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ANNOTATION 

This volume sets forth the laws of hydrostatics, the general 
equations of hydraulics, fluid-flow regimes in pipes, and the 
laws of outflow of fluids through holes and mouthpieces; it pre- 
sents methods for hydraulic design of pipes. 

Special sections are devoted to aviation-type centrifugal 
and displacement pumps, hydraulic drives and transmissions. 

It is designed as a textbook for students in the aviation 
higher educational institutes and some of the mechanical-engin- 
eering schools. 

There are 6 tables, 263 illustrations, and 36 source cita- 
tions. 

Reviewer: Prof. N.Ya. Fabrikant 

Scientific Editor: Decent A.S. Shifrin, Candidate 
of Technical Sciences 
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FOREWORD 

The present textbook Is based on the author's book    Hydrau- 
lics     (Voyenlzdat,   I960).     The present edition has been exten- 
sively revised and expanded with new material. 

The program of a hydraulics  course may have a more or less 
specific slant,  depending on the profile  of the avlatlon-engln- 
eerlng school:   design,  production engineering,   or operations;   It 
may also vary In accordance with the specialization of the  fac- 
ulty. 

It Is  the author's   feeling that  the  present  textbook can be 
used in all of the  aviation  schools. 

In addition to the fundamentals of general hydraulics,  with 
which the aviation engineer must be  familiar,  the text also in- 
corporates the  fundamentals  of the theory of hydraulic machines 
(centrifugal and displacement pumps and hydraulic motors)  and 
other hydraulic  devices  used on aircraft.     These  units  Include 
hydraulic-transmission  (hydraulic-drive)  systems and their ele- 
ments   (subassemblies  of aircraft hydraulic systems). 

The  fundamentals of mathematical design for gas  lines  are 
considered in a special  section. 

The book casts  light on a number of new problems not pre- 
viously  touched upon  in student  literature on hydraulics.     They 
include  laminar flow of a fluid with  large pressure gradients, 
improvement of the  laws of turbulent  flow,  outflow through noz- 
zels,  the elements  of hydraulic automation  (chokes, valves,   flap 
nozzles, and pressure and  flowrate regulators), motion of fluid 
under conditions  of weightlessness,   the  classification,   general 
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properties, and theoretical fundamentals of rotor displacement 
pumps and hydraulic motors, the hydraulic servodrlve, hydro- 
mechanical transmissions, and, finally, a method ^ the mathe- 
matical design of gas lines that can be used for arbitrary di- 
mensions and arbitrary subsonic velocities with adlabatlc or 
Isothermal flow. 

Where the book sets forth theoretical fundamentals of hy- 
draulics, the basic relationships for fluid equilibrium and for 
the case of motion of an Ideal incompressible fluid (the Ber- 
noulli equation) are derived by two methods - a simplified method 
that follows directly from the physics of the phenomenon and a 
more rigorous method In which the general Euler differential 
equations are integrated. 

In setting forth the material, the author has made an ef- 
fort to graduate It from the simple to the complicated, from the 
particular to the general,and from the Ideal to the real. 

Professors N.Ya. Fabrikant, K.F. Kosourov a.nd S.S. Rudnev 
helped review the manuscript. Docent A.S. Shlfrin, Candidate of 
Technical Sciences, performed yeoman service in the scientific 
editing of the manuscript. Further, the author was assisted with 
specific problems in preparation of the manuscript for the print- 
er by Doctor of Technical Sciences V.N. Prokofyev, Candidates of 
Technical Sciences V.V. Shul'gln and B.Ya. Shumyatskly, and En- 
gineer B.P. Borlsov. 

The author extends his heartfelt thanks to the above per- 
sons. 
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CHAPTERI 

INTRODUCTION 

§1.   HYDRAULICS  AND  ITS USE ON AIRCRAFT 

The division of mechanics that studies the equilibrium and 
motion of fluids and the dynamic Interaction between fluids and 
bodies around which they flow or surfaces that reatrlct them Is 
known as hydromechanics. 

Hydraulics  Is one of the applied branches of hydromechanics. 
Usually, hydraulics Is defined as the science of the laws of 
fluid equilibrium and motion and the application of these  laws 
to the solution of practical problems.    This definition requires 
a certain amount  ol  refinement and qualification. 

Hydraulics  Is concerned chiefly with fluid flows that are 
bounded and directed by solid walls.  I.e.,   flows  In open and 
closed channels.     In our terminology,  "channel" will Include 
all walls that  limit and direct the  flow,  and hence not only the 
channels of rivers,  canals,  and mlllraces,  but also the  various 
kinds of pipes,  mouthpieces,  and elements of hydraulic machines 
and other devices  In which a fluid flows. 

Thus, we might say that hydraulics Is basically concerned 
with Internal  fluid flows and solves the so-called "internal" 
problem,  as distinguished from the  "external" problem,  which in- 
volves flow of a continuous medium around bodies,  such  as occurs 
when a solid body moves in a liquid or gas   (air).     This   "exter- 
nal" problem is  examined In aerohydromechanlcs and has  been 
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developed essentially In connection with the requirements  of aero- 
nautical and marine engineering. 

We should note that  the term "fluid" is often understood in 
a broader sense in hydrodynamics  than we are used   to in our 
everyday life.    The T,fluld"  concept Includes all bodies that have 
the property of fluidity, I.e.,  the ability to change shape with- 
out limit when acted upon by inflniteslmally small forces.     Thus, 
the notion Includes both ordinary  "dropping" liquids  and gases. 

The former are distinguished by the fact that they acquire 
spherical shape in  small volumes  and usually form a free surface 
In large ones.    An important property  of dropping fluids  Is  that 
they undergo negligibly small changes  in volume under a change in 
pressure,  and are  therefore usually regarded as incompressible. 
Qases,  on the other hand,  are capable  of very  large  volume reduc- 
tion under pressure and unlimited expansion in the absence  of 
pressure.  I.e.,  they are highly  compressible. 

In spite of this difference,  the  laws of motion of dropping 
fluids and gases  can be considered identical under certain   con- 
ditions.    Fundamental among these conditions is a small value of 
the flow rate of the gas by comparison with the velocity of 
sound In it. 

Hydraulics Is  concerned chiefly with the motions of dropping 
fluids and regards  them as  incompressible in the overwhelming 
majority of cases.     As for internal flows of gas, they come into 
the Jurisdiction of hydraulics only when their flow velocities 
are much smaller than the speed of sound and,  consequently,  the 
compressibility of the gas  can be disregarded.     Such oases  of 
gas motion are encountered quite  freouently in practice.    An 
example Is  the flow of air In ventilation systems and certain 
other gas lines. 

In the exposition that  follows,  the term "fluid" will mean 
a dropping liquid or a gas when the  latter can be regarded as 
Incompressible. 

Investigation  of the motion of liquids - not to mention 
gases - Is a more difficult and  complex problem than study  of 
the motion of an absolutely rigid body.     Galileo himself said that 
it was much easier to study the motion of celestial bodies  in- 
finitely distant  from us than to study the motion of water In a 
rivulet at our feet.    This becomes understandable when we  remem- 
ber that in the mechanics of the  solid body we have  a system of 
rigidly  interconnected particles, while in fluid mechanics we are 
dealing '.;lth a medium that consists of a multitude of particles 
that have mobility with respect  to one another. 

Owing to these difficulties, the historical development of 
fluid mechanics  took place In two different directions. 

The first trend - exact mathematical analysis based on the 
laws of mechanics  - was purely theoretical.    It led to the 
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creation of theoretical hydromechanics,  a science that   long ie 
malned an Independent discipline with no direct relation to ex- 
periment.     This method Is a highly  seductive and «^ the '^* 
time highly effective  scientific research Instrument.     However. 
it does not always answer the problems advanced by practice. 

As a result, another science  concerned with the motion of 
liquids arose  out of the bread-and-butter problems of Practical 
human engineering activity - hydraulics,   in which the  investiga- 
tors took the  second approach, that ^extensive recourse to ex- 
oerltnent and the accumulation of experimental data for use in 
engineering Practice.     In the early phase  of its development, 
hydraulics was  a purely empirical  science.    Now.  however, the 
methods  of theoretical hydrodynamics  are   coming Into increasing 
use wherever possible  and expedient   for  the  solution ^specific 
problems,  and  the theoretical branch is beginning to resort more 
and more'often  to experiment  as a  criterion for ^tlns its  con- 
clusions.     Thus,  the   distinction in the  methods  of these two 
sciences  is gradually  disappearing and the boundary between them 
is being effaced. 

The method used  in contemporary hydraulics to investigate 
fluid motions   consists In the  following.     First,  the phenomena 
to be studied  are simplified and idealized and the laws  °f theo- 
retical mechanics are applied to them.    The results are then com- 
nared with experimental data,  the  extent  of the discrepancies  de- 
termined,   and  the  theoretical  conclusions  and formulas   improved 
and corrected  to adapt them for practical use. 

A whole  series   of phenomena that are  so complex as  to resist 
theoretical analysis  quite stubbornly are  investigated  in hydrau- 
lics by purely  experimental means,   and the results  of this research 
are presented  in the   form of empirical  formulas.     Hydraulics   is 
therefore  a semiemplrical science. 

It elves  us methods  for the mathematical design and construc- 
tion engineering of  a wide  variety   ^hydraulic  structures  ^ams 
canals,   sluices,  pipelines  to  carry  all  types  of ^i^ > •  "y^aui 
1c machines   (puips,  hydraulic turbines,  hydraulic transmissions), 
and other hydraulic  devices   that  are used in many branches  of en- 
gineerlng. 

Hydraulics  Is  especially  Important  in mechanical engineer- 
ing.    Thus,  at  any modern machinery plant, we find the  hydraulic 
drive in widespread  use on metalcutting machine tools   and forglng- 
press equipment, along with applications  of hydraulics  in founding 
and plastics  molding,  etc. 

One  of the distinctive   features of contemporary aeronautical 
engineering is  the  steadily  increasing role of various  types  of 
eSuiJment on the airplane.  Including hydraulic equipment - hydrau- 
Uc transmissions   (hydraulic  systems),   fuel systems,   oil systems, 
air-and-oil shock absorbers,  etc. 
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Aircraft hydraullc-drlve systems have become considerably 
more  complicated In recent years  and have been made more power- 
ful.     While hydraulic transmissions were used on aircraft of the 
Second World War only to raise  and lower landing gear, dozens of 
functions and more are performed by hydraulic transmissions on 
contemporary aircraft. 

Hydraulic transmissions   (hydraulic systems)  on the airplane 
are usually used for flight  control  (deflection of tail control 
surfaces and ailerons), raising and lowering landing gear, steer- 
ing the nose wheel,  lowering and retracting flaps and airbrakes, 
operating wheel brakes, engine  control  (regulation of intake unit, 
exhaust nozzle, antisurge devices); control of doors and hatches; 
rotation of antennas,  and so forth.    There is  a tendency to 
broaden the  field of application of hydraulic transmissions even 
further on both airplanes  and helicopters. 

The largest and most  crucial hydraulic transmission system - 
the airplane's hydraulic  controls   (hydraulic-amplifier or booster 
system)  - is  a finely tuned power servosystem on, whose proper 
operation the possibility  of flight depends. 

The hydraulic drive  is used successfully on aircraft as a 
synchronous-generator drive and thereby helps  solve the problem 
of conversion of aircraft  to alternating current with stable  fre- 
quencies. 

The fuel systems of modern Jet aircraft have grown, owing 
to the  very high fuel-consumption rates, into complex systems 
consisting of a number of tanks,  a whole network of pipelines, 
a number of main and auxiliary pumps, and various other acces- 
sories. 

The fuel-supply systems of  liquid rocket engines, which con- 
sist basically of combustion chambers and these  fuel systems,  are 
particularly intricate and, at  the same time,  powerful.    In turn, 
the  fuel system is usually made  up of two subsystems:   one for 
supplying the fuel  (for example,  kerosene),  and the  other for 
oxldizer  (for example, nitric  acid or liquid oxygen).    The two 
systems are coordinated by an automatic  ievlce that ensures 
supply of the propellants  in the proper proportions with the 
engine operating under various  conditions. 

The lubricating systems of turbojet  [TJE](TPfl)  and propjet 
[PJE](TBfl)  engines are crucially important hydraulic systems, 
each containing a number of pumps and special hydraulic acces- 
sories to cool and filter the  oil, separate out water,  etc. 

Stationary and mobile fueling systems at  airports are also 
hydraulic systems with high-delivery pumping units.  And as for 
in-flight refueling of aircraft,  successful solution of this 
problem is  determined to a substantial degree by the  use of ade- 
quately powerful and, at the same time,  compact hydraulic equip- 
ment. 
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This by no means complete list shows how extensively various 
types of hydraulic devices are used In aeronautical engineering. 

To understand the operation of these systems correctly and 
use them knowledgeably, to be able to diagnose trouble and find 
ways to correct It, and the more so to design and calculate these 
systems, It Is necessary to have appropriate preparation In the 
field of hydraulics. 

§2. FORCES ACTING ON A FLUID.  PRESSURE IN A FLUID 

Hydraulics, and hydromechanics In general, dissociate them- 
selves from the molecular structure of matter and treat fluids 
as continuous media that fill space without gaps and vacancies. 
I.e., as contlnua. 

Because of the fluidity of the fluid 
(the mobility of its particles), concen- 
trated forces cannot act in it, but only 
forces that are distributed continuously 
through its volume (mass) or over its 
surface. As a consequence, forces that 
act upon subject volumes of fluid and are 
external forces with respect to it are 
classified as mass (volume) and surface, 
forces. Pig. 1. Resolution 

of surface force 
into two components. Mass forces are proportional to the 

mass of the fluid body, or, for homogen- 
eous fluids, to the volume of the fluid. 

They Include first the force of gravity and then the inertial 
forces of translatlonal motion, which act on a fluid at relative 
rest in an accelerating container or one in relative motion in a 
channel that is subject to some form of acceleration. 

The mass forces also include forces that are introduced by 
the D'Alembert principle in writing equations of fluid motion. 

Surface forces are distributed continuously over the surface 
of a fluid and are proportional to the area of this surface (as- 
suming uniform distribution).  These forces are governed by di- 
rect action of neighboring volumes of fluid on a given volume or 
by the action of other bodies (solid or gaseous) that are in con- 
tact with the fluid body in question. 

In the general case, the surface force AR acting on an area 
AS is directed at a certain angle to it, and AR can be resolved 
Into normal AP and tangential AT components (Pig. 1). The former 
is known as the pressure force if it is directed into the volume, 
while the latter is the force of friction. 

In hydromechanics, both mass and surface forces are usually 
treated in the form of unit forces, i.e., forces referred to ap- 
propriate units. Mass forces are referred to a mass unit and 
surface forces to a unit area. 
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Since any mass force is equal to the product of a mas^ by an 
acceleration, It follows that the unit mass force Is numerically 
equal to the corresponding acceleration. 

The unit surface force, which is known as the stress of sur- 
face force, like the total force, is decomposed into normal and 
tangential stresses. 

The normal stress, i.e., the stress of the pressure force. 
Is known as the hydromechanical (or, for the case of rest, hydro- 
static) pressure or simply the pressure, and is denoted by the 
letter £. 

If the pressure force AP is uniformly distributed over ele- 
mentary area AS or it is necessary to find the average value of 
a hydromechanical pressure, the latter Is determined by the for- 
mula 

P—IJ- (1.1) 

Generally, however, the hydromechanical pressure at a given 
point Is equal to the limit to which the ratio of the pressure 
force to the area on which it acts tends as the area tends to 
zero, i.e., as the area contracts to a point. 

If the pressure £ is reckoned from zero, it is called abso- 
lute pressure, but if it is reckoned from atmospheric, it is 
known as the excess or gage pressure.  Consequently, the absolute 
pressure is equal to the atmospheric pressure plus the excess 
pressure, i.e., 

The unit of pressure in the International System (SI) is the 
uniformly distributed pressure at which a force of 1 Newton acts 
on an area of 1 m2, i.e., 1 N/m2. The following derived units 
are also used; the decanewton per per m2 (daN/m ), the kllonewton 
per m2 (kN/m2), and the meganewton per m2 (MN/m2). Thus, we have 

1 N/m2 - 10'1 daN/m2 - ICT3 kN/m2 - 10"8 MN/m2. 

The MKOFS (meter, kilogram-force, second) system, in which the 
unit of pressure is 1 kgf/mr, is still used in engineering.  A 
nonsystem unit is also widely used - the technical atmosphere, 
which is equal to one kilogram-force per cm2. I.e., 

1 atm - 1 kgf/cm2 - 10 000 kgf/m2. 

The relation between the pressure units in the SI and MKQPS 
systems Is as follows: 



1 N/m2 ■ 0.102 kgf/m2  or 1 kgf/m2  -  9.8l N/m2. 

The tangential stress  in the fluid,  i.e.,  the  frictional 
stress,  is  denoted by T and expressed,  like the pressure, as a 
limit: 

..    ti   Ay v- Hin    ■-. /i   o\ 
«A-.pAS' ^1.3; 

while the units used for it are the same as those for pressure. 

§3. BASIC PROPERTIES OF DROPPING FLUIDS.  FLUIDS USED IN AVIATION 
AND ROCKET ENGINEERING 

Let us examine the basic physical properties of dropping 
fluids, with which hydromechanics is chiefly concerned. 

The fundamental mechanical characteristic of a fluid is its 
density. 

The density p is the mass of the fluid enclosed in a unit 
volume (for a homogeneous fluid), i.e., 

p - M/W [kg/m3] or [kgf•sVm"], (1.4) 

where M is the mass of fluid in volume W. 

We shall call the weight of a unit volume of fluid its 
specific or volume weight y,  i.e., 

Y = G/w [N/m3] or [kgf/mJ], (1.5) 

where 0 is the weight of the fluid and W is its volume. 

Thus, specific weight is a dimensional quantity, and its nu- 
merical value depends on the units in which it is expressed. 

Thus, we have, for water at 1J0C 

Y - 1000 kgf/m3 - 0.0Q1 kgf/cm3 - 9.8l'103 N/m'. 

The relation between the specific weight Y and density p is 
easily found when we remember that G » gM; we have 

»-——J1. (1.6) 

If the fluid is inhomogeneous, Formulas (1.4) and (1.5) de- 
fine only the average value of specific weight or density in a 
given volume. To determine the true Y or p at a given point, it is 
necessary to examine a vanishing volume and find the limit of the 
appropriate ratio. 



The notion of the specific gravity 6 of a fluid Is also In 
use; this Is the ratio of the specific weight of the fluid to 
that of water at ^0C, I.e., 

(1.7) 

Let us examine the  following physical properties of dropping 
fluids:  compressibility, thermal expansion,  tensile strength, 
surface, tension,  viscosity, and volatility. 

1.  Compressibility or the ability of a fluid to  change Its 
volume under pressure is characterized by the volumetric coef- 
ficient of compression ß   , which represents the relative volume 
change per unit  of pressure, I.e., 

p^-J-^L-Cna/N]  or [omVkgf]. (1.8) 
•'0    *P 

The minus sign In the formula is explained by the fact that 
a negative Increment (i.e., a decrease) in the volume W corre- 
sponds to a positive Increment of the pressure £. 

Considering the pressure increment Ap - p - Po and the 
volume change AW - W - Wo, we obtain from Expression (1.8) 

r=ro(i-M/») 

or, applying (1.1), 

where p and p0 are the density values at the pressures £ 
and Po 

The reciprocal of the coefficient ß  Is the bulk elastic 

modulus K. 

Expressing volume in terms of density and converting from 
finite differences to differentials, we obtain instead of (1.8) 

c=rrrTa' (i.9) 

Crf (.;)   " (i.io.) 
or 

/Ufr-ai (1.10) 

where a is the velocity of propagation of longitudinal waves in 
an elastic medium, and is equal to the speed of sound (see physics 
textbooks). 
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For dropping fluids, the modulus K Increases somewhat with 
Increasing temperature and pressure. For water. It averages 
20 000 kgf/cm2. Consequently, on a 1 kgf/om2 pressure Increase, 
the volume of water decreases by 1/20 000, I.e., most Insignifi- 
cantly.  The elastic moduli of other dropping fluids are also of 
the same order (see Table 1). 

It follows from (1.9) that the density of ATW-l fluid In- 
creases by only 3%  when the pressure Is raised to 400 kgf/cm . 

In most cases, therefore, dropping fluids may be regarded as 
practically incompressible, i.e., their densities p as indepen- 
dent of pressure.  But at very high pressures and in elastic 
vibrations, the compressibility of fluids must be taken into ac- 
count. 

2. Thermal expansion is characterized by the coefficient of 
volume expansion ß],, which represents the relative change in 

volume on a 10C change in the temperature t: 

Considering that AW = W » W,,, we have from the above equa- 
tion 

V/'Wod IM0. 

and, applying (l.'O, we obtain 

where p and p0 are the values of density at temperatures t and t,. 
_s 

For water, the coefficient ßt increases from I't • 10  to 

700 • 10"6 as the pressure is raised from 1 to 100 kgf/cm2 or the 
temperature from 1 to 100°C. The coefficient et for AMG-10 avia- 

tion fluid may be assumed to average 800 • 10-* in the pressure 
range from 1 to 150 kgf/cm2. 

3. According to molecular theory, tensile strength may be 
quite considerable in dropping fluids - up to 10 000 kgf/cm . 
Ephemeral tensile stresses of up to 230-280 kgf/cm2 have been ob- 
tained experimentally in thoroughly purified and degassed water. 
However, technically pure liquids, which contain suspended solid 
particles and minute gas bubbles, do not withstand even insig- 
nificant tensile stresses.  We shall therefore assume henceforth 
that tensile stresses are impossible in dropping fluids. 

i\.  Surface tension forces act on the surface of a fluid, 
tending to impart a spherical shape to the volume of fluid and 
giving rise to a certain additional pressure in the fluid.  How- 
ever, this pressure makes its presence felt only in small 
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volumes.  In small-diameter pipes, this additional pressure 
causes the level to rise above (or drop below) the normal level 
of the fluid in what is known as the capillary effect. 

The height h to which fluid rises in a glass tube of dia- 
meter d Is determined by the formula 

A'=y[nun],l 

where k has the following values in mm2: +30 for water, -11 for 
mercury, and +12 for alcohol. 

The capillary effect must be dealt with when glass tubes are 
used in instruments to measure pressure and in certain cases of 
fluid outflow.  Surface tension becomes a major factor in a 
weightless fluid (see §410. 

5. Viscosity is the property of a 
fluid to resist shear or slip between 
its layers.  It manifests in the appear- 
ance of tangential stresses in the fluid 
under certain conditions.  Viscosity is 
the opposite of fluidity; more viscous 
fluids (glycerine, lubricating oils, etc.) 
are less fluid and vice versa. 

When a viscous fluid flows along 
a solid wall, viscosity decelerates the 
flow (Fig. 2).  The rate of motion v of 
the layers decreases with decreasing dis- 
tance y_ from the wall, down to v ■ 0 at 
y - 0, and slip, which is accompanied by 
the appearance of tangential (frictional) 
stresses, takes place between layers. 

Pig. 2. Velocity 
profile in flow of 
viscous fluid along 
a wall. 

According to a hypothesis first advanced by I. Newton in 
1686 and then confirmed experimentally by Prof. N.P. Petrov in 
1882, the tangential stress in a fluid depends on the kind of 
fluid and the type of flow and varies in laminar flow in direct 
proportion to the so-called transverse velocity gradient, i.e., 
(for an infinite flat wall), 

rft- (1.14) 

where y  is  the   fluid's dynamic  coefficient of viscosity  and dv is 
the velocity increment corresponding to the coordinate increment 
dy. 

The transverse velocity gradient dv/dy defines the change in 
viscosity per unit length in direction ^ and, consequently, char- 
acterizes the intensity of shear between layers of the fluid at a 
given point. If the wall is not infinite, i.e., if there is also 
a velocity gradient in the direction normal to the plane of the 
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figure  (see Flg.   2),  the total derivative  In Formula  (l.l'O must 
be  replaced by the partial derivative  3v/3y. 

In the case of constant tangential stress over the surface 
area S, the total tangential force  (friction)  acting on this sur- 
face Is 

7-  jt-- S. du (1.15) 

To determine  the  dimensions  of the  viscosity coefficient, 
let us solve Eq.   (1.14)   for p.    We obtain 

T(dy/dv)   [N-s/m2]  or  [kgf's/m2]. 

v 
a cw'/tf./'TT 
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Pig. 3. Diagram of viscosity 
coefficient v as a function 
of temperature. 
KEY: (a) cm2/s; (b) water; 
(c) air; (d) machine oil; 
(e) oil. 

In the COS system, the vis- 
cosity unit Is 1 poise ■ 1 dyne x 
x  s/om2. 

Since 1 dyne « 10~5 

.02 • 10-* kgf, and 1 
N 

10" cm we have 1 poise 
« 0.1 N's/m2 - 1/98.1 kgf-s/m2. 

In addition to the viscosity 
coefficient u, the so-called kine- 
matic coefficient of viscosity 
v is also used; it equals 

[mVs]. (1.16) 

The dimensions of this  coef- 
ficient contain neither force nor 
mass,   and this makes it easier to 
convert  from one system of units 
to another. 

The  customary unit  of measurement of the kinematic viscosity 
coefficient Is  1  stoke ■  1 cm2/s.    One one-hundredth of a stoke 
is  a centlstoke. 

The viscosities of dropping fluids depend heavily on tem- 
perature,  diminishing as  the  latter increases   (Fig.   3).     As   for 
gases, however,  their viscosities,  to the  contrary, rise with 
rising temperature.    This Is explained by the difference  in the 
very nature of viscosity In liquids and gases. 

In liquids,  the molecules are much closer to one another than 
in gases, and viscosity is produced by  forces of molecular cohe- 
sion.     These  forces  diminish with rising temperature,   so  that  vis- 
cosity drops. 

In gases,  viscosity is governed  chiefly by disordered thermal 
motion of the molecules, whose intensity increases with 
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temperature.     As  a reault, gases become more viscous with increas- 
ing temperature. 

The Influence  of temperature on the viscosity of fluids can 
be evaluated by the  formula 

(ir-lVr-1" '.'. (1.17) 

where u and u0 are the viscosity values at temperatures t and t0 
and X Is a coefficient whose value varies from 0.023-0.0^3 for 
oils;  for AMG-10  aviation fluid,  X » 0.028 is assumed. 

The viscosity of fluids  also depends on pressure,  but  this 
relationship is manifested substantially only with relatively 
large pressure changes.     With  Increasing pressure,  the  viscosities 
of most  fluids rise, as we see from the  formula 

H.   j^r""-/", (1.18) 

where y and Ho a^e the values of viscosity at pressures p and p0 
and o is a coefficient whose value varies in the range 0.0023- 
0.003 for oils. 

It    follows   from the law of friction  (1.1*1)  that a frlctional 
stress  is possible  only in a moving  fluid,  i.e.,   the  viscosity of 
a fluid is evident  only when it  flows.    We shall assume the tan- 
gential stresses  in a quiescent fluid to be zero.1 

All this  leads us to the conclusion that friction in fluids, 
which is governed by viscosity, is subject to a law that differs 
fundamentally from the law of friction for solids. 

6.  Volatility  is inherent to all dropping fluids, but  the 
rates of evaporation differ for different fluids and depend on 
the  conditions prevailing  for it. 

One of the indicators that characterize  the volatility of a 
fluid is  its  boiling point at  standard atmospheric pressure.    The 
higher the boiling point,   the  lower the  volatility of the   fluid. 
In aircraft hydraulic systems,  standard atmospheric pressure is 
only a particular  case; usually,  it is  necessary to deal with 
vaporization and sometimes even boiling of fluids  In closed 
volumes  at various  temperatures and pressures.    Hence  the  satura- 
tion vapor pressure p., given as a function of temperature,  must 
be regarded as a more complete characteristic of volatility.    The 
higher the saturation vapor pressure at a given temperature,  the 
higher the volatility of the  fluid.    The pressure p.   increases 
with temperature,   but to different degrees in different  fluids. 

While the p.   ■ f(t)  relationship is quite definite  for a 
given simple   fluid,  the pressure pt depends  in complex fluids, 
i.e.. multicomponent mixtures  such as  gasoline, etc.,  not only on 
'See page  15  for  footnote. 
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Pig. 't. Vapor pressure of 
gasoline as a function of 
phase ratio and tempera- 
ture. 
KEY: (a) tnmHg; (b) %  of 
total volume occupied by 
liquid phase. 

their physlcochemlcal properties and 
the temperature, but also on the pro- 
portions by volume of the liquid and 
vapor phases. The saturation vapor 
pressure increases with the part of 
the volume occupied by the liquid 
phase.  By way of example, Pig. 4 
shows the saturation vapor pressure 
of gasoline as a function of the pro- 
portions of liquid and vapor phases 
for three temperatures. 

The basic physical properties of 
certain fluids used in aviation and 
rocket engineering are given in Table 
1. 
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Footnote 

Manu- 
script 
page 

13      'There are certain so-called anomalous or nonnewtonlan 
fluids (suspensions, colloids). In which tangential 
stresses are possible even at rest and the viscosity 
coefficient is found to depend on flow velocity. 
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page 

Syrabc >1 English equivalent 

6 aöc ab s absolute 
6 H3Ö Izb excess 
8 Z zh fluid 
8 BOfl vod water 
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CHAPTER      II 

FUNDAMENTALS  OF  HYDROSTATICS 

§iK   PROPERTIES  OF HYDROSTATIC  PRESSURE 

As we noted above, only  one type of stress is possible in a 
fluid at rest:   compressive stress,   i.e., hydrostatic pressure. 

The  following two properties of 
hydrostatic pressure in a fluid must be 
remembered: 

1.  On the outer surface  of the 
fluid, hydrostatic pressure Is always 
directed along normals into the volume 
of fluid under consideration. 

This property follows directly from 
the definition of pressure as the stress 
of a normal compressive  force   (see  §2). 

The external surfaces of a fluid 
should be understood as including not 
only the interface between it and the 
environment, but also the surfaces of 
elementary volumes that we abstract from 
the total  volume of fluid. 

Pig.  5.   Illustrating 
discussion of prop- 
erties of hydrostatic 
pressure. 

2    At any point inside a fluid,  the hydrostatic pressure  is 
the same  in all directions.  I.e.,  It does  not depend on the In- 
clination angle of the elementary  area on which it acts at a par- 
ticular point. 
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To demonstrate this property, let us Isolate an elementary 
volume In an Immobile fluid In the form of a right tetrahedron 
with sides parallel to the coordinate axes and equalling dx, dy, 
and dz, respectively (Pig. 5). 

Let a unit mass force whose components equal X, Y, and Z act 
on the fluid in the neighborhood of our chosen volume. 

Let us denote by px the hydrostatic pressure acting on the 

face normal to the ox-axis, by py the pressure on the face normal 

to the oy-axis, and so forth. The hydrostatic pressure acting on 
the inclined face will be denoted by pn and the area of this face 

by dS. All of these pressures are directed along normals to the 
corresponding surfaces. 

Let us first write the equilibrium equation of our selected 
fluid volume in the direction of the ox-axis. 

The projection of the pressure forces onto the ox-axis is 

nie mass of the tetrahedron is equal to the product of its 

volume by its density, i.e., I tfx^Af; consequently, the mass 

force acting on the tetrahedron along the ox-axis equals 

The equilibrium equation of the tetrahedron is written in the 
form 

We divide this equation term by term by the area -rf^Ä, which 

is the projection of the inclined face dS onto the yOz plane and 
is therefore equal to 

-!-^A-*J«M(*,«). 

We have 

As  the dimensions  of the tetrahedron tend to zero, the  last 
term of the equation, which contains the multiplier dx, will also 
tend to zero, but the pressures px and pn will remain nonzero 
quantities. 
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We therefore obtain at the limit 

or 

Writing the equations of equilibrium along the Oy and Ox axes 
in the same way, we obtain by similar reasoning 

or 
PM-PfPi-'P*- (2.1) 

Since the dimensions dx, dy, and dz of the tetrahedron were 

taken arbitrarily, the slope of area dS is also arbitrary and, 
consequently, the pressure at the point to which the tetrahedron 
shrinks at the limit will be the same in all directions. 

This proposition can also be proven easily on the basis of 
strength-of-materials formulas for the stresses in comoression 
along two and three mutually perpendicular directions.  For this 
It is sufficient to set the tangential stress equal to zero in 
the above formulas to obtain 

This property of hydrostatic pressure in an immobile fluid 
also applies for an inviscid fluid in motion.  In motion of a 
viscous fluid, however, tangential stresses arise, with the re- 
sult that hydromechanlcal pressure does not, strictly speaking, 
exhibit this property in a viscous fluid. 

§5. FUNDAMENTAL EQUATION OF HYDROSTATICS 

We shall examine the fundamental case of fluid equilibrium 
in which gravity is the only mass force acting on the fluid, and 
derive for this case an equation with which we can find the hydro- 
static pressure at any point in a subject volume of fluid. As we 
know, the free surface of the fluid in this case Is a horizontal 
plane. 

Suppose that the fluid occupies a container (Fig. 6) and 
that a pressure p, acts on its exposed surface.  Let us find the 
hydrostatic pressure £ at an arbitrarily chosen point M, which is 
situated at depth h. 

With point M as its center, let us take an elementary hori- 
zontal unit area dS and construct a vertical cylindrical volume 
of height h on it. We shall examine the equilibrium condition of 

'See page 36 for footnote. 
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this fluid volume In isolation from the total mass of fluid. The 
pressure of the fluid on the lower base of the cylinder will now 
be an external pressure and will be directed along normals into 
the volume, i.e., upward. 

Let us write the sum of all forces acting on this volume in 
the vertical direction.  We shall have 

where the last term is the weight of the fluid in our volume. The 
pressure forces on the sides of the cylinder do not appear in the 
equation, since they are normal to this surface. 

I I'M i I 
i-i- 

V-. 
^M 

2 
i 

Pig.   6.  Illustrating 
derivation of funda- 
mental equation of 
hydrostatics. 

is  transmitted to all 
directions   (Pascal's 

Cancelling dS and regrouping terms, 

r-Pt+H (2.2) 

This equation is known as the  funda- 
mental equation of hydrostatics;  it en- 
ables us  to compute the pressure at any 
point on a quiescent  fluid.     As we  see 
from the equation, this pressure has two 
components:   the pressure on the outer sur- 
face of the fluid, p0,  and the pressure 
governed by the weight of the  superjacent 
layers of fluid. 

The quantity p0   is the same  for all 
points in the  fluid volume; we can there- 
fore say,  considering the second property 
of hydrostatic pressure, that the pressure 
applied to the outer surface  of the  fluid 

points of this   fluid and equally in all 
law). 

As we  see  from  (2.2),   the  fluid pressure  rises   linearly with 
increasing depth and is  constant at a given depth. 

A surface at  all of whose points  the pressures  are the same 
is called a  level surface.    In this case, the  level surfaces are 
horizontal planes,  and the exposed surface is  one of the  level 
surfaces. 

Let us  select, at an arbitrary height,  a horizontal  compari- 
son plane from which we  shall reckon the z-coordlnate vertically 
upward.    Denoting  the  coordinate  of point M by   z and the  coordi- 
nate of the  exposed fluid surface by  z»  and substitutinft  z„  - z 
for h in (2.2), 0 

«•If-*«!-*. 

But since we  took M arbitrarily,  we can state that  for the 
entire volume of immobile  fluid under consideration 
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. const, (2.3) 

The z-coordlnate is known as the level height.  The quantity 
D/Y also has the dimensions of length and is known as the olezo- 
metrlc height. The sum z + (p/y) is called the hydrostatic head. 

Thus, the hydrostatic head is a constant for the entire 
volume of an immobile fluid. 

The same results can be derived more rigorously by integrat- 
ing the differential equations of equilibrium of the fluid. 

§6. DIFFERENTIAL EQUILIBRIUM EQUATIONS OP A FLUID AND THEIR INTE- 
GRATION FOR THE SIMPLEST CASE 

We shall derive the differential equations of equilibrium of 
a fluid for the general case, in which the fluid is acted upon 

not only by gravity, but also by 
other mass forces, such as inertlal 

'' forces of translatlonal motion In a 
state of so-called relative rest 
(see Chapter III). 

«I 

'     V * 

* / 
/ 

/ it H^ii &* 
Let us take an arbitrary point 

M with the coordinates, x, y, and_z2 

Pig. 7. Illustrating deri- 
vation of differential 
equations of equilibrium 
of a fluid. 

and pressure £ In an immobile fluid. 
In the fluid, we isolate an element- 
ary volume in the form of a rectangu- 
lar parallelepiped with Its sides 
parallel to the coordinate axes and 
equalling respectively dx, dy, and 
dz. Let point M be one of the ver- 
tices of the parallelepiped (Fig. 7). 
Let us examine the equilibrium condi- 
tions for our isolated fluid volume. 
Let the fluid in this volume be acted 

upon by a resultant mass force whose components, referred to the 
mass unit (see §2), are X, Y, and Z. Then the mass forces acting 
on the isolated volume in the directions of the coordinate axes 
will be equal to these components multiplied by the mass of the 
Isolated volume. 

The pressure £ is a function of the coordinates, x, y, and 
z, but it is the same near point M on all three faces of the par- 
allelepiped, as follows from the property of hydrostatic pressure 
proven above (see §1).  On passage from point M to, for example, 
point N, only the single coordinate x changes by an infinitesimal 
amount dx, with the result that the function £ acquires an incre- 
ment equal to the partial differential 

'See page 36 for footnote, 

.'v 
r.'.v. 
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The pressure at point N will therefore be 

where 8p/3x Is the pressure gradient in the direction of the x- 
axis near point N. ~ 

Examining the pressures at other corresponding points on the 
face normal to the x-axis, for example, at pointsN' and M', we 
see that these pressures differ by the same (accurate to higher- 
order infinitesimals) amount, which is equal to 

'-(' + £"> Ac 

As a result, the difference in the pressure forces acting on 
the parallelepiped in the direction of the x-axis will be equal 
to the above value multiplied by the area of the face,  i.e.. 

The differences of the pressure forces acting on the paral- 
lelepiped In the directions of the other two axes are expressed 
similarly, but in terms of pressure giadients 3p/3y and 3p/3z. 

Only the indicated mass  forces and the pressure-force dif- 
ferences will act upon the Isolated parallelepiped.    Thus the 
equilibrium equations of the parallelepiped in the directions of 
the three coordinate axes will be written 

It äxdjfix- £- rf* Sy 4r ~ 0. 

(2.4) 

We divide these equations by the mass pdxdydz of the paral- 
lelepiped and let dx, dy, and dz tend to zero as a limit, i.e., 
let the parallelepiped shrink to the original point M.  We then 
obtain the equations of equilibrium of the fluid referred to 
point M at the limit: 

'0, (2.5) 
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The system of differential equations of hydrostatics  (2.5)  la re- 
ferred to as the Euler equations.' 

For practical  use,  It  Is helpful to replace equation system 
(2.5) by a single equivalent equation that does not contain par- 
tial derivatives.    For this we multiply the first equation of 
(2.5)  by dx,  the second by dy, and the third by dz and add all 
three equations  to obtain 

Mt+Yäa+Zdz -i-gt^+Ä.d9 +Jt **)-0. (2.6-) 

The trinomial In the parentheses Is  the  total differential of 
pressure, i.e.,  of the function p(x,y,z).     Equation (2.6')  can 
therefore be rewritten 

or 

/•'/.-  C.(.\V/A-1 )V(/; ?<'?). (2.6) 

The resulting equation expresces the pressure increment dp 
due to changes in the coordinates by dx, dy, and dz in the most 
general case of fluid equilibrium. 

If we assume that gravity is the only mass force acting on 
the fluid and direct the z-axls vertically upward, then X ■ Y ■ 0, 
Z ■ -g, and instead of Eq7 (2.6) we obtain for this fundamental 
particular case of fluid equilibrium 

*A»~-e*«to~-Y«te. (2.7) 

Integration yields 

The constant of integration C  is  found from the condition 
z ■ z0  on the exposed surface, at which p ■ Po   (see Fig.   6),  so 
that 

Hence 

/»-^+(»"»-^V (2.8-) 

or 
H-f-VfÄ    -:. (2i8) 

Substituting h,   the deptn of point M,   for  the difference 
z0 - z in Eq,   (2.8'r), we  obtain another  form of Relation  (2.8): 
iSee page  36 for footnote. 



We  have  arrived  at  the   same   fundamental equation of hydro- 
statics   (2.2)  and (2.3) that we derived by another method In the 
preceding section. 

Subsequently, we  shall examine  integration of  (2.6)   for 
other cases of fluid equilibrium  (see §13). 

§7.   PIEZOMETRIC  HEIGHT.  VACUUM.  MEASUREMENT OP  PRESSURE 

The piezometrlc height p/y is the height of a column of a 
given fluid that corresponds  to a given pressure £ (absolute or 
excess).     The piezometrlc height corresponding to the excess pres- 
sure can be read from a so-called piezometer, a rudimentary de- 
vice for pressure measurement.    A piezometer is  a vertical glass 
tube whose upper end is open to the  atmosphere,  while its  lower 
end is  attached to the  volume of fluid in which the pressure is to 
be measured  (Pig.  8). 

Po 

{"* 

Vy 

J^i'—L 

Pig.   8.   Piezometer 
connected to tank. 

\L 
p ] 

PA :■-. 

-ii: 
n 

Pig.   9 
fluid 

.   Suction of 
oy  piston. 

tain 
Applying Formula (2.2) to the fluid in a piezometer, we ob- 

Pa(lcr = PA + /lj'Y. 

where p  ,      is  the absolute  pressure  in the  fluid at  the   level of "abs 
the piezometer connection and p.   is  atmospheric pressure. 

Hence  the   fluid in the  piezometer rises  to  a height 

„    ^iZ'-A::.,fta {2<9) 
'        v v 

where pi  b  is  the excess pressure  at  the  same   level. 

Obviously,   if atmospheric pressure acts on the exposed sur- 
face of  the quiescent   fluid,   the piezometrlc height   for any point 
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In the subject  volume of fluid Is  equal to the depth of that 
point. 

Pressures in liquids or gases are often expressed numeric- 
ally in the form of the corresponding plezometrlc-helght pressure 
according to   (2.9). 

For example, one technical atmosphere corresponds to 

'''' ■'' r  v'n'r  0'V3'; mmHg. 
>j,4    i.ii. ■ * 

If the absolute pressure in a liquid or gas is below atmos- 
pheric, we have an underpressure or vacuum. An underpressure or 
vacuum is expressed as a pressure  difference, i.e., 

V,:r  IK:    P.    ■ 

or •" Knomi,u 

Let us take, for example, a tube with a piston fitted tightly 
to it, lower the bottom end of the tube into a container of fluid, 
and gradually raise the piston (Pig. 9).  The fluid will follow 
the piston and rise with it to a certain height h above the ex- 
posed surface, which is under atmospheric pressure.  Since the 
depth of points under the piston is nega ive with respect to the 
exposed surface, the absolute pressure of the fluid under the 
piston will, according to Eq. (2.2), equal 

/'■ i'\ 
(2.10) 

and the vacuum will be 

or 

v 

As the piston rises, the absolute pressure of the fluid under 
It will decrease.  The lower limit for the absolute pressure In 
the fluid Is zero, and the maximum value of the vacuum Is numeric- 
ally equal to atmospheric pressure; consequently, the maximum 
height to which the fluid can rise in this example. I.e., the 
maximum "suction" height of the fluid, will be determined from 
(2.10) if we set p = 0 (or, more precisely, p ■ p. ) in It. 

have 
Thus, without  consideration  of the vapor pressure  pt, 
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Flg. 10. Elementary 
vacuum gages. 
KEY: (a) air. 

Under normal atmospheric pressure 
(1.0 33 lcgf/cm2), the height hmax Is 

10.33 m for water, 13.8 m for gasoline 
(Y - 750 kgf/m3), 0.760 m for mercury, 
and so forth. 

The glass tube, two virslons of 
which are shown in Fig. 10,can serve 
as an elementary vacuum-measuring de- 
vice.  The vacuum in fluid volume A can 
be measured either with the U-tube (at 
the right in the drawing) or with the 
inverted U-tube, one end of which is 
immersed In the container with the fluid 
(on the left in the figure). 

In addition to piezometers, various 
types of manometers, which are classi- 
fied as liquid and mechanical types, are 
used to measure fluid and gas pressures 
under laboratory conditions. 

Figure 11 shows diagrams of liquid manometers.  The so-called 
U-tube manometer (Fig. 11a) is a mercury-filled bent glass tube. 

b)     c)   d)   e) 
PlgV li. Diagrams of liquid manometers, 
KEY: (a) kerosene; (b) mercury. 

f) 

For measurement of low gas pressures, the mercury is replaced by 
alcohol, water, or sometimes tetrabromoethane (6  = 2.95).  If the 
fluid pressure is being measured at point M and the connecting 
tube is filled with the same fluid. It is necessary to take the 
height of the manometer above point M into consideration. Thus, 
we have for the excess pressure at point M 

/,„ 'iVi—/'As- 

If the pressure pM to be measured Is quite large and the 

height h corresponding to it does not diminish within a single 
U-tube, several U-tubes are connected in series, containing, for 
example, mercury (y t) and a fluid with a smaller specific weight 
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Yj. For the two tubes shown In Fig. lib (K is a cock or clamp for 
releasing air), we have 

/'/: .,,(/■■ i/..)' i.('A ; /'.) 

or, in the general case  for several tubes, 

/v Y,.;■■;''  v.-;-'.,". 

The  dish manometer   (Fig.   lie)   is more  convenient than the 
foregoing,  in that it  Is necessary to record the position of only 
one  fluid  level.     When  the dish diameter is   large enough by com- 
parison with the  tube  diameter,   the   fluid   level in the  dish  can 
be  regarded as   constant.    A dish-type micromanometer with an in- 
clined tube is  used  for high precision in measurement of low gas 
pressures.    The  length of the  fluid  column to be measured is  then 
Increased  In inverse  proportion to  the  sine  of the  tube   inclina- 
tion angle,  and  the  accuracy  of the  measurement  increases  accord- 
ingly. 

Differential manometers,   simplest  among which  is the U-tube 
manometer   (Fig.   lid),   are  used to measure  pressure differences  be- 
tween two points.    If a mercury-filled manometer of this  type  is 
used to measure  the difference between pressures p!  and p2 in a 
fluid of specific weight y that  completely   fills  the connecting 
tubes,  it  is evident  that 

/'>-/'..    /;(••,,..•   Y). 

A twc-liquid micromanometer is  used to measure small water- 
pressure  gradients;   this  device  is  an inverted U-tube with oil  or 
kerosene  at  the   top   (Pig.   lie).     We have   for this  case 

/.■ /.■■ /-(v- vA 

The   two-liquid  dish manometer   (Fig.      llf)  is   designed to 
measure air pressures   or vacuums  in  the  approximate  range   from 
0.1 to 0.5 atm,   i.e.,  when the alcohol or water manometer has  too 
high a liquid column  and Is  therefore  clumsy to use,  while the 
mercury manometer does   not yield the  required accuracy  because 
the mercury  column is   too short.    Manometers  of this  type  are 
used,  for example,  in experiments  in  high-speed wind tunnels. 

Mercury Is  poured  into the dish  and alcohol,  kerosene,   or 
some  other  fluid  Into  the tube.     Kerosene  is highly  recommended 
ty  its  low  volatility. 

By  appropriate  selection  of tue  diameters  of the upper and 
lower segments   of the   tube   (dj   and d2),  we   can produce  any effec- 
tive specific weight   (Yef)  in  the   formula 

/.     //y., 

where £ is  the  pressure   (or vacuum)   to be  measured  and H  is  the 
manometer  reading. 
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We find the expression for Yef from the following equations 

(see Fig. lOf): the equilibrium equation of the mercury and kero- 
sene columns at p » PA 

//OW-AY,,.; 

the equilibrium equation for P > PA 

/>! (ZV-/M^)Y,.-(Vi--i';,Vp: 

and the equation of volumes (the volume of kerosene that has 
transferred from the upper tube d, to the lower d2 Is equal to 
the volume of displaced mercury) 

IIA    M'!l 
NOT REPRODUCIBLE 

Substituting and rearranging,   nv' 

>v:u.-i(.-4) V..- 
For example, we have for d2    = 2d,: Yef - 0-25  •  13 600 + 

+ 0.75  •   800 - 4000 kgf/m3. 

Spring or membrane-box mechanical manometers  are used to 
measure pressures above  2-3 atm.    Their operating principle Is 
based on the deformation of a hollow spring or a membrane under 
the pressure to be measured.     A mechanism transmits this deforma- 
tion to a needle, which Indicates the measured pressure on a dial. 

Manometers are used on aircraft to monitor the pressure of 
fuel being supplied to gas-turbine engine nozzles or piston-en- 
gine carburetors,  oil line pressures,  etc. 

The most common type of aviation manometer at the present 
time is  the electrical manometer, and mechanical types are used 
less often.    The sensitive element  (sender)  of an electric manom- 
eter is a membrane.    Under the action of the pressure to be meas- 
ured, the membrane deforms and, working through a transmission 
linkage,  moves the wiper of a potentiometer, which is connected 
into the electrical circuit together with an Indicator. 

§8.   PRESSURE FORCE OF FLUID  ON FLAT WALL 

Let  us use the  fundamental equation of hydrostatics   (2.2)  to 
find the  total pressure  force  of a ^id on a flat wall that Is 
inclined at an arbitrary angle a to the horizontal   (Fig.   12).    We 
calculate  the pressure  P exerted by the fluid on a certain area 
of this wall that is enclosed by an arbitrary contour and has an 
area of S. 

We  direct the ox-axis along the  line of intersection of the 
wall plane with the open fluid surface and the oy-axls perpendicu- 
lar to this line In the plane  of the wall. 
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First, we write an expresalon for the elementary pressure 
force applied to an Inflnlteslmally small area dS: 

where po Is the pressure on the exposed surface and h Is the depth 
at which elementary area dS Is located. 

To determine the total force P, we Integrate over the entire 
area S: 

P=pt{ (tS+ v f//rf5«=/>0SH-vslna Ji/rfS, 

where ^ Is the coordinate of the center of area dS. 

As we know from mechanics, the last Integral represents the 
static moment of area S about the ox-axls and Is equal to the pro- 
duct of this area by the coordinate of Its center of gravity 
(point C), I.e. , 

Consequently, 

P«= ftS-1 Y sin aygS=pgS-|- flicS , 

(here hn Is the  depth coordinate of the center of gravity of area 
S), or C 

P-lpo+ytirfS^peS. (2.11) 

I.e., the total   pressure force of the fluid on the flat wall equals 
the product of the wall  area by the hydrostatic pressure at the 
center of gravity of this  area. 

If the pressure po  is atmospheric, the  force  of the  fluid 
excess pressure  on the  flat wall Is 

/>„8=/icvS-Pc....oS. (2.11') 

Let us now find the position of the center of pressure. I.e., 
the coordinate of the Intersection of the fluid pressure force on 
the wall with the plane of the wall. 

Since the external pressure p0 Is transmitted Identically to 
all points on area S, the resultant of this pressure will be ap- 
plied at the center of gravity of area S. To find the point of 
application of the fluid excess-pressure force (point D), we use 
an equation of mechanics whose import is that the moment of the 
resultant pressure force about the ox-axis equals the sura of the 
moments of the component forces, i.e., 

PHH'JD^I y(,p»*' 
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Flg.   12.  Illustrating 
determination of fluid 
force on flat wall 
(wall Indicated in two 
projections). 

Pig.   13.  Diagram of 
pressure on rectangular 
wall. 

where yD is  the coordinate of the 

application point of force Pizb' 

Expressing P,   b  and dP.   .   in terms  of yc and 2. and determin- 

ing yn, we have 

</D= 

yslnaf |/5 rfi 

Y»Inai/cS Df.S 

where  Jj^lyVIS is the moment  of inertia of area S about the ox- 
axis. * 

Remembering that 
^-^-1-*^ 

(J  is the moment of Inertia of area S about the central axis. 

which is parallel to ox), we obtain finally 

jfc-tfc-l- 
VcS. 

(2.12) 

is below the Thus, the point of application of force Plzb 
center of gravity of the wall area; the distance between these 
points is 

If the pressure p0 is atmospheric and acts on both sides of 
the wall, point D will also be the center of pressure. When po 
is above atmospheric, the pressure center will be found according 
to the rules of mechanics as the point of application of the re- 
sultant of two forces: h^yS and p0S.  Here, the greater the second 
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force Is by  comparison with the   first,  the nearer,   obviously, will 
the  center of pressure be  to the  center of gravity of area S. 

We  have  defined  only  the  one  center-of-pressure  coordinate 
yD.     To  determine  the  other coordinate  xD,  we must  write the  equa- 
tion  of moments with respect  to  the Oy-axls. 

In the particular case In which the wall Is rectangular,  and 
one of the  sides of the rectangle coincides with the exposed sur- 
face  of the  fluid,  the center-of-pressure position is  very easy 
to find.     Since the diagram of the fluid's pressure  on the wall 
is a right  triangle   (Fig,   13) whose center of gravity lies at  1/3 
of the height  b of the  triangle,   the  fluid's   center  of pressure 
will be at  1/3 of b, measuring downward. 

It  is   frequently necessary  to deal in aviation engineering 
with  the  action of a  fluid-pressure  force  on  flat walls,  e.g.,   on 
the walls of pistons  In various  hydrostatic machines  and devices 
(see,   for example,   Chapter XIV);   here  the pressure  p.   is  usually 
so high  that  the center of pressure can be regarded  as  colncidlna: 
with the  center of gravity  of the wall area. 

§9.   PRESSURE  FORCE OF FLUID ON  CYLINDRICAL AND  SPHERICAL SURFACES 
ARCHIMEDEAN LAW 

In  the  general  case,   solution of the  problem of  the pressure 
force  exerted by a fluid on an arbitrarily shaped surface reduces 
to determination of three   components of the  resultant   force and 
three moments.    It Is  usually necessary to deal with  cylindrical 
or spherical  surfaces  having a vertical plane   of symmetry.     In 
these  cases,   the pressure  of the   fluid is reduced to  an equiva- 
lent   force   lying in the plane  of  symmetry. 

Let  us  take a cylindrical  surface AB whose  generatrix is  per- 
pendicular  to  the plane of  the  drawing   (Fig.   Ik)  and  attempt  to 
determine  the  pressure  force  of  the fluid  on this  surface in two 
cases:   fluid above   (a)  and below   (b)  the  surface. 

In  case   "a," we  Isolate  a volume of fluid  that  is  bounded by 
the subject  surface AB, by  vertical planes passing through the 
boundaries   of this  area,   and  the   exposed  surface  of the  fluid 
i.e.,   volume  ABCD,  and examine  its  equilibrium  conditions  for'the 
vertical  and  horizontal directions.     If the  fluid acts  on surface 
AB with a force P,  surface  AB will also exert  the same pressure  P 
on the   fluid,   but In  the  opposite  direction.     Figure   lH shows 
this  reaction  force  decomposed into two  components:   horizontal P 
and vertical  P   . K v ^ 

The  equilibrium  condition for volume ABCD  in the   vertical 
direction  takes  the  form 

'r I'cS.'.C. (2.13) 

where  p0   Is   the pressure  on  the  exposed  fluid surface.   S    is  the 
g 
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area of the horizontal projection of surface AB, and G is the 
weight of the Isolated fluid volume. 

Fig. 14. Pressure of fluid on cylin- 
drical surface. 

The equilibrium condition for the same volume in the hori- 
zontal direction is written with consideration of the fact that 
the pressure forces of the fluid on surfaces EC and AD cancel 
one another, leaving only the pressure force on area BE, i.e., 
on the vertical projection Sv of surface AB: 

tu (2.14) 

Using Formulas   (2.13)  and   (2.14)   to determine  the  vertical 
and horizontal   components  of the  total pressure  force  P,  we  find 
this  force: 

/';  //•iTl/'r. (2.15) 

When the fluid is below the surface (case "b," see Fig. 14), 
the hydrostatic pressures at all points of surface AB will have 
the same values as in case "a," but the opposite directions, and 
the resultant forces Pv and Pg will be given by the same formulas 

(2.8) and (2.9), but uhelr signs will be the opposite.  Here, G 
should be understood, as in case "a," as the weight of the fluid 
in volume ABCD, even though this volume is not filled with fluid. 

The position of the center of pressure on a cylindrical wall 
is easily found if the forces Pv and Pg are known and if the center 

of pressure on the vertical projection of the wall or the center 
of eravltv of the isolated volume ABCD is determined.  The problem 
is substantially simpler when the cylindrical surface under con- 
sideration is circular, since the resultant force then intersects 
the axis of the surface. This follows from the fact that any 
elementary pressure force d? is normal to the surface, i.e., 
radially directed. 

The above method of determining the pressure force on cylin- 
drical surfaces is also applicable to spherical surfaces.  In 
this case, the resultant force also passes through the center of 
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Pig. 15. Illustrat- 
ing proof of Archi- 
medean law. 

top part of the surface, P 

the surface and lies in the vertical plane 
of symmetry. 

Let us apply the above method of 
finding the vertical fluid-pressure-force 
component on a curvilinear wall to prove 
the well-known law of Archimedes. 

Suppose that a body of arbitrary 
shape and of volume W is immersed in a 
liquid (Fig. 15).  Let us project this 
body onto the exposed liquid surface and 
draw a projecting cylindrical surface 
tangent to the surface of the body along 
a closed contour.  This curve separates 
the upper surface ACB of the body from its 
lower surface ADB.  The vertical component 
of the fluid excess pressure force on the 

is directed downward and equals the 

weight of fluid in volume AA'B'BCA.  The vertical component of 
the fluid pressure force on the lower part of the body's surface, 
Pv , is directed upward and equals the weight of the fluid in 

volume AA'B'BDA. 

This implies that the vertical resultant fluid pressure force 
on the body will be directed upward and will be equal to the weight 
of the fluid in a volume equal to the difference between the above 
two volumes, i.e., in the volume of the body: 

;■„ Cur 

This is the Archimedean law, which is usually formulated 
thus: a body Immersed in a liquid loses a weight equal to the 
weight of the liquid that is displaces. The law of Archimedes 
is, of course, also valid for bodies that are partially immersed 
in a liquid. 

Cry/,. 
l 
I i' 

n i/jl 

if 
i 
i i i, . 
i i i   ' 

,l ! ; ; 

' i I I ^ ■ 
ll I .•■ 
I I I ', | 

if ■ 
''/,■//.■,//,,;.:■,,   '     ' ■ ■ 

Fig. 16. Diagram of hydraulic 
press (Jack). 

The force P as known as the Archimedean force or buoyant 
force, and the point of its application, i.e., the center of 
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" j 

l' ■.'• 

gravity of volume W, as the center of dis- 
placement. 

Three cases are possible, depending 
on the relation between the body's weight 
G and the Archimedean force PA: 1) Q > PA) 
body sinks; 2) 0 < PA, body emerges from 

liquid; 3) 0 - PA, body floats. 

In addition to the force equality G >■ 
» PA) equilibrium of a floating body also 

requires zero resultant moment. This last 
Pig. 17. Diagram of condition Is met when the body's center of 
hydraulic multiplier, gravity Is on the same vertical as the 

center of displacement. The problem of 
equilibrium stability of floating bodies 

will not be discussed here. 

Example 1.  Figure 16 Is a schematic diagram of a hydraulic 
press and can also be used to represent a hydraulic Jack.  For 
the Jack case, body 1 Is the load to be raised, while for the 
case of the press It Is a stationary support attached to a founda- 
tion by columns 8 (Indicated by dashed lines); body 2 then becomes 
the material to be pressed. 

Hand pump 3, which Is fitted with Intake 5 and delivery 4 
valves, sets up In cylinder 6 a pressure that acts on system 7 
and produces a force P along the piston. 

a/p 
Determine  this  force for the  following data:   R = 20 kgf; 

■ 1/9; D/d - 10. 

Solution, 

/■./.■ 
:(;•) 

2u-i(iit!i:-.iuW) kgf. 

Example 2.     A hydraulic multiplier  (Pig.   17)   Is  used to raise 
the pressure p,   obtained from a pump  or accumulator.    Pressure p. 
Is applied to cylinder 1, which contains a sliding hollow cylin- 
der 2 of weight G and diameter D.    The  latter slides along sta- 
tionary plunger  3, whose diameter is ä and whose bore ducts fluid 
under an Increased pressure p2. 

Determine pressure p2  for  the  following data:  G -  300 kgf; 
D -  125 mm;  pj   -  100 kgf/cm2;   d  =  50 mm. 

Disregard  friction in the packings. 

Solution.     We have from the equilibrium condition  for cylin- 
der 2 

4  /'.--4-/'H<'. 
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from which 
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Footnotes 

Manu- 
script 
page 

19 'These formulas  are as   follows: 

21 2We attach the coordinate system rigidly to the vessel 
containing the  fluid. 

23 'Leonard Euler  (1707-1783) was a famous mathematician, 
mechanician,  and physicist.    He was born and educated at 
Basel  (Switzerland).     He  lived for more than 30 years  at 
St.   Petersburg,  working  at  the Russian Academy of Sci- 
ences. 
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Manu- 
script 
page 

Symb' Ol 

24 a6c abs 

24 M3Ö izb 

25 BOfl vod 

25 PT rt 

25 BEK vak 

27 3* ef 

28 K k 

31 r g 

31 B V 

Symbol List 

English equivalent 

absolute 

excess 

water 

mercury 

vacuum 

effective 

kerosene 

horizontal 

vertical 
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C H A P T E R   III 

THE FLUID AT RELATIVE REST 

§10. BASIC CONCEPTS 

In the preceding chapter, we were basically concerned with 
the equilibrium of a fluid when acted upon by a single mass force 
- its own weight. This Is the case only when the fluid is at 
rest in a container that is not in motion relative to the earth, 
or in a container in uniform rectilinear motion. 

If, on the other hand, the container with the fluid is In 
nonunlform or nonrectlllnear motion, then all particles of the 
fluid are acted upon, In addition to their own weight, by the 
inertial forces of the translatlonal motion. Under these forces, 
assuming that they are constant in time, the fluid assumes a new 
equilibrium position, i.e.. It becomes stationary relative to the 
walls of the container. This case of equilibrium is, as we noted 
in §6, known as relative rest. 

In this state, the exposed surface of the fluid and other 
level surfaces (see §5) may differ substantially from the level 
surfaces when the fluid is at rest in a stationary container, 
i.e., from a family of horizontal planes. Determination of the 
shape and position of the exposed surface of a fluid at relative 
rest is guided by fie basic property of all level surfaces ac- 
cording to which the resultant mass force always acts normal to a 
level surface. 

Indeed, if the resultant mass force were not in fact normal, 
but acted at some other angle to the level surface, the tangential 
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component of this force would cause motion of fluid particles 
along the level surface. At relative rest, however, there are 
no fluid-particle displacements either relative to the container 
walls or with respect to one another.  Consequently, the only 
possible direction for the resultant mass force is the normal to 
the free surface and to other level surfaces. 

It must also be remembered that level surfaces cannot Inter- 
sect, since otherwise we should have along the line of intersec- 
tion of two such surfaces a row of points at which the pressure 
had two different values at the same time, which is impossible. 

Let us examine two characteristic cases of relative rest of 
a fluid: 

a) in a container in rectilinear and uniformly accelerated 
motion; 

b) in a container rotating uniformly about a vertical axis. 

§11. RECTILINEAR UNIFORMLY ACCELERATED MOTION OFA CONTAINER OF 
FLUID 

Suppose that a container of fluid, such as an aircraft fuel 
tank, is in straight-line motion with a constant acceleration a. 
In this case, the resultant mass force acting on the fluid is 
found as the vector sum of the inertial force, which is directed 
oppositely to the acceleration a, and the force of gravity (Fig. 
18). 

Using J_ to denote the resultant mass 
force referred to unit mass, we have 

The resultant mass forces are paral- 
lel to one another for all particles In 
the volume of fluid under consideration, 
and the level surfaces are perpendicular 
to these forces, so that all level sur- 
faces, including the free surface, are 
parallel planes.  The angle of inclina- 
tion of these planes to the horizon is 
determined from their perpendicularity to 
the force J_. 

Pig. 18. Relative 
rest of fluid in 
container in recti- 
linear uniformly 
accelerated motion. 

To resolve fully the question as to 
the position of the fluid's free surface in a container in 
straight-line uniformly accelerated motion, it Is necessary to 
complement the above condition with the equation of volumes, i.e. 
it is necessary to know the volume of the fluid in the container 
and express It in terms of the container dimensions B and H and 
the original fluid level h. 
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An equation that can be used to find the pressure at any 
point In the fluid volume can be derived In much the same way as 
was done In §5. 

For example, we take at point M an elementary area dS paral- 
lel to the free surface and construct on this area a cylindrical 
volume whose generatrix Is normal to the free surface. The equi- 
librium condition for this fluid volume In the direction of the 
normal to the free surface will take the form 

where the last term represents the total mass force acting on the 
isolated fluid volume and i.  is the distance from point M to the 
free surface. 

On cancelling the dS, we obtain 

In the particular case with a - 0, j = g and Formula (3.1) 
becomes the fundamental equation of hydrostatics (2.2). 

In analysis of cases in which an Inertia! force acts, it is 
customary in aviation practice to use the notion of the load fac- 
tor, which is equal (in straight-line level flight) to 

a 

* f 

When the airplane maneuvers in flight, the load factor may 
be tangential (n ) or normal (n ). The latter case occurs in 

curvilinear flight (entering and pulling out of a dive, turning), 
but relative rest of the fluid, as in the airplane's fuel tanks, 
is then possible only in a steady turn in the horizontal plane. 
In this case, the unit mass force of translatlonal-motlon inertia, 
which is numerically equal to the acceleration, is given by 

where V is the airplane's speed and R is the radius of the turn. 

We should note that the normal load factors are usually sub- 
stantially larger than the tangential factors for airplanes (by 
factors of 8-10). 

If large load factors are acquired when the fuel In the tanks 
Is low, the fuel-system pickup may be starved and the fuel supply 
cut off.  Special devices are provided around the pickup hole to 
prevent this. 

§12, UNIFORM ROTATION OF CONTAINER OF FLUID 

First, let us take an open cylindrical vessel that contains a 
fluid and set it in rotation about its vertical axis at a constant 
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angular velocity u. The fluid gradually acquires the same angu- 
lar velocity as the container, and Its free surface changes shape: 
the fluid level drops at the center and rises at the walls, and 
the entire free surface of the fluid becomes a surface of revolu- 
tion (Fig. 19). 

In this case, the fluid will be acted 
upon by two mass forces: gravity and cen- 
trifugal force; referred to the unit mass, 
these will be £ and u2r,  respectively. 

The resultant mass force j_ increases 
with increasing radius by virtue of its 
second component, while its inclination 
angle to the horizon becomes smaller. 
This force is normal to the free surface 
of the fluid, with the result that the 
inclination of this surface increases with 
increasing radius. 

1 

u 
V 

1 r  i .1, J.J 
Jj. 

Fig. 
open 
fluid 
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Let us find the equation of curve AOB 
in z, r-coordinates with the origin at the 
center of the bottom of the container.  Re- 
membering that the force ^ is normal to 
curve AOB, we find from the drawing that 

Prom this. 

or, after integration, 

■ u 
< 

<tz 
V. 

f'., 

z uJ/J c 

It  follows   from the  condition  for the  intersection point  of 
curve AOB with  the rotation axis  that  C  = h,  so that  we   finally 
obtain 

x-/-l Y: . (3.2) 

i.e., curve AGB is a parabola, and the free surface of the fluid 
is that of a paraboloid of revolution. 

Applying (3.2), we can determine the position of the free 
surface in the container, e.g., the maximum height H to which the 
fluid rises and the height h of the vertex of the paraboloid at a 
given speed u.  However, this also requires use of an equation of 
volumes: the volume of the stationary fluid is equal to its volume 
during rotation. 
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In practice, the case most frequently encountered is that of 
rotation of a container of fluid with the axis horizontal (or in an 
arbitrary position) and the angular velocity u so high that grav- 
ity can be disregarded by comparison with the centrifugal forces. 

Fig. 20. Rotation of container of 
fluid around a horizontal axis. 

The law of pressure variation in the fluid is easily obtained 
for this case by considering the equilibrium equation of an ele- 
mentary volume with base area dS and height dr, taken along the 
radius (Fig. 20). This fluid element is acted upon by pressure 
and centrifugal forces.  Denoting the pressure at the center of 
area dS on radius r by £ and that at the center of the other 
base of the volume (at radius r+dr) by p+dp, we obtain the fTllow- 
ing equilibrium equation for the isolated volume in the radli.1 
direction: 

or 

p/S-lp+dpläS 1 fiA-ärdSweO 

dpT&Arilr. 

Integration yields 

p~^!l+C. 

We find the constant C from the condition that p ■ p0 at 
r ■ r0, so that 

Finally, we obtain the relation between £ and r in the form 

/-=/*+« y^-ij- (3-3) 
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Obviously, the level surfaces in this case will be circular 
cylindrical surfaces with a common axis - the fluid's axis of 
rotation.  If the container is only partly filled with fluid, its 
free surface, as a level surface, will also be cylindrical, and 
it will be convenient to denote its radius by ro and the pressure 
on it by po- 

It is often necessary to compute the pressure force exerted 
by the fluid rotating with a container on a wall normal to the 
axis of rotation (or on an annular segment of this wall). 

This requires first writing an expression for the pressure 
force acting on an elementary annular area of radius r and width 
dr.  Using (3.3), we obtain 

rf^dS-j/vf (^(r'-rj)] Wr. 

and then Integrate between the appropriate limits. 

A quite considerable resultant pressure force can be obtained 
on the walls of a container by setting the fluid in it rotating 
at high speed.  This effect is used in certain friction clutches 
In aviation engines where large normal-pressure forces are re- 
quired to engage two shafts.  The method indicated above is used 
to compute the axial-pressure force of the fluid on the impellers 
of centrifugal pumps. 

The same formulas can be derived for these cases of relative 
rest by solving the fluid's differential equations of equilibrium. 

§13. INTEGRATION OF DIFFERENTIAL EQUATIONS OF EQUILIBRIUM OF A 
FLUID FOR PARTICULAR CASES OF RELATIVE REST 

Here we shall use the general differential equation of fluid 
equilibrium (2.6), as derived In §6, to analyze fluids at relative 
rest. 

Writing this equation, 

and examining It, we see that the trinomial in the parentheses, 
like the left member of the equation, must be a total differen- 
tial of a certain function U(x,y,z). 

This function must have the following property: Its partial 
derivatives with respect to the coordinates x, j^, and z must equal 
X, Y, and Z, respectively, i.e., 

4* en     ' et 

The function U Is known as the force function.  As we know from 
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theoretical  mechanics,   this   function  is  equal   to the  potential 
of the   forces   taken with  the  opposite   sign. 

We may   thereforo  conclude  that  equilibrium  of the   fluid  Is 
possible only  under  the  action of mass   forces   that have a poten- 
tial. 

Introducing  the  function U  into  the   fundamental  equation 
(2.6), 

'V    J":''"','"'■'!■■['""■] (3.V) 

^ .     .. 
or 

(3.4) 

After  integration,  we   obtain  in  the  general  form 

(3.5') 

We find the constant of integration from boundary conditions: 
let p = p0 at U » U0; then 

/ /,li.(-' f'J. (3.5) 

The surface that satisfies the condition 

''■' '• or ' { , /  ) • 

will also satisfy the condition 

(!;■    C. or /((r, ;;, :-) c <■.• ■'. 

Consequently,   such  a  surface   is   a   level   surface   or  an  equl- 
potential surface.     This  means  that  a  surface   of constant   pres- 
sure   is  at   the   same   time   a  surface  of  constant  mass-force  poten- 
tial,   and that  the  pressure  In the   fluid  can  be  changed only  by 
changing the   force  potential  and  vice   versa. 

We may   also   conclude   from the   above  that   the density   of an 
Inhomogeneous  dropping  fluid must  be   a   function  of U: 

(:   '.CO 

For this   case.   Formula   (3.4)   is  written 

/       '■ -•   ', . (3.6) 

or,   after integration, 

I   ' '. >:■■. (3.7) 

For an   inhomogeneous   dropping   fluid,   therefore,   the   level 
surfaces will  alao  be  surfaces  of equal   density.     This  means   that 
an  inhomogeneous   dropping   fluid  at  equilibrium has   layers   of equal 
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density corresponding to Its level surfaces, and that higher pres- 
sures correspond to higher density values and vice versa.  This 
property Is used to separate Inhomogeneous liquid mixtures in de- 
vices known as centrifuges. 

Let us introduce into consideration the resultant unit mass 
force J_, whose projections onto the coordinate axes equal X, Y, 
and Z, I.e., let us take the total acceleration caused by the ac- 
tion of all mass forces at a given point.  We note then that dx, 
dy, and dz are the projections of an infinitesimally short seg- 
ment di,  which represents the distance between two closely spaced 
points M and M' (see Fig. 7), onto the coordinate axes. 

On this basis, we can write the equations 

and 
X       /CO (/,..) )'  /Cfn(y,A,;); ,•'   JO,   fy/V) 

t'x-   (!!:.(.  (:■'■'..'.)■ t'l!    r'/c. (,';,, v dx.   cfUos(äC:-). 

We now apply a formula used In analytical geometry to deter- 
mine the cosine of the angle between two straight lines and, not- 
ing  the  foregoing expressions,  write 

("I    >■/'.«.-; !'.';■! /.(■■■ r 

A '' ' A . ' "UClD, 
i'>'\   (/,•')■■ (-". 'lito (■,o^o/(<■',/,)■: '^f 

*»coUci 

Substituting the  expression obtained  for dU into   (3.4), we 
have 

t'l-  J-'-  ■   '■!'"!■ (3.8) 

We see from (3.8) that the largest pressure Increment is ob- 
tained In the direction of the resultant mass force j_, since 

/ 
c<"i{i, '"} is  then equal to unity. 

For any segment di  on a level surface, the Increment dp = 0. 
But In the general case j_ and di  are nonzero, so that 

A 

''(.', f'1',   f), i.e., the resultant mass force is normal to the level 
surface.  This important property of the level surface has already 
been derived (§10) on the basis of simple reasoning. 

Let us carry out the integration of the differential equa- 
tions of fluid equilibrium for the two cases of relative rest ex- 
amined above. 

1. Let the fluid be in a container that Is in straight-line 
uniformly accelerated motion, i.e., let it be at relative rest, 
as considered In §11.  In this case, It is convenient to use 



- .-+- 

(3.8),  placing the direction I along the resultant mass  force j_ 
(see Fig.  18). 

» W 
We then have 

and, consequently, 

On Integration, 

ico8(MHl-0| 

rfp-MS/rf/J, 

Since p - Po  for I ■ 0, we have C - p, and   finally   arrive at the 
familiar equation 

2.   Let  the fluid be in a container that is' in uniform rota- 
tion at angular velocity ui about  its vertical axis,  i.e.,  let it 
be in the state of relative rest examined in §12.     Placing the 
origin at the center of the bottom of the container and pointing 
the z-axis vertically upward, we obtain the following expressions 
for the components of the unit mass  force: 

X=wVcos (r, x)=-- «'A;; 

K=«>Vcos(r. yi^v-y; 

Z~-g. 

Substituting these expressions into the general equilibrium 
equation (2.6), 

or 

rfyj^-V. ^Kt/j, .^.ygy) _ Y<fet 

If we remember that 

we obtain after integration 

At r ■ 0 and z ■ h, p - Po,  so that 
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Finally,  therefore. 

(3.9) 

Formula (3.9) enables us to determine the pressure at any 
point In a volume of fluid rotating about a vertical axis (see 
Fig.   19). 

The equation of the  fluid's  free  surface  can be obtained by 
setting p » p0  In   (3.9).     After cancelling and rearranging,  we 
have 

which agrees with  the earlier Formula   (3.2). 

I 

It 

Fig.   21.  Illustrat 
Ing determination 
axial force in cen 
trifugal pump. 

If we disregard gravity (z ■ 0) in the 
above derivation and determine the constant 
of integration from the condition p ■ p0 at 
r « r0, we  obtain Formula (3.3): 

Thus,  the  relationships already known 
to us  for relative rest  of a fluid are ob- 
tained more rigorously by integrating the 
differential equations  of fluid equilibrium. 

of 

(In spaces Wi  and 
half the pump spee 
clearance A   (Pig. 

Example.     Determine the axial-pres- 
sure force  of a  fluid on the impeller of a 
liquld-rocket-englne  centrifugal pump on 
the assumption that the  fluid between the 
Impeller disks  and the  casing of the pump 

W2)  is  rotating at an angular velocity equal to 
d and that negligible  fluid passes  through 
21). 

The excess pressure  at  the  impeller exit   Is P2  ■   38 atm,  and 
0 at the inlet.    The pump speed n *  16 500 rev/min.     The pump 
islons:  r,  : 50 mm, r!  - 25 mm,  r„ ■ 12 mm.    The specific 

Pi  ■ 0 at the 
dimensions:  r2 

weight  of the  fluid  Y 

50 mm, rj 

918 kgf/m 

Solution. The pressure forces of the fluid on surfaces AB 
and CD cancel one another.  Only the force of axial pressure on 
surface DE, i.e., on an annular surface bounded by circles of 
radii r, and r , remains uncompensated.  Consequently, the un- 

known force is directed from right to left and equals 

r, 
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where, on the basis of (3.3) with p, and r2 substituted for p, and 
r0,  we have 

(u .   Is the angular velocity  of the  fluid). 

Hence 

-«•l[/.-4(r?-»)]^-«W-'l)[^4(;i-^)]. 

Substituting numerical values, 

^..„-..„[«-M-K^?)'^"-^-l-'" «^ ■ 
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Symbol   List 

Manu- 
script 
page 

Symbol English equivalent 

47 B                     V shaft 

H8 x              zh fluid 
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CHAPTER  IV 

THE FUNDAMENTAL EQUATIONS OF HYDRAULICS 

Sit. FUNDAMENTAL CONCEPTS 

In turning to study of the problems of fluid motion, it must 
be noted that we shall first examine the motion of a so-called 
ideal fluid, i.e., an imaginary fluid that has no viscosity at 
all, and only then pass to a study of real flows. In such an in- 
viscid fluid, as in real fluids at rest, only one form of stress 
is possible: the normal compressive stress, i.e., hydromechanical 
pressure or simply pressure. 

