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ABSTRACT

Prediction of demand and setting reorder levels by ex-
ponential smoothing and mean absolute deviation is studied
for an inventory system. The relation between the stand-
ard deviation and mean absolute deviation of demand dis-
tribution is discussed. Asymptotic first and second
moments of the exponentially-smoothed forecast errors (MAD)
are derived. Results obtained from simulation of several
normal systems indicated that the smoothing technique is

inferior to the classical maximum likelihood estimation

me thod.
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Demand during the ith time period
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demand by maximum likelihood estimates
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I. INTRODUCTION

In recent vears the technique of forecasting time
series by exponential smoothing has received a considerable
amount of attention in the literature. As a forecasting
technique in inventory theory, it is particularly suited to
the situation where demands are time depcsndent and corre-
lated for much of its intuitive appeal rests on weighting
the past in such a way that the most distant past receives
less and less weight. When demands are not so related,
smoothing may or may not be a suitable forecasting tech-
nique. In particular, when demands are independent and
from a common distribution such as for the so-called fast
moving items, more classical methods like maximum likeli-
hood may be preferable because of the optimal properties
that are often demonstrable. Even in such circumstances,
however, expcnential smoothing is still a candidate for a
forecasting scheme and it may very well be that, while not
optimal , the difference in such criteria as stockout risk
for example, may ke negligible compared to optimal proce-
dures from a practical point of view, 1In that case, fore-
casting rules need not be changed for items differing in
demand pattern and a certain uniformity may thus be
achieved.

The main purpose of this thesis is to investigate a

model of an inventory system used by the Naval Supply
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System Command (NAV SUP) following Brown [Ref. 1]. The

model, as described by Ref. 1 and Ref, 5, is briefly as

follows:

Single exponential smoothing is an operator given in

Ref, 1 as
t-1
_ k t
S.(x) =« Zﬁ Xe y + B X, (1-1)
k=0

where X is the total demand of the ith period

& is the smoothing constant with 0 < & <1

B=1-u

Intuitively speaking the smoothing operator is a
m.thod of.fo;ecasting by weighting past demands in such a
way that the most recent demand is weighted by @ and the
remaining demands are given less and less weight as time
progresses.

The standard deviation, 0, of the demand distribution,
which is needed to set the reorder levels, is estimated by

the following three statistics:

th .
e, = Xt - St—l(x)’ t period forecast error,

t-1
A N t g
A=a Bklet_k| + B |e0| 11-2)
k=0
10




P

estimate of the mean absolute deviation of forecast errors,

and
ANENE

estimate of the standard deviation of the demand distribu-
tion.

This estimate of 0, as explained in Ref. 1, is based
on the mean absolute deviation (MAD), A, of the forecast
errors. Reorder levels, based on the predetermined risk
i level ¥ (defined to be the probability of running out of

stock), are found as follows: H
v = P(X > p + ko)

Here, U is the mean of X, and k is a constant which

can be determined from the probability tables for a given

risk level, §. The reorder level is then given by
Reorder Level = 4 + kO (1-3)

where k is the given above.

In the analysis this model was slightly modified be-
cause of the following considerations:
; . 1 XO, the demand asked from the inventory system
i before it is placed in operation, is zero. Although one
' may predict a number for a fictitious inventory, there will

be no observation for Xo‘ Hence eo is zero.

11
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2. o and ﬂN can be assumed to be approximately equal
to zero for values of N > 30, if 0.01 £ @ < 0.99, In view
of this, the modified form of (1-1) and (1-2) used in the

analysis was

t-1
k=0
t;}
B =a  Fle | (1-5)
k=0

In this model, not only is demand forecasted by expo-
nential smoothing but demand variability is es‘imated by
meana of exponentially smoothed absolute deviations. Such
estimates are in turn used to set safety levels for inven-
' tory order rules.

