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ABSTRACT 

An analysis is presented of MHD channel flow with Hall effect 
and variable fluid properties.    Because of the highly nonlinear nature 
of the governing conservation equations,  a straight numerical analysis 
of the equations is followed based on the implicit finite difference 
method.   The analysis considers the two-dimensional flow in the elec- 
tric field plane in which the channel walls are electrode surfaces. 
Because of the presence of the Hall effect, a transverse pressure 
gradient is induced in the flow which necessitates the use of two equa- 
tions of motion in the longitudinal and transverse directions.   The 
analysis model employed is the so-called slender channel model in 
which the boundary layer forms of the equations of motion are applied 
across the entire channel width.   Because the boundary layer equa- 
tions are parabolic,  it is possible to integrate the equations in a 
forward marching manner by starting with initially prescribed veloc- 
ity and enthalpy profiles at the channel entrance.    Numerical results 
are presented for the velocity and enthalpy profile development from 
initially assumed profiles of velocity and enthalpy at the channel en- 
trance.   Initial velocity and enthalpy profiles which are typical of 
both laminar and turbulent flows are considered.   In addition to the 
calculation of profiles, the voltage drop across electrodes is cal- 
culated by integration of the conductivity profile across the channel. 

in 
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NOMENCLATURE 

B Applied magnetic field z 

E ,E Electric field components x y 

f,g Functions illustrating finite difference formulae, 
Eqs. (25)-(31) 

h Enthalpy 

h ,,h „  Enthalpy at lower and upper walls, respectively 

Ha Hartmann number, Eq. (13) 

Ix Total electric current, Eq. (20) 

J
Y»
J
W Current density components x y 
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Re Reynolds number, Eq. (13) 

u,v Velocity components 

w Channel height, Figure 1 

x,y Space coordinate, Figure 1 

7 Heat capacity ratio 

r\ Dimension less space coordinate, Eq. (11) 

p. Viscosity 

p Density 

a Electrical conductivity 

a. a 

1 + (o)r)2 

4> Electrical potential,  Eq.   (8) 

$ir>3\r Dimensionless electric field,   Eq.   (13) x     y 

u>r Hall parameter 
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SECTION I 

INTRODUCTION 

Two promising areas of engineering applications of 
magnetohydrodynamics (MHD) have been defined in recent years, 
namely MHD power generation and MHD acceleration.  The accel- 
erator application has received serious study for several 
years as a technique for augmenting the performance of aero- 
dynamic test facilities.  The principal advantages of an 
MHD augmented test facility such as a shock tunnel are: 
(1) energy is added to a moving stream resulting in test 
section flows with stagnation pressure and temperature 
which would exceed those achievable in a reservoir because 
of material limitations, and (2) the energy is added as 
directed kinetic energy rather than thermal energy. 

In order to design MHD augmented accelerators with 
specified performance characteristics, the prediction of the 
gas conditions in the accelerating and test regions is essen- 
tial.  Because of the extremely complex physical phenomena 
occurring in MHD devices, it is safe to say that at this 
stage of development, a complete theoretical description of 
the flow is not possible.  Because of questions raised re- 
cently concerning the role of instabilities on the perfor- 
mance of MHD devices, it is at best an open question as to 
whether the traditional analytical tools of the fluid mech- 
anician, namely the continuum partial differential conser- 
vation equations coupled with the electromagnetic field 
equations, are adequate to describe the flow in principle. 
In addition to the question of instabilities, other physical 
phenomena which make the analysis of MHD flows difficult are 
(1) the variation of thermodynamic and transport properties 
resulting in a strong coupling between the fluid mechanics 
and electromagnetic equations, (2) the two dimensionality of 
most flows of practical interest (small aspect ratio internal 
channel flows are actually three-dimensional), (3) the high 
nonlinearity of the governing equations, and (4) the 
possibility of turbulence occurring for sufficiently high 
Reynolds numbers. 

Any analytical investigation of such complex physical 
phenomena as MHD flows requires the adoption of models which 
do not include all of the physical phenomena involved.  For 
an analytical model to be useful, it must retain the features 
of those phenomena one wishes to focus attention on.  For 
example, a knowledge of the rate of growth of wall boundary 
layers in MHD acceleration devices is important in evaluating 
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the performance of the device as well as determining the ex- 
tent of the flow with reasonably uniform properties which 
could be used as a wind tunnel test flow. 

