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Abstract

An improved version of a three component thrust anemometer is
discussed in this paper. The design criteria and specifications of its com-
ponent parts are outlined. Results of laboratory and wind tunnel tests are
described which were designed to test the static characteristics and fre-
quency response of the anemometer as well as results of wind “unnel tests,
These tests demonstrate the anemometers adherence to the V2 law
(F-.z K -\;|-\;’ ) over the velocity range 0 to 25 miles per hour. Rotation

tests performed at various wind speeds provide information on the anemo -

meter's ability to resolve the vector wind into its components,
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I. Intrecduction

An understanding of the mechanism of the turbulent exchange of
energy across the air-sea boundary has been pursued for many years, One
of the principal areas of investigation has been the exchange of momentum
at this interface, This investigation of the turbulent exchange of momen-
tum requires a special type of anemometry. The most straightforward
method of determining the vertical flux of horizontal momentum is to mea-
sure the in-tantaneous horizontal and vertical velocity components sepa -
rately, and thus determine the Reynolds stresses directly, The anemo-
metry required for such measurements must be capable of measuring each
of the three components of vector wind accurately over the frequently range
of interest, In recent years these measurements have been attempted with
several different type of anemometers, including heated films (R. W, Stew-
art and R, W, Burling, 1963), sonic (M. Miyake, 1965) and, heated ther-
mistors with bi-vane (Pandolfo, 1960). These measurements have been
made with varying degrees of success,

Among the most recent developments in turbulence anemometry is
the three component thrust or drag sphere anemometer developed by E A,
L. Doe at New York University in 1963. A modified version of this anemo-
meter was used in an air-sea boundary investigation (Kirwan, Adelfang,
McNally, 1966). Still another version is curreatly in use at the Bedford In-
stitute of Oceanography for a similar study (Smith, 1966). These anemo-
meters performed satisfactorily, but as with all new instruments had a

great deal of room for improvement. The drag sphere anemometer reported

1




o here is the -esult of a. efforc to provide that improvement and to pro-
duce a version of the thrust anemometer suitable for the aforementioned
measurements.

II. Description of the Anemometer

The drag sphere anemometer consists of two units: the wind unit
and the electronics unit. These units can be separated by as much as 500
feet with little or no deteriortation in performance. The wind unit contains
the perforated styrofoam sphere sensor and five differential transformer
transducers. The drag force exerted on the sphere is a function of velocity

according to the relationship:

F =KWV
where
F = force vector
V = wind vector
K = constant of proportionality
K=48 pA CD
where
p = density of gas

A = surface area of the sphere

CD = drag coefficient of the sphere

The vector force exerted on the sphere is resolved into its compo-
nents by means of the arrangement of the five rods supporting the sphere,

The force components ultimately are sensed as displacements of the support

2




rods which are terminated in springs. The five support rods are arranged
with three in the horizontal plane and two in the vertical. Each rod passed
through a differential transformer which converts its displacement into
changes in output voltage level., These output voltages are a linear function
of displacement and thus the components of the drag force. The output vol-
tages are brought to the electronics unit by means of an interconnecting
cable. This cable also carries the required D,C. voltage excitation to the
differential transformers f-om the power supply in the electronics unit,

The electronics unit consists of an operational amplifier for each
of the three axis, summing networks for the transverse and vertical axis
and regulated power supplied, Two transducers are used in the vertical
and transverse axes so that the ''common mode’’ output which results when
a force is exerted on the third axis may be cancelled. A complete descrip-
tion of the theory and operation of the thrust anemometer is contained in a
technical report by Kirwan, et al., 1966.

Two years of extensive testing coupled with field cperations produced
enough enthusiasm and confidence in the basic concepts of the anemometer
to warrant the fabrication of the improved version reported on in this paper.

III. Design Criteria

Stability and operational simplicity were the prime design considera-
tion of the new instrument. The instabilities in the original units both in
the mechanical parts of the wind unit (springs, transducers, and dash pots)
and the elect.-onic Lomponents was one of the problems encountered in

field operation. These instabilities,coupled with the inability to check and
3




adjust the instrument after it had been mounted and installed,represented
the most serious operational problems.