The model described above has been subjected to many
f criticisms. 2Zehna [Ref. 7] has indicated that the estimate
of standard deviation might be very poor depending upon the
underlying demand distribution. Based on the results ob-
tained by Zehna [Ref. 81, the analysis in this paper takes
on its starting point on investigation of the ratio A/o,
a key element in the estimation of ¢. It is quite evident
. that any weakness in the estimation procedure for ¢ affects
the reorder levels. An underestimate imposes higher risk
and an overestimate causes unnecessary expenditures. 1In
M particular, the resulting consequences could be catastroph-

ic in a military inventory system.

12
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It is quite evident that the probability distributions
of certain key statistics would be desirable in any exten-
tion of the existing analysis. Although some of the dis-
tributions required have been derived, the distribution of
A . @ most important statistic, could not be derived ex-
plicitly. However, the first and second asymptotic moments
of 3 were obtained, and it is shown that the asymptotic
variance of A is finite for the case where the demand has
a normal distribution. Therefore, the next step of the
analysis used simulation techniques to gain an insight into
the behavior of the distribution of A . and to observe the
effects of a finite variance. Reorder levels and their
dispersions along with the risk levels attained are analyz-
ed. The resulting errors due to the variability of safety
levels is examined in detail and the consequences are
evaluated from several points of view when demands are
normal. Moreover the results are compared to maximum like-
lihood methods establishing that a considerable difference
exists in the two methods. For items satisfying the demand
assumptions considered here, then, it is established quan-
titatively that exponential smoothing is derinitely inferior

to more classical methods.

13
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II. RATIC OF Ao

The mean absolute deviation of a probability distri-

bution is given by
A=E(x - ul) .

For a normal distribution the ratio A/¢c is the con-
stant /27; = 0.8. Brown [Ref. 1] in his work on smoothing
and prediction states,

"Hence, the mean absolute deviation is proportional to
the standard deviation, and the ratio may depend on the
form of the distribution p(t), but dependence is slight."

Now, as indicated by Zehna in [Ref. 7], this is not
always the case. For example, consider a Poisson distri-
bution with parameter A. A/0 is then a function of X\ and
it may be much smaller than 0.8 for small values of X
[(Ref.B8). However, there are some distributions where the
approximation 0.8 for the ratio A/0 is a good one under
certain conditions. The quote above is a rather general
statement which may be justified as follows:

Let X be a continuous random variable with probability
density function (p.d.f.) f(x) and let u and 1 be the upper
and lower limits, respectively, of the random variable X on

the real line. Then

u
b = E(IX - pl) = Ux-ul £ (x) dx

14
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M u u
A= - [xean+ u [ e + [ xeaax - u e
¢ t " b

u
A=2 J‘ F(x)dx
L

Here, F(x) is the cumulative distribution nf X,

Then

M

J F(x)dx
L

Sl
1
Qo

Let x

oy + . Then,

Q>

u
2 f F(oy +u)dy
i-p
(o4

Now suppose that F(x) is any distribution function such

that

F(x) -1
oich)

as

Qle
1}
8

where ®(z) is the cumulative standard normal distribution

function. Then for large values of u/o

F(oy + ) = &(y)

; 15
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Hence
o Y 21,2

Azzl' J’ 1 )&

== ——— e dz dy

o : _w2m

L1-p
(4]

Integrating by parts, the ratio then becomes A/c = J/2/7.
There are some distributions for which the above approxima-
tion holds; for example erlang and chi-square. But for
other distributions such a generalization may not apply.

For instance, let X have the following mass function

0.1 if x =0
p(x) = 0.8 if x =
0.1 if x = 2a
Then
A = 0.2a
02 = 1,2a
and

A/ = .182,

The error made by assuming A/0 = 0.8 is 0.613, or 77% '

which is not negligible.

16
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III. PROBABILITY DISTRIBUTION OF A

AND OTHER ASSOCIATED STATISTICS

Of central interest in the use of MAD is the ability
to estimate the demand variability. The variance of the
forecast error is always a function of the variance of de-
mand, 02. Therefore the MAD of the forecast errors is also
a function of 0. Since MAD is a linear function of the
standard deviation [Ref. 1] and if MAD of the forecast
errors is estimated, then 0 can be estimated as described
in [Ref. 1]. But in this estimation there are two points
to be considered.