The boundary layer equations themselves can be considered 
as an analytical model which focuses attention on that region 
of the flow in which the inertia and viscous terms are of 
equal importance.  Given the boundary layer equations, there 
are then available several approaches for extracting the in- 
formation on the boundary layer flow region contained in the 
equations.  These methods include similarity solutions, in- 
tegral methods, finite difference methods, and linearization 
methods of the Oseen approximation type.  Still another method 
which has recently been applied by the authors (Ref. 1) to 
MHD boundary layer flows in internal channels is the slender 
channel model.  In this method, the internal channel flow is 
not divided into a boundary layer - core flow region in 
which different equations are to be applied.  Instead, the 
boundary layer form of the equations of motion are applied 
across the entire channel width with boundary conditions 
being applied at the channel walls.  This method was also 
recently applied by Kitowski (Ref. 2) to analyze MHD flow 
in the entrance region of a parallel plate channel. 

In the present investigation, the slender channel model 
is used to analyze MHD flow in the E-plane (the plane con- 
taining the electric field vector) of a two-dimensional 
channel including Hall effect.  The channel walls thus 
correspond to the electrode walls of an MHD generator or 
accelerator. The emphasis is placed on the acceleration 
mode of operation in the present study. 
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SECTION II 

PREVIOUS WORK 

The interaction of an electrically conducting fluid 
media with applied electric and magnetic fields has been 
the subject of intense study over the past several years. 
A brief summary will be given of those investigations 
most pertinent to the present study. 

The original theoretical investigation of magneto- 
hydrodynamic channel flow was conducted by Hartmann (3). 
This study was concerned with the fully developed flow 
of an incompressible fluid between parallel plane walls 
with a uniform magnetic field applied perpendicular to 
the flow. This is, of course, the basic Faraday generator 
or pump geometry and a number of authors have used this 
model to study in detail the effect of various modifications 
of the Hartmann problem.  Eraslan (4) and Young (5) have 
examined the effect of variable electrical profiles. 
Snyder (6) used an Oseen linearization technique to ex- 
plore the development of the flow in the entrance region 
of a parallel plate channel. 

The equations for compressible, inviscid MHD channel 
flow were formulated by Resler and Sears (Ref. 7) using a 
quasi-one-dimensional approximation.  Since the quasi-one- 
dimensional model involves more unknowns than equations, 
the streamwise variation of some of the independent varia- 
bles must be specified before a solution can be obtained. 
Special cases for prescribed variations of electric field, 
magnetic field, channel area, etc. have been calculated. 

The results of the quasi-one-dimensional analysis 
of compressible MHD channel flow provides free stream 
conditions that can be used in an analysis of the viscous 
layer adjacent to the channel walls. 

The boundary layer flow adjacent to the electrodes 
in an MHD accelerator was studied by Kerrebrock (8). 
This investigation was concerned with compressible boundary 
layer flow and the effect of variable fluid properties was 
included.  Similar solutions were obtained for a certain 
class of accelerator flows with constant free stream 
temperature.  The solution showed that the heat transfer 
rates were much greater than would be the case for non-MHD 
flow. 
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The slender channel model differs from the usual 
boundary layer approach in that the boundary layer equations 
are applied across the entire channel rather than just in 
the vicinity of the wall.  In this method the streamwise 
variation of the velocity, pressure, and temperature are 
given by the solution of the equations rather than by a 
separate inviscid analysis.  This technique was first 
applied by Williams (9) to ordinary compressible, viscous 
flow in two-dimensional and axisymmetric slender channels. 

The method was extended by Sonnerup (10) to MHD 
flows.  Sonnerup investigated the two-dimensional, fully 
developed flow of a compressible, electrically conducting 
fluid in a slowly diverging channel.  The confining 
boundaries of the channel were the electrode surfaces of 
an MHD generator.  By a proper choice of channel geometry, 
the electromagnetic forces and the pressure forces were 
made to cancel.  This, in turn, permitted the momentum 
equation to be uncoupled from the energy equation and re- 
duced to an ordinary differential equation.  An exact 
solution to this equation was obtained for the self- 
similar velocity profiles.  The corresponding temperature 
profiles were generally non-similar. 

Kubin and Smolin (11) investigated the two-dimensional, 
isothermal flow of an electrically conducting fluid in 
the presence of crossed electric and magnetic fields. 
The form of the governing equations was very similar to 
those of Williams (9).  By tailoring the electric and 
magnetic field distributions, self similar velocity solu- 
tions were obtained. 

The velocity and temperature distribution for magneto- 
gasdynamic acceleration flow was examined by Snyder and 
Maus (1).  The governing equations were formulated in polar 
coordinates for steady, two-dimensional, laminar flow 
between slightly diverging insulator walls. The assumption 
was made that the dependent variables could be expressed 
in a separable form. This allowed the governing partial 
differential equations to be reduced to a pair of coupled, 
non-linear, ordinary differential equations.  These 
equations were then integrated numerically to yield the 
velocity and temperature profiles.  For certain ranges of 
the electromagnetic and gas dynamic parameters, the 
temperature distribution exhibited a marked excess near 
the wall. This was caused by the large joule heating and 
viscous dissipation effects in the region. 

