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CALCULATING AN ACOUSTIC FIELD IN LAMINAR-HETEROGENEOUS MEDIA 

V. M. Kudryashov 

The practice of calculating an acoustic field shows that the 

better the components (whose sum describes the field to be 

calculated) correspond to the spatial structure of the field, the 

more effective the selected means of calculation. 

Let us examine a field-calculation method convenient in the 

region where the zonallty in the field structure applicable to 

uniaxlal channels appeared.  For this let us introduce a cylindrical 

coordinate system (r, 0, z) (Fig. 1) and examine the acoustic field 

in a layer h0 < z < H filled with a medium which has no shear 

elasticity, in which the square of the refraction index n2(z) and 

Its derivatives of an order no lower than the first are continuous 

functions of the z coordinate.  In the half-space z > H we set 

n (z) = n2(H) + 2B(Z - H). n(H - 0) E n(H + 0).  The acoustic 

potential (of velocities) V(r, z, zQ)   exp(-12nf0t) should satisfy 

the wave equation everywhere except point r = 0, z - zn in which 

there is located the point source of a sound operating under 

stationary conditions at frequency f0 >> C(z) | (d/dz.)h2(z) | ; in the 
vicinity of the source 

V{r, t, *„) exp(/*„£)/£, 

where 
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In addition, lim y(r, z, zQ) *  0. The medium Is bounded from 

above by the plane z - h0 on which 4'(r, h-, zQ)  - 0. 

In this case, according to L. M. Brekhovsklkh [I], 

»)1X 

Xl-M«: «)-f(.)*,(,i •)||l-p(»)?(.)r,//i,|(*()n.).rf,, 

where  *;L(zj  <)  and  *2(z;  K)  are two linearly  Independent solutlc 
of the equation 

(1) 

^0'(«) + »J [«•(«)—'J'i'W-o. (2) 

Magnitudes q(K) and p(ic) are determined from the boundary 

conditions on the upper and lower boundaries of the medium, 

respectively, or from radiation conditions if the medium is unbounded. 
In the case in question we get 

?(«) -'M*,,; «WM*,,: «); 

%--K-l",(//)-»ala"- 

The  integration  contour in equation  (1)   circumvents  those 
positions   from below in which  Re K > 0,  Im K  >  0,  and circumvents  the 
remaining singular points   of a sublntegral  function  from above. 

If z   < h,   (d/dz)n2(z)   >  0,   then 

-T<"lf»<-r: (3) 

*,(': ,)=K5",,(',-,,|""I/Wexp('—'-^-)(1 + A.)- 
-/-|(.)eJ.p(<»^-^)(l-f-Al)], -*.<.fg,<_^. 
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*,(«; «w1 («) l/J 1«'w - »,r"4«p(- '•+« -n-)o+Ai). 
--^-<argi»<-j-; 

(3) 

*.(«;») = /w I«'w - ^ "4 [/Wexp (" '"■+' w(, + A,)" 

In formulas (3) the designations 

»1 

are used, where  z.   Is  the  root  of the equation n(z)  - K, which 

satisfies  the  requirement  z,   <_ h.  If 

lni«, = 0i   lim«i = llm(ft-«). 
t'-»«,|«H-»0 

Since  u(z;  K)   IS  a multivalued  function of < with branching points 

< =   ±h(z),  we  assume 

nrg».=0,      at    «,<'t';(«)< 1,   IBIM'^O; 

afgci>=-T,   at    «(«)<«<11     lm« = llin(0-«); 
•■•0 

nrgii)= —-jj^,   at    n(«)<«<l,    Imt —lliii(0+»). 

The whole picture  is  symmetrical relative  to the  point tc =  0. 

The  introduction of factor f(K)   into  formulas   (3)   is  associated 

with the  presence  of a maximum n   (z)   at   z - h;   fU)   assures a 

regular behavior of the right  sides  of expressions   (3)  on the entire 

plane  K. 

