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kbstract

The "classical" turbulence approach to thL flow of air

in a vegetative canopy is reviewed. Three separate "classical"

theories are described. A, comparison is made between experi-

mentally measured canopy flows and a velocity function derived

from the thieory of structured continua. The agreement between

theory and observations is good, but not unexpected, due to seven

degrees of freedom in the fitted velocity profile. Proposals for

future study for a more rigorous test of the theory are discussed.

V
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I. Introduction

The purpose of this paper is to apply the theory of structured

fluids to the turbulent flow of air in a vegetative canopy. The model ap-

plied here is the flow between two plates of fluid containing deformable

structures. It is believed that this represents the first attempt to com-

pare the results of experiment with the theory of structured fluids.

First, the classical approach to canopy flow is discussed.

Then the theory of structured fluids is reviewed and the general bui.-

tion to the parallel plate problem presented. This is follo",ed by a

comparison between experimental measurements and the theory of

structured fluids. Finally, the results are summarized and discussed,

II. Classical Approach to Canopy Flow

The nean flow of air in vegetative canopy has been studied

classically" by Ordway, Ritter, Spence and Tan [11 . They consider

the problem essentially the same as the classical sliding plate problem:

"At the upper edge of the flow, say z z h we see that the outside tur-

bulent flow effectively drags the canopy flow, analogous to a moving

wall with velocity U,. " [1].
n

l'he basic differential equation of canopy flow is derived in

[1]. The principal rt lt is:



(Z au AV)Cp
(z) Oz 2 I

xvhe re

z vertical coordinate,

-u molecular viscosity coefficient (....

O(z) eddy viscosity coefficient (a function of zY.

A(z) total vertical plane area of the plants comnprising
the canopy per unit volume (a function of z),

CD 2 Arag coefficient of the plants,

p mass density oi air,

U 2mean horizontal wind velocity a function of ZI.

The physical interprtation of this equation is that the diver-

gence of the Reynold's stress is equal to the fluid drav,

Before equation (I1 can be, evaluated, ((z). AvW , an~d C D must

be determined. For realistic va'ues of these functions equation i.1) can-

no, be solved analyticilly and it was necessary to resort to a nkiryer ical

technique .

Cionco [2, 31 has trcatted this problemn in a sli iihtly difft-re-nt

rnan-ne r Whereas [I I ,,.as concerried with thc bewhavior of a trans ff

co-efficient ' througjhout the canopy- [2, 31 conce mned itself with Ote Tnik -

inv, length and its propi~tc througzhout the ao .Tc(znp Iv

equation &rived in is:
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C 2 air aU __ Ic a2U
G 3X~ L X ax a

where

I rn-xing length of the canopy (a function of Z),

X~ z /h.

C and G are two parameters introduced by Cionco, their

definitions are quite lengthy and wvill not be presented here.

Equation (2) may be interpreted physically in the same man-

ner as equation (I ). It must also be evaluated numerically. The pro-

cedure ;.s described in (3].

A purely. empirical treatment of the problern was given by

Uchilima and Wrigzht [4). In this approach the authors postulated a

velocity iunction:

U -U + \. In- B(z), o z -,h (3)
h 0 h

w he r e

A -a proportional ity constant (a function of U h

B 'I the t. ftc.t of tho planft cor)[rimurlitty on the wind

fa function fl1
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The authors took measurements of U and adjusted B(z)

so that the equation would be satisfied. In effect B(z) represents

the difference between the measured values of U and the first two

terms on the right side of equation (3). It would appear that this

procedure allows equation (3) to agree with any experimental data.

Ill. Structured Fluid Approach

Theory of structured continua

Basically this approach treats the air and plants as a struc-

tured continuum. The premise introduced here is that the bulk fluid

velocity of the structured fluids approach may be identified with the

mean velocity of the classical turbulence approach.

A continuum may be described as a medium in which the

field quantities (displacements, stresses, velocities, etc.) are piece-

wise-continuous functions of the coordinates of the material points

and time.

A structured continuum is a continuum that contains cer-

tain mathematical abstractions called "structures". At present there

seems to be a number of possible physical interpretations for these

structures, :!ee [5, 6, 7] for example, However, none of these have

been formalized. Perhaps some formal physical interpretation will

evolve in the near future. It is clear as pointed out by Truesdell and

Toupin [8] that with or without such an interpretation the mathematics

of the theory retain their validity.



The axioms upon which the theory is based are:

(a) Conservation of Mass,

(b) Balance of Momentum,

(c) Balance of Moment of Momentum,

(d) Conservation of Energy,

(e) Principle of Entropy.

The discussion of structuired fluids presented here has

been necessarily brief. For the details and foundations the interested

reader is referred to [5, 6, 7,8,9, 10, il, 12].

