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ABSTRACT 

Prediction of demand and setting  reorder levels by ex- 

ponential  smoothing and mean absolute deviation is studied 

for an inventory system.     The relation between  the stand- 

ard deviation and mean absolute deviation of demand dis- 

tribution is discussed.     Asymptotic  first and second 

moments of  the  exponentially-smoothed  forecast errors   (MAD) 

are derived.     Results  obtained from simulation of several 

normal systems  indicated  that  the smoothing  technique is 

inferior  to  the classical maximum likelihood estimation 

method. 
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I.  INTRODUCTION 

In recent years the technique of forecasting time 

series by exponential smoothing has received a considerable 

amount of attention in the literature. As a forecasting 

technique in inventory theory, it is particularly suited to 

the situation where demands are time dependent and corre- 

lated for much of its intuitive appeal rests on weighting 

the past in such a *ay that the most distant past receives 

less and less weight.  When demands are not so related, 

smoothing may or may not be a suitable forecasting tech- 

nique.  In particular, when demands are independent and 

from a common distribution such as for the so-called fast 

moving items, more classical methods like maximum likeli- 

hood may be preferable because of the optimal properties 

that are often demonstrable.  Even in such circumstances, 

however, exponential smoothing is still a candidate for a 

forecasting scheme and it may very well be that, while not 

optima] , the difference in such criteria as stockout risk 

for example, may be negligible compared to optimal proce- 

dures from a practical point of view.  In that case, fore- 

casting rules need not be changed for items differing in 

demand pattern and a certain uniformity may thus be 

achieved. 

The main purpose of this thesis is to investigate a 

model of an inventory system used by the Naval Supply 



System Command (NAV SUP) following Brown [Ref. l]. The 

model, as described by Ref. 1 and Ref. 5, is briefly as 

follows: 

Single exponential smoothing is an operator given in 

Ref. 1 as 

t-1 

St(x) = « )>k xt_k + ßt xo (1-1) 
k=0 

where x. is the total demand of the i  period 

oc    is the smoothing constant with 0  < ot < l 

ß = l - a 

Intuitively speaking the smoothing operator is a 

method of forecasting by weighting past demands in such a 

way that the most recent demand is weighted by a and the 

remaining demands are given less and less weight as time 

progresses. 

The standard deviation, (T, of the demand distribution, 

which is needed to set the reorder levels, is estimated by 

the following three statistics: 

e.. = X. - S. , (x) ,  t  period forecast error, t   c   t-i 

t-1 
x—I 

k=0 

Ä= a ^let_kl + ZSMeJ ri-2) 

10 
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•! 
estimate of the mean absolute deviation of forecast errors, 

and 

* = V 2 V — A   ' 

estimate of the standard deviation of the demand distribu- 

tion. 

This estimate of cr, as explained in Ref. 1, is based 

on the mean absolute deviation (MAD), A, of the forecast 

errors.  Reorder levels, based on the predetermined risk 

level j/) (defined to be the probability of running out of 

stock), are found as follows: 

0 = P(X > >i + kcr) 

Here, ß  is the mean of X, and k is a constant which 

can be determined from the probability tables for a given 

risk level, «/).  The reorder level is then given by 

Reorder Level = ^ + k(T (1-3) 

where k is the given above. 

In the analysis this model was slightly modified be- 

cause of the following considerations: 

1.  X , the demand asked from the inventory system 
o 

before it is placed in operation, is zero.  Although one 

may predict a number for a fictitious inventory, there will 

be no observation for X .  Hence e is zero. o        o 

11 
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2.    Or and ^    can be assumed to be approximately equal 

to zero for values of N > 30,   if 0.01  s a s 0.99.     In view 

of this,   the modified form of  (1-1)  and   (1-2)   used in the 

analysis was 

t-1 
st(x) =a   £>xt_k (1-4) 

k=0 

t-1 

Ä     = a   r P Iet_kl (1-5) 
k=0 

In this model, not only is demand forecasted by expo- 

nential smoothing but demand variability is estimated by 

means of exponentially smoothed absolute deviations. Such 

estimates are in turn used to set safety levels for inven- 

tory order rules. 

The model described above has been subjected to many 

criticisms. Zehna [Ref. ?] has indicated that the estimate 

of standard deviation might be very poor depending upon the 

underlying demand distribution. Based on the results ob- 

tained by Zehna [Ref. 8j, the analysis in this paper takes 

on its starting point on investigation of the ratio A/a, 

a key element in the estimation of ff. It is quite evident 

that any weakness in the estimation procedure for a  affects 

the reorder levels. An underestimate imposes higher risk 

and an overestimate causes unnecessary expenditures. In 

particular, the resulting consequences could be catastroph- 

ic in a military inventory system. 

12 
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It is quite evident  that  the probability distributions 

of certain key statistics would be desirable in any exten- 

tion of the existing analysis.    Although some of the dis- 

tributions required have been derived,   the distribution of 

A ,   a most important statistic,  could not be derived ex- 

plicitly.    However,   the first and second asymptotic moments 

of A   were obtained,   and it is shown that  the asymptotic 

variance of A   is finite for the case where  the demand has 

a normal distribution.     Therefore,   the next step of the 

analysis used simulation techniques to gain an insight into 

the behavior of the distribution of A ,  and to observe  the 

effects of a finite variance.    Reorder levels and their 

dispersions along with  the risk levels attained are analyz- 

ed.     The resulting errors due to the variability of safety 

levels is examined in detail and the consequences are 

evaluated from several points of view when demands are 

normal.     Moreover the  results are compared  to maximum like- 

lihood methods establishing  that a considerable  difference 

exists  in  the  two methods.     For  items  satisfying  the demand 

assumptions considered here,   then,   it is established quan- 

titatively that exponential  smoothing is definitely inferior 

to more classical methods. 

