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ABSTRACT

Ar analysis is presented which predicts the propersties of an arbitrarily thick turbulent boundary
layer in axial fiow past a long cylinder, The study makes use of a modified form of the turbulent
law-of -the-wall, which properly accounts for transverse curvature effects. Using this law, the
theory which follows is then an exact solution to the axisymmetric equaticns of continuity and
momentum in incompressible flow,

Numerical results are given to show the effect of curvature on the various boundary layer char-
acterfstics, Skin friction and drag coefficients can be increased greatly with increasing curvature
while boundary layer thickness is decreased, When defined in their axisymmetric form, the displace-
ment aad momentum thickness are both decreaszd by curvature, The velocity profile iz flattened
greatly and the shape factor H =6°/8 approaches unity at laige curvature, The failure of earlier
power-law theo:ies to make accurate predictions is shown to be due to their inadequate handling
of the strong profile shape changes, Finally, the earlier concept that the curvature effect on skin
friction could be correlated oy the ratio (§/d) is shown to be invalid.
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NOMENCLATURE

a = cylinder radius
B, k = law-of-the-wall constants, Eq. (2)
Cs = local friction coefficient = 27, /oU2
Cp = overall drag coefficic:t = 2{Drag)/p U22xaL
d = cylinder diameter = 2a
f = law-of-the-wall function, Eq. (12)
H = shape factor = $*/6
L = cylinder length
T, X = radial and axial coordinates
Rx, Ry, = local and overall Reynolds numbers
u, v = axial and radial velocity components
U = freesiream velocity
v* = wall friction velocity = m
y = wall coordinate = [r-a}
= modified law-of-the-wall variable, Eq. (10)

] = houndary layer thickness, Fig. 1
é* 0 = displacement and momentum thickness, Eqs. (24), (25)
p = fluid density
M = fluid ebsolute viscosity
v = fluid kinematic viscosity = u/p
r = boundary layer shear stress
A = dimensionless friction variable = U/v* = \TZ/—C_;
Subscript:

w = at the wall
Superscript:

+ = law-of-the-wall variable, Eqs. (1), (7)




THE AXISYMMETRIC TURBULENT BOUNDARY LAYER
ON AN EXTREMELY LONG CYLINDER

INTRODUCTION

The prediction of boundary layer propertiee in axial flow past long bodies
of revoluticon is an important practical problem. Such bodies are common in
voth aerodyramics and hydrodynamics, and one wishes to know whether the
transverse curvature has any important effect in estimating, say, skin friction
or displacement thickness. K the flow is turbulent, the prediction of wall pres-
sure fluctuations, along with the coupled dynamic response that such flow noise
might cause to the body, is important. As a first step in such problems, it is
the purpose of this zeport to analyze the axial flow turbulent boundary layer
past an 3xtremely long circular cylinder. The analysis is based upon & cylin-
drical version of the turbulent law-of-the-wall, first deduced by G. N. V. Rao,13
The present study is limited to incompressible flow with conatant properties,

LITERATURE REVIEW

Firet let us remark that the case of laminar flow past a long cylinder has
been dealt with very successfully. The laminar boundary layer equations
achieve closure without any extra empiricism needed, and accurate analytical
solutions have been given by Probstein and Elliottl and by Glauert and Lighthill.2
Other laminar flow theories, mostly introductory in nature, are given hy Seban
and Bond, 3 Kelly,4 and Cooper and Tulin.5 Very strong curvature effects
occur in laminar flow. For example, at x/d = 100, the local skin friction is
increased nearly 100 percent over a flat plate with the equivalent Reynolds
number. A theory for supersonic laminar cylinder flow was given by Mark,6

As might be expected, the bulk of experimental data occur under turbulent
flow conditions, which is usually the case also in practical applications. Prob-
ably the earliest data on axial cylinder flows are due to Kempf, 7 and subsequent
experiments have been performed by Telfer, 8 Hughes,? Richmond, 10 Yy, 11
Yasuhara, 12 and Rao.13 The data of Richmond10 are the most extensive and
encompass both incompressible and hypersonic turbulent flows. The experi-~
ment of Yasuharal2 included laminar flow conditions and showed transition to
turbulence at a Reynolds number of Ry = 1.5 x 106, not much different from
typical smooth flat plate transition points.
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The earliest theory for turbulent cylindrical flow is due to Millikan, 14 who
established the proper form of the Karman integral relation for axisymmetric
flow. Millikan's calculations, which use the familiar 1,7 power law for the
velocity profile, do nct agree with experiment, because the 1/7 power is not at
all accurate when curvature effects exist. Further theories using power-law
profiles were given by Landweber, 15 Eckert, 16 Karhan, 17 and Sakiadis. 18
These results do not agree with experiment either and generally predict curva-
ture effects that are too small by an order of magnitude.