A new type spring was the starting point in the design of the new
anemometer. The spring constant plus the displacement range of the trans-
ducers, + 0,05 inches, determine the maximum wind the anemometer can
measure, Having fixed the spring constant, the minimum detectable wind
speed is then determined by the amplifier gain and signal to noise ratio of
the anemometer plus recording equipment, Therefore, in gselecting a new
spring constant, there has to be a compromise between range and resolu-
tion. The original units were designed to measure wind speeds to 60 miles
per hour, Field operations showed 30 miles per hour to be a more realis-
tic upper limit. Thus, the springs chosen were considerably softer than
the original units with a defiection of 0,001 inches per gram of load as op-
posed to 0,0004 inches per gram of load. In addition to changing the spring
constant a more rugged spring was employed. The original cantelevered
hairsprings were replaced by a larger corrogated spring of berrilium cop-
per. The corrugations serve the dual purpose of strengthening the spring
and keeping its deflection coaxial with the exciting force through its speci-
fied range of deflection. This latter aspect improved the linearity of the
transducer output voltage versus exciting force. The springs proved to be
linear over the range of + 0,05 inches, the full travel of the transducer,
The springs were stopped by means of nuts placed on the support rods
(see Figure 3,1) to insure that the linearity would not be destroyed by over-

stressing them accidently,

L_.



Alquosse 1owaojsuedy [eruataltg (¢ 24nd1g

v-v 1NOYS

3wos4 UIiOW
juauysnipy osa2

Z

$pOdT indinQ/ jnduj

—— w—
3

poy ji0ddng r/
\
2109 A —
Jawioysuosy >
jodysoQ
buiids A ,/
19409 jodysoq \/!.\
19A0) v
M3IA dOUL
v R




The dashpots in the original unit were simply annular openings in
the rear support member of the transducer (see Figure 3,2). Each support
rod was terminated in a brass slug or piston. The clearance between the
piston and the walls of the annular opening was then filled with viscous oil
to provide viscous shear-damping. However, the cantelevered springs did
not insure a coaxial deflection of the rod and piston so that the pistons would
tend to bind on the walls of dash pots resulting in sticking and hysterises.

In order to prevent this and also to prevent the rapid loss of fluid, the dash
pot arrangement was changed. An actual well was constructed in the rear
support members of the transducers. The support rod terminated within
the well, A small nut is attached to the end of the support rod. The well
is filled with the silicon oil used as dash pot fluid and the cover screwed
on, This arrangement has worked very well, It is easy to fill and when
the need arises easy to empty. These features were especially useful when
determining the proper viscosity silicon oil to use to optimize the frequency
response. (See Section IV),

The electronics unit was completely redesigned so as to include the
following: self contained regulated power supplies, choppter stabilized
operational amplifiers, zero offset controls and x-axis zero-suppression.
See Figures 3.3 to 3,6,

The self contained power supplies provide the necessary + 15 volts
DC for the operational amplifiers and the 6 volts DC required by the differen-
tial transformers. The supplies are designed to operate from a normal
115 volts AC, 60 hertz power line. They incorporate regulating circuitry

so as to operate with variations in the power line voltage from 105 to 130
6
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Side View Annular Opening
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Figure 3.2, Differential transformer assembly . original unit,
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volts. In addition, the output voltages of the supplies are very heavily fil-
tered to reduce power supply "hum' to a minimum,

One of the most chronic problems encountered in field operations
with the original units was drift in the operational amplifiers due to environ-
mental temperature variations., Chopper stabilized amplifiers were sub-
stituted for the original amplifiers resulting in an crder of magnitude im-
provement in temperature stability. The stability of the new unit is further
enhanced by the lower gain requirements resulting from the choice of softer
springs. A maximum gain {(from transducer output of anemometer output)
of approximately 90 is now required on the most sensitive range as com-
pared to a gain of 1000 on the original units., An "'Operate-Ground" switch
was added so that drift in the amplifiers could be checked during operation.
This switch disconnects the transducer signals from the input of the opera-
tional amplifiers and instead returns them to ground through their input re-
sistors. This operation can be performed on any one of the three switch
selected gain settings and allows the detection of changes in the output sig-
nals due to instabilities in the amplifiers since their inruts are grounded.

