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CALCULATING AN ACOUSTIC FIELD IN LAMINAR-HETEROGENEOUS MEDIA
V. M. Kudryashov

The practice of calculating an acoustic fleld shows that the
better the components (whose sum describes the fleld to be
calculated) correspond to the spatlal structure of the field, the
more effective the selected means of calculation.

Let us examine a field-calculation method convenient in the
reglon where the zonality in the fleld structure applicable to
unilaxial channels appeared. For this let us introduce a cylindrical
coordinate system (r, 0, z) (Fig. 1) and examlne the acoustic field
in a layer hy < z < H fllled with a medium which has no shear
elasticity, in which the square of the refraction index n2(z) and
1ts derivatives of an order no lower than the first are continuous
functions of the z coordinate. In the half-space z > H we set
nz(z) = n2(H) + 28(z - H), n(H - 0) = n(H + 0). The acoustic
potential (of veloclties) ¥(r, z, zo) exp(-i2nf0t) should satisfy
the wave equation everywhere except polnt r = 0, z = 2Zq in which
there 1s located the point source of a sound operating under
stationary conditions at frequency £y >> C(z)l(d/dz)hz(z)l; in the
vicinity of the source

¥, 2 z) exp(tk,L)IL,

where

L=V ALESFP 0,
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In addition, lim ¥(r, z, zy3) » 0. The medium is bounded from
00
above by the plane z = h, on which ¥(r, hgs zo) =0,

In this case, according to L. M, Brekhovskikh [1],

w4
v, 2, z.,)—-—-ﬁ':;- '[: (94 (20; %) — p (%) By (295 %) X

N (1)
X 1Py (2 x) — g ()P (2 ) [1 = p () g (]! HE" (korw) n i,

where ¢l(z; k) and 02(2; k) are two linearly independent solutions
of the equation

';i’T o (2) + A [ (2) —»"] B (2) =O. (2)

Magnitudes q(k) and p(k) are determined from the boundary
conditions on the upper and lower boundaries of the medium,
respectively, or from radiation conditions if the medium is unbounded.,
In the case in question we get

7)== By (s W)y (By; 0,
ply=
s )= S (M A8 ] 45 18 ) < 3172 0, 0w

—_ =N

=H

. 9
by (I %) - ';_' [H13 et ()| & 2 11y — w2102 [7,— ®,(z; u)]

o= - 1 (H) = W[,
The integration contour in equation (1) circumvents those

positions from below in which Re « 20, Imk > 0, and circumvents the
remaining singular points of a subintegral function from above.

If z < h, (d/dz)n°(z) > 0, then

By (2 W)= f(x) ]/:_i,_'l'l’(z) __,t]—m exp[lu-l—,s;-)(l +A),
, ~y<ngeg 3
O, (z; )= V% [ (2) — o) ""[/(-)exp (lu - l—i'-;—)(l +4)—
=S Wemp (i) +4)], - <arge—

(3)
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Dytes = O )/ L [0t — o) exp(— o+ ) (0 + A
~ ¥ <ago< g

. (3)
Oytes 1= /L (02021 — 2| [ exp (— to 1) 01 29

— S (henp (1o — 175 )1+ 4], F<uge<T-.

In formulas (3) the designatilons

W= (z; X) = kﬂ 5 Vn’ (t) bt ‘I dEv

are used, where z, is the root of the equation n(z) = «, which
satisfies the requirement z, < h, if

Imz,=0; limz,=lim(k—s).

ven{h)s»0
Since w(z; k) 1s a multivalued function of k with branching points
k = th(z), we assume

argoe=0, at VIR, Imle=0;
wgo=F. ac n@@<e<, ima s lim (0 — o)

nrgm=-—32'l. at n(@<<rL], Iml—ll;n(0+a).

The whole picture 1s symmetrical relative to the point x = 0.
The introduction of factor f(x) into formulas (3) is assoclated
with the presence of a maximum n2(z) at z = hy f(x) assures a
regular behavior of the right sides of expressions (3) on the entire
plane «.