In a moving Ideal fluid, pressure has the same properties as 
in a stationary fluid, i.e., it is directed along inner normals 
on the outer surface of the fluid and is the same in all direc- 
tions at any point Inside the fluid.1 

Fluid flow may be steady (stationary) or nonsteady (nonsta- 
tionary). 

Steady flow is flow that does not change in time, with the 
hydromechanical pressure and velocity functions only of the coor- 
dinates and not of time.  Pressure and velocity may change as 
fluid particles move from one position to another, but at a given 
point that is stationary with respect to the channel, the pres- 
sure and velocity do not change in time during steady motion. 

This can be written mathematically as follows: 
4See page 71 for footnote. 
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/'■ /,(.'•. //. Oi'- /;.(.v //.").      "or ffe 

i\       '    Cl Of Cl '■t 

where the velocity subscripts denote the projections of this velo- 
city onto the corresponding axes, which are rigidly attached to 
the channel. 

In a particular case, steady flow may be uniform, in which 
case the velocity of each particle does not change with a change 
In Its  coordinates. 

In the general case of nonsteady flow, pressure and velocity 
depend on both the coordinates and time,  I.e., 

/■   Iti-.ij.r.n-.v   rs{x.,t.?.t). 

As examples of nonsteady fluid flow, we might cite the grad- 
ual drainage of a container through a hole In Its bottom or mo- 
tion of a fluid through the Intake or delivery pipe of a simple 
piston pump whose piston executes reciprocating motion. 

Examples of steady flow: outflow of fluid from a container 
In which constant level is maintained; motion of fluid in a closed 
pipe due to the action of a centrifugal pump turning at constant 
speed. 

Investigation of steady flows is a much simpler matter than 
that of nonsteady flows.  Below we shall be concerned chiefly with 
steady flows and only a few particular cases of nonsteady flow. 

The trajectories of fluid particles In steady flow are curves 
that do not vary in time. 

In nonsteady flow, the trajectories of different particles 
passing through a given point in space will have different shapes. 
Hence the concept of the streamline Is introduced for purposes of 
examining flow patterns formed at particular points in time. 

A streamline is a line in a moving fluid the tangent to which 
at any point coincides with the velocity vector of the particles 
on this line at the particular point In time (Pig. 22). 

In steady flow, the streamline will obviously coincide with 
the trajectory and will not change shape with time. 

If we take an elementary closed contour in a moving fluid and 
pass streamlines through all of its points, the result is a tubu- 
lar surface known as a stream tube.  The part of the flow enclosed 
within a stream tube Is callad a filament (Fig. 23). 

As the transverse dimensions of a filament tend to zero, the 
filament becomes a streamline. 
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At any point on the lateral surface of a filament, I.e., on 
the Btreara tube, the velocity vectors are tangential and there are 
no velocity components normal to this surface; consequently, no 
fluid particle can escape the filament or enter It at any point 
on the stream tube.    Thus, the stream tube Is a kind of Impene- 
trable wall, and the elementary filament Is a kind of Independent 
elementary flow. 

Fig.  22.  Streamline. Fig.  23.  Filament. 

We shall at  first regard flows of finite dimensions as aggre- 
gates of elementary filaments. I.e., we shall assume the flow to 
be filamentary.    As a result of the velocity difference, adjacent 
filaments will slip on one another without mixing. 

An effective section or simply a section of the flow Is 
generally a surface Inside the flow that passes normal to Its 
streamlines.    Usually,  zones In which the  filaments may be re- 
garded as parallel and the effective sections, therefore, as plane 
are considered in the  flows. 

Ramming and nonramming fluid flews are distinguished.    Ram- 
ming flows are  flows  in closed channels with no open surface, 
while nonramming flows are flows with a free surface.    In ramming 
flows, the pressure is usually variable along the  flow, while in 
nonramming flows  it  is  constant   (usually at  atmospheric).    Examples 
of ramming flows are   flows  in pipes with elevated  (or lowered) 
pressure  and flows in hydraulic machines  and other hydraulic 
accessories.    Nonramming flows occur in rivers,  open channels, 
and millraces.    In the present textbook, we shall be concerned 
almost exclusively with ramming flows. 

§15.   PLOW RATE.   THE PLOW RATE EQUATION 

The   flow rate is  the quantity of fluid that passes  across 
the effective flow   (filament)   section per unit of time.     This 
quantity can be measured in units of volume, weight, or mass,  so 
that a distinction arises between the volumetric Q,  gravimetric G, 
and mass M flow rates. 

For an elementary  filament that has  infinitesimally small 
cross sections, we can regard the velocity v as the same at all 
points  in each section.    Consequently,  the  volume  flow rate  for 
an elementary filament will be 

dQ - vdS [mVs], ('».I) 
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where dS is the sectional area of the filament; the gravimetric 
flow rate 

ilO   v'fHN/s] or [kgf/s] (!».:) 

and the mass flow rate 

i!M: X''<i- V'':'S  Lkg/s] or [kgf.s/m].      (4.3) 

For flows with finite dimensions, velocity is generally dif- 
ferent at different points in a cross section; hence the flow rate 
must be computed as a sum of elementary filament flow rates, i.e.. 

Q.j^. (1.4) 

Usually,  the velocity averaged over the cross section is 
introduced;  it equals 

from which 

Q    t'c.S. (4.5) 

On the basis of the law of conservation of matter, the hypo- 
thesis of continuity of the flow, and the above property of the 
stream tube, by which it is "impermeable," we can say for steady 
flow of an incompressible fluid that the flow rate is the same in 
all cross sections of an elementary filament (see Fig. 23), i.e., 

(4.6) 

This  equation  is  known as  the  flow rate  equation  for the ele- 
mentary  filament. 

A similar equation  can also be written  for a flow of finite 
dimensions bounded by impermeable walls,  except  that average velo- 
cities must  be introduced  instead  of the  true   ones;   then 

(4.7) 

It  follows from this  last equation that the average veloci- 
ties  in a flow of incompressible  fluid are inversely proportional 
to  the  cross-sectional areas,  i.e., 

>' :   5* (4.7') 

Obviously,  the  flow  rate equation is a particular case of 
the general  law of conservation of matter,  as well as  a condition 
of  flow  continuity. 
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Sl6.   DERIVATION OP BERNOULLI EQUATION FOR A FILAMENT OF IDEAL 
FLUID 

Ltt ua «xamine stttdy flow of an Ideal fluid acted upon only 
by a singlt matt force, gravity, and dtrive for thit oatt the 
fundamental equation linking the pressure in the fluid with the 
velocity of its motion. 

Let ut take one of the filaments 
composing the flow and Isolate a 
filament of arbitrary length from 
this filament with sections 1 and 2 
(Fig.  2'»).    Suppose that the area of 
the first section is dS,, the velo- 
city in it is v,, the pressure is p,, 
and the height of its center of 
gravity, reckoned from an arbitrary 
horizontal plane, is z,.    In the 
second section, we shall have dS,, 
Vii Pi, and za, respectively. 

During an infinitesimal time 
segment dt, our segment of filament 
moves to position 1,-2I under the ac- 
tion of external forces. 

Fig.   24. Illustrating 
derivation of Bernoulli 
equation for a filament. 

To this segment of the filament, we apply the theorem from 
mechanics to the effect that the work done by the forces applied 
to the body is equal to the kinetic-energy increment of this body. 
In our case,  these forces are pressure  forces acting normal to 
the surface of the filament segment under consideration, and only 
one of the mass forces - gravity. 

Let us calculate the work of the pressure forces and gravity 
and the kinetic-energy change    of the  filament segment during 
time dt. 

The work of the pressure force will be positive  In the  first 
section, since the direction of the force coincides with the 
direction of motion, and it will be expressed as the product of 
the force (p,dS,) by the distance  (V|dt), i.e., 

pidSiVtftt. 

In the second section, the work of the pressure force will 
have the minus sign, since the force is directly opposed to the 
direction of motion; It will be expressed as follows: 

—ftdSzPjtft. 

The pressure forces acting on the sides of the filament seg- 
ment will not perform work, since they are normal to this surface 
and, consequently, also normal to the displacements. 
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Thus, the work of the pressure forces will be 

PiViriS dl   piVjdSiril. (4.8) 

The work of gravity Is equal to the change In the position 
potential energy of the filament segment.    We must therefore sub- 
tract the position energy of the fluid In volume l*-2* from the 
position energy of the fluid In volume 1-2.    In this subtraction, 
the position energy of the intermediate volume V-2 cancels out, 
leaving only the position-energy difference of filament segments 
1-1'  and 2-2'.    If we use the flow equation (1.6), we see at once 
that the volumes and hence the weights of segments 1-1' and 2-2' 
are equal,  i.e., 

»Ot^vW' YV^i*- (1.9) 

Hence the work of gravity will be expressed as the product 
of the height difference by the weight dO: 

(*,-*,)«?. (4.10) 

To calculate the kinetic-energy Increment of this filament 
segment during time dt, it is necessary to subtract the kinetic 
energy of volume 1-2 from that of volume l'^'. On subtraction, 
the kinetic energy of the intermediate volume l,-2 cancels, leav- 
ing only the potential-energy difference of filament segments 
2-2* and 1-1', each of which weighs 60. 

We thus obtain the kinetic-energy increment, which will be 

{vl-v\)f.. (1.11) 

Adding the work of the pressure  forces   (t.S)  to the work of 
gravity   I1.10) and equating this sum to the kinetic-energy incre- 
ment  (4.11), we obtain 

pJSWidi-pJSvJ'^    :.V0    (vj-^)-. (1.12') 

Let us divide all terms of the equation by the weight dQ. 
After appropriate cancelling, 

Pj     fs  i „    -     '-' _ 'i 
T""Vv'r":V  *.■ ' 

Grouping terms pertaining to the first section in the left 
member of the equation and the terms for the second section in 
the right member, 

(1.12) /'I.. '   "U i   A'   ,   ' 
,     '              1 

Y 
1 o , V          ■■: 

NOT REPRODUCIBLE 
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wh«p« I li tht Itvtlllng htlght or geometric head; P/Y Is the 
plMomttrlc height or plezometrlc head, and v1/2g la the velocity 
height or velocity head. 

The resulting equation Is known aa the Bernoulli equation for 
»filament of an ideal Inoompreaalble fluid,    it was derived by 
anlel Bernoulli In 173D. 

The terma of the Bernoulli equation In the form (4.12) have 
the dinenaions of length. 

The trinomial of the form 

1B known as the total head. 

The Bernoulli equation (4.2) has been vrltten for two arbi- 
trarily chosen filament sections, the first and second, and ex- 
presses the equality of the total heads H in these sections. 
Since they were taken quite arbitrarily, the total head will have 
the same value for any other section of the same filament, i.e., 

«+-f+-J-«-coMt (along a fllaaanOI. 

Thus, for an Ideal moving fluid, the sum of three heights, 
levelling, plezometrlc. and velocity, Is constant along a fila- 
ment. 

This statement is illustrated by the diagram in Fig.  25, 
which shows the variation of all three heights along a filament. 
The curve of plezometrlc heights is called the plezometrlc line; 
it can be regarded as the geometric locus of levels in piezometers 
set up along the filament. 

It follows from the Bernoulli and flow rate equations that 
if the cross-sectional area of the filament decreases, i.e., the 
filament tapers, the fluid flow velocity increases and pressure 
decreases;  conversely. If the  filament expands. velocity dimin- 
ishes and pressure rises. 

By way of example. Pig.  25 shows a filament whose cross-sec- 
tlonal area decreases by a factor of k from section 1-1 to sec- 
tion 2-2, with the result that the velocity head increases by a 
factor of 16 and section 3-3 has the same area as  1-1.    The dashed 
curve Is the plezometrlc line for a flowrate increase by a factor 
of /?, with the result that the velocity heights Increase by a 
factor of 2 and the pressure drops below atmospheric in the narrow 
section of the filament. 

Let us  examine  the physical or, more precisely,  energetic 
aapag of the Bernoulli equation.     Let us adopt the  term specific 
'See page   74 for footnote. 
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energy for the energy of the fluid per unit weight, I.e., 

1    »   7 / 

Flg.  25.  Curve of variation 
of levelling, plezometrlc, and 
velocity heights along filament 
of Ideal fluid. 
KEY:   (a) plezometrlc  line. 

Specific energy has the dimensions of length, like the terms 
of the Bernoulli equation.     It Is  easily shown that the terms of 
the Bernoulli equation are various  forms  of the fluid's  specific 
mechanical energy,  and namely: 

z la the specific position energy, since a fluid particle of 
welghF ÄQ situated at height z has a position energy equal to AGz 
and,  per unit weight, AQz/AQ ■ z; 

p/v is the specific pressure energy of the moving fluid, 
since a fluid particle weighing AG and under a pressure E. can 
rise through height p/y and thereby acquire a position energy 
AQCp/r); on division by AG, we obtain p/y; 

z +  (p/y)  is  the specific potential energy of the fluid; 

v2/2g is the  specific kinetic energy of the fluid,  since the 
kinetic energy ^'er unit weight of the  same particle AQ is 
AC-'-: AC A 

//t ;•.].> .I..''-. ls the  total specific energy of the moving fluid.' 

'See page   7^ for  footnote. 
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Flg.   26.  Cylinder 
with piston and rod. 

Thus, the energetic sense of the Ber- 
noulli equation for an elementary filament 
of Ideal fluid consists In constancy of 
the fluid's total specific energy along 
the filament. Consequently, the Bernoulli 
equation expresses the law of conservation 
of mechanical energy In an Ideal fluid. 

The mechanical energy of a moving 
fluid may take three forms: position, 
pressure, and kinetic energies.    The 
first and third forms of mechanical energy 
are known from mechanics, and they are 

equally Inherent to solids and fluids.    As for the pressure energy, 
however, this form Is specific for moving fluids. 

During motion of an Ideal fluid, one form of energy may be 
transformed Into another, but the total specific energy, as fol- 
lows  from the Bernoulli equation, remains unchanged through this. 

Pressure energy is easily transformed into mechanical work. 
An elementary device that brings this transformation about and 
is widely used on aircraft is the cyllnder-and-piston group  (Fig. 
26).     Let us show that in the transformation, the work per unit 
weight of fluid is numerically equal to the piezometric height. 

Let us denote by S the piston area, by L its stroke, and by 
Sthe excess pressure admitted to the left chamber of the cylin- 
er;  the excess pressure on the other side of the piston is zero. 

Then the resultant pressure force of the fluid, which is equal to 
the force P that is overcome in moving the piston from the extreme 
left to the extreme right position, will be 

and the work of this force 

P-pS. 

E-pSL. 

The weight of fluid that must be supplied to the cylinder to 
perform this work is equal  to the weight of fluid In the volume 
of the  cylinder, i.e., 

OmSLy. 

Consequently, the work per kilogram will be 

0      SLy      v 

The Bernoulli equation is often written differently. Multi- 
plying all terms of  (4.12)  by yt w« obtain 

(4.13) 
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Now the terms of the Bernoulli equation have the dlmensiont 
of pressure: zy Is the weight pressure, £ Is the hydromeohanloal 
pressure (or simply the pressure), and v .V' 
pressure.' 

. n"; Is the dynamic 
^ 2 

It Is easily seen that the terms of (4.13) represent various 
forms of the  fluid's mechanical energy per unit of Its volume. 

The Bernoulli equation for a filament of Ideal fluid can 
also be derived easily by Integrating the differential equations 
of motion of the Ideal fluid. 

§17.   DERIVATION OP THE DIFFERENTIAL EQUATIONS OP MOTION OP AN 
IDEAL FLUID AND THEIR INTEORATION 

Let us  take an arbitrary point M with the coordinates x, £,, 
z (Fig.  27)  In an Ideal fluid and Isolate an element of flufd at 
this point  In the form of a rectangular parallelepiped with point 
M at one of its vertices.    Let the sides of this parallelepiped 
be parallel to the coordinate axes and equal, respectively,  to 
fix, 5y, and 6z.s 

Let  us  write the oquations  of motion of this isolated fluid 
element, whose mass equals  pfixfiyöz. 

As in our examination of the  equilibrium of a similar fluid 
volume  (see  §6), we shall assume that the fluid In this volume is 
acted upon by  a resultant mass   force whose components,  referred 
to the unit  of mass,  are X,  Y,  and  Z.    Then the mass   forces  act- 
ing on the isolated volume in the directions of the coordinate 
axes will be  equal  to these components multiplied by  the mass of 
the isolated  volume. 

Fig.   27.   Illustrating 
derivation of differ- 
ential equations of 
motion of an ideal 
fluid. 

If £ is  the pressure at  point M, 
we  find by reasoning similar to that 
in §6  that  the  difference between the 
pressure  forces  acting on the parallele- 
piped,   e.g.,  in the direction of the  x- 
axls,  will be 

l.'. 

The velocity of the fluid at point 
M will be denoted by v and Its compon 
nents by v , v , and vz. Then the pro- 
jections of the acceleration with which 
the isolated volume is moving will be 

*TT 

dV, f'V|    ifv,- 

»'See page 74 for footnotes. 

*or 
*fA ̂  

^ ''*U 
-59- 



and the forces that must be Introduced into the equations of mo- 
tion by the d'Alembert principle are determined as the products 
of these forces by the mass of the parallelepiped. 

TM equations of motion of the isolated fluid volume are now 
written as follows in the projections onto the coordinate axes: 

We divide these equations term by term by the mass p6x6y6z 
of the element and pass to the limit, letting fix, 6y, and 6z 
vanish simultaneously, i.e., letting the parallelepiped shrink to 
the original point M. Then at the limit we obtain the equations 
of motion of the fluid referred to point M: 

~*     X     \ JE 
at , *r' 

U B Ar 

(1.14) 

The equations of this system of differential equations of mo- 
tion of the ideal fluid are known as the Euler equations. The 
terms of these equations represent the corresponding accelerations, 
and the sense of each of the equations is as follows: the total 
tcctleratlon of a particle along a coordinate axis Is composed of 
the acceleration of the mass forces and the acceleration of the 
pressure forces. 

The Euler equations are valid In this form for both incom- 
pressible and compressible fluids, and for the case in which only 
gravity among the mass forces is in operation, and for the general 
case of relative motion of the fluid (see §41). Here the accele- 
ration components of the translational (or rotational) motion must 
be introduced into the quantities X, Y, and Z.  Since we did not 
Impose the condition of steady motion In deriving Eqs. (4.14), 
they are also valid for nonsteady motion. 

Considering steady motion of the fluid, let us multiply all 
equations of (4.14) by the corresponding projections of the ele- 
mentary displacement, which equal 

dx-vjt, dy-Vydl. di=vjt. 

and add the equations. We have 

Xdx+ydy+Zä^-±{^±dx+&dy+i^£-l^^\*'V,dvJl■{■vl)dvl,+v/^v,Al^•'L5,) 
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Remembering that the expression In parentheses Is the total 
differential of the pressure and that 

% 

\ 

e 
we can rewrite   (4.15')  In the   form 

AV-;)v,/1>v  .; '.'/'i-.■(:;) (4.15) 

or 

where U Is the  force  function with which we are already  familiar 
(see §13). 

We  integrate this equation for the  fundamental particular 
case of steady motion of an ideal  fluid, when the  fluid is acted 
upon only by a single mass  force, gravity. 

For this  case,  with the z-axis pointing vertically upward 

A'r-O; )'■ 0;/!       ('■■ 

Substituting these  values  into   (4.15), 

or ....'/ 

Since y  =  const   in the  case of an incompressible  fluid,   the 
above equation  can be  rewritten 

■'(:■:<)" 

This equation signifies  that  the Increment in the  sum of the 
three terms in the parentheses in displacement of a fluid particle 
along a streamline   (trajectory)  is  zero.     We infer from this  that 
the above  trinomial is a constant  along a streamline,  and hence 
also along an elementary filament,  i.e.. 

- ■ -—.-   con-!. 
V      ^ 
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Thus, we have arrived at the Bernoulli equation for a fila- 
ment of Ideal fluid, which we derived In the preceding section 
by another method. 

If we write this equation for two sections of the filament, 
1-1 and 2-2, It assumes the form already familiar to us ('».12). 

§18. BERNOULLI EQUATION FOR VISCOUS-FLUID FLOW 

On passing from the elementary filament of Ideal fluid to a 
vlscous-fluld flow that has finite dimensions and is bounded by 
walls, it will be necessary to remember, firstly, the nonunlform- 
Ity of velocity distribution over the cross section and, secondly, 
the energy (head) losses. Both are consequences of the viscosity 
of the fluid. 

In motion of a viscous fluid along a solid wall, as In a 
pipe, the flow Is decelerated by viscosity and by the action of 
molecular cohesive forces between the fluid and the wall. As a 
result, velocity reaches Its highest value at th« center of the 
stream; as we approach the wall, velocity drops practically to 
zero.  The result Is a velocity distribution similar to that 
shown In Fig. 26. 

Nonunlform velocity distribution 
Implies slip (shear) of some layers 
or parts of the fluid with respect to 
others, giving rise to tangential 

ä!>|it5i3SK,~—^-^^^"'I1":   stresses. I.e., frlctlonal stresses. 
r'999^7j»,„,.l     """'"'""I—  In addition, the motion of a viscous 

' WWWWW/W        fluid Is often accompanied by rota- 
 '__i  tlon of particles, eddy formation, 

B>4» OP v^i««<«■« A\**y.\ and mixing.  All of this requires ex- 
Flg. 28. Velocity dlstrl-  pendlture of energy, so that the 
butlon in stream. specific energy of a moving viscous 

fluid (Its total head) does not re- 
main constant, as In the case of the 

Ideal fluid, but Is gradually expended In overcoming resistances 
and, consequently, decreases along the flow. 

As a result of the nonunlform velocity distribution, It Is 
necessary to introduce the velocity v  averaged over the cross 

section (see §15) and the average value of the fluid's specific 
energy in a given cross section. 

Before turning to an examination of the Bernoulli equation 
for a flow of viscous fluid, we shall adopt the following assump- 
tion: within the flow cross sections under consideration, the 
fundamental law of hydrostatics is valid, for example, in the 
form of (2.3), i.e., the hydrostatic head is the same for all 
points in a section: 

z + (pA) ■ const (within the section). 

-62- 



In so doing, we assume that individual filaments in the mov- 
ing fluid exert the same pressure on one another In the trans- 
verse direction as layers of the fluid do at rest.  This is re- 
alistic, and can be demonstrated theoretically in the case of 
parallel-filament flow in the cross sections under consideration. 
We shall therefore be examining precisely these cross sections 
(or closely similar ones). 

Let us introduce the concept of flow power.  The flow power 
in a given cross section is the total energy that the stream 
carries through this section per unit of time. Since the fluid 
particles have different energies at different points in the flow 
cross section, we shall first express the elementary power, i.e., 
the power of an elementary filament, as the product of the total 
specific energy of the fluid at the particular point by the ele- 
mentary gravimetric flow rate: 

(:;^ 

The power of the entire flow is found as the integral of this 
expression over the entire area S, i.e., 

M(M ;,<).:, 
"or *t efi*n or, applying our assumption, ^C/ 

/: 
'*U 

Let us find the average total fluid specific energy over the 
cross section by dividing the total flow power by the gravimetric 
flow rate.  Applying (4.4), 

//...■   ■*     .-.' T' .i . I 

Multiplying and dividing the last term by v2 , we obtain sr 

/; . , . / , • ' ' l'.i  . , A , 5c, ih.16) 

where a is a dlmenslonless coefficient that takes account of the 
velocity-distribution nonuniformity and equals 

<  :c (4.17) 

If we multiply the numerator and denominator of (4.17) by 
p/2, we shall see at once that the coefficient a is the ratio of 
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the actual flow kinetic energy in the given cross section to the 
kinetic energy of the same flow in fhe same section, but with a 
uniform velocity distribution. 

For the usual type of velocity distribution (»ee Pig. 28), 
the coefficient a  is always greater than unity,» but It Is unity 
for a uniform velocity distribution. 

Let us take two sections through a real flow - first and 
second - and denote the average specific energy values (total 
heads) of the fluid in these sections by Hsri and Hsr2, respec- 

tively; then 

Htpi-Htf* f S*. (4.18') 

where Zh  is the total loss of specific energy (head) on the seg- 
ments between these sections. 

777777777777T,77/:V77777Tn7;: 7 

lows: 

Fig. 29. Graphical illustration of 
Bernoulli equation for a real flow. 

Applying (4.16), we can rewrite the above equation as fol- 

v\v *.+*4V-£-J-H? + °.f+S* (4.18) 

This is the Bernoulli equation for viscous-fluid flow.  It 
differs from its analogue for an elementary filament of ideal 
fluid In the term representing the specific-energy (head) loss 
and the coefficient that takes account of velocity-distribution 
nonuniformlty.  In addition, the velocities that appear in this 
equation are averages over the sections. 

'See page 74 for footnote. 
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The Bernoulli equation (4.18) Is applicable not only for 
liquids, but also for gases, assuming that their velocities are 
considerably below that of sound. 

This equation can be represented graphically in much the 
same way as was done for the Ideal fluid, but with consideration 
of the head loss. The latter also represents a certain height, 
which Increases steadily along the flow (Pig. 29). 

While the Bernoulli equation represents the law of conserva- 
tion of mechanical energy for a filament of ideal fluid, it is 
an energy-balance equation with consideration of losses for the 
real flow.  The energy lost by the'fluid on the segment of flow 
under consideration does not, of course, vanish without a trace, 
but is simply converted into another form: heat.  The thermal 
energy is, of course, continually being dissipated, so that the 
temperature rise is often hardly noticeable in practice. This 
process of conversion of mechanical energy into heat is irrevers- 
ible. I.e., one that cannot reverse Its course (with conversion of 
heat to mechanical energy). 

The decrease in the average total specific energy of fluid 
flow along the stream, referred to unit stream length, is known 
as the hydraulic gradient. The change in specific potential 
energy of the fluid per unit length is called the plezometric 
gradient.  Obviously, these gradients are the same in a pipe of 
constant diameter with constant velocity distribution. 

§19. HYDRAULIC LOSSES (IN OENERAL) 

Specific-energy (head) losses or, as they are commonly called, 
hydraulic losses, depend on the shape, dimensions, and roughness 
of the channel, flow velocity, and the viscosity of the fluid, but 
are practically Independent of the absolute pressure in the fluid. 
Although it is the root cause of all hydraulic losses, fluid vis- 
cosity by itself Influences the losses substantially in far from 
all cases.  This will be discussed In greater detail below. 

Experiments have shown that the hydraulic losses are in many 
cases approximately proportional to the square of velocity, and 
for this reason hydraulics has long made use of the following 
general method of expressing hydraulic total-head losses in linear 
units: 

..' 
/,. r'j? (4.19') 

or in pressure units 

tp   -,:,     '^\-^ 

This  expression  is  convenient in that  it  incorporates the di- 
menslonless proportionality  factor c. which is known as the 
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coefficient of resistance, and the velocity head, which appears 
in the Bernoulli equation.7 

Thus, the coefficient of resistance c la the ratio of the 
lost head to the velocity head. 

Hydraulic losses are usually classified Into two forms: local 
and frlctlonal. 

-fe^-^1 ̂  

.>   ^      fei 
o) 

Klg. 30. Diagrams of local hydraulic 
resistances. 

Local energy losses are governed by the so-called local hy- 
draulic resistances. I.e., local changes In the shape and dimen- 
sions of the channel, which cause deformation of the stream. Dur- 
ing passage of the fluid through local resistances. Its velocity 
changes and eddies usually form. 

The devices shown In Pig. 30 may serve as examples of local 
resistances: the check (a), diaphragm (b), elbow (c), and valve 
(d). 

The local energy losses are determined by Formula (4.19') 

or 

This last equation Is often referred to as the Welssbach formula. 

In It, v Is the average velocity over the cross section In 
the pipe In which the particular local resistance has been In- 
stalled.  If, on the other hand, the pipe diameter and, conse- 
quently, the velocity In It vary lengthwise. It Is more conven- 
ient to take the higher of the velocities as the working velocity 
- I.e., the one that corresponds to the smaller pipe diameter. 
Each local resistance Is characterized by its own resistance coef- 
ficient cin, which -"n many cases can be assumed approximately con- 

stant for a given local-resistance shape.  Local hydraulic resis- 
^flOflfs will be examined more closely in Chapter VIII. 
»"See page 75 for footnotes. 
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The frlctlonal losses or length losses are energy losses 
that arise In pure form In straight constant-section pipes, i.e. 
in uniform flow, and increase in proportion to pipe length (Pig. 
31).  Losses of this type are governed by internal friction in 
the fluid, and therefore occur in pipes no matter how smooth 
their walls are. 

n» 

J—n_ 

The frlctlonal loss of head can be 
expressed by the general formula for 
hydraulic losses   (4.19'), i.e.. 

-<?• 

(1.20') 

irziiTnt: 
Pig.   31.  Frlctlonal 
loss of head In pipe. 

but it will be more convenient to relate 
the coefficient  ctr to the relative pipe 
length i/d. 

Let us take a segment of round pipe 
whose length is equal to' its diameter and 
denote by X its coefficient of resistance, 

which appears in Formula (4.201). Then the resistance coefficient 
for the entire pipe of length I  and diameter d (see Pig. 31) will 
be larger by a factor of Ä/d, I.e., 

C,„->-- 

and Formula (4.20') becomes 

/'..,-J.- 
rf 7,1 (4.20) 

or 

A^;,
d,/

Y- (4.21) 

Formula (4.20) is usually known as the Darcy formula. 

The dlmenslonless coefficient X will be referred to here as 
the coefficient of frlctlonal loss or the coefficient of frlctlon- 
al resistance.It can be regarded as a coefficient of propor- 
tionallty between the frlctlonal head loss on the one hand and 
the product of relative pipe length by velocity head on the other. 

We can easily establish the physica] significance of the 
coefficient X by examining the condition of uniform motion in a 
cylindrical pipe of length I  and diameter d, i.e., zero sum of 
two forces acting on the volume: the pressure and friction forces. 
This equality takes the form 

iidi 
VA/V 

where T0 IS the frlctlonal stress on the pipe wall. 
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From this,  applying   (4.21).  we  quiclcly obtain 
4v0 "Ivn 

c-2- 
(4.22) 

1 e  the coefficient X is proportional to the ratio of the frlc- 
tlonal Stress on the pipe wall to the dynamic pressure, the lat- 
ter calculated from the average velocity. 

In rammed flows (see §14). hydraulic loss" °°c^u^
ing t0 

a decrease in the specific potential energy of^ fluid 
(z + CP/Y]) along the stream.  Here, even if the specific kinetic 
enertrv of the fluid (v2/2g) changes along the stream at a given 
flow ra?e. this is not due to energy losses, but results from 
Changet lA the cross-sectional dimensions of the channel, since 
U dlpends only on velocity ana velocity is determined by flow 
rate and sectional area: 

On a constant-cross-section pipe, therefore. the average velocity 
and specific kinetic energy remain ^^ constant despite the 
nresence of hydraulic resistances and head losses. In this case. 
tSe head loss Is determined as the difference between the readings 
of two piezometers (Figs. 30 and 31). 

ralculation of hydraulic losses for various specific cases 
represents one Sf the basic problems of hydraulics. The next two 
chapters are devoted to this problem. 

§20. EXAMPLES OP APPLICATION OF THE BERNOULLI EQUATION IN ENGINEER- 

ING 

The Bernoulli equation, which we derived In the preceding 

operation of a number of devices whose ac- 
tion is based on utilization of this Impor- 
tant law.  Let us consider these devices. 

1. The choke-type flowmeter, or Ven- 
turi flowmeter, is a device that is In- 
stalled in pipelines and restricts or 
chokes the flow (Fig. 32).  The flowmeter 
consists of two sections: a smoothly tap- 
ered section (the nozzle) and a Progres- 
sively expanding section (diffuser).  The 
flow velocity Increases in the narrow sec- 
tion, and pressure drops.  The result Is 
a pressure difference (gradient), which is 
measured by a pair of P^ometers or a U- 
tube differential manometer and is related 
in a definite manner to flow rate. Let us 
find this relationship. 

rmäaHinp 

Fig. 32. Diagram of 
choke-type flowmeter. 
KEY: (a) piezometers; 
(b) mercury manom- 
eter. 
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Suppose that we have velocity v^ pressure Pu and sectional 
area Sj In section 1-1 of the flow Immediately ahead of the con- 
striction and Vj, P2» and S2, respectively, In section 2-2, I.e., 
at the narrowest point of the flow. 

Let us write the Bernoulli and flow-rate equations for the 
first and second flow sections (assuming the velocity distribu- 
tion to be uniform): 

V r2i'   \ ^ 2i' 

where h, is the head loss between sections 1-1 and 2-2. m 

Remembering that 

.(;-"? and 
is 

Pi — Pi .- A/;. 

where AH Is  the difference between the readings of the piezometers 
connected to these sections.    From this  equation system, we find 
one of the velocities,  e.g.,  v2: 

V2:~ 
2/rA// 

m* 
Hence the volume flow rate is 

(1.23) 

or 

where C Is a constant  for a given flowmeter: 

(1.23') 

C-S, in 

v '-m*' 
Knowing C and watching the piezometer readings, we can 

easily determine the flow rate in the pipe at any point In time 
by Formula (1.23'). The constant C can be calculated theoretic- 
ally, but It is found more accurately from experiment. I.e., by 
calibrating the flowmeter. 

The relation between AH and Q is found to be parabolic. If 
we plot the square of flow rate along the axis of abscissas, the 
graph of this relationship will be a straight line. 
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Fig.  33. Diagrams of metering nozzles 
and diaphragms. 

Quite frequently, a differential mercury manometer (see Fig. 
32) Is used Instead of the pair of piezometers to measure the 
pressure gradient In a flowmeter.    Since the same fluid with It« 
specific weight Y occupies the tubes above the mercury, we can 
write 

AW=AA v-v 

It should be noted that the choke flowmeter can be made with 
the nozzle alone, which may be press-fitted Into the pipe (Pig. 
33a) or clamped between flanges (Pig. 33b). In this case, the 
same smooth constriction of the flow as In Pig. 32 will result, 
but the expansion of the flow beyond the nozzle will occur spon- 
taneously and be accompanied by eddying. Hence the resistance of 
such a nozzle Is higher than that of a nozzle fitted with a dif- 
fuser. 

Plowmeters can also be made In the form of diaphragms (Fig. 
33c).  It must be remembered here that the smallest section of 
the flow will be to the right of the diaphragm plane owing to the 
additional constriction and will be somewhat smaller than the 
hole In the diaphragm. 

Formula (1.21') also applies for these devices, but with 
certain correction factors, which can be found In the appropri- 
ate handbooks for the standard flowmeter forms. 

These choke-type flowmeters are the most accurate types and 
are used to calibrate (teat) aircraft flowmeters. 

2. The carburetor of the piston-type Internal-combustion en- 
gine has the function of aspirating gasoline and mixing It with a 
stream of air (Pig. 34). The stream of air drawn Into the engine 
narrows at the exact position of the gasoline Jet (at the cut end 
of the tube). In this cross section, the velocity of the air 
rises and the pressure drops in accordance with the Bernoulli law. 
The vacuum also draws gasoline through the Jet Into the air 
stream. 

Let us find the relation between the gravimetric flow rates 
of the gasoline CL and air av for given dimensions (D and d) and 
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3) v-",-|."'-"« 

I     I     |b   \ J J 
.-— a 

resistance coefficients of the air Intake 
(upstream of section 2-2), cv. and the 
Jet  czh  («"»regarding the resistance of 
the gasoline line). 

th« »l^1^"8 th/ Berno«l" equation for the air stream (section 0-0 and 2-2) and 
ffaSV^ ga80lKlne 8t^ani (»«tfon 1-1 and 2-2), we obtain  (for z, - zt and 

Pig.   3^.  Diagram of 
carburetor. 
KEY:   (a)  gasoline:   (b 
Jet   (Czh);   (c)  air. 

V«      Y, ^+t-g 
Y6      Vr, ■f' ^ 

from which 
^-?/ 

^Jo-iu^c-iu. 
"t 0^ r0^, <f 

Remembering that the gravimetric flow rates equal 

0, KfK 

we obtain 
.j   .'.v.    and fV "''■' 

•    K   ■  V    v d-i ;.) ■ 

rowlnJ'mJ5;^ieCeP AMli"!?^ WL00"81^8 of a »n,oothly nar- 
progresslvely expanding pipe C Ü^h ?«5triCt3 the flow. and a 
tance from the mouthplfce In chamh^ R      \*\ Up at  a «rtaln dls- 
city increase  the pressures in the  Te?'«^!?8 t0uthe "»"-velo- 
are lowered considerably      in  the exn«nH?n1,

thrOU8hoUt chan>ber B 
creases,  and pressure rises  t0ah^^P?lng.plpe'  Veloclty de- 
flowing out  into the Jino^v,^  t 0Ut atm08Pherlc   (If the  fluid Is 
chambef B wnrnorSirbe^loi^tmSe^1^'  the pre88ure ^ be produced. * ■L0W atmospherlc, I.e.,  a vacuum will 

dr 

plg.   35.  Diagram of 
ejector pump. 

v -. 

Fig.   36.  Diagram of 
Pltot tube. 
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Fig. 37. Diagram of aircraft speed-In- 
dicator head. 

ft.'1 

II i'^ ■ i 

li 

Fig. 38, Diagram of 
velocity pressurlza 
tlon. 

This vacuum draws fluid from the tank 
at the bottom through line D Into chamber 
B, where the two flows merge and then mix. 

As a result, the fluid flow rate In 
pipe C Is found to be equal to the sum of 
the flow rates Q, In mouthpiece A and Q2 
In Induction pipe D. Ejectors are used In 
liquid rocket engines [LRE] (JKPfl), and In 
various other branches of engineering. 

4. The Pi tot tube can be used to meas- 
ure flow velocity. Suppose that a fluid 
is moving in an open channel at velocity v 

(Fig. 36).  If a pipe bent at a right angle is inserted in a 
stream with its orifice A facing into it, the fluid in this pipe 
will rise to a height equal to the velocity head above the free 
surface.  The explanation for this is that the velocity of the 
fluid particles entering the orifice of the pipe drops to zero, 
so that the pressure Is Increased by an amount equal to the velo- 
city head.  The flow velocity is easily determined by measuring 
the height to which the fluid has risen in the pipe. 

Aircraft airspeed Indicators are built on the same principle. 
Figure 37 shows a diagram of an aircraft velocity tube (head) for 
low flight speeds (low by comparison with that of sound). 

Let us write the Bernoulli equation for an elementary fila- 
ment that enters the tube along its axis and then spreads out 
over its surface. Taking sections 0-0 (free stream) and 1-1 
(where v « 0), we have 

Since the side-facing holes of the tube sense the approximate 
pressure of the free stream, we have p2 = PoS consequently, the 
above yields 

vu- /•; (,v"/.\ 
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5. Velocity pressurization (Fig. 38) is extensively used on 
aircraft to pressurize fuel and other tanks.  At low flight 
speeds, the excess pressure in the tank is approximately equal to 
the dynamic pressure calculated from airspeed and air density. 
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Footnotes 

Manu- 
script 
page 

en       iThis last statement is proven in much the same way as 
for the stationary fluid (see §4): the equations of 
motion of an elementary tetrahedron are written with 
consideration of the d'Alembert forces, which are then 
allowed to vanish together with the mass forces as the 
tetrahedron shrinks to a point. 

56 2Danlel Bernoulli (1700-1782), son of Johann and nephew 
of Jacob Bernoulli, the famous Swiss scientists, mathe- 
meticlans, and mechanicians.  D. Bernoulli also worked 
in the fields of mathematics and mechanics; in his work 
entitled "Hydrodynamics" (1738), he laid the theoreti- 
cal foundations of hydraulics as a science. D. Bernoulli 
spent a considerable part of his life at St. Petersburg 
as an active and, later, an honorary member of the Kus- 
slan Academy of Sciences. 

57 3it must be remembered that internal energy, which is 
characterized by the temperature of the fluid and does 
not change along a stream of ideal incompressible fluid, 
is not incorporated here into the concept of the total 
specific energy H of a fluid. 

59 -it must be remembered that the pressure £ is the only 
really existing pressure in the stream, i.e., the only 
stress of normal surface force. However, the other two 
quantities (zy and p(v2/2)) can easily be converted to 
corresponding pressures £ and for this reason are also 
referred to conventionally as pressures. 

59       »These arbitrary elementary segments should not be con- 
fused with the projections of the elementary displace- 
ments dx, dy, and dz. 

fill       SThls can be proven by expressing the velocity v In For- 
mula (4.17) as the sum v = vsr + Av, breaking the Inte- 

gral up into four integrals, and analyzing the numeri- 
cal value of each of them. 
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page 

66      7The structure of these formulas can be obtained by di- 
mensional analysis. 

66      8From now on, the subscript "sr" to the symbol v will 
be used only when the average velocity might be con- 
fused with the local velocity. 
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Syir ibol  List 

Manu- 
script Symbc )1 English equivalent 
page 

53 cp sr average 

66 M m local 

67 TP tr friction 

71 X zh Jet   (carburetor) 

71 B V air 

71 6 b gasoline 
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CHAPTERV 

FLUID  FLOW   IN  PIPES.     HYDRODYNAMIC  SIMILARITY 

§21.   FLOWS OF FLUIDS  IN  PIPES 

Experiments have shown that there are two possible regimes 
or two  forms of liquid  (and gas)   flows in pipes:   laminar and 
turbulent. 

Laminar flow'  is  layered flow without mixing of fluid par- 
ticles and without velocity pulsations.     In such flows,  all 
streamlines  are  fully determined by  the  shape  of the  channel 
through which  the  fluid  is   flowing.     In  laminar flow of a fluid 
in a straight pipe of constant cross section,  all streamlines 
are parallel  to  the  pipe  axis,   i.e.,  straight;   there  are no 
lateral movements of fluid particles and hence no mixing of the 
fluid as it  flows.    A piezometer connected to a pipe with a 
steady  laminar  flow Indicates  a constant  pressure   (and  velocity) 
and the absence of oscillations   (pulsations).     Thus, a laminar 
flow is a fully ordered and,  at constant head,  strictly steady- 
state   flow   (although  it may  also be nonsteady  in the  general 
case). 

However,  a laminar flow cannot be regarded as irrotational, 
because even though  it  does  not  contain distinct  eddies, the 
translational motion is  accompanied by a simultaneous  ordered 
rotational motion of the  individual fluid particles around their 
instantaneous   centers  at  quite definite angular velocities. 

'See  page    92  for footnote, 
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Turbulent flow2  Is  flow accompanied by vigorous mixing of 
the  fluid and by  velocity  and pressure pulsations.    In a turbu- 
lent  flow, the streamlines  are determined only approximately by 
the shape of the  channel.     The motions  of the  Individual par- 
ticles are disordered, and the trajectories  sometimes  take  the 
form of Intricate  curves.    This  Is explained by the fact that in 
a turbulent  flow,   the fundamental longitudinal  fluid displacement 
along the channel Is accompanied by transverse displacements and 
rotational motions  of individual  fluid volumes. 

~A — *^tts»»- 

v_ 

"--T iSk 
Pig.   39-  Diagram of device used 
to demonstrate flow regimes. 

These fluid-flow regimes can be observed In the apparatus 
shown above   (Pig.   39).     It  consists of water tank A,   from which 
is run a glass tube B with a cock C at Its end, and a container 
D with an aqueous  solution of a dye, which can be fed through 
tube  F into glass  tubes B in a thin filament. 

If cock C is  cracked open, allowing water to flow slowly 
through the tube,  and cock E is  then opened to admit the dye 
into the stream of water,  we see  that  the dye Introduced into the 
tube  does not mix with the water  stream.     The  dye filament  will 
be clearly visible down the entire length of the glass tube,  in- 
dicating that the  fluid  flow is  laminar and that there is no 
mixing.    This is  the  laminar flow regime. 

As cock C is  opened further,  the water flow velocity  in the 
tube   increases,  but  the  flow pattern does not   change  immediately; 
only  at a certain  flow velocity does  a rapid change in the  flow 
regime take place.     The  filament  of dye exiting from the tube be- 
gins   to oscillate,   and then  fades  and mixes with the  stream of 
water, with noticeable eddying and rotational motion of the  fluid. 
The  flow regime has become turbulent   (see Fig.   39, top). 

again. 
Laminar  flow  can be  restored by   lowering  the  flow  velocity 

The flow regime  of this  fluid in  the  tube  changes  at  a de- 
finite  flow velocity, which is known as  the critical velocity 
(v.    ).     Experiments  have  shown that  this  velocity is  directly 
proportional to the kinematic coefficient of viscosity   (v)  and 
'See  page  92    for  footnote. 



Inversely proportional to tube diameter  (d),  I.e., 

We find that the dlmenslonless proportionality coefficient k 
that appears here has a universal value, i.e., it is the same for 
all liquids and gases and all tube diameters. 

This means that the  flow regime changes at a quite definite 
relationship between viscosity,  diameter,  and the viscosity v;   it 
is 

/. »Kf» 

This dlmenslonless number is known as the critical Reynolds 
number after the English scientist who established this criterion, 
and is denoted by 

kc-,,,. '■■"■. (5.1) 

Experiment has   shown that  the critical  Reynolds number is   ap- 
proximately  2300. 

However,  we may  speak not  only  of the   critical number Rekr, 
which corresponds to the  change of regime,  but also of the actual 
Reynolds  number for any  particular  flow,   expressing it in terms 
of the actual velocity,  i.e., 

),       ''. (5.2) 

Thus, we obtain a criterion by which we can Judge the fluid- 
flow regimes in pipes.  The flow is laminar for Re < Rekr and 

usually turbulent for Re > Re^. 

Knowing the fluid flow velocity, the tube diameter, and the 
fluid's viscosity, we can calculate the fluid-flow regime; this is 
highly Important for later hydraulic calculations. 

In practice, laminar flows are encountered when highly vis- 
cous fluids, such as lubricating oils, glycerin mixtures, etc., 
move through pipes. 

Turbulent flow usually occurs in water lines and in pipes 
carrying gasoline, kerosene, alcohols, and acids.  Thus, both 
laminar and turbulent fluid-flow regimes in pipes must be dealt 
with on aircraft; the flows are most often laminar in aircraft 
oil and hydraulic systems and turbulent in fuel systems. 

The change in flow regimes on reaching Rekr is explained by 

the fact that one flow regime loses stability, while the other 
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acquires lt.     For Re  < Rekr,  the  laminar regime Is quite  stable; 
all types of artificial turbullzation of the  flow and disturbances 
to It  (shaking of the pipe.  Insertion of vibrating bodies into 
the  flow,  etc.)  are damped by  the  effects  of viscosity  and lami- 
nar flow is   restored.     The turbulent  regime  is unstable  under 
these conditions. 

At  Re  >  Rek   ,  on the other hand,  the  turbulent  regime  is 

stable and laminar flow is unstable. 

As a result, the  critical number Rekr, which corresponds  to 

the transition from laminar to turbulent  flow, may prove to be 
somewhat  larger than the Re^ for the reverse transition.    Under 
special  laboratory conditions,  in the total absence of factors 
that contribute to flow turbullzation, it is possible  to obtain 
laminar flow at Re substantially  larger than Rekr.     But In these 
cases the laminar flow Is so unstable that,  for example,  a slight 
lolt is  sufficient to transform the laminar flow quickly into a 
turbulent flow.     In practice,  and particularly in aircraft pipe- 
lines,  we usually have  conditions  that promote turbullzation - 
vibration of the pipes,  local hydraulic resistances,  nonuniformity 
(pulsations)  of flow rate, etc.,  so that the above fact is of 
fundamental rather than practical Importance in hydraulics. 

The question as   to the  stability of  laminar  flow  and the 
turbullzation mechanism has not yet been  fully resolved theoretic- 
ally.    However,  research has  .ihown that such factors  as distance 
from the wall,  velocity, and its   transverse gradient dv/dy tend 
to Jromote  turbullzation in a given section through a  cylindrical 
Dipe.    The greatest wall distance and the highest velocity occur 
It the  centlr of the  stream, but  the gradient dv/dy is  zero there 
At the wall,  on the  other hand,   the  velocity gradient  is  greatest, 
but the velocity and distance £ are minimal or even zero.    As  a 
result,  the  Initial turbullzation of a laminar fluid in a 
straight pipe  of constant  cross   section intervenes  somewhere  be- 
tween the pipe axis  and the wall,  but closer to the wall. 

Flow turbullzation does  not  occur in the same way  in vari- 
able-section pipes as  in the  cylindrical pipe      In4

exP^"e 
pipes, we observe deceleration of the flow and an increased ten- 
dency  to transverse mixing,   and  Re^ becomes smaller.     In taper- 
ing pipes,   flow is accelerated and the velocities are  equalized 
over the  cross  section,  there  is   less tendency  to mix,  and Rekr 

increases. 

§22.   HYDRODYNAMIC SIMILARITY 

The Reynolds number derived in the preceding section is of 
great importance in hydrualics, and also in aerodynamics, since 
it Is one of the basic criteria of hydrodynamic similarity. 

'See page  92    for footnote. 
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Hydrodynamlc similarity Is similarity of Incompreaslble-fluid 
flows and Incorporates geometrical, kinematic, and dynamic 
similarities. 

&T)_ 

Pig.   10. Similar flows. 

Geometrical similarity, as we know  from geometry, means 
proportionality of corresponding dimensions and equality of cor- 
responding angles.     In hydraulics, we shall take geometrical 
similarity to mean  similarity of the surfaces that bound the 
fluid flows.  I.e.,  similarity of the  channels   (Fig.   lO). 

Kinematic similarity  is similarity  of streamlines and pro- 
portlonallty of corresponding velocities.    Obviously,  geometrical 
similarity of the  channels  is required  for kinematic  similarity 
of flows. 

Dynamic  similarity means proportionality  of the  forces act- 
ing on corresponding elements of kinematioally similar flows  and 
equality of the angles characterizing the directions of these 
forces. 

A variety of  forces  are usually  in  operation in  fluid  flows 
-pressure, viscosity   (friction),  gravitational, and other  forces. 
Observancb of proportionality of all these miscellaneous  forces 
signifies what  is  known as   complete hydrodynamlc similarity. 

For example,  proportionality of the  forces of pressure P and 
friction T acting on  corresponding volumes  In  flows  I and  II  can 
be written 

(■'H-a- 
It Is extrömely difficult to bring about  complete hydro- 

dynamic  similarity  In practice, and we  therefore usually deal 
with partial   (Incomplete)  similarity,  in which proportionality 
of only the principal and basic forces  Is observed.    For ramming 
flows  in closed channels.  I.e.,  flows  in pipes, hydraulic 
machines, etc.,  calculatins indicate that these principal forces 
are the  forces of pressure,  friction,  and their resultants.  I.e., 
forces  of Inertia.     As can be shown for similar flows,  the.latter 
are proportional to the product of dynamic pressure pv2/2 by the 
characteristic area S. 
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Actually, for a fluid particle one of whose dimensions is 
Ai, the force is equal to the product of its mass by its accele- 
ration, i.e., 

«' tt  t't fh 

where k is a dimensionless proportionality coefficient that de- 
pends on particle shape and ds is an element of the particle's 
path. 

Let us multiply and divide the last expression by A2 and v*r, 

i.e., introduce, in addition to the quantities that pertain to 
the particle, similarly named quantities that characterize the 
flow as a whole; we shall have 

The five dimensionless multipliers in the expression for AF 
have the same values for geometrically and kinematically similar 
flows and similar particles.  Consequently, by substituting the 
proportionality sign for the equals sign, we can write for these 
flows 

or, since i2 ^ S  and AF ^  F, we finally obtain 

^-pvlrS. (5-3) 

For similar flows I and II, 

or 

Wrfe5)./ 
The   latter ratio, which is the  same for similar flows, is 

known as  the Newton number and denoted by Ne. 

We note in passing that  the forces that the   flow exerts  (or 
could exert)  on obstables such as solid walls,  vanes of hydraulic 
machines,   bodies  washed by  the   flow,   etc.,   are proportional in 
similar  flows  to  this same product  pv*  S.     Thus,   if a fluid flow 
strikes  an infinite wall  (Fig.   41)  that has been erected normal 
to it and  changes direction by 90°  as it spreads  out over the 
wall,  the momentum theorem of mechanics tells us  that the per- 
second impulse of the  force  equals 
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Flg.   41.  Action of 
flow on obstable. 

This Is the force that acts on the 
obstacle. If the wall Is set at a dif- 
ferent angle or has different shape and 
dimensions, the proportionality coeffi- 
cient will be other than unity. 

Let us examine the simplest case 
first - that of rammed flow of an Ideal 
fluid. I.e., a motion In which there are 
no viscous  forces and the action of 
gravity Is manifested In pressure. 

For this case, the Bernoulli equa- 
tion for sections 1-1 and 2-2 (see Pig. 
ko)  takes  the  form 

2 1 

or 
Pi — />.> 

0-9 

A"? 
SV 

For two geometrically similar  flows,  the right member of the 
equation has  the same value;  consequently, the left members  are 
also the same,  i.e.,  the pressure  differences are proportional to 
the dynamic pressures: 

(5.5) 

Thus, geometrical similarity alone is sufficient to ensure 
hydrodynamic similarity for rammed motions of an ideal incompres- 
sible fluid.  The dimensionless quantity that represents the 
ratio of the pressure difference to the dynamic pressure (or of 
the piezometric-head difference to the velocity head) is known as 
the pressure coefficient or Euler number and Is denoted by Eu. 

Let us see what condition must be met by the same geometric- 
ally and kinematically similar flows to ensure their hydrodynamic 
similarity in the presence of viscosity forces and, consequently, 
energy losses - i.e., the condition for which the Eu will be the 
same for these rammed flows. 

or 

The Bernoulli equation will now take the form 

HrrV'^eu-^a.jrfC. (5.6) 



As we see from (5.6), Eu will be the same for these flows and 
the flows will be similar to one another hydrodynamically if the 
resistance coefficients C are equal (equality of the coefficients 
o, and Oj for corresponding sections of the two flows follows from 
their kinematic similarity).  Thus, the coefficients C must be the 
same in similar flows, and this means that the head losses for 
corresponding segments (see Pig. ^0) are proportional to the velo- 
city heads, i.e., 

mm- 
Let us consider a case of fluid motion that is very impor- 

tant In hydraulics - motion with friction in a cylindrical pipe, 
for which (see §19) 

The ratios i/d  are the same for geometrically similar flows, 
and, consequently. Identical values of the coefficient X for these 
flows is a hydrodynamic-slmilarity condition in this case. On 
the basis of (^.22), this coefficient is expressed in terms of the 
frlctlonal stress T0 at the wall and the dynamic pressure, as 
follows: 

Consequently, we can write for two similar flows I and II 

&).-($..-*• (5.7) 

i.e., the frlctlonal stresses are proportional to the dynamic 
pressures. 

If we apply the third law of Newton and consider that v ■ 
■ vsr in (5.7), the above ratios, denoted by the letter k, can 

be expressed as follows: 

'-Cl.^ 
where the subscript y ■ 0 indicates that the derivative is taken 
at y ■ 0, I.e., at the pipe wall." 

After multiplying and dividing by the pipe diameter d and 
regrouping factors, we obtain 

'See page  92 for footnote. 
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Here c denotes the expression in the square brackets, which 
represents the dlmenslonless velocity gradient at the wall.  The 
quantity a  is  the same for kinematically similar flows, so that 
after cancelling the c, the dynamic similarity condition for the 
flows (5.7) will be rewritten 

(v ..H.M 
NOT 

REPR00UCIBLE 

or, converting to the reciprocals, 

»v'v (5-8) 

This   is  the  import of the Reynolds   similarity  law,  which  can 
be stated as  follows:  with consideration  of viscosity forces, 
equality of the Reynolds numbers  calculated for any pair of cor- 
responding sections   through geometrically similar flows   is  re- 
quired for hydrodynamic similarity  of these flows. 

It  now  become?   understandable  why  the  transition  from one 
flow regime  to   the  other takes place  at  a definite Re,   and the 
physical   significance  of this  number  for  pipe  flows has  also 
been clarified,   i.e..   Re is  proportional  to the  ratio of the 
dynamic  pressure  to  the  frlctional  stress   or, which is   the  same 
thing,   to the   ratio  of the  inertial  to  the  viscosity  forces.     The 
higher the  velocity   and the   larger  the  transverse  dimensions   of 
the  flow  and  the   lower the  viscosity  of the  fluid,  the  greater 
will Re become.     Re   is  Infinite  for  ideal-fluid  flow,  since  the 
viscosity  v =   0. 

In nonramming  flows   (Si1*),  the  similarity question  is  compli- 
cated by  the difference between  levelling heights,  since  it  is 
necessary  to  introduce  one more similarity  criterion - the Froude 
number,  which   takes   account  of the   Influence  of gravity  on  fluid 
flow.     But   for   the  overwhelming majority   of the problems  that 
interest  us  in  the   field of aviation engineering,   this   criterion 
is  unimportant   and we   shall  not  dwell upon it. 

In similar  flows,   therefore,   we have  equality  of  the  dlmen- 
slonless   coefficients,  the  numbers  a,   c,   A,  Eu,  Ne,  Re,   and  cer- 
tain others  that will be Introduced  and examined below.     A  change 
in Re  signifies   that   the relationships  among the principal  forces 
in the  flow have  changed, with the  result  that  these  coefficients 
may also  change.     Thus,  all  of these  coefficients  must  be regarded 
in the general  case   as   functions  of Re   (although  they may remain 
constant  in  certain  Re  ranges). 

Example.     Determine the   flow  regime   of AMG-10  fluid in  an 
aircraft  hydraulic   line with a diameter  d  =  12 mm if the  flow 
rate Q =  0.25   1/s  and  the  fluid temperature is  0oC   (see  Table 
1 on page   12).     At  what  temperature  does   the  flow regime  change? 

Solution.     1.   From Table  1 we   find   v »  42  cSt  = 0.42  cm2/s. 

2.   We determine   the Reynolds  number: 
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change: 

Th« flow regime is laminar. 

3.  We find the vlseoslty corresponding to the flow-regime 

,.. 19 ^^r- - «.us cm/B. 
'•»" MR»»,       al.S-MCO 

i».  Using the data in Table 1 for AMO-IO fluid, we plot a 
graph of the coefficient v as a function of temperature and use 
it to find tkT • '»0oC. 

§23.  CAVITATIONAL PLOW REGIMES 

In certalr. cases, phenomena associated with changes in the 
physical 3tat.e of the fluid, i.e., with its vaporization and with 
liberation o.' dissolved gases from the fluid, occur as  fluids 
move in closed channels. 

I ir -..ample, in flow of a fluid through a local constriction 
in a pliic    velocity increases and pressure falls.    If the abso- 
lute pressure reaches a value equal to the saturation vapor pres- 
sure of this  fluid at the particular temperature. Intensive 
vaporization and liberation of gases, i.e.,  local boiling or tne 
fluid, begins at this point in the  flow.    In the expanding part 
of the  flow,  velocity decreases,  pressure rises, and the boiling 
stops;  the vapor that has been released is partially or totally 
condensed and the gases are gradually dissolved. 

This local bumping of the fluid, which is governed by the 
local pressure drop in the  flow with the subsequent condensation 
of vapor in a zone of higher pressure, is known as cavltation. 

Fig.  1)2. Diagram of pipe for demonstrat- 
ing cavltation. 
KEY:   (a)  cavltation. 

This phenomenon can be demonstrated Impressively with a 
simple  device   (Pig.   12).    Water or some other fluid Is  fed to 
regulating cock (valve) A at a pressure of 8everal atmospheres 
and then allowed to flow through the glass tube, which first con- 
stricts  the   flow smoothly  and then allows  it to expand more 
smoothly until it discharges into the atmosphere through cock B. 
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When  the regulating valve  Is cracked open and,  coi.requently, 
the  flow rates  and velocities  are  low,  the pressure drop at the 
throat of the  tube is insignificant,   the stream is quite  trans- 
parent,  and there  is no cavitation.     As cock A is  progressively 
opened, velocity  increases and the absolute pressure drops in the 
tube. 

At p =  p   , where p    is  the saturation vapor pressure,  a 
distinct  cavitation zone appears  in the tube,  and its dimensions 
Increase   as  the   valve  is  opened  further. 

Cavitation is accompanied by a characteristic noise,  and, 
if it   continues   long enough,   also by  erosion damage  to metal 
walls.    The  latter is explained by  the fact that the vapor 
bubl les  condense  rather rapidly  and  the  fluid particles   filling 
the   cavity  of the  condensing bubble  rush toward its  center, 
creating  a   local  hydraulic  shock as   condensation  culminates, 
1 e..  a substantial local pressure  increase.     In cavitation,  the 
material  is  damaged not  where  the bubbles  are   formed,   out where 
they   condense. 

Cavitation  Is  usually  an  undesirable effect  and  cannot be 
permitted  in pipelines  and other hydraulic  systems.     Cavitation 
causes  a  considerable  Increase  in  the  resistance  of the  pipelines 
and,   consequently,diminishes   their  throughput. 

Cavitation may arise  in any  device  in which  the   flow  under- 
goes   local  constriction with  subsequent expansion,   e.g.,   in 

■ocks,  valves,   gates,  diaphragms,  nozzle Jets,  etc.     In  some 
cases,   cavitation can occur even without expansion  of the  flow 
after the   constriction,   or in  constant-section pipes  on  an in- 
crease  in  level  height  and hydraulic   losses. 

Cavitation  can occur in  hydraulic machines   (pumps   and hy- 
draulic  turbines)  and on the  blades   of high-speed waterscrews. 
In these   cases.   It  results  in a sharp  drop  in the  efficiency of 
the machine  and  then gradual  destruction of the parts  subject  to 
cavitation. 

In aircraft  hydraulic  systems,   cavitation may  arise  as  a re- 
sult  of a  decrease  In the external  pressure  as  the  airplane 
climbs.     In  this   case,   the  cavitation region extends  through a 
considerable  part  of the   low-pressure pipeline   (induction  line) 
or even  over its  entire  length.     The  result   is  a  two-phased flow 
in  the pipe,  with  liquid and  vapor phases. 

In  the  initial stage  of vapor  evolution,  the  vapor phase may 
take  the   form of minute  bubbles  distributed  approximately  uni- 
formly  through  the  volume  of the moving fluid   (Fig.   «Sa).     On 
further release  of vapor,  the   vapor  phase  increases  and  the 
bubbles  grow,  moving preferentially  along the  top  of a horizontal 
pipe   (Fig.   4 3b}.     Finally,   the  vapor and  liquid phases  may  sepa- 
rate   completely   and move  in  independent  streams:   the   former along 
the  top  of the   line and the   latter  along the bottom   (Fig.   4icj. 
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Formation of vapor locks and motion of the phases In alternating 
slugs (Fig. kSd)  are possibilities In small-diameter pipes. 

■ »IT —. * ; 5ISST5S3B3 '.'i.'■'■'■'.■.'.'.'..Ü.' .;  /i"--.'AfJ-J t 

A)       tr)        «)        *) 

Pig. '(3. Diagrams of fluid-and-air flows. 

Obviously, the throughput of the line Is reduced substan- 
tially as the vapor phase Increases. Condensation of the libe- 
rated vapor (partial or complete) takes place In pumps, where 
the pressure Is Increased substantially, and In the delivery 
pipes through which the fluid moves under high pressure from the 
pump to the appliance. 

The oavltatlon phenomenon unfolds differently In single- 
component (simple) and multlcomponent (complex) fluids. For a 
single-component fluid, the pressure corresponding to the onset 
of cavltatlon is fully determined by the saturation vapor pres- 
sure, which depends only on temperature, and cavltatlon proceeds 
in th manner described above. 

A multlcomponent fluid consists of so-called light and heavy 
fractions. The former have higher vapor pressures than the lat- 
ter, so that the light fractions boil out first on cavltatlon, 
and then the heavy ones.  Condensation of the vapor, on the other 
hand, takes place in the reverse order: the heavy fractions first, 
and then the light fractions. 

In the presence of light fractions, multicy.iponent fluids 
have a stronger tendency to cavltatlon and their vapor phases 
persist longer, but the cavltatlon process is less conspicuous 
than in single-component fluids. 

A dlmenslonless number known as the cavltatlon number is 
used to characterize flow regimes in respect to cavltatlon; it 
equals 

where £ and v are »h« absolute pressure and velocity of the flow, 
respectively. 

The sense of the cavltatlon number is obviously similar to 
that of Eu (see §22).  However, it is sometimes more convenient 
to use a slightly different expression for the cavltatlon number, 
i.e., 



where H Is the total head of the flow (z - 0). 

It Is clear from the above exposition that ic - 0 and o ■ 1 
where cavltation arises.  However,the cavltatlon number K (or a) 
Is usually determined at the entry into the unit In which cavlta- 
tion is a possibility. 

The value of ic (or a) at which cavltation begins in the unit 
is known as the critical cavltation number. For ic > <^r, the re- 
sistance coefficient ; of the unit does not depend on <,  but when 
K    <    IC kr1 C increases with decreasing K. 

An effort Is usually made to prevent cavltation in hydraulic 
systems.     Sometimes, however,  this phenomenon may be useful.    For 
example,  it is utilized in the  so-called cavitatlonal flow rate 
regulators. 

The operating principle  of such a regulator can be appre- 
ciated from the diagram of Pig.   42.    Suppose that the pressure in 
section 1-1  (pi)  is constant   (the percentage opening of cook A is 
constant),  and that the pressure in section  3-3  (PJ)  is gradually 
lowered by Increasing the percentage opening of cock B.    The re- 
sult  is  that the flow rate through the pipe increases and the 
pressure  in the throat section 2-2  (P2)  decreases. 

Cfj-ywv q_ 
flrm« 
to 

o.s 

W 

  — 

:ar.v>- ^* 

\ C --—       

\ 

C;.-     f,/     flff      C*^,.^ 
b) '"" 

% 

Fig.  44.  Flow rate through cavltation pipe 
as a function  of pressures at entrance and 
exit. 
KEY:   (a)   cm'/s;   (b)   kgf/cm2. 

This will be the situation until the pressure p2 Is made 
equal to the saturation vapor pressure rt and cavltation begins 
in section 2-2.    When cock B is opened further, the region of 
cavltation in the throat  of the pipe will become  larger and pres- 
sure p2 will become equal to pt.    The  flow rate will remal" con- 
stant through this despite the  drop In pressure p,. 
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This makes It possible to stabilize the  fluid-flow rate 
through the regulator under conditions  of variation of the  back 
pressure p,  from critical   (Pi)kr. which corresponds to the onset 

of cavltation, to zero. 

Figure 44 shows results of tests of a cavltation flow rate 
regulator made in the form of a Venturi tube with an axisymmetric 
throttle needle for adjustment of the throat-section area. 

Figure  Ma shows  curves of flow rate Q as a function of exit 
pressure Ps  ■ P    ^h for varlous entrance pressures P!  - Pv^h and 
one regulating-needle position, while  Fig.   44b shows the same 
curves replotted in dimenslonless coordinates Q/imgiX " 

" f(pvykh/pvkh)' whlch ylelds a single curve. 

The diagrams  indicate that the precision of flow rate  sta- 
bilization is very high. 

The value of the  critical pressure ratio, which corresponds 
to the onset of stabilization,  is easily  found from the  following 
equations  (we shall assume o,  - a2 ■ o, « 1). 

1) The Bernoulli  equation for sections   1-1 and 2-2 

2) Bernoulli equation for sections  1-1 and 3-3 

3) The flow rate equation 

Here  C    and  Cd are  the   respective    resistance   coefficients  of 
the nozzle   (segment  1-2)  and the diffuser  (segment 2-3). 

Simultaneous  solution of these equations  on the assumption 
that pj    ■ pt and Vj  -  v, yields 

(fi)   .JC""]  -i k;'J(«      
Vz-i/i,,    U.J.P M Cc-ix'-sjÄ- 

where »'=2ff/',/YJj. 

For the tested regulator, we can assume S|/Sj - 0; moreover, 
ic' SO, since the tests were run on cold water (pt 5 0). 

Since the regulator has a diffuser cone angle a - 10°, the 
diagram of Fig. 72 indicates r.    - 0.19, while c was found 
'See page 92 for footnote. 
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from the tests to be 0.07, which corresponds to the data in 
§HC. 

Substituting these values into our formula» we find 

\ Ptt )*p 
1 .00*+,>»= 0.766. 

1 + 0,06 

which agrees with the test results. 

This stabilization of flow rate through oavitation is simi- 
lar to the effects observed when a gas flows out througn a hole 
or mouthpiece and the outflow velocity is made equal to the local 
speed of sound (see §77). 
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78 

80 

84 

Footnotes 

'From the Latin for layered. 
2From the Latin for stormy, agitated. 

'More precisely,  turbulent  flow in pipes is fully de- 
veloped at Re > Re.     ■  4000, and a transitional criti- 
cal region occurs  at  Re  -  2300-4000. 

"Newton's law of friction is applicable only  for laminar 
flow.     As will be shown below  (see §28 and 29), however, 
a thin laminar layer within which Newton's law of fric- 
tion is valid usually forms near the wall in turbulent 
pipe  flows.    Hence the frictional stress  t, at  the wall 
can also be determined by  this  law for turbulent flow. 

90 'The regulator wao tested by B.L. Dzhikayev. 
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Symbol List 

English equivalent 

critical 

average 

absolute 

entry 

exit 

nozzle 

diffuser 
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CHAPTER VI 

LAMINAR FLOW 

§2t. THEORY OF LAMINAR FLUID PLOWS IN A ROUND PIPE 

As we noted in §21, laminar flow is a strictly ordered 
layered flow without agitation of the fluid; it is subject to 
the Newtonian law of friction (see §3) and is fully defined by 
this law.  Hence the theory of laminar fluid flow is based on 
Newton's law of friction. 

♦* 

.1 ' 

i?l 

V.i 

i 
2\ 

Fig.   45.   Illustrating theory of 
laminar  fluid  flow  in a pipe. 

Let  us   consider a steady-state  laminar  fluid  flow in a 
straight  circular-cylindrical pipe with an inside diameter d = 
*  2r.     To exclude the  Influence  of gravity  and  thereby  simplify 
the derivation, we  shall  use  a horizontal pipe.     At   a sufficient 
distance  from  the entrance,  we  isolate a flow segment  of length 
i between sections  1-1 and  2-2   (Fig.   45). 
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Let the pressure be p, In the first section and p2 In the 
second. Owing to the constancy of pipe diameter, the velocity 
and the coefficient a will be constant along the flow, so that 
the Bernoulli equation for the selected sections takes the form 

y 
Jb.j.ii 
v > "»i" 

where h.  Is the frlctlonal loss of head. 

Prom this, 

v   v 

which Is Indicated by piezometers attached at the sections. 

In the fluid flow, we isolate a cylindrical volume of radius 
r coaxial with the pipe and having Its bases In the chosen sec- 
tions. 

We write the equation of uniform motion of the isolated fluid 
volume in the pipe, i.e., we set the sum of the two forces acting 
on the volume — pressure and resistance - equal to zero.  Using T 
to denote the tangential stress on the side of the cylinder, we 
obtain 

(;>,~/j2).ir
s-2-.r/T=01 

whence 

21   • 

We see from the formula that the tangential stresses In a 
cross section of the pipe vary linearly as functions of radius. 
A diagram of tangential stress appears at the left in Pig. 15. 

Let us express the tangential stress x in accordance with 
Newton's law of friction in terms of the viscosity coefficient 
and the transverse velocity gradient [Formula (1.1'*)]} here we 
substitute the present radius r for the variable ^ (distance 
from the wall): 

<•'■.■ 

r'r 

The minus sign is due to the fact that the measuring direc- 
tion for r (from the axis toward the wall) is the opposite of 
that in which g. is reckoned (from the wall). 

Substituting the values of T into the above equation. 

fn' 
^2; -r 

Prom this, we  find the velocity increment dv: 

-95- 



 1*? 

A negative  Increment  (I.e.,  a decrease) in velocity  corre- 
sponds to a positive radius increment,  in agreement with the 
velocity profile shown in Pig.   45. 

Integrating, we obtain 

TU a _ 

We find the constant of integration C  from conditions given 
at the pipe wall, where v ■ 0 at r » r0: 

The velocity on a circle of radius r is 

This is the  law of velocity distribution across a circular 
pipe section in laminar flow.     The  curve representing the velocity 
diagram is a second-degree parabola. 

The maximum velocity at the  section center  (at r - 0)  Is 

"v 1.   ' (6.2) 

The ratio pt /«. that appears in  (6.1) represents,  as. we see 
from Pig.   45,  the hydraulic   (piezometrlc)  gradient multiplied by 
Y.    This quantity Is  constant  along a straight pipe  of constant 
diameter. 

Let us apply the velocity-distribution law that we have de- 
rived  (6.1)  to compute flow rate.     For this purpose, we  first 
express the elementary  flow rate across an Inflnlteslmally small 
area dS: 

dQ^odS. 

Here, v is a function of the radius that Is determined by 
(6.1), and It  Is expedient to take the area dS in the form of a 
ring of radius r and width dr; then 

On integration over the entire cross-sectional area. I.e., 
from r - 0 to r ■ r0, we have 
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fr|« ^'•'''•-i'r^ (6-3) 

We find the velocity averaged over the cross section by 
dividing the flow rate by the area: 

,, ^Q..-,!,'\rL^yrv (6.4) 

Comparing this expression with (6.2), we conclude that the 
average velocity is half the maximum In laminar flow, i.e., that 

To obtain the law of resistance, i.e., an expression for 
the frlctlonal head loss htr in terms of flow rate and pipe di- 

mensions, we determine ptr from (6.3): 

Dividing the equation by y, we obtain the head loss: 

Substituting vp for u  and gp for y  and passing from r, to 
d = 2r0, we obtain finally 

/, ^y:^l. (6.5) 
"■ «^ 

This law of resistance indicates that In laminar flows in 
round pipes, the frlctlonal head loss is proportional to the 
first powers of flow rate (velocity) and viscosity and inversely 
proportional to the fourth power of diameter. This law, which is 
frequently referred to as the Poiseuille-Hagen law, is used in 
calculations for pipelines in which flow is laminar. 

Earlier (§19), we adopted the convention of expressing 
frlctlonal head losses In ter;as of average velocity by Formula 
(4,18). Let us- bring the law of resistance (6.5) to the form 

To do so, we substitute the product Trd2vsr/'* for the flow 
rate in Formula (6.5); after cancelling. 
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Multiplying and dividing the right side of the equation by 
2v  , we obtain after regrouping factors 

sr 

'«•■^i-tprf /2ff  Re < 2f ' 

or, reducing to the form of (1.20), finally 

A.P=^-J. (6.6) 
where 

l==«i. (6.7) 
* Re 

The subscript "1" to the X stresses that we are speaking of 
laminar flow. 

It must be remembered that the frlctlonal head loss In 
laminar flow Is proportional to the first power of velocity. Nor 
should It be forgotten that the square of velocity In Formula 
(6.6) for laminar flow was obtained by artificial multiplication 
and division by v , and that the coefficient \1  is Inversely 

proportional to Re and hence to the velocity vsr. 

Knowing the law of velocity distribution over the pipe cross 
section (6.1) and the relation between average velocity and head 
loss (6.4), it Is easy to determine the value of the coefficient 
a, which takes account of the veloolty-dlstrlbution nonuniformity 
in the Bernoulli equation for the case of a stabilized laminar 
fluid flow in a round pipe. 

In Expression (4.17), let us substitute the velocity accord- 
ing to (6.1) and the average velocity according to (6.4), remem- 
bering also that 

and 

After cancelling. 

Substituting the variable 

1-',— ^ 
»0 

we obtain 
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a~.-6hv*~:2\.'l~9.. (6.8) 
•| 

Thus, the true kinetic energy of a laminar flow with a para- 
bolic velocity distribution Is twice that of the same flow when 
the velocities are uniformly distributed. 

We can therefore show that the per-second momentum of a 
laminar flow with a parabolic velocity distribution Is 0 times 
greater than the momentum of the same flow with uniform velocity 
distribution,  and that the coefficient ß Is constant: 

1     3 vi s      3 
*    ' 

In general, the above theory of laminar fluid flow in a round 
pipe Is nicely confirmed by experiment, and the resistance and 
velocity-distribution laws derived normally require no correction, 
except in the following cases. 

1. For the flow at the start of the pipe, where the parabolic 
velocity profile is gradually established. The resistance is 
found to be higher on this segment than on those that follow it. 
However, this fact Is taken into account only In calculations for 
very short pipes. This problem will be set forth in greater de- 
tail in the next section. 

2. In flows with considerable heat transfer, i.e., when the 
fluid is heated or cooled while in motion (see §27). 

3. For very high pressure gradients (see §27). 

§25. THE INITIAL SEGMENT OP LAMINAR FLOW 

If fluid runs from a tank into a straight constant-diameter 
pipe and thence along the pipe in a laminar flow, the velocity 

IE::-:- KJ- 
Pig. t6. Shaping of parabolic 
velocity profile. 

distribution is found to be practically uniform at first, espec- 
ially if the entrance has rounded edges (Pig. 1*6).     But then, 
under the action of viscous forces, the velocities are redistrib- 
uted over the cross sections as follows: the layers of fluid next 
to the wall are slowed down, while the center (nucleus) of the 
flow, where the uniform velocity distribution still persists, 
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moves with an acceleration owing to the necessity of rasslng a 
definite flow rate through the constant area. Here the thick- 
ness of the decelerated fluid layers gradually increases until 
it becomes equal to the tube radius, I.e., until the layers on 
opposite walls meet at the axis of the pipe. Only then is the 
parabolic velocity profile characteristic of laminar flow estab- 
lished. 

The distance from the beginning of the pipe at which the 
parabolic velocity profile Is established (stabilized) is known 
as the Initial flow segment (4nach). Beyond the initial segment, 

we have a stabilized laminar flow; the parabolic velocity profile 
remains unchanged no matter how long the pipe, provided that it 
remains straight and its section remains constant.  The laminar- 
flow theory set forth above Is valid for precisely this stabilized 
laminar flow and does not apply to the initial segment. 

k.ti 

0   t    *   I   S   '} II '1 IS IS 10 22 iU IS 2Sxlfi 

Flg. '»T. Diagram showing varia- 
tion of the coefficients K and a. 