A rather different approach was taken by Ginevskii and Solodkin, 19 who
adapted Praundtl's mixing length theory to the thick cylindrical boundary layer.
Their theory, which is extremely comulex algebraically, includes both concave
and convex surfaces a:d pressure gradient and flow separation effects. Unior-
tunately, their mixing length parameters were taken from flat plate data and
thus are not accurate undar strong curvature conditions.

THE LAW-OF-THE-WALL FOR A CYLINDER

As 18 well known, the equivalent shear stress in turtulent flow is not aimply
related to viscosity and velocity gradient but includes a large fluctuating inertia
term, the physics of which is not well defined even to the present day. How-
ever, in two-dimensional flow, under flat plate (zero pressure gradient) condi-
tions, it is a fortunate circumstance that the local velocity u(x,y) may be
related with great accuracy to local wall variables: u=fen{y,p,u,ry). In
dimensionless form this becomes the celebrated law-of-the-wall:

u = u/v* = fcn(y+) , (1)

where y+ =pv¥y/s and v*= \fr,/p . Very close to the wall, viscous shear is
dominant and a sublayer occurs, where u* =y+. Away from the wall, turbu-
lent shear predominates, resulting in a logarithmic region:

W= ingh) + B, (@)

where k and B are empirical constants that hold accurately for all flat plate
or modest pressure gradient flows. Coles20 suggests (k= 0.41, B= 4.9),
while Spalding2l prefers the nearly equivalent values (k= 0.40, B=5.5). The
difference is not important.
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Finally, very far from the wall, a wakelike flow (Coles29) occurs which is
independent of viscosity. We shall not consider this wake in the present report,
because numerous theories have shown that the outer wake, while very inter-
esting physically, has a negligible numerical effect on boundary layer computa-
tions suct. as skin friction ard displacement thickness. /

The law-of-the-wall provides the necessary closure relation for the turbu-
ient boundary layer, relating wall shear to u and y. No further assumptiona
are needed for incompressible flow, and Eq. (2) may be combined with the con-
tinuity and momentum relations to yield very accurate and simple flat plate
turbulent calculations, as in the theory of Brand and Persen.22

For cylinder flow, the entire concept must be reevaluated. Here the cyl-
inder radius becomes an additional parameter, and we may postulate that
u= fen(r,a, p, 4, ry), leading to any of several possible dimensionless forms;
for example,

= fen(a’, r/a) (Raol3)
or + 3)
= fen(y , y/8) (Richmondl9),

where y is the wall coordinate such that *=y +a. See Fig. 1 for a definition
sketch of terms. The formulation of Richmond above, the earlier of the two by

ten years, was based upon the so-called "streamline hypothesis" of Coles.20 |
Coles was the first to show that, in two-dimensional flow, lines of constant u*

ysd— Us CONSTANT

vix,r)
rzaty

i ~<

a=d/2

Fig. i. Definicvion Sketch for Axial Cylinder Flow
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are streamlines of the flow. Richmondl0 hypothesized that the seme would
be true in cylindrical flow, where the stream function varies as (r2 - a2).
If this were true,u™ would then be a function of only a single parameter
fa +y)2 - aZ], instead of & and y separately. Thus, Richmond proposed
that

u = fcn [v"(r2 - a2)/2m] = fcn[y+(1 +y/2a):i . 4

This relation is also used to estimate v* from the date. Upon plotting the
results from various experiments ir this manper — see Fig. 7 of Yasuharal? —
the curves do indeed correlate very near the wall. Away from tae wall,
thougii, the curves begin to drop off significantly {rom the log law, Eq. (2).
Furthermore, the deviations are a rather erratic function of the relative bound-
ary laver thickness (3/a). These fact: iended to discourage further analytical
work along 12w ~of -the-wall lines, until, in 1967, Raol3 pointed out the flaw in
Richmond's approach.