'/(,),-_—.[l'(_';l - —;-)]I ! (21:)_l ‘cxp{ - _‘2’% in _:_} } ,

where w, = m(z2; k); 2z, 1s the second root of the equation n(z) =
=x 2,2>hatlInz,=0; f(x) ¥ 11f lw,| >> 1, |arg wy| < m.  And,
finally,

A,(x):—.n(%): PA <, o >1

FTD=-HT-23-439-69 3



Asymptotic expressions for p(x) have the form:

pPOy=V () s (-)exp[tz (0 — ty) -~ t-"’;-]. larguy| < 5= (4a)

p )=V () exp (20— 1)1 - 1 ’(r)exn(--‘?u~+ Ty (o)

T<argu,, T s

where

V()— :: 4'3_":7(”'7’[)-1("*”( ’ ))

V(x) = My ! M by f’(‘)!xp(mu"-—l-%-)
(v (l+ ? ) [l ? f’(‘l)txp 120 —l—;—)

+l{3n,,(1+—";.)[ ﬂ(.)exp(lzu,,—z “ [1+o-"7

p 1s the density of the medium at ho <z < Hj pg is the density of
the medium at

"
2> uy=—uw(Hix): w(@ )=k VAP ®-Fdg
z
arg u(z, H) on the upper sheet of the Riemann surface is set by the
same condltions as for w(z; x). In the derivation of formulas (4a)
and (4b) it was assumed that 2b =

It 1s easy to see that the right slde of equation (1) is
identically equal to the right side of the equality

No=1

C=(r, 2 2= O Yn(r, 2, 2)+ ¥n(r, 2, 29, (5)

N=®

where
EX F
ol nm)=_ | Futr. 2oz 0 (6a)
- +oih

Tl 2 29m [ Fulr 2, 22 011 = p)g@)|~dn, (60)

—m4h
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Here
% 2,
Folt, 2, 2, ) == S8, 24 ) |9, (2 %) — ¢ (8) 0, (&5 )} Hb (hyrol

® ,t \
Fuir, 2, 2p; W) =—1 —;‘°—-I‘l’,(=o: W)~ g () B, (23 8} X (7)
X [®y(z; ©) — g )P, (2: 1) " 'up" HE (k). N > 1.

The representation of expression (5) is very convenient for
calculating the tleld in a reglon where there is a zonal structure;
calculation according to t rmula (5) is simpler than a corresponding
calculation by the normal-wa. method if the number of normal waves

(nondamping from r) is large.

Formula (5) permits us to calculate comparatlvely easily the
acoustic field in the zones of the refraction geometric shadow., The
specific form of the expressions obtained as a result of calculating
integrals (6a, 6b) depends on both the distribution of n2(z) and
the position of the layer boundaries, as well as on the location
of the sound source and the point of observation.

Let us examlne the expression for the acoustic field in the
first zone of the refraction geometric shadow under the condition
that

e Qexplah - 2 expllah- 2)|, ak,(h— £)? 1.

Let us note that in this case the solution to equation (2) can
be expressed through special investigated functions so that

e el (et

xelr.l i} ar21(s ’”W_x, (Eeln;
- () (8)

T T L LSRR | [ (SRR | L
X el At n Wor (e ™),

where

A LA _ ok
At w0 E—b@) =2-"expla(h — 2)).

FTD=HT=23-439-69 5



Having solved equation (6a) by the residue method we get

v, (r, ¢, z°)=;l Ao i(F) 2. 2) exp |~y (r — Ry Im ),

where
By (R 2) =0, 0<argn,<.;.;
r\ '
A, = l/§£ i 4uln(ww— T}"" (u‘__‘_)
nr ;/ni (zo)——;,f;/'—nﬂ ) — 2 [7;;‘_ X ”'“)]7
I=I‘

b

X exp ARt + tho(r = Roo) Re %+ 4 (1 4 Q).