Zero controls were added and mounted on the front panel, These
controls, one for each amplifier, allow the input signal to the amplifier to
be offset a small amount to compensate for the small residual signals that
might be present after the transducers have been set. Thus, the anemometer
output signals are set to zero under a zero wind condition. These same con-
trols also allow for corrections that might be needed to compensate for

drift on the operational amplifiers,
12
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In operation, the X-axis of the wind unit is aligned so as to be in
the direction of the wind. Under this condition, the X-axis output voltage
will contain 2 large mean component plus smaller variations, whereas the
Y- and Z-axes output voltages will be approximately zero centered. This
would severely limit the resolution of the X-axis output, since the gain
would have to be such as to prevent the large mean signal from saturating
the amplifier. In order to provide comparable resolution in all three axis,
a2 "mean suppression’ circuit was added., This circuit allows the mean sig-
nal to be 'bucked out” at the input to the amplifier, and thus only the per-
turbating signals are amplified. A ten-turn heliput with a turns counting
dial is provided on the front panel to adjust the mean suppression, The
dial is turned until the X-axis output voltage is approximately zero-centered
and the gain can then be increased. Figure 3.7 is a plot of dial reading ver-
sus output voltage, The mean voltage that has been suppressed is read from
this plot; corrected for gain setting and then be added later in the data re-
duction process,

To complete the design, a method of checking and adjusting the
transducers after the wind unit was installed had to be devised., A hood for
the wind unit had been supplied with the original units. This hood was de-
signed so as to enclose the entire wind unit (see Figure 3.8). Unfortunately,
a hood of this size created such a drag force that the instrument would vi-
brate quite violently in even light winds, These vibrations created so niuch

-sige at the output that it was impossible to check the transducer settings,

13:



X Axis OQOutput in Volits

X Axis
3.2r Mean Suppression Colibration
Low Gain Position

i L L L - |

0 l 2 3 4 5
Potentiometer Dial Reading

Figure 3,7. Mean suppression calibration curve.
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A small, lightweight, streamlined hood that attaches to the main
frame was devised. This hood completely encloses the sensing sphere,
and in addition shields the support rods. The hood proved effective in wind
tunnel tests up to the maximum test apeed at 25 miles per hour. It now re-
mained to build a small test fixture that would display the transducer output
voltages at the wind unit so as to allow their adjustment when the wind unit
was hooded.

This test fixture was made so that it plugs into the wind unit and the
interconnecting cable between wind unit and electronics unit plugs into it.

In this way the transducer can be checked and adjusted with the operational
set-up essentially intact. The test fixture consists of a battery-operated
operational amplifier, with three switch-selectable gains and a sensitive,
zero-centered meter, Any of the five transducer output voltages can be
selected by a switch, and after suitable amplification displayed on the meter,
Since the test jig in no way interrupts normal operation, the operational
amplifiers can be checked and adjusted at the same time. In addition, there
is a switch position that allows a check on the DC excitation to the trans-
ducers. The €V is passed through a suitable voltage divider so as to be
compatible with the 25-0-25 microampere meter movement,

IV, Testing

The testing of the anemometer falls into three general categories;
static tests performed in the laboratory and dynamic tests performed in a

suitable wind tunnel, and frequency response tests,

16



The anemometer was first tested statically by hanging laboratory
weights along the axes, In this way a plot of output voltage versus force
is obtained, This operation tests the linearity of the combined system of
springs, dash pots and transducers. A plot of forces versus output voltage
is a straight line whose slope is the static calibration congtant, This con-
stant is a function of the gain setting of the amplifiers. Each axis was tested
in this way and static calibration constants calculated from the plots shown

in Figures 4.1, 4.2, and 4,3 which are listed in the following table.

Table of Calibration Constants

High Gain Medium Gain Low Gain
CX 7.99 13.39 40.83
CY 7.68 19.57 39.14
CZ 7.38 16.2 35.64

All values in gra,m-meter-sec'z - voit !

