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ABSTRACT

MWe considers a process in which rewards are being earned

and for which there exist time points at which the process
begins anew.— That 1is, we—suppese that there exists an
embedded renewal process. An expression for the

asymptotic mean reward earned during any time interval is
then obtained. In the final section we—consider the special
case of a regenerative reward process, and we preseat a
simple expression for the long run average reward earned
per unit time.!
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RENEWAL REWARD PROCESSES
by

Mark Brown and Sheldon M. Ross

0. INTRODUCTION

Let xl,xz, ..., be the interarrival times for a renewal process with

interarrival distribution F . Suppose that at the time of the ith renewal we

i i
pairs (xi’Yi) » 1=1,2, ..., are independent and identically distributed.

receive a reward Y, . Y, may depend on Xi , but it is assumed that the

If we let

Y(t)=N§t) Y

e

where N(t) is the number of renewals by time t , then Y(t) represents tte
total reward earned by time t . The stochastic process {Y(t),t > 0} 1is called
a renewal reward process. In the first section of this paper, we will prove the
analogue of Blackwell's theorem for a renewal reward process. In Section 3 we
will consider processes of the form Y(t) -.i V(s)ds , where V 1s a real-valued
regenerative process. An important result 02 Smith [5], p. 262, asserts under
mild conditions that ngl converges a.s. and in expectation to Kl/U] » where

Ky is the expected value of the integral of V over a regenerative cycle and Hy

is the expected length of the regeneration cycle. Our result is that

Kllul = EV(«) , where V(») is the limiting distribution of V(t) .
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1. BLACKWELL'S THEOREM FOR RENEWAL REWARD PROCESSES

The following proposition is well known:

Proposition 1:

If either EYl or Exl is finite, then

EY
(1) 1im HE2 .1

g EX with probability 1, and

toe 1
EY !
(11) 1im 2O 1
A EX,

A proof, based on a Tauberian theorem, is given by Johns and Miller [2]
and credited to Bell. The proposition also follcws from a more general result
of Smith [5]. Part (1) of the above is clearly the analogue of the elementary

renewal theorem. We shall now prove the analogue of Blackwell's theorem.

Theorem 1:

1f EYl <o , F 1is not lattice, and Elel < ®» , then

EYl
lim E[Y(t + h) - Y(t)] = h Ta for all h >0 .
t o 1
%
Proof:
| S Let w(t) = E[N(t)] . Now,
? N(t)+1 |
Efv(e)l = ] vl - E{Yy (¢y4) ‘
4 1) iR

v

= (m(t) + 1)5:\{1 - E[ )

YN(c)+1
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where the last identity follows from Wald's equation. Hence,

and the result would follow from Blackwell's theorem if we can show that

lim E{Y

t-ro

Then

N(t)+l

S(t) = / E[YN(IT)'H. I xl = X]dF(X)

0

' t

f E[Y, | X, = x]dF(x) + / g(t - x)dF(x) .
t 0

This renewal type equation has the solution

t
(2) g(t) = h(t) + / h(t - x)dm(x) ,
0
where
h(t) = f E[Y, | X, = x]dF(x) .

t

Suppose now that all rewards are nonnegative; then by the key renewal theorem,

it follows that

fh(c)d: _zTF[Yl | X, = x]dF(x)de
t

0
lim g(t) = -
tre 5 B

fxE[Y | X, = x]dF(x)
3 1'% _ EX, Y,

’ EXl Exl

] exists and is finite. Toward this end, let g(t) = E[YN(t)+1] ,




where the interchange of integrals is justified by the nonnegativity of rewards.
In the general case, the result may be proven by breaking up the rewards into

their positive and negative parts and applying the above argument separately to

each.

Remark 1:

The proof of Theorem 1 may also be used to prove (ii) of Proposition 1. This
is done in the following manner: Assume first that EYl < o , Then, from
Equation {1) and the elementary renewal theorem, it follows that (ii) holds if

£f£1-+ 0 . This, however, casily follows from (2), the assumption that EY1 < o

and the elementary renewal theorem. If EYl = o (but Exl < ») , then the result

follows by truncation.

In the above, we have assumed that the rewards are earned at the end of the
renewal intervals. However, in many applications the rewards (or costs) are
earned gradually during the renewal intervals. For instance, in an inventory
model for which an (s,S) policy is employed, the costs are gradually incurred
during the renewal cycle. In order to generalize Theorem 1 to include this
possibility, let W(s) denote the expected reward earned during the first s

time units of a renmewal interval of length greater than s . Then, the expected

reward earned by t , EY(t) will be given by

Nﬁt)
E(Y(t)] = E Yi + E[W(Z(t))]
=1

vhere

N(t)
Z2(t) = ¢t - f X,
i=1




is the age of the renewal process at tim¢ t . Let
t-a
Fa) - { (1 - F(t - y))dn(y) , a

F (a) = ;
1 ‘ ’ a>t¢t.

