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ABSTRACT 

An analysis is presented which predicts the properties of an arbitrarily thick turbulent boundary 
layer in axial flow past a long cylinder. The study makes use of a modified form of the turbulent 
law-of-the-wall, which properly accounts for transverse curvature effects. Using this law, the 
theory which follows is then an exact solution to the axisymmetric equations of continuity and 
momentum in incompressible flow. 

Numerical results are given to show the effect of cuivature on the various boundary layer char- 
acteristics. Skin friction and drag coefficients can be increased greatly with increasing curvature 
while boundary layer thickness itdecreased. When defined in their axisymmetric form, the displace- 
ment aad momentum thickness are both decreased b; cur/ature. The velocity profile is flattened 
greatly and the shape factor H = 3Vdapproaches unity at latge curvature. The failure o! earlier 
power-law theories to make accurate predictions is shown to be due to their inadequate handling 
of the strong profile shape changes. Finally, the earlier concept that the curvature effect on skin 
friction could be correlated by the ratio (9/d) is shown to be invalid. 
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NOMENCLATURE 

a - cylinder radius 

B, k - law-of-the^wall constants, Eq. (2) 

C{ = local friction coefficient = 2TW/PU2 

CQ - overall drag coefficit Jt« 2(Drag)/pU22iraL 

d = cylinder diameter = 2a 

f = iaw-of-the-wall function, Eq. (12) 

H = shape factor = i*/9 

L = cylinder length 

r, x = radial and axial coordinates 

^x» RL - local and overall Reynolds numbers 

u, v = axial and radial velocity components 

U = freestf earn velocity 

v* = wall friction velocity = ^%A 

y = wall coordinate = [r-a] 

Y = modified law-of-the^wall variable, Eq. (lö) 

h = boundary layer thickness, Fig. I 

3*, 9 s displacement and momentum thickness, Eqs. (24), (25) 

P = fluid density 

M = fluid absolute viscosity 

x a fluid kinematic viscosity = M/P 

*■ = boundary layer shear stress 

X = dimensionless friction variable = U/v* = ^2/Cf 

Subscript: 

w = at the wall 

Si^er script: 

+ = law-of-the-wall variable, Eqs. (1), (7) 
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THE AXBYMMETRIC TURBULENT BOUNDARY LAYER 
ON AN EXTREMELY LONG CYLINDER 

DHRODUCTION 

The prediction of boundary layer properties in axial flaw paat long bodies 
of revolution is an important practical problem.  Such bodies are common in 
both aerodynamics and hydrodynamics, and one wishes to know whether the 
transverse curvature has any important effect in estimating, say, skin friction 
or displacement thickness.  If the flow is turbulent, the prediction of wall pres- 
sure fluctuations, along with the coupled dynamic response that such flow noise 
might cause to the body, is important.  As a first step in buch problems, it is 
the purpose of this report to analyze the axial flow turbulent boundary layer 
past an extremely long circular cylinder.   The analysis is based upon a cylin- 
drical version of the turbulent law-of-the-wall, first deduced by G. N. V. Rao.13 

The present study is limited to incompressible flow with constant properties. 

LITERATURE REVIEW 

First let us remark that the case of laminar flow past a long cylinder has 
been dealt with very successfully.  The laminar boundary layer equations 
achieve closure without any extra empiricism needed, and accurate analytical 
solutions have been given by Probstein and Elliott 1 and byGlauert and Lighthill.2 

Other laminar flow theories, mostly introductory in nature, are given by Seban 
and Bond,3 Kelly,4 and Cooper and Tulin.5 Very strong curvature effects 
occur in laminar flow.   For example, at x/d = 100,  the local skin friction is 
increased nearly 100 percent over a flat plate with the equivalent Reynolds 
number.  A theory for supersonic laminar cylinder flow was given by Mark.6 

As might be expected, the bulk of experimental data occur under turbulent 
flow conditions, which is usually the case also in practical applications.   Prob- 
ably the earliest data on axial cylinder flows are due to Kempf, ^ and subsequent 
experiments have been performed by Telfer,8 Hughes,9 Richmond,10 Yu,11 

Yasuhara,12 and Rao.13 The data of Richmond10 are the most extensive and 
encompass both incompressible and hypersonic turbulent flows.   The experi- 
ment of Yasuhara12 included laminar flow conditions and showed transition to 
turbulence at a Reynolds number of Rx = 1.5 x 106,  not much different from 
typical smooth flat plate transition points. 

