
BOLT BERANEK AND NEWMAN ' * <=

CONSULTING D E V E I O P M E N T « E S i A I 0 H

AFCRL-69-0438 6 October 1969

CAPTURING CONCEPTS IN «V SEMANTIC NET

by

Anthony Bell

N. Ross Qullllan

Scientific Report No, 13
Contract No. P19628-68-C-0125
Project No. 8668
Contract Monitor: Hans Zschirnt

Data Sciences Laboratory

Prepared for:

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
Office of Aerospace Research
united States Air Force
Bedford, Massachusetts 01730

Reprociuced by the
CLEARINGHOUSE

for Federal 5c enlific S Teinnic^i
inforniäii-r. Springfield Va- 2215'i

i
D D C

NOV 2 519K.

^

i U,_ : Ü Ü3
C

This research was sup-
ported by the Advanced
Research Projscts Agency
under ARPA Order No. 627.

Distribution of this document
is unlimited. It may be re-
leased to the Clearinghouse»
Department of Commerce, for
sale to the general public.

C A M >J^J> G E NEW Y O « K

^

C H
.mil IIUI

I O S A N G E I £ S

t HKITE tECTl« tJ
m im stüKiies G

jusTifiwues

(Y
ll5T9IMTWI/HIUL*IUn MBB

BIST. mtL mtm «««*»•

Qualified requestors may obtain additional copies **roin the

Defense Documentation Center. All others chou: ply to the

Clearinghouse for Federal Scientific and Tec' .al information.

-

I
•

AFCRL-69-0438 6 October 1969

CAPTURING CONCEPTS IN A SLMANTIC NET

by

Anthony Bell

M. Ross Qulllian

Bolt Beranek and Newman Inc.
50 Moulton Street
Cambridge, Massachusetts 02138

Scientific Report No. 13
Contract No. F19628-68-C-0125
Project No. 8668
Contract Monitor: Hans Zschirnt, Data Sciences Labora-^ry

Prepared for:

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
Office of Aerospace Research
United States Air Force
Bedford, Massachusetts 01730

Distribution of this document
Is unlimited. It may bp re-
leased to the Clearinghouse,
Department of Commerce, for
sale to the general public.

This research was sup-
ported by the Advanced
Research Projects Agency
under ARPA Order No. 627,

HHÜ

Report No. 1885 Bolt Beranek and Newman Inc.

ABSTRACT

A working memory model based on a semantic network is described

in detail. Some advantages and disadvantages of such a model are

discussed. An attempt is made to enable a reader to learn to perform

th«- formidable task of representing data in the memory format. Since

the actual memory is not easily read (or written), a set of LISP

programs are included which make theso tasks manageable.

Report No. 1865 Bolt Beranek and Newman Inc,

TABLE OF CONTENTS

page

I. Rationale and Overview of a Model 1

Overall Memory Organization ^

Coding vs. Comprehension 7

Internal Memory is Not Printable , 8

Units H

Properties « 13

The Only Way to Tell a Unit from a Property is by
Location • I1*

II, How to Encode l6

Numerals 17

Sets • • • • 19

Nested Properties 20

Verbal Properties 21

Translation to Internal Memory Format 2^

APPENDICES:

I. Schematic of Input Readable Format 26

Syntax of Input Readable Format 27

Schematic of Internal Memory Format 28

II. Routines for Translation In and Out of the
Internal Memory 29

Arguments to PR 29

Arguments to RD 29

III. Additional Examples 1*2

Bibliography a 2|6

:3 «rT^ --b^^^

Report No. 1885 Bolt Beranek and Newman Inc,

CAPTURING CONCEPTS IN A SEMANTIC NET

Part I; Rationale and Overview of a Model

This paper describes a memory model, i.e., a particular format

and organization for the information comprising a data store. We

propose this model both as a useful way of actually storing any

large body of factual information in a computer, and as a theory

of the general structure of long term human memory. The model,

in various earlier versions, has been used in computer programs

(Quillian, 19SCt 1969) and as the basis of psychological experi-
ments (Collins and Quillian,1968, 1969). The aim of this paper is

to explain the model in considerable tedious detail, so as to make

it possible for anyone either to build and use his own version in a

computer program, or to generate detailed predictions for psychol-

ogical experimentation. The paper thus is essentially a sort of

primer on how to translate written text into this memory format.

The memory is intended to allow representation of any concept,

but in a way which only deals with one facet of human memory. That

is, the memory is designed to encode only descriptive information,

it omits any explicit reference either to emotional meaning or to

plans for action. Such plans or routines may be for muscular, for

perceptual, or for cognitive action, and may be routines designed

to work on other routines. We suspect that emotional meaning can
eventually be handled by simply adding some sort of tags to des-

criptive information, and hence can be omitted for the present with-

out terrible danger of constructing the entire memory incorrectly.

Our omission of routines, however, is much more worrisome. We of

course don't know the degree to which such routines and information

related to them form a part of memory for descriptive information.

-1-

Report No. 1885 Qolt Beranek and Newman Inc.

but our guess is, they do, to a very large degree. We suspect that

things which are the functional equivalents of the names of routines,

of the nam^^ of input parameters of routines, and of the names of

various effects of routines form the "primitives" of descriptive

memory. We believe that Piaget's "schemata" are best understood

as such information, plus the routines themselves. .> „ may in fact

be that all descriptive information is Initially constructed out of

these primitives; Piag-t has argued persuasively that only on the

basis of an infant's developing plans does it become possible for

him to conceive of such notions as enduring objects, as time, as

space, etc. (Plaget 1950, see also Quillian, Wortman, and Baylor,

1965.) Within the descriptive material itself, there need be no

primitives, everything can simply be defined in terms of pointers

to other things, analogous to the way words are defined in a diction-

ary. It is the links leading out of this descriptive material, to

action, to recognition, and to cognition that our present model

omits, and whose omission worries us. For this means that we are

skipping over all the underpinning on which we suspect human

memories actually stand; we are attempting to model an advanced

result of the human development process in abstraction from what

we suspect is its schemata-related base.

What can Justify such an approach? Well, essentially it is

only that one must attack problems where he can; we think we have

in fact been able to find out some things about the organization of

memory at this high level, both by computer simulation and by psy-

chological studies, and that a great deal more can be discovered.

No one really knows how to write the routines people use to perform

even their simplest actions or perceptions. (In fact, so far, more

is probably known about how people perform high-level cognitive

actions. See, e.g., Simon, 1969). Even less is known about how

to build a machine capable of developing routines for muscular or

perceptual actions, the way that people do, A few "robot projects"

-2-

Report No. 1885 Bolt Beranek and Newman Inc.

(MIT, Stanford, SRI) are now making beginning efforts In this di-

rection, but results that will enable us to deal with things like

human language seem a very long way off. It has seemed to us that

in this situation. It is worthwhile to try directly to work out a

format and an organization for descriptive memory. This format

optimally would be rich enough to encode the meaning of any natural

language text, in a format that yet is uniform enough to be managed

by specifiable procedures (debuggable computer routines), and at

the same time not become impossibly cumbersome or redundant. These

conflicting goals are not easily reconciled, and we will try to

point out remaining problems in the code as we proceed.

Neither syntactic parsing schemes nor symbolic logics are of

much help in modeling such memories, since they either deal with

only one small aspect of language, or they become impossibly cum-

bersome, or both. It also seems to us that "ontological reality"

is of very little concern for a model of human memory. The memory

structure here thus is completely phenomenalistic, it attempts to

represent concepts, period. Any concern about the relationship of

these concepts to "the real world" seems to us beside the point.

(Cf., for example, works such as Qulne, I960.)

Thus this paper is directed toward anyone who may be interest-

ed in the pragmatic details and problems of how to simulate a

memory for descriptive information, to the degree that this may be

possible without explicit incorporation of schemata. Our hope is

of course that such a memory can have routines and schemata-like

links added to it in the future.

Some work toward a memory that is both descriptive and imperative
has been done at Carnegie-Mellon University. (Allen Newell, per-
sonal communication.)

-3-

Keport Nc. 1885 Bolt Beranek and Newman Inc

The memory will be described here as It is now expressed in

LISP, but this is more a convenience than a necessity, it co-'id

also be set up and handled by other list processing languages.

Overall Memory Organization

Essentially, the memory is a mass of interconnected nodes

which represent conceptual elements. In general each of these nodes

is itself made up of a constellation of pointers to other nodes, so

the overall memory is a general graph structure, with no restrict-

ion against loops or reentries. (We will not be concerned with

the mathematics of such structures.) Many nodes in this network

will contain pointers to "-he same other node. In fact, all the

no^es which use a particular concept as a compositional ingredient

should contain a pointer to the same node, so that no more than one

node will ever be required in the entire memory to represent ex-

plicitly any particular concept. If two nodes use the same concept

but with different modifications of it, then each of them will

point to separate intermediati nodes, which in turn will point to

the node representing the common concept. This kind of memory

organization removes redundancy, while permitting one concept to

be defined in terms of others.