If (z - ho) and (z0 - ho) are high and & is low,

: (Ao (0 -
Ay~ k;'_y_ L mexp(iw,;) . i l’il("of Rm)l‘m 1 "("“)"]
- r ) Ly 3 5 -
~—w (kg %) R (29) — %/ n? (2g) — %f
[enn],, VR@=TY

In equations (10a) and (10b) Zg < h, z <h,
g = iz, Kg)s IQQI << 1, where

2
- ' e byl Intez) w2
w(z w)- k,.;\lﬂ-'(i) e e " aresin |

n A

— a (2 Tz o n?| .
» arcsin xe i ) n?2) 5

) * - TR
3u wthy w) = - 4= aresin (xe : ""_"'.._(r.'%i_‘f_)
Rn:—R, (202 1 ()}

Rn(zv Zns ') =or j. I”u(E) o x?I—I’QdE ‘{' ‘_\. ln’(i) - !21—"?(,2.

where

2
\ Mg T ! [hosewlage—miy,
n}\‘ ® 2 a5 - o Aresin Vi } ;
Po Rah)r | ow fZ0i 1 )| w2z n th| + &, (r Ro) X
~ IR(‘ noon (”n” B lg‘ ( 0’: Run) Re |1l n U’n”u;

' 0
o R [,,l Rz, zp )

de =niny
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In accordance with the geometric theory for low values of
(z - ho) the boundary between the shadow zone and the first
illuminated zone is formed by a beam which has touched the surface
zZ = ho, and the distance to the shadow zone boundary 1is equal to
Ryge In this case ((3/3k)Ry,) < 0 and IAO o | decreases with
increasing 2. As a result of thls, at r > ROO in formula (9) we
may restrict ourselves to the first terms of the series,

If the value (z - hg ) 1s high, the shadow zone boundary is
formed by a caustic, On the caustic r = R kT R (z, 203 Kg k);
Kg K is a root of the equation (a/aK)R (z, 243 K) = 0,

In such a case ((a/ax)Roo) > 0, and according to formula (10b)
value Ao,z initlally increases with increasing £ and only at
sufflclently high values of & does it begin to decrease, Therefore,
in the vielnity of the shadow zone boundary it becomes necessary to
take the large number of terms of the serles of equation (9) into
account,

Now we get an expression for ¥ (r, z, ) convenient for
calculation in this case, and we deform the integration contour
into a loop encompassing the poles of function q(k) in integral
formula (6a). On this contour

¥o(r, 2, 2,): _j’ l/;% ﬂ(-)o(x)

Vma— Y m@)—n (12)
x¢l9. (r, & 2 -)-HMII)(I + Ao(‘))

where
1

1
Ao(l)w-:()(:—. - F‘-). TAy(m)| < 1
at o >1, je,>1, Ikyil»d
% 2 2 )=krrtoy+o 15 the phase.

If the shadow zone boundary 1s formed by the caustic, the phase
@O(r, z, zo) has its saddle point Kq in which 1 - K2 = pei°, where

¢ <0, 1f r >R if r=R Value k 1is the root
of the equation

0,k} X0 = ¥p,k» 0,k"

1 d
Ty e Plr 20 2 1 - Ro(2, 2, %) =0,

FID=HT=-23-439~69 7
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where Ro(z, zg3 k) is set by the equality of (11).

If z = 2 p = expla(h - z) - 1;

o’
=9 . hoBT
&WM%HT_;WWW““MM”JW%.

If0>¢ > n, then Im Ko 2 0; f(KO) ¥ 1. Let us plot the integration
contour in formula (12) through the point k = Kg along the line of
the most rapid decrease (with an increase of |k - Kol) of the factor
exp[i¢o(r, Z, Zg; k)]. Assuming that |¢O(KO) - ¢0(Ke)| >> 1 and
IAO(KO)| << 1, we get

Wo(r, 2, 20) =Wy o (r, 2, 2) -1 W, (F, 2, 2,), (13)
[}

where summatlon 1s performed according to the numbers L of the poles
touched In the deformation of the contour, and

