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PREFACE 

The development of the study of solid and liquid states of 
matter and, in particular, the study of the most important aspects of 
this problem~.,.questions of the nature of therma1 motion and the mech.,. 
anism of heat transfer--is related not only with the development and 
close study of the corresponding theoretical concepts, but also with 
the broadening of the range of states encompassed by this study. Ex~ 
periments having as their aim not only a check of the conclusions of 
theoretical considerations, but also a direct study of the existing 
correlations, form an inseparable part of such studies. Experimental 
studies of the properties of solid and liquid metals at high tempera­
tures are not only for scientific interests; these studies are of an 
extremely important significance for practice. A knowledge of the 
thermal properties of metals at high temperatures is necessary for the 
development of many branches of new technology. These have vital in­
terest for atomic energy, rocket building and cosmic flights, heat 
engineering, metallurgy, electronics, and many other branches of eng­
ineering. Studies of thermal properties at high temperatures are of 
special significance in the development of magneto-:hydrodyamic gene­
rators. It is not accidental that a study of the thermai'properties 
of solid and liquid metals comprises a significant part of the prob­
lem of "thermophysics of high temperatures," the development of which 
is under the jurisdiction of the committee for the coordination of 
scientific research work, which is attached to the Council of Ministers 
USSR/1/. 
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The presently existing experimental data on the thermal prop­
erties of metals at high temperatures are very limited with respect to 
the number of objects studied as well as the range of temperatures 
studied. The quality of existing experimental data also leaves much 
to be desired. Even for comparatively well studied solid refractory 
metals, the results of studies by different authors differ strongly 
from each other; as regards the heat capacity, these differences fre­
quently amount to 15% (seess20), for heat conductivity--20-30% (see 

ss23). As regards liquid metals, the situation is particularly un­
satisfactory. The number of experimental studies dealing with the 
systematic measurements of the heat conductivity of liquid metals is 
very small; the studies are limited by the comparatively low teffiD~ra­
tures, while the re~ults by different authors frequently differ by 
scores of percents, 

Such a situation is explained, in the first place, by the exist­
ing difficulties of experimental studies at high temperatures. These 
difficulties are essentially caused by the great magnitude of heat 
exchange by means of radiation, the consideration or exclusion of which 
is a very complex matter. A weak spot in the experimental technique 
at temperatures of 2,000-3,000°K is that of measuring temperatures. 

The existing situation makes it entirely necessary to carry out 
work on the development and perfection of metals from mercuring 
thermal parameters of solid and liquid metals at high temperatures. 
In such work, a special place should be allocated to searches for 
finding ways and conditions for carrying out such a study, particularly 
such which are empirical precisely at high temperatures and do not 
~ncounter limitations during their. use at temperatures of 2,000-3,000° K 

Certain achievements have been attained recently in this direc­
tion. Matters of measurement have appeared and are being improved, 
which go hand in hand with the development of modern means of experi­
mental techniques. Vacuum electronics, radio technical means, systems 
for automatic registration and control are coming into wide use. One 
of the basic tests of this monograph is to generalize the accumulated 
experience in this field. 

In the first place, we are speaking about the experience gained 
by the author in the course of his creative work with these colleagues 
in the Department of Molecular Physics of the Physical Faculty at 
Moscow State University. This group included the graduate students 
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L. A Pigal'skaya, Yu. N. Simonova, R. P. Yurchak, I. N. Makarenko, 
I. P. Mardykin, L. N. Trukhsnova, Senior Instructor A. N. Nurumbetov 
and a group of graduates from this department. General guidance was 
by Professor A. S. Predvoditelev. The results of the work by this 
group have been reported in approximately 30 scientific communications 
and have been discussed at 10 scientific conferences and meetings. . 
This monograph systematizes the existing experimental data (including 
also the data not published before), and in connection with the com­
parison of the work by other authors~ ~roper generalizations are 
made wherever this is possible. In accordance with this nature of 
the monograph, considerable place therein is taken up by original data; 
this amounts to more than one-half of the scope. At the same time, 
the author, however, while realizing the danger of an excessively sub­
jective and, for this reason, unilateral presentation of the problems 
under consideration, strived as much as possible for a fuller inclusion 
and comparison of literature data. 