Such a memory organization also permits common ingredients

present among any given set of concepts to be located swiftly, by

a technique which effectively simulates a parallel search. Thii.

method will be recognized as that used in prior programs (Quillian,

1966, 1969). It is based on the fact that, starting from any

given node in the memory, a program car. easily trace to a^l the

nodes that this node contains pointers to, and then (on a second

pass) to all the nodes these nodes contain pointers to, and so on,

Tor as many such passes as is desired. In a rich memory this

breadth-first tracing will tend to fan out on each successive pass

1.
•4—

Report No. 1885 Bolt Beranek ^nd Newman Inc.

to a greater and greater number of nodes, although certain branches

of the fan will either circle back to prcviou?? nodes, or will simply

die off due to reachirg some NIL node, i.e., one whose meaning

has not yet been specified in the memory.

Next, suppose chat as a routine proceeds with such a trace,

it places an "activation tag" on rery node it passes through.

This activation tag names the initial starting concept which led

(however indirectly) to all the nodes reached and tagged-

Now, suppose that this process Is Initially given more than

one initial starting node. Its tracing now proceeds breadth-

first through all these concepts at once, moving one level deeper

into each of them on each pass. Thus it simultaneously traces out

a separate "fan" fur each initially given unit. The processor

places an activation tag on each node it reaches, identifying the

particular fan it is part of by naming the initial node at the

fan's head. Moreover, this process now checks every node it tags,

to see if the node has already been reached during prior tracing

eminating from some other initial node. This is easily deter-

mined, since any such node will have a tag showing it has already

been reached, indicating its initial nodeCs). Whenever such a

previously tagged node is found, it constitutes an ingredient

common to these two initial nodes, an "intersection."

This method of locating common ingredients of concepts will,

in general, find the common ingredients which are closest to the

initial starting nodes before it finds those which are further

away. That is, it will locate intersections reachable by short

paths from the initial concepts before it finds those reachable

only by longer paths. Some restriction on the number of passes

to make before quitting must always be given to such a routine,

whether or not the process is also terminated after some given

-5-

Repox't No. 1885 Bolt Beranek and Newman Inc,

number of intersections have been located. Breadth-first searches

to find intersections of concepts are used in a number of ways with-

in a program such as TLC, with more elaborate ta^s which allow the

pro-ram to distinguish an intersection node that is connected to an

initial node by a path going only through supersets from one whose

path at some point moves "out" through other information associated

with some node(s). (Supersets are explained below.)

The most important property of a memory in which everything

points to other things is that a large part of its information is

implicit (Quillian, 1966). Retrieving its information therefore requires

not only retrieving material that is stored in the memory, but also

generating new material on the basis of retrieved explicit material.

That is, such a processor must be able to take a piece of explicit

material from the memory, trace to further information stored with

the components used to compose that material, and produce new in-

formation by projecting implications of the explicit information

onto the information stored with its components. For instance, if

the memory explicitly stores the fact that John employs Bill,

routines should not only be able to retrieve this, but also to

derive that John probably pays Bill, that bill probably does some-

thing John wents done, that John is somewhat likely to hold a

position of more power than Bill, etc. The routines to do this

must operate by combining general information stored with "employ"

with the specific piece of information that John employs Bill.

Not a great deal 3s known about how to write such generative

retrieval routines, but the reader should be aware that the memory

model here is intended to facilitate such use of Its information.

The trade-off between what to represent explicitly and what to leave

to be derived is a choice the coder will sometimes have to make.

-6-

-f

Report No. 1885 Bolt Beranek and Newman Inc.

Coding vs. Comprehension

In order to simplify our explanation of how to encode natural

language into the memory, we will concentrate on text which is noun

phrases and usually dictionary definitions. This is not essential,

any kind of text can be encoded. But, such text does eliminate

several difficult or messy problems. The first of these is decid-

ing what is important enough to encode; in dictionary definitions

everything can be assumed to be, while in other text relatively

little is. Second, in dictionary definitions we don't ha"e to de-

cide where to store encoded information; it is clearly to be stored

with the word being defined, and there only. In oth-'r text, this

is a very big problem. (Quillian, 1969). Third, in dictionary

definitions tense is usually irrelevant, and hence need not be

coded. Fourth, in dictionary definitions there is rarely any need

to be concerned with whv> believes a given concept or assertion that

is coded in the memory, or with his confidence in its validity.

Such information clearly is part of our more general knowledge,

and must be added to the encoding of much text.

In this paper we will take two other important shortcuts

strictly for convenience in teaching the code. The first is to

code all English as close as possible to the English itself. For

example, we here will code a phrase like "lawyer of the client"

simply as:

(lawyer(of client))

In contrast, our computer program simulating language compre-

hension, TLC, comprehends and encodes "lawyer of the client" as

meaning that:

"this lawyer is representing or advising this client in a

legal matter" (Quillian, 1969)

-7-

Report No. 1885 Bolt Beranek ana Newman Inc.

The Information here added by TLC's interpretation is of the sort

we believe people actually add in comprehending language. We

believe they, like TLC, do this by relating text they read to many

parts of their entire store of knowledge of the world. Doing this

greatly enriche; their understanding of such text. However, it

also moves an individual's comprehension toward this own memory,

built up over his entire past history, and hence reflects his

personal, idiosyncratic view of the world. By its very individual-

ity, then, nuch interpretative coding is ineffective for one person

to use in teaching the format to another. Thus we here will encode

text as similarly as possible to the text itself, even though this

is not what we believe people actually do in comprehending language.

The second shortcut we will take here is to pretend that all

words only have one meaning. This is especially false for prepo-

sitions, and anyone who really wants to build a memory, or to con-

duct psychological experiments based on one will probably find he

must look up every word he encodes, decide which meaning of it he

wishes to refer to, and then do so. The method of referring to a

particular meaning of a word is described in the last section of

this paper. However, all the principles of the model can be illus-

trated without this arduous labor, so we will omit it.

Internal Memory is Not Printable

Although a memory with circles and reentries can easily be

set up within a computer, it cannot be directly written out in

linear form. Therefore, there are actually three forms of the

memory format. One of these is the "internal" form in which in-

formation is stored within a computer or hypothetical human memory,

another is a linear form which can be printed out to illustrate

any segment of that internal memory, still another is a slight In-

different linear form which a person can write, ar:d which then

can be translated into the internal form oy a small computer pro-

gram. We will call these three formats respectively the internal

-8-

4

Report No. 188? Bolt Beranek and Newman Inc.

or actual memory format, the output readable format, and the input

readable format. The actual memory '"model" Is of course the Inter-

nal form.

Figure 1 illustrates a piece of information encoded in four

forms. Pig. 1A is the English. Pig. IB is in the input readable

form that a coder might create to represent this English. Pig. 1C

Is a picture illustrating the piece of actual internal memory that

the input translation program would create tc represent IB. Pinally,

Pig. ID shows the output readable form that our output translation

program would produce if asked to translate 1C out into readable

form. The main difference between these coded forms is that whereas

words represent concepts in the readable forms, lists represent

these concepts in the internal form. (In general, one of these

lists represents the first definition of the corresponding word

that appears in the readable form.) Thus, data in the input read-

able form must be translated in order to produce sections of internal

memory. We will discuss this translation more thoroughly below,

after the input format of the memory is clear. Listings of LISP

routines for translation in and out of internal memory are given

as appendix 2.

The most important principle of all the memory formats is that

all farcual inforr^tion is encoded as either a "unit" or as a

"property." A unit represents the memory's concept of some object,

event, idea, assertion, etc. Thus a unit is used to represent any

of the kinds of thing which can be represented in English by a

single word, a noun phrase, a paragraph, or some longer body of text.

A property on the other hand encodes any sort of predication, such

as might be stated in English by a vert phrase, a relative clause,

or by any sort of adjectival or adverbial modifier.

-9-

Report No. 1S35 Bolt Beranek and Newman Inc.

FIGURE 1: Information Coded in 4 Forms

1A: ENGLISH

"Thunder is a very loud noise following a flash of lightning."

IB; INPUT READABLE FORMAT

THUNDER:

(NOISE (LOUD 17) (FOLLOW (FLASH (OF LIGHTNING)) (BY THUNDER)))

1C: INTERNAL MEMORY FORMAT

the def. of "noise" (*--X-)

the def. of "loud"

the def. of "flash"

the def. of "of

(**-)

the def. of "by1

the def. of
"lightning"

ID: OUTPUT RrADABLE FORMAT

THUNDER;

(NOISE (LOUD 17) (FOLLOW (FLASH (OF LIGHTNING)) (BY (*THIS* THUNDER))))

-10-

-.