To determine the initial-segment length, we can use the ap- 
proximate Shiller formula, which expresses this length, referred 
to pipe diameter, as a function of Reynolds number: 

'jit=0.0.'?Re. 
ä 

(6.9) 

Substituting Re  = 2300 into (6.9), we obtain the maximum 

possible length of the initial segment at 66.5 diameters. 

As we noted above, the resistance is found to be higher on 
the initial segment of the pipe than on later segments. This is 
because the derivative dv/dy at the wall of the tube Is larger on 
the initial segment than on the segments with stabilized flow, so 
that the tangential stresses defined by Newton's law are also 
larger and increase the closer the section l^der "amln^";°" ^ 
to the beginning of the pipe. I.e.. the smaller the x-coordlnate. 
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The head loss on a segment of pipe whose length I  <_ tnftCh is 

determined by Formula (6.5) or by (6.6) and (6.7). but with a 
correction factor K greater than unity. The values of this coef- 
ficient can be found from the diagram (Pig. 47), In which the 
coefficient K Is represented as a function of the dlmenslonless 
parameter (x/Re d) • 103.  As this parameter Increases, the coef- 
ficient K becomes smaller, and at 

-JL.^*«; o.02'j, 
Red Htif 

I.e., at x = *  h, becomes equal to 1.09.  Consequently, the re- 

sistance of the entire Initial segment of the pipe is 9%  higher 
than the resistance of the same length of pipe taken In the re- 
gion of stabilized laminar flow. 

For short pipes, as we see from the diagram, the correction 
factor K differs very greatly from unity. 

When the pipe length I  is greater than the initial-segment 
length 4

nach» the head losses will be composed of the losses on 

the Initial segment and the losses on the stabilized-flow segment. 
I.e., 

ll^fiOiA*'..i)JL-.:^£. 

Applying  (6.7) and  (6.8)  rearranging,  and solving,  we obtain 
finally 

,^(!)']0:<-i)S- (6.10) 

If the pipeline length ratio l/d  is large enough, the addi- 
tional term 0.165 in the parentheses is small enough to be disre- 
garded.  However, this term should be taken into account in pre- 
cision calculations for pipes whose length is comparable with 

nach 

For the initial segment of a tube with a flared entry, the 
coefficient a rises from 1 to 2 (see Fig. 47). 

§26. LAMINAR FLUID FLOW IN GAPS 

Let us consider laminar flow in a gap formed by two parallel 
flat walls separated by a distance a (Fig. 48).  We shall place 
the coordinate origin at the center of the gap and direct the ox- 
axis along the flow and the oy-axls normal to the walls. 

Let us take two normal cross sections of the flow at a dis- 
tance I  from one another and examine a unit flow width.  We iso- 
late a volume of fluid in the form of a right parallelepiped 
positioned symmetrically with respect to the ox-axis between the 
selected flow cross sections and having the side dimensions 
i x 2y x 1.  We write the condition of uniform motion of this 
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volume along the ox-axls: 
dv 

2^,—f^a.. 

where p      - P, - P2  is the pressure  difference between these  sec- 

tlons. 

Flg.   48.  Illustrating theory of lami- 
nar flow In gap. 

The minus  sign appears because the derivative dv/dy is nega- 
tive. 

Prom the  above, we find the velocity  Increment dv correspond- 
ing to a coordinate  Increment dy: 

dv=-~ ydij. 

Integration yields 

Sji' 
^+c. 

Since v - 0 at y - a/2, we have  c»|j_«i.from which,  finally. 

2(1/ \ 4       " ,' 
(6.11) 

Now let us  calculate the flow rate per unit width by taking 
two eSeitary  1 * dy areas  symmetrically about  the oz-axis  and 
expressing the elementary  flow rate 

whence 

"«-"«-spr-'')2""- 

(6.12) 

From the above, we express the pressure loss In terms  of the 
average  velocity vgr - Q/a: 
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(6.13) 

> 

-—V 

Pig. 1)9. Velocity 
profile In gap with 
moving wall. 

When one of the walls forming the gap 
Is in motion parallel to the other and the 
pressure In the gap Is constant over Its 
length, the moving wall will draw fluid 
with It, giving rise to what Is known as 
nonrammlng frlctlonal motion. Let us Iso- 
late an element from such a flow, as shown 
In Fig. 49, and examine the forces acting 
on It.  Since the pressures 2 applied to 
the left and right faces of the element are 
the same, equilibrium of forces requires 
that the tangential stresses on the lower 
and upper faces also be the same.  This im- 
plies that dx ■ 0 and T - C, where C is a 
constant. 

Using Newton's law of friction, we obtain , 

(the minus sign Is taken because dv < 0 when dy > 0), and, after 
integration, 

«.-.-.-C-i/l-CV 

We find the  constants C and Ci   from the condition on the 
boundaries  of the  flow:   v «  0  at y *  a/2  and v » U  for y  -  -a/2, 
where U is the speed of the wall.    From this. 

C-.--1''"--  and  C, a 

After substitution Into the integral, we finally obtain the 
linear velocity distribution law 

-frv)" (6.14) 

The  fluid flow rate per unit gap width is determined from the 
average velocity  »sU,  i.e.. 

(6.15) 

If, however,  this  displacement of the wall takes place in the 
presence of a pressure gradient In the  fluid filling the gap,  the 
velocity distribution  law in the gap will be  found as the sum  (or 
difference,  depending on the  direction  of wall motion)  of Expres- 
sions   (6.11) and   (6.14),  i.e.. 
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Pig. 50. Velocity profile In gap 
with moving wall and pressure 
gradient. 

Two variants of the velocity distribution In a gap appear in 
Fl«. 50: one In which the direction of wall motion coincides with 
the direction of fluid motion under the Influence of the pressure 

Fig. 51. Diagrams of concentric 
and eccentric gaps. 

gradient (a), and one In which the direction of wall motion is 
opposite to the fluid flow (b). 

In this case, the fluid flow rate through the gap will be 
determined as the sum of the flow rates expressed by Formulas 
(6.12) and (6.15), i.e., 

Q^il + ^fl. 
v  12jJ ~ 2 

The first term in this formula is known as the ram flow rate 
and the second as the friotlonal flow rate. 

These expressions can also be used when the gap is formed by 
two cylindrical surfaces, e.g.. a piston and cylinder, provided 
that the gap between them is small by comparison with the 
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diameters of the surfaces and the surfaces are coaxial (Fig. 

51a). 

If the piston has a certain eccentricity e 1" th« °y^n?f 
(Pig. 51b). the gap a between them will be variable, and it is 

easily seen that 

where a. " R 

ccR+ecostp-r- i^i -1 CCCT»»,-). 

r and e = e/a0. 

Retcardln* an element of the gap of width rd* as a plane  slot, 
we obSn thegfollowing expression for the elementary  flow rate: 

Integrating around the circle, we  obtain 

Q.= ^^H-cc..v)V;.^ (II--?-'). 

V 
VCA '6. fte 

where Q^- 
der. 

.^^2   is  the flow rate  for the coaxial piston and cylin- 

m 

It follows  from the expression obtained for Q that at maximum 
eccentricity.  I.e.,  e    »  1, 

Example.    To check out the alti- 
tude  capability of an oil system, de- 
termine the absolute pressure  at the 
entry  Into the pump in mmHg in level 
flight at  16 000 m of altitude   (pA/ 
A      » 77.1 mmHg).    The  length of the 
intake oil  line  i, - 2m. d -  18 mm.  the 
oil level  in the  tank is  at a height 
z ■ 0.7 m above the pump,  and the 
pressure  in the  oil tank is atmos- 
pheric   (Fig.  52).    The required oil 
delivery  rate,  found from the  amount 
of heat that must be dissipated Into 

in local resistances need not be taken Into account. 

Solution.     1.  The velocity  of the dl in the line is 

J_ \ 

Fig. 52. Diagram of oil 
line. 
KEY: (a) pump. 

-l-ir-ir:-' 
.1-1,f I 

ir;;cm/s. 
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2.   The Reynolds number 

.    erf     tasi.t    ,_. 

3. The frlctlonal loss of head In the Intake pipe is 

"I      cS        64    2*)    1051     „, „ -_ | 

b.  We  find the pressure  at the pump entrance  from the Ber- 
noulli equation for sections  0-0 and  1-1: 

PA      Pi ^    ^   .. 

V-      Y"       2f 

whence 

or 

p.        »» 13.6     2-I05S 

r k   13,o 

§27.   SPECIAL CASES OF LAMINAR  FLOW 

1.  Flow with Heat Transfer 

In the cases of laminar  flow considered above,  no considera- 
tion whatsoever was given to  temperature variation or, consequent- 
ly    to viscosity changes either within the cross  sections or along 
the  flow.  I.e.,   constancy of temperature at all points  of the flow 
was assumed.    Such flows are  said to be Isothermal, as distinct 
from flows accompanied by change in fluid temperature. 

If a pipeline carries a  fluid whose temperature is substan- 
tially higher than that of the environment,  the  flow will be ac- 
companied by dissipation of heat through the pipe wall into the 
environment and,  consequently,  cooling of the  fluid.     If,  on the 
other hand, the moving fluid is cooler than the environment, there 
will be  an influx of heat through the pipe wall and the  fluid will 
be heated as it  flows. 

In both of these cases,   fluid flow is  accompanied by exchange 
of heat with the environment  and,  consequently,  the temperature 
and viscosity of the fluid are no longer constant  and the  flow is 
nonisothermal. 

Formulas   (6.5) and  (6.13), which VP derived above on the as- 
sumption of constant velocity over the flow cross  section, require 
correction for flow with heat  transfer. 

In flow accompanied by cooling of the fluid, the layers of 
fluid directly adjacent to the wall are cooler and more viscous 
than those in the main nucleus of the flow.    The  results  are 
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sharper deceleration of the wall  layers of fluid and a drop In 
the  velocity  gradient  at  the wall. 

On the other hand. If the  flow Is accompanied by heating of 
the fluid,  the heat Influx through the wall heats the wall layers 
of fluid and  lowers  their viscosity,  so that the velocity gradient 
rises at the wall. 

, Thus,   the normal parabolic velocity 
  distribution is disturbed as a result of 

■' heat exchange through the pipe wall be- 
\.<-? tween the  fluid and the environment.    Plg- 
)y~~ ure 53 shows the velocity distribution in 

isothermal  flow  (1), in a flow in which 
^ the  fluid is  cooled  (2),  and in one in 

1 which it  is heated  (3).    As we  see from 
the  figure,   cooling of the fluid results 

Pig.   53.  Velocity In increased nonuniformity of the velocity 
distributions  in distribution  (o >  2), while heating reduces 
isothermal and non-        this nonuniformity   (o <  2) by  comparison 
Isothermal flows. with the ordinary parabolic velocity dis- 

tribution   (o    ■ 2). 

The change  In the velocity profile in nonisothermal flow 
causes a change in the law of resistance. 

Exact solution of problems  of fluid flow with heat transfer 
is extremely  complex,  since it is  necessary to consider the vari- 
ability of fluid temperature and viscosity over the cross section 
and along the pipe,  and to analyze  the heat flows in various  sec- 
tions  of the  pipe. 

For laminar flow of viscous   fluids in pipes with dissipation 
of heat   (cooling),  the resistance  is  found to be higher than in 
Isothermal flow, but  It is  smaller  for flows with heat  influx 
(heating).     The  basic reason  for  this  is   that  the  viscosity  of 
the fluid in  the layers next to the wall differs  from the average 
fluid viscosity  in the  cross  section. 

This  can be taken into account  approximately by  the  follow- 
ing formula  for the  friotlonal loss  coefficient X,   in Formula 
(6.6).     The  expression ~ 

l: .   ( '    v.   ' 

is recommended instead of (6.7); here, Rezh is the Reynolds num- 

ber computed for the average fluid viscosity, v . Is the fluid's 

average viscosity, and vgt is the fluid viscosity corresponding to 
the average wall temperature. 

For more accurate calculations for small Reynolds numbers, 
it is necessary to use a formula due to Academician M.A. Mikheyev, 
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which Is presented In [19]. 

2. Obliteration 

A phenomenon that cannot be explained by the laws of hydraul- 
ics is sometimes observed when fluid flows through capillaries 
and small gaps.  In this phenomenon, the flow rate of the fluid 
through the capillary or gap decreases with time despite the fact 
that the pressure gradient under which the fluid is moving and 
the physical properties of the fluid have not changed.  Its cause 
is to be sought in a kind of plugging or coating of the channel 
by solid particles under certain conditions.  Clearances and 
capillaries smaller than 0.01 mm may be clogged completely and 
the flow rates reduced to zero.  This process is known as obliter- 
ation and consists in a so-called adsorption process that takes 
place on the Interface between the solid and fluid under the ac- 
tion of molecular and electromagnetic forces that arise between 
the wall and the fluid, i.e., condensation of the fluid to a prac- 
tically solid condition on the surface of the wall. 

The extent of obliteration depends on the molecular struc- 
ture of the fluid, and it is more conspicuous in complex, macro- 
molecular fluids.  This is the precise nature of the kerosene- 
based fluid mixtures used in aircraft hydraluic systems. 

The thickness of the absorption layer is several microns for 
these fluids. Thus this layer can substantially reduce the cross- 
sectional area of the passage in flow through capillaries and 
small gaps, and even block It completely. 

The intensity of adsorption and hence of obliteration de- 
creases with rising temperature.  On the other hand, an in- 
crease in the pressure gradient under which the fluid is. moving 
through the gap or capillary increases the extent of obliteration. 

If one of the walls forming the gap is set in motion, i.e., 
if shear occurs, previously formed absorption layers are broken 
up, obliteration is corrected, and the original flow rate of 
fluid through the gap is restored.  However, this shear usually 
requires considerable effort.  In general, obliteration does not 
occur in clearances between moving and stationary walls. 

To prevent obliteration in nozzle Jets and chokes, the holes 
should be malo-no smaller than 0.2-0.4 mm.  Sometimes a recipro- 
cating rod is passed through the choking orifice to provide for 
automatic clearing of the orifice and destruction • f the adsorbed 
layers. 

3. Laminar Flow at High Pressure Gradients 
« 

Experience  has  snown that   the head loss  along  the  stream is 
substantially  nonlin.par in  laminar  flows  through small gaps  and 
capillaries   under  the influence  of  large pressure  gradients  of 
the  order  of several hundred atmocpheres,  and  that   Poiseuille's 
law gives   a rather  large  error. 
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This la because the fluid flow rate Q Is proportional in 
laminar flow to the pressure  gradient Ap,  while the energy loss, 
which equals the product QAp,  Is proportional to the square of 
the pressure gradient.    Hence the energy  loss per unit of fluid 
flow rate increases in proportion to the pressure gradient.    This 
results in heating of the fluid at high pressure gradients and a 
decrease in Its  viscosity; the Influence of this  factor will be- 
come stronger along the stream of fluid. 

On the other hand,  since  fluid  viscosity rises with increas- 
ing pressure,  the viscosity at the beginning of the flow will be 
higher, but It will diminish along the flow as a result  of the 
pressure drop.     Thus,   fluid viscosity becomes a variable along 
the flow and,  as  a result of the simultaneous operation of these 
two factors,  the  longitudinal pressure gradient dp/dx,  which is 
governed by  friction,  will be  larger  at  the beginning of the   flow 
and smaller at  the end than would follow  from Polseullle's  law. 

As  for flow rate,   a rise in temperature tends  to increase  it, 
and a high pressure in the fluid decreases  It below the  value  ob- 
tained from Polseullle's  law,   i.e.,   these   two  factors  influence 
flow rate In opposite directions.     However,  total compensation is 
not normally the  case,  especially when there is a substantial 
amount  of heat  being dissipated  through  the wall and,   conse- 
quently,  the temperature increase is small. 

This  form of laminar flow is encountered particularly often 
in high-pressure hydraulic machines,   in which a viscous   fluid 
flows  through  small  clearances  under  large  pressure gradients. 

Let  us  examine  the  problem of  laminar  flow in a gap  of span 
a,   length  i,  and width b, with consideration of viscosity as  it 
varies with pressure  and temperature.    Here we shall assume that 
the density  of  the  fluid does  not  depend  on pressure or  tempera- 
ture  and that  the  dimension ratio of the  gap a/b ■♦  0. 

To take the effects of pressure  and  temperature on  fluid 
viscosity  into  account  simultaneously,  we   shall use  the   following 
relationship in accordance with  (1.17) and   (1.18): 

l"  I1/ >(•-'.). (6.16) 

Here the  subscript  1 is  attached to the quantities  at the 
origin of the  stream.     Values  of o  and \  were given in   §3- 

Placing the   coordinate origin  in the   initial  flow   cross  sec- 
tion  (Fig.   5^),  we  isolate  an elementary   fluid volume  in  the   form 
of a rectangular parallelepiped positioned symmetrically about 
the x-axis and having the dimensions  2y  «   1 « dx, where  the unit 
dimension is much smaller than the  gap width b. 

If the pressure  acting on the  left  face of this volume is 
denoted by j).»   the right  face will be  acted  upon by  a pressure 
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Pig. S1). Illustrat- 
ing the theory of 
laminar fluid flow 
with variable vis- 
cosity. 

The upper and lower faces will be 
acted upon by tangential stresses equal 
to 

and opposed to the motion. 

The tangential stresses on the front 
and rear faces are zero, because velocity 
does not vary In the direction normal to 
the xoy-plane and, consequently, there Is 
no velocity gradient. 

Hence the equilibrium equation of our 
selected volume will be written 

or 

I,-(/.-<»l**-2n^«/*=0 

dv 1   dp 
rfy |«   rfjC 

It must be remembered that both of the derivatives are nega- 
tive,  since negative increments dp and dv correspond to positive 
increments dx and dy. 

Integrating the equation within a flow cross section,  and 
hence considering dp/dx and w to be constants, we obtain 

Since V - 0 at y - a/2, we have 

C= — —-£ 
8jl rfJT 

and,  therefore. 

■     2i« dx y       4 / (6.17) 

We determine the flow rate per unit gap width by proceeding 
In much the same way as  in the preceding section.     Applying  Cb.lYJ, 

„^s—^p-tY KV    ix 
(6.18) 

This  expression differs  from (6.12)  in that dp/dx and u are 
in this case variables that depend on x.    Here,  If Q - const   (the 
fluid is absolutely incompressible), either variable Is propor- 
tional to the other. 
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Let us now write the energy equation, I.e., set the frlc- 
tlonal energy losses In the form of heat equal to the fluid's 
heat-energy Increase per unit of time: 

QocV-~fl)~k(pl-p)Q. (6.19) 

Here c is the heat capacity of the fluid in SI units, i.e.. In 
J/kg'deg; g_ is the pressure in N/m2; k is a coefficient that 
takes account of the fraction of the work of viscous forces that 
goes into heating the fluid. 

For k = 1, no heat is dissipated through the wall and all of 
"-he work of viscous forces goes to heat the fluid. At k = 0, we 
have intensive dissipation of heat through the wall, and the fluid 
temperature is not raised (isothermal flow). 

From the above, we have 

which yields, on substitution into (6.16), 

^'-'■'Kl (6.20) 

We use  the relation obtained between u and £ (6.20)  to inte- 
grate   (6.18). 

On separation  of variables,   we  have  Instead  of   (6.18) 

or 

After  integration. 

03 
a-1 • 

(6.21': 

We find the constant of integration from the conditions in 
the initial flow cross section, where p = p! at x = 0 and, con- 
sequently, 

1 

o ! ■   ■ 

In the final flow section at x = A, p " plzb = 0.  Thus we 

finally obtain 
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'., I/-K). ,1, (6.21) 

It must be remembered that the ui that appears here Is the 
viscosity In the initial flow cross section, i.e., that at p = pi 
and t = t0; It can be expressed in terms of \x0,   the viscosity at 
p = Pi b = 0 and t = t0) in accordance with (6.16): 

Pi-IV'" (6.22) 

In the particular case of isothermal flow, it is necessary to 
set k = 0 in (6.21).  With ccnslderation of the above, we then 
obtain 

'^''V (6.23) 

We find the relative flow rate Qg, which equals the ratio of 
the flow rate with variable viscosity to the flow rate at \i = po = 
=   const.     For this  purpose,   we  divide Eq.   (6.21)   by 

^ VÖ- N0T*EPR0DUC IBLE 
We shall have 

o. 
c.  .-;,(.-'■y J (6.24) 

Calculations were made by Formula (6.24) for a series Oi. 
pressure values p, from 0 to 300 kgf/cn2 (7840 N/cm2) with the 
following values of the constants: o = 1/430 cmVkgf (1/4210 
cm2/N), X = 1/36 deg"1, c = 0.5 kcal/kgf-deg (2.1 kJ/kg-deg), 
and Y = 850 kgf/m3 (3330 N/m3). 

The results are presented in Fig. 55 as curves of Q as a 
function of pi for two values of k: k = 1 (no heat exchange) and 
k = 0 (isothermal flow). 

As we see from the diagram, the curves corresponding to the 
two extreme conditions diverge quite widely.  Real processes 
would be reflected by curves running somewhere between these ex- 
treme curves. Since the fluid flow velocities in gaps are very 
high at such high pressure gradients and the stay time of each 
particle in the gap is very short, the flow regime in which k ■♦ 0, 
i.e., heat transfer is a minor factor, appears more probable. 

But it must be remembered that with increasing relative gap 
length i/a, Reynolds number, and Prandtl number, the latter equal 
to 
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(c Is heat capacity and X is the coefficient of thermal conduc- 
tivity ), the importance of heat transfer Increases and the flow 
process may approach isothermal. 

If Eq. (6.21') Is divided, with the value found for the con- 
stant C, by Eq. (6.21), we obtain a formula linking the relative 
coordinate x/i and the pressures_£ and p,. 

By assigning various values to p at constant pi, we can cal- 
culate the corresponding values of x/l and construct a diagram of 
the pressure along the gap for a series of constant pressure 
values p, at the beginning of the gap. 

The results of calculations of this kind are shown in Fig. 
56 in the form of curves of p/p, versus x/i for three constant 
P! and k = 1.' 

Ar-ff 

V 
V 
V 
w 

<!« 
«jl  

$ m i:: ;;J <M JM m p, «■/■/:«»a 

Fig.   55.   Influence  of 
variable viscosity  on 
flow rate. 
KEY:   (a)  kgf/cm2. 

a. 
p^Wr/c*' 
v. 

'*» P^STZxr/cf* 

«k "^s. s T=m*r/r' 

1 "^ ,s*^i 3Z 
r^ ^. 

ox tfi 0.1 

Fig.   56 Diagram of pressure 
along gap with consideration 
of variable  viscosity and 
density. 
KEY:   (a)   kgf/cm2. 

'See  page   114  for  footnote. 
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Footnote 

Manu- 
script 
page 

113 'Calculations  performed by  V.N.   Prokof'yev and  B.P. 
Borisov on the  basis  of their solution of the problem 
of laminar  flow in a gap with  consideration of vis- 
cosity  and density variation. 
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Manu- 
script 
page 

Symbol 

95 Tp tr 

97 cp sr 

98 ji 1 
100 Haw nach 

105 M m 

105 PT rt 

107 X zh 

107 CT St 

111 M36 izb 

Symbol List 

English equivalent 

friction 

average 

laminar 

initial 

oil 

mercury 

fluid 

wall 

excess 
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CHAPTER VII 

TURBULENT   FLOW 

§28.   TURBULENT  FLOW OF FLUID  IN SMOOTH PIPES 

We said In §21 that turbulent  flow Is characterized by 
mixing of  the  fluid and by  velocity  and pressure pulsations 
during the  flow process.     If we were  to use a highly sensitive 
automatic  recording instrument to measure and register the pulsa- 
tion of,   for example,  velocity as a  function of time, we would 
obtain a pattern similar to that  shown in Fig.   57-     The  velocity 
oscillates  chaotically about  a certain time-average value vosr, 

which in this  case remains constant. 

VSWVä^ 

"ccp 

ten a 

Pig.   57.  Velocity pul- 
sations  in turbulent 
flow. 
KEY:   (a)   seconds. 

Fig.   58.  Nature  of 
streamlines  in turbu- 
lent  flow. 

The  trajectories of particles passing through a given fixed 
point in space are represented for different points in time by 
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curved lines with different configurations, even though the pipe 
is straight. The nature of the streamlines in the pipe at a 
given point In time is also characterized by a great deal of 
variety (Pig. 58). Strictly speaking, therefore, turbulent flow 
ia a nonsteady flow, since the velocities and pressures vary in 
time along with the particle trajectories. However, such flows 
may be regarded as steady in calculations provided that the time- 
averaged values of the velocity and pressure and the total flow 
rate of the flow do not vary with time.  Such fluid flows are 
quite often encountered In practice. 

Pig. 59. Velocity pro- 
files in laminar and 
turbulent flows. 
KEY: (a) turbulent; 
(b) laminar. 

<2Uf(r 

Fig. 60. Diagram of 
coefficient a as func- 
tion of Re. 

Since turbulent flows are not layered and the fluid mixes, 
the Newtonian law of friction Is Inapplicable. Because of the 
agitation of the fluid and the continual lateral transfer of mo- 
mentum, the tangential.stress on the pipe wall Is substantially 
higher In turbulent than In laminar flow for Identical values of 
Re and the dynamic pressure, as calculated from the average flow 
velocity. 

The (time-averaged) velocity distribution in a cross section 
through a turbulent flow differs markedly from the characteristic 
distribution In laminar flow. 

If we compare the velocity distribution curves In the same 
pipe and at the same flow rate (the same average velocity), but 
for laminar and turbulent flows, the difference In these curves 
will be quite substantial (Pig. 59).  Under turbulent conditions, 
the velocity distribution Is more uniform, and the velocity rise 
toward the wall Is steeper than in laminar flow, for which, as we 
know, a parabolic velocity law is characteristic. 

Thus, the coefficient a, which takes account of the velocity 
distribution nonuniformity In the Bernoulli equation (see §18), 
is much smaller in turbulent than in laminar flow. In contrast 
to the laminar regime, where a does not depend on Re (see §25), 
the coefficient a. is a function of Re in this case, diminishing 
with increasing Reynolds number from 1.18 at Re » ReirP  t0 1»025 

10«, at Re ■ 3 As we see from the diagram of Pig. 60, the 
curve of a vs. Re makes an asymptotic approach to unity. 
'See page 136 for footnote. 

In 
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Pig. 61. Diagram of 
ht as function of 
tr 

v and Q. 
KEY:   (a) laminar; 
(b) turbulent. 

most cases, we can assume o - 1 for turbu- 
lent flows. 

The energy losses In turbulent fluid 
flow In constant-section pipes (I.e., the 
frlctlonal head losses) are also different 
from those In laminar flow. In turbulent 
flow, the frlctlonal head losses are sub- 
stantially larger than In laminar flows 
with the same dimensions, flow rates, and 
viscosities. 

This Increase In losses Is caused by 
eddying, mixing, and the curvature of the 
trajectories. While the frlctlonal head 
loss Increases In laminar flow In propor- 
tion to the first power of velocity (and 

of flow rate), transition to turbulent flow Is accompanied by a 
certain discontinuity of resistance and then by a steeper in- 
crease In h.„ along a curve closely approximating a second-de- 

gree parabola (Fig. 61). 

In view of the complexity of turbulent flow and the diffi- 
culty encountered In Its analytical Investigation, we do not yet 
have a sufficiently rigorous and exact theory of this ^ow- in- 
stead, there are the so-called semlemplrlcal, aPPr0Xf^e turbu- 
lence theories of Prandtl, Karman, and others, one of which will 
be examined In the next section. 

In most cases, purely experimental data that have been codi- 
fied on the basis of hylrodynamlc similarity theory are used for 
practical calculations Involving turbulent fluid flows in pipes. 

The basic working formula for turbulent flow In round pipes 
Is th* universal formula (4.20) derived above, which follows dl- 
mtly from similarity considerations and takes the form 

or 
A,P->-, 

where X  is the coefficient of frlctlonal loss In the turbulent 
regime. 

This fundamental formula Is applicable to both turbulent and 
laminar flows (see §24); the difference consists in the values of 
the coefficient X. 

Since the frlctlonal head loss in turbulent flow is approxi- 
mately proportional to the square of velocity (and the square of 
flow rate), the frictional-loss coefficient in Formula (4.20 may 
be regarded as constant in first approximation for a given pipe. 
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62. Diagram of X, 

Xt as functions of 

But It follows from the law of 
hydrodynaralc similarity (522) that, 
like X,, the coefficient X. must be 

a function of the fundamental simi- 
larity criterion, i.e., the Reynolde 
number, which incorporates velocity, 
diameter, and viscosity, i.e.. 

WOfcWf*-). 
There are a number of empirical 

and semiempirlcal formulas that ex- 
press this function for turbulent 
flow in smooth pipes; one of the most 
convenient and widely used is that of 
P.K. Konakov, which takes the form 

1.= 
1 

(1.81 IcRe—1.6)» (7.1) 

and is applicable  from Re 

The old Blaslus  formula 

Re.     to Re ranging into  the millions. 

X.= 0.316t 

'   Jz-RT (7.2) 

can also be used for Reynolds numbers In the range 2300 < Re < 10s 

We see from this that the coefficient X. decreases with in- 

creasing Re, but that this decrease is much less substantial than 
in laminar flow (Pig. 62). 

This difference in the curves of X results from the fact 
that the direct Influence of fluid viscosity on resistance is 
much weaker in turbulent than in laminar flow. While the fric- 
tlonal head loss in laminar flow is directly proportional to vis- 
cosity (see §24), these losses are proportional to the 1/4 power 
of viscosity in turbulent flow, as follows from Formulas (4.20) 
and (7.2).  As a matter of fact, mixing and momentum transfer are 
the basic factors in turbulent flow. 

The above formulas (7.1) and (.7.2)  for determination of the 
coefficient of frlctlonal loss Xt in terms of Re are valid for 

the so-called technically smooth pipes, i.e., for pipes whose 
roughness Is so slight that it has practically no influence on 
resistance.  Seamless pipes drawn from nonferrous metals (includ- 
ing aluminum alloys) and carefully made seamless steel pipes can 
be classified as technically smooth without incurring any major 
error. Thus, the pipes used as fuel lines and for hydraulic 
transmissions (hydraulic systems) on aircraft can, under normal 
conditions, be regarded as smooth, and calculations for them can 
be made by the above formulas.  Steel and cast-iron water pipes. 
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on tht other hand, cannot be regarded as smooth, since they usu- 
ally offer higher resistance, and Formulas (7.1) and (7.2) do not 
apply for them. 

ajftmiMpwMA (VMd 

Pig. 63. Laminar layer at wall 
of pipe In turbulent flow. 
KEY: (a) laminar layer. 

The resistance of rough-walled pipes is a problem that will 
be examined later (see §30). 

As follows from similarity theory, and as the experiments of 
a number of investigators (I.I. Nikuradze, O.a. Qurzhiyenko, 
Reichardt, and others) Indicate, turbulent flow of fluid in pipes 
is usually accompanied by a so-called laminar layer directly at 
the pipe wall (Pig. 63). This is a «ry thin layer of fluid in 
which the motion is slowest, stratified, and without mixing, i.e., 
laminar. 

In this laminar layer, velocity rises steeply from zero at 
the wall to a certain finite value v^^ at the layer boundary. The 

thickness 6, of the laminar layer is'extremely small, and we find 

that the Reynolds number Re, calculated from the dimension 61, the 

velocity v,, and the kinematic viscosity coefficient v, is a~con- 

stant, i.e., 
J^const. (7.3) 

This is a universal constant, like the critical Reynolds 
number Re for pipe flows. Thus, on an Increase in flow velocity 
and, consequently, in Re, the velocity v1 also Increases, while 

the thickness 6,  of the laminar layer decreases. The laminar 

layer practically vanishes at large Re. 

§29. FUNDAMENTALS OP SEMIEMPIRICAL THEORY OF TURBULENT PIPE PLOW 

It follows from the description of turbulent flow given in 
the preceding section that the true local velocity at a given 
point in time in a turbulent flow must be regarded as the sum of 
the time-averaged velocity and a certain positive or negative In- 
crement known as the pulsation velocity (see Fig. 57). As a 
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convention, we shall denote time-averaged quantities by the over- 
bar and pulsation velocities by the prime; we can then write for 
the component of local velocity along the pipe axis   (the x-axis; 

vt—vt+v't, 

where , 
•,-5—}- \vjH. 

t is the time segment over which the velocity is averaged. 

Since there is no averaged flow along the £- and z-axes in a 
straight pipe of constant section, vy • vz - 0 and vy " vyt v

z " 
■ v'.    Obviously, the averaged value of the pulsation velocities, 
obtained by the same method over an adequate length of time, will 
be zero. I.e., 

To find the relation between tangential stress in a turbulent 
flow and the pulsation velocities,  let us take an elementary area 
dS of the  flow that lies parallel to the pipe wall  (Pig.  6t). 
Owing to the presence of the pulsation velocity v^,  a mass  of 

liquid equal  to 

am ^Qv'yriSdl 

passes through area dS during time dt. 

Since at the same time this mass acquires an additional velo- 
city v1 along the stream, the corresponding momentum Increment 

will be 

v'titm ~ QVjVyrtStK, 

As a result of transport of this momentum through area dS 
from one layer into another, a tangential force TtdS whose im- 
pulse  over time  dt  is equal  to the  transferred momentum,  i.e., 

arises  along this  area. 

After cancelling,  this yields  the absolute  value of the local 
tangential stress due to turbulent mixing at a given time: 

The tangential stress averaged over time  interval x  is  found 
as  follows: 
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or 
t.-Ct'*»,,! (T.t) 

where v1^ Is the averaged value of the pulsation-velocity pro- 
duct. x y 

To convert from the pulsation velo- 
cities v^ and v' to the averaged velo- 

cities (v ■ v) and thereby render the 
above formula suitable for practical 
use, we reason as follows. Let a fluid 
particle be displaced transversely as a 
result of turbulent mixing from_layer A, 
where the averaged velocity is v, into 
layer B (see Pig. 64).* If the distance 
between layers A and B Is denoted by Ay, 
the averaged velocity of layer B will be 

hit I  *—9 —V 

Pig. 64. Illustrat- 
ing theory of turbu- 
lent mixing. 

-Ay 4v 

(we have omitted the subscript x to the average velocities). 

Carrying the velocity excess Ay^ with it into layer B,  the 
particle will cause a pulsation v', as well as a v^. 

We can assume that these pulsation velocities are propor- 
tional to the indicated velocity excess,  i.e., 

tv—Ai,-—  and   *v~A« 

(here ^ is the proportionality sign). 

Applying (7.4),  therefore, we can write 

-Ml) (7.5») 

or, incorporating the proportionality factor In a certain linear 
quantity i. 

■^)' 
(7.5) 

This expression is named after L.  Prandtl' and Is a law of 
turbulent flow that  is used In turbulent-flow theory in the same 
way as Newton's  law of friction Is used In laminar-flow theory. 

t-r* »"See page 136   for  footnotes. 
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The quantity t, which la known as the "mixing length," Is 
proportional to the time-averaged particle displacement In the 
transverse direction.    The mixing length may be regarded as a 
notion that Is to a certain degree analogous to the concept of 
molecular free path In the kinetic theory of gases  (It must be 
remembered that turbulent mixing Involves the displacement not of 
Individual molecules, but of fluid particles consisting of large 
numbers of molecules). 

Obviously, t takes different values at different points In 
the pipe cross section. At the wall of the pipe and within the 
laminar layer, where there are no transverse particle displace- 
ments,  t Is  zero. 

As we move away  from the wall  (more precisely,  from the 
boundary of the laminar layer),  the possibility of transverse 
particle displacements Increases,  turbulent mixing becomes more 
vigorous, and the mixing length I increases. 

L.  Prandtl proposed that I should be regarded as Increasing 
linearly with the distance y from the wall,  i.e., 

'-*(/. (7.6) 

where K Is a proportionality coefficient, which experiment indi- 
cates to be the same for all cases of turbulent flow (of the 
order of 0.1), and which is therefore known as the universal con- 
stant of turbulent flow. 

Then, in an analysis of flow along an infinite plane, Prandtl 
set the tangential stress in the turbulent flow constant and 
equal to the stress T0 at the wall. 

With these assumptions, we obtain from (7.15) [sic] 

/•? dv • - •-'  rtv, 

and, after Integrating, 

T/^1"" I-C (7.7') 

(here, and from'now on, we shall omit the average bar on the velo- 
cities) . 

According to the Prandtl theory, therefore, the law of velo- 
city distribution In turbulent flows is found to be logarithmic. 

Formula (7.71) can be brought by simple modification to the 
dlmenslonless form 

Ü^i.ln^.t.consl 
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Fig.  65. Universal law of 
velocity distribution in 
turbulent flow. 
KEY:   (a) laminar layer; 
(b) experimental points. 

or 
t->Ugn-|Ä, (7.7) 

where «•• = i/i2 is a quantity with the dimensions of velocity; 

v»-iL is dimensionless velocity; tit-^'-is the dimensionless dis- 

tance from the wall, which is expressed In the same way as the 
Reynolds number; A and B are constant coefficients whose numeri- 
cal values, on the basis of I.I. Nlkuradze's experiments,    are 
A - 5.75 and B • 5.5. 
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Pig. 66.  Universal law of 
velocity distribution In seral- 
logarlthmlc coordinates. 
KEY:   (a)  laminar layer;   (b) 
region of viscosity Influence; 
(c) turbulent region;   (d) ex- 
perimental points. 

In the  form of  (7.7),  the 
velocity distribution law is 
said to be universal, since ex- 
perimental points  obtained in 
various pipes at various Re lie 
on  the same 4 ■ «(n) curve  (Fig. 
65).    The diagram of ♦ as a func- 
tion of log n  (PlS-  66). where 

most of Nikuradze and Reichardt's 
experimental points'  lie along 
the straight line corresponding 
to Formula  (7.7),  Is even more 
indicative.     Deviation  from lin- 
earity is noted only for small n, 
i.e., near the laminar layer, 
where viscosity makes  Itself felt, 
and Inside it, where a totally 
different  law of friction, that 
of Newton,  applies. 

'»•See page 136 for footnotes. 
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On the basis of the above results of Prandtl theory,  let us 
derive the law of resistance  for turbulent  flow In round pipes, 
I.e.,  obtain a theoretical relation for the frlctlonal loss coef- 
ficient Xt as a function of Reynolds number. 

The following expression Is easily derived from (^1.22): 
v*r n   sir 

■^-?...-21/^. (7.8) 

and we shall henceforth make use of it. 

I.I.  Nikuradze   found experimentally  that 

 7—1 " W-T...    -1.03. (7.9') 

and we have found theoretically*  thnt while this quantity is a 
function of Re,  It  equals  for large Re 

——— *;• (7.9) 

Let us now apply   (7.7)  to points  on the pipe axis: 

or 

^•W../Ig™'-|-/; 
v, v   ' 

and then replace ♦ x by Its expression in terms of $ according 

to (7-9). We then apply (7.8) after replacing 41 by its expres- 

sion In terms of Xt, and multiply and divide by 2v the quantity 
nmax under the logarithm sign. 

We have 

'l/^-M;vt)+S 

or,  after rearranging and  taking the  constant   factor outside  the 
.'.ogarlthm sign,- 

^-A^sik']%)-■,-/., 
(7.10) 

where A' and B' are constants determined by the values of K. A, 
and B and Improved on the basis of Nikuradze's experiments: A « 2. 
B = -0.8. 

Formula (7.10) is not conveniently put to practical use, 
since it gives the unknown coefficient in implicit form.  In 
0See page 136 for footnote. 
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pptotlce, therefor«, the Xt formulM given In the preceding sec- 
tion »re preferred.    However, Pormul» (7.10) la of fundamental 
Interest as the first theoretically founded relation between Xt 

and Re. 
The Prandtl semlemplrlcal turbulent-flow theory set forth 

above does not take account of the laminar layer at the wall or 
the viscosity tangential stress i" th»*u^ui!nVW ,?"?••? ^ result, the velocity-distribution law (7.7) or (7.7') l« invana 
MS the wall (see Pig. 65) and does not satisfy the boundary 
condition at the wall!   At y  - 0, Formula (7.7) «i3*» v

1" * "fldB 
which makes no sense.   Moreover, the resistance law (7.10) yields 
a certain error for small Re. 

The Prandtl theory can be Improved by consideration of vis- 
cosity and the laminar layer.7 

To do so, let us apply Instead of (7.6) the following ex- 
pression for the mixing length: 

/^»(j,-^. (7.11) 

which provides for zero mixing length at y ■ 6^ I.e., at the 
laminar-layer boundary. 

Then the total tangential stress In the turbulent flow will 
be regarded as the sum of viscosity and turbulence stresses, with 
the former expressed In accordance with Newton's law and the lat- 
ter by the Prandtl law (7.5) with consideration of Expression 
(7.11).    We shall have 

Needless to say, this expression Is valid only in the turbu- 
lent-flow zone, I.e., outside the laminar layer. 

Converting to the already familiar dimenslonless quantities 
and considering t - t,    - const as before, we obtain 

HOl 

where a~-l±v-'- is the dimenslonless thickness of the  laminar layer 
or the universal constant introduced by T. Karman.    Solution of 
the quadratic equation (7.12)  for d*/dn,  followed by integration, 
gives 

^i-mli^n-cn-i.^c-c)! _.TJ^^n+f!. (7^3) 

'See page 136   for footnote. 
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The constant of Integration la found from the conditions at 
the boundary of the laminar layer, where  for n ■ a 

Assuming a linear velocity distribution Inside the laminar 
layer and applying Newton's law and the expression for a, wo ob- 
tain 

Hence ♦ ■ n  for the  laminar layer,  and ^ ■ o for Its boundary. 
Consequently,  the Integration constant In  (7.13) equals C ■ o. 

For large n, I.e., at a sufficient distance from the wall 
and large enough Re,   Formula   (7.13)  reduces to the Prandtl velo- 
city distribution law   (7.7), where 

A~*-™;   Ä«?.*«,n1^.L o. 

With the  approach  to the wall  and at  small Re,  the quantity 
n  approaches  closer and closer to o,  so that the velocity effect 
Increases  and Formula   (7.13)  diverges increasingly from the Prandtl 
law. 

By solving   (7.12)  approximately, we  can obtain a simplified 
form of the  law of velocity distribution In turbulent   flow with 
consideration  of the  laminar layer  and viscosity: 

?-Vl"Nn~aH-ll.|a (7.14) 

Like (7.13), Eq. (7.11() satisfies the boundary condition for 
1 - a and agrees well with Reichardt's results of experimental 
velocity measurement near the wall (see Fig. 66). However, this 
equation is much simpler and more convenient to use than the re- 
sult of exact solution (7.13). 

Let us apply Eq. (7.13) to the center of the pipe section 
and use (7.8) and (7.9) in the same way as in deriving (7.10). 
Here, we disregard the units under the radicals and in the de- 
nominator of the second term in (7.13), so that this term reverts 
to 1/K. 

Simple modifications yield an improved resistance law in the 
form 

where 
7^'=2T^'-'[lvcl^-'.l'5«I + C. (7.15) 
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At large Re, Formula (7.15) becomee the pr*nd" '"i»^«? 
la« (7.10), but for email Re It glvee values of J that are eome- 
what on thi high side owing to the direct viecosity effect. 

Thu., the constant coefficients in (7.13) and (7-15)  (velo- 
city-distribution and resistance laws) are expressed in *•«■ or 
Jhe two universal constants « and a, d«^«"»1«»"0«» ^/«iStf^ velocity-distribution and resistance experiments yi«"8 P"?"c- 
ally idintical results, namely: from the velocity distribution 
K - 0.101 and o • 6.82, and from resistance * - O.«»07 and o - 
- 6.93. 

Thus, consideration of viscosity and the laminar layer In 
the Prandtl theory has made it possible to obtain i»P'^ed laws 
of velocity distribution and resistance, has made the velocity- 
distribution law satisfy the boundary condition near the wall, 
and has enabled us to express all constant coefficients in terms 
of the two universal constants ic and a. 

530.   TURBULENT PLOW IN ROUQH-WALLED PIPES 

While the frlctlonal-loss coefficient is fully determined by 
Re for smooth pipes, the \t of rough pipes also depends on the 
roughness of the pipe's Internal surface.    What is important here 

'»,»    3J0    3,1     3.S     V     ♦.*    4"     J.*    lSU 

Fig.   6?.  Dependence of log  (1000X) 
on log Re  for artificially roughened 
pipes according to I.I. Nlkuradze's 
experiments. 

is not  the absolute dimension k of the roughness peaks, but the 
ratio of this dimension to pipe radius. I.e., the so-called 
roughness ratio k/r0.    A given absolute roughness may have no 
effect at all on resistance In a large-diameter pipe, but be 
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capable of Increasing It substantially In a small-diameter pipe. 
Further, resistance is influenced by the nature of the roughness: 
distance between peaks, height nonuniformity, etc.     The simplest 
case would be that in which all roughness peaks had the same di- 
mension k and the same shape, i.e., the case of so-called uni- 
formly dFstributed granular roughness. 

In the case of uniformly distributed granular roughness, 
therefore,  the coefficient X    will depend on both Re and the 
ratio k/r,,  i.e., 

W(*-: -*-)• 

The manner in which thene two parameters Influence pipe re- 
sistance is distinctly evident from a diagram representing the 
experimental results of I.I. Nikuradze (Fig. 67), who tested a 
series of pipes with artificially created roughness for resis- 
tance. Uniformly distributed roughness was obtained by gluing 
grains  of sand of uniform size  to the inside walls  of the pipes. 

The pipes were tested in a broad rang.* of relative rough- 
nesses  (k/r0  ■ 1/500 to 1/15) and Reynolds numbers   (Re ■ 500- 
10*).    The  test results are plotted on a logarithmic  diagram in 
the  form of curves  of log  (1000X)  as a function of log Re  for 
a series of k/r0. 

The inclined straight  lines A and B correspond to the resis- 
tance  laws   of smooth pipes,  i.e.,   to Formulas   (6.7)   and  (7.2). 
On multiplying by  1000 and taking  logarithms, we obtain the equa- 
tions  of the  lines  in log  (1000X)   ■  f(log Re)  coordinates: 

lg(IOOC».> IgClOOO- IgUc 
and , 

IB(IOOO).,)- IRSIC.-I --'-ifjRc. 

The  curves  for pipes with various roughneas ratios are 
dashed. 

The following basic conclusions can be drawn from analysis 
of the diagram: 

1. In  laminar flow,  roughness does not Influence resistance; 
the dashed curves corresponding to various roughnesses practic- 
ally  coincide with  line A. 

2. The   critical Re is practically  Independent  of roughness. 
The dashed  curves deviate  from  line A at about  the  same Re. 

3. In the turbulent-flow ~ange, but at moderate Re and k/rj, 
roughness does not  influence rtsistance;  the dashed  lines  coin- 
cide with  line B on certain segments.     As Re Increases, however, 
this  Influence begins to make Itself felt, and the  curves  for 
rough pipes  begin to deviate  from the  line corresponding to the 
resistance   law for smooth pipes. 
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k.  At large Re and large relative roughnesses, the coeffi- 
cient X^  ceases  to depend on Re and becomes  constant  for a given 
roughness ratio.    This  corresponds  to the segments  of the dashed 
curves  on which, after rising slightly,  they  run parallel to the 
axis of abscissas. 

Thus, we  can discern the  following three ranges of Re and 
Ic/r,, which differ from one another in the way in which the coef- 
ficient X^. varies,  for each of the  curves corresponding to rough 

pipes in turbulent flow. 

The  first range,  the range of small Re and k/r,,  in which 
the coefficient X.   is Independent  of roughness  and is  determined 
only by Re,  as  in the ca^e  of smooth pipes.    This  region does not 
appear for the largest roughness values In I.I.  Nikuradze's ex- 
periments. 

A second region, where  the  coefficient \t depends  on two 
parameters simultaneously:  Re and surface roughness. 

A third region of large Re and k/ro in which the  coefficient 
X    does not depend on Re and is determined only by roughness 
ratio.    This region is known as the self-similarity region or the 
square-law resistance zone, since a Xt that is  Independent of Re 
signifies that the head loss is exactly proportional to the square 
of velocity  [see Formula  (4.20)]. 

For better understanding of these resistance properties of 
rough pipes, it is necessary to take account of the presence of 
the laminar layer (see §28). 

As we noted above, the thickness «j^ of the laminar layer de- 
creases with increasing Re.     For this reason, when we have a tur- 
bulent  flow in a rough pipe,  the  laminar-layer thickness at small 
Re is  greater than the roughness-peak height,  the peaks are in- 
side the laminar layer and are washed smoothly   (without separa- 
tion),  and hence do not affect resistance.    With increasing Re, 
the thickness  6    decreases, and the roughness heights begin to 
project outside'the layer and Influence resistance.    At large Re, 
the laminar-layer thickness becomes vanishlngly small,  and the 
roughness peaks are washed by the  turbulent flow with separation 
and eddying at each peak; this explains the square-law resistance 
curve that applies in this region. 

I.I. Nikuradze's diagram can be used to construct an approxi- 
mate Reynolds-number curve of the so-called acceptable roughness, 
i.e..  of the maximum value of k/r,  at which the roughness of the 
pipe still does not influence  its  resistance.     For this purpose, 
it is necessary to select the points on the diagram (see Fig-  67) 
at which the rough-pipe curves begin to deviate  from line B for 
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smooth pipes.  Obviously, the acceptable roughness figure becomes 
smaller with increasing Re. 

I.I. Nikuradze ran his experiments on pipes lined with an 
artificial, uniformly distributed granular roughness. For natu- 
ral rough pipes, the variation of X with Re is found to be some- 

what different, without the rise in the curves after their devia- 
tion from the smooth-pipe law. Figure 68 presents the results of 
very careful experiments conducted by G.A. Murin at the All-Unlon 
Institute of Technology. 

the coefficient X. for natural rough pipes On this diagram 

is given as a function of Re for various values of d/k .  . where k e' e 
is  an absolute  roughness  equivalent  to  the granular roughness  in 
Nikuradze's   experiments.     G.A.  Murin recommends  k    =   0.06   for new e 
steel pipes   and k     = 0.2 mm  for used pipes. 

The  difference  in the  character  of the Nikuradze  and Murin 
curves  is  explained by the  fact  that  the roughness  peaks  in  a 
natural pipe  have  varying heights  and,  as Re is  increased,   begin 
to project outside  the laminar layer not simultaneously, but   at 
different  Re.     As   a result,   the  transition from the  curve   corre- 

TABLE  2 

a   Mirepnax ipy6u 

c   CTCK.10 

U Tmiytuc TpyCu M JUtymi, CBIIIIIU, UCA« 

e  BecuiOBiiuc cra-imue Tpy6u TuuxejibHoro iisroTOMeini« 

f CTa.ibiiMc ipyfiu 
r; Myryimue ac4iajibTii|>oiauHUC ipyfiu 

Hyrymiue tpyfiu 

uW5 *' 
D   MM 

0,0 
0.0 

0,6-2,0 
3—10 

' 10-25 
2S-S0 

';EY: (a) pipe material; (b) ID3 k', mm; (c) 
glass; (d) brass, lead, or copper seamless 
pipes; (e) carefully made seamless steel 
pipes; (f) steel pipes; (g) asphalted cast- 
iron pipes; (h) cast-iron pipes. 

spending to the resistance of smooth pipes to the horizontal lines 
corresponding to the square law takes place more smoothly for 
natural pipes, without the trough in the typical curves of the 
Nikuradze diagram.  The boundary of the square-law resistance 
range is Indicated on the diagram (see Fig, 68) by the dashed 
line; this boundary is determined by the limiting Reynolds number, 
which is larger the smaller k /d. 
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Fig. 68. Diagram of Xt as a function 

of Re for naturally rough pipes accord- 
ing to O.A. Murln's experiments. 
KEY: (a) rough pipes; (b) smooth pipes; 
(c) Reynolds number Re. 

For practical calculations to determine the resistance of 
real rough pipes, we might also recommend the following new uni- 
versal formula of A.D. Al'tshul1 [5]: 

vt 7r=1.8l2- 
Re 

Re - + 7 
Ü 

(7.16) 

where d is the pipe diameter and k' is a dimension proportional 
to the-ab80lute roughness. 

The limiting values of k« for various pipes are listed in 
Table 2. 

For values of Re- smaller than 7, Formula (7.16) becomes the 

Konakov formula (7.1)'given earlier for smooth pipes, while at 

large Re- . " becomes the formula for fully roughened pipes, 

i.e., for the square-law resistance mode (self-similarity): 
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^•-LSIßf. (7.17) 

Thus, by  comparing the numerical value  of the product Re— 
with 7,  we can establish the boundaries of the above regions 
(regimes)  of turbulent  flow in rough pipes. 

§31.   TURBULENT PLOW IN NONCIRCULAR PIPES 

We have now considered turbulent flow In pipes of round 
cross section.     However, It  is sometimes necessary to deal with 
turbulent  flow in nonround pipes,   such as are used,  for example, 
in cooling devices. 

Let us consider calculation of frictional losses  for turbu- 
lent flow in a pipe with a  cross  section of arbitrary  shape. 

The resultant frictional force acting on the  outer surface 
of a stream of length i can be expressed as  follows: 

where II  is the section perimeter;   T0 is the tangential stress at 
the wall, which depends basically  on dynamic pressure,  i.e., on 
the average  flow velocity and density of the  fluid  (see  §17 and 
25). 

At  a given cross-sectional area and a given fluid  flow rate 
(and hence at  a given average velocity),  therefore,  the  friction 
is proportional to section perimeter.    Thus,  to reduce  friction 
and the energy  lost on friction,  it is necessary  to make the sec- 
tion perimeter smaller.    The  smallest perimeter for a given area 
Is  the  circular section, which is  therefore optimal from the 
standpoint of minimizing energy   (head)  losses due  to friction in 
the pipe. 

The  so-called hydraulic  radius  R  ,  which is   equal to the 
ratio of the pipe's sectional area to its perimeter,  is  introduced 
into the  calculation for quantitative evaluation of the  effect of 
sectional shape on head loss:' 

/?, = -*-. (7.18) 

The hydraulic radius can be figured for any cross section. 
For example, we have for a circular section 

(7.19) 

R, And T' 

from which 

"page 136 for footnote 

d^-AR, i» 

'See 
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for a rectangular cross section with sides ax b 

and for a square with side a 

For a gap of dimension a, we obtain from the above  (regard- 
ing a as very small by comparison with b): 

Substituting the hydraulic radius  (7.19)  for the geometrical 
diameter d in the basic formula for frlctlonal head loss  (4.20;, 
we obtain" 

*"=*'££• (7-20) 

Since this formula is a more general expression of the loss 
law (4.18), It should be valid not only for round, but also for 
nonround pipes. 

Experiment has confirmed the validity of (7.20) for pipes 
with any cross-section formula. The coefficient X is calculated 
from the same formulas (7.1) or (7.2), but the Reynolds number is 
expressed In terms of R , I.e., 

Rc^<*rt>t, (7.21) 
V 

Example. Determine the frlctlonal pressure loss in the cy- 
lindrical part of the combustion-chamber cooling Jacket of the 
"RÄochter" liquid rocket engine [LRE] (*PÄ) ^5- The Jacket 
takes the form of an annular gap with 6 -  2 mm and length * - 500 
mm: the inner circle diameter is D - 155 mm. The coolant (nitric 
acid) flow rate Is Q - 10 kgf/s, and the specific weight Yk • 

- 1510 kgf/m'. 

Assume that the acid temperature Is constant In this zone 
and averages t  - 80oC (v - 0.25 cSt). 

Solution.  1) The flow velocity In the gap 

„__£_„ !5 -e.rn/s. 
ViD»        I510n0,1550.002 

2) The hydraulic radius of the Jacket Is 

D ,_ _ii '. ■- c — a\ nan. 
'   4n(D + 2MÜ)  2 
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3) The Reynolds number 

v 0,0025 

4) The pressure loss due to friction 

I       *» 1 800    6.6»   ...„ ,„   . ■   _) ——, — \*s I5101O < = 
'"    ''«,    *s (1.8 Ig Re-t.S)' 1-1   2-P.8 

- 0.8 legf/cm2 - 78  500 N/m2. 

The pressure losses In the conical segments of the cooling 
passage are much larger, but their calculation is more complex, 
since it  is necessary  to carry out an integration. 
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Footnotes 

Manu- 
script 
page 

117 'See  the  author's paper  "0  sootnoshenll  skorostei  1 
koeffltslyente   Koriolisa   pri turbulentnom techenll v 
trubakh"   (Velocity and Corlolls coefficient  relation- 
ships in turbulent pipe  flows)   (Trudy WIA im.  N.Ye. 
Zhukovskogo [Transactions of the N.Ye..    Zhukovskiy 
Air Force Engineering Academy],  1911, No.   104), where 
the Re  curve of a was  obtained theoretically. 

122 2It will be understood  that  we  can speak only  conven- 
tionally  of layers in turbulent flow. 

122 'Ludwig Prandtl  (1875-1953)  was a noted German scien- 
tist in the fields of aerohydromechanics, meteorology, 
and elasticity theory and a professor at ßöttingen Uni- 
versity. 

121 ''I.I.  Nikuradze was a colleague of Prof.  L.   Prandtl and, 
at Göttingen,  carried out a series of meticulous experi- 
mental studies of fluid flow in pipes the results of 
which have won wide recognition  (see also  §30). 

124 SZAMM,  Vol.   20, No.   6,   1940. 

125 sSee  footnote to page   117. 

126 7The  author's results  are  cited below. 

133 'The notion of the hydraulic  diameter, which equals 
D    «  4R  ,  is also in use. g g' 
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Symbol List 

Manu- 
script Symbc )1 English equivalent 
page 

116 ocp osr averaged 

117 KP kr critical 

118 Tp tr friction 

118 T t turbulent 

119 JI 1 laminar 

125 cp sr average 

131 3 e equivalent 

133 r e hydraulic 

13^ K k acid 

-137- 



CHAPTER  VIII 

LOCAL HYDRAULIC RESISTANCES 

§32. LOCAL RESISTANCES IN GENERAL. ABRUPT EXPANSION OF THE 
CHANNEL 

It was stated above (§19) that hydraulic energy losses are 
classified Into two categories: local losses and losses to fric- 
tion. We have already considered frictional losses in straight 
constant-section pipes for laminar (Chj.pter VI) and turbulent 
(Chapter VII) flow regimes.  Let us nov; examine the losses gov- 
erned by the so-called local hydraulic resistances, i.e., those 
elements of the pipelines in which flow velocity changes and 
eddies usually form as a result of changes in the dimensions or 
configuration of the channel. 

In §19, we cited examples of certain local resistances and 
gave a general method for expressing them based on experimental 
data (4.19), namely: 

The problem is now to find a way to determine the cm coef- 

ficients for various types of local resistances. 

Elementary local hydraulic resistances can be classified 
into the following groups and subgroups: 

1) expansion of the channel - abrupt, smooth; 
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2) constriction of the channel - abrupt, smooth; 

3) turning of the channel - abrupt, smooth. 

More complex cases of local resistance are combinations of 
the elementary forms listed above.  Thus, the fluid flows through 
a gate valve (see Fig. 30d), the stream curves, changes direction, 
narrows, and, finally, expands to its original size; this is ac- 
companied by Intensive eddying. 

Let us examine the elementary local resistances for turbulent 
flow in the order In which they are listed above.  It should be 
noted that the coefficients t are determined almost exclusively m 
in turbulent  flows  by the shape of the  local resistances and 
change very little with changes in channel dimensions,  stream 
velocity,  or fluid viscosity,  I.e., with  changes in Re.    They are 
therefore  usually assumed to be  independent  of Re,  which  signifies 
a square-law resistance curve  or self-similarity.     We shall touch 
upon local resistances in laminar  flow at  the end of the chapter. 

Values  of the  local-resistance  coef- 
ficients  C are usually obtained by experi- 
ment and then used in experimental formulas 
or graphs. 

However,  the head loss can be  found ac- 
curately enough by  a purely theoretical 
route for the  case  of abrupt expansion of 
the channel In turbulent flow. 

Figure  69  shows  a sudden  channel 
Pig.  69.  Abrupt ex-       (pipe) expansion and the flow pattern that 
panslon of channel.       corresponds  to it. 

The  flow does  not detach at  the  corner 
and expand abruptly,   like the channel,  but does  so gradually, with 
formation of eddies  in the annular space between the stream and 
the pipe wall;   it   is   these eddies   that   cause  the  loss  of energy 
in this case. 

Observations have shown that  there  is a continuous exchange 
of fluid particles between the main stream and the rotational 
zone of the  flow. 

Let us  take  two  sections  through  the   flow:   1-1 in the  plane 
of the  pipe expansion and 2-2 where  the   stream,  after expanding, 
has  filled the entire section of the wider pipe.    Since the  stream 
expands between these  sections,  its   velocity decreases,  while  the 
pressure rises.    As  a result,  the  second piezometer Indicates  a 
height  AH greater than the   first;   however,   if there were  no head 
losses at  this point,  the second piezometer would indicate  a 
still greater height.     The  "missing"  height h is  the  local head 
loss due to expansion. 
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Let us denote the pressure, velocity, and sectional area of 
the stream In section 1-1 by pj , Vj, and Sj, respectively, and 
those In section 2-2 by P2, V2, and S2.  We write the Bernoulli 
equation for these sections on the assumption that the distribu- 
tion of velocity over the sections is uniform, i.e., setting a, ■ 

We obtain 

*-+£-^+£+'w is     y    ig 

We then apply the momentum-change theorem of mechanics to 
the cylindrical volume enclosed between sections 1-1 and 2-2. 
For this, we determine the impulse of the external forces acting 
on this volume In the direction of motion, assuming zero tangen- 
tial stresses on the side of the cylinder.  Remembering that the 
left and right bases of the cylinder have the same area S2 and 
assuming that the pressure p1 in section 1-1 acts on the entire 
area S2, we obtain the per-second force Impulse In the form 

(/>!- -Pi)Si. 

The   change  in momentum corresponding to this  Impulse  is 
found as  the difference between the per-second momenta:  that 
transferred out of the volume under consideration and that trans- 
ferred into it; with a uniform velocity distribution over the 
sectiors,  this difference equals 

Co(t',-t'i). 

Equating the two. 

We divide the equation by S2Y» remembering that Q " S2v2, 
and rearrange the right member: 

/»i — Pi     "J 
v g 2X^2«        2s   T2g     2s 

Grouping terms, we obtain 

£1 j. "' _ ',-, J Ü1 1 ("i-riV 
y"x'2C" v    2« '      ig    ' 

Comparing the resulting equation with the Bernoulli equation 
that we wrote earlier, we see that they are quite analogousj from 
this we  can conclude that 

i.e.,  that the head  (specific energy)  loss on an abrupt channel 
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expansion Is equal to the velocity head calculated from the velo- 
city difference.    This statement Is often referred to as  the 
Borda-Carnot  theorem after two French scientists - one a hydrau- 
llclst and the other a mathematician. 

If we take Into consideration that, according to the  flow 
rate equation, 

PiS|**i'i5], 

the result obtained can be written in still another form corre- 
sponding to the general method of expressing local losses: 

"'"-"'V't/ii    %'' (8.1') 
i 

Consequently, the resistance coefficient for the case of a 
sudden channel expansion equals 

■c-tr (8.1") 

As we should expect with the assumptions adopted, the theo- 
rem that has been proven agrees well with experiment for turbu- 
lent flow and is used extensively in calculations. 

In the particular case in which the area Sj is very large 
by comparison with S, and, consequently, velocity v2 can be set 
equal to zero, the expansion loss equals 

*, 
•I 

H«" 
h 

Jf * 

i.e., the entire velocity head and all of the kinetic energy of 
the fluid is lost; In this case, the resistance coefficient C ■ 1. 
One such case is that of fluid running through a pipe into a suf- 
ficiently large reservoir. 

It must be stressed that this head (energy) loss on an 
abrupt channel expansion can be thought of as going entirely into 
formation of the eddies associated with flow separation from the 
walls, i.e., into maintenance of the continuous rotational motion 
of the fluid masses and their continuous replenishment (exchange). 
For this reason, energy losses of this type, which are propor- 
tional to the square of velocity (flow rate), are known as eddy- 
ing losses. ' 

They are also often called impact losses, since we have here 
a rather sharp velocity decrease, a kind of impact of rapidly 
moving fluid on fluid that is moving slowly or not at all. 

§33. DIFFUSERS 

A progressively expanding pipe  is  called a diffuser.     Fluid 
flow In a diffuser Is accompanied by  a decrease  in velocity and 
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.„ lncrea8e In pre33ure.    Particles of ™ "f "g "£* 1111''™ 
^t sritite? sri^Lfaroe„sesrrifrL:r^ i ^/i sic» 

^ÄnfQ    eddies  form,  the the  flow separates from the wall  IFig. 
?of    The  InteS of these effects Increases with increasing 
Ix^nsISn angle o/the diffuser,  f ^^^Tl^er IT 
diffuser Increase concurrently.    In addition, ^°£?iu^ge that subject to the usual frlctlonal losses, which resemble those that 
arise  In constant-section pipes. 

S,v, 

Fig. 70. Eddying In a 
diffuser. 

Pig. 71. Diagram of 
diffuser used In 
calculations. 

The total head loss hdlf in a diffuser will be regarded con- 

ventlonally here as the sum of two terms: 

-'...-I-* jr-rui (8.2) 

Is the head where ht Is the head loss due to friction and hragsh 
loss due to expansion (formation of eddies). 

The frlctlonal head loss can be calculated approximately as 
follows Take a circular-section diffuser with a straight gene- 
Ja£?x ^nd tn angle « at Its vertex. Let the radius of the dif- 

exjresf the elementary frlctlonal head loss for It by the basic 
formula CMS): 

where v Is the average velocity In an arbitrarily chosen section 

of radtus r. 

It follows from the elementary triangle that 

«fi- 
rf/=- n 

»In — 
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We can then write on the basis of the flow rate equation 

-(?)'• 
where v, is the velocity at the beginning of the diffuser. 

Let us substitute these expressions into the formula for 
dh.  and integrate from rj to r2, i.e., over the entire length 
of the diffuser, on the assumption that the coefficient Xt is 
constant: 

2r»ln-|- 

frora which 

or, finally. 

2     J        2 

*" 8sIn- i1-*1 (8-3) 
-ii. 

c 

2 

where n'=-f'E'\^']   is the so-called expansion ratio of the dif- 

fuser. 

The second term, the expansion (eddying) head loss,, is of 
the same nature in a diffuser as in an abrupt expansion, but is 
smaller and is therefore usually expressed by the same formula 
(8.1) or (8.1'), but with a correction factor k that is smaller 
than anity, I.e., 

Since the impact is "softer" in a diffuser than in an abrupt 
expansion, the coefficient k is often referred to as the impact 
softening coefficient.  The-numerlcal value of this coefficient ^ lu/J.   U^ii J.11Q       VWCi.J.^.^'J.dll^* J. lit       1* U111C7X   -L UdX V 0,0. L1C       UJ. O i 1 J. O        VWCi.J.J.^J.CiiL' 

for dlffusers with taper angles a  of the order of 5-20° can be 
determined by the following experimental formula of I.Ye. Idel1' 
chik: 

^t^/t^ (8t5) 

or from the approximate Fligner formula 

«f sina. 
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Using Formulas (8.3) and (8.4), we 
expression (8.2) In the form 

can rewrite the original 

"«u* - ■r-vc-.,.-)-|,(1-v)'lCL-t-s- 
and the diffuser's resistance coe 
as follows: 

(8.7) 

fficlent can finally'be expressed 

^■--M,~a,-*o-^ (8-8) 
6 sin 

A' 
$ 
:\ \ ?. 

z: 7 

Fig.   72.   Diagram of c        as a function 

of angle a. 

FlE    73.  Diffuser with      Fig.   7^.   Stepped 
co^tlni pressure diffuser, 
gradient. 

Fr,„ this .e .ee that  the  .cftlcl.nt ^lf ^pehd= oh th. 
„gl, a,  the eoefflhleht  ^.  and the expaneloh ratio a. 

It 15 sonant to as^talh the .ahheh ^ ^ Hu^ 

\ft °l*lW fSV^tfZ&l'*'. S-ea..e ^r 6lve„ .ah 
'       Z dlftueer 1= made ahorter aad the seeond te«. which 

"ri ^„S'hfe'dSrihgihd no. detaoh-eht,  Ihoreae.a. 

0„ the other ha„d. ^\™r*X™\T^T£™' 
"^Z^IT^T^H ^Itr^efioh Sur?ao, iahser. 

The  fuhotloh ;dlf -  rU> h.e a .Ihl.» at a oertalh optl.» 

angle a   (Fig.   72). 
„o« v,o  found In approximation from 

The  value of this angle  can be found        J differ_ 
Formula  (8.8)  after replacing-sin ^ by -^n«.  -  <* ^ 
entlate Expression  C8.8) with re.pect    o a with 
(8.6),  equate  to zero    and solve  lor a. 
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.       4 
'jpg „_ -^(■-i)S;+»»(,-ir-»" 

whence 

^-«••"/gr?- 
When a frlctlonal-loss coefficient of the order of Xt • 

- 0.015-0.025 and area ratios In the range n - 2-t are substituted 
Into this  formula, we obtain an average of about 6°  for the opti- 
mum diffuser angle;  this agrees with experimental data. 

In practice, somewhat larger angles a (a ■ 7-9°) are usually 
used to shorten the diffuser at a given n. The same o values can 
also be recommended for square dlffusersT 

For rectangular dlffusers with expansion In one plane   (flat 
diffusere),  the optimum angle  is  larger than for the round and 
square dlffusers,  amounting to 10-12°. 

If near-optimum angles a cannot be used because of bulk con- 
siderations, it Is advisable to abandon the straight-generatrix 
diffuser with a >  15-25° and go over to one of the special dlf- 
fusers,  e.g., a diffuser that provides  for a constant pressure 
gradient along the axis  (dp/dx ■ const).1    The approximate out- 
lines of such a diffuser are shown in Fig.  73. 

The  decrease in energy  loss in these dlffusers by compari- 
son with the straight-generatrix types is larger the larger the 
angle a,  and ranges up to  ^Q% at a of the order of 40-60°.     In 
addition,   the flow in a curvilinear diffuser is more stable. 

Good results are also obtained with the stepped diffuser, 
which consists of an ordinary diffuser with the optimum angle in 
series with an abrupt expansion  (Fig.  74).    The latter does not 
give rise to large energy losses,  since the velocities are  com- 
paratively low at its position.    The total resistance of such a 
diffuser is  considerably smaller than that of an ordinary diffuser 
of the same length and expansion ratio.    More detailed informa- 
tion on special dlffusers will be  found in [12]. 

§34.   CONSTRICTION OF CHANNEL 

An abrupt constriction of the channel  (pipe)   (Fig.   75)  usu- 
ally causes a smaller energy  loss than an abrupt expansion with 
the same  area ratio.    In this  case,  the  loss  is due,   firstly, to 
friction at the entrance into the narrow pipe and,  secondly,  to 
eddying losses.    The latter occur because the stream does not 
wash the  entrance  corner, but  detaches  from it and tapers;  the 
annular space around the constricted section of the  flow is  filled 
with sluggish eddying fluid. 

'See page  157  for footnote. 
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Subsequent expansion of the stream Is accompanied by a head 
loss that can be determined by the theorem for abrupt pipe ex- 
pansion.  Consequently, the total head loss equals 

'■..-<?§■ ^-t-'i-i '8-') 
where  c0  Is the resistance coefficient governed by the  friction 
of the stream as it enters the narrow pipe and v    Is the velo- 
city at the constriction. x 

The resistance coefficient of an 
abrupt constriction depends on the  con- 
striction ratio,  i.e., on n - Sj/S2,  and 

-can be determined from the following 
semierapirlcal formula, which was proposed 
by I.Ye.  Idel'chik: 

'-■-H'-fhH'-i)-     <»•") 
It follows from this formula that in the particular case In 

which we may set S2/S, - 0, i.e., when the pipe empties Into a 
large enough reservoir and the entrance corner is not rounded, 
the resistance coefficient is 

The head loss at entry into the pipe can be lowered sub- 
stantially by rounding the entry corner (entry edge). 

Pig. 75. Abrupt con- 
striction of pipe. 

Pig. 76. Confuser. Fig. 77. Nozzle. 

A gradual constriction of a pipe, i.e., a converging conical 
pipe, is called a confuser (Pig. 76).  The fluid flow In a con- 
fuser Is accompanied by a velocity Increase and a pressure de- 
crease; the fluid moves from higher to lower pressure, so that 
there is no cause for the formation of eddies or flow detachment 
(as was the case in the diffuser).  The confuser has only fric- 
tion losses. Accordingly, the resistance of a confuser Is al- 
ways smaller than that of the Identical diffuser. 

The pressure loss to friction in a confuser can be calcu- 
lated in the same way as for the diffuser, i.e., the loss is 
first written for an elementary segment, and this Is followed by 
integration. This yields the formula 
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^".^"^^I (8-n) 

where n Is the constriction ratio. 

Minor eddying and flow separation from the wall with simul- 
taneous constriction of the stream occur only at the exit from 
the confuser, at the point at which the conical pipe Joins the 
cylindrical pipe. To eliminate this vorticity and the associated 
losses, it is recommended that the conical segment be coordinated 
smoothly with the cylinder or that it be replaced by a curvilinear 
segment that merges smoothly into the cylinder (Fig. 77). This 
solution yields a very large constriction ratio on a short axial 
length and very modest losses. 

The resistance coefficient of a smooth constriction of this 
type, which is known as a nozzle, varies in the approximate range 
C - 0.03-0.10, depending on constriction ratio, smoothness, and 
Re (small values of c correspond to larger Re and vice versa). 

§35- TURNS IN THE CHANNEL 

An abrupt turn in the channel (pipe) or unrounded elbow 
(Fig. 78) usually produces considerable energy losses, since 
flow separation and eddying take place in it; these losses are 
larger the larger the angle 6. The resistance coefficient c^^ 

of a circular-section elbow increases very steeply with increas- 
ing <S (Fig. 79) and reaches 1.0 at 6 - 90°. 

In view of the large head losses of un- 
rounded elbows, it is not recommended that 
they be used in pipelines. 

^ 

A smooth turn in the pipe, or rounded 
»   , ■^-  elbow (Fig. 80), Is also known as a bend.  The 
_isrCL_  smoothness of the turn reduces the scale of the 

___  eddying substantially and, consequently, also 
lowers the resistance of the bend by compari- 

Flg. 78. Elbow.  son with the elbow. This decrease will be 
larger the larger the relative radius of cur- 
vature R/d of the bend, and flow detachment and 

the associated eddying will be eliminated altogether if it is 
made large enough.  The resistance coefficient of the bend de- 
pends on the ratio R/d, the angle 6, and the cross-sectional 
shape of the pipe. 

The following experimental formula can be used for circular- 
section bends with the angle 6 = 90° and R/d > 1: 

C =-0.051-f 0.19-< (8.12) 

For angles 6 < 70°, the resistance coefficient equals 
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and for 6 > 100° 

^=0.9 sin s;;^ 

^,.=(0.7H~0.3S)C.., 

(8.13) 

(8.14) 

O    20 no to W KO 120 f 

Pig. 79. Ckol as a 
function of angle 6. 

Pig. 80. Smooth turn 
in pipe (bend). 

It must be remembered that the 
head loss defined by these coeffi- 
cients ;otvl i.e., 

is the difference between the total head loss in the bend and the 
frlotional losses in a straight pipe whose length is equal to that 
of the bend, i.e., the coefficient C .  takes account only of the o u v 
additional resistance due to the curvature of the channel.  In the 
design of pipelines containing bends, therefore, the lengths of 
these bends must be included in the total length of the pipeline, 
which is used to figure the frictional losses, and then the addi- 
tional loss due to curvature, which is determined by the coeffi- 
cient Cotv, must be added to this frictional loss. 

• c 
V 

Htc 

VB 
4/« 

i,ot 
e,oi 

WM ..^      

 ^ v, j-j- C  _ 

41 .. _  
i     0     C to 

Pig. 81. Diagram of 
a as a function of R/d. 

io 10 eo co m KO t-o i:u f 

Fig.   82. Diagram of b 
as a  function of 6, 

We have based the above formulas   (8.12),   (8.13),  and  (8.14) 
on diagrams plotted by Prof. Q.N.  Abramovich, who reduced a large 
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compilation of the most reliable experimental studies  of the re- 
sistance  of bends  and proposed the   following expression  for  the 
resistance  coefficient: 

(l,V:!r: (8.15) 

where a is a function of the relative radius of curvature and is 
given by a curve of a - f,(R/d) (Pig. 81); b is a function of the 
turn angle, which is given by the b ■ f.(6) curve (Fig. 82) and 
equals unity at 6  = 90°; c_ is a function of the pipe's cross- 
sectional shape, equals unity for round and square sections, and 
is given by a c ■ f3(e/d) curve for rectangular sections with 
sides e and d (side e Is parallel to the axis of curvature) (Pig. 
83). 

We see from this last diagram that the function c has a mini- 
mum when the sides of the rectangle are related as e/d = 2.5. 
This is because a so-called "paired vortex" forms in the rectan- 
gle as the stream turns in it. The reason for this is that cen- 
trifugal forces act on all particles of the fluid as it moves 
through the curved channel.  But since the velocity distribution 
is not uniform over the cross section (the velocities are higher 
at the center and lower at the walls), the centrifugal force, 
which is proportional to the square of velocity, will be consider- 
ably larger at the center of the stream than at the walls.  As a 
result, centrifugal-force moments arise about the axes 0. and 0. 
(Fig. 84) and set the fluid in rotation.  At the center of the 
stream, fluid Is displaced from the inner wall toward the outer 
wall, i.e., along the radius of curvature, while the fluid at the 
lateral walls moves in the opposite direction.  The pair of vor- 
tices is formed In th'.s way.  The stream divides into two helical 
flows as a result of addition of the circular motion of the fluid 
to its translational motion. 