1. Invariance Principle:

0 and A are related to each other by a constant,

i.e.,
o= cdl,

But this relation is in the population, and it does not
mean that the estimator of ¢ and A will enjoy the same
relationship necessarily. If these estimates mentioned
above were MLE, then the invariance principle does hold.
However, the definition of A indicates that this is not
the case.

2. The Constant of Proportionality of A/0:

If the underlying demand distribution is not
normal, then the assumption that the proportionality con-

stant is approximately 0.8 needs to be validated. For this

17
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case the current model can be applied by a slight modifica-

tion on &, that is, replacing /7/2 by the reciprocal of

the appropriate proportionality constant.
In this section we assume that demand is Normal (a,cz),
where a is a constant. Derivation of the probability dis-

tribution of A requires probability distribution for the

following statistics:
A, EXPONENTIAL SMOOTHING OF PAST OBSERVATIONS

(Estimate of the Expected Value of Demand)
t-1
St(x) = a Zpkxt-k
k=0

Since all X's are mutually independent, the
distribution of St(x) for large values of t is known to be

a normal distribution with mean a and variance 02(1 + igi)'

B. FORECAST ERRORS

et_1 has a normal distribution with the follow-

ing mean and variance:

g = 0 for large values of ¢t;

2, o

for large values of t.

18



C. JOINT DISTRIBUTION OF FORFCAST ERRORS

Let U and V be t-dimensional vectors defined

as
— - = .
et Ut
€t-1 U
vV = : U = 2
e U,y
e U
1 1
” 4 e N
where Ul' ——— Ut are constants. Let Y be defined as
Y = UtV
or
t
Y = Z‘Uiel
i=1

Substituting e; in terms of the x's,

£t i"—"_-2
Y= ) UG -e ) FOX )
i=1 k=0
or
t t 1-2
v= Jux -a ) U B X e
i=1 i=1 k=0

19
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Hence,
t;l i :1
= Z Xe-i (Ut-i -« Z g Ut-k‘>
i=0 k=0 .

Since the coefficients of the X's are constants and the X's
are mutually independent normal variables, it follows that
Y has a normal distribution. Hence by the definition of a
multivariate normal distribution [Ref. 2], the forecast
errors have a multivariat=2 normal distribution. The corre-
lation coefficient between e _; and et-j' where i < j, can
be computed as follows.

Let

Y= e_ . +e_ . where 1 < j < t,

v(Y) = V(et_i) + (V(et—j) + 2Cov(et_i, e ),

t-J
or
=1 - -
Covle,_jiep_y) =5 [VIY) - V(e )-V(e J) ] (3-1)
Rewriting in terms of the X's,
- - - afX e eeen. - @pititly
Y= Xy - %Ki - i af t-3
J-1x e X - aX - afX — e
el f—j-1 * t-J B=9)=dk gr t-j-2

20
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Rearranging terms on the right-hand side,

+ (1-a#j'i'l)x ~

t-i-1-k t-3

j-i-2
Y=xt_i-az #x
=0

k

t-3-1
j-i y
(1+8'7%) &« ) ﬁkxt-j-l-k
k=0

Since the terms in the above expression are mutually inde-

pendent, the variance of Y for large values of t can be

found as follows:

2(3-i-1) 0 2 34,2
v(Y) = 02 (1 + dz LL 7 + (1_aﬁj—1—1)2+ a !1+E ) \

182 L - &2

Substituting V(Y), V(et_i), and V(et_j) into (3-1),
Cove(et_i,e

t-3

SO )
R e D

Hence, the asymptotic correlation coefficient between e

and e . becomes
t-J

T i-i. 2
p= LB (1+ 5 0@ O g ™h)

SR 2~
(1-a7 7" H % )1

21
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(3-2)




Now consider the following function,

< ) 2 1.2~
=10, T3 (1824 (1) ?) | (1oapl, )-1

Here y is a continuous variable. Then

2y 2
%5=§<"£;2L1°9ﬂ+2sylogﬂ+232y1°9 )+

\'4 222y :
1—:‘5(7@%1095 +2—°‘—B-£Llogﬁ)

:

Rearranging the terms,

«  af’  (14B)a  a?(148) 87
UG- P IE SRC LR IS
or
_ B8 1098 (a (l+§)¢!) agY log B
&

28

Now log B ig negative; therefore, the first derivative of

RP', wWith respect to Y is positive. Hence P', is a monotonic

increasing function of Y. Then positive integral values of

Y also lie on this same continuous curve. Actually, p co-

incides with p’, whenever y is a positive integer Hence p

is a monotonic increasing function of j-i.