In addition, a test was devised that would determine the ability of
the anemometer to resolve a static force into its component parts., A semi-
circular frame was constructed so as to complete the hemisphere frame
in the horizontal plane. A thread was attached to the junction of the sup-
port wires brought out over the semi circular frame and attached to a
weight, The thread was brought out over the frame on a knife edge pulley
to reduce frictional errors. The frame was marked in degrees from +90
to -90 in five-degree increments. The weight and pulley could then be

shifted around the frame so as to simulate the drag force of the windas
17
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Figure 4.1, Static calibration curve of the X axis,
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its angle of attack varied, The value of component forces were then calcu-
lated from the observed voltages and compared to the values obtained using
the magnitude of the weight and the azimuthal angle, Figure 4.4 is a plot
of theoretical versus observed values as a function of azimuth angle,

The anemometer was then tested in the wind tunnel, The firstseries
of tests were to see how well the instrument obeyed the V2 law (F = K| vIV).
The anemometer was placed in the tunnel so that the X axis was coaxial
with the wind axis in the tunnel and facing upstream. The tunnel wind speed
was then varied from 0 to 25 miles per hour in approximately 2 mile per
hour steps. This test was performedtwice, February 1968 and April 1968,
to see how well the calibration held. The output voltage at each wind speed
was recorded and then converted to a force using the static calibration con-
stants obtained in the laboratory., The squared velocity was then plotted
against force. The straight line plot thus obtained has a slope K from the
relationship; F- K] V‘ V. Figure 4.5 shows the plots obtained and the ex-
cellent agreement of both series of tests tc the classical V2 relationship
over the entire range of velocities, Since the slope of this plot yields K,
the dynamic constant, and since K = 3A CD; the value of the drag coeffici-
ent CD’ of the sphere, can be obtained knowing the constants p and A,
CD for the sphere used is 0.617,

Following the V2 tests, a rotation test was performed to determine
the anemometers ability to resolve the vector wind into its components,

The anemometer was mounted on a spindle through the floor of the tunnel

equidistant from the side walls of the tunnel, The spindle was then rotated

manually and the angle of rotation was read from a scale attached to the base
21
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of the spindle. This scale was marked every two degrees. The anemo-
meter was first aligned so that the X axis was coaxial with the tunnel axis
and pointing upstream. The spindie was then rotated + 45° (CW and CCW,
when viewed from above) from its initial position, The wind velocity (ob-
tained from a pilot static tube) and anemometer voltage outputs were read
at each angular position, The test was repeated at three wind speeds 10,

15 and 20 miles per hour. From the data the magnitude of the wind velocity
was calculated and compared with the value obtained from the pilot-static
tube. The azimuthal angle was also calculated and compared with the actual
value read from the scale.

The magnitude of V is calculated in the following manner:

Since
F =K|W~V.,
then
Vi = [|F| /K]?, and
\Fi=[F + FZ + F% ]']".
x y z
Here
F =Ce ,
x X x
F =C e, and
y Yy
F =C e =0 for this test.
z z z



Thus, 2 2.3
(Ce)" +(Cle )l
K

VY = , and

[
X

voltage output of the x axis, and

e
Yy

voltage output of the y axis,

The azimuthal angle 8, is calculated in the following manner:

-e{f }-en {23}

The results of the rotation test were very disappointing. Large
errors in the calculated azimuthal angle were noted along with large errors
in the magnitude. Thus, the anemometer showed a marked inability to re-
solve the wind into components, This result was completely at odds with
the results of the static resolution of force test, There was one major dif-
ference in the two tests, In the static tests, the force was applied at the
center of action of the wind unit, the junction point of the five support rods.
The sphere upon which the drag force is exerted was mounted on a threaded
rod which screwed into the junction of the support rods. When the sphere
was firmly in place its center was approximately 1.5 inches from the junc-
tion point (see Figure 3.4). Thus, the drag force was acting through a mo-
ment arm, The moment effect was felt only in the transverse and vertical
components and therefore its effect was a function of the angle of attack of
the wind. In order to correct this effect, the sphere was moved so that its