The critical point made by Rao is that Richmond's prcposal, Eq. (4),
fails to descrihe the sublayer properly. Equation (4) leads to the sublayer pro-
portionality

.  * . .
at 2 3T+ y/2a) Rickmond19) . (5)
However, in the sublayer, it was shown by Rao thai the true relation is

quite different. lnertia is negligible ir the sublayer, and hence the boundary
layer momentum equation for zero pressure gracient reduces to

-3 r3
ar (I‘T) 0,
or (6)
rr=ar = r#éli = constant .
w ar

Integrating this, we obtain the proper sublayer rclation

u+ = a+ In (t/a), )

where a+ = v*a/y . The power seriec approximation of the logarithm for small
y leads to the relation

Wy (1-y/em)  Raold). (®)
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The difference in sign of tie parenthesis terme in Eqs. (5) and (8) is profound
when the sublayer is thick, which of course it is whenever curvature is impor-
tant. T. 18, Richmond's expression fzils just when we need it most: in esti-
mating the wall shear. This is shown by sdlving Eqs. (5) and (7) for the wall
shear:

Richmond: r = mu/y (1 +y/2a)

®

Rao (exact): T su/a In (1 +y/a).

Thus, Richmond's expression underestimates the wall shear by the factor
[7/2) (1 +y/2a)/in (L + v/8)]. The difference is negligible if (y/a) is very
small (thin boundary layer}, but in Richmond's thick-layer experiments, the
measurement closest to the wall was at about y/a=90.5 The error involved
is the factor [0.5 (1.25)/In (1.5}] = 1.54; the true shear was actually 54 per-
cent larger than Richmond's tabulated values.

From his sublayer estimate, Eq. (7), Raol3 then hypothesized that the
cylindrical law-of-the-wall might actually satisfy the usval two-dimensiona!
formulas, if y* is replaced by the new sublayer variable Y= at i (r/a).
For example, the logarithmic layer on a cylinder, using Spalding's constants,
would be given by ’

w=25mE) +5.5 Y=a (/). (16)

Figure 2 shows all available data on thick cylindrical turbulent boundary
layers, plotted in the suggested form ut versus Y. It is seen that Rao's hy-
pothesis is indeed the correct one. The agreement is good enough, considering
the wide variety of relative curvatures, so that we may regard Fig. 2 as
the correct closure relation needed to complete the analysis of cylindrical
flows,
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THE THICK TURBULENT CYLINDRICAL BOUNDARY LAYER
SKIN FRICTION AND DRAG

The modified law~of-the-wall from Fig. 2 is the missing link needed to
complete the theory of turbulent flow past an extremely long cylinder. For in-
compressible axisymmetric flow with zexro pressure gradient, the two basic
relations are the equations of continuity and momentum:

T Y e o

5 Cortinuity: T 4+ 9V) _ ¢
ox Y
(11)
3u du 19
Momentum: ru— +rv— =< —(r).
>Ny ey
&
If, now, the law-of-the-wall is given by the functional relation
u(x,y) = v*(x) £(V), o)
. then Eqs. (11) and (12) may be sclved directly for the wall shear. The velocity
§ v may be eliminated through continuity:
Yy
IE = - a = —-v' 2 —B——Y-
v rv = -B;J‘rudy arfax (13)
g 0
ll Substitution of u and v from Egs. (12) and (13) gives the following differential
3 equation in ihe wall shear stress alone:

-

prv"‘%vx—* £ = %(rr) , (14)

g e

¥ which we may integrate from the wall to the outer edge of the boundary layer:

'f Y(8)

: _ _ ,dv* 2

1&* = T R g £ (r/a)” dY. (15)

0

This relation is essentially identical to the flat plate skin friction expression
derived by Brand and Persen, 22 except for the additional "curvature' term
(c/a)2 = exp [2Y/a*]. Clearly the wall shear is increased by curvature, the
effect being negligible if r =a (thin boundary layer).

mmq
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Let us now define a dimensionless skin friction variable related to the
usual coefficient Cg¢. Let

N = Ufv* = .jﬂ(’:', (16)

where Cg= 21",,,/A'U2 . Substitution inio Eq. (15) gives a relation between the
local Reynolds number and the skin friction coefficient, which is the central
result of this report:

A Y(N
Ux/v = Rx = f G(\) dr, G= | f2 exp [2Y/a+] dy. (17
0

It merely remains to carry cut the double integration indicated by Eq. (17), by
using some suitably accurate representation of the modified law-of-the-wali,
ut=i(Y). The logarithmic law, Eq. (10), is reasonably accurate at large R,,
provided care is taken to eliminate the unwanted effects of the singularity at

the wall. However, the sublayer becomes increasingly important with increased
curvature. Hence, for maximum accuracy, we choose to work with the more
cumbersome relation of Spalding, 21 which fits all three wall regions — sublayer,
buffer layer, and log layer — very accurately:

Y = u+ +0,1108 [e?-1-2- z2/2 - z3/6 - z4/24] . (18)

where z = ku+é 0.4 u+.