Kitowski (2) investigated the two-dimensional, com- 
pressible MHD flow in the entrance region of a parallel 
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plate channel.  The slender channel model was used and the 
boundary layer equations were written in an implicit finite 
difference form developed by Flugge-Lotz and Blottner (12). 
The analysis was concerned with the flow between insulating 
walls and included the variation of transport properties. 
The finite difference equations were solved numerically to 
yield velocity and static enthalpy profiles along the 
channel. 

None of the studies discussed to this point have in- 
cluded the Hall effect where an electrical current component 
is induced in the streamwise direction due to the electron 
velocity.  This Hall current results in a much tighter 
coupling of the basic governing equations and thus com- 
plicates considerably the mathematical problem associated 
with the MHD flow. 

The previous investigations on MHD flow including Hall 
effects can generally be classified into two categories 
according to whether the main emphasis of the study is on 
the electrodynamics or the fluid mechanics.  In the former 
approach the gas dynamical variables are considered 
apecified and solutions are sought for the electric po- 
tential and current density distributions.  These variables 
are governed by elliptic partial differential equations 
derivable from Maxwell's equations and the generalized 
Ohm's law.  On the other hand, in the latter approach, 
solutions are sought for the fluid mechanical equations 
with the electrodynamic variables specified.  It is the 
latter approach that is taken in the present investigation. 

The studies of Celinski and Fischer (13) and Oliver 
and Mitchner (14) are examples of analyses where the 
electrodynamics of the MHD flow is emphasized.  Celinski 
and Fischer examined the effect of finite size electrodes 
on the distribution of electrical parameters in MHD gene- 
rators for a wide range of Hall parameter CUT.  The gas 
dynamical quantities, velocity and temperature were assumed 
constant throughout the channel. Numerical solutions were 
obtained to the partial differential equations describing 
the electric potential and current density distributions. 
The analysis of Oliver and Mitchner is somewhat similar 
to that of Celinski and Fischer except that the variation 
of the electrical conductivity was included. 

Thw work of Sherman and Sutton (15) was one of the 
earliest fluid dynamic studies of MHD channel flow in- 
cluding Hall effects. This investigation dealt with the 
fully developed, incompressible flow between parallel 
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insulating wall, i.e., Hartmann flow with Hall effects. 
The results of this study showed that the streamwise 
velocity distribution changed from the characteristic 
Hartmann profile to a Ppissuelle-like profile with in- 
creasing Hall parameter. 

Snyder and Eraslan (16) studied the MHD flow of an 
incompressible fluid in the entrance region of a parallel 
plate channel including Hall effects. This analysis was 
an extension of Ref. 6 and used the same linearizing 
technique employed in that study. The results of this in- 
vestigation showed that the entrance length increased with 
increasing values of the Hall parameter, (&z. 

Hale and Kerrebrock (17) were the first to consider 
both compressibility and the Hall effect in treating the 
boundary layer on the insulating wall of an MHD accelerator. 
Two models for the electrical conductivity variation were 
employed:  an equilibrium model where the degree of ioni- 
zation is determined by the local gas temperature and 
pressure, and a non-equilibrium model in which the elec- 
trical conductivity is strongly coupled to the electric 
field strength. 

It was found that similar solutions could be obtained 
only for very restrictive conditions and local similarity 
was assumed. The partial differential equations of motion 
were thus reduced to ordinary differential equations. 
Some numerical difficulty was encountered in dealing with 
the resulting two point boundary value problem and for 
certain cases satisfactory convergence at the edge of the 
boundary layer was not obtained. 

The results obtained by Hale and Kerrebrock indicated 
that the general effect of increasing the Hall parameter 
was to increase the average current near the wall leading 
to a thinner boundary layer, increased heat transfer, 
shear stress, and electrical losses. 

Hunter (18) in a recent study, analyzed the boundary 
layer on the insulating walls of an MHD generator including 
Hall effects. The governing equations were written in 
modified Levy-Lees variables and non-similar solutions 
were obtained by numerically integrating the equations 
using an implicit finite difference method.  The effect 
of the boundary layer growth on the inviscid flow field 
was accounted for through a displacement thickness correction, 

The results of this investigation showed that the Hall 
effect has a rather pronounced influence on the flow in MHD 
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generators.  It was found that the Hall current tends to 
cause boundary layer separation further upstream for the 
decelerating flow in a constant area generator.  The energy 
dissipation due to joule heating was underpredicted when 
the Hall effect was not included. 
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SECTION III 

FORMULATION OF THE PROBLEM 

3.1  GOVERNING EQUATIONS 

The geometry for the two-dimensional MHD flow in the 
E-plane is shown in Figure 1.  The channel dimension in the 
z-direction is assumed to be infinite thus reducing the 
problem to a two-dimensional flow.  The channel height, W(x), 
is assumed to be a specified function of x, and the magnetic 
field, Bz, is constant and is in the z-direction. 