13 
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II.     RATIO OF A/g 

The mean absolute deviation of a probability distri- 

bution is given by 

A= E(|x -  *i| )   . 

For a normal distribution  the  ratio A/a is  the con- 

stant v^/tr' = 0.8.     Brown  [Ref.   l]  in his work on smoothing 

and prediction states, 

"Hence,   the mean absolute deviation  is proportional  to 

the standard deviation,   and the ratio may depend on  the 

form of the distribution p(t),   but dependence  is slight." 

Now,   as indicated by Zehna in  [Ref.   7],   this is not 

always the case.    For example,   consider a Poisson distri- 

bution with parameter X.     A/ff    is  then a  function of X and 

it may be much smaller  than 0.8 for  small values of X 

[Ref.8],    However,   there are some distributions where  the 

approximation 0.8 for  the ratio  ty<3    is  a good one under 

certain conditions.     The quote above  is a  rather general 

statement which may be justified as  follows: 

Let X be a continuous random variable with probability 

density function (p.d.f.) f(x) and let u and 1^ be the upper 

and lower limits, respectively, of the random variable X on 

the real line.     Then 

u 
A=    E(!X-MI)=     Mx-a|    f (x)dx 

14 



or 

A = -  xf(x)dx + a  f(x)dx +  xf(x)dx - ß      f(x)dx 

Hence, 

A= 2 
.a 
F(x)dx 

Here, F(x) is the cumulative distribution of X. 

Then 

A= 2 
a " a F(x)dx 

Let x = ay + ^.  Then, 

A 
a -= = 2 

« 

F((Ty +a)dy 

a 

Now suppose that F(x) is any distribution function such 

that 

F(x) 
• - 1  ,  as ^ ^ 00 

where  *(z)   is  the cumulative  standard normal  distribution 

function.     Then for  large values of ß/a 

F(CTy  + ß)   =  ♦(y) 

15 
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Hence 
^ 

o      y 

f fi 2 ]      J    -^ e "  2  Z 

dz dy 

Integrating by parts,   the ratio then becomes A/a = ■Jl/it, 

There are  some distributions  for which  the above approxima- 

tion holds;     for example erlang and chi-square.     But for 

other distributions such a generalization may not apply. 

For instance,   let X have  the  following mass  function 

P(x)     = 

0.1 if x = 0 

0.8 if x = a 

0.1    if    x = 2a 

Then 

A   = 

a2 = 

0.2a 

1.2a 

and 

A/a    =  .182. 

The error made by assuming ^a = 0.8  is 0.613,   or 77% , 

which is not negligible. 

16 
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III.      PROBABILITY DISTRIBUTION OF  A 

AND OTHER ASSOCIATED  STATISTICS 

Of central interest in  the use of MAD is  the ability 

to estimate  the demand variability.     The variance of  the 

forecast error is  always a function of  the variance of de- 
2 

mand,  a   .    Therefore  the MAD of  the  forecast errors  is  also 

a   function of a.     Since MAD is a  linear  function of  the 

standard deviation   [Ref.   l]  and if MAD of  the  forecast 

errors is estimated,   then a can be estimated as described 

in  [Ref.   l].     But in this estimation there are two points 

to be considered. 

1. Invariance Principle; 

a and  A   are related  to each other by a constant, 

i.e., 

(7 = cA . 

But  this  relation is in   the population,   and it does  not 

mean that  the  estimator of a and A   will enjoy  the same 

relationship necessarily.     If  these estimates mentioned 

above were MLE,   then  the  invariance principle  does  hold. 

However,   the  definition of A    indicates   that  this  is not 

the case, 

2. The Constant of Proportionality of A/a; 

If  the  underlying demand  distribution  is not 

normal,   then  the assumption  that  the proportionality con- 

stant  is   approximately  0.8 needs   to be  validated.     For   this 

17 



case the current model can be applied by a slight modifica­

tion on a, that is, replacing Jw;i by the reciprocal of 

the appropriate proportionality constant. 

In this section .we assume that demand is Normal (a,a2), 

where a is a constant. Derivation of the probabili ty dis-
~ 

tribution of A requires probability distribution for the 

following statistics: 

A. EXPONENTIAL SMOOTHING OF PAST OBSERVATIONS 

(Estimate of the Expected Value of Demand) 

t-1 

st(x) = Q I~ xt-k 
k=O 

Since all X's are mutually independent, the 

distribution of St(x) for large values of t is known to be 

a normal distribution with mean a and variance a 2 (1 + 1:~). 
B. FORECAST ERRORS 

t-i-2 

et-i = xt-i - Q I ~ xt-i-k-1 
k=O 

i < t 

et-l has a normal distribution with the follow­

ing mean and variance: 

~ = 0 for large values of t~ 

for large values of t. 

18 



C. JOINT DISTRIBUTION OF FORFCAST ERRORS 

Let U and V be t-dimensiona1 vectors defined 

as 

et 
ut l 

et-1 u~-1 . . . 
v = . u = . . . . . . . . . 

e2 u2 

e1 u1 

where u 1 , ••• , Ut are constants. Let Y be defined as 

or 

t 
~ 

Y = \ U.e. L l. l. 

i=1 

Substituting e. in terms of the x's, 
l. 

t i=2 
~ .. .-. 

~ xi-k-1) 
y = Lui\:\ - Cl! 'L 

i=1 k=O 

or 

t t i-2 

y = \' u.x. L l. l. - Cl! I L ui~ xi-k-1 
i=1 i=1 k=O 

19 



 r 

Hence, 

t-1 i-1 

- I Vi Cu
t-i -" Z ^ "t-k) 

i=0 k-0 

Since  the coefficients  of  the X's are constants and  the X's 

are mutually independent normal variables,   it  follows that 

Y has a  normal distribution.     Hence by  the definition of a 

multivariate normal  distribution [Ref.   2],   the  forecast 

errors have a multivariat<; normal distribution.     The corre- 

lation coefficient between e.    .   and e.,   .,   where  i  < j,  can 
t-i     t-j -" 

be computed as follows. 