Energy cf the fluid is continuously 
being expended on the formation of the 
"paired vortex," i.e., head is being lost; 
this loss is proportional to the moment of 
inertia of the vortex cross-sectional area. 
The smallest moment of Inertia is that of 
a circular vortex section, which may occur 
when the sides of the rectangle stand in 
the ratio e/d ; 2.  Hence the smallest el- 
bow resistance is obtained when the sides 
ratio of the rectangle is of the order of 
two or slightly larger.  In this case, the 
cross section of each of the vortices has 
the natural, i.e., circular shape; in all 

other cases, the vortices will be flattened in one direction or 
the other. 

Thus, while the circular pipe cross section is the optimum 
shape from the standpoint of reducing frictlonal losses, the 
rectangular section with a 2.5 sides ratio (longer side parallel 
to the axis of curvature of the bend) is most advantageous for 

Fig. 83. Diagram of 
£ as a function of 
e/d. 
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the purpose of minimizing Cotv-  The resistance coefficient of a 

bend with this sectional shape is 

C-0.4C«.. 

where C.. is the resistance coefficient of a circular-section 
otv 

bend with the same R/d and 6. 

"I ^ 

Fig. 84. Diagram showing for- 
mation of vortex pair. 

Fig. 85. Vaned elbows, 

Thus, the curvature losses 
can be reduced by a factor of 2.5 
below those of the circular cross 
section by using the optimum chan- 
nel-section shape at the turn. 
In certain critical cases, when It 
Is particularly Important to mini- 
mize losses, it is advisable to 
and this is done, for example, in use this special section s'^ape, 

the air intakes of certain aviation engines. 

In addition, guide vanes are sometimes Installed in large 
elbows (as In wind tunnels) to reduce resistance.  Installation 
of unprofiled vanes that have been bent along circular arcs (Fig. 
85a) lowers the resistance coefficient of the elbow to 5 " 0-4; 
profiled vanes (Fig. 85b) reduce C even further, to c - 0.2£. 
More detailed Information on vaned elbows can be found in the 
specialized literature [12]. 

§36. LOCAL RESISTANCES IN LAMINAR FLOW 

All material set forth in preceding sections of this chapter 
pertains to local hydraulic losses in turbulent flow. As concerns 
laminar flow: firstly, the local resistances are usually unimpor- 
tant here by comparison with friction and, secondly, the law ol 
resistance is more complex in this case and has not been investi- 
gated as thoroughly as for turbulent flow. 

While the local head losses can be considered proportional 
to the square of velocity (flow rate) in turbulent flow, and the 
resistance coefficients ? are determined basically by the shape 
of the resistance and are practically Independent of Re, the head 
loss h in laminar flow must be regarded as the sum 

m 
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*H""li + "M»». (8.16) 

where h^    is the head loss due directly to friction  (viscosity) 
tr 

at the particular local resistance,  and is proportional to the 
first power of fluid viscosity and velocity; hvlkhr is the loss 
due to flow separation and eddying in the local resistance itself 
or downstream of it, and is proportional to the square  of velo- 
city. 

Fig,   86.   Diagram of 
Jet  tube. 

Pig.   87.   Two types of local 
resistance. 

Thus,  for example,  in flow through a Jet tube   (Pig.   86),  a 
frictional head  loss occurs to the  left of section  1-1,  and an 
eddying loss to  its right. 

Applying the  law of resistance   for laminar flow  (6.6)  and 
(6.7) with a correction for the initial segment, and Formula 
(4.19), we  can write  the same  sum in  the  form 

tm~A£. + B*t (8.16') 

where A and B are dimensionless constants that depend on. the 
shape of the local resistance. 

After dividing (8.16') by the velocity head, we obtain a 
general expression for the coefficient of local resistance in 
laminar flow: 

Ku    Re ^ 
(8.17) 

The  relation between the   first   and second terms  in  Formulas 
(8.16) and  (8.17)  depends on the shape of the local resistance 
and on Reynolds number. 

In local  resistances where there is a narrow passage whose 
length is  considerably greater than its transverse dimension and 
which has smooth entry and exit outlines,  as shown in Pig.   87a, 
and the Re are  small,  the head loss   is determined basically by 
friction and the resistance law is  close to  linear.     In this case, 
the second term in Formulas  (8.16)  and  (8.17) is zero or very 
small by comparison with the  first. 

If,  on the  other hand,  friction has been minimized in the 
local resistance, e.g., by providing a sharp edge   (Fig.   87b), 
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and flow separation and eddying occur,  and the Re are quite  large, 
then the head losses are  approximately proportional to the 
squared velocity  (and flow  rate). 

tf ̂  

^ 

'000 

mo     moo    r.o 

Pig.  88.  Diagram showing c of dia- 
phragms as  functions of Re: 

/-I1-0.05: 2-1^-0.16; 

3-^-^0,«;   ^-1* .0.61. 

When Re varies widely in a given local resistance, both 
linear  (at small Re)  and square-law (at large Re) resistance 
curves are possible;  there may also be a transitional resistance 
range between them at moderate Re.    Figure 88,  which shows the 
results of tests on four diaphragms in logarithmic coordinates, 
represents a typical C-Re  relationship for a broad Re range of 
this  type.2    The sloping  lines correspond to  linear resistance 
variation (coefficient ; inversely proportional to Re), the 
curving segments represent  the transitional range, and the hori- 
zontal straight lines the  square  law or self-similarity  (coef- 
ficient  ; independent of Re).    Diagrams of this  type are usually 
plotted on the basis of experimental data for specific local re- 
sistances. 

Occasionally, the binomial form of the expression for local 
hydraulic losses is replaced by a power monomial of the form 

fc,."*Q".i 

where k is a dimensional quantity; m, the exponent,  depends  on 
^See page  157 for footnote. 
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the shape of the local resistance and Reynolds number and varies 
from 1 to 2. 

For local resistances and Re for which the resistance law is 
nearly linear, the local hydraulic losses are often expressed in 
terms of equivalent pipe lengths, i.e., the actual pipe length is 
Increased by the length whose resistance is equivalent to the 
local resistance. Thus, we have 

s='*tl;T+'»Mi 'p»ei  '^liKT 

and 

s*- M', piM V- '*°v'fUV 128v/., 

Re a   ig ngd* 

(8.18) 

(8.19) 

The numerical values of the equivalent lengths   (referred to 
pipe diameter)  are usually  found experimentally  for the various 
local resistances. 

The theorem of head loss on an abrupt expansion of the chan- 
nel that was proven in §32 for the case of turbulent flow is in- 
valid for laminar flow. This Is because the assumptions made in 
proving this theorem, namely, the hypotheses of uniform velocity 
distribution In sections 1-1 and 2-2, constant pressure over the 
entire area S2 in section 1-1, and zero tangential stresses (see 
Pig.   69)  are no longer admissible  In this case. 

Very recent experimental studies have shown that at very 
small Re   (Re  < 9),  the abrupt-expansion resistance  coefficient 
depends  little on the area ratio and Is determined basically by 
Re In a relation of the  form 

Re 

This means that the  flow is nonseparating,  and the expansion 
losses are proportional to the  first power of velocity.    For 
9 < Re  <  3500,  the resistance  coefficient depends  on both the 
Reynolds number and the area ratio.    For Re >  3500,  we may regard 
the Borda-Carnot theorem,  i.e..  Formula  (8.1), as  completely 
valid. 

When the pipe conducts fluid at velocity v, to a large tank 
(v2 ■ 0), we can assume loss of all of the fluid's specific kin- 
etic energy, which equals 

ST 
for atablllzed laminar flow in a round pipe. 

If, on the other hand, the flow Is not stabilized, i.e., if 
the pipe length I  < inaoh, the coefficient a should be taken from 
the diagram (Fig. 47). 
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Example.  Find the resistance coefficient of a jet tube of 
diameter dzh - 1 mm and length t - 5 mm as a function of Re when 

it is installed in a pipe of diameter d ■ 6 mm (see Pig. 86). 

Solution.  Regarding the Jet tube as the initial segment of 
the pipe and assuming that all kinetic energy is lost as the Jet 
expands, we represent the head loss in the Jet tube as the sum 
(disregarding the constriction losses) 

kx ^h,f + *, <|iacni 
(.9*   I       \ "l 

Converting from the velocity vzh in the Jet  tube to the velo- 
city v in the pipe, we find the resistance coefficient of the Jet 
tube:" 

„00^ t. = M.,.(..£it.).£. 

Assigning a series of values  to Re in the pipe, we  find the 
Reynolds number Rezh in the Jet tube from the relation 

We then use the diagram  (see Fig.  47)  to find the  coeffi- 
cients k and o and, carrying out the calculations, we enter the 
results  in the  following table: 

TABLE  3 

500     . 
Re 10 100 200 

9500        31'10 2;<Jf' 

300 •: ' 

2J0I) »30 issri 

§37.  LOCAL RESISTANCES IN AIRCRAFT HYDRAULIC SYSTEMS 

Aircraft hydraulic systems  (hydraulic transmissions) usually 
have local hydraulic resistances in the form of filters, cocks, 
gate valves,  elbows, and other units and pieces with a wide var- 
iety of geometrical shapes.     The flow of fluid through these re- 
sistances may be either laminar or turbulent, depending on fluid 
velocity and temperature  (viscosity); the Reynolds numbers vary 
over a rather broad range, which may even include Re^.    As a re- 
sult,  the  coefficients  ;m of these  resistances must be regarded 

as  functions  of Re. 

Figure 89 shows curves of the coefficient Cm as a function 
of Re in logarithmic coordinates for the most typical local re- 
sistances of aircraft hydraulic systems, as obtained 1" experi- 
mental studies by N.V.  Levkoyeva [Moscow Aviation Institute  (MAI)j. 
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The Reynolds numbers Re and the coefficients cm were calculated 

from the velocity in the pipe and its diameter. 

Our attention Is drawn to the Re 
curve of the c for the felt filter, m 
which 13 linear all the way up to Re ■ 
- 5000. This is explained by the fact 
that there is quite a great deal of 
friction in laminar flow through the pores 
of felt, and practically no eddying. The 
linear segments are much shorter for the 
petcock, valve, and elbow; they are fol- 
lowed by a long transitional segment and, 
finally, by a range of square-law resis- 
tance or self-similarity (c ■ const). 

The steeper curve for the check valve 
as compared to the other resistances is 
explained by the fact that the opening of 
the valve Increases with increasing Re 
owing to the increased flow velocity, i.e., 
its geometrical characteristic changes. 

In aircraft fuel lines, the Re are 
usually considerably larger them in hy- 
draulic systems.  It can therefore be 

Fig. 89. Diagram of 
C as a function of 
Re for the following 
units: 1) felt fil- 
ter; 2) shutoff 
valve; 3) split 
valve; ^t) 90° elbow; 
5) check valve. 

TABLE 4 

% B»A conpoTBuennn 

brnfiifoe cee.iiiKtHHe tpy6 
eCTduapuiuli yro.ibiiiiK 60* («cpnvc cncp-ieiiuR) 

IQTpolimiK-OTr.tMB-itimc 
■Kpan Tominiiuft 
f OCpaTHuA KJunm 
S*IIJIMp  CCTiaTMÜ 

AIITHIIK pacxo.iouepi: 
InpH (ptiaanuicnca itpw.ik*aik'e 

\  npN aaTonxowcHnoR Kpu.iuiatKC 
WBIOA ■ tpyfiy (auxOA m fiaK.i) 
^BUXOA na Tpytu (BXOA ■ Oaic) 

0,3 
1,2-1,a 

3.5 
1-2,5 
2.0 

1.5-2.5 

7.0 
11-12 

0,5-1,0 
1.0 

KEY:   (a)  type of resistance;   >'b)  flexible 
pipe joint;   (c)  standard 90°  elbow  (drilled 
body);   (d) tee branch;   (e)   fuel valve;   (f) 
check valve;   (g)   felt   filter;   (h)  flowmeter 
sender;   (1) Impeller turning;   (J)  Impeller 
arrested;   (k) pipe entrance   (pickup from 
tank);   (1)  pipe exit   (feed into tank). 

assumed without incurring any major error that the  local-resis- 
tance  coefficients  of fuel  lines  are  Independent of Re. 
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Table k  shows values of the coefficients Cm for self-similar 

flows In the most commonly used hardware components of fuel lines 
[11].  The c values are referred to the velocity head In the 

entry pipe of the unit (part). 
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Footnotes 

Manu- 
script 
page 

145 lThe pressure gradient In a straight-generatrix diffu- 
ser varies along the axis, with Its maximum In the 
Initial cross section. 

152 according to the experiments of N.V.  Levlcoyeva [18]. 
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Symbol List 

Manu- 
script 
page 

Symbc il English equl 

138 M m local 

140 pacm rassh expansion 

142 ami dif diffuser 

142 Tp tr friction 

143 T t turbulent 

145 onx opt optimum 

146 cyx suzh constriction 

146 BX vkh entrance 

147 KOJI kol elbow 

148 OTB otv bend 

151 BMXp vlkhr eddying 

152 B. d diaphragm 

153 pacw rasch calculation 

153 (taKT fakt actual 

153 3KB ekv equivalent 

153 JI 1 laminar 

153 Hay nach Initial 

154 X zh Jet 
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CHAPTER IX 

OUTFLOW OF  FLUID THROUGH HOLES AND  MOUTHPIECES 

§38.   HOLE IN THIN WALL 

In this chapter, we shall examine various cases of fluid 
outflow from reservoirs, boiler tanks,  holes,  and mouthpieces 
(short pipes of various shapes) Into the atmosphere or, In gen- 
eral. Into a space filled by gas or by the same fluid.    It is 
characteristic of this  case of fluid motion that the potential- 
energy reserve of the  fluid in the tank is  converted, with some 
degree of loss. Into the kinetic energy of a free Jet or drop 
during the outflow process. 

In aeronautical engineering,  fluid 
outflows must be dealt with in analysis 
of fuel feed Into the combustion chambers 
of gas-turbine and liquid-rocket engines. 
The  shock-damping processes when an air- 
plane  lands or fires  cannon also take 
place basically by expression of fluid 
through small holes. 

Moreover,  the flow of fluid through 
the  various Jet tubes and nozzles used in 
fuel and other systems  Is essentially a 
case of outflow through holes or mouth- 
pieces. 

Pig.   90.   Outflow 
from reservoir 
through small hole. 

The basic problem In which we shall be  Interested In this 
case is  that of determining the outflow velocity  and flow rate 
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of the fluid for the various hole and mouthpiece shapes. 

Let us take a large storage tank containing fluid under a 
pressure p« and having a small hole in its wall at a rather great 
depth H, below the exposed surface (Pig. 90). Fluid flows out 
through this hole into an air (ga8)space with a pressure p,. 

Fig. 91. Outflow through round 
hole, a) in thin wall; b) with 
sharp edge. 

Let the hole have the shape shown in Pig. 83a, i.e., let it 
be drilled in the thin wall without finishing of the entrance 
edge, or let it have the shape shown in Fig. 91b, i.e., let it 
be made in a thick wall, but with the entrance edge countersunk 
sharp from the outside.  The conditions of fluid outflow will be 
quite identical in these two cases: fluid particles approach the 
hole from the entire communicating volume, moving with accelera- 
tion along various smooth trajectories (Fig. 91a)j the Jet sepa- 
rates from the wall at the edge of the hole and then contracts 
slightly.  The Jet acquires a cylindrical shape at a distance of 
approximately one hole diameter. The contraction of the Jet is 
due to the necessity of smooth transition from the various direc- 
tions of motion of the fluid particles in the tank, including 
those moving along the wall in a radial direction, to the axial 
direction of motion in the Jet. 

Since the hole dimension is assumed small by comparison with 
the head H0 and the dimensions of the tank and, consequently, the 
side walls of the tank and the exposed fluid surface do not affect 
the inflow of fluid to the hole, we observe what is known as per- 
fect contraction of the Jet, I.e., the greatest degree of contrac- 
tion, as opposed to imperfect contraction, which will be examined 
later. 

The degree of contraction Is evaluated in terms of the con- 
traction coefficient e, which equals the ratio of the Jet cross- 
sectional area to the area of the hole, i.e., 

So V'V 
(9.1) 
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Let us write the Bernoulli equation for motion of the fluid 
from its free surface in the tank (section 0-0 in Pig. 90), where 
the pressure is p0 and velocity can be set equal to zero, to one 
of the Jet cross sections (1-1) in the zone in which the Jet has 
already become cylindrical, so that the pressure in it has reached 
p,.  Assuming uniform velocity distribution In the Jet, 

where C is the resistance coefficient of the hole. 

Introducing the theoretical head H, we obtain 

where 

H^ffo+Si^H-, 

Using the above, we write for the outflow velocity 

Here ^ is the so-called velocity coefficient, which equals 

i 

r« + c 1 (9.3) 

In the case of outflow of an ideal fluid, C ■ 0, so that 
1 and the theoretical outflow velocity is 

f,'=l/V7. (9.4) 

Thus, we can conclude from analysis of (9.2) that the velo- 
city coefficient <(> is the ratio of the actual to the theoretical 
outflow velocity: 

'"VSi-/?"" (9.5) 

The actual outflow velocity v is always somewhat smaller 
than theoretical because of resistance, and hence the velocity 
coefficient is always smaller than unity. 

It must be remembered that the velocities are uniformly dis- 
tributed over the Jet cross section only at its center (at the 
core of the Jet); the outer fluid layer is slowed down slightly 
because of friction against the wall (see Pig. 91b).  Experiments 
have shown that the velocity in the nucleus of the Jet is prac- 
tically equal to the theoretical velocity (v. ■ /2gH) so that our 
velocity coefficient $ should be regarded as an average-velocity 
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coefficient. If the fluid flows out Into the atmosphere, the 
pressure Is equal to atmospheric over the entire cross section 
of a cylindrical Jet; this Is also confirmed by experiments. 

Let us now figure the fluid flow rate as the product of the 
actual outflow velocity by the actual Jet cross sectional area, 
and then apply (9.1) and (9.2): 

Q-5tr :5.?-|'j£7/. (9.6') 

The product of the coefficients e and * Is usually denoted 
by y arid called the flow rate coefficient. I.e., 

Then Formula (9.61) Is written finally In the form 

or 

tffl & 9*0° 
^ 

Q-pS. 
/^ 

(9.6) 

where £ is the calculated outflow pressure. 

Expression  (9.6)  is the basic  one for this section,  since it 
solves the basic problem - that of determining flow rate; it is 
applicable for all cases of outflow.    The difficulty of using 
this expression consists in determining the  flow rate coefficient 
M accurately enough. 

It follows  from Eq.   (9.6)  that 

Si) 

Q 

This means that the flow rate coefficient is the ratio of 
the actual to the theoretical flow rate, i.e., to the flow rate 
(Qt) that would be the case in the absence of Jet contraction and 

resistance. It must be remembered that the theoretical flow rate 
Qt - S0/2gH is not the flow rate for outflow of an ideal fluid, 

since the Jet would contract even in the absence of hydraulic 
losses. 

Since the actual flow rate is always smaller than theory, 
the flow rate coefficient u is always smaller than unity because 
of two factors: Jet contraction and resistance. The former pre- 
dominates in some cases and the latter in others. 

The contraction (e), resistance (c), velocity (♦), and flow 
rate (M) coefficients that we have introduced are primarily func- 
tions of the type of hole or mouthpiece and, like all of the di- 
mensionless coefficients of hydraulics, of the fundamental cri- 
terion of hydrodynamic similarity. Re. 
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Figure 92 shows a diagram1 of the coefficients ♦, c, and w 
of a round hole as functions of Reynolds number, which was cal- 
culated from the theoretical outflow velocity. I.e., 

Re,»*^^-^—Ke« 

to too SOOICC'J   COOO HI"'iW" lüs     5 to' I0e 

Re,, 

Pig. 92. Diagram of c, (t», and u as 
functions of Re. for a round hole in 

a thin wall. 

o. 

ö c 

We see from the 

decreasing Influence 
creases owing to a de 
the coefficient c dec 
edge of the hole and 
the Jet surface on th 
the cylindrical part, 
symptotlcally to the 
I.e., as Ret *«>,())• 

tends to the value 0 
for an Ideal fluid. 

diagram that with Increasing Ret, I.e., with 

of viscosity forces, the coefficient ♦ In- 
crease In the resistance coefficient C, while 
reases as a result of faster flow at the 
the increase in the radii of curvature of 
e segment from the edge to the beginning of 

Both coefficients (♦ and e) approach as- 
values corresponding to ideal-fluid outflow, 
1; here, the contraction coefficient e 

61, which can be arrived at theoretically 

The flow rate coefficient y, which is determined by the pro- 
duct of e and ((>, first Increases with increasing Ret because of 

the steep rise of 4» and then, after reaching a maximum (umax ■ 
K 0.69 at Ret = 350), diminishes because of the substantial de- 

crease in e and becomes practically constant at y 
large Ret. 

0.59-0.60 for 

'See page 197 for footnote, 
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In the region of very small Ret (Ret < 15), the importance of 

viscosity is so great and the deceleration at the edge so consider- 
able that the Jet does not contract (e - 1) and * - u- The flow 
rate Q in this range is proportional to the first power of head 
loss, so that the flow rate coefficient is approximately propor- 
tional to Ret.  In this case, the following theoretical formula, 

which has been confirmed by experiments [4], is more accurate: 

«=-=_*•_ (9-7) r T  SS + rRc, * 

The formula of A.D. Al'tshul' is recommended for Ret > lO": 

f.,^+Ä. (9.8, 

For high-viscosity fluids (water, gasoline, kerosene, etc.), 
outflow usually takes place at rather large Re, so that the out- 
flow coefficients vary in narrow ranges; the following averaged 
values are usually taken in calculations: 

«-0.63: »=0.97; M-0.61; t=0.065. 

In outflow of low-viscosity fluids through round holes in a 
thin wall, there is considerable contraction of the Jet and very 
little resistance. Hence the flow rate coefficient u is found to 
be substantially smaller than unity, chiefly owing to the influ- 
ence of Jet contraction. 

§39. IMPERFECT CONTRACTION OF JET.  OUTFLOW BELOW LEVEL 

Imperfect contraction of the Jet occurs when the outflow of 
fluid through the hole ana shaping of the Jet are influenced by 
the proximity of the tank's lateral walls and the hole is situ- 

ated at equal distances from these walls, 
i.e., on the axis of symmetry of the tank 
(Fig. 93).  Since the side walls give 
some direction to the fluid motion as it 
approaches the hole, the Jet contracts to 
a lesser degree on issuing from the hole 
than in the case of outflow from an un- 
bounded tank, as it was examined above for 
perfect contraction. 

Fig. 93. Diagram of ^   .   4.4  „«. 
imperfect contrac-        Owing to the reduced contraction of 
tion of Jet. the Jet, the contraction coefficient in- 

creases and, consequently, so does the 
flow rate coefficient.  The theoretical 

solution to the problem of ideal-fluid outflow from a flat reser- 
voir of finite width and Infinite length through a slit tiole in 
its end wall, i.e., the solution for the case of imperfect con- 
traction in ihane flow, was found as early as 1890 by Prof. N.Ye. 
Zhukovskly. 
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When low-vlscoslty fluids  flow out of a cylindrical  circul- 
ar-section tank through a round hole  In Ihe center of the end 
wall,  the contraction coefficient Ej   can be  found from the  fol- 
lowing empirical  formula as a fraction of the  contraction coef- 
ficient e for perfect contraction: 

i-l+Sf«». (9.9) 

where n » Sj/S, Is the ratio of the hole area to the cross-sec- 
tional area of the reservoir. 

The resistance coefficient c of the hole and the velocity 
coefficient <fr In Imperfect contraction may be regarded as Inde- 
pendent of the area ratio n (provided, of course, that n Is not 
too close to unity) at the following approximate values for low- 
vlscoslty fluids: 

t-0,065 and 9-0.97. 

Hence the flow rate coefficient y l Is easily found from the 
relationship 

I«I-«IV. 

and the flow rate is determined from the formula 

However, when this formula is used In the case of imperfect 
contraction, it must be remembered that the theoretical head H 
that appears in the formula represents the total head, which 
equals 

This means that the velocity head in the tank must be taken 
into account in addition to the hydrostatic head. But since the 
velocity head is usually also unknown when the flow rate is being 
determined, it is desirable to have a formula that expresses the 
flow rate for imperfect contraction not in terms of the total head 
H, but in terms of the hydrostatic head. 

This formula is easily obtained by writing the Bernoulli and 
flow rate equations for sections 1-1 and 2-2 (see Fig. 93), i.e., 

This yields 
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Vj--= 
y i+c -.?«'/' *s' ■Pi 

and then 

where 

Q=i7=^L^^ 501/2^^ -is^o 1/2^ *?. 

y 1 + c - 

(9.10) 

(9.11) 

"1)0 P 
pig. 9 
low le 

or 

k.  Outflow be- 
vel. 

It 13 often necessary to deal with out- 
flow of fluid not Into the atmosphere, but 
into a space that is filled with the same 
fluid (Fig. 94). This case is known as 
outflow below level or outflow through a 
submerged hole.  ~ 

In this case, all of the Jet's kin- 
etic energy is lost to eddying, as in the 
case of abrupt expansion.  Hence the 
Bernoulli equation for sections 1-1 and 
3-3 (where we assume the velocities to 
equal zero) is written in the form 

*1+^+^+l*^-^lr+£ 

where H is the theoretical head, v is the outflow velocity in the 
compressed section of the Jet. and ; is the resistance coefficient 
of the hole, which has about the same value as in outflow into the 
atmosphere. From this. 

l'1-l-C 
■iV'k.u 

and 

g^uSc-EySo V2£//- vS^Vhll- 

Thus, we have the same working formulas as for outflow into 
air (gas), except that the head H represents in this case the 
difference between the hydrostatic heads on the two sides of the 
wall, i.e., velocity and outflow do not depend on the height or 
the hole in the wall. 

The contraction and flow rate coefficients in below-level 
outflow can be assumed to be the same as for outflow into the 
air. 
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§10. OUTFLOW THROUGH MOUTHPIECES 

A short pipe whose length Is a few times Its diameter [A ■ 
■ (2-6)d] and whose entry edge Is not rounded Is known as an ex- 
ternal cylindrical mouthpiece (Fig. 95a). In practice, such 
mouthpieces are often formed when a hole Is drilled In a thick 
wall and Its entry edge la not ground (Fig. 95b). 

Pig. 95. Diagram of outflow through 
cylindrical mouthpiece. 

Either of two outflow regimes may be observed in outflow 
through such a mouthpiece Into a gaseous medium. The flow dia- 
gram corresponding to the first regime appears In Fig. 95, a and 
b. On entering the mouthpiece, the Jet is compressed for approxi- 
mately the same reason as in outflow through a hole in a thick 
wall. Then, since the compressed part of the Jet is surrounded 
by eddying fluid, the Jet gradually expands to the size of the 
hole and emerges full-section from the mouthpiece. 

Since the Jet diameter is equal to the hole diameter as it 
emerges from the mouthpiece, we have e ■ 1 and hence y ■ ♦• 

The flow rate coefficient of an external cylindrical mouth- 
piece in the first outflow regime depends on the relative length 
«./d of the mouthpiece and on Re, An experimental graph illu- 
strating this relationship appears in Fig. 96 [4], 

The averaged coefficient values for this outflow condition 
are as follows for low-viscosity fluids (large Re): 

U ■ * ■ 0.80 and c - 0.55. 

Comparison with the hole In the thin wall indicates that in 
outflow through a cylindrical mouthpiece (first regime),  the 
flow rate is higher than ir; outflow through the hole because of 
the lack of compression at the exit from the mouthpiece; the 
velocity, on the other hand, is lower owing to the substantially 
higher resistance. 

Let a fluid flow out under a pressure p. into a gaseous me- 
dium at pressure p2j e.g.. Into a liquid rocket engine [LRE] (XP^) 
combustion chamber.  In this case, the theoretical head for per- 
fect contraction equals 
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Pig. 96. Plow rate coefficient of cylindrical mouth- 
piece as a function of Re. 
KEY: (a) flow rate coefficient; (b) Reynolds number. 

Since the pressure In the Jet is p2 at the exit from the 
mouthpiece, the pressure pi In the constricted zone of the Jet 
Inside the mouthpiece, where the velocity is elevated, is lower 
than pj.  Here, the larger the head under which outflow occurs 
and, consequently, the greater the flow rate through the mouth- 
piece, the smaller will be the absolute pressure in the contrac- 
tion inside the mouthpiece.  The pressure difference p, - p. in- 
creases in proportion to the head H. We can demonstrate this by 
writing the Bernoulli equation for sections 1-1 and 2-2 (see Fig. 
95a): 

ft   1 ZL^Ii 
V  2ff   v 

.'.5 
is 

Here the last term represents the head loss on stream expan- 
sion, which takes place in approximately the same way here as in 
an abrupt channel expansion and, consequently, is determined by 
Formula (8.1). The contraction of the Jet inside the mouthpiece 
is evaluated by the same contraction coefficient e as in the case 
of the hole, so that we can write on the basis of the flow rate 
equation 

-'-'--■* 

1-,   r 
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Using this relation to exclude the velocity v,   from the 
above Bernoulli equation and replacing the velocity Vj by Its 
expression In terms of the mouthpiece velocity coefficient  v2 ■ 
- ♦/2gH, we  find the pressure drop inside the mouthpiece,  i.e., 

/"-/V-Vf-^-  1    (' -1)l^ (9.13) 

Substituting * ■ 0,80 and e - 0.63 In the above. 

Pi- rr  O.ro.'/y. (9.13') 

At a certain critical head  (Hkr),  the absolute pressure in- 
side  the mouthpiece   (section  1-1)  vanishes   (or, more precisely, 
becomes equal to the vaporization pressure),  and 

'V-';   • (9.14) 

With H > Hki>,   therefore,  the pressure Pi would have to be nega- 
tive,  but since negative pressures do not usually occur in a 
fluid,  the  first outflow regime with H > H,     becomes impossible. 

Kr 
Experiment  confirms this,  indicating that an abrupt  change In 
outflow regime and a transition from the first regime  to the 
second take place at H s H.      (see Pig.   95c). 

The second outflow regime is  characterized by a jet that 
no longer expands  after contracting,  but  remains  cylindrical and 
flows out of the mouthpiece without touching its walls.    The out- 
flow becomes  identical to that  from a hole In a thin wall, with 
the same outflow-coefficient values.    On transition from the 
first outflow regime  to the second,  therefore,  velocity increases 
and flow rate diminishes owing to  compression of the Jet. 

If water  flows  out  through  this mouthpiece  into the atmos- 
phere , 

//„,,:-- ''*   '    '   "Vl-; m. 1       O.V.v,' I ., , 

If the saturation vapor pressure p. of the outflowing fluid 

is comparable with the pressure p2 in the medium into which it is 
flowing, it is necessary to set pj = pt in Formula (9-13) and ob- 

tain for the critical head Instead of (9.14) 

IK     f  ". 

The second outflow regime is also possible at H < H, , i.e., 

when either the first or the second outflow regime is realized in 
accordance with the conditions under which the outflow begins. 
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In below-level outflow through a cylindrical mouthpiece, the 
first flow regime will not differ from the above description. 
But when the absolute pressure inside the mouthpiece drops to the 
saturation vapor pressure as a result of an increase in H, cavl- 
tational outflow begins; flow rate ceases to depend on the pres- 
sure p., i.e., the effect is to stabilize flow rate as described 
in §23. 

Thus, an external cylindrical mouthpiece has substantial 
deficiencies: high r-sistance and Inadequate flow rate coeffi- 
cients in the first regime and a very low flow rate coefficient 
in the second.  Another shortcoming of this mouthpiece Is the 
two possible regimes of outflow into a gas at H < Hkr and, con- 

sequently, the two-valued flow rate at a given H and the possi- 
bility of cavitation in outflow below level. 

z7S3se':r-a: 

Pig    97. Nozzle. Fig.   98.  Diffuser mouthpiece. 
KEY:   (a)  cavitation. 

When cylindrical mouthpieces  (holes drilled In a thick wall) 
are used,  for example,  as jet  tubes,   chokes,  or nozzles   (see 
example),  these deficiencies must be taken Into account.     This 
mouthpiece can be Improved substantially by rounding the entry 
edge Tsee dashed line  in Pig.   95b).    The greater the rounding, 
the larger will be the  flow rate coefficient and the smaller the 
resistance coefficient.    In the limit,  at a radius of curvature 
equal to the wall thickness,  the cylindrical mouthpiece approxi- 
mates the so-called conoldal mouthpiece or nozzle. 

The  conoldal mouthpiece or nozzle   (Pig.   97) has an outline 
that approximates the shape of a naturally contracting Jet,  and 
this ensures nonseparatlon of the flow inside the mouthpiece and 
a parallel Jet in the exit cross section.     This mouthpiece Is 
used very extensively because it has a flow rate  coefficient 
near unity,  very small  losses,  a contraction coefficient  e -  l, 
and stable outflow conditions without cavitation. 

The resistance-coefficient values are the same as those 
given for the smooth contraction (§34),  i.e.,  C - 0.03-0.10 
(small C correspond to larger Re and vice  versa).     Accordingly, 
v m $ * 0.99-0.96. 
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The diffuser nozzle represents a combination of a nozzle and 
a diffuser (Flg. 90).  Attaching the diffuser to the nozzle 
lowers the pressure In the throat of the mouthpiece and, conse- 
quently. Increases the velocity and flow rate of the fluid 
through It. The diffuser mouthpiece may deliver a substantially 
higher flow rate than the nozzle (by a factor of up to 2.5) at 
the same throat diameter as the nozzle and the same head. 

Mouthpieces of this type are used when the throat-section 
diameter and head are specified and It Is necessary to obtain 
the highest possible flow rate. However, the diffuser mouth- 
piece can be used only at very modest heads (H ■ 1-^  m), since 
otherwise cavltatlon arises In the mouthpiece throat.  Cavltatlon 
results In Increased resistance and lowered throughput of the 
mouthpiece. 

Figure 99 shows the drop In flow rate coefficient of a dif- 
fuser mouthpiece with Increasing head owing to cavltatlon In- 
itiated In the throat of the mouthpiece (flow rate coefficient 
referred to throat section area). 

This curve was obtained by testing a diffuser mouthpiece 
with the optimum angle and expansion ratio, I.e., those that en- 
sure the largest possible flow rate coefficient (author's experi- 
ments) . 
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Fig.   99.  Diagram of flow rate 
coefficient as a function of 
head. 

Example. So-called Jet nozzles, I.e., simple drilled pas- 
sages, are used to supply propellants Into the combustion cham- 
bers of certain liquid rocket engines. Determine the necessary 
number z of these nozzles for oxldlzer supply to the rocket en- 
gine If G ■ 1.6 kgf/s, the pressure drop across the nozzle Ap ■ 
- 6 kgf/cm2, the chamber pressure p2 = 25 kgf/cm2, the hole diam- 
eter d0 - 1.5 mm, and the ratio of wall thickness to hole diam- 
eter 6/d0 = 0.5. The oxldlzer is nitric acid with a specific 
weight  Y  ■  1510 kgf/m3  and  a viscosity  coefficient  v =  0.02 cmVs. 
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How many nozzles would be required if 6/d0 »2.57 

Solution.     1.  The theoretical outflow velocity 

2. The Reynolds number 

„       M«   MOO-CIS    Z~ Ret«-ä-Se ———— r= 21000J 
v 0,02 

3. We refer to the diagram  (Pig.   92)  to find the  flow rate 
coefficient w - 0.62 from the Ret. 

H. We determine the  total hole  area S0  of all nozzles  from 
the equation 

5B,.Jg '■6-">'       ^0.61 cm« 

5, The number of nozzles is 

«,,      40.61 

6. If the hole had a ratio 6/d9  - 2.5,   fuel outflow would 
take place as  from an external cylindrical mouthpiece. 

To determine the outflow regime, we find Apkr, from  (9.13'): 

Since  Ap      > Ap, we  shall have  the first outflow regime with 

a flow rate  coefficient u - 0.82.    Hence the number of nozzles is 

|k| 0,82 

§»11. OUTFLOW UNDER VARIABLE HEAD (DRAINAGE OF CONTAINERS) 

Let us consider the process in which an arbitrarily shaped 
container that communicates with the atmosphere Is drained 
through a hole or mouthpiece in Its bottom that has a flow rate 
coefficient u (Fig. 100). In this case, we have outflow under 
a variable and progressively decreasing head, I.e., the flow is, 
strictly speaking, nonsteady. 

However, if the head and, consequently, the outflow velocity 
vary slowly, the motion can be regarded as steady for any par- 
ticular point in time and the Bernoulli equation can be used to 
solve the problem. 
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Fig.   101.  Drainage of 
vented tank. 

Denoting by h the  variable height  of the  liquid level  in the 
container as measured  from the bottom, by S the  cross sectional 
area of the tank at this  level, and by S0   the area of the hole, 
and taking an infinitesimally short time  segment dt, we can write 
the  following equation of volumes: 

S:','- 

or 

So". V 

r i: 

S.l^rii 

*or 
*ep, 'too 

(9.15) 
,(/c/8 'U 

where dh is the drop in fluid level in the container during time 
dt. 

The minus sign appears because a negative increment dh cor- 
responds to a positive increment dt. 

Hence the time for complete drainage of a container of 
height H (assuming y ■ const) is 

K. (9.16) 

The integral can be evaluated if we known the law of varia- 
tion of the area S versus height h.  For a prismatic container, 
S = const, so that 

or 

(9.17) 

The numerator in this formula Is equal to twice thö container 
volume, while the denominator represents the flow rate at the be- 
ginning of drainage, i.e., at head H.  Consequently, the total 
draining time of the container is twice the time for outflow of 
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the same volume of fluid at a head that remains constant at the 
Initial value. 

Formula (9.16) and (9.17) can also be used to determine the 
times to fill containers under variable heads that decrease from 
h ■ H to h - 0 as the tank Is filled. 

In aviation practice, It Is necessary to deal with drainage 
of sealed containers (tanks) that communicate with the atmosphere 
only through a small-diameter hole, mouthpiece, or drainage pipe 
(Fig. 101).  In this case, atmospheric air flows Into the con- 
tainer, in which a partial vacuum is set up, as the fluid flows 
out of it.  Drainage of the container is therefore retarded, and 
to a greater degree the more difficult it Is for air to get into 
it. 

Let us determine the time to drain such a container, for 
which we write two Bernoulli equations: one for the motion of 
air from a stationary atmosphere into the container, and another 
for the motion of fluid from the upper surface to the exit into 
the atmosphere. Using the nomenclature of Fig. 101, we write 

c^V.t Y...3  Yo".        24' 

The compressibility of the air can be disregarded in this 
case; hence  the volume flow rates  of air and fluid can be set 
equal to one another, i.e., 

(if the Jet  contracts. It  is also necessary to Introduce the  coef- 
ficient e,). 

The  above equations will now be rewritten 

AV«-|/'O-/'A-|(HCJ)-9%-Y;,.. 

Adding these  equations and determining the  flow rate,  we  obtain 

Q-,A~ 'it;i'\ 

V rrcr" i+ <:;■ (9-l8) 

Substituting Expression (9.18) into the equation of volumes 
(9.15), determining dt from that equation, and then integrating 
with h - H and h « 0 as limits, we have 
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(9.19) 
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Fig. 102. Diagram 
of undercarriage 
shock-absorber 
strut. 

This formula can also be used when air 
enters the tank and fluid leaves it through 
pipes, but then the corresponding coefficient 
C must be replaced by 

where I and d are the length and diameter of 
the pipe and J^ is the sum of the local re- 

sistance coefficients in the pipe. 

The process of shock absorption when an 
airplane touches down can serve as another 
example of fluid outflow under the action of 
a variable head.  The top of an air-oil under- 
carriage shock absorber (Fig. 102) contains 
compressed air, which is under a pressure p0 
in flight.  On contact of the airplane's 
wheels with the ground, fluid flows through 
holes of area S0 with a flow rate coefficient 
U, and the air cushion is compressed to pres- 
sure p,. The height of the air cushion is 
reduced In this process from h. to h.. 

To simplify the actual shock-absorbing process, let us as- 
sume that a constant force G is abruptly applied to the shock 
absorber and that the air is isothermally compressed.  Let us 
find the time of the shock-absorbing process. I.e., the fluid- 
flow time to establishment of equilibrium. 

We again have Eq.   (9.15): N0T REPRODUCIBLE 

Q ". 

where S is  the piston area and dh Is  the compression of the cylin- 
der during time  dt. 

The  flow rate through the holes  Is 

O   ,■'; . /.,-,. /,    / 

r        .. Y 

Here p, is the constant pressure over the piston, which equals 
p, - Q/S, and £ is the variable air pressure, which is determined 

by the isotherm equation/' (.vl /.•,) ^ ■ /;A. 

have 
On substituting the expressions   for p,   and £ into   (9.15),   we 
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where .  Pa\p.   . 

Integrating from h - h0 to h ■ hj gives us the unknown time 
t. 

§1»2. FUNDAMENTALS OF HYDRAULIC AUTOMATION 

A variety of hydraulic devices and systems whose operation is 
automatically controlled are used extensively in aviation engin- 
eering and other machine-building fields. 

Such systems and devices are usually controlled by regulat- 
ing fluid flow, i.e., by adjusting the pressure, flow rate, or 
direction of motion of fluid. 

Here we shall examine only the simplest control devices, 
those that are the basic elements of more complex hydraulic- 
automation components and systems.  Some of the more complex con- 
trol devices, which consist of a number of elements, will be 
considered later in §72 as elements of aircraft hydraulic power 
systems. 

Control devices are classified on the basis of function as 
pressure regulators, flow rate regulators, and distributors; the 
latter act to change the direction of motion of a fluid. 

These control devices can be subclassifled.as chokes and 
valves on the basis of operating principle. Both present local 
hydraulic resistances that are deliberately inserted into the 
path of the fluid to throttle it. Throttling is a process in 
which the fluid's pressure (head) is reduced as it moves through 
a local hydraulic resistance. 

The difference between a choke and a valve consists in the 
following. The geometrical characteristics of a choke, i.e., 
the dimensions of its ports (holes), in which the throttling 
takes place, do not change under the influence of the fluid flow 
rate passing through it.  The geometrical characteristics of a 
valve, on the other hand, do change under the Influence of flow 
rate. 

Both chokes and valves can be made adjustable and nonadjust- 
able.  This means that In the former case their geometrical char- 
acteristics can be varied by external manipulation during their 
operation, while in the latter case such external adjustments are 
not possible. 

The Jet tube examined in §36 (Fig. 86) can be taken as an 
example of the simplest type of nonadjustable choke, while any 
cock, valve, slide, or flap whose aperture can be regulated manu- 
ally or automatically is an adjustable choke.  The adjustable 
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choke can be  used to vary  the flow variables of a fluid  (Its  flow 
rate, pressure), but there Is no back effect of the  flow on the 
choke that  can cause a change in  Its geometry. 

The elementary valve   (see Pig.   106)  Is usually pressed 
against its  seat by a spring or under its own weight,   and opens 
when it is  acted upon by a fluid-pressure drop.    Here  the open- 
ing of any valve is  always determined by equilibrium,   i.e.,  equal- 
ity of the  force  (or torque)  that  the  fluid exerts on the valve, 
which tends  to open it further,  to the  force that resists opening 
of the  valve. 

If the  force resisting opening of the valve is  constant 
(e.g.,  the  valve's own weight),   or if it increases on a certain 
curve with valve opening  (for example,  a spring force),  the valve 
or nonadjustable.     If,  on the  other hand,  some  sort   of device 
acts on the valve from the outside during its operation and 
changes the  force that resists its  opening (for example,  if the 
spring is  loaded or some other additional force is  applied)  and 
the valve opening changes  as a result,  the valve is  adjustable. 

Let us  examine  the geometrical shapes and hydraulic proper- 
ties of chokes and valves. 

A choke  is a local resistance that  consists in the simplest 
case of a more or less smooth or abrupt  constriction of the chan- 
nel and a narrow passage beyond which  there is  usually  a sudden 
expansion. 

The hydraulic properties  of a choke  are determined by  the 
dependence  of the  local head loss  h    on flow rate Q.     As we have 
already stated in §36, this relationship is linear for small 
Reynolds numbers and a great enough relative  length of the choke's 
narrow passage, because the head  loss  is basically due  to fric- 
tion in  laminar flow.     In this   case,  we  speak  of a  linear choke. 
It must be  remembered that  the head  loss  in the  choke   varies  in 
direct proportion to  fluid viscosity and,  consequently,  the hy- 
draulic characteristic of such a  choke depends on fluid tempera- 
ture,   i.e.,   is  not  stable. 

When the  length of the  choke's narrow passage is minimized 
and the Reynolds  numbers  are  large  enough,  the head   loss  in the 
choke  is  determined basically by  eddying on the  abrupt  expansion, 
and the curve of h    as a function of Q is practically quadratic. 
The device is known as a square-law choke; its hydraulic char- 
acteristic  is more stable,  i.e.,  practically  Independent of fluid 
viscosity. 

In this   case,   the optimum  shape  for  the  throttling orifice 
is that of a circular hole in a thin wall  (see Fig.   91).    For 
technological reasons, however,   drilled passages with   length 
ratios  i/d  =   1-3,  i.e.,  external  cylindrical mouthpieces,  are 
used more  often. 
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Fig. 1Ü3. Diagram of linear 
choke with screw-type throt- 
tling valve. 

1. 
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Flg. 10^. Diagram of 
multistage choke. 

Very often, a choke Is called upon to produce a large pres- 
sure drop, I.e., a very substantial head loss.  And this re- 
quires a very small throttling orifice, which is undesirable in 
view of the possibility of plugging or obliteration (see §27). 
In these cases, therefore, recourse is taken to chokes with ex- 
tended throttling passages (in the case of the linear choke) or 
several throttling orifices are placed In sequence (for the 
square-law choke). 

In one practical linear choke (Fig. 103), the throttling 
passage is the helical groove of screw 1, which is tightly fit- 
ted to case 2. 

Fluid enters the choke through hole 3, runs along the heli- 
cal groove, and exits through hole 4. The length of the throt- 
tling passage and, consequently, the resistance of the choke are 
easily regulated during operation (or adjusted when idle) by 
turning screw 1 either into or out of Internal screw 5. The re- 
sistance of such a choke varies in direct proportion to the turn 
angle of the screw. Since the characteristic of a linear choke 
depends on viscosity and hence on fluid temperature, it is es- 
pecially important to be able to regulate it. 

typical nonadjust- 
ure drop. The 
the fluid passes 
set up in series, 

ameter d be made 
1-2)d, and the 
ould be placed 
e, but at diamet- 
fluld will be 

The diagram shown in Fig. 104 represents a 
able square-law choke designed for a large press 
version shown is a multistage type, since in it 
through several elementary chokes that have been 
It is recommended that the throttling-orifice di 
no smaller than 0.5-1.5 mm, the wall thickness ( 
distance between the walls (3-5)d. The holes sh 
not opposite one another on the axis of the chok 
rically opposite points, so that the path of the 
labyrinthine. 

Tests run on such multistage chokes by V.V. Vakina2 Indicate 
that the resistance coefficient of a choke with n stages is 
smaller than that of a single-stage choke multiplied by n, and 
that the flow rate coefficient y is accordingly larger. The re- 
sults of these tests appear in Fig. 105, where the flow rate coef- 
ficient, referred to the area of the throttling orifice, is given 

'See page 197 for footnote. 
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as a function of Reynolds number for n «  1,  2,  7,  and  10 stages. 
The dashed curves  on  the same  figure were  constructed  on the  as- 
sumption that the stages do not Influence one another,   i.e.,  by 
the formula 

I "       V".| 

where Ci  and p,  are  the resistance  and flow rate  coefficients  of 
the single-stage choke, respectively, and C is the calculated 
flow rate  coefficient of the n-stage  choke. 
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Fig.   105.   Results  of tests  of multistage 
chokes. 
KEY:   (a)   calculated value  of;   (b)  experi- 
mental results. 

The  experiments  were run using AMG-10  fluid with  chokes hav- 
ing orifice diameters  d = 1 mm, wall thicknesses  A = 1.5 mm, and 
wall separations  of  5 mm. The pressure  drop was   varied  from 0.25 
to  170 kgf/cm2. 

The  disagreement  between experiment  and calculation is  ex- 
plained by  the  reciprocal effects  between stages,  which   consist 
in less  th^n total extinction of the  outflow velocity  in the 
spaces between  chokes. 

We  see  from the  diagram that   the greater the  number of 
stages  n,  the more  stable is  the  flow rate  coefficient  with Rey- 
nolds-number variation and,   consequently,   the more precisely  will 
the choke  follow the  square-law resistance  curve.    This   is be- 
cause the transition  from nonseparating outflow to separating 
outflow in the  throttling orifices, which takes place  in the  same 
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way as  In a cylindrical mouthpiece   (see  §40),  does not  occur 
simultaneously  in all  of the  choke  orifices.     The  outflow-re- 
gime  change  takes place  first  in the  last  orifice  on the path 
of the   fluid, where the absolute pressure  Is  lowest.    As  the 
pressure drop across  the choke increases  further,  and flow rate 
and Reynolds number Increase with it,  the  outflow regime changes 
In the  next-to-last orifice,  and so forth. 

a) b) 

Fig.   106.   Varieties  of the  valve. 

The following expression, which defines the flow rate coef- 
ficient of an n-stage choke, can be used in practical mathemati- 
cal design of multistage chokes similar to those tested: 

where  k  is  the  stage  Interference  coefficient,  which can be  set 
equal  to  1.27. 

Valves are used in the  following three basic design configu- 
rations, which are shown schematically in Fig.   106: ball,  cone, 
and poppet or mushroom. 

The ball valve   (a)  is  simplest in design and manufacture,  but 
is  usually used only  for low pressures and not in continuous duty. 

The  cone   (b)  and poppet   (o)  valves  are  the most reliable  and 
can be  used at high pressures and flow rates. 

The  diameter of  a  valve  is  usually 

«/ji'-O.iö-i.ar-K 

where d is the diameter of the port at the seat; the ratio d./d 

is larger for poppet than for cone valves. 

The hydraulic characteristics of valves, i.e., their coef- 
ficients of resistance c and flow rate \i,   can be determined in 
two ways: by taking as the working area and velocity either the 
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constant area of the port and the variable velocity In It or the 
variable area of the silt under the valve and the approximately 
constant (for a given pressure drop across the valve) velocity of 
outflow through this slit. 

In the latter case, we have for the valve's flow rate coef- 
ficient In accordance with the fundamental formula (9.6) 

0 

where for a poppet valve 

and for a cone valve with a cone angle of 2a, 

^     ..«'J.'.M.Ii   , 

(here  H Is  the height to which  the  valve Is   lifted). 

When this notation Is used,  the  flow rate coefficient can be 
considered independent of valve  lift   (if it is not  lifted too 
high).    However,  this coefficient does depend on Reynolds number. 
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Pig.   107.   Results  of tests   on cone  valve. 

For  large enough Re,   I.e.,   for 

-o 
o 
o 
c: 
o 
00 

i;- >(;-roio\ 

the regimes of outflow through valves can be considered square- 
law.  In these cases, it is recommended that the flow rate coef- 
ficients of cone and ball valves be set equal to 0.52-0.56, and 
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those  for poppet valves  to 0.58-0.62 [6]. 

At smaller Reynolds   numbers,   It  is  necessary to resort  to 
appropriate experimental  data.    Thus,  Figs.   107 and 108 show 
test  results  for cone and poppet valves in a broad Reynolds- 
number range  from linear to quadratic resistance laws.3    The 
vertical axis  is marked off for the resistance coefficients of 
the  valves, which equal 

(where v is the velocity  in the port and h. ,   is the head loss in 
the  valve), while  the horizontal coordinate  is the Reynolds  num- 
ber computed by the  formula 

Kc'= 
Itr/v 

The curves were plotted for various valve lifts referred to 
the port diameter d. The same diagrams have a line of constant 
load coefficient k, which is equal to 

4P 

where P is the force exerted by the fluid flow on the valve. 

«3 

«? 

Pig. 10 8. Results of tests on poppet valve. 

These diagrams enable us to solve, for example, the follow- 
ing practically important problem. The dimensions of the loaded 
valve and spring and the properties of the fluid (y and v) are 
given. Construct the characteristic of the valve, i.e., the 
'See page 197 for footnote. 
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relation 

/i...- /(C)- 

Let the spring force P  Increase In proportion to Its de- 

formation. I.e., In proportion to the valve lift H, so that it 
equals 

/'..„-/',., I Cii. 

where P . Is the spring force with the valve closed and C Is a pr" 
constant of the spring that can be calculated from the diameter 
of the spring stock, the coll radius, the number of colls, and 
the shear modulus. 

Let us take the basic expression for the head loss In the 
valve In the form 

A ,-1.** 

replace h., by Its expression In terms of the above coefficient 

k, and express v In terms of the flow rate: 

Cancelling and substituting the expression for P  In terms 

of H, we solve the equation for Q: 

^/" ■';;""•   »or*; 
A ep*oDl.r 

On the other hand, ^/f 

/■■, 

^U'K.:.\ rrj) 

The two equations obtained can be used to make the calcula- 
tions needed to plot the desired curve, but since the Reynolds 
numbers are not known In advance, the problem must be solved by 
successive approximations.  We might, for example, first assign 
a square-law regime, take the H/d from the diagram, and find H, 
5, and k for them.  Then the resulting formulas would be used to 
determine the Q and h., for each of the H/d values, i.e., to ob- 

tain the first-approximation curve of the valve. Then Re can be 
calculated for each value of Q, the same diagram again consulted 
to find c and k, followed by use of the same formulas to deter- 
mine Q and h.. In the second approximation.  In the case of a sub- 

stantial disagreement with the first approximation, the calcula- 
tion should be continued with the same procedure. 
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Pig.   109.  Diagram 
of flap nozzle. 

of opening of the 
the nozzle exit p 
the flap nozzle  i 

The flap nozzle   (Fig.   109)  is a combina- 
tion of two elements:   a nozzle,  which  usually 
consists of conical and short cylindrical seg- 
ments, and a flap - a round plate that is 
hinged on an arm long enough so that  its mo- 
tions relative to the nozzle can be  considered 
translatlonal. 

Some  kind of external force  is  usually 
applied to the  flap and,  together with the 
fluid pressure  force,  determines the degree 

nozzle, i.e.,  the distance of the  flap  from 
lane.    By its operating principle,  therefore, 
s an adjustable valve. 

Devices of this  type are widely  used in the automatic  con- 
trol systems of aviation-type pumps   (§68),  in automatic-pilot 
servosystems,  etc. 

The device  is usually quite small:  nozzle diameter ds  of the 
order of 1 mm,  diameter of outer circle of nozzle exit plane Dg  = 
-   (1.2-1.5)d  ,   flap diameter Dz =   (3-4^,   length of nozzle cylin- 

drical section  i  =   (l-2)ds. 

When such a unit  is used in hydraulic  automation systems,  it 
is necessary to determine its  throughput   (fluid flow rate)  and 
the  force that  the  fluid exerts  on the  flap at various pressures 
and various  flap-to-nozzle distances. 

Research has  shown that the following modes of fluid outflow 
through a flap nozzle  are possible:     separating, nonseparatlng, 
and transitional.    The separating regime   (Fig.   110a) occurs at 
large enough distances  x from the nozzle exit plane to the  flap 
and is  characterized by_preLSure equal to  ambient  in the  Jet  at 
the nozzle exit plane;  the fluid does not  contact the nozzle exit 
plane,  but  impinges  on the  flap,   spreading  out over it  in the 
radial directions.    The thickness of the  fluid layer is  smaller 
than the distance x. 

^ 
^ 
^ 

ACA' »* 
^ 
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'U 
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b) 

Fig.   110.   Diagrams  of outflow re- 
gimes  through  flap nozzle. 
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The nonseparatlng outflow regime (Fig. 110b) usually occurs 
when the distance x from the nozzle to the flap Is short; In It, 
the fluid characteristically moves In a gap-type flow between the 
nozzle exit plane and the flap, filling the volume of this gap 
completely. As the flow makes Its right-angle turn, local sep- 
aration occurs and an eddying region b forms, but then the flow 
broadens and has a thickness equal to the distance x when it 
emerges into the environment. 

The best way to Judge the probability of a given outflow re- 
gime through a nozzle flap is to compare the area of the nozzle 
orifice (irdVt) with the areas of the cylindrical gap sections 

directly after the turning of the flow (ird x) and at the exit s 
into the environment   (irD x).     With 

the gap  sectional area at the exit Is smaller than the area of 
the nozzle orifice and nonseparatlng outflow is more probable. 
With 

the nozzle orifice area Is smaller than the gap sectional area 
immediately after the turning of the flow, and a separating or 
transitional outflow mode  is more likely. 

The outflow mode observed Is also Influenced by the pressure 
drop Ap under which outflow takes place and by the absolute pres- 
sure p,  in the environment  into which the  fluid Is  flowing. 

Since the flow constricts slightly In nonseparatlng outflow 
immediately after the turn.  Its velocity rises and Its pressure 
drops.     During the  subsequent  radial  flow  In the  gap,  velocity 
decreases and pressure rises   (as in a diffuser)  to the value p0 
at the exit.    Thus we obtain a phenomenon similar to that ob- 
served in an external  cylindrical or diffuser mouthpiece with non- 
separatlng outflow. 

Just as in these mouthpieces,  therefore,  the  larger the drop 
Ap  and  the  lower the  absolute pressure p0,   the more will condi- 
tions  favor the appearance of separating outflow. 

In addition to the distinct separating and nonseparatlng out- 
flow regimes,  a flap nozzle  can also develop outflow with partial 
flow separation,  i.e., with separation on the part of the annular 
area bounded by circles of diameters D    and d  ,  i.e., a transition- s     s 
al regime. 

The transition from nonseparatlng to separating flow as x in- 
creases takes place gradually, passing through a regime of partial 
separation, and not all at once. 
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Fig. 111. Results of tests 
on flap nozzle, 
KEY: (a) Q, cm'/mln; (b) 
N, gf; (c) x, mm. 

The results of tests on flap 
nozzles are usually presented in 
the form of curves of the flow rate 
Q and the force N exerted by the 
fluid on the flap as functions of 
the flap displacement x. The re- 
sults of tests on a flap nozzle 
with the dimensions d= = 1 mm, D = 

S ö 

= 1.5 mm, cylindrical-section length 
Jl = 2 mm, and a 50° angle before it 
can be cited as an example of such a 
diagram (Fig. 111). 

At small x, the flow rate Q in- 
creases for a given Ap in propor- 
tion to x. This is because of the 
increase in the gap area, which Is 
irD x in the exit section.  On a fur- 

s 
ther increase in x,, the relation be- 
comes Increasingly nonlinear owing 
to the appearance of local separa- 
tion, and, finally, the curve runs 
parallel to the axis of abscissas 
when separating flow has Intervened 
over the entire area. 

When flow is completely separ- 
ated, flow rate does not depend on 
gap size, which should be quite ob- 
vious . 

The force N increases with x, not from zero, but from an N 
equal to 

4 

which corresponds to a nozzle orifice completely closed by the 
flap. 

With large x, i.e., with separating outflow, the force N0 
ceases to depend on x, which should also come as no surprise. 

In the separating regime, the force N can be found from the 
momentum equation written for the direction of the Jet.  Assuming 
that the pressure In the Jet is equal to the ambient pressure and 
that the outflow velocity has the theoretical value 

we obtain [see also Formula (5.4) and Fig. l).l] 

v*v 

^ 

v   ■• 
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Thus,  the maximum force acting on the  flap Is only twice  the 
minimum.     In occasional cases with  large D /d    and small Ap,   It 

S b 

Is possible to obtain a force N that Is smaller than N0 owing to 
partial vacuum In the gap (see pressure diagram In Fig. 110b). 

We express the flow rate through the flap nozzle by the 
usual formula 

Q- ivA|A '■ NOT REPRODUCIBLE 

where u'  Is the flow rate coefficient of the flap nozzle, re- 
S —z 

ferred to  the  area S   ;   S    = TTD x  Is   the gap  sectional area at  the z       z s 
exit Into the  envlroment. 

Generally  speaking,  the  coefficient  u'       Is  a function of Re, 
but,   for example,   for  the test  results  In Pig.   ill  It  can be  re- 
garded as practically  constant at u!       ■  0.54 In the  linear range. 

Multiplying and  dividing the  flow rate   formula by   .<\.    '   ;.„•", 
we rewrite  It  as   follows: ' 

0 T ..<:v.A: 
V v--- 

f'c where iv^i'iv.''""'.    Is  the  flow rate   coefficient  of the   flap  noz- 

zle referred to the   constant  nozzle-orlflce  area. 

pjr 

i.i 

c: A 
/ 

^ 

P      (.i    r,?     r,"     (, i. 

Fig.   112.  Universal char- 
acteristics  of flap noz- 
zle. 

rate coefficient 

Thus,   the   flow rate  coefficient 
u        of the  flap nozzle Is  equal to 
the product of a practically constant 
quantity by  the  gap ratio  x/d.   I.e., 
u Is   directly   proportional to  x/d s—z 
for the  nonseparatlng regime. 

In the transitional regime, this 
proportionality Is violated, and with 
full  separation,  the  coefficient  U 
ceases  to depend on x/d and becomes 
equal  to  the   flow rate  coefficient  u 
of the  nozzle without  the  flap. 

The   coefficient 
little with Re  as does 

u    varies  Just as 

s-z Conse- 
quently, Introducing a relative flow 
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we obtain a quantity that Is practically Independent of Re and Is 
determined only by the gap ratio x/d. 

If we plot a diagram of u   as a function of x/d, we obtain 
S — z 

a practically universal flow rate characteristic for the flap noz- 
zle (Fig. 112), one that Is valid for various viscosity values 
and even for different flap nozzles. 

Similarly, a practically universal force characteristic can 
be obtained for flap nozzles by plotting the force ratio 

as a function of the gap ratio x/d. 

It is clear from the above that as x/d Increases from zero 
to x/d = 0.3-0.5, the values at which complete flow separation 
intervenes, N Increases from 1 nearly to 2 (see Pig. 112). 

§i*3. SPRAY NOZZLES (INJECTORS) 

A spray nozzle is a special mouthpiece that atomizes fluid, 
i.e., expels it In such a way that on emerging into the atmos- 
phere (or into a space at elevated gas pressure), the Jet is im- 
mediately broken up into minute drops. 

So-called centrifugal or swirl nozzles are used extensively 
in aviation gas-turbine engines and in liquid-fuel rockets to 
spray fuel Into combustion chambers. 

The working principle of such a nozzle is as follows: the 
fluid flow is first twisted and then compressed (Fig. 113). The 
angular momentum (twist) set up by tangential Inflow of the fluid 
remains approximately constant as the fluid moves through the noz- 
zle« as'the flow constricts, therefore, the circumferential velo- 
city component u rises considerably, and large centrifugal forces 
appear and press the flow against the walls to form a thin film, 
which breaks up into minute drops when it emerges from the nozzle. 
This is accompanied by formation of an air (gas) vortex along the 
axis of the nozzle, with nearly atmospheric surface pressure (for 
outflow into the atmosphere).  This air vortex is quite similar 
to the vortex funnel (Fig. 11^) that forms when a container is 
drained through a hole in its bottom, except that it is consider- 
ably stronger in the nozzle. 

Thus, the fluid flow does not fill the entire exit orifice 
of a nozzle of diameter 2r0; it is annular In cross section, with 
the center filled by an air vortex of diameter 2rv (Fig. 115). 

As a result, the contraction coefficient e of a nozzle is usually 
much smaller than unity. 

Because of this and the fact that the resultant outflow velo- 
city V from the nozzle (see Fig. 113) is directed not normal to 

-188- 



Fig. 113. Diagram of centrifu- 
gal nozzle. 

% % 00. ̂  '6. 'ie 

•s 

v: 
#'■ 

Ms 

Pig. 114. Vortex fun- 
nel (whirlpool). 

Fig. 115. Cross sec- 
through vortex in 
nozzle. 

the plane of the orifice, but at a certain angle o whose tangent 
is equal to the ratio of the circumferential velocity component 
u to the axial component v, the flow rate coefficient of a nozzle 
is always substantially smaller than unity and varies widely de- 
pending on the shape and dimensional relationships of the nozzle. 

To determine the throughput of a nozzle from the basic equa- 
tion (9.6) 

V-'v 
it is necessary to know the flow rate coefficient \x  quite accu- 
rately. 

The theory of the nozzle developed by Prof. G.N. Abramovich 
[1] enables us to find the coefficient u from the dimensions and 
shape of the nozzle. We set forth this theory briefly for the 
case of an ideal fluid, for which we write the following three 
starting equations: 

113): 
1) the Bernoulli equation for sections 1-1 and 2-2 (see Fig. 
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or 

ff c= i 
Jf 

where H Is the theoretical head, which equals H^^'''■'■] ^ : 1 and 

Uy are the axial and circumferential components of the velocity V 
in section 2-2 at the surface of the air vortex; 

2) the equation of constant angular momentum of the fluid 
about the nozzle axis for the same sections: 

or 
u 

'I.'    «V, •! 

where r Is the radius of the air vortex In section 2-2; 

3) the flow rate equation for the same sections" 

where 

We have from this last expression 

which gives on substitution into the second equation 

,,  ,,   *  . 

Applying the third equation, we obtain 

I,---—  ■  '    -'   :   A-     .     n. :r- V. 
'      VoJ'l- •'     » 1 -« 

where  A----^n   is a parameter characterizing nozzle shape. 

Substituting the expression found for uv into the Bernoulli 

equation  (the  first equation), 
'See page   197 for footnote. 
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We can now express the flow rate as the product of velocity 
by the annular area of the flow In the nozzle exit section. I.e., 

0' ■•'•; 

1 /. 
^ i .■•. •'/• 

Thus, the flow rate coefficient of the nozzle Is 

/ 
n / V 

f \ (9.20) 

But we do not know the coefficient e, i.e., we do not know 
the size of the air vortex (the radius rv for the given r0 and A), 

and it will be necessary to adopt some additional condition, in 
order to determine it. 

For this condition, Q.N. Abramovich proposed the following 
hypothesis, which was subsequently confirmed by experiment: a 
stable vortex size is that which ensures the maximum flow rate Q 
at a given head H or, in other words, the establishment of the 
outflow regime requiring the smallest head to obtain a given flow 
rate. 

Let us find the e that corresponds to the maximum flow rate 
coefficient u; to do so, we differentiate the radicand in (9.20) 
with respect to e and equate the derivative to zero. We shall 
have 

/■ C. 

from which 

/J (I 0 (9.21) 

This formula enables us to plot a diagram of e as a function 
of A (Pig. 116), which can be used with (9.20) to calculate values 
of u for a series of values of the parameter A and plot a curve of 
U as a function of A. 

As we see from the diagram, the coefficient u decreases with 
increasing A. The physical explanation for this is that an In- 
crease in A means an Increase In the twist of the flow at the noz- 
zle exit, I.e., a continuing increase In the circumferential 
velocity u as compared with the entry velocity v, and, conse- 
quently. Increased vortlclty in the nozzle. As a result, the 
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diameter of the vortex Increaaea, the flow cross section de- 
creases, and an Increasingly large part of the available energy 
H Is expanded In creating the fluid's circumferential velocity. 
For A - 0 (R ■ 0), M ■ 1. i-e-i the flow lB not  twisted and the 
injector Is functioning as a simple nozzle. 

With the above formulas, It Is easy to determine the fluid 
spray angle (the angle of the spray cone) o. With Increasing A, 
the angle o becomes larger and the flow rate coefficient dimin- 
ishes. In the design of nozzles, therefore, the parameter A Is 
so selected as to provide a large enough angle o (up to 60°) In 
combination with a large enough coefficient ji. 

This theory of the spray nozzle was constructed for an Ideal 
fluid. The effect of fluid viscosity In flow through an injector 
is to make the angular momentum decrease toward the exit from the 
nozzle instead of remaining constant. 

As a result, the circumferential velocity components in the 
exit section are found to be smaller and the flow rates larger 
than in Ideal-fluid outflow; at first glance, this is somewhat 
paradoxical. 

We can reduce the viscosity effect to a certain decrease in 
the parameter A and use an equivalent parameter Ae expressed by 

the following formula, which was proposed by L.A. Plyachko: 

NOT 
ltpR00UC»BU A.- 

II ■:K-4 
where X- is the coefficient of friction in the nozzle, which can 

be taken from Table 5 as a function of the Reynolds number calcu- 
lated from the orifice diameter and nozzle entrance velocity. 

TABLE 5 

I'l"! 1.510 .'MO1 •101 

0.11 0,0// 

\ 10* 

0,055 

2-10' 

0,01 

510' 

0,03 

Using the equivalent nozzle parameter Ae calculated in this 

way, we determine the flow rate coefficient w and the angle a 
with consideration of fluid viscosity by reference to the same 
diagram of O.N. Abramovlch, where Ae is taken instead of A.  Since 

normally A < A, the coefficient y is found to be slightly larger 

when viscosity is considered, while the angle a is smaller. 
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Fig.  116. Diagram of c, 
u, and a as functions 
of A for spray nozzle. 
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Pig. 117. Diagram of 
spray nozzle with 
helical swirl vanes. 

Instead of tangential fluid Inflow, so-called helical swirl 
vanes. I.e., two- or three-start screws Inserted Into the Injec- 
tors, 'are often used In liquid rocket engines to swirl Injector 
flow. The fluid passes through the helical grooves of the vane 
Insert and acquires the necessary twist In the process (Pig. 
117). 

The spray-nozzle theory Introduced above Is also valid In 
this case, except that the coefficient A must be calculated by 
the formula 

/. Vc,. CV 

•V"o 
(9.22) 

where r  is the mean radius of the helical thread, S is the area 
sr 

of the normal effective section of the helical groove, n is the 
number of screw starts, and $ is the spiral angle of the helix. 
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M/ 
Fig.   118. Diagram of 
two-nozzle injector. 

Fig.   119.  Diagram of 
two-stage injector. 
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Contemporary gas-turbine engines usually use a^»8**"? °en- 
trlfugal nozzles whose flow rate coefficients  (or "it-orlflce 
areas! are automatically varl.d by  fuel pressure.    Use of "'"• 
nozzles makes it possible to broaden the range of fuel flow rates 
Suh a glveJpresSure range and to maintain the required spray 
efficiency. 

The adjustable-injector types that have °ome 1"*° "" i"" 
clude two-hole burners,  two-stage nozzles, and spill burners. 
They have in common a valving device that opens (ore108"' *n 

auxiliary passage on an Increase    in pressure, and thereby in- 
creases the flow rate coefficient or the exit-orifice area. 

In the two-nozzle or two-hole injector  (Pig.   118), «hat we 
have is essentially two nozzles, one inside the.f^er.    At low 
pressures,  the valve is closed and the primary (internal) nozzle 
operates;  on an increase In the pressure pf, the valve is lifted 
and the secondary goes  into operation at a pressure pj..     Fuel 

supply rises steeply. 

In the two-stage burner  (Pig.   119), we have one nozzle and a 
common swirl chamber, but two entry passages.  /* i°w^"uraa 
fuel is fed through one of the passages, and at high pressures 
through both.     As a result, the parameter A decreases and the 
coefficient v Increases. 

The spill burner  (Pig.  120)  is provided with a drainage line 
in which a valve is Inserted.    The valve opens wider the  lower the 
fuel pressure,  and closes the drain line completely at maximum 
pressure.    This, an increased entry velocity is obtained at low 
pressures;  this  is equivalent  to reducing the entry area and this 
means an increase in the equivalent parameter Ae and a smaller u. 

This Is what is    needed to broaden the flow rate range. 

^ 
V ̂  
^ 

^ ** 
o   Cr.uS 

Fig.   120. Diagram of spill 
burner. 
KEY:   (a) drain. 

Calculations  for these adjustable injectors  can be made on 
the basis  of the same Abramovlch  formula,  but this  requires taking 
account  of the peculiarities  of each type   (see examples;. 

Example   1.    Construct the hydraulic  characteristic  of the 
two-hole burner described above   (see Fig.   118). i.e.,  a curve of 
the relation between  flow rate  and the pressure drop across the 
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Pig. 121. Charaottr- 
ixtloi of (two-hol«) 
burner. 

noiilt, If th« ••oondary hol* (••oondary 
pas«AM) SO«I Into oporatlon at a prot- 
•urt drop of Ap,. Tha gaomatrlcal ohar- 
aottriitlos of both burnar paaaacaa (dl- 
■analoni and paraaatars Ai »nd A,) and 
tha hydraulio oharaotariatlo of tha ra- 
gulating valva ar« glvan. Solva tha 
prOblan In ganaral for«. 

Solution. 1. From tha valuaa glvan 
for A, and A,, oonault tha diagram (Fig. 
116) to find Mi and it,. 

2. Applying tha formulas 

w« conatruot tha characteristic« of tha primary and secondary 
burner passages (curves 1 and 2 in Fig. 121). 

3. We add tha characteristics of the regulating valve 3 and 
the noaale's secondary passage. In adding, it must be remembered 
that the pressure drop Ap across the noacle is expended in the 
second passage both in the nestle itself and in the valve. In 
adding the characteristics, therefore, it is necessary to sum the 
ordinates Ap for given flow rate values. The result is curve 4. 

1». To obtain the over-all hydraulic characteristic 5 of the 
burner, we add the characteristics of the primary and the second- 
ary with the valve by adding the flow rates (see Fig. 121). 

Exampl« 2. Find an expression for the parameter A,, of a 
centrifugal spill burner if the total fuel feed to the burner Q ■ 
■ Q + Q , where Qf is the flow rate through the burner orifice 
and Qn is the spill rate (see Pig. 120). 

Solution. 1. We introduce the spill coefficient kn, which 
equals 

is 
2. The fuel supply to the nozzle through the entry passages 

3. The amount of fuel that has passed through the burner hole 

Consequently, ^^^Oori 
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from which 

5. Substituting the value found for v. Into the angular-mo- 
mentum aquation and then Into the Bernoulli equation, we find the 
velocity v In much the same way as we did previously, i.e., 

1     /Slf?/. 

/H^ 

6. The fuel supply Qf through the burner is determined by 
the formula 

7. Comparing this formula with  (9.20), we find that 

>l,«7>/1. 

HOT 
**'*ooüt 
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Footnotts 

Manu- 
script 
page 

163     ^he diagram was plotted by A.D. Al'tohul' C»] on the 
basis of experiments of a number of authors. 

178     'Tests conducted at Kiev Civil Aviation Institute. 

182     'Tests conducted by K.N. Popov at the Bauman Moscow 
Higher Engineering School. 

190     "We assume uniform distribution of the axial velocities 
over the annular flow section at the exit from the 
nozzle. This proposition can be proven theoretically; 
see [1], or [?]. 
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Symbol List 

Manu- 
script Symbc • 1 English equivalent 
page 

160 CT St wall 

160 C s Jet 

161 T t theoretical 

167 aiM atm atmospheric 

169 KP kr critical 

17*» BO 3 voz air 

m X zh fluid 

175 M m local 

180 K k valve 

182 KJI kl valve 

183 np pr spring 

181 c s nozzle 

16H 3 z flap 

187 C-3 3-Z flap nozzle 

190 B V vortex 

192 0 e equivalent 

192 4) f injector, burner 

193 CP sr mean 
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CHAPTER      X 

RELATIVE AND NONSTEADY NOTION OF FLUID  IN PIPES 

$44.   BERNOULLI EQUATION FOR RELATIVE NOTION.     NOTION UNDER CON- 
DITIONS OP WEIGHTLESSNESS 

The Bernoulli equation In the form of (4.12) or  (4.16) Is 
valid In those cases of steady fluid flow when gravity is the 
only mass  force acting on the fluid.    In aviation and rocket en- 
gineering, however, we encounter flows in the calculation of 
which it is necessary to take into account the inertia forces of 
translational motion in addition to gravity.    Cases in point are 
those in which the channel (for example, a pipeline) along which 
the fluid is moving is itself moving in space with a certain ac- 
celeration.     If the inertial force that results is constant in 
time, the flow of the fluid relative to the channel walls may be 
steady, and the Bernoulli equation for it can be derived in the 
same way as in $16.    The difference will be that we must add the 
work of the inertial force acting on a filament of weight dQ as 
it moves  from section 1-1 to section 2-2 to the work of the pres- 
sure and gravity forces  (see Pig.   24).    Then we divide all terms 
of (4.12) by dQ, I.e., we refer it to unit weight and, obtaining 
a certain head, transpose it to the right member of the equation. 
This will be the Bernoulli equation for relative motion, which 
assumes the  following form in the case of a real flow: 

*  i ',J..| i   "'     •  -I '■   'i   '■  'V//I \// (10.1) 

where AH.  Is the so-called inertia head, which is the work of 
in 

the inertial forces per unit weight, taken with the opposite 
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sign. The sign reversal Is accounted for by the fact that we 
transposed this work from the left to the right member of the 
equation. 

Let us determine the inertia head for the following basic 
cases of relative fluid motion. 

Straight-line uniformly accelerated 
motion of channel. If the channel through 
which the fluid is flowing moves In a 
straight line with a constant accelera- 
tio.: a (Pig. 122), all fluid particles 
moving through this channel are acted upon 
by the same time-constant Inertlal force 
of translational motion, which may work 
either with or against the flow. 

Referred to unit mass, this force is 
equal to the corresponding acceleration a 
and Is opposed to the acceleration; each 
unit weight of fluid will be acted upon by 
an inertlal force 

e 
The work done by this  force in moving fluid  from the first 

section to the second  (like  the work of gravity)  does not depend 
on the  shape  of the path, but is determined only by the differ- 
ence between the coordinates measured in the direction of the ac- 
celeration o;  it therefore equals 

Pig.   122.  Plow in 
channel moving with 
acceleration. 

A//.,, /.. (10.2) 

where t    is the projection of the  channel segment  under consldera- a 
tlon onto the direction of the acceleration a. 

To avoid giving AH.     the wrong sign in the right member of 
the Bernoulli  equation, we  can hold to the  following rule, which 
proceeds directly from the physics  of the phenomenon. 

If the acceleration a is directed from section 1-1  to sec- 
tion 2-2 and the lnertlal~force in the opposite direction, this 
force will work against flow of the  fluid and the  inertia head 
must be given the plus sign.     In this case,  the inertia head will 
lower the pressure in the second section by comparison with the 
first and, consequently, will have an effect similar to that of 
the hydraulic  losses Eh, which always appear in the right side of 
the Bernoulli equation with  the plus sign. 

