid
will then be acted upon by an inertia force of rotational motion,
which is a function of radlus. It will therefore be necessary to
integrate in order to obtain the work of this force or the change
in potential energy due to 1ts actilon.
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A unit welght will be acted upon by
an inertia force equal to

«?
—_—,
[ 4

/
L
Tea The work of this force in radial dis-

placement through a distance dr will be

Fig. 123. Flow in
rotating channel. %E;dn

and for motion from radius r, to radius r, (along any curve), the
work will be found by integrating this expression with r;, and r,
as limits. We find the magnitude of the lnertia head by inte-
grating, but the sign must be reversed (as we noted earlier, this
term is transferred from the left to the right member in deriving
the Bernoulli equation).

We finally obtaln
ot
«? ®? ”
A,I,,"=-—-‘—Sr{lr'.—:iz(r'i‘._ri). (10.3)

(]

The sign of the inertla head obtailned with this formula con-
forms to our sign rule. We obtain the same result by integrating
differential equation (4.15).

If the Z-axis 1s aligned with the axis of channel rotation
and pointed upward,

Xl Vet Ze oo g
and (4.15) becomes
wixdx opdy- gdde=2dp | d (‘) .
o 2
Since x% + y? = r?,
w’-’d(f:—) e (L —:—:— dp-}-d (3:2"_)

Integrating and transposing,

r. i .l"~" «?r?

Z-i- - - omes =l sz const
Sy 2 %
or
v’.‘ ’ "!
D e B B
I'!. Y |2A’ -3 I Y l2£+ [y
where

-202-



All,." : ':;. (]'l’ -l .‘)_

Fluid motion under conditions of weightlessness is character-
ized first of all by the fact that the resultant mass force acting
on each fluid particle 1is zero, because gravity is offset by the
inertial force of translational motion. In the Bernoulli equa-
tion (10.1) written for two flow sections in a pipe, therefore,
we must set z, - z, = AH, .

In welghtlessness, fluid 1s unable to form a free interface
of the usual form with the gaseous medium. Fluid and gas mix in
a tank and form a two-phase medium (a liquid-and-gas suspension).
It is also possible for the gas to become concentrated at the
center of the tank in the form of a spherical nucleus, whille the
(wetting) fluid envelops the entire inside surface of the tank.
This requires preventing contact between the fluid and gas in
hydraulic systems that must function under conditions of welight-
lessness, As 1in an accumulator (see Fig. 223), a separator in
the form of a spring- or gas-loaded moving pistan or an elastic
diaphragm (membrane) must be placed between the fluid and the
gas. .

In the absence of fluld-gas contact, the flow of fluid
through the pilpelines under the pump, gas, or spring pressure
gradient Ap under weightless conditlions will differ from the
flow under ordinary conditions only in that the levelling-height
difference 4z will have no influence. And, in the cases of large
pressure gradients 4p and flow in sealed pipelines (§51), there
will be no difference at all between the welghtless and ordinary
flows.

Nor will there be anything particularly different about weight-
less fluld flows into a gaseous medium through holes and mouth-
pleces under large enough heads until the fluid jet loses its
kinetlc energy. Outflow through injectors and atomization of
fluilds will take place as usual.

The behavior of a fluld that does not have a head and comes
into contact with air (gas) will be quite different under condi-
tions of welghtlessness. In thils case, surface-tension forces be-
come the declsive factor.

While we know (see §3) that under "ground" conditions, these
forces cause fluld to rise or drop in caplllaries by a height in-
versely proportional to tube dlameter and dependent on the nature
of the fluild, surface-tension forces cause continuous motion of a
welghtless fluld in a pipe one end of which is immersed in the
fluid. Theoretical analyses have shown that the fluid flow velo-
city first rises until friction becomes equal to surface tension.
Then the flow velocity begins to decrease gradually because the
friction in the pipe 1s continuing to increase.

Thus, a simple pipe can, under weightless conditions, perform
the function of a small pump, for which it makes no difference in
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which direction the fluid-supply pilpe is pointed.

Example. Determine the absolute pressure at the intake into
the pump of the aircraft oll system considered in the example in
Chapter VI (see Fig. 52) as the airplane goes into a dive with
negative g-factor ny. The inertia force 1s directed upward and

18 twice gravity.
Solution. The unit inertia force is (see §11)

8= —=2g,"

and the lnertia head
‘Hll-—% :--(-21[.

We have from the Bernoulll equation for relative motion

sy %—n;';—’--h.,-.\u..-lsz-m- 12 cm
L] »

or

09 '
A= 12)3.610-' mmHg.

This low pump intake pressure is not acceptable; measures
must therefore be taken to improve the altitude performance of
the oll system,

§45. NONSTEADY FLUID FLOW IN PIPES

Since nonsteady fluld flows are generally quite complex, we
shall 1limit ourselves to the basic particular cases encountered
in aviation engineering — those of nonsteady fluld flows in con-
stant-section pipes and in pipelines composed of sequences of
pipes with differing diameters.

Take a pipe of length % and dlameter d with an arbitrary
orientation in space (Fig. 124) and denote by 2z, and z, the
levelling heights of the initial (1-1).and final (2-2) sections
of this pipe, respectively. Let a fluid move in this pipe with
an acceleration that can, in the general case, vary in time:

dv

J=2

a’

At a given point in time, the velocity v and acceleration J

are obviously the -same for all cross sectlons through the pipe.
For the time being, we shall disregard frictional energy

losses and assume that the velocities are distributed uniformly
over the sections. '
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Isolating an elementary cylindrical
volume of length d& and base area dS from
the total moving volume of fluid in the
pipe, we write 1ts equation of motion.

Projecting the forces of pressure
and gravity onto the tangent to the pipe
axis, we obtaln

pdS - (p »|~'~,"; {!’I) dS |-yl Sl cos (-.r:.-:- dSr!I-:;f,

Fig. 124. Diagram of

nonsteady pipe flow. or )
Dogr oo ¥
| dlf -y rosedl:. Wt dl.
Since
sar=.
COsU: = o0
we have

L 2 DL ST IO T
ol dl —y 5 - . jl.

(It must be remembered that p 1s a function not only of &,
but also of t.)

On integrating over the length of the pipe for a certaln
point in time,

T
¥ &
or

(10.4)

where
b - o,

This equation resembles the Bernoulll equation for relative
motion, and the term hin is also called the inertia head, but hin

should not be confused with AHin’ since their meanings are dif-
ferent. As we see from (10.4), h,, represents the difference be-

tween the fluid specific energies in sections 1-1 and 2-2 at a
particular point in time, a difference governed by the accelera-
tion (or deceleration) of the fluid flow in the pipe. This dif-
ference 1s positive for acceleration, i.e., the fluid's specific
energy decreases downstream, but it is negative for deceleration,
which means an increase in fluid specific energy from the first
to the second saction.

: In the presence of hydraulic energy losses in the pipe
(local and frictional), they must also, by analogy with the
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Bernoulll equation for steady flow, also appear in the right mem-
ber of (10.4), i.e.,

zl—*'-—’;L:: 23 ““"":".’xll'l"”in' (10'5)

denthihitile

N

VO8N fycgonompi- S
@ HEONUR P

Fig. 125. Construction of plezometric
line for nonsteady pipe flow.
KEY: (a) plezometric line; (b) piston.

It should not be forgotten that Eq. (10.5) is valid only for
a constant-section pipe. If the pipeline consists of several seg-
ments with different sectional areas (S,, S,, etc.), the lnertia
head for the entire 1line must obviously be %ound as the sum of
the inertia heads for each segment. Here, the corresponding ac-
celerations are determined from the following equations, which
are the result of time differentiation of the flow rate equatlon:

sl}g[’-’S,j,-—-n-S,j,zS;i;m.. .
and so forth.

In addition, as follows from the energy conslderations pre-
sented above, it is necessary to take account of the veloclty
heads in the initial and final cross sections of the plpeline.

Thus, the equation of nonsteady fluid flow between sectlons
1-1 and n-n assumes the form

(v"! 1‘3 \ R
zl']-!;-l -t “15},;"—" 1 ",;)i v bg}-.]'-\’l,‘":‘,"..”r'-f' (10.6)
This equation is used in calculations for the starting and
transitional modes of aircraft hydraulic systems and especlally
of the fuel systems of liquid rockets.

We present the followlng example to illustrate this equation.
Let a piston move to the left with a positive acceleration | (Pig.
125) in a pipe connected to tanks A and B. We apply Eq. (10.6)
for sections 0-0 and 1l-1 and then for sections 2-2 and 3-3, and
construct the plezometric line for a particular point in time; we
shall have
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In the former case, therefore, the inertia head, which adds
to the head losses, causes an even greater pressure drop at the
piston than that in uniform motion. A partial vacuum is formed
in section 1-1, and the fluid may even separate from the plston.
In the latter case, the inertia of the fluld column causes &
pressure increase at the piston as a result of the same addition
of htr and hin'

With a negative acceleration J, i.e., when the fluid is de-
celerated, the inertia head 1s negative in both cases and, con-
sequently, offsets the head loss to one degree or another and
lowers the vacuum in the former case and the pressure increase
in the latter.

§46. WATER HAMMER IN PIPES

Water hammer is an oscillatory process that takes place in
a resilient pipe containing a nearly incompressible fluid when
its vclocity or pressure changes suddenly. This process is a
very rapid one and 1s characterized by alternation of abrupt
pressure increases and decreases. Here, the pressure variation
is closely related to the elastic deformations of the fluid and
plpe walls.

Water hammer is most frequently caused by the qulck closing
or opening of a valve or other flow-control device. There are
also other causes.

The first theoretical and experimental study of water hammer
in plpes was made by Prof. N.Ye. Zhukovskiy. In our explanation
of this effect, we have used the basic premises of his fundamental
wgrk "0 gidravlicheskom udare" [Water hammer], which appeared in
1899.

Suppose that valve A (Fig. 126a) at the end of a pipe through
which fluid is moving at velocity v, and pressure p, has closed
instantaneously. The filuid particles will stop on striking the
valve, and their kinetic energy will be converted into the work
of deforming the pipe walls and the fluid. The plpe walls come
under tension and the fluld is compressed in accordance with the
pressure lncrease Apud.1 The particles that have been stopped at

the valve will be run onto by other neighboring particles, and

the latter will also lose velocity, with the result that sectlon
n-n moves to the right with a velocity a, the shock-wave veloclity;
the actual transition region in which the pressure changes by Apud

is known as a shock wave.
*3ee page 217 for footnote.
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When the shock wave reaches the tank, the fluld has been
stopped and compressed over the entire length of the pipe, and
the pipe walls have been stretched. The shock pressure increase
Apud has propagated the entire length of the pipe (Fig. 126b).

oXEr D E
| 73 ya

A g
o X LT

- Pg=Nya

Fig. 126. Diagram of motion of
shock wave in water hammer.

But this 1s not an equilibrium situation. Under the influ-
ence of the pressure drop Apud’ fluld rushes from the pipe into

the tank, with this motion beginning at the section directly at
the tank. Section n-n will now run back to the cock at velocity
a, leaving the equalized pressure p, behind 1t (Fig. 126c).

The fluid and pipe walls are assumed to be perfectly elastic,
so that they return to their previous states corresponding to the
pressure p,. The work of deformation 1is converted entirely back
into kinetic energy, and the fluid in the pipe acquires its origi-
nal velocity v,, but the latter 1s now directed the other way.

At this speed, the fluid column (Fig. 126d) will be repelled
from the valve, with the result that a negative shock wave -Apud

is formed and travels from the valve to the tank at velocity a,
leaving compressed pipe walls and expanded fluld behind it because
of the pressure decrease -Ap . (Fig. 126e). The fluid's kinetlc

energy 1s again transformed into a work of deformation, but one
of the opposite sign.
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Fig. 127. Time variation of
pressure at valve and at center
of pipe.

Figure 126f shows the state of the pipe at the time of ar-
rival of the negative shock wave at the tank. As in the case of
Fig. 126b, it 1s not an equilibrium condition. Figure 126g shows
the process of pressure equilization in the pipe and tank, which
1s accompanied by formation of velocity V,.

Obviously, as soon as the shock wave -Apud reflected from

the tank reaches the valve, the situation that prevailed when the
valve was closed is repeated. The entire water-hammer cycle 1s
run through again.

In his experiments, N.Ye. Zhukovskiy registered 12 complete
cycles with a progressive decrease in Apud as a result of fric-
tion and loss of energy to the tank.

The time course of water hammer is illustrated by the dia~
gram of Fig. 127.

The s0lild lines on the upper diagram indicate the theoreti-
cal pressure change Apud at point A (in Fig. 126) directly at the

valve (1t 1s assumed that the valve closes instantaneously).

At point B, which is situated at the middle of the pipe, the
shock pressure .ppears with a time delay &/2a. It persists during
the time necessary for the shock wave to travel from point B to
the tank and back, 1.e., during a time 2/a. Then pressure p, is
established at point B (i.e., Apud = 0) and 1s maintained until

the negative shock wave from the valve arrives at point B, after
a time interval %/a.
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Fig. 128, Pipe under Fig. 129. Diagram of
tension. fluid compression in

pipe.

The broken lines on the same figure approximate the actual
time variation of pressure. In reality, the pressure rises (and
falls) steeply, but not instantaneously. Moreover, the pressure
oscillations are damped, i.e., the amplitude values decrease as
a result of energy dissipation.

Let us find the shock pressure Apud on the assumption that

the fluid's kinetic energy 1s converted into work of plpe-wall
and fluid deformation. The kinetic energy of the fluid in a pipe
of radius R equals

MG 1,
5 =y aRpas,

The work of deformation is half the product of force by elon~
gation. Expressing the work of pipe-wall deformation as the work
of pressure forces on length AR (Fig. 128), we obtain

L apyz i
According to Hooke's law,
AR .
TR (10.7)

where 0 is the normal stress in the pipe-wall materlial and 1s re-
lated to the pressure Apud and the wall thickness § by the fami-

liar equation
.AI‘)‘\R
outm i (10.8)

Taking the expression for AR from (10.7) and o from (10.8),
we obtain the work of deformation of the pipe walls:
uﬂﬂku :

—
3E

.
b

The work of compression of a fluid volume W can be repre-
sented as the work of pressure forces on length A& (Fig. 129),
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i.e.,
-%- SApy,Al-: -; AP AY.

In analogy to Hooke's law for linear elongation, the rela-
tive fluid-volume decrease AW/W is related to pressure by

N7 L,
v K APy,

where K is the bulk elastic modulus of the fluid (see $3).

Taking the volume of fluld in the pipe as W, we obtain an
expression for the work of compression of the fluid:

1 Ap;na- Rt
TS
Thus, the kinetic-energy equation takes the form

., TR HRYAR,
=e w o

Solving it for Apud, we arrive at N.Ye. Zhukovskiy's formula:

)
A,,’l;:--nivg - --..0' 9—97\;.. (1009)

]/I\' 'l"l.’:'
. .....lA - N
The quantity }/.ﬁ.+ﬁ¥£has the dimensions of velocity. Its

physical significance can be ascertained by assuming that the
plpe has absolutely rigid walls, i.e,, E =, Then only vK7p,
i.e., the speed of sound in a homogeneous elastic medium of den-
sity o and bulk modulus K, remains of the last expression (see

This veloecity 1s 1435 m/s for water, 1116 m/s for gasoline,
and 1400 m/s for oil.

Since E ¥ » in our case,

represents the velocity of propagation of a shock wave in fluid

filling an elastic pipe. This can be proven by examining an ele-
mentary displacemént dx of the shock wave during time dt and ap-
Plying the momentum-change theorem to pipe element dx (Pig. 130):

[Pk Ap) - po) St (ag— 0yeSc.x,
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Hence the propagation velocity of the shock wave

(I:=E_=_A_P£
dt v
or
Apya=0mea., (10.10)
Pazl\l:,,, Comparing the resulting formula with
4::;L”‘_N.__* (10.9), we see that the above statement was
i n, correct.

can be abbreviated into the form of (10.10).
: When the velocity in the plpe does not de-
w.:.'..‘.“"r'-—---~ crease to zero, but only to v, we have the

so-called 1ncomplete water hammer, and
Zhukovskiy's formula becomes

vt | LR Thus, the Zhukovskiy formula (10.9)

Flg. 130. Displace-
ment of shock wave Apy =00 (vg—a).
during time dt.
This formula is valid for very quick
closing of the valve or, more precisely,
when the closing time

2
IJalJp< ’G o 'a' 1
where the time t, is known as the phase of the water hammer.

With this condition, we have a direct water hammer.

a When tzakr

i called indirect water hammer, in which
My e [k the shock wave reflected from the tank
1"'I returns to the valve before it 1s com-
I\H;h pletely closed. Obviously, the pres-

> ty, we have the so-

sure increase Apl'ld will be smaller in

I
1 this case than Apud for the direct ham-
i mer.

i

fy 1 : i» If we assume that the flow velocity
decreases when the valve 1s closed and
ztgé %gié S?ggktpres-> that pressure rises linearly with time,
zakr we can write (Fig. 131)

> to.
'A,’;‘ == .."'.
any. R ’_-.up’.
From this,
' o on ey
ot pp e M s O 10.11
A,”'i: Looep Py aliup % 4ivp ( )
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Thus, unlike Apud’ the quantity Apl'ld depends on pipe length,
but not on the veloclty a.

LAN AL

- , Y=o
By
l Uy, [u

a)
Fig. 132. Diagram of blind pipe.

It must be remembered that the shock pressure can be doubled
in a so-called blind pipe. Let us explain this as follcws with
reference to Fig. 132. ouppose that a pipe with an initial low
pressure p, is cut off by a valve from a large tank (or pump)
with a high pressure p, On instantaneous opening of the valve,
the pressure at the beginning of the pipe rises suddenly by an
amount Ap ud = P1 ~ Po:

The resulting pressure wave moves at veloclty a toward the
end of the pilpe (see Fig. 132a). The pressure behind the wave
front differs from the pressure in front of it by Apud’ and the

velocity of the fluid in the plane of the front increases from
zero to the value v, determined by Formula (10.10), i.e.,

e
e

<!

(VO

When the wave front arrives at the blind end, the fluld pres-
sure has been raised by Apud over the entire length of the pipe,

and all of the fluid has acquired the velocity v,. Since further
motion of the fluld is impossible, the velocity of the entire
fluid column drops to zero, in turn increasing the pressure by
another Apud = pv,a.

Thus, a new (reflect~d) pressure wave moves down the pipe
toward the valve; behind it, the pressure has risen by 2Apud by

comparison with the initial value, and the velocity of the fluid
v =0 (see Fig. 132b).

If there is a fluid-filled volume W at the end of the pilpe,
e.g., a hydraulic power cylinder, this volume will have a damping
action and the pressure will increase by less than two times. If
volume W 1s very large, there will be practically no reflection.
The volume of fluld in a hydraulic power cylinder 1s usually very
small or even zero (plston in contact with cylinder head) when
the high pressure 1s switched to 1t, so that the possibility of
doubled pressure is quite a real one.
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Formula (10.10) was derived with a number of simplifying as-
sumptions: validity of Hooke's law for the deformation of the
pipe and fluid, absence of friction in the fluld and of other
forms of energy dissipation during the hammer process, uniform
veloclty distribution over the pipe section.

Experimental studies of water hammer made by Prof. I.F.
Livurdov and others indicate that if the fluid contalns no alr
and 1f the initial pressure p, 1s moderate, the Zhukovskly for-
mula is confirmed quite well by experiment in spite of the above
assumptions. It would appear that nonuniform velocity distribu-
tion and, consequently, nonuniform flow conditlions in the pipe
(laminar or turbulent) would have to influence Apud, since the

kinetlc energy of the flow depends on it. However, thils effect

is practically absent. I.F. Livurdov's explanation for this is
that the abrupt deceleratlion of the flow is accompanied by strong
shearing between layers of fluid and a large energy loss to in-
ternal friction, which approximately offsets the kinetic-energy
excess due to velocity nonuniformity. The loss of energy to fric-
tion and dissipation of energy during the subtsequent course of

the hydraulic hammer help to damp out the pressure oscillations.

It was found as a result of B.S. Rozhdestvenskiy's speclal
studies [27] of water hammer in aircraft hydraulic-system pipe-
lines that under real conditions with high enough initial pres-
sures p,, the quantity Apud exceeds the theoretical value glven

by the Zhukovskiy formula by 10-20% and more. This is explained
by a slight increase in the fluld's elastic modulus K with in-
creasing pressure p, (see §3), and, consequently, an increase in
the velocity a. This means a certain deviation from Hooke's law,
i.e., violation of the linear relation between deformation and
pressure. :

Owing to the high operating speeds of hydraullc-system con-
trols (electromagnetic valves, etc.), which have very short re-
sponse times (of the order of 0.008-0.002 8), Apud ranges up to

several tens and even hundreds of kgf/cm? in the pressure lines
of alrcraft hydraulic systems. These sharp pressure rises may
damage pipelines and other system components. Moreover, as they
propagate throughout the entire piping system, water-hammer pres-
sure pulses may cause some devices 1n the system to operate unex-
pectedly (pressure relays, hydraulic locks, etc.).

Countermeasures against water hammer in aircraft systems are
matched to each specific case. The most effectlve method of
lowering Apyg 18 to eliminate the possibility of direct water
hammer, which reduces, for a given pipe, to increasing the operate
times of valves and other devices. A simllar effect is obtalned
by installing compensators in the form of adequate local fluld
vblumes or hydraulic accumulators in front of these devices,

Shock pressure can also be lowered by lowering the veloclty of
the fluid in the pipes (increasing pipe dlameter at a given flow
rate) and shortening the runs of pipe (to obtain indirect hammer).
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Sometimes, rather than lower the pressure Apud’ the designér pre-
fers to increase the strength of weak links in the system.
Example. An appliance in an aircraft hydraulic system 1is

shut off by means of an electromagnetic valve. The valve closes
the line completely during a time tzakr = 0.02 s,

Fig. 133. Illustrating example:

1) hydrauliec accumulator; 2) elec-
tromagnetic valve,

KEY: (a) to appliance; {(b) drain.

Determine the pressure rise in front of the valve when the
appliance 1s shut off, using the following data (Fig. 133).

The length of the pipeline from the valve to the accumulator
in which the shock pressure 1s quenched 1is & = 4 m, pipeline
diameter 12 mm, ge wall thickness § = 1 mm, material steel (E =
= 2,2+ 10°¢ kgf/cm s bulk elastic modulus of AMG-10 fluid K =
= 13 300 kgf/cm?, fluid density p = 90 kgf-s?/m"*, flow velocity
in pipe v, = 4.5 m/s.

Solution. We determine the propagation velocity of ‘the shock
wave through a pipe fllled with AMG-10 fluid:

I// t J'z/n: 1//:'©n e s/m,

RIS GTRR W PSP 1xu

or
e- NWOM/s,

The full shock pressure with instantaneous closing of the
valve would be
R R PP Y TP _Er

But we have indirect water hammer in this case, since the
back-and-forth travel time of the shock wave 1s

cmz

bl 2.4 .
N X
sy 170 !
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i1.e., it 1s shorter than the complete closing time tzakr of the
valve. Thus, the pressure rise in front of the valve 1s only

’ '__'_0 == 47 39_.’_95'.‘.? . w
Ap“ = Ay Laanp T 002 16,2 Em’ a
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Footnotes

Manu-
script
page

207 'Here we cannot disregard the compressibility of the
fluid, as is usually done in hydraulics problems,
since 1t 1s the fluid's slight compressibility that
causes the large but finite shock pressure Apud.
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Symbol List

Manu-

seript Symbol English equivalent
page

199 UH in inertia

207 TP tr friction

207 ya ud shock, hammer
212 3aKp zakr closing
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CHAPTER XI
HYDRAULIC DESIGN OF PIPELINES

§47. THE SIMPLE CONSTANT-SECTION PIPELINE

All pipelines can be classified as simple or complex. We
shall call an unbranched pipeline a simple pipeline and a pipe-
line with one or more branches a complex pipeline.

Fluid moves through a pipeline because its potential energy
at the beginning of the line is greater than at its end. This
gradient (difference) of potential-energy levels may be created
by a variety of methods: operation of a pump, gas pressure, oOr
a difference in fluid levels.

Aviation engineering deals chiefly with pipelines in which
fluid motion 1s due to pump operation. Certain liquid-rocket and
other systems use what 1s known as gas-pressure fluld feed. Fluid
is allowed to flow under a level difference (levelling-height
difference) chiefly in ground applications.

The pipeline working principles set forth in this section
(and 1in §§49 and 50) apply equally to all three of these fluid-
feed variations and are independent of the method by which the
energy gradient is set up. Peculiarities of pumped fluid supply
through pipelines are set forth in §51.

Let a simple constant-section pipeline, oriented arbitrarily
in space (Flg. 134), have a total length £ and a diameter d and
contaln a number of local resistances. In the initial secEion
1-1, we have levelling height Z, and excess pressure p,, and in
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the final section 2-2, z, and p,, respectively.

The flow veloci-

ties are the same 1n these sections because of the constant pipe

diameter, and equal v.

Let us write the Bernoulli equation for

sections 1-1 and 2-2 setting @, = a, and cancelling the velocity

heads:

ﬁﬁ'i-*zzl

or

S

R WX N LY Jaaop,
vy R N i L

T‘r
)//)z/////// NI III IS TISTVIViFIOITT Sl

Fig. 134. Diagram of simple
pipeline.

v

We shall call the plezometric
height in the left member of the
equation the required head Hpotr'

If, however, this quantity is
given, we shall call it the avall-

able head Hrasp’ As we see from

the equation, this head is composed
of the geometrical height 4z to
which the fluid rises 1in motion
along the pipeline, the plezometric
helght at the end of the line, and
the sum of all hydraullc losses in
the pipeline.

The sum of the first two terms Az + p,/y is a statlc head;
we can represent it as a certain equivalent geometrical fluid
rise height Az' and the last term Ih as a power-law function of

flow rate; then

Hlmp "'?'

N

saz-[ ARG, (11.1)

where k and the exponent m have different values depending on

flow regime.

For laminar flow, we shall have on substitution of equiva-
lent lengths for the local resistances in accordance with (6.5)

and (8.19)

pr

consequently,

f

ngelt

L AERTE BN

LR QL

ngtd '

J and m = 1. (11.2)

For turbulent flow, we obtain from (4.17) and (4.18), ex-
pressing velocity in terms of flow rate,

o o ! Teg!
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consequently,

fyea )P = .3
k (_)J(Il,d)?"?‘“.and me= 2, (11.3)
Formula (11.1), supplemented by Expressions (11.2) and (11.3),
18 the basis for mathematical design of simple pipelines. At the
same time, this formula enables us to construct a required-head

curve. .

The latter is a dlagram of the required head as a function
of fluid flow rate in the pipe. The greater the flow rate that
must be put through the line, the greater 1s the required head.
In laminar flow, the required-head curve 1s a straight line (or
nearly straight when the dependence of 2ekv on Re is considered),

and in turbulent flow it is a parabola of the second degree (for
At = const) or of approximately the second degree (when the depen-

dence of At on Re 18 considered). The quantity Az' is positive

when the fluid rises from a lower to a greater height in its mo-
tion through the pipe or moves into a space at elevated pressure
and negative when it flows downward or into a space with a par-
tial vacuum.

7

Various forms of required-
head curves are shown in Fig. 135
for laminar (a) and turbulent (b)
flows. The slope of the curve de-
pends on the coefficient k and in-

}u > #J;”:i, / creases with increasing plpellne
I o o £ length, decreasing diameter, and

increasing local hydraulic resls-
tance coefficients in the pipe.
addition, the slope of the line

In

varies in proportion to fluid vis-
Fig. 135. Required-head cosity in laminar flow.
curves,

The point at which the re-

quired~head curve intersects the
axls of abscissas at Az ¥ 0 (point (A) determines the flow rate
in motion of the fluld by gravity, i.e., owing to the levelling-
height difference Az alone. The required head 1s zero in this
case, since the pressure is equal to atmospherlc pressure Py at

the beginning and end of the pipe (we consider the free surface
in the upper tank to be the beginning of the pipeline); we shall
refer to such a pipeline as a gravity pipeline (Fig. 136). If
fluid flows out into the atmosphere at the end of a gravity pipe-
line, a velocity head must be added to the head losses in the
equation for required head (11.1).

Sometimes it is more convenient to use the so-called char-
acteristics of the pipeline instead of the required-head curves.
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The characteristic of a pipeline 1s

h;ﬂékfsv~w~~m_ a curve of its total head (or pressure)
loss as a function of flow rate, i.e.,
. ‘ ] l{:—_ Q o
‘Jz Sh=1Q)
' Thus, the characteristic of a pipeline
oKt Wy represents the required-head curve shifted

to the coordinate origin. The characteris-
tic of a pipeline coincides with its re-
Fig. 136. Diagram quired-head curve for Az' = 4z + p,/Y = 0,
of gravity pipeline. e.g., when the pipeline lies in the hori-
zontal plane and there 1s no back pressure

P2

Let us consider certain problems that might be encountered
in calculations for a simple pipeline.

Problem 1. Given: flow rate Q, pressure p,, propertles of
fluid (y and v), all dimensione of the pipeline, and the material
and finish quality (roughness) of the pipe. Find the required
head H .

potr

The solution procedure is as follows. From the flow rate
and pipe diameter d, find the flow velocity v; from ¥, d, and v,
determine Re and the fiow regime. Then use appropriate formulas
or experimental data to evaluate the local resistances (lekv/d or

z in laminar flow and % in turbulent flow); from Re and the rough-
ness, determine A, and, finally, solve the basic equation (11.1)
for H . :
potr
Calculation of A is not mandatory for laminar flow; k can
be determined at once by Formula (11.2). .

Problem 2. Given: available head Hrasp’ propertles of fluid,

all pipeline dimensions, and roughness. Find the flow rate Q.

The solutions for laminar and turbulent flow will differ
substantially. For this reason, we assign a flow regime on the
basis of fluid viscosity.®

1. The problem is easy to solve for laminar flow and with
equivalent lengths substituted for local resistances: find the
flow rate Q from (11.1) with consideration of (11.2); substitute
H for H in this procedure.

rasp potr
2. In turbulent flow, the problem 1s solved by successive
approximations or graphically.
In the former case, we have one equation (11.1) with the two
unknowns Q and At‘ To solve the problem, we asslgn a value to
the coefficient xt with consideration of roughness. Since this

*See page 241 for footnote.
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coefficient varies in a comparatively narrow range (xt = 0,015~

0.04), we do not incur any great error in so doing, the more so
since the coefficlent At is under the radical in subsequent de-

termination of Q.

By solving (11.1) with (11.3) for Q, we find the first-
approximation flow rate, From the value found for Q, we deter-
mine Re in first approximation, and a more accurate value of At

from this Re. We agaln substitute the value obtained for At into

the same fundamental equation and solve it for Q. Having obtain-
ed the second-approrimation flow rate, we find a greater or
smaller discrepancy between it and the first approximation. If
the disagreement is large, the calculation is repeated in the
same order. The difference between each subsequent Q and the
preceding one will become smaller and smaller. The calculation
should be continued until the disagreement between successive
values of Q is within the limits of acceptable error.

Usually, two or three approximations are qﬁite adequate to
obtaln acceptable accuracy.

To solve the same problem graphically, we construct a re-
quired-head curve for the particular pipeline with consideration
of the variability of kt, i.e., we compute Re, At and, finally,

Hpotr by Formula (11.1) for a series of Q-values. Then, plotting
a curve of Hpotr against Q and knowing the ordinate Hpotr = Hrasp’
we find the abscissa, 1.e., the Q, that corresponds to 1it.

Problem 3. Given: flow rate Q, availlable head Hrasp' fluid

properties, and all pipeline dimensions except the diameter.
Find the dlameter.

We begin the solution by assigning the flow regime on the
basis of the fluid's properties (v).?

In the case of laminar flow, the problem is solved simply on
the basis of (11.1) with application of (11.2), namely:

ST
4_~V ST (11.4)

Having determined d, we choose the next larger standard diam-
eter and use the same equation to improve the head value for the
glven Q or vice versa.

For turbulent flow, solution of (11.1) for d with considera-
tion of (11.3) is best accomplished as follows: assign a series
of standard values to d and calculate a series of Hpotr for the

given Q; then construct a diagram of H as a function of d and

potr
TSee page 241 for footnote.
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refer to the curve to find d for the given H , round this

value off to the standard, and improve H

rasp
potr’
§48. THE SIPHON

A siphon is a simple gravity pipeline part of which 1s situ-
ated above the supplying tank (Fig. 137). Fluid moves through a
siphon because of the difference in levels H, first rising to a
height H, above the free surface under atmospheric pressure and
then dropping through height H,.

A property of such a pipeline 1is that
the fluid pressure 1s below atmospheric
throughout the ascending line and in part
of the descending line,

- =

: H

. 320
T, r\
I, t
0 ’:z;! Cwi o
tﬁf“ Z"—f“ To start a siphon supplying fluid,
et o | 5 ] it 1s necessary to fill its entire volume
bl R ’ with fluid. 1If a small hose 1s being used
. as a siphon, it is easily filled by first
immersing it in the fluid or suctioning

the air out of its lower end.

——
N
prr——
roh
i —

T If, on the other hand, the siphon is
made in the form of a fixed metal plpe, it
Fig. 137. Diagram of is necessary to provide a valve at its
siphon pipeline. highest point for withdrawal of alr. The
air can be removed either by a displacement
pump (see Chapter XIII) or by an ejector
pump (see §18).

Let us write the Bernoulli equation for sectlons 0-0 and 2-2
(see Fig. 137), where we shall regard the veloclty as equal to
zero, and the pressure as atmospheric:

or
Aze-kQr ],

Thus, the flow rate through the siphon 1s determined by the
level difference H and the resistance of the pipeline, and is in-
dependent of rise heilght H,. However, this is true only within
certain limits. With increasing height H,, the absolute pressure
p, in the uppermost section 1l-1 of the siphon decreases. When
this pressure becomes equal to the saturation vapor pressure,
cavitation begins and flow rate decreases; subsequently, vapor
lock shuts off the fluid feed.

In designing a siphon, therefore, it 1is necessary to make
sure that the pressure at the top point (p,) does not become too
low. If the fluid flow rate through the siphon and all dimenslons
are known, the absolute pressure p, can be found from the
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Bernoulll equation for sections 0-0 and 1-1, which reads

Pa H L] v? tNY )
. oL g N
Y i v % (AT

If, on the other hand, the minimum permissible pressure p,
is known, then, knowing the flow rate, we can use the same equa-
tion to find the maximum permissible height H,.

§49. SERIES- AND PARALLEL-CONNECTED PIPES.

Let us take several pipes, for example, 1, 2, and 3, which
have different lengths and diameters and contain different local
resistances, and connect them in series (Fig., 138). The result
is a simple pipeline of variable cross section.

e 7 J

Mo LY T - Try

VAN ~ s

Fig. 138. Pipes connected in series.

oh)
.,
H /' S3m.
_ »lgff_(:,; ES\"F--
- . :\-.: Lt / FA—
”;:/\*:'\ c_,ﬂ/// \i‘,
- ‘ S
Fig. 139. Construction Fig. 140. Parallel-
of characteristic for connected pipes.

series-~connected pipes.

Quite obviously, when fluid is fed through such a pipeline,
the flow rate wlll be the same in all of the series-connected
pipes, and the total head loss between points M and N will be
equal to the sum of the head losses in all of the series-connected
pipes, i.e., we have the following fundamental equations:

Q- Qo0
Sy iy, (11.5)

P

These equations give a rule for construction of characteris-
tics for series-connected pipes.

Suppose we have been given (or have ourselves constructed)
characteristics (1, 2, 3) for the three pipelines (Fig. 139). To
construct the characterlstic M-N of the entire series unit, we
must, according to equation system (11.5), add the head losses
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for identical flow rates, i.e., add the ordinates of all three
curves at each absclssas.

Since the velocities at the beginning (M) and end (N) of the
pipe are different in the more general case under consideration,
the expression for the head required for the entire pipeline M-N
must, unlike Formula (11.1) contain the velocity-head difference
between the end and beginning of the pipeline, 1i.e.,

2 2 . Pr
. ay v —a, % Pr._.
Hopop=2n=2x ’i"‘}“‘\'i,"m"‘i‘};"‘u—h' -+ Y (11.6)

- A2'-]- CQ*} Q™

where

C::'.—»-‘— ,‘.;.N_ —_ fdl_‘ .
2z \ Sy Sy
Py
A= 2y AL
M i Y

Let us now consider several unlike pipelines (1, 2, 3), con-
nected in parallel between points M and N (Fig. 140).

le .8 denote the total heads at points M and N by HM and HN,

respectively, the flow rate in the main line (i.e., before branch-
ing and after merging) by Q, and those in the parallel pipelines
by Q;, Q2, and Q,, and the total head losses in these plpelines by
th,, h,, and Lh,.
We first write the following obvious equation:

Q- Q-1 Q1 Q. (11.7)

We then express the head loss in each of the pipelines 1in
terms of the total heads at points M and N, i.e.,

> hlnﬂu;—HN;
i}ﬁz=;’;n"fﬂv£
Shy==Hy—Hn.
From this we draw the following important conclusion:
=3 he=Z b, (11.8)

i.e., the head losses in parallel pipelines are equal to one an-
other,

In general form, these losses can be expressed as follows in
terms of the correspconding flow rates:
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2"|= |Q’|"?
3 b= £,Q5:
Ell.=k.Q?.

where the coefficlent k and the exponent m are determined by
Formulas (11.2) or (11.3), depending on flow regime.