Constitutive Equations and General Theory

When forces are appliel to any material, axioms (a) th-ough

(e) must hold. However, when the same system of forces is applied

to dif"erent materials the materials res ..nd differently. In other

words, the same system of forces applied to different materials give

ri.e to different strains or rates of strain. The relation between

stress and strain is referred to as the constitutive equations.

The constitutive equations for a structured fluid have been

developed in (lI1, and the parallel plate problem has been solved for

a fluid con,-aining rigid structures [12] and for a fluid containing non-

rigid structures D 3]. The formulation leads to 3 coupled ordinary

differencial equations:



(a+b) D;, i 2(B 2 -E 2 ) D 0, (4)

(a-b) V - 3 U' + 22 3= 0, (5)

tA 2 -E 3) U!' + 2£ D' + 2E3 V' P, (6)

where

U = mean velocity of the fluid,

V = rate of rotation or vortici,. of the structures,

D = deformation of the structures,

P = the pressure gradient,

a, b, B2, E2, E 3 , A, 2 are viscosity coefficients.

Equations (4) and (5) are statements of axiom (c) and equation (6) is

a statement of axiom (b). Equation (4) if. a result of considering de-

formable structures.

It should be pointed out that a and b have dimension L 4T -

w'hile B21 E2 E 3 and A 2 have dimension LT - 1  Kirwan [13] dis-

cusses the constraints on the viscosity coefficients due to the second

law of thermodynamics.
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The solutions to the above set of equations with z nor-

malized were derived for the following boundary conditions in [131

(a) U(z z 0)= U(z I)-- 0

D(z = 0)= -D(z = 1)= D O

V(z = 0)= -V(z = I)= V

,b) P= 0

U(z = 0) 0

U(z I) U > 01

D(z 0) D(z = 1) D 0

V(z 0)= V(z 1) V0

The solution to this system of equations with general boundary

conditions for the lower plate fixed and the upper one moving is

U- P (PZ - I)+ X + r (Lz)2A2  z 5

2E 3M 2Y 2 2E 3N
+ r(Kz) - 5 D D I ) D(Lz) - - R(Kz), (7)

The 5 0 n 5

The vertical coordinate, z, has been normalized for convenience.
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P (Zz -) x
V =Mf(Kz) + 2YID + 4A,2 + Nh(Kz) +- (8)

D = (D - DI) f(Lz) + (DO + D I)h(Lz). (9)

Here:

z=O U0

U U 1 -z=l 1

V V= 0  _0

V V 1
z=l I

D = D o

z = l = '

L = 2(B 2 - E2)/(a + b)

2

K - 2E a + b) o 5

4 25

X =U + Y- 2 S(L) (D O + D) + E NS(K)

N 5 (V 0 + V) -Y05 (Do + D) -- -YS(L)(D + D 1 )

5 0 1 1 0



9

M= (V - V) Y1 (D - D) +

g(z) cosh y( -z)+ cosh -yz)

y sinh y

S(z) = [cosh (yz) - cosh y(1-z)]-y sinh -y

r(-yz) = g(-yz) - g(y)

R(-yz) = S(yz) + S()y)

f(yz) [sinh y(l -z) - sinh (-yz)]/sinh y ,

h(-yz) = [sinh (ylz) + sinh y(l -z)]/sinh -y ,

Y1 = E 2K2/A 2 (L - K )

Y 2 
= 2(E2 + E 3Y1 ) 

a 5 + 2E S(K)
5 3

5  A 2  3

is "orthwhile noting that instead of reducing the problem

to 3 coupled ordinary dif -ential equations, one equation composed of

higher order derivatives of U could have been obtained.

p.
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IV. C'Op Marison Between Theory and Experiment

The first step in the comparison between experimental data

and the theory of structured continua was to determine if the velocity

function equation (7) is capable of producing velocity profiles similar

to thoge measured . In this p-aper only the velocity function U(z)

will be treated, A short cut in this comparison is found via the method

of Least Squares. The triai function we would like to use is:

U 1 2 - 1) + B 2 z + P3 r(Lz) + P 4 r(kz) + P5R(Lz) + P36 R(kz) (10)

The primary problem is to determine P1i P22 P31 P4 ' P5'

P,, K and L from observations. Although for each profile thcre were

only six independent measurements, thirty-six additional points alo..g

the profile were interpolated for use in the Least Squares procedure.

The determination of K and L make this a nonlinear least square prob-

lem. While computationai niiethods are in existence for this [14, 15)

a quicker and easier procedure was used. Equation (10) was treated

as a linear trial function with values for K and L specified. Likely

values of K and L were used. Following this procedure a new trial

function was introduced so as to facilitate programming:

m*

The data for this comparison was -upp.ied by Lemon and Allen of the
New York State College of Agriculture, Cornell University.
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'' a ' -Lz Lz -Kz Kz7
U= 1 + P2 z+ 3 z + p 4 e + e + e + p7 e (1Oa)

It should be noted that a seventh degree of freedom has been added.