If,  on the other hand,   the acceleration a is  directed from 
the second section toward the  first, the inertia force assists 
the flow and the inertia head must be given the minus  sign.    In 
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this case, the Inertia head will raise the pressure In the second 
section, I.e., It will have an effect opposite to that of the 
hydraulic losses. 

The Bernoulli equation for this case of relative Ideal-fluid 
motion can also be obtained by Integrating differential equation 
(4.15). We have In this case 

where a , a , and a are the projections of the unit Inertia force 
x  y      z 

of translatlonal motion onto the coordinate axes. 

Equation (4.15) can be written 

<V'-v.| v'i'IK- £)'' ^''J' U'(y). 

or 

''I "v 1 ';(£):: i (V'A''1 ','''!r'i C''h) ^ l"V" 
where dU    Is  the Increment of the  force  function of the Inertia a 
force  (the potential of this  force with the opposite sign)  and 
equals  (see  §13) 

^ :--•(»,.•/..:,:, (n.V; 

On Integrating the differential equation In the range from 
section 1-1 to 2-2, we obtain 

'■■i'  M i ■ *r H"s(""^ v'- v 

or 

\     h: v 'Jp. 

Thus we have obtained the same Inertia-head expression as 
before.    The minus  sign appears before AH^ because the value of 

A 

rc)r.(r', '') was assumed positive for Integration, I.e., force a was 
assumed to coincide with the flow direction projected onto this 
force, and this means that the force a assists the flow. The 
sign obtained conforms to the sign rule given above. 

Rotation of channel about vertical axis. Let the channel 
through which the fluid is moving be in rotation around a verti- 
cal axis at constant angular velocity w (Fig. 123). The fluid 
will then be acted upon by an inertia force of rotational motion, 
which is a function of radius.  It will therefore be necessary to 
integrate in order to obtain the work of this force or the change 
in potential energy due to its action. 
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Flg.   123.  Flow In 
rotating channel. 

A unit weight will be acted upon by 
an inertia force equal to 

The work of this force in radial dis- 
placement through a distance dr will be 

I 

and for motion from radius r, to radius r2 (along any curve), the 
work will be found by integrating this expression with rj and r2 
as limits. We find the magnitude of the inertia head by inte- 
grating, but the sign must be reversed (as we noted earlier, this 
term is transferred from the left to the right member in deriving 
the Bernoulli equation). 

We finally obtain 

(10.3) 

The sign of the inertia head obtained with this formula con- 
forms to our sign rule. We obtain the same result by integrating 
differential equation 0.15). 

If the Z-axis is aligned with the axis of channel rotation 
and pointed upward, 

X    w'jr; K^-w'/,; Z- ~ g 

and (4.15) becomes 

vflxt/x ]  <)'/,//(/■ F.dJ r=J-r//> | <l(V'). 

Since x2 + y2 

^(v)-^   i^^(y)- 
Integrating and transposing. 

2;; 

i.-r- 

"in 
■ con;l 

or 

where 
2A'' f;^"  
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Fluid motion under conditions of weightlessness Is character- 
ized first of all by the fact that the resultant mass force acting 
on each fluid particle Is zero, because gravity Is offset by the 
Inertlal force of translatlonal motion. In the Bernoulli equa- 
tion (10.1) written for two flow sections In a pipe, therefore, 
we must set z1 - z2 ■ AH. . 

In weightlessness, fluid Is unable to form a free Interface 
of the usual form with the gaseous medium.  Fluid and gas mix In 
a tank and form a two-phase medium (a llquld-and-gas suspension). 
It Is also possible for the gas to become concentrated at the 
center of the tank In the form of a spherical nucleus, while the 
(wetting) fluid envelops the entire Inside surface of the tank. 
This requires preventing contact between the fluid and gas In 
hydraulic systems that must function under conditions of weight- 
lessness.  As In an accumulator (see Fig. 223), a separator In 
the form of a spring- or gas-loaded moving piston or an elastic 
diaphragm (membrane) must be placed between the fluid and the 
gas. 

In the absence of fluid-gas contact, the flow of fluid 
through the pipelines under the punp, gas, or spring pressure 
gradient Ap under weightless conditions will differ from the 
flow under ordinary conditions only in that the levelllng-height 
difference Az will have no Influence. And, in the cases of large 
pressure gradients Ap and flow in sealed pipelines (§51), there 
will be no difference at all between the weightless and ordinary 
flows. 

Nor will there be anything particularly different about weight- 
less fluid flows into a gaseous medium through holes and mouth- 
pieces under large enough heads until the fluid Jet loses its 
kinetic energy.  Outflow through injectors and atomization of 
fluids will take place as usual. 

The behavior of a fluid that does not have a head and comes 
into contact with air (gas) will be quite different under condi- 
tions of weightlessness.  In this case, surface-tension forces be- 
come the decisive factor. 

While we know (see §3) that under "ground" conditions, these 
forces cause fluid to rise or drop in capillaries by a height In- 
versely proportional to tube diameter and dependent on the nature 
of the fluid, surface-tension forces cause continuous motion of a 
weightless fluid in a pipe one end of which is immersed in the 
fluid. Theoretical analyses have shown that the fluid flow velo- 
city first rises until friction becomes equal to surface tension. 
Then the flow velocity begins to decrease gradually because the 
friction in the pipe is continuing to increase. 

Thus, a simple pipe can, under weightless conditions, perform 
the function of a small pump, for which it makes no difference In 

•203- 



which direction the fluid-supply pipe is pointed. 

Example.  Determine the absolute pressure at the intake into 
the pump of the aircraft oil system considered in the example in 
Chapter VI (see Fig. 52) as the airplane goes into a dive with 
negative g-factor n .  The inertia force is directed upward and 

is twice gravity. 

Solution. The unit inertia force is (see §11) 

.«- -lg, ■ 

and the inertia head 

We have from the Bernoulli equation for relative motion 

•ü-«.* + -£i—o^--»„-i«„-lS2-I«-l2 cm. 
v.    v« 3e     " 

or 

»i-Kr^flO-S mmHg. 

This low pump intake pressure is not acceptable; measures 
must therefore be taken to Improve the altitude performance of 
the oil system. 

§45. NONSTEADY FLUID FLOW IN PIPES 

Since nonsteady fluid flows are generally quite complex, we 
shall limit ourselves to the basic particular cases encountered 
in aviation engineering - those of nonsteady fluid flows in con- 
stant-section pipes and in pipelines composed of sequences of 
pipes with differing diameters. 

Take a pipe of length J, and diameter d with an arbitrary 
orientation in space (Flg. 12H)  and denote by z1  and z2 the 
levelling heights of the initial (1-1).and final (2-2) sections 
of this pipe, respectively.  Let a fluid move in this pipe with 
an acceleration that can. In .the general case, vary in time: 

At a given point in time, the velocity v and acceleration J[ 
are obviously the same for all cross sections through the pipe. 

For the time being, we shall disregard frictlonal energy 
losses and assume that the velocities are distributed uniformly 
over the sections. 
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Flg.   124.   Diagram of 
nonsteady pipe  flow. 

Since 

we have 

Isolating an elementary cylindrical 
volume of length di  and base area dS from 
the total moving volume of fluid In the 
pipe, we write Its equation of motion. 

Projecting the forces of pressure 
and gravity onto the tangent to the pipe 
axis, we obtain 

/x/S- [p A*1' til\ itS\\i/Sin cos t-.-.V- dSifl'1", 
\       01     / s      .    ill 

or 

^-rf/fv  OM-//. V  «v 

ft   ill 
- ill. 

cos«-- 

~P'-^"'- Ji'l. 

(It must be remembered that £ Is a function not only of t, 
but also of t.) 

On Integrating over the length of the pipe for a certain 
point In time, 

v Mr 
or 

where 

» It.''' - ■. I '•' i ;. (10.4) 

/.■ 

This equation resembles the Bernoulli equation for relative 
motion, and the term h.  Is also called the inertia head, but h. In 'In 
should not be confused with AH , since their meanings are dif- 

ferent.  As we see from (10.4), h.  represents the difference be- 

tween the fluid specific energies in sections 1-1 and 2-2 at a 
particular point in time, a difference governed by the accelera- 
tion  (or deceleration) of the fluid flow in the pipe. This dif- 
ference is positive for acceleration, i.e., the fluid's specific 
energy decreases downstream, but it is negative for deceleration, 
which means an increase in fluid specific energy from the first 
to the second section. 

In the presence of hydraulic energy losses in the pipe 
(local and frlctlonal), they must also, by analogy with the 
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Bernoulli equation for steady flow, also appear In the right mem- 
ber of  (10.4),  i.e.. 

*,+*-*,+-7-'-a H y (10.5) 

—— b «yiuieifi z .,■««« A/«.-«' 

Pig.   125.  Construction of piezometric 
line  for nonsteady pipe  flow. 
KEY:   (a) piezometric  line;   (b)  piston. 

It should not be forgotten that Eq.   (10.5)  is valid only for 
a constant-section pipe.    If the pipeline consists of several seg- 
ments with different sectional areas   (S^ S,, etc.),  the inertia 
head for the entire  line must obviously be found as the sum of 
the inertia heads  for each segment.    Here,  the corresponding ac- 
celerations  are determined from the  following equations, which 
are the result of time differentiation of the flow rate equation: 

at 

and so forth. 

In addition,  as  follows  from the energy considerations pre- 
sented above,  it is  necessary to take account of the  velocity 
heads in the initial and final cross sections of the pipeline. 

Thus,  the equation of nonsteady  fluid flow between sections 
1-1 and n-n assumes  the form 

Pi  1. 
'24' 

,   1 r> 1 
' 2/; 

-V,/;- (10.6) 

This equation Is used in calculations for the starting and 
transitional modes of aircraft hydraulic systems and especially 
of the fuel  systems of liquid rockets. 

We present the  following example to illustrate this equation. 
Let a piston move to the  left with a positive acceleration i   (Fig. 
125) in a pipe connected to tanks A and B.    We apply Eq.   (10.5) 
for sections 0-0 and 1-1 and then for sections  2-2 and  3-3,  and 
construct the piezometric  line  for a particular point  in time; we 
shall have 
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and 

j, .t Ai . . /'I i «■'' | ),..'., .'''' I..A./ 

A. ^.i A.|xj'.-.,".|-.y/. 

In the former case, therefore, the Inertia head, which adds 
to the head losses, causes an even greater pressure drop at the 
piston than that in uniform motion. A partial vacuum is formed 
in section 1-1, and the fluid may even separate from the piston. 
In the latter case, the inertia of the fluid column causes a 
pressure Increase at the piston as a result of the same addition 
of htr and hin. 

With a negative acceleration j_, i.e., when the fluid is de- 
celerated, the inertia head is negative in both oases and, con- 
sequently, offsets the head loss to one degree or another and 
lowers the vacuum in the former case and the pressure increase 
In the latter. 

§46. WATER HAMMER IN PIPES 

Water hammer is an oscillatory process that talces place in 
a resilient pipe containing a nearly Incompressible fluid when 
its velocity or pressure changes suddenly.  This process is a 
very rapid one and is characterized by alternation of abrupt 
pressure Increases and decreases.  Here, the pressure variation 
is closely related to the elastic deformations of the fluid and 
pipe walls. 

Water hammer is most frequently caused by the quick closing 
or opening of a valve or other flow-control device. There are 
also other causes. 

The first theoretical and experimental study of water hammer 
in pipes was made by Prof. N.Ye. Zhukovskly.  In our explanation 
of this effect, we have used the basic premises of his fundamental 
work "0 gidravllcheskom udare" [Water hammer], which appeared in 
1899. 

Suppose that valve A (Pig. 126a) at the end of a pipe through 
which fluid is moving at velocity v0 and pressure po has closed 
instantaneously. The fluid particles will stop on striking the 
valve, and their kinetic energy will be converted Into the work 
of deforming the pipe walls and the fluid. The pipe walls come 
under tension and the fluid is compressed In accordance with the 
pressure Increase Ap^.1  The particles that have been stopped at 

the valve will be run onto by other neighboring particles, and 
the latter will also lose velocity, with the result that section 
n-n moves to the right with a velocity a, the shock-wave velocity; 
the actual transition region in which the pressure changes by &pU(i 

is known as a shock wave. 
'See page 217 for footnote. 
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When the shock wave reaches the tank, the fluid has been 
stopped and compressed over the entire length of the pipe, and 
the pipe walls have been stretched.  The shock pressure increase 
Ap . has propagated the entire length of the pipe (Pig. 126b). 

Kl .1-™:::. 1 f- 
q/sKilv }X'.T.   f'. \''o 

"u-^c'' 1 , Po-AK, 

kl-- f 
/'.' 

Pig. 126. Diagram of motion of 
shock wave in water hammer. 

But this is not an equilibrium situation.  Under the influ- 
ence of the pressure drop Ap d, fluid rushes from the pipe Into 

the tank, with this motion beginning at the section directly at 
the tank.  Section n-n will now run back to the cock at velocity 
a, leaving the equalized pressure p0 behind it (Pig. 126c). 

The fluid and pipe walls are assumed to be perfectly elastic, 
so that they return to their previous states corresponding to the 
pressure p0, The work of deformation is converted entirely back 
into kinetic energy, and the fluid in the pipe acquires its origi- 
nal velocity vB) but the latter is now directed the other way. 

At this speed, the fluid column (Pig. 126d) will be repelled 
from the valve, with the result that a negative shook wave -Apud 
is formed and travels from the valve to the tank at velocity a, 
leaving compressed pipe walls and expanded fluid behind it because 
of the pressure decrease -Apud (Fig. 126e).  The fluid's kinetic 

energy is again transformed into a work of deformation, but one 
of the opposite sign. 
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b) 
iv. 

L Jlüli i;    i 

■ -;;iiiiiifi|iiii=    t 

■iijiirnii '''I1 

..i 

irhiiii'l liili 

'•..|A 

Fig. 127. Time variation of 
pressure at valve and at center 
of pipe. 

Figure 126f shows the state of the pipe at the time of ar- 
rival of the negative shock wave at the tank.  As In the case of 
Pig. 126b, It Is not an equilibrium condition.  Figure 126g shows 
the process of pressure equlllzatlon In the pipe and tank, which 
Is accompanied by formation of velocity v,,. 

Obviously, as soon as the shock wave -Ap , reflected from 

the tank reaches the valve, the situation that prevailed when the 
valve was closed is repeated.  The entire water-hammer cycle is 
run through again. 

In his experiments, N.Ye 
cycles with a progressive decrease in Ap . 

UQ 
tion and loss of energy to the tank. 

Zhukovskly registered 12 complete 
as a result of fric- 

The time jourse of water hammer is illustrated by the dia- 
gram of Pig. 127. 

The solid lines on the upper diagram indicate the theoreti- 
cal pressure change Apud at point A (in Pig. 126) directly at the 

valve (it is assumed that the valve closes instantaneously). 

At point B, which is situated at the middle of the pipe, the 
shock pressure »ppears with a time delay V2a.  It persists during 
the time necessary for the shock wave to travel from point B to 
the tank and back, i.e., during a time i/a.  Then pressure po Is 
established at point B (i.e., Ap ud 0) and is maintained until 
the negative shock wave from the valve arrives at point B, after 
a time interval Ä/a. 
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Flg. 128. Pipe under 
tension. 

Pig. 129. Diagram of 
fluid compression in 
pipe. 

The broken lines on the same figure approximate the actual 
time variation of pressure.  In reality, the pressure rises (and 
falls) steeply, but not instantaneously. Moreover, the pressure 
oscillations are damped, I.e., the amplitude values decrease as 
a result of energy dissipation. 

Let us find the shock pressure Ap . on the assumption that 

the fluid's kinetic energy is converted into work of pipe-wall 
and fluid deformation. The kinetic energy of the fluid in a pipe 
of radius R equals 

The work of deformation is half the product of force by elon- 
gation.  Expressing the work of pipe-wall deformation as the work 
of pressure forces on length AR (Pig. 128), we obtain 

-1 M,  VJUMi. 

According to Hooke's law. 

Mi /;"-«, (10.7) 

where a is the normal stress in the pipe-wall material and is re- 
lated to the pressure Ap d and the wall thickness 6 by the fami- 

liar equation 

o~.~— ■■- - . 
. » (10.8) 

Taking the expression for AR from (10.7) and a from (10.8), 
we obtain the work of deformation of the pipe walls: 

The work of compression of a fluid volume W can be repre- 
sented as the work of pressure forces on length AÄ. (Pig. 129), 
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I.e., 

«.4„- i? f!?alofy t0J
Hoolt•,• 1*»» for linear elongation, the rela- 

tive fluid-volume decrease &W/W Is related to pressure by 

--/C-A/»,,, 

where K Is the bulk elastic modulus of the fluid (see S3). 

Taking the volume of fluid In the pipe as W. we obtain an 
expression for the work of compression bf the flildi 

i"'K      * 

Thus,  the klnetlo-energy equation takes the form 

Solving It for Apu(1, we arrive at N.Ye.  Zhukovskly's formula: 
hp^^~/y-m- (10.9) 

{/   K ■'' I.'; 
i 

The quantity  -j/^-:-^ has the dimensions of velocity.    Its 

Mn!1^- !KgnnfiC?noe.oan be "pertained by assuming that the 
1 e      th* ™f eiy rl8"/all». I.e.. E -'-.    Then8only $%, 
sitv'o 5L hn?v ^/^""V" a homo8eneou8 el«»tlc medlui of den- sity p and bulk modulus K, remains of the last expression (see 

and llSä'm/^r^u! ^ ^ ^ *"*'' 1116 n/a for «"ollne' 
Since E fi » i.n our case. 

/f 
«i^n^pn !^ velocity of propagation of a shock wave In fluid 
filling an elastic pipe. This can be proven by examining an •!• 

rivin7t^8SlaCefnt tX 0f the Bhock wav« Srlng si ä;gaS IJ! plying the momentum-change theorem to pipe elemint dx (Pig? 130): 

K/Vl-A/',,) /'v]S(l/: ivt~0)vS(.'x. 
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Hence the propagation velocity of the shock wave 

or 

v~0 "a 

hfi'A- | 

Pig. 130. Displace- 
ment of shock wave 
during time dt. 

dt Co 

Ay«=0^0«. (10.10) 

when the closing time 

Comparing the resulting formula with 
(10.9), we see that the above statement was 
correct. 

Thus, the Zhukovskiy formula (10.9) 
can be abbreviated Into the form of (10.10). 
When the velocity In the pipe does not de- 
crease to zero, but only to v, we have the 
so-called incomplete water hammer, and 
Zhukovskiy's formula becomes 

This formula Is valid for very quick 
closing of the valve or, more precisely. 

,:,<'c' 
?/ 

where the time t0 is known as the phase of the water hammer. 

With this condition, we have a direct water hammer. 

Pig. 131. Shock pres- 
sure rise with t ,,_ 
^ 4. zakr 

Prom this. 

When t. > t0, we have the so- 'zakr 
called indirect water hammer, in which 
the shock wave reflected from the tank 
returns to the valve before it Is com- 
pletely closed. Obviously, the pres- 
sure increase Ap' will be smaller in 

this case than Ap , for the direct ham- 
mer. 

Jud 

If we assume that the  flow velocity 
decreases when the valve Is  closed and 
that pressure rises  linearly with time, 
we  can write  (Fig.   131) 

M' -    '0 

A/-;.. C; ^ " 71 ?'f -u (10.11) 
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Thus,  unlike Ap   .,  the quantity ApVj depends on pipe  length, 
but not on the velocity a. 

Fr_ 
\      i/=o      LV;VI  A—- 

a) 

I 
w  | 

I 

b) 

Fig. 132. Diagram of blind pipe. 

It must be remembered that the shock pressure can be doubled 
In a so-called blind pipe. Let us explain this as follows with 
reference to Fig. 132.  Suppose that a pipe with an Initial low 
pressure p0 Is cut off by a valve from a large tank (or pump) 
with a high pressure Pj. On Instantaneous opening of the valve, 
the pressure at the beginning of the pipe rises suddenly by an 
amount Apud - p1 - p0. 

The resulting pressure wave moves at velocity a toward the 
end of the pipe (see Fig. 132a).  The pressure behind the wave 
front differs from the pressure In front of It by Ap ,, and the 

velocity of the fluid In the plane of the front Increases from 
zero to the value Vo determined by Formula (10.10), I.e., 

When the wave front arrives at the blind end, the fluid pres- 
sure has been raised by Ap . over the entire length of the pipe, 

and all of the fluid has acquired the velocity v,,.  Since further 
motion of the fluid Is Impossible, the velocity of the entire 
fluid column drops to zero. In turn Increasing the pressure by 
another Ap . - pv0a. 

Thus, a new (reflectid) pressure wave moves down the pipe 
toward the valve; behind It, the pressure has risen by 2Ap . by 

comparison with the Initial value, and the velocity of the fluid 
v ■ 0 (see Pig. 132b). 

If there Is a fluid-filled volume W at the end of the pipe, 
e.g., a hydraulic power cylinder, this volume will have a damping 
action and the pressure will Increase by less than two times.  If 
volume W Is very large, there will be practically no reflection. 
The volume of fluid In a hydraulic power cylinder Is usually very 
small or even zero (piston In contact with cylinder head) when 
the high pressure Is switched to It, so that the possibility of 
doubled pressure Is quite a real one. 
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Formula (10.10) was derived with a number of simplifying as- 
sumptions: validity of Hooke's law for the deformation of the 
pipe and fluid, absence of friction in the fluid and of other 
forms of energy dissipation during the hammer process, uniform 
velocity distribution over the pipe section. 

Experimental studies of water hammer made by Prof. I.F. 
Livurdov and others indicate that if the fluid contains no air 
and if the initial pressure po is moderate, the Zhukovskly for- 
mula is confirmed quite well by experiment in spite of the above 
assumptions.  It would appear that nonuniform velocity distribu- 
tion and, consequently, nonuniform flow conditions in the pipe 
(laminar or turbulent) would have to influence Ap ,, since the 

kinetic energy of the flow depends on it.  However, this effect 
is practically absent.  I.F. Livurdov's explanation for this is 
that the abrupt deceleration of the flow is accompanied by strong 
shearing between layers of fluid and a large energy loss to in- 
ternal friction, which approximately offsets the kinetic-energy 
excess due to velocity nonuniformity. The loss of energy to fric- 
tion and dissipation of energy during the subsequent course of 
the hydraulic hammer help to damp out the pressure oscillations. 

It was found as a result of B.S. Rozhdestvenskiy's special 
studies [27] of water hammer in aircraft hydraulic-system pipe- 
lines that under real conditions with high enough Initial pres- 
sures p0, the quantity Ap , exceeds the theoretical value given 

by the Zhukovskly formula by 10-20? and more. This is explained 
by a slight increase in the fluid's elastic modulus K with in- 
creasing pressure p0 (see §3), and, consequently, an increase in 
the velocity a. This means a certain deviation from Hooke's law, 
i.e., violation of the linear relation between deformation and 
pressure. 

Owing to the high operating speeds of hydraulic-system con- 
trols (electromagnetic valves, etc.), which have very short re- 
sponse times (of the order of 0.008-0.002 s), Apud ranges up to 

several tens and even hundreds of kgf/cm2 in the pressure lines 
of aircraft hydraulic systems.  These sharp pressure rises may 
damage pipelines and other system components. Moreover, as they 
propagate throughout the entire piping system, water-hammer pres- 
sure pulses may cause some devices in the system to operate unex- 
pectedly (pressure relays, hydraulic locks, etc.). 

Countermeasures against water hammer in aircraft systems are 
matched to each specific case.  The most effective method of 
lowering Apu<j is to eliminate the possibility of direct water 
hammer, which reduces, for a given pipe, to increasing the operate 
times of valves and other devices. A similar effect is obtained 
by installing compensators in the form of adequate local fluid 
volumes or hydraulic accumulators in front of these devices. 
Shock pressure can also be lowered by lowering the velocity of 
the fluid in the pipes (increasing pipe diameter at a given flow 
rate) and shortening the runs of pipe (to obtain indirect hammer). 
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Sometimes, rather than lower the pressure Ap  ,,  the designer pre- 
fers  to Increase the strength of weak links In the  system. 

Example.    An appliance In an aircraft hydraulic system Is 
shut  off by means  of an electromagnetic valve.     The  valve closes 
the  line  completely during a time t    .     ■ 0.02 s. 

k 

toj.b 

Fig. 133■ Illustrating example: 
1) hydraulic accumulator; 2) elec- 
tromagnetic valve. 
KEY: (a) to appliance; (b) drain. 

Determine the pressure rise In front of the valve when the 
appliance Is shut off, using the following data (Pig. 133). 

The length of the pipeline from the valve to the accumulator 
in which the shock pressure is quenched Is A ■ 4 m, pipeline 
diameter 12 mm, pipe wall thickness 6-1 mm, material steel (E » 
- 2.2 • 10s kgf/cm1*); bulk elastic modulus of AMQ-IO fluid K - 
- 13 300 kgf/cm2, fluid density p - 90 kgf-sVm'*, flow velocity 
in pipe v, - 4.5 m/s. 

Solution.  We determine the propagation velocity of the shock 
wave through a pipe filled with AMG-10 fluid: 

r  ['      K i'.   t  IS.'VMOi  0,f.;iMVM(i"'  HAI 

or 
r^  mo m/s. 

The full shock pressure with Instantaneous closing of the 
valve would be 

/;■.. .,■ r-...vn,., :,...« :„Ä. 
mz   om2 

But we have indirect water hammer in this case, since the 
back-and-forth travel time of the shock wave is 

'»-« "mo-0,0' •' s' 
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I.e., it Is shorter than the complete closing time t^j^ of the 

valve.  Thus, the pressure rise In front of the valve Is only 
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Footnotes 

Manu- 
script 
page 

207      lHere we cannot disregard the compressibility of the 
fluid, as is usually done in hydraulics problems, 
since it is the fluid's slight compressibility that 
causes the large but finite shock pressure Ap .. 
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Symbol   List 

Manu- 
script 
page 

Symbol English equlvalen' 

199 KH in Inertia 

207 TP tr friction 

207 y« ud shock, hammer 

212 saKp zakr closing 
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CHAPTER      XI 

HYDRAULIC DESIGN OF PIPELINES 

§^7.   THE  SIMPLE CONSTANT-SECTION PIPELINE 

All pipelines  can be classified as simple or complex.     We 
shall call an unbranched pipeline a simple pipeline and a pipe- 
line with one or more branches  a complex pipeline. 

Fluid moves  through a pipeline because  Its potential energy 
at the beginning of the  line Is greater than at Its end.    This 
gradient   (difference)   of potential-energy  levels may be created 
by  a variety of methods:   operation of a pump,  gas pressure,  or 
a difference in fluid  levels. 

Aviation engineering deals  chiefly with pipelines In which 
fluid motion Is due to pump operation.     Certain liquid-rocket and 
other systems use what  Is known as gas-pressure fluid feed.     Fluid 
is  allowed to flow under a level difference   (levelllng-height 
difference)  chiefly in ground applications. 

The pipeline working principles  set  forth in this  section 
(and in §§^9 and 50)  apply equally to all three of these fluid- 
feed variations and are  independent of the method by which  the 
energy gradient is set  up.    Peculiarities  of pumped  fluid supply 
through pipelines  are  set  forth in §51. 

Let a simple constant-section pipeline,  oriented arbitrarily 
in space   (Pig.  13^), have a total length SL and a diameter d and 
contain a number of local resistances.     In the initial section 
1-1, we have levelling height  z,  and excess  pressure p,, and in 
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the final section 2-2, Zj and pj, respectively.  The flow veloci- 
ties are the same In these sections because of the constant pipe 
diameter, and equal v. Let us write the Bernoulli equation for 
sections 1-1 and 2-2, setting al 
heads: 

Pt. 

a2 and cancelling the velocity 

Pf> «i+-^"'«»i--\v 2". 

or 

*-* +JäH 
Y 

= 4z /'J 

?' 
Pig.  13'*.  Diagram of simple 
pipeline. 

We shall call the plezometrlc 
height In the left member of the 
equation the required head H    t  • 
If, however, this quantity Is 
given, we shall call It the avail- 
able head H__,_.    As we see  from rasp 
the equation, this head Is composed 
of the geometrical height Az to 
which the fluid rises  In motion 
along the pipeline,  the plezometrlc 
height at the end of the line,  and 
the sum of all hydraulic losses In 
the pipeline. 

The sum of the first two terms &z + pj/y Is a static head; 
we can represent It as a certain equivalent geometrical fluid 
rise height Az' and the last, term Lh as a power-law function of 
flow rate;  then 

//        sr./'-r-iA'-'-l-V As-   A* (11.1) 

where k and the exponent m have different values depending on 
flow regime. 

For laminar flow, we shall have on substitution of equiva- 
lent lengths for the local resistances In accordance with (6.5) 
and  (8.19) 

consequently. 

*:=-F;v(?:!;'   >. and m - 1. (11.2) 

For turbulent flow, we obtain from (4.17) and  (4.18), ex- 
pressing velocity In terms of flow rate. 

^(^•'^h;s 
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consequently, 

and m (11.3) 

Formula (11.1), supplemented by Expressions (11.2) and (11.3). 
is the basis for mathematical design of simple pipelines.  At the 
same time, this formula enables us to construct a required-head 
curve. 

The latter is a diagram of the required head as a function 
of fluid flow rate in the pipe. The greater the flow rate that 
must be put through the line, the greater is the required head. 
In laminar flow, the required-head curve is a straight line (or 
nearly straight when the dependence of Aekv on Re is considered), 

and in turbulent flow it is a parabola of the second degree (for 
X. - const) or of approximately the second degree (when the depen- 

dence of X. on Re is considered).  The quantity Az' is positive 

when the fluid rises from a lower to a greater height in its mo- 
tion through the pipe or moves into a space at elevated pressure 
and negative when it flows downward or into a space with a par- 
tial vacuum. 

"■.■oij '. 

Fig. 135. Required-head 
curves. 

Various forms of required- 
head curves are shown in Pig. 135 
for laminar (a) and turbulent (b) 
flows.  The slope of the curve de- 
pends on the coefficient k and in- 
creases with increasing pipeline 
length, decreasing diameter, and 
increasing local hydraulic resis- 
tance coefficients in the .pipe.  In 
addition, the slope of the line 
varies in proportion to fluid vis- 
cosity in laminar flow. 

The point at which the re- 
quired-head curve Intersects the 

axis of abscissas at Az >< 0 (point (A) determines the flow rate 
in motion of the fluid by gravity, i.e., owing to the levelling- 
helght difference Az alone. The required head Is zero in this 
case, since the pressure is equal to atmospheric pressure pA at 

the beginning and end of the pipe (we consider the free surface 
In the upper tank to be the beginning of the pipeline); we shall 
refer to such a pipeline as a gravity pipeline (Fig. 136).  If 
fluid flows out into the atmosphere at the end of a gravity pipe- 
line, a velocity head must be added to the head losses in the 
equation for required head (11.1). 

Sometimes it is more convenient to use the so-called char- 
acteristics of the pipeline Instead of the required-head curves. 
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The characteristic of a pipeline Is 
t„...P*      , „   a curve of Its total head (or^pressure) 

E£^ 
it 

L 

loss as a function of flow rate, i.e. 

Thus, the characteristic of a pipeline 
represents the required-head curve shifted 
to the coordinate origin. The characteris- 
tic of a pipeline coincides with its re- 

Pia 136. Diagram     quired-head curve for Äz' - Az + Pj/Y • 0. 
of gravity pipeline.  e.g. , when the pipeline lies in the hon- or gravity pipei n    ^^ plane and there is no back pressure 

P 2 
Let us consider certain problems that might be encountered 

in calculations for a simple pipeline. 

Problem 1. Given: flow rate Q, pressure p2, properties of 
fluid (Y and v), iiriimensions of the pipeline,. and the material 
and finish quality (roughness) of the pipe. Find the required 
head Hpotr- 

The solution procedure is as  follows.    Prom the  flow rate 
and pipe diameter d.  find the flow velocity v;  from v. 1, and v, 
determine Re and the  flow regime.    Then use appropriate formulas 
or experimental data to evaluate the local resistances  Uekv/a or 
c in laminar flow and C In turbulent flow);  from Re and the rough- 
ness,  determine X, and,  finally,  solve the basic equation (11.i; 
for Hpotr- 

Calculation of X is not mandatory for laminar flow; 1c can 
be determined at once by Formula  (11.2). 

Problem 2.    Given:  available head Hrasp,  properties of fluid, 
all pipeline dimensions,  and roughness.    Find the flow rate Q. 

The solutions  for laminar and turbulent  flow Will diffef 
substantially.    For this  reason, we assign a flow regime on the 
basis of fluid viscosity.1 

1. The problem is easy to solve for laminar flow and with 
eauivalent lengths substituted for local resistances: "nd the 
flow rate Q from (11.1) with consideration of  (11.2);  substitute 
Hrasp  for Hpotr in thi8 Procedure- 

2. In turbulent flow, the problem Is solved by successive 
approximations or graphically. 

In the former case,  we have one equation  (14
1'1>a

w"!?ll^0
two 

unknowns Q and Xt.    To solve the problem, we  assign a value to 
the coefficient Xt with consideration of roughness.    Since this 
'See page 2kl  for footnote. 
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coefficient varies In a comparatively narrow range (Xt • 0.015- 

0.04), we do not Incur any great error in so doing, the more so 
since the coefficient X. Is under the radical in subsequent de- 

termination of Q. 

By solving (11.1) with (11.3) for Q, we find the first- 
approximation flow rate. Prom the value found for Q, we deter- 
mine Re In first approximation, and a more accurate value of Xt 
from this Re. We again substitute the value obtained for Xt into 

the same fundamental equation and solve It for Q. Having obtain- 
ed the second-approylraatlon flow rate, we find a greater or 
smaller discrepancy between It and the first approximation. If 
the disagreement Is large, the calculation Is repeated in the 
same order.  The difference between each subsequent Q and the 
preceding one will become smaller and smaller. The calculation 
should be continued until the disagreement between successive 
values of Q is within the limits of acceptable error. 

Usually, two or three approximations are quite adequate to 
obtain acceptable accuracy. 

To solve the same problem graphically, we construct a re- 
quired-head curve for the particular pipeline with consideration 
of the variability of Xt, I.e., we compute Re, \t  and, finally, 
H tr by Formula (11.1) for a series of Q-values.  Then, plotting 

a curve of H tr against Q and knowing the ordlnate H tr - Hr  , 

we find the abscissa, I.e., the Q, that corresponds to it. 

Problem 3. Given: flow rate Q, available head Hr  , fluid 

properties, and all pipeline dimensions except the diameter. 
Find the diameter. 

We begin the solution by assigning the flow regime on the 
basis of the fluid's properties (v).* 

In the case of laminar flow, the problem is solved simply on 
the basis of (11.1) with application of (11.2), namely: 

^;/JM(OXT<?:. ,lli4) 

Having determined d, we choose the next larger standard diam- 
eter and use the same equation to improve the head value for the 
given Q or vice versa. 

For turbulent flow, solution of (11.1) for d with considera- 
tion of (11.3) is best accomplished as follows: assign a series 
of standard values to d and calculate a series of HDOtr 

for tht 

given Q; then construct a diagram of H tr as a function of d and 

'See page 211 for footnote. 
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refer to the curve to find d for the given H„QO„, round this 

value off to the standard, and Improve H tr. 

§48. THE SIPHON 

A siphon la a simple gravity pipeline part of which Is situ- 
ated above the supplying tank (Pig. 137). Fluid moves through a 
siphon because of the difference In levels H, first rising to a 
height H, above the free surface under atmospheric pressure and 
then dropping through height H2. 

im 
m i 

1 
7,        2 

Pig.   137.  Diagram 
siphon pipeline. 

pump (see §18) 

of 

A property of such a pipeline Is that 
the  fluid pressure Is below atmospheric 
throughout the ascending line and In part 
of the descending line. 

To start a siphon supplying fluid, 
It Is necessary to fill Its entire volume 
with  fluid.     If a small hose Is being used 
as a siphon.  It Is easily filled by first 
Immersing it In the fluid or suctlonlng 
the air out of Its  lower end. 

If,  on the other hand,  the siphon Is 
made  In the  form of a fixed metal pipe,  It 
Is necessary to provide a valve  at Its 
highest    point for withdrawal of air.    The 
air can be removed either by a displacement 
pump   (see Chapter XIII)  or by an ejector 

Let us write the Bernoulli equation for sections  0-0 and 2-2 
(see Pig.  137), where we shall regard the velocity as equal to 
zero,  and the pressure as atmospheric: 

or 

V/'. 

A?:   XQ"'^//. 

Thus, the flow rate through the siphon Is determined by the 
level difference H and the resistance of the pipeline, and is in- 
dependent of rise height H,.  However, this Is true only within 
certain limits. With increasing height H^ the absolute pressure 
p. in the uppermost section 1-1 of the siphon decreases. When 
this pressure becomes equal to the saturation vapor pressure, 
cavitatlon begins and flow rate decreases; subsequently, vapor 
look shuts off the fluid feed. 

In designing a siphon, therefore, It is necessary to make 
sure that the pressure at the top point (pi) does not become too 
low.  If the fluid flow rate through the siphon and all dimensions 
are known, the absolute pressure p, can be found from the 
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Bernoulli equation for sections 0-0 and 1-1, which reads 

-'J. //,•!-^ -" i!; lyj'o f 

If, on the other hand,  the minimum permissible pressure p, 
Is known, then, knowing the flow rate, we can use the same equa- 
tion to find the maximum permissible height H,. 

§J)9.   SERIES-  AND  PARALLEL-CONNECTED PIPES. 

Let us take several pipes, for example, 1, 2, and 3, which 
nave different lengths and diameters and contain different local 
resistances, and connect them In series (Fig. 138). The result 
Is a simple pipeline  of variable cross  section. 

ri,i 

 - V  .  > 3 
M  x  :.:.•_;. -      [. -.v 

Pig. 138. Pipes eonnected In series. 

3    ? » 

u    * 
'S ^ 

/t  r ■ ^ ./■• a 

p.:   Ns-.' c, S>' *■ 

Pig.   139.  Construction 
of characteristic for 
series-connected pipes. 

Fig.  140.   Parallel- 
connected pipes. 

Quite obviously, when fluid Is  fed through such a pipeline, 
the flow rate will be the same in all of the series-connected 
pipes,  and the  total head loss between points M and N will be 
equal to the  sum of the head losses  in all of the series-connected 
pipes,  i.e., we have  the following fundamental equations: 

Q,   (.'.■   (\ 

y.i: (11.5) 

These equations give a rule for construction of characteris- 
tics for series-connected pipes. 

Suppose we have been given (or have ourselves constructed) 
characteristics (1, 2, 3) for the three pipelines (Fig. 139).  To 
construct the characteristic M-N of the entire series unit, we 
must, according to equation system (11.5), add the head losses 

-225- 



for identical flow rates. I.e., add the ordlnates of all three 
curves at each abscissas. 

Since the velocities at the beginning (M) and end (N) of the 
pipe are different in the more general case under consideration, 
the expression for the head required for the entire pipeline M-N 
must, unlilce Formula (11.1) contain the velocity-head difference 
between the end and beginning of the pipeline, i.e., 

//„„„-.-^H-^^+SW+T^       (11.6) 
-^A.''-| CQ'-|-AQm. 

where 

c        1 /'1Al_<,w\. 

A,' .  - - p* d-r -=^,"-.v i" v • 

Let us  now consider several unlilce pipelines   (1,  2,   3).  con^. 
nected in parallel between points M and N (Pig.  140). 

LP1-,  „a denote the total heads at points M and N by HM and HN, 
respectively, the flow rate in the main line   (i.e., before branch- 
ing and after merging) by Q, and those in the parallel pipelines 
by QL Q21  and Q,, and the total head losses  in these pipelines by 
Zh1,   lht,  and Zh,. 

We  first write the  following obvious equation: 

QQr\Q.-\Qy (11-7) 

We then express the head loss in each of the pipelines in 
terms of the total heads at points M and N, i.e., 

Prom this we draw the following important conclusion: 

SA.^S^-S*»- (11*8) 

i.e., the head losses in parallel pipelines are equal to one an- 
other. 

In general form,  these  losses can be expressed as  follows in 
terms of the  corresponding flow rates: 
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i;A,=*,Qr; 

where the coefficient k and the exponent m are determined by 
Formulas (11.2) or (1173), depending on flow regime. 

To supplement (11.7), therefore, we obtain two more equa- 
tions on the basis of (11.6): 

(11.9) 
(11.10) 

Equation system (11.7), (11.9), and (11.10) enables us to 
solve, for example, the following typical problem: the flow rate 
Q In the main line and all pipeline dimensions are given; deter- 
mine the flow rates Q,, Q2, and Q, In the parallel pipes. 

Applying (11.7) and rule (11.8), we can always write as many 
equations as there are parallel pipelines between points M and N. 

Problems of the following type must also be solved frequently 
In the design of aircraft fuel systems: the total flow rate and 
the lengths of the parallel pipelines are given; find the diam- 
eters of these pipelines that will ensure certain flow rates In 
each of them.  The solution of such a problem Is considered In an 
example. 

The following Important rule proceeds from (11.7) and (11,8): 
to construct the characteristic of several pipelines connected in 
parallel, it Is necessary to add the abscissas of the charaoteils- 
tics of each of these pipes (the flow rates) at identical ordi- 
nates (Sh). An example of this construction is given in Fig. 1^1. 

M-H 

Fig. 1^1. Construc- 
tion of characteris- 
tics for parallel- 
connected pipes. 

These relationships and rules for 
parallel-connected pipes are, of course, 
also valid when pipes 1, 2, 3, etc.  (see 
Pig. 140) do not meet at the same point 
N, but deliver fluid at various points at 
the same pressure and equal final-section 
levelling heights.  If the latter condi- 
tion is not met, however, these pipelines 
cannot be regarded as parallel, but must 
be assigned to the category of branched 
pipelines (see §50). 

§50. BRANCHED PIPELINES.  CALCULATIONS FOR 
THE COMPLEX PIPELINE IN THE GENERAL CASE 

We shall use the term "branched pipe- 
line" for a set of several pipes that have a common cross section 
- a point at which they branch or merge. Such pipelines are 
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usually encountered In aircraft fuel systems (service and fueling) 
and in hydraulic transmission systems, as well as In stationary 
fuel-handling systems at airports. 

Let the main pipeline branch at sec- 
tion M-M, at which, for example, three 
pipes (1, 2, 3) with different diameters 
and different local resistances branch off 
(Pig. 142).  Assume further that the level- 
ling heights of the terminal sections (z^ 
z,, and z.) and their pressures (pj, P2. 
and p.) are also different. Let us find 
the relation between the pressure In sec- 
tion M-M (pM) and the flow rates In the Pig. 142. 

pipeline. 
Branched 

pipes (Q., Q, and Q,), assuming that the 
direction of2flow In the pipes is given 
(see arrows).3 

As for parallel pipelines, we have 

Fig. 143. Construction of required-head curve 
for branched pipeline. 

Writing the Bernoulli equation for section M-M and. ^i" ^e 
final section, for example, of the first pipeline, we obtain (dis- 
regarding the velocity-head difference) 

Denoting by z' the sum of the first two terms In the right 
member of thl equation and expressing the third term in terms of 
flow rate (as we did above), 

rSee page 241 for footnote, 

te^zl+kfi;. 
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Similarly, we can write for the other two pipes 

Thus, we obtain a system of four equations with four un- 
knowns: Q,, Q2, Qj, and p«.  Graphical solution Is convenient. 

For this purpose, we construct a curve of PM/Y as a function of 
QM for each of the pipes from the equations given above, and then 

add them In the same way as we added the characteristics of the 
parallel-connected pipes. I.e., we add the abscissas (Q) at Iden- 
tical ordlnates (HM « PM/v) (Fig. 1^3)■    The resulting Inflected 
curve ABCD Is the required-head curve for the branched pipeline, 
and with it we 

or vice versa. 

and with it we can determine the flow rates from the pressures p« 

When the direction of the pipe flows is reversed, I.e., fluid 
moves from tanks 1, 2, and 3 to section M-M, the signs of the 
head losses in the above equations are reversed and, consequently, 
the losses are plotted from top to bottom In constructing the Hj. ■ 
■ f(Q) curves. Regarding the rate of fluid flow from tanks 1, 2, 
and 3 to section M-M as negative, we carry out the construction 
In the same way as before, but along the left side of the axis of 
ordlnates. The broken curve A'B'C'D' represents the required 
head in section M-M as a function of the total negative flow rate 
Q., (see Pig. 143, where, for clarity, open tanks with fluid levels 

z' " z + P/Y are shown on the diagram of the pipelines at sections 
1, 2, and 3, and a piezometer appears In section M-M). 

Another possibility is the case in which there are no check 
valves in the pipelines and the flow can move in either direction. 
In this case, construction of the over-all curve, i.e., addition 
of abscissas at Identical ordlnates, must be performed with con- 
sideration of the signs of flow rate Q,, Q2, and Q3. Instead of 
two different curves, we obtain a single curve D'C'ECD, which re- 
lates the flow rate QM and head HM and can be used to determine, 

for example, the flow rates QM, Qj, Q2, and Q, with consideration 

of signs at a given IL.  or to solve other problems.  In the particu- 

lar case with QM » 0 at point E, we obtain the answer" to the so- 

called three-tank problem, in which one tank is fed from the 
other two or two tanks from one. 

The branched pipeline considered above, and pipelines com- 
posed of several parallel pipes, are variations of the complex 
pipeline.  In the general case, as is clear from the definition 
(see §47), a complex pipeline may consist of series- and parallel- 
connected segments or branches. 
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Normally,  calculations  for both gravity and pump-fed complex 
pipelines are made by a graphoanalytical method,  i.e.,  using re- 
quired-head curves. 

In the general case,  calculation and construction of these 
curves  for the complex pipeline proceeds as follows.     The  complex 
pipeline is broken up into a series of simple pipelines.    Each of 
these simple pipelines is  calculated and curves of Hpotr =  f(Q) 
are plotted as described above. Then these curves are added for 
the parallel segments for the elements of a branched pipeline by 
the rules set forth in §^9. The result is a required-head curve 
for (one or more) parallel-connected pipes or the branched pipe- 
line. This curve is then added to the curves for the seriea- 
connected segments in accordance with Formulas   (11.5) ■ 

Guided by this rule,  we can plot a required-head curve  for 
any complex pipeline for either turbulent or laminar flow.     When 
tz'  ■ Az + p/y » 0, pipeline characteristics are constructed in- 
stead of required-head curves. 

An example of construction of a required-head curve for a 
complex pipeline  is given at the end of this chapter. 

§51.   PIPELINE WITH PUMP DELIVERY OP FLUID 

Up to this point, we have been concerned essentially only with 
isolated segments of simple and complex pipelines,  and not with 
complete fluid-feed systems   (other than the elementary gravity- 
flow type).     And as we have noted,  the basic method of fluid de- 
livery  in aviation engineering is  forced pump  feed.     Let  us  con- 
sider the  combined operation of a pipeline and a pump and the 
principle involved in mathematical design of pipelines with pumped 
fluid supply. 

A pump-delivery pipeline may 
be  either open,   i.e.,   one  through 
which fluid is transferred from one 
point  to another,  or closed   (circu- 
lating),  with a constant  amount of 
fluid circulating in it. 

Let  us  first  consider an open 
pipeline   (Pig.   l^)  through which a 
pump transfers  fluid,   for example, 
from a lower tank at pressure p0 to 
some  type  of chamber — an engine 
combustion chamber at pressure p, 
or another tank. 

Pig.   IM.   Diagram of pump- 
fed pipeline. 
KEY:   (a)  pump. 

known as the geome 
which  fluid  flows 
line.    The height 
upper fluid  level 

The  height  of the  pump  axis 
relative  to the  lower  level   (H,)  is 

trioal Intake  height,  and the pipeline  through 
to the pump as  the  Intake pipeline  or suction 
of the  terminal section of the pipeline  or the 
(H2)  is  known  as  the  geometric delivery  height 
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and the pipeline through which fluid moves  from the pump as the 
delivery or pressure   line. 

We write the Bernoulli equation for the  fluid flow In the 
Intake pipeline   (for sections 0-0 and 1-1): 

^»//H-^-laj'+S*"-«' (11.11) 

This equation indicates that the intake process,  i.e.,  that 
of raising the  fluid to height H,,   imparting kinetic energy to 
it,  and overcoming all hydraulic resistances  takes place with the 
pump utilizing pressure p,,.    Since  this pressure is usually quite 
low,  it must be expended in such a way as to leave a certain 
pressure margin p,  in front of the entry into the pump,  as neces- 
sary  for normal cavitation-free operation of the pump.    Calcula- 
tions  for intake lines must therefore be particularly meticulous 
and accurate. 

Equation  (11.11)  is basic to the mathematical design of in- 
tak° pipelines. 

The following problems may be encountered in the design of 
intake pipes. 

1. All dimensions and the flow rate are given.    Find the 
absolute pressure before the entry into the pump. 

The solution of this problem is a trial  calculation of the 
intake  line.    The absolute pressure p,   found from (11.11)  is  com- 
pared with the minimum acceptable pressure  for  the particular 
case. 

2. The minimum acceptable absolute pressure in front of the 
pump,  Pim-in»  is  given.     Find one of the   following acceptable- 
limit  values:  H,„o„,   Q„„„,  d  .   .  or ?.„!„. imax'     max'    min' 'ornin 

Determination of the  last quantity  is of particular impor- 
tance   for aircraft  hydraulic  systems  for which p0  » p.   + Ap. 

Here Ap is the excess  over atmospheric pressure provided by 
pressurlzation or by the pressure of an inert  gas.    The minimum 
acceptable atmospheric pressure PAmln is  found  from Pomin»  and 

then the maximum permissible flight altitude of an airplane with 
the particular system, i.e., the altitude capability of the sys- 
tem,   is  found by  referring  to a standard-atmosphere  table. 

An increase in the pressure p0  Increases  the pressure 
throughout the entire  intake line and,  consequently.  Increases 
system altitude  capability.    However, high pressures in the  sup- 
ply  tank are  not  admissible,  since  this  requires making the  tank 
stronger and,  consequently, heavier.    For this  reason,  still an- 
other method is usually used to Increase  the  altitude capabilities 
of aircraft hydraulic systems:  an auxiliary pump  (booster pump) 
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Is inserted at the beginning of the Intake line to raise the pres- 
sure in that line and prevent cavltatlon In front of the entry 
Into the main pump. 

We write the Bernoulli equation for the motion of the fluid 
through the delivery line, I.e., for sections 2-2 and 3-3: 

/-•..|. «J-L*//,-! r'\. 0j
,.,'- +v/,,. (11.12) 

v   y-s v   2s    *" 

If the delivery line terminates In a tank, there will be no 
velocity head In the right member of (11.12), but It will be 
necessary to take the expansion head loss Into consideration. 

The left side of (11.12) represents the specific energy of 
the fluid at the exit from the pump. 

The fluid's specific energy before the pump entrance can be 
found from (ll.ll): 

Let us find the specific-energy Increment of the fluid In 
the pump. I.e., determine the energy acquired by each unit weight 
of fluid as it passes through the pump. This energy is Imparted 
to the fluid by the pump and is therefore referred to as the pump 
head and denoted by H,00.  To find H „, we subtract the last 

equation from (11.12): 

//...'=^-^-£^£fi■+^2+*c?",• (ii.i3) 

where Az is the total geometrical rise height of the fluid (see 

Fig. 1^4), CQ'-o.,-! is the velocity head in section 3-3, and kQm 

is the sum of the hydraulic losses in the intake and delivery 
lines. 

If we add the piezometric-height difference (p, - P0)/Y to 
the actual level difference Az, we can work with a kind of aug- 
mented level difference equal to 

v 

and rewrite (11.13) as follows: 

//...-Az'-KQ'-I-*'?'". 
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Let us  compare Expression  (11.13) with the required-head 
formula  (11.6).    Obviously, 

//iiac"''« (11.U) 

This equation can be extended to all cases of stable opera- 
tion of the pump connected to the line and can be formulated In 
the form of a rule: with steady flow In the pipeline, the pump 
develops the required head. Only with this condition Is stable 
pump operation possible. The condition Is usually met automatic- 
ally. 

A method of calculation for pump-fed pipelines Is based on 
(11.14) and consists In plotting two curves on the same scale 
and on the same diagram: a required-head curve H tr ■ f^Q) and 
the pump characteristic H 00 » f2(Q) and finding their point of 

Intersection (Pig. 1^5)■ 

Kputaji nompelhozi. 
a        muiopa. ' 

Pig.   145.  Finding 
operating point 
graphically. 
KEY:   (a)  required- 
head curve;   (b) 
operating point;   (c) 
pump characteristic. 

Pump characteristics, will be dis- 
cussed at some length later.  In Chapters 
XII and XIII.     For the moment,  anticipat- 
ing somewhat, we give only a definition: 
the characteristic  of a pump is the curve 
of the head that it develops as a function 
of its delivery  (flow rate)  at constant 
speed. 

At the point  of intersection of the 
required-head curve and the pump  char- 
acteristic we have equal required head and 
pump head,  I.e.,  Equality   (11.14).     This 
point is  called the operating point,  since 
the pump operating mode corresponding to 
precisely  this point is  always  established. 

To obtain a different operating point, 
it is necessary either to change   the  open- 
ing of the regulating valve   (gate,  spool), 
i.e.,  to change the pipeline characteristic, 

ed, of which we shall speak In greater de- or change the pump spe 
tail below. 

It should be noted, however,  that this  calculation of the 
operating point is  applicable only when the speed of the pump 
drive is Independent of the power taken by the pump.  I.e.,  of the 
load on the pump shaft.    This is the  case,  for example,  when the 
pump is  coupled  to  an ac motor or an aviation engine whose  power 
is many times  that  of the pump. 

If the pump is  driven by  an individual internal-combustion 
engine,  or a special turbine whose power depends on pump shaft 
load,  the calculation must be performed differently.     In this 
case,  it is necessary  to construct  required and available prwer 
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curves against rpm and determine the operating speed and power at 
their point of Intersection. 

For a closed pipeline   (Pig.  146),  the geometrical fluid rise 
height  Is   zero   (Az -  0);   consequently,   for v,   -  v2 

He 
.=y/(.---*-a--w.JC- 

I.e., the same equality applies between required head and pump 
head. 

It must be remembered that a closed pipeline must 1i all 
cases be provided with a so-called expansion or compensation tank 
connected by a pipe to one of the sections of the pipeline, most 
frequently the section at the entrance to the pump, where the 
pressure Is lowest. Without this tank, the absolute pressure 

Inside the closed pipeline would be In- 
ÄJ ,    determinate, and also variable because of 

temperature fluctuations, and seepage. 

With the expansion tank connected to 
the pipeline as shown In Fig. 146, the 
pressure before the pump entrance becomes 
quite definite at 

The pressure In any cross section of 
the closed pipeline can be computed from 
p,.  If the pressure p0 In the tank Is 
changed by a certain amount, the pressure 
will change by the same amount at all 
points of the particular system. Conse- 

quently, Pascal's law of pressure transmission In a stationary 
fluid (see §5) Is also valid here. A tank can also be connected 
Into a closed pipeline as shown In Pig. 172. 

Example 1. Determine the head required at the exit from an 
aircraft booster pump to feed T-l fuel at a rate of G = 1200 kgf/h 
from the service tank to the fuel pump at the engine If the length 
of the duralumin pipeline J, - 5 m. Its diameter d - 15 mm, the 
required pressure at the entrance Into the fuel pump p2 = 1.3 
kgf/cm2, the viscosity coefficient of the kerosene v = 0.045 cm /s, 
and Its specific weight Yk ■ 820 kgf/m51. Figure 147 shows the 

local resistances Inserted In the pipeline, 
of the fluid column In the tank. 

Fig. 146. Diagram of 
closed pipeline. 
KEY: (a) pump. 

Disregard the height 

Solution.  1. The velocity of flow In the line 

40       4-12M-101    nin , t/— ta——  t^siocm/s. 
3flO0n(/2Yt   3S00-3,M-I,S«-0,82 

2.   The Reynolds number 
RC: 

rrf       210J ,5 
~""o,o;5 
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3.  We determine the coefficient of frictional resistance X^ 

by the Konakov formula:  Xt ■  0.0328. 

l|.  We take the values of the resistance coefficients for 
the filter,  shutoff valve,  flowmeter sender, and standard bends 
(elbows)   from Table  2   (Chapter IX): 

^mt, C,,-l.5; i,-l: C,r->A 

5. We compute the pressure loss in the line from the booster 
pump to the fuel pump by the formula 

(I \v- 
V T'+ 3:''+ Cp +'c"p + ^ Jif " 

0.M28--+ 3-1.2-f 7 + 1.5 + 2j-^-JJ-= 

-  6000 kgf/m2  - 0.6 kgf/cm2 - 58 800 N/m2. 

Fig.  147.  Illustrating example 1. 
1) booster pump;   2)  service tank; 
3)   flowmeter sender;  4) main fuel 
pump;  5)  engine;   6)  filter;  7) 
shutoff valve. 

6.  Hence  the pressure required at the exit  from the booster 
pump Is 

Example  2.      T-l fuel is supplied from two underwing tanks 
to the service  tank of an airplane   (Fig.   148) by an excess of 
pressure  In these tanks over that  in the service tank &p ■ Pb - 
- Pr4b -  0.2 kgf/cm2. 

Determine the pipeline diameter d, remembering that the 
underwing tanks must be depleted simultaneously at  a total fuel 
flow rate Q -  1500 kgf/h.    Each underwing tank holds a volume 
W ■ 450 1.     Pipelines of length i ■ 7 m are assembled from dura- 
lumin tubing.     The viscosity  coefficient of the kerosene v ■ 
■ 0.045  cmVs  and Yk " 830 kgf/m'.     Disregard the  liquid column 
in the tanks. 

Solution.     1.  We  find the engine running time  to complete 
exhaustion of the kerosene in the  underwing tanks: 
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slon 

2ttTY>        2J50,0.S^ 
= 0.5 h. 

C 1500 

2.  We determine the fuel flow from each tank from the expres- 

4M 
0,5 . 0J0 1/h^ 0,55 1/s. 

fÄ51 
■fehii! 

'   « 
g mpySonpoSo} 

i * aiiaameiiio 

Fig. 148. Illustrating example 2. 1) check 
valve; 2) service tank; 3) booster pump. 
KEY: (a) to pipeline to engine; (b) from 
tank pressurization system. 

IOTP 

Pig 

I 
V 

5; 
to n vi /is udx» 

B.7 

149.   Illustrat- 
ing example 2. 

3. We assign a series of values to 
the diameter d: 12, 14, 16 and 18 mm. 

4. We refer to Table 2 for the resis- 
tance coefficients at the entry into the 
pipeline Cvi,h, those of the check valve 

C0 jj, the elbow Cjcol, and the tee Ctr, and 

that at the exit from the line, ? vykh" We 
calculate the coefficient \%  by the Kona- 

kov formula for each d after first deter- 
mining Re. 

5. We determine the head H .  required potr 
for each d by the formula 

"OUTP S== I ^px "i' Co.\ 'r 3Ck( 
16Q3 

and plot a curve of H f(d)   (Pig.   149), potr 
7.   For  the  available head,   which is  found by  dividing Ap by 

Y^, we  refer to the diagram to  find the  required diameter,  d = 

■ 15.7 mm. 

We select the standard pipeline diameter d = 16 mm, which 
provides for the necessary flow rate with simultaneous depletion 
of both tanks. 
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If the lengths of the pipelines were equal, their diameters 
would be different for this condition, and It would be necessary 
to construct an HDOtr " f(d) curve for each pipeline. 

Example 3.  In centralized fueling of an airplane under pres- 
sure, all tanks must be filled and topped off simultaneously. 

Figure 150 shows a schematic diagram of a centralized fueling 
system. 

f 

T 

tlD-^UJ  . 

£>'<1- ̂  

Fig. 150. Illustrating example 
3. 1) tee; 2) elbow; 3) cross- 
pipe; ^O valve; 5) fuel-truck 
pump; 6) check valve; 7) hose. 

Let all tanks with their volumes W,, W^ = W'j and W, lie In 
the same horizontal plane at a height h, above the fuel-truck 

pump. The elevation of the main pipeline A-B above pump level Is 
h.. The characteristic of the fuel-truck pump, the length I .   and 

diameter d , of the delivery hose, and the lengths of all pipe- 

lines and the tank capacities are given. 

Disregarding the heights of the liquid columns in the tanks 
and their excess pressures, solve the following problems, which 
are likely to be encountered In practice: 

I. Determine the fueling time t if the pipeline diameters 
are given. 

II. Find the necessary pip-line diameters d , dj, d2, and a; 

for simultaneous fueling of all tanks during time t. 

I. The problem is solved graphoanalytlcally. 

1. We construct the characteristic of the delivery hose from 
the pump to point A, the beginning of the main pipeline, with con- 
sideration of the height h.. 

-237- 



2. We construct the characteristic of the main pipeline (from 
point A to point B). 

3. We add the two characteristics In conformity to the rule 
for adding characteristics of series-connected pipes (Pig. 151). 

4. We construct the character- 
istics of the pipelines from branch 
point B to the respective tanks with 
consideration of the height h, - h.. 

5. We add the characteristics 
of the pipelines to tanks by the 
rule for addition of the character- 
istics of parallel pipelines. 

6. Adding the characteristic of 
the pipeline from the pump to point 
B to the resulting over-all char- 
acteristic for the four parallel 
pipelines, we obtain the character- 
istic of the entire complex pipeline 
with consideration of the height hb, 

i.e., the required-head curve. 

7. Prom the point of intersec- 
tion of this curve with the fuel- 
truck-pump characteristic, we can 
determine the head H „ to be de- nas 
veloped by the pump and its delivery 
rate Qn. 

8. The flow rates fed to each 
tank are determined as shown in Fig. 
151. 

Pig. 151. Illustrating 
example 3. 1) character- 
istics of pipelines to 
tanks; 2) pump character- 
istics; 3) characteristic 
of complete pipeline; h) 
resultant characteristic 
of pipelines to tanks; 5) 
resultant characteristic 
of hose and main A-B; 6) 
characteristic of hose; 
7) characteristic of main 
line A-B. 
KEY: (a) B-WJ and B-wy . 

9. The fueling time t (with 
simultaneous completion of fueling) will be 

/ -. = • 
ir, i- r, 

; ---■_- 

II. The problem is solved graphoanalytlcally. 

1. We determine the flow rate Q from the fuel-truck pump 

for filling of all tanks during time t by dividing the total tank 
volume by t. 

2. On the pump characteristic at flow rate Q we find the 

operating point, i.e., the head Hnas to be developed by the pump 

The calculation indicates that the pipeline diameters must be so 
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selected that the flow rate 

pipelines under a head H„_ . 

Q will be able to pass through the 

d        it, dt d, "H« 

V "me "» 

Vu. ?• 
Fig. 152.    : 
example  3. 

[llustratlng 

3. The flow rates In the lines 
to the respective tanks can be found 
by dividing the volume of each tank 
by the time t. 

H sh 

4. The fuellng-hose head loss 
Is found with consideration of 

flller-checkvalve losses. 

5. For the main line (between 
points A and B) we construct a curve 
of head loss vs. line diameter HA_B ■ 
= f(d).   For this purpose, we 

assign a series of diameters and determine for each d the Reynolds 
number Re, the coefficient A. , and the head loss H, R with con- 

sideration of the levelllng-helght difference between the main 
line and the truck pump, h., and the dellvery-hose losses H . . 

6. We construct a curve of head loss as a function of diam- 
eter for each tank pipeline. 

We construct these graphs in the same way as that of H._B = 

■ f(d), but in a coordinate system whose origin is at H  , with 

the positive diameter axis on the left and the positive head axis 
pointing downward (Fig. 152).  We add the height h. - h. to the 

head losses. 

This somewhat unusual arrangement of the coordinate axes and 
the H. = (Hdj) curves for the pipelines to the tanks makes it 

easier to find the unknown diameters. 

We assign a diameter d to the main pipeline and, referring 

to our graphs, find the diameters d,, d2, and d3 as indicated by 
the arrows in Pig. 152. 

The diameters can be determined from the graph in several 
variations, of which the most rational can be selected for use. 

Point B on the H A-B f(d) curve indicates the amount of 

head (Hg) lost on the path from the pump to the branching point 

The rest of the head (H .„ - Hn) is used to nas   D 
of the pipelines 

overcome resistances to motion of the fuel in the pipes to the 
tanks and the height h. - h.. 
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This method can also be used when the branchos from the main 
line to the tanks are  not all at the same point B, but at dif- 
ferent points; in this case, it is necessary to plot three curves 
instead of the single H.g ■ f(d) curve. 
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Footnotes 

Manu- 
script 
page 

222      'in this case, regime can be determined by comparing 
H    with Its approximate critical value H., which rasp Kr 
can be expressed from (11.1) and (11.2) as follows: 

223     2The flow regime can be determined by comparing Hr 
with Hj^, which equals (for a given Q) 

IMvfO    •i.ii-:--(p       , «■'»'■/ÜeJ 
//«P •  ** ■! 

228 aIn aircraft systems the  flow direction Is  often kept 
from reversing by Insertion of check valves. 
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Manu- 
script 
page 

Symbc )1 

220 noTp potr 

220 pacn rasp 
220 3KB ekv 

220 T t 

232 Hac nas 

234 K k 

235 T t 

235 i> f 

235 Kp kr 

235 P r 

2 35 yr ug 

235 Ö b 

235 p.6 r.b 

236 BX vkh 

236 O.K o.k 

236 KOJI kol 

236 Tp tr 

236 BWX vykh 

237 m sh 

2 37 M m 

238 H n 

241 Kp kr 

Symbol List 

English equivalent 

required 

available 

equivalent 

turbulent 

pump 

kerosene 

friction 

filter 

valve 

flowmeter 

bends 

tank 

service tank 

entry 

checkvalve 

elbows 

tee 

exit 

hose 

main line 

pump 

critical 
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CHAPTER  XII 

CENTRIFUGAL PUMPS 

§52. PUMPS IN GENERAL 

As we loiow, a pump is a machine that transfers fluid by 
pressure or, sometimes, by suction. 

Prom the physical standpoint, the operating principle of a 
pump consists In its conversion of the mechanical energy of a 
motor (drive) Into energy of the fluid. I.e., It Imparts power to 
the stream of fluid flowing through it.  The reserve of energy 
acquired by the fluid in the pump enables the flow to overcome 
hydraulic resistances and rise to a geometrical height. 

The energy that each unit weight of the fluid acquires in 
the pump, i.e., the specific-energy increase, has the dimensions 
of length, and, as we noted above, represents the head created by 
the pump.  It was shown in §51 that the head developed by a pump 
equals 

or 

In the general case, therefore, the head developed by a pump 
is composed of a piezometric-helght (static-head) increment and 
an increment of specific kinetic energy (dynamic head). 
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However, the second term Is usually much smaller than the 
first, and equals zero when the Intake and delivery pipes have 
the same diameter (d, - d2, and, consequently, v, - v2) and a, » 
■ oij; then 

//...--^="-0-=-^. (12.1) 
v   v 

We shall call the flow rate of fluid delivered by the pump 
into the line the pump's useful delivery and denote it by Q. 

The useful power of a pump, or Its developed power, is the 
energy that the pump Imparts to the entire fluid flow each second. 
By definition, this power equals 

^•=QY«,.c[W]=10-'QY//,.e[kW] (12.2) 

where Q is in m'/s, y  in N/m3 and Hnas in meters, or 

^=-2X^5 [hp]. (12.2-) 

where Q is In m'/s, y in kgf/m3, and Hnas In meters. 

Like any other machine, a pump requires more power than it 
puts out.  The ratio of the power developed to the power used is 
the efficiency of the pump: 

'-£• (12-3) 

Hence the power drawn by the pump equals 

JV^- QY"»e (12.H) 
11 

or, applying (12.1), 

JV0=2£^[W] (12.H) 
1 

where Q is in m'/s and p_aci in N/m
2. 

This formula is used in selection of pump drives. 

The over-all efficiency of a pump takes account of three 
kinds of energy loss in the pump: hydraulic losses, i.e., head 
losses to friction and eddying, volume losses due to circulation 
of fluid through clearances in the pump, and mechanical losses, 
I.e., losses to mechanical friction in bearings and packings and 
certain other losses. 

The pumps used in aviation and other fields of engineering 
would appear to come in a wide variety of designs and operating 
principles.  However, almost all of them can be classified among 
three main types: 
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1) vane pumps, which Include centrifugal, diagonal,  and 
axial-flow pumps; 

2) displacement pumps, which include piston and rotor types; 

3) turbulence-type pumps. 

In this chapter, we shall examine centrifugal pumps, which 
are being used on an expanding scale in aviation and rocket en- 
gineering, and touch briefly on turbulence pumps. 

The next chapter is devoted to displacement pumps. 

§53. DERIVATION OF THE FUNDAMENTAL EQUATION OP THE CENTRIFUGAL 
PUMP 

The operating principle of the centrifugal pump is as follows. 
The basic working element of the pump is a vane wheel or impeller 
(Pig. 153), which rotates at high speed to impart Increased pres- 
sure to the fluid filling it and expel it at increased velocity 
into a scroll chamber (delivery pipe). As a result of the inter- 
action between the wheel vanes and the fluid flow, drive energy 
is converted into stream energy. 

Fig. 153. Diagram of centrifu- 
gal pump. 1) Impeller; 2) scroll 
chamber. 

The scroll discharge pipe is snail-shaped and designed to 
catch the fluid Issuing from the wheel and convert some of its 
kinetic energy into pressure energy. 

The Impeller of a centrifugal pump (Pig. IS'O consists of 
two disks, one of which is bushed to the shaft, while the other, 
which has a central hole for passage of fluid. Is secured to the 
first by the vanes.  The latter are curved, with cylindrical or 
more complex space-curve shapes.  The fluid comes into the wheel 
along its axis of rotation and is then directed Into the spaces 
between the vanes; passing through these spaces, it exits through 
the slot between the impeller disks. 
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Flg.  15^.  Diagram of fluid flow through 
impeller. 

The motion of the  fluid In the passages between the vanes of 
the rotating impeller can be regarded as the sum of two motions: 
translatlonal  (rotation of the Impeller)  and relative   (motion 
relative  to the impeller).     Thus,  the absolute  velocity vector v 
of the  fluid in the wheel can be  found as  the  sum of the vectors 
of the  circumferential velocity u and the relative velocity w. 
Examining a fluid particle  as  it  slides over the  surface of a 
vane, we  can construct velocity parallelograms   for the entrance 
of this  particle onto the  vane and its exit from the vane.    Here 
it should be assumed that  the relative velocity w is directed 
along the tangent to the vane, while the circumferential compo- 
nent  u is tangential to the  corresponding circle.    The  same velo- 
city parallelogram can also be constructed for any Intermediate 
point  on the vane.    Our convention here will be  to denote all 
quantities pertaining to entrance onto the vane by the  subscript 
1,  and quantities pertaining to the exit by subscript  2. 

We shall denote the  angle between the vectors  of the circum- 
ferential and absolute velocities by a and the  angle between the 
tangent  to the  vane and the tangent drawn to the  circumference of 
the  impeller in the  direction opposed to  the  rotation by 8 with 
the appropriate subscripts.     In the general case,  angle a changes 
with a change  In pump operating mode. I.e.,  on a change In impel- 
ler rpm n  (velocity u)  and  flow rate Q  (velocity w).     The angle 
ß determines  the slope of the vane at each of its points and, 
consequently,  does not depend on pump operating mode. 

We  shall adopt the  following two assumptions to derive the 
basic  equation of centrifugal-pump theory: 

1.   Let the pump have  an  Infinite number  of identical vanes 
(z « <»),  and let the thickness of these vanes be  zero   (6   =0). 
This  implies  a filamentary   flow in the between-vanes passages of 
the wheel such that all filaments  in the relative motion have 
exactly  Identical shapes  conforming exactly to the shapes of the 
vanes,  and that the velocities depend only on radius and do not 
vary on a circle of given radius.    This  situation can occur only 
when each  filament is directed by  Its own vane.     Figure  154  gives 
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a schematic rüpresentatlon of this filamentary flow In one of the 
between-vanes passages. 

2. The efficiency of the pump Is unity (n ■ 1). i.e., there 
are no energy losses of any form In the pump and, consequently, 
all of the power used to turn the Impeller Is transmitted to the 
fluid. Such operation of the pump Is possible only when an ideal 
fluid is being transferred, when there are no clearances in the 
pump, and in the absence of mechanical friction in the packings 
and bearings. 

Thus, we have substantially idealized the working process of 
the centrifugal pump to facilitate theoretical investigation of 
its operation. We shall call this pump, for which z - • andn" 1, 
the ideal centrifugal pump. After examining the theory of the 
ideal pump, we shall, of course, pass to real pumps. 

Let us write two equations: the equation of powers and the 
equation of moments. The first equation signifies that the power 
applied to the Impeller shaft is equal to the energy acquired by 
the per-second flow of fluid In the pump, i.e., 

^„=Qv//f.. (12.5) 

where M is  the torque at  the pump shaft, u is  the angular velocity 
of the impeller,  and H.     is the  head developed by the ideal pump, 
or the specific fluid-energy increment  in the pump   (the two sub- 
scripts t and * correspond to the  above two assumptions). 

The sense of the second equation consists in the  following: 
the torque  at  the pump shaft is  equal to the per-second angular- 
momentum Increment  of the  fluid  in the  impeller.    Denoting by 
r1 the radius  of the cylindrical  surface on which the entry edges 
of the blades  lie  and by r2  the  radius  of the Impeller outer cir- 
cle, we have 

M^fi^CiyjCOsaj-tv^cosa,). (12.6) 
it      ' 

From the  resulting equations   (12.5)  and   (12.6),  we find the 
head developed by  the ideal pump: 

//,.«—(xi,r, cos u,-iv, cos 0,1. (12.7) 

This equation is fundamental not only for centrifugal pumps, 
but also for all other bladed machines - fans, superchargers, and 
hydraulic turbines.  In the latter case, we have a decrease rather 
than an increase in the angular momentum of the fluid as it passes 
through the Impeller, i.e., energy is being taken from the fluid, 
so that the terms in parentheses must be written with the opposite 
signs.  Equation (12.7) was derived by L. Euler and bears his 
name. 

■247- 



Attention  should be drawn to  the  fact  that   the head devel- 
oped by the Ideal centrifugal pump  and measured as the  column of 
fluid being transferred does  not  depend on the kind of fluid, 
I.e.,  on its  specific weight. 

Usually,  the fluid is not pretwisted before  arriving at the 
impeller,1  but  is moving radially when it enters  the between-vanes 
passages.    This means  that the vector vl  is radial and that the 
angle o^  - 90°.    Consequently,  the  second  term In  (12.7)  vanishes 
and the equation assumes the  form 

«.»JLty.jCosaj«-^-. (12.8) 

where Uj  " i»ir2  is the  circumferential velocity at the exit from 
the impeller and v2    is the  projection of the absolute  velocity 
at exit   from  the impeller onto the  direction of  the  circumferen- 
tial velocity,  i.e.,  the tangential velocity component  v2. 

Formula (12.8) indicates that to obtain lar^ge heads with a 
centrifugal pump, it Is necessary to have, firstly, a high cir- 
cumferential impeller speed and, secondly, a large enough value 
of vector v     ,  i.e.,  the impeller must impart sufficient twist to 
the  fluid flow.    The  first  requirement is met by  adjustment of 
impeller rpm and diameter,  and the   second by providing    an   ade- 
quate number of vanes  of the proper size and shape. 

§54.   CHARACTERISTIC OF THE  IDEAL  PUMP.     PUMP REACTION RATIO 

Equation   (12.8)  is inconvenient for use in calculations, 
since it does  not contain the flow rate Q.    We  shall therefore 
transform this  equation in such a way that the head Ht00 is ex- 
pressed as  a  function  of flow rate  Q and impeller dimensions. 

We  have   from the  velocity triangle at  the exit  from the  im- 
peller   (Pig.   155) 

»».I^KS—S'SrCfßPj, (12.9) 

where v      is  the projection of the  absolute exit  velocity onto 

the radius,  i.e., the radial component of vector v2. 

The flow of fluid through the Impeller can be expressed by 
the radial component v and the dimensions of the wheel in the 
following manner: 

Q = 2.irjtof. (12.10) 

where b2 is the width of the slot at the exit from the wheel (see 
Fig. 154). 

'See page 290 for footnote. 
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Fig.   155. Velocity 
triangle at  exit from 
Impeller. 

«    Clffi, 

Fig. 156. Characteristics 
of ideal centrifugal pumps, 

From this. 

tij,-- 
2^r2^i 

Substituting this expression Into (12.9), 

2;./^, 
c'r; [■.•■ (12.11) 

We  now  substitute our expression   (12.11)   for the   tangential 
component  v       In   (12.8);  the  result  Is   another  form of the   funda- 

mental Ideal-pump equation: 

QclEjb 

"-^(---SS-)- (12.12) 

This equation  enables  us  to  construct the   characteristic  of 
the Ideal centrifugal pump,  I.e.,   a curve of the head developed 
by the pump as  a function of flow rate at  constant wheel rpm.    As 
we see  from   (12.12),  the characteristic  of this pump  is a straight 
line.    However,  its   slope depends  on the  vane angle  ß2.    Here we 
must distinguish three cases: 

1) angle   ß2   <  90°.     In this   case,   cot ßj  is  positive  and the 
head H.     diminishes  with increasing flow rate; t00 

2) the  angle   ß;2  = 90°,   cot  ß2   =  0,   the head Hta)  does  not  de- 

pend on flow rate,   and equals H      = u^/g; 

3) the angle  ß2  > 90°,  cot  ß2   is negative,   and head Htoo in- 
creases with  Increasing flow rate. 

These three cases of the ideal centrifugal pump  characteris- 
tic are shown in Fig.   156.     Diagrams of the corresponding vanes 
and the velocity parallelograms are given In Fig.   157,  a, b,  and 
c,  for the same  u2   and v2   . 