22812 (30) 0 (1) (1 1 @ )

’Uﬂlng(’o)__Igrll["g(z)__’%lui

‘V'!.h(r» z, zo)-"-

X

) &l
Xew[lvo ez N [ N :)] X
s -

3
5%,

a ? 14
X[— 'd:”Ro(’- 2 ., .n] “l‘,;‘} ¢ )

) ——— ¥ — ia e .
[-— ;;7, Ra (2, 21 1-),..‘0_‘J

where v(t) is the Airy function;

b ()[R R 2 0| o Retzzi )] R

[Qoal €1 at 14,1, Tolhy %) |{>1,

b P T CAE R T
Funetion Wo’k(r, Z, zo) at r > Ro,k descrlbes the diffraction from
the caustic. For an unbound medium 1lim Wo(r, Z, zo) = yo’k(r, Z, zo).

Surface z = ho places limitations on the geometric dimensions

of the caustic and Introduces perturbations into the field
diffracted from it. The serles in £ in equation (13) conslders this
perturbation which depends both on the position and on the reflection
properties of the upper boundary. At low values of t we have

FTD-HT-23-439-69 8



‘lrﬂ(" z, zﬂ)a 'vo..(" 2y lo)zvo..(r. z, ‘.).

The series in & in formula (13) can also make a noticeable
contributlon to ¥,(r, z, zy), 1f ¢t >> 15 in this case vo’k(r, z, zo) £
£ ?o’l(r, Z, zo) and Yo(r, z, to) ~ Wo’l(r, z, zo) + Wo’k(r, z, zo).

Let us now examine the contribution to ¥(r, z, zo) of other
components which enter the sum of expresslon (5) under the
condition h0 = o,

Let us assume that n(z,) > n(H) (the beam picture for this
case 1s depicted in Fig. 1). In accordance with geometric theory
the first zone of the refraction shadow is limited on both sides by
i1lluminated zones when n(z) > n{(H). I1f n(z) < n(H), horizon z
intersects only the first illuminated zone and does not pass through
the second and subsequent illuminated zones, so that the shadow
zone 1s unbound in the positive direction of axis r.

Fig. 1. Beam picture (heavy lines - the
caustic).,

Let us examine the most interesting case when n(zo) > n(H) and

n(z) > n(H); we assume that distances (h - zo) and (h - z) are
sufficiently small so that the boundary between the shadow zone and

FTD=HT=23-439=69 9



the secondary 1lluminated zone is formed by the caustic, the
distance to which let us designate by Rl,k' In accordance with
geometric theory, this caustic is the envelope of a family of beams
whose equation has the form

=Ry (2, 2,; %), (15)

where K1 1" n(zo) cos a 1s a real number and a 1s the angle of
’
beam emergence from the source.

" »
Riiz 2o m)=1 | (0@ - 1" - | [n2) - " 2,

After substituting n(z) into the latter expression, we get

l’
e 1 PP S ! 1 —2deap (s —H)! .
‘,.\I'l O - R+ amn( ———IVI'_ )

The position of the point on the caustic 1s set by the equation
r=R, (2, 2o} %)

where 1.k is the root of the equation
»

’:;'Rl.l(lc 2 ¥) =0,

Substituting equations (3) and (4) into formula (7), for
N =1, |kor<| >> 1, f(n(H)}| ~ 1 we get

Faroz,zpm | 5 0 Vil Sl -3 )
LT Jrr [V Ty rmEe=m ==t -
Vimtz) xt f n?(2) w2 foa) (164)
2] - v .
X1 faye itz Vi) Xexpibp,,(r, 2, 2, )| = |

=F (2, 2; %), C

if n/2 < arg uy < 3n/2;

$alr 2, 20 0) = R w2y x) 2wy oz, w) - ’:“; = xka (1 -x)

FTD=HT=23=439-69 10



0, ir .}<nrgm<’%".