center was coincident with the junction pointof the support rods (see Figure 4.¢).
25
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It was feared that moving the sphere into the center might cause a serious
deterioration in the vector resolution as the angle of attack increased, The
results of the rotation tests performed after the sphere was moved are shown
plotted in Figures 4,7 through 4,12, The results show these fears to be
groundless. For azimuthal angles 8 of +20 the maximum error is 2°, and
for 8 of +40° this error increases to a maximum of 4°>, The errors in
magnitude in the range 6 = +20° are seen to be 47 maximum, and reach

a maximum of 6% as 0 is increased to +40°,

The final test performed was the step response test which was used
to ascertain the frequency response of the instrument. The test is a simple
one. A weight is suspended by a thread from the sensing sphere. The weight
represents a fixed static load. The supporting thread is then burned so as
to almost instantaneously remove the load thus creating a near step input
to the anemometer. The output voltages are recorded during this test, Thus,
the input and output functions are known and the transfer or response char-
acteristics of the anemometer can be determined. It should be pointed out
that the transfer function thus determined is for a step input of force. Since
the anemometer responds to the velocity squared (F = KVZ) the transfer
function unfortunately does not apply for wind.

This test was performed both before and after the addition of silicon
oil to the dash pots. The output recordings taken when there is no dash pot
fluid clearly indicate the natural frequency of the system, 33,3 hertz in this
case. By varying the viscosity of the dash pot fluid and noting the change in

the output, the proper viscosity can be chosen so as to bring the unit to

27
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approximately 0.7 critical damping thus optimizing the response function.

The anemometer was tilted so that the load acts on all three axes
and the step response of all three axes can be simultaneously recorded on
the Brush Model 260 chart recorder., Three sets of outputs are displayed
in Figures 4.13, 4.14a and 4.14b.

Figure 4.13 is the record of the output voltages of three axis when
the step is applied and there is no damping fluid in the dash pots. This test
was performed to ascertain the natural frequency of the mechanical system
consisting of the sensing sphere, springs and dash pots., The chart speed
during this record was 125 m/sec, thus, each division .5mm) is 40 x 10‘3
seconds. Eight oscillations occur in 6 divisions or 240 X 10-3 seconds.
Thus, the natural frequency, fn' of the mechanical system is 33,3 hertz,

Figure 4,14 is the record of the step response after the alaition of
Dow Corning type 200 silicon oil to the dash pots. An oil with a viscosity
of 25, 000 center stroke was used for this test. This record shows this
system to be overdamped. The response times are approximately 2.5
divisions or 100 X 10-3 seconds, which would allow measurements up to
10 hertz.

The dash pot fluid was then made less viscous and after several at-
tempts; the response shown in Figure 4.15 was achieved. In this testa
15, 000 centerstroke oil was used in the X axis dash pot and a 12,500 center-
stroke oil in the Y and Z dash pots., Again each major division on the

chart record is 40 x 10_3 sec.
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Figure 4.13.

Underdamped response. Chart recordings of the output
voltages of X, Y and Z axis (1,2 and ? respectively) re-
sulting from a 'step input’.
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Figure 4,14, Overdamped response. Chart recordings
of the output voltages of the X, Y and Z axis
(1, 2 and 3 respectively) resulting from a

"step input’’,
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The X axis is still slightly underdamped with an overshoot of | part

in 30, Using the relationship

/ 1
Y[og ¢ 'g/a /AHZ

\ = -1 (Doebelin, 1962}

where
y = coefficient of damping
and

a ’A - overshoot

The X axis was found to be 0.78 critically damped. This assures a flat re-
spoase to 10 hertz,

The Y and Z axes are seen to be still slightly overdamped; that is
vy > 1. However, the rise time itime necessary to reach 0.9 of its final
value: is only 30 x 10-3 seconds, This response will also allow measure -
ments to 30 hertz, Thus, all three axes are capable of measuring to 1¢
hertz, which was the design criterion. The data acquisition system used
in conjunction with the anemometer in the field includes !1 hertz filtering
with a drop off of 18 db/octave. The natural frequency of the mechanical
systemr will thus be attenuated by approximately 25 db.