The supremum of

P is found by letting j-i == ip (3-2) :

1+8 3 c
Supp=T(1 +1—+ﬁ(l+l) +l)—l
=0
22
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The minimum value of p is found by letting j-i = 1:
P L. WO B 2 2
Prin = "2 (l'*' 1+8 ((1-1) + (1+8)°) + (1-a) >_ 1

= liﬂ (1 + (1+8) a +-52: -1

- _1;-_'-2 - l
2
The minimum value of B may be zero; hence, p = ~-0.5 .,

min
D. DISTRIBUTION OF Iet_il

Rewriting | e | as

t-i

The term

2
€ t-i

2 a
g’ (1+ l+B)

has, asymptotically, the chi-square distribution with one

degree of freedom [Ref. 31].

The term
T
+ > &
o (1+ 1—+E)

23
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has, asymptotically, the chi distribution. Hence the mean

value and variance of e, _. is given by
cof2 [ 2
E(le,; |) =0ojs%5 /% (3-3)
_r-2 2 o
Vile,; 1) =320 +5) (3-4)

An attempt to derive the probability distribution of A was

made utilizing the change-of-variable technique, and by

defining the following transformation:

t;l

A= a )Ble |
k=0

Y15 e

S S Gl

The inverse transformation becomes

SRSl S

e, = Y, ,

: tal

e = (8- ) FG )
k=1

This transformation is obviously not one-to-one;

are 2t sets in the domain of the transformation that are

24
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transformed into a single set in the image. For all cases
the absolute value of the Jacobian of transformation is

one. The joint density of A P ¢

1¢ **+¢ Y_, then becomes
v2_‘t t;‘l
r
f(yllo.oooyt_ll 6) = 2, g‘\iyl'iyZ'oooi(o—a 2-' pk(iyk)>
i=1 k=1

where g(xl, Xor eees xn) is the p.d.f. of a multivariate
normal distribution, and for every i one combination of the
signs is valid. The distribution of A then naturally re-
quires the (t-1)-fold integration of the joint density of
A ’ Yl,..., Yt~1 . Although every parameter in the joint
density is known, the labor required to arrive at an ex-
plicitly-defined probability distribution makes the task
very difficult., Therefore, the analysis concerning the
dispersion of 0 was not complieted because of the intracti-

bility.

25
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IV. MOMENTS OF A

The next step of the analysis, then, was a simulation
of the inventory system in order to gain an insight concern-
ing the distribution of X . It was seen that the reorder
levels were fluctuating around the theoretical reorder lev-
els, even after 1000 observations. This was rclated to the
asymptotically finite variance of A as indicated by [Ref.7].
Although computer simulaticns implied variance of A does
not vanish, the moments of 8\ were derived in order that an
analysis of the simulation results might be made. The mo-
ments of 3 were derived for large values of t and are,

therefore, asymptotic.

A
A. MEAN VALUE OF A FOR LARGE VALUES OF t.

1)
o

t-1
A-=a ZI ek | g e,
k=0

t-1
Ed) =a ) B E(le, |)
=0

k

(2 [ 2
S5l 7= @
A
B. VARIANCE OF A
t-1 ESolee
2 Z y) S 22 i+]
v(d) =« A V(|-t_k|)+2a ) B C°V(|et-il'|et-J )
k=0 i=0 j=i+l

(4-1)

26
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cov(le, .l, |et—j|) = E( e Iy - E(Iet-i|)E(|et-j|)

t-i t-i%t-j
(4-2)