/(.)-[r(^ + -r)],WMcM'i TST'no- 

where u)? = UJCZ.; K); z0 IS the second root of the equation n(z) » 

= K z2 > h at Im z2 = 0; f(K) % 1 If |u2| » 1, |arg u2| < n.  And, 

finally, 

1 A,(») ~()(~j; lA^«)!«!. i»|>l. 
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Asymptotic expressions  for p(ic) have the   form: 

/,(,)=V(.)/-,(.)exp[/2(c»2- «„)- / ^j,    |arg«„|<-£- 

p(«)-V(«)exp^2«,-l-j-)[l-/ 2('')<,*p( -'2««+T)i. 

(^a) 

(tb) 

where 

LiL 
I t/S(x) ««?(««„-/-5-) 

4- 
'        l-/,(»)"p('2«„-J-f) 

+ <J3,w(l+X.)[l.../'(,)exP(««B-/-f)J|   '[l+O^)], 

p  is  the density  of the medium at hn <_ z  <  H;   p    Is  the  density  of 0 -  " - 
the medium at 

g 

«>//;    «„=-«(«;.);     1» (»;.) = ft0 ) 1/7?^^? dt; 

arg u(z, H) on the upper sheet of the Rlemann surface Is set by the 

same conditions as for ü)(Z; <). In the derivation of formulas ('4a) 

and   (lb)  It was  assumed  that 2b ■   |-T n   (z)|. 

It Is easy  to see  that  the  right  side  of equation   (1)   Is 

Identically equal  to the  right side  of  the equality 

«,=1 

1 "T-ir, «,«,)- 2 v*lr< *< «.) + *'».('■• *' «0). 

where 

(5) 

(6a) 

(6b) 
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Here 

F„{r, t, «„; ») =- ^-1»,(«,;«) |*a(«;«) - 9(«)*,(«:«)) «i(»/•): 

/'/»(r. «. *o: «) = -< ^- |*,(«o: *)-* W•»'. («o; «)l X " (?) 

X !♦,(«! .)-^(.)*,(«; •)/'-VW«i"(V«).   /V> 1. 

The  representation  of expression  (5)  Is  very  convenient  for 
calculating the  field in a region where there is   a zonal structure; 
calculation according to  t   nnula (5)  Is  simpler than a corresponding 
calculation by  the normal-wa.T method If the number of normal waves 
(nondamping from r)   is  large. 

Formula (5)  permits  us  to  calculate comparatively easily  the 
acoustic   field In the  zones   of the refraction geometric  shadow.     The 
specific  form of the expressions  obtained as  a result  of calculating 
Integrals   (6a, 6b)  depends  on both the distribution of n2(z)   and 
the  position of the  layer boundaries,  as well  as   on  the  location 
of the  sound source  and  the  point  of observation. 

Let   us  examine  the  expression  for the acoustic  field in  the 
first  zone  of the  refraction  geometric shadow  under the  condition 
that 

"■-■(')=   2.-xp|n(A.   ;)|     cxp|l.'«(A    ;)|. «*„(*-*,.)'>!. 

Let   us  note  that  In   this   case   the solution to equation   (2)   can 
be  expressed through special  investigated functions  so that 

„.„;,).-_ 4-*,rl»|r!M.!l-i-|)r(>.-|l + 4-)]"2
x 

Xe"l,""""," "'«?_„,, (V"); 
(8) 

Xe-'Tl '•,,",(' "ir...^"). 

where 
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Having solved equation  (6a)  by  the  residue method we  get 

'Mr. «. «o)~2 4..i(r. «. «„lexp|-*„(»•-flonM«««!. (9) 

where 

^'■"(^--f).ln(M,-f) 

X exp [/*0«M«( + ik„ (r -/?„„) Re i, + / ^-1 (1 + Q,). 

If (z - h0) and izQ -  h0) are high and I  is low, 

(10a) 

(10b) 

In equations   (10a)   and  (10b)   z0   <  h,   z  < h,   uig       " u(z0,   K   ), 
u)^  =  ^(z,   <Jl),   IQJJ   <<  1,  where 

-xarcm«"" •l)'nl»fL^i     l «r^.-.r j. 