Consequently,   the bent-forward  vane.   I.e.,   one with  ß2   >  90°, 
gives  the best  results as   far as  head development  Is   concerned.   _ 
However, practice has shown that  this produces   low efficiencies.'•.< 
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The bep'>,-backward vane,  i.e.,  one with ß2  < 90°,  Is more advan- 
tageous and therefore used most  often;  in most  cases,  this angle 
is made approximately equal to  30°.    Radial vanes   (ß2  ■ 90°)  are 
also used,  but this  involves a certain loss of efficiency and is 
dictated by other considerations   (bulk,  strength). 

To understand why the efficiency of the pump falls off with 
increasing angle ß2,  it is necessary to examine the  components of 
head H._ and how their proportions change with changing i^. 

The head H.   ,  or, in other words,  the increment  in the total 
specific energy of the fluid in the impeller,   is composed of the 
specific pressure-energy   increment and the  specific  kinetic energy 
increment,   i.e., 

//. _ to-Pi    i 
Y 

«J-»; 

ii 

or,   in other  terms, 

//,„ = //,+//, 

(12.13) 

(12.13') 

Expressing the velocities  vi  and v2  in terms of their radial 
and tangential components, we have 

•» <i 4     t        n A 4 
Vj      v,— i.\,a  j-  i..ir       ilu       1,,. 

Assuming approximately equal impeller entrance and exit  areas, 
we can consider that v,     =  v,   .     Moreover, as we indicated above, 'r   2r 
the flow is normally not twisted before entrance into the impeller. 

Consequently, we have instead of the above so that v iu 

Pig.   157.  Vane shapes and velocity 
parallelograms. 

Applying this  expression,  we  use   (12.13)   to find the pump 
reaction ratio, i.e.,  to determine the ratio of the head acquired 
by the  fluid owing to the pressure Increment to the  total head: 

H,      . "1 
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With (12.8), we rewrite this last expression In the form 

-^-=1--^-. (12.11) 

from which, after substituting v  by Formula (12.9), we obtain 
finally 

//,.~Tl1+'^^;- (i2.i5) 

We see from this expression that the larger v /u2 and the 
smaller the angle ß2,  the greater will be the part  of head H. 
that  Is   created by the pressure  Increment,   I.e.,   the greater the 
pump reaction.     With increasing ß2,   on the other hand,  the frac- 
tion of head H.„ developed in the  form of the kinetic-energy In- 
crement becomes   larger.     But  this means higher fluid exit veloci- 
ties  from the  impeller,   and this,   in turn,  results   in  larger 
energy losses  and lower pump efficiencies.    This  is why  there is 
no advantage in using vanes with large values  of the angle fäj, 
i.e.,  forward-bent vanes. 

For a radial vane   (ß2 = 90°),  as we see  from  (12.15),  the 
reaction ratio  is  h, and with  ß2  <  90°, It  is  larger than Jj, 
but  smaller than unity. 

The change in the shape of the velocity parallelograms and 
the increase in absolute exit velocity v2 with Increasing angle 
ß2  are clearly seen in Pig.   157- 

§55.   TRANSITION  TO FINITE NUMBER OP VANES 

Up to this  point,  we have been discussing the  operation of 
the ideal centrifugal pump.  I.e.,  a pump with an infinite number 
of vanes  and unit efficiency.     The  physical  significance  of these 
assumptions was  analyzed above   (see  §5iO. 

a)        ■ b) .       c)   - 

Pig.  158.  Flow in passage between vanes. 

To make a closer approach to the working process of the real 
pump,   let   us  now begin by dropping the  first  of our assumptions, 
leaving the second in force,  i.e.,   let us pass  to a pump with a 
finite number  of vanes. 
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In practice. 
In this case, the 
of the impeller i 
and the velocity 
faces of the vane 
the pressure is e 
the distribution 
approximately as 

there  are normally  from six to twelve  vanes. 
relative  flow in the between-vanes  passages 

s no  longer filamentary,  as we assumed earlier, 
distribution is  nonuniform.     On the  leading sur- 
s, which are marked by plus  signs   (Pig.   158a), 
levated and the velocity  lowered;  as a result, 
of velocities  in the  between-vanes  passage  Is 
Indicated on the same  figure. 

Here the velocity distribution can be  regarded as  the sum 
of two flows:  a flow with uniform velocity  distribution,  as  for 
z - » (Pig.   158b),  and a rotational motion In the passage  in the 
direction opposite  to the rotation of the  impeller  (Fig.   158c) 
The  latter occurs  in its pure  form at  zero  flow rate through the 
Impeller  (Q » 0). 

Because of the  nonunlform distribution  of both  the  relative 
and absolute velocities  in the between-vanes passages when the 
number of vanes  is   finite,  it  Is  necessary  to Introduce  the no- 
tion of average  velocity on a circle  of given radius.    Of great- 
est  interest   to  us  is  the average  tangential  component  v*     of the 
absolute exit  velocity   from the  Impeller,  which determines  the 
head developed by  the pump.    With a finite number of vanes,  this 
component Is  found to be smaller than  for an infinite number, 
since an Impeller with  fewer vanes does not  twist the flow as 
strongly.     In the  absence of vanes   (z  = 0),   there will be no twist 
either,  i.e.,  v'     =  n     ="'"  «■1-"   CJ-J-.-.N   „■,...,.,  ..>,,   . ,.   .. 
from the impeller. 

0,   and the   (ideal)   fluid will issue  radially 

Fig.   159.  Change in 
shape of velocity tri- 
angle on transition to 
finite number of 
blades. 

finite number.     The  cons 
2r' I.e.,   for identical 

symbols  for  the  finite 

The decrease   in the  velocity  v      on 
transition to  a finite number     ^ vanes 
can also be explained by the secondary 
rotational motion referred to above.     At 
the outer circumference of the  Impeller 
(see  Fig.   158c),   this  relative motion 
gives  rise  to  an additional  absolute 
velocity  Av..  which  is  opposed  to  v 

'U rr 2U 

and,   consequently,   subtracts  from the 
latter. 

As  a result,   the  shape  of the  velo- 
city triangle  at  the  exit  from the  im- 
peller changes.     In Pig.  159,  the  solid 
lines  indicate  the  velocity  vectors   for 
an infinite number of blades,  and the 
dashed  lines  the same vectors  for a 

truction was made  for identical u2   and 
rpm and equal  flow rates.    The velocity 

umber of vanes  are primed. 

The decrease  in the tangential component  v     on transition 
to the finite number of vanes results  in a decrease in the head 
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developed by the pump.     Let  us  denote by H.     the theoretical head 
u Z 

with a finite number of vanes.  This is the head that the pump 
would develop In the absence of head losses inside it; it is also 
known as the indicator head.  On the basis of Formula (12.8), we 
have 

//„. 
I 

(12.16) 

We shall call the ratio of H.     to H. „ the influence coeffl- tz t00 

cient  of the number of vanes   and denote  it  by u;   then 

Vju 

whence the head of Interest  to us equals 

(12.17) 

(12.18) 

The problem is now to find a way to determine the coefficient 
M numerically. Obviously, the coefficient y must be determined 
primarily by the number of vanes, although it is also Influenced 
by the length of the vane, which depends on the ratio vl/vi  and 
the pitch of the vane. I.e., the angle 32. 

Certain theoretical investigations [24] have shown that the 
coefficient y does not depend on pump operating mode. I.e., on 
Q, Hnas> 

or Ü» but Is determined entirely by the geometry of the 
Impeller and is quite constant for a given impeller. 

Without going into the theory of how the number of impeller 
vanes Influences head, we cite only the ultimate results of this 
theory in the form of the Pfleiderer working formula for y: 

u== ! . . (12.19) 
1 + 

j; 

where 
K;-ri 

^-(0.55-0,(0)4 0,0sin (ij. 

According to the investigations of Prof.   P.K.   Kazandzhan, 
i(i »  Tr/3  for  ß. go1 

By way  of example,  we present values of the  coefficient y 
for ß2 -  30° and vl/rl  • 0.5   (Table 6). 

TABLE 6 

* 4 6 8 10 12 16 24 

* 0.624 0.714 0,7C8 0,805 0,834 0,870 0.0.3 
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Thus, M * 1 as z -»■ »>. 

Since the relation between H.  and H  remains constant in a 

given pump, the theoretical characteristic of a pump with a finite 
number of vanes, like the characteristic of the ideal pump at 
constant rpm (n = const), is a straight line. For ß2 = 90°, it 
runs parallel to the ideal-pump characteristic, and with ß, < 90° 
it intersects the latter at the axis of abscissas, since H^ ■ 0 

tz 
and H.  » 0 at a given flow rate 

This follows from Formulas (12.12) and (12.18). 

§56. CONSIDERATION OP HYDRAULIC LOSSES IN THE PUMP.  CONSTRUCTION 
OP DESIGN CHARACTERISTIC 

We stated above that Htz is the head that would be developed 

in the absence of head losses inside the pump. The actual head 
Hnas ^see ^53^ ls smaller than theoretical by the total head loss 
in the pump, i.e., 

"»it—''ii    2 ""• (12.20) 

where  Ihnas  is   the  total head  loss   in the  pump   (entry section  of 
pump, impeller,  and scroll chamber). 

The ratio of the  true to the theoretical head  for a finite 
number of vanes   (to the indicator head)  is known as the hydraulic 
efficiency  and  denoted by n   .     Thus,  we  have 

V-Ä-^S*-. (12.2i) 

The hydraulic efficiency of a pump is always greater than 
its total efficiency, since it takes account of only one form of 
energy loss in the pump - the hydraulic losses. 

It follows from (12.18) and (12.21) that 

'/„c' .>l//„= 'U'//,-. (12.21' ) 

where H^ is given by Formulas (12.7) and (12.12). 

It is convenient to regard the hydraulic losses Jh in the L  nas 
pump as the sum of the following two components: 

!• Ordinary hydraulic losses, i.e., head losses to friction 
and to some extent to eddying Inside the pump. Since the fluid- 
flow regime in a centrifugal pump is normally turbulent, this 
form of head loss Increases approximately in proportion to the 
square of flow rate and can be expressed by the formula 
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W.Q2, (12.22) 

A" -N 
I \ 

where k, Is a constant that depends on the hydraulic efficiency 
and dimensions of the pump. 

2. Eddying losses as the fluid enters the Impeller.  If the 
relative velocity of the fluid at Its entrance Into the between- 
vanes passages (w,) Is tangent to the vane, this means that the 
fluid enters the Impeller smoothly, without separation or eddy- 
ing.  Here the eddying losses are zero.  But this Is possible 
only at a definite design or normal flow rate Q0 and the corre- 
sponding radial entry velocity (v )0 (see Pig. 160). 

If, however, the actual flow- 
rate Q is greater or smaller than 
the design flow rate Q0, and the 
radial entry velocity v  is higher 

or lower than (v )0, the relative 

velocity w forms a certain angle 
Y with the tangent to the vane and 
the fluid flows over the vane at 
a positive or negative attack angle. 
This results in flow separation and 
eddying.  Thus, head (energy) is 
lost to eddying.  The velocity 
parallelograms corresponding to 
these nondesign modes and constant 
circumferential velocity are indi- 
cated by the dashed lines in Fig. 
160; one of them corresponds to the 
inequality Q > Qo, and the other to 
Q < Qo- 

Pig. 160. Velocity paral- 
lelograms at entrance into 
impeller. 

The head loss to eddying may be assumed proportional to the 
square of the difference between the actual flow rate and the 
flow rate at which this loss vanishes, i.e.. 

h-hiQ- Q„)'. (12.23) 

The head losses to eddying at entry into the scroll pipe are 
of the same nature as those at entry into the Impeller, have their 
minimum values at about the sune flow rate Q0, and are included 
in h2. 

The total head loss in the pump equals the sum of the above 
two losses, i.e., 

X'W^/'i-M*. (12.24) 

We proceed as   follows   to obtain a  clearly  constructed pump 
design characteristic  for n = const. 

In H, Q-coordinates,  we draw the theoretical  characteristics 
of the pump for z - «■ and a finite number of vanes z in the  form 
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of two  Inclined  straight   lines   for n  =  const   (Pig.   161).     Then, 
below the   axis  of abscissas, we  construct the  curves  of the  two 
components  hi  and h2 of the total head loss  in the pump.     Adding 
the  ordinates  of these two  curves,  we  obtain the  curve  of  lhnas 

as a function of flow rate.    Then,  in accordance with Formula 
(12.20),  we  subtract  l\aa  from Htz  and obtain a curve  of Hnas  = 
- f(Q),  i.e.,  the actual characteristic of the pump at  constant 
speed. 

-^-^"T-^ 

"" ^TJ^ "^^' 
t^                  N l^* MC    Y 

\thuU 

«• \ ^2^=w. ^j* i 

The  H nas f(Q)  curve  shown in Fig. 

Fig. l6l. Construc- 
tion of design char 
acteristlcs. 

161  is   typical  for a centrifugal pump. 
The maximum value of the head Hnas  is 
usually   obtained not  at  zero  flow  and 
not  at  Q =  Q0,   but at  a certain inter- 
mediate value  of Q. 

Pump  characteristics  obtained by 
this working method are not highly ac- 
curate  because  of the  difficulty  of 
evaluating the  coefficients k!  and k2 in 
(12.22)   and   (12.23).     Experimental pump 
characteristics are therefore preferred, 
i.e.,  the curves are obtained by  testing 
the pump. 

For  this  purpose,   some   sort   of shut- 
off-and-regulating device - a cock,  valve, 
or spool  - Is   inserted at  the exit  from 
the pump,  which is operated  at  constant 

rpm.    During the test,  the aperture  of this device  is progres- 
sively varied,   for example,  reduced  from wide open,  i.e., the 
line  is  throttled.    During this process, the  flow rate and the 
head developed by the pump are measured while holding rpm con- 
stant.    With the  valve wide  open,   the  results  are   the maximum 
flow rate  and minimum head, which Is  equal to the head  lost in 
the  line   (point C  in Fig.   162).    As  the valve is  closed,   flow 
rate decreases,  but the head rises  to its maximum   (point  B).    As 
the  flow rate  is  cut further,  the head rises  slightly and at Q ■ 
■ 0   (point A),   i.e., with  the  valve   fully closed,   the head usually 
has  a value somewhat higher than the mean but smaller than the 
maximum. 

Thus,  reducing the pump delivery  to zero by  closing the line 
at  constant rpm does not  cause  a head  increase that  is  dangerous 
from the  standpoint of pump and  line  strength.    For this  reason, 
centrifugal pumps, unlike displacement pumps,  do not require 
safety valves. 

§57.   PUMP  EFFICIENCY 

The  energy  losses in the pump,   as indicated by the  total ef- 
ficiency  n,   are  broken down into  three  types: 
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Fig.   162.  Displacement 
of operating point on 
throttling. 

Fig.   163.  Leakage In cen- 
trifugal pump. 

1.     Hydraulic   losses, which were considered In the previous 
section and are evaluated by the pump's hydraulic efficiency 
(12.21): 

Ir- "llJC 

2. Vclume losses. These energy losses result from the pre- 
sence of backflow of fluid In the pump through the gap (seal) 
between the rotating Impeller and the stationary casing of the 
pump. The Impeller delivers fluid from the Intake line Into the 
delivery line, but owing to the pressure gradient that It creates, 
some part of this fluid returns through the clearance (Flg. 163). 

In §53, we conventionally denoted by Q the flow rate Into 
the line, I.e., the pump's useful delivery. Then the flow rate 
through the Impeller will be 

Q=Q-l-?. (12.25) 

where ^ is the  flow rate through the clearance, which Is referred 
to as leakage. 

The volume energy  losses are evaluated by the  so-called volu- 
metric efficiency of the pump, which equals ~    ~ 

0 + «    0' 
(12.26) 

More detailed Information on the numerical values  of the 
volume losses  and the  coefficient no  will be given later,  In  §60. 

3. Mechanical   losses.    These Include  losses of energy to 
mechanical friction in the packings and bearings of the pump and 
to friction between the outer surface of the Impeller   (Impeller 
disk) against the fluid.    If the power lost to this  friction is 
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denoted by N and the total power drawn 

by the pump Is N0, the mechanical ef- 
ficiency of the pump will be 

Ka — Nu 

AT, 
(12.27) 

Fig.   164.   Curves of 
H,  n, and n    as func- 

g 
tlons of flow rate, 

(See   §56   for the method used to  find Nm) 

The  numerator of this  ratio Is  the 
so-called hydraulic  or indicator power 
and can be expressed by  the  formula 

K*=Nt~Nu~±(Q-\-q)yH„. (12.28) 

This is the power that the pump would develop in the absence 
of hydraulic and volume energy losses inside it. 

We can now express the over-all pump efficiency as the ratio 
of developed power to the power drawn by the pump: 

ti^ 
75Y0   ' 

and multiply the numerator of this ratio by Ng and its denominator 

by  the  same quantity expressed by Formula  (12.28): 

0\tt„ae   „«Vj  
*'    70.V0    to mh",, 

Caucelling and transposing multipliers, 

'i=~" ^^-wn,. (12.29) 

I.e.,  the over-all efficiency of the pump equals  the product of 
Its  hydraulic,  volumetric,  and mechanical  efficiencies. 

The over-all efficiencies  of centrifugal pumps vary from 0.7 
to 0.85;  small auxiliary pumps may have  lower efficiencies. 

Figure  164 presents  curves  that  indicate  the manner in which 
the  over-all and hydraulic efficiencies of the pump vary,  and also 
shows a constant-rpm characteristic. 

§58.   SIMILARITY FORMULAS 

Let  us  consider similar operating modes  of centrifugal pumps 
that are geometrically similar to one another.     As we noted 
earlier   (§22), geometrical,  kinematic,  and dynamic  similarity are 
required to ensure hydrodynamic similarity.     For centrifugal pumps, 
kinematic  similarity means  similarity of the  velocity triangles 
constructed  for arbitrary corresponding points of the Impellers. 
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To ensure dynamic similarity,  the Reynolds numbers for the  flow» 
In the particular pumps must be equal. 

In similar operating regimes of centrifugal P^P»» P^P?*"-    a 
tionality Is observed between the useful heads and the head losses 
in the pumps, as well as between the useful deliveries and leak- 
age rates; we may therefore assume that if hydrodynamlc similar- 
ity is observed in the gumps,  their hydraulic and volumetric effl- 
clelcles will be  equal.      Mechanical efficiency changes slightly 
on transition from one pump to another in spite of similarity, 
but we can assume without Incurring any major error that the over- 
all efficiency remains constant,  as  do rig and no- 

Let us  consider similar operating modes of two geometrically 
similar centrifugal pumps.    Quantities pertaining to the  first 
pump will be denoted by the additional subscript  I,  and those 
pertaining to the second by II   (Fig.   165). 

Pig.   165.  Illustrating derivation 
of sllllarlty  formulas  for centrifu- 
gal pumps. 

Remembering that the circumferential velocities  of the im- 
pellers are proportional to the products of the speed n by the 
diameters D of these Impellers,  the condition of kinematic 
similarity at the impeller exits  can be written in the form of 
the following proportions: 

("j),, " ("»)„   («Ju»,,    (.«2'),, 
(12.30) 

Since, In accordance with (12.10), 

and we have from geometrical similarity 

(Q),  (*»), 

we can write on the basis of (12.30) 

'See page 290 for footnote. 
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This means that the flow rates In similar pumps operating In 
similar modes are related as the speeds and the cubes of the diam- 
eters . 

Tne theoretical heads for Infinite numbers of vanes are pro- 
portional, according to (12.8), to the product of two velocities: 
circumferential and tangential; the vane-number Influence coeffi- 
cient u Is th* same for the geometrically similar Impellers, so 
that 

*<W.f),i ("S«
,
;.)II ' 

Prom this, applying the proportions (12.30), we obtain 

J^UJ;:!^- (12.32') 
(//,.)„    ("V)),, 

The actual head developed by the pump equals 

(this head H will henceforth be written without the subscript nas). 
But since in  )1  - (OJJI we can wrlte lnstead of (12.32') 

*l-±^-. (12.32) 

i.e.,  the actual heads developed by the similar pumps in similar 
operating modes are related as the squares of the products of 
speed by impeller diameter. 

Proceeding from the expression for the power developed by 
the pump [Pormula (12.2)] and using our new formulas  (12.31) and 
(12.32), we can write the relation between the powers developed 
by similar pumps In similar operating modes: 

JÜl M!l!_       *£!!_. (12.33) 
"u    OII^IIVII       "IIOII v.i 

If we consider similar operating modes of a single pump at 
different speeds nj and n2, the above formulas (12.31), (12.32), 
and (12.33) are simplified, since they have the same D and y. and 
assume the form (the subscripts 1 and 2 denote the different 
speeds): 

9L^J±. (12.34)- 

«! fnxY, (12.35) 

(12.36) 
AT, {nj' 
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Formula» (12.34} and (12.35) are used to convert the pump 
characteristics from one speed to another. If a curve of H as a 
function of Q for n, - const Is given, the analogous curve for 
n. ■ const can be obtained by converting the abscissas of points 
of the first curve (flow rates) In proportion to the ratio between 
the speeds and the ordlnates (heads) In proportion to the square 
of this ratio (Pig. 166). 

Thus, we can convert and replot t^e 
pump characteristic for any other speed: 
na, ni, n*, and so forth, and obtain a 
whole series of characteristics of the 
same pump for different n. 

On these curves, points connected 
with one another by the coordinate rela- 
tionships (12.3*0 and (12.35), auch as 
points A,, Aa, A,, A*, etc., represent 
operating regimes that are similar to 
one another. Another series of points 
Bn B2, B,, etc., represents a second 
series of similar regimes; points Ci,  C,, 

Fgg. 166. Conversion 
of pump characteris- 
tic to a different 
speed. 

C,, etc. represent a third series, etc. 

It Is easy to find the equation of the curves on which 
similar (In the sense of operating regime) points lie. Accord- 
ing tc (12.3*0 and (12.35), we can write for a series of points 

f-t-t-*-' 
Prom the above, we have for the series of mutually similar 

regimes 

For another series 

If »consti Q». 

ff-constiO'. 

Consequently, the points representing similar regimes  lie on 
second-degree parabolas emanating from the coordinate origin in 
H, Q-ooordinates.    They are known as similar-regime parabolas. 
In Fig.   166,  they are indicated by dashed lines.' 

On the basis of what we  said above concerning the hydraulic 
and volumetric efficiencies in similar operating modes, it can be 
stated that  the similar-regime parabolas are  at the same time 
curves  of constant n    and r\t.     It  can be assumed in approximation 
that  the over-all efficiency  also  remains constant  along a similar- 
regime parabola. 

'See page  290 for footnote. 
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The following question arises with regard to regime simi- 
larity in centrifugal-pump operation: when Is similarity pre- 
served and when Is It violated on a change In the rpm of the 
centrifugal pump? 

Pig. 167• Operating 
points on violation 
of similarity. 
KEY: (a) pipeline 
characteristic. 

The operating regime of the pump Is 
always determined by the point of Inter- 
section of the pump and pipeline char- 
acteristics, so that for a given pipeline 
characteristic (a constant valve setting), 
a change In pump speed causes a displace- 
ment of the operating point along the pipe- 
line characteristic. If the pipeline 
characteristic Is a second-degree parabola 
emanating from the coordinate origin, this 
characteristic coincides with one of the 
similar-regime parabolas and, consequently, 
similarity will be preserved on a change 
In speed. Thus, for example, a closed 
pipeline with a turbulent flow regime has 
a characteristic that emanates from the 
origin and is nearly a second-degree par- 

abola.  It may therefore be assumed that a change In pump speed 
will not disturb similarity of pump operating regimes In this 
case. 

If, however, fluid is being transferred through the pipeline 
from a lower tank to a higher tank, i.e., if the level differ- 
ence &z j  0, the pipeline characteristic will take the form shown 
in Fig. 167. A change in pump speed from n, to nj will cause the 
operating point to shift from A to B. But points A and B are on 
different similar-regime parabolas, so that regime similarity 
is violated. 

It follows from the above analysis that there are two pos- 
sible ways of regulating a centrifugal pump: throttling as indi- 
cated in §57 and changing pump speed. In the case of throttling, 
the pipeline characteristic is changed ana the operating point 
Is shifted along a given pump characteristic (see Fig. 152), and 
when speed is changed, the pump characteristic changes and the 
operating point moves along the pipeline characteristic (see Fig. 
166). 

The second control method - varying speed - is more economi- 
cal, since it permits us to maintain an approximately constant 
pump efficiency (If the pipeline characteristic starts from the 
origin). However, speed changing usually involves certain dif- 
ficulties, since it requires additional equipment, and It Is 
therefore simpler to control the pump by throttling. With 
throttling, the pump efficiency varies along the curve shown in 
Fig. 164 and, consequently, a substantial decrease in delivery 
is accompanied by a substantial decline In pump efficiency. 

-262- 



559.  THE SPEED COEFFICIENT AND ITS RELATION TO IMPELLER SHAPE 

Let us use the similarity formulas obtained above to derive 
a criterion tnat Is of great Importance In the calculation and 
design of centrifugal pumps and is known as the speed coefficient. 

We can write on the basis of Formula (12.31) 

BTVoJ Ui/  • 
Substituting this expression Into (12.32), we obtain 

Grouping factors and raising to the 3/4 power, 

^«^.con... (12.37) 

This expression Is the same not only for two similar pumps I 
and II, but also for a whole series of mutually similar pumps 
operating in similar regimes. 

Suppose that in this series of similar pumps we have one 
standard pump that develops a head He - 1 m and a power Ne - 1 hp 

at Y - 1000 kg/m*. 

The delivery of the standard pump is easily found from the 
power formula  (12.2): 

O,«-^-=^:=0l075 mVs = 75 1/s. 
/> tY        1 * IOÜO 

Let us now connect the parameters of the standard pump (Qe, 

H , n ) with those of any other pump In the series (Q, H, n) for 

similar operating regimes, i.e., let us apply (12.37): 

"ü35 ^-" 13 
HI*      H** ' 

Substituting the values of Qe and He, we determine the rpm 
of the standard pump from the above equation: 

"•     K0-0T5   "^^ " 3•C,' ~Hir • 

This number is conventionally denoted by n    and known as the 
speed coefficient or the specific rpm of the  centrifugal pump. 
Thus,  we have  finally 
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V"3.«'r'-",$L. <12'38) 

As follow» from ita derivation, the sense of n8 Is ao fol- 
lows: It Is the speed of a standard pump that is similar to the 
given pump and develops a head He - 1 m and a flow rate Qe - 
• 0.075 B'/S in similar operation.    It must be remembered that 
the hydraulic and volumetric efficiencies of these pumps are 
assumed to be the same. 

The power developed by the standard pump will be 1 hp, but 
with the condition that Y ■ 1000 kgf/m'.    The power will be 
smaller for lighter fluid» and greater for heavier ones.    Thus 
it i» better not to introduce the power value from the standpoint 
of generality in defining n8. 

The Impeller diameter of the standard pump is easy to deter- 
mine.    According to (12.32), we can write 

H      n'Cfi ' 

whence 
D.-^. (12.39) 

In using Formulas  (12.38) and  (12.39), it must be remembered 
that H Is measured In meters, Q In mVs, and n in rev/mln. 

Under certain conditions, the speed coefficient or specific 
rpm n    characterises the ability of the pump to develop head 
("head capacity")  and feed fluid  ("delivery capacity").    The 
larger the coefficient n8, the smaller is the  "head capacity 
(for given Q and n) and the greater the "delivery capacity" of 
the pump (for given H and n). 

The coefficient n    Is closely related to the shape of the s 
pump's Impeller. 

Pumps with small n    values have  small Impeller width ratios 
(b./D,), but large D./D,, i.e., a longer vane than Is required 
to produce a large head. Fluid flows through such an Impeller 
in the plane perpendicular to its axis of rotation. 

With Increasing n   ,  the ratio D^D,   (and D2/D0)  diminishes, s 
i.e.,  the vanes become shorter and the relative width bi/Di of 
the impeller increases.     In addition,  the flow through the impel- 
ler  leaves  the plane of rotation and becomes  Increasingly  three- 
dimensional.    At  the  limit,  for the maximum values of ns,  we ob- 
tain  flow along the axis  of rotation and the  axial-flow impellers 
that correspond to this  case. 
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As nB Increases from HO to 200, the vans angle 0, dsorsasss 
from about 35 to about 15°. 

Csntrifugal pumps and other similar vane pumps are classi- 
fied In the following varieties on the basis of ths speed coeffi- 
cient n  : 

9 

1} slow-running:   «(<80. ö--2.a^3.S; 

2) normal:   ««-SOt-lSO. f«—.2.2^.|.8: 

3) fast-running:  «,-»150-^300. ^-1.8^-1.3; 

4) diagonal or screw:   /i,»300-«-600, ^• —l.3-<-l.l: 

5) axial or screw-Impeller:   /i.---600-•-1200.-^-1. 

I . I 
Pig. 168. Variations on the impeller. 

Typical wheel designs corresponding to these pump varieties 
are represented in Pig. 168. 

The first three pump varieties - slow, normal, and fast - 
are classed as centrifugal, but the last two - diagonal and 
screw-impeller - do not belong to this class. However, there 
are no sharp boundaries between these pump varieties; with in- 
creasing na, we have a gradual transition from the purely cen- 

trifugal wheel type to the diagonal and purely axial types. 

§60. RELATION BETWEEN SPEED COEFFICIENT AND PUMP EFFICIENCY 

Transition from one vane-ptunp variety to another, i.e., a 
change in the speed coefficient n , cannot but affect the effi- s 
ciency of the pump.  However, this influence of the coefficient 
ns will be different for the hydraulic, volumetric, and mechani- 
cal efficiencies. 

Research has shown [17] that hydraulic efficiency changes 
very slightly with a change in ns and depends to a much greater 
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decree on the »hape perfection of the flow eectlon of the pump, 
l!f "ughness, and the dimensions of the pump.    As for the volu- 
™?rlc IndmeShanlcal efficiencies, they change very substantially 
as n   approaches Its lower limit. 

With decreasing spted coefficient, the relative «»ount of 
power lest to friction between the lateral »urfaces of the impel» 
?.P fimoeller disk) and the fluid Increases substantially, i.«., 
JS ÜSUiSl •ffieSScy of the PU»P,^cllnes, and the amount 
of the flow that circulates through clearances In the pump also 
JJcSlses* !.•*. the relative amount of leakage rises and volu- 
metric efficiency falls off. 

Thus, operation of a centrifugal pump with a small n, en- 
tails a loss of over-all p-jmp efficiency; this loss will be 
JJliteJ SI .mall.r n,,.    This fact determines the lower limit for 
n , which is dictated by economy considerations.    The latter de- 
pend in turn on the specifics of the particular aircraft on which 
the pump Is to be installed. 

To oermlt Judgments as to the minimum acceptable speed coef- 
ficlen? 5 ™nd to facilitate numerical evaluation of pump effi- 
ciency for various n8, we present working formulas for the rela- 
tive energy  losses in the pump and the corresponding efficiencies 
as functions of ns. 

Let us  first examine the relative amount of flow that clr- 
culat« through the Peking clearance and find an expression for 
pump volumetric efficiency. 

Flow through the packing clearance  leakage) can be expressed 
by the usual outflow formula: 

where S Is the area of the gap, which equals  (for the case of a 
one-sided packing) 

S « «Dy,»; 

D      is the packing diameter;  6  is the clearance,  which we shall 
assume proportional to the diameter Dup,  i.e.. 

SmnShpÜlWl S'p " the^*) .nd.r «hl.h fluid flow, out 

through the gap. 
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The quantity H  can be found as the difference between the 

pleaometrlo heights developed by the Impeller (I.e., the head Hr 
for a finite number of vanes with consideration of hydraulic 
losses) minus the pressure drop In the space between the impeller 
and the casing due to rotation of the fluid. Since one of the 
walls of this spaoe Is stationary and the other moving, It is 
usually assumed that the fluid Is In rotation at a speed equal 
to half the Impeller speed. 

Using Formula (3.3) for the pressure In the fluid at rela- 
tive rest, we have with consideration of the above 

//,.-i..i,/',-ig-(/>;-cj.> 

The head H      can be assumed approximately proportional to the 
head developed by the pump and expressed as follows: 

where k.,„ • 0.6-0.85. up 

The packing diameter D  is approximately equal to the entry 

diameter D0, which, as will be shown in the next section, should 
be set equal for design purposes to 

VI 
where the coefficient k,  - k.2-H.5. 

Substituting the above values into the equation for leakage, 
we find the ratio of this  leakage to the useful flow rate as a 
function of the speed coefficient n   : 

I.II4JI/24'»,.        «' 

Using Expression (12.38) for the speed coefficient, we ob- 
tain 

where 

A 
m 

For m ■ 300, y-0.5, K  «0.8, and k0 - 4.5, the constant A is 

found to equal A = 1.0. A curve of the leakage ratio q/Q through 
a one-way packing as a function of the speed coefficient ns has 
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bttn plotted In Pig.  169 for this value of A.    The diagram clear- 
ly shows the Increase In the Importance of leakage with decreas- 
ing pump speed.    For two-way packing, A would be twice as large. 

Pump volumetilc efficiency can be expressed In terms of the 
speed coefficient by the following formula: 

""^-TTT'TT^- <l2-''01 

Figure 169 also shows a curve of the volumetric efficiency n. 

Friction between the Impeller dlik end the fluid usually oc- 
curs In turbulent flow, so that the tangential stress T, as In 
the case of turbulent flow In pipes, can be regarded as propor- 
tional to the product of fluid specific weight by the velocity 
head.     In this ease, the latter must be expressed In terms of the 
impeller's circumferential velocity, which varies In proportion 
to radius; thus, we have 

■> 

where cf Is a dlmensionless proportionality coefficient known as 
the coefficient of friction. 

The power lost to friction between the Impeller disk and 
the fluid can be computed by integrating the expression for the 
elementary frlctlonal moment multiplied by the impeller angular 
velocity, i.e., 

f 

where dS is an elementary area equal to 

r is the radius in question and k is a coefficient that takes ac- 
count of the fraction of total impeller disk area that is subject 
to friction; usually,  1 < k < 2. 

Substituting the earlier expression for T,  remembering that 
u - wr,  and assuming,  in first approximation, that the turbulent- 
flow coefficient of friction cf is constant over the entire dlsic 
area, we can perform integration in the form 

K^Ctv* f' 
op 

or 
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whtre C is a constant that Incorporates the numeploal coeffi- 
cients, k,  of, and the other constants. 

Research has shown that the constant C can be assuned equal 
to C ■ 1.2 •  10-* in the engineering system of units for approxi- 
mate calculations in the case of highly finished surfaces; the 
power Ntr will then be obtained in horsepower. 

Let us find the ratio of the friction power to the hydraulic 
power of the pump (see $57): 

% *   QVH 
W%"lr. 

We express the Impeller diameter D In terms    of the circum- 
ferential velocity u, and the speed n and the circumferential 
velocity in terms of head with the aid of the following relation- 
ships : 

1» 
•! 

and   H. *|-    , 
9t 

from which 

'-£-£/£*" 
Substituting the previous expression into the basic equation 

or, Introducing the speed coefficient n    and using the expression 
8 

found above for n» In terms of n  : 

»      l (12.11) 

.1 *A»% 
«w 

X-J. 
• K3 

m 
j, - 

It M 1 > 
L, _ 

$ \ 
\" 

.* u- *-. ;.• 

2. *i    u   tt   n n. 

Fig.   169. Diagram of 
no and q/Q as functions 
of n_. 

Fig.   170.  Diagram of 
n'  and N' /N    as func- m er    g 
tlons of n  . 

8 
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where /r-3.65»-7Sc(")'-[^-)S''ii,;   for k,   -  1.2, we have  ng - 0.80, C - 

1.2  •  10-*, and B - 377. 

The  curve  of N'  /N    as  a function of n    for the value found tr    g s 
for B and  for A  = 1.0 appears  in Fig.   170,  from which we see how 
significantly  the relative power losses due to friction between 
the impeller disk and the fluid increase with decreasing ns. 

To convert   from N'  /N    to pump mechanical efficiency, we tr    g 
regard the latter conventionally as the product 

where n'   is the efficiency with consideration of power losses to m 
friction between the Impeller disk and the  fluid and therefore 
equals 

n" is the efficiency with consideration of the power lost to frlc- m 
tlon in the packings and bearings and equals 

In the last expression, N"    is the power lost to friction in the 
packings  and bearings and No  is the total power drawn by the 
pump, which equals the sum 

Wo - AVI*;,. H-Ab- 

using the  relation obtained above for N^/Nj  as a function 
of the coefficient n  , we can plot a curve of n'  as a function of 

3 * ^ in 
n    for the above values of the constants A and B.     The  coeffl- s 
clent n"  can be  regarded as   Independent of n.  and equal,  for ex- 

ra s 

ample, to 0.95. 

A curve showing the decrease  in  >;he coefficient n^ with de- 

creasing n„ also appears in Fig.   170. s 
It  should be remembered that when the slots   leading from the 

space between the Impeller and the  stationary walls to the scroll 
chamber is reasonably dimensioned   (of the order of 3% of the 
wheel diameter on either side), some of the energy lost  to fric- 
tion between the impeller disk and the fluid can be recovered by 
utilizing the kinetic energy  of the  fluid picked up by  the disk. 
Thus,  the  actual mechanical efficiency may be somewhat higher 
than the  calculated figure. 
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In using the  above curves  of q/Q,  Ntr^a:'  no* and r|m VS' 
n,,, It Is necessary to remember that they are approximate.     To s 
obtain more accurate values for these quantities, it is necessary 
to recompute  the constants A and B each time for the  specific 
data. 

No analytical expression can be given for the sura of the 
hydraulic losses in the pump or,   consequently,  for n   ,  since 
this quantity depends on a whole series  of factors whose influ- 
ence has not yet been adequately studied.    For high-head  (slow- 
running)  Impellers,  the hydraulic efficiencies  vary  from 0.70 to 
0.90, with the lower limit pertaining to small n    and small im- 
peller dimensions,   of the order of D -  100-200 mm, while the 
upper limit  corresponds to n    ■  90-120  and D -  500-600 mm. 

§61.   CALCULATIONS  FOR PUMP  SCROLL CHAMBER 

The scroll chamber of a centrifugal pump Is a unit that re- 
ceives  the  fluid thrown off by the impeller and directs it  into 
the pressure  line. 

Fig.   171.  Diagram  of scroll chamber. 

Calculation and design of the chamber are based  on the  as- 
sumption that  the  circumferential velocity component  in the  spiral 
varies  in inverse proportion to radius   (law of velocity distribu- 
tion over cross  section of vortex,  or   law of conservation  of 
angular momentum),   so that with a finite number of vanes we have 

•     2«/- ' 

where f, the so-called circulation through the closed contour in- 
cluding the wheel, is a constant for a given chamber and a given 
pump operating mode. 
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With increasing radius, the  velocity vu diminishes, and the 
nressure rises accordingly.    Consequently, a process  of oonver- 
Kon of fluid kinetic energy Into pressure energy begins with 
flow in the  scroll and continues  in the diffuser that is usually 
connected to the scroll  (Fig.   171)- 

The circulation r can easily be found from the head H devel- 
oped by the pump and from ry     In fact,  since according to For- 

mula   (12.16) 

we have on the basis of the above 

In an arbitrary section of the scroll, the flow rate can be 
consider^ ?o Increase In proportion to the inclination angle a 
of the section, reckoned  from the Initial section of the scroll 
(which is  also Its  final  section), i.e., 

where Q is the pump's delivery  into the  line. 

We have for the elementary flow rate through an elementary 
area of d?mlnsions b * dr and taken at radius r in an arbitrary 
cross section of the  scroll 

dQn=bv'dr=-^- Mr. 

from which 

where r - (1.03-1.05)r2 is the radius of the cylindrical surface 
encllslAg the wheel and'tangent to the cross sections through the 
scroll chamber. 

For the simplest case, in which the scroll h^ * ref^
nf^ar 

cross section of constant width (b - const), we obtain from the 
above 

300      2;vQ ij      •n.O      r3 

Assisning a series  of values from 0 to  360°  to the angle a, 
at.  for eÄe! »5° intervals, we o"aln a series  of R-values 
raAging from r, to Rmax.  i.e.,  we obtain a trace of the scroll. 
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For a scroll with a circular cross section of variable radius p, 

»=2Vc,-('--«)! 

(a Is the distance from the center of the cross section to the 
wheel axis)  and,  consequently. 

Q^L. | £gEES£ dr^r (a- V*^)- 

Substituting 51 Q for Qa and r, + p for a In this expression, 

we obtain after solving for p 

where 

C
"'3GO*"'']/ » a» " (12.43) 

This  formula enables us  to make  a complete calculation of 
the dimensions and outlines of a round-section scroll chamber. 
Numerical Integration Is necessary  for arbitrary  cross-sectional 
shapes. 

§62.   CAVITATION  CALCULATIONS  FOR CENTRIFUGAL  PUMPS   (METHOD OF 
S.S.   RUDNEV) 

Any  centrifugal pump  or  any  other type  of pump will perform 
normally  only If the absolute pressure at Its Intake Is not too 
low.    Otherwise,   cavitatlon will arise In the Intake section of 
the  pump  or, more precisely,  where  the  fluid enters  the between- 
vanes  spaces of the impeller,  where  the absolute pressure Is low- 
est   (see   §23). 

VH 

tr 
—I P,!  f%\tH 

Fig.   172.   Diagram of pump- 
testing apparatus.   1)  test 
pump;  2)   flowmeter;   3) 
choke;   4)   vacuum pump. 

Fig.   173.  Cavitatlon char- 
acteristic of pump. 

When  a pump  Is  operated with  cavitatlon,  continuity  of the 
flow is disrupted by the release of vapor and dissolved gases; 
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water hammer on condensation of vapor bubbles produces a charac- 
teristic noise,  and the delivery, head,  and efficiency of the 
pump decline.    The severity  of these phenomena Increases with de- 
creasing absolute pressure before the Impeller Intake,  as Is  evi- 
dent from the so-called cavltatlon characteristic of the centrifu- 
gal pump.    The  latter Is a diagram of the head,  power,  and effi- 
ciency of the pump as  functions of the absolute  fluid pressure be- 
fore the Impeller Intake.    Characteristics of this kind are usu- 
ally obtained as a result of special tests in which the pump speed 
and flow rate are held constant  (by throttling with a valve or 
spool);  during the test, the absolute pressure before the Impeller 
Intake Is gradually lowered,  for example, by evacuating air from 
the tank.1*    Figure 172 shows a diagram of an apparatus for this 
test.     The pump head,  power,  and efficiency remain constant at 
first   (Fig.  173), and then,  when the pressure has been lowered 
substantially,  the characteristic noise  is heard and these quan- 
tities drop off sharply owing to the onset and steady increase of 
cavltatlon in the entry section of the pump. 

An increase in the speed of the pump and the fluid flow rate 
(delivery) Increases  velocities and lowers absolute pressure at 
the entrance onto the vanes  of the pump  and,  consequently,  con- 
tributes to cavltatlon in the pump.     It  is therefore sometimes 
necessary to limit pump flow rate and speed to prevent cavltatlon. 

Below we examine  the  flow of fluid at the entry into the im- 
peller,  determine the entrance diameter of the  Impeller from 
cavltatlon conditions,  and derive a cavltatlon criterion by the 
method of Prof.   S.S.   Rudnev. 

Let the fluid's  velocity be vvkh and the absolute pressure 
p ..    directly   before  the entrance into the pump;  then the fluid's 
specific energy at the pump Intake will equal 

Y 3s 

As the fluid advances onto the impeller vanes, there is a 
further pressure drop proportional to the velocity head calcu- 
lated from the relative entrance velocity, but cavltatlon will 
not occur until the absolute pressure of the fluid exceeds its 
saturation vapor pressure at the given temperature. 

Thus, the condition for prevention of cavltatlon in the pump 
can be expressed by the following inequality: 

where v, is the absolute velocity at which the fluid enters onto 
the vane, and is approximately equal to the velocity v0 of entry 
into the Impeller; w, is the relative velocity at which the fluid 

"See page 290 for footnote. 
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enters onto a vane; ht is  the saturation vapor pressured divided 
by Y,  i.e., 

X is a coefficient that depends on vane shape and on the fluid- 
flow conditions;   X— is  the pressure decrease  as the  fluid moves 

onto the vane. 

The same inequality can be written 

"i      •? 
2f       2g 

The  left side of the  inequality represents the available 
fluid specific energy at entry into the pump,  which may, at the 
limit, equal the right side.    This equality will correspond to 
the  onset  of cavitation,  so that we shall call the difference 
H ,.    - h.   the critical difference If it  is equal,to the right vlcn t 
member,  i.e., 

« 5 »;      «; 

Since  normally w*  =  v*  +  u*, we have 

(«K-*.)., = (I •» ))2y + * ■^-• 

It is helpful to have (Hvkh - ht)kr as small as possible, 

since the smaller (Hvkh - ht)kr, the greater will be the pump's 

stability as regards cavitation. As we see from the above, the 
value of (H kh - h. ).  depends on the velocities Vj and U!, which 

depend, in turn, for given Q and n, on the diameter D,, which is 
approximately equal to D0 (see Fig. 154). This prompts the ques- 
tion as to how to select the entrance diameter of the Impeller in 
order to guarantee the smallest value of (Hvlch - 

h
t)jcr

> To flnd 

the dimension Dl that Is optimal from the standpoint of cavita- 
tion, we express the velocities V! and Uj In terms of D, and in- 
vestigate for the minimum. We have 

1 T    1603   n'O?«? I 

Differentiating with respect to D1 and equating the deriva- 
tive to zero, we obtain 

whence 
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Finally, we obtain the following expression for the optimum 
diameter: 

D   -J/lL {12. W) 

where the coefficient k0 varies In the range k0 - 4.3-4.5 as a 
function of X. 

For practical calculations,  It is recommended that the upper 
limit be taken to avoid overloading the pump. 

Using this expression for the optimum diameter, we  find the 
minimum value of  (Hvkh - h

t)kr
: 

D
9
   r 16<?'        ^   T 

or, after substitution, rearranging,  and solving 

K//«-*i).,i«in-"»]/ i5i/w+r) -^—$—jr~' 

where s is a coefficient that is fully determined by Xj  for X - 
- 0.257 s  =  0.02. 

Tests run on pumps indicate that this value of the coeffi- 
cient B can be used in practical calculations for impellers of 
the conventional form.    For special wheels, 8^oh

n
a* "^ ""^ 

increased width bj, the values of 3_ decrease to 0.012-0.013 LlöJ- 

Thus, if the optimum inlet diameter Dj  is taken, the anti- 
cavitatlon condition for the pump will be the inequality 

«?,*)'•" (12.45) 
//„ — *«>*    _        . 

Thus, our coefficient s is a criterion of cavltation in the 
pump that enables us to carFy out check calculations and calcula- 
tions to determine the maximum allowable pump speed for given Q 
and H   or the lowest admissible absolute pressure at the pump 

vkh 
entrance. 

The latter, as follows from the nomenclature adopted above 
and the above inequality, is determined from the condition 
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The velocity head In the brackets  is often neglected,  since 
this  Increases the  cavltatlon reliability of the pump,  and the 
difference p^i. - Pt Is referred to as  the pressure cavltatlon 
margin. 

To find the maximum permissible pump speed, we solve   (12.45) 
for n: 

After multiplying and dividing the right member of the equa- 
tion by lO'/*, we obtain Prof.  S.S.  Rudnev's  formula as it Is 
most  frequently encountered in the  literature: 

".«-^PlfT- (12.46) 
where  c^ is a constant with the dimensions m3/1* s"'/2 and equals 

«,-(?-:«>)■•, 
Q is the delivery in m'/s, and H , . - h. is given in meters. 

Introduction of the multiplier lO3'1* results from the fact 
that the formula was originally intended for pumps working on 
water with y  - 1000 kgf/ms, so that the pressure could be ob- 
tained in kgf/cms by dividing the head H. . - h. expressed in 
meters by 10. VKn   z 

If we substitute the corresponding pressures p .. and p. 

divided by the fluid specific weight y  for the heads H ... and h. , 

Formula (12.46) can also be reduced to the form 

-" 'rVQ\     v  J ' 

where Q is expressed in m3/s, £ in kgf/cm2,  y  in kgf/1,  and c^ 
has  the  same dimensions  as   in Formula  (12.46). 

This inhomogeneity in the dimensions  of the quantities  ap- 
pearing in this  last  formula must be remembered and taken into 
consideration when It is used. 

The constant c.      for a given pump  is known as its  critical 
cavltatlon coefficient.    This quantity and the dimensionless  coef- 
ficient s in Formula  (12.45)  characterize  the  cavltatlon proper- 
ties  of the pump, i.e.,  the predisposition of the pump to cavlta- 
tlon when the absolute pressure at itr.  Intake decreases.    The 
larger ckr ond the  smaller s, the  less  susceptible    will the pump 
be to cavltatlonj  this is  an advantage  that becomes especially 
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valuable for pumps  in liquid rocket engines.    Conversely,   the 
lower the value of ckr and the higher s_,  the greater will be the 
tendency of the pump to oavitatlon,  a highly undesirable phenome- 
non in any pump. 

The coefficients c.     and 3_ are uniquely related by the  for- 
mula given above. 

The accuracy of the cavitation calculation for a centrifugal 
pump,  i.e.,  that of the calculation to determine nmax or  (Pvkh)min» 
is determined by  correct selection of the numerical value  of c^ 
or s. 

For conventional centrifugal pumps,  the coefficient  ckr 

ranges  from 800 to 1200, depending on the shape of the vane entry 
section and the  intake plumbing   (s - 0.025-0.015). 

Very recent  studies indicate that  for special impellers with 
high anticavitation properties  and expanded entry sections,  the 
coefficient  c,      reaches values   of 2000-2200 or s  «  0.008-0.007. kr 

The following measures are  taken to prevent cavitation in 
the pumps of aircraft hydraulic  systems and in liquid rocket en- 
gines : 

a) the gas pressure in the  tank  from which fluid is drawn is 
increased.     However,  this may result in a weight penalty on the 
tanks,  and the tank pressures are therefore held comparatively 
low (1-3 atm); 

b) an auxiliary booster pump is  inserted at the beginning of 
the intake pipeline.    But this  can be done only if power,  e.g., 
electric power,  can be supplied to the poiit of installation of 
the booster to drive it; 

c) an axial or screw wheel   (worm)  is mounted directly in 
front of the main impeller and on the  same shaft to raise  the 
pressure and twist the flow.    The twist results In a certain de- 
crease in the relative velocity  OJ, , and this also improves the 
operating conditions of the main impeller. 

This auxiliary wheel can provide  full insurance against 
oavitatlon in the main impeller of the pump, but,  since it has 
the same speed n and passes the  same  flow rate Q,  it may  itself 
become a locus of cavitation.    Hence  the best solution will be a 
device in which the speed of the auxiliary wheel is   lower than 
that of the main wheel. 

§63.   DETERMINATION OF THE  ALTITUDE CAPABILITY OP AIRCRAFT  FUEL 
SYSTEMS  WITH CENTRIFUGAL BOOSTER  PUMPS 

In §51,  In our discussion of intake pipelines, we set  forth 
the principle on which the altitude  capability of aircraft 
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hydraulic systems with tanks communicating with the atmosphere 
is determined.  We also Indicated an effective method of increas- 
ing the altitude capability of these systems, which consisted in 
Installation of a booster pump at the beginning of the intake 
line (or directly in the tank).  This method is widely used in 
the fuel systems of modern aircraft, with centrifugal pumps serv- 
ing as the boosters.  Hence determination of the altitude ability 
of aircraft fuel systems is closely related to the cavitation 
characteristics of centrifugal pumps. 

Let us take a typical layout of the main part of an air- 
craft fuel system running from the service tank, to which fuel 
is supplied from other tanks, to the main high-pressure pump (see 
Pig. 1^7)  and consider the method of determining the altitude 
capability of this system. 

The excess air (gas) pressure Aplzb in the fuel tanks, i.e., 

r,he amount by which the absolute preasure in the tanks exceeds 
atmospheric pressure at the particular flight altitude H, and 
Its dependence on H are determined by the tank-venting system. 
The latter may be open, semiopen, or closed. 

In the open system, the excess pressure In the tanks is de- 
veloped by using a velocity head, and, consequently, 

.  V« 

where pH and V are the density and  flight  speed, respectively,  at 
altitude H;  k is  the coefficient of utilization of the velocity 
head, which is usually somewhat  smaller than unity. 

In semlupen systems, the gradient Apizb is created by using 
velocity head and turbocompressor pressure  simultaneously.    This 
ensures a practically  constant Aplzb  irrespective of altitude. 

In closed systems,   the  fuel tanks do  not  communicate with 
the atmosphere, and the required tank pressure is provided by 
turbocompressor or bottled compressed air   (gas)  carried by the 
airplane. 

The booster pump is usually placed Inside or at the bottom 
of the service tank, so that there are practically no hydraulic 
losses at the pump intake and the pressure pvkh differs  from the 

tank pressure only by  the velocity head. 

We shall assume that we know all dimensions of the system, 
the resistance coefficients of the  components   U),  the physical 
properties of the fuel   (Y, V, pt),  the excess pressure ÄPlzb  in 
the tank,  the engine's  fuel consumption as  a function of altitude 
at  top speed of the airplane  (Pig.   ITta),  and,  finally,  the  char- 
acteristics of the booster pump. 
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Pig.   174.   Illustrating deter- 
mination of altitude capability 
of aircraft  fuel system. 

It is  desirable to have the cavltatlon characteristics of 
the booster pump constructed in the  form of curves  of the Pres- 
sure   (or head) developed by the pump  (Pnas) as  a function of alti- 
tude H for various pump deliveries Q  (Pig.   174b).     However,  spec- 
ial cavltatlon tests  cannot normally be relied upon to produce 
such characteristics.     It  is easier to obtain the normal char- 
acteristic  of the pump, i.e.,  a curve of p 

const. 
nas f(Q) for n 

This characteristic can be used to determine the pressure 
n   for selected deliveries Q, thereby obtaining the horizontal 

segments of the curves :.n Pig. 174b. The values of H at which 
these lines begin to curve. I.e., those at which cavltatlon be- 
gins, can be determined with S.S. Rudnev's formula (12.46), in 
which it is necessary to set 

Using (12.46), we determine the atmospheric pressure pA at 

altitude H for each of the Q, and the altitude H from the pA. 

The pressure at the delivery end of the booster pump must be 
sufficient to overcome all hydraulic resistances in the main line 
from the booster pump to the main high-pressure pump (J:p) and the 

incrtlal pressure (Apln - AHlnY) and provide a pressure p^kh at 

the entry into the main pump at which It can function normally 
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and without oavltatlon. The pressure p^kh is. In turn, composed 

of the fuel vapor pressure and the cavltation margin, the latter 
determined by the type of the main pump. Its speed, and certain 
other factors. 

Thus, the required absolute pressure at the booster-pump 
exit Is 

Pm,„^l>P+^r„-lpU- (12.47) 

Owing to the decrease In fuel consumption and,  consequently, 
of I    with altitude, the pressure P_otr also diminishes somewhat 
with Increasing H. 

To obtain the available absolute pressure PraBp *t the boos- 
ter output as a function of altitude H, we replot the pump char- 
acteristics given in Fig.   174b.     Instead of p,,.., we compute 

and construct curves of p„„  as  a function of H for the  same Q rasp 
(Fig. 174c).  It is convenient to mark out a curve of engine fuel 
consumption versus altitude below these curves and, assigning a 
series of consumption values for which Pra8D curves have been con- 

structed, to determine the corresponding altitudes H. By erect- 
ing verticals to the Intersections with the corresponding Pra8p 

curves, we obtain a series of system operating points. 

The curve connecting these points determines the available 
pressures p   for each of the altitudes H. "rasp 

If we now make a Joint plot of two curves - available pres- 
sure PraSD and required pressure PDOtr» the latter calculated by 

Formula (12.47), as functions of flight altitude H, their point 
of intersection (Fig. 174d) will determine the maximum altitude 
at which the booster pump is capable of developing the required 
pressure. At lower altitudes, PragD > Pnotr and, con8e<luently» 
the necessary amount of fuel will be delivered automatically. At 
H > H  , transfer of fuel is not guaranteed, and if the altitude 

H   determined from the calculation is smaller than that required, 

measures must be taken to improve system altitude capability. 
This property of the fuel system should not limit the altitude 
capability of the vehicle as a whole. On the other hand, the 
altitude capability of the fuel system should be several thou- 
sand meters greater than that of the vehicle as determined by its 
powerplant and aerodynamic properties. 

The basic ways to increase the altitude capability of fuel 
systems are as follows: 
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1) to Increase the excess air (gas) pressure In the fuel 
tanks; 

2) to Install a more powerful booster pump in the service 
tank and booster pumps in the other tanks; 

3) to lower the hydraulic resistance of the pipelines; 

l|) to use a fuel with a lower saturation vapor pressure; 

5) to reduce the necessary cavitation pressure margin of the 
main fuel pump by lowering its speed. 

However, use of any of these methods will result in greater 
weight of the fuel-system elements. The designer's problem is 
to secure the required system altitude capability with a minimal 
weight penalty. 

§6H. SELECTION OF PUMP TYPE.  FEATURES OF CENTRIFUGAL PUMPS USED 
IN AVIATION AND ROCKET ENGINEERING 

Pump type selection and design are usually based on Q, H, 
and n as initial data. These quantities are a basis for comput- 
ing Fhe coefficient ns, which immediately gives an idea as to 

which variety of vane-wheel pump is required for the specific 
conditions.  The design procedure for the centrifugal pump is 
indicated in an example in this chapter. 

If the n given by the calculation is too large (for example, 

greater than 1200), this means that not one, but several pumps 
connected in parallel must be used. 

If, on the other hand, ns is too small (see §60) and it Is 

impossible to increase the speed n, it is necessary to use a 
multistage pump, i.e., one with z impellers in sequence on the 
same shaft.  The head developed by each impeller will be one- 
zth that of a single-stage pump, and the ns of each impeller will 

be larger by a factor of z3/*. 

If this construction is undesirable, recourse is taken to 
turbulence or rotary-displacement pumps. Then, however, such 
properties of the fluid as viscosity, chemical activity, etc., 
must be taken into account. 

On aircraft with gas-turbine engines, centrifugal pumps have 
thus far been used chiefly in fuel systems as booster pumps. Most 
of them are made with closed-type Impellers (Fig. 175a) or semi- 
open impellers, i.e., impellers consisting only °f * ^nfl* dislc 
with vanes on one side (see Fig. 175b);5 open impellers (Fig. 
175o) are used less often. 

'See"page 290 for footnote. 
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Flg. 175. Centrifu- 
gal-pump Impellers. 

When a booster pump is placed Inside 
a tank, an axial wheel (vane wheel) is 
usually mounted on the same shaft at the 
entrance into the main impeller.  Its func- 
tion is to improve the operating condi- 
tions of the centrifugal booster pump, and 
to separate the fluid, i.e., to free it of 
vapor and gases. The axial wheel is de- 
signed for a delivery substantially larger 
than that of the centrifugal pump, since 
some of the fluid that it feeds is slung 
off. 

Booster pumps normally operate at speeds of the order of 
(6-10)' 103 rev/mln and develop pressures from 0.6 to 1.2 atm. 
The speed coefficients of these pumps vary from 100 to 200, i.e., 
they are classed as normal or even fast-running centrifugal pumps. 

A current trend is to use centrifugal pumps as main fuel 
pumps on gas turbine engines. This is because the required fuel 
deliveries (flow rates) are increasing and less viscous fuel 
grades with higher volatilities are being used.  At the same 
time, it is possible to operate the pumps at very high angular 
velocities (several tens of thousands of revolutions per minute). 

Under these conditions, centrifugal pumps are capable of de- 
livering the required amount of fuel under a high enough pressure 
at smaller bulk and weight than other pump types. These pumps 
have the same characteristic peculiarities as those used in li- 
quid-rocket engines. 

In LRE's, centrifugal pumps are widely used to supply fuel 
and oxidizer from the tanks to the engine's combustion chamber. 
These pumps must develop enough head to overcome all resistances 
in the pipelines and the combustion-chamber back pressure, as 
well as to ensure the necessary pressure drop across the injec- 
tors. As a result, the required head becomes quite large and is 
reckoned in hundreds of meters, while the pressures range into 
the tens of atmospheres. 

Usually, displacement ^umps are used to produce such high 
pressures, but if a substantial flow rate is required at the same 
time (as is the case in LRE's) and a high-rpm drive, such as a 
gas turbine, can be used, use of the centrifugal pump is more 
rational. 

High pressures are obtained from a centrifugal pump by use 
of high Impeller speeds and special Impeller designs.  As follows 
from §59, this is the construction typical of the so-called slow- 
running centrifugal pumps, i.e., those with the smallest speed 
coefficients (specific rpm n ), s 

It must be remembered that the term "slow-running" refers to 
a small specific rpm figure and has no relation at all to the ac- 
tual   (operating) pump speed, which may be very high. 
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Thus, the basic peculiarity of the centrifugal pumps used In 
LRE's Is a very small value of the speed coefficient ns with all 
of its consequences (see §60). 

As a result, the impellers of LRE pumps are usually purely 
radial, i.e., of the type in which the flow moves in a plane nor- 
mal to the axis of rotation.  These impellers are characterized 
by large relative diameters D2/D1 and small relative impeller 
width b2/D2. As we said in §60,  a decrease in ng increases the 

relative energy losses to fluid leakage inside the pump (volume 
losses) and to friction between the impeller disk and the fluid, 
i.e., it lowers the coefficients n,, and n^ and, consequently, the 
over-all efficiency of the pump. For this reason, LRE centrifu- 
gal pumps usually have modest efficiencies. 

The physical designs of LRE centrifugal-pump Impellers may 
be of the ordinary closed type used in booster pumps, i.e., with 
two disks, then of the semiopen type with one disk, and, finally, 
of the open type without disks and with cantilevered vanes (Fig. 
175^.  In the first two cases, the optimum backward-bent (ß, < 
< 90°) vane is used, but in the third the vanes are made radial 
for strength reasons. We have substantially smaller disk-fric- 
tion power losses in impellers of the semiopen type and even 
smaller losses in the open type as compared to closed-type im- 
pellers, but the volume losses increase. 

The method set forth in §60 for calculation of the friction- 
power ratio N. /N is also applicable to semiopen impellers, but 

tr g 
with appropriate selection of the coefficient k in the formula 
for N,. .  As for determination of the volume losses in this case, 

tr 
this is a special problem. 

Yet another peculiarity of centrifugal pumps used in LRE is 
the fact that they usually operate close to the cavitation point 
because of their high speeds.  As a result, the cavitation calcu- 
lation examined above acquires particular importance. 

Example. Calculate (in first approximation) the centrifugal- 
pump impeller dimensions of the LRE of the V-2 rocket [28] and 
determine the pressure required at the entry into the pump to sup- 
press cavitation, using the following data: 

fluid p^anped: ethyl alcohol (75$), Y = 864 kgf/cm3, ht = kH 
mmHg; 

gravimetric flow rate (pump delivery) G = 56 kgf/s; 

pressure developed by pump p„.„ =20.7 atm; 

impeller speed n » 3800 rev/min. 

Solution.  1. We determine the volumetric flow rate Q, the 
head H of the pump, and its speed coefficient ns. 
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^      C      56 ,, PXK     20.7-I0« 
<?=T=864'=M55m    ;    "T^—isr=240m5 

".=3.65—3-;-=3,6o —jj^l »CO. 

?.  From the value of n    and statistical data  (see  §60), we 
approximate the  following quantities: 

from which 

= 2.5; h = 30»; t1(, = O.SS;   i],', ^0.92; % =   0.P7; iv = 0.55: 

ti-0,6S • 0,92 ■ 0.07 ■ 0,?:."0,67. 

The power required by the pump 

0\/i     o.ws-JiuB.ii 
A'o " ~r~ -= •    . - — IMS hp , 

75i| 7SO,(.7 ^ 

Fluid  flow rate through  Impeller 

Q'*.--^r:?i^\ 0,071 m3/s. 
lb     0,^;-. 

5, The optimum diameter of the Impeller intake orifice D . 

according to Formula (12.k^) 

^...^....f/^..,,», 
The result is the so-called reduced diameter without consideration 
of flow displacement by the Impeller hub. When the latter is 
taken into account, the area equality gives a somewhat larger 
diameter D0, i.e., 

where d . is the hub diameter, which equals d t = (1.15-1.25)dv 

and d is the diameter of the shaft, which is determined by 

strength considerations. Without carrying out the strength cal- 
culation for the shaft here, let us assume that D,, = 140 mm.  The 
diameter D, will be equal to or slightly smaller than D0 owing to 
the Inclination of the vane entry edge. 

6. Setting the radial velocity ratio v2r/vir equal to 1.0 

and v. = v, , we obtain o   i r 

*Q       40.07«  ,.„/„ 

7. The  influence coefficient of the number of vanes  is  found 
by Formula  (12.19) by setting  (tentatively)  z - 7: 
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J. 2(0.6 + 0.6.0.5) 
l>      ,+       7(1-0.16)     ",'30• .1?) 

from which u - 0.77. 

8. According to Formula  (12.21'),  the theoretical head for 
z ■ oo is 

H H_ «0 „, 

9. Substituting v2    for the ratio Q/2iTr2b2  in (12.12)  and 
solving it as a quadratic equation, we get 

1 /   «t 6.5 

+ |/7J^r + Ml-367-65.5 m/s. 

'»"Ä+K i^+'^-TÖ^T-1- 

from which 

.     60«,      60M.5      „„„ 
an        K2800 

10.  The width of the impeller passage at the exit, with con- 
sideration of the  coefficient of flow displacement by the vanes, 
which we assume equal to ii/2  - 0.95,  is 

. O* 0.074 
llCptofe     a 0.33-6,50.95 • 0,012 m-13mm. 

11.   The width  of the impeller  channel  at  the  entry   (with iK 
0.85) 

»,..—£—- Ml--..o.03m-30mm. 1    MOtVi,^     Ji0,l4>6.S-0,S5 

12. The inclination angle of the vane at the entry, on the 
basis of nonseparatlng flow of fluid over the entry edge of the 
vane,  is 

Usually,  the calculated angle 8, Is increased by  3-5°  for cavita- 
tion reasons in the event of a flow rate  overload. 

13. This  is  followed by Improvement  of the Impeller dimen- 
sions,  i.e., the calculation Is repeated In the  same procedure, 
but on the basis of the values  finally selected for ß2  and z and 
the more accurate values of the coefficients n,  W, ^i  and iJ/2. 
The latter are  figured by the formulas 

*,"!rl~jiDl«lnJi 
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and 

where 6 Is the thickness of the vane. 

14. The dimension of the final scroll-chamber section (rad- 
ius p) is, according to Formula (12.43) for o - 360° (taking r, 
= 1.05, r2 - 173 nun) 

...    - ...       , ,   -  -„,       3960.850.065 
««o^T+l/   -'»=^77+1/  ^77^.°    2,9tgl.240     + 

/3980.85 
.19.81-; 

•0,055 
0.173 = 0,023 m. •210 

15. The required head at the entrance into the Impeller ac- 
cording to Formula (12.45): 

(On?)"                 13600         „(0.C65•?.83•106):■',       ,„. 
«„-A. + .^—»O.OM-iir40.02' -^ -10.5m 

or,  neglecting the velocity  head, 

/'„ = I0,5E-3II0 ^O.PI ^-.. 
cm2 

§65.   BASIC  INFORMATION  ON TURBULENCE  PUMPS 

The  turbulence pump  is   superficially similar to the  centrifu- 
gal pump - it consists  of an impeller 1 with short radial vanes 
and a stationary casing 2, which is   fitted with intake  3 and de- 
livery   4  pipes   (Fig.   176).     In  the   turbulence pump,  the   intake 
and delivery pipes are not hermetically separated,  i.e.,   like all 
vane pumps,  it is a continuous-flow type. 

In  operating principle,   however,   turbulence  pumps  differ 
substantially  from both Impeller and displacement pumps,   and are 
therefore  regarded as  an  Independent   type. 

In  turbulence pumps,  motor energy Is  converted into  fluid- 
flow energy in a process  of vigorous   eddying and  entrainment of 
slow fluid particles in the passage  surrounding the impeller 5 
by  fast  fluid particles  In the slots  of the  impeller.     A vapor 
vortex   (see  arrows  in Pig.   176)   forms  in the  rotating Impeller, 
which has  cells  on both sides,  and in the passage running around 
the Impeller.    This results  in a continuous exchange of fluid 
particles  between the  cells   and the  passage. 

Like  centrifugal pumps,   turbulence pumps  are  usually  used  to 
transfer  light  fluids  -water,  kerosene, acids,  etc.    Characteris- 
tically,   these  pumps have  comparatively small deliveries   and rela- 
tively high heads,  4-10  times  those  of centrifugal pumps  at the 
same Impeller circumferential speeds.    This  corresponds  to speed 
coefficients  n    =  10-40,   I.e.,   to the  range  of ns  in which the 

use  of single-stage  centrifugal pumps  Is difficult because of 
their low efficiencies  and the need  to use a high-speed drive. 
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Fig.   176.  Diagram of turbulence pump. 
KEY:   (a)   Intake;   (b)  delivery. 
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Pig.   177. Characteristics 
of turbulence pump. 
KEY:   (a)  rev/mln;   (b) 
I/a;   (c) m'/h;   (d) Up. 

Other advantages of turbulence 
pumps,  In addition to their high head 
capacities, are simplicity of design, 
small size,  and light weight.     Their 
basic disadvantage  lies In their com- 
paratively  low efficiencies   (25-50?). 

Minor Improvement makes  the tur- 
bulence pump self-prlmlng. I.e., en- 
ables It  to produce enough vacuum In 
the airspace to raise fluid through 
the  Intake line, which was previously 
filled with air. 

Multistage  turbulence pumps are 
used to obtain pressures  of the order 
of several tens  of kgf/cm2.    As in 
multistage centrifugal pumps,   the 
fluid passes through several  impellers 
connected  in series. 

Figure  177 shows an experimental characteristic  for a turbu- 
lence pump with an impeller diameter of 160 mm In the form of 
curves of the head H in mm of water,  power In hp, and pump effi- 
ciency n as  functions of delivery Q in l/s at  a constant  speed n « 
■ l^SO rev/mln.     As we see from the diagram,  the characteristic 
of the turbulence pump differs  substantially  from that of the cen- 
trifugal pump.    With Increasing delivery, the head developed by 
the pump diminishes along a nearly straight  line.    At the  same 
time,  the required power does not Increase,  as  It does  for the 
centrifugal pump,  but decreases.    For this reason,  it is  recom- 
mended that  the pump be  started with  the valve   (spool)  in the de- 
livery line  open. 

In view of the very  sharp rise  in head as Q ■» 0,  turbulence 
pumps are often fitted with safety valves. 
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Turbulence pumps are subject to the same similarity formulas 
as centrifugal pumps, and pump characteristics are converted from 
one speed to another In the same way as was described In §58 for 
centrifugal pumps. 

Turbulence pumps are used on aircraft fueling trucks and In 
a number of other fields. 
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Footnotes 

Manu- 
script 
page 

218      lAn exception Is the case in which an auxiliary impeller 
or screw wheel (worm) is mounted in front of the main 
impeller (see below). 

259      2In practice, equality of the coefficients n and no 

is sometimes violated to some degree on passage from 
one pump to another because of a change in the relative 
roughness of the flow passages, which influences n  (the 

so-called scale effect), and also because of relatively 
unequal leakage-determining clearances in the pumps. 

26l 9It should be noted that Re varies to some extent along 
a similar-regime parabola, but research has shown that 
the flow regimes in centrifugal pumps are very close to 
self-similar. I.e., to those that are practically unin- 
fluenced by Re. Kinematic similarity is of decisive im- 
portance in this case. 

27t ""It is also possible to obtain the cavitation character- 
istic with the valve or choke in a fixed position, i.e., 
as the pump's delivery decreases owing to cavitation. 

282      sThe peculiarities of these impellers will be discussed 
below. 
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Symbol   List 

manu- 
script Symbol English equ: 
page 

24i) nac nas pump 

247 T t theoretical 

254 r g hydraulic 

258 M m mechanical 

263 P e standard 

266 yn up packing 

268 TP tr friction 

274 BX vkh entry 

274 a6c abs absolute 

275 KP kr critical 

276 onr opt optimum 

279 M3Ö izb excess 

280 ÄB dv engine 

280 pacn rasp available 

280 MH In Inertlal 

281 noTp potr required 

285 BT vt hub 

285 B V shaft 
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CHAPTER       XIII 

DISPLACEMENT   PUMPS 

§66.   BASIC  CONCEPTS.   PISTON   PUMPS 

The  operating principle  of the displacement pump differs 
fundamentally  from that of the vane-wheel pump. 

A displacement pump Is  a pump In which fluid Is moved by 
expellers  that press It out  of the pump's chambers. 

The  chamber of a displacement pump Is a space that  communi- 
cates by  turns with the pump's receiving  (Intake)  space during 
the  filling stroke and with  its  delivery   (pressure)   space  during 
the pressure stroke.    A displacement pump may have one or more 
working chambers. 

The expeller Is the component  of a displacement pump that 
directly  accomplishes the work of expulsion  (and sometimes also 
of induction).     The number of expellers in a pump may be equal 
to or smaller than the number of chambers. 

Thus, the action of a displacement pump consists  In periodic 
delivery  of definite,  characteristic volumes   (portions)  of fluid 
from an intake  line into a delivery  line with a simultaneous rise 
in fluid pressure.    Consequently,  the delivery of a displacement 
pump,  unlike that of a vane-wheel pump, is always more  or less 
nonunlform, and for this reason the  time-averaged delivery Is 
usually  considered. 
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Another peculiarity of displacement pumps Is the  fact that 
the receiving spaces are always hermetically separated from the 
delivery spaces.    The sealing may be absolute or relative  (prac- 
tical).    In the latter case, there Is a possibility of minor 
fluid leakage   (seepage) through the clearances In quantities 
that are small by comparison with the pump's delivery rate. 

Finally,  a third peculiarity of the displacement is their 
self-priming property.    In principle, all displacement pumps are 
aelf-priming.  I.e., they are capable in operation on air (without 
fluid) of developing rather good partial vacuums and drawing fluid 
through the  intake Una from a tank below the pump,  provided that 
the geometrical Intake height does not exceed a certain limit, 
which depends  on a number of factors.     In addition,  the self- 
priming property of displacement  pumps  is often defeated in prac- 
tice by Inadequately  tight sealing or inadequate speed. 

The above  operating principle  of the displacement pump makes 
it possible  to write  a general expression for the time-averaged 
theoretical   (geometrical) delivery  per unit of time.     By the 
theoretical or geometrical delivery of the pump, we mean  the 
delivery of an incompressible  fluid by a perfectly sealed pump, 
i.e., in the total absence of internal and external fluid seepage 
through  clearances and in normal,   oavltation-free operation of 
the pump,  in which the chambers  are  filled with single-phase 
fluid. 

Thus, we have for the theoretical per-second delivery of the 
pump 

C..=^-~I>Vs] (13.1) 

where W is  the  so-called swept displacement of the pump,  i.e., 
the volume of incompressible  fluid that  a perfectly  sealed pump 
delivers in one  revolution of the  drive  shaft in cavitation-free 
operation; w is  the volume delivered   (expelled)  under the above 
conditions  from each pump chamber during one pump-shaft revolu- 
tion,  or the  useful chamber displacement;  z is  the number of 
chambers of the pump;  n is  the number of revolutions  of the pump 
shaft per minute. 

Since the theoretical delivery of a displacement pump is in- 
dependent of the pressure (head) developed by the pump, the theo- 
retical characteristic of a displacement pump in £, Q-coordinates 
at n - const is a straight line parallel to the axis of ordlnates. 

Displacement pumps fall into two basic classes — piston and 
rotor - depending on the nature  of the expulsion process. 

A piston pump is  a displacement pump in which fluid is dis- 
placed from stationary chambers as  a result of pure straight-line 
reciprocating motion of the expelling components relative to 
these chambers. 
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Thus, the piston pump Is characterized by stationary cham- 
bers and straight-line reciprocating absolute motion of the ex- 
pellers. 

The  class  of piston pumps  Includes, in addition to piston 
pumps proper, plunger pumps,  diaphragm pumps, and  certain other 
types with the  same kind of expulsion process and differing only 
in design or in the form of the expellers. 

\,[\Jcttevfaioiuui! 
ill Mann* b 

Pig.   178.  Diagram of single-action 
piston pump. 
KEY:   (a)  delivery valve;   (b)  Intake 
valve. 

The expellers  (piston,  plunger, etc.) are most  frequently 
set in reciprocating motion by means  of a crank mechanism, but 
other mechanisms are also used   (cam and eccentric mechanisms, 
etc.). 

Conventional piston pumps are  characterized by the presence 
of intake and delivery valves  that regulate the motion of fluid 
through their chambers.    As the chamber fills with fluid,  the 
intake valve is  open,  and the delivery valve is  closed.     When 
fluid is being expressed  (delivered),  and the expeller is moving 
in the opposite  direction, the Intake valve is closed and the 
delivery valve  is open.    These valves are usually  self-operating, 
i.e.,    they open only under a pressure gradient and close by 
gravity or under spring tension. 

Piston pumps are classified as  single-action   (z ■  1), double- 
action  (z - 2),  triple-action   (z «  3)1 etc., on the basis of the 
number of chambers. 

Figure 178 shows a schematic diagram of a single-action 
piston pump,  and Pig.   179 that of a double-action pump. 

If we assume that the length of connecting rod L is  infinite 
by comparison with the crank arm r,   it follows that the  speed of 
piston motion varies slnusoldally-a3  a function of crank turn 
angle ♦ or of time.    The deliveries  of the pumps  shown in the 
diagrams will vary according to the  same law and,   consequently, 
so will the fluid flow rates  In the  Intake and delivery pipelines, 
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Fig. 179. Diagram of 
double-action piston 
pump. 
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Fig. 180. Diagrams show- 
ing variation of piston- 
pump delivery. 

Figure l80 shows curves of de- 
livery Q vs. turn angle $: curve a 
for a single-action pump and curve 
b  for a double-action pump.     In the 
single-action pump,  delivery  occurs  only  during a half-turn of 
the crank;  Induction  takes place during the other half-turn, 
while delivery  Is zero, i.e.,  delivery Is  extremely nonunlform. 