Thus, substituting (3-3), (3-4), and (4-2) into (4-1),

vy -T2,2 2 @ 88 2,
L4 2-a m (l+ﬂ)2"

t-2 t-1
2 NN ai+]
22° ) ) B E(|et_iet_j|) (4-3)
i=0 j=i+l

This last expression for V( 8) requires the computation of

E(|e |). The following derivations concern

t-i€t-j
The joint distribution of e _. and &5 28 indicated

in Section III, is bivariate normal. The parameters of

this distribution are

o
ul—E(et_i)-O 01—0\/1 +l—+§
o
u2=E(et_j)=0 02=0Jl +lTﬂ

and asymptotic p is given by (3-2). For notational con-

venience, let

27
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Then the joint p.d.f. is given [Ref. 4] by

f(x,y) = e -® < x <=

_®<y<¢)

where

In that case

- -] ’@
E(| xyl) = j J | xyl £(x,y)dy dx
d ”O ®
= I | x| (-J y f(x,y)dy + X Y f(x.y)dy> dx
-0 - o)
o

L

(o] (o] @®
J xy f(x,y)dydx - J J xy f(x,y)dydx -
-0 -0 [o)

o ,0 © ®
InyﬂmW®u4 [fxyﬂ&w®¢c
lo) -0 (o] (o}

However, by the definition of correlation coefficient,

(o] (o] (o} =)
E(XY) = f I xy f(x,y)dydx + { f xy f(x,y)dydx +
-0 -C0 Y fo)
@ o -] @
[ [ay suyrayax + | [ xy exy)ayax
o - o o
= oxoyp

28




Thus,

(o] (o] @

E( xy|)+E(XY) = 2 ( ] [ xy f(x,y)dydx + J Joxy f(x,y)dydx>
-® oo

Makirg a change of variable in the first integral, let

(=] TD
|

o o

J J xy f(x,y)dydx = I zu f{-z,-u)dudz

Since f(x,y) = f£(-x,-y), it follows that

o C © o
[' J xyf(x,y)dydx = I [ zu f(z, u)dudz
-0 - o -o
Thus
E(l XY‘) + E(XY) = 4 J [ xy f£(x,y)dydx (4-4)
oo

The right-hand side of (4-4), without the coefficient 4, is

_ x? _ly-p)2
®© ® © 20°% o 20 2(1-132)
J Jwﬂxﬂ@&=]£i—} fye . dy dx
o ‘o o Ox/2m ‘o V27 0 J/1-p2

(4-5)
where b is the conditicnal mean of Y given X, and is given
by [Ref. 4], S

L = 5% px

29
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The conditional standard deviation of Y given X is given by

=0 Jl-p:
Y

Let

AN . then

c

- x? _iy=b)? - %
© 20x2 @ 2C2 - ] (o3 ®
f xe [ ye AT I xe X I (cz+b)e
o Ox/27 % c/27 - UxJZW b J2n

c

Integrating the inner term first:

2 b2
® - _Z_ - "—2
cz+b 2 c 2c b
e dz = — e +b (1 - &-=))
~b J27 J2nr ¢
c

where ®{x) is the cumulative normal distribution.

stituting this expression into (4-6),

Sub-

x2 2,2 x2
- 3 _ (y-b%) -
- 20 = 2 o 20
Xe & ve 2¢c cxX e
J dydx =
o chZW o c Jan "o o x 2m
2 x2
- X - 2
2 20
| dx - | ———— dx
o oxJZﬂ o vazﬂ
30
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Denote the terms on the right-hand side as 1, 2, and 3,

respectively, and compute each one separately as follows:

where

1. Substituting values of ¢ and b into 1,

2
X
2 2 2 S
X p"x 2
- X . 20 20-0%
® 20 2(1-p2)0x2 »a Ji-p’x e &
J cx_e dx =‘[ Yy A%
2n0 2vo
o (o] X
2 i'
a «/1-0 2
=T 2w 0, (1-07)
23
_ Sox(l-p )
= >%
2. Substituting the value of b into 2,
x2 2
20
© pg x2 ~ b4 o p - 3 2ax
L.~ Ty T PN
o o, 2n o 27 ‘o
G0 p
= X X_
2
3. Substituting the values of c and b into 3,
2
S
2
® X 20 o
) kaJl-pz ) oxJ§;7 Tx
x2
o.p pe ) ;;“3 " Ei
2
D ‘ x2 e X J £ = dt éx
Vi . © J2ﬂ
o “J2m "o -
X
- (4-8)
ole—p2
31
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o
|
1
Let x/ax =y in (4-8); then (4-8) becomes "
N
2
oo °° —y%/3 F " tT
X zp 2 Y /2 e
y e —— dt dy
J2n o -o. /20
[
where r = oy
;1-0
Integrating by parts, l
; £ i
_12- -r - 2
du=ye “ dy v=y[—e—-—dt
N GY )
2 t2 r2
- T T - 7
u = -e dv = j‘—e———dt:-ye 4 dy
-0 /2" /l_?
Eq. (4-8) becomes
2
2 t2 o Y
_Y sr - =5 = e _ a2
o 2~j°—£—-—£—dt -KJPYe 2~/1pd 1
o = +
8RRV 0 © J1-p0% J2n Y
2 2
(N AN hep SN -l 1
K e 2 \ e 2 J
. dt dy
o) -”m
where
g o p
K = XX
J2n
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The first term in the above equation is zero; hence,

(4-8) becomes i
N
[
2
2 £
oxaypz(l-pz)” = - T T2
- T + K I e at dy (4-9)
o) -o L fon
‘
Now considering the second term in (4-9), 1
2 2
2 t 2 t
o _ Y -I-T _L -r -T ‘
fe < { £ dt dy = 2<os+[ = dt) dy 4‘
o e J2n J2r {
(4-10)
This result, due to the fact that y changes over positive
numbers ana p 13 between -.5 and zero, makes the argument
of ® () positive. Hence (4-10) becomes
= “-Lz -r__tﬁ
1/r J’ 2 | 2 ]
2 J > + e | e dt dy =
o o
Let o
t=vﬁ
y = J2ud i
then 1
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S ' _.-ﬁv—— ’ g

1
- -] [+
—_— " - 2n+1 nh+ 3
med Tl | o Yogyn Lol by
‘ . > 2n+l ni(2n+l)
J27 Yo u £To (Jl_pz)
= 2n+l ‘l u e™ du
—_ n
Y e Yiey® L=0) 1 o
2 2 2n+l 2n+l ni
V2T n=o (W1-p°)
Or,
. . ) o 2n+1l S
— =
=2+ L Syt \ 1o
2 2 JEF 7
n=0 ¢ 2n+l

It was previously shown that p is always between -.5 and 0.

Therefore,

Hence the series in the above expression is the expansion

2]

of Arctan Cy%ng' (Ref. 6] .
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A T 1
Thus Eq. (4-10) becomes l

w

LTy L aroean (22 ey ‘

Substituting (4-11) into (4-9) yields

"x"y"z‘l"’z’% %P L (E, 2 -p
- + 4 (-5 J 3 + == Arctan ( ‘ ))

2n J2r J2n J1-p2

Combining the results for i, 2, and 3 into {4-7), and sub-

stituting into (4-5) yields

3
2 =5
. c o _(1-p7)2 )
J' J‘ xy f(x,y)dy dx = ) 4 ,2(" + xzy_ +
o ‘o
2, 2.k
o 0 0" (1-p7) e a p —— )
= -2y (1%L arctani=E))
27 JZ" [2"' /l_pz'
: Thus,
L0 0 o op g _
(1)l 4&"2vru(l""2);5 + = - 5 Arctan ( lpp2)> -
0,0.P
} 20 0
l = ‘—%"1 ((1-02)% - p Arctan ( =0 )> (4-12)
) e
b \/
»
3
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oA
But cx and oy are both equal to ¢ J 1+ 148 * Hence,

2 o
20°(1 + 1+8

) - 3
e(lxy]) = - ((1-6%% - p Arctan (T‘i_—?)) (4-13)
1-p

Therefore,

t-2 t-1

V(a) _ -2 02 20 _ 88 02+ 2&2 ﬂi+jE(| ey
ot - igo ]Z;_ﬂ i

(4-14)

where E(Ie |) is given by (4-13).