£■ '•< (*„; «) -   ■• ^ nrcsm f ««•" "    »' -Ll!iMZ5_'l • 

«■ < 

RM.z»; «)=  «jl"'«'  -"T"« } «j|«'(5)  -.>|-|2rfl, 

(11) 

where 

I, ■-'"       " I i^i - «•' I' 

?„,!   -*.,'M'0'- I "'U'n; «(*„)! f'» I«: «I*,,)! t*,,^    /OX 
V|R.'/,   ■«(*„)|- *n|^ «„„JR.. I«,-«(*„)!»; 
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In accordance with the geometric theory for low values of 

(z - h0) the boundary between the shadow zone and the first 

illuminated zone is formed by a beam which has touched the surface 

z - h0, and the distance to the shadow zone boundary is equal to 

R00.  In this case (O/3K)R00) < 0 and |A0 ^ decreases with 

increasing 4. As a result of this, at r >,R00 in formula (9) we 
may restrict ourselves to the first terns of the series. 

If the value (z - h0) is high, the shadow zone boundary is 
formed by a caustic.  On the caustic r » R„ , - R f« z • ■r   U 

<„___,           0,k  Vz« V K0.k)J 
0,k ls a root of the equation (3/3K)R0(Z, Z0J K) - 0 

In such a case (O/3<)R00) > o. and according to formula (10b) 
value A0jJl initially increases with increasing i  and only at 
sufficiently high values of i  does it begin to decrease.  Therefore, 
in the vicinity of the shadow zone boundary it becomes necessary to 
take the large number of terras of the series of equation (9) into 
account. 

Now we get an expression for ^(r, z, zQ)  convenient for 
calculation in this case, and we deform the Integration contour 

Into a loop encompassing the poles of function q(ic) in integral 
formula (6a).  On this contour 

X«'f'"',',k,,,+""",(1 + A1,(.)), 
(12) 

where 

?d(r. «,«„;«) = *oril + Bo +„ is the phaBei 

If the shadow zone boundary is formed by the caustic, the phase 
*0(r, z, z0) has Its saddle point K0  in which 1 - K

2
 - pe1*, where 

* £ 0, If r > R0jkj K0 = K0)k, if r = R0 k. Value K is the root 
of the equation 

«i" rf. '<'«('■• *■ «b. *)- r    /?n(2. ?„. «)=-n, 
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where R0(z,  z«;  K)  IS  set by the equality  of  (11). 

If z - z0,   p -  exp[a(h - z) -  1; 

/?„ (*„, *„; .„) ~ A -  I- nrrsin iV "   •' |   r" '"   fl-_ 1 r„S * . 

If 0 > 4 > IT, then Im KQ > 0; f{<Q)   % 1.  Let us plot the Integration 

contour In formula (12) through the point K = K0 along the line of 

the most rapid decrease (with an Increase of |K - K0|) of the factor 

exp[l((i0(r, z, z0; K)].  Assuming that \^0(KQ)  -  *0(K:e)| >> 1 and 

|A0(K0)I « 1, we get 

>I'„ (r, z, «„) -.. Vn., (r. i, s,,) }- V Vo i (ri ^ ?())i (13) 
i 

where  summation  Is  performed according to  the numbers  I of the poles 

touched In the  deformation of the  contour,   and 

"^i«5 Co) ■ - ^n^öö^1^ 
X «p | /fo (r, /, *0; x) - 'J" [ „'',   Rt, (/. /„; »)?      X 

^   f     i>5 li'S" " ~ > 

(1'0 

where v(t)   is   the  Airy   function; 

iQo.,l<l     at lAJ«),,!«!.   |.o(A„: x„)|>l, 
I«,-r„|>it*0-"'1| ^-/?0(e,  ;0; n)^"""^ 

Function  flQ k(r,   z,   z0)   at  r >  R0 k describes  the diffraction  from 

the  caustic.     For an unbound medium 11m '('„(r,   z,   zQ)  ■  y. v^1"»   z»   "n^- 

Surface  z =  h0 places  limitations   on  the  geometric  dimensions 

of the  caustic  and introduces perturbations   into the  field 

diffracted  from  it.     The  series  in  Z  in equation  (13)   considers   this 

perturbation which  depends both  on  the position  and on  the  reflection 

properties   of the  upper boundary.     At   low values  of t we have 
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The series In I  In formula (13) can also make a noticeable 

contribution to V0(r, z, zQ),  If t >> 1; In this case »Q lt(r, z, ZQ) < 

< *0>1(r. z. z0) and ^(r, z. t0) ^ *0>1(r. z, z0) + *0^(r, z, z0). 