For the double-action pump, the delivery during one revolu- 
tion Is represented by two sinusoids with different amplitudes 
(the second Is  smaller than the  first because of the rod area), 
and delivery drops twice to zero and twice reaches a maximum. 
The delivery Is not  as nonunlform as  In the preceding case, but 
It is still quite uneven. 

The detrimental  effect of delivery nonuniformlty on pump 
operation consists primarily in the  fact  that, owing to the 
nonsteady  flow  in the  pipelines,  the  fluid pressure at   the pis- 
ton varies greatly over Its stroke.     During the accelerating 
motion of the piston and the  fluid  in the  Intake  line,   the pres- 
sure at the piston drops  further,  giving rise to an inertlal 
head  (see  §45),  and cavitation and even complete detachment  of 
the fluid from the piston are possible. 

Moreover,   the strong delivery  nonuniformlty makes  it neces- 
sary to use additional power for the periodic    increase  in head 
loss to fluid  friction In the Intake and delivery lines. 

To mitigate these undesirable  effects,  single- and double- 
action piston pumps  are equipped with air bells.     These  alr- 
filled tanks are mounted in the immediate  vicinity of the pump - 
one at the end of the  Intake pipeline and  the other at  the be- 
ginning of the  delivery line.    The  air bells function as  quick- 
action accumulators which, given adequate  volumes,  can substan- 
tially Improve  the uniformity of delivery   from the pump. 

Properly manufactured piston pumps are capable of producing 
very high pressures,   ranging into the tens, hundreds,  and in some 
cases even thousands  of atmocpheres.    Of all known pump  types, 
the piston pumps are  capable of producing the highest heads. 
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However, piston pumps  can be operated only at  comparatively 
low speeds,   not above  300-500 rev/mln.     At higher speeds,  the 
self-operating Inta'ce and delivery valves cannot  function nor- 
mally.    Because of this slow-running property,  piston pumps  are 
substantially larger than centrifugal pumps designed  for the same 
parameters   (delivery and pressure).    For this  reason, piston 
pumps have been supplanted by  centrifugal and rotor pumps In 
water-supply and other engineering branches. 

Piston pumps are now used  chiefly In the petroleum and 
chemical Industries  In the  form of powerful mechanically driven 
units  for the transfer of heavier fluids, and at thermal power 
plants to supply hlgb-pressure  steam boilers. 

Piston pumps are also  used  in all specialized  fields in 
which very high pressures  are required. 

The claso of piston pumps  can be broken down Into two sub- 
classes that differ In the  type  of motion of the driving element — 
dlreot-act^ in and shaft types.     In the  former,  the driving ele- 
ment  — the piston rod - executes  only reciprocating motion, 
while in the  latter the driver is a rotating shaft. 

A direct-action piston pump usually has a rod rigidly coupled 
to the i-od of the piston-type drive engine (steam, compressed-air, 
or internal-combustion) and has  no shaft or other rotating parts. 

In the  shaft-type piston pump, the rotary motion of the 
drive  shaft  is  convered into reciprocating motion of the expeller 
by a crank or cam mechanism.     As  a result, shaft-type piston 
pumps are  classified as crank and cam types. 

Cam-type piston pumps with valveless fluid control bear a 
strong resemblance to the  rotary-piston pumps  that will be dis- 
cussed in the next section.    The  classification of displacement 
pumps   (and the terminology) given here and continued in the next 
section has been recommended by  the USSR Academy of Sciences Com- 
mittee on Scientific and Technical Terminology  [36].     However, 
this   classification is not  the  only one possible.     We might,   for 
example, make the primary  classification of displacement pumps on 
the basis of another criterion — the type of motion  of the driv- 
ing element — into direct-action and shaft types,  and then fur- 
ther classify the shaft types as piston and rotor. 

§67.   ROTOR  PUMPS;  FEATURES AND  VARIETIES 

Rotor pumps represent   the   class of pumps   that  is  now most 
extensively  used in aviation engineering.    They include rotary, 
gear,   screw,  rotary-plate,  rotary-piston, rotary-plunger, and 
other types.    All of these pumps, which differ considerably in 
design, have much in common in their working processes and char- 
acteristics . 

Like piston pumps,  rotor pumps are displacement pumps,  i.e., 
pumps  that work on the displacement principle.     However,  the 
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fluid-displacement process in rotor pumps differs  essentially 
from the process  In piston pumps. 

The working process of rotor pumps Is characterized,   firstly, 
by transfer of the chambers from the receiving space of the pump 
to the delivery  space and, secondly, by rotational  or more com- 
plex  (rotational and translatlonal)  absolute motion of the ex- 
pellers. 

Thus, we can offer the  following definition of the rotor 
pump:   It Is a displacement pump In which fluid Is displaced from 
moving chambers  as a result of a rotational or compound motion of 
the  expellers with respect  to  a  stator. 

The stator Is the stationary part of the pump.  Its  casing, 
and Incorporates  the receiving   (Intake) and delivery   (pressure) 
spaces.    The part of a rotor pump that is turned directly by the 
drive shaft Is  called the rotor.    A rotor pump also usually has 
one  or more  expellers   (see  §66),  which perform some  type  of cyc- 
lic motion relative to the rotor. 

The chamber transfer in a rotor pump makes the Intake and 
delivery valves  superfluous.    A characteristic feature of all 
rotor pumps  that  originates  from their expulsion process  is the 
absence of valve  control of the   fluid.     In addition,  rotor pumps 
lack the  usual crank mechanism. 

By virtue of the absence of intake and delivery valves, 
rotor pumps  are  reversible,  i.e. ,   they  can work as  hydraulic 
motors when  fluid  is supplied  to  them under pressure.     This  use- 
ful property of rotor pumps has been responsible for their exten- 
sive  use  in  the  so-called hydraulic  transmissions   (see below). 

Rotor pumps  are usually considerably faster-running than 
piston pumps,  something that  is   also  associated with  the  absence 
of valve distribution.    Rotor pumps  are currently being used at 
speeds  up  to  3OOO-5O0O rev/min,   and  in some  cases  run even  faster. 

Rotor pumps   deliver  fluid much more smoothly  than piston 
types,  and this  is another advantage. 

The  theoretical delivery  of rotor pumps,   like   that  of other 
displacement pumps,  is  determined by  Formula   (13.1).     However, 
rotor pumps  are  further distinguished in this respect by  the fact 
that  the number of characteristic volumes  z_ delivered in one 
shaft revolution is usually substantially higher than in the 
case of piston pumps.    While z  =  1-3  for the  latter,  z =  4-12 and 
more   for rotor pumps.     In addition,   these characteristic   volumes 
are delivered by  a rotor pump not strictly in sequence,  but with 
a certain amount  of overlap:  one  volume has not yet been fully 
delivered before  delivery  of a second begins,  then  a third,  and 
so forth   (for greater   detail,   see below).    This explains why 
rotor pumps  deliver fluid more  uniformly than piston pumps. 
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Other advantages of rotor pumps are compactness of construc- 
tion,   small dimensions,  and light weight per unit of developed 
power.    For modern avlatlon-type rotor pump    and hydraulic motors 
used In hydraulic power systems,  this specific weight is 0.2- 
0.3 kgf/kW,  or only  10-20* of the  analogous specific weight  of 
similarly rated electrical machines. 

The pressures  that modern aviation rotor pumps are  capable 
of delivering range  up to  250-300 kgf/cm2,  and  further increases 
are possible and are  the  trend.    However,  such high pressures are 
not  inherent  to all  rotor pumps,  but  to  only  one  variety - the 
rotary-piston   (or rotary-plunger)  type,  and then only when they 
are manufactured to very high precision.     On the whole,  the heads 
developed by rotor pumps   are somewhat  smaller  than those  of pis- 
ton pumps because of the absence of valve control. 

The working process  of each element  of a rotor pump Is   com- 
posed  of the   following three phases: 

1) filling of  the  chambers by  fluid; 

2) closing of the chambers,  i.e.,  their isolation from the 
receiving and delivery spaces of the pump and their transfer from 
the i gceiving space  to the delivery spacej 

3) displacement of fluid from the  chambers. 

Below, as we discuss  the basic varieties  of rotor pumps,  these 
phases  of the working process and other features of the pumps will 
be Indicated on specific diagrams. 

Let us examine a classification of rotor pu. ps  (see Diagram 

All rotor pumps  can be  classified as rotary and slideblock 
types.     In rotary pumps,   the expellers  execute  only rotational 
motion with respect  to their axes,  and are supported in station- 
ary bearings.     In slideblock pumps,  the   expellers,   while rotat- 
ing around the stator axis,   simultaneously perform straight-line 
reciprocating motion relative to the rotor. 

According to the  type  of chamber transfer   (type of motion of 
fluid displaced in the pump), rotary pumps  are  classified as  flat- 
rotary and screw types.     Chamber and fluid transfer occurs in a 
plane  normal to the  rotor axis In a flat rotary pump and along 
the rotor axis in a screw pump.    The basic  form of the  flat- 
rotary pump is  the well-known gear pump   (Figs.   l8l,  182).    The 
other  varieties are   seldom used and will not  be  examined here. 
The basic variety  of the  screw pump  Is  the  triple-screw pump   (Fig. 
183). 

A   feature  of all  rotary pumps   is  that   fluid Is displaced  in 
them by  the expeller and the rotor simultaneously, or only 
by the  rotor, which  is also acting as an expeller.    In the latter 
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KEY:   (a)  rotor pumps;   (b) by type of expeller 
motion;   (c)  rotary pumps;   (d)  slidebloclc pumps; 
(e) by type of chamber motion;   (f)  by  shape oi 
expellers  and by method of limiting chambers; 
(g)  flat rotary pumps;   (h) screw pumps;   U; 
rotary-piston pumps;   (J) rotary-plate pumps; 
(k) by position of chambers;   (1)  gear pumps; 
(m) radial rotary-piston pumps;   (n)  axial 
rotary-piston pumps. 

case,   the pump must  have  one  or more  "locks." moving elements 
that  disconnect the pump's  receiving and delivery  spaces without 
expressing  fluid. 

Slldeblock pumps are  subclasslfled as ro*ary-plate and 
rotary-piston types in accordance with the method used to limit 
(lock)  the  chambers and the shape of the expellers. 

In the rotary-plate pump,   the chambers are  limited by two 
adjacent expellers and the rotor and stator surfaces,  and the 
expellers   take the  form of plates   (Figs.   184  and  185). 
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Flg. l8l. Diagram of 
gear pumps. 
KEY: (a) Intake; (b) 
delivery. 

In the rotary-piston pump, the cham- 
bers are locked off by expellers In 
cylindrical hollows In the rotor, and 
the expellers are cylindrical (sometimes 
spherical) In shape (Figs. 186-189). 

Rotary-piston pumps are classified 
as radial (Fig. 186) and axial (Figs. 
187 and 189) In accordance with the 
positions of the chambers (cylinders) 
with respect to the rotor axis. 

Let us examine the scheme on which 
each of these rotor-pump varieties 
operates and derive formulas for calcula- 
tion of the averaged theoretical delivery. 
The next section will deal with the true 

deliveries of these pumps. 

The gear pump (see Fig. l8l) is ^ually made In the form of 
a pair of Identical involute gears enclosed in a "f"-™;"* 
housing, the stator.  The driving gear is considered to be the 
rotor IM  the driven gear the expeller  J* the pump's receiving 
soace fluid fills the slot- between the teeth of both gears, 
l^d these vSlSnes are then locked (isolated) and transferred 
along circular arcs to the delivery (pressure) section of the 

pump. 

As it meshes, each tooth on each gear fits into the slot 
corresponding to it and displaces the fluid from that slot. 
Since the volume of a slot is greater than the volume of a tooth, 
a certain Imount of fluid returns into the intake space at the 
point of meshing. 

Thus both gears, i.e., the rotor and the expeller, perform 
the Äon o? iispl^clng fluid simultaneously In this pump, and 
its working chambers are the slots between gear teeth.  However, 
as we see from the above, it would be more correct to consider 
the tooth volume rather than the slot volume as the useful cham- 
ber disDlacement w to be substituted into the general formula 
(13.1)! lTe!V w - wzub. The number of these volumes delivered 

durine'one pump-shaft revolution equals the total number of teeth 
on thf ?wo Sa?s (2z). Hence the averaged theoretical delivery 
of a gear pump per second is 

QT-= 
7tvh)(," 

CO 
■[mVs]. (13.2) 

Since calculation of the volume wzub requires measurement of 

the tooth area, recourse is usually taken to the following approx- 
imate formula, which has been derived on the assumption that the 
Zip delivers'a continuous layer of fluid with a thickness 2h- 
-2m and width b at a speed equal to the circumferential velocity 
u of the gears on their pitch circles, i.e.. 
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Qt-iiS-52Sl2A*—i-aÄ/iftw [ms/s], ¥ 60 15 
(13.3) 

where S Is the cross-sectional area of the  fluid layer, which 
equals  2hb; h is the height of the gear tooth, which is equal to 
its modulus m;  R is the pitch-circle radius of the gears  [metersJ. 

Gear pumps are capable of pressures 
up to 100-150 kgf/cm2,  and sometimes even 
higher.    However,   for pressures above 
100 kgf/cm2, it is necessary to provide 
the pump with a device  for automatic con- 
trol of the face  clearances on the gears. 
This  unit consists  of two floating sleeves 
that  are pressed against  the faces of the 
gears by  fluid pressure  and thereby re- 
duce  the face clearance,   improving the 
Internal seal of the pump. 

Fig.   182.  Diagram of Multlstaged gear pumps are sometimes 
internal-mesh gear used to obtaln very high pressures.    Such 
Pump- a pump Is built up  from several gear pumps 

which are connected in series, and de- 
develops a pressure equal to the  sum of 

the pressures developed by  all of the stages.     To ensure reliable 
filling,  the delivery   from each preceding  stage   of the multistage 
pump must be greater than the  flow rate through  the next stage. 
The excess delivery  is diverted through special drainage passages 
provided In each stage and designed for the appropriate pressure. 

Gear pumps are used extensively in aviation engineering,  and 
especially in aircraft hydraulic power systems.     However,  their 
basic disadvantage is the  impossibility of simple control of swept 
volume. 

The internal-mesh gear pump is also used  (see Fig.  182).     In 
this pump, the driving gear  (rotor)  is usually  the larger of the 
internally-toothed gears.     A stationary crescent-shaped part  of 
the pump's stator projects between it and the  smaller gear  (the 
expeller), to provide  for locking of the  chambers, i.e.,  the 
slots  between the  teeth of the gears.     The motion of fluid in the 
pump  is  indicated by   the  arrows.     Obviously,  a  volume of  fluid 
equal  to the volume of twice the number of driving-gear teeth is 
delivered during one  revolution of the driving gear.    This  volume 
does  not  depend  on  the  number of driven-gear teeth. 

An internal-mesh gear pump delivers  at a somewhat higher 
rate  than an external-mesh pump of the same size.    In addition, 
the internal-mesh pumps have an advantage  in the  symmetrical 
position of the drive  shaft  relative  to  the  casing.     However, 
these  pumps  are more  complex in manufacture,   and  their head 
capacities are  somewhat  lower than those  of the external-mesh 
types.     This is explained by the fact that the  chamber-transfer 
distances  In these pumps  are much shorter than  in external-mesh 
pumps   and,  consequently,   sealing Is  not   as  good. 
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Flg. 183. Diagram of triple- 
screw pump. 

Pumps of this type are used on some aircraft fuel trucks 
where high pressures are unnecessary. 

A screw pump with three screws enclosed In a case with re- 
ceiving and delivery spaces appears In Pig. 183.  The middle 
screw Is the driving unit, and the two lateral screws are driven. 
A special cycloldal screw prof'.le Is required to ensure tight 
locking of the chambers and, consequently, separation of the re- 
ceiving and delivery spaces of the pump. This profile Is convex 
on the driving screw and concave on the driven screws (see left 
diagram of Pig. 183, which shows a cross section through the 
screws).  The screw thread Is usually cut two-start.  The trans- 
mission ratio from the driving to the driven screws Is unity. 

The working chambers in this pump are bounded by the threads 
of all three screws and the stator surfaces. As the screws turn, 
the closed chambers are transferred with the fluid along the axis 
of rotation. 

The screws are profiled in such a way that the two driven 
screws are fully relieved of torque, with the driving screw tak- 
ing all of it and performing the work of expulsion.  It Is there- 
fore rotor and expeller at the same time. The driven screws, on 
the other hand, function as so-called locks - moving elements of 
the pump mechanism that merely separate the receiving and 
delivery spaces of the pump without moving fluid. 

The theoretical delivery of a screw pump is determined by the 
expression 

'lö• Qt« 

where S is the cross-sectional area of the pump chambers normal 
to the axes of rotation and equals S - 2.1 Dv; Dv is the Inside 

diameter of the driving-screw thread, and is equal to the out- 
side diameter of the driven screw (see Pig. 183): 
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t_ is the pitch of the screws, which usually equals t ■ (10/3)Dv. 

Triple-screw pumps can develop pressures up to 100-200 
kgf/cm2. The higher the pressure for which the pump is designed, 
the longer must be the chamber transfer path and, consequently, 
the screws. 

The minimum screw length needed to provide sealing in the 
pump is considered to be 1.25t.  In practice, this length is 
taken in the range (1.5-8)t, depending on the required pressure. 

This pump delivers ver: smoothly, is capable of operating 
at very high speeds (up to 3000-5000 rev/min), and is quiet and 
dependable.  However, it has the same shortcoming as the gear 
pump: the impossibility of adjusting swept volume during opera- 
tion. In addition, the screw pump is quite complex to manufac- 
ture. 

Nevertheless, the cycloldal triple-screw pump is quite pro- 
mising.  It is being used in a number of engineering fields, in- 
cluding aviation, where It is the main hydraulic power system 
pump on certain foreign aircraft. 

Double-screw and single-screw (gyrotor) pumps are sometimes 
used. However, their data are usually Inferior to those of 
triple-screw pumps with cycloldal profiles, primarily because 
they are not capable of maintaining good internal seals. 

Rotary-plate pumps are often used in aviation in the form 
of four-plate units with single-plane kinematics (see Pig. 184). 
The rotor is a hollow cylinder with radial slots in which the 
expeller plates slide. The rotor is positioned eccentrically 
with respect to the inner cylindrical surface of the stator, 
which is bored round, so that as the rotor turns the plates re- 
ciprocate in and out of it.  Under the action of centrifugal force, 
the outer faces of the plates are pressed against the stator 
inner surface and slide along it, while the inner faces roll 
around the so-called floating shaft, which has no bearings. 

Fluid fills the space between two adjacent plates and the 
rotor and stator surfaces. This is the working chamber, whose 
volume increases as the rotor turns and then, after reaching a 
maximum, is sealed off and transferred to the delivery side of 
the pump. Expulsion of an amount of fluid equal to the chamber 
useful volume w begins simultaneously. 

Let R denote the radius of the inside surface of the stator, 
e the eccentricity, i.e., the distance between the rotor and 
stator axes, z the number of plates (expellers), which equals the 
number of chambers in the pump, b the axial dimension of the 
plates, and 6 the thickness of the plates. 
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Pig. 181. Diagram of 
rotary-plate pump. 

Flg. 185. Diagram of ro- 
tary-plate pump with 
plates operated by fluid 
pressure. 

Then the useful chamber volume can be approximated by the 
formula 

w=.U*S*^-iJ2,l,, (13.H) 

and the averaged theoretical per-second delivery according to 
(13.1) will be 

Q,' ' 60 
.l2n(/?-<?)-z812c6-5-[m Vs], 

00 

Since the chamber transfer distance Is reduced to a minimum 
In the rotary-plate pump, and the receiving and delivery spaces 
are separated only by the contact between the face of the plate 
and the stator, the pump Is not particularly tightly sealed. As 
a result, the pressure developed by a rotary-plate pump Is usu- 
ally somewhat lower than the pressures put out by other rotor 
pumps. 

Pumps built according to the diagram of Pig. 184 are used as 
gasoline pumps for piston aircraft engines and as fuel booster 
and.  oil pumps on some gas-turblne-englned aircraft.  In these 
cases, pressures of only a few atmospheres are required of the 
pumps. 

Rotary-plate pumps are used In metal-cutting machine tools 
and certain other machines in the form of more powerful units 
with up to 10-12 and more plates and with devices that improve 
Internal sealing. This makes It possible to obtain pressures up 
to 70 kgf/cm2 from them, and in some cases even higher pressures. 

Thus, in the pump shown in Fig. 185, the pressure of the 
plates against the stator is increased by supplying fluid under 
pressure from the delivery space to the annular passage C and, 
consequently, to the inner ends of the plates.  Fluid is sup- 
plied to the working chambers and taken from these chambers 
through the sausage-shaped intake and delivery ports a and b. 
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which are connected to the Intake and delivery pipes  of the pump, 
respectively. 

In contrast  to rotary  (gear,  screw) pumps,  the principle of 
rotary-plate pumps permits regulation of swept volume; this Is 
easily accomplished by changing the eccentricity.  I.e.,  shifting 
the rotor relative to the stator. 

By reducing the eccentricity, we can reduc« the delivery of 
the pump at a given speed and vice versa, but this naturally re- 
quires provision of the appropriate device In the design of the 
pump. 

Double-action rotary-plate pumps. In which each expeller 
(plate) performs two reciprocating motions relative to the rotor 
during a single rotor revolution, are also In use.  In these 
pumps, the Inside of the stator must have a special cylindrical 
shape Instead of being round. 

Rotary-piston pumps, a class that also Includes rotary- 
plunger types, are used with both single-plane and three-dimen- 
sional kinematics. 

In the former version, which is known as the radial rotary- 
piston (or rotary-plunger) pump, rotor 1 is positioned eccen- 
trically In stator 3 and fitted with radial cylindrical sockets 
(Fig. 186).  The pistons (plungers) 2, which fit into these 
sockets and act as expellers, reciprocate relative to the rotor 
as the latter turns, with their ends slicing on the inner surface 
of the stator.  Special rollers are somet mes used Instead of 
allowing the pistons to slip. 

As we have noted, the chambers are 
bounded by expellers in cylindrical cavi- 
ties (sockets) of the rotor.  The chambers 
communicate by turns, through radial 
drilled passages, with the left and right 
halves of the central cavity, which is 
divided by vertical partition 4 into two 
chambers.  The right-hand chamber in Pig. 
186 Is the receiving (Intake) chamber, and 
the one on the left is the delivery (pres- 
sure) chamber; fluid proceeds from the 
former into the working chambers and then, 
after they are locked off and transferred. 
In displaced Into the second, delivery 
chamber. 

The chambers are locked when the 
radial hole reaches the partition.  Conse- 
quently, each chamber Is closed twice dur- 

lon: once when Its volume Is greatest and 
Is smallest (the so-called dead space). 

Fig. 186. Diagram of 
radial rotary-piston 
pump. 
KEY: (a) delivery 
space; (b) Intake 
space. 

ing each rotor revolut 
again when Its volume 
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The useful chamber volume is  this pump equals the volume 
displaced by each piston, i.e., 

*-2f 2c. 

where d Is the plunger diameter and e is the eccentricity. 

The average theoretical per-second delivery  Tor z plungers 
equals 

Qi*—  |20     LmVsJ. (13.5) 

Radial rotary-piston pumps are built for pressures up to 200- 
300 kgf/cm2.  Pumps with both constant and variable (adjustable) 
swept volumes are in use. In a radial rotary-piston pump, dis- 
placement is regulated in the same way as in a rotary-plate pump, 
by changing the eccentricity. 

$    l 

Fig.   187.  Diagram of axial rotary- 
piston pump with inclined disk. 

In axial   rotary-piston pumps, the mechanism that transmits 
motion to the expellers  (pistons, plungers) has  a three-dimen- 
sional kinematics.    The cylindrical chambers in the rotor are 
positioned parallel to its axis  of rotation or at a small angle 
to this axis. 

Axial rotary-piston pumps are made with an inclined disk or 
an inclined block (rotor). One of the possible arrangements for 
the former type is shown In Pig.   187. 

The rotor 1-has sockets parallel to its axis of rotation, 
and the  chambers are  formed in these sockets.    The ends of plun- 
gers 2,  which are advanced out of the sockets by springs, slide 
(or roll)  along the Inclined thrust plate   (disk)   3, which forces 
the plungers  on the other semicircle back into their sockets. 

This causes the plungers to reciprocate in the sockets and, 
consequently,  to take fluid in and deliver it.     The stationary 
part I* of the pump,  against which the end of the rotor runs, has 
two sausage-shaped ports 5,  one of which communicates with the 
intake  line  and the other with the delivery line.    As  the rotor 
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turns, holes 6 move across ports 5 and, consequently, connect the 
sockets first with the intake line and then with the delivery 
line. When these holes reach partition 7, the chamber is locked, 
at maximum volume in the top position and minimum volume in the 
bottom position. 

The inclined disk is hinged in such a way that it can be 
turned on an axis that intersects the rotor axis at a right angle, 
and this permits acjusting the disk angle Y to regulate the de- 
livery . 

The averaged per-second delivery of this pump is 

4 ~60  '   4   60 
(13.6) 

where D is the diameter of the circle on which the cylinder axes 
lie in the rotor; d is the plunger (piston) diameter; z is the 
number of plungers; I  is the plunger stroke. 

Pig. 188. Diagrams of inclined-piston rotary- 
piston pumps. 

Quite often, the plungers of an inclined-disk pump are ar- 
ranged at a certain angle $  Instead of parallel to the rotor 
axis (see Fig. 188).  In this case, the plungers are expelled 
from their sockets not only by the spring forces, but also by com- 
ponents of the centrifugal forces that act on these plungers with 
rotation of the rotor; this makes it possible to use smaller 
springs. 

With a flat inclined disk, the plunger stroke I  can be deter- 
mined from geometrical considerations on the assumption that each 
plunger contacts the disk at a point on the plunger axis (see Fig. 
188a). On this basis, using the law of sines, we obtain 

tin Y 
. A)  
2sln(90'--vH f) 

and 
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»In Y  2sIii(S0'> —V —f) 

where D,, is the diameter of the circle on which the points of 
contact between the plunger and the disk are situated at y ■ 0. 

Hence the plunger stroke equals 

/=/,+/,=%-Shiyf ! h ! 1. 
2     I cos (f — v)   cos (y 4 Y) J 

and the average theoretical per-second delivery is determined by 
the expression 

Q^^Llil^.L^D^nsiul ! + ! 1 (13.7) 
'        4       CO      480 u lcos(?-Y)        COs(y-|-Y)J 

With ♦ = 0, this expression becomes 
Formula (13.6). 

The inclined disk is often made coni- 
cal in shape so that the plungers will be 
perpendicular to its thrust surface at 
Y = 0.  For this condition, the angle at 
the vertex of this cone will be 2fJ - 
» (90° - (|))2 (see Pig. 188b). 

As above, we obtain the following ex- 
pression for plunger stroke in this case: 

/=D0 
«gy 
cos 7 ' 

Fig. 189. Diagram of 
inclined-block axial 
rotary-piston pump. 

and as the disk inclination angle y  is 
varied, the delivery of the pump will vary 
in proportion to tan y  as in the case of 
the axial plunger arrangement. 

Figure 189 shows a diagram of a 
rotary-piston pump with an inclined block (rotor). Rotation is 
transmitted from drive shaft 1 to rotor 2 through the universal 
Joint 3, which makes it possible to change the angle between the 
shaft and rotor axes.  The rotor is enclosed in a so-called cradle 
4, whose base has two circular-arc grooves (intake 5 and delivery 
6) similar to those in the inclined-disk pump.  In the figure, 
the section through the cradle is conventional: in actuality, the 
intake and delivery passages of the pump (7 and 8) are at the 
sides.  In an adjustable pump, this cradle can be turned to 
change the inclination angle y.    The pistons are connected to the 
drive-shaft disk by hinged rods. 

If we disregard the angles that the axes of the piston rods 
form with the cylinder axes, the piston stroke is expressed, in 
contrast to the previous case, as follows: 

(=0siiiY. 
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where the dimension D Is Indicated In Fig. 189. 

Inverted rotor pumps, which are sometimes used in aviation 
and other fields, can be regarded as rotor pumps In which the 
rotor has been stopped and the stator set In rotation. With 
this Inversion, the rotary-piston pump Is converted formally 
Into a piston pump, since Its chambers remain stationary and 
the absolute motion of the expellers becomes reciprocating. How- 
ever, the design and properties of these pumps (unless valve con- 
trol Is used) resemble those of rotor pumps very closely.  At the 
same time. It must be remembered that the hydraulic, dynamic, and 
cavltatlon properties of Inverted rotor pumps differ to some ex- 
tent from the properties of ordinary rotor pumps. 

a fywfa/ywg» Wave 

Pig. 190. Delivery diagram for five- 
plunger pump. 
KEY: (a) total delivery. 

Delivery nonunlformity of rotor pumps. We stated above that 
rotor displacement pumps always deliver fluid with some uneven 
ness.  Investigation of the kinematics of the mechanisms used In 
rotary-piston pumps indicates that the relative velocity of the 
plungers, as in the case of the crank mechanism, can be regarded 
as approximately proportional to the sine of the rotor turn angle 
$.    The delivery of fluid by each plunger varies as a function of 
angle $  and time t in accordance with the same sinusoidal law. 
The total delivery of fluid by all plungers of the pump can be 
found by adding the ordinates of these sinusoids, as indicated in 
Pig. 190 for z ■ 5 plungers. 

The unevenness of delivery decreases with increasing number 
of expellers (plungers, pistons, or plates) in the pump.  It is 
important to note, however, that it is much more advantageous 
from the standpoint of improving pump-delivery uniformity to use 
an odd number of expellers z. 

The degree of delivery nonunlformity for odd z can be evalu- 
ated by the following approximate formula, which is due to Prof. 
N.S. Acherkan: 
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while for even z 
500, 

A calculation by these formulas gives the following values 
for the coefficient a for various z. 

/ s 6 7 8 9 10 11 12 

• s 5.0 13.9 2.6 7.8 1.5 5.0 1.0 3.S 

As a result, an odd number of pistons (plungers) - 5, 7, or 
9 - Is usually used In rotary-piston pumps. 

The comparatively strong nonunlformlty of delivery with an 
even number of expellers Is explained by the fact that two cham- 
bers are looked simultaneously and the delivery of fluid from 
these chambers drops to zero, while only one chamber is closed 
at a time If z is odd. 

§68. CHARACTERISTICS OP ROTOR DISPLACEMENT PUMPS 

Let us now examine the general hydraulic properties of all 
of the rotor displacement pumps, i.e., their characteristics. 
Earlier (§§51 and 55), we defined the characteristic of a pump 
as the curve of the head (or pressure) that it develops versus 
its delivery (flow rate) at constant rpm. 

From Formula (13.1). which is common 
for all rotor displacement pumps. «ifa 

^  60 

it follows that the theoretical delivery 
of a rotor displacement pump Is indepen- 
dent of pressure. Hence the theoretical 
characteristic of such a pump in the coor- 
dinates 2.  (or H) and Q with n ■ const is 
a straight line running parallel to the 
axis of ordlnates all the way to infinity. 
The theoretical characteristics of a rotor 
displacement pump for two different speeds 
are indicated by broken lines In Pig. 191. 
This means that theoretically, any dis- 

placement pump is capable of producing any desired pressure, ir- 
respective of speed and flow rate.  In practice, the situation is 
somewhat different, and the actual characteristic of the displace- 
ment pump differs from the theoretical due to leakage.  This is 
because any pump has larger or smaller clearances between its mov- 
ing and stationary parts, i.e., between the rotor, expellers, and 
stator.  Under the pressure developed by the pump, a certain 
amount of fluid flows back through these clearances, I.e., from 

Pig. 191. Character- 
istics of rotor pump 
for n,, y, and n 
U2' 

2 ' 
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the delivery zone to the Intake zone. As In the case of the cen- 
trifugal pump, the amount of fluid flowing back through the clear- 
ances per unit of time Is referred to as leakage and denoted by £. 

Because of the small clearances In the rotor pump, fluid 
flow In these pumps Is laminar. The quantity ^ is therefore 
directly proportional to the pressure developed by the pump and 
Inversely proportional to the absolute viscosity of the fluid, 
but not to Its first power; experiments have Indicated that the 
exponent m Is smaller than unity. For gear pumps,1 we can set 
m ■ 1/2, but there are no reliable data for other pumps, although 
m must obviously be of the same order. 

Thus, we have 

«=>* — . (13.8) 

where A is a constant that depends on the design of the pump and 
Its clearances and Is Indicated by experiment to be practically 
independent of pump speed. 

That the exponent m is not equal to unity Is explained by 
the fact that when fluicT flows through gaps there are always 
quite substantial energy losses per unit weight of fluid; as a 
result, the fluid is heated in the gaps and Its viscosity de- 
creases below that of the main stream. 

The actual delivery Q from the pump, I.e., the fluid flow 
that it delivers into the line, is smaller than the theoretical 
delivery Q. by the amount of leakage; consequently, 

0=0-*=^—-.4^ (13.^ 

or 

0=nA. 

where  no   ls  the  pump's   volumetric  efficiency. 

It  follows  from the above that  the true  characteristics of 
the rotor displacement pump, which are Indicated by the  solid 
lines  in Fig.   191, will be  inclined and will Intersect the theo- 
retical  characteristics  at  p„oc  =  0,   i.e.,  on the  axis  of abscis- rnas 
sas,  where q =  0 and Q  = Q. . 

The higher the viscosity of the  fluid,   the  less seepage will 
there be through the clearances and the steeper will the pump 
characteristic become.     Slight  inflections  of the  real  character- 
istic that are sometimes  observed are explained by abnormalities 
of pump operation - poor filling of the chambers  or cavltatlon. 

'See page   321 for footnote. 
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A method of converting and replottlng these characterlstlrr: 
from one set of pump operating conditions (nj. Mi) to another 
("2» ^2) proceeds from the construction of the true characteris- 
tic of the rotor displacement pump by Formula (13.9). 

First, we recompute the Initial abscissas of the character- 
istics, i.e., 

from which 

2a.«. ii 
0*   V 

(13.10) 

Then we express the  leakage ratio for the different pres- 
as' 

to     \C» / 

^''(ft)"- (13.11) 

sures, i.e.,  for Pinas - p^, 

from which 

Using the values  found for Q.2  and q2, we  construct a new 
characteristic  as  shown  in Fig.   191  for the  case in which 

«»>«,   and   t»a<|»i. 

The results of tests of rotor pumps at a given u « const are 
usually represented by curves of the flow rate Q as a function of 
speed n for a series of constant pressures p as developed by the 
pump   (Fig.   192).    The result is  a series of straight  lines  that 
are approximately parallel to one another  (owing to the indepen- 
dence of 1 of n),  each corresponding to a constant p nas Here, 

the larger p_-_, the lower is the line, since the seepage 3_ is 
larger.    nas 

Since the characteristic of the rotor displacement pump in 
£, Q-coordinates Is usually very steep, a decrease in pump de- 
livery, e.g., resulting from an increase in line resistance, 
causes a quite substantial pressure rise. Special devices must 
be provided to protect the pump and the system connected to it 
from excessive overpressures when delivery drops off. 

One such device is the so-called overflow (bleeder) valve 
(Fig. 193), which opens under elevated pressure and passes part 
of the flow rate in the reverse direction. The pump characteris- 
tic then changes as indicated in Pig. 19ita.  The valve is closed 
on segment AB, since the pressure is moderate.  Point B marks the 
beginning of opening; the pressure being developed by the pump is 
equal here to the spring force P  divided by the area Skl of the 

valve. On segment BC, the fluid delivery into the line equals 
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where Q.,   Is the  flow rate through the valve. 

Pig. 192. Delivery of 
rotor pump as a func- 
tion of speed. 

Fig.   193.  Diagram of 
pump with, adjustable 
valve.   1)  overflow valve; 
2)  rotor;  3)  stator. 

Fig. 194. Characteristic of pump with 
overflow valve (a) and with automatic 
delivery  control system  (b). 

Point C corresponds  to total closing of the line; all fluid 
delivered by the pump  is   fed back through  the  valve. 

A device talcing the  form of a servomotor consisting of a 
cylinder, piston,  and rod and operating on an adjustable pump is 
an improvement   (Pig.   195). 

When the pressure pnas reaches a definite value,  it acts  on 
piston 1,  compresses spring 2,  and causes disk 3 to turn through 
a smaller angle y.    This  reduces delivery,   so that  there is prac- 
tically no  increase  in pressure.     The  corresponding pump char- 
acteristic appears  in Pig.   194b.    On segment AB,  the disk is at 
its maximum angle.     At  point B,   the angle y begins  to decrease, 
and at point C Is  it only a fraction of a degree, which is neces- 
sary  to  compensate  seepage. 

-313- 



If the pressure in the pump servocyllnder chamber with the 
spring (on the right of the piston In Pig. 195) were constant at, 
for example, atmospheric pressure, the slope of the pump char- 
acteristic on segment BC would be determined only by the stiff- 
ness of the spring. To obtain a flat pump characteristic. It 
would be necessary to use a softer spring, but one that was at 
the same time very strong, i.e., large. 

Pig. 195. Diagram of rotary-piston 
pump with automatic delivery control. 

To reduce the dimensions of the spring and obtain the flat- 
est possible pump characteristic on segment BC, the spring cham- 
ber of the servomechanism is opened. Pluid enters it through 
nozzle k  from the pressure line and then passes under valve 5, 
which is loaded by spring 6 and by the force from membrane 7. 
which is under the delivery pressure.  When the pump disk has 
its greatest inclination (Y_Q_)» 

the valve is closed and the max 
pressures on the two sides  of the piston are the same  and equal 
to the delivery pressure.    The disk is held in its  tilted posi- 
tion by the  spring  force and by  the fluid pressure on the piston, 
which Is directed from right to  left. 

When the delivery pressure  rises,  the valve is  lifted,  fluid 
begins  to flow back,  and the pressure in the servocyllnder flow 
chamber drops.    The  fluid-pressure  force on the piston, which now 
acts from left to right,  compresses the spring and resets the 
disk at a smaller angle. 

This  device is  used both on gas-turbine-engine   fuel pumps 
and in aircraft hydraulic-transmission pumps. 

§69.   FUNDAMENTALS OF THE GENERAL  THEORY  OF ROTOR PUMPS  AND 
HYDRAULIC MOTORS 

The specifics of the previously described  (see  §67)  fluid- 
displacement process in rotor pumps and the associated absence of 
intake and delivery valves  result in clearances  in the pump be- 
tween the stationary and moving walls;  it is In these  gaps  that 
the basic energy losses occur. 
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These energy losses are: (Newtonian) fluld-frlctlon losses, 
dry (Coulomb) rrlction losses, and losses to seepage from the 
high-pressure space to the low-pressure space (Poiseullle losses). 
The remaining types of energy losses in rotor pumps (hydraulic 
losses in the pump channels, fluid-twisting losses in the rotor, 
etc.) are usually small by comparison with the basic losses and 
are included in the latter. 

Because of the reversibility property of rotor pumps, all 
of the above applies equally to pumps that are converted to hy- 
draulic motors.  In the exposition to follow, therefore, we shall 
speak of rotor-type hydraulic machines in general, indicating, 
where necessary, the differences between the pump and the hydraul- 
ic motor. 

The operating regime of a hydraulic machine is determined by 
the following three parameters: pressure gradient Ap, rotor angu- 
lar velocity w, and the dynamic coefficient of viscosity u of the 
fluid. 

In theoretical bookkeeping, the size of a hydraulic machine 
is usually evaluated by a linear quantity - a characteristic dimen- 
sion equal to 

where W is the so-called characteristic volume, i.e., the volume 
of incompressible fluid passing through the machine in the absence 
of leakage during a one-radian turn of the rotor. 

The characteristic volume W is connected with the swept 
displacement W of the machine (see §66) by the obvious relation 

W"=_L \v. 
2.1 

A second linear dimension that is usually introduced into 
consideration is the equivalent clearance 6, i.e., the clearance 
in Which the energy losses are equal to the corresponding losses 
in all clearances of a specific hydraulic machine. For complete 
geometric similarity of two hydraulic machines, it Is necessary 
that the ratios 6/D also be Identical. Otherwise, the geometri- 
cal similarity between the  machines will be  only partial. 

Assuming laminar fluid flow in the  clearances,  let us  ex- 
press  the  leakage  in the hydraulic machine  in accordance with 
Poiseullle's  law 

where k    is a proportionality factor that Is  the same  for an en- 
tire  series of geometrically similar hydraulic machines. 
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Multiplying the  flow rate ^ by  the pressure gradient Ap, we 
obtain  an expression  for  the  seepage power  loss: 

N,~k;tSLl>~k,i-!*.D>~k,*£w. (13.12) 

where   */ = *»[-£■)   Is the  leakage  (or tightuess)  coefficient of the 
hydraulic machines. 

The  liquid-friction  force In a hydraulic machine is propor- 
tional,   according to Newton's  law,   to the  viscosity w  of the 
fluid,   the area of the rubbing surfaces  (M)2),  and the velocity 
gradient   (M3w/6).    Since the  relative velocity  of displacement 
is proportional to uD,  the power lost to liquid  friction in the 
machine will equal 

K=*'*D'[^~) {O") ■= kjoW*^ kK?mW. (13.13) 

where w'  is a proportionality coefficient that is the same for 
an entire series of geometrically similar hydraulic machines and 
kzh " kzhD/'fi ls the coefflclent of the fluid-friction losses. 

The expression for the power lost to "dry" friction can be 
written on the basis of Coulomb's law If it is remembered that 
the normal force is approximately proportional to ApD2, while the 
relative velocity of displacement Is proportional to uD: 

A',I>=*tpA/7«D3=.. k^ipW. (13.14) 

The coefficient of friction is incorporated into the propor- 
tionality factor k. , which can be assumed constant for a series 
of geometrically similar machines. 

The power of a hydraulic machine in the absence of the above 
losses is known as its indicator power and expressed as follows: 

A', =. A/'Q, «= M" ^ bpD\*, 

since 

Here M is the torque on the shaft of the machine at N ,= N.  =0 
and Qt is the flow rate at q - 0. zn        zr 

In actuality, the pump will delivery less than Q. because of 
leakage, and the power required will be greater than 1»^ because 
of fluid and dry friction.  Hence the efficiency of the pump (sub- 
script 1) can be expressed thus: 
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n,■■Ar< + Arl.+*,r"■ A/»0».+ *,#£»-»+ *,^/DV. ' 

After dividing the numerator and denominator by N,, we ob- 
tain finally 1 

^"1+^+^7^" (13-15) 

where o ■ pu/Ap Is a dlmenslonless number known as  the Isogonal- 
Ity coefficient;2 n,,  and nm,  are the volumetric and mechanical 
efficiencies  of the pump, respectively, and equal 

•Ui"«! and n^" 
! + »,, + *,§ 

The power developed by a hydraulic motor Is smaller than the 
Indicator power N. because of dry- and fluld-frlctlon losses, and 

the power that It requires exceeds N. because of seepage, which 

moves In the same direction as the main flow In a hydraulic motor. 
In contrast to the case of the pump.  Hence the motor efficiency 
(subscript 2) Is expressed by the formula 

« 

where the volumetric and mechanical efficiencies of the motor 
equal respectively 

and t»" 1 — *,f—*»«. 
1 + — 

As we see from these formulas, the efficiencies of rotor- 
type hydraulic machines (pumps and hydraulic motors) are uniquely 
expressed In terms of the IsogonaHty factor o.  It can be shown 
that this coefficient Is proportional to the ratio of the frlo- 
tional flow rate, which Is governed by the motion of one wall of 
the gap relative to the other (see §26), and the flow rate of the 
delivery flow created by the pressure gradient.  Dividing Formula 
(6.15) by (6.13) and setting p.  - Ap, a ■ «, U -v wD and 4 ^ D, 
we have tr 

where ^  Is the proportionality symbol. 

'See page 321 for footnote. 
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Thus,  the coefficient a  Is a Iclnematlc-slmllarlty  criterion 
for geometrically    similar rotor-type hydraulic machines,  as well 
as  a quantity that characterizes the  operating regime of a given 
hydraulic machine. 

Figure 196  presents  curves of pump  (a)  and motor  (b)  effi- 
ciencies  as  functions of the  coefficient a.     As the diagrams show, 
the over-all efficiency curves  of the pump and hydraulic motor 
(solid lines)  have maxima at  certain  values of 0 " o*. 

Fig.   196.  Pump   (a)  and hydraulic- 
motor  (b) efficiencies as functions 
of Isogonallty  coefficient. 

For  the pump,  0»  Is  obviously   found from the   condition 
rfi|i/io=01 which  leads us  to the quadratic equation 

(•»•-^(»D-^d+^Ho. 
from which 

'-^(l/^ + l-f-l). (13.17) 

while for the motor it is  found from the condition dtijiti — O : 

KM 

from which 

•.-'.(i/^"-')- (13.18) 

For pumps and hydraulic motors, the quantities 

l,':. *.*„ 

are  large by comparison with unity and larger the higher the ef- 
ficiency  of the machine.    Hence Expressions   (13.17)  and   (13.18) 
can be replaced by the approximate relationships 
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•M/£ (I I *„.)   and ,,/^ A,)- (13.19) 

Because of the flatness of the  r\.  and Ha-ourves near the 
maxima, determination of (ni)     and  (n,)   „„ from approximate max * max 
values of o^f and a2 gives quite high accuracy.    Substituting Ex- 
pressions   (13.19)  into   (13.15)  and   (13.16), we obtain the maxi- 
mum efficiencies  of the pump and hydraulic motor: 

(l:)« 

and 

V     H-*,p 
l+*i(.+ /*«.*yO+*,,,) 

(13.20) 

(»bV l-*.p-K*y*«('- *.p) (13.21) 

The general  theory  of rotor-type  hydraulic machines  set   forth 
above was worked out  during the prewar years by Prof.  V.V.  Mishke 
(Bauman Higher Technical Institute   at Moscow),  and has  been de- 
veloped further  since   the war In the  studies  of Prof.  V.N.   Pro- 
kov'yev and abroad. 

aTirn rHApoMauiiniu »y K *<> 

b naaciinmtbin   H3- 9-10-« 2-105 0 
coc 

C UlecTepcHiiun   Ha- 210-»-M0~» 3.106-1.105 0-0.? 
(OC 
d Poiopiio-nopunie- 910-10-1510-' (0.2-2)-IQ« 0-0.15 !'. 
«oil iiacoc 

8 naaciMiiiatwii ma- I.510-' 1,510« 0.1 
poiioiop    , 
f UlecTepeimwi!  nia- (J-5)10-' 3-10«-l-10' O-0. IE 
pOHOTOp 

g PoTopiio-nopunie- I,MO» 4-105 0,07 
BOH niApoMotop 

IX 

76 

79-S5 

87-52 

65 

55-80 

SO 

KEY:   (a) type  of hydraulic machine;  (b)  rotary- 
plate  pumpj   (c) gear pump;   (d)  rotary-piston pump; 
(e)   rotary-plate hydraulic  motor;   (f) gear hy- 
draulic motor;   (g)  rotary-piston  hydraulic motor. 

The expressions derived can be  used to evaluate the  change 
In the efficiency of a hydraulic machine In the event of rela- 
tively small changes  In the regime  Indicators ou,  Ap,  and y, 
changes such that 0 would change by no more than ±50%.     They  can 
also be used to determine the optimum operating mode for a hy- 
draulic machine  and its maximum efficiency  value. 
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However, the approximate nature of this theory must be borne 
In mind. Inaoouracies stem mainly from the fact that the fluid 
viscosity In the clearances Is assumed constant and equal to the 
viscosity of the main stream. In actuality, as we noted earlier 
(§68), the fluid Is heated to some degree In the clearances as a 
result of friction and Its viscosity drops. Fluid pressure also 
Influences  the viscosity. 

Attempts have been made  to take account  of fluid heating In 
the  clearances by Introducing the Prandtl number Into the basic 
relationships of the  theory of rotor hydraulic machines. 

The   table on  the previous  page gives  experimental values of 
the  coefficients ku, kzh,  and k      and the over-all efllclency 
calculated by Formulas   (13.20)   and  (13.21)   for the  principal 
varieties   of the  rotor-type hydraulic machine  according to  Soviet 
[5]  and foreign sources. 
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Footnotes 

Manu- 
script 
page 

311     'See [9]. 

317     2Sometimes the reciprocal of the above quantity is also 
called the isogonality coefficient. 
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Symbol  List 

Manu- 
script Symbc il English equlval 

page 

293 T t theoretical 

300 ayö zub tooth 

302 B V inside 

303 H n outside 

309 cp sr average 

311 HBC nas pump 

312 np pr spring 

312 KJI kl valve 

315 y u leakage 

316 X zh fluid 

316 TP tr friction 

317 M m mechanical 

317 4P fr friction 

317 Han nap head, pressure 
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CHAPTER      XIV 

HYDRAULIC  DRIVES  AND   HYDRAULIC  TRANSMISSIONS 

A hydraulic transmission Is  a device  for the transfer of 
mechanical energy and the  conversion of motion by the use of 
fluid. 

A hydraulic transmission consists  of the  following two basic 
elements:     a pump, which converts mechanical to hydraulic  (fluid- 
flow)  energy,  and a hydraulic motor, which reverses  this energy 
transformation. 

The hydraulic motor sets a driven element  in reciprocating 
or rotary motion.    Hydraulic transmissions are  classified into 
two basic types on the basis of this kinematic criterion:   recipro- 
cating hydraulic transmissions  and rotary hydraulic  transmissions. 
Both types  are used in aviation and rocketry.     A further classi- 
fication of hydraulic transmissions will be given below. 

A hydraulic drive is  a device that consists of a hydraulic 
transmission,  a control system,   and accessories. Thus, the hy- 
draulic  transmission  Is  the  actuating element   of the  hydraulic 
drive. 

§70.   RECIPROCATING HYDRAULIC TRANSMISSIONS 

General   Information.     The hydraulic motors  used  in recipro- 
cating hydraulic transmissions  are hydraulic power cylinders with 
pistons and rods that execute reciprocating motions  under the ac- 
tion of working-fluid pressure.     Double-action hydraulic 
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cylinders.  In which  the driven element  can move  In two  opposite 
directions under the  action of fluid pressure, are used most 
frequently. 

The so-called hydraulic  torque cylinders,  in which the driven 
element   (a shaft) executes reversible rotary motions  through an 
angle smaller than  360°, are sometimes  used along with hydraulic 
power cylinders. 

Reciprocating hydraulic transmissions 
are used very extensively on aircraft, 
usually not in the  form of simple trans- 
missions,  but as  transmission systems  com- 
posed of one or more displacement pumps 
and several hydraulic motors.     The  latter 
are connected to one another by main lines 
(pipelines)  and perform various  functions 
simultaneously  or  at different  times   (the 
functions performed by these hydraulic 
motors were enumerated in. §1). 

A special hydraulic system  (a system 
of boosters  or hydraulic  amplifiers)  built 
with backup and emergency systems is  usu- 
ally provided for control of the aircraft 
In view of the importance of this  function 
and the high power required.    Another, 
general-purpose,   hydraulic  transmission 
system serves the  other functions on the 
airplane. 

Such a hydraulic transmission system usually consists  of a 
main (pump)   line and several parallel-connected actuator mains 
with the appropriate hydraulic cylinders,  each of which is de- 
signed to perform a definite  function:   control of landing gear, 
flaps,  etc. 

Figure  197 shows a schematic diagram of an elementary reci- 
procating-action hydraulic transmission with one actuator main 
and one hydraulic power cylinder.     The  transmission includes: 
tank 1,  an intake main, pump 2,  a pressure main with certain 
general-purpose units on it  running to the control unit   (dis- 
tributor)  3,  and actuator and return lines. 

The actuator main begins at  the distributor;  it  is  followed 
by a length of main  that supplies   fluid  to hydraulic  cylinder *) 
and a return  length of main running from the hydraulic  cylinder 
to the distributor.     When the hydraulic motor is  reversed by 
switching the distributor,  the supply and return lines  exchange 
functions. 

Figure  198 shows a diagram of an aircraft hydraulic trans- 
mission system with only one of the actuator mains Indicated by 

Pig. 197. Diagram of 
elementary hydraulic 
transmission. 

-324- 



way of example - the main for operation of the flaps (legend 
Items 1-k  are the same as in Fig. 197).' 

am Kom- 
peccopa 

a 
K dps/iuM 
ucnwumsflb- 
HUM mtucm- 
pamM 

nut naiucm- 
pznä 

Fig. 198. Diagram of aircraft hydraulic 
transmission system. 
KEY: (a) to other actuator mains; (b) air 
from compressor; (c) from other actuator 
mains. 

The arrangement  of the main hydraulic  line depends on the 
kind of pump used in the hydraulic system - adjustable or non- 
adjustable,    dear  (nonadjustable)  and rotary-piston  (adjustable) 
pumps  are used in aircraft hydraulic systems.     The adjustable 
pumps  are usually fitted with appropriate devices  (see  §68)   for 
maintenance of practically  constant pressure  and reduction of 
delivery to a certain minimum in the absence  of a demand for 
fluid.    This minimum should compensate  only internal leakage  in 
the system and provide for pump cooling,  which Is accomplished by 
constant circulation of fluid through a high-resistance choke  5. 

If, on the other hand,  a nonadjustable pump is used in the 
system,  its delivery  is practically constant   (at constant speed). 
In the absence of a demand  for working fluid,   therefore,  this 
delivery must be returned to the tank with minimum resistance. 
The automatic pump-relief device 6, which switches the pump  to 
"idle"   (see broken  lines  on the figure)   serves  this purpose. 

Safety valve 7  is usually inserted in all hydraulic systems 
to protect them from excessive pressure  in the event of failure 
of the pump automatic control, the automatic  relief device,  or 
the air-pressure regulator in the tank pressurizing system. 

lSee page   367 for footnote. 
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Hydraulic accumulator 8 accumulates working fluid under pres- 
sure when the hydraulic motors  are idle for subsequent  use,  to- 
gether with pump  delivery, when the demand for fluid reaches its- 
maximum.     The  accumulator also smooths  out pump-delivery  uneven- 
ness,  softens water hammer,  and replenishes  fluid  leakage  from 
the high-pressure  line into the return line in automatically re- 
lieved systems. 

As we  stated in §42,  the distributor is a control device by 
means of which one or another chamber of a hydraulic cylinder 
(actuating mechanism) is  connected to the system pressure  line 
or disconnected  from this  line.    The  squares  on the diagram re- 
present the various possible  line connections, i.e., distributor 
positions. 

The  flow divider or batcher 9  is  used when it  is necessary 
to synchronize  the motions of various mechanisms   (such as  flaps). 
Also shown here  is a batchmeter 10 — a device that prevents work- 
ing fluid   from escaping the system when a pipeline  ruptures. 

Filter  11 has  the  function of trapping solid particles  in the 
fluid.    The purpose of the check valve  12 is to pass a stream of 
fluid   (or  air)   in one direction and block it  In the  opposite 
direction. 

For more detailed information on the units  of aircraft hy- 
draulic systems   listed above and on  certain others,  the  reader 
is referred to  §72. 

The basic working fluid used in aircraft hydraulic  systems 
is AMQ-10,   a heavy Jce.rosene to which a special thickener   (Vinl- 
pol) has been added to increase its  viscosity.    The physical 
properties  of AMG-10 fluid were given in Table 1  (see Chapter I). 
AMQ-IO moves in  laminar flow in pipelines at  low temperatures. 
However,  because  of the  comparatively   low viscosity  of AMG-10 
fluid,  the   laminar  flow regime  yields   to turbulent   flow  in some 
parts of the aircraft hydraulic system.    In winter,  for example, 
during retraction of landing gear,  laminar flow is established in 
the return line,  but the  flow may be  turbulent In the pressure 
line, where the  fluid is heated. 

Principle of calculation.     In the mathematical design of 
such a hydraulic  transmission,  it should be regarded as  a closed 
pipeline with pump delivery of fluid,  and the power cylinder as 
a special  local resistance that  causes a pressure drop Ap      equal 

ts 
to the difference between  the  pressures  on the  two  sides  of the 
piston,  i.e., 

AP«—Pi—/>i. 

It can be assumed in first approximation that the delivery 
of fluid from the accumulator is zero, i.e., that the piston is 
moved solely by pump operation.2 

'See page  367  for  footnote. 
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The gradient Ap,.     can be expressed as  follows on the basis 

of the equilibrium equation of the piston   (see Fig.   197): 

from which 

tp.=Pi—Pt=—A-—i—~—p». (I^.D 

The quantity p2  is approximately equal to the total pressure 
loss in the return line;  consequently,  the second term in  (1^.1) 
is  a function of flow rate or piston speed.    This term is usually 
far smaller than the  first and is  often dropped. 

Thus,  the  pressure  required for a given system when  the  pump 
delivers 6 „„ must be  found by adding the gradient Ap      to the nas to 
total pressure  loss in the entire  system,   i.e., 

/».„P-Ap.+ S^. (14.2') 

In determining the return-line hydraulic losses, It must be 
remembered that during motion of a piston with a rod on one end, 
the fluid flow rate Q=, In the return line is not equal to the 

flow Q   in the delivery line, since the piston area is larger nas 
on one side than on the other.     For this purpose, we Introduce  a 
coefficient a, which equals 

0.«       CP—di 

when the piston rises (see Pig. 197). 

Let us assume that we have the particular case In which flow 
is laminar in the return line and turbulent In the delivery line. 

Then, applying Formula (l^.l) and the expression for the 
coefficient a, and grouping terms in accordance with the type of 
dependence on Q  , we obtain from (14.2') nas 

Here the first term In the right-hand member is the basic 
term in the expression for Ap. , the second term is the pressure 

loss in the return line plus the second term In (14.1), and the 
third term Is the pressure loss in the delivery line (from the 
tank to the cylinder). 

The sense of the coefficients k, and k2 Is the same as in 
§47. 
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Fig. 199. Graphical de- 
termination of hydraul- 
ic transmission operat- 
ing regime. 
KEY: (a) system char- 
acteristic; (b) pump 
characteristic. 

Prom this equation, we construct 
the system characteristic (Pig. 199) 
and enter the pump characteristic on 
the same diagram. The Intersection 
point of these two lines determines the 
system operating regime, i.e., Qna3 and 

p  .  If the load P along the rod does rnas 
not va. y over the stroke of the piston, 
dividing the cylinder volume by the flow 
rate gives the time to execute the opera- 
tion or the time required to traverse 
the piston from one extreme position to 
the other. 

An aircraft landing-gear hydraulic 
system usually has three power cylinders 
connected in parallel.  In this case, 
the system should be regarded for de- 
sign purposes as a complex closed pipe- 
line and, in addition to the instruc- 
tions given above, recourse should be 
taken to the characteristic-plotting 
method (see §50). 

Calculation for nonsteady regime. The dynamics of the mo- 
tion is not taken Into account in the method set forth above for 
synthesis of the hydraulic transmission (hydraulic system), since 
it was assumed that the fluid flow is fully stabilized over the 
entire span of the working cycle from the time at which the pis- 
ton(s) begin to move to the time at which they stop. 

Tn actuality, the motions of the fluid and piston are non- 
uniform, and for this reason dynamic pressures usually arise in 
the s^stfem and must be taken into account when large masses are 
being moved with large accelerations and abrupt load changes. 

Suppose we have a given law of variation of the external 
load on the rod as a function of piston movement P = f(x).  It 
is required to determine the time of displacement of the piston 
from one extreme position to the other with consideration of in- 
ertial pressures. 

Let us write the fundamental equation of nonsteady motion 
(10.6) for the flow of fluid (see Fig. 197) from the pump outlet 
(section 0-0) to the pump inlet (section 3-3) with consideration 
of the pressure losses in the hydraulic power cylinder to handle 
the load and the inertia of the moving parts. 

Disregarding the velocity-head difference, we have 

"See page 367 for footnote. 
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where yp,.., ■ kQ*  is the sum of the pressure losses In the plpe- ^ tr    nas 
lines; Ap.  - P/S„ Is the pressure loss to start the load moving; 

us      p 
pl  and Pln2 are the Inertlal pressures used to accelerate the 

fluid in the delivery and return lines, respectively, and are 
equal to (see §15) 

(I and S are the lengths and sectional areas of the pipes, respec- 
tively); Pin, Is the inertlal pressure used to accelerate the pis- 

ton and the masses of the moving mechanisms reduced to the piston, 
and equals 

Here, S , J  and M are the area, acceleration, and mass of the 

piston, respectively (and of the other moving parts reduced to 
the piston). 

Since Qsl - a(3nas, we have 

h *Q*K 

and the fundamental equation (14.3') can be rewritten 

P^-Po-P^kQZ. +£+§ ~. d'*.3) 

where p   is the pressure developed by the pump, which we shall 

assume constant, and M is the reduced mass of all of the fluid and 
moving parts, which equals 

iM=c(Vi+«|U)+|-;M.. 

In the  case of a constant  load along the piston rod   (P ■ 
- const), Eq.   (11.3) is easily solved  for linear  (m - 1)  or 
square-law  (m •  2) resistances. 

If the  load is variable,  it is  recommendea that  the  problem 
be solved by numerical integration. 

The Initial value of the derivative  (dQ      /dt).  is  found nas   * 
from (14.3) with the initial values P - P0 and Q - 0.  Then we 
take a short time segment At, and find the flow rate increment 

AQ.-f^A/.. 
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The fluid volume entering the hydraulic cylinder during time 
At,  Is 

A«r1~.i-A/IAQI. 

while the piston travels a distance 

"■-^ 

with the substitution Qi - &Qj and P ■ «,. 

We then take a new time segment At, and, assuming that the 
derivative value (dQ^/dt), calculated In the first cycle 1» 

constant for this segment, we determine the flow rate Increment 

and then the flow rate and volume Increment 

Q.-AQ.+ AQ,: AWt—^-(AQ. + AQ.) 

and so forth. 

The third and subsequent cycles fr%a"a^f"» t°f
tl

t
l* ^1 

Th« iimita of Integration are the beginning and end of the woric 
SS itroke  TS SSnown time Is found as the sum of the segments 

At. 

§71. HYDRAULIC SERVO DRIVE (HYDRAULIC BOOSTER) 

In the hydraulic transmission examined In the Preoedln8. "°: 
tlon. we had a simple displacement of the piston from one extreme 
position to the other, during which it overcomes a load P along 
the piston rod. 

In other cases. It Is necessary to secure a more complex 
, !,T „„?4„„  Thus  in aircraft control systems, the rod 

IrtHe  ÄuUc pSier punier iuSSautSSatlcallJ follow the mo- 
Uon If t2e cätroriever: and a definite rod position must cor- 
respond to each position of that lever. 

ably greater than that applied to the control. 

As a rule, modern high-speed aircraft and h*1^0?^"*" 
controlled with the aid of hydraulic boosters, since the effort 
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required at the control aurfaces Is often many tlmee the muscular 
strength of the pilot. 

Figure 200 shows a schematic diagram of a hydraulic ampli- 
fier (booster). By moving the control 1, for «""P1* ":.!,.. 
right, the pilot traverses command slidevalve 2, which directs 
fluid under pressure through passage 3 Into the left chamber of 
cylinder 1 and connects Its right chamber with the return line. 
Under the pressure developed by the pump, P1"*0" 5 »oves to the 
right together with the spool of slldevalve 6 until the slldevalve 
passages through which fluid enters the cylinder and leaves it 
ire covered. 

-B-a 

Pig. 200. Schematic diagram of 
hydraulic amplifier (booster). 
KEY: (a) return; (b) from pump; 
(c) to control surface. 

When the stick and slldevalve are moved to the left, pres- 
sure will be supplied to the right chamber of the cylinder and 
the piston will move to the left. 

Thus, the actuating rod 7, which is connected in the example 
to a control surface of the airplane, follows all motions of 
slldevalve 2, but the force that it develops is many times that 
which the pilot applies to the slldevalve. 

Let us now examine the basic characteristics of the hy- 
draulic booster as a power drive.  We shall derive formulas for 
the effort at the actuating rod of the booster, its efficiency, 
and the power that it develops. 

The pressure supplied to the hydraulic booster is used to 
overcome the force P acting along the actuator rod and hydraulic 
resistances, i.e.. 

- D ,.. Is the fluid pressure at the inlet of the Fvykh where p0 - pvkh 
booster minus the pressure at the outlet; Apts - 

pressure drop In the cylinder, which equals Apt£ 

, - p, Is the 

P/S; S is the 
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piston area less the rod area; Jp Is the total pressure loss on 
the path of the fluid from the inlet Into the booeter to Its out- 
let. 

Assuming that the hydraulic losses take place basically in 
two partially covered slide-valve ports and that these losses are 
square-law functions of velocity (flow rate), we can write 

where c is the resistance coefficient of the slidevalve port and 
v is the velocity of fluid outflow through it. 

Since the slidevalve ports are usually rectangular, with one 
side of the rectangle constant and equal to b, which the other Is 
variable and equal to x (see Pig. 200), we can write the flow 
rate equation In the form 

QmVSmvtM, 

where V is the speed of the piston. 

Expressing v -n terms of Q in accordance with the above, and 
then substituting it into the formula for Jp and (ll».1), we ob- 
tain 

'k"A'-+8r-Ylfe-' 
or 

where 

Ä-A^+IÄ. (14. V) 

■»-iL 

The quantity k can be assumed approximately constant and in- 
dependent of flow rate.  If the booster is supplied by an adjust- 
able constant-pressure pump (see Pig. 195), and if the hydraulic 
losses in the supply pipes can be disregarded, the pressure p0 
will also be constant at the pressure developed by the pump. 

In the absence of a load on the actuator rod (P ■ 0 and 
Apt - 0) and with the slidevalve ports wide open (x ■ xmax - t), 
the delivery (flow rate) of fluid to the booster will be Q - Q,,^- 
We then obtain from (14.1') 

*-A-gr-- 

After substituting this expression into (14.4') and solving 
it for Ap 
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where g-J ■./ t-F Is the relative flow rate or the relative 
9mm      'mm 

speed of the actuator rod; SM-^— IS the percentage opening of 

the slidevalve ports. Prom the above, the force acting along the 
actuator rod (the load) will be 

/»-a*f..M(t-Jr). 

and the relative load F Is found by dividing P by P, 
i.e., 

max 

'-ä-—J—£• 

(l^.S») 

p.s, 

(l^.S) 

Pig. 201. Static character- 
istics of hydraulic booster. 

Fig. 202. Alternate 
method of plotting static 
characteristics of hy- 
draulic booster. 

This equation can be used to construct a net of so-called 
static characteristics of the hydraulic booster. I.e., curves of 
F as a function of Q for various x (F1K. 2011.    This diagram is 
constructed for positive and negative q  and x, i.e., for motion 
of the slldevalve and rod and, consequently, of the fluid in 
either direction. 

We see from the diagram that the force on the actuator rod 
approaches the largest possible value P   ■ p0S only at low 
speeds V of the rod. The faster the motion of the rod, the 
smaller the load that it will handle. 

The load on the rod changes sign where the curves cross the 
axis of abscissas, i.e., the load is transformed into a force 
that pulls the rod in the direction of motion.  This results In 
a further increase in its speed, and the hydraulic cylinder works 
in the pump mode. Thus, In quadrants I and III on the diagram, 
the hydraulic cylinder is operating as a motor performing work to 
overcome the load, and in quadrants II and IV it is a pump supply- 
ing fluid in the same direction as the main pump. 
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The static characteristics of a hydraulic booster car. also 
be constructed In another coordinate system. Let us solve Eq. 
(14.5) for 5 ■ 7: 

^-P-JJ/lTTf (14.6) 

and plot 5 ■ 7 as a function of x for various values of F (Pig. 
202). We obtain a series of straight lines whose Inclination to 
the x-axls Is smaller the greater the load on the booster actu- 
ating rod. At F • 1, the booster characteristic coincides with 
the axis of abscissas, and this means that the rod speed Is sero. 

Pig. 203. Diagrams of 
slldevalves. a) Ideal: 
b) with positive over- 
lap; (c) open. 

Pig. 204. Characteristic 
of hydraulic booster 
with positive overlap. 

The characteristics of the booster are also Influenced by 
the so-called overlap of the slldevalve. I.e., the relation be- 
tween the width h of the slldevalve spool and the width t of Its 
ports. We thereTore distinguish the ideal slldevalve. In which 
h - t (Pig. 203a), the positive-overlap slldevalve. In which 
h > t (Pig. 203b), and the negative-overlap or open slldevalve, 
in which h < t (Fig. 203c). The overlap is taken as 

c«"—■ or 
2 

The characteristic shown in Pig.   202 is  that of an ideal 
slldevalve  (c - 0).    A dead zone of width 2c appears on the char- 
acteristic of the positive-overlap slldevalve - a disadvantage, 
but one that improves sealing (Fig.   201). 

In the open slldevalve,  fluid seeps  from the delivery  line 
to the return line and,   consequently,  power is  lost.    However, 
there is practically no dead zone,  since when the spool is  shifted 
even very slightly from its neutral position, a pressure gradient 
appears in the hydraulic power cylinder. 

The efficiency n  of a hydraulic booster will be represented 
here as the ratio of the work done by  the  actuator rod per second 
to the power that  the  fluid flow applies to the hydraulic booster, 
i.e.. 
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Consequently, the efficiency of the booster lo numerically 
equal to the relative load on the rod and varies in accordance 
with the same law as F. 

The useful power of the booster is 

M-PV. 

and the relative power Is determined by the 
ratio 

Pig. 205. Relative 
power curves of hy- 
draulic booster. 

Applying (I't.S) and remembering that 
7 - 5, we obtain 

*-['-£]* (It.8) 

Figure 205 gives curves of the relative power IT as a func- 
tion of 9 ■ 7 for various x, as plotted by Formula (It.8). 

Let us find the value of the relative flow 5 at which the 
power reaches Its maximum. 

For x ■ 1, we obtain Instead of (It.8) 

After differentiating with respect to 9» we equate the deri- 
vative to zero: 

^-i-acj'-o. 

Hence the optimum relative flow rate 

^.n,' 7? =0.58. 

and the maximum relative power 

^.„-(l-4)^0.385. 

Then, according to Formulas (It.5) and (It.7), the relative 
rod load and the booster efficiency are equal to 

7^ v—, 
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Plg.  206. Diagram of hydraulic booster with 
internal slldevalve. 
KEY:   (a)  from pump;  (b)  return;  (c) pres- 
sure from pump;  (d) return pressure;  tej 
closed volume. 

The absolute value of the maximum power will be 

where ^ x can be  found from the expression derived above  for k. 

i.e.. 

Q-»-'...]/V 
After substitution in the above expression, we finally ob- 

tain 
(14.9) 

Figure 206 shows the design layout of a booster whose slide- 
valve if accommodated inside the actuating ^2.    When command 
SDOOI  1 shifts,  fluid from the pump is  directed through P»"»^* 
?P?nto one of the  chambers of cylinder  3 and Is  drained from the 
other. 

In addition to the cylinder-piston 8rouP *  ^^^lde' 
valve, aircraft hydraulic boosters also have the following 
auxiliary devices. 

i    A cvllnder-bvoass  system, which provides  for automatic 
InterJönSectlin of ?oth cylinder*chambers in the event of a pres- 
JSre d?S in the hydraulic system.    This is necessary Jo permit 
free movement  of the booster actuator rod by means of the  control 
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•tick on twitching to manual control, whan tht booittr dots no 
work at all and it rtduoad to a •Implt kinematic tlMwmt. 

Pig.  207. Diagram of hydraulic booster with 
external slldevalve. 
KEY:   (a)  from stick;  (b)  return;   (c)  from 
pump;   (d) to control surface. 

In Pig.  206, the cylinder chambers are connected by the by- 
pass plungers 5.    Obviously, when there is no pressure In the 
system, movement of the piston by an external force will move the 
bypass plungers to open the passages,  through which fluid can 
flow without hindrance  from one chamber of the cylinder into the 
other. 

2. The slldevalve damper in Pig.  206 is made in the form of 
a one-way ball valve 6.    Together with this  valve, the slldevalve 
acts as a pump that continuously exhausts  fluid from damper cham- 
ber A, where a vacuum is created as a result.    Thus, a constant 
unidirectional load acts on the end of the slldevalve;  tests in- 
dicate that  this  protects  the booster from self-oscillation. 

Pigure  207 shows  another design version of the hydraulic 
booster.    It differs  from the previous one primarily in the ex- 
ternal position of slldevalve 3, whose shell is also rigidly 
coupled to actuator rod 2.    The bypass system is also different 
in design.     In the absence of pressure  in the booster,  the by- 
pass valve 'l Is transferred by spring 6 to its extreme left posi- 
tion  (as shown on the diagram) and Joins the left chamber of 
cylinder 1 with its right chamber.     If fluid Is supplied to the 
booster under pressure,  this pressure moves the bypass valve to 
the right, where it covers hole 5 and blocks communication between 
the booster chambers. 

A booster is  connected either reverslbly or irreversibly in- 
to the aircraft's  control system. 

In the former case,  a small part  of the effort  from the  con- 
trols is transmitted to  the pilot.     In  the   latter case,  the en- 
tire   load is offset by  hydraulic  force,  and nothing but  the  force 
of friction In the  command slldevalve  is  transmitted back to the 
control stick. 

Pigure  208 represents  the operation of a hydraulic booster 
in  a reversible  control  system.     If we  Imagine a reversing rod 
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to bt rigidly attaohtd as »hown and tht otnttr of rotation of tht 
rocker to bt traniftrrtd from point A to point B, th« rovoraibl« 
control syitom btconts an irrtvtrtible tyataa. 

Pig. 206. Diagram of transmission 
from control stick through hydraul- 
ic booster to control surface. 
KEY: (a) pilot effort; (b) reversing 
rod; (c) load. 

A numerical example will clarify the function of the hy- 
draulic booster In the reversible system. 

Example. Given (see Fig. 208): 

Diameter of booster cylinder D > 50 mm. 

Diameter of actuating rod d - 30 mm. 

Booster efficiency n ■ 0.90 (with consideration of friction 
In the cylinder). 

Load from control surfaces P ■ 960 kgf. 

Arm ratios: — »4; —-3; y=4-. »"j- 

Determine: 

1) the pressure po at the entry Into the booster if the pres- 
sure in the return line psl - 3 kgf/cm2. 

2) the stick effort a. in the presence and absence of pres- 
sure In the hydraulic booster. 

Solution.  1. We determine the force P on the booster actuat- 
ing rod: 
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/•"'■f "7'*" ^TO ■"«")'",ow Kgr. 

2. Wt determine the pressure p, at the entrance Into the 
booster. Since 

Me have 

/•».-" (n- rf-XPv- f..)«i. 

*-^^+^-l^.!5^^+•-,,••k«f/c-,• 
3.  We find the effort at the control stick In the presence 

of pressure In the booster. 

The transmission ritlo 1,   (the so-called "reversibility fac- 
tor") equals        ,    i    ,   ^    ,    ,    ,    ,     , 

'  •  • ' # 4   4      »      i      t      » 

The stick effort Is *•'if-^ W)-so kgf. 

«I. We find the stick effort In the absence of booster pres- 
sure. 

In this case, the transmission ratio la 

The stick effort *-»/-j-jKO-Jio kgf. I.e., manual control of 

the airplane In this flight mode Is Impossible; for this reason, 
a reserve power source must be provided against the eventuality 
of hydraulic system failure. 

$72. BASIC SUBUNITS OP AIRCRAFT HYDRAULIC SYSTEMS 

The components of aircraft hydraulic power systems (hydraulic 
transmission systems) Include, first of all, those that perform 
the functions of control devices (see $43) - distributors, pres- 
sure regulators, and flow regulators - and certain units with 
other functions - filters, accumulators, etc. 

Let us begin our examination of these units with the control 
devices, whose function Is to direct the flow of working fluid In 
the hydraulic system. 

Distributors, like other control devices, are classified as 
choke and valve types on the basis of working principle (see $43). 
Most commonly used are the choke distributors, whose geometrical 
characteristics or percentage openings do not depend on the param- 
eters of the flow through them.  However, valve-type distributors 
are nevertheless used In the form of adjustable valves. 
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A classification on the basla of control method distin- 
guishes manually, electrically, hydraullcally, and pneumatically 
controlled distributors. 

Depending on the number of external lines  (pipelines) 
through which working fluid Is supplied to the distributor and 
removed from It, we distinguish three-line,  four-line, etc., 
types.    They are also said to be three-way,  four-way, etc. 

Flg.   2C9.  Diagram of four-line 
slldevalve distributor. 
KEY:   (a) to motor;   (b)  return; 
(c)   from pump. 

The  four-line distributor,  to which fluid Is  supplied from 
a pump,  removed to one  of the  chambers of a hydraulic motor, 
supplied from the other motor chamber, and returned to the tank, 
Is used most frequently. 

Choke distributors  are classified as  spool and valve  types. 
The difference is that the working element reciprocates In the 
former type and rotates In the  latter. 

The slide  valve distributor,  also known simply as  the slide- 
valve.  Is  the most common type  of distributor In aircraft hy- 
draulic systems. 

The working element of a slldevalve distributor is  a rod 
fitted with two,  three,  or four spools and capable  of axial move- 
ment inside the  slidevalve's  cylinder  (sleeve).     The  latter is 
provided with ports  for intake and outflow of fluid.     Figure 
209 is a diagram of a four-line  (four-way)  slldevalve distribu- 
tor without   (a)  and with  (b)  compensatlun of the  axial  force. 

The hydraulic properties  of a slldevalve distributor are 
determined by its flow rate coefficient u   (or resistance coef- 
ficient)  and by  the axial and radial  forces acting on the  spool 
rod. 

The  flow rate coefficient  of a slldevalve is determined by 
the formula 

p=- 

lx i/fF 
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where b is the width of the slidevalve port; x Is the percentage 
opening of the port; &p is the pressure loss in one branch of 
the slidevalve. 

Experiments have shown that the coefficient u varies very 
slightly with varying percentage opening of the ports and with 
Reynolds number. This coefficient depends much more strongly 
on the ratio of port width b to spool diameter b/d. Figure 210 
shows the flow rate coefficient w as a function of Re for a 
series of b/d values for various percentage openings of the 
slidevalve ports.'' 
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Fig.   210.   Flow rate  coefficient 
of slidevalve as a function of 
Reynolds  number and ratio b/d. 

As we see  from the diagram,  the  flow rate  coefficient  de- 
creases  from 0.53 to  0.35  as  the  ratio b/d is  increased  from 0.15 
to 0.83.    This  is because the fraction of the resistance contrib- 
uted by the  supply passages increases with increasing relative 
port size. 