Let 

Y = e.. . + e. . 
t-i    t-D 

where i < j < t. 

V(Y) = V{et_i) + (V(et_j) + 2Cov(et_i, e  ), 

or 

CovCe^^e^) = ^ |V(Y) - V(et_i)-V(et_j) J     (3-1) 

Rewriting  in  terms   of   the  X's, 

Y = x..   .   - ax.        .   -  ft/9X     .     - 
t-i t-x-1 t-i-2 

i-i-l. -   Olßl-X-lX 
t-j 

aßi-i-X 
t-j-1 

+ X - aX - aßX     .     . 
t-3 t-D-1        P  t-j-2 

20 
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Rearranging terms on the right-hand side. 

j-i-2 

= Xt-i " *    I      ^t-i-l-k + (l-^"1'1)^,^ - 
k=0 

t-j-1 

k=0 

Since   the  terms  in the above expression are mutually inde- 

pendent,   the variance of Y for large values of  t can be 

found as  follows: 

v(Y)   = a2 (l + a2    l=4(j-i-1)
+  d-^-i-l)^ «V/^n 

l-ßZ 1-/9       ' 

Substituting V(Y),  V(e     .) ,   andV(et_.)   into   (3-1), 

Covefe^e^.)   . £- (i+^  (L^C j-i-D^^j-i, 2 j    + 

L^-i-l)2   .     4     ^ 
1+1 

Hence,   the asymptotic correlation coefficient between e.    . 

and e.,       becomes 

= ^Ci + iTI (i-^-1-1^ d^-1)2) + 

i-i-l   2^ (l-a/s^-1 i)   J- 1 (3-2) 

21 
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Now consider the  following function, 

"■ = ^ C1 + IT, (i-/'2y-2- a^)2) + a-*?-1)2)-1 

Here y is a continuous variable.    Then 

l+fif   2(x$y .      a   .  2a2j92y .      a-\ -^[ f- log ß   + —-|— log ^J 

I- 

Rearranging the  terms, 

or 

dg'   _  /9y log/9   /"        Il+fiL«^  _      tt)9y log g 
dy 2 Va /9       y  " 2/9 

Now log  ß is negative;     therefore,   the  first derivative of 

P',  with respect  to y is positive.    Hence  p',   is  a monotonic 

increasing function of y.     Then positive  integral  values of 

y also lie on this  same continuous curve.     Actually,   p co- 

incides with p',  whenever y is a positive integer.     Hence  p 

is a monotonic increasing function of j-i.     The supremum of 

p is  found by letting  j-i  -*■  in   (3-2) : 

Sup  p = i±2(i  ^  (1+1)   +1)_  1 

=   0 

22 
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The minimum value of p is found by letting j-i = 1: 

= 1±5 Pmin = " C1+ IT? «l-D + d^)2) + (I"«)2) - 1 

= ^(1 + {l+ß)a + ^   - 1 

2   i 

The minimum value of fi  may be zero;  hence, p . mm = -0.5 

D.        DISTRIBUTION OF I e t-i1 

Rewriting I e     .|    as 

^-j=+^/^^^ 

The  term 

t-i 

"2'1+if?' 

has,   asymptotically,   the chi-square distribution with one 

degree of freedom [Ref.   3]. 

The  term 

+ ^ °'^ if?) 

23 
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has, asymptotically, the chi distribution.  Hence the mean 

value and variance of et_j is given by 

:( ' Vi I ) = ^2=5 7 ? (3-3) 

Vde^.l, -^a2 (1+If.) (3-4) 

An attempt to derive  the probability distribution of &   was 

made utilizing  the change-of-variable technique,  and by 

defining the  following  transformation: 

t-1 

A   -   .   }> | V, 
k=0 

Yl =    et-l 

Yt-r ei 

The  inverse  transformation becomes 

e    =  ± Y el       * ^t-l 

e2 =  ± Yt-2 

tz1 

et=  ±^-    l^^V) 
k=l 

This   transformation is obviously not one-to-one;     there 

are 2     sets in  the domain of the transformation  that are 

24 
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transformed into a single set in the image.  For all cases 

the absolute value of the Jacobian of transformation is 

one. The joint density of ti , Y-, ..., Y . then becomes 

2^ t-1 

f(yr yt-i'6) = l(3r±yv±y2'"-±(6-ct  Z^t^kO 
i=l k=l 

where g(x., x», ..., x ) is the p.d.f. of a multivariate 

normal distribution, and for every i one combination of the 
A 

signs is valid.  The distribution of A then naturally re- 

quires the (t-1)-fold integration of the joint density of 

A , Y,,..., Y. , . Although every parameter in the joint 

density is known, the labor required to arrive at an ex- 

plicitly-defined probability distribution makes the task 

very difficult.  Therefore,  the analysis concerning the 

dispersion of a was not completed because of the intracti- 

bility. 

25 
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IV.  MOMENTS OF A 

The next step of the analysis, then, was a simulation 

of the inventory system in order to gain an insight concern- 

ing the distribution of * .  It was seen that the reorder 

levels were fluctuating around the theoretical reorder lev- 

els, even after 1000 observations. This was related to the 

asymptotically finite variance of A as indicated by [Ref.?]. 

Although computer simulations implied variance of A  does 
A 

not vanish, the moments of A were derived in order that an 

analysis of the simulation results might be made. The mo- 

ments of A were derived for large values of t and are, 

therefore, asymptotic. 

A 
A.   MEAN VALUE OF A FOR LARGE VALUES OF t. 

A 

t-1 

I 
k=0 

-* IK-J'" e    H 0 o 

t-1 

E(A)   = a    ^ /^  E(  |et_k I   ) 

k=0 

v ff v  2-0 

B.       VARIANCE  OF  A 

t-1 

l> 
k=0 

t-2   ■:-! 