To supplement (11.7), therefore, we obtaln two more equa-
tions on the basis of (11.8):

2QT =107, (11.9)
kQ7=4Q7. (11,10)

Equation system (11.7), (11.9), and (11.10) enables us to
solve, for example, the following typical problem: the flow rate
Q in the main line and all pipeline dimensions are given; deter-
mine the flow rates Q,, Q,, and Q, in the parallel pipes.

Applying (11.7) and rule (11.8), we can always write as many
equations as there are parallel pipelines between points M and N.

Problems of the following type must also be solved frequently
in the design of aircraft fuel systems: the total flow rate and
the lengths of the parallel pipelines are given; find the diam-
eters of these pipelines that will ensure certain flow rates in
each of them., The solution of such a problem is considered in an
example.

The following important rule proceeds from (11.7) and (11.8):
to construct the characteristic of several pipelines connected in
parallel, 1t 1s necessary to add the abscissas of the characte.is-
tics of each of these plpes (the flow rates) at identical ordi-
nates (Zh). An example of this construction is given in Fig. 141.
b These relationships and rules for
parallel-connected pipes are, of course,
also valid when pipes 1, 2, 3, etc. (see
Fig. 140) do not meet at the same point
N, but deliver fluid at various points at
the same pressure and equal final-section
levelling heights. If the latter condi-
tion is not met, however, these pipelines
cannot be regarded as parallel, but must
be assigned to the category of branched
pipelines (see §50).

Fig. 141. Construc-
tion of characteris-

zigzegggdpa?iiel‘ §50. BRANCHED PIPELINES. CALCULATIONS FOR
pipes. THE COMPLEX PIPELINE IN THE GENERAL CASE

We shall use the term "branched pipe-
line" for a set of several pipes that have a common cross section
~ a point at which they branch or merge. Such pipelines are
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usually encountered in aireraft fuel systems (service and fueling)
and in hydraulic transmission systems, as well as in stationary
fuel-handling systems at airports.

Let the main pipeline branch at sec-
tion M-M, at which, for example, three
pipes (1, 2, 3) with different dlameters
and different local resistances branch off
(Fig. 142). Assume further that the level-
1ing heights of the terminal sections (z,,
2,, and z,) and their pressures (p1s P2s
and p,) are also different. Let us find
the relation between the pressure in sec-
Fig. 1l42. Branched tion M-M (pM) and the flow rates in the

pipeline. pipes (Q,, Q, and Q,), assuming that the
direction of2flow in the pipes 1s given
(see arrows).

As for parallel plpelines, we have

v= Qi1 Q: ) Qa.

#
} . o #
', ’)/
I
Faped
Fig. 143. Construction of required-head curve
for branched pipeline.

Writing the Bernoulll equation for section M-M and for the
final section, for example, of the first pipelline, we obtain (dis-
regarding the velocity-head difference)

P 2y} 2L W
Y vy H 2
Denoting by z] the sum of the first two terms 1n the right

member of the equation and expressing the third term in terms of
flow rate (as we did above),

14 '
"f= z\'{'.qulln.

*Tee page 241 for footnote.
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Similarly, we can write for the other two plpes

p (]
—3‘. =23 '*‘ kQQg‘l

[ 4 ' m
’_:"‘ =z,-- kQ;.

Thus, we obtain a system of four equatlons with four un-
knowns: Q,, Q,, Qy, and Py Graphical solutlon 1is convenient.

For this purpose, we construct a curve of p,/y as a function of
QM for each of the pipes from the equations given above, and then

add them in the same way as we added the characteristics of the
parallel-connected pipes, i.e., we add the abscissas (Q) at iden-
tical ordinates (HM = pM/Y) (Fig. 143). The resulting inflected

curve ABCD 1s the required-head curve for the branched pipeline,
and with it we can determine the flow rates from the pressures Py

or vice versa,

When the direction of the pipe flows is reversed, i.e,, fluid
moves from tanks 1, 2, and 3 to section M-M, the signs of the
head losses in the above equations are reversed and, consequently,
the losses are plotted from top to bottom in constructing the HM =

= £(Q) curves, Regarding the rate of fluid flow from tanks 1, 2,
and 3 to section M-M as negative, we carry out the construction
in the same way as before, but along the left side of the axis of
ordinates. The broken curve A'B'C'D' represents the required
head in section M-M as a function of the total negative flow rate
QM (see Fig. 143, where, for clarity, open tanks with fluid levels

z' = z + p/y are shown on the diagram of the pipelines at sections
1, 2, and 3, and a plezometer appears in section M-M).

Another possibility 1s the case in which there are no check
valves in the pipelines and the flow can move 1n elther direction.
In this case, construction of the over-all curve, i.e., addition
of abscissas at 1dentical ordinates, must be performed with con-
slderation of the signs of flow rate Q,, Q,, and Q;. Instead of
two different curves, we obtaln a single curve D'C'ECD, which re-
lates the flow rate QM and head HM and can be used to determine,

for example, the flow rates QM’ Q, Q2, and Q3 with consideration
of signs at a given HM or to solve other problems. In the particu-
lar case with QM = 0 at point E, we obtain the answei to the so-
called three-tank problem, in which one tank is fed from the

other two or two tanks from one.

The branched pipeline considered above, and pipellnes com-
posed of several parallel pipes, are variations cf the complex
pipeline. 1In the general case, as 1s clear from the definition
{(see §47), a complex pipeline may consist of series- and parallel-
connected segments or branches.
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Normally, calculations for both gravity and pump-fed complex
pipelines are made by a graphoanalytical method, 1.e., using re-
quired-head curves.

In the general case, calculation and construction of these
curves for the complex plpeline proceeds as follows. The complex
pipeline is broken up into a series of simple pipelines. Each of
these simple pipelines is calculated and curves of Hpotr = £(Q)

are plotted as described above. Then these curves are added for
the parallel segments for the elements of a branched plpeline by
the rules set forth in §49. The result 1s a required-head curve
for (one or more) parallel-connected pipes or the branched pipe-
line. This curve 1s then added to the curves for the serlea-
connected segments in accordance with Formulas (11.5).

Guided by this rule, we can plot a required-head curve for
any complex pipeline for either turbulent or laminar flow. When
Az' = Az + p/y = 0, pipeline characteristics are constructed in-
stead of required-~head curves.

An example of construction of a required-head curve for a
complex plpeline 1s given at the end of thls chapter.

§51. PIPELINE WITH PUMP DELIVERY OF FLUID

Up to this point, we have been concerned essentlally only with
isolated segments of simple and complex pipellnes, and not with
complete fluid-feed systems (other than the elementary gravity-
flow type). And as we have noted, the basic method of fluild de-
livery in aviation engineering 1s forced pump feed. Let us con-
sider the combined operation of a pipeline and a pump and the
principle involved in mathematical design of pipelines with pumped
fluid supply.

A pump-delivery pipeline may
be elther open, i.e., one through
which fluid 1s transferred from one
point to another, or closed (circu-
lating), with a constant amount of
fluid circulating in 1t.

Let us first consider an open
pipeline (Fig. 1lh44) through which a
pump transfers fluid, for example,
from a lower tank at pressure p, to
some type of chamber — an engilne
Fig. 144, Diagram of pump- combustion chamber at pressure p,
fed pipeline. or another tank.

KEY: (a) pump.

The height of the pump axis
relative to the lower level (H;) 1is
known as the geometrical intake height, and the pipeline through
which fluld flows to the pump as the intake pipeline or suctlon
line. The heilght of the terminal section of the pipeline or the
upper fluid level (H,) is known as the geometrlc delivery height
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and the pipeline through which fluid moves from the pump as the
delivery or pressure line.

We write the Bernoulli equation for the fluld flow in the
intake pipeline (for sections 0-0 and 1-1):

)
Lo, IR
Y 14 " | P 4 Z"o~:—|- (11.11)

This equation indicates that the intake process, i.e., that
of raising the fluid to height H,, imparting kinetlc energy to
it, and overcoming all hydraulic resistances takes place with the
pump utilizing pressure p,. Since this pressure 1s usually quite
low, it must be expended in such a way as to leave a certain
pressure margin p, in front of the entry into the pump, as neces-
sary for normal cavitatlon-free operation of the pump. Calcula-
tions for intake lines must therefore be particularly metlculous
and accurate.

Equation (11.11) 1s basic to the mathematical design of in-
tak= pipelines.

The following problems may be encountered in the design of
intake pipes.

1. All dimensions and the flow rate are given. Find the
absolute pressure before the entry into the pump.

The solution of this problem 1s a trlal calculation of the
intake line. The absolute pressure p, found from (11.11) is com-
pared with the minimum acceptable pressure for the particular
case.

2. The minimum acceptable absolute pressure in front of the
pUmp, Pypips is gilven. Find one of the following acceptable-
limit values: Hlmax’ Qmax’ dmin’ Or Pyrin®

Determination of the last quantity 1is of particular impor-
tance for alrcraft hydraulic systems for which p, = Py + Ap.

Here 4p 1s the excess over atmospheric pressure provided by
pressurization or by the pressure of an inert gas. The minimum
acceptable atmospheric pressure Pamin 1s found from Pomin? and

then the maximum permissible flight altitude of an airplane with
the particular system, 1.e,, the altitude capabllity of the sys-
tem, 1s found by referring to a standard-atmosphere table.

An increase in the pressure p, Increases the pressure
throughout the entire intake line and, consequently, increases
system altitude capabllity. However, high pressures in the sup-
ply tank are not admissible, since this requires making the tank
stronger and, consequently, heavier. For this reason, still an-
other method 1s usually used to increase the altitude capesbllities
of alrcraft hydraulic systems: an auxiliary pump (booster pump)
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18 inserted at the beginning of the intake line to ralse the pres-
sure in that line and prevent cavitation in front of the entry
into the main pump.

We write the Bernoulli equation for the motion of the fluld
through the delivery line, 1.e., for sectlons 2-2 and 3-3:

2 »
PV P N
. I (142".' ll=| y *ﬂli{:—i—zll_-_a_ (11-12)
If the delivery line terminates in a tank, there will be no

velocity head in the right member of (11,12), but 1t will be
necessary to take the expansion head loss into consideration.

The left side of (11.12) represents the specific energy of
the fluid at the exit from the pump.

The fluid's specific energy before the pump entrance can be
found from (11.11):

Let us find the specific-energy increment of the fluid in
the pump, i.e., determine the energy acquired by each unit weight
of fluid as 1t passes through the pump. This energy 1s 1lmparted
to the fluild by the pump and is therefore referred to as the pump
head and denoted by Hnas' To find Hnas' we subtract the last

equation from (11.12):
v v\’
Hoe (2 4 53) (240, ff)f

— v
s=Hyt Hyt BB oy oot Sbo-y + 3 haes,

Y

or Hye= b2 BB 10O, (11.13)

where Az 1s the total geometrical rise height of the fluid (see

2
Fig. 144), CQ%=Q§3 is the velocity head in section 3-3, and ka

74
is the sum of the hydraulic losses in the intake and delivery
lines.

If we add the pilezometric-height difference (p, - p,)/y to
the actual level difference Az, we can work with a kind of aug-
mented level difference equal to

Az' = AZ+—&E—;—E—Q- '

and rewrite (11.13) as follows:
Hyer02'-CQ° --kQm,
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Let us compare Expression (11.13) with the required-héad
formula (11.6). Obviously,

”nac"‘”nom- (ll. 14)

This equation can be extended to all cases of stable opera-
tion of the pump connected to the line and can be formulated in
the form of a rule: with steady flow in the pipeline, the pump
develops the required head. Only with this condition 1is stable
pump operation possible. The condition is usually met automatic-
ally.

A method of calculation for pump-fed pipelines is based on
(11.14) and consists in plotting two curves on the same scale
and on the same diagram: a required-head curve Hpotr = £,(Q) and

the pump characteristic Hnas = f,(Q) and finding their point of
intersection (Fig. 145).

Pump characteristics.will be dis-

» J”“";ﬁgg??“ cussed at some length later, in Chapters
AP ¥  XII and XIII. For the moment, anticipat-
,tﬂ?' ing somewhat, we give only a definitlion:

==L the characteristic of a pump is the curve

of the head that 1t develops as a function
of its delivery (flow rate) at constant
speed.

i At the point of intersection of the
required-head curve and the pump char-
acteristic we have equal required head and

Fig. 145. Finding pump head, i.e., Equality (11.14). This
operating point point is called the operating polnt, since
graphically. the pump operating mode corresponding to
KEY: (a) required- precisely this pcint 1s always established.
head curve; (b)

operating point; (c) To obtain a different operating polnt,

pump characteristic. it 1s necessary elther to change the open-
ing of the regulating valve (gate, spool),
i.e., to change the pipeline characteristlc,
or change the pump speed, of which we shall speak in greater de-
tail below.

It should be noted, however, that this calculation of the
operating point 1s applicable only when the speed of the pump
drive is independent of the power taken by the pump, 1l.e., of the
load on the pump shaft. This 1s the case, for example, when the
pump is coupled to an ac motor or an avlation engine whose power
is many times that of the pump.

If the pump is driven by an individual internal-combustion
englne, or a special turbine whose power depends on pump shaft
load, the calculation must be performed differently. In this
case, 1t 1s necessary to construct required and available pcwer

-233=-



curves agalnst rpm and determine the operating speed and power at
their point of intersection.

For a closed pipeline (Fig. 146), the geometrical fluid rise
height 1s zero (4z = 0); consequently, for v, = v,

Hnolp::‘\:J’l :,____’2_:_"_&:__- ,I“".

i.e., the same equality applies between required head and pump
head.

It must be remembered that a closed pipeline must 11 all
cases be provided with a so-called expansion or compensation tank
connected by a pipe to one of the sections of the plpeline, most
frequently the section at the entrance to the pump, where the
pressure 1s lowest. Without this tank, the absolute pressure

inside the closed pipeline would be in-
T . 2 determinate, and also variable because of
E;;! temperature fluctuations.and seepage.

With the expanslon tank connected to
the pipeline as shown in Fig. 1U6, the
pressure before the pump entrance becomes
quite definite at

p1i=po-tHov.

The pressure in any cross section of

Fig. 146. Diagram of the closed pipeline can be computed from
closed pipeline. p,. If the pressure p, in the tank 1s
KEY: (a) pump. .changed by a certain amount, the pressure

will change by the same amount at all

points of the particular system. Conse-
quently, Pascal's law of pressure transmission in a statlonary
fluid (see §5) 1s also valid here. A tank can also be connected
into a closed pipeline as shown in Fig. 172.

Example 1. Determine the head required at the exlt from an
aircraft booster pump to feed T-1 fuel at a rate of G = 1200 kgf/h
from the service tank to the fuel pump at the engine 1if the length
of the duraluminpipeline £ = 5 m, its diameter d = 15 mm, the
required pressure at the entrance into the fuel pump p, = 1.3
kgf/cm?, the viscosity coefficlent of the kerosene v = 0.045 cm?/s,
and its specific weight Y * 820 kgf/m®. Figure 147 shows the

local resistances inserted in the pipeline. Disregard the helght
of the fluid column 1in the tank.

Solution. 1. The velocity of flow in the line

e 4G dpan
3600a2y,  3300.3,14-1,52.0,82 =:2i0cm/s .

2. The Reynolds number
od 20015
Rews” 0~ =g grg = 80%.
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3. We determine the coefficient of frictional resistance xt
by the Konakov formula: At = 0,.0328.

4, We take the values of the resistance coefficients for
the filter, shutoff valve, flowmeter sender, and standard bends
(elbows) from Table 2 (Chapter IX):

“-?; "'-1.5; "-1: ‘yr-l-z

5, We compute the pressure loss in the line from the booster
pump to the fuel pump by the formula

[ . v
zprp = Y ( 1.1 '7:+ e+ +lep + ‘0)2"- bad

500 . 2.4
=wommxig+&L277+L5+42&Jl

= 6000 kgf/m?® = 0.6 kgf/cm® = 58 800 N/m?,

Fig. 147. Illustrating example 1.
1) booster pump; 2) aervice tank;
3) flowmeter sender; 4) main fuel
pump; 5) engine; 6) filter; T7)
shutoff valve.

6. Hence the pressure required at the exit from the booster
pump 1is

. kgf cn N
p=pt N pp =134 06=19 E%n’ =160 =

Example 2. T-1 fuel is supplied from two underwing tanks
to the service tank of an airplane (Fig. 148) by an excess of
pressure in these tanks over that in the service tank Ap = Py -

- 2
- Prp 0.2 kgf/cm®.

Determine the pipeline diameter 4, remembering that the
underwing tanks must be depleted simultaneously at a total fuel
flow rate G = 1500 kgf/h. Each underwing tank holds a volume
W= 450 1. Pipelines of length & = 7 m are assembled from dura-
lumin tubing. The viscosity coefficient of the kerosene v =
= 0,045 cm?/s and A 830 kgf/m®. Disregard the liquid column
in the tanks.

Solution. 1. We find the engine running time to complete
exhaustion of the kerosene in the underwing tanks:
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7 o <35
Sy 28008 o5 h.

2. We determine the fuel flow from each tank from the expres-

sion
Q::-‘%- = ':)'5» 00 1/h=021/s.
oS LA
m ﬂnpafai
/ a & Jbuzamemo
Fig. 148. Illustrating example 2. 1) check
valve; 2) service tank; 3) booster pump.
KEY: (a) to pipeline to engine; (b) from
tank pressurization system,
Hyorp ™
3. We assign a series of values to
' the diameter d: 12, 14, 16 and 18 mm.
?
P 4, We refer to Table 2 for the resis-
5 \ tance coefficients at the entry into the
. pipellne ;vkh’ those of the check valve
’.___.--\ Co.k’ the elbow ;kol’ and the tee Ctr’ and
2 {\\ that at the exit from the line, L ... We
! j < calculate the coefficient A by the Kona-
01012 115 15drn kov formula for each d after first deter-
’ mining Re.
Fig. 149, Illustrat-
ing example 2. 5. We determine the head Hpotr required

for each d by the formula

. Y | 16Q?
Howp= (cnx -+ Lows -+ Boa =+ Lip o+ i My -z 25_1,;‘,_

and plot a curve of H = f(d) (Fig. 149).

potr

7. For the avallable head, which 1s found by dividing Ap by
Y0 We refer to the diagram to find the required diameter, d =

= 15.7 mm.
We select the standard pipeline diameter d = 16 mm, which

provides for the necessary flow rate with simultaneous depletion
of both tanks.
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If the lengths of the plpelines were equal, thelr dilameters
would be different for this condition, and it would be necessary

to construct an Hpotr = f(d) curve for each pipeline.

Example 3. In centralized fueling of an airplane under pres-
sure, all tanks must be filled and topped off simultaneously.

Figure 150 shows a schematic dlagram of a centralized fueling
system.

Fig. 150. Illustrating example
3. 1) tee; 2) elbow; 3) cross-
pipe; 4) valve; 5} fuel-truck
pump; 6) check valve; 7) hose.

Let all tanks with their volumes W,, W) = W) , and W, lie in
the same horizontal plane at a height hb above the fuel-truck

pump. The elevation of the main pipeline A-B above pump level is
hA. The characteristic of the fuel-truck pump, the length lsh and

diameter dsh of the delivery hose, and the lengths of all pipe-
lines and the tank capacities are given.
Disregarding the helghts of the 1liquid coiumns in the tanks

and their excess pressures, solve the following problems, which
are likely to be encountered in practice:

I. Determine the fueling time t 1f the pipeline dlameters
are given.

II. Find the necessary pip-line diameters dm’ d;, d, and d,
for simultaneous fueling of all tanks during time ¢t.

I. The problem is solved graphoanalytically.
1. We construct the characteristic of the delivery hose from

the pump to point A, the beginning of the main pipeline, with con-
slderation of the height hA‘
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2. We construct the characteristic of the main pipeline (from
point A to point B).

3. We add the two characteristics in conformity to the rule
for adding characteristics of series-connected pipes (Fig. 151).

4, We construct the character-
" istics of the pipelines from branch
point B to the respective tanks with
consideration of the height hb - hA.

5. We add the characteristics

of the pipellnes to tanks by the
rule for addition of the character-
istics of parallel pipelines.

1,=::::::E::I 6. Adding the characteristic of
H LN | the pipeline from the pump to point

a; 1F

= o rl'

1 i B to the resulting over-all char-
a W B 4 acteristic for the four parallel

pipelines, we obtaln the character-
istic of the entire complex pipeline

Fig. 151, Illustrating with consideration of the height hy,

example 3. 1) character-

istices of plpelines to i.e., the required-head curve.
tanks; 2) pump character-

istics; 3) characteristic 7. From the point of intersec-
of complete pipeline; 4) tion of this curve with the fuel-
resultant characteristic truck-pump characteristic, we can
of pipelines to tanks; 5) determine the head Hnas to be de-
resultant characteristic

of hose and main A-B; 6) g:%gpgd by the pump and its delivery
characteristic of hose; n'

Iinghzfgcteristic of maln 8. The flow rates fed to each
KEY: (a) B-W} and B-W} . Eggk are determined as shown in Fig.

9, The fueling time t (with
simultaneous completion of fueling) will be

LXKtV wy
T @ Q Q'
II. The problem 1s solved graphoanalytically.

1. We determine the flow rate Qn from the fuel-truck pump
for filling of all tanks during time t by dividing the total tank
volume by t.

2. On the pump characteristic at flow rate Qn we find the
operating point, i1.e., the head Hnas to be developed by the pump.

The calculation indicates that the pipeline diameters must be so
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selected that the flow rate Qn will be able to pass through the
pipelines under a head Hnas'

H 3. The flow rates in the 1lines
¢ 44, d, [ Mvae to the respective tanks can be found
hg-h by dividing the volume of each tank
O A 1yt
== by the time t.

4, The fueling-hose head loss

Hsh is found with consideration of

filler-checkvalve losses.

5§, For the maln line (between

Flg. 152. Illustrating points A and B) we construct a curve
example 3. of head loss vs. line diameter HA-B =
= f(4d). For thils purpose, we

assign a series of dlameters and determine for each d the Reynolds
number Re, the coefficlent At’ and the head loss HA-B with con-

sideratlion of the levelling-height difference between the main
line and the truck pump, hA, and the delivery-hose losses Hsh‘

6. We construct a curve of head loss as a function of diam-
eter for each tank pipeline,

We construct these graphs in the same way as that of HA-B =
= £(d), but in a coordinate system whose origin is at Hoags with

the positive diameter axls on the left and the positive head axis
pointing downward (Fig. 152). We add the height hb - hA to the

head losses.

Thls somewhat unusual arrangement of the coordinate axes and
the Hy = ¢(di) curves for the pipelines to the tanks makes 1t
easier to find the unknown dlameters.

We assign a diameter dm to the main pipeline and, referring
to our graphs, find the diameters d,, d,, and 4, as indlcated by
the arrows in Fig. 152.

The diameters can be determined from the graph in several
variations, of which the most rational can be selected for use,

Point B on the HA-B = £(d) curve indicates the amount of
head (HB) lost on the path from the pump to the branching point
of the pilpelines. The rest of the head (Hnas
overcome resistances to motion of the fuel in the pipes to the

tanks and the height hb - hA'

- HB) is used to
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This method can also be used when the branches from the main
line to the tanks are not all at the same point B, but at dif-
ferent points; in this case, it is necessary to plot three curves
instead of the single HA-B = f(d) curve.
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Manu-
script
page

222

223

228

Footnotes

'In this case, regime can be determined by comparing

Hrasp with 1ts approximate critical value Hkr’ which
can be expressed from (11.1) and (11.2) as follows:
128v(Q4p 3‘2\'11.'.(,,-&(’ e 3
R e P B e Reww .

2The flow regime can be determined by comparing H
with H ., which equals (for a given Q)

rasp

@S Red,

RO sateith

lll'D PN V2 A s A .
P ANT 27

In aircraft systems the flow direction is often kept
from reversing by insertion of check valves.
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Symbol List

Manu-

script Symbol English equivalent
page

220 noTp potr required
220 pacn rasp avallable
220 9KB ekv equivalent
220 T t turbulent
232 Hac nas pump

234 K k kerosene
235 T t friction
235 el f filter

235 Kp kr valve

235 p r flowmeter
235 yr " ug bends

235 6 b tank

235 p.6 r.b service tank
236 BX vkh entry

236 0.K 0.k checkvalve
236 KoJ kol elbows

236 TP tr tee

236 BHX vykh exit

237 m sh hose

237 M m main line
238 H n pump

241 Kp kr critical
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CHAPTER XII
CENTRIFUGAL PUMPS

§52. PUMPS IN GENERAL

As we xnow, a pump is a machine that transfers fluid by
pressure or, sometimes, by suction.

From the physical standpolnt, the operating principle of a
pump consists in its conversion of the mechanical energy of a
motor (drive) into energy of the fluid, 1.e., 1t imparts power to
the stream of fluid flowing through it. The reserve of energy
acquired by the fluid in the pump enables the flow to overcome
hydraulic resistances and rise to a geometrical height.

The energy that each unit weight of the fluid acquires in
the pump, i.e., the specific-energy lncrease, has the dimensions
of length, and, as we noted above, represents the head created by
the pump. It was shown in §51 that the head developed by a pump
equals

H. . =={2P2 }-a "; 4] f-a ":
sac M 9 el | 2
or

2 2
Pr— P ﬁzUQ —"(’l‘!"
Hupe= 2 Y -+ % .

In the general case, therefore, the head developed by a pump
is composed of a plezometric-height (static-head) increment and
an increment of specific kinetic energy (dynamic head).
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However, the second term 1s usually much smaller than the
first, and equals zero when the lntake and delivery pipes have
the same diameter (d, = d,, and, consequently, v, = v,) and a; =
= a,; then

Hypoms 2271 Pure | (12.1)

We shall call the flow rate of fluid delivered by the pump
into the line the pump's useful delivery and denote it by Q.

The useful power of a pump, or its developed power, is the
energy that the pump imparts to the entire fluld flow each second.
By definition, this power equals

N=QyH,, [W1=10"QyH, [ kW] (12.2)

where Q 1s in m%/s, vy in N/m® and Hna in meters, or

8

N=Rffes 1157, ' (12.2")

where Q is in m*/s, y in kgf/m?, and Hnas in meters.

Like any other machine, a pump requires more power than it
puts out. The ratio of the power developed to the power used is
the efficlency of the pump:

N
“l='io'- (12.3)

Hence the power drawn by the pump equals

No—=Qillue, (12.4)
n .
or, applying (12.1),
N.,=°-’,'f=i[w1 (12.4)

3 2
where Q is in m°/s and Phas in N/m®,
This formula is used in selection of pump drives.

The over-all efficiency of a pump takes account of three
kinds of energy loss in the pump: hydraulic losses, 1i.e., head
losses to friction and eddying, volume losses due to circulation
of fluid through clearances in the pump, and mechanical losses,
i.e., losses to mechanical friction in bearings and packings and
certain other losses.

The pumps used in aviation and other fields of engineering
would appear to come in a wide variety of designs and operating
principles. However, almost all of them can be classified among

three main types:
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1) vane pumps, which include centrifugal, diagonal, and
axial-flow pumps;

2) displacement pumps, which include piston and rotor types;

3) turbulence-type pumps.

In this chapter, we shall examine centrifugal pumps, which
are being used on an expanding scale in aviation and rocket en-
gineering, and touch briefly on turbulence pumps.

The next chapter is devoted to dlsplacement pumps.

§53. DERIVATION OF THE FUNDAMENTAL EQUATION OF THE CENTRIFUGAL
PUMP

The operating principle of the centrifugal pump is as follows.
The basic working element of the pump 1s a vane wheel or impeller
(Fig. 153), which rotates at high speed to impart increased pres-
sure to the fluid filling it and expel 1t at increased velocity
into a scroll chamber (delivery pipe). As a result of the inter-
action between the wheel vanes and the fluid flow, drive energy
is converted into stream energy.

Fig. 153. Diagram of centrifu-
gal pump. 1) impeller; 2) scroll
chamber.

The scroll discharge pipe is snail-shaped and designed to
catch the fluid issuing from the wheel and convert some of its
kinetic energy into pressure energy.

The impeller of a centrifugal pump (Fig. 154) consists of
two disks, one of which is bushed to the shaft, while the other,
which has a central hole for passage of fluld, 1s secured to the
first by the vanes. The latter are curved, with cylindrical or
more complex space-curve shapes. The fluid comes 1lnto the wheel
along its axis of rotation and is then directed into the spaces
between the vanes; passing through these spaces, 1t exits through
the slot between the impeller disks.
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Fig. 154. Diagram of fluid flow through
impeller.

The motion of the fluid in the passages between the vanes of
the rotating impeller can be regarded as the sum of two motions:
translational (rotation of the impeller) and relatlve (motion
relative to the impeller). Thus, the absolute velocity vector v
of the fluid in the wheel can be found as the sum of the vectors
of the circumferential velocity u and the relative veloclity w.
Examining a fluid particle as 1t slides over the surface of a
vane, we can construct velocity parallelograms for the entrance
of this particle onto the vane and its exit from the vane. Here
1t should be assumed that the relative velocity w 1s directed
along the tangent to the vane, while the circumferential compo-
nent u 1s tangential to the corresponding circle. The same velo-
city parallelogram can also be constructed for any intermediate
point on the vane. Our convention here will be to denote all
quantities pertaining to entrance onto the vane by the subscript
1, and quantities pertaining to the exit by subscript 2.:

We shall denote the angle between the vectors of the circum-
ferential and absolute velocities by a and the angle between the
tangent to the vane and the tangent drawn to the clrcumference of
the impeller in the direction opposed to the rotation by 8 with
the appropriate subscripts. In the general case, angle a changes
with a change in pump operating mode, i.e., on a change in lmpel-
ler rpm n (velocity u) and flow rate Q (velocity w). The angle
B determines the slope of the vane at each of 1ts points and,
consequently, does not depend on pump operating mode.

We shall adopt the following two assumptlons to derive the
basic equation of centrifugal-pump theory:

1. Let the pump have an infinite number of identical vanes
(z = »), and let the thickness of these vanes be zero (6 =0).
This implies a filamentary flow in the between-vanes passages of
the wheel such that all filaments in the relative motion have
exactly identical shapes conforming exactly to the shapes of the
vanes, and that the veloclties depend only on radius and do not
vary on a circle of glven radius. This situation can occur only
when each filament is directed by 1ts own vane. Figure 154 gives
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a schematic representation of this filamentary flow in one of the
between-vanes passages.

2. The efficiency of the pump is unity (n = 1), i.e., there
are no energy losses of any form in the pump and, consequently,
all of the power used to turn the impeller is transmitted to the
fluid. Such operation of the pump is possible only when an ideal
fluid is being transferred, when there are no clearances in the
pump, and in the absence of mechanical friction in the packings
and bearings. :

Thus, we have substantially idealized the working process of
the centrifugal pump to facilitate theoretical investigation of
its operation. We shall call this pump, for which z = @« andne 1,
the ideal centrifugal pump. After examining the theory of the
ideal pump, we shall, of course, pass to real pumps.

Let us write two equations: the equation of powers and the
equation of moments. The first equation signifies that the power
applied to the impeller shaft i1s equal to the energy acquired by
the per-second flow of fluid in the pump, 1.e.,

Mo=QvH,., (12.5)

where M 1s the torque at the pump shaft, w 1s the angular velocity
of the impeller, and Htm is the head developed by the ideal pump,

or the specific fluid-energy increment in the pump (the two sub-
scripts t and = correspond to the above two assumptions).

The sense of the second equation consists in the following:
the torque at the pump shaft is equal to the per-second angular-
momentum increment of the fluid in the impeller. Denoting by
r, the radius of the cylindrical surface on which the entry edges
of the blades lie and by r, the radius of the impeller outer cir-
cle, we have

M=.Q..‘_V(v?r,cos g — 17y COS ay), (12.6)
[ ]

From the resulting equations (12.5) and (12.6), we find the
head developed by the ideal pump:

How =-%(v,r,cosu,—-v,r,cosa,). (12.7)

This equation 1s fundamental not only for centrifugal pumps,
but also for all other bladed machines - fans, superchargers, and
hydraulic turbines. In the latter case, we have a decrease rather
than an increase in the angular momentum of the fluid as 1t passes
through the impeller, i.e., energy 1is being taken from the fluid,
8o that the terms in parentheses must be written with the opposite
signs. Equation (12.,7) was derived by L. Euler and bears his
name.
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Attention should be drawn to the fact that the head devel-
oped by the ideal centrifugal pump and measured as the column of
fluld being transferred does not depend on the kind of fluid,
i.e., on its specific weight.

Usually, the fluid 1s not pretwilsted before arriving at the
impeller,! but 1is moving radially when 1t enters the between-vanes
passages. This means that the vector v, is radial and that the
angle a, = 90°. Consequently, the second term in (12.7) vanishes
and the equation assumes the form

H. o= 20, cOs ay =228 8
e T (12.8)

where u, = wr, 1s the circumferential velocity at the exit from
the impeller and Vau is the projection of the absolute veloclty

at exit from the impeller onto the direction of the circumferen-
tial velocity, i.e., the tangential velocity component v,.

Formula (12.8) indicates that to obtaln large heads with a
centrifugal pump, it 1s necessary to have, firstly, a high cir-
cumferential impeller speed and, secondly, a large enough value
of vector Vour i.e., the impeller must impart sufficient twist to

the fluld flow. The first requirement is met by adjustment of
impeller rpm and diameter, and the second by providing an ade-
quate number of vanes of the proper size and shape.

§54. CHARACTERISTIC OF THE IDEAL PUMP. PUMP REACTION RATIO

Equation (12.8) 1s inconvenlent for use in calculatlons,
since 1t does not contain the flow rate Q. We shall therefore
transform this equation in such a way that the head Htw‘is ex-

pressed as a function of flow rate Q and impeller dimenslons.

We have from the veloclty triangle at the exit from the im-
peller (Fig. 155)

Uz =tz v Clg i, (12.9)
where Vaip is the projection of the absolute exit velocity onto

the radius, i.e., the radial component of vector v,.

The fiow of fluld through the impeller can be expressed by
the radial component Vor and the dimensions of the wheel in the
following manner:

Q=2xrabsiu, (12.10)

where b, is the width of the slot at the exit from the wheel (see
Fig. 154).

TSee page 290 for footnote.
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Fig. 155. Velocity Fig. 156. Characteristics
triangle at exit from of 1deal centrifugal pumps.
impeller.
From this,
Vgp =~ o Q h
2nrk)

Substituting thils expression into (12.9),

vy =t =t (12.11)

sirpby

We now substitute our expression (12.11) for the tangentilal
component Vou in (12.8); the result is another form of the funda-

mental ideal-pump equation:

=2, . Qelgk
Hee z("’ zw,)' (12.12)

This equation enables us to construct the characteristic of
the ideal centrifugal pump, 1.e., a curve of the head developed
by the pump as a function of flow rate at constant wheel rpm. As
we see from (12.12), the characteristic of this pump 1s a straight
line. However, its slope depends on the vane angle B8,. Here we
must distinguish three cases:

1) angle B, < 90°, 1In this case, cot B, 1s positive and the
head Htm diminishes with increasing flow rate;
2) the angle B, = 90°, cot B, = 0, the head Htm does not de-

pend on flow rate, and equals H ., = u3/g;

3) the angle B, > 90°, cot B, 1s negative, and head Ht°° in-
creases wlth increasing flow rate.

These three cases of the ideal centrifugal pump characteris-
tic are shown in Fig. 156. Diagrams of the corresponding vanes
and the veloclty parallelograms are given in Fig. 157, a, b, and
¢, for the same u, and Vop:

Consequently, the bent-forward vane, 1.e., one with B, > 90°,
gives the best results as far as head development is concerned. .
However, practice has shown that this produces low efficienciles. »
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The ber’.-backward vane, i.e., one with B, < 90°, is more advan-
tageous and therefore used most often; in most cases, this angle
is made approximately equal to 30°. Radlal vanes (B, = 90°) are
also used, but this involves a certaln loss of efficiency and 1is
dictated by other considerations (btulk, strength).

To understand why the efficlency of the pump falls off with
increasing angle B,, it is necessary to examine the components of
kead Htw and how their proportions change with changing B..

The head Htw’ or, in other words, the increment in the total

specific energy of the fluid in the impeller, is composed of the
specific pressure-energy increment and the specific klnetic energy
inerement, 1i.e.,

. 2_ .2
Hoo=-Pr=fL g 70 (12.13)
¥ %
or, in other terms,
Hyo=H,+H, ' (12.13")

Expressing the velocities v; and v, in terms of their radlal
and tangential components, we have

R S S . S S
U U= Ty }- Ty~ ™ Ui

Assuming approximately equal impeller entrance and exlt areas,
we can conslder that Vip = Vape Moreover, as we indicated above,

the flow 1is normally not twlsted before entrance into the impeller,
so that Vi = 0. Consequently, we have instead of the above

vy vl =,

h'*‘ PI i
i} o)

Fig. 157. Vane shapes and velocity
parallelograms.