Let us now examine the contribution to tir,  z, ZQ) of other 

components which enter the sum of expression (5) under the 

condition h« ■ -<■>. 

Let us assume that n(z0) > n(H) (the beam picture for this 

case is depicted in Pig. 1).  In accordance with geometric theory 

the first zone of the refraction shadow is limited on both sides by 

illuminated zones when n(z) > n(H).  If n(z) < n(H), horizon z 

intersects only the first illuminated zone and does not pass through 

the second and subsequent illuminated zones, so that the shadow 

zone is unbound in the positive direction of axis r. 

a«/« 

Fig. 1.  Beam picture (heavy lines - the 
caustic). 

Let us examine the most interesting case when n(z0) > n(H) and 

n(z) > n(H); we assume that distances (h - ZQ) and (h - z) are 

sufficiently small so that the boundary between the shadow zone and 

?TD-H'V-23-li39-S9 



the secondary Illuminated zone is formed by the caustic, the 

distance to which let us designate by ^  k.  in accordance with 
geometric theory, this caustic Is the envelope of a family of beams 
whose equation has the form 

r~!*i.i(*. ««; «i.,), (jj) 

where K^ - n(z0) cos a Is a real number and a Is the angle of 
beam emergence from the source. 

'at. 
•f * 

'• « 

After substituting n(z) Into the latter expression, we get 

The position of the point on the caustic Is set by the equatlo 

where <1  k Is the root of the equation 

A-Äi. i («.«*;»)-o. 

Substituting equations   (3)  and  (H)   Into  formula  (7),   for 
N ■   1,   |k0rK|   >>   1,   f(n(H)|   ^ 1 we  get 

/•'i(r, ?..-.,; «I      I-'*"»        .l'(»l(l      A (/„))(!  ii(x)) 
t     'irr      1/ ,     ■   —   -TTT         )( 

«■^i.i^. *. «„: K). 

if n/2 < arg uH  <  371/2; 
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(16b) 

1°.     if    .}<:.ir|f «.<-?* 
lit)'- \ 

|/»(»).'xp[/2«-^|.      lf   !arr»|<^. 

V.W-ofi-. J,,   ^ .^_).jA||W|C|i  lf   K|>li|,|>|( 

•««i>i,  IV»l>i. 

If |arg uH| <  it/2, however, then 

X *".■/' "' * F.^r. *.*,;.). 

where 

II         H 

T,.,(r. *.«„; .)-=*/« +»„Ji A»(I)- ,>rf| + 

» •  
+ *« J KW» - «'■rfl f *, I' I «J({r:^rrfl ^-; 

«. 1, 

•j   

I*,.,(«)!< I.where |«,|>l. |«(>l, 1%,|>1. |V«|»I. 

Let us assume that r £ R, k; then functions ♦, .(r, z, z«; K), 

J ■ 1, 2, 3, b,  5 have saddle points <, ., located In the region of 

applicability of the representations of formulas (loa) and (16b). 

We deform the Integration contour of the Integral of equation (6a) 

described by N ■ lY-Cr, z, zQ)  so that It passes these saddle polntr 

along corresponding saddle-point contours, while outside the 

essential saddle-point vicinities It goes along the lines of most 

rapid decrease P.,(r, z, zQ;  <).    The Integration contour In 

FTD-HT-ss-^g-eg u 



region   |arg UM |   <_ 11 is split  Into  four branches by  the  four 
respective   components  In expression  (16b);  these branches  merge  at 
the origin  of p(ic).     Stemming  from this,  the  Integration  contour 
will pass   further through saddle  point  K,   ,, Im  K.   ,   <  0  of  function 
*,   .(r,  z,   Zyi  <)   (Klg.  2).     Saddle  point  K,   .  satisfies  the equation 
(3/3K)<>,   ,(r,   z,   u.,;  ic), which  Is   reduced  to the  form 

r-*,.,(*.«,;»). (17) 

whereupoi.   function R,   ,(2,  z0;  K)   coincides with  function   (IS): 

« H 

>• », 

+ (-!)' '.Jl«»«)-..!!'"^. 
y-2. 3; 

Ruii*. «.i »)-« J" I«'«) - «'I "* + (18) 

4-2«.J|»i«(l)-i'r",««-f-( D'-'« lln»«)-.»!"'«. 
/-=4. 6. 