«-■^nWKWWtiU« 



The earliest theory for turbulent cylindrical flow is due to Millikan,14 who 
established the proper form of the Karman integral relation for axisymmetric 
flow.  Millikan's calculations, which use the familiar 1/7 power ?aw for the 
velocity profile, do not agree with experiment, because the 1/7 power is not at 
all accurate when curvature effects exist.   Further theories using power-law 
profiles were given by Landweber,15 Eckert, i6 Karhan, 17 and Sakiadis.18 

These results do not agree with experiment either and generally predict curva- 
ture effects that are too small by an order of magnitude. 

A rather different approach was taken by Ginevskii and Solodkin, 19 who 
adapted Prandtl's mixing length theory to the thick cylindrical boundary layer. 
Their theory, which is extremely complex algebraically, includes both concave 
and convex surfaces aud pressure gradient and flow separation effects.   Unfor- 
tunately, their mixing length parameters were taken from flat plate data and 
thus are not accurate undar strong curvature conditions. 

THE LAW-OF-THE-WALL FOR A CYLINDER 

As is well known, the equivalent shear stress in turbulent flow is not simply 
related to viscosity and velocity gradient but includes a large fluctuating inertia 
term, the physics of which is not well defined even to the present day.   How- 
ever, in two-dimensional flow, under flat plate (zero pressure gradient) condi- 
tions, it is a fortunate circumstance that the local velocity u(x,y) may be 
related with great accuracy to local wall variables-,   u = fcn(y, p, M . rw).    In 
dimensionless form this becomes the celebrated law-of-the-wall: 

+ + 
u   = u/v* = fcn(y ), (1) 

where y = pv*y/u and v* = -J^/P • Very close to the wall, viscous shear is 
dominant and a sublayer occurs, where u+ = y* . Away from the wall, turbu- 
lent shear predominates, resulting in a logarithmic region: 

U+ = J In (y+) + B, (2) 

where k and B are empirical constants that hold accurately for all flat plate 
or modest pressure gradient flows.   Coles20 suggests (k = 0.41, B = 4.9), 
while Spalding21 prefers the nearly equivalent values  (k = 0.40, B = 5.5).   The 
difference is not important. 

:Üijt^%.H^A&to*'M-1>V*----*'-.*'^'l-- -■-. 



Finallys very far from the wall, a wakelike flow (Coles20) occurs which is 
independent of viscosity.   We shall not consider this wake in the present report, 
because numerous theories have shown that the outer wake, while very inter- 
esting physically, has a negligible numerical effect on boundary layer computa- 
tions suet, as skin friction arid displacement thickness. / 

The law-of-the-wall provides the necessary closure relation for the turbu- 
lent boundary layer, relating wall shear to u and y.   No further assumptions 
are needed for incompressible flow, and Eq. (2) may be combined with the con- 
tinuity and momentum relations to yield very accurate and simple flat plate 
turbulent calculations, as in the theory of Brand and Per sen. 22 

For cvlinder flow, the entire concept must be reevaluated.   Here the cyl- 
inder radius becomes an additional parameter, and we may postulate that 
u = fcn(x ,a, p, A< , iw),  leading to any of several possible dimensionless forms; 
for example > 

u   ■= fcn(a , r/a) 
or 

(Rao") 

u   = fcn(y , y/a) (Richmond10), 
(3) 

where y is the wall coordinate such that r = y + a.   See Fig. 1 for a definition 
sketch of terms.   The formulation of Richmond above, the earlier of the two by 
ten years, was based upon the so-called "streamline hypothesis'* of Coles.20 

Coles was the first to show that, in two-dimensional flow, lines of constant u+ 

U'CONSTANT 

Fig.   1.     Definition  Sketch  for Axial Cylinder Flow 



are streamlines of the flow.   Richmond 1° hypothesized that the same would 
be true in cylindrical flow, where the stream function varies as  (r2 - a2). 
if this were true, vT would then be a function of only a single parameter 
[(a+y)2-a2],  instead of a and y separately.  Thus, Richmond proposed 
that 

+ 221       r + i 
u   = fcnlv*(r   -a ^a»-!  = fcnly (l+y/2a)j (4) 

This relation is also used to estimate v* from the data.  Upon plotting the 
results from various experiments in thf« manner — see Fig. 7 of Yabuhara12— 
the curves do indeed correlate very near the wall.   Away from tae wall, 
thougu, the curves begin to drop off significantly from the log law, Eq. (2). 
Furthermore, the deviations are a rather erratic function of the relative bound- 
ary layer thickness  (ä/a).   These factc tended to discourage üurther analytical 
work along Ijtw-of-the-wall lines, until, in 1967, Raol3 pointed out the flaw in 
Richmond's approach. 