A
(ad

It is well known that F; is the distribution of Zt s

Following Smith (6], p. 11, define G to be the class of all distributiors
F on [0,0) having the property that for some K , the Kth iterated convolution 1

of F with 1tself has an absolutely continuous component.

Theorem 2:
(1) 1f F 4is nonlattice, EYl < o Exl ~ = EXlYl < ® , then if W
is continuous and uniformly integrable with respect to the family

{Ft’t > 0} , then

EYI

(3) 1im E[{Y(t + h) - Y(t)] = h X
tro 1

[ (11) Under the conditions of (1) but with F € G , (3) holds iff W 1is
uniformly integrable with respect to {Ft’t > 0} (W need not be
continuous).

13
, Proof:
+ 5 (1) It follows from Smith (5], p. 259 condition B , that Z(t) converges

in distribution to a random variable with c.d.f.

(1 - F(x))dx

: Fe(a) = Exl .
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Thus E(W(Z(t))) -oaverges to {H(x)dl‘e(x) by the Helly-Bray theory

(Loéve [3), p. 183). Hence, the result follows from Theores 1.
(11) 1t follows from Smith [S]), p. 259 condition C , that P(Zt € A)

converges for all Borel sets A to F.(A) - I (1 - ?(u))dx/!ixl .
A

W(x) , [W(x)| < a

Let W'(x) =
0 |[W(x)| > a .

a,s

let W be a simple function having the property that sup fU.(x) - \J"é(x); « 4

H"G can be chousen by chcosing 't < § and Jetting V"é(;) - ﬁ vhen

+
i < W(x) <« i+1 y 1 = -~ 4 30 o 2 . Note that the strong convergence {n daistr bution
n - n n n

implies that EF H"6 . Ey H"d for all a , 4 . The result now follows bdy:

t e

|Ep W - E W < JE W - E Tl [ e, vt E, Wl |E, vt o
e t e [ J e e [ ] t

L Wl Ep Tl I e, W E, ¥
t t t t

Now the 1lst and 5th terms on the right go to 0 wuniformly in t as a ¢ = , by
assumption. The 2nd and 4th terms on the right go to 0 wuniformly §{n t , for
fixed a , as 8§ + 0. The Jrd termgoes to 0 as t - = for fimed a , ! .
Thus, by firist choosing & sufficiently large, then fixing & and choosing ¢4
sufficiently small, and then fixing & , 4§ and choosing t sufficiently large,
ve can make the right-side smaller than any preassigned ¢ > 0 .

The necessity of uniform integrability follovs from an argument fn Loéve []J],

p. 183.




IVE PROCE

Let (V(t),t > 0} be a regererative process (5], p. 256, with imbedded
generalized reneval sequence (Xi.f > 0} . By generalized renewal sequence we
mean that X {s independent of the 1.1.d. sequence {!1.1 > 0} but may have a
different distribution. The random elements V(t) take values in an abstract
measurable space (F,A) . If P , the distribution of X, » belongs to G and

1t 4 " Exl < » | then it follows from Saith [5]), p. 259, that:

Pr(X ¢ A) - 1 f Pr(V_. c AX >t | renewval at 0)dt
t " t 0
(4) 1 ()

4 _(A) for all A A .

It follows from Fubini's theorem that ._ {is a probability measure on (F,A) .
1t in addition V {s a real valued process wvith a measurable modification then

1t follows from Saith [5), p. 262, that {ul V(s)ds converges a.s. and in

X #Xl

expectation to -l/b1 . vhere <« °® 4 V(s)ds (assuming <) exists). A

o
naturael Question to pose ts wvhether or not xllu1 o E(V(=)) = J. x du_(x) .
We vill shov that this is the case.
It will ‘e convenient to convert the imbedded renecwal process (Xt.l > 0}
fnto & stationary reneval process. This can be done by inserting a renewval to
the lefc of O , its distance from 0 having the same Jdistribution as the limiting

distribution of 2X(t) , the age of the renewal process at time t , discussed in

Section 1. Formaliy, we lzt (?;.l = 0,:1, ...} be a doubly infinite sequence of
n
1.1.4. randoa variables distributed as X, . Let T_ = X'+ ] X' for
- 1 n ° 1
n>0, In - l; - 1£1 l:‘ for n < Q0 . Then (Tn.n = 0,1, ...} generates a

strictly stattonary rencval process on (-=,) (sce (1]}, p. 162).