/f(x)'-xp[m-n—-‘;-. 1f larce| <

—ofl 2 1 b
A 0(~ ‘gt w, 'Eﬁ]ﬂ-‘n.n(‘)l((l. if ley|>1, [wi>],

!
LTS T ¥ Tl

A(2)--

If |arg uy| < /2, however, then

Fl(’o 2, 24} ')"’

7= Vet Y mm—v

S
X eyt nein ~l.\_:' Fy (r. 2. 2; %),

N V(0 kAR
Var =

(16b)

where

" "
N2l 2 i )= Ay k| VAR - T R+ b, ) VAT TR
L] [
n
Qi 2020 W)=y Ry ) 1 AT®) = T dt
0o .
+h VAR T k| VAR R - S

9lr 2 2 W) Ayt VPR - T4

’! _ '!
A VAT k) VIO - at - D
H f

.‘
sl 2, 2y I)=’k{l+k.j Ve (i) - dt+

L4 [}
+2M [VAG=T A+ 4| VO - T+
(A ) Vwhere [wy|>1, [w(>1, [ay|>1, |&x]D 1,

Let us assume that r < Rl,k; then functilons °1,J(P’ Z, 253 K),
J =1, 2, 3, 4, 5 have saddle points Kl'J, located in the region of
applicability of the representations of formulas (16a) and (16b).
We deform the integration contour of the integral of equation (6a)
describved by N = 1w1(r, Z, zo) so that it passes these saddle points
along corresponding saddlc-polint contours, while outside the
essentlal saddle-point vi~inities 1t goes along the lines of most
rapid decrease Fl(r, z, Zp3 ). The integration contour in

FTD=HT=23=439-69 11



region |arg uHI < ® 1s split into four branches by the four
respective components in expression (16b); these branches merge at
the origin of p(k). Stemming from thls, the integration contour

will pass further through saddle point ”1,1' Im Kl’l < 0 of function
¢l’l(r, z, 243 ) (Fi1g. 2). Saddle point KI,J satisfles the equation

(3/3K)¢1 J(r, Ly 23 x), which 1s reduced to the form
»

P2 Ry, (20 293 ) (:7)

whereupor. functlon R, 1(z, Z4 «) coincides with function (1%):
’

M

H
R, (2, z,; ')=lj in® -2 At j @) -2 ot 4
L3 Ll
+=0 N f @~ e,

5

/g' 2' 3;
R"l(" E A .,m.flnl“) — "I >-|'1“+ (18)

L .
+2 [ IR@ = P4 (1Y | () -,
J=4, 5 .

n
- -

Fig. 2. Plane «.
1 - Point n(0) = 1; 2 — point n(H); 3 - point n(hy);

4 - origin of function ol(ho; k); 5 — pole of the

integrand in formula (1); 6 — origin of function p(k);
7 — point X0k and point K1 kb 8 - point Kos 9 - point
» »

K 10 - integration contour CO; 11 ~ integration

1,13

FTD=-HT=23-439-69 12



contour Cl; 12 - family of integration contours CJ’
J =2, 3, 4, 5.

From equation (17) it follows that 0 < 3 .3 < n{(H) and Im Ky .3 =0
for J =2, 3, 4, 5, sSaddle point Kq ,1 at r < Rl K lies in half‘-plane

Imx<00nthelinel-xil-peio,05¢<7r. At z = z,
s

p = expla(h = zo)] - 1.
Correspondingly, for Rl,l(ZO’ Zg5 Kl’l) we have

Ry, (2o, 255 %), ) == »3 arcsin 2e® - M)/ QTR cos-;’- .

Calculating the integral of expression (6a) aceording to the new
integration contour at r < R1 Kk We get
»

W (r, 27, 2)) = : W, 2, 2o, (19)
irJ =2, 3, 4, 5, then
Y I.I(’v 2,2) - //— -———;'_».. B :L,_’. —x
’ ’[ o By (2 a "‘*'I.l] (19a)
( 1./)"1‘[’9, I(r 2 20 % )___ "‘]
X - e )
Vo) s, /,, e i U sl )
where IQl,JI << ] at lAl’J(Kl’J)I << l;
.'/’02516‘”2
W, (r 2, 2)= ——r - x
“/2[};'2'2 R, (2 2. %), .l'JT/.;
s 0' I) (19b)

|
N e OXP) ) r. 2, 20 %y,y) ~
,’(ll" "’(l'o)— o, y et R )

_‘_?_ o R (2, 200 x), " 'J [Hkl.l(l. Z,: !).:_."']’l .