V(A) = a2   I /92kV(| *t_kl )+2a2 I      l ßi+icov(\ e^.l ,| e^.I ) 

i=0   j=i+l 
(4-1) 

26 
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Covde^.I, let_.|) = Ede^.e^.l) - E(| e^.l )E{| e^jl ) 

(4-2) 

Thus, substituting (3-3), (3-4), and (4-2) into (4-1), 

V(A) . tl «,2 _2 a _ _y  2 

t-2 t-1 

2a2 ^  l/»i+j E^e^.e^l) (4-3) 

i=0 j=^+l 

This last expression for V(A) requires the computation of 

E(|e  .e  1).  The following derivations concern 

«(let.lV:Jl). 

The joint distribution of e._. and «,._ » as indicated 

in Section III, is bivariate normal.  The parameters of 

this distribution are 

U1  =  E(et_i)   =  0 ^1 = ^ 71   +  1% 

M2  = E(et_j)   = 0 a2  = <T J1   +  l+/i 

and asymptotic p is given by (3-2).  For notational con- 

venience, let 

x - ct-i 

V ■ e^ 

27 
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Then  the  joint p.d.f.   is given  [Ref.   4] by 

f(x,y)   = 
_ a 

2 

2n a a x y X7 
_     CO     <    y     <    00 

-    00    <   y    <   oo 

where 

1   r x 
q = —2 

l-pz   ^ cr _2      *p a a    + „ 2 J x y      a 
y 

In that case 

E(!XYM  = 
r      c 

I xyl   f(x/y)dy dx 
*'  _00      '    _00 

= I'x' C"J y f(x'y)dy + j y f(x.y)dy) dx 
_00 _0D 

O O O 00 

xy f(x#y)dydx -   1 xy f(x#y)dydx 
-»    o — 00 _00 

I   xy f(x,y)dydx + 
o    -00 xy  f(x,y)dydx 

o    o 

However,   by  the definition of correlation coefficient. 

E(XY)   = 

o       o 
0        r> 

_oo        _ao 
xy  f(x,y)dydx +   ]        '   xy  f(x,y)dydx 

.00     .0 

-       o 

00 tx> 

O -00 

;   xy  f(x,y)dydx  + |  x y  f(x,y)dydx 
o       o 

=    a a   p x  y 

28 
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Thus, 

o  o ■D  a, 

E(|XY|) + E(XY) =2(1   I xy f(x.y)dydx + J J xy f(x,y)dydx) 
_G0    _C0 o o 

Making a change of variable in the first integral, let 

z = -x 

u = -y 

then 

o  o 

J   1 xyf(x,y)dydx = r  r zu f(-z,-u)dudz 
o o 

Since f(x,y)   =  f(-x,-y),   it follows   that 

P     f
0 

xyf(x,y)dydx = 
CO 00 

zu  f{z,   u)dudz 
o    o 

Thus 

E(IXYI)   +  E(XY)   = 4   !      [ xy  f(x,y)dydx (4-4) 
o    o 

The  right-hand side of   (4-4),  without  the coefficient 4,   is 

,   (v-b)2 

00       m 

f 

xy f (x, y)dydx = 
o    o 

2a '       » 2a 2(l-p2) 
xe I   ye x 

o ^2^ ' o -/l* a 7l-p2 
;— dydx 

(4-5) 

where b  is   the  conditional mean of Y given X,   and  is  given 

by   [Ref.   4], a 
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The conditional standard deviation of Y given X is given by 

c = cr Jl-p2 

Y 

Let 

Y - b = z , then 

2 2 
2(T..   oo    2c 

xe  x  /• Xe. 
zj^f 

dydx = 

00 (I      00 
'        X  /> xe 

o'V^Jb^7^ 
c 

(c2H-b)e    , - 
* <_ ■ ' dz dx 

(4-6) 

Integrating the inner term first: 

cz+b    2 e    dz 
-b fiif '2* 

e 2c + b (1 ♦(-I» 

where *(x)   is  the cumulative normal  distribution.     Sub- 

stituting  this expression into   (4-6), 

^2 

oo         2(7 
f xe 1 

J o a v^tr 
x 

2 2 
x ,     ,2,2 x 

2c2 

Ye dydx =       ex  e 
o c y2ir 

2 2 2a  ^       2c/ 

x 

o      a x 2»r 

2 

2a 
bx  e 

o      a ,/2ir 
x 

dx  - 

00 -u   */     b   v D  *(- —  )e c 

o    a v'2ff 
x 

2a 

dx 

dx + 

(4-7) 
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Denote the terms on the right-hand side as 1, 2,  and 3, 

respectively, and compute each one separately as follows: 

1.  SubstituLing values of c and b into 1, 

2 
X 

«2  2 P x 

2(l-p2)ax
2            .•ajl-p2* 

rlir     -i                   ' 
2na 

o                        X 
i             2wa o                      X 

2a W) 
dx 

 ü 
'—y 

«y.Vi-P 
2» - ffx<1^ > 

a a  (l-pz)I y x 
2» 

2.     Substituting  the value of b into 2, 

2 

2      2a 

—^2  dx = -i1 

o    ax J2* a V21?   o r 2a 
2 x    e dx 

a a p y x1^ 
2 

3.     Substituting  the values of c and b into 3« 

2 

HM^-fJ - o      ojl-p2-' 

2<7 x        a 

a Jin 
x 

x  p = 

a  p f00 _ 2a yH 2 x —^s    ]   x     e 
a  V2ff  "a 

y2ir - dt dx 

where P = 
Px 

a^l-p^ 

{4-8) 
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T" 

Let x/or    = y in   (4-8) ;     then   (4-8)   becomes 

VyP     ["2     -y/2 

SUP lv: 
2,.     -r     - V 

-»/2ff 
dt dy 

where r = py 

Integrating by parts. 