Applying this expression, we use (12.13) to find the pump
reaction ratio, 1.e., to determine the ratio of the head acqulred
by the fluid owing to the pressure increment to the total head:



With (12.8), we rewrite this last expression in the form

H,

- =1 (12.14)

2“3'

L O

from which, after substituting Vou by Formula (12.9), we obtain
finally

H, _ 1 [
7’::_7(1+ umﬂz)‘ (12.15)

We see from this expression that the larger vzr/u2 and the
smaller the angle B,, the greater will be the part of head Htm

that 1s created by the pressure increment, l.e., the greater the
pump reaction. With increasing B,, on the other hand, the frac-
tion of head Htou developed in the form of the kinetic-energy in-

crement Lecomes larger. But this means higher fluid exit veloci-
tles from the impeller, and this, 1n turn, results in larger
energy losses and lower pump efficiencies. This 1s why there 1s
no advantage in using vanes with large values of the angle B,,
i.e., forward-bent vanes.

For a radial vane (B, = 90°), as we see from (12.15), the
reaction ratio 1s %, and with B, < 90°, it 1s larger than ¥,
but smaller than unlty.

The change 1n the shape of the veloclty parallelograms and
the 1ncrease 1n absolute exit veloclty v, with increasing angle
B, are clearly seen in Flg. 157.

§55. TRANSITION TO FINITE NUMBER OF VANES

Up to this point, we have been discussing the operation of
the ideal centrifugal pump, i.e., a pump with an infinite number
of vanes and unit efficiency. The physical significance of these
assumptions was analyzed above (see §54),

Fig. 158. Flow in passage between vanes.

To make a closer approach to the working process of the real
pump, let us now begin by dropplng the first of our assumptlons,
leaving the second in force, i.e., let us pass to a pump with a
finite number of vanes.
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In practice, there are normally from six to twelve vanes.
In this case, the relative flow in the between-vanes passages
of the impeller is no longer filamentary, as we assumed earlier,
and the velocity distribution 1s nonuniform. On the leading sur-
faces of the vanes, which are marked by plus signs (Fig. l5ga),
the pressure 1s elevated and the veloclty lowered; as a result,
the distribution of velocities in the between-vanes passage 1s
approximately as indicated on the same figure.

Here the velocity distribution can be regarded as the sum
of two flows: a flow with uniform veloeclty distribution, as for
z = » (Fig. 158b), and a rotational motion in the passage in the
direction opposite to the rotation of the impeller (Fig. 158c).
The latter occurs in its pure form at zero flow rate through the
impeller (Q = 0).

Because of the nonuniform distribution of both the relative
and absolute velocities 1in the between-vanes passages when the
number of vanes is finite, 1t is necessary to introduce the no-
tion of average velocity on a circle of given radius. Of great-
est interest to us 1s the average tangential component v;u of the

absolute exlt velocity from the impeller, which determines the
head developed by the pump. With a finite number of vanes, this
component 1s found to be smaller than for an infinite number,
since an impeller with fewer vanes does not twist the flow as
strongly. In the absence of vanes (z = 0), there will be no twist
elther, 1.e., v;u = 0, and the (ideal) fluld will issue radially

from the impeller,

The decrease 1in the velocity Yoy OP

transition to a finite number * vanes
can also be explained by the secondary
rotational motion referred to above. At
the outer circumference of the impeller
(see Fig. 158c), this relative motion
gives rise to an additional absolute
velocity szu, which 1s opposed to v,

B ' and, consequently, subtracts from the

Fig. 159. Change in latter.
shape of velocity tri-
angle on transition to
finite number of
blades,

u

As a result, the shape of the velo=-
clty triangle at the exit from the im-
peller changes. In Fig, 159, the solid
lines indicate the velocity vectors for
an infinite number of blades, and the
dashed lines the same vectors for a
finite number. The construction was made for identical u, and
Vops i.e., for identical rpm and equel flow rates. The velocity

symbols for the finite number of vanes are primed.

The decreasé in the tangential component Y,y on transition
to the flnite number of vanes results in a decrease in the head
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developed by the pump. Let us denote by th the theoretical head

with a finite number of vanes. This 1s the head that the pump
would develop in the absence of head losses inside 1t; it is also
known as the indicator head. On the basls of Formula (12.8), we
have

. -
H, =22 (12.16)
. [ 4
We shall call the ratio of th to Htm the influence coeffi-
clent of the number of vanes and denote 1t by u; then

,
Ve Yy

,.-_-%’v_'=l’;r. : (12.17)

whence the head of interest to us equals

H, =M= '—; (12.18)

The problem i1s now to find a way to determine the coefficient
¥ numerically. Obviously, the coefficient u must be determined
primarily by the number of vanes, although it 1s also influenced
by the length of the vane, which depends on the ratlo r,/r, and
the pitch of the vane, 1.e., the angle 8,.

Certain theoretical investigations [24] have shown that the
coefflcient u does not depend on pump operating mode, 1.e., on
Q, Hnas’ or n, but 1s determined entirely by the geometry of the

impeller and is quite constant for a given impeller.

Without going into the theory of how the number of impeller
vanes influences head, we cite only the ultimate results of this
theory in the form of the Pfleiderer working formula for u:

(12.19)

where
¢==(0,55~0,.3) -+ 0,6 sin fi,.

According to the investigations of Prof. P.K. Kazandzhan,
Y = n/3 for B, = 90°,

By way of example, we present values of the coefficlent
for B, = 30° and r,/r, = 0.5 (Table 6}.

TABLE 6
z 4 6 | s 10 12 16 -4
¢ 0,624 | 0,714 | 0,768 | 0,806 | 0,831 ] 0,870 | 0.0u3
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Thus, p - 1 as z + o=,

Since the relation between H , and Htw remains constant in a
glven pump, the theoretical characteristic of a pump with a finite
number of vanes, like the characteristic of the ideal pump at
constant rpm (n = const), is a straight line. For B, = 90°, it
runs parallel to the ideal-pump characteristic, and with B, < 90°
it intersects the latter at the axis of abscilssas, since th = 0

and Htw = 0 at a glven flow rate
— 2nrybouy

- etghy
This follows from Formulas (12.12) and (12.18).

§56. CONSIDERATION OF HYDRAULIC LOSSES IN THE PUMP. CONSTRUCTION
OF DESIGN CHARACTERISTIC
We stated above that th is the head that would be developed
in the absence of head losses inside the pump. The actual head

Hnas (see §53) 1s smaller than theoretical by the total head loss

in the pump, 1i.e.,
Hue=H, 1= Fhes (12.20)

where Zhnas 1s the total head loss in the pump (entry section of
pump, impeller, and scroll chamber).
The ratio of the true to the theoretical head for a finite

number of vanes (to the Indicator head) is known as the hydraulic
efficlency and denoted by ng. Thus, we have .

e M Bk (12.21)

W Hes Hye

The hydraulic efficiency of a pump is always greater than
its total efflciency, since 1t takes account of only one form of
energy loss in the pump — the hydraulic losses.

It follows from (12.18) and (12.21) that

Hyer i s ynll, (12.21")
where Htw is given by Formulas (12.7) and (12.12).

It is convenlent to regard the hydraulic losses thas in the

pump as the sum of the following two components:

1. Ordinary hydraulic losses, 1.e., head losses to friction
and to some extent to eddyIng inside the pump. Since the fluid-
flow regime in a centrifugal pump is normally turbulent, this
form of head loss increases approximately in proportion to the

square of flow rate and can be expressed by the formula
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hy=hQ2 (12.22)

where k, 1s a constant that depends on the hydraulic efficiency
and dimensions of the pump.

2. Eddying losses as the fluld enters the impeller. If the
relative velocity of the fluld at its entrance into the between-
vanes passages (w,) is tangent to the vane, this means that the
fluid enters the lmpeller smoothly, without separation or eddy-
ing. Here the eddying losses are zero. But this is possible
only at a definite design or normal flow rate Q, and the corre-
sponding radial entry velocity <V1r)° (see Fig. 160).

! ) If, however, the actual flow-
rate Q 1s greater or smaller than
the design flow rate Q,, and the
radlal entry velocity Vip is higher

or lower than (v, ),, the relative

veloclty w forms a certain angle

Yy with the tangent to the vane and

the fluld flows over the vane at

a positive or negative attack angle.

This results in flow separation and

eddying. Thus, head (energy) is

lost to eddylng. The velocity

. parallelograms corresponding to
these nondesign modes and constant

Ei%égiggé Zglggtggnggrii;o clrcumferential velocity are indi-

impeller cated by the dashed lines in Fig.

' 160; one of them corresponds to the

inequality Q@ > Q,, and the other to

Q < Q. ,

The head loss to eddying may be assumed proportional to the
square of the difference between the actual flow rate and the
flow rate at which this loss vanishes, i.e.,

hy=Fky(Q— Qo)*. (12.23)

The head losses to eddying at entry into the scroll pipe are
of the same nature as those at entry into the impeller, have their
minimum values at about the sume flow rate Q,, and are included
in h,.

The total head loss in the pump equals the sum of the above
two losses, i.e.,

Nhae=Ny-|- by, (12.24)

We proceed as follows to obtain a clearly constructed pump
design characteristic for n = const.

In H, Q-coordinates, we draw the theoretical characteristics
of the pump for z = « and a finite number of vanes z in the form
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of two inclined stralght lines for n = const (Fig. 161). Then,
below the axis of absclssas, we construct the curves of the two
components h, and h, of the total head loss in the pump. Adding
the ordinates of these two curves, we obtain the curve of Ihnas

as a function of flow rate. Then, in accordance with Formula
(12.20), we subtract Jh  from H_, and obtaln a curve of H g =

= £(Q), i.e., the actual characteristic of the pump at constant
speed.

The H = f(Q) curve shown in Fig.

¥ ¥ ) . nas
--~§1:_--~ 161 is typical for a centrifugal pump.
Hyy : The maximum value of the head H  _ 1s

usually obtained not at zero flow and

H
- not at Q@ = Q,, but at a certain inter-
Kae mediate value of Q.
. Pump characteristics obtained by
Q this working method are not highly ac-
= TN 4 curate because of the difficulty of

GO evaluating the coefficlents k, and k, in
Ty (12.22) and (12.23). Experimental pump
characteristics are therefore preferred,
i.e., the curves are obtained by testing
the pump.

)

Fig. 161. Construc-
tion of design char-

acteristics. For this purpose, some sort of shut-

off-and-regulating device — a cock, valve,
or spool — 1s inserted at the exit from
the pump, which 1s operated at constant
rpm. During the test, the aperture of this device is progres-
sively varied, for example, reduced from wide open, i.e., the
111e 1s throttled. During thils process, the flow rate and the
nead developed by the pump are measured while holding rpm con-
stant. With the valve wide open, the results are the maximum
flow rate and minimum head, which %s equal to the head lost in
the line (point C in Fig. 162). As the valve is closed, flow
rate decreases, but the head rises to its maximum (point B). As
the flow rate is cut further, the heud rises slightly and at Q =
= 0 (polnt A), i.e., with the valve fully closed, the head usually
has a value somewhat higher than the mean but smaller than the
maximum.

Thus, reducing the pump delivery to zerc by closing the line
at constant rpm does not cause a head increase that is dangerous
from the standpoint of pump and line strength. For this reason,
centrifugal pumps, unlike displacement pumps, do not require
safety valves.

§57. PUMP EFFICIENCY
The energy losses in the pump, as indicated by the total ef-

ficiency n, are broken down into three types:
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p  nmconst

Fig. 162, Displacement
of operating point on Fig. 163. Leakage in cen-
throttling. trifugal pump.

1. Hydraulic losses, which were considered in the previous
?ection and are evaluated by the pump's hydraulic efficlency
12.21):

- ”tt_zhme __ Hyac
Hie Hy,

2, Velume losses. These energy losses result from the pre-
sence of backflow of fluid in the pump through the gap (seal)
between the rotating impeller and the stationary casing of the
pump. The impeller delivers fluid from the intake line into the
delivery 1line, but owing to the pressure gradient that 1t creates,
some part of this fluld returns through the clearance (Fig. 163).

In §53, we conventionally denoted by Q the flow rafe into
the line, i.e., the pump's useful delivery. Then the flow rate
through the impeller will be

Q=Qtq, (12.25)

where g 1s the flow rate through the clearance, which is referred
to as leakage.

The volume energy losses are evaluated by the so-called volu-
metric efficiency of the pump, which equals

0 _ 0 12.26
w Y ( )

More detailed information on the numerical values of the
volume losses and the coefficient n, will be given later, in §60.

3. Mechanical losses. These include losses of energy to
mechanical friction in the packings and bearings of the pump and
to friction between the outer surface of the impeller (impeller
disk) against the fluid. If the power lost to this friction is
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denoted by Nm and the total power drawn

by the pump is N;, the mechanlcal ef-

ficlency of the pump will be
eNo—=Nu

- = (12.27)

(See §56 for the method used to find Nm).

e 164, Gurves of - The numerator of this ratio 1s the
» g so-called hydraulic or indlcator power
tions of flow rate. and can be expressed by the formula

Ny=No— N, == (Q+9) vH,. (12.28)

This 1is the power that the pump would develop in the absence
of hydraulic and volume energy losses inside it.

We can now express the over-all pump efficlency as the ratio
of developed power to the power drawn by the pump:

= QM
1= "35%

and multiply the numerator of this ratio by N and its denominator
by the same quantity expressed by Formula (12.28):

OV TNy
BNy (Q--g)itre

Cancelling and transposing multipllers,

e _Q Ne
1 i o DRININ (12.29)

i.e., the over-all efficiency of the pump equals the product of
its hydraulic, volumetric, and mechanical efficiencies.

The over-all efficiencies of centrifugal pumps vary from 0.7
to 0.85; small auxiliary pumps may have lower efficiencies.

Figure 164 presents curves that indicate the manrer 1in which
the over-all and hydraulic efficliencies of the pump vary, and also
shows a constant-rpm characterlstic.

§58.- SIMILARITY FORMULAS

Let us consider similar operating modes of centrifugal pumps
that are geometrically similar to one another. As we noted
earlier (%22), geometrical, kinematic, and dynamic similarity are
required to ensure hydrodynamic similarity. For centrifugal pumps,
kinematic similarity means similarity of the veloclty triangles
constructed for arbitrary corresponding points of the impellers.
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To ensure dynamic similarity, the Reynolds numbers for the flows
in the particular pumps must be equal.

In similar operating regimes of centrifugal pump3, propor-
tionality 1s observed between the useful heads and the head losses
in the pumps, as well as between the useful deliveries and leak-
age rates; we may therefore assume that if hydrodynamic similar-
ity 1s observed in the gumps, their hydraulic and volumetric effi-
cleicies will be equal. Mechanical efficilency changes slightly
on transition from one pump to another in spite of similarity,
but we can assume without incurring any major error that the over-
all efficiency remains constant, as do ns and n,.

Let us consider similar operating modes of two geometrically
similar centrifugal pumps. Quantities pertaining to the first
pump will be denoted by the additional subscript I, and those
pertaining to the second by II (Fig. 165).

Fig. 165. Illustrating derivation
of sililarity formulas for centrifu-
gal pumps.

Remembering that the circumferential velocities of the im-
pellers are proportional to the products of the speed n by the
diameters D of these impellers, the condition of kinematic
similarity at the impeller exits can be written in the form of
the following proportions:

(".’.!)L__ ("2)| = ("2-). (Vzr)l — (W:)l . (nn).
(CFY M (v (vau)y;. (v2r)y; . (v, - ("")Tl- - (12.30 )

'Since, in accordance with (12.10),
Q-—'—":IDU,,b,,
and we have from geometrical similarity

o), _
'(D)n (82)y, ’

we can write on the basis of (12.30)

T8ee page 290 for footnote.
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Q. (0

0, Y, (12.31)

This means that the flow rates in similar pumps operating in
similar modes are related as the speeds and the cubes of the diam-
eters.

The theoretical heads for infinite numbers of vanes are pro-
portional, according to (12.8), to the product of two velocities:
circumferential and tangential; the vane-number influence coeffi-
clent M is the same for the geometrically similar impellers, so
that

D
(”' l)“ ("2".‘:‘)" :

From this, applying the proportions (12.30), we obtain

Ly 0 ,
(Hs2)y, 20y, : (12.32')

The actual head developed by the pump equals
Hye=ndly =1

(this head H will henceforth be written without the subscript nas).
But since (ns)I = ("g)II’ we can write instead of (12.32')

H (n20%)
Ll

”".a w5, (12.32)
i.e., the actual heads developed by the similar pumps in similar
operating modes are related as the squares of the products of
speed by impeller diameter.

Proceeding from the expression for the power developed by
the pump [Formula (12.2)] and using our rew formulas (12.31) and
(12.32), we can write the relation between the powers developed
by similar pumps in similar operating modes:

N Q. Hy n’D’y
ol TS, {1 S .| N 12.
Ny o Qv WO vy ( 33)

If we consider similar operating modes of a single pump at
different speeds n; and n,, the above formulas (12.31), (12.32),
and (12.33) are simplified, since they have the same D and y, and
assume the form (the subscripts 1 and 2 denote the different
speeds):

Q. __m, (12.34) -
@ n'

Hy_(mY, (12.35)

(e

'ﬂ=(ﬂ)’_ (12.36)

Ng n;
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Formulas (12.34) and (12,.35) are used to convert the pump
characteristics from one speed to another. If a curve of H as a
function of Q for n, = const is given, the analogous curve for
n, = const can be obtained by converting the abscissas of points
of the first curve (flow rates) in proportion to the ratio between
the speeds and the ordinates (headsg in proportion to the square
of this ratio (Fig. 166).

Thus, we can convert and replot the
pump characteristic for any other speed:
ns, N3, n,, and so forth, and obtain a
whole series of characteristics of the
same pump for different n.

L) On these curves, points connected
AT W with one another by the coordinate rela-
e & tionships (12.34) and (12.35), such as
points A,, A,, A,;, A,, etc., represent
Fgg. 166. Conversion operating regimes that are similar to

of pump characteris- one another. Another series of points
tic to a different B,, B, By, etc., represents a second
speed. series of similar regimes; points C,, C,,
C,, etc. represent a third series, etc.

It is easy to find the equation of the curves on which
similar (in the sense of operating regime) points lie. Accord-
ing tc (12.34) and (12.35), we can write for a series of points

M, H. My
= = const,.
?ﬁ. Q A

From the above, we have for the series of mutually similar
regimes

‘H=const, Q.
For another series
H =consty Q2,

Consequently, the points representing similar regimes lie on
second-degree parabolas emanating from the coordinate origin in
H, Q-coordinates. They are known as similar-regime parabolas.

In Fig. 166, they are indicated by dashed lines.’®

On the basis of what we said above concerning the hydraulic
and volumetric efficiencies in similar operating modes, it can be
stated that the similar-regime parabolas are at the same time
curves of constant n_ and n,. It can be assumed in approximation

that the over-all efficlency also remains constant along a similar-
regime parabola.

¥See page 290 for footnote.
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The following question arises with regard to regime simi-
larity in centrifugal-pump operation: when is similarity pre-
served and when is it violated on a change in the rpm of the
centrifugal pump?

The operating regime of the pump is
always determined by the point of inter-
section of the pump and pipeline char-
acteristics, so that for a given pipeline
characteristic (a constant valve setting),
a change in pump speed causes a displace-
ment of the operating point along the pipe-
line characteristic. If the pipeline
characteristic is a second-degree parabola
emanating from the coordinate origin, this
Pig. 167. Operating characteristic coincides with one of the
points on violation similar-regime parabolas and, consequently,

of similarity. similarity will be preserved on a change
KEY: (a) pipeline in speed. Thus, for example, a closed
characteristic. pipeline with a turbulent flow regime has

a characteristic that emanates from the

origin and is nearly a second-degree par-
abola., It may therefore be assumed that a change in pump speed
will not disturb similarity of pump operating regimes in this
case,

If, however, fluid is being transferred through the pipeline
from a lower tank to a higher tank, i.e., if the level differ-
ence Az ¥ 0, the pipeline characteristic will take the form shown
in Fig. 167. A change in pump speed from n, to n,; will cause the
operating point to shift from A to B. But points A and B are on
different similar-regime parabolas, so that regime similarity
is violated. )

It follows from the above analysis that there are two pos-
sible ways of regulating a centrifugal pump: throttling as indi-
cated in §57 and changing pump speed. In the case of throttling,
the pipeline characteristic is changed and the operating point
is shifted along a given pump characteristic (see Fig. 152), and
when speed is changed, the pump characteristic changes and the
operating point moves along the pipeline characteristic (see Fig.
1

The second control method — varying speed — 1s more economi-
cal, since it permits us to maintain an approximately constant
pump efficiency (if the pipeline characteristic starts from the
origin). However, speed changing usually involves certain dif-
ficulties, since it requires additional equipment, and it is
therefore simpler to control the pump by throttling. With
throttling, the pump efficiency varies along the curve shown in
‘Fig. 164 and, consequently, a substantial decrease in delivery
is accompanied by a substantial decline in pump efficiency.
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§59. THE SPEED COEFPICIENT AND ITS RELATION TO IMPELLER SHAPE

Let us use the similarity formulas obtained above to derive
a oriterion that is of great importance in the calculation and

design of centrifugal pumps and is known as the speed coefficient.
We can write on the basis of Formula (12.31)

A=) )"

Substituting this expression into (12.32), we obtain

=) @)"

Grouping factors and raising to the 3/4 power,
" V3 V3
: - o - t, 2.
-IT,wL' —l-l'-',“-r" cons . (12.37)

This expression is the same not only for two similar pumps I
and II, but also for a whole series of mutually similar pumps
operating in similar regimes.

Suppose that in this series of similar pumps we have one
standard pump that develops a head He = 1 m and a power Ne = 1 hp
at y = 1000 kg/m’.

The delivery of the standard pump is easily found from the
power formula (12.2):

=N, 51 3 /g e
Q oy 11000 0,075 m3/5=75 1/s.

Let us now connect the parameters of the standard pump (Qe.
Hy» ne) with those of any other pump in the series (Q, H, n) for
similar operating regimes, i.e., let us apply (12.37):

MmV0Q, _nVQ
”:,1 Hl‘ M

Substituting the values of Qe and He’ we determine the rpm
of the standard pump from the above equation:

1m0 _ 565010

n = T ——
= Yo0.078 #3 A

This number is conventionally denoted by ng and known as the

speed coefficient or the specific rpm of the centrifugal pump.
Thus, we have finally
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Ry 3,55 —”-'-,i:-?— R ( 12. 38)

As follows from its derivation, the sense of ng is as fol-

lows: it is the speed of a standard pump that is similar to the
given pump and develops a head H° = 1 mand a flow rate Qe ]

» 0.075 m’/s in similar operation. It must be remembered that
the hydraulic and volumetric efficiencies of these pumps are
assumed to be the same,.

The power developed by the standard pump will be 1 hp, but
with the condition that y = 1000 kgf/m’. The power will be
smaller for lighter fluids and greater for heavier ones. Thus
1t 1s better not to introduce the power value from the standpoint
of generality in defining ng -

The impeller diameter of the standard pump is easy to deter-
mine. According to (12.32), we can write

Hy M0
H wmn'

whence

D=2 (12.39)

In using Formulas (12.38) and (12.39), it must be remembered
that H 1s measured in meters, Q in m*/s, and n in rev/min.

Under certain conditions, the speed coefficient or specific
rpm ng characterises the abllity of the pump to develop head

("head capacity") and feed fluid ("delivery caPacity"). The
larger the coefficlent n_, the smaller is the "head capacity"

(for given Q and n) and the greater the "delivery capacity" of
the pump {for given H and n).

The coefficient ng is closely related to the shape of the
pump's impeller. :

Pumps with small ng values have small impeller width ratios

(bz/Dz), but large D,/D,, i.e., a longer vane than is required
to produce a large head. Fluid flows through such an impeller
in the plane perpendicular to its axis of rotation.

With increasing ng, the ratio D,/D, (and D,/D,) diminishes,

i.e., the vanes become shorter and the relative width b;/D,; of
the impeller increases. In addition, the flow through the impel-
ler leaves the plane of rotation and becomes increasingly three-
dimensional. At the 1imit, for the maximum values of ng, we ob-

tain flow along the axis of rotation and the axial-flow impellers
that correspond to this case.
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As n, increases from 40 to 200, the vane angle 8, decreases
from about 35 to about 15°,

Centrifugal pumps and other similar vane pumps are classi-
fied in the following varieties on the busis of the speed coeffi-
clent ng:

1) slow-running: &s,<80, %'-'-2.2-0-3.5;

2) normal: &80+ 180, “-;Ll-z.nm;

3) fast-running: -.-lso-o-aoo.g"-l.an.a;

4) diagonal or screw: a,=300--600, %-.-I.S-c-l.lz

5) axial or screw-impeller: s, 600 1200, -g.’-l.

L.

¥, I,

Fig. 168. variations on the impelier.

Typical wheel designs corresponding to these pump varieties
are represented in Fig. 168,

The first three pump varieties — slow, normal, and fast -
are classed as centrifugal, but the last two - diagonal and
screw-impeller — do not belong to this class. However, there
are no sharp boundaries between these pump varieties; with in-
creasing ng, we have a gradual transition from the purely cen-

trifugal wheel type to the diagonal and purely axlal types.
§60. RELATION BETWEEN SPEED COEFFICIENT AND PUMP EFFICIENCY

Transition from one vane-pump variety to another, 1.e.,, a
change in the speed coefficient Ngs cannot but affect the effi-

ciency of the pump, However, this influence of the coefficient
ng will be different for the hydraulie, volumetric, and mechani-

cal efficiencies.

Research has shown [17] that hydraulic efficlency changes
very slightly with a change in ng and depends to a much greater
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degree on the shape perfection of the flow section of the pump,
its roughness, and the dimensions of the pump. As for the volu-
metric and mechanical efficiencies, they change very substantially
as n, approaches its lower limit,

With decreasing speed cosfficient, the relative amount of
pover lost to friction between the lateral surfaces of the impel-~
ler (impeller disk) and the fluid inoreases substantially, i.e.,
the mechanical efficiency of the pump declines, and the amount
of the flow that circulates through clearances in the pump also
increases, i.e., the relative amount of )eakage rises and volu-
metric efficiency falls off.

Thus, operation of a centrifugal pump with a small n  en-

tails a loss of over-all pump efficiency; this loss will be
greater the smaller n,. This fact determines the lower limit for

ng» which is dictated by economy considerations. The latter de-
pend in turn on the specifics of the particular aircraft on which
the pump is to be installed. '

To permit Judgments as to the minimum acceptable speed coef-
ficient n, and to facilitate numerical evaluation of pump effi-
ciency for various Ng» we present working formulas for the rela-
tive energy losses in the pump and the corresponding efficiencies
as functions of ng.

Let us first examine the relative amount of flow that cir-
culates through the packing clearance and find an expression for
pump volumetric efficiency.

Flow through the packing clearance (1eakage) can be expressed
by the usual outflow formula:

= Ps "5"””-

where S 18 the area of the gap, which equals (for the case of a
one-sided packing)

S =Dyl

Dup is the packing dlameter; § 1s the clearance, which we shall
assume proportional to the diameter Dup’ i.e.,

P

u is the flow rate coefficient for outflow through the gap, which
equals u = 0.4-0.5 for ordinary packings and 0.3 for speclal
labyrinth packings; Hup 1s the head under which fluid flows out

through the gap.
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The quantity Hup can be found as the difference between the
plegometric heights developed by the impeller (i.e., the head Hr

for a finite number of vanes with consideration of hydraulic
losses) minus the pressure drop in the space between the impeller
and the casing due to rotation of the fluid. 8Since one of the
walls of this space 1s stationary and the other moving, it is
usually assumed that the fluid is in rotation at a specd equal

to half the impeller speed.

Using Formula (3.3) for the pressure in the fluid at rela-
tive rest, we have with consideration of the above

ot
My w prclly — 5;-([); .— D;.).

The head Hu can be assumed approximately proportional to the
head developed by the pump and expressed as follows:

Hyam by i,

where kup = 0.6-0.85,

The packing diameter Dup is approximately equal to the entry

diameter D,, which, as will be shown in the next section, should
be set equal for design purposes to

‘h=‘bi/,%?.

where the coefficient k, = 4.2-4.5,

Substituting the above values into the equation for leakage,
we find the ratjio of this leakage to the useful flow rate as a
function of the speed coefficient ng:

¢ 0L VIerH Yok H'P
Q - =Q = - ot

Using Expression (12.38) for the speed coefficlent, we ob-
tain

1. 1, 3887 A
o Al (u;’;g"')ﬁl:l Al ":,J n:,;-

where

A RV Teh 3,657
- .

For m = 300, u = 0.5, Kup = 0,8, and k, = 4.5, the constant A is

found to equal A = 1.0, A curve of the leakage ratio q/Q through
a one-way packing as a function of the speed coefficlent ng has
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been plotted in Fig. 169 for this value of A. The diagram clear-
ly shows the increase in the importance of leakage with decreas-
ing pump speed. Por two-way packing, A would be twice as large.

Pump volumetiic efficiency can be expressed in terms of the
speed coefficient by the following formula:

CIT ) “':‘g«'o (12.40)

Pigure 169 also shows a curve of the volumetric efficiency n.

Friction between the impeller disk and the fluid usually oc-
curs in turbulent flow, so that the tangential stress T, as in
the case of turbulent flow in pipes, can be regarded as propor-
tional to the product of fluid specific weight by the velocity
head. In this case, the latter must be expressed in terms of the
impeller's circumferential velocity, which varies in proportion
to radius; thus, we have .

u?
=€ "; .

where Ce is a dimensionless proportionality coefficient known as
the coefficient of friction.

The power lost to friction between the impeller disk and
the fluid can be computed by integrating the expression for the
elementary frictional moment multiplied by the impeller angular
velocity, i.e.,

b2

N;,uku-st.

where dS is an elementary area equal to
dS=2xrdy;

r is the radius in question and k 1s a coefficient that takes ac-
count of the fraction of total impelier disk area that is subject
to friction; usually, 1 < k < 2.

Substituting the earlier expression for T, remembering that

u = wr, and assuming, in first approximation, that the turbulent-
flow coefficlient of friction Cp is constant over the entire disk

area, we can perform integration in the form

D .
N,;' = Cyyed f,a dr e Coyo'D’

or

N, =Cyuy D2,
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where C is a constant that incorporates the numerical coeffi-
clents, k, Cp» and the other constants.

Research has shown that the constant C can be assumed equal
to C ® 1,2 * 10=* in the engineering system of units for approxi-
mate calculations in the case of highly finished surfases; the
power N" will then be obtained in horsepower.

Let us find the ratio of the friction power to the hydraulic
power of the pump (see §57):

N, Cu)ir
’-'!L an —"‘""— .
N, “ oy 18now

We express the impeller diameter D in terms of the sircum-
ferential velocity u, and the speed n and the circumferential
velocity in terms of head with the ald of the following relation-

ships:
2

N
""%o— and /- t.-;;'.
from which
Suy w0, /T
e - V‘. 211,
Substituting the previous expression into the basic equation

N, 60\ fag\w2 MV
= (0 -
N, ”(') ¢ 2 "™ gw

or, introducing the speed coefficient n, and using the expression
found above for n, in terms of ng:

”l

e (12.41)
N ;s I+-5
A
j.x;“q, ?llﬂ‘-
. ) arped 44 LT
BN, =
1) N -]
s {4 = i
l = N ij
. “r - [}
¥, C R B Oy
Fig. 169. Diagram of Fig. 170. Diagram of
n, and q/Q as functions n, and NER,/Ng as func-
of Mg tions of n,.
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803 (28, = =
where n-a&sﬂsc(“)-(h) w for k, = 1.2, we have n, 0.80, ¢
1.2 - 10~%, and B = 377.

The curve of Nér/Ng as a function of ng for the value found

for B and for A = 1.0 appears in Fig. 170, from which we see how
significantly the relative power losses due to friction between
the impeller disk and the fluid increase with decreasing ng.

To convert from Nér/Ng to pump mechanical efficlency, we

regard the latter conventionally as the product
'h"'l:.'l:.o
where né is the efficiency with consideration of power losses to

friction between the impeller disk and the fluid and therefore
equals
s N. 1,
N"*.A';P 14 .N_;p_ '
N

(12.42)

n; is the efficlency with consideration of the power lost to fric-
tion in the packings and bearings and equals

No No
In the last expression, Ngr is the power lost to frictlon in the

packings and bearings and N, is the total power drawn by the
pump, which equals the sum .

Now= Net Ny 4N,

Using the relation obtalned above for Nér/No as a function
of the coefficlent ng, we can plot a curve of né as a function of
ng for the above values of the constants A and B. The coeffi-
clent n; can be regarded as independent of ng and equal, for ex-
ample, to 0.95.

A curve showing the decrease in che coefficient né with de-
creasing ng also appears in Fig. 170.

It should be remembered that when the slots leading from the
space between the impeller and the ctationary walls to the scroll
chamber is reasonably dim:nsioned (of the order of 3% of the
wheel diameter on either side), some of the energy lost to fric-
tion between the impeller disk and the fluid can be recovered by
utilizing the kinetic energy of the fluid picked ur by the disk.
Thus, the actual mechanical efficiency may be somewhat higher
than the calculated figure.
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In using the above curves of q/Q, Nér/Ng, Ny, 8nd né'vs.
ng, it 1s necessary to remember that they are approximate. To

obtain more accurate values for these quantities, 1t 1is necessary
to recompute the constants A and B each time for the specific
data.

No analytical expression can be given for the sum of the
hydraulic losses in the pump or, consequently, for ng, since

this quantity depends on a whole series of factors whose influ-
ence has not yet been adequately studied. For high-head (slow-
running) impellers, the hydraulic efficiencies vary from 0.70 to
0.90, with the lower limit pertailning to small ng and small im-

peller dimensions, of the order of D = 100-200 mm, while the
upper limit corresponds to n, = 90-120 and D = 500-600 mm.
§61. CALCULATIONS FOR PUMP SCROLL CHAMBER

The scroll chamber of a centrifugal pump 1s a unit that re-
ceives the fluid thrown off by the impeller and directs it into
the pressure 1line.

Flg. 171. Diagram of scroll chamber.

Calculation and design of the chamber are based on the as-
sumption that the circumferential velocity component in the spiral
varies in inverse proportion to radius (law of velocity distribu-
tion over cross sectlon of vortex, or law of conservation of
angular momentum), so that with a finite number of vanes we have

Ld r
Ya = onr ’

where ', the so-called circulation through the closed contour in-

cluding the wheel, 1s a constant for a given chamber and a given
pump operating mode.
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With increasing radius, the velocity vy diminishes, and the

pressure rises accordingly. Consequently, a process of conver-
sion of fluid kinetic energy into pressure energy begins with
flow in the scroll and continues in the diffuser that 1is usually
connected to the scroll (Fig. 171).

The circulation I can easily be found from the head H devel-
oped by the pump and from “g' In fact, since according to For-

mula (12.16)

* "
'EPU'.’u___ © ’
Hyy==7=7 T3,

we have on the basis of the above

I'=2aru;, = 2 Sif_f. L

In an arbitrary section of the scroll, the flow rate can be
considered to increase in proportion to the inclination angle a
of the section, reckoned from the initial section of the scroll
(which 1s also 1ts final section), 1.e.,

Q'=§ Qv

where Q is the pump's delivery into the line.

We have for the elementary flow rate through an elementary
area of dimensions b x dr and taken at radius r in an arbitrary
cross section of the scroll

dQ.=bvdr =-L— bar,

2nr
from which

1R

=% 0.-L (.2
o 360Q 2x S r ar,

r=r,

where r, = (1.03-1.05)r, is the radius of the cylindrical surface
enclosing the wheel and tangent to the cross sections through the
scroll chamber.

For the simplest case, in which the scroll has a rectangular
eross section of constant width (b = const), we obtain from the
above

g’ ’:-‘ ’I l]\ -.R_ s ._pﬁl_l ]” ..R

360  21Q o oenQ 3’

Assigning a series of values from 0 to 360° to the angle a,
at, for example, 45° intervals, we obtain a series of R-values
ranging from r, to Rmax’ i.e., we obtain a trace of the scroll.
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For a scroll with a circular cross section of variable radius Py

b=2V*—(r —a)’

(2 is the distance from the center of the cross section to the
wheel axis) and, consequently,

a0

e=Lf YE=U=2F yrr (- V&= @)
g :

Substituting g% Q for Q and r, + p for a in this expression,

o
we obtain after solving for o

e=%+]/-§§5w (12.43)
where
k=L=21nII
Q enQ

This formula enables us to make a complete calculation of
the dimensions and outlines of a round-sectlon scroll chamber.
Numerical integration 1s necessary for arbitrary cross-sectional

shapes.

§62. CAVITATION CALCULATIONS FOR CENTRIFUGAL PUMPS (METHOD OF
S.S. RUDNEV)

Any centrifugal pump or any other type of pump will perform
normally only if the absolute pressure at its intake 1is not too
low. Otherwise, cavitation wlll arise in the intake section of
the pump or, more preclsely, where the fluid enters the between-
vanes spaces of the impeller, where the absolute pressure is low-

est (see §23).
Ni |

ol— .-

- "l"“ Fanase
Fig. 172. Diagram of pump- Fig. 173. Cavitation char-
testing apparatus. 1) test acteristic of pump.

pump; 2) flowmeter; 3)
choke; 4) vacuum pump.