Report; No. 1885 Bolt Beranek and Newman Inc.

In Fig. 1C the word "thunüer" which itcelf is outside the

memory in a "dictionary" is associated with one pointer to a

unit in the memory. This unit is shown as delimited by two square

brackets. Also shown in Fig. 1C is another unit In brackets, and

four properties, each of the properties being delimited by a set

of parentheses. Distinguishing units from properties by the use of

brackets vs. parentheses is only an aid to our description, there

is no corresponding distinction in the actual memory format, and,

as in Figures IB and ID, both units and properties actually are

delimited with parentheses.

In the following description we will always be referring to

the input readable form, unless otherwise stated. The reader may

wish to refer frequently to the schematic drawing of this format

in appendix 1. A generative description of the syntax of the input

format, plus a schematic of the internal memory format, are also

included in appendix 1.

Units

Any unit's first element (reading left to right) must always

be a pointer to some other unit, referred to as the unit's "super-

set." A unit's superset will in general represent some more generic

concept than the unit itself represents. Thus the superset of a

unit JOE-SMITH might be MAN, that of MAN might be PERSONj that of

PERSON might be ANIMAL, etc. (Any of these could also be the LISP

atom NIL, used throughout to represent a lack of further informat-

ion.) After its first element, a unit can contain either nothing

or any number of pointers, but each of these must be to a property,

not to a unit. Thus, Fig. 1 shows the superset of the unit repre-

senting "thunder" to be NOISE, followed by two pointers to proper-

ties.

-11-

Report No. 1885 Bolt Beranek and Newman Inc.

Each property poInted to In a unltf^^w^ients some assertion

that Is somehow associated with that unit. When all these proper-

ties are simultaneously associated with the unit's superset, the

resultant is the concept the unit represents. In other words, a

concept is always represented in our format ty a list of pointers.

The first points to the concept's superset, of which the concept

can be considered a special Instance, and the rest point to proper-

ties which together state how that superset must be modified and

related to other units in order to constitute the concept intended.

Properties are therefore the means by which refining modifications

or changes of state are encoded. The relationship Implicit between

the properties of a unit is conjunction.

Note that new units can be freely constructed by creating an

empty unit and using a pointer to some prior unit as the new unit's

superset. Thus, suppose one wished to construct a new unit to rep-

resent Joe Smith as a boy, or one to represent Joe Smith from the

point of view of his wife, or one to represent Joe Smith when angry.

Each of these could be constructed as a new unit having as superset

a pointer to the previous JOE-SMITH unit, followed by whatever re-

fining properties were necessary to compose the appropriate particu-

lar concept. Suppose, further, that after creating these three new

units, one wished to construct a unit representing Joe Smith at age

eleven, and that one wished this to include all the information

stored with the unit representing Joe Smith as a boy. This is done

by simply creating another unit, using as its superset a pointer to

the JOE-SMITH-AS-A-DOY unit, and then attaching further refining

properties to this newest unit. This kind of free creation of new

units which "include" old units is a basic step in building up of

new structures to represent new material.

-12-

Report No. 1885 Bolt Beranek and Newman Inc.

Properties

A property is always an attribute-value pair (and may also have

subproperties.) However, the notion of an attribute-value pair is

used in separate ways. First, words and phrases serving as adjectives

or verb modifiers are encoded by using the adjectival or adverbial as

the property's attribute and using a numeral indicating the degree,

amount, or number of that adverbial as the property's value. (For

example, the adjective "white" would be encoded as the property

(WHITE 15), while the phrase "very white," would be encoded as the

property (WHITE 17). In Fig. 1, (LOUD 17) is a property of this type.

(The meaning of numerals will be explained below). For convenience

we will refer to all such properties as "adjectival" properties.

Second, any preposition and its object, and any verb and its (direcc)

object is also encoded as a property, but in this case the prepo-

sition or verb is used as the property's attribute, and the word or

phrase that would normally be that word's grammatical object is

used as the property's value. Thus, a property such as (ON HILL)

can be encoded, as can the property in Fig. 1, (FOLLOW (FLASH ...)...).

We will refer to these respectively as "prepositional" and as "verbal"

properties. In all cases the notion of an attribute-value pair is

the core of any property. This fact Introduces an important uniform-

ity into the data structure, without having either to give up ex-

pressive power or to introduce needless redundancy into the data.

until recently, we would have encoded the adjective "white" as the
property (COLOR WHITE). This is redundant, since the dimension
COLOR should be available in memory anyway as a superset of the con-
cept WHITE. However, the attribute in a property such as (ON HILL)
or (FOLLOW (FLASH...) ...) ...) is not similarly redundant, and the
redundancy in adjectival properties seemed Justified by the uniform-
ity that this produced in the format. The key to removing this re-
dundancy was clear once it occurred to us that it is only adjectives
and verb modifiers which one in general wished to qualify one
often wishps to say "very white" or "slightly white," but one will
very rarely wish to say "very much on a hill," or "slightly follow
a flash." Thus, it is natural to encode the amount, degree or number
of all properties representing adjectives and verb modifiers, but not
to do so for prepositional or verbal properties. The second kind of
property, one whose attribute is a verb or a preposition, may also
have additional qualifying information showing its amount, degree or
number, but then this must be encoded as a modification of either the
property's attribute or of its value, or with a special property hav-
ing N as its attribute, as will be explained below.

-13-

Report No. 1885 Bolt Beranek and Newman Inc.

To summarize, a unit has one obligatory element, its superset,

and a property has two, its attribute and its value. All of these

are represented by pointers, each of which must point to some other

unit. In both units and properties the obligatory element(s) must

come first, and may be followed by any number of pointers to other

properties, which supply the modification necessary to refine the

unit or the property adequately.

Since there is no limit on the number or nesting of properties

which can be associated either with any unit or with any property,

concepts and predicates of unlimited complexity can be represented

in the memory format.

The Only Way to Tell a Unit from a Property is by Location

In the internal memory, both units and properties are normally

represented by a list, or by the atom NIL, indicating a lack of

further information. Thus there is in general no way to tell, by

looking at an arbitrary piece of data, in the memory, whether it is

a unit or a property. So, whenever any routine follows some pointer

into the memory, it is absolutely essential that it know whether

that pointer leads to a unit, or to a property, and that all further

processing from that point keep track of which of these it is deal-

ing with. It ic possible to do this without ambiguity, since the

syntax of the format is rigorously defined on this point. Namely,

supersets, attributes, and values must always be units while these

obligatory elements are followed optionally by any number of pointers

to other properties, but only to properties. L^.ke the properties

helping to comprise a unit, additional properties of a property

represent refinements, in this case refinements of the assertion

stated by the property's attribute-value pair. By using such

"sub-properties" a property's meaning is refined or modified as

necessary.

-m-

Report No. 1885 Bolt Beranek and Newman Inc.

The basic format Is Illustrated In Pig. IB: First, the unit

representing the memory's concept of "thunder" has NOISE as its

superset, and two refining properties. The attribute and the value

of the second property assert simply that some flash of lightning

is followed, (The value being the unit with PLASH as superset and

(OP LIGHTNING) as modifying property). However, a refining sub-

property of this property then further specifies that this follow-

ing of a flash is done by the thunder itself. (The value of the

attribute BY is a pointer back to the unit representing the concept

THUNDER). Note that this pointer is to the whole THUNDER unit, not

to its superset NOISE. In total, then. Pig. IB simply represents a

concept to the effect that thunder is a very loud noise which follows

a flash of lightning.

To further extend the memory's expressive power, it is neces-

sary to be able to encode quantifier-like modifications of units»

This will be described below, for the moment let us only note that

such quantifying Information is omitted from any unit representing

a singular thing.

-15-

«=. --™

Report No. 1885 Bolt Beranek and Newman Inc.

Part II: How to Encode

The foregoing concludes our relatively general statements

about the memory, from here on we will move into details, and will

assume that a reader is really interested in developing an ability

to encode text into the format.

At this point the reader should be able to code some simple

phrases and sentences. To check himself, it would be good to code,

say: "A boy on a hill." Since overall this is a noun phrase, the

piece of data we want to build to represent it will be a u»ilt. The

first element of this unit will be its superset, so we first locate

that word or phrase which will serve as superset of the unit. This

superset will be the phrase's syntactic head, which might be defin-

ed as the answer to the question, what is the piece of text talking

about? Since "a boy on a hill," obviously is talking about "a boy,"

and since the singular quantifier "a" can be omitted, we put "boy"

in the superset position, producing:

(boy...