R« 

Fig. 2.  Plane K. 
1 - Point n(0) - 1; 2 - point n(H); 3 - point n(h0); 

't - origin of function ♦1(h0; <);  5 - pole of the 

Integrand In formula (1); 6 - origin of function P(K); 
7 - point \(Q  k and point 

Ki  ui   % ~  point <„; 9 — point 

K, ,; 10 - Integration contour C«; 11 - Integration 
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contour C1;   12 - family  of Integration contours  C., 
J  • 2,   3,  t,  5. J 

Prom equation   (17)  It  follows  that  0  < K        < n(H)  and Im K,       =0 
for J  - 2,   3,   4,  5.    Saddle point  K^ at'r < ^ k  lies  In half-plane 

Im K < 0  on the  line  1 - K^ l -  pe1*,   0<4i^Tr.     Atz-z 
P - exp[a(h -  z0)] - 1. ' 0 

Correspondingly,   for Rljl(z0,   z0;   <ljl)  we have 

^i.i (*o. «o: «f,,) --= ~  4 4- nrcsln 2«•,,""- *' j/««'«-».!., ] cos * 

Calculating the integral of expression (6a) according to the new 
integration contour at r < R   we get 

1,K 

if J ■ 2, 3, t, 5. then 

'"'.(r^ *o)--i 'V,.,^.«, «o), (19) 

fi./C «.«,.)  i / -f .- --i-'- 

where ^J « ! at U^^^^)! <c i; 

(19a) 

M ,., (r, ., r„) - —-p--     '  p- X 

X __ -,_.. ^ULi.g'lV...,^^ ox., I /.. . (r. ,. ,.■ .. .»,.        (19b ) 

^K 
Here 

'-'■V'-r"^/?...,^;,, n^...^:.).,.,.]-4"; 

h.V " l>  lf I
A
I.I^I,IH «  i- 
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If 4i << 1 (small values of R, ,, - r), 

Ät.i(«. «»i «i.i)« Äi>«+T-['3a-/?,,,(«, «„! »).=., „JKi-«i,i)» and 

'-2"'*r(/?1(,-r)[^«|)l(,^..) ]-,". 

In this case 4^ 1(r, z, z0) is reduced to the form 

*i/*-a'/'v>'M<>('+<?i.i) 

Formula (19c) describes the acoustic field In the region of the 
caustic.  It Is valid [1] not only with r < J^ k, when t > 0, but 
also with r > F^ k, If t > 1.  If t >> 1, 

^ir,,,^.      ' ^ 
|   '■[dl «,.,('--•": »).: ■I, 1 

(19Q) 

whereupon 

?,., (r, e. in; ,„,) „ V  *| nrcsln 1.1 ,3' U [^^L ,. -'*/» | _ 

-^-arcslnK'-'.'PliJ'L-^L.-'^i , *,, ..--.y- , ,„ "    I    j/p     e       }i - I pe'* - (*"I«-M _ [)i .| 

It Is essential to note that the use of formula (19c) at 

t >> 1 (far from the caustic) gives greatly reduced values for the 
function *;L)1(r, z, z0)   as compared to the values calculated from 
exact formula (19b). 

Let us note that It^Cr, z, z0)| monotonically diminishes with 
an Increase of (FL . - r). 

1 ,K 
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The integral of formula (6a) at N - 1 also permits another 

evaluation, convenient at high values of (R. k - r). Let us set 

the value of r - ^ to which corresponds K1  ^, which satisfies the 

condition 0 < « << Tr/2.  In this case we can plot the integration 

contour in equation (6a) through K1  1  without removing the integral 

from the convergence regions such that Im K ^ Im K, . on it.  Then 
we get ' 

WuAr, «, «b)l< J'I/'MC -'. «o: «)l|rf«l<«^,,,-"i'-'i.ilx 
r, 

whence It follows that at r <_ r.. 