When a pump 1is operated with cavitation, continuity of the
flow 1s disrupted by the release of vapor and dissolved gases;
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water hammer on condensation of vapor bubbles produces a charac-
teristic noise, and the delivery, head, and efficlency of the

pump decline. The severity of these phenomena increases with de-
creasing absolute pressure before the impeller intake, as is evi-
dent from the so-called cavitation characteristic of the centrifu-
gal pump. The latter i1s a diagram of the head, power, and effi-
clency of the pump as functions of the absolute fluid pressure be-
fore the impeller intake. Characteristics of this kind are usu-
ally obtained as a result of special tests in which the pump speed
and flow rate are held constant (by throttling with a valve or
spool); during the test, the absolute pressure before the impeller
intake 1is gradually lowered, for example, by evacuating air from
the tank.* Figure 172 shows a diagram of an apparatus for this
test. The pump head, power, and efficiency remain constant at
first (Fig. 173), and then, when the pressure has been lowered
substantially, the characteristic noise 1s heard and these quan-
tities drop off sharply owing to the onset and steady increase of
cavitation in the entry section of the pump.

An increase in the speed of the pump and the fluid flow rate
(delivery) increases velocitles and lowers absolute pressure at
the entrance onto the vanes of the pump and, consequently, con-
tributes to cavitation in the pump. It is therefore sometimes
necessary to limit pump flow rate and speed to prevent cavitation.

Below we examine the flow of fluid at the entry into the im-
peller, determine the entrance diameter of the impeller from
cavitation conditions, and derive a cavitatlon criterion by the
method of Prof. S.5. Rudnev.

Let the fluld's velocity be Vikh and the absolute pressure

Pykh directly before the entrance into the pump; then the fluld's
specific energy at the pump intake will equal
2
Hy =P Y
sx Y + % "

As the fluid advances onto the impeller vanes, there is a
further pressure drop proportional to the velocity head calcu-
lated from the relative entrance velocity, but cavitation will
not occur until the absolute pressure of the fluld exceeds its
saturation vapor pressure at the glven temperature.

Thus, the condition for prevention of cavitation in the pump
can be expressed by the following inequallty:

2 2 3

Pux Uy v b
—-— g ot B pat X
’!ll Y + 2I>"‘+23+ 2‘1

where v, is the absolute velocity at which the fluld enters onto
the vane, and 1s approximately equal to the veloclty v, of entry
into the impeller; w, is the relative velocity at which the fluild

"See page 290 for footnote.
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enters onto a vane; ht is the saturation vapor pressured divided
by v, 1.e.,

A= Bt
Y

A 1s a coefficient Ehat depends on vane shape and on the fluld-
flow conditions; l;% is the pressure decrease as the fluld moves

onto the vane.

The same inequality can be written
v

Hy—b > 42t

»x l>2‘+l2g.

The left side of the inequality represents the available
fluld specific energy at entry into the pump, which may, at the
limit, equal the right side. This equality will correspond to
the onset of cavitation, so that we shall call the difference

Hvkh - ht the critical difference if it is equal to the right
member, i.e.,
k | 2

Heox—hg) A
] lxy=2g+ %
Since normally w? = vi + u?, we have
l«’ ﬂ’ .
Hyy by o = (1 4 1) —- 4. & =~
Hax—bsp=(1 4 )2g 44 2

It is helpful to have (Hvkh - ht)kr as small as possible,

since the smaller (Hvkh - ht)kr’ the greater will be the pump's

stability as regards cavitatlon. As we see from the above, the
value of (Hvkh - ht)kr depends on the velocities v, and u,, which

depend, in turn, for given Q and n, on the diameter D,, which 1s
approximately equal to D, (see Fig. 154)., This prompts the ques-
tion as to how to select the entrance dlameter of the impeller in
order to guarantee the smallest value of (Hvkh - ht)kr' To find

the dimension D; that is optimal from the standpoint of cavita-
tion, we express the velocities v, and u; in terms of D, and in-
vestigate for the minimum. We have

1 1602 xDn?
Hyg = he)p == = oy leQ: AR
( O Dep % [(H ))“m:n o
Differentiating with respect to D, and equating the deriva-
tive to zero, we obtain
R R 16Q2 2o
D, Ulyx =gy === 4(1 - ) il + 2 e Dy =0,
whence
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Finally, we obtain the following expression for the optimum
diameter:

,o..,-.,l'/_g_:, (12.44)

where the coefficient k, varies in the range k, = 4,3-4.5 as a
function of A.

For practical calculations, it is recommended that the upper
14mit be taken to avoid overloading the pump.

Using this expression for the optimum diameter, we £ind the
minimum value of (Hvkh - ht)kr:

16Q? -
((Flax — Bdiplmin = ';‘— [0 +1) _“2&;— + A -Wn?],

or, after substitution, rearranging, and solving
" Q*at? (Qny*?

3
. 1 2
[(Haz — Bidp)mtn = 20 "“’;5 ;‘ %(1 +'x) T -y %

vwhere g 1s & coefficient that is fully determined by A; for A =
= 0,25, 8 * 0.02.

Tests run on pumps indicate that this value of the coeffi-
clent s can be used in practical calculations for impellers of
the conventional form. For speclal wheels, such as those with
increased width b,, the values of s decrease to 0.012-0.013 [18].

Thus, if the optimum inlet diameter D, is taken, the anti-
cavitation condition for the pump will be the inequallty

\2/8
Hum > 50— (12.45)

Thus, our coefficient s is a criterlon of cavitation in the
pump that enables us to carry out check calculations and calcula-
tions to determine the maximum allowable pump speed for given Q

and Hvkh or the lowest admissible absolute pressure at the pump
entrance.

The latter, as follows from the nomenclature adopted above
and the above inequality, is determined from the condition

"ll

‘ 2 0213 2
(. whn= h) (Hl‘— _2.-;—) >[S ﬂ’;g) _!- ll‘ - -é?] v
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The velocity head in the brackets is often neglected, since
this increases the cavitation reliability of the pump, and the
difference p vkh ~ Pt is referred to as the pressure cavitation

margin.

To find the maximum permissible pump speed, we solve (12.45)

for n:
...(7 )“(”u""l)“
llil .

After multiplying and dividing the right member of the equa-
tion by 103/* , we obtain Prof. S.S. Rudnev's formula as it 1is
most frequently encountered in the literature:

b fHy — R
"-u"—."ctp T/_Q" (—‘10_') ’

where c, . 1s a constant with the dimensions m®/* s=¥/2 and equals

(12.46)

Cop= 'f":lo)ll‘ :

Q is the delivery in m?/s, and Hvkh - ht is given in meters.

Introduction of the multiplier 103/* results from the fact
that the formula was originally intended for pumps working on
water with y = 1000 kgf/m*, so that the pressure could be ob-
tained in kgf/cm? by dividing the head Hoxn - by expressed in
meters by 10.

If we substitute the corresponding pressures Pukh and Py
divided by the fluid specific welght y for the heads Hvkh and ht’

Formula (12.46) can also be reduced to the form
’,.‘“ ___(Fn"PI )34.

where Q 1s expressed in m?/s, p in kgf/cm?, y in kgf/l, and Chp
has the same dimensions as in Formula (12.46).

This inhomogeneity in the dimensions of the quantities ap-
pearing in this last formula must be remembered and taken into
consideration when it 1s used.

The constant Crp for a given pump 1s known as its critical

cavitation coefficlent. This quantity and the dimensionless coef-
ficient s in Formula (12.45) characterize the cavitation proper-
ties of the pump, 1. e., the predisposition of the pump to cavita-
tion when the absolute pressure at its intake decreases. The
larger Cyr ond the smaller s, the less susceptible will the pump

be to cavitation; this is an advantage that becomes especlally
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valuable for pumps in liquid rocket engines. Conversely, the
lower the value of Crp and the higher s, the greater will be the

tendency of the pump to cavitation, a highly undesirable phenome-
non in any pump.

The coefficlents Ckr and s are uniquely related by the for-
mula given above,
The accuracy of the cavitation calculation for a centrifugal

pump, i.e., that of the calculation to determine n .. or (P ).

1s determined by correct selection of the numerlcal value of )
or s,

r

For conventional centrifugal pumps, the coefflcient Cpp

ranges from 800 to 1200, depending on the shape of the vane entry
section and the intake plumbing (s = 0.025-0.015).

Very recent studles indicate that for special impellers with
high anticavitation properties and expanded entry sections, the
coefficlent Chp reaches values of 2000-2200 or s = 0.008-0,007.

The followlng measures are taken to prevent cavitation in
the pumps of aircraft hydraulic systems and 1n liquld rocket en-
gines:

a) the gas pressure in the tank from which fluid is drawn 1s
increased. However, this may result 1n a welght penalty on the
tanks, and the tank pressures are therefore held comparatively
low (1-3 atm);

b) an auxiliary booster pump 1s inserted at the beginning of
the intake pipeline. But this can be done only if power, e.g.,
electric power, can be supplied to the point of installation of
the booster to drive 1it;

¢) an axial or screw wheel (worm) 1s mounted directly in
front of the main impeller and on the same shaft to ralse the
pressure and twist the flow. The twist results 1n a certain de-
crease in the relative velocity w,, and this also improves the
operating conditions of the main impeller.

This auxiliary wheel can provide full insurance against
cavitation in the main impeller of the pump, but, since it has
the same speed n and passes the same flow rate Q, 1t may itself
become a locus of cavitation. Hence the best solutlon will be a
device in which the speed of the auxiliary wheel is lower than
that of the main wheel.

§63. DETERMINATION OF THE ALTITUDE CAPABILITY OF AIRCRAFT FUEL
SYSTEMS WITH CENTRIFUGAL BOOSTER PUMPS

In §51, in our discussion of intake pipelines, we set forth
the principle on which the altitude capability of aircraft
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hydraulic systems with tanks communicating with the atmosphere

1s determined. We also indicated an effective method of increas-
ing the altitude capability of these systems, which consisted in
installation of a booster pump at the beginning of the intake
1ine (or directly in the tank). This method is widely used in
the fuel systems of modern aircraft, with centrifugal pumps serv-
ing as the boosters. Hence determination of the altitude ability
of alrcraft fuel systems is closely related to the cavitation
characteristics of centrifugal pumps.

Let us take a typical layout of the mailn part of an alir-
craft fuel system running from the service tank, to which fuel
is supplied from other tanks, to the main high-pressure pump (see
Fig. 147) and consider the method of determining the altitude
capablility of this system.

The excess air (gas) pressure Ap1zb in the fuel tanks, 1l.e.,

the amount by which the absolute pressure in the tanks exceeds
atmospheric pressure at the particular flight altitude H, and
1ts dependence on H are determined by the tank-venting system.
The latter may be open, semiopen, or closed.

In the open system, the excess pressure 1n the tanks 1is de-
veloped by using a veloclity head, and, ccnsequently,

v?
Apus=key 2

where PH and V are the density and flight speed, respectively, at

altitude H; k is the coefficlent of utilization of the velocity
head, whici Is usually somewhat smaller than unity.

In semlupen systems, the gradient Apizb is created by using

velocity head and turbocompressor pressure simultaneously. This.
ensures a practically constant Apizb irrespective of altitude.

In closed systems, the fuel tanks do not communicate with
the atmosphere, and the required tank pressure is provided by
turbocompressor or bottled compressed alr (gas) carried by the
alrplane.

The booster pump is usually placed inside or at the bottom
of the service tank, so that there are practically no hydraulic
losses at the pump intake and the pressure Pykh differs from the

tank pressure only by the velocity head.
We shall assume that we know all dimensions of the system,

the resistance coefficients of the components (f)}, the physical
properties of the fuel (y, v, pt)’ the excess pressure Ap,,, in

the tank, the engine's fuel consumption as a function of altitude
at top speed of the airplane (Fig. 174a), and, finally, the char-
acteristics of the booster pump.
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Pig. 174, Illustrating deter-

mination of altitude capability
of aircraft fuel system.

It is desirable to have the cavitation characteristics of
the booster pump constructed in the form of curves of the pres-
sure (or head) developed by the pump (pnas) as a function of altl-

tude H for various pump deliverles Q (Fig. 174b). However, spec-
1al cavitation tests cannot normally be relied upon to produce
such characteristics. It i1s easler to obtain the normal char-
acteristic of the pump, i.e., a curve of Phas * f(Q) forn =

= const.

This characteristic can be used to determine the pressure
Ppas for selected deliverles Q, thereby obtalning the horizontal

segments of the curves In Fig. 174b. The values of H at which
these lines begin to curve, 1.e., those at which cavitatlion be-
gins, can be determined with S.S. Rudnev's formula (12.46), in
which 1t is necessary to set

Hlx & (,’A 'I' Apna!\ —}\ .

Using (12.46), we determine the atmospherlc pressure p, at
altitude H for each of the Q, and the altitude H from the Py
The pressure at the dellivery end of the booster pump must be

sufficient to overcome all hydraulic resistances in the main line
from the booster pump to the main high-pressure pump (Ep) and the

inertial pressure (Apin = AHiny) and provide a pressure pg ., at
the entry into the main pump at which it can function normally
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and without cavitation. The pressure p&kh is, in turn, composed

of the fuel vapor pressure and the cavitation margin, the latter
determined by the type of the main pump, its speed, and certain
other factors.

Thus, the required absolute pressure at the booster-pump
exit 1s

Puorp =2”+‘I’u ’l‘l’:v (12,47)

Owing to the decrease in fuel consumption and, consequently,

of Ep with altitude, the pressure ppotr also diminishes somewhat

with increasing H.

To obtain the available absolute pressure prasp at the boos-

ter output as a function of altitude H, we replot the pump char-
acteristics given in Fig. 174b. 1Instead of Phas® ¢ compute

Ppacn™=pa +A PusddPaac

and construct curves of prasp as a function of H for the same Q

(Fig. 17l4c). It 1s convenient to mark out a curve of engine fuel
consumption versus altitude below these curves and, assigning a
series of consumption values for which prasp zurves have been con-

structed, to determine the corresponding altitudes H. By erect-
ing verticals to the intersections with the corresponding prasp

curves, we obtain a series of systeimn cperating points.

The curve connecting these points determines the avallable
pressures prasp for each of the altitudes H.

If we now make a joint plot of two curves — avallable pres-
sure prasp and required pressure ppotr’ the latter calculated by

Formula (12.47), as functions of flight altitude H, their point
of intersection (Fig. 174d) will determine the maximum altitude
at which the booster pump is capable of developing the required
pressure. At lower altitudes, prasp > ppotr and, consequently,

the necessary amount of fuel will be delivered automatically. At
H> Hmax’ transfer of fuel is not guaranteed, and if the altitude
Hmax determined from the calculation is smaller than that required,
measures must be taken to improve system altitude capability.

This property of the fuel system should not limit the altitude
capability of the vehicle as a whole. On the other hand, the
altitude capability of the fuel system should be several thou-
sand meters greater than that of the vehicle as determined by 1its
powerplant and aerodynamic properties.

The basic ways to increase the altitude capabllity of fuel
systems are as follows:
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1) to increase the excess air (gas) pressure in the fuel
tanks;

2) to install a more powerful booster pump in the service
tank and booster pumps in the other tanks;

3) to lower the hydraullc resistance of the pipelines;
4) to use a fuel with a lower saturation vapor pressure;

5) to reduce the necessary cavitation pressure margin of the
main fuel pump by lowering its speed.

However, use of any of these methods will result in greater
weight of the fuel-system elements. The designer's problem is
to secure the required system altitude capability with a minimal
weight penalty.

§64, SELECTION OF PUMP TYPE., FEATURES OF CENTRIFUGAL PUMPS USED
IN AVIATION AND ROCKET ENGINEERING .

Pump type selection and design are usually based on Q, H,
and n as initial data. These quantities are a basis for comput-
ing the coefficlent ng, which immediately gives an idea as to

which variety of vane-wheel pump 1s required for the specific
conditions. The design procedure for the centrifugal pump 1s
indicated in an example in this chapter.

If the ng given by the calculatlon is too large (for example,

greater than 1200), this means that not one, but several pumps
connected in parallel must be used.

If, on the other hand, n, is too small (see §60) and 1t 1s

impossible to increase the speed n, it 1s necessary to use a
multistage pump, i.e., one with z impellers 1in sequence on the
same shaft. The head developed by each impeller will be one-
zth that of a single-stage pump, and the ng of each impeller will

be larger by & factor of z3/%,

If this construction 1s undesirable, recourse is taken to
turbulence or rotary-displacement pumps. Then, however, such
properties of the fluid as viscosity, chemical activity, etc.,
must be taken into account.

On aircraft with gas-turbine engines, centrifugal pumps have
thus far been used chiefly in fuel systems as booster pumps. Most
of them are made with closed-type impellers (Fig. 175a) or semi-
open impellers, 1i.e., impellers consisting only of a single disk
with vanes on one side (see Fig. 175b);° open impellers (Fig.
175¢) are used less often.

¥See page 290 for footnote.
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When a booster pump 1s placed inside
a tank, an axlial wheel (vane wheel) is
J usually mounted on the same shaft at the
entrance into the main impeller. Its func-
tion is to improve the operating condi-
tions of the centrifugal booster pump, and
5l 1 el to separate the fluid, i.e., to free it of
vapor and gases. The axial wheel is de-
Fig. 175. Centrifu- signed for a delivery substantially larger
gal-pump impellers. than that of the centrifugal pump, since
some of the fluid that it feeds 1s slung
off.

i

Booster pumps normally operate at speeds of the order of
(6-10)+ 10° rev/min and develop pressures from 0.6 to 1.2 atm.
The speed coefflcients of these pumps vary from 100 to 200, i.e.,
they are classed as normal or even fast-running centrifugal pumps.

A current trend 1s to use centrifugal pumps as main fuel
pumps on gas turbine engines. This 1s because the required fuel
deliveries (flow rates) are increasing and less viscous fuel
grades with higher volatilities are beling used. At the same
time, it is possible to operate the pumps at very high angular
velocities (several tens of thousands of revolutions per minute).

Under these conditions, centrifugal pumps are capable of de-
livering the required amount of fuel under a high enough pressure
at smaller bulk and weight than other pump types. These pumps
have the same characteristic peculiarities as those used in 1li-
quid-rocket englnes.

In LRE's, centrifugal pumps are widely used to supply fuel
and oxldizer from the tanks to the engine's combustion chamber.
These pumps must develop enough head to overcome all resistances
in the pipelines and the combustion-chamber back pressure, as
well as to ensure the necessary pressure drop across the 1lnjec-
tors. As a result, the required head becomes quite large and 1s
reckoned in hundreds of meters, while the pressures range into
the tens of atmospheres.

Usually, displacement »umps are used to produce such high
pressures, but if a substantial flow rate is required at the same
time (as 1s the case in LRE's) and a high-rpm drive, such as a
gas turbine, can be used, use of the centrifugal pump 1s more
rational.

High pressures are obtalned from a centrifugal pump by use
of high impeller speeds and special impeller designs. As follows
from §59, this is the construction typical of the so-called slow-
running centrifugal pumps, 1.e., those with the smallest speed
coefficlents (specific rpm ns).

It must be remembered that the term "slow-running" refers to

a small specific rpm figure and has no relation at all to the ac-
tual (operating) pump speed, which may be very high.
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Thus, the basic peculiarity of the centrifugal pumps uéed in
LRE's is a very small value of the speed coefficient ng with all
of 1ts consequences (see §60).

As a result, the impellers of LRE pumps are usually purely
radial, 1.e., of the type in which the flow moves in a plane nor-
mal to the axis of rotation. These impellers are characterized
by large relative dlameters D,/D, and small relative impeller
width b,/D,. As we said 1n §60, a decrease in n_ increases the

relative energy losses to fluild leakage inside the pump (volume
losses) and to friction between the impeller disk and the fluid,
i.e., it lowers the coefficients n, and ny and, consequently, the
over-all efficiency of the pump. For this reason, LRE centrifu-
gal pumps usually have modest efficilencles.

The physical designs of LRE centrifugal-pump impellers may
be of the ordinary closed type used in booster pumps, l.e., with
two disks, then of the semlopen type with one disk, and, finally,
of the open type without disks and with cantilevered vanes (Fig.
175). In the first two cases, the optimum backward-bent (8, <
< 90°) vane 1is used, but in the third the vanes are made radial
for strength reasons. We have substantially smaller disk-fric-
tion power losses in impellers of the semiopen type and even
smaller losses in the open type as compared to closed-type im-
pellers, but the volume losses increase.

The method set forth in §60 for calculation of the friction-
power ratilo Ntr/Ng is also applicable to semiopen impellers, but

with appropriate selection of the coefficient k in the formula
for Ntr' As for determination of the volume losses in thils case,

this 1s a special problem.
Yet another peculiarity of centrifugal pumps used in LRE is
the fact that they usually operate close to the cavitation point

because of their high speeds. As a result, the cavitation calcu-
lation examined above acquires partlcular importance.

Example. Calculate (in first approximatlon) the centrifugal-
pump impeller dimensions of the LRE of the V-2 rocket [28] and
determine the pressure required at the entry into the pump to sup-
press cavitation, using the followlng data:

fluid pumped: ethyl alcohol (75%), y = 864 kgf/cm?®, hy = by
mmHg ;

gravimetric flow rate (pump delivery) G = 56 kgf/s;
pressure developed by pump Ppas = 20.7 atm;
impeller speed n = 3800 rev/min.

Solution. 1. We determine the volumetric flow rate Q, the

head H of the pump, and 1ts speed coefficient ng.
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G Puac  20,7-104
Q—Y 3—6—4=005am 3/5; He e = s = 2iom;

3 &wme
ni=3,55 ﬁ—(—’ 3.Ga3 90085 e

2. From the value of n_ and statistical data (see §60), we
approximate the following qﬁantities:

D,
D—- =2,5; 8, = 30% %4,=0,85; 11"::0 02, nu - 0,97; 3. = 0,85,
from which

1=:0,88-0,92- 0,97 - 0,85=:0,67.

3. The power required by the pump

O\Il (0,085.210-831
Nogez Sommin s "— - p 05y
0= (B 75:0,67 Shp.

4, Fluid flow rate through impeller

5. The optimum diameter of the impeller intake orifice D
according to Formula (12.4l)

3/ 0 Yy
D.nnlo/%=4.5l‘/%-0.ﬂom-

The result is the so-called reduced diameter without consideration
of flow displacement by the impeller hub. When the latter is
taken into account, the area equality gives a somewhat larger
diameter D,, 1l.e.,

opt

Do = V ar oy

where d . 1is the hub diameter, which equals d . = (1.15-1.25)dV
and dV is the diameter of the shaft, which is determined by

strength considerations. Without carrying out the strength cal-
culation for the shaft here, let us assume that D, = 140 mm. The
diameter D, will be equal to or slightly smaller than D, owing to
the inclination of the vane entry edge.

6. Setting the radial velocity ratio Vzr/vxr equal to 1.0
and v, = Vips We obtain

4 4.0,074

v,,-von;og.:- prs =6,5m/s.

7. The influence coefficient of the number of vanes 1s found
by Formula (12.19) by setting (tentatively) z = T:
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A 20840605

. (1—0,10) =13

from which ¢y = 0.77.
8. According to Formula (12.21'), the theoretical head for
zZ = = ig

oo H w0
™ - -
.F'.l' oln'op”

=367 m.

9. Substituting Vop for the ratio Q/2nr,b, in (12.12) and
solving it as a quadratic equation, we get

Yo S 35
R T V' e H 8 ~505m *

+ l/ 10018 +9.a|-se1:-os.s n/s,

from which

10. The width of the impeller passage at the exit, with con-
slderation of the coefficlent of flow displacement by the vanes,
which we assume equal to ¥y, = 0.95, is

b= Q' - 0,074
8Dy n0,33:6,5.0,95

= 0,012 m=12mm,

81%. The width of the impeller channel at the entry (with ¥, =
= 0.85

' 0,04 03 M= 30mm.
h =D A e80T

12. The inclination angle of the vane at the entry, on the
basis of nonseparating flow of fluid over the entry edge of the
vane, is

o 6,5-30 12130
$i=arctg 5 =ltcl£65.b'uo = are 1g 0,23 -2 13%

Usually, the calculated angle B, is increased by 3-5° for cavita-
tion reasons in the event of a flow rate overload.

13, This 1s followed by improvement of the impeller dimen-
sions, 1.e.,, the calculation 1s repeated in the same procedure,
but on the basis of the values finally selected for g, and z and
the more accurate values of the coefficlents n, u, ¢, and y,.
The latter are figured by the formulas

23
Ql’=l_'JID|l|I'I ’]
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and
1)

nDysin B,
where § 1s the thickness of the vane.

1=1—

14, The dimension of the final scroll-chamber section (rad-
ius p) 1s, according to Formula (12.43) for a = 360° (taking r, =
= 1.05, r, = 173 mm)

e 2 on:Q 2u1,Q  398.0,85.0,065
@360 == +1/ 3= 2nglt l gl Calarwryraern +

398-0,85-0,065
] 29,8121 ———0,173==0,023 m,

15. The required head at the entrance into the impeller ac-
cording to Formula (12.45):

_ Qs 13600 | (0,065-3,82-108)° 7
Hy=h+s . =0,011 = =+0,02 196 =10,5m
or, neglecting the veloclty head,
-_—mssum4..0‘\11555£
cm?

§65. BASIC INFORMATION ON TURBULENCE PUMPS

The turbulence pump is superficially similar to the centrifu-
gal pump — it consists of an impeller 1 with short radlal vanes
and a stationary casing 2, which is fitted with intake 3 and de-
livery 4 pipes (Fig. 176) In the turbulence pump, the intake
and delivery pipes are not hermetically separated, i.e., like all
vane pumps, it 1s a continuous-flow type.

In operating principle, however, turbulence pumps differ
substantially from both impeller and displacement pumps, and are
therefore regarded as an independent type.

In turbulence pumps, motor energy is converted into fluid-
flow energy in a process of vigorous eddying and entrainment of
slow fluld particles in the passage surrounding the impeller 5
by fast fluld particles in the slots of the impeller. A vapor
vortex (see arrows in Fig. 176) forms in the rotating impeller,
which has cells on both sides, and in the passage running around
the impeller. This results in a continuous exchange of fluld
particles between the cells and the passage.

Like centrifugal pumps, turbulence pumps are usually used to
transfer light fluids — water, kerosene, acids, etc. Characteris-
tically, these pumps have comparatively small deliveries and rela-
tively high heads, 4-10 times those of centrifugal pumps at the
same impeller circumferential speeds. This corresponds to speed
coefficlents ng = 10-40, i.e., to the range of ng in which the

use of single-stage centrifugal pumps 1s difficult because of
their low efficiencies and the need to use a high-speed drive.
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Fig. 176. Diagram of turbulence pump.
KEY: (a) intake; (b) delivery.

Hu REEL Other advantages of turbulence
100 - =TT Y pumps, in addition to their high head
% NCT T34 LIt capacities, are simplicity of design,
) Rets50 c/mun Y 1 small size, and 1light weight. Thelr
60 T @ 50mn |0 basic disadvantage lies 1n thelr com-
% Lim N 'l 1" 4 paratively low efficiencies (25-50%).
9 . A¥ae
%.\ < y{?\, ~t-j12 Minor improvement makes the tur-
P eI R bulence pump self-priming, i.e., en-
0 | |30 o ables it to produce enough vacuum in
0 1 zﬁh;b § 6 7 gge ii€s§aciito raéiehfluid thrgughl
0 § n 520 2.‘5 fiileg Siih a;’i’ WAlch UES previcusly
Q »¥az *
Fig. 177. Characteristics Multistage turbulence pumps are
of turbulence pump. used to obtaln pressures of the order
KEY: (a) rev/min; (b) of several tens of kgf/cm?. - As in
1/s; (e) m*/h; (d) hp. multistage centrifugal pumps, the

fluid passes through several lmpellers
connected in series.

Figure 177 shows an experimental characteristic for a turbu-
lence pump with an impeller diameter of 160 mm in the form of
curves of the head H in mm of water, power in hp, and pump effi-
ciency n as functions of delivery Q 1n 1/s at a constant speed n =
= 1450 rev/min. As we see from the dlagram, the characteristic
of the turbulence pump differs substantially from that of the cen-
trifugal pump. With increasing delivery, the head developed by
the pump diminishes along a nearly straight line. At the same
time, the required power does not lncrease, as 1t does for the
centrifugal pump, but decreases. For this reason, it 1s recom-
mended that the pump be started with the valve (spool) in the de-

livery line open.

In view of the very sharp rise in head as Q + 0, turbulence
pumps are often fitted with safety valves.
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Turbulence pumps are subject to the same similarity formulas
as centrifugal pumps, and pump characteristics are converted from
one speed to another in the same way as was described in §58 for
centrifugal pumps.

Turbulence pumps are used on aircraft fueling trucks and in
a number of other fields.
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Manu-
script
page

248

259

261

274

282

Footnotes

'An exceptlon 1s the case in which an auxiliary impeller
or screw wheel (worm) is mounted in front of the main
impeller (see below).

2In practice, equality of the coefficients n8 and n,

1s sometimes violated to some degree on passage from
one pump to another because of a change in the relative
roughness of the flow passages, which influences "g (the

so-called scale effect), and also because of relatively
unequal leakage-determining clearances in the pumps.

%It should be noted that Re varles to some extent along
a similar-regime parabola, but research has shown that
the flow regimes in centrifugal pumps are very close to
self-similar, i.e., to those that are practically unin-
fluenced by Re. Kinematic similarity 1is of decisive im-
portance 1n this case.

“It is also possible to obtain the cavitation character-
istic with the valve or choke in a fixed position, i.e.,
as the pump's delivery decreases owing to cavitation.

SThe peculiarities of these impellers will be discussed
below.
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Symbol List

Manu-

script Symbol English equivalent
page

244 Hac nas pump

247 T theoretical
254 r g hydraulic
258 M m mechanical
263 a e standard
266 yn up packing
268 TP tr friction
274 BX vkh entry

274 agce abs absolute
275 Kp kr eritical
276 onr opt optimum
279 nag 1zb excess

280 oB dv engine

280 pacn rasp avallable
2680 MH in inertial
281 NOTP potr required
285 BT vt hub

285 B v shaft

-291-



CHAPTER XIII
DISPLACEMENT PUMPS

§66. BASIC CONCEPTS. PISTON PUMPS

The operating principle of the displacement pump differs
fundamentally from that of the vane-wheel pump.

A displacement pump 1s a pump 1n which fluid is moved by
expellers that press 1t out of the pump's chambers.

The chamber of a displacement pump 1s a space that communi-
cates by turns with the pump's receiving (intake) space during
the f1lling stroke and with its delivery (pressure) space during
the pressure stroke. A displacement pump may have one or more
working chambers.

The expeller 1s the component of a displacement pump that
directly accomplishes the work of expulsion (and sometimes also
of induction). The number of expellers in a pump may be equal
to or smaller than the number of chambers.

Thus, the action of a displacement pump consists 1in perlodic
delivery of definite, characteristic volumes (portions) of fluid
from an intake line into a delivery line with a simultaneous rise
in fluid pressure. Conseguently, the delivery of a displacement
pump, unlike that of a vane-wheel pump, 1s always more or less
nonuniform, and for this reason the time-averaged delivery is
usually considered.
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Another peculiarity of displacement pumps is the fact that
the recelving spaces are always hermetically separated from the
delivery spaces. The sealing may be absolute or relative (prac-
tical). In the latter case, there 1s a possibility of minor
fluid leakage (seepage) through the clearances in quantities
that are small by comparison with the pump's delivery rate.

Finally, a third pecullarity of the displacement is their
self-priming property. In principle, all displacement pumps are
self-priming, 1.e., they are capable in operation on air (without
fluid) of developing rather good partial vacuums and drawing fluid
through the intake linz from a tank below the pump, provided that
the geometrical intake height does not exceed a certain limit,
which depends on a number of factors. In addition, the self-
priming property of displacement pumps is often defeated in prac-
tice by inadequately tight sealing or ilnadequate speed.

The above operating principle of the displacement pump makes
it possible to write a general expression for the time-averaged
theoretical (geometrical) delivery per unit of time. By the
theoretical or geometrical delivery of the pump, we mean the
delivery of an incompressible fluid by a perfectly sealed pump,
i.e., in the total absence of internal and external fluid seepage
through clearances and in normal, cavitation-free operation of
the pump, in which the chambers are filled with single-phase
fluid.

Thus, we have for the theoretical per-second delivery of the
pump

Q,=%'=‘%'[m=/s] (13.1)

where W 1s the so-called swept displacement of the pump, 1l.e.,
the volume of incompressible fluid that a perfectly sealed pump
delivers in one revolution of the drive shaft in cavitation-free
operation; w 1s the volume delivered (expelled) under the above
conditions from each pump chamber during one pump-shaft revolu-
tion, or the useful chamber displacement; 2z 1s the number of
chambers of the pump; n is the number of revolutions of the pump
shaft per minute.

Since the theoretical delivery of a displacement pump 1is in-
dependent of the pressure (head) developed by the pump, the theo-
retical characteristic of a displacement pump in p, Q-coordinates
at n = const 1s a straight line parallel to the axlis of ordinates.

Displacement pumps fall into two basic classes — plston and
rotor — depending on the nature of the expulsion process.

A piston pump 1s a displacement pump in which fluid is dis-
placed from stationary chambers as a result of pure straight-line
recliprocating motion of the expelling components relative to
these chambers.
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Thus, the piston pump i1s characterized by stationary cham-
bers and straight-line reciprocating absolute motion of the ex-
pellers.

The class of piston pumps includes, in addition to piston
pumps proper, plunger pumps, diaphragm pumps, and certain other
types with the same kind of expulsion process and differing only
in design or in the form of the expellers.

& drogd

o

>—— 2 L ]
e
' sangr b

Fig. 178. Diagram of single-action
plston pump.

KEY: (a) delivery valve; (b) intake
valve.

The expellers (piston, plunger, etc.) are most frequently
set in reciprocating motion by means of a crank mechanism, but
other mechanisms are also used (cam and eccentric mechanisms,
etc.).

Conventional piston pumps are characterized by the presence
of intake and delivery valves that regulate the motion of fluid
through their chambers. As the chamber fills with fluid, the
intake valve 1s open, and the delivery valve 1s closed. When
fluid 1s being expressed (delivered), and the expeller is moving
in the opposite direction, the intake valve is closed and the
delivery valve 1s open. These valves are usually self-operating,
i.e., they open only under a pressure gradient and close by
gravity or under sgring tension.

Piston pumps are classified as single-action (z = 1), double-
action (z = 2), triple-action (2 = 3), etc., on the basls of the
number of chambers.

Figure 178 shows a schematic dlagram of a single-action
piston pump, and Fig. 179 that of a double-action pump.

If we assume that the length of connecting rod L is infinite
by comparison with the crank arm r, it follows that the speed of
piston motion varies sinusoidally as a function of crank turn
angle ¢ or of time. The deliveries of the pumps shown in the
diagrams will vary according to the same law and, consequently,
so will the fluid flow rates in the intake and delivery pipelines.
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Fig. 179. Dlagram of

double-action piston d
pump. o)

Fig. 180. Diagrams show-

Figure 180 shows curves of de- ing variation of piston-
livery Q vs. turn angle ¢: curve a pump delivery.
for a single-action pump and curve
b for a double-action pump. In the
single-action pump, delivery occurs only during a half-turn of
the crank; induction takes place during the other half=-turn,
while delivery 1is zero, i.e., delivery 1s extremely nonuniform.

For the double-action pump, the dellivery during one revolu-
tion is represented by two sinusoilds with different amplitudes
(the second is smaller than the first because of the rod area),
and delivery drops twice to zero and twice reaches a maximum.
The delivery 1s not as nonuniform as in the preceding case, but
it 1s still quite uneven.

The detrimental effect of delivery nonuniformity on pump
operation consists primarily in the fact that, owing to the
nonsteady flow in the 'pipelines, the fluid pressure at the pls-
ton varies greatly over its stroke. During the accelerating
motion of the piston and the fluid in the intake line, the pres-
sure at the plston drops further, giving rise to an inertial
head (see §45), and cavitation and even complete detachment of
the fluid from the piston are possible.

Moreover, the strong delivery nonuniformity makes i1t neces-
sary to use additional power for the periodic increase in head
loss to fluld friction in the intake and delivery lines.

To mitigate these undesirable effects, single- and double-
action piston pumps are equipped with ailr bells, These air-
filled tanks are mcunted in the immediate vicinity of the pump -
one at the end of the intake pipeline and the other at the be-
ginning of the delivery line. The air bells function as quick-
action accumulators which, given adequate volumes, can substan-
tlally improve the uniformity of delivery from the pump.

Properly manufactured piston pumps are capable of producing
very high pressures, ranging into the tens, hundreds, and in some
cases even thousands of atmocpheres, Of all known pump types,
the plston pumps are capable of producing the highest heads.
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However, piston pumps can be operated only at comparatively
low speeds, not above 300-500 rev/min. At higher speeds, the
self-operating inta'te and delivery valves cannot function nor-
mally. Because of thils slow-running property, piston pumps are
substantially larger than centrifugal pumps designed for the same
parameters (dellvery and pressure). For this reason, piston
pumps have been supplanted by centrifugal and rotor pumps in
water-supply and other englneering branches.

Piston pumps are now used chilefly in the petroleum and
chemical industries in the form of powerful mechanically driven
units for the transfer of heavier fluids, and at thermal power
plants to supply high-pressure steam boilers.

Piston pumps are also used in all specialized fields in
which very high pressures are required.