The resistance coefficient of a slidevalve, which is equal 
to the ratio of the head loss to the velocity head in the port, 
is  found with consideration of the above  from the formula 

;'=• We    g/?V(M? 

vt* O'Y 

Consequently,   a resistance   coefficient  ;'   equal to   3.55  to 
8.15 will correspond to the  flow rate-coefficient values given 
above.    These  large  coefficients  c'   are explained by  the  fact that 
the Jet  is  compressed during outflow through the slidevalve  ports, 
but we have attributed the  flow decrease due to Jet compression 
to resistance,   i.e.,  we set  e = 1  for the  same u.    Moreover,  the 
coefficient  c'   also takes account of the energy  loss to sudden 

'See page   367  for  footnote, 
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expansion on Issuance from the port. This Is the difference be- 
tween the coefficient c' and the  c that we used In §38. 

Fig. 211. Diagram of four- 
line slldevalve with axial- 
force compensation. 

Fig. 212. Valve dis- 
tributor. 

The axial force acting on the 
slldevalve rod may consist of static 
and dynamic components. The former 
arises when the return-line pressure 
acts on the end of the rod. To offset this force, the rod Is 
made longer and extended to the outside of the sleeve (as shown 
In Pig. 209b), or other measures are taken. 

The axial dynamic component appears as a result of the mo- 
mentum Qpv cos o that the Jet carries with It through the par- 
tially opened port (Fig. 211). 

This force Is compensated by using the reaction of the Jet 
Issuing from the opposite chamber of the hydraulic motor. For 
this purpose, the slldevalve rod Is profiled approximately as 
shown In Fig. 211. 

The possible appearance of a radial force In the slldevalve 
poses a very Important problem, since this force may throw the 
rod out of alignment and Jam the spools In the sleeve, causing 
failure of the slldevalve. 

To eliminate the possibility of radial reaction forces, the 
slldevalve ports are usually made In the form of a pair of dlam- 
etrally opposed holes that communicate with one another through 
grooves, or else the port Is made annular. I.e., with a width 
equal to the perimeter of the spool cross section, b - ird. 

The Influence of the clearance between the spools and sleeve, 
eccentricity, and spool taper Is analyzed In detail In [5J. 

Valve distributors (Pig. 212) are usually simplest in con- 
struction.  However,the torques required to operate them are 
quite substantial. Devices that reduce these torques compli- 
cate the design. 

Mushroom-valve distributors are also used in aviation hy- 
draulic systems; like the valve-controlled piston pumps, they 
have an advantage in their very tight internal sealing. Figure 
213 presents a schematic diagram of a four-line mushroom-valve 
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distributor.     It Is  controlled by turning shaft  1, which carries 
four cams  2.     The  latter operate valves  3, opening either the 
first and third or the second and fourth,  i.e.,  one  intake and 
one return valve at a time.    The  directions of the  fluid flows 
are marked on the diagram. 

Fig.   21?.  Pour-line mushroom-valve 
distributor. 
KEY:   (a)   from pump;   (b)   to motor; 
(c)  to tank. 

Fig.   21^.   Diagram of 
reduction valve   (pres- 
sure  reducer). 

This distributor has a disadvantage 
in the  large efforts required to open 
the  valves.     A variety  of methods  may 
therefore be used to relieve  the valves, 
or so-called servo-action valves may be 
employed.   In the  latter case,  the main 
valves are equipped with small auxiliary 
valves.     Opening of an auxiliary valve, 
which requires  little effort,  causes  the 
main  valve  to  open under fluid pressure. 

Pressure regulators are used in 
aviation hydraulic systems  In the  form 
of various  types  of valves  — reduction, 
safety,  bypass,  pressure,  etc. 

A reduction valve  or pressure  re- 
ducer has  the   function of  lowering the 

pressure of fluid coming from the pump to the appliance and main- 
taining the  reduced pressure within specified limits. 

This becomes necessary when an appliance in a system with a 
common pump requires a lower pressure than that delivered by the 
pump. 

A schematic diagram of a reduction valve appears  In Pig.   21't. 
Fluid under pressure P! enters through passage  1,  passes under 
valve  2,  where  it  is  throttled,  and exits  through passage  3  at 
a lower pressure P2.     Spring  k  tends  to  open the  valve,  while  the 
fluid pressures on membrane  55  and on valve 2 act  in  the direction 

'See page   367 for  footnote. 
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to close lt. As a result, when pressure p2 rises to a certain 
limit, the valve shuts, and when the pressure drops, the valve 
opens! Thus, pressure p2 is held within the required range as 
fluid flow rate varies. 

To obtain the fundamental equation reflecting the operation 
of the reduction valve, we write the following initial equations: 
the equation of the flow rate through the valve 

and the equilibrium equation of the valve 

P.*-Cx- ^{px-Pt—Pi-O. 

where w is the flow rate coefficient of the valve (see §42),x 
is the lift of the valve (percentage opening), d and D are the 
diameters of the valve seat and membrane, Ppr0 is the spring force 

with the valve shut (at x - 0), C is the spring constant, and a 
is the taper angle of the valve. 

The equilibrium equation for the valve has been written on 
the assumption that the pressures p, and p2 are distributed uni- 
formly over the area irdV* of the valve.  This can occur only at 
small (by comparison with d) valve openings x.  At large x, the 
equilibrium equation requires corrections. 

Determining x from the equilibrium equation and substituting 
into the flow rate equation, we have 

0^rfsln«J-[^-.l-pJ(^-l)]|/27^.      ^-1°) 

where 

f==^ and ^"-zzr 
This equation connects the two basic variables Q and P2.  The 

pressure 9l   can be considered constant in systems with an adjust- 
able pump. 

The equilibrium equation can be used to determine the maxi- 
mum (for a given p,) pressure p2 at the reducer outlet, which 
corresponds to a closed valve; setting x - 0, we obtain 

\t'i mil 

5- 
It is evident from this that for a given reducer, the pres- 

sure (p2)   increaees with decreasing pressure p,. 
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Fig. 215. Character- 
istic of reduction 
valve. 
KEY: (a) and so forth. 

Fig. 216. Diagram of 
bypass valve. 

Equation (I'J.IO) can be used to construct the characteristic 
of the reduction valve, which Is most conveniently presented as a 
curve of P2 vs. Q for a series of constant p1  equal to Cj, C2, 
C,, etc. The typical form of these curves Is shown In Fig. 215, 
from which we see that the extent of the p2 drop with Increasing 
flow rate Q Is greater the lower the pressure pi  at the inlet 
into the reducer. 

A pressure valve, in contrast to the reduction valve, is 
designed to limit the pressure in the flow of working fluid sup- 
plied to it.  If, in this process, the valve maintains a speci- 
fied fluid pressure by bleeding fluid continuously, it is called 
a bypass valve. 

The design of the bypass valve is most frequently that of a 
spring-loaded plunger valve (Fig. 216). Such a valve must be 
fitted with a damper for oscillatory motions, e.g., in the form 
of the narrow passage a, through which fluid flows from the cham- 
ber above the valve to-the chamber below it and back. 

The relation between the pressures p, at the entry to the 
valve and pj at its outlet, and their relation to the fluid flow 
rate Q through the valve can be obtained by simultaneous solu- 
tion of two equations - the flow rate and equilibrium equations 
of the valve. Assuming that pressure pi is distributed uniformly 
over the valve area irdV'l, 

Q^ .-i dx i/fy^rr.-' 

and 
nrfj P.fo+Cx=(p,-p2)^, 

whence 
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Q~v*d[VLu>i-Pl)-
P-f]]/'2g*f*, {XU.11) 

P  . and C have the same meanings as for the reduc- 
pro' 

tlon valve (see above). 

As  the flow rate rises  from zero to Qj,^.  the pressure Pj 
does not remain constant, but rises to some degree.    This equa- 
tion can be used to estimate the extent  of the pl  Increase with 
Increasing flow rate and at p2 = const,  and to ascertain the 
Influence of p2. 

To obtain the  flattest possible valve characteristic,  I.e., 
to reduce the  Influence of fluid flow rate on the pressure pj,  It 
Is necessary to Increase the diameter d of the valve and lower 
the spring stiffness C. 

A safety valve Is another variety  of the pressure valve;  its 
function Is to bleed fluid In the event  of an overpressure.     Thus, 
the safety valve  functions  only episodically, when the pump-regu- 
lating mechanism or automatic relief valve malfunctions. 

Both ball and conical valves,  usually spring-loaded,  are 
used as  safety valves. 

A safety valve must be designed to  open at a given pressure 
and pass a definite  flow of fluid, preventing the pressure  from 
exceeding a certain maximum. 

Flow rate  regulators, which hold fluid flow rate constant in 
a given hydraulic  line,  are  used in aviation hydraulic  systems 
when it is necessary  to stabilize  the  speed at which a hydraulic 
motor moves - for example,   that of an antenna motor. 

Figure 217 shows a diagram of such a flow regulator.    Dia- 
phragm 1, which is  its sensitive element,  is installed at the in- 
let  into the regulator.    When fluid passes through it,  a pressure 
difference Ap,    appears and acts on piston 2.    The size of the 
throttling slot  3 is basically determined by the ratio of the 
pressure force on piston 2 and the  force of spring 4.    When the 
flow rate increases,  the pressure on the piston rises,  and the 
piston,  together with slidevalve  5, moves to the left,  increasing 
the size of the throttling slot.    On a decrease  in flow rate,  the 
slidevalve and piston move  in the  opposite direction. 

Construction of the regulator's  static characteristic in the 
form of a curve of Q as a function of the pressure drop Apreg 

across the regulator requires simultaneous solution of the  follow- 
ing five equations. 

1.   The equation of the  flow rate  through the diaphragm: 
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Q-i'Aj/z^. 

where 
diaphragm 

UJ and Sj are the  flow rate coefficient  and hole area of the 
d d 

2.  The equation of the flow 
rate through the throttling slot: 

Q-v^l/Tg^. 

Pig. 217. Diagram of flow 
regulator. 

where u .„. and S.„.    are the flow 
shch     shch 

rate coefficient and area of the 
throttling slot; Apshch Is the 

pressure drop across the throttling 
slot. 

3. The equilibrium equation 
of the piston and slldevalve: 

''upO — C* - 

where P pi-0 

■AyA-^.^o. 

Is the spring force at x ■ 0, when Sshoh '(Sshch^mln; 

C Is the spring stiffness; S Is the piston area; ?z  Is the un- 

balanced pressure force on the slldevalve. 

i(. The pressure drop across the regulator as the sum of the 
pressure drops across the diaphragm and In the slot: 

A/Vr--A/V| Aft..- 

5.   Law of variation of slot  area with  slldevalve  stroke   (for 
tapered shape  of slldevalve  In slot): 

-V - (^.Anm-11'/silica-. 

a 

a. 
j 

1 

0 so       m       /*» 4/>  «/■/«' 

Fig. 218. Characteristic 
of flow rate regulator. 
KEY: (a) l/mln; (b) 
kgf/cm2. 

/*<ki«U^U^ ..^-. 
'. 

The slldevalve must have a 
special profile in order to obtain 
more precise regulation of flow rate 
constancy. 

Figure 218 shows the typical 
form of a static regulator character- 
istic as plotted by the method of 
A.V. Polozov, together with the ex- 

reg perimental points.  With AP 

< 15 kgf/cm2, flow rate is not regu- 
lated; the regulator functions as 
a simple choke because Sshoh = 

■ (S ,. , ) .,  = const.  With the ^ shch min 
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subsequent  Increase  of the gradient  Ap to  200 kgf/cm2,   flow reg 
rate diminishes by about 10%. 

The divider valve, flow divider, or metering valve Is an- 
other flow rate regulator that operates on the valve principle 
and is used to maintain a given relationship among working-fluid 
flow rates in several parallel flows when they are divided. A 
requirement for such flow division arises in aircraft hydraulic 
systems when it is necessary to synchronize the operation of two 
or more hydraulic motors, e.g., hydraulic cylinders for operation 
of flaps, slats, or airbrakes. 

A diagram of a divider valve designed to split the flow Into 
halves appears in Pig. 219. The flow is divided immediately upon 
entry Into the unit (see arrows); then each flow passes through a 
fixed multistage choke 1 and enters sleeve 2, which holds floating 
piston 3.  The latter acts as a valve, moving in one direction or 
the other in accordance with the pressure difference acting upon 
it. This pressure difference arises when, as a result of load dif- 
ferences, the fluid flow in one branch differs from that in the 
other and, consequently, the pressure loss in one throttle is 
greater than in the other. Moving in the direction of the lower 
pressure, e.g., to the right, piston 3 reduces the area of holes 
5 and increases the area of holes 4. The piston stops when the 
pressures in the right and left chambers of the sleeve and, conse- 
quently, the flow rates through these chambers have become equal. 

To evaluate the flow rate 
error of such a divider, let us 
write the equation of the flow 
rate through a fixed choke. 

Since the variable exit ori- 
fice is fully opened in the more 
heavily loaded branch and does 
not offer an additional resistance 
the pressure drop Ap, across the 

choke can be assumed equal to that 
across the di/lder: Ap 

Fig. 219. Diagram of divider 
valve (metering valve). 

solve the result simultaneously 
converting to finite differenc 
letter 6, we obtain 

Jvkh - P 
dr Ap. 

vykh" 
We differentiate the above 

equation with respect  to Ap, and 
with  the  initial equation.     After 
;s, which we shall denote by the 

i2.=£!. LÜ&j _ »(*/»,) 
Q      i       0-' 24/>A  * 
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Thus, the relative flow rate error of the divider Is Inverse- 
ly proDortlonal to the pressure drop &pd ■ Ap. or to the square 

of flow rate. Consequently, it is necessary to increase the re- 
sistance coefficient Cd of the choke In order to improve the pre- 

cision of division. 

Since the floating piston 3 is acted upon only by pressure 
and friction forces, we can write 

where Ap  is the pressure difference across the piston necessary 

to overcome friction and start it moving. 

Thus the error equation can be written 

(14.12) 

This means that friction is  the only cause of the  flow-divi- 
sion error. 

Pig.   220.  Characteristic  of meter- 
ing-valve  sensitive element. 

As  flow  rate  diminishes,  the  flow-division error rises   sub- 
stantially.     It  follows  from the above  that  5Q/Q =  1 at  Ap,._  ■ 
■  2Apd.     This  last   equality  defines  the   flow rate  sensitivity 
limit  of a flowmeter,   i.e.,   the  flow rate  at which  (and below 
which)   the divider  is  insensitive  to  flow  rate   change: 

Q.»<^]/2g f- Vtr 

Figure 220 shows curves of Ap, as a function of Q    and 
a prav 

"lev 

Mr i 

for two choke resistance coefficients t,  and c, dn     dra 

Mrz1 

with 

The corresponding insensitivity ranges of the di- 

vider are indicated by the cross hatching (solid and broken lines). 
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It must be remembered that  this  flow divider is not revers- 
ible.  I.e..  It   cannot  combine   flows  in a given   (1:1)   ratio.     It 
is easily  seen that when the  directions of the  fluid flows are 
reversed,  the difference between the  flow rates will increase and 
the branch with the lower flow rate may even close  completely. 
For this  reason,  two independent units - a flow divider and a 
flow adder - are Installed in actuator mains of hydraulic systems 
when it  is necessary to synchronize hydraulic-motor operation; 
one of these units Is  automatically shut off when the other is 
operating.     Sometimes  a reversible divider is used in the  form 
of a single unit with a system of check valves and a special 
floating-piston design that provides  for regulation of the flow 
rates in either direction. 

Division can be accomplished with higher precision if the 
fixed choke In the divider is  replaced by a variable choke that 
operates  on the valve principle.    However,  this divider will not 
be  considered here. 

The batchmeter, a diagram of which appears.in Fig.   221, can 
perform either of two functions.    The  first, protective  function 
is  to shut off the flow of fluid to a damaged section of pipeline 
and thereby prevent expulsion of fluid from the system.    At the 
normal flow rate through the batchmeter, the pressure drop in 
chambers  a and b due to the  resistance of holes  1 Is not enough 
to compress spring 2.     However, when the flow rate  increases ex- 
cessively  owing to rupture of a pipeline, this gradient increases 
and acts   on the  piston,  which  compresses spring 2  and closes hole 
4 with valve 3.    When the fluid stops moving,  the pressure on the 
right of the valve has become equal to the pressure developed by 
the pump,  while  that on the  left is equal to atmospheric,  and the 
valve is  held in the closed position. 

Thus,  the batchmeter performs the 
function of a flow regulator or limit- 
er.    The maximum flow rate at which 
the  valve  closes can be  found from the 
equations 

Pig.   221.   Diagram of 
batchmeter. where y  is  the  flow rate  coefficient 

of holes   1;  S.  is  the  total area of 
these holes; S    is the piston area; 

Ap  is  the  pressure drop across  the piston;   P is   the spring 
force pressing the piston against its stop;  xmax is  the maximum 
piston travel. 

The  second possible  function of this unit,  and the one from 
which it gets  its name,  consists In batching of fluid,  i.e., 
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passing a definite fluid volume when a flow rate Q > Qraax Is de- 

livered to the valve. The volume batched through will be equal 
to the volume displaced by the piston through Jet tube 5 plus a 
certain amount of fluid that manages to get through hole 1 and 
the valve before the latter closes. 

The automatic pump rtlitf 
valve was mentioned earlier (se 
$70) as a necessary unit for hy- 
draulic systems with unregulated 
pumps. One of the possible ways 
In which it may be built and con- 
nected is shown in Pig. 222.  When 
the pump is delivering working 
fluid to the system (to hydraulic 
motors or to charge a hydraulic 
accumulator), the automatic relief 
valve is closed, as shown en the 
diagram. If, however, none of the 
hydraulic motors in the system is 
working and the accumulator has Pig. 222. Diagram of auto- 

matic pump-relief valve. 
KEY: (a) to system; (b) 
check valve; (c) from pump; 
(d) return. 

been charged to the limit p max' 
this pressure, acting on piston 6, 
compresses spring 1 and opens the 
delivery line with valve 2.  Pluid 
Is conducted to piston 3, which 
rises and compresses spring 4 to 

open ball valve 5. Working fluid from the pump passes under this 
valve and is returned.  The pump goes into no-load operation. 
When the system pressure drops to the minimum P_i_ as a result 

of seepage, spring 1 extends and piston 6 moves down to open valve 
2 to the return line.  Piston >i  descends and valve 5 closes; the 
pump delivery Is again directed Into the system. 

The pressures p __ and p ._ determine the basic dimensions "max    rmln 
of the automatic relief system and the characteristics of springs 
1 and t. 

The maximum and minimum spring forces 1 can be found from 

Pmax* Pmln* and the area S« of Piston 6: 

f>mn'=(J'm..-PJSi   and rmM-*lf'„n- p\,)St. 

where p ,   and p',   are  the return line  pressures and the  spring 
stiffness is  determined as the quotient of the difference  P max 

mln divided by piston stroke, which Is equal to the length of 
piston 6 plus the width of passage 2. 

The maximum force (F_ax) of spring 1 depends on the pres- 
sures p  and p.,, the area of piston 3 (S.), the force of spring max     si ' •-•» 
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7 (Q), which operates valve 5, and the area S5 of the seat of 
this valve, and can be found from the equation (without con- 
sidering friction) 

The force F .  must be large enough to overcome only the 
min 

friction of the unloaded piston 3. The stroke of piston 3 must 
be such as to ensure wide enough opening of valve 5 and, conse- 
quently, minimum resistance of this valve. The stroke of piston 
3 and the forces F_  and F_J  determine the stiffness of spring 
H. max min 

Fig.   223. Diagrams  of pneudraulic accumu- 
lators. 

The hydraulic accumulator, whose  function was indicated 
above, may be of the pneumatic  or spring type.    Spherical or 
cylindrical pneudraulic accumulators  are used most  frequently 
in aviation hydraulic systems.     In pneudraulic accumulators,  the 
gas must not come  into contact with the fluid,  since  it would 
dissolve in it.     As a rule, therefore,  the accumulators have 
partitions  in the  form of pistons or membranes. 

Cylindrical accumulators  are most  frequently of the piston 
type, while the spherical ones  are always dlaphragmed  (Fig.   223). 

When the accumulator is charged,  the gas is compressed,  its 
temperature rises,  and the heat  transfer through the wall to the 
environment  increases.    The reverse takes place during discharg- 
ing:   expansion of the gas,  lowering of the temperature,  and an 
inflow of heat from the outside.    The  charging and discharging 
times are usually reckoned in seconds.    As a result,  the compres- 
sion and expansion processes of the gas cannot be adiabatic any 
more than they are Isothermal.     Experiments have shown that  these 
processes are actually intermediate,  i.e., polytropic with a vari- 
able polytropic exponent of the order of n - 1.1-1.2.    The expan- 
sion and compression process is often assumed to be  isothermal to 
simplify calculations. 

The basic operating parameters  of an accumulator are  the 
pressures  at  the beginning  (Pmln " P   )  and end of charging  (pmax * 
■ p2),  the  total   (design)  volume Wo  of the accumulator, the 
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Initial pressure p. In It when It Is filled only with gas, and 
Its useful volume, which equals the difference Wp = W, - W2, 

where W, and W2 are the volumes of the gas at pressures pi and pa. 

A relation between these parameters is easily obtained by 
writing the following approximate polytrope equations (see Fig. 

223): 

*W£of and Ei^(J»y. 

From this 

or 

7o Vt \Pi)        \Pi) 

(14.13) 

In the Isothermal process, n = 1, and the above expression 
Is simplified. 

The pressure P2 = P   is determined by the head capacity of 

the pump and the pressure limit established for the particular 
hydraulic system.  In a system with an unregulated pump and an 
automatic relief unit, the pressure p, = prnln Is determined by 

the time interval between switching of the pump off and on and by 
the demand for fluid.  In these systems, we usually have p2 - 
= (1.25-1.65)pi (for further details, see [9]). 

In hydraulic systems with regulated pumps, p. is less deter- 
minate, since it depends on the maximum working-fluid flow rate, 
the time for which it Is in demand, and other factors. 

As we see from (11.13), it is advisable to make the initial 
pressure p0 as high as possible. I.e., approximate It to pj. In 
order to increase the useful volume W of the accumulator for 

given p! and p2.  In practice, therefore, it is usually assumed 
that 

p(,= (o,9-,-i.o)ri- 

Energy capacity  is  an Important  characteristic of any ac- 
cumulator.     Let  us  find the reserve   of energy of a pneudraulic 
accumulator of volume W0 when It Is  charged to pressure p2  and 
can be discharged to a pressure pi.     We shall assume the expan- 
sion of the gas  in the  accumulator to be  isothermal. 

The elementary energy  (or work)  equals 
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dE-pdW^W'tp^. 

After Integrating from W - W2  to W - W,, we have 

£-r0p0ln^-\VVsluÄ 

Thus,  like the useful volume of the accumulator,  the energy 
capacity Increases In proportion to the Initial pressure p,,;  It 
Is therefore  advantageous to set p0  - p,.    We then have 

If we assume that the maximum pressure p2 and the accumula- 
tor volume W0  are given, we  can find pi   (or Pj/pJ  fromlhe above 
formula;  the maximum energy store will correspond to this pres- 
sure.    Assuming W0 and p2  constant, we find the derivative dE/dp, 
and equate  It to zero: 

äpx 

or 

Pi 

Hence the optimum pressure ratio 

(£i.\    =«=2.72. 

In practice, as we noted above. It Is usually necessary to 
use pressure ratios p./P!  that are substantially smaller than the 
optimum,  since operational conditions prohibit excessive lowering 
of the pressure.    In certain cases, however, as In airbrake hy- 
draulic systems. It Is necessary to have a comparatively moderate 
pressure In the actuating mechanisms;  for this  reason, the accumu- 
lators have a substantially wider pressure range and the ratio 
Pi/Pi  often even exceeds the optimum. 

The filters used In aircraft hydraulic systems are classi- 
fied as coarse and final filters.    The former have comparatively 
low hydraulic resistance and are therefore usually Installed at 
the beginning of the Intake main.  In the tank.     They are made In 
the form of screen or plate units and are capable of trapping 
particles down to 50-100 urn In size. 

Final filters offer substantial hydraulic resistance  (see 
Pig.   89);  they can therefore be Installed only In delivery lines 
or directly behind the pump, or else before the most  critical 
actuator mechanisms, those requiring highly purified fluid, such 
as hydraulic boosters. 
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The element  of a fine  filter Is made  of felt,  serge-woven 
metal mesh,  paper,  or some other porous material.    Such filter- 
ing elements  trap particles in the  size range from 5  to 15 ym and 
up. 

Because of the small size of the pores in the filtering ele- 
ments  and,   consequently,  the  small Reynolds numbers  of flows  in 
these pores,   the pressure gradient across a fine filter is  usually 
linear,  and the resistance  coefficient  of such a filter is  in- 
versely proportional to Re. 

For more  detailed information on  filtration of the working 
fluid in aircraft hydraulic  systems and on filters, we refer the 
reader  to  [5]. 

§73.   ROTARY DISPLACEMENT-TYPE HYDRAULIC  TRANSMISSIONS 

Hydraulic  transmissions for rotary motion  (like pumps)  are 
classified as hydrodynamic   (Impeller)  or displacement   (hydro- 
static)  types.     We  shall examine   the  latter type, first  and  in 
greater detail. 

r.-.^ 

Fig.   224.  Diagram of 
rotary  displacement 
hydraulic transmis- 
sion. 
KEY:   (a)  pump;   (b) 
hydraulic motor. 

The  rotary 
transmission Is 
and a rotor-dls 
In design,   the 
converted pump 
pumps have  the 
I.e.,   they  can 
as  hydraulic mo 
fluid  is  suppli 
enough pressure 
perform work. 

displacement hydraulic 
a combination of a pump 

placement hydraulic motor, 
motor is  simply  another 

All displacement  rotor 
property of reversibility, 
be  used either as  pumps  or 
tors.    This means  that  if 
ed  to a rotor pump  under 

Its rotor will  turn and 

The  basic  advantage  of the  rotary- 
action hydraulic  transmission  over the 
conventional mechanical transmission  is 
the  possibility   of smooth   (stepless)   varia- 
tion of transmission ratio and  torque  con- 
version,   as  will be shown below. 

Figure   224  is   a schematic diagram  of a so-called  simple  dis- 
placement-rotor hydraulic  transmission   (hydraulic drive),   i.e., 
a pump,  hydraulic motor,  and  fluid tank  connected together by 
pipelines.     The tank included in the system Is necessary to com- 
pensate  external  fluid leakage  and temperature  changes  In  the 
volume  of the   fluid,  and also to  hold  down heating of the   fluid 
during operation.     In addition,  the elevated air pressure  in the 
tank provides  the  necessary  intake-line   conditions  to  prevent 
cavltatlon in the pump. 

It  is  possible  to build a closed-type hydraulic  transmission, 
i.e..  one with no  tank in the main  fluid-circulation  system. 
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However, this Is detrimental to fluld-coollng conditions. A pres- 
surized tank or a tank with a booster pump must then be connected 
to the Intake line, In much the same way as was Indicated for the 
closed pipeline (see Pig. 143). 

Let us examine the fundamental relationships for a hydraulic 
transmission operating on the scheme Indicated, using the sub- 
script 1 for quantities pertaining to the pump and 2 for the hy- 
draulic motor. 

The useful pump delivery equals the actual flow rate through 
the hydraulic motor. I.e., 

Qi-Q,. ClU.lH) 

Let us convert  from actual to theoretical  flow rates and take 
Into account that the actual flow rate through  the motor Is 
greater than the  theoretical rate,   since  the  leakage  In the motor 
has the same direction as  the main flow.     We have Instead of For- 
mula  (llJ.14) 

where  TI01  IS  the  volumetric  efficiency of the  pump;  rioz  is  the 

volumetric efficiency  of the motor, which,  unlike rioi»  is usually 
defined as the ratio of the theoretical  flow rate to the actual 
flow rate. 

Hence the volumetric  efficiency of the entire hydraulic 
transmission  (n0 Der) will equal 

V«p=n.i'1.2-~- (14.15) 

Assuming that the pump and motor can be regulated, let us In- 
troduce the coefficient of regulation i//, which equals e/emax for 

pumps and rotors with eccentric motors (see §6?) and -(tan y/ 
/tan Y  ) for rotary-plunger hydraulic machines with Inclined 

nis.x 
plates (blocks).6 Obviously, the coefficients i|) can vary from 
0 to 1 during regulation of the machines. 

Then, expressing the theoretical flow rates in terms of the 
maximum working volumes W, the coefficients i|), and the speeds n, 
we obtain 

„  -.ife.^W.L, (14.16-) 

where  1 is the transmission ratio and equals 

"See page 367 for footnote 
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Owlna to the hydraulic losses In the pipelines connecting 

efficiency of the drive,  I.e., 

w--*- (1,,-17) 

It must be remembered that here  (see Pig.   221) 

Subtracting the  first equation from the second, we  obtain 

Pi — Pl — {P\*M — Pi*A + (/'2.1« _ ''l«) = S^ip. 

A 4-v,a  Hirfprence between the pressure  developed by  the pump 
aAd'the pressure ued by the moto? equals the total pressure loss 
in tSe pipelines   (In the delivery.  Intake,  and return lines). 

Let us  now write the energy equations  for the pump and motor, 
1   e      exnressions  for  the  power used to turn the  pump    N,)  and 
Jhl'^erdeveloped by  the'motor   (N2).    Applying   (12.1),  we have 
for the pump 

AT.^.o.-ML. (14.18) 

and for the motor 
fll  19) 

where the M are the torques, the ui are the angular velocities, 
and the ^ are the mechanical efficiencies, which take account of 

friction In the machines. 

The hydraulic efficiencies of rotor-type hydraulic machines, 
both JSps and motors, are usually considered equal to unity, 
since the basic losses In these machines are volumetric and 
mechlnJcL;"he Jydraullc losses are included in the mechanical 

losses. 

Dividing the second equation by the ^st • w6/1^,^ °^r" 
all efficiency of the drive, which, on the one hand, will equal 

_KX    Afj53_jL (14.20) 
^"',     A','  M^x      I   ' 

where  k is  the  torque  conversion ratio. 
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On the other hand, applying (lH.li*) and (14.17) > we obtain 
by the same division 

Vp=-r--,loi,V:,W1..2=''lr "^o ».•pi» nop=1t1i1:. (14.21) 
Pi 

i.e., the over-all efficiency of the hydraulic transmission is 
equal to the product of its hydraulic, volumetric, and mechani- 
cal efficiencies or to the product of the hydraulic efficiency 
(with consideration of losses in the connecting lines) by the 
over-all efficiency of the pump and the over-all efficiency of 
the motor. 

The over-all efficiencies of rotor-type hydraulic transmis- 
sions vary from 0.7 to 0.85. 

One of the following methods can be used to regulate hydraul- 
ic transmissions in order to change the transmission ratio i and 
the torque conversion ratio k: 

1) regulation of the pump. I.e.,changing its eccentricity 
or block inclination; 

2) regulation of the hydraulic motor, i.e., changing its ec- 
centricity or block Inclination; 

3) bleeding out of the pump's delivery through a valve. 

The first regulation method is most 
frequently used, and the hydraulic trans- 
mission consists of a regulated pump and 
an unregulated hydraulic motor.  Use of 
the second control method may be expedient 
as a supplement to the first.  Both of 
the hydraulic machines forming the trans- 
mission in this case must be adjustable. 
The third regulation method Is uneconomi- 
cal, and its use can be defended only when 
the hydraulic transmission operates for 
short times. 

Pig. 225. Regulation 
diagram of hydraulic      The most Important example of use oi 
transmission.        rotary-displacement hydraulic transmissions 

on aircraft is found in the hydraulic 
transmission from the engines to the 

stable-frequency alternators. The latter must turn at constant 
speed despite variations In engine speed and in the load on the 
electrical system.  Under these conditions, the speed of the hy- 
draulic motor connected to the generator n2 - const, while that 
of the pump, n,, varlars in a certain range, depending on the type 
of engine.  Consequently, the transmission ratio of the hydraulic 
drive must vary smoothly and, in addition, automatically. 

Figure 225 shows a diagram of hydraullc-drlve regulation for 
this example, I.e., the dependence of the coefficients *, and *2, 
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the flow rate Q, and the power li2  (and the torque M2) at constant 
pressure and speed n2 on the speed nj of the drive (pump) shaft. 

The vertical line A-A corresponds to the case In which both 
hydraulic machines have their largest working volumes. I.e., iil   - 
■ 1^2 ■ 1.  To the right of vertical A-A, we have the range of 
pump regulation, where the coefficient if», decreases hyperbolically 
[see Formula (14.16)], and to the left of vertical A-A the range 
of hydraulic-motor regulation, where the coefficient 1)12 Increases 
linearly. 

The flow rate is determined by the relationship 

and, consequently, is represented on the diagram for constant 
Pi = P2 = P as a straight line with an inflection at line A-A. 
This means that flow rate remains constant when the pump is regu- 
lated and diminishes linearly when the hydraulic motor is regu- 
lated. 

The useful power N2 of the hydraulic motor, which is deter- 
mined by Formula (1^.19), is represented in about the same way as 
the flow rate with the assumptions that we have adopted, and its 
torque in exactly the same way as the power. 

The minimum drive-shaft speed n, .  and i|/, .  are determined 'min     2min 
by the self-braking of the hydraulic motor, i.e., by the equality 
M2 « 0. 

The maximum speed n, „  and ü .  are determined by the 
imax     imln 

upper-limit service speed of the pump.  For modern rotary-plunger 
pumps, it can be assumed that n,   : k^OO  rev/min. 'max 

Applying Eq.   (It.16)  to the transmission operating mode in 
which  «I»!   ■  ipj  s  1 and n,   =   (n,).,  and  then to the  regime  of maxi- 
mum pump  speed nlmaxj  we  obtain  after dividing one  equation by 
the  other 

111 «m t— 1 
("lU ih)m\a 

This  speed ratio  is  known  as  the  range   of speed regulation 
with preservation  of constant  power. 

If we  assume  that,   as  is   frequently the  case,   n2  =   (n.)       , 
we  obtain  from the  same  equation  (14,16) 

or 
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Thus, If we wish to provide a range of constant-power regu- 
lation of, say, two, the working volume of the pump must be ap- 
proximately two times that of the hydraulic motor. 

The above makes It clear that the range of speed variations 
can be broadened by regulating the hydraulic motor, but then 
power no longer remains constant. 

STt, HYDRAULIC-MECHANICAL TRANSMISSIONS 

A hydraulic-mechanical transmission is a geared differential 
mechanism the two elements of which are connected by a hydraulic 
transmission.  In such devices, most of the power is usually 
transmitted mechanically, and only a certain part of the total 
power in one direction or the other through the hydraulic trans- 
mission. 

Let us consider the operating principle of hydraulic-mechani- 
cal transmissions in which the hydraulic section consists of two 
dlsplacement-rotor-type hydraulic machines. 

Use of such a device makes it possible to increase the over- 
all efficiency of a transmission and lower its weight and bulk by 
comparison with the simple displacement-type hydraulic transmis- 
sion. 

In the design operating mode of a hydraulic-mechanical trans- 
mission (at the design drive-shaft rpm), all of the power is 
transmitted through the mechanical part with maximum efficiency, 
and the hydraulic transmission merely produces the necessary tor- 
que on the idle element of the differential mechanism. The 
greater the deviation of drive-shaft rpm from the design figure, 
the greater is the amount of power transmitted hydraulically. 

The hydraulic-mechanical transmission, together with an ap- 
propriate automatic control system that varies the working volume 
of one of the hydraulic transmission's machines, makes up the so- 
called hydraulic-mechanical drive. This drive is capable of 
holding driven-shaft speed constant when the drive-shaft speed 
and the load on the driven shaft are variables. Precisely this 
requirement arises on aircraft carrying stable-frequency alter- 
nators.  As we Indicated in §73, the latter must run at strictly 
constant speed as the rpm of the engine and the load vary.  For 
this reason, the hydraulic-mechanical drive is coming into stead- 
ily Increasing use on aircraft with stable-frequency alternating- 
current electrical systems whose generators have powers above 15- 
20 kW. 

The differential mechanism has three external shafts and 
three elements: the driving element, which is connected to the 
drive-motor shaft, the driven element, which is connected in our 
case to the generator shaft, and an auxiliary element connected 
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to one of the hydraulic machines forming the ^draullc transmls 
slon.     At design drive-shaft  (drive-element)  n>m.the auxiliary 
element of the differential mechanism remains  stationary, but 
wJen the rpm    increase or decrease from the ^sign value    this 
element and the hydraulic machine connected to it rotate ln on® 
direction or the other to supply or take off the necessary power. 

The maximum power transmitted through a hydraulic transmis- 
sion is determined by the range of drive-shaft  speed variation 
and the selection of the  design operating mode. 

Variation of the  load in the generator line causes a change 
in the torque on the drive's output shaft,  and this,  in turn, re- 
sults  in a proportional  change  in the working-fluid pressure  of 
the hydraulic transmission. 

Pig.   226.   Structural diagrams 
of hydraulic-mechanical  trans- 
missions . 

There are very many possible different  combinations of the 
differential mechanism with the hydraulic  transmission,   i.e. ,  the 
shafts  of the  differential mechanisms   can be   °onne<;^<*" a 

variety of ways with the  external shafts  and the shafts of the 
hvdraulic transmission.     However,  any of these variants can be 
clastlflld into one of the  following two basic hydraulic-mechani- 
ca?-?ransmlsslon design layouts, which we shall call schemes a 
and b. 

Scheme a  (Fig.   226)   is cuaraoterized by  insertion of the 
hydraulic trinsmilslon between the driving I and auxiliary  III 
shafts of the differential mechanism,  i.e.,  by branching of the 
power afthe drive  shaft.     Characteristic of scheme b  Is  inser- 
tion of the hydraulic transmission between the auxiliary III and 
driven II shafts,   i.e.,  branching of the power on the  driven 
shaft. 

On the  conventional  diagrams  shown here,  DM is  a differen- 
tial mechanism.  GMl  is  a hydraulic machine  connected to the  driv- 
ing or driven shafts,  and aM2 is a hydraulic ^c^ine  connected to 
thl auxiliary shaft of the differential mechanism.    Machine GMl 
is  nonreversible  and must  be regulated,   i.e.,   its working volume 
musHe vlrled automatically; machine GM2 Is  6^^ reversible 
and may be unregulated.     Each of these hydraulic ma^lnes  can 
operate either as  a pump or as a hydromotor,  e.g.. when the  first 

-361- 



operates as a pump, the second works as a motor, and vice versa. 

An energy analysis of these schemes Indicate that prefer- 
ence should be given to scheme a as a drive for aircraft alterna- 
tor! since it requires regulation of only the °?e ^f^1*  tv 
!fl«Mn* QM1 and has better data from the standpoint of uniformity 
Tf h^raSlic^ransmisflon loading at ^e operating extremes In 
practice, however, hydraulic-mechanical transmissions (drives) 
patterned after both scheme a and scheme b are used. 

x£>- 
-ä—ja ttncpamop  pi- 

Fig. 227. One of the layout var- 
lents of the scheme-a hydraulic- 
mechanical transmission. 
KEY: (a) generator; (b) auxiliary 
motor. 

FiKure 227 shows one of the six possible variations of ex- 
ternal-lhlft connection to the elements of the differential 
iechanilm in scheme a, in which the driving shaft (from the 
auxiUary mStor) is connected to the planet ^rrler and the 
driven shaft (generator shaft) to the sun 8«^, while the auxil- 
iary shaft Is that of the crown gear connected to hydraulic 
machine GIM2. 

The regulated hydraulic machine QM1 is connected by a gear 
transmission to the auxiliary-motor shaft, and by Pipelines 
(dashed lines on the diagram) to hydraulic machine GM2. 

The unit operates as follows in response to a change In 
drive-shaft rpm n . 

At a certain intermediate design rpm n^ 
ni = hydraulic 

.„v,ir,ö nMi has a coefficient of regulation (see §73) * = *'. at 

SC..lf
Pal„3 the „aceaaary praaaure  u Jo  no. ^.r nf* 

transmitted to the generator mechanically. The speea oi 
gear and generator is "y* 
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When nx < n^, i|/ > i/»' and machine QMl functions as a pump, 

delivering fluid to machine aM2.  The latter, operating in the 
motor mode, turns the crown gear in such a way that the speeds of 
the sun gear and generator remain the same at n ■ const.  The 
missing power is supplied to the generator shaft hydraullcally. 

When nx > n^, i|» < il/', the inclined disk of machine QMl (or 

the cylinder block) is inclined in the other direction and 
machine 0M1 now functions as a hydraulic motor, receiving fluid 
under pressure from macnine GM2, which operates as a pump. 

Machine GM2 and the crown gear turn in the opposite direc- 
tion, holding generator speed constant.  The excess power from 
the generator shaft is now diverted hydraullcally. 

The automatic control system of this drive has a device that 
responds to a change in generator speed or current frequency and 
sends appropriate signals to an amplifier. The latter controls 
hydraulic machine GM1 by varying its coefficient of regulation 
i)/ and hence also its working volume.  When n - n  , . il» • 1. 

xx min* r   ' 
i.e., the working volume W, of machine 0M1 has its maximum value. 
As nx increases, W, diminishes; near the design mode (nx ■ n*), Wi 

vanishes at 4» = 0 and then assumes negative values with i|/ < 0, 
indicating transition from the pump to the motor mode. 

As we noted above, use of a hydraulic-mechanical drive, e.g., 
for aircraft alternators, makes it possible to obtain a substan- 
tial efficiency Increase by comparison with the simple hydraulic 
drive.  Heating of the working fluid is substantially reduced as 
a result. 

In addition, the dimensions and weight of the hydraulic- 
mechanical drive are smaller than those of the simple hydraulic 
drive. The differential mechanism can usually be made quite com- 
pact, and the hydraulic section is relatively small in size be- 
cause only part of the nominal drive power is transmitted through 

For the theoretical fundamentals and design of hydraulic- 
mechanical transmissions, the reader Is referred to [21] and the 
author's other works. 

§75. VANE-WHEEL HYDRAULIC TRANSMISSIONS (HYDRODYNAMIC TRANSMIS- 
SIONS) 

A hydndynamic (vane-wheel or impeller) transmission is a 
combinatloi of impeller-type hydraulic machines - a centrifugal 
pump and a hydraulic turbine - whose rotors are brought as close 
together as possible and housed coaxially in a common casing. 

Hydrodynamic transmissions are subclasslfied as hydraulic 
clutches (hydraulic couplings) and hydraulic converters.  The 
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Flg. 228. Diagrams of 
vane-wheel (hydrociynam- 
1c) transmissions. 

and power Is transmitted 

fundamental difference between them Is 
that the former do not change torque 
when they transmit power, while the 
latter Increase or decrease It, I.e., 
they convert torque. 

A diagram of a hydraulic coupling 
appears In Fig. 228, where 1 is the driv- 
ing shaft, 2 Is the driven shaft, 3 Is 
the pump rotor, and 4 Is the turbine 
rotor. On rotation of the pump rotor, 
which Is rigidly attached to the driving 
shaft, fluid shifts toward the periphery 
and Is slung off Into the turbine rotor. 

The flow acts powerfully on the 
vanes of the turbine rotor and yields 
the energy that It acquired In the pump 
rotor to the driven shaft. Thus, fluid 
circulates continuously In the closed 
working space of the hydraulic coupling, 
from one shaft to the other without a 

solid coupling between them. 

If we disregard friction between the outer surfaces of the 
rotors and the fluid, we can assume that the torques on the driv- 
ing and driven shafts are equal. I.e., 

Af^iWj. (14.22! 

and that the efficiency n  of the hydraulic coupling Is deter- 

mined by the speed ratio: 

na I_ (14.23) 

The difference between unity and the coupling's efficiency 
Is known as the slip ratio, I.e., 

Usually, hydraulic couplings are designed In such a way that 
the slip s Is only a few percent (for example, 2-4^) In the 
steady-state design operating mode, while the transmission ratio 
and the efficiency n  are close to unity. Usually, when the 

torque to be transmitted Increases above the design torque. I.e., 
when the coupling Is overloaded, slip Increases, the speed of the 
turbine rotor decreases, and the efficiency n  declines. 

Hydraulic converters are used when it is necessary to trans- 
mit power with a change in torque and at transmission ratios sub- 
stantially different from unity, but without an unacceptable sacri- 
fice of efficiency. Characteristically, an impeller-type hydraul- 
ic converter has a fixed guide-vane assembly or stator 5 (see Pig. 
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228b), I.e., an additional Impeller wheel that is rigidly at- 
tached to the casing, between the pump and turbine rotors. 

Instead of (It.22), we have for the 
hydraulic converter 

Afi+Afn.-Afa, 

where M   is the reaction torque that 
n.a 

arises on the stator vanes. 

In the above notation, the torque M 

is positi-e when the converter is used to 
reduce speed and increase torque as it 
transmits power, and negative in the oppo- 
site case.  In the former case, therefore, 
the stator increases the twist imparted to 
the flow by the impeller. Increasing M , 
while in the latter case it reduces this 
twist. 

Fig. 229. Efficien- 
cies of hydraulic 
coupling and hy- 
draulic converter 
as functions of 
njAu. 

The following expression for efficiency 
applies for the hydraulic converter. Just as it does for a rotary- 
displacement hydraulic transmission:7 

or, introducing the torque conversion ratio k. 

tin' 

Figure 229 shows the efficiencies of a hydraulic clutch (n™) 

and a hydraulic converter (n t) for k > 1 as functions of the 
speed ratio n2/ni. 

The former is represented by a straight line in accordance 
with (1^.23), while the latter takes the form of a curve with a 
maximum at an ^/ni of about 0.5. 

Comparison of these relationships Indicates that the hy- 
draulic converter is more economical than the hydraulic coupling 
at large transmission ratios i (small nj/n,). On the other hand, 
the coupling becomes more economical as 1 approaches unity.  How- 
ever, the basic advantage of the hydraulic converter over the 
hydraulic clutch at large 1 consists in its ability to multiply 
torque, a requirement that arises in a number of practical cases. 

Hydrodynamic transmissions are coming into increasing use on 
ground vehicles (automobiles, tractors, etc.) and aboard ships. 
In all of these cases, it is very Important, as the vehicle moves 

'See page 367 for footnote. 

■365- 



away from a standing start, to obtain an Increase ^.^e torque 
at the driven shaft over that on the drive shaft.and this Is the 
function of the hydraulic converter. As the machine accelerates 
further, the transmission ratio of this drive decreases smoothly, 
and this Is followed either by direct coupling of the engine 
shaft to the driven shaft or automatic conversion of the con- 
verter to a coupling (compound hydraulic transmission).  This 
conversion is brought about by locking the stator to the pump (or 
turbine) rotor, so that it begins to turn as a single unit with 
the latter. 

Hydrodynamic couplings are used in aviation engineering to 
transmit rotation from starter motors to the rotors of the main 
gas-turbine engines. 
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Footnotes 
Manu- 
script 
page 

325 'Symbol usage on the diagram conforms to the GOST 
1967 project. The arrow on the pump symbol indicates 
that it is regulated. 

326 2No particular difficulty is encountered in taking 
fluid delivery from the accumulator into account, the 
more so since research [9] has shown that the expansion 
prosess of the air in the accumulator can be considered 
isothermal. 

328      3Hydraulic-system calculations for nonsteady modes have 
been developed by Prof. P.I. Blandov (see collection 
"Voprosy proyektirovaniya gidrosistem letatel'nykh ap- 
paratov" [problems in the design of aircraft hydraulic 
systems], Mashinostroyeniye, 1967). 

341      "The experimental data were reduced by V.V. Shul'gin. 

343 5A piston of the same diameter may be used instead of 
the membrane. 

356 6If the plungers are set at an angle * to the axis of 
revolution, the coefficient 1(1 can be expressed in the 
same way without incurring major error. 

365      7The rotary hydraulic transmissions described in §65 
are also hydraulic converters, but of a different 
class - that of the rotary-displacement type. 
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Symbol  List 

Manu- 
script 
page 

Syrnb« Dl English equivalent 

321 Hac nas pump 

32t CJI si return 

326 u ts cylinder 

327 noip potr required 

328 TP tr pipeline 

328 MH in inertia 

329 n P piston 

331 BX vkh inlet 

331 BUX vykh outlet 

335 oni opt optimum 

3^4 np pr spring 

346 a d diaphragm 

346 per reg regulator 

347 Ul shch slot 

347 3 z slidevalve 

348 npas prav right 

348 Jies lev left 

348 ÄP dr choke 

349 TP tr friction 

349 Heij nech insensitive 

353 n P useful 

356 nep per transmission 

356 T t theoretical 

357 r g hydraulic 

357 M m mechanical 

361 W DM differential mechanism 

361 rw QM hydraulic machine 
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Manu- 
script 
page 

Symbol 

362 r            g 
36H TM              gra 

365 H.a           n.a 

365 rx             gt 

Symbol   List  (Cont'd.) 

English equivalent 

hydraulic machine 
hydraulic  coupling 
gulde-vane assembly,  stator 
hydraulic  converter 
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CHAPTER  XV 

FUNDAMENTALS OF THE DESIGN OF GAS LINES 

As we know, the basic difference between a gas and a drop- 
ping fluid is that the density and temperature of a gas change 
with pressure, while density usually remains constant in the case 
of a dropping fluid. 

Thus, the laws of motion of a gas are more general than 
those of an imcompressible fluid, and the latter can be derived 
from the former as a particular case by setting p = const. 

Naturally, the motion of a gas is described by substantially 
more complex equations than the motion of a liquid. This is 
clearly seen from the elementary continuity equation for a one- 
dimenslonal-steady state flow (the equation of gravimetric flow 
rate), which is written as follows for a gas: 

C «=5it)iYi-SjKsYs=const- 

With a change  in flow cross  section, both velocity and pres- 
sure will change and,  consequently,  so will density; here,  pres- 
sure and density usually increase with  increasing velocity and 
vice versa.    Consequently,   velocity and density vary in opposite 
directions, with the result  that  a definite conclusion as to the 
relation between cross section and velocity can no longer be drawn 
from the flow rate equation. 

It  can be  shown that   for subsonic   flows,   the dependence  of 
velocity on change  in cross  section remains qualitatively the 
same  as  for a fluid, while  for supersonic  flows  the relationship 
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will be reversed, i.e.. velocity will increase with an Increase 
In cross section. 

in the present chapter, we shall consider the simplest cases 
of outflow and pipe motion of a gas, assuming this motion to be 
uniform. This Lalysls will enable us to solve the problems of 
gas-line design with sufficient accuracy. 

§76. EQUATION OF MOTION FOR AN INVISCID GAS 

To obtain the fundamental equation of motion of an invlscid 
gas, which is analogous to the Bernoulli equation ^ an incon- 
pressible fluid, we shall use the differential equation in the 
form of 0.15'): 

We shall assume the gas to be ideal. I.e., subject to the 
equation of state 

-£-=/?7'. (15.1') 
e 

where R is the gas constant in the SI system of units and equals 
287.14 m2'deg for air. 

We shall disregard heat transfer between the flow of gas and 
i-he external environment, so that the variable density p of tne 
gal can be relateHo pressure by the adiabatic (isentroplc) equa- 
tion , 

0 =*(-£). (15.2) 

where p, and p. are the density and pressure of the gas, respec- 
tively, in the initial section through the flow. 

Integrating (15.1). 

^ + fi£^.il«con$t (along a filament),      (15.3') 

where, with (15.2), 

Since  Formula   (15.2)   can be  written 

•1        1 

ci      e 
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the above Integral can be written 

J • »-1 s 

On substituting Into (15.3') and dividing by £, we have 

«f-i--i+^—coMt. (15.3) 

The second term In the left member of this equation can be broken 
up Into two terms, as follows: 

*-> v y    *-i v 

and the second summand expressed In terms  of temperature by the 
equation of state: 

»-i v     y r{*-i)r 

Now Eq.   (15.3)  can be rewritten 

*+^-+^- + —g—«=const   (along a filament). (15.M 

Equation  (15.4) differs  from the Bernoulli equation for an 
Incompressible  ideal  (invlscid)  fluid in the presence of the term 

KT 

Applying the thermodynamlc relationships for an ideal gas 

/t-=e,-e,  and   *=—. (15.5) 

where c    and c    are the heat capacities of the gas at  constant 
pressure and constant volume  in the SI system, i.e.,  in J/kg'deg, 
we transform this term as follows: 

«r I—^-T^ — T^U   [J'sVkg/m - J/N - m]. 

It is clear from the above that the term U represents the 
Internal energy of a unit weight of gas (one Newton), and that 
the physical significance of (15.4) is analogous to that of the 
Bernoulli equation for the ideal incompressible fluid and con- 
sists in constancy of the total energy of the gas along a fila- 
ment. 

A fourth form of energy is added to the three forms con- 
sidered earlier (see §16): Internal energy, which must be taken 
into account in analysis of gas motion. 
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If we multiply (15.3) by g 
of the gas per unit of mass. Tl 

It will express the total energy 
tie levelling heights z usually 

have very little Influence on the variables of the gas. and are 
therefore usually omitted from (15.3). Equation (15.3)• written 
for any two sections 1-1 and 2-2 of a filament, assumes the form 

»-I Ci  2  *--! D  2 " *-l Co * 
(15.6) 

where p, and p0 are the pressure and density of the gas at the 
stagnation point, I.e., at v ■ 0. 

If It Is necessary to know the temperature change of the 
gas that results from a change In Its velocity, the above equa- 
tion can be brought to the following form with the aid of the 
equation of state: 

where T0 Is the stagnation temperature. 

Applying (15.5), we can rewrite (15.7) In still another form: 

(15.8) ,.4^4-,,. 
v where 1 Is the enthalpy of the gas and equals 1 

The above equations have been derived from the Euler differ- 
ential equations on the assumption of adlabatlc flow for a fila- 
ment of Invlscld Ideal gas.  However, It can be shown that Eq. 
(15.8) and Its preceding forms are also valid for any adlabatlc 
motion of a gas, even In the presence of friction. Disregarding 
the velocity-distribution nonunlformlty, these equations are ap- 
plied not only for filaments, but also for real gas flows.  The 
only necessary conditions are the absence of heat exchange with 
the environment and validity of the equation of state. 

§77. OUTFLOW OF GAS THROUQH HOLES AND MOUTHPIECES 

Let us apply the equation obtained for the energy of a moving 
gas to solution of the following practically Important problem. 
Determine the velocity and gravimetric flow rate of a gas In Its 
outflow from a tank through a hole or short pipe (mouthpiece) Into 
a medium with pressure JK  We shall use the subscript 0 for the 
gas variables In the tank, 
set equal to zero. 

The velocity v0 In the tank may be 

We apply Eq. (15.8) to two cross sections, placing one In 
the tank and the other at the exit from the hole or mouthpiece. 
Then 

H^i 
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whence the gas outflow velocity equals 

For an Ideal gas, we obtain for the selected cross sections 
from  (15.6) 

^/^ifö-f} (15-9) 

Disregarding friction, we apply the equation of the ideal 
adiabatic curve; then 

•/"£-,%['-itFl (15.9) 
A)/   J- 

and the gravimetric flow rate equals 

°-^-*yr"ih'4{if-&)'']■       (15-10) 

where S is  the area of the hole. 

The influence of resistance  and constriction of the jet dur- 
ing outflow of a gas can be taken into account by introducing 
coefficients of velocity ♦ and compression e, whose product,  as 
in the case  of outflow of an incompressible fluid,  is  equal to 
the flow rate coefficient u.    The numerical values  of these  coef- 
ficients  for low velocities can be assumed in first  approximation 
to be the same as  for the incompressible fluid, i.e.,  they can be 
determined from the shape of the hole   (or mouthpiece)  and the 
Reynolds number.    The error incurred here will be greater the 
closer the  outflow velocity to the speed of sound, which, as we 
know from physics,  equals 

As we see from Formula (15.10),  the gravimetric  flow rate of 
the gas at  finite S is zero in two cases: when p/p0  -  1 and when 
p/p    - 0.     Consequently, the  flow rate will be at a maximum at a 
definite p/p0.    Let us find the  critical pressure ratio  (p/PoV 
at which the gravimetric  flow reaches  its maximum value Gmax. 
For this  purpose,  we differentiate  the  expression  in brackets 
under the radical In Formula  (15.10) with respect  to p/po  and 
equate the  derivative to zero.     We have 

»-» 
2_(_P\ ' ^i±l(JL] =0. 

whence 
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{JJ\   ^AAY-'. (15.11) 

For 1c - 1.1  (for air and diatomic gases), the critical pressure 
ratio equals 

i.i 

iilriti^28- (15'11) 

Substituting   (15.11)  into   (15.10),  we get 

or 

where * - 2.15 for k - 1.4. 

Let us now find the outflow velocity that corresponds to amax 

and (p/po)kr. This velocity, which Is called the critical velo- 

city. Is determined by Eq. (15.9) on substitution of (15.11) In 

If we now use (15.9), setting v = vkr, we obtain after 

simple transformations with (15.11) 

,/T7_, (15.13') 

1 e., the outflow velocity is equal to the speed of sound calcu- 
lated from the gas variables at the exit from the hole or mouth- 
piece. 

Thus,  the maximum gravimetric gas  flow rate is obtained when 
the outflow velocity in a given exit  section is equal to the speed 
of sound.    We note that  in outflow through a hole or through a 
cylindrical or tapering mouthpiece,   the pressure in the exit sec- 
tion remains equal to the ambient pressure only until the  velocity 
In this section reaches the speed of sound.     On a further Increase 
in the initial pressure p0 or on a decrease  in the ambient pres- 
sure p. the pressure in the exit section is  found to be greater 
than the  ambient  pressure and  is  determined by   (15.11)» 
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accordingly,  the   velocity In the exit section is  in this  case 
equal to that of sound. 

We draw attention to the  fact that a decrease  in the  ambient 
pressure does not  influence gas  flow rate when the  speed of sound 
is reached in the exit section.    To  obtain a supersonic outflow 
velocity,   it is  necessary to use a special mouthpiece known as 
the Laval nozzle, whose shape  resembles that  of the diffuser 
mouthpiece examined earlier  (see Fig.   98).     In the  throat  sec- 
tion of the Laval nozzle, the  gas  flow velocity equals  the local 
speed of sound,  and a further Increase in velocity  occurs  in the 
expanding section. 

The   following conclusion may  be  drawn 
from the  above.     In determining the gravi- 
metric  gas  flow rate issuing  from a tank 
through a mouthpiece,  the pressure  ratio 
p/Pu  should be  determined  first  and  com- 
pared with the  critical ratio, as  defined 
by   (15.11).     If P/P,,  >   (P/Po^kr»  the 8as 

flow rate must be found by Formula  (15.10), 
and the  outflow velocity from Formula 
(15.9).     If P/Po  <  (p/Po)kr.  

the alr f;Low 

rate is   determined by Formula  (15.12)  and 
the outflow velocity by   (15-13),  in terms 
of p0 and Y0.     Figure  230 gives curves cor- 
responding to Formulas   (15.10)  and  (15.12). 

.p-eonsi 

(2  «T" W U     *» 
(iKt     i 

Fig. 230. Gravimet- 
ric gas flow rate 
as a function of 
the ratio p/p0.i §78. MOTION OF VISCOUS GAS IN CYLINDRICAL 

PIPE 

For steady motion of a viscous gas 
along a constant-section pipe, we can write, by virtue of the 
constancy of gravimetric flow rate along the stream. 

—■ =tiiYi = fjYa=l,Y~cons' (along the stream), 5 
(15.14) 

where  v is   the  average   flow  velocity  In the  given pipe  section, 
Y is the  specific weight of the gas  in the same section,  and S 
is  the cross-sectional area of the pipe. 

The  greatest practical interest  attaches to two cases of 
flow:  adiabatlc  and Isothermal. 

In the  absence of heat exchange  with the  external environ- 
ment,   the  expansion of the gas will be adiabatlc,  even though 
its  density  is  not related to  pressure by the  adiabatlc  equation 
(15.2),  which applies  only in  the  absence  of  friction.     Here,  the 
temperature  of the gas  along  the pipe will be  related to  the  flow 
velocity by  (15.7).    The other case will be that of heat exchange 
with the  environment such that  the  temperature  of the gas  remains 
constant  along the pipe,  i.e.,  the  process  is  Isothermal.     In ac- 
tuality,  we usually observe some sort of intermediate process. 
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Here,  the shorter the gas   line and, consequently,  the shorter 
the  time required by a gas particle  to move  through It,  the 
closer will be the approach of the process  to adlabatlc.     Con- 
versely, the greater the  length ratio of the gas line,  the more 
nearly Isothermal will the process become. 

Let us express the  Reynolds number for a gas  flow In a pipe 
in terms of the gravimetric gas  flow rate  and the dynamic vis- 
cosity coefficient  of the gas: 

Re= 
vd 

Fig.   231.   Illustrating prob- 
lem of gas  flow in a cylin- 
drical pipe. 

It is  clear from this  that 
the Reynolds  number may vary along 
the stream in a pipe  of constant 
diameter only  as a result  of a 
change  in the viscosity w.     But 
the viscosity  u of ideal gases 
does  not depend on pressure,  being 
determined solely by temperature. 
In the  Isothermal process  of pipe 
flow  of the  gas,  therefore,   the 
Reynolds number will remain con- 
stant.     In the adlabatlc process, 
it will change slightly as  a re- 

sult of a temperature  change, but this  variation is usually in- 
significant. 

Let us  isolate  an element  of length dx  from a horizontal 
cylindrical pipe by passing two sections  through It at an infin- 
itesimal distance  from one another  (Fig.   231).    Disregarding the 
nonuniformlty of the velocity distribution over the  cross  sections, 
we  denote  the  velocity  in the  left-hand section of the pipe by  v 
and that in the right  section by v + dv, and the respective pres- 
sures by £ and p + dp. 

We apply  the momentum-change  theorem of mechanics  to  our ele- 
mentary volume.     The per-second momentum Increment  in the  direc- 
tion of the flow equals 

Mdv--cSvdv. 

This increment results from the  action of two external 
forces:   a pressure  force  and a  friction force. 

The per-second impulse of the resultant  force equals 

d/i=lp —(/>-{- dp)] S - T(,n dx " - S rf/» - toll dx, 

where T0  is the tangential stress at  the pipe wall and II  is  the 
perimeter of the  pipe  cross section. 

Equating the per-second Impulse   of the   forces  to the  momentum 
increment, we obtain 
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-Stip-XoMäx^ cSvdv 

or 

where R « S/n Is the hydraulic radius, which equals R ■ i/k  for s s 
a round pipe, 

We express T0 In terms of X and v2 In accordance with (4.22) 
and divide the entire equation by y = pg: 

T+O-^iT0. ^.i5) 
where the  last term Is the head  loss to friction on length dx and 
X Is   a loss   coefficient  that depends on  flow regime  and Reynolds 
number  (see   §§24 and  28). 

We now Integrate   (15.15)  for the two cases:  adlabatlc and 
Isothermal gas flows. 

For adiabatic flow, we use   (15.6),  from which we  find the 
pressure: 

P-^P^^W-^- (15.16) 

Here and below, the gas variables with the subscript 1 per- 
tain to the initial section through the gas line, and those with- 
out a subscript to an arbitrarily chosen section. 

We then find from Condition (15.14) 

„—Ml. JL — iL 

Now, using the expressions derived, we can rewrite the earlier 
equation in the form 

H^+i^MJ--.)- 
We find the derivative 

<'/'_- *- l ,. (v* j ,, \-!L'-n 

We  substitute the  resulting  expression into   (15.15);  sub- 
stituting Y  in this  equation according to   (15.14),  we  obtain 
after simple manipulation 

rf Vi    t-i   '     k     \fi   '   v I \fl 
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Extending Integration from the Initial cross section of the 
CTas iTno to a certain arbitrary section (for example, the final 
le t on). whlcheisaa? a distance i  from the Initial section, and 
regarding X as constant along the stream, we have 

.*±i !„.£-.        (15.16') 
t     V| 

We can write on the basis of   (15.6)   and  (15.7) 

'-H<+^)(-r ?)■ •   •• 

Pl   I *—1   _.»       „  Pot  DT 

Here and  fro« now on,  the  subscript  01 .111 »J »P»"'? '°„. 

SLstss1sEar?rrer.=;urrL1utli?1inti8r.är^?LScisis 
i Ti i/rirs-^e-o^ Se^irri^refj^t r 
Kas in the tank  (bottle)  from which the  gas  line runs  and in which 
the  velocity  v = v0   =   0 will  also  be  the   same.    . 

We  note  in passing that  In adlabatlc  gas  flow    the  stagna- 
i-inn tpmnerature  remains  constant   along  the  flow,   i.e.,   i o i   - 
IT, = const,  while  the stagnation pressure Po  decreases because 
of friction. 

With  consideration of the  above,   the  result  of integration 
(15.16)   can be written 

^-j-H^y-T1^'        (i5-i6") 

and,  using  (15.13).  we  can write  Eq.   (15.16")  in dimensi.onless 
quantities: 

/^t+ja     «__2ln^-V (15.16) 
2*    \Ml     W Ah) 

where M, = v./a^ and M = v/akr are the so-called relative velo- 

cities in the initial and final cross sections of the gas line 
and I = XÄ/d is the reduced relative length of the line. 

If we again differentiate this expression with_respect to 
M assumlnK M, = const and express dM in terms of d«,. we can 
e^sliniow tU  the veloclty'mcreases In a ^^"J^-1 P^^hat 
in subsonic gas flow, and decreases In supersonic flow, but that 
passäge through the speed of sound is Impossible in a cylindrical 
pipe in adlabatlc flow. 

Eauatlon (15.16") or (15-16) is not sufficient for full 
solution of ?he problem of gas flow along a pipe from a receiver 
to ä final (or arbitrary) cross section^ It is necessary to de- 
rive a seond working elation linking M  M, and the ratio of 
the pressure in the receiver (the stagnation pressure in the 
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Initial pipe section) p0, to the pressure £ In the final sec- 
tion. 

For this purpose, we obtain from Eq. (15.7). written for 
the receiver and the Initial pipe section, 

^^«('-a- (15-17) 
Thereafter, we use the following equation system: 

1) the equations of state for the Initial and final pipe 
sections: 

Pi^Ci/fr, and P-'CRT; 

2) the Ideal adlabatlc equation for the tank and the Initial 
pipe cross section 

t 

7r=(t)' • 
3) Eq. (15.1*0 for the Initial and final pipe cross sections 

4) Eq. (15.7) for the receiver and the final pipe cross sec- 
tion 

_*-&.=-*--*--{■ — ,  where T0 - T01. 

With the above equations, we can reduce Formula (15.17) by 
successive exclusions to the form 

Introducing the relative velocities M into (15.17') and 
solving it for p/Poi. we obtain 

The system of equations (15.16) and (15.18) enables us to 
construct a family of p/p0l = fd) curves of |dlabatlc gas flow 
for a series of constant relative velocities M, in the initial 
Host  lection of the pipe and to plot on the .ame diagram curves 
of constant M. This family of curves is very ^^^oo^the curves 
culatlon of gas lines for adlabatlc flow.  In fig- 2^2, the curves 
were plotted for k =■ 1.4; the solid lines represent M, = const, 
and the dashed lines M = const. 
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Curve AB corresponds to the limiting value M » 1, i.e., to 
the speed of sound in the final (or subject) cross section. Con- 
sequently, curve AB is the boundary between the region of subsonic 
flows (above curve AB) and the region of supersonic flows in the 
gas line. 

For M, - M = 1, Formula (15-16) gives Ä = 0, and it follows 
from (15.18) that 

p 

Pm 

v»-l 

H-Ti) " ~0'™' 
I.e., we obtain the case of gas  outflow through a hole at the 
critical velocity. 

Fig.  232.   Illustrating design of gas  lines 
for adiabatic  flow. 

The method by which these  curves  are  used will be  demon- 
strated below. 

For  isothermal  flow we have the following relation between 
pressure  and density: 

et     c * 

Applying (15.14) and differentiating, we obtain 
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Substituting this  expression Into  (15.15), eliminating y 
from It, and applying  (15.11*), we  obtain the  following differen- 
tial equation after dividing by  v2/2g: 

d v*      •      Cl    «^ 

After integrating from the initial cross  section of the gas 
line to the selected or final cross  section  (applying the equa- 
tion of state pj  - PiRT), we have 

d \v\ .   tfl/ v, (15.19) 

where T const along the stream. 

We rewrite  the resulting equation in dimensionless  variables, 
introducing the ratio of flow velocity to the  local speed of 
sound, I.e.,  the Mach number M, which equals 

where a ■ const along the stream. 

Then we have instead of (15.19] 

r-'-Wß-iHH^ (15.20) 

Equation  (15.20), which was derived for isothermal flow, 
corresponds  to  (15.16), which applies  for adlabatic  flow. 

.Ut,-o,i 

Pig. 233. Calculation for gas lines in case 
of Isothermal flow. 
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Differentiating  (15.20) with respect to M,  assuming M, 
const,  and determining dM, we obtain 

dM-- Mdt 

Analyzing this equation,  we conclude that  In the case of 
isothermal flow with M2   <  1/k In a cylindrical P^P«. velocity 
increases  downstream  (for dl > 0 and dM >  0),  while for M    > k, 
It decreases downstream.     Consequently,  the  value of M - 1//K 
for isothermal pipe flow Is just as critical as M '1*°**™-*-. 
batlc flow.    Passage  through this value of M, which equals Mkr 

■ 0  81)5  for k = 1.4, with preservation of Isothermal flow Is Im- 
possible,   since the slightest  upward deviation of M from the 
critical  value changes  the sign of the Increment dM and returns 
the   flow  to the  critical  state. 

To obtain our second working equation,  we proceed,  as  in the 
case of adlabatic  flow,   from Eq.   (15.17)  and the  four-equation 
system that follows it,  except  for the  last.  Instead of which we 
use  the Isotherm equation 

v      Vl " 

This equation system enables us to bring (15-17) to the form 

^ZT'^'I1 
—1 

■(■-) * ■ \P0\V\l J 

Then  on introducing M and solving  for p/Poi.  we obtain in- 
stead of the above 

P ._ Mi 

""       /    »_,    A' (15.21) 

With Eqs.   (15.20)  and   (15.21), we  can  construct a family  of 
p/Poi   -  f(Ä)  curves  of Isothermal flow  for a series  of constant 
M,   (In the initial cross  section of the pipe),   and plot  curves 
of constant M on the same diagram (Fig.   233).     Curve AB corre- 
sponds  to the  limiting  value M = Mkr =  l//k   =  0.845. 

§79.   POSSIBLE  PROBLEMS   IN  THE   SYNTHESIS  OF  GAS   LINES 

We shall examine problems  of this  type that  are likely to  come 
up  in practice and their solution by means   of the  diagrams  that we 
have  constructed.     These  problems  are   formulated  In much  the  same 
way  as  those pertaining to  the  simple pipeline,  which were  examined 
in  §47.     We shall consider all problems in two variants:   for adla- 
batic  and Isothermal  flows   In  the gas   line.     The  difference  in the 
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formulation of the problems for these two variants will be In the 
temperatures assumed to be given: T0j In the receiver for adla- 
batlc flow and T ■ T, ■ const along the gas line, which Is equal 
to the ambient temperature, In the case of Isochermal flow. 

Since the actual flow process Is Intermediate, It Is recom- 
mended that the problem be solved In the general case In these 
two variants, so that the limits between which the real answer 
lies will be known.  We shall assume that the properties of the 
gas, i.e., k, R, and y, are given in all cases. The frictional 
loss coefficient \ for the gas line is determined by the same 
formulas as for a liquid. 

Problem 1. 

Qlven:  Qravimetric gas  flow  rate  Q,   ambient pressure £ at 
exit from pipeline,  and the dimensions  of the gas  line,  I and d. 

Find the  required receiver pressure  p0,. 

Solution: 

1. For the adlabatic case, we assign an average gas tempera- 
ture in the gas line1 and determine the average viscosity u from 
it. We find Re from Q,  d, and ^ and then determine the coeffi- 
cient X and the reduced length I  ■ XÄ/d. 

Then, on the basis of (15.6) and (15.7), we write the equa- 
tion for the flow from the receiver to the final section of the 
gas line: 

where 

' atPv ' 

Eliminating y  from the first equation, we solve it as a 
ratio eq» 

from (15.13). 

quadratic equation In v. Then we determine ak and M = v/a. 

We then turn to the diagram of Pig. 232 and determine p/p0i 
for the i  and M, and then find p,!. 

If the result places the calculated_polnt below curve AB in 
Fig. 232, this means that in actuality, M = 1 and v » a.  will 

apply in the final section.  The pressure ratio p/po» is deter- 
mined by the intersection goint of curve AB in Pig. 232 with the 
vertical corresponding to i.     In this case, the pressure in the 
final section of the gas line will exceed the pressure of the 
medium into which the gas is escaping and, consequently, is un- 
known . 
^See page 389 for footnote. 
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In this case, we proceed as follows to determine poj..  From 
the Indicated Intersection on the diagram, we determine Mi and 
then vi ■ a. rffi and 

v.- <0 
«rfv. 

We then have from (15.7), written for the receiver and the 
Initial cross section. 

'"  M 2 ' 

and from the equation of state 

„ —Vtgj 
'«-7-7- 

Using the Ideal adlabatlc equation known from thermodynamics, 
we find the unknown receiver pressure 

'•-'(t) 
i 

In the case of laminar flow, when the coefficient X varies 
substantially with Re, we can determine the temperature and Ira- 
prove the calculation. 

2. In the Isothermal case, we find \i  from the temperature 
T » T,, and then Re, \,  and r. We use the equation of state to 
determine y from T and £, and then find the velocity In the final 
section of the gas line: 

__40_ 

We determine a from (15.13') and then M = v/a.  We then de- 
termine p/p0j for the i  and M on the diagram of Fig. 233, and 
this gives us p0,. 

If the calculated point Is below curve AB on Fig. 233, this 
means that M = 0.845 and the calculation is carried out as in the 
preceding case for M = 1.  The only difference will be that the 
temperature T, is known and T01 is not known. 

Problem 2. 

Given:   Pressure pol   in receiver,  pressure  £ of medium at  exit 
from gas  line,  and gas  line dimensions  Ä. and d. 

Find the gravimetric  gas   flow rate  G. 

Solution: 
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1. For the adlabatlc case, we assign a value to the coeffi- 
cient X on the assumption of turbulent_flow (X - 0.02-0.03). We 
determine the reduced gas line length i  and find M, from P/Poi 
with the aid of Fig. 232. Next, we determine akr from (15.13;, 

and then Vi - a. M,. We determine T» from Eq. (15.7), written 

for the receiver and the initial pipeline cross section: 

We then apply the ideal adlabatlc equation of thermodynamics; 

Voi \Toi J 

and the equation of state 

Yo,~/^7•o., 

from which we determine the specific weight of the gas in the In- 
itial cross section. 

The unknown gas flow rate is determined in first approxima- 
tion by the formula 

We tnen determine the Reynolds number from Q and Tar, check 

the flow regime, and figure the coefficient X from Re.  The gas 
flow rate can then be determined in the same way in second approx- 
imation and, if necessary, third and subsequent approximations, 
but two or three are usually sufficient. 

2. For the isothermal case, we again assign a coefficient X, 
determine i,  and find M from p/Poi with the diagram of Fig. 233. 
Using (15.13'), we determine a and then v = aM.  Using T and g_ 
with the equation of state, we find y,  and then the unknown gas 
flow rate in first approximation: 

C=t>v —. 

Then, as before, we improve the solution, i.e., compute Re 
and X and repeat the same procedure until we obtain satisfactory 
convergence. 

If the calculated point on Fig. 232 or 233 is below curve AB 
when this problem is solved, this means, as in Problem 1, that 
the flow rate 0  is determined from the intersection point of 
curve AB with the vertical corresponding to I. 

•386- 



Problem 3. 

Given; Gravimetric gas flow rate 0, receiver pressure pai, 
pressure ^ In medium at exit from gas line, and length I of gas 
line. 

Find the diameter d of the gas line. 

The solution Is carried out as follows In both cases (adia- 
batlc and Isothermal). We assign a series of values to the diam- 
eter d O-^ values).  Here It Is helpful to make an approximate 
determination of the diameter corresponding to ?!._, at which the 

assigned pressure ratio p/p0i will yield the limiting velocity 
value at the exit from the gas line (if p/poi < 0.528), and to 
Include this diameter among the assigned values. Then we solve 
the first problem for each of these diameters, i.e., we find the 
Poi for adiabatic and Isothermal flows or for only one of them. 
We then plot a curve of p0i as a function of d and use it to find 
the necessary diameter from the assigned Poii"we then select the 
next larger standard diameter. 

An approximate formula for synthesis of gas lines on the as- 
sumption of isothermal flow can be derived from (15.19) by apply- 
ing (15.l^) and the equations of state and the isotherm.  We 
first solve (15.19) for v1  and then transform and write an expres- 
sion for the gravimetric gas flow rate 

w 

where T is the constant temperature along the gas line. 

This formula can be used when It Is known that M ■ O.B'iS at 
the end of the gas line and when the pressure pj in the initial 
cross section of the gas line is given. If, on the other hand, 
the latter is unknown, we can assume in approximation that p, ■ 
■ p01 at low gas velocities in the initial cross section, i.e., 
we can disregard the pressure drop from the receiver to the 
initial gas line cross section. 

The problem of determining the initial pressure p, for given 
G and £ with Formula (15.22) can be solved only by trial and error. 
Buu if the reduced length Xi/d Is large enough by comparison with 
2 Intpj/p), the latter can be disregarded; (15.22) then gives 

It must be remembered that here and everywhere else R has 
been the gas constant in SI units and £ the pressure in N/ra2.  If, 
however, the old engineering system of units is used and pressure 
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Is expressed In kgf/m2, the  last  formula will be written somewhat 
differently: 

1        TnVrf<       d 
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Footnote 

Manu- 
script 
page 

381) 'This  temperature  can be  assumed  approximately  equal  to 
T
sr =  0.9T01, 
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Symbol  List 

Manu- 
script 
page 

Symbol English e^ 

374 Kp    kr critical 

378 r    g hydraulic 

386 cp    sr average 
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