2 

du = y e dy 
^r   - T 

v  = y 
Jl* 

dt 

u    = - e 

2 
. iL. 

2 dv = 

-r r 
2 

-» N/2ir 
dt-y 

J^?. 
dy 

Eq.   (4-8)   becomes 

2 

K 

2                   t' 
. iL.  ,-r    - — 

2     i       e 1   ,. 

_ _£. 

0 0 /l-O2  v/2w 

2-s/l-p' 
dy + 

2 2 
P- _ Xl    r-r _  tl 

Kje      2 _e_i. dt  dy 

where 

K  = -^ 
a a p x y^ 

2F 
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The first term in the above equation is zero;  hence, 

(4-8) becomes 

2       t 
ffxV2(i-p2)     r -\ rr e"T 
-*-*  + K   e  z     -2  dt dy 

Jo      J-- 72? 
2m (4-9) 

Now considering the second term in (4-9), 

-  Yl ,-r -V _ ?— 

-» 72» 
dt dy = K2(c 

-r 

0.5 + 
o N/2» 

dt )dy 

(4-10) 

This result, due to the fact that y changes over positive 

numbers ana p La  between -.5 and zero, makes the argument 

of ♦ (•) positive.  Hence (4-10) becomes 

2       .2 
- _ ü_ «-r _ t_ 

e    I  e    dt dy 
o 

= M 

Let 

t = v y? 

y = 727 

then 

i r* M -  2  -J  2 
f"   -u c-3        2 

o v2u   o 
J  *-v ^ dv du 

where s = 
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i '-^r 

M  1 /IT^  1  f e~u f   V, TVH v2n ^  , 

^2fr o u   o n=0 

Since the aeries is uniformly convergent, it follows that 

1 
"" -u f-     /  .2n+l     n + "2 
00 09 

 '      ,''-110 /    . *""' 

2 A/
 
2  ^ir Jo ^ Z       ^ 2n+l n!(2n+l) 

du 

a» [ n -u , —, ^ 2n+l u e  du 
.1 /1 + _L.  )(_i)

n Izfii i_ _ 2 V2   Jit Ji ,,r^.2n+1 2n+1 ni 
n=0     (N/1-P') 

or. 

p  ^ 2n+l  • 

^ n=0     •  2n+l 

It was previously shown that p is always between -.5 and 0. 

Therefore, 

-1<-7^<1 
yi-p2 

Hence the series in the above expression is the expansion 

of Aictan ("/ - M / [Ref. 6] . 
-Jl-pr 
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Thus  Eq.   (4-10)   becomes 

+ -=   Arc tan A   / 1 
2  V  2 JT« 

(4-11) 

Substituting  (4-11)   into   (4-9)  yields 

2ff /Iff       ^ -^  ^   ^      y^ff Vl-P2 

Combining the results  for 1,   2,   and 3  into   (4-7),   and sub- 

stituting into   (4-5)   yields 

J    | xy f(x.y)dy dx =    Y ^ 
2 ^ 
  +     "Y      + 

o    o 

VVP2(1-P2)35      *jy„e        s    .~ir 

2ff --r^CWf^^-«^)) y2ff y2ff        yi-p2 

Thus, 

a a or a p      a rr 
E(IXYI)   = ^-^(l-p2)35 + -^ - -1/ Arctan   (-^=)) - 

1-P^ 

cap x y 

2a a 
f-^ ((l-p2)^ -  p    Arctan     H=;)) (4-12) 
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/ et 
But CTx and Of    are both equal  to c ^ 1 + rr—jj •     Hence, 

2*2(1 +TTä) 
E(|XY|)   =  ^-((l-oV - p Arctan   (-AH))    (4-13) 

* /l-p2 

Therefore, 

V(Ä) ,^a*^..^>    ^ 2a2 f f ^E(IVi   „ 
(1+^ )       »r(i -^ i=0 ^^ 

(4-14) 

where    E(|e.    .e._.|)   is given by  (4-13). 

A 

It is clear that to arrive at an expression for V(A) 

in the form of (4-14) many tedious and difficult calcula- 

tions must be made.     In fact,   in order  to arrive at an 

explicit value for V(A),   one must deal with an arctangent 
2 

term.     However,  because a    is common  to each term,   the 
A 9 

ratio V(A)/cr can be defined in terms of the known con- 

stants, and an approximate numerical answer can be found 

*  2 
for the ratio V(A)/a .  "fhe computer program in Appendix 

B computes the first two terms in (4-13) exactly, and the 

third term approximately.  Briefly, tbe computation of the 

third term was accomplished as follows: 

Eq. (4-13) is a bounded number for a given a and i^., 

It cannot be made greater than some finite number d, what- 

ever be the value of p  .     (Note that p is the only variable 

in (4-13) that depends on i and j, and it is bounded.) 
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Therefore, In the double summation of (4-14), for some 

finite value of i and j, higher order terms will get smaller 

than a specified number m which, in this case,  was chosen 

as 10~  .  The program was written so that the higher terms 

smaller than 10~  were not included in the result, and 

were subsequently dropped from the summation.  The upper 

bound of the error introduced by omitting the higher terms 

from the summation can be found as follows; 

E(IXY|) is bounded from above by 

,    4    ff  _2_ 
c = n{l+ß)     2 = 1+ß 

Since the summation is infinite. 

Jpper Bound of Error    =    2a2 ^ lo'10   £   £ /9i+j 

i=0 j=i+l 

4a2 10-10/9 

il-fi2)2 

Al. 
(1+/9) 

10 -10 

First,   this error  is additive and hence  is  added  to 

the  result.     Second, whatever be  the value of ß  ,   it is 

always much  smaller than one.     Hence,   the results contained 

in Table 1,   obtained by  the computer program  for various 

values  of a were almost exact. 