Being on a hill is clearly a property of this boy, so we will rep-

resent this prepositional phrase as a property. Referring to the

first schematic drawing in appendix 1 we see that a property has

three kinds of elements: its attribute, its value, and its sub-

properties. Only the attribute and value are required; the sub-

properties are optional elements which may or may not appear.

The attribute is usually either a quality, a prepositior, or

a verb. Here we use the preposition "on". The value is then the

object of this preposition, "a hill," and we can again drop the

singular qualifier "a". The data encoded thus is simply:

(boy (on hill))

Suppose the input phrase had been, "The happy boy on the hill."

There is now one additional property. Since properties may be

listed in sequence (without regard to order, incidentally), the

-16-

Report No. 1885 Bolt Beranek and Newman Inc,

simplest way to represent this data is by adding one property to

(boy (on hill)). In this new property however the adjective

"happy" will be coded with HAPPY as the attribute, and some numeral

as its value. It is therefore necessary to understand numerals.

Numerals

In the first place, numerals will appear at two places in the

format. One has already been described; numerals appear as the

value of adjectival properties;

(man (tall 17)) = a very tall man

A second place numerals appear is as the value of the special

attribute #. A property with # as attribu" must have a numeral as

value. Such a property is the way of quantifying a unit. For

example:
(foot (# 1002000) = two feet

(sugar (# 16)) = a large amount of sugar

Thus the use of properties with # as attribute allows units to be

created which represent concepts of individual things, of some

number of a thing, of substances, etc. This parallels the use of

numerals to quantify properties, and in fact a numeral per se has

the same interpretation whether it is used as the value of an

adjectival property or of a # property.

Every numeral must be a seven digit octal number, where lead-

ing zeros may be omitted. This number is considered broken up in-

to five fields, as follows: field: 5 4 3 2 1

Field 1 contains a number which represents the subjectively

Judged degree or amount of some unit or property. This number has

a range from 1 to 7. A ^1 is an indication of neutrality, while

-17-

Report No. 1885 Bolt Beranek and Newman Inc.

5, 6, and 7 indicate a degree or amount Judged progressively more

positively, while 3, 2, and 1 indicate progressively more negative

Judgements. However, the ir.ssr.ing of this number must be taken in

conjunction with that in field 2, since field 2 is a cue stating

how the number In field 1 is to be interpreted. The range of this

cue is 0, 1, 2, 3. Respectively, these indicate that the number

in field 1 is irrelevant, that it represents an absolute Judgement,

that it represents a minimum Judgement, and that it represents a

maximum Judgement. Thus, fields 1 and 2 together can refer either

to a Judged degree or amount, o the lower bound of a Judged degree

or amount, or to the upper bound of a Judged drgree or amount. If

field 1 is zero then the Judged degree or amount is either irrele-

vant or unknown.

Sorae examples follow:

(psycholinguist (silly 16)) = tne fairly silly psycholinguist

(book(interesting 31)) = the book which is far from interesting

(guerrllla(fiiendly 25))=the guerrilla who is friendlier than not

Field 3 is used to encode crlterality or frequency, A number

with a value in this field provides information about the Judged

likelyhood that this property or unit is as the coding states. Its

range is from 0-7, and the numbers have the same interpretation as

the field 1 number, with 4 again serving as neutral point. Thus:

(psychologist (dull 516)) = a psychologist who is often dull.

"Often," "never," "hardly," "not at all," are all phrases which

usually describes criteriality; so these words and phrases will not

themselves become units or properties during encoding, but instead

will be represented by an appropriate value in field 3 of a numeral

attached to the units they modify. Thus:

(telephone (black 617)) " a telephone that is usually black

Field M is reserved for real numbers, with field 5 as its cue.

Field 5 always nas a value of 1, 2, or 3 if a number is indicated

in field 4, a 0 again indicating irrelevance. Respectively, these

-18-

Report No. 1885 Bolt Beranek and Newman Inc.

values indicate that field ^ contains: an absolute nunber, a numeri-

cal lower bound, and a numerical upper bound. The number itself

may take up as much of field. 4 as necessary and thus may be as high

as 777Q. Some examples follow:

centipede(leg (# 2067000))) = the centipede has more than 67Q legs

(army(kill (infant(communist 17) (# 1067000)) (by (Hais* army)))) =

the army which kills exactly sixty-seven communisit infants

It should be apparent that various indicators may be used in

combination in the same numeral:

(semantics (good 217)) - semantics which is rarely very good

(spider (leg (# 1008700))) - A spider which always has 6 legs

By this time it should be apparent how to encode "the happy

boy on the hill":

(BOY (HAPPY 16) (ON HILL))

Sets

It is also essential to be able to represent a set of diverse

units or properties, aggregated Ln some particular way.

A set ic indicated by a list the first element of which is

either AND, EOH, APR, or SEQ, followed by the members of the set.

The initial marker indicates the relationship between the members

of the set that is pertinant in it. The markers indicate relation-

ships as follows: AND = and, EOR = exclusive-or, AOR = and/or,

SEQ = sequence, which is indeterminate as to being temporal, spatial,

or both. These c.re all we have needed so far, but others may of I
course prove convenient in the future. Sets provide examples such

as: (AND MAN WOMAN) = The man and the woman

(GIRL ((AOR LIKE KNOW) JOHN)) = The girl who likes and/or
knows John.

((OR GIRL BOY) (ON STREET)) = a boy or a girl on a street

-19-

-

Report No. 1885 Bolt Beranek and Newman Inc,

(SEQ (FLASH (BRIGHT 16)) (NOISE (LOUD 18))) = A bright flash.
A loud noise.

(GIRL (EÜR (IN CPh) (NEAF TRUCK))> « r g*v\ v^bo is either in a
car or near a truck

Readers unfamiliar with LISP may have some difficulty becoming

accustomed to using complex elements as single items in the data

structure. That is, an attribute or a value must always occupy

only a single space by being enclosed in parentheses. Thus in the

second example above a set is used as an attribute, in the third a

set is used as a superset, in the fourth modified objects serve as

the elements of a set, and in the fifth there is a set of properties.

(S. nee the relationship asbumeu between a string of properties is

AND, one will not normally form an AND'ed set of properties.)

Nested Properties

Let us move on to another example. Consider: "The suit which

is dark grey." To begin with, this is like our earlier examples,

the superset is obviously a suit, and it has what seems intuitively

like one property, that It is dark grey. However, this property

itself is a modified one; thus we must create a slightly more

embedded structure:

(SUIT (GREY 16 (DARK 14)))

Here there is one property of SUIT which itself hcii one sub-

property. It is important ':o note that all sub-properties r.iodify

the attribute-value pair of their parent property. Thus it Is im-

portant to distinguish a case like the last one from:

(SUIT(ON (MAN (DARK 1^)))) = a suit on a c.ark man

or

(SUIT ((NEAR (N 17))CLOSET = a suit very near a closet

In these two cases the nested properties are not subproperties of

the property, since they modify in the first case its value, MAN,

-20-

Report No. 1885 Bolt Reranek and Newman Inc.

and in the second case its attribute, NEARj rather than the whole

attribute-value pair-, as in the prior example.

Verbal Properties

As previously stated, adjectives, prepositions and verbs may

all be used as attributes. Our examples so far have used adjectives

and prepositions. When verbs are used as attributes the matter be-

comes a little less obvious.

For verbal properties, as for prepositional ones, the value of

the property is always the logical direct object of the verb. (The
t

logical or "deep structure" direct object is what would be the direct

object if the sentence were rewritten into simple sentences. Thus

it may be opposed to the "surface structure" object in sentences

which linguists would describe as having undergone transformations.

See e.g. Chomsky, 1966. In the case of intransitive verbs, or of
l

transitive verbs for which there is no direct object present, the

atom "NIL" must be placed in the value position. This is imperative

and must pot be left out, since properties must have both an attri-
I

bute and a value, and both of these must be units.

-
Within verbal properties, modifying properties are used to

encode adverbs such as "carefully." However, modifying properties
I

are also used in verbal properties to encode indirect objects,

subjects, and other things similarly related to the attribute of a

verbal property. We do not assume anything about a verbal property

because of what it modifies. Thus:

"The man who carefully watches the prisoner." =
i

A v
(MAN (WATCH PRISONER (CAREFULLY 16) (BY *)))

The "BY:' property might seem redundant, but, if we try to omit It

by assuming that all verbal properties have the object they modify

-21-

Report No. I885 Bolt Beranek and Newman Inc

as subject, then there is a problem in coding:

"the man the prisoner watches"

One could f;et around this by Introducing i .verse relations so

that: "the man the prisoner watches" =

(MAN (WATCH-1 PRISONER))

However, there are several arguments against this. First, one

must then store the inverse of every verb that has one, and all

programs that interpret information in the memory must continuously

check for such information. Second, the use of inverse relations

makes it impossible to simply choose any property stored anywhere

in the memory and add a pointer to it to some other unit. This is

an important ability in learning or in a program like TLC. Third,

as Pillmore has pointed out, all the subjects of verbs are not re-

lated in the same way to the verb consider:

"The man who opens the door with a key."

anf

"The key that opened the door."