The clas: of piston pumps can be broken down into two sub-
classes that differ in the type of motion of the driving element —
direct-act! »n and shaft types. In the former, the driving ele-
ment — the piston rod - executes only reciprocating motion,
while in the latter the driver is a rotating shaft.

A ¢irect-action piston pump usually has a rod rigidly coupled
to the rod of the piston-type drive engine (steam, compressed-alr,
or internal-combustion) and has no shaft or other rotating parts.

In the shaft-type piston pump, the rotary motion of the
drive shaft 1s convered into reciprocating motion of the expeller
by a crank or cam mechanism. As a result, shaft-type piston
pumps are classified as crank and cam types.

Cam-type piston pumps with valveless fluid control hear a
strong resemblance to the rotary-piston pumps that will be dis-
cussed in the next section. The classification of displacement
pumps (and the terminclogy) given here and continued 1n the next
section has been recammended by the USSR Academy of Sciences Com-
mittee on Scilentific and Technical Terminology [36]. However,
this classification is not the only one possible. We mnight, for
example, make the primary classification of displacement pumps on
the basis of another criterion — the type of motion of the driv-
ing element - into direct-action and shaft types, and then fur-
ther classify the shaft types as piston and rotor.

§67. ROTOR PUMPS; FEATURES AND VARIETIES

Rotor pumps represent the class of pumps that 1s now most
extensively used in aviation englneering. They include rotary,
gear, screw, rotary-plate, rotary-piston, rotary-plunger, and
other types. All of these pumps, which differ considerably in
design, have much in common in thelr worklng processes and char-
acteristics.

Like piston pumps, rotor pumps are displacement pumps, i.e.,
pumps that work on the displacement principle. However, the
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fluid-displacement process in rotor pumps differs essentlially
from the process in piston pumps.

The working process of rotor pumps 1s characterized, firstly,
by transfer of the chambers from the receiving space of the pump
to the delivery space and, secondly, by rotational or more com=-
plex (rotational and translational) absolute motion of the ex-
pellers,

Thus, we can offer the following definition of the rotor
pump: it 1s a displacement pump in which fluid 1s displaced from
moving chambers as a result of a rotational or compound motion of
the expellers with respect to a stator.

The stator 1s the stationary part of the pump, its casing,
and incorporates the receiving (intake) and delivery (pressure)
spaces. The part of a rotor pump that 1s turned directly by the
drive shaft 1s called the rotor. A rotor pump also usually has
one or more expellers (see §66), which perform some type of cyc-
lic motion relative to the rotor. .

The chamber transfer ln a rotor pump makes the intake and
delivery valves superfluous. A characteristic feature of all
rotor pumps that originates from thelr expulsion process 1is the
absence of valve control of the fluid. In addition, rotor pumps
lack the usual crank mechanism.

By virtue of the absence of intake and delivery valves,
rotor pumps are reversible, i.e., they can work as hydraulic
motors when fluid is supplied to them under pressure. This use-
ful property of rotor pumps has been responsible for their exten-
sive use in the so-called hydraulic transmissions (see below).

Rotor pumps are usually considerably faster-running than
piston pumps, something that i1s also assoclated with the absence
of valve distribution. Rotor pumps are currently being used at
speeds up to 3000-5000 rev/min, and in some cases run even faster.

Rotor pumps deliver fluid much more smoothly than piston
types, and this is another advantage.

The theoretical delivery of rotor pumps, like that of other
displacement pumps, is determined by Formula (13.1). However,
rotor pumps are further distinguished 1n this respect by the fact
that the number of characteristic volumes z delivered in one
shaft revolution 1s usually substantially higher than in the
case of pilston pumps. While z = 1-3 for the latter, z = U4-12 and
more for rotor pumps. In addition, these characteristic volumes
are delivered by a rotor pump not strictly in sequence, but with
a certaln amount of overlap: one volume has not yet been fully
delivered before delivery ol a second begins, then a third, and
so forth (for greater detail, see below). This explains why
rotor pumps deliver fluld more uniformly than plston pumps.
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Other advantages of rotor pumps are compactness of construc-
tion, small dimensions, and light welght per unit of developed
power. For modern aviation-type rotor pump and hydraulic motors
used in hydraulic power systems, this specific weight 1s 0.2-

0.3 kgf/k¥, or only 10-20% of the analogous specific weight of
gimilarly rated electrical machines.

The pressures that modern aviation rotor pumps are capable
of delivering range up to 250-300 kgf/cm?, and further increases
are possible and are the trend. However, such high pressures are
not 1nherent to all rotor pumps, but to only one variety - the
rotary-plston (or rotary-plunger) type, and then only when they
are manufactured to very high precision. On the whole, the heads
developed by rotor pumps are somewhat smaller than those of pis-
ton pumps because of the absence of valve control.

The working process of each element of a rotor pump is com-
posed of the following three phases:

1) filling of the chambers by fluid;

2) closing of the chambers, 1.e., their isolation from the
recelving and delivery spaces of the pump and their transfer from
the 1 2celving space to the delivery space;

3) displacement of fluid from the chambers,

Below, as we discuss the basic varieties of rotor pumps, these
phases of the working process and other features of the pumps will
be indicated on specific diagrams.

Let us examlne a classification of rotor pu ps (see Diagram
1). .

All rotor pumps can be classified as rotary and slideblock
types. In rotary pumps, the expellers execute only rotational
motlon with respect to their axes, and are supported in station-
ary bearings. In slideblock pumps, the expellers, while rotat-
ing around the stator axis, simultaneously perform straight-line
reciprocating motion relative to the rotor.

According to the type of chamber transfer (type of motion of
fluid displaced in the pump), rotary pumps are classified as flat-
rotary and screw types. Chamber and fluid transfer occurs in a
plane normal to the rotor axis in a flat rotary pump and along
the rotor axis in a screw pump. The basic form of the flat-
rotary pump is the well-known gear pump (Figs. 181, 182). The
other varleties are seldom used and will not be examined here.

The baslc variety of the screw pump 1s the triple-screw pump (Fig.

183).
A feature of all rotary pumps 1is that fluid is displaced in

them by the expeller and the rotor simultaneously, or only
by the rotor, which 1s also acting as an expeller. In the latter

_298_



Diagram 1

s e a Potopsuie Hacocw

D flo snay aamxemita sutecuneaed

R S

E *
W i o T
[T 4141 :

£ r
Mo xapaxrepy nepeseircuns Mo opste sutecwurersdl u mo
padosnx xavep ’ €nocoly orpamiacuns

padosux Kauep

h i J
Ilaocxoﬁ- Potopio-
Bunronuie 1. 1 Maactinsa-
AoBpatHue nopwHesHe
HacoCM HacocH nacocs Tue nacoch

k Mo pacnoaokemno pagosnx
xaue

. -n
1 Pa:maal-alue [Axcitaasnue
Ilecrepen- poTopno- potropno-

e Wacocw - Inopwnenue nopainesue
sacocu sacocu

KEY: (a) rotor pumps; (b) by type of expeller
motion; (c) rotary pumps; (d) slideblock pumps;
(e) by type of chamber motion; (f) by shape of
expellers and by method of limlting chambers;
(g) flat rotary pumps; (h) screw pumps; (1)
rotary-plston pumps; (J) rotary-plate pumps;
(k) by position of chambers; (1) gear pumps;
(m) radial rotary-piston pumps; (n) axial
rotary-piston pumps.

case, the pump must have one or more "locks," moving elements

that disconnect the pump's receiving and delivery spaces without
expressing fluld.

Slideblock pumps are subclassified as rotary-plate and
rotary-piston types in accordance with the method used to limit
(lock) the chambers and the shape of the expellers.

In the rotary-plate pump, the chambers are limited by two
adjacent expellers and the rotor and stator surfaces, and the
expellers take the form of plates (Figs. 184 and 185).
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In the rotary-plston pump, the cham-
bers are locked off by expellers in
cylindrical hollows in the rotor, and
the expellers are cylindrical (sometimes
spherical) in shape (Figs. 186-189).

Rotary-piston pumps are classified
as radlal (Fig. 186) and axial (Figs.
187 and 189) in accordance with the
positions of the chambers (cylinders)
with respect to the rotor axis.

Fig. 181. Diagram of

gear pumps. Let us examine the scheme on which
KEY: (a) intake; (b) each of these rotor-pump varleties
delivery. operates and derive formulas for calcula-

tion of the averaged theoretical delivery.
The next section will deal with the true
deliveries of these pumps.

The gear pump (see Fig. 181) 1s usually made in the form of
a pair of identical involute gears enclosed in a tight-fitting
housing, the stator. The driving gear 1is considered to be the
rotor and the driven gear the expeller. In the pump's recelving
space, fluld fills the slot- between the teeth of both gears,
and these volumes are then locked (isolated) and transferred
along clrcular arcs to the delivery (pressure) section of the

pump .

As it meshes, each tooth on each gear fits into the slot
corresponding to it and displaces the fluid from that slot.
Since the volume of a slot 1s greater than the volume of a tooth,
a certain amount of fluld returns into the intake space at the
point of meshing. .

Thus, both gears, 1.e., the rotor and the expeller, perform
the function of displacing fluld simultaneously in this pump, and
its working chambers are the slots between gear teeth. However,
as we see from the above, 1t would be more correct to consider
the tooth volume rather than the slot volume as the useful cham-
ber displacement w to be substituted into the general formula
(13.1), 1.e., w = Woub® The number of these volumes delivered

during one pump-shaft revolution equals the total number of teeth
on the two gears (2z). Hence the averaged theoretical delivery
of a gear pump per second 1s

zwyy !

Q2 rma/s ], (13.2)

' [74]

Since calculation of the volume W, ub requires measurement of

the tooth area, recourse 1s usually taken to the followlng approx-
imate formula, which has been derived on the assumption that the
pump dellvers a continuous layer of fluild with a thickness 2h =

= 2m and width b at a speed equal to the circumferential velocity
u of the gears on their pitech circles, i.e..
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Q,—uS=2L£'i2hb—--:—5-:tRnbm [mi/s], (13.3)

where S 1is the cross-sectlonal area of the fluid layer, which
equals 2hb; h is the height of the gear tooth, which 1s equal to
its modulus m; R 1s the pitch-circle radius of the gears meters).

Gear pumps are capable of pressures
up to 100-150 kgf/cm?, and sometimes even
higher. However, for pressures above
100 kgf/em?, it is necessary to provide
the pump with a device for automatic con-
trol of the face clearances on the gears.
This unit consists of two floating sleeves
that are pressed against the faces of the
gears by fluid pressure and thereby re-
duce the face clearance, improving the
internal seal of the pump.

i;%érigilmgéﬁggggrOf Multistaged gear pumps are sometimes
o used to obtain very high pressures. Such
pump. a pump 1s built up from several gear pumps
which are connected in series, and de-
develops a pressure equal to the sum of
the pressures developed by all of the stages. To ensure rellable
filling, the delivery from each preceding stage of the multistage
pump must be greater than the flow rate through the next stage.
The excess delivery 1s diverted through special drainage passages
provided in each stage and designed for the approprlate pressure.

Gear pumps are used extensively in aviation engineering, and
especially in aircraft hydraullc power systems. However, their
basic disadvantage 1s the impossibility of simple control of swept
volume.

The internal-mesh gear pump is also used (see Fig. 182). In
this pump, the driving gear (rotor) 1s usually the larger of the
internally-toothed gears. A stationary crescent-shaped part of
the pump's stator projects between it and the smaller gear (the
expeller), to provide for locking of the chambers, i.e., the
slots between the teeth of the gears. The motion of fluid in the
pump i1s indicated by the arrows. Obviously, a volume of fluild
equal to the volume of twice the number of driving-gear teeth is
delivered during one revolution of the driving gear. This volume
does not depend on the number of driven-gear teeth.

An internal-mesh gear pump delivers at a somewhat higher
rate than an external-mesh pump of the same size. In addition,
the internal-mesh pumps have an advantage in the symmetrical
position of the drive shaft relative to the casing. However,
these pumps are more complex in manufacture, and thelr head
capacities are somewhat lower than those of the external-mesh
types. This 1s explalned by the fact that the chamber-transfer
distances in these pumps are much shorter than in external-mesh
pumps and, consequently, sealing 1s not as good.
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Fig. 183. Diagram of triple-
screw pump.

Pumps of this type are used on some aircraft fuel trucks
where high pressures are unnecessary.

A screw pump with three screws enclosed in a case with re-
celving and delivery spaces appears in Fig. 183. The middle
screw 1s the driving unit, and the two lateral screws are driven.
A speclal cyclcidal screw proflle 1s required to ensure tight
locking of the chambers and, consequently, separation of the re-
ceiving and delivery spaces of the pump. This profile 1is convex
on the driving screw and concave on the drlven screws (see left
diagram of Fig. 183, which shows a cross section through the
screws). The screw thread is usually cut two-start. The trans-
mission ratio from the driving to the driven screws is unity.

The working chambers in this pump are bounded by the threads
of all three screws and the stator surfaces. As the screws turn,
the closed chambers are transferred with the fluld along the axls
of rotation.

The screws are profiled in such a way that the two driven
screws are fully relieved of torque, with the driving screw tak-
ing all of it and performing the work of expulsion. It 1s there-
fore rotor and expeller at the same time. The driven screws, on
the other hand, function as so-called locks - moving elements of
the pump mechanism that merely separate the receiving and
delivery spaces of the pump without moving fluid.

The theoretical delivery of a screw pump is determined by the
expression

Stn
=oinl
< 60

where S is the cross-sectional area of the pump chambers normal
to the axes of rotation and equals S = 2.4 Dv; Dv is the 1inside

diameter of the driving-screw thread, and is equal to the out-
side dlameter of the driven screw (see Fig. 183):

-302-



Dy=dy;
t 1s the pitch of the screws, which usually equals t = (10/3)Dv.

Triple-screw pumps can develop pressures up to 100-200
kgf/cm’. The higher the pressure for which the pump 1s designed,
the longer must be the chamber transfer path and, consequently,
the screws.

The minimum screw length needed to provide sealing in the
pump is considered to be 1.25t. In practlce, this length 1s
taken in the range (1.5-8)t, depending on the required pressure.

This pump delivers ver; smoothly, 1s capable of operating
at very high speeds (up to 3000-5000 rev/min), and is quiet and
dependable. However, 1t has the same shortcoming as the gear
pump: the impossibility of adjusting swept volume during opera-
tion. In addition, the screw pump is quite complex to manufac-
ture.

Nevertheless, the cycloldal triple-screw pump is quite pro-
mising. It is being used in a number of engineering fields, in-
cluding aviation, where 1t is the main hydraulic power system
pump on certain foreign aircraft.

Double-screw and single-screw (gyrotor) pumps are sometimes
used. However, their data are usually inferior to those of
triple-screw pumps with cycloidal profiles, primarily because
they are not capable of maintaining good internal seals.

Rotary-rlate pumps are often used in aviation in the form
of four-plate units with single-plane kinematics (see Fig. 184).
The rotor is a hollow cylinder with radial slots in which the
expeller plates slide. The rotor is positioned eccentrically
with respect to the inner cylindrical surface of the stator,
which is bored round, so that as the rotor turns the plates re-
ciprocatein and out of it. Under the action of centrifugal force,
the outer faces of the plates are pressed agalnst the stator
inner surface and slide along it, while the inner faces roll
around the so-called floating shaft, which has no bearings.

Fluid fills the space between two adjacent plates and the
rotor and stator surfaces. This is the worklng chamber, whose
volume increases as the rotor turns and then, after reaching a
maximum, is sealed off and transferred to the dellvery side of
the pump. Expulsion of an amount of fluld equal to the chamber
useful volume w beglins simultaneously.

Let R denote the radius of the inside surface of the stator,
e the eccentricity, 1.e., the distance between the rotor and
stator axes, z the number of plates (expellers), which equals the
number of chambers in the pump, b the axial dimension of the
plates, and § the thilckness of the plates.
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Fig. 185. Diagram of ro-

Fig. 184, Diagram of tary-plate pump with
rotary-plate pump. plates operated by fluid
pressure,

Then the useful chamber volume can be approxlmated by the
formula

w-—-—[—z—“—m—:—ﬂ-—z] 2eb, ’ (13.4)

and the averaged theoretical per-second delivery according to
(13.1) will be

Q=" =[2n(R—c)—2t] 2eb - (m3 /5],

Since the chamber transfer distance is reduced to a minlmum
in the rotary-plate pump, and the recelving and delivery spaces
are separated only by the contact between the face of the plate
and the stator, the pump is not particularly tightly sealed. As
a result, the pressure developed by a rotary-plate pump is usu-
ally somewhat lower than the pressures put out by other rotor
pumps.

Pumps built according to the diagram of Fig. 184 are used as
gasoline pumps for piston alrcraft engines and as fuel booster
and oil pumps on some gas-turbine-engined alrcraft. In these
cases, pressures of only a few atmospheres are required of the
pumps.

Rotary-plate pumps are used 1ln metal-cutting machine tools
and certain other machines in the form of more powerful units
with up to 10-12 and more plates and with devices that improve
internal sealing. This makes it possible to obtaln pressures up
to 70 kgf/cm? from them, and in some cases even higher pressures.

Thus, in the pump shown in Fig. 185, the pressure of the
plates against the stator is increased by supplying fluid under
pressure from the delivery space to the annular passage C and,
consequently, to the inner ends of the plates, Fluid is sup-
plied to the working chambers and taken from these chambers
through the sausage-shaped intake and delivery ports a and b,
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which are connected to the intake and delivery pipes of the pump,
respectively.

In contrast to rotary (gear, screw) pumps, the principle of
rotary-plate pumps permits regulation of swept volume; this is
easily accomplished by changing the eccentricity, i.e., shifting
the rotor relative to the stator.

By reducing the eccentricity, we can reduce the delivery of
the pump at a given speed and vice versa, but thLis naturally re-
quires provision of the appropriate device in the design of the

pump.

Double-action rotary-plate pumps, in which each expeller
(plate) performs two reciprocating motions relative to the rotor
during a single rotor revolution, are also in use. In these
pumps, the inside of the stator must have a speclal cylindrical
shape instead of being round.

Rotary-piston pumps, a class that also includes rotary-
plunger types, are used with both single-plane and three-dimen-
sional kinematlecs.

In the former version, which 1s known as the radial rotary-
piston (or rotary-plunger) pump, rotor 1 is positioned eccen-
trically in stator 3 and fitted with radial cylindrical sockets
(Fig. 186). The pistons (plungers) 2, which fit into these
sockets and act as expellers, reciprocate relative to the rotor
as the latter turns, with their ends sliaing on the inner surface
of the stator. Special rollers are somet mes used instead of
allowlng the pistons to slip.

As we have noted, the chambers are
bounded by expellers in cylindrical cavi-
ties (sockets) of the rotor. The chambers
communicate by turns, through radial
drilled passages, with the left and right
haives of the central cavity, which 1is
divided by vertical partition 4 into two
chambers, The right-hand chamber in Fig.
186 1is the receiving (intake) chamber, and
the one on the left 1s the delivery (pres-
sure) chamber; fluld proceeds from the
Fig. 186, Diagram of former into the working chambers and then,
radial rotary-piston after they are locked off and transferred,

pump. is displaced into the second, delivery
KEY: (a) delivery chamber.

space; (b) intake

space. The chambers are locked when the

radial hole reaches the partition. Conse-

guently, each chamber 1s closed twice dur-
ing each rotor revolution: once when 1ts volume 1s greatest and
again when 1ts volume 1s smallest (the so-called dead space),
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The useful chamber volume is this pump equals the volume
displaced by each plston, i.e.,

nd?
=% %

where 4 1is the plunger diameter and e 1s the eccentricity.

The average theoretical per-second delivery for 2 plungers
equals

nd?esn

Q'=To— [m3/s]. (13.5)

Radial rotary-piston pumps are built for pressures up to 200-
300 kgf/cm?. Pumps with both constant and variable (adjustable)
swept volumes are in use. 1n a radial rotary-piston pump, dis-
placement is regulated in the same way as in a rotary-plate pump,
by changing the eccentricity.

Fig. 187. Diagram of axial rotary-
piston pump with inclined disk.

In axial rotary-piston pumps, the mechanism that transmits
motion to the expellers (pistons, plungers) has a three-dimen-
sional kinematics. The cylindrical echambers in the rotor are
positioned parallel to its axis of rotation or at a small angle
to this axis.

Axial rotary-piston pumps are made with an inclined disk or
an inclined block (rotor). One of the possible arrangements for
the former type is shown in Fig. 187.

The rotor 1.has sockets parallel to its axis of rotation,
and the chambers are formed in these sockets. The ends of plun-
gers 2, which are advanced out of the sockets by springs, slide
{or roll) along the inclined thrust plate (disk) 3, which forces
the plungers on the other semicircle back into thelr sockets.

This causes the plungers to reciprocate in the sockets and,
consequently, to take fluid in and deliver it. The statlonary
part 4 of the pump, against which the end of the rotor runs, has
two sausage-shaped ports 5, one of which communicates with the
intake 1line and the other with the delivery line. As the rotor
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turns, holes 6 move across ports 5 and, consequently, connect the
sockets first with the intake line and then with the delivery
line. When these holes reach partition 7, the chamber 1s locked,
at maximum volume in the top position and minimum volume in the
bottom position.

The inclined disk 1s hinged in such a way that i1t can be
turned on an axis that intersects the rotor axis at a right angle,
and this permits acjusting the disk angle y to regulate the de-
livery.

The averaged per-second delivery of this pump is

nd? n D2ty n
=._._lz._:_—..._‘__‘."..)_.__—. 1 -6
e 4 60 . 4 60 (13.6)

where D 1s the dlameter of the circle on which the cylinder axes
lie in the rotor; d 1s the plunger (piston) diameter; z 1s the
number of plungers, % 1s the plunger stroke.

Fig., 188. Diagrams of inclined-piston rotary-
plston pumps.

Quite often, the plungers of an inclined-disk pump are ar-
ranged at a certain angle ¢ instead of parallel to the rotor
axls (see Fig. 188). 1In this case, the plungers are expelled
from thelr sockets not only by the spring forces, but also by com=-
ponents of the centrifugal forces that act on these plungers with
rotation of the rotor; this makes it possible to use smaller
springs.

With a flat inclined disk, the plunger stroke % can be deter-
mined from geometrical considerations on the assumption that each
plunger contacts the disk at a point on the plunger axis (see Fig.
188a). On this basis, using the law of sines, we obtain

I Dy

slny 2tln (90° --y 4 ¢)

and
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ho, Dy
siny  2sin(S0° —y~-¢)"

where D, is the diameter of the circle on which the points of
contact between the plunger and the disk are situated at vy = 0.

Hence the plunger stroke equals

l=l =22—. ' ) -] !
(g 2‘“‘LM@-H}WMQ+W}

and the average theoretical per-second delivery is determined by
the expression

_.nd? ,on ] » 1 1
mi [ 2L o D2 D 20 si 13.
= e ™ "msn[cos(v~v) + cos (7 -c-_\-)] (137

With ¢ = 0, this expression becomes
Formula (13.6).

The inclined disk is often made coni-
cal in shape so that the plungers will be
1 perpendicular to its thrust surface at
4 5 Yy = 0. For this condition, the angle at
|f the vertex of this cone will be 28 =

13 il- = (90° - ¢)2 (see Fig. 188b).
As above, we obtaln the following ex-
pression for plunger stroke in thls case:
1=D, ¥
0 cose '

and as the disk inclination angle y 1s
varied, the delivery of the pump will vary
in proportion to tan y as in the case of
the axial plunger arrangement.

Fig. 189. Diagram of
inclined-block axial
rotary-plston pump.

Figure 189 shows a dlagram of a
rotary-piston pump with an inclined block (rotor). Rotatlon 1s
transmitted from drive shaft 1 to rotor 2 through the universal
joint 3, which makes 1t possible to change the angle between the
shaft and rotor axes. The rotor is enclosed in a so-called cradle
4, whose base has two clrcular-arc grooves (intake 5 and dellvery
65 similar to those in the inclined-disk pump. In the figure,
the section through the cradle is conventional: in actuality, the
intake and delivery passages of the pump (7 and 8) are at the
sides. In an adjustable pump, this cradle can be turned to
change the inclination angle vy. The pistons are connected to the
drive-shaft disk by hinged rods.

If we disregard the angles that the axes of the piston rods
form with the cylinder axes, the plston stroke is expressed, 1in
contrast to the previous case, as follows:

{=Dsiny,
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where the dimension D is indicated in Fig. 189.

Inverted rotor pumps, which are sometimes used 1n aviation
and other fields, can be regarded as rotor pumps in which the
rotor has been stopped and the stator set in rotation. With
this inversion, the rotary-piston pump is converted formally
into a piston pump, since its chambers remain stationary and
the absolute motion of the expellers becomes reciprocating. How-
ever, the design and properties of these pumps (unless valve con-
trol is used) resemble those of rotor pumps very closely. At the
same time, it must be remembered that the hydraulic, dynamic, and
cavitation properties of inverted rotor pumps differ to some ex-
tent from the properties of ordinary rotor pumps.

a Lymmapnar nodave
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Fig. 190. Delivery diagram for five-
plunger pump.
KEY: (a) total delivery.

Delivery nonuniformity of rotor pumps. We stated above that
rotor displacement pumps always deliver fluld with some  uneven
ness. Investigation of the kinematics of the mechanisms used in
rotary-piston pumps indicates that the relative velocity of the
plungers, as in the case of the crank mechanism, can be regarded
as approximately proportional to the sine of the rotor turn angle
¢. The delivery of fluld by each plunger varies as a function of
angle ¢ and time t in accordance with the same sinusoidal law.
The total delivery of fluid by all plungers of the pump can be
found by adding the ordinates of these sinusolds, as indicated in
Fig. 190 for z = 5 plungers,

The unevenness of delivery decreases with increasing number
of expellers (plungers, pistons, or plates) in the pump. It is
important to note, however, that it 1s much more advantageous
from the standpoint of improving pump-delivery uniformity to use
an odd number of expellers z.

The degree of delivery nonuniformity for odd z can be evalu-
ated by the following approximate formula, which 1s due to Prof.
N.S. Acherkan:

Qs Qo 123 o

0= w0
Qcp 22 )
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while for even 2z

P 4
o:="— 9.

%18

A calculation by these formulas gives the following values
for the coefficient o for varlous z.

¢| 5| 6 7 8 9|l°|ll 12

1,0 3,5

e% | 50| 13,9 2,6 7.8 1,8 ‘ 5.0

As a result, an odd number of pistons (plungers) —5, 7, or
9 — 1s usually used in rotary-plston pumps.

The comparatively strong nonuniformity of dellvery with an
even number of expellers is explained by the fact that two cham-
bers are locked simultaneously and the delivery of fluid from
these chambers drops to zero, while only one chamber is closed
at a time if z 1s odd.

§68. CHARACTERISTICS OF ROTOR DISPLACEMENT PUMPS

Let us now examine the general hydraulilc propertles of all
of the rotor displacement pumps, l.e., thelr characteristics.
Earlier (§§51 and 55), we defined the characteristic of a pump
as the curve of the head (or pressure) that 1t develops versus
its delivery (flow rate) at constant rpm.

From Formula (13.1), which 1s common

LN e Hyp
’ \! for all rotor displacement pumps,

Wn
Q==

<1
i
I
' it follows that the theoretical delivery
of a rotor displacement pump 1s indepen-
dent of pressure. Hence the theoretical
characteristic of such a pump in the coor-
dinates p (or H) and Q with n = const 1s
Fig. 191. Character- a straight line running parallel to the
istics of rotor pump axls of ordinates all the way to infinity.
for n,, H, and n,, The theoretical characteristics of a rotor
TP displacement pump for two different speeds
are indicated by broken lines in Fig. 191.

: This means that theoretically, any dis-
placement pump is capable of producing any desired pressure, ir-
respective of speed and flow rate. In practice, the situation is
somewhat different, and the actual characteristic of the displace-
ment pump differs from the theoretical due to leakage. This 1s
because any pump has larger or smaller clearances between its mov-
ing and stationary parts, i.e., between the rotor, expellers, and
stator. Under the pressure developed by the pump, 2 certain
amount of fluid flows back through these clearances, i.e., from

=
S o sl s i

sy —
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the delivery zone to the intake zone. As in the case of the cen-
trifugal pump, the amount of fluid flowing back through the clear-
ances per unit of time 1s referred to as leakage and denoted by q.

Because of the small clearances in the rotor pump, fluid
flow in these pumps 1s laminar., The quantity q is therefore
directly proportional to the pressure developed by the pump and
inversely proportional to the absolute viscosity of the fluld,
but not to its first power; experiments have lndicated that the
exponent m 1s smaller than unity. For gear pumps,l we can set
m = 1/2, but there are no reliable data for other pumps, although
m must obviously be of the same order.

Thus, we have
'c=A’T':.5. (13.8)

where A is a constant that depends on the design of the pump and
its clearances and 1s indicated by experiment to be practically
independent of pump speed. .

That the exponent m is not equal to unlty 1s explained by
the fact that when fluid flows through gaps there are always
quite substantial energy losses per unit welght of fluld; as a
result, the fluld 1s heated in the gaps and 1lts viscosity de-
creases below that of the maln stream.

The actual delivery Q from the pump, 1.e., the fluid flow
that it delivers into the line, is smaller than the theoretlcal
delivery Qt by the amount of leakage; consequently,

=0, —q=T" __ 4 Puc 13.9)
Q=Q,—¢="-— A°2 . Q3
or
Q=12

where n, 1s the pump's volumetric efficlency.

It follows from the above that the true characteristics of
the rotor displacement pump, which are indicated by the solid
lines in Fig. 191, will be inclined and will intersect the theo-
retlical characteristics at Pnas = 0, 1.e., on the axis of abscis-

sas, where q = 0 and Q = Qt'

The higher the viscosity of the fluid, the less seepage will
there be through the clearances and the steeper will the pump
characteristic become. Slight inflections of the real character-

istic that are sometimes observed are explained by abnormalitles
of pump operation — poor filling of the chambers or cavitation.

TSee page 321 for footnote.
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A method of converting and replotting these characteristic:
from one set of pump operating conditions (n,, u,;) to another
(n,, u,) proceeds from the construction of the true characteris-
tic of the rotor displacement pump by Formula (13.9).

First, we recompute the initial abseclssas of the character-
istics, i.e.,

O om

Qn m '

from which
Q.,-Q..%"-. (13.10)

Then we express the leakage ratio ror the different pres-

sures, i.e., for Pinas © Pinas?
u-(m.)"‘ .
%\
from which
o= (3" -
=0, (13.11)

Using the values found for Qtz and q,, we construct a new
characteristic as shown in Fig. 191 for the case in which

m>n and palH;.

The results of tests of rotor pumps at a glven u = const are
usually represented by curves of the flow rate Q as a function of
speed n for a series of constant pressures Phas developed by the

pump (Fig. 192). The result is a series of straight lines that
are approximately parallel to one another (owing to the indepen-
dence of q of g), each corresponding to a constant Pras* Here,

the larger Phas? the lower is the line, since the seepage q 1is
larger.

Since the characteristic of the rotor displacement pump in
P, Q-coordinates 1s usually very steep, a decrease in pump de-
livery, e.g., resulting from an increase in line resistance,
causes a quite substantial pressure rise. Special devlices must
be provided to protect the pump and the system connected to it
from excesslve overpressures when delivery drops off.

One such device 1s the so-called overflow (bleeder) valve
(Fig. 193), which opens under elevated pressure and passes part
of the flow rate in the reverse direction. The pump characteris-
tic then changes as indicated in Fig. 194a. The valve 1s closed
on segment AB, since the pressure is moderate. Polnt B marks the
beginning of opening; the pressure belng developed by the pump 1s
equal here to the spring force Ppr divided by the area Skl of the

valve. On segment BC, the fluid delivery into the lilne equals
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Q= —Qur—4,
where le 1s the flow rate through the valve.

FRFre 4
f
L™
|
Fig. 192. Delivery of Fig. 193. Dlagram of
rotor pump as a func- pump with adjustable
tion of speed. valve. 1) overflow valve;
2) rotor; 3) stator.
ﬁ Nae

Ly
. bl
Fig. 194, Characteristic of pump with

overflow valve (a) and with automatic
delivery control system (b).

Point C corresponds to total closing of the line; all fluid
delivered by the pump is fed back through the valve.

A device taking the form of a servomotor consisting of a
cylinder, piston, and rod and operating on an adjustable pump is
an improvement (Fig. 195).

When the pressure Phas reaches a definite value, it acts on

plston 1, compresses spring 2, and causes disk 3 to turn through
a smaller angle y. Thils reduces delivery, so that there is prac-
tically no increase 1n pressure. The corresponding pump char-
acteristic appears in Fig. 194b. On segment AB, the disk is at
its maximum angle. At point B, the angle y begins to decrease,
and at point C is it only a fraction of a degree, which 1s neces-
sary to compensate seepage.
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If the pressure in the pump servocylinder chamber with the
spring (on the right of the piston in Fig. 195) were constant at,
for example, atmospheric pressure, the slope of the pump char-
acteristic on segment BC would be determined only by the stiff-
ness of the spring. To obtain a flat pump characteristic, 1t
would be necessary to use a softer spring, but one that was at
the same time very strong, i.e., large.

Fig. 195. Diagram of rotary-biston
pump with automatic delivery control.

To reduce the dimensions of the spring and obtaln the flat-
est possible pump characteristic on segment BC, the spring cham-
ber of the servomechanism 1s opened. Fluld enters it through
nozzle 4 from the pressure line and then passes under valve 5,
which 1s loaded by spring 6 and by the force from membrane 7,
which is under the delivery pressure. When the pump disk has
its greatest inclination (Ymax)’ the valve is closed and the

pressures on the two sides of the plston are the same and equal
to the delivery pressure. The disk 1s held in its tllted posi-
tion by the spring force and by the fluld pressure on the pilston,
which is directed from right to 1left.

When the delivery pressure rises, the valve 1s lifted, fluid
begins to flow back, and the pressure in the servocylinder flow
chamber drops. The fluld-pressure force on the piston, which now
acts from left to right, compresses the spring and resets the
disk at a smaller angle.

This device 1s used both on gas-turbine-engine fuel pumps
and in aircraft hydraulic-transmission pumps.

§69. FUNDAMENTALS OF THE GENERAL THEORY OF ROTOR PUMPS AND
HYDRAULIC MOTORS

The specifics of the previously described (see §67) fluid-
displacement process in rotor pumps and the assoclated absence of
intake and delivery valves result in clearances in the pump be-
tween the stationary and moving walls; it is in these gaps that
the basic energy losses occur,
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These energy losses are: (Newtonian) fluid-friction losses,
dry (Coulomb) :riction losses, and losses to seepage from the
high-pressure space to the low-pressure space (Poiseuille losses).
The remaining types of energy losses in rotor pumps (hydraulic
losses in the pump channels, fluld-twisting losses in the rotor,
ete.) are usually small by comparison with the basic losses and
are included in the latter.

Because of the reversibility property of rotor pumps, all
of the above appllies equally to pumps that are converted to hy-
draullc motors. In the exposition to follow, therefore, we shall
speak of rotor-type hydraulic machines in general, indicating,
where necessary, the differences between the pump and the hydraul-
ic motor.

The cperating regime of a hydraulic machine 1s determined by
the following three parameters: pressure gradient 4p, rotor angu-
lar velocity w, and the dynamic coefficient of viscosity u of the
fluid.

In theoretical bookkeeping, the size of a h&draulic machine
is usually evaluated by a linear quantity - a characteristic dimen-
sion equal to

D=y V7,

where W' is the so-called characteristic volume, 1.e., the volume
of incompressible fluid passing through the machine in the absence
of leakage during a one-radian turn of the rotor.

The characteristic volume W' 1s connected with the swept
displacement W of the machine (see §66) by the obvious relation

w=Lw,
2=

A second linear diimension that is usually introduced into
conaideration is the equivalent clearance §, 1.e., the clearance
in whlch the energy losses are equal to the correspondlng losses
in all clearances of a specific hydraulic machine. For complete
geometric similarity of two hydraullic machines, 1t is necessary
that the ratios 6/D also be identical., Otherwise, the geometri-
cal similarity between the machines will be only partial.

Assuming laminar fluid flow in the clearances, let us ex-
press the leakage in the hydraulic machine in accordance with
Poiseuille's law

, Ap -
Lo S
q-ky u

where ku 1s a proportionality factor that 1s the same for an en-
tire serles of geometrically similar hydraulic machines.
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Multiplying the flow rate g by the pressure gradient Ap, we
obtaln an expression for the seepage power loss:

. Ap?
Ny b2 w0, 2 Doy 2y, (13.12)

NE R
where k,=*yca) 1s the leakage (or tightuess) coefficlent of the
hydraulic machines.

The 1liquid-friction force in a hydraulic machine is propor-
tional, according to Newton's law, to the viscosity u of the
fluid, the area of the rubbing surfaces (vD? ), and the velocity
gradient (vDw/8). Since the relative velocity of displacement

is proportional to wD, the power lost to liquid friction in the
machine will equal

N,',-_—.k,'.,uD‘-‘(B.'i) (Du)=k po?D¥= k gu?W", (13.13)

where wéh is a proportionality coefficient that is the same for
an entire series of geometrically similar hydraulic machines and
kop = kéhD/G is the coefficient of the fluld-friction losses.