Here

e k. 2—1«:[ d':. Rusiz, 20: %), .,',]’[;;rkm(l,zo: ‘)lz".']—m;

IQl,ll << 1, 1Ir IAl’l(Kl’l)I << 1,

FTD-HT-23-439-69 13
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If ¢ << 1 (small values of Rl k- T
3

Ry 12 2; %) > R+ ‘;‘[7%,!' Ry, 1 (2, 253 “).:.,_ J =% and

- 1/3
(X 2"3 ka’a (Rl'k - r) [ﬁfl:? Rlol(z’ l'; ')I=l|' .]

In this case ¥, 1(r, z, zy) is reduced to the form
»

Wy, (r, 2, 2=
A2 V) (14Q,,)

RN T 2 T

P AL AN

(19¢)

Formula (19¢) describes the acoustic fleld in the region of the
caustlc. It 1s valid [1] not only with r < Rl k* Wren t > 0, but
]
also with r > R it t 2 1., Ifrt » 1,

1,k? A
Wil 2, 29 = / I X 1 - X
l lm» B o569,
. (19a)
— (! \
£, |)V i (z0) — o l "’(:) bt
whereupon

PPy 2, 255 %,,,) =- kun "__ aresin | Lo |'a (h=2)] oy
P

k - = ——

2 arcsin 1w lath—2))  ina I+ By e e T TR

'/
+'f,—°l/;?'°(em~'»)-1)7.

It 1s essential to note that the use of formula (19¢) at
t >> 1 (far from the caustic) glves greatly reduced values for the
function Wl l(r, Z, z, ) as compared to the values calculated from
exact formula (19b).

Let us note that IW l(r, zZ, 2 )| monotonically diminishes with
an increase of (Rl kT r)

FID=HT=23-439-6g 14



The integral of formula (6a) at N = 1 also permits another
evaluatlon, convenlent at high values of (R1 k- r). Let us set
the value of r = r, to whleh corresponds Kl 1» Which satisfies the
condition 0 < ¢ << /2, 1In this case we can plot the integration
contour in equation (6a) through Kl 1 Without removing the integral
from the convergence regions such that Imk > Im Kl 1 on it. Then
we get

100l 2, 21 [ 11400 20 208 0) | du|<Ce™ T Em ¢
L3

X [ 1Fy (e 2, 203 0] (],
[}

whence it follows that at r < r

Wi1 2, 2) | W, 1 (ry, 29, 2) 10 7M1 DI 000L (20)

In accordance with expression (5) ¥(r, z, zq ) = ¥ (r, z, z )+
+ ¥ (r, z, Zq )+ Comparing formulas (ga) and (6b) at N = NO = 1 we
see that the integral expression for ¥ (r, z, 24 ) differs from the
corresponding expression for W (r, Z2, 2z ) only by the factor

{1 - p(k)g(k)]™ -1 in the integrand. Additional peculiarities of the
pole type 1introduced by this factor into the integrand for

W (r, %, 2.) lle partially on the real k axis at 1 > PLEN n (H)

and partiaily in the reglions: n(H) R Re(x) > 0, Im x > 0 and

7 > Re k > =n(H), Imk < 0 (see Fig. 2),

If r < Rl Kk* the Integratlion contour in the integral of
formula (6b) at N = 1 can be deformed into exactly the same
integration path which was used in the calculation of Wl(r, 20 z).
With such transformation of the integration contour the poles of
function [1 - p(K)q(K)]-l are not affected and, in addition, the
new contour runs in the same part of plane k in which p(x)q(x)| < 1,
1f |V(k)| < 1. After deforming the integration contour into
contour Cj by the method shown and after estimating the value of the
integral we get