Ifi.i^«, ^<|'rl.1(r,.*(,. «),e *•"' "l'-'i.i|. (20) 

^    In  accordance with expression  (5)   V(r,  z,  xQ)  -  4l
0(r,  z,  z0)  + 

+  *1(r,   z,   z0).     Comparing formulas   (6a)  and  (6b)   at N ■ N» ■ 1, we 

see  that   the  Integral expression  for  ^(r,  z,   zQ)   differs   from the 

corresponding expression  for ^(r,  z,   Zg)  only by  the  factor 

[1  - p(K)q(K)]"     In the  Integrand.     Additional peculiarities  of the 

pole  type  Introduced by  this   factor into the  integrand  for 

1'1(r,   z,   zr)   lie partially  on  the  real <  axis  at   1  >  ic2  >  n2(H), 

and partially  In  the  regions:     n(H)  % Re(icJ   >_ 0,   Im K   >  0  and 
0  >  Re  <   > -n(H),   Im K  <  0   (see  Fig.   2). 

If r  < R1 k,   the integration  contour in  the  integral  of 

formula  (6b)   at  N «  1 can be  deformed  into exactly   the  same 

integration path which was  used  in the  calculation  of "Mr,   zQ,  z). 

With  such  transformation of the  integration  contour the poles  of 

function   [1 - pdOqU)]-1 are  not affected and,  in  addition,  the 

new  contour runs  in the  same  part  of plane ic  in which p(ic)q(tc)|   <  1, 

if   |V(<)|   <   1.     After deforming the  integration  contour into 

contour C.  by  the method shown and after estimating the value  of the 
integral  we  get 

"'i <'• * ■ *-)     ^ "',., (r. :, *„)   - 2 "I'L / C". *. *.)(! + Q,.,). (21) 
/ =i /-i 
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where 

iQj^H^mrL. 
In  other words, 

Q-kjexp^ -(*...    ^(^^.(«.A:.).,.,.)-'"]-'!^ (22a) 

^'•V'^T-^y,-.   y-2. 3. 4. 6. (22b) 

Estimation of equations   (22b)  Is  convenient  If  jvdc,   .)(   <<  l.     The 
expreuslon  for ^(r,   z,  zQ), J  - 2,  3,   4,  5  can also be obtained 
in  the  form 

^./(r. *.«.)-   22  »Ar,/(f. *.*«). 
Af-I (23) 

where 

(<■"<) 

Here 

(25) 

n 
RH.,^. «,; «)-=«,.,(«. *,; .) f2(/V     I)« J |«»(«) -«'r'"^ 

«i 

IQ/v./i-sO,   |»i»l>l,   l*nr«l»l; 

KN j  Is  the root  of the equation r - R      (z,   z_;  ic). 

Formula (23)   is  obtained by replacing  [1 - pdOqdc)]"1 by 

Jj^LpdOqdc)]    In the  Integral describing ^     (r,  z,  z0)  and the 

next  obtained Integration of the series  obtained.     The  Integration 
proceeds   along the  contour obtained by  deforming the  original 
Integration path  Into  the  line  of most  rapid  decrease exp[U       (r,   z, 
■;  O] with an Increase  of  |ic - <N>j|.    This  line passes  through 

; ■r^-HT-23-439-69 16 



saddle point KN  .  and ends  at the origin of function P(K).    Function 

*H  «(r. z. 20) describes a wave corresponding to a geometric beam 

reflected N times  from the boundary z - H. 

The expression in the  right  side of (22a)  is  considerably  less 

than  unity, even with small values of Rj k -  r).     It  is easy to be 

convinced that   IQ,   J   <<   1  is  also much less  than  1 at r ■ R^ j^. 

»v. 
Having  calculated the values of ^(r,   z,  z0)  and  ^(r,  z,   z0) 

by  the method shown above we  can now find the  complete  field 

"Kr,   z,  z0),   from formula  (5),  in the geometric  refraction shadow 

zone.     In  Fig.   3 there  is  shown  the dependence  of function 

*(r,    ■,  zQ)  on r,  calculated  for the particular case:     a - u-lO       1/m, 

n -  :;   "  100 m, H -  z "   800 m under the  assumption that   p    " p;  under 

this   condition the  contribution  of the waves  reflected  from the 

horizon z - H to field  y(r,  z,  zQj  is negligibly small.     In the 

graph  of Fig.   3,  the points mark the values  of    y(r,  z,  z0), 

calculated by the normal-uave method.    The  results obtained by both 

methods  give satisfactory  agreement. 