.'I 
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SMOOTHING · VARIANCE OF (A) ;a2 STANDARD 
CONSTANT DEVIATION OF (a)/a 

0.10 0.0204 0.1745 , 

0.15 0.0325 0.2173 

0.20 0.0461 0.2553 

0.25 0.0614 0.2905 

0.30 0.0785 0.3239 

0.35 0.0979 0.3561 

0.40 0.1196 0.3876 

0.45 0.1440 0.4187 

0.50 0.1716 0.4495 
; 

0.55 0.2026 0.4802 

0.80 0.4267 0.6341 

-
Table 1 : Variance of and Standard Deviation of ~ 

a 
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V.  COMPARISON OF EXPONEMTIAL SMOOTHING 

AND MLE BY COMPUTER SIMULATION 

For the reason explained previously, simulation was 

utilized to explore the parts of the model where theoreti- 

cal work was very difficult, and was also used to compare 

the exponential smoothing with MLE. The reason that MLE 

was chosen as the alternative procedure was because it has 

the property of an asymptotically vanishing variance. As 

indicated in [Ref. 8], the maximum likelihood estimator, 

a  ,   of a is given by the formula 

a = 

n .   -.2 (xi-x) I 
i=l 

n 

where x  is   the sample mean.     The statistic a has a chi- 

square distribution   [Ref.   3];     in  fact. 

2 ■ r<T> r E'5' - 7 ! - K  ^ A r(*fi) 
and 

-n, 

''''-^"2 O-ÄC^i:)2) 
From these formulas. 

Lim   E{a) = a 
n-00 

Lim ^„Vta) = 0 

r(^) 
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The computer program used for the simulation is included in 

Appendix A.  The simulation procedure and ensuing results 

are as follows: 

One thousand normally-distributed random numbers, re- 

presenting the demand, were generated by a pseudorandom 

number generator.  Various values of the parameters, U, (7, 

and it were used.  For every triplet of the parameters, re- 

order levels, risk levels attained, estimates of c and 

sample mean, and sample standard deviation of a and of the 

estimate of cr by MAD were computed.  The value of Ot was 0.2 

for all cases.  Table 2 presents the results achieved by 

the simulation.  As Table 2 indicates, the theoretical 

values of the standard deviations of both estimates of a 

were in complete agreement with the sample standard devia- 

tions of these same estimates.  The variance of of is higher 

than that of o  in every case.  The last two columns give 

the mean square error (MSE) of (f and a.     The MSE is given 
A 

by the variance plus the square of the bias.  Although a 

is biased for 1000 observations, its bias can be neglected. 

Tnen the MSE of a  and a  are determined by their variances. 

The comparison of the MSE columns are quite striking;  the 

A. A 
MSE  for  (T reaches  values  as  high  as  100   times   that  for a. 

By noting   the   similarity between   the   theoretical  values  and 

the simulation results,   the  effect on  reorder  levels was 

analyzed  as   follows: 

Computation of  reorder  levels was  made by utilizing 

Eq.   (3-3).     First,   the   theoretical  values of   the  reorder 
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levels were. computed for every fixed parame.ter triplet J~, 

a, ~ • Then the reorder levels, found by smoothing and 

MLE, wero compared with the theoretical values.. This com­

parison is summa·rized in Table 3. The value o1 in Table 4 

is the percentage (rounded off to the nearest integer) of 

1000 reorder levels found to be within one ·unit of the 

theoretical reorder level. The first column under each of 

the headings o1 , P50 , and P95 lists the results for smooth­

ed estimates: the second columQ under eac~ heading lists 

MLE. The quantity P50 represents the number of units about 

the theoretical reorder level within which SO per cent of 

the computed reorder levels were found: P95 is a similar 

computation for 95 per cent of the reorder levels. Table 

3 clearly illustrates the superiority of MLE compared to 

exponential smoothing. For ~he case· where smoothing was 

used to estimate a, reorder levels fll.lc t uated around the 

theoretical reorder level, causing either a n excessive 

purchase, or imposing mor.e risk than desired. The magni­

tudes of these fluctuations are clearly evident from the 

table · . 

Table 4 indi cates the risk levels attained by both 

methods at the lOOOth observation. For every predetermined 

parameter pair ~ and a, five different risk levels were 

selected. For every triplet, the theoretical reorder 

levels were compared with the computed reorder levels of 

both procedures. The actual risk levels attained were then 

computed. 
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PARAMETER 
TRIPLETS 

40,4, .01 
40,4,.11 
40,4,.50 

50,5,.01 
50,5,.11 
50,5,.50 

100.10,.01 
100,10,.11 
100,10,.50 

200,20,.01 
200,20,.11 
200,20,.50 

300,30,.01 
300,30,.11 
300,30,.50 

400,40 ~ .01 
400,40,.11 
400,40,.50 

500,50,.01 
500,50,.11 
500,50,.50 

600,60,.01 
600,60,.11 
600,60,.50 

700,70,.01 
700,70,.11 
700,70,.50 

800,80,.01 
800,80,.11 
800,80,.50 

01 P5o 

27 95 2 0 6 
41 94 2 0 4 
49 92 1 0 3 

22 96 3 0 8 
32 98 2 0 5 
46 99 1 0 3 

12 90 5 0 14 
18 94 4 0 11 
26 94 2 0 6 

5 71 10 1 29 
9 82 6 1 18 

10 84 5 1 14 

4 81 12 1 37 
7 74 8 1 24 
8 51 7 1 18 

2 15 20 3 53 
4 32 13 2 37 
5 75 10 1 27 

3 1 24 9 58 
3 4 15 4 38 
4 73 11 1 29 

1 12 27 3 77 
3 10 18 3 51 
3 1 14 4 42 

1 33 32 3 93 
3 35 20 2 63 
4 16 15 2 45 

1 0 37 12 98 
2 0 25 8 64 
3 32 18 2 54 

Table 3. Percentiles for Reorder 
Levels. 
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P95 

0 
0 
1 

0 
0 
0 

1 
0 
0 

6 
3 
2 

6 
3 
3 

10 
6 
3 

11 
6 
4 

17 
5 

12 

16 
10 
15 

27 
18 
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PARAMETER 
TRIPLETS Qi P50 P95 

900,90,.01 1 30 42 2 125  12 

900,90,.11 2 37 29 2 83  12 

1000,100,.01 1 25 45 3 126  12 

1000,100,.11 1 8 29 4 87   7 

1000,100,.50 1 6 25 2 68  13 

Table  3.(Continued)   -    Percentiles  for  Reorder 
Levels. 
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As Table 4  indicatea,   the riak levels attained by MLE 

are found to bt very cloae  to the deaired riak levela. 