The assumption of small magnetic Reynolds number is made 
which implies that the equations of motion and the magnetic 
field equation are uncoupled.  Thus the induced magnetic 
field effect on the equations of motion is neglected.  Using 
the slender channel assumption means that the complete equa- 
tions of motion, which are elliptic, are reduced to parabolic, 
boundary layer form.  This means that the equations may be 
integrated in a marching fashion by starting with initial 
profiles. 

With the inclusion of the Hall effect in the equations 
of motion, the transverse equation of motion must be in- 
cluded because of the Hall current induced transverse 
pressure gradient.  The governing equations may be written 
as follows. 

p*(u* aai + v* äa!) = - at + JL (M* Sal) + j*B*        (1) 
ox*     dy*     ox*  ay*    oy*    y z 

p*(u* £v*_ + v* *£, m _  ÖP*_ + J_  * dv* _ J+B+ 
dx*    oy*    oy*  dy*    oy*    x z     (2) 

p*(u* Ml + v* öh*_) m ^  *P*_ + _ä_ (U* äh*_} 
ox*     oy*      ox*  oy* Pr oy * 

T *2 J. T *2 
,*,du*x2 . Jx  + Jy (3) + ^{^-r + 

oy*        a* 
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ö(p*u*) + ö(p*v*) =  0 (4) 

öx*      ay* 

Equations (l)-(4) are respectively the two equations of 
motion, the energy equation, the continuity equation.  These 
conservation equations must be supplemented with an equation 
of state, Ohm's law for the electric current, and a speci- 
fication of viscosity, |j,*, conductivity, a*, Hall parameter, 
ü>T, and Prandtl number, Pr, as a function of pressure and 
temperature.  In the present analysis, the Prandtl number 
and the heat capacity ratio, 7, will be taken as constant. 
An ideal gas equation of state will be assumed. 

The equation of state and the components of electric 
current from Ohm's law can be written as 

P* = (2-i)p*h* (5) 
7 

J** = 1 ^ (IT)2 E(E- ■ '^P + B>*  + ^U*)]       (6) 

V =  2l_ [(E* + oyrE*) + B*(üyrv* - u*>]      (7) 
y 1 + (ayr)^   y ■    x    z 

The electric current components given by Eqns. (6) and (7) 
introduce the electric field components as additional un- 
knowns.  An equation for the electric field potential can 
be derived from the relations 

(8) 

O) 

Ex* = 
o$*                E * _        63>* 
ox*       '         y             dy* 

dJ *      dJ * 
x* + -V - 0 

ox*        oy* 
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Equation (9) is the conservation of electric charge equation 
(current continuity).  Combining Eqns. (6)-(9) gives 

*     *~* 
oV  aV _  d£. rötOT + i. ^o_ + (gr ^o, 
dx*2 + dy*2  " ox* L

öy*  a* Ox*  a* oy* 

*r ä  /„* , ,.^-„*^ _> ^ + B *[-2- (v* + cjyru*) + -2- (aarrv* - u*)] 
z dx* dy* 

da* 
* .  *\ _1 o 

o 
+ B *(V* + CDTU*) 

Z CT * dX* 

»•: + Bz-farv* -„•)__ (w) 

O 

where 

r,    *    -      g* 

°   1 + (ayr)^ 

Equation (10) is an elliptic equation describing the electric 
field potential and use of this equation requires the speci- 
fication of boundary conditions for $* or its normal deri- 
vative on a closed boundary. The terms on the right side of 
Eqn. (10) involve the fluid properties and thus there is a 
strong coupling of the electric field equations and the fluid 
mechanics equations.  It is seen that the right side of Eqn. 
(10) becomes zero only if all fluid properties including 
velocity are constant.  In this case, the equation reduces 
to Laplace's equation which is still elliptic.  In order to 
solve the fluid mechanics and electric field equations simul- 
taneously, an iteration procedure must be used in which a 
tentative solution to the fluid mechanics equations is ob- 
tained based on an assumed electric field distribution. 
From this solution, the fluid property dependent terms in 
Eqn. (10) may be evaluated and a solution for the electric 
field potential obtained.  With this corrected solution to 

10 
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the electric field, the fluid mechanics equations can then 
be solved again with the process being repeated as many 
times as desired. 

Such an iteration procedure would be very time con- 
suming, and was not used in the present investigation.  An 
approximate method was used which will be discussed in detail 
later. 