ad




Start the regenerative process V at the first 'l?1 point to the left of

0 . Call this point T° and call the resulting regenerative process V' . Now

Pr(V! c A) = E[Pr(vc', e A | 'r°)]

-_ul f Pr(vc', € A | T° = -t)l - F(t)dt .
1 %o

(5)

But

(6) Pr(Vt € A.xo >t | renewal at 0) = Pr(Vt €A l Xo >t , renewal at 0) .,

Pr(x > t | renewal at 0) = (1 - F(£))Pr(V, e A Z(t) = ¢t)

Sy (e r(:))pr(v; eA| 10~ -c) :

Thus, from (4), (5), (6)

(7) Pr(vc', € A) = Pr(V() € A) = u“(A) -

Assume that V has a measurable modification and that EIVc"l <~ . This
t
implies that Y(t) -{V'(s)ds exists a.s. for all t . Start V with a renewal
at time O (thus xo has same distribution as Xl) and call the resulting process

V' . Define:

X
Then f |v'(s)|ds -f |W(s)|ds , possibly infinite. Now
0 0

e




- ——— —_ —w-*v—-'-r—'—“'"-,"“ a ~ & -
f E|W(s)|ds = / E(|V"(s)| | X, > 8)(1 - F(s))ds
0 0

- /E(IV(S)I l Z(8) = 8)(1 - F(s))ds
0

- f EC[v'(0)]| | T° = -8) (1 - F(s))ds = WEVHO)] <= .
0

Thus, we have proved:

Theorem 3:

Let {v(t),t > 0} be a regenerative process with a measurable modification

and such that Fe G, Hy < @ , Then EV& exists 1ff 3 exists and

K

.Y

= EV' = EV_ .
H] o =

gommentg H

1. legenerative reward processes (real-valued regenerative processes)
arise frequently in queuing theory. They are often of the form V(t) = W(S(t)) ,
where W 1s a real-valued function, and S(t) an abstract valued regenerative

i
process. For example in an M/G/s queue with 'fi < s , the imbedded renewal

sequence consists of epochs at which busy periods begin (the interarrival times

satisfy u, <= , Fe G) S(t) consists of the number of customers in service at

time t with their arrival times, and the number of customers in the queue, and

W(s(t)) may be the number of customers in service, or the number in the queue,

or the unit cost of the service system for handling the number of customers present,

or an indicator variable

W v
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— ————y~ = = - *

1 4if number in queue = k
w(s(t)) = » etc,
0 otherwise

Assume that S 1is a regenerative process with arbitrary state space
(F,A) and jointly measurable as a map from (2,C) x (R,B) to (F,A) . Here

(?,C,P) 1is the probability space on which each S(t) is defined, R the real

line and B the Borel sets. If W d1s a Borel measurable real-valued function

then {V(t) = W(S(t)),t > 0} is a real-valued measurable regenerative process.

1f My €, F ¢ G, then since Pr(s(t) € A) » Pr(S(=») ¢ A) for all A e A, it

follows that Pr(W(sS(t)) € B) » (uww-l)(B) = Pr(W(S(»)) € B) , for all Borel sets.

Thus, if E|W(S(=))| < = then it follows from Theorem 3 that:

t

® e / W(S(x))dx + EW(S(=)))
5 0

P P
t o o
a.s. and in expectation. Note also that if EI% _f W(S(x))dx| = E|W(S(=))|
0

t

for some P, > 1, then %' g' W(S(x))dx > E(W(S(=))) 4in LP , for © <Pp, -

2. If EV(t) converges then EV(») must be its limit, since EV(») =
t

lim%' { E(V(s))ds . In this case Theorem 4 is trivial. However, E(V(t))

t+oo

may not converge and Theorem 4 may still hold. For example, start with a renewal

at time O and let the interarrival time c.d.f. F ¢ G , have an atom at 1 .

Choose a regenerative process V so that E(V(t) | Z(t) = 1/2) = o |

E(V(t) | 2(T) > 0) = 0 . Then clearly Ev(n + %) = o for all integers n , but

EV(») = 0 . A necessary and sufficient condition for convergence of EV(t) to

EV(») 18 uniform intégrability of g(s) = E(V(t) | z(t) = s) with respect to

the family {Ft’t > 0} , discussed in Section 1.

10
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3. Also note that if F ¢ G but Smith's alternative conditions [5], p. 259
hold, so that I’::(Vt € B) > Pr(V_ ¢ B) for all Becrel sets, then Theorem 5 still

applies. If V(t) does not have a limiting distribution, it still holds that if

Wy <= V has a measurable modification and E|V'(0)| < « , then
%— z V(s)ds » xllul = EV'(0) , a.s. and in expectation.

oy . __aa y . . A e o W .. . o Py
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