However,     the riak levela of the smoothing method were 

found  to fluctuate over a wide range. 

Theae resulta, gained by the aimulation,   indicated 

that  the MLE technique ia   to be preferred over  the tech- 

nique of exponential smoothing.    However, due to the lack 

of theoretical anaiysia concerning the distribution of 

theae reaults are not conaidered conclusive.  However,   this 

analysis does indicate that whenever a conatant mean de- 

mand can be justified,   the MLE  technique ia  to be prefer- 

red  to the exponential smoothing technique. 
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APPENDIX A 

SIMULATION 

C IM   TH=   Fr'LLnWiNG   PROGRAM   TWO  MFTHODS   OF   fSTIMSTION  CF 
C MPÄN   A^4^   «TANDARD   DEVIATION  0^   A  STÄTIHNAPY   PROCFSS 
r ÜPF   CONTOASTFO   BY   USING   SIMULATTHN   TFCHNIOUFS 
C METHOD«  «RE: 
r l.TMF   FXPONENTIALLY   SMOOTHED  D^T4   IS   THE   E?TI4iTF  OF 
C wc^ig   4ND  THE   EXPONENTIALLY   SMOHTHEH   ABSOIUTE  VALUES 
C OF   EPROPS  AS  THE   ESTIMATE   OP   STANDARD  DEVMTION  TIMES 
C A   KNOWN  rONSTANT 
C 2.MAXIMO«  LIKELIHOOD   ESTIMÄTPS 
r ALSO   IN  THE   PROGRAM   THE   EFFECT«   ^F   BOTH   ESTIMATION 
C PROCEDUPFS  ON  THP   RISK   AND   OEDPOER   LEVELS   4RF  ^IMlJL/i- 
C TED   BY   SAMPLE   SIZE   1000 

niMFNSinN   "K^) tT(6) ,XL(6) ,XP(6),XM(6)XN(6).XK(6» 
lXl(POQ,5),X2aOOO,5» »01(1005) ,G2 (IG J5 ) , 7 (13 ) ,TX (61 
2"rY(6) ,filSKX(6» ,RISKY(6) 

C RISK   LEVEL« 

»M 1)=0.01 
e"<(2)=C.C5 
PK(3)=C.ll 
PK(ä)=C.25 
0^(5)=C.fC 
RFAD(5,I3n   (T(I)fI=l,R) 

131   F0PM^T(5F4.2) 
S=10.0 
XJ=C.C 
Y=IIRN(C) 
00   0?1   MT=ItI6 
XJ=XJ4-1.C 
DO   1   J=l,5 
DO   1   1=1,800 
XU I,JI-C.O 

1   X2'I,JJ=C.O 
?L=« 

C SMOOTHING   CONSTANT   ALPHA   IS   3.2 

BETA=C.P 
WPITE(ft,87S)   S,STPEX 

arc   COPMA T( •1,TA5,«MEAM=« .^ö.l .MX, ««.Pcvsi ^6,!) 
DELT^C.T^o + SORTfZ.C/h.O+BETA) )*«TDFX 

C rnMOllTSTION   OF   THE   THEORETICAL   "EOPDER   LEVELS 

DO   11   1=1,5 
11   M!)=   7L*ST0EX*T(n 

WRTTE(6f15G)   (7(1),1=1,5) 
IfC   POPM/m//TlÜ,«THEnRETICAL   REORDER   LEVEL«; • , SF 10. 37/I 

Val.f. 
SIJM=7L 
TOT=0.0 
B1=0,0 
«2=0.0 
B?=C,C 
«4=C.O 

C GENERATION  DF   NORMALLY  DISTIBUTED  NUMBERS   WHICH   HAVE 
C ME«N   «   ANO   «TANDARD   DEVIATION  «TDEX 
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00   21   1=1,lOCO 
Cm   NORMAL   (C.0,STnFX,X) 
V=ZL+X 

METHOD   1 

OELT*=0.2*ABS(S-Y)+C.8*DELTÄ 
S=C.2*Y*C.R*S 
^DEVxl.lPP^OELTÄ 
V=V+1.0 
SUM=SÜ»»*Y 

METHOD   2 

i 

X8/,R = SIIM/V 
T0T=T0T+?XRÄR-Y)**2 
STDEV^SOPTCrCT/CV-l.C)) 
r,l(I»«S0EV 
r,2(n = <:TDEV 
00   2C   J=l,5 
XL(JJ=S+S6CV*T(J» 
XP(.l)=XRySR + STDEV*T(J) 
XK(J)=Xl(J)-Z(J) 
TX( J) = (XL(J)-ZL)/STDEX 

RISKS  ATTAINED  PY   BOTH   METHODS 

20 

1C1 

1A7 
21 

RTSKX(J)=C.5-0.5*ERF(TX(J)*U,7C7) 
TY( J) = (XP(J)-ZU/STnFX 
RISKV(,n = C.5-0.c*EPF{TY(J)*0.7ü7) 
XM(J)SXF(J)-Z(J) 
N1 = XK( J| 
N2=XM( J) 
IMNl.LT.O)   M=-M1 
IP(N2.LT.0)   N2=-N2 
X1{N1*1,J)=XI(N1+1»J)+1.0 
X2f N2*1,J) = X2(IV2+1 ,J)+1.0 