Therefore, it has seemed best not to assume that verbal properties

are related in any particular way to something they modify, and to

encode all such relationships explicitly. B., doing this we remove

any need for inverse relationships, and avoid the above three

problems, but at the expense of having to explicitly state the sub-

ject of every verbal property, if this Is known. Thus:

> 1
The man the prisoner watches = (MAN (WATCH * (BY PRISONER)))

The man who opens the door with a key =

(MAN (OPEN DOOR (BY *) (WITH KEV)))

^

All that is wrong with these codings is that they should use

different senses of BY, to differentiate an instrumental from an

agentlve subject. We can onl^ omit the subject of a verbal property

-22-

Report No. 1885 Bolt Beranek and Newman Inc.

if this Is not known, as In:

{MAN (SEE (PR'jfEND (OP »))) = the man whose Trlend is seen

Now let us consider a case where we might want to use a

property in an illegal position, that is, where a unit is required.

Suppose we want to code, "Nixon is a tricky man who goes to Washing-

ton to form an administration." The coding of this is straightfor-

ward as far as: (MAN (TRICKY i6)

(GO NIL (TO WASHINGTON)

(BY NIXON)

(TO ?

At the question-mark we want to code,

"form an administration"

This clearly should be coded:

(FORM ADMINISTRATION (BY NIXON))

However, it is illegal to put this piece of coding, a property,

in place of the question-mark above, because to do so would be to

use a property as the value of a property. The only solution we

have been able to devise so far for this is to introduce a special

dummy superset unit, *T0*. With this we form a unit:

(«TO» (FORM ADMINISTRATION (by NIXON))

This unit can be substituted for the question-mark, to complete the

above coding. The use of *T0* is inelegant, and a better solution

may be available. However, until one is found the inelegance of

Introducing "TO*rs is an argument against our whole strategy of

only distinguishing units from properties by their location, since

it is this that prevents use of a property where a unit would

normally be expected.

-23-

Report No. 1885 ^olt Beranek and Newman Inc

Translation to .internal Memory Format

Material in input readable format is translated into material

in tha incernal memory by a routine, RD (Head Data). A listing cf

thip USP routine and its sub-functions is given in appendix 2.

Most of the action of RD can be seen by comparing Fig. IB with

Pig. 1C. Thus RD makes each unit and each property in a piece of

input it is given into a list. It also gives every unit it reads in

an additional first element, which is the atom or list serving as

that unit's print-name. (If the unit has no print-name, NIL is

used; (see the unit representing "flash of lightning" in Fig. 10).

RD's most important action is to replace each word appearing in a

piece of input with a pointer to the list stored with that word as

its first definition. If a coder wishes to refer to some definition

of a word other than its first, he must put in the input format not

Just the word, but a list of two elements. The second of these is

the word, the first is the number of the definition he wants to

refer to. Thus, if in input appears: (3 box), RD will replace this

with the third definition of "box". By the same means, if the coder

wished to refer to some unit within that third definition, he might

write (3 2 5 box). RD v/ould replace this with a pointer to the 5th

element of the 2nd element of the 3rd definition of "box".

If RD attempts to find a definition (the first or any other) of

some word, and cannot do so because that definition has not yet been

encoded, RD creates an appropriate list, makes this the definition

in question, and uses a pointer to tnis as the definition it requires.

Thus RD will replace any later reference to the sam. definition by

a pointer to this same list, since this now i_s that definition. (PD

will be careful in the future to only add information to such a

definition, so that any pointers to it will remain valid.)

While RD turns each ordinary unit or property into a list, it

turns each set into an atom, and puts the members of the set, and

-2'4-

■• :—- --■■■- • ■ -■ -' ■■

Report Nc. 1885 Bolt Beranek and Newman Inc.

the set type marker — AOR, AND, etc. — onto the CDR of the atom.

Thus in the internal memory a set is detectable by the presence of

an atom — other than the atom NIL — in the place where one would

expect a list, either a unit or a nroperty. Associated with such

an atom will be the elements of the set, which of course must be

either all units or all properties as is required by the set's

location.

A number of additional examples of encoded text appear as

appendix 3.

-25-

Report No. 1885 Bolt Beranek and Newman Inc.

APPENDIX I

Schematic of Input Readable Format

UNIT

((SUPERSET (PROPERTY) (PROPERTY) . . .
UNIT PROP PROP
WORD SET of PROPS SET of PROPS
SET

~ A

r
PROPERTY

(ATTRIBUTE VALUE (sub-property) (sub-property)

prop prop

1. UNIT UNIT

1. WORD WORD:

a. VERB ^/Direct Object -v/Direci
V\N!L

Object
NIL

b. PREP.-

c- ADJ."!

d. ADV.j:

3. Set of Set of appropriate
such units elements

NUMERAL

^

Msettype
"AOR"
"EOR"
"AND"
"SEQ"

SET

member member ...) ̂

Any legal datatype but
numeral

-26-

Report No. l885 Bolt Beranek and Newman Inc.

UNIT

UNIT

Syntax of Input Readable Format

any English word, including NIL

{UNIT + PROPLIST)
"superset"

UNIT - (SETTYPE + UNIT + UNITLIST)

UNIT H. (RETRIEVALIST + word)

UNITLIST -> UNIT + UNITLIST

UNITLIST -»■ d)

PROPLIST + PROP + PROPLIST

PROPLIST + $

PROP -^ (UNIT + UNIT PROPLIST)
"attribute" "value"

PROP -> (SETTYPE + PROP + PROPllST)

PROP -»• ("#" + a seven-digit octal numeral)

SETTYPE "AOR," "EOR," "AND," "SEQ"

RETRIEVALIST -► (NUMBER + NUMBERLIST + WORD)

NUMBERLIST ■*• NUMBER + NUMBERLIST

NUMBERLIST -»• $

-27-

mir i^Äy**^^«^^

Report No. 1885 Bolt Beranek and. Newman Ine,

Schematic of Internal Memory Format

.XL
f (PRINT-NAME SUPERSET (PROPERTY) (PROPERTY)

(TLC's tan- UNIT

llll IZVfnl LIST^concept make room for r

tags here by AT0M=set of
making tne concepts
print-name one
element of a
list.)

T^
LIST=PR0P

ATOM = SET of PROPS

r
PROPERTIES

(ATTRIBUTE

UNIT
LIST
or

ATOM

VALUE (sub-property)

UNIT
LIST
or

ATOM

LIST
or

ATOM

(sub-property)

LIST
or

ATOM

T^

ATOM (represents set)

IN CAR

(PRINTNAME

ON CDR

(ELEMENT) (ELEMENT) settype)

AOR
EOR
AND
SEQ

Note that the car of both an atom and of 3 unit (list) yields the
print-name of that item. (In BBN-LISP the car of an atom is the
same as its value, the cdr is the same as its description list.)

-28-

=SR_?i=i=ÄS= ■ - v 7 ^ "^%t ^f'TJElf^.f:' ZJ.'T^-'

Report No. 1885 Bole Beranek and Newman Inc.

APPENDH II

Routines for Translation In and Out of the Internal Memory

Arguments to PR

The first argument to PR is an atom. PR makes an output read-

able copy of all definitions associated with this atom, and binds

these to the atom OWORK. It prints these out unless the second

argument, NOSEE, is true.

Arguments to RD

RD takes two primary arguments. WORD Is a word whose associ-

ated definition list the user wishes to expand or change, DEFLIS,

the second argument is a list of elements, each of which is one of

(a) a negative number < -# > ;

(b) a positive number < # > ;

or (c) a definition in input-readable format < D >

This list is either NIL, or composed of any number of the following

substrings:

(SI) < D > ;

(S2) < D # > ;

(S3) < # > ;

(SU) < -# D > ;

(35) < -# D # >

(S6) <-##>.

Note that each definition can be either a list in input-readable

format or this list followed by a positive number which is used to

indicate rarity of use. An explanation of whet each of (S1)-(S6)

1 For instance, suppose the list of definitions HEY was:
((defl) (def2) 2 (def3) D

This would cause TLC not to search (def2) or (def3) until after
two passes through defl have been completed, and would cause it
not to search (defS) until one more pass through (defl) and (def2)
had been completed. Thus, a relatively high number would be in-
serted after a very rare definition to inhibit its searching until
after that number of passes through more common meanings was
completed.

-29-

Report No. 1885 Bolt Beranek and Newman Inc.

causes js in the comments In RD's definition. Definitions are

stored on the CADR of a word and are considered numbered from left

to right.