The critical point made by Rao is that Richmond's proposal,  Eq. (4), 
fails to describe the sublayer properly.   Equation (4) leads to the sublayer pro- 
portionality 

u   = y   (1 + y/2a) (Richmond10). (5) 

However, in the sublayer; it was shown by Rao that the true relation is 
quite different.   Inertia is negligible in the sublayer, and hence the boundary 
layer momentum equation for zero pressure gradient reduces to 

irCrr^o. 
or (6) 

TT = a.T   = rju-r—=: constant, w or 

integrating this, we obtain the proper sublayer relation 

u   = a   In (r/a), (7) 

where  a  = v*aA .   The power series approximation of the logarithm for small 
y leads to the relation 

u+ = y+ (1 - y/2a) {Raol3). (8) 

u a^aEtt^iWJAÜsUM,-. ■tt<Mtt*»!'*'* -'"'"■* 



The difference in sign of the parenthesis terms in Eqs. (5) and (8) is profound 
when the sublayer is thick, which of course it is whenever curvature is impor- 
tant.   T! is, Richmond's expression fails just when we need it most:  in esti- 
mating the wall shear.  This is shown by solving Eqs. (5) and (7) for the wall 
shear: 

Richmond: 

Rao (exact): 

r   ■ Mu/y (1 + y/2a) 

r   = Mu/a i« (1 + y/a). 
(9) 

Thus, Richmond's expression underestimates the wall shear by the factor 
[(y/a) (1 + y/2a)/i« (1 + y/a)] .   The difference is negligible if (y/a) is very 
small (thin boundary layer), but in Richmond's thick-layer experiments, the 
measurement closest to the wall was at about y/a = 0.e     The error involved 
is the factor  [0.5 (1.25)//« (1.5)] = 1.54; the true shear was actually 54 per- 
cent larger than Richmond's tabulated values. 

From his sublayer estimate» Eq. (7), Rao13 then hypothesized that the 
cylindrical law-of-the-wall might actually satisfy the usual two-dimensional 
formulas, if y*- is replaced by the new sublayer variable Y = a+ ta (r/a). 
For example, the logarithmic layer on a cylinder, using Spal.ding's constants, 
would be given by 

u   = 2.5 In (Y) + 5.5,      Y = a   to (r/a). (10) 

Figure 2 shows all available data on thick cylindrical turbulent boundary 
layers, plotted in the suggested form u+ versus Y.   It is seen that Rao's hy- 
pothesis is indeed the correct one.   The agreement is good enough, considering 
the wide variety of relative curvatures, so that we may regard Fig. 2 as 
the correct closure relation needed to complete the analysis of cylindrical 
flows. 
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THE THICK TURBULENT CYLINDRICAL BOUNDARY LAYER 

SKIN FRICTION AND DRAG 

The modified law-of-the-wall from Fig, 2 is the missing link needed to 
complete the theory of turbulent flow past an extremely long cylinder.   For in- 
compressible axi Symmetrie flow with zero pressure gradient, the two basic 
relations are the equations of continuity and momentum: 

Continuity:      ^ + ^> - 0 
dx ^y 

». du ^      du     1  d .   > Momentum:     ru— + rv— = T -—(rr). 
dx        ay    " dy 

If, now, the law-of-the-wall is given by the functional relation 

u(x,y) = v*(x) fOO , 

(ID 

(13) 

then Eqs. (11) and (12) may be sdved directly for the wall shear.   The velocity 
v may be eliminated through continuity: 

rv a 1     .       " 2. ay ru dy = - — r f r—. 
a        dx I (13) 

Substitution of u and v from Eqs. (12) and (13) gives the following differential 
equation in the wall shear stress alone: 

prv" 
dv* 
dx f2=4(^). ay 

(14) 

which we may integrate from the wall to the outer edge of the boundary layer: 

dv*  W ,2 ,  , ,2 .v T
w
= -"—  I      *>/a)   dY. dT I (15) 

This relation is essentially identical to the flat plate skin friction expression 
derived by Brand and Persen,22 except for the additional "curvature" term 
(r/a)2 = exp [2Y/a+].   Clearly the wall shear is increased by curvature, the 
effect being negligible if r = a (thin boundary layer). 