IF(NS.LF.e9=>J   GO  TC   21 
WRTTE(6f ICH   (XLfMj.Msl ,51 ,(XP(M)fM=lf5) 
FORMAT(/Tl3.5F7.l,10Xf5F7.1) 
WOITF(6,147f    (RISKX(M) »Msrl.S) .(RISKY(M) fM=lf5) 
F0RMAT(/T2, «ACTUAL   RT SK • f5F7.3 »10X ,5F7.3) 
CONTINUF 

C COMPUTATION  CF   THE   OBSERVED  cRFOIJENCIE<   WITHIN THE   I 
C NEIGHBORHOOD   OF   ACTUAL   RFO^DER   LEVEL  WHERE   I'l»2,3,.. 

DO   26   J=1.5 
WRITF(6f105)   PK(J) 

ICC   F0RMAT(//TA5,,PISK=«fF5.2) 
Al=C.O 
A2=C.C 
1 = 1 

25   IF(Al.GE.l.O)   GO  TO  24 
Al=Xi{I.J)/lCOÜ.0+Al 

24   IP{A2,GE.1.0)   GO  TO   35 
A2=X2(I,J)/1CCO.O+A2 

35   WRITEföfl^J   I,A1,A2 
112  cHPMATtTio,»PERfENTILE   BETWEEN  THEO.   REOROCP   LEVEL 

1   ♦AND-SI«.2F10.4) 
1 = 1*1 
XA=M+A2 
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26  CONTINUF 
GOTO   25 

C SAMPLE   »»E^N  AND   STANDARD  DEVIATION   OF   BOTH   FSTlMATEf 
C OF   POPULATION  STANDARD   DEVTäTIÜN 

27 

28 

200 

2CI 

721 

722 
821 

DO   2^   1=1,1000 
81=r,l(n*ei 
B2»B2+ß2(II 
B1=RI/1C00.0 
82=R2/1CCC.0 
DO   2fl   1=1,1000 
B3=B3*CG1(I)-BI)*«2 
84=BA*fB2-G2Jin**2 
B3=SO9T(B3/I.C00.0) 
B4=S0RT(B4/1C00.0) 
WRITF(6f20C» 
PORMATJ/ZTAS,»SAMPLE   MEAN  AND  S.   OEV  OF   FSTIMATEO S. 
10EVM 
WRITF(ft,2Cl)   B1,83,B2,B4 
P0PM;T(//T4*;,MMAD) SSX, •MFAN«»,F7.2f«SDFV=',F7.2,15X, 

lMS2»,,fX,«MFAN='fF7.2,,SDEV=,,F7.2» 
S=10C.C 
IF(XJ-5,C)   721,721,722 
S=XJ*1C.0 
00   TO   821 
S=S*(XJ-5.0) 
CONTTNUE 
ST^P 
END 

SUBPnijTlNE   NORMAL   (EX,STDX,XI 
SUM=O.C 
DO   5   1=1,26 
R=URN( 1) 
SUM=SUM+P 
SUM=SUM/26.0 
X=STDX*17.61*(SUM-0,5I+EX 
RETURN 
FNO 
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APPENDIX  B 

NUMFOKM   COMPUTATION  OF   VÄOMNCF   OF A 

IMPLICIT   BP'L*«   (/-H,C-Z) 
RFT.S = #C 
HO   20   K=ltll 

SMOPTHIKr,   CGN«T*NT 

^ 

ALPH/i = l,-BETA 
A5UM=0.C 
WR ITC (6, HO)   «t pw A 

li:   FORM^TCZ/Tlüt ,<;MnCTHINr,   CONSTANT   = ' , P6 . 3 ) i 

fipcprxiw/« TT^   rP   THF   INFINITP   ?IJM 

I=M 
J = M 
TaÄ 

C=B 
4=C 

3   R=A 
PHP 

1A)* 
7N= 
7P = 

A SU 
I^f 

2   A=A 
n=D 
no 

1   COM 
WPI 

;? POP 
x=A 

1   «=1,303 
-1 

.0/(3. 
lDHA/( 
PTA*«( 

/P E ^A 
♦PETA 
= ( l.+BETA )/•-.♦ II.+ F*(1.ü-'V**2 + (1.*«}**2 ) + (!.-ALPHA* 
*2-l. 
OSQR^C 
-RH0/7I 
= T*(7N- 
M=/^SL'M^ 
SUM-l.i 
♦BETA 
*PPTif 
TO  3 
TINIJF 
TF(f,l( 
MATCTK 
LDHA/( 
.C /3.I' 

iy-l*(1.0+BFTA)) 
l.+BETA) 
UJ) 
J-1 ) 

l.-PHo**2) 
'N 
j-PHO*nATANf 7P) )*0 
'+CUM 
OP-IO)    1,1,2 

.02)   SUM 
C'LAST   SUM=«,F20.12) 
1. fftP TA )**2*2. 282/3.1'-! 

.41*RFTÄ/(1.0+RETA)**2 

VARIA NCF   O11 A 

VaPsX-7+2.0*(1.O-BfTA)**2*ACUM 

ST/MnAor  ncy/IA'inN pp a 

OFV^OSQPTf 3.1A1*(1. + BCTA) «VÄR) /2.L 
WPI TE ( *, 1C l)   VA R t SDE V 

Kl   P0RMAT(T10. »VAPIANCF   OP   MAT » ,F1 ^ .7 , 5X , • ST ANDART   DEVIA 
lTinM    •,F1,5.7) 

RPTA=BFTA-.05 
IPU.E0.1C)   BFTA=.2 

20  CONTINUE 
^Tnp 
END 
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