The constant 0.1108 corresponds to the choice B=5.5 in Eq. (2). Equa-
tion (18) is plotted for comparison in Fig. 2, and the agreement in all regions is
seen to be good. Note that we require the modified variable Y =a% In (1 + y/a),
not y*. Since Eq. (18) is a bulky and implicit form of f(Y), its use in Eq. (17)
makes numerical integration a necessity. The author's numericsl results,
which were obtained by use of a fourth-order Runge-Kutta procedure, are
shown in Fig. 3 as a plot of Cgf= 2/A% versus Ry, with the position (x/d) on
the cylinder as a parameter. The original parameter, at, is eliminated
through the relation x/d = Ry/2a*t\. Note that realistic values of curvature
(x/d = 105) may increase the local skin friction by a factor of ten or more;
this result is made possibie by the profound changes in the velocity profile
implied by the modified law-of-the-wall, Eq. (12).
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Fig. 3. Turbulent Skin Frietion on a Long Cylinder,
from Eqs. (17) end (18)
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&
E The total drag on the cylinder is evalusted by integrating the shear stress,
i and the drag coefficient Cp, i8 defined with respect to the wetted area:
b L
¥ Drag = T 2radx,
5 w

0

and (19)
CD = -LZD& .
PU~ 2raL

Drag calculations were performed in two ways and were checked against each
other to four significant figures. First, from the definition of C¢, Eq. (19)
may be rewritten as

1
Ch= j C, d(/L) . (20)
0




Second, if the leading edge is a uniform flow u=U, the drag may te calcu-
lated by 2 momentum integral across the trailing edge:

]
Cp= @/L) | [/ua-uwu a+y/a), , dy, (21)

where the velocity profile is found from the modified law-of-the-wall, Eq. (18),
and the known value of Cj at the trailing edge. The two approaches should
give identical results. The numerical drag results are plotted in Fig. 4as a

T

108

L/d=10% \

Cpleyl)
E_(;(ploto) i

103 108 w0’ 108 10° 10"
R
Fig. 4. Drag Coefficient of a Long Cylinder Compared with That of
a Flat Plate at the Same Reynolds Number

10




R . T e e R e B T o e e = i e e i ek

ratio of Cp on the cylinder to the equivalent value for a flst plate, which is
correlated accurately by the well known formula (see, for example,
Schlichting, 23 Eq. (21.16)),

. 2.58
C(flat plate) = 0.455/[10g10RL] . 22)

Figure 4 shows that the drag of a long cylinder may be up to five times the
equivalent plate drag. Drag ratios higher thar five are probably not realistic,
because the viscous sublayer then extends almost entirely across the boundary
layer and raises stability questions about the assumption of turbulence.

VELOCITY PROFILES AND INTEGRAL
THICKNESSES

Although the drag and skin friction of the cylinder are the primary results
of this report, certain applications —e.g., wall pressure fluctuations —are
related to the shape and thickness of the velocity profiles.

Once Cg=2/A\2 is known, the boundary layer thickness is specified by the
modified law-of-the-wall: X\ = f[Y(3)] . Thatis, A determined ¥(5) and then
é is calculated from

5/a = oxp [Y(6)/a' ) - 1. 23)

Similarly, the law-of-the-wall determines r U= u*/A, so that the profile
shape is a function of two parameters: (Cg¢, .} or, better, Ry, x/d). Cur-
vature causes the profile to be much flatter, and typical shapes (for Ry = 10 7)
are shown in Fig, 5. Also shown are values of the exponent n that make the
curves fit approximately to the familiar power law (u/U) = (y/8)1. We see
that the curvature changes the power in this case from about 1/11th to about
1/24th. This is one reason for the failure of the earlier power-law theories14-18
to make accurate predictions; another reason is simply that the power law is
not really a good fit anyway, especially in the vital sublayer region which cur-
vature emphasizer.