W" 

T— i sf-'«*5 

Kip;.   3.     Graph of the  dependence 
of  function  f{r, z,  z0)   on  r. 

1  - Values  of  111!   calculated by 
the  normal-wave method;  2 -  shadow- 
zone  boundaries. 

Let  us   analyze  the   case when n(z)   < n(H),   u(H,  n(z))  >  1.     Here 

the   inteeral  of formula   (6b),  which describes   y^r,   z,   ZQ),  may 

conveniently  be estimated by  the  stationary-phase method. 

Let  us   formally expand  the   integrand in  formula  (6b)  Into a 

series  of powers  of  (p(<)q(<)).     The terms  of this  series have  real 

stationary-phase points   only  at  ^ t. [0,  n(z)],   for which 
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... «5 

while PlfJ(r, z, Zo; K) satisfy equation (l6b). The essential 
stationary-phase points KNJ which correspond to a term of the 
series In  the   right  side  of formula   (26)   are  roots  of equation   (25). 

Let   us plot   the Integration contour so  that  Im K -  11m  (+e)   on 

It.    Then ei0 

,|r' <r- '• ^   '1 £**.,('. *> *.) +^ 'Ur. z, ztt). (27) 

Here *N>j(r, z,   ZQ)  corresponds to the contribution of stationary- 
phase points of a term of the series of formula (26). 

If equation (25) has a unique root K    then ^ .(r. z. zn) is 
described by equality (24). ,J       0 

But RNjj(z, z0; <). where J = 3. 5. as a function of real values 
of K. has a maximum at point K = KNJJ k. „hioh corresponds to the 

caustic of the beams refloated from'the horizon z = H.  This caustic 
lies completely In the region of values of z for which n(z) < n(H) 
.lagnltude KN)J>k is the root of equation f^  (Zj z . K)   . 0.  The 

distance from the sound source to the caustic'along the horizontal 
is equal to 

^«. l,»= RK, ; (*. *O; "A, /, »)• 

If r is  close  to RfJJ>k and  r >  ^^^   then 

where 

'^""»"('-^M)!!^«.»^^:«)..^.,.]- 
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M , 
Function t  ^m^' z» zo^ ^3 the sum of normal waves corresponding to 

real poles K^,   [n(h), n(H)].  A normal wave is defined as the residue 

in pole Km or  the Integrand in formula (1). 

With the given form of n2(z), ?m(r, z, zQ)   Is described by the 

formulas given in work [2],  The function Z? (r, z, zQ)   gives the 

basic contribution to V1(r, z,  z0), if |v| << 1 or |V| < 1, r -► «, 
and characterizes the diffraction "exposure" of the geometric 

refraction shadow zone stretching limitlessly in the positive 

direction of the r axis on horizon z under consideration. 

Although at ti(z) < n(H) horizon z does not pass through the 

secondary and subsequent illuminated zones, the resultant field 

y(.r,   z,   z0) will nevertheless be characterized on it by alternating 

maxima and minima.  The picture is externally similar to that which 

take, place at n(z) > n(H).  But in the case in question the 

appearance of maximum ^(r, z, z0)| is caused by the approximation 

to the caustic of the beams reflected from the ground, Instead of 

the input to the illuminated zone.  Such a false "illuminated zone" 

differs from the true one in that maximum ^(r, z, z0)| In this 

zone depends on the frequency of the sound, even with the consideration 
of absorption in the medium. 

The acoustic field in the channel is represented in the form 

of a finite number of components, each of which is described by a 

converging integral.  This representation is especially convenient 

in the region where the field has a zonal structure, since it 

permits us to calculate the field here faster and simpler than by 

the normal-wave method ordinarily used for this purpose. 

The field was calculated in the refraction geometric shadow 

zone in which n2(z) = 2 exp[a(h - z)] - exp[2a(h - z)].  It is 

important to note that the obtained formulas are also valid with 

another similar dependence of n (z), since the specific form of n2(z), 

as a rule, is not taken into account in the derivation of the 

formulas. 
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