To account for the divergence of the channel walls as 
illustrated in Figure 1, a dimensionless transverse coordi- 
nate T) is defined as 

v 
TJ = —Z  (11) 

w*(x*) 

Transforming from (x*,y*) coordinates to (X*,T]) coordinates 
can be done by utilizing the partial differential operators 

o )  = JL.)    13 dw* d ) 
dx* y*  dx* T)      w* dx* br\  x* 

(12) 

JL)  = JL JL) 
dy* x*  w* ÖT] x* 

Dimensionless variables are defined as follows. 

p*      x*      u*      v*      w* 
p = *—-   X =     U =     V = —   w =   

po     wo uo     uo 

„.III  h = J4  Re = £2^!£  P = ^2 <13> 
M-       u u p u *o       o ^o        Ko o 

E*        E*        * ^  a 
$ . _JL_  $ = _J1_ 0  = <L_  H - w B*  J2 
x  u B*   y  u B*      a    a   ° Z  H0 o z        o z       o ° 

11 
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The quantities subscripted with o are constant reference 
values to be specified later.     Rewriting the governing 
equations in dimensionless form and introducing the trans- 
formations of  Eqn.   (12)   gives 

pu[du _üdwöu]+£v£u=_ÖP+     1     A (il ÖU) 
dx      w dx dn, w   dr} dx      Rew    dTj        on 

+ — 2 5.   [(*     +  UPC*   )   +   (oyrv   -  u)] 
Re   1 + (oyr) y (14) 

dx      w dx an w   d^ w dTj      Rew    örj        dr| 

2 
- Ha a     [($    _ WJJ +  (V + oyru)] (15) 

Re   1 +  (ayrr        x y 

pu[£h _Ildwäh]+£vah = uÖP + _l^[A.(JLÖlL)+ ^(ÄU)«] 
dx      w dx br\ w   dn dx      Rew      hi\    Pr dl dT] 

2 
Ha    a {[(*» - <OT*V) + (v + oyru)]2 

2 2  lLX x y 
Re[l + (üyr)z] 

+ [(*_ + arc9, ) + (oyrv - u)]  } *      -r   u/t^y    T    vuii»    -   u;j    j ^gj 

dpu       H dw dpu       1^ dpv _ 0 

dx       w dx   dT)       w   dT) (17) 

P = (—)ph (18) 
7 

Equations (14)-(18) are a set of five coupled, nonlinear 

12 
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equations for the five unknown quantities P, p, h, u, v. 
The equations are parabolic which means that numerical in- 
tegration can be carried out in a forward marching manner 
by starting with initially specified profiles at a given 
x position in the channel.  Suitable boundary conditions, 
to be described in the next section, must be prescribed. 

3.2  BOUNDARY CONDITIONS 

The range of the dimensionless transverse coordinate 
T] is 0 ^ T) ^ 1.  Thus boundary conditions must be specified 
along r| = 0 and r\  = 1.  The velocity boundary conditions are 
the usual nonslip conditions.  The boundary conditions on h 
can be specified either as constant heat flux or constant 
enthalpy.  The latter conditions were used in the present 
study.  Thus the velocity and enthalpy boundary conditions 
may be written as follows. 

TJ = 0  u = 0  v = 0  h = h, - = constant 

(19) 
-| = 1  u = 0  v=0  h = h „ = constant 

The electrical boundary conditions are more difficult 
to handle than the velocity and enthalpy conditions. As des- 
cribed earlier, Equation (10) which describes the electric 
field potential is elliptic which would require a specifica- 
tion of boundary conditions on a closed boundary.  Due to 
the strong coupling between the fluid mechanics and elec- 
trical equations, a complex and'time consuming iteration 
procedure would have to be used to solve the coupled equations. 
An approximate but physically reasonable method of handling 
the electric field distribution was used in the present in- 
vestigation. 

The total Hall current flowing in the channel is given 
by the expression 

Xx = V f Jx dT* (20) 

Substituting for J* from Equation (6) and introducing 
dimensionless quantities gives 

13 



AEDC-TR-70-26 

I*                -1      a$ $ 
 2 = J 2_ (i - aye -Z.)dT] 
ffouowowBz*      0 1 +  (ü3T) $x 

+ J  - s- (v + ayru)dr| 
0 1 +   (CDT)

2 (21) 

At this point two additional assumptions are introduced. 
The first is that the ratio $y/$x is a constant which would 
be a valid condition for a channel of diagonal wall construc- 
tion.  The second assumption is that $x, which is a variable 
across the channel, will be replaced by an average value 
which depends only on x but not TJ.  Solving for $x(x) from 
Equation (21) gives 

I* X 

x 

vwv   : i + (a*)2 

*x(x) = 

/- 2—-— (v + üyru)dT] 

0 

1 
(22) 

<J> 
/ ? (1 - ayr -£)dn 

0 1 + <"*> $x 

The total Hall current, Ix, and <t>y/$x are taken as 
constant parameters of the analysis.  After profiles at each 
station have been calculated, a value of $x(x) is then cal- 
culated at that station using Equation (22). 