The expression for the power lost to "dry" friction can be
written on the basis of Coulomb's law if it is remembered that
the normal force 1s approximately proportional to ApD2?, while the
relative velocity of displacement is proportional to wD:

Nyp=Fk o ApuD3==k AapoW’, (13.14)

The coefficient of friction is incorporated into the propor-
tionality factor ktr’ which can be assumed constant for a series

of geometrically similar machines.

The power of a hydraulic machine in the absence of the above
losses 1s known as its indicator power and expressed as follows:

A’,-.: A/’Q: = Mo == ApD:‘m,

since

QMo
© Ap

Here M is the torque on the shaft of the machine at N = Ntr =0
and Qt 1s the flow rate at q = 0,

In actuality, the pump will delivery less than Qt because of
leakage, and the power required will be greater than Ni because

of fluid and dry friction. Hence the efficiency of the pump (sub-
script 1) can be expressed thus:
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After dividing the numerator and denominator by Ni’ we ob-
tain finally
Ay

w -'bl;;nh (13.15)

-—
l+h.'+t.c

where ¢ = uw/Ap 1s a dimensionless number known as the isogonal-
ity coefficient;? n,, and n, are the volumetric and mechanical

efficiencies of the pump, respectively, and equal

wa==1-2L ang -
L . 8nd NS T

The power developed by a hydraulic motor 1s smaller than the
indicator power Ni because of dry- and fluid-friction losses, and

the power that 1t requires exceeds N1 because of seepage, which

moves in the same direction as the main flow in a hydraulic motor,
in contrast to the case of the pump. Hence the motor efficiency
(subscript 2) is expressed by the formula

NNy =N = (13.16)
NiwNy e -=Tlealhs
L]

where the volumetric and mechanical efficiencies of the motor
equal respectively

L and mam=1—k,—ke.

q.,-
14—
.

As we see from these formulas, the efficiencies of rotor-
type hydraulic machines (pumps and hydraulic motors) are uniquely
expressed in terms of the 1sogonality factor o. It can be shown
that this coefficlent is proportional to the ratio of the fric-
tional flow rate, which is governed by the motion of one wall of
the gap relative to the other (see §26), and the flow rate of the
delivery flow created by the pressure gradient. Dividing Formula
(6.15) by (6.13) and setting Pip = 4p, 2 =6, U~ wD and £ v D,
we have

Qup __Lipe 02,
-thll " AP ., '

where ~ 1s the proportionality symbol.
ZSee page 321 for footnote.

-317-



Thus, the coefficient o 1s a kinematic-similarity criterion
for geometrically similar rotor-type hydraulic machines, as well
as a quantity that characterizes the operating regime of a given
hydraulic machine.

Figure 196 presents curves of pump (a) and motor (b) effi-
clencles as functions of the coefficlient o. As the dlagrams show,
the over-all efficiency curves of the pump and hydraulic motor
(solid lines) have maxima at certain values of o = o¥,

al bl

Fig. 196. Pump (a) and hydraulle-
motor (b) efficiencies as functions
of 1sogonality coefficient.

For the pump, o* 1s obviously found from the condltion
dw/do=0, which leads us to the quadratic equation

oy o R
(°|) -*2k¥ (5,) _‘:V (I +k|p)=0n
from which

.::-‘-,(l/lz;_:‘;+;+x), (13.17)

while for the motor it 1s found from the condition dnfds=0:

LAY 1 () ‘
("2) -2k (3) "';"‘ (1 —#,,)=0,
-
from which

N AL TN
o A,(I/ ~Rz:«»p1-_1)_ (13.18)

For pumps and hydraulic motors, the quantities

are large by comparison with unity and larger the higher the ef-
ficlency of the machine. Hence Expressions (13.17) and (13.18)
can be replaced by the approximate relationships
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% [/:;_’_(II/-'.P) and °;=;-|/£~('~k..-)- (13.19)

Because of the flatness of the n and n,-curves near the
maxima, determination of (n,) - and (n, max from approximate

values of o% and o, gives quite high accuracy. Substituting Ex-
pressions (13 19) into (13.15) and (13.16), we obtain the maxi-
mum effliclencies of the pump and hydraulic motor:

[

('lx).m= 14 k‘P (13 . 20 )
Vb bt VR (T kep)
and
-— YV ED
(‘h\nu ! 'p :’I:yk. (t:-._k_'g) . ( l 3 . 21 )
. i L]
- ! ] T—dbyy

The general theory of rotor-type hydraulic machines set forth
above was worked out during the prewar years by Prof. V.V. Mishke
(Bauman Higher Technical Institute 3t Moscow), and has been de-
veloped further since the war in the studies of Prof. V.N. Pro-

kov'yev and abroad.

aTHn rHAPOMIWHIIK ky = &y, n%

b NMaacrunnaruft wa- 9.10— 2.105 [ 76
coc ) . )
C Wectepernuit ®a-| 2-10—9~1.10~7 | 3.105—1-108 0-0,0. (7985
coc

d Poropno-nopume- | 9.10~10—15.10~3 [ (0,2—2)-106 | 0—0,15.v. ' |87—52
molt nacoc .

e Mazcrunyarsiit rg- 1,5-10-7 1,5-10% 0,1 65
poxotop .

f Wecrepewsli rua-| (3—5)-10-7 3-10%-1.10¢ 0—0,15 |55—80
povoTop

g Poropno-nopuine- 1L,1-10-¢ 4-108 0,07 50

Bofl rixposoTop

KEY: (a) type of hydraulic machine; (b) rotary-
plate pump; (c) gear pump; (d) rotary-piston pump;
(e) rotary-plate hydraullc motor; (f) gear hy-
draulic motor; (g) rotary-piston hydraulic motor.

The expresslions derived can be used to evaluate the change
in the efficlency of a hydraulic machine in the event of rela-
tively small changes in the regime indicators w, Ap, and u,
changes such that ¢ would change by no more than *50%. They can
also be used to determine the optimum operating mode for a hy-
draullc machline and its maximum efficlency value,
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dowever, the approximate nature of this theory must be borne
in mind. Inaccuracies stem mainly from the fact that the fluild
viscoslty in the clearances 1s assumed constant and equal to the
viscosity of the main stream. In actuality, as we noted earlier
(§68), the fluld 1s heated to some degree in the clearances as a
result of friction and its viscosity drops. Fluld pressure also
influences the viscosity.

Attempts have been made to take account of fluid heating in
the clearances by introducing the Prandtl number into the basic
relationships of the theory of rotor hydraulic machines.

The table on the previous page glves experimental values of
the coefficlents ku, kzh’ and ktr and the over-all efiiciency

calculated by Formulas (13.20) and (13.21) for the principal
varieties of the rotor-type hydraulic machine according to Soviet
[5] and foreign sources.

-320-



Manu-
seript
page

311
317

Footnotes

!see [9].

2Sometimes the reciprocal of the above quantity 1is also
called the isogonality coefficient.
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Symbol List

Manu-

script Symbol English equivalent
page

293 T t theoretical
300 3y6 zub tooth

302 B v inside

303 H n outside

309 cp sr average

311 Hac nas pump

312 np pr spring

312 KJ kl valve

315 y u leakage

316 x zh fluld

316 TP tr friction

317 M m mechanical

317 dp fr friction

317 Hal nap head, pressure
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CHAPTER XIV
HYDRAULIC DRIVES AND HYDRAULIC TRANSMISSIONS

A hydraulic transmission is a device for the transfer of
mechanical energy and the converslon of motion by the use of
fluid.

A hydraulic transmission consists of the followlng two basic
elements: a pump, which converts mechanical to hydraulic (fluild-
flow) energy, and a hydraulic motor, which reverses this energy
transformation.

The hydraulic motor sets a driven element 1in reciprocating
or rotary motion. Hydraullc transmissions are classified into
two basic types on the basils of this kinematic criterion: recipro-
cating hydraulic transmissions and rotary hydraulic transmissions.
Both types are used in aviation and rocketry. A further classi-
fication of hydraulic transmissions will be given below.

A hydraulic drive is a device that consists of a hydraulic
transmission, a control system, and accessorlies. Thus, the hy-
draulic transmission 1s the actuating element of the hydraulic
drive.

§70. RECIPROCATING HYDRAULIC TRANSMISSIONS

General information. The hydraulic motors used in recipro-
cating hydraulic transmissions are hydraulic power cylinders with
pistons and rods that execute reciprocating motions under the ac-
tion of working-fluid pressure. Double-action hydraulic
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cylinders, in which the driven element can move in two opposite
directions under the action of fluld pressure, are used most
frequently.

The so-called hydraulic torque cylinders, in which the driven
element (a shaft) executes revers e rotary motions through an
angle smaller than 360°, are sometimes used along with hydraulilc
power cylinders,

Reciprocating hydraulic transmissions
are used very extenslively on aircraft,
s usually not 1in the form of simple trans-
sy, missions, but as transmission systems com-
T posed of one or more displacement pumps
and several hydraulic motors. The latter
are connected to one another by main 1lines
(pipelines) and perform various functions
simultaneously or at different times ‘(the
functions performed by these hydraulic
motors were enumerated in. §1).

A speclal hydraulic system (a system

| # of boosters or hydraulic amplifiers) built

with backup and emergency systems 1ls usu-
EigﬁeiEZ;yDi;gigﬂlgg ally provided for control of the alrcraft
transmission in view of the importance of this function
: and the high power required. Another,

general-purpose, hydraulic transmission
system serves the other functions on the
alrplane.

Such a hydraulic transmission system usually consists of a
main (pump) line and several parallel-connected actuator.mains
with the appropriate hydraulic cylinders, each of which 1s de-
signed to perform a definite function: control of landing gear,
flaps, etc.

Figure 197 shows a schematic diagram of an elementary reci-
procating-action hydraulic transmission with one actuator main
and one hydraulic power cylinder. The transmission includes:
tank 1, an intake main, pump 2, a pressure main with certain
general-purpose units on it running to the control unit (dis-
tributor) 3, and actuator and return lines.

The actuator main begins at the distributor; it is followed
by a length of main that supplies fluid to hydraulic cylinder 4
and a return length of main running from the hydraulic cylinder
to the distributor. When the hydraulic motor 1s reversed by
switching the distributor, the supply and return lines exchange
functions.

Figure 198 shows a diagram of an aircraft hydraulic trans-
mission system with only one of the actuator mains indicated by
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way of example — the main for operation of the flaps (legénd
items 1-4 are the same as in Fig. 197).!

K Goyeum 0m doypeux
ucnonsumeny- UCPORHETIZNS-

' HoiM MERLCM = NoIX HEIUCM-
panm perzi

Fig. 198. Diagram of aircraft hydraulic
transmission system.

KEY: (a) to other actuator mains; (b) air
from compressor; (¢) from other actuator
malns.

The arrangement of the main hydraulic line depends on the
kind of pump used in the hydraulic system — adjustable or non-
adjustable., Gear (nonadjustable) and rotary-piston (adjustable)
pumps are used in alrcraft hydraulic systems. The adjustable
pumps are usually fitted with appropriate devices (see §68) for
maintenance of practically constant pressure and reduction of
delivery to a certain minimum in the absence of a demand for
fluid. This minimum should compensate only internal leakage in
the system and provide for pump coollng, which is accomplished by
constant cireulation of fluid through a high-resistance choke 5.

If, on the other hand, a nonadjustable pump is used in the
system, its delivery is practlcally constant (at constant speed).
In the absence of a demand for working fluid, therefore, this
delivery must be returned to the tank with minimum resistance.
The automatic pump-relief device 6, which switches the pump to
"141e" /see broken lines on the figure) serves thils purpose.

Safety valve 7 is usually inserted in all hydraulic systems
to protect them from excessive pressure in the event of failure

of the pump automatic control, the automatic relief device, or
the air-pressure regulator 1in the tank pressurizing system.

*See page 367 for footnote.
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Hydraulic accumulator 8 accumulates working fluid under pres-
sure when the hydraulic mctors are idle for subsequent use, to-
gether with pump delivery, when the demand for fluid reaches its-
maximum. The accumulator 2lso smooths out pump-delivery uneven-
ness, softens water hammer, and replenishes fluid leakage from
the high-pressure line into the return line in automatically re-
lieved systems.

As we stated in §42, the distributor is a control device by
means of which one or another chamber of a hydraulic cylinder
(actuating mechanism) is connected to the system pressure line
or disconnected from this line. The squares on the dlagram re-
present the various possible line connections, 1.e., distributor
positions.

The flow divider or batcher 9 is used when it 1s necessary
to synchronize the motions of various mechanisms (such as flaps).
Also shown here 1s a batchmeter 10 — a device that prevents work-
ing fluld from escaping the system when a plpeline ruptures.

Filter 11 has the function of trapping solid particles 1n the
fluid. The purpose of the check valve 12 1s to pass a stream of
fluid (or air) in one direction and block i1t in the opposite
direction.

For more detailed Information on the units of alrcraft hy-
draulic systems listed above and on certain others, the reader
is referred to §72.

The basic working fluld used in aircraft hydraulic systems
is AMG-10, a heavy kerosene to which a special thickener (Vini-
pol) has been added to increase its viscosity. The physical
properties of AMG-10 fluld were given in Table 1 (see Chapter I).
AMG-10 moves in laminar flow in pipelines at low temperatures.
However, because of the comparatively low viscosity of AMG-10
fluid, the laminar flow regime ylelds to turbulent flow in some
parts of the alrcraft hydraulic system. 1In winter, for example,
during retraction of landing gear, laminar flow is established in
the return line, but the flow may be turbulent 1n the pressure
line, where the fluid is heated.

Principle of calculation. In the mathematical design of
such a hydraulic transmisslion, it should be regarded as a closed
pipeline with pump delivery of fluid, and the power cylinder as
a speclal local resistance that causes a pressure drop Ap equal

to the difference between the pressures on the two sides of the
piston, 1.e.,
Apg=p,—p,.

It can be assumed in first approximation that the delivery
of fluid from the accumulator is zero, 1l.e., that the plston is
moved solely by pump operation.

7See page 367 for footnote.
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The gradient Apts can be expressed as follows on the basis
of the equilibrium equation of the piston (see Fig. 197):

% *
"—(D’—d’)p,=P+’-'—?-p,.
from which

4P 2
® (12— a2) +m—ﬂ

AP-':fl"I’z'—“ P (14.1)

The quantity p, is approximately equal to the total pressure
loss in the return line; consequently, the second term in (14.1)
is a function of flow rate or piston speed. This term 1s usually
far smaller than the first and 1s often dropped.

Thus, the pressure required for a gilven system when the pump
delivers Qnas must be found by adding the gradient Apts to the
total pressure loss in the entire system, 1.e.,

Pun=Ap+ 2 p,,. (14.2")

In determining the return-line hydraulic losses, 1t must be
remembered that during motion of a piston with a rod on one end,
the fluid flow rate Qsl in the return line 1s not equal to tlhe

flow Qnas in the delivery line, since the piston area 1s larger
on one side than on the other. For this purpose, we introduce a
coefficient a, which equals

=2 D
1 Qua D2— g2

when the piston rises (see Fig. 197).

Let us assume that we have the particular case in which flow
is laminar in the return line and turbulent in the delivery line.

Then, applying Formula (14.1) and the expression for the
coefficient a, and grouping terms in accordance with the type of
dependence on Qnas’ we obtain from (14.2')

p'°'P=——-—-—-._— —I-azkl\'onn ”" kﬂ’Q?u:- ( 14,2 )

Here the first term 1n the right-hand member 1s the basic
term in the expression for Apts’ the second term is the pressure

loss in the return line plus the second term in (14.,1), and the
third term is the pressure loss in the delivery line (from the
tank to the cylinder).

§ The sense of the coefflcients k, and k, 1s the same as in
47,
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Fig. 199. Graphical de-
termination of hydraul-
ic¢c transmission operat-
ing regime.

KEY: (a) system char-
acteristic; (b) pump
characteristic.

From this equation, we construct
the system characteristic (Fig. 199)
and enter the pump characteristic on
the same dliagram. The intersection
point of these two lines determines the

system operating regime, i.e., Q . and

Phas* If the load P along the rod does

not va.y aver the stroke of the piston,
dividing the cylinder volume by the flow
rate gives the time to execute the opera-
tion or the time required to traverse

the piston from one extreme position to
the other.

An aircraft landing-gear hydraullc
system usually has three power cylinders
connected in parallel. 1In thils case,
the system should be regarded for de-
sign purposes as a complex closed plpe-
line and, in addition to the lnstruc-
tions given above, recourse should be
taken to the characteristic-plotting
method (see §50).

Calcvlation for nonsteady regime. The dynamlics of the mo-
tion is not taken into account in the method set forth above for
synthesis of the hydraulic transmission (hydraulic system), since
it was assumed that the fluid flow 1is fully stabilized over the
entire span of the working cycle from the time at which the pis-
ton(s) begin to move to the time at which they stop.

Tn actuality, the motions of the fluld and piston are non-
uniform, and for this reason dynamic pressures usually arise in
the systém and must be taken into account when large masses are
being moved with large accelerations and abrupt load changes.

Suppose we have a given law of varlatlon of the external
load on the rod as a functlon of piston movement P = f(x). It
is required to determine the time of displacement of the pilston
from one extreme gosition to the other with consideration of in-

ertial pressures.

Let us write the fundamental equation of nonsteady motion
(10.6) for the flow of fluid (see Fig. 197) from the pump outlet
(section 0~0) to the pump inlet (section 3-3) with consideration
of the pressure losses in the hydraullc power cylinder to handle
the load and the inertia of the moving parts.

Disregarding the velocity-head difference, we have

Po==P;'l'Al’n + 2 pw'{' I’--ul'*‘l’u'.‘"" Fr3 ( 14, 3 ' )

¥See page 367 for footnote.
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where Eptr = kQ;as is the sum of the pressure losses in the pipe-
lines; Apts = P/Sp is the pressure loss to start the load moving;
Pyn: and pinz are the inertial pressures used to accelerate the

fluid in the delivery and return lines, respectively, and are
equal to (see §45)

. _ 0 20
p,.,=g-£'l-!%“— and P--:—OE:' '7;—‘-

(% and S are the lengths and sectional areas of the pipes, respec-
tively); Pins is the inertial pressure used to accelerate the pis-
ton and the masses of the moving mechanisms reduced to the piston,
and equals

In 4Quse 1
Puy=M, ;:=M. - I
Here, Sp, Jp and M are the area, acceleration, and mass of the
piston, respectively (and of the other moving parts reduced to
the piston).

Since Qsl = aQ » We have

nas

_'_2_ 4Quac
'P“,=d.o s, T

and the fundamental equation (14.3') can be rewritten

P . M dQu
Puc=Po= Py Q. 57+ T .3
where Pnas is the pressure developed by the pump, which we shall

assume constant, and M is the reduced mass of all of the fluid and
moving parts, which equals

st

—STM..

) s,
M=Q(Sl’l+a = )+
. * s’
In the case of a constant load along the piston rod (P =

= const), Eq. (14.3) 1s easily solved for linear (m = 1) or
square-law (m = 2) resistances,

If the load 1s variable, it 1s recommendea that the problem
be solved by numerical integration.

The initial value of the derivative (dQ , /dt), is found

from (14.3) with the initial values P = P, and Q = 0. Then we
take a short time segment At; and find the flow rate increment

= ()
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The fluid volume entering the hydraulic cylinder during time
At, 1is

‘W' - ';_ &l AQI.

while the piston travels a distance

u.-e!L
L/

A new value of the load P, is found from 5x,, and the time deriva-
tive of flow rate at the end of segment At, is found from (14.3)
with the substitution Q, = 4Q, and P = P,

We then take a new time segment At, and, assuming that the
derivative value (dQn“/dt)l calculated in the first cycle 1is

constant for this segment, we determine the flow rate increment

s (5]

and then the flow rate and volume increment

Q= 0Qy+ Qs AWy= 31 (4Qs +0Q)

and so forth.

The third and subsequent cycles are analogous to the above.
The 1imits of integration are the beginning and end of the work-
ing stroke. The unknown time is found as the sum of the segments
At. .

§71. HYDRAULIC SERVO DRIVE (HYDRAULIC BOOSTER)

In the hydraulic transmission examined in the preceding sec-
tion, we had a simple displacement of the piston from one extreme
position to the other, during which 1t overcomes a load P along
the piston rod.

In other cases, it 1s necessary to secure a more complex
piston (rod) motion. Thus, in aircraft control systems, the rod
of the hydraullc power eylinder must automatically follow the mo-
tion of the control lever, and a definite rod position must cor-
respond to each position of that lever.

These are systems of the hydraulic servo type, and the hy-
draulic cylinder is called a hydraulic booster or amplifier in
this case, since 1its actuating rod does not simply repeat the
motion of the control lever, but also develops a force consider-
ably greater than that applied to the control.

As a rule, modern high-speed aircraft and helicopters are
controlled with the ald of hydraulic boosters, since the effort
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required at the control surfaces is often many times the muscular
strength of the pilot.

Pigure 200 shows a schematic diagram of a hydraulic ampli-
fier (booster). By moving the control 1, for example to the
right, the pilot traverses command slidevalve 2, which directs
fluid under pressure through passage 3 into the left chamber of
cylinder 4 and connects its right chamber with the return line.
Under the pressure developed by the pump, piston 5 moves to the
right together with the spool of slidevalve 6 until the slidevalve
passages through which fluid enters the cylinder and leaves it
are covered.

Pig. 200. Schematic diagram of

hydraulic amplifier (booster).

KEY: (a) return; (b) from pump;
(¢c) to control surface.

When the stick and slidevalve are moved to the left, pres-
sure will be supplied to the right chamber of the cylinder and
the piston will move to the left.

Thus, the actuating rod 7, which 1s connected in the example
to a control surface of the airplane, follows all motions of
slidevalve 2, but the force that it develops is many times that
which the pilot applies to the slidevalve.

Let us now examine the basic characteristics of the hy-
draulic booster as a power drive. We shall derive formulas for
the effort at the actuating rod of the booster, its efficiency,
and the power that 1t develops.

The pressure supplied %2 the hydraulic booster is used to
overcome the force P acting along the actuator rod and hydraulic
resistances, 1i.e.,

Po’=AP..”*ZP. (lu-u)

where Py ® Pyp = pvykh is the fluild pressure at the inlet of the
booster minus the pressure at the outlet; Apts =p, - p, 1is the
pressure drop in the cylinder, which equals Apts = P/S; S 1s the
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piston area less the rod area; Zp is the total pressure loss on
the path of the fluid from the inlet into the booster to its out-
let,

Assuming that the hydraulic losses take place basically in
two partially covered slide-valve ports and that these losses are
square-law functions of velocity (flow rate), we can write

Zr=% 2y,
where ¢ is the resistance coefficlent of Lhe slidevalve port and
v is the velocity of fluid outflow through 1t.

Since the slidevalve ports are usually rectangular, with one
side of the rectangle constant and equal to b, which the other is
variable and equal to x (see Pig. 200), we can write the flow
rate equation in the form

QuVSw=oix,
where V is the speed of the piston.

Expressing v .n terms of Q in accordance with the above, and
then substituting it into the formula for Jp and (14.4), we ob-

tain
- b4 _L.
P=op+ 2y 7
or
re=tr +4%, (144
where
o 2
‘“

The quantity k can be assumed approximately constant and in-
dependent of flow rate., If the booster is supplied by an adjust-
able constant-pressure pump (see Fig. 195), and 1f the hydraulic
losses in the supply pipes can be disregarded, the pressure p,
will also be constant at the pressure developed by the pump.

In the absence of a load on the actuator rod (P = 0 and

Apts = 0) and with the slidevalve ports wide open (x = Xpax * t),

the delivery (flow rate) of fluid to the booster will be Q = Q...
We then obtain from (14.4')

‘-p MK .
¢ a-ll
After substituting this expression into (14.4') and solving
it for 4p
ts? .
AP-"'PO(I "g‘) ’
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where U--Q—-L-V is the relative flow rate or the relative
Qan

Vs
speed of the actuator rod; 3-1fL- is the percentage opening of
. (]

the slidevalve ports. From the above, the force acting along the
actuator rod (the ioad) will be

P-Ap.S--p.S(l -;). (14.5')

and the relative load F is found by dividing P by P, . = P8,
i.e.,

7--'-‘;'.—-1—;-1-;. (14.5)

Fig. 201, Static character- Fig. 202. Alternate

istics of hydraulic booster. method of plotting static
characteristics of hy-
draulic booster.

This equation can be used to construct a net of so-called
static characteristics of the hydraulic booster, 1.e., curves of
P as a function of Q for various x (Fig. 201). This diagram 1s
constructed for positive and negative s and x, 1.e., for motion
of “he slidevalve and rod and, consequently, of the fluild in
either direction.

We see from the diagram that the force on the actuator rod
approaches the largest possible value Pmax = p,S only at low

speeds V of the rod. The faster the motion of the rod, the
smaller the load that it will handle.

The load on the rod changes sign where the curves cross the
axis of abscissas, i.e., the load is transformed into a force
that pulls the rod in the direction of motion. This results in
a further increase in its speed, and the hydraulic cylinder works
in the pump mode. Thus, in quadrants I and III on the dlagram,
the hydraulic cylinder is operating as a motor performing work to
overcome the load, and in quadrants II and IV 1t is a pump supply-
ing fluid in the same direction as the maln pump.
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The static characteristics of a hydraulic booster can also
be constructed in another coordinate system., Let us solve Eq.
(14.5) for J = V:

JuPu=xVi-P (14.6)

and plot § = 7 as a function of X for various values of F (Pig.
202), We obtain a series of straight lines whose inclination to
the x-axis is smaller the greater the load on the booster actu-
ating rod. At Pe 1, the booster characteristic coincides with
the axis of abscissas, and this means that the rod speed is gzero.

i

7L

Pig. 203. Diagrams of

slidevalves. a) ideal; Fig. 204. Characteristic
b) with positive over- of hydraulic booster
lap; (c¢) open. with positive overlap.

The characteristics of the booster are also influenced by
the so-called overlap of the slidevalve, i1.e., the relation be-
tween the width h of the slidevalve spool and the width t of its
ports. We therefore distinguish the ideal slidevalve, in which
h = ¢t (Fig. 203a), the positive-overlap slidevalve, in which
h > t (Fig. 203b), and the negative-overlap or open slidevalve,
in which h < t (Fig. 203c). The overlap 1s taken as

At = _ A-—=t
— € =i —
Cx=2 2 or = 25

The characteristic shown in Pig. 202 1s that of an ideal
slidevalve (c = 0). A dead zone of width 2c appears on the char-
acteristic of the positive-overlap slidevalve — a disadvantage,
but one that improves sealing (Fig. 20L).

In the open slidevalve, fluid seeps from the delivery line
to the return line and, consequently, power is lost. However,
there 1s practically no dead zone, since when the spool 1is shifted
even very slightly from its neutral position, a pressure gradient
appears in the hydraulic power cylinder.

The efficiency n of a hydraulic booster will be represented
here as the ratio of the work done by the actuator rod per second
to the power that the fluid flow applies to the hydraulic booster,

i.e.,
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(44
n-;——ﬁ{,—,—--ﬂ‘-” (14.7)

Consequently, the efficiency of the booster is numerically
equal to the relative load on the rod and varies in accordance
with the same law as PF.

The useful power of the booster is

N=pPV,
and the relative power 1s determined by the
ratio
[ad
N2l _ PP,
SV s -
Pig. 205. Relative
power curves of hy- Applying (14.5) and remembering that
draulic booster. = §, we obtain
N-[l-%]q. (14.8)

FPigure 205 gives curves of the relative power N as a func-
tion of § = ¥ for various x, as plotted by Formula (14.8).

Let us find the value of the relative flow § at which the
power reaches its maximum.

For X = 1, we obtain instead of (14.8)
N;—I =§l "@)6-

After differentiating with respect to §, we equate the deri-
vative to zero:

aN =
51300,

Hence the optimum relative flow rate

6.-: == Vouv =+=0,58,

{N
and the maximum relative power

N.. =(1 -.;-)— ),‘3 =0,385.

Then, according to Formulas (14.5) and (14.7), the relative
rod load and the booster efficiency are equal to

p.—::n».:—:-_
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Pig. 206. Diagram of hydraulic booster with
internal slidevalve,

KEY: (a) from pump; (b) return; (¢) pres-
sure from pump; (ds return pressure; (e)
closed volume.

The absolute value of the maximum power will be
N * | vV 2
373 PV au= 373 QuisPr

where Q ., can be found from the expression derived above for k,

i.e., _
Qoo ™ Y l/ l:— .

After substitution in the above expression, we finally ob-
tain

Neuwm575 A0 (14.9)

Figure 206 shows the design layout of a booster whose slide-
valve is accommodated inside the actuating rod 2. When command
spool 1 shifts, fluid from the pump 1s directed through passages
7 into one of the chambers of cylinder 3 and 1s drained from the
other.

In addition to the cylinder-piston group 4 and the slide-
valve, aircraft hydraulic boosters also have the followling
auxiliary devices.

1. A cylinder-bypass system, which provides for automatic
interconnection of both cylinder chambers in the event of a pres-
sure drop in the hydraulic system. Thls is necessary to permit
free movement of the booster actuator rod by means of the control
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stick on switching to manual control, when the booster does no
work at all and is reduced to a simple kinematic element.

Pig. 207. Diagram of hydraulic booster with
external slidevalve.

KEY: (a) from stick; (b) return; (c) from
pump; (d) to control surface.

In Pig. 206, the cylinder chambers are connected by the by-
pass plungers 5. Obviously, when there is no pressure in the
system, movement of the piston by an external force will move the
bypass plungers to open the passages, through which fluid can
flow without hindrance from one chamber of the cylinder into the
other.

2. The slidevalve damper in Fig. 206 1s made in the form of
a one-way ball valve 6. Together with this valve, the slidevalve
acts as a pump that continuously exhausts fluid from damper cham-
ber A, where a vacuum 1s created as a result. Thus, a constant
unidirectional load acts on the end of the slidevalve; teets in-
dicate that this protects the booster from self-osclllation.

Figure 207 shows another design version of the hydraullc
booster. It differs from the previous one primarily in the ex-
ternal position of slidevalve 3, whose shell is also rigidly
coupled to actuator rod 2. The bypass system is also different
in design. In the absence of pressure in the booster, the by-
pass valve U 1s transferred by spring 6 to its extreme left posi-
tion (as shown on the diagram) and joins the lett chamber of
cylinder 1 with its right chamber. If fluid is supplied to the
booster under pressure, this pressure moves the bypass valve to
the right, where it covers hole 5 and blocks communication between
the booster chambers.

A booster 1s connected either reversibly or irreversibly in-
to the aircraft's control system.

In the former case, a small part of the effort from the con-
trols is transmitted to the pilot. In the latter case, the en-
tire load 1s offset by hydraulic force, and nothing but the force
of friction in the command slidevalve is transmitted back to the
control stick.

Figure 208 represents the operation of a hydraullc booster
in a reversible control system. If we imagine a reversing rod
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to be rigidly attached as shown and the center of rotation of the
rocker to be transferred from point A to point B, the reversible
control system becomes an irreversible system.

M.
. W™ A
F
r ‘E!T!' c
r ] I
b

Pig. 208. Diagram of transmission
from control stick through hydraul-
ic booster to control surface.

KEY: (a) pilot effort; (b) reversing
rod; (c) load.

A numerical example will clarify the function of the hy-
draulic booster in the reversible system.

Example. Given (see Fig. 208):

Diameter of booster cylinder D = 50 mm.

Diameter of actuating rod 4 = 30 mm,

Booster efficiency n = 0.90 (with consideration of friction
in the cylinder).

Load from control surfaces F = 960 kgf.

Y RPNy S
Arm ratios: 7-hm p 3 7 Yl

Determine:

1) the pressure p, at the entry into the booster if the pres-
sure in the return line p , = 3 kgf/cm?,

2) the stick effort g in the presence and absence of pres-
sure in the hydraulic booster.

Solution. 1. We determine the force P on the booster actuat-
ing road:
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wr £ a0 d . LY.
purfls wo’(t-v‘ 100 kgf.

2. We determine the pressure p, at the entrance into the
booster. Since

P -:-(n-- LY
we have

P B - I
b "(’”-m Poa 3.“-0.’(9-"”

4= 8kgl/cm?,

3. We find the effort at the control stick in the presence
of pressure in the booster.

The transmission ratio (the so-called "reversibility fac-

1l
tor") equals
q ‘__!__O__L_‘_ 1 1 1 3 1
{ ] . . o — e, — e gy m—
e ¢'¢ A 4 3 4 92 1n

The stick effort 1is 0---‘.'-3—'-2360»» kgf.

4, We find the stick effort in the absence of broster pres-
sure.

In this case, the transmission ratlo is

> S emef 2 L
h-—.—.—'—-{-_ s . ¢ Y n

The stick effort a-hf-£?w~2w kgf, i.e., manual control of

the airplane in this flight mode is impossible; for this reason,
a reserve power source must be provided against the eventuallty
of hydraulic system faillure.

§72. BASIC SUBUNITS OF AIRCRAPT HYDRAULIC SYSTEMS

The components of aircraft hydraulic power systems (hydraulic
transmission systems) include, first of all, those that perform
the functions of control devices (see §i3) — distributors, pres-
sure regulators, and flow regulators — and certain units with
other functions — filters, accumulators, etc.

Let us begin our examination of these units with the control
devices, whose function is to direct the flow of working fluid in
the hydraulic system.

Distributors, like other control devices, are classified as
choke and valve types on the basis of working principle (see §43).
Most commonly used are the choke distributors, whose geometrical
characteristics or percentage openings do not depend on the param-
eters of the flow through them. However, valve-type distributors
are nevertheless used in the form of adjustable valves.
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A classification on the basis of control method distin-
guishes manually, electrically, hydraulically, and pneumatically
controlled distributors.

Depending on the number of external lines (pipelines)
through which working fluid is supplied to the distributor and
removed from 1t, we distinguish three-line, four-line, etc.,
types. Th:zy are also said to be three-way, four-way, etc.

Fig. 2C3. Diagram of four-line
slidevalve distributor. .
KEY: (a) to motor; (b) return;
(¢) from pump.

The four-line distributor, to which fluid is supplied from
a pump, removed to one of the chambers of a hydraulic motor,
supplied from the other motor chamber, and returned to the tank,
is used most frequently.

Choke distributors are classified as spool and valve types.
The difference 1is that the working element reciprocates in the
former type and rotates in the latter.

The slide valve distributor, also known slmply as the slide-
valve, 1s the most common type of distributor in aircraft hy-
draulic systems. .

The working element of a slidevalve distributor 1s a rod
fitted with two, three, or four spools and capable of axlal move-
ment inside the slidevalve's cylinder (sleeve). The latter 1s
provided with ports for intake and outflow of fluid. Figure
209 is a diagram of a four-line (four-way) slidevalve distribu-
tor without (a) and with (b) compensatiun of the axial force.

The hydraulic properties of a slidevalve distributor are
determined by its flow rate coefficient u (or resistance coef-
ficient) and by the axial and radial forces acting on the spool
rod.

The flow rate coefficlent of a slidevalve is determined by
the formula

P,
]/ 14

.‘ 2 —
:V
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where b is the width of the slidevalve port; x is the percentage
opening of the port; Ap is the pressure loss in one branch of
the slidevalve.

Experiments have shown that the coefficlent u varies very
slightly with varying percentage opening of the ports and with
Reynolds number. This coefficlent depends much more strongly
on the ratio of port width b to spool diameter b/d. Figure 210
shows the flow rate coefficIent u as a function of Re for a
series of b/d values for various percentage openings of the
slidevalve ports.

o : ¥

)
o6 75
e 0,1
0.5 T
o E i — 0.8
03 :
02
o1
0
0 2wt 50! 0° Re

Fig. 210. Flow rate coefficient
of slidevalve as a function of
Reynolds number and ratio b/d.

As we see from the dlagram, the flow rate coefficlent de-
creases from 0.53 to 0.35 as the ratio b/d is increased from 0.15
to 0.83. This is because the fraction of the resistance contrib-
uted by the supply passages increases with increasing relatlve
port size.

The resistance coefficient of a slidevalve, which 1s equal
to the ratio of the head loss to the velocity head in the port,
1s found with consideration of the above from the formula

b0, 2R00(A)
302 Q?y

Consequently, a resistance coefficient ' equal to 3.55 to
8.15 will correspond to the flow rate-coefflclent values glven
above. These large coefficlents ;' are explained by the fact that
the Jet is compressed during outflow through the slidevalve ports,
but we have attributed the flow decrease due to Jet compression
to resistance, i.e., we set ¢ = 1 for the same u. Moreover, the
coefficlent r' also takes account of the energy loss to sudden

“See page 367 for footnote.
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expansion on issuance from the port. This i1s the difference be-
tween the coefficient r' and the ¢ that we used in §38.

Flg. 211. Diagram of four-
1ine slidevalve with axlial-
force compensation.

The axial force acting on the Fig. 212. Valve dis-
slidevalve rod may consist of statlce tributor.
and dynamic components. The former
arises when the return-line pressure
acts on the end of the rod. To offset this force, the rod 1s
made longer and extended to the outslde of the sleeve (as shown
in Fig. 209b), or other measures are taken.

The axial dynamic component appears as & result of the mo-
mentum Qpv cos o that the Jet carries with it through the par-
tially opened port (Fig. 211).