The tnird argument to RD is NOSEE. RD calls PR in all cases,

so that the atom OWORK is bound, but if NOSEE is True, no printout

will occur.

-50-

• /RDPR/ 22 SEPTEMBER 1969 1648S13 l?A6E 1

(PROGN (PRIN1 (QUCTE FILE* CREATED ")
T)

(PRIN1 (QUOTE 09/22/69" 1635:50")
T)

(TERPR1 T))
(DEFINEQ

fHD
(LAMBDA (WORD DBFL1S NOSEE RETRIEVALlST)

(• • Talies two primary arsument.a.
WORD is the word whose definition wants to be
created or changed, DEFLIS is a list of elements,
each of which is one ofi (a) a negative number <
-# > ; (b) a positive number < # > ;
or (c) a definition in input-readable format < D
>, This list is either NIL or composed of any
number of the following substringy:
(Si) < 0 > ; (S2) < D # > i
(S3) < # > ; (su) < _# D > ;
(S5) < -# D # > ; (S6) <-##>.
Note that each definition can be either a ltt«t or
a list and a number which is used to indicate
rarity of use (cf text.) RD also calls the
function MüNIT to create the proper internal
representation of each definition.
The results of each of the above formats are:
(S1-S6) if word has no definitions, the definition
list is put on the CADR of word and word is put on
the 1;t* DATALIST; if DEFLIS is MlLf the word is
initialized as above and its only definition
becomes list of its pname;
{S1-b3) the definition or definition part is added
to the end of the word's definition list;
(SU-S6) -# indicates the position of an already
existing definition which is to be replaced
entirely (S5) or partially
(Stt,S6) "." If the third argument MOSES is NIL,
then (PR WORD) is oerformed.)

=
:

i

-31-

• /RDPR/ 22 SEPTEM3SR 19Ö9 1648n3 PJ»GB 1:1

(MAP DBPLIS (FUHCTION (LAHBDA (DEPl)
(COND

((NOT (NUNBEBP (CAB DBFL)))
(ADEF WORD (MUNIT (CAR DBFL)

WORD)))
((AND (HUNBBRP (CAR DfFL))

(GREATER? (CUR 2BFL)
■D

(ADEF WORD (CAR DBFL))))
((AND (NUHBERP (CADDR O-BFL))

(GREAIERP (CADDR ßBFt)
-D)

(ADBF WORD (CAR DBFL)
(«UNIT (CADR DBFL)
WORD)

(CÄ0D8 DBFL))
(RPLACD DBFL (CDDDR DBFL)))

((ADBF WORD (CAR DBFL)
(MUNIT (CADR DBFL)
WORD))

(RPLACD DEFL (CDDR DBFL)))))))
(RETRIEVE)
(PR WORD N05EB)))

(ADBF
(LAHBDA (WORD DBPl DBF- DBF3) {« Called by RD and doe"

moat of its work.)
(OR (MEHB WORD DATALIST)

(ALPHA WORD DATALIST))
(CO»D

((NULL DEFD
{CAADR (RPLACD WORD /CONS (CONS (CONS WORD))))))

((MULL (60EFS WORD))
(RPLACD WORD (CONS (CONS DSF1))))

((AND (NUMBEBP DEFl)
(GREATERP DEFl ~1)
(NCONC (6DEFS WORD)

(CONS DEFl))))
((AND (NOT (NUHBERP DZfl))

(NULL (CDR (GDEF WORD))))
(ADEF WORD -1 DEFl))

((HOT (NUHBERP DEFD)
(NCONC (GDEFS WORD)

(CONS DBF1)5)
((NUHBERP DBF2)

(RPLACA (CDR (NTHDEF 'fORD (ABS DEFl)))
DEF2))

((NULL DEF3)
(RPLACA (NTHD1F WORD (AP?? DEFl))
DEF2))

((RPLACA (SETQ DEFl (NTHDEF WORD (ABS DBF1)))
DEF2)

(RPLACA (CDR DKPl)
DBF3>))))

-32-

♦ /RDPH/ 22 SEPTEMBER 1969 16a8:i3 PAGE 1:2

(GDBFS
(LAMBDA (WORD)

(CADR WORD)))

(GDEF
(LAMBDA (UNIT)

(• Setu-ns list cf
(ieflnit . n of word.)

(* • Returns the first element of the definition
list of word (hopefully not a number))

(CAADR UNIT;))

(NTHDEF
(LAMBDA (WORD N HI)

(♦ * Returns the tail of a words definition list
begining with the NTH definition
(wnere positive numbers occurring as definitions
are considered as belonging to the immediately
preceding definition))

(SFTQ N1 0)
fMAPTL (GDEFS WORD)

(FUNCTION (LAMBDA (DEP)
(COND

((NUMBERp DEF)
NIL)

((EQP (SETQ N1 (ADD1 HI))
H))))))n

CNDBFS
(LAMBDA (WORD N1)

(SETO N1 0)
(MAPC (GDEFS WORD)

(FUNCTION (LAMBDA (DEF)
(COND

((NUMBERP DEF))
((SETQ Nl (ADDI N1)))))))

N 1))

(• Returns number of
definitions of WORD.)

-33-

• /PDPR/ 22 SSPTEMBER 1969 16U8:i3 PAGE 1:3

(NAOEFS
(LAMBDA (WORD N LDEF) (• Adds « definitions

form (WORD) to WORD.)
(COND

((ZEROP N)
(CAR (LAST LDEP)))

((HADEPS WORD (SUB1 N)
(ADEF WORD (CONS WORD)))))))

(MÜNIT
(LAMBDA (UNIT PMANE)

(* * .Malces a unit from UNIT which is In
input-readable format, and uses PNAHE as the pname
of the unit If It is not MIL* else uses
(NIL NIL NIL) "." is inter-recursi-e with MPROP,)

(COND
((NULL UNIT)

NIL)
{(SUHBERP UNIT))
{f»KD (ATOM UNIT)

(NOT (EQ WORD UNIT)))
(OR (GDEF UNIT)

(ADEF UNIT)))
((OR (NUMBERP (CAR UNIT))

(AND (3Q WORD UNIT)
(SETO UNIT (LIST 1 UNIT))))

(CAR (SETQ KETRIEVALIST (CONS (LIST (REMOVE
(CAR (LAST UNIT))

UNIT)
(CAR (LAST UJIIT)))

RSTRIEVALIST))))
((MEMB (CAR UNIT)

(QUOTE (AOR EOF AND SEQ)))
(MEET UNIT))

{(APPEND (LIST PNAME («UNIT (CAR UNIT)))
(MAPCAB (CDR UNIT)

(FUNCTION MPROP)))))))

-34-

■"::^H^.-_

* /HDPR/ 22 SEPTEMBER 1969 I6a8il3 VIGT i:k

(HPROF
(LAMBDA (PROP)

(COND
((EQ (CAR PROP)

(QUOTE #))
PROP)

((MEMB (CAR PROP)
(QUOTE (AOR EOF AND SEQ)))-

(MSET PROP T))
((COKS (MUNIT (CAR PROP))

(CONS (HUNIT (CADR PROP))
(WAPCAR (CDDP PROP)

(FUNCTION MPROP))))))))

(MSET
(LAMBDA (ELEMENT PROP? SET)

(• * Makes a set. checks to see if this set has
already been created by seeing if the printnames
of existing sets in SETLIST are EQUAL to unit.
Creates a set by calling GfiNSET and Putting the
printname of the set on the CAR of the setname ,
and on its CDR a list of pointers to the units or
Properties in the set, followed by the settype.
Called by MUNIT and MPPOP.^

(• Makes a property fro-
PROP, is recursive with
MUNxT.)

(COND
((C

((P.

AR (MAPTL SETLIST (FUNCTION (LAMBDA (SETN)
(SQUA^ (OSET SETN)
ELEMENT))))))

PLACP (SETQ SET (GENSET))
(APPEND (CONS (MAPCAR (CDR ELEMENT)

(COND
(PROP? (FUNCTION MPROP))
((FUNCTION MUNIT)))))

(CONS (CAR ELEMENT))))
RPLACA SET (LIST NIL NIL (COND

(PROP? (QUOTE PROPS))
((QUOTE UNITS)))))))))

-35-

• /ROPR/ 22 SEPTEMBER 1969 16tt8:i3 PAGE 1:5

(GENSET
(LAMBDA NIL

(• • Generates setnames if form SET ♦ n by adding
1 to the current value of the global atom LASTSET
and puts then ön the list sETLIST,
Returns current setname. Called by HSPT.)