Let us now define a dimensionless skin friction variable related to the 
usual coefficient Cf.   Let 

X = U/v* = ^27C^, (16) 

where Cf ~ 2rw/pU2 .   Substitution into Eq. (15) gives a relation between the 
local Reynolds number and the skin friction coefficient, which is the central 
result of this report: 

^ Y/.(X)   JJ        r        -M UxA = H   -   f   G{X)dA, G=     (       r exp [2Y/a J dY.       (17) 

"■■I 0 0 

It merely remains to carry cut the double integration indicated by Eq. (17), by 
using some suitably accurate representation of the modified law-of-the-wall, 
u+= f(Y),   The logarithmic law, Eq. (10), is reasonably accurate at large B^, 
provided care is taken to eliminate the unwanted effects of the singularity at 
the wall. However, the 8?jblayer becomes increasingly important with increased 
curvature.   Hence, for maximum accuracy, we choose to work with the more 
cumbersome relation of Spalding,21 which fits all three wall regions — sublayer, 
buffer layer, and log layer—very accurately: 

Y = u+ + 0.1108 [eZ ~ 1 - z - z2/2 - z3/6 - z4/24] , (18) 

+ . + 
where z = ku  = 0.4 u  . 

The constant 0.1108 corresponds to the choice B=5.5 in Eq. (2).   Equa- 
tion (18) is plotted for comparison in Fig. 2, and the agreement in all regions is 
seen to be good.  Note that we require the modified variable Y = a+ in {1 + y/a), 
not y+.   Since Eq. (18) is a bulky and implicit form of f(Y),   its use in Eq. (17) 
makes numerical integration a necessity.   The author's numerical results, 
which were obtained by use of a fourth-order Runge-Kutta procedure, are 
shown in Fig. 3 as a plot of Cf = 2/\^ versus Rx,  with the position  (x/d) on 
the cylinder as a parameter.   The originaJ. parameter,   a+,  is eliminated 
through the relation x/d = R^a+X.   Note that realistic values of curvature 
(x/d = 105) may increase the local skin friction by a factor of ten or more; 
this result is made possible by the profound changes in the velocity profile 
implied by the modified law-of-the^wall, Eq. (12). 

i inmiiiiinMMmia 
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Fig. i.     Turbulent Skin Friction on a Long Cylinder, 

fron Eqs. (17) and (16) 

The total drag on the cylinder Is evaluated by integrating the shear stress, 
and the drag coefficient CD is defined with respect to the wetted area: 

Drag = 2ra dx , 

and (19) 

2 Drag 
CD 2 "' PU   2iraL 

Drag calculations were performed in two ways and were checked against each 
other to four significant figures. First, from the definition of Cf, Eq. (19) 
may be rewritten as 

CD = Cf d(x/L) . (20) 

■« —iWHuawcg«! 



Second, if the leading edge is a uniform flow u = U ,   the drag may be calcu- 
lated by a momentum integral across the trailing edge: 

CD = {2/L) 

6 

[u/ü(l - u/U) (1 + y/a)] x=L dy . (21) 

where the velocity profile is found from the modified law-of-the-wall, Eq. (18), 
and the known value of Cf at the trailing edge.   The two approaches should 
give identical results.  The numerical drag results are plotted in Fig. 4 as a 

c 
a. 

a 
o 

\ I \io* 

1 1 1 \J 
k \io< 
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Fig. 4.  Drag Coefficient of a Long Cylinder Compared with That of 

a Flat Plate at the Same Beynolds Number 
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ratio of CD on the cylinder to the equivalent value for a flat plate, which is 
cor related accurately by the well known formula (see, for example, 
Schlichting,23 Eq. (21.16)). 

CD(flat plate) = 0.455/[iog10RL]' 
.58 

(22) 

Figure 4 shows that the drag of a long cylinder may be up to five times the 
equivalent plate drag.   Drag ratios higher than five are probably not realistic, 
because the viscous sublayer then extends almost entirely across the boundary 
layer and raises stability questions about the assumption of turbulence. 

VELOCITY PROFILES AND INTEGRAL 
THICKNESSES 

Although the drag and skin friction of the cylinder are the primary results 
of this report, certain applications —e.g., wall pressure fluctuations — are 
related to the shape and thickness of the velocity profiles. 

Once Cf = 2/x2 is known, the boundary layer thickness is specified by the 
modified law-of-the-wall: X = f[Y(j)]. That is, X determined Y(i) and then 
6 is calculated from 

ö/a. = exp [Y(5)/a+3 - 1 (23) 

Similarly, the law-of-the-wall determines r fy = u+A i   so that the profile 
shape is a function of two parameters:   (Cf, u ) or, better,   (Rx,x/d).   Cur- 
vature causes the profile to be much flatter, and typical shapes (for Rx = 10^ 
are shown in Fig. 5.  Also shown are values of the exponent n that make the 
curves fit approximately to the familiar power law  (u/U) = (y/i)n.   We see 
that the curvature changes the power in this case from about l/llth to about 
l/24th. This is one reason for the failure of the earlier power-law theories14"^8 

to make accurate predictions; another reason is simply that the power law is 
not really a good fit anyway, especially in the vital sublayer region which cur- 
vature emphasizep. 