There is another type of filtering inherent in the anemometer due to
the physical dimensions of the sensing sphere (7.8 centimeters diameter)
since the sphere would tend to low-pass filter those eddies equal in size or
smaller then itself, The relationship between the mean wind and the cutoif

‘requency and dimrensions of the sensing sphere was reported by Kirwan,
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et al., (196¢6) and is

fcutoff =u 7.8 (Hinze, 1959)

For example, when u is 2 meters /second, the cutoff frequency will be ap-
proximately 25 hertz which is considerably higher than the 10 hertz re-
quired.

Figure 1.16 show the results of tests designed to obtain some figure
of merit of the noise content of the anemometer and data acquisition system.
Figure 4.15a is the output of the X -axis under the influence of a 20 mile
per hour in the wind tunnel. This record was made at a chart speed of
125 mm/second and a sensitivity of 125 x 10.3 volts 1 mm. The data was
not [iltered during these tests. A mean voltage of 9 volts resulting from
the mean speed vas 'backed out” using the mean suppression circuit and
the highest gain setting then used. The perturbations showr. are thus about
Q volts. Figure 4.15b was made with no wind in the tunnel, no mean sup-
presion, at the same chart speed but with the sensitivity now at 5 x 10-3
volts/mmm.. That there is very little if any inherent noise in the system is
obvious from this record.

Figure 4.15c is the record obtained again with an 20 mile per hour
wind but with the instrument now hooded. The sensitivity is again 125 «
10'3 volts/mm and the chart speed is again 125 mm/second. There is no
mean suppression and the gain is again in the high position. This signal
thus represents a zero centered noise signal. However, it is quite small
in amplitude compared with the 9 volt mean signal that the hood is suppress-
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ing, and its frequency content is much higher than that observed when the
instrument was not hooded. This suggests the signal really is produced by
some form of vibration induced by the hood,

V. Conclusions

This instrument has been demonstrated through the results of both
the static and dynamic tests to be superior to the original thrust anemo-
meter. It is capable of measuring wind speeds to 25 miles per hour and
resolving the vector wind into its magnitude, azimuthal, and elevation
angles with an accuracy in magnitude of better than 44 and an angular reso-
lution of 2°, It has the necessary frequency response to allow measure-
ments in the range of DC to 10 hertz, In addition, its field operation has
been greatly simplified with the addition of a hood and calibration test jig.

The thrust anemometer has two major drawbacks in field operations.
First, the anemometer requires an absolutely stable platform. Any in-
stabilities in the platform are translated to output signals because of in-
ertial effects and the instruments sensitivity to orientation. Its sensitiv-
ity to orientation stems from the weight of the sensing sphere (10 grams)
which is totally supported by the z {vertical) axis when the instrument is
level. Any change in level causes some part of this 10 grams to be shifted
to either the Y or Z axis or both depending on how it is misoriented. This
effect goes as the sine of angle of rotation from level,

The second problem is the inability to re-zero the anemometer after
it has been installed in the field due to the remote location of the wind unit,

If the anemometer is used as it was on a tower and a ship as the base of
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operation, the problem is compounded since the zeroing cannot be done on
the ship either, The hood and test jig discussed in Section IV offer the
solution to this second problem and might offer some degree on the first
problem also, If instabilities are noted in the anemometer mount then a
second hooded instrument could serve to give the data necessary to correct
the wind data from the first unit for inertial and misorientation errors.
This might be best done after the data has been reduced. That is to treat
the hooded instrument's data as wind data and carry through the data re-
duction so as to construct u, v, and w spectra and use these spectra to
correct the u, v, and w spectra obtained from the unhonoded instrument.
The hooded wind tunnel tests show that the hooding does not seem to induce
any noise in the frequency range of interest, The self induced noise seems
to be 2 much higher frequency.

In conclusion, the results of laboratory and wind tunnel tests are
most encouraging. However, the final evaluation of the thrust anemometer
as a useful turbulence anemometer is an air-sea interaction program must
be accomplished in future field tests,
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