3.3  ANALYSIS OF PRESSURE DISTRIBUTION 

In applying the first order boundary layer equations 
to an external flow, the pressure distribution as given by 
the axial pressure gradient dP/dx is known or at worst can 
be obtained by solving the inviscid equations of motion for 
the given body shape independent of the boundary layer equa- 
tions.  The situation is more complex for an internal channel 
flow because the pressure distribution must be determined 
concurrently with the solution to the boundary layer equations. 
This is because of the constraint of overall mass conservation 
in which the total mass flow rate is the same at each x- 
location.  By contrast, the unconfined nature of an external 
boundary layer flow means that the inviscid pressure distri- 
bution is not affected by the growth of the boundary layer 
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and consequent increase in boundary layer mass flow. 

A considerable effort was necessary to develop a method 
for calculating the transverse pressure distribution at grid 
column m+1 in terms of known variables at column m.  A first 
approximation was made by neglecting the inertia and viscous 
terms in Equation (15), the transverse equation of motion. 
The body force term was evaluated in terms of the known 
quantities at column m, and the pressure distribution was 
calculated at m + 1/2, the station halfway between stations 
m and m+1.  Thus, 

1 
p(n)]    = w /F ] dr| + p(o)] . ui| -r rvuyj (23) 

m+1/2    n   m m+1/2 

where F«]  is the y component of body force evaluated at 
column m.  Assuming the pressure at m + 1/2 to be the 
arithmetic average of the pressures at m and m+1 then gives 

^Vl " 2P(^lm+l/2 " PW1« (24) 

The pressure at the lower wall, p(°)]m+i/2 appearing 
in Equation (23) is unknown, however.  An       iteration 
must be performed as follows to determine the correct value 
of P(0) ]_,, /0.  An initial guess of P(0)]„,,-, y9 is made by 
setting m+1/2 P(0)]m+1/2 = P(0)]m.     m+1^ 

This initial estimate of the wall pressure then allows the 
static pressure distribution at station m+1 to be calcu- 
lated from Equation (24).  Knowing the pressure, enthalpy, 
and velocity profiles at station m+1 then allows the total 
mass flow rate to be calculated.  If the calculated mass 
flow rate does not agree with the known mass flow rate based 
on the initial profiles, an adjustment of the wall pressure 
p(0)]m+l/2 is made and the procedure repeated until con- 
vergence of the mass flow rate is obtained.  In practice it 
was found that two such iterations were sufficient. 

In carrying out the numerical analysis, the iteration 
was actually performed on the unknown value of wall density 
p(0)] ,-1/2 instead of wall pressure.  This is because 
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Equations (14), (16), (18) were solved simultaneously for 
p, u, h at station m+1 and a wall value of density must be 
assumed to initiate the numerical calculation. 

3.4  FINITE DIFFERENCE FORMULAE 

Because of the strong coupling and nonlinearity of 
Equations (14)-(18), an implicit finite difference method 
was used to obtain an approximate solution to the equations 
at discrete points across the channel.  For this purpose, 
the two-dimensional region in the (x,Tp plane is divided 
into a grid as illustrated in Figure 2.  The partial differ- 
entiation operators in the governing equations are then re- 
placed by difference quotients.  This allows the governing 
equations to be represented approximately by a set of dif- 
ference equations.  Solutions to the difference equations 
are obtained at intersection points of the grid lines.  A 
general nodal point is represented by a double subscript 
(m,n). 

There are several types of finite difference quotients 
which may be used to approximate the partial derivatives. 
Only implicit finite difference quotients are used in the 
present investigation since the stability of the finite 
difference method is enhanced by using implicit differences. 
With the implicit difference method, solutions along a grid 
column m+1 can be obtained by simultaneous solution of a 
system of linear algebraic equations, utilizing known values 
of the variable at the previous m column.  The system of 
equations is of tridiagonal form which means an efficient 
algorithm can be utilized not involving the inversion of a 
large matrix. 

Two finite difference schemes may be used to construct 
the difference equations:  the ordinary implicit method and 
the Crank-Nicolson method.  The ordinary implicit scheme is 
developed by using backward difference quotients to approxi- 
mate partial derivatives at m+l,n.  The Crank-Nicolson im- 
plicit scheme utilizes central difference quotients to approx- 
imate partial derivative operators at m+l/2,n.  The trun- 
cation error is smaller for the Crank-Nicolson method than 
for the ordinary implicit method.  If f and g represent two 
arbitrary dependent variables, the Crank-Nicolson differences 
may be written as follows. 

M - n+l.n  fm,n   1_  ,Av^2 ~       -i I.AX; r___ + ...        (•>^'\ 
dx       Ax        24      xxx ^5; 
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df    _        1        /* _-P 4-f -f ) " 77"  ^m.n+l       ^»n-l r Am+l,n+l m+lfn-l' 

"t<Ax)2fxx,  -^^2f™+-" (26) 

0  f -      X       (fm  „,-,   - 2f    „ + f ,   + f 

(27) 

72      _    2      m,n+l m,n        m,n-l        m+l,n+l 

" 2fm+l,n + fm+l,n-l>   " \  (Ax)2fxxTm 

- -±-   (An)
2f     „„ +   ... 