The momentum and displacement thicknesses can also be calculated from
the law-of-the-wall. Kelly4 was the first to point out that the definstion of
these thicknesses should change to account for the cylindrical geometry. Thus,

11
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Fig. 5. Typical Effects of Curvature sn Turbulent Velocity Profiles
on a Long Cylinder, from Eqs. (18) and (19)
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the displacement thickness on a cylinder is given by the formula
, 5 a+é
(6* +a)” - a" = [1-uwU] 2rar, (24)

a

and the momentum thickness is given by
s 5 a-:;&
(6+a)” -a° = J @) 1 -wu) 2rde . (25)

a

No other definition is proper because it will not properly model the cylindrical
mass flow relations along the cylinder. Values of 6 and 6% calculated from
these relations are shownin Fig. 6 for various Reynolds numbers and curvatures.

N
For x/d =_ O
100
s
10,
=~ — 100,000\
—— T — 1\
—— e — "
F\ —— —— :‘_ - <
.01 P~ — -
\ \~- ——
e
\ T = -
. [ \-\

—
001 LA T T
Sy

.0001

103 108 107 108 10?

Fig. 6. Boundary Layer and Displacement Thicknesaes,
from Eqs. (23) and (24)
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We see that curvature reduces both § and é* by approximately the same
amount, down to no more than a factor of about ten.

The momentum thickness calculated frcm Eq. (25) is only slightly smaller
than é*, as would be expected from the profile flatiening effect shown in
Fig. 5. Figure 7 shows values of the so-culled "shape factor" H= §*/6 for
various Reynolds numbers and curvatures. The shape factor drops to nearly
unity as (x/d) increases, indicating a nearly flat (slug flow) profile. There
is substantial effect even at the very small curvature of x/d= i0. The some-
what erratic curve for x/d = 10,000 reflects that in this case the viscous sub-
layer extends nearly across the entire boundary layer. Except for a few cases
near (x/d=0), we may state that curvature decreases ¢ just as it does §*.
This seems to be in conflict with the accompanying drag increase until we re-
member that #, as defined by Eq. (25), is not a measure of drag, whereas in
two-dimensional flow the flat plate drag coefficient Cp = 26/L .

H T T I |

o 1 | | 1
105 106 107 108 10? 100
Ry

Fig. 7. Theoretical Values of the Turbulent Flow Shape Factor on
Extremely Long Cylinders, from Eqs. (24) and (23)
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Bzased upon his preliminary data, Richmond10 suggested that 4, as de-
fined by Eq. (25), would correlate the locel skin friction on a cylinder without
extra parameters. He proposed that

Cf(cylinder)/Cf(ﬂat plate) = fen(6/d) , (26)
if the Reynolds number Ry is the same for both bodies. That this is not the
case is shown in Fig. 8, where we see that a second variable, at, is also
important. Richmond's four data points for very long cylinders are included
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Fig. 8. Cylinder Skin Friction as a Function of Momentum Thickness

and Curvature (a+), from Eqs. (17) and (25),
Compared with the Data of Richmond (Ref. 10)
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for comparison and ar« seen fo be in excellent agreement with the present
theory. The dotted curve shows Richmond’s original suggested correlation,
which is now clearly inadequate in view of the data reevaluation seen in the light
of the modified law-of-the-wall. Siace Fig. 8 requires two parameters to spec-
ify a point, it is now no better in principle than the present!y suggested Fig. 3.
In practice, Fig. 8 is much less handy than Fig. 3, because the calculation of

6 from Eq. (25) is a cumbersome matter, whereas the estimation of Ry and
x/4 is relatively simple.

CCNCLUSIONS

It has been shown that the modified cylindrical law-of-the-wall, Fig. 2,
leads to a complete and rational analysis of the turbulent boundary layer in
axial flow past long cylinders. The present theory is straightforward, leading
to Eq. (17), and the numerical res:iits are in excellent agreement with available
experimental data. The theory seems to have no apparent limitations on cyl-
izder size or Reynolds number, as long as the flow is turbuleat. At low Rey-
nolds numbers and large curvatures, the velocity profiles are mostly viscous
sublayer, suggesting that in such cases the flow might actually be laminar.
Tables and charts of important boundary layer parameters are easily con-
structed from the theory, and several charts are included here for the reader's
interest. Also, the approach could easily be extended to pressure gradient
flows if warrantec.
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