This force 1s compensated by using the reaction of the jet
1ssuing from the opposite chamber of the hydraulic motor. For
this purpose, the slidevalve rod is profiled approximately as
shown in Fig. 211.

The possible appearance of a radial force in the slidevalve
poses a very important problem, since this force may throw the
rod out of alignment and jam the spools in the sleeve, causing
fatlure of the slidevalve.

To eliminate the possibility of radial reaction forces, the
slidevalve ports are usually made in the form of a pair of dliam-
etrally opposed holes that communicate with one another through
grooves, or else the port is made annular, i.e., with a wildth
equal to the perimeter of the spool cross section, b = md.

The influence of the clearance between the spools and sleeve,
eccentricity, and spool taper 1s analyzed in detail in [5].

valve distributors (Fig. 212) are usually simplest in con-
struction. However,the torques required to operate them are
quite substantial. Devices that reduce these torgues compli-
cate the design.

Mushroom-valve distributors are also used in aviation hy-
draulic systems; like the valve-controlled piston pumps, they
have an advantage in their very tight internal sealing. Flgure
213 presents a schematic diagram of a four-line mushroom-valve
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distributor. It 1s controlled by turning shaft 1, whlch carries
four cams 2., The latter operate valves 3, opening elther the
first and third or the second and fourth, 1l.e., one 1lntake and
one return valve at a time. The directions of the fluid flows
are marked on the diagram.

Fig. 213. Four-line mushroom-valve
distributor.
KEY: (a) from pump; (b) to motor;
(¢) to tank.

This distributor has a disadvantage
in the large efforts required to open
the valves. A varlety of methods may
therefore be used to relieve the valves,
or so-called servo-action valves may be
employed. In the latter case, the main
valves are equipped with small auxiliary
valves. Opening of an auxillary valve,
which requires little effort, causes the
maln valve to open under fluid pressure.

Pressure regulators are used in
aviation hydraulic systems in the form
of various types of valves — reduction,
safety, bypass, pressure, etc.

Fig. 214. Diagram of
reduction valve (pres-
sure reducer).

A reduction valve or pressure re-
ducer has the function of lowering the
pressure of fluld coming from the pump to the appliance and main-
talning the reduced pressure within specified limits.

This becomes necessary when an appliance in a system with a
common pump requires a lower pressure than that delivered by the

pump.

A schematic diagram of a reduction valve appears 1in Fig. 214,
Fluid under pressure p, enters through passage 1, passes under
valve 2, where 1t 1s throttled, and exlts through passage 3 at
a lower pressure p,. Spring 4 tends to open the valve, while the
fluid pressures on membrane 5% and on valve 2 act in the direction

*See page 367 for footnote,

-343-



to close it. As a result, when pressure p, rises to a certain
1imit, the valve shuts, and when the pressure drops, the valve
opens. Thus, pressure p; is held within the required range as
fluld flow rate varies.

To obtain the fundamental equation reflecting the operation

of the reduction valve, we write the following initial equations:
the equation of the flow rate through the valve

Q=padxsina l/zg Pi— 2
. . Y

and the equilibrium equation of the valve
. =
Pop—Cx— "T(Px—h)-gh'—‘o.

where 1 1s the flow rate coefficient of the valve (see §42), x
13 the 1lift of the valve (percentage opening), d and D are the
diameters of the valve seat and membrane, Ppro Is the spring force

with the valve shut (at x = 0), C 1s the spring constant, and a
is the taper angle of the valve.

The equilibrium equation for the valve has been written on
the assumption that the pressures p, and p, are distributed uni-
formly over the area md?/4 of the valve. This can occur only at
small (by comparison with d) valve openings X. At large x, the
equilibrium equation requires corrections.

Determining x from the equilibrium equation and substituting
into the flow rate equation, we have

Q~pad sina ':—[P.po"l’l—h(%—1)]'/2gﬂ:—p’. " (1b.10)
where
__4C =‘Pnpo
6= and  Pupo™= -

This equation connects the two pasic variables Q and p2. The
prescure p, can be consldered constant in systems with an adjust-
able pump.

The equilibrium equation can be used to determine the maxi-
mum (for a glven p,) pressure p, at the reducer outlet, which
corresponds to a closed valve; setting x = 0, we obtaln

Popo— P
m
——1

~ a2

("'.‘\mu =

It is evident from this that for a glven reducer, the pres-

sure (pz)max increases with decreasing pressure p,.
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Fig. 215. Character- Fig. 216. Diagram of
istic of reduction bypass valve.
valve.

KEY: (a) and so forth.

Equation (14.10) can be used to construct the characteristic
of the reduction valve, which 1s most convenlently presented as a
curve of p, vs. Q for a series of constant p, equal to C,, C,,
Cy, ete. The typlcal form of these curves 1s shown in Flg. 215,
from which we see that the extent of the p, drop with increasing
flow rate Q 1s greater the lower the pressure p, at the inlet
into the reducer.

A pressure valve, in contrast to the reduction valve, 1is
designed to 1imit the pressure in the flow of working fluid sup-
plied to it. If, in this process, the valve maintains a specl-
fied fluld pressure by bleeding fluld continuously, it 1s called

a bypass valve.

The design of the bypass valve is most frequently that of a
spring-loaded plunger valve (Fig. 216). Such a valve must be
fitted with a damper for oscillatory motions, e.g., in the form
of the narrow passage a, through which fluid flows from the cham-
ber above the valve to the chamber below it and back.

The relation between the pressures p; at the entry to the
valve and p, at 1ts outlet, and thelr relation to the fluid flow
rate Q through the valve can be obtalned by simultaneous solu-
tion of two equations — the flow rate and equlilibrium equations
of the valve. Assuming that pressure p, is distributed uniformly
over the valve area md‘/4,

Q= padx ‘/?g{":-"-'
N

and

2
Pt Cx=(p,—p;) %.

whence
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Q p.nd[‘c(Px P —5—]1/2415'7’3. (14.11)

where u, X, Ppro’ and C have the same meanings as for the reduc-
tion valve (see above).

As the flow rate rises from zero to Qmax’ the pressure p,

does not remain constant, but rises to some degree. This equa-
tion can be used to estimate the extent of the p, lncrease with
increasing flow rate and at p, = const, and to ascertain the
influence of p,.

To obtaln the flattest possible valve characteristic, 1l.e.,
to reduce the influence of fluid flow rate on the pressure p,, it
is necessary to increase the diameter d of the valve and lower
the spring stiffness C.

A safety valve 1s another varlety of the pressure valve; its
function 1s to bleed fluid in the event ot an overpressure. Thus,
the safety valve functions only episodically, when the pump-regu-
lating mechanism or automatic relief valve malfunctions.

Both ball and conical valves, usually spring-loaded, are
used as safety valves.

A safety valve must be designed to open at a glven pressure
and pass a definite flow of fluid, preventing the pressure from
exceeding a certain maxlmum.

Flow rate regulators, which hold fluld flow rate constant in
a given hydraulic 1line, are used in aviation hydraullc systems
when it 1is necessary to stabilize the speed at which a hydraulic
motor moves — for example, that of an antenna motor.

Figure 217 shows a dlagram of such a flow regulator. Dia-
phragm 1, which 1s 1its sensitive element, 1s installed at the in-
let into the regulator. When fluld passes through it, a pressure
difference Apd appears and acts on piston 2. The slze of the

throttling slot 3 is basically determined by the ratio of the
pressure force on piston 2 and the force of spring 4. When the
flow rate increases, the pressure on the piston rises, and the
piston, together with slidevalve 5, moves to the left, increasing
the size of the throttling slot. On a decrease in flow rate, the
slidevalve and piston move in the opposite direction.

Construction of the regulator's static characteristic in the
form of a curve of Q as a function of the pressure drop Apreg

across the regulator requires simultaneous solution of the follow-
ing five equations.

1. The equation of the flow rate through the diaphragm:
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Q=».S.1/ 2g‘—:L.

where My and Sd are the flow rate coefficient and hole area of the
diaphragm.

2. The equation of the flow
fa | rate through the throttling slot:

Q___ll:nsm I/ QgA_!LY'!L.

where Msheh and SShch are the flow

rate coefficlient and area of the
throttling slot; Apshch is the

pressure drop across the throttling
slot.

ha
Fig. 217. Diagram of flow

regulator. 3. The equilibrium equation
of the piston and slidevalve:

Pl'l'o “CX—A[)‘SH—P‘,':O.

where Ppru is the spring force at x = 0, when SShch a(sshch)min;
C 1s the spring stiffness; Sp is the piston area; Pz is the un-

balanced pressure force on the slidevalve.

4, The pressure drop across the regulator as the sum of the
pressure drops across the diaphragm and in the slot:

A”ptr:"' ap, '} Ap,.

5. Law of variation of slot area with slldevalve stroke (for
tapered shape of slidevalve in slot):

S, (S - nd sinax,

The slidevalve must have a

e
“Z',rva¢_,~hL_1ﬁ& special profile in order to cbtain
3 Y o—0- -]

A =" more preclse regulation of flow rate
2 constancy.
’ Figure 218 shows the typical
form of a static regulator character-
0 - - b istic as plotted by the method of
150 8pyeg AT A.V. Polozov, together with the ex-
Fig. 218. Characteristic perimental points. With Apreg <
of flow rate regulator, < 15 kgf/cm?, flow rate is not regu-
KEY: (g) 1/min; (b) lated; the regulator functlons as
kgf/cm*. a simple choke because Sshch =
= (Sshch)min = const. With the
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subsequent increase of the gradient Apre to 200 kgf/em?, flow

rate diminishes by about 10%.

g

The divider valve, flow divider, or metering valve 1s an-
other flow rate regulator that operates on the valve principle
and 1s used to mailntain a glven relationship among working-fluid
flow rates in several parallel flows when they are divided. A
requirement for such flow division arises in aircraft hydraulic
systems when it is necessary to synchronize the operation of two
or more hydraulic motors, e.g., hydraulic cylinders for operation
of flaps, slats, or alrbrakes.

A dlagram of a divider valve designed to split the flow into
halves appears in Fig. 219. The flow 1s divided immediately upon
entry into the unit (see arrows); then each flow passes through a
fixed multistage chok2 1 and enters sleeve 2, which holds floating
piston 3. The latter acts as a valve, moving in one direction or
the other in accordance with the pressure difference acting upon
it. This pressure difference arises when, as a result of load dif-
ferences, the fluid flow in one branch differs from that in the
other and, consequently, the pressure loss in one throttle is
greater than in the other. Moving in the direction of the lower
pressure, e.g., to the right, piston 3 reduces the area of holes
5 and increases the area of holes 4. The piston stops when the
pressures in the right and left chambers of the sleeve and, conse-
quently, the flow rates through these chambers have become equal.

To evaluate the flow rate
error of such a divider, let us
write the equation of the flow
rate through a fixed choke.

A
a=es)/ 2™ CVip,

Since the variable exit ori-
fice 1is fully opened in the more
heavily loaded branch and does
not offer an additional resistance
the pressure drop Apdr across the
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choke can be assumed equal to that
across the divider: Apdr = Apd =
Fig. 219. Diagram of divider ® Pykh " Pyykn-

valve (metering valve). We differentiate the above
equation with respect to Apd and

solve the result simultaneously with the initial equation. After
converting to finite differences, which we shall denote by the
letter §, we obtaln




Thus, the relative flow rate error of the divider is inverse-
ly oroportional to the pressure drop Apd = Apdr or to the square

of flow rate. Consequently, it 1s necessary to lncrease the re-
sistance coefficlent Cdr of the choke 1in order to improve the pre-

cision of division.

Since the floating piston 3 is acted upon only by pressure
and friction forces, we can write

3(ap,)= 4Py

where Aptr 1s the pressure difference across the piston necessary
to overcome friction and start it moving.

Thus the error equation can be written

Y (i’-l.l?.)

Thls means that frictlon 1s the only cause of the flow-divi-
sion error.

Fig. 220. Characteristic of meter-
Ing-valve sensitive element.

As flow rate diminishes, the flow-divislon error rises sub-
stantially. It follows from the above that §Q/Q = 1 at Ap, ). =

= 2Apd. This last equality defines the flow rate sensitivity

limit of a flowmeter, i.e., the flow rate at which (and below
which) the divider 1is insensitive to flow rate change:

AP ra
ol“ <!“s 2E “Ev_' .

Figure 220 shows curves of Apd as a function of Qprav and
Q1ev for two choke resistance coefficlents Car and Capa? with
Cdrl > Lap2® The corresponding insensitivity ranges of the di-

vider are indicated by the cross hatching (soclid and broken lines).
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It must be remembered that this flow divider 18 not revers-
ible, 1.e., it cannot combine flows in a given (1:1) ratio. It
is easlly seen that when the directions of the fluid flows are
reversed, the difference between the flow rates will increase and
the branch with the lower flow rate may even close completely.
For this reason, two independent units — a flow divider and a
flow adder — are installed in actuator mains of hydraulic systems
when it is necessary to synchronlize hydraulic-motor operation;
one of these units 1s automatically shut off when the other is
operating. Sometimes a reversible divider is used in the form
of a single unit with a system of check valves and a speclal
floating—-piston design that provides for regulation of the flow
rates in elther direction.

Division can be accomplished with higher precision if the
fixed choke in the divider is replaced by a variable choke that
operates on the valve principle. However, this divider will not
be considered here. )

The batchmeter, a diagram of which appears.in Fig. 221, can
perform elther of two functions. The first, protective function
is to shut off the flow of fluld to a damaged section of plpeline
and thereby prevent expulsion of fluld from the system. At the
normal flow rate through the batchmeter, the pressure drop in
chambers a and b due to the resistance of holes 1 1is not enough
to compress spring 2. However, when the flow rate 1increases ex-
cessively owing to rupture of a pipeline, this gradient increases
and acts on the piston, which compresses spring 2 and closes hole
4 with valve 3. When the fluid stops moving, the pressure on the
right of the valve has become equal to the pressure developed by
the pump, while that on the left is equal to atmospheric, and the
valve 1s held in the closed position.

Thus, the batchmeter performs the
function of a flow regulator or limlt-
er. The maximum flow rate at which
the valve closes can be found from the
equatlons

— 7
Qunx A 1/2 Y’
Aps|=Plp0+men‘

7 A i
]

Fig. 221. Diagram of

batchmeter. where y 1s the flow rate coefficient
of holes 1; S, is the total area of
these holes; S  1s the piston area;

Ap is the pressure drop across the plston; Ppro is the spring
force pressing the piston agalnst 1ts stop; Xmax is the maximum
piston travel.

The second possible function of this unit, and the one from
which it gets its name, consists in batching of fluid, 1l.e.,
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passing a definite fluid volume when a flow rate Q > Qmax is de-

livered to the valve. The volume batched through will be equal
to the volume displaced by the piston through jet tube 5 plus a
certain amount of fluid that manages to get through hole 1 and
the valve before the latter closes.

The automatic pump relief

e valve was mentioned earlier (se
i §70) as a necessary unit for hy-
draulic systems with unregulated
pumps. One of the possible ways

_."_r.'l' in which it may be built and con-
azrh— nected is shown in Fig. 222. When
] the pump is delivering working
fluid to the system (to hydraulic
motors or to charge a hydraullc
accumulator), the automatic relief
valve is closed, as shown cn the
diagram. If, however, none of the
hydraulic motors in the system 1is
working and the accumulator has

AR AR R

Fig. 222. Diagram of auto-

matic pump-relief valve. been charged to the limit Prax’
KEY: (a) to system; (b) this pressure, aciing on piston 6,
check valve; (c¢) from pump; compresses spring 1 and opens the
(d) return. adelivery line with valve 2. Fluid

is conducted to piston 3, which

rises and compresses spring 4 to
open ball valve 5. Working fluid from the pump passes under this
valve and is returned. The pump goes into no-load operation.
When the system pressure drops to the minimum Pmin 28 2 result

of seepage, spring 1l extends and piston 6 moves down to open valve
2 to the return line. Piston 4 descends and valve 5 closes; the
pump delivery 1s again directed into the system.

The pressures Pmax and Pmin determine the basic dimensions

of theuautomatic relief system and the characteristics of springs
1l and 4.

The maximum and minimum spring forces 1 can be found from
Ppnax’ Pmin’ and the area S, of piston 6:

Prn=(Prar—Pe)Ss and Pz (Pue- I’: AN

where Ps1 and pél are the return line pressures and the spring
stiffness is determined as the quotient of the difference Pmax -
- pmin divided by piston stroke, which is equal to the length of

piston 6 plus the width of passage 2.

The maximum force (Fmax) of spring 4 depends on the pres-

sures pp.. and Pgq» the area of piston 3 (S,), the force of spring
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7 (Q), which operates valve 5, and the area S, of the seat of
this valve, and can be found from the equation (without con-
sidering friction)

Faax={Ponz = Pea) S3—=Q— (Pysx— Pc) Ss

The force F . must be large enough to overcome only the

friction of the unloaded piston 3. The stroke of piston 3 must
be such as to ensure wide enough opening of valve 5 and, conse-
quently, minimum resistance of this valve. The stroke of plston
3 and the forces Fma and Fmin determine the stiffness of spring

X

Fig. 223. Diagrams of pneudraulic accumu-
lators.

The hydraulic accumulator, whose function was indicated
above, may be of the pneumatic or spring type. Spherical or
eylindrical pneudraulic accumulators are used most frequently
in aviation hydraulic systems. In pneudraullic accumulators, the
gas must not come into contact with the fluid, since it would
dissolve in it. As a rule, therefore, the accumulators Have
partitions in the form of pistons or membranes.

Cylindrical accumulators are most frequently of the piston
type, while the spherical ones are always diaphragmed (Fig. 223).

When the accumulator 1s charged, the gas is compressed, its
temperature rises, and the heat transfer through the wall to the
environment increases. The reverse takes place durlng discharg-
ing: expansion of the gas, lowering of the temperature, and an
inflow of heat from the outside. The charging and discharging
times are usually reckoned in seconds. As & result, the compres-
sion ani expansion processes of the gas cannot be adiabatic any
more than they are isothermal. Experiments have shown that these
processes are actually intermedlate, 1.e., polytropic with a vari-
able polytropic exponent of the order of n = l1.1-1.2. The expan-
sion and compression process is often assumed to be isothermal to

simplify calculations.

The basic operating parameters of an accumulator are the
pressures at the beginning (pmin = p ) and end of charging (p =
1

max
= p,), the total (design) volume W, of the accumulator, the
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initial pressure p, in 1t when 1t is filled only with gas, and
1ts useful volume, which equals the difference wp =W - W,

where W, and W, are the volumes of the gas at pressures p; and pa.

A relation between these parameters 1s easily obtained by
writing the following approximate polytrope equations (see Fig.
223):

L 1

,‘1‘._—:(&)" and .‘f’_’_-—_(-’ﬁ’—)..

Wo P Wo P2
From this
L =
m=a=(2) - (8
or
v L.[ :
?:=(:_:) (-:_:.) —1]. : (14.13)

In the lsothermal process, n = 1, and the above expression
1s simplified.

The pressure p: = p is determined by the head capaclty of
max

the pump and the pressure limit established for the particular
hydraulic system. In a system with an unregulated pump and an
automatic relief unit, the pressure p, = p 4, is determined by

the time interval between switching of the pump off and on and by
the demand for fluld. 1In these systems, we usually have p, =
= (1.25-1.65)p, (for further detalls, see [91).

In hydraulic systems with regulated pumps, p is less deter-
minate, since it depends on the maximum working-fiuid flow rate,
the time for which it 1s in demand, and other factors.

As we see from (14.13), it is advisable to make the initial
pressure p, as high as possinle, i.e., approximate it to p,, in
order to increase the useful volume W_ of the accumulator for

given p, and p,. In practice, therefore, it is usually assumed
that
po=(0.8--1.0) 1.

Energy capacity 1is an important characteristic of any ac-
cumulator. Let us find the reserve of energy of a pneudraulic
accumulator of volume W, when 1t is charged to pressure p; and
can be discharged to a pressure p,. We shall assume the expan-
sion of the gas in the accumulator to be isothermal.

The elementary energy (or work) equals
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dE=pdW==\W,p, '% .

After integrating from W = W, to W = W,, we have

-y w
£==“'°poln—i_’-—; ==WopoIn .E- .

Thus, like the useful volume of the accumulator, the energy
capacity increases in proportion to the initial pressure p,; it
18 therefore advantageous to set p, = p,. We then have

E=Wp,ln L2,
N (147 S

If we assume that the maximum pressure p, and the accumula-
tor volume W, are given, we can find p; (or p,/p,;) fromthe above
formula; the maximum energy store will correspond to this pres-
sure. Assuming W, and p, constant, we find the derivative dE/dp,
and equate 1t to zero:

dE
;E=Wo(lnp,——ln p—1=0

or
=1
41

Hence the optimum pressure ratio

(Ll —e=272.

Pr/owr

In practice, as we noted above, it is usually necessary to
use pressure ratios p,/p, that are substantially smaller than the
optimum, since operational conditions prohibit excessive lowering
of the pressure. In certaln cases, however, as in airbrake hy-
draulic systems, 1t 1s necessary to have a comparatively moderate
pressure in the actuating mechanisms; for this reason, the accumu-
lators have a substantlially wider pressure range and the ratilo
p:/p, often even exceeds the optimum.

The filters used in aireraft hydraulic systems are classi-
fied as coarse and final filters. The former have comparatively
low hydraulic resistance and are therefore usually installed at
the beginning of the intake main, in the tank. They are made in
the form of screen or plate units and are capable of trapping
particles down to 50-100 um in size.

Final filters offer substantial hydraulic resistance (see
Fig. 89); they can therefore be installed only in delivery lines
or directly behind the pump, or else pefore the most critical
actuator mechanisms, those requiring highly purified fluid, such
as hydraulic boosters.
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The element of a fine filter 1is made of felt, serge-Woven
metal mesh, paper, or some other porous material. Such filter-
ing elements trap particles in the size range from 5 to 15 um and

up.

Because of the small size of the pores in the filtering ele-
ments and, consequently, the small Reynolds numbers of flows in
these pores, the pressure gradient across a fine filter is usually
linear, and the resistance coefflcient of such a filter 1s in-
versely proportional to Re.

For more detalled information on filtration of the working
fluid in aircraft hydraulic systems and on filters, we refer the
reader to [5].

§73. ROTARY DISPLACEMENT-TYPE HYDRAULIC TRANSMISSIONS

Hydraulic transmissions for rotary motion (like pumps ) -are
classified as hydrodynamic (impeller) or displacement (hydro-
static) types. We shall examine the latter type filrst and in
greater detall.

The rotary-displacement hydraulilc
transmission is a combination of a pump
and a rotor-displacement hydraulic motor.
In design, the motor is simply another
converted pump. All displacement rotor
pumps have the property of reversibility,
i.e., they can be used elther as pumps or
as hydraulic motors. This means that 1if
fiuid is supplied to a rotor pump under
enough pressure, its rotor will turn and
Fig. 224. Diagram of perform work.
rotary displacement

hydraulic transmis- The basic advantage of the rotary-
sion. action hydraulic transmission over the

KEY: (a) pump; (b) conventional mechanical transmission is
hydraulic motor. the possibility of smooth (stepless) varia-

tion of transmission ratio and torque con-
version, as will be shown below.

Figure 224 is a schematic diagram of a so-called simple dis-
placement-rotor hydraulic transmission (hydraulic drive), 1l.e.,
a pump, hydraulic motor, and fluid tank connected together by
pipelines. The tank included in the system ls necessary to com-
pensate external fluld leakage and temperature changes in the
volume of the fluid, and also to hold down heating of the fluid
during operation. In addition, the elevated alr pressure in the
tank provides the necessary intake-1line conditions to prevent
cavitation in the pump.

It is possible to build a closed-type hydraulic transmission,
i.e., one with no tank in the main fluid=-circulation system.
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However, this is detrimental to fluid-cooling conditions. A pres-
surized tank or a tank with a booster pump must then be connected

to the intake line, in much the same way as was indicated for the

closed pipeline (see Fig. 143).

Let us examine the fundamental relationships for a hydraulic
transmission operating on the scheme indicated, using the sub-
script 1 for quantities pertalning to the pump and 2 for the hy-
draulic motor.

The useful pump delivery equals the actual flow rate through
the hydraulic motor, i.e.,

Qi=Qz (14.14)

Let us convert from actual to theoretical flow rates and take
into account that the actual flow rate through the motor 1is
greater than the theoretical rate, since the leakage in the motor
has the same direction as the main flow. We have instead of For-
mula (14.14)

— Ot!.'

Qﬂ‘]ol“‘;- ’

where n,, 1s the volumetric efficiency of the pump; n,, is the
volumetric efficiency of the motor, which, unlike n,,, is usually
defined as the ratio of the theoretical flow rate to the actual
flow rate.

Hence the volumetric efficlency of the entire hydraulic

transmission (n ) will equal
o.per

Yo.nep == Not™o2 é“%ﬁ . - (14.15)

Assuming that the pump and motor can be regulated, let us in-

troduce the coefficient of regulation ¢, which equals e/emax for

pumps and rotors with eccentric motors (see §67) and -(tan v/
/tan Ymax) for rotary-plunger hydraulic machines with inclined

plates (blocks).® Obviously, the coefficients ¥ can vary from
0 to 1 during regulation of the machines.

Then, expressing the theoretical flow rates in terms of the
maximum working volumes W, the coefficients ¢, and the speeds n,
we obtaln

= Wy _ Wy 1
o. nep W W, @ (14.16")

where 1 1s the transmission ratio and equals

PRI 21 T
o (W Norep (14.16)

¥See page 367 for footnote.
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Owing to the hydraullc losses in the pipelines connecting
the pump, motor, and tank, the pressure developed by the pump
(p,) will be greater than the pressure used by the motor (p2).
The ratio of the latter to the former 1is known as the hydraulic
efficiency of the drive, i.e.,

n,...w'—'»-'ff . (14.17)

It must be remembered that here (see Fig. 224)

P2=: P Paunsy
Pr=Paovas Pl

Subtracting the first equation from the second, we obtain

Pl"p2=(pllm_ph1)+(p?um_ pln)‘_‘_‘ ngp.

i.e., the difference between the pressure developed by the pump
and the pressure used by the motor equals the total pressure loss
in the pipelines (in the delivery, intake, and return lines).

Let us now write the energy equations for the pump and motor,
i.e., expressions for the power used to turn the pump (N;) and
the power developed by the motor (N,). Applying (12.4), we have
for the pump

Ny= Mo =291
1 FRY b (14,18)
and for the motor

Na= Myoy=p,Q:Ne:oue (14.19)

where the M are the torques, the w are the angular velocitles,
and the n, are the mechanical efficiencles, which take account of

friction in the machines.

The hydraulic efficlencies of rotor-type hydraullc machines,
both pumps and motors, are usually considered equal to unity,
since the basic losses in these machines are volumetric and
mechanical; the hydraullc losses are included in the mechanical
losses.

Dividing the second equation by the first, we find the over-
all efficlency of the drive, which, on the one hand, will equal

__Na My L3
“nep—ﬁ; == """=T'

yre (14.20)

where k 1s the torque conversion ratio.
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On the other hand, appiying (14.14) and (14.17), we obtain
by the same division

Noep = ’si_ o1 Mo Mt he2 = Yc aepWo nephi nep = MmN ' (1 4.21)

1.e., the over-all efficlency of the hydraulic transmission 1is
equal to the product of 1ts hydraulic, volumetric, and mechani-
cal efficlencies or to the product of the hydraulic efficiency
(with consideration of losses in the connecting lines) by the
over-all efficlency of the pump and the over-all efficiency of
the motor.

The over-all efficiencies of rotor-type hydraulic transmis-
sions vary from 0.7 to 0.85.

One of the following methods can be used to regulate hydraul-
ic transmissions in order to change the transmission ratio i and
the torque conversion ratio k:

1) regulation of the pump, i.e.,changing its eccentriclty
or block 1inclinatlonj;

2) reguiation of the hydraulic motor, i.e., changing its ec-
centricity or block inclinatlon;

3) bleeding out of the pump's delivery through a valve.

¥, ¢ A The first regulation method is most
PSR frequently used, and the hydraulic trans-

& | ) mission consists of a regulated pump and

- an unregulated hydraulic motor. Use of
oty H the second control method may be expedient

as a supplement to the first. Both of

the hydraulic machines forming the trans-
mission in thils case must be adjustable.
The third regulatlion method 1s uneconomi-
cal, and its use can be defended only when
qﬁ K== M. the hydraulic transmission operates for
short times.

LGN

]
cmm—te—-

<
-
s
5

Fig. 225. Regulation
diagram of hydraullc The most important example of use of
transmission. rotary-displacement hydraulic transmissions
on aircraft 1s found in the hydraullc
transmission from the engines to the
stable-frequency alternators. The latter must turn at constant
speed despite variations in engine speed and 1in the load on the
electrical system. Under these conditions, the speed of the hy-
draulic motor connected to the generator n, = const, while that
of the pump, n,, varlies in a certain range, depending on the type
of englne. Consequently, the transmission ratio of the hydraulic
drive must vary smoothly and, in addition, automatically.

Figure 225 shows a diagram of hydraulic-drive regulation for
this example, i.e., the dependence of the coefficlents ¥, and 7PN
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the flow rate Q, and the power N, (and the torgue M,) at constant
pressure and speed n, on the speed n; of the drive (pump) shaft.

The vertical line A-A corresponds to the case in which both
hydraulic machines have their largest working volumes, i.e., ¥, =
= ¢, = 1, To the right of vertical A-A, we have the range of
pump regulation, where the coefficlent ¥, decreases hyperbolically
[see Formula (15.16)], and to the left of vertical A-A the range
of hydraullc-motor regulation, where the coefficient ¥, increases
linearly.

The flow rate 1s determined by the relationship
Q=y\Wim— s =¢,Wony+4,

and, consequently, 1s represented on the dlagram for constant

P, = P, = p as & stralght line with an inflection at line A-A.
This means that flow rate remains constant when the pump 1s regu-
lated and diminishes linearly when the hydraulic motor 1s regu-
lated. .

The useful power N, of the hydraulic motor, which 1s deter-
mined by Formula (14.19), is represented in about the same way as
the flow rate with the assumptions that we have adopted, and its
torque 1in exactly the same way as the power,

The minimum drive-shaft speed 0y min and mein are determined

by the self-braking of the hydraulic motor, i.e., by the equality
M2=0.

The maximum speed N max and wlmin are determlned by the
upper-limit service speed of the pump. For modern rotary-plunger
pumps, 1t can be assumed that N max T 4500 rev/min.

Applying Eq. (14.16) to the transmission operating mode in
which ¥, = ¢, = 1 and n, = (n,)A, and then to the regime of maxi-

mum pump speed Ny nax? We obtain after dividing one equation by
the other
Rimer 1

(a (dan

This speed ratio 1s known as the range of speed regulation
with preservation of constant power,

If we assume that, as 1is frequently the case, n, = (n,)

we obtaln from the same equation (14.16)

marx?

. Wan, RR i’;z 1
(‘h-).“ Witt)a: e W) e

or
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Thus, if we wish to provide a range of constant-power regu-
lation of, say, two, the working volume of the pump must be ap-
proximately two times that of the hydraulic motor.

The above makes it clear that the range of speed variations
can be broadened by regulating the hydraulic motor, but then
power no longer remalns constant.

§74. HYDRAULIC-MECHANICAL TRANSMISSIONS

A hydraulic-mechanical transmission 1s a geared differential
mechanism the two elements of which are connected by a hydraulic
transmission. In such devices, most of the power is usually
transmitted mechanically, and only a certain part of the total
power in one direction or the other through the hydraulic trans-
mission.

Let us consider the operating principle of'hydraulic-mechani-
cal transmissions in which the hydraullc section conslsts of two
displacement-rotor-type hydraulic machines.

Use of such a device makes 1t possible to increase the over-
all efficiency of a transmisslon and lower its weight and bulk by
comparison with the simple displacement-type hydraullc transmis-
sion.

In the design operating mode of a hydraulic-mechanical trans-
mission (at the design drive-shaft rpm), all of the power is
transmitted through the mechanical part with maximum efficlency,
and the hydraulic transmission merely produces the necessary tor-
que on the idle element of the differential mechanism. The
greater the deviation of drive-shaft rpm from the design figure,
the greater is the amount of power transmitted hydraulically.

The hydraullic-mechanical transmission, together with an ap-
propriate automatlc control system that varies the working volume
of one of the hydraulic transmission's machines, makes up the so-
called hydraulic-mechanical drive. This drive is capable of
holding driven-shaft speed constant when the drive-shaft speed
and the load on the driven shaft are variables. Precisely this
requirement arises on alrcraft carrying stable-frequency alter-
nators. As we indicated in §73, the latter must run at strictly
constant speed as the rpm of the engine and the load vary. For
this reason, the hydraulic-mechanical drive 1s coming into stead-
ily increasing use on alrcraft with stable-frequency alternating-
current electrical systems whose generators have powers above 15-
20 kW.

The differential mechanism has three external shafts and
three elements: the driving element, which 1s connected to the
drive-motor shaft, the driven element, which is connected in our
case to the generator shaft, and an auxiliary element connected
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to one of the hydraulic machilnes forming the hydraullc transmis-
sion. At design drive-shaft (drive-element) rpm, the auxiliary
element of the differential mechanism remains statlonary, but
when the rpm 1increase or decrease from the design value, this
element and the hydraulic machine connected to it rotate in one
direction or the other to supply or take off the necessary power.

The maximum power transmitted through a hydraulic transmis-
sion is determined by the range of drive-shaft speed variation
and the selection of the design operating mode.

Variation of the load in the generator line causes a change
in the torque on the drive's output shaft, and this, in turn, re-
sults in a proportional change in the working-fluld pressure of
the hydraulic transmission.

Fig. 226. Structural dlagrams
of hydraulic-mechanical trans-
missions.

There are very many possible different combinations of the
differential mechanism with the nydraulic transmission, i.e., the
shafts of the differential mechanisms can be connected 1n a
variety of ways with the external shafts and the shafts of the
hydraulic transmission. However, any of these variants can be
classified into one of the following two baslc hydraulic-mechani-
cal-transmission design layouts, which we shall call schemes &
and b.

Scheme a (Fig. 226) is cnaracterized by insertlon of the
hydraullc transmission between the driving I and auxlliary III
shafts of the differential mechanism, i.e., by branching of the
power at the drive shaft. Characteristic of scheme b 1is lnser-
tion of the hydraulic transmission between the auxillary III and
driven II shafts, i.e., branching of the power on the driven

shaft.

On the conventional diagrams shown here, DM is a differen-
tial mechanism, GMl is a hydraulic machine connected to the driv-
ing or driven shafts, and GM2 is a hydraulic machine connected to
the auxiliary shaft of the differential mechanism. Machine GM1
is nonreversible and must be regulated, i.e., 1ts working volume
must be varied automatically; machine GM2 1s generally reversilble
and may be unregulated. Each of these hydraulic machines can
operate elther as a pump or as a hydromotor, e.g., when the first
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operates as a pump, the

An energy analysils
ence should be given to
tors, since it requires

second works as a motor, and vice versa.

of these schemes indicate that prefer-
scheme a as a drive for aircraft alterna-
regulation of only the one hydraullc

machine GM1 and has better data from the standpoint of uniformity
of hydraulic-transmlission loading at the operating extremes. In
practice, however, hydraulic-mechanical transmissions (drives)
patterned after both scheme 2 and scheme b are used.

™2

1L

R

v
i
.I L]
|

A
F. E
fm%pamp ‘ . PR

Fig. 227. One of the layout var-
jents of the scheme-a hydraulic-
mechanical transmission.

KEY: (a) generator; (b) auxiliary
motor.

Figure 227 shows one of the six possible variations of ex-
ternal-shaft connection to the elements of the differential
mechanism in scheme a, in which the driving shaft (from the
auxiliary motor) is connected to the planet carrler and the
driven snaft (generator shaft) to the sun gear, while the auxil-
iary shaft 1s that of the crown gear connected to hydraulic
machine GM2.

The regulated hydraulic machine GM1 is connected by a gear
transmission to the auxiliary-motor shaft, and by pipelines
(dashed lines on the diagram) to hydraullc machine GM2.

The unlt operates as follows in response to a change in
drive-shaft rpm n.
At a certaln intermediate design rpm n,

machine GM1 has a coefficlent of regulation (see §73) ¢ = Py, at

which it provides only for compensation of seepage in the system

and maintains the necessary pressure, but does not deliver fluid

to machine GM2 (Q = 0). As a result, the rotor of machine GM2 1is
stationary and, consequently, so 1s the crown gear., All power 1s
transmitted to the generator mechanically. The speed of the sun

gear and generator is ny.

= n;, hydraulic
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When n, < n*, ¥ > ¢' and machine GM1 functions as a pump,

delivering fluid to machine GM2. The latter, operating in the
motor mode, turns the crown gear in such a way that the speeds of
the sun gear and generator remain the same at ny = const. The

missing power 1is supplied to the generator shaft hydraulically.

Whenn >n', ¥ < ¢', the inclined disk of machine GM1 (or
x x

the cylinder block) 1s inclined in the other direction and
machine GM1 now functions as a hydraulic motor, receiving fluid
under pressure from macnine GM2, which operates as a pump.

Machine GM2 and the crown gear turn in the opposite direc-
tion, holding generator speed constant. The excess power from
the generator shaft is now diverted hydraulically.