‘I-.I (r, 2, z(l) - : 'l"u./("- <4 Z.,) ’E "“,/(’. 2, Zo)(l + Q..,). (21)
Im 7=
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where

0. [ 2(r)g(x)
1Qu /1% max | £ e’

In other words,

il enp[2Peba ' Rus A (R, S0 (20

[, ) oc b g, .
Quji=t T Ve J=-2,3, 4, 5. (22b)

Estimation of equations (22b) 1s convenient if IV(K1 J)l << 1, The
3

expression for ¥, J(r, z, zo), J =2, 3, 4, 5 can also be obtalned
»
in the form

-

W (0 2, 20 = N‘\;| ¥, (r, 2, 2o) (23)
where
"p'\.,(’, Z, zo) - -~ Bl W l~' '--- . e x
’( o Bn (2. 2 "-),
x o)
V”(-,,.,)up[lv,\._l(r. L) TN oy '_:J (
.r/ni(,o)ﬁi;;/n,(’i--l?‘." =1 (1-4-Qw, )
Here
W (0 2, 2y )=y (0 2, 25 %) (2N -T)w(H, x)
"
Ru. (2 20 )) =Ry, (2, 20: ) 2N D) | (2 () - )"y, 25)
o 25

1Qmp K (uyi> b, ke D15

‘N,J is the root of the equation r = RN,J(Z’ Z45 K.

Formula (23) is obtained by replacing [1 - p(r)q(x)]'l by
T [p(x)q(x)]N in the integral describing Wl J(r, z, zo) and the
N=] ’

next obtained integration of the series obtained. The integration
proceeds along the contour obtalned by deforming the original
Integration path into the line of most rapid decrease exp[i@N’J(r, Zy
3 «)] with an increase of e = KN'JI. This line passes through

CTo=HT=23-439-69 16



saddle point N J and ends at the origin of function p(x). Function
]
VN J(r, Z, zo) describes a wave corresponding to a gecmetric beam
]
reflected N times from the boundary z = H.

The expression in the right side of (22a) is considerably less
than unity, evenwwith small values of Rl Kk = r). It is easy to be
3
convinced that |Q1 ll << 1 1s also much less than 1 at r = R1 K
» b}

Having calculated the values of ?o(r, z, zo) and zl(r, z, zo)
by the method shown above we can now find the complete field
¥(r, z, zo), from formula (5), In the geometric refraction shadow
zone. In Filg, 3 there 1s shown the dependence of function
¥(r, -, zo) on r, calculated for the particular case: a = u-lO'u 1/m,
n-: =1100mn, H- 2z = 800 m under the assumption that pg = p; under
this condition the contribution of the waves reflected from the
horizon z = H to field ¥(r, z, 20) is negligibly small, In the
graph of Fig. 3, the points mark the values of ¥(r, z, zo),
calculated by the normal-uave method. The results obtained by both
methods give satisfactory agreement.

¥ ot
E=¥ =
™ | \\\‘anaﬂf#!’f
I '
;i :I .
- g T T (] g m

Flg. 3. Graph of the dependence
of functlon ¥(r, z, zo) on r,

1 — Values of |¥| calculated by
the normal-wave method; 2 - shadow-
zone boundaries.

Let us analyze the case when n(z) < n(H), u(H, n(z)) > 1. Here
the integral of formula (6b), which describes Wl(r, z, zo), may
convenlently be estimated by the statlonary-phase method.

Let us formally expand the integrand in formula (6b) into a
series of powers of (p(x)q(k)). The terms of thls series have real

statlonary=-phase points only at «¢ [0, n(z)], for which

FTD=HT=2 3=4 39=69 17



r S _ .