(CAR (SETQ SETLIST (COKS (PACK {APPEND (QUOTE (S E T))
(UNPACK (SETQ LASTSBT (ADD1 LASTSET)))))

SETLIST)))))

(RETRIEVE
(LAMBDA NIL

(* • Performs retrieval of definitions or their
parts from words that were pointed to by a list of
numbers in the input-readable FORMAT.
These are stored on the atom RETRIEYALIST until
processed by RETRIEVE.)

(MAPC RETRIEYALIST (FUNCTION (LAMBDA (UNIT DEF)
(SETQ DEF (RETRIEVED (CAR UNIT)

(CADR UNIT)))
(RPLACA UNIT (CAR DEF))
(RPLACD UNIT (CDR DBF)))))))

(RETRIEVED
(LAMBDA (HUMS WORD DEF)

(* • Called bj RETRIEVE and locates the
appropriate definition of WORD as specified by
(CAB HUMS) where NUNS is the list bf numbers
pointing to some part of a definition,
if the definition called is non-existent, will add
as many definitions of the form »cons tword as
needded to make the last definition be number tear
♦nums.)

(SETO DEF (COND
((CAR (NTHDEF WORD (CAR HUMS))))
MNADSFS WORD (DIFFERENCE (CAR NUMS)

(NDEFS WORD))))))
(RETRIEVEÜ (CDR MUMS)
DEF)))

-36-

/RDPR/ 02 SEPTEMBER 1969 I6a8:i3 PAGE 1:6

(RETPIEVEU
(LAMBDA (NUMS UNIT)

(COND
((NULL NUMS)
UNIT)

((EQP (CAR WUMS)
1)

(RETRIEVEU (COR NUMS)
(CADE UNIT)))

((RETRIEVEP (CDR NUMS)
(CAR (NTH UNIT (ADD1 (CAR NUMS)))))))))

(RETRIEVEP
(LAMBDA (NUMS PROP)

(COND
((NULL NUMS)
PROP)

((LESSP (CAR NUMS)
3)

(RETRIEVEU (CDR NUMS)
(CAR (NTH PROP (CAR NüMS)))))

((RETRIEVEP (CDR NUMS)
(CAR (NIH PRO? (CAR NUMS));)))))

(* Retrieves from a
unit, la inter-recursive
with RETRIEVEP.)

(* Retrie/es frcm a
property. Is
inter-recursive witi
aETRIEVEU.)

(PR
(LAMBDA (WORD NOSEE USEDUflITS USEDPROPS USEDSETS)

(♦ * Sets the olobal atom OWORK to a list of the
definitions of WORD in output-readable FORMAT
If NOSEE is NIL it also prints out this list using
PRINTDEE. vote: in the case of a setname, OWORK
becomes a list of the pname of the set)

i
i

-37-

• /RDPS/ 22 SEPTEMBES 1969 161*8:13 PAGE 1:7

(SETO OWORK (COND
((MlSMB WORD SBTLIST)

(CONS (OSET WORD)))
{(«APCAR (GDEFS WORD)

'FUNCTION (LAMBDA (DBP)
(OUNIT (COND

((CDR DEP)
(CONS NIL (CDB DBF)))

(DBF)))))))))
(COND

(NOSEE (PRINT WORDI
(TERPRI))

(T (TERPRI)
(TERPRI)
fPRlNl WORD)
(PRINT (QUOTE :))
(HAPC OWOBK (FUNCTION

(PR1NTDBP WORK)
(TBRPRlMnM))

(LAMBDA (WORK)

(6PNAHE
(LAMBDA (UNIT)

(COND
({HÜMBEEP UMIT))
((AND {ATOM (CAR UNIT))

(NOT (NULL (CAR UNIT))))
(CAR UNIT))

((CADDAB UNIT))
(fGPNAME (CADR UNIT))))))

(• Gets pname of UNIT)

(OUNIT
(LAMBDA (UNIT)

(» • Produces output-readable FORMAT from internal
UNIT, is inter-recursive with OPRop)

(COND
((NULL UNIT)

NIL)
((MEMB UNIT SETLIST)

(OSET UNIT))
((NUMBERP UNIT))
((AND (ATOM (CAR UNIT))

(NOT (NULL (CAR UNIT)))
(NULL (CDR UNIT)))

(CAR UNIT))
((SUN1T UNIT))
((COND

((ATOM (CAR UNIT))
(CAR UNIT))

((CADDAR UNIT))))
((CONS (OUNIT (CADR UNIT))

(MAPCAR (CDDR UNIT)
(FUNCTION OPROP)))))))

-38-

zmmmemismmmm^^m —,

• /RDPF/ 22 SEPTEMBER 1969 I6tt8:i3 pA(jB ^g

(SUNIT
(LAMBDA (UNIT;

(♦ • Called by OUNIT to check on repeated
references to same nonatomic UNIT)

(COND
((MEMB (CDS UNIT)

USEDUNIIS)
(CONS (QUOTE »THIS*)

(GPNAME UNIT)))
((NULL (CADDAR UNIT))

(NOT (SETQ USEDUNITS (CONS (CDR UNIT)
USEDUNIT3),)))))

(OPROP
(LAMBDA (PROP)

(* • Produces output-readable format from internal I
PROP, is inter-recursive with OUNIT.)

|

(COND
((ATOM PROP)

(OSET PROP))
(CEQ (CAR PROP)

(QUOTE #))
PROP)

((SPROP PROP))
(fCONS (OUNIT (CAR PROP))

(CONS (OUNIT (CADR PROP))
(MAFCAR (CDDD PROP)

(FUNCTION OPROP))M))) 5

(SPROP
(LAMBDA (PRCP)

(♦ • Called by OPROP to check on repeated
references to same property.)

|

(COND
((MEMB PROP USEDPROPS)

(QUOTE *USEDPR0P*))
((SETQ USEDPROPS (CONS PROP USEDPROPS)i
NIL))))

-39-

• /RDPF/ 22 SEPTEMBER 1969 1648:1? PAGE 1:9

(OSBT
(LAMBDA (SET)

(* • Produces output-readable format from internal
SET. Is inter-recursive with OUH1T and OPBOP.)

(COMO
((SSET SET))
{(APPEWD (LAST (CDU SET))

(NAPCAR (GDEFS SET)
(COND

({ECP (CADDAR SET)
(QUOTE UNITS))

(FUNCTION OÜNIT))
((FUNCTION OPBOP))))J))))

(SSET
(LAMBDA (SET)

(• • Called by OSBT to checlc on repeated
references to the same «etnama.)

(COHD
((MEMB SET USEDSE1S)

(CONS (QUOTE »THOSE*)
SET))

({SETQ USEDSETS (CONS SET USBDSBTS))
NIL))))

(MAPTL
(LAMBDA (MAPTLIS MAFTFN)

{♦ * Operates like other mapping functions.
Returns the rest of its first argument if
(MAPTFN (CAR MAPTLIS)) is not NIL, else MIL.)

(COND
(MAPTLIS (COND

((MAPTFN (CAR MAPTLIS))
MAPTLIS)

(T (MAPTL (CDR MAPTLIS)
MAPTFN)))))))

-40-

* /ROPR/ 22 SEPTEMBER 1969 16*8:13 ■ pAGB 1:10

(ALPHA
(NU.MEDA (THING LIS) , B .

' (• Basic aiphabetiies a
(SETO THING (EVAL THING)) Hat.)
(COND

((NJLL (EVAL LIS))
(RPLACA LIS (CONS THING)))

(T (PROG (NEWLIS CHAR A B)
(SETO CHAR 0)
(SETQ NEWLIS (EVAL LIS))

LP ,SETQ CHAR (ADD1 CHAR))
LP1 (COND

({NULL NEWLIS)
(NCOHC (EVAL LIS)

(CONS THING))
(RETURN))

((LESS? (SETQ B (IOC (NTHCHäR (CAB NEWLIS)
CHAP)))

(SETQ A (LOC (NTHCHAR THING CHAR))))
(SETQ NEWLIS (CDR NEWLIS)) I
(SETQ CHAR 1)
(GO LP1)) f

((EQ (CAR NEWLIS)
THING)

(RETURN))
((EQ A B)

(GO LP))
((NULL (NTHCHAR (CAR NEWLIS)

CHAR))
(ATTACH THING (CDR NEWLIS))
(RETURN))

(T (ATTACH THING NEWLIS)
(RETURN)))

)))))
)

(PRINT (QUOTE RD-PR-FNS))
(RPAQO RD-PR-FNS (RD ADEF GDEFS GDEF NTHDEP NDEES NADEFS

MUNIT MPROP „SET GENSET RETRIEVE RET: " J RETRIEVEU
RETPIEVEP PR GPNAME OUNIT SUNIT OPROP SPROF OS^T
SSET MAPTL ALPHA))

(SETQ DATALIST)
(SETO SETLIST)
(SETQ LASTSET 0)

STOP

-hi.