The momentum and displacement thicknesses can also be calculated from 
the law-of-the-wall.   Kelly4 was the first to point out that the definition of 
these thicknesses should change to account for the cylindrical geometry. Thus, 

11 
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Fig. 5.  Typical Effects of Curvature on Turbulent Velocity Profiles 

on a Long Cylinder, from Eqs. (18) and (19) 
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I 

the displacement thickness on a cylinder is given by the formula 
a+a 

i6* + a)2 - a2 =     f      [l - UAJ] 2r dr , 

a 

and the momentum thickness is given by 
a+« 

" 

2       2 
(Ö + a)   -a i (uAJ) [l - u/ü] 2r dr . 

(24) 

(25) 

No other definition is proper because it will not properly model the cylindrical 
mass flow relations along the cylinder. Values of 6 and 6* calculated from 
these relations are shown in Fig. 6 for various Reynolds numbers and curvatures. 
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Fig. 6.  Boundary Layer and Displacement Thicknesses, 

from Eqs. (23) and (24) 
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We see that curvature reduces both  6 and  6* by approximately the same 
amount, down to no more than a factor of about ten. 

The momentum thickness calculated from £q. (25) is only slightly smaller 
than 3* ,  as would be expected from the profile flattening effect shown in 
Fig. 5,   Figure 7 shows values of the so-called "shape factor"  H = 6*/e for 
various Reynolds numbers and curvatures.  The shape factor drops to nearly 
unity as  (x/d) increases, indicating a nearly flat (slug flow) profile.   There 
is substantial effect even at the very small curvature of x/d = 10.   The some- 
what erratic curve for x/d = 10,000 reflects that in this case the viscous sub- 
layer extends nearly across the entire boundary layer.   Except for a few cases 
near  (x/d = 0),  we may state that curvature decreases  $ just as it does   5* . 
This seems to be in conflict with the accompanying drag increase until we re- 
member that 9 ,   as defined by Eq. (25), is not a measure of drag, whereas in 
two-dimensional flow the flat plate drag coefficient CQ = 29/L . 

Fig. 7.  Theoretical Values of the Turbulent Flow Shape Factor on 

Extremely Long Cylinders, from Eqs. (24) and (25) 

14 
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Based upon his preliminary data, Richmond10 suggested that $ ,   as de- 
fined by Eq. (25), would correlate the local skin friction on a cylinder without 
extra parameters.   He proposed that 

Cf(cylinder)/Cf(flat plate) = fcn(tf/d) , (26) 

if the Reynolds number Rg is the same for both bodies.   That this ie not the 
case is shown in Fig. 8, where we see that a second variable,   a+,  is also 
important.  Richmond's four data points for very long cylinders are included 

Fig. 8.  Cylinder Skin Friction as a Function of Momentum Thickness 

and Curvature (a"*"), from Eqs. (17) and (25), 

Compared with the Data of Richmond (Hef. 10) 

15 



for comparison and are seen to be in excellent agreement with the present 
theory.   The dotted curve shows Richmond's original suggested correlation, 
which is now clearly inadequate in view of the data reevaluation seen in the light 
of the modified law-of-the-wall.   Since Fig. 8 requires two parameters to spec- 
ify a point, it is now no better in principle than the presently suggested Fig. 3. 
In practice, Fig. 8 is much less handy than Fig. 3, because the calculation of 
0 from Eq. (25) Is a cumbersome matter, whereas the estimation of Rx and 
x/'d is relatively simple. 

CONCLUSIONS 

It has been, shown that the modified cylindrical law-of-the-wall, Fig. 2, 
leads to a complete and rational analysis of the turbulent boundary layer in 
axial flow past long cylinders.   The present theory is straightforward, leading 
to Eq. (17), and the numerical results are in excellent agreement with available 
experimental data.   The theory seems to have no apparent limitations on cyl- 
üider size or Reynolds number, as long as the flow is turbulent.   At low Rey- 
nolds numbers and large curvatures, the velocity profiles are mostly viscous 
sublayer, suggesting that in such cases the flow might actually be laminar. 
Tables and charts of important boundary layer parameters are easily con- 
structed from the theory, an:* several charts are included here for the reader's 
interest.  Also, the approach could easily be extended to pressure gradient 
flows if warranted. 
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