The automatic control system of this drive has a device that
responds to a change 1n generator speed or current frequency and
sends approprlate signals to an amplifier. The latter controls
hydraulic machine GM1 by varying its coefficient of regulation
¥ and hence also 1ts working volume. When n,o® N, opane y=1,

i.e., the working volume W, of machine GM1 has 1ts maximum value.
As n, increases, W, diminishes; near the design mode (ny = ng), L

vanishes at ¥ = 0 and then assumes negative values with v <0,
indicating transition from the pump to the motor mode.

As we noted above, use of a hydraulic-mechanical drive, e.g.,
for aireraft alternators, makes it possible to obtain a substan-
tlal efficiency increase by comparison with the simple hydraulic
drive. Heating of the working fluid is substantially reduced as
a result.

In addition, the dimensions and weight of the hydraulic-
mechanical drive are smaller than those of the simple hydraulic
drive. The differential mechanism can usually be made quite com-
pact, and the hydraulic section is relatively small in size be-
cause only part of the nominal drive power is transmitted through

For the theoretical fundamentals and design of hydraulic-
mechanical transmissions, the reader is referred to [21] and the
author's other works.

§75. VANE-WHEEL HYDRAULIC TRANSMISSIONS (HYDRODYNAMIC TRANSMIS-
SICHS)

A hydrodynamic (vane-wheel or impeller) transmission is a
combination of impeller-type hydraulic machines — a centrifugal
pump and a hydraulic turbline — whose rotors are brought as close
together as possible and housed coaxlally 1n a common casing.

Hydrodynamic transmissions are subclassified as hydraulic
c¢lutches (hydraulic couplings) and hydraulic converters. e
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fundamental difference between them is
that the former do not change torque
when they transmit power, whlle the
latter increase or decrease it, i.e.,
they convert torque.

A diagram of a hydraulic coupling
appears in Fig. 228, where 1 1s the driv-
ing shaft, 2 is the driven shaft, 3 1s
the pump rotor, and 4 is the turbine
rotor. On rotation of the pump rotor,
which 1s rigldly attached to the driving
shaft, fluid shifts toward the periphery
and is slung off into the turbine rotor.

L] s |

The flow acts powerfully on the

Fig. 228. Diagrams of vanes of the turbine rotor and ylelds
vane-wheel (hydrodynam- the energy that it acquired in the pump
ic) transmissions. rotor to the driven shaft. Thus, fluld

circulates continuously in the closed

working space of the hydraullc coupling,
and power is transmitted from one shaft to the other without a
solid coupling between them.

If we disregard friction between the outer surfaces of the
rotors and the frluld, we can assume that the torques on the driv-
ing and driven shafts are equal, 1i.e.,

M=M,, (14.22)
and that the efflciency ngm of the hydraulic coupling 1s deter-
mined by the speed ratio:

R (14.23)

2|2

The difference between unity and the coupling's efflciency
is known as the slip ratlo, i.e.,

‘=l~nn(.

Usually, hydraulic couplings are designed in such a way that
the slip s 1s only a few percent (for example, 2-4%) in the
steady-state design operating mode, while the transmission ratio
and the efficiency ngm are close to unity. Usually, when the

torque to be transmitted increases above the design torque, 1.e.,
when the coupling is overloaded, sllp increases, the speed of the
turblne rotor decreases, and the effilclency ngm declines.

Hydraulic converters are used when it 1s necessary to trans-
mit power with a change in torque and at transmission ratios sub-
stantially different from unity, but without an unacceptable sacri-
fice of efficliency. Characteristically, an impeller-type hydraul=-
1c converter has a fixed guide-vane assembly or stator 5 (see Fig.
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228b), 1.e., an additional impeller wheel that is rigidly at-
tached to the casing, between the pump and turbine rotors.

Instead of (14.22), we have for the
hydraulic converter

A
4s =
M+ Mya=M,
.u —
; '"; ; where M_  1is the reaction torque that
L

s
arises on the stator vanes.

7| I A —

In the above notation, the torque Mn a

¥
? is positive when the converter is used to
reduce speed and increase torque as it
Eig; gigﬁygﬁgiiign- transmits power, and negative in the oppo-
coupling and hy- site case. In the former case, therefore,
draulic converter the stator increases the twist imparted to
as functions of the flow by the impeller, increasing M ,
n,/n while in the latter case 1t reduces this
2/ twist.

The following expression for efficiency
applies for the hydraulic converter, just as it does for a rotary-
displacement hydraulic transmission:’

oA
‘fﬂll .

or, introducing the torque conversion ratlo k,

==t
U=

Figure 229 shows the efficiencies of a hydraulic clutch (nsm)

and a hydraulic converter (n t) for k > 1 as functions of the
speed ratlo n,/n,. g

The former is represented by a straight line in accordance
with (14.23), while the latter takes the form of a curve with a
maximum at an n,/n; of about 0.5.

Comparison of these relationships indicates that the hy-
draulic converter is more economical than the hydraulic coupling
at large transmission ratios i (small n,/n,). On the other hand,
the coupling becomes more economical as i approaches unity. How-
ever, the basic advantage of the hydraullec converter over the
hydraulic clutch at large 1 conslsts in its ability to multiply
torque, a requirement that arises in a number of practical cases.

Hydrodynamic transmissions are comlng into increasing use on
ground vehicles (automobiles, tractors, etc.) and aboard ships.
In all of these cases, it is very important, as the vehicle moves

TSee page 367 for footnote.
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away from a standing start, to obtain an increase 1in the torque
at the driven shaft over that on the drive shaft, and this 1s the
function of the hydraulic converter. As the machine accelerates
further, the transmission ratio of this drive decreases smoothly,
and this is followed either by direct coupling of the engine
shaft to the driven shaft or automatic conversion of the con-
verter to a coupling (compound hydraulic transmission). This
conversion is brought about by locking the stator to the pump (or
turbine) rotor, so that 1t begins to turn as a single unit with
the latter.

Hydrodynamic couplings are used in aviation englineering to

transmit rotation from starter motors to the rotors of the main
gas-turbine engines.
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Manu-
script

page

325

326

328

341
343

356

365

Footnotes

lsymbol usage on the dlagram conforms to the GOST
1967 project. The arrow on the pump symbol 1ndicates
that it is regulated.

2No particular difficulty is encountered in taking
fluid delivery from the accumulator into account, the
more so since research [9] has shown that the expansion
prosess of the air in the accumulator can be considered
isothermal.

’Hydraulic-system calculations for nonsteady modes have
been developed by Prof. P.I. Blandov (see collection

"Vopros royektirovaniya gldrosistem letatel'nykh ap-
Earatov“ iFroblems In the design of alrcraft hydraulic
systems], Mashinostroyeniye, 1967).

“The experimental data were reduced by V.V. Shul'gin.

SA piston of the same diameter may be used instead of
the membrane. '

SIf the plungers are set at an angle ¢ to the axis of
revolution, the coefficient ¥ can be expressed in the
same way without incurring major error.

"The rotary hydraulic transmissions described in §65

are also hydraulic converters, but of a different
class — that of the rotary-displacement type.
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Symbol List

Manu-

script Symbol English equivalent
page

324 Hac nas pump

324 ca sl return

326 I ts cylinder

327 noTp potr required

328 TD tr pipeline

328 nH in inertia

329 n p piston

331 BX vkh inlet

331 BHX vykh outlet

335 onr opt optimum

344 np pr spring

346 I d diaphragm

346 per reg regulator

347 u shch slot

347 3 z slidevalve

348 npas prav right

348 JaeB lev left

348 ap dr choke

349 Tp tr friction

349 Hey nech insensitive

353 n p useful

356 nep per transmission

356 T t theoretical

357 r g hydraulic

357 M m mechanical

361 aM DM differential mechanism
361 M GM hydraulic machine
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Symbol List (Cont'd.)

Manu-

script Symbol English equivalent

page

362 r g hydraulic machine

364 M gm hydraulic coupling

365 H.a n.a guide-vane assembly, stator
365 T gt hydraullc converter
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CHAPTER Xv

FUNDAMENTALS OF THE DESIGN OF GAS LINES

As we know, the baslic difference between a gas and a drop-
ping fluild is that the density and temperature of a gas change
with pressure, while density usually remalns constant in the case
of a dropping fluld.

Thus, the laws of motlon of a gas are more general than
those of an imcompressible fluld, and the latter can be derived
from the former as a particular case by setting p = const.

Naturally, the motion of a gas 1s described by substantially
more complex equations than the motion of a liquid. This is
clearly seen from the elementary continuity equation for a one-
dimensional-steady state flow (the equation of gravimetric flow
rate), which 1s written as follows for a gas:

G=8,0,y1=Svsy2= const,

With a change in flow cross section, both velocity and pres-
sure will change and, consequently, so will density; here, pres-
sure and density usually increase with increasing velocity and
vice versa. Consequently, velocity and density vary in opposite
directions, with the result that a definite conclusion as to the
relation between cross section and velocity can no longer be drawn
from the flow rate equation,

It can be shown that for subsonic flows, the dependence of

velocity on change in cross sectlon remains qualitatively the
same a8 for a fluid, while for supersonic flows the relationship
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will be reversed, i.e., veloclty will increase with an increase
in cross sectlon.

In the present chapter, we shall consider the simplest cases
of outflow and plpe motion of a gas, assuming this motion to be
untform. This analysis will enable us to solve the problems of
gas-line design with sufficient accuracy.

§76. EQUATION OF MOTION FOR AN INVISCID GAS
To obtain the fundamental equatlon of motion of an inviscid
gas, which is analogous to the Bernoulll equation for an incorn-

pressible fluld, we shall use the differential equation in the
form of (4.15'):

1 i '
gdzt-r dpt— d@)=0. (15.1)

We shall assume the gas to be ideal, l.e., subject to the
equation of state

e (15.1")
where R 1s the gas constant in the SI system of units and equals
287.14 m*-deg for air.

We shall disregard heat transfer between the flow of gas and
the external environment, so that the variable density p of the

gas can be related to pressure by the adlabatic (isentropic) equa-
tion

¥l
0= ’:T) ' (15.2)

where p, and p, are the density and pressure of the gas, respec-
tively, in the initial section through the flow.

Integrating (15.1),
gz+$‘-—:-+—";-=const (along a filament), (15.3")

where, with (15.2),
1 Lo
2:3-&'—.- _d.p—z.—._‘—.ﬂ._p.i‘
e Q —'; k—1 @ '
’ .

Since Formula (15.2) can be written



the above integral can be written

@t 2,
e #—1 ¢

On substituting into (15.3') and dividing by g, we have

...__.L.g._—eomt. (15.3)

The second term in the left member of this equation can be broken
up into two terms, as follows:

-3--—==’°F

a1y Y y

and the second summand expressed 1n terms of temperature by the
equation of state:

. ’::.L.-i._;k_r_.
Bty y 'e—ng

Now Eq. (15.3) can be rewritten

=const (along a filament). (15.4)

AR R RaT

Equation (15.u) differs from the Bernoulli equation for an
incompressible ideal (inviscid) fluld in the presence of the term

_Rr__
*k—1)¢

Applying the thermodynamic relationships for an jdeal gas

R=c¢,—c, and k=", (15.5)

€o
where cp and cy are the heat capacitlies of the gas at constant

pressure and constant volume in the SI system, 1.e., in J/kg+deg,
we transform this term as follows:

Rr e,—c,
*k—1¢g (k—l)z

It 1s clear from the above that the term U represents the
internal energy of a unit weight of gas (one Newton), and that
the physical significance of (15.4) is analogous to that of the
Bernoulll equation for the ideal incompressible fluid and con-
sists in constancy of the total energy of the gas along a fila-
ment.

r=77=u {Jes®/kg/m = J/N = m].

A fourth form of energy i1s added to the three forms con-
aidered earlier (see §16): internal energy, which must be taken
into account in analysis of gas motion.
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If we multiply (15.3) by %, it will express the total energy
of the gas per unit of mass. he levelling heights z usually
have very little influence on the variables of the gas, and are
therefore usually omitted from (15.3). Equation (15.35, written
for any two sections 1-1 and 2-2 of a filament, assumes the form

] k]
LI T T I S C YW N B Y
&—1 0 '2 k--1 c,” 2 k-1 ¢ (15.6)

where p, and p, are the pressure and density of the gas at the
stagnation point, 1.e., at v = 0,

If it 18 necessary to know the temperature change of the
gas that results from a change in its veloclity, the above equa-
tion can be brought to the following form with the aid of the
equation of state:
» h d .
i Rt =i Kty =ik (15.7)
where T, 1s the stagnation temperature.

Applyirg (15.5), we can rewrite (15.7) in still another form:
'; 2
ll+-?'=l,+:;-=l°‘ (15.8)

where i is the enthalpy of the gas and equals 1 = cpT.

The above equations have been derived from the Euler differ-
ential equations on the assumption of adiabatic flow for a fila-
ment of inviscid 1deal gas. However, it can be shown that Eq.
(15.8) and its preceding forms are also valid for any adiabatic
motion of a gas, even in the presence of friction. Disregarding
the velocity-distribution nonuniformity, these equations are ap-
plied not only for filaments, but also for real gas flows. The
only necessary conditions are the absence of heat exchange with
the environment and validity of the equation of state.

§77. OUTFLOW OF GAS THROUGH HOLES AND MOUTHPIECES

Let us apply the equation obtained for the energy of a moving
gas to solution of the fcilowing practically important problem.
Determine the velocity and gravimetric flow rate of a gas in its
outflow from a tank through a hole or short pipe (mouthpiece) into
a medium with pressure p. We shall use the subscript 0 for the
gas variables in the tank. The veloclity v, in the tank may be
set equal to zero.

We apply Eq. (15.8) to two cross sections, placing one in
the tank and the other at the exit from the hole or mouthplece.
Then

i} .‘;.‘--.: i,
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whence the gas outflow veloclty equals
v=V2(i,—1).

For an ideal gas, we obtaln for the selected cross sections
from (15.6)

=']/2g;§.l (ff'\&) (15.9)

Disregarding friction, we apply the equation of the ideal
adiabatic curve; then

~ =T
el

and the gravimetric flow rate equals

2

G=Svy=S /rQ LIRS F 0. ._.P_!#-' 15.10
' u’ Ey—r Povo (Po) (Po. ' (15.10)

where S is the area of the hole.

The influence of resistance and constriction of the jet dur-
ing outflow of a gas can be taken into account by introducing
coefficients of velocity ¢ and comprescion €, whose product, as
in the case of outflow of an incompressible fluid, is equal to
the flow rate coefficient u. The numerical values of these coef-
ficients for low velocitles can be assumed in first approximation
to be the same as for the incompressible fluid, i.e., they can be
determined from the shape of the hole (or mouthpiece) and the
Reynolds number. The error incurred here will be greater the
closer the outflow velocity to the speed of sound, which, as we
know from physics, equals

a.—_-l/ kL =1kRT.
e

As we see from Formula (15.10), the gravimetric flow rate of
the gas at finite S is zero in two cases: when p/p, = 1 and when
p/p, = 0. Consequently, the flow rate will be at a maximum at a
deflnite p/p,. Let us find the critical pressure ratio (p/p°)kr
at which the gravimetric flow reaches 1ts maximum value Gmax'
For this purpose, we differentlate the expression in brackets
under the radical in Formula (15.10) with respect to p/p, and
equate the derivatlve to zero. We have

L
1, e

whence
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(':?..,"‘(L‘f‘i : (15.11)

For k = 1.4 (for air and diatomic gases), the eritical pressure
ratio equals

(_P_)w ,_(7'&) = 0,528. (15.11)

Substituting (15.11) into (15.10), we get

oumsl et 220 o

[ XX} .
(= _—
Gﬂt:‘ N V‘gk(;%) PoYo=$S Vpo\'o. (15.12)

where ¥ = 2.15 for k = 1.4,

or

Let us now find the outflow veloclty that corresponds to Gmax
and (p/po)y,. This velocity, which is called the critical velo-

city, is determined by Eq. (15.9) on substitution of (15.11) in
it:

24
v”=a,,='/ 2g;:—_—l -s:—=l/;—_‘_—l'RTo- (15.13)

If we now use (15.9), setting v = Vipr W obtain after
simple transformations with (15.11)

v,,=l/ 2o, (15.13")

i.e., the outflow velocity is equal to the speed of sound calcu-
lated from the gas variables at the exit from the hole or mouth-
plece.

Thus, the maximum gravimetric gas flow rate is obtained when
the outflow velocity in a given exit section 1is equal to the speed
of sound. We note that in outflow through a hole or through a
cylindrical or tapering mouthplece, the pressure in the exit sec-
tion remains equal to the amblent pressure only until the velocity
in this section reaches the speed of sound. On a further 1ncrease
in the initlal pressure p, or on a decrease in the amblent pres-
sure p, the pressure in the exit section is found to be greater
than the ambient pressure and is determined by (15.11);
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accordingly, the velocity in the exit section is 1in this case
equal to that of sound.

We draw attention to the fact that a decrease in the ambient
pressure does not influence gas flow rate when the speed of sound
is reached in the exit section. To obtain a supersonic outflow
velocity, it is necessary to use a speclal mouthplece known as
the Laval nozzle, whose shape resembles that of the diffuser
mouthplece examined earlier (see Fig. 98). In the throat sec-
tion of the Laval nozzle, the gas flow velocity equals the local
speed of sound, and a further increase in velocity occurs in the
expanding section.

The following conclusion may be drawn
from the above. In determining the gravi-
metric gas flow rate issuing from a tank
through a mouthpiece, the pressure ratilo
p/p, should be determined first and com-
pared with the critical ratio, as defined
by (15.11). If p/p > (p/pg)yps the gas

flow rate must be found by Formula (15.10),
and the outflow velocity from Formula

[ e :'i5 T (15.9). If p/py < (p/Py)y,» the alr flow

(ﬁhl ' ﬁ rate is determined by Formula (15.12) and

the outflow velocity by (15.13), in terms
Fig. 230. Gravimet- of p, and y,. Flgure 230 gives curves cor-

ric gas flow rate responding to Formulas (15.10) and (15.12).

as a function of

the ratio p/po.L §78. MOTION OF VISCOUS GAS IN CYLINDRICAL
PIPE

For steady motion of a viscous gas
along a constant-section plpe, we can write, by virtue of the
constancy of gravimetric flow rate along the stream,

%=v.y.=vm=vy——'-consl (along the stream), (15.14)

where v is the average flow veloclty 1in the given pipe sectlon,
y 1s the specific weight of the gas in the same section, and S
is the cross-sectional area of the pipe.

The greatest practical interest attaches to two cases of
flow: adiabatic and isothermal.

In the absence of heat exchange with the external environ-

ment, the expansion of the gas will be adlabatic, even though

its density 1s not related to pressure by the adlabatic equation
(15.2), which applies only in the absence of friction. Here, the
temperature of the gas along the pipe will be related to the flow
velocity by (15.7). The other case willl be that of heat exchange
with the environment such that the temperature of the gas remains
constant along the pipe, 1.e., the process 1s lsothermal. In ac-
tuality, we usually observe some sort of intermediate process.
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Here, the shorter the gas line and, consequently, the shorter
the time required by a gas particle to move through 1t, the
closer will be the approach of the process to adlabatic. Con-
versely, the greater the length ratlo of the gas line, the more
nearly isothermal will the process become.

Let us express the Reynolds number for a gas flow in a pipe
in terms of the gravimetric gas flow rate and the dynamic vis~-
cosity coefficlent of the gas:

d 4G

v
Re== v agdu

1 It 1s clear from this that

i the Reynolds number may vary along

i 2 EF g the stream in a pipe of constant
..MVI—— -—-——2tfr  diameter only as a result of a

i

i

= .

Ty change 1in the viscosity u. But
o Lts the viscosity u of 1deal gases
does not depend on pressure, being
determined solely by temperature.
g:g'o?3éé51%ig:tiitin§ygigg' In the isothermal process of pipe
drical pipe flow of the gas, therefore, the
* Reynolds number will remain con-
stant. In the adiabatic process,
it will change slightly as a re-
sult of a temperature change, but this variation is usually in-
significant.

Let us 1isolate an element of length dx from a horizontal
ecylindrical pipe by passing two sections through 1t at an infin-
itesimal distance from one another (Fig. 231). Disregarding the
nonuniformity of the velocity distribution over the cross sectlons,
we denote the velocity in the left-hand sectlon of the pipe by v
and that in the right section by v + dv, and the respective pres-
sures by p and p + dp.

We apply the momentum-change theorem of mechanics to our ele-
mentary volume. The per-second momentum increment in the direc-
tion of the flow equals

Mdvo=-cSvdr.

This increment results from the action of two external
forces: a pressure force and a friction force.

The per-second impulse of the resultant force equals
dR=[p--(p-dp)}S— 1 Ndx=a—Sdp—zNdx,

where 1, 1s the tangentlal stress at the pipe wall and I is the
perimeter of the pipe crocss section.

Equating the per-second impulse of the forces to the momentum
increment, we obtain
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—Sdp—xMdx:-oSvdv

or

dp-ed ()12 dx=0.

where Rg = S/I is the hydraulic radius, which equals Rg = d/U for
a round pilpe.

We express T, in terms of A and v? in accordance with (4,22)
and divide the entire equation by vy = pg:

¢p+,,(2v”)4,4_1£=o (15.15)

where the last term is the head loss to friction on length dx and
A 1s a loss coefficient that depends on flow regime and Reynolds
number (see §§24 and 28).

We now integrate (15.15) for the two cases: adiabatlc and
isothermal gas flows.

For adiabatic flow, we use (15.6), from which we find the
pressure:

Y (=Y 0 g
P =" (") (15.16)

Here and below, the gas varliables with the subscript 1 per-
taln to the initial section through the gas line, and those with-
out a subscript to an arbitrarlly chosen section.

We then find from Condition (15.14)

. (L P S8
Y— v 1 v *
Now, using the expressions derived, we can rewrite the earller
equation in the form

r—1 (v
P=‘%“ nt 2ok \l(“‘""""l)

We find the derivative

2o bty (B0 )2,

dv 2ky

We substitute the resulting expression into (15.15); sub-
stituting y 1n this equation according to (15.14), we obtain
after simple manipulation

2
195 o, LAY ko] (."' | A_L) g
gh vl ! £\ I v v v
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Extending integration from the initial cross section of the
gas line to a certain arbitrary section (for example, the final
section), which is at a distance ¢ from the initial section, and
regarding A as constant along the stream, we have

{ k—1_o )| 1 k41, ©
(Pt Yo )= I — 115,16
7 (g “—{-% 'ul)( - u’-’) In—. (15.16')

Y, & vy
We can write on the basis of (15.6) and (15.7)

P k=1 o Po
Py T =g P =RT,.
4 “+ PPl g Yor RT,

Here and from now on, the subscript 01 will be applied to
the stagnation parameters in the initial cross section of the gas
line, those that the gas acquires if it is stagnated adiabatically
and without friction, i.e., so as to observe the isentroplc equa-
tion (15.2). We may therefore assume that the variables of -the
gas in the tank (bottle) from which the gas line runs and in which
the velocity v = v, = 0 will also be the same.

We note in passing that in adiabatlic gas flow, the stagna-
tion temperature remains constant along the flow, i.e., Ty =
= T, = const, while the stagnation pressure p, decreases because
of frictlon.

With consideration of the above, the result of integration
(15.16) can be written

{ 1 1 k41 v
A RT (=) (15.16")

and, using (15.13), we can write Eq. (15.16") in dimensionless
quantities:

i='i‘(;—=‘f_2ln§l), (15.16)

where M, = v,/a,, and M = v/a,, are the so-called relative velo-
citles in the initial and final cross sections of the gas lilne

and ¢ = A%/d 1s the reduced relative length of the line.

_ If we again differentiate this expression wlth_respect to

M, assuming M, = const and express dM in terms of de, we can
easily show that the veloclity increases 1in a cylindrical pipe

in subsonic gas flow, and decreases in supersonic flow, but that
passage through the speed of sound is impossible in a cylindrical
pipe in adlabatic flow.

Equation (15.16") or (15.16) 1s not sufficlent for full
solution of the problem of gas flow along a plpe from a recelver
to a final (or arbitrary) cross section. It is necessary to de-
rive a second working equation linking M,, M, and the ratio of
the pressure in the receiver (the stagnation pressure in the
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initial pipe section) p,, to the pressure p in the final sec-
tion.

For this purpose, we obtain from Eq. (15.7), written for
the receiver and the initial pipe sectlon,

] -y T
ity R (1- 7). (15.17)

Thereafter, we use the following equation system:

1) the equatlons of state for the initial and final pipe
sectlions:

pr=0iRT, and P=eRT;

2) the ideal adlabatic equation for the tank and the initial
pipe cross sectlon :

)11—.

-!_o'____(lm_
J 2 N

3) Eq. (15.14) for the initial and final plipe cross sections

N0
v [}

4) Eq. (15.7) for the recelver and the final pipe cross sec-
tion

A pr—* PV -
k-—-lRT" i Q+2, where T, Tors

With the above equations, we can reduce Formula (15.17) by
successive exclusions to the form

2 2 — _!;"_"‘.( e )""]
b= ﬁﬂ}[l (pmm) 1= %t . (15.17")
Introducing the relative velocities M into (15.17') and

solving 1t for p/p,., We obtain

=) 1519

The system of equations (15.16) and (15.18) enables us to
construct a family of p/p,, = f(&) curves of adiabatlc gas flow
for a serles of constant relative veloclties M, in the initial
cross section of the pipe and to plot on the =ame diagram curves
of constant M. This family of curves 1s very convenient for cal-
culation of gas lines for adiabatlc flow. In Fig. 232, the curves
were plotted for k = 1.4; the solid lines represent M, = const,
and the dashed lines M = const.
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Curve AB corresponds to the limiting value M=1, 1.e., to
the speed of sound in the final (or subject) cross section. Con-
sequently, curve AB is the boundary between the reglon of subsonlc
flows (above curve AB) and the reglon of supersonic flows in the
gas line.

For M, = M = 1, Formula (15.16) gives £ = 0, and it follows
from (15.18) that

- i—)m:o,sas.
Por k-1

i.,e., we obtaln the case of gas outflow through a hole at the
critical velocity.

| &
. + |
= ;:::H,H_ ol T
; § ]
. E\"ﬂ.‘;l‘":-., h"‘-i-.._:F""‘
s e i

=

r 114 or ar

Fig. 232. Illustrating design of gas lines
for adiabatic flow.

The method by which these curves are used wlll be demon-
strated below.

For isothermal flow we have the following relation between
pressure and density:

L. P
(4] e

Applying (15.14) and differentilating, we obtain

dp=——p, % dv.
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line
tion

Substituting this expression into (15.15), eliminating y
it, and applying (15.14), we obtain the following differen-
equation after dividing by v?/2g:

dx  4() o P dv
ld—}-v, -29.03 0.

After integrating from the initial cross sectlion of the gas
to the selected or filnal cross section (applying the equa-
of state p, = p,RT), we have

1 11
A —=RT (?;Tu—z)—zln—:;l_ (15.19)

where T = T, = const along the stream.

We rewrite the resulting equation in dimensionless varilables,

introducing the ratio of flow velocity to the local speed of
sound, i.e., the Mach number M, which equals

M= =2 A{::!L;
e :7?5?— and 1 a

where a = const along the stream.

Then we have instead of (15.19)

sl 111 M
’="v7“T(I4‘3"74‘2)—2l" " (15.20)

Equation (15.20), which was derived for isothermal flow,

corresponds to (15.16), which applies for adiabatic flow.

i
|
|

T,
o ’\;:—-
b
P =

g =~d_ \]

- e
H-i-fmj q

T T T E " T R TR TR T |

Fig. 233. Calculation for gas lines in case
of isothermal flow.
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Differentiating (15.20) with respect to M, assuming M, =
= const, and determining dM, we obtaln

dM=__Mdl_
A3 ~)

Analyzing this equatlon, we conclude that in the case of
isothermal flow with M? < 1/k in a cylindrical pipe, veloclty
increases downstream (for df > 0 and dM > 0), while for M2 > k,
it decreases downstream. Consequently, the value of M = 1//k
for isothermal pipe flow is just as eritical as M = 1 for adla-
batic flow. Passage through this value of M, which’ equals Mkr =

= 0.845 for k = 1.4, with preservation of i{sothermal flow is im-
possible, since the slightest upward deviation of M from the
eritical value changes the sign of the increment dM and returns
the flow to the critical state. .

Md,
1

To obtain our second working equatlon, we proceed, as in the
case of adlabatic flow, from Eq. (15.17) and the four-equation
system that follows 1t, except for the last, instead of which we
use the 1sotherm equation

»n

.

A
Y i

This equation system enables us to bring (15.17) to the form

21
e g - AN
i k—1 I(IOI[I (Foﬂﬂ) ]'

Then on introducing M and solving for p/Po1, We obtain 1n-
stead of the above

4 My

Pa L
. (15.21)
M(l+£—2—1M})

with Egs. (15.20) and (15.21), we can construct a family of
p/pPe1 = (&) curves of isothermal flow for a series of constant
M, (in the initial cross section of the pipe), and plot curves
of constant M on the same diagram (Fig. 233). Curve AB corre-
sponds to the limiting value M =M . = 1/vk = 0.845,

§79. POSSIBLE PROBLEMS IN THE SYNTHESIS OF GAS LINES

We shall examine problems of this type that are likely to come
up in practice and their solution by means of the dlagrams that we
have constructed. These problems are formulated in much the same
way as those pertaining to the simple pipeline, which were examined
in §47. We shall consider all problems in two variants: for adia-
batic and Llsothermal flows in the gas line. The difference in the
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formulation of the problems for these two variants will be in the
temperatures assumed to be given: T4; in the receiver for adla-
batic flow and T = T, = const along the gas line, which 1s equal
to the ambient temperature, in the case of iscchermal flow.

Since the actual flow process 1s intermediate, it 1s recom-
mended that the problem be solved in the general case in these
two variants, so that the limits between which the real answer
lies will be known. We shall assume that the properties of the
gas, i.e., k, R, and y, are given in all cases. The frictional
loss coefricient A for the gas line 1s determined by the same
formulas as for a liquid.

Problem 1.

Given: Gravimetric gas flow rate G, amblent pressure p at
exit from pipeline, and the dimensions of the gas line, £ and d.

Find the required recelver pressure p,,.
Solution:

1. For the adiabatic case, we assign an average gas tempera-
ture in the gas Ilne® and determine the average viscosity ¢ from
it. We find Re from G, d, and y, and then determine the coeffi-
clent A and the reduced length 4 = AL/d.

Then, on the basis of (15.6) and (15.7), we write the equa-
tion for the flow from the recelver to the final section of the
gas line:

& P v?
— _RT, —=—=%_ P
a—i K=} 1 v+2g'
where
' ___4G
Y d?v

Eliminating y from the flrst equation, we solve 1t as a
quadratic equation in v. Then we determine a . and M = v/akr

from (15.13).

We then turn to the diagram of Fig. 232 and determine p/p,,
for the ¥ and M, and then find p,,.

If the result places the calculated_point below curve AB in
Fig. 232, this means that in actuality, M = 1 and v = A will

apply in the final section. The pressure ratio p/p,; 1s deter-
mined by the intersection point of curve AB in Fig. 232 with the
vertical corresponding to 2., In this case, the pressure in the
final section of the gas line will exceed the pressure of the
medium into which the gas 1s escaping and, consequently, is un-
known,

TSee page 389 for footnote.
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In this case, we proceed as follows to determine py;. From
the indicated_intersection on the dlagram, we determine M, and
then v, = a, M, and

r
o]
M’Vl ‘

Y=

We then have from (15.7), written for the receiver and the
initial cross section,

. 2
el V
T=Tu-i2 3

and from the equation of state

Y1RT,

==

4

Using the ideal adlabatic equation known from thermodynamics,
we find the unknown recelver pressure

Pm==P(§T

In the case of laminar flow, when the coefficient A variles
substantially with Re, we can determine the temperature and im-
prove the calculation.

2. In the 1lsothermal case, we find u from the temperature
T = T,, and then Re, X, and X. We use the equation of state to
determine y from T and p, and then find the velocity in the final
section of the gas line:

o=20_
nd2y :

We determine a from (15.13') and then M = v/a. We then de-
termine p/p,; for the & and M on the dlagram of Fig. 233, and
thls gives us p,,.

If the calculated point is below curve AB on Fig. 233, this
means that M = 0.845 and the calculation is carried out as in the

preceding case for M = 1, The only difference will be that the
temperature T, 1is known and T,, is not known.

Problem 2.

Given: Pressure p,, in receiver, pressure p of medium at exit
from gas line, and gas line dimensions & and da.

Find the gravimetric gas flow rate G.

Solution:
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1. For the adiabatic case, we assign a value to the coeffi-
clent A on the assumption of turbulent_flow (A = 0.02-0.03). We
determine the reduced gas line length & and find M, from p/p
with the aid of Fig. 232. Next, we determine a . from (15.13),

and then v, = akrﬁ" We determine T; from Eq. (15.7), written
for the receiver and the initial pipeline cross sectlon:

We then apply the ideal adiabatic equation of thermodynamics:

o=

,!L: 1" )l—l
va \To:
and the equation of state
;P01
Yo RTo, '

from which we determine the specific welght of the gas in the in-
iti1al cross section.

The unknown gas flow rate 1s determined in first approxima-
tion by the formula

G=u,y, "
LN ] P

We tnen determine the Reynolds number from G and Tsr’ check

the flow regime, and figure the coefficlent A from Re. The gas
flow rate can then be determined in the same way in second approx-
imation and, if necessary, third and subsequent approximations,
but two or three are usually sufficient.

2. For the 1sothermal case, we again assign a coefficlent A,
determine %, and find M from p/p,, with the diagram of Fig. 233.
Using (15.13'), we determine a and then v = aM, Using T and p
with the equation of state, we find y, and then the unknown gas
flow rate in first approximation:

G==vy5%1.

Then, as before, we improve the solution, i.e., compute Re
and A and repeat the same procedure until we obtain satlsfactory
convergence.

If the calculated point on Fig. 232 or 233 is below curve AB
when this problem is solved, this means, as 1in Problem 1, that
the flow rate G is determined from the intersection point of
curve AB with the vertical corresponding to &.

-386-



Problem 3.

Given: Gravimetric gas flow rate G, receiver pressure py,,
pressure p in medium at exit from gas line, and length & of gas
line.

Find the diameter d of the gas line.

The solution 1is carried out as follows in both cases (adia-
batic and isothermal). We assign a serles of values to the diam-
eter d (3-4 values). Here it 1s helpful to make an approximate
determination of the dilameter corresponding to lk , at which the

assigned pressure ratio p/p,,; will yield the limiting veloclity
value at the exit from the gas 1line (if p/p,; < 0.528), and to
include this dlameter among the assigned values. Then we solve
the first problem for each of these dlameters, 1.e., we find the
Po1 for adiabatic and isothermal flows or for only one of them.
We then plot a curve of py;; as a function of d and use 1t to find
the necessary diameter from the asslgned pg,;; we then select the
next larger standard diameter,

An approximate formula for synthesis of gas lines on the as-
sumption of isothermal flow can be derived from (15.19) by apply-
ing (15.14) and the equations of state and the isotherm. We
first solve (15.19) for v, and then transform and write an expres-
sion for the gravimetric gas flow rate

G— ,v.——V ("—’ . (15.22)
( +2ln

where T is the constant temperature along the gas line.

This formula can be used when 1t 1s known that M = 0,845 at
the end of the gas 1line and when the pressure p; in the initial
cross section of the gas line is given. If, on the other hand,
the latter is unknown, we can assume in approximation that p, =
= p,, at low gas velocitles in the initial cross section, 1i.e.,
we can dlsregard the pressure drop from the receiver to the
initial gas line cross section.

The problem of determining the initlal pressure p, for given
G and p with Formula (15.22) can be solved only by trial and error.
Buv if the reduced length A%/d is large enough by comparison with
2 1n(p,/p), the latter can be disregarded; (15.22) then glves

224 10 5 1 prge
pi=p + pr” ) 7 RTG2,

It must be remembered that here and everywhere else R has
been the gas constant 1n SI units and p the pressure in N/m?. 1If,
however, the old englneering system of units is used and pressure

-387-



1s expressed in kgf/m?, the last formula will be written somewhat
differently:

16 I
pz=p?+;ﬂ—gk_4— 1 -‘-‘—R TG’.
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Footnote

Manu-
script
page

384 IThis temperature can be assumed approximately equal to
T = 0.9T,,.
sr 01
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page
374
378
386

Symbol
Kp kr
r g
cp sr

Symbol List
English equivalent
critical

hydraulic
average
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ABSTRACT

(U) The book is intended for use as a textbook by students of
higher educational Institutes for aviation, and in some machine
bullding higher educatlional institutes, The author discusses
problems of general hydraulic control, hydrostatic laws, fluid
flow level in tubes, as well as laws for the flow of fluid
through orifices and nozzles, Hydraulic calculations are pre-
sented as applied to fluld flow 1n tubes, Centrifugal and
positive-displacement pumps as applied in aircraft, as well as
fluid flow and the practlcal application of 1ts theories, are
discussed., The author thanks N, Ya, Fabrikant, K, F, Kosourov,
S. S, Rudnev}< A, S, Shifrin, V, N. Prokoftyev, V, V, Shul'gin,
B. Ya, Shumatskly, and B, P, Borlsov for participation in.the
compilation of is book,
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