£-3%e-1

It is clear that to arrive at an expression for V(&)
in the form of (4-14) many tedious and difficult calcula-
tions must be made. In fact, in order to arrive at an
2xplicit value for V(ﬁ), one must deal with an arctangent
term. However, beca;se o? is common to each term, the
ratio V(&)/o2 can be defined in terms of the known con-
stants, and an approximate numerical answer can be found
for the ratio V(&)/oz. ‘‘ne computer program in Appendix
B computes the first two terms in (4-13) exactly, and the
third term approximately. Briefly, the computation of the
third term was accomplished as follows:

Eq. (4-13) is a bounded number for a given @& and B.
It cannot be made greater than some finite number d, what-
ever be the value of p . (Note that p is the only variable

in (4-13) that depends on i and j, and it is bounded.)
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Therefore, in the double summation of (4-14), for some
finite value of i and j, higher order terms will get smaller
than a specified number m which, in this case, was chosen

as 10-10. The program was written so that the higher terms

smaller than 1010

were not included in the result, and
were subsequently dropped from the summation. The upper
bound of the error introduced by omitting the higher terms
from the summation can be found as follows:

E(IXYl) is bounded from above by

a=_4 _7_ 2
n(1+8) 2 1+8

Since the summation is infinite,

[--] w
Upper Bound of Error = 202 I%ﬁ 10710 z 2:51+3
i=0 j=i+l

T -2

48 1010
2
(1+8)

First, this error is additive and hence is added to
the result. Second, whatever be the value of 8 , it is
always much smaller than one. Hence, the results contained
in Table 1, obtained by the computer program for various

values of & were almost exact.
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VARIANCE OF () /0

SMOOTHING STANDARD i
CONSTANT DEVIATION OF (0)/c
0.10 0.0204 0.1745.
0.15 0.0325 0.2173
0.20 0.0461 0.2553
0.25 0.0614 0.2905
0.30 0.0785 0.3239
0.35 0.0979 0.3561
0.40 0.1196 0.3876
0.45 0.1440 0.4187
0.50 0.1716 0.4495
0.55 0.2026 0.4802
0.80 0.4267 0.6341
A ~
Table 1. Variance of i%f and Standard Deviation of % :
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V. COMPARISON OF EXPONENTIAL SMOOTHING

AND MLE BY COMPUTER SIMULATION

For the reason explained previously, simulation was
utilized to explore the parts of the model where theoreti-
cal work was very difficult, and was also used to compare
the exponential smoothing with MLE. The reason that MLE
was chosen as the alternative procedure was because it has
the property of an asymptotically vanishing variance. As
indicated in (Ref. 8], the maximum likelihood estimator,

o , of 0 is given by the formula

n =2
n (x; -x)
S Z_l_
n
i=1

where X is the sample mean. The statistic & has a chi-

square distribution [Ref. 3]; in fact,

; -~ (&
A 1 2 2
E(o) = 1 - = (o]
and
A p-l 2 WALLIES:
V(o) = == ( 1 - o1 ( I‘("'l)> )
2

From these formulas,

Lim E(0) = 0o
n-‘@
len_.@V(a) =0
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The computer program used for the simulation is included in
Appendix A. The sinulation procedure and ensui:j results
are as follows:

One thousand normally-distributed random numbers, re-
presenting the demand, were generated by a pseudorandom
number generator. Various values of the parameters, 4, O,
and ¥ were used. For every triplet of the parameters, re-
order levels, risk levels attained, estimates of ¢ and
sample mean, and sample standard deviation of 0 and of the
estimate of 0 by MAD were computed. The value of & was 0.2
for all cases., Table 2 presents the results achieved by
the simulation. As Table 2 indicates, the theoretical
values of the standard deviations of both estimates of ¢
were in complete agreement with the sample standard devia-
tions of these same estimates. The variance of & is higher
than that of G in every case. The last two columns give
the mean square error (MSE) of G and 0. The MSE is given
by the variance plus the square of the bias. Although 8
is biased for 1000 observations, its bias can be neglected.
Then the MSE of 0 and G are determined by their variances.
The comparison of the MSE columns are quite striking; the
MSE for @ reaches values as high as 100 times that for 3.
By noting the similarity between the theoretical values and
the simulation results, the effect on reorder levels was
analyzed as follows:

Computation of reorder levels was made by utilizing

Eq. (3-3). First, the theoretical values of the reorder
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levels were computed for every fixed parameter triplet M,
0, ¥ . Then the reorder levels, found by smoothing and
MLE, werc compared with the theoretical values. This com-
parison is summarized in Table 3. The value Q1 in Table 4
is the percentage (rounded off to the nearest integer) of
1000 reorder levels found to be within one unit of the
theoretical reorder level. The first column under each of
the headings Ql' PSO' and P95 lists the results for smooth-
ed estimates; the second column under each heading lists
MLE. The quantity P50 represents the number of units about
the theoretical reorder level within which 50 per cent of
the computed reorder levels were found; P95 is a similar
computation for 95 per cent of the reorder levels. Table
3 clearly illustrates the superiority of MLE compared to
exponential smoothing. For the case where smoothing was
used to estimate 0, reorder levels fluctuated around the
theoretical reorder level, causing either an excessive
purchase, or imposing more risk than desired. The magni-
tudes of these fluctuations are clearly evident from the
table

Table 4 indicates the risk levels attained by both
methods at the 1000th observation. For every predetermined
parameter pair g and 0, five different risk levels were
selected. For every triplet, the theoretical reorder
levels were compared with the computed reorder levels of
both procedures. The actual risk levels attained were then

computed.
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PARAMETER Q P
TRIPLETS 1 50 95
40,4, .01 27 95 2 0 5 0
40,4, .11 41 94 2 0 4 0
40,4, .50 49 92 1 0 3 1
50,5, .01 22 96 3 0 8 0
50,5, .11 32 98 2 0 5 0
50,5, .50 46 99 1 0 3 0
100.10, .01 12 90 5 0 14 1
100,10, .11 18 94 4 0 11 0
100,10, .50 26 94 2 0 6 0
200,20, .01 5 71 |10 1 29 6
200,20, .11 9 82 6 1 18 3
200,20, .50 10 84 5 1 14 2
300,30, .01 4 81 |12 1 37 6
300,30, .11 7 74 8 1 24 3
300, 30, .50 8 51 7 1 18 3
400,40, .01 2 15 |20 3 53 10
400,40, .11 4 32 13 2 37 6
400,40, .50 5 75 |10 1 27 3
500,50, .01 3 1 |24 9 58 11
500,50, .11 3 a4 |15 4 38 6
500,50, .50 4 73 |11 1 29 4
600,60, .01 1 12 |27 3 77 17
600,60, .11 3 10 |18 3 51 5
600,60, .50 3 1 |14 4 42 12
700,70, .01 1 33 |32 3 93 16
700,70, .11 3 35 |20 2 63 10
700,70, .50 4 16 |15 2 45 15
800,80, .01 1 o |37 12 98 27
800,80, .11 2 o |25 8 64 18
800, 80, . 50 3 32 18 2 54 9

Table 3.

Percentiles for Reorder
Levels.
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PARAMETER Q P P
TRIPLETS 1 50 95
900,90,.01 30 | 42 125 12
900,90, .11 37 | 29 83 12
1000,100,.01 25 | 45 126 12
1000,100,.11 81 29 87 7
1000,100, .50 6 | 25 68 13
Table 3.(Continued) - Percentiles for Reorder
Levcls,
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As Table 4 indicates, the risk levels attained by MLE
are found to be very close to the desired risk levels.
However, the risk levels of the smoothing method were
found to fluctuate over a wide range.

These results, gained by the simulation, indicated
that the MLE technique is to be preferred over the tech-
nique of exponential smoothing. However, due to the lack
of theu:etical analysis concerning the distribution of
these results are not considered conclusive. However, this
analysis does indicate that whenever a constant mean de-
mand can be justified, the MLE technique is to be prefer-

red to the exponential smoothing technique.
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APPENDIX B
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