12 n^inTi 

(M)2 =   ^fm,n+l "  fm,n-l^   ^fm+l,n+l "  fm+l,n-l^ 
ÖTi 2AT) 2AT] 

+ ^~ {1*n - *nW " ^f- V™ + • • •        (28) 

öf Ö£ = 1  r(fm,n+l " fm,n-l)   (gm+l,n+l " gm+l,n-l) 

dr} dr)       2 2ATI 2ATI 

^gm,n+l " gm,n-]/   _  m+l,n+l "    m+l,n-]/-. 

2ATI 2ATI 

.2 
(Ax)      (fa -2fe       +ef       ) 

g 
v    TJ&XXT1 XT|&XT1 &T|   XXT} 

(29) 

" ^f- (fnSnn + VW + """ 
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fd£=f   (gm+l,n - «n,n> + (3Q) 

ox   m'n      Ax 

f ^   fm,n 4   *gm,n+l " gm,n-l + gm+l,n+l " gm+l,n-l* + ■•• 

(31) 

The finite difference approximations of Equations (25)- 
(31), when substituted into Equations (14), (16), (18), re- 
sult in a set of linear algebraic equations for the unknown 
values of u, h, and p at column m+1. The matrix of coeffi- 
cients for this set of equations is the tridiagonal form, 
and the development of the algorithm for solving the set of 
equations is contained in the Appendix. 

After solving for the u, h, p, profiles at column m+1, 
the pressure distribution in the transverse direction was 
calculated from Equation (25). Additionally, the v profile 
at column m+1 is calculated from Equation (17), the con- 
tinuity equation. 
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SECTION IV 

DISCUSSION OF RESULTS 

A total of 17 different computer runs were made for 
various combinations of the parameters.  The ranges of physi- 
cal parameters for which numerical results were obtained are 
shown in Table I and Table II.  For each combination of 
parameters, three sets of curves are presented.  These three 
sets of curves show respectively (1) the centerline distri- 
butions of enthalpy, velocity, and pressure, (2) velocity and 
enthalpy profiles at x/wQ = 4.8, and (3) velocity and enthalpy 
profiles at x/w = 9.8. 

The Group I runs compare the influence of initial profiles 
of velocity and enthalpy on the flow development.  Initial 
condition 1 corresponds to parabolic profiles of velocity and 
enthalpy at inlet and initial condition 2 corresponds to 
quartic profiles of velocity and enthalpy at inlet.  The 
quartic profiles are flatter profiles than the parabolic 
profiles and would simulate turbulent initial profiles. 

For each computer run, the calculations were done from 
the channel entrance to a downstream distance of approximately 
10 channel widths.  This distance was sufficient to establish 
the trends of the calculations and represents a compromise of 
the computer time that was available between computing for a 
small number of cases over a large channel distance and a 
large number of cases over a short channel distance.  A few 
runs were made over a distance of over 100 channel widths 
with no difficulties encountered in the program. 

It was found that the method of handling the electrical 
boundary conditions described earlier became very time con- 
suming.  Since the amount of computer time available was 
limited, all calculations were performed assuming constant 
values of the transverse and Hall currents, J and J 
respectively. y 

The results for the Group I calculations will be dis- 
cussed first.  A detailed study of the Group I results con- 
tained in Figures 3-32 revealed that the following conclusions 
may be drawn. 

1) The Hall current had essentially no effect on 
the centerline distribution of velocity, enthalpy, 
and pressure. 
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TABLE I 

RANGE OF PHYSICAL PARAMETERS FOR GROUP I RUNS 

Fixed Values:  Ha =100   R = 0.12 x 10 

M = 2.0   P„ = 0.73 r 

7 - 1.4   J = 0.1 

6 

Case %1 ^2 

1 0 0.04 0.04 
2 0.05 0.04 0.04 
3 0.10 0.04 0.04 
4 0.05 0.08 0.08 
5 0.05 0.04 0.08 

la 0 0.04 0.04 
2a 0.05 0.04 0.04 
3a 0.10 0.04 0.04 
4a 0.05 0.08 0.08 
5a 0.05 0.04 0.08 

Initial Conditions* 

2 
2 
2 
2 
2 

♦Initial condition 1 corresponds to parabolic profiles of 
velocity and enthalpy at inlet. 