This is because we are no longer constraining U(z = 0) to be 0 due

to a lack of data in the lower portions of the canopy. Tests indicate

that this constraint has little or no effect on the results. The results

of these computations are illustrated graphically in Figures 1 through

9. The solid lines are the measured profiles and the broken lines are

the fitted profiles. In the cases where only a solid line is plotted the

fitted curve was so close to the measured curve that no distinction

could be made graphically. A total of approximately twenty thousand

runs were made. The correlation coefficients in every case werL be-

tween .990 and .999.

As can be seen the agreement between equation (7) and the

data is quite good. However, it was found that just as good as fit could

be obtained with a sixth degi e polynomial. It was also found that the

fit with L = 0 (rigid structures) and a fourtii order polynomial were

nearly as good.

pi
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Fiijure I and 2. Mean horizontal normalized ve!,c it;. proffles in the
Japanese Larch canopy.
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k- igure 3 nd 4. Mean horizontal nrmai.zed velocity profiles in the

Co. 1ts canopy.



SOY BEANS

Z H 150 cm
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Figure 5 and t. Mean horizontal normalized velocity Dr)files i.

So,,, Beans canopry.
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CO0R N
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K = 4.5
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01
0 1.0

Figure 7 and 8. Mean horizontal normahi-,cd veloc it;- profie,% in the
corn canopy .
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The fact that an arbitrary trial function with the same number

of degrees of freedom as the velocity function derived from the theory

of structured continua can fit the data so well is to be expected since

the degrees of freedom of the trial function is slightly greater than the

number of independent data points. The advantage of using the velocity

function derived here is that it is derived from a physical theory.

V. Discussion of Results

As can be seen from Figures 1 through 9, the velocity func-

tion derived via the theory of structured continua can quite accurately

r 'produce experimentally measured mean velocity profiles in various

vegetative canopies. However, a- mentioned previously, the fact that

the trial function used in the least squares routine has seven degrees of

freedom pretty much assures a good fit to the data. It is worth noting

that neither the log wind nor the parabolic trial function could reproduce

the experimentally measured profiles.

'lu summarize there are three methods of reproducing experi-

mentlly measured "Cavopy Flows":

(a) "Classical Approach",

(b) Theory of' Structured Continua,

(c) Arbitrary trial function with enough degrees of freedom.
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Of the three, the last seems least attractive because it is

completely arbitrary and can be related to no physical concepts. The

first one suffers from what might be called creeping empiricism

Such features as a height dependent eddy viscosity and the complica-

tion of an unwieldy differential equation that cannot be solved analyti-

cally make this method unattractive. The remaining method is the

theory of structured continua, There are several advanta,.?s to this

approach.

(a) It yields a velocity function that is relatively easy to evaluate.

(b) There are rone of the height dependent parameters to be deter-

mined.

(c) This seems to be a logical extension of the continum hypo-

pothesis in the sense that the structures are considered to

be continuums within continuums.

To be sure, the theory of structured continua involves difficulties.

For one thing, there is no physical description or feeling for what the

structures are. Without this description the deformation and voriticity

fields cannot be measured and hence only one-third of the theory rz n be

investigated experimentally.
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VI. Recommendations for Future Research

It is apparent that the observations used in this study are not

detailed enough to adequately test the structured fluid approach. In order

to obtain more conclusive results two major problems must be solved first:

(1) better, more detailed flow measurements must be otained;

(2) some formal physical explanation for the "st uctures" must

be developed.

With the solutions to the above two problems in hand one could

use the differential equations (4, 5, 6) to determine all of the viscosity

coefficients that permeate the theory.

At this point, a clearly written orderly summary of the theory

of structured fluids would be quite beneficial. The abstract formalizations

have reached the point where they must be stated concisely and put in

their proper perspective so that the interested researcher will have a

jumping off point from which he can wade through the material already

in print on the subject.
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Table I.

e of Cano Z cm) U (crn/sec) K L Remarks

Japanese Larch 104G 149 3.0 3.5 Can't -istinguish

graphically between
data and fit.

Japanese Larch 1040 348 3.5 3.0 Can't distinguish

graphically betwen
data and fit.

Oats 125 61 4.5 3.0 Can't distinguish

graphically between
data and fit.

Oats 125 169 3.0 3.5 Slight distinction
Soy Beans 150 98 3.0 3.5 No distinction
Soy Beans 150 246 2.5 3.0 Slight distinction
Corn 300 81 4.5 3.0 Slight distinction

Corn 300 300 3.5 3.0 No distinction
Sunflowers 225 225 3.5 3.0 No distinction
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