FEptirm &, Pt 2 2 ) @ -, (26)
while F J(r, Z, 243 K) satisfy equation (16b). The essential
stationary -phase points KN which correspond to a term of the
serles In the right side of formula (26) are roots of equation (25),

Let us plot the integration contour S0 that Im « = 1lim (+e) on
€>0
1t. Then -
® §
Wy (r, 2, 2,) - .‘J .‘. Wy, (r, 2, 20) -+ 2, T r, 2, 2. (27)
1=

m=i

Here W J(r, Z, 24 ) corresponds to the contribution of stationary-
phase points of a term of the series of formula (26).

If equation (25) has a unigue root Ky .3 then WN J(r, z, zo) is
>
described by equality (24),

But RN,J(Z’ Zg3 k), where j = 3, 5, as a funection of real values
of ¢, has a maximum at polnt k = KN,J k? which corresponds to the
caustic of the beams reflccted from the horizon z = H, This caustic
lles completely in the reglon of values of z for which n(z) < n(H).
Magnitude Ky N,J,k 1s the root of equation %?RN,J(Z’ 243 k) = 0. The
distance from the sound source to the caustilc along the horizontal
is equal to

R, = RI\'.I (2, 7o: %, )

If r 1s close to RN,J,R and r > RN,J,k’ then

v a0 2 &)
R .V“N"UNJV”W“A/V 2020 vy )|
R o (262)

[
el e Ry FLEA S *heay gin }/ ””’U)_"Nlll’ i (2) "N 1

where

=2 e — Ru, 10

l:;'?'" Ry (20 201 %), o, .]—I ‘ul '
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M,
Function Wm(r, Z, zo) is the sum of normal waves corresponding to
mel

real poles k. [n(h), n(i)]. A normal wave is defined as the residue
in pole K of the Integrand in formula (1).

With the glven form of nz(z), @m(r, z, zo) is described by the
formulas given 1in work [2}. The function Zﬁﬁ(r, z, ZO) glves the
basic contribution to ¥,(r, z, 2g)s 1f V] << 1 or |V] <1, p + =,
and characterizes the diffraction "exposure" of the geometric
refraction shadow zone stretching limltlessly in the positive
directlon of the r axis on horizon z under consideration,

Although at n(z) < n(H) horizon z does not pass through the
secondary and subsejuent illuminated zones, the resultant field
Y(r, z, zo) will nevertheless be characterized on it by alternating
maxima and minima. The picture 1s externally similar to that which
take.. place at n(z) > n(H). But in the case in questlon the
appearance of maximum |[¥(r, z, zo)l is caused by the approximation
to the caustlc of the beams reflected from the ground, instead of
the Input to the illuminated zone. Such a false "illuminated zone"
differs from the true one in that maximum |¥(r, z, zy)| in this
zone depends on the frequency of the sound, even with the consideration
of absorption in the medium.

The acoustlc field in the channel is represented in the form
of a finite number of components, each of which is described by a
converging integral. This representation is especlally convenient
in the region where the field has a zonal structure, since it
permits us to calculate the field here faster and simpler than by
the normal-wave method crdinarlly used for thils purpose.

The fleld was calculated in the refraction geometric shadow
zone in which n2(z) = 2 expla(h - 2)] - exp[2a(h - z)]. It is
important to note that the obtalned formulas are also valid with
another similar dependence of ne(z), since the specific form of nz(z),
as a rule, 1s not taken 1nto account in the derivation of the

formulas.
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ABSTRACT

(U) A method for calculating accustic fields in channels is pre-
sented, It is assumed that the channel is filled with a medium
which hes no shear elasticity and which 1s nonhomogeneous in the
laminar sense, The method is based on the postulate that the
selection of the fleld components, (the sum of which describes
this field), closely correspond to the spatial structure of

the acoustlc field, thus facilitating the computation, The
acoustlc field in the channel is deseribed by a finite number
of components, each of which is in turn described by a converg-
ing integral, This technique is particularly useful when the
acoustic field has a zonal structure, allowing for faster and
simpler calculations, than it would be possible using the con-
ventional method of plane waves, The acoustic field was com=
puted for the region of the refractive geometric shadow in the
channel, Orig, art, has: 2 figures, formulas,
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