Initial condition 2 corresponds to quartic profiles of 
velocity and enthalpy at inlet. 
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TABLE II 

RANGE OF PHYSICAL PARAMETERS FOR GROUP II RUNS 

Fixed Values:  Hwl =0.04   Hw2 =0.04 

J = 0.05    J = 0.10 x y 

7 = 1.4 

INITIAL PROFILE 1 

Case Ha Re Pr M 

6 50 1.2 x 105 0.73 2.0 
7 100 1.2 x 105 0.73 2.0 
8 100 0.6 x 105 0.73 2.0 
9 100 0.55 x 105 0.73 2.0 

10 100 1.2 x 105 0.50 2.0 
11 100 1.2 x 105 1.00 2.0 
12 100 1.2 x 105 0.73 3.0 
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2) The shapes of the initial velocity profiles were 
essentially preserved over the distance of 10 
channel widths for which the calculations were 
performed.  Even though the velocity increased and 
the enthalpy decreased on the centerline, the 
initially parabolic profiles still had a parabolic 
shape after 10 channel widths and similarly for 
the initially quartic profiles. 

3) A slightly larger acceleration occurs for initial 
profiles which are parabolic compared to initially 
quartic profiles.  This difference was slight, 
however, amounting to about 2 to 3 percent over a 
distance of 10 channel widths. 

4) The pressure drop increases slightly as the wall 
enthalpy increases for both initially parabolic and 
quartic profiles.  The pressure drop is larger for 
an initially parabolic profile than for an initially 
quartic profile.  Also, the centerline enthalpy de- 
creases faster for an initially parabolic profile 
than for a quartic initial profile. 

The results for the Group II calculations are contained 
in Figures 33-53.  A detailed study of these curves indicates 
that the following conclusions are valid. 

1) The acceleration on the centerline increases with 
increasing Hartmann number as one would expect. 
For example, with all other conditions the same, 
a Ha value of 100 gives a 14 percent increase in 
centerline velocity over 10 channel widths compared 
to a 4.5 percent increase for a Ha value of 50. 

2) A smaller value of Reynolds number results in a 
greater acceleration on the centerline. 

3) The variation of Prandtl number over the range 
0.73 <£ Pr £ 1.0 had essentially no effect on the 
acceleration characteristics of the flow.  No 
readable change in centerline values of velocity, 
enthalpy, pressure can be observed over this range 
of Prandtl number. 

4) Increasing the Mach number results in a decrease 
of acceleration on the centerline. 
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X w(x) 

Applied B Field is in the z-Direction. 

Figure 1.  E-Plane MHD Channel Flow Geometry 
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m m+1 

Figure 2.  Finite Difference Grid Geometry. 
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Figure 18.  Centerline Distributions of Velocity, Enthalpy, Pressure. 
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Figure 23. Velocity and Enthalpy Profiles at x/w = 9.8. 
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Figure 25. Velocity and Enthalpy Profiles at x/w = 4.8. 
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Figure 26. Velocity and Enthalpy Profiles at x/wQ = 9.8, 
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Figure 27.  Centerline Distributions of Velocity, Enthalpy, Pressure. 
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Figure 28. Velocity and Enthalpy Profiles at x/w = 4.8, 
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Figure 30. Centerline Distributions of Velocity, Enthalpy, Pressure, 
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Figure 32.  Velocity and Enthalpy Profiles at x/w =9.8. 
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Figure 33.  Centerline Distributions of Velocity, Enthalpy, Pressure. 
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Figure 34, Velocity and Enthalpy Profiles at x/w    =4.8. 
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Figure 35. Velocity and Enthalpy Profiles at x/wQ = 9.8. 
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Figure 36.  Centerline Distributions of Velocity, Enthalpy, Pressure, 
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Figure 38.  Velocity and Enthalpy Distributions at X/WQ = 9.8. 
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Figure 39.  Centerline Distributions of Velocity, Enthalpy, Pressure. 
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Figure 40.  Velocity and Enthalpy Profiles at x/w = 4.8. 
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Figure 41.  Velocity and Enthalpy Profiles at x/w = 9.8. 
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Figure 42.  Centerline Distributions of Velocity, Enthalpy, Pressure. 
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Figure 43.  Velocity and Enthalpy Profiles at x/w = 4.8. 
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Figure 44.  Velocity and Enthalpy Profiles at x/w = 9.8. 
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Figure 45.  Centerline Distributions of Velocity, Enthalpy, Pressure. 
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Figure 46. Velocity and Enthalpy Profiles at x/w = 4.8. 
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Figure 47.  Velocity and Enthalpy Profiles at x/w = 9.8. 
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Figure 48.  Centerline Distributions of Velocity, Enthalpy, Pressure. 
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Figure 49.     Velocity and Enthalpy Profiles  at x/w    = 4.8. 
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Figure 50.  Velocity and Enthalpy Profiles at X/WQ = 9.8. 
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Figure 51.  Centerline Distributions of Velocity, Enthalpy, Pressure. 
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Figure 52.  Velocity and Enthalpy Profiles at x/w =4.8. 
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