Report No. 188^ Bolt Beranek and Newman Inc.

APPENDIX III

Additional Examples

The man who hits the ball

(MAN (HIT (BALL) (BY >k)})

The man who was hit by the ball

I* MAN (HIT *) (BY BALL)))

The man who hit the tree with the ball
A ,
(MAN (HIT (TREE) (BY *) (WITH BALL)))

The nrn who hit the dog with his hdnd
* ^ >,
(MAN (HIT (DOG) (BY *) (WITH (HAND(0F *)))))

The "! jn's den

(DEN (OF LION))

In the lion's den

(TN (DEN (OF LION)))

In e corner of the lion's den

(IN (CORNER (OF (DEN (OF LION)))))

-42-

■.*

Report No. I885 Bolt Beranek and Newman Inc.
1

The tall man who stands bravely in the corner of the lion's den
A
(MAN (TALL 16) A

(STAND NIL (BY *)

(IN (CORNER (OF (DEN (OF LION)))))))

The man v/ho buys a book
*,-— N

(MAN (BUY BOOK (BY *)))

The man who buys a book by Kafka

(MAN (BUY (BOOK (BY KAFKA)) (BY *))

Note here that each "by" is different. Thus the word "by" alone is
an insufficient pointer to the correct meaning that must be used.
In entering the data to RD it might look like this;

(MAN (BUY BOOK ((4 BY) *) ((2 BY) KAFKA)))

The man who runs the race

(MAN (RUN RACE (BY *)))

The man who runs quickly

(If there is no Direct Object available enter NIL in the value position.)

MAN (RUN NIL (BY *) (QUICK 15)))

The man who gives John the book

(Always put Direct Object in value position)

STAN (GIVE BOCK (TO JOHN) (BY ^)))

-^3-

Report No. 1885 Bolt Beranek and Newman Inc.

The mÄn who goes to the store

(Intransitive verbs always have NIL in value position)
* ^
(MAN (60 NIL (BY *) (TO STORE)))

The man who helps the girl (to) LW' a necklace

(MAN (HELP (6IRL) (BY ^)) (TO (*T0* (BUY NECKLACE (BY*))))

2 girls in a car

((girl (N 1002000)) (in (car)))

2 girls in cars

((girl (in (car))) (N 1002000))

Coding Active Sentences

The man who calls the play

(MAN (CALL PLAY (BY *)))

This is 3 unit which might be put on the CDR of "UMPIRE" and have

some Printname, such as "UMPIRE".

On the other hani the sentence:

The man calls the play

will only be coded as a property, not as a unit:

(CALL PLAY (BY (MAN)))

We may wish to attach a pointer pointing to this property rrom

one or more units, such as the uni; representing this mar., ojr a

unit having as superset PLAY or *10*. Since the location of pointer(s)

to a coded assertion is not determinable from the assertion Itself,

sentences (except defining sentences) must be encoded as (complex)

properties, with the sentence's main verb as main attribute.

Mil-

Report No. 1885 Bolt ßerctnek and Newman Inc.

In the foregoing examples, as in the paper, we havt used arrows

instead of sticking strictly to input readable format. In input

format there can be no arrows, but arrows can always be removed by

associating pieces of data v;ith atoms. If necessary these can be

purely arbitrary a.oms; RD always demands some atom with which to

associate the data it is given. The following examples are coded in

strict input format, with atoms used which make arrows unnecessary.

; Suppose there are 2. definitions of "pen":

"an instrument with which one writes"
I

"a place in which pi^s are kept"
|

To encode these we give RD:

(FEN (INSTRUMENT (WRITE NIL (WITH PEN)))

(PLACE (KEEP (PIG (# 2001000)) (IN (2 PEN)))))

Then we may code:

The farm which has seven pens

(FARM ((2 PEN) 1007000))

Pigs (that are in pens) which are usually dirty.

((2 2 2 PEN) (DIRTY 16))

The Reuben James: the ship that passed the iceberg which was mostly

under water,

(REUBEN JAMES (SHIP(PASS (ICEBERG (UNDER WATER (26))))))

X30 is the submarine that passes under that iceberg.

(X30 (SUBMARINE (PASS ICEBERG (UNDER (1 2 2 REUBEN-JAMES)))))

-H5-

i

Report NO. 1885 Bolt Beranek and Newman Inc

BIBLIOGRAPHY

Chomsky, N. (1965). Aspects of the Theory of Syntax. Cambridge,

Massachusetts: The M.I.T. Press.

Collins, A.M., and Quillian, M.R. (1968). Retrieval Time from

Semantic Memory. Report No. 1692. Cambridge, Massachusetts:

Bolt Beranek and Newman Inc. Also in The Journal of Verbal

Learning and Verbal Behavior, 8, 240-24? (1969).

Collins, A.M., and Quillian, M.R. (1969). Semantic memory ard

language comprehension. In L. Gregg, Cognition in Learning

and Memory. New York: John Wiley & Sons, (forthcoming)

Minsky, M. (1969). Semantic Information Processing. Cambridge,
I "^""^^

Massachusetts: M.I.T. Press. I

Plaget, J. (1950). The psychology of intelligence. Translated

by M. Cook and D.E. Berlyne. London, England: Routledge and
1

Kegan Paul.

Quillian, M.R. (1966). Semantic Memory. Report No. 1352. Cambridge,

Massachusetts: Bolt Beranek and Newman Inc. The central part

of this paper is published as, "Word concepts: a theory and

simulation of some basic semantic capabilities." ^.nd is repro-

duced in Minsky (1969).

1

Quillian, M.R. (1969). The teachable language cornprehender: a
simulation program and theory of language. Communications of

\ the ACM . August 1969.

-i|6-

:— — ---; .-■.-.—-..-: •

Report No. 1885 Bolt Beranek and Newman Inc.

Quilllan, M.K., Wortman, P. and Baylor;, G.W. (1965). The program-

mable Plagel: behavior from the standpoint of a radical com-

puterist. Unpublished dittoed paper. Carnegie Institute of
Technology.

Quine, W.V. (19CO). Word and Object. Cambridge, Massachusetts:
The M.I.T. Press.

Simon, H.A. (1969). The Sciences of the Artificial. Cambridge,

Massachusetts: The M.I.T. Press.

-47-

Unclassified
Security Classification

DOCUMENT CONTROL DATA -R&D
[Security clussithiition ol title, body ol abstract and indexing Hnnotfition must be entered wiien the ovcraV. '"part /.s rUissilicd)

1. ORIGINATING ACTIVITY (Corporate author)

Bolt Beranek and Newman Inc.
50 Moulton Street
Cambridge, Massachusetts 02138

io. REPORT SECURITY CLASSIFICATION

Unclassified

3 F.EPORT TITLE

CAPTURING CONCEPTS IN A SEMANTIC NET

4. P^CRIPTIVE NOTES fTVp^ ot reoprt,and,inclusive dates) scientific Interim
5 AUTHORISI fFirs» name, middle initisl, last name)

Anthony Bell
M„ Ross Quillian

6 REPORT DAI i

6 October 1969
7a. TOTAi- NO. OF PAGES

52
lb. NO. OF REFä

10
Sa. CONTRACT CR GRANT NO.

F19628-68-C-0125/ARPA Order No. 627
b. PROJECT NO 8668

9a. ORIGINATOR'S REPORT NUMSERfS)

BBN Report No. 1885

Scientific Report No. 13
cDoD Element 61101D

J)oD Subelement n/a

9b. OTHER REPORT NOIS} (Any other numbrrs that may be assigned
this reoort)

APCRL~o9-0438

10 DISTRIBUTION STATEMENT

1-Distributlon of this document is unlimited. It may be released to
the Clearinghouse, Department of Commerce, for sale to the general
public.

11. SUPPLEMENTARY NOTES

This research was supported by the
Advanced Research Projects Agency
under ARPA Order No. 627

12. SPONSORING MILI TARY ACTIVITY

Air Force Cambridge Research
Laboratories (CRB7
L.G. Hanscom Field
Bedford. Massachusetts 01730

13. ABSTRACT

}k working memory model based on a semantic network is described
in detail. Some advantages and disadvantages of such a model are
discussed. An attempt is made to enable a reader to learn to per-
form the formidable task of representing data in the memory format.
Since the actual memory is not easily read (or written), a set of
LISP programs are included which make these tasks manageable.

FORM I473
1 NO V 55 I mT J *»J

S/N G10)-807-6811

DD (PAGE I)
Unclassified

Security Classificatk n

Unclassified
Security Classification

K CY wowos

Semantics
Semantic Network

LISP

English Language Comprehension

Memory Model

DD /r.81473 (BACK)
5/N ÖI01-807-S821

Security Classificalion