The study of the nature of the properties of metals comprises an 
important field in modern physics. 

The specific features of the class metals--the existence of col­
lective electrons, comparatively free electrons--leads to the problem 
which is specific primarily for metals--the description of 
the behavior of the totality of electrons in metal. A fundamental 
aspect of this problem is the study of the role of electrons in pro­
cesses of the transfer of heat and electricity, that is, in those 
processes for which this role is, if not the determining, then at 
least very important. The electron theory of metals is so far not in 
a position to give a satisfactory quantitative description of these 
processes. In connection with this, great importance should be as­
signed to the experimental study of heat conductivity and electrical 
conductivity of metals, including refractory metals at high tempera-
tures. · 

In addition to heat conductivity in eletrical conductivity, the 
study of the heat capacity of metals is of great interest, the behavior 
of which is determined by the nature of the thermal motion_, in particu­
lar, the study of the problems of the participation of electrons in the 
thermal motion and the explanation of the specific features of high­
temperature behavior of heat capacity, which is noticeably different 
from its behavior at moderate temperatures. 

As regards liquid metals, the study is an important component of 
the study of one of the most fundamental problems of molecular phy-
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sics--the problem of the liquid state. Work in this direction is all 
the more important since little work has been done here. The number 
of experimental studies of the thermal properties of liquid metals is 
insignificant, and there are no firmly established correlations. 
There is no clear information regarding the nature of the temperature 
function of the heat capacity, heat conductivity and the Lorentz 
number. Theoretical studies are in the initial stage. A broad field 
of activity is opening up for researchers in this field. 

In accordance with the general experimental directivity of the 
monograph, the author did not consider it plausible to pay great at­
tention to the presentation of the theory of the properties under 
consideration, all the more so since a number of special monographs 
deal with this. Only the most fundamental conclusions of the theory 
are presented conspectively, emphasis being made to define the basic 
most characteristic experimental correlations. 

In presenting the methods of the experimental study, the author 
was governed by the following considerations. 

1. Of the methods for measuring the thermal parameters, special 
preference is merited by the methods which make it possible to obtain 
data for any one of the parameters~ but for their combination, that 
is, methods for determining the complex--heat conductivity, temperature 
diffusivity, and heat capacity. A study of this combination of prop­
erties with the same object and under the same conditions make the 
process of measurement comparatively brief and make it possible to 
obtain mutually related and sometimes mutually controllable data. 
Particularly convenient in this respect are the methods which make it 
possible to obtain a totality of the characteristics under study from 
data of a single experiment. 

2. Of the diverse thermal conditions used for measuring the 
thermal properties, great preference is merited by the periodic pro­
cesses (regular thermal conditions of the third type). The utiliza­
tion of periodic processes makes it possible to insure the natural 
multiple repetition of an experiment under the same conditions and, 
what is most important, it yields an amount of information on the 
thermal properties of the medium under study, which is considerably 
greater in comparison with other processes. Actually, the source of 
information in the case of periodic processes can be: constant com­
ponent of the temperature, amplitude of the variable component, its 
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phase, and, finally, its frequency composition (or the results of a 
variation in the amplitude and phase as a function of frequency for 
the case of a harmonic signal).· This makes it possible to carry out 
diverse methods of measurement of the thermal properties which control 
one another within the limits of the same experiment. For the same 
reason, the utilization of periodic processes makes.it possible to 
obtain the entire complex of thermal parameters from the results of 
a single experiment . 

The monograph devotes considerable space to the description of 
the methods that are based on the utilization of periodic processes. 
Many of the methods described are original. 

3, The methods of measurements, whicn are intended for use with 
small objects such as wire, foil, drops of liquid metal, deserve 
great attention. The utilization of these specimens makes it possible 
to get by without cumbersome installations that require much powerA 
reduce the experimental time, and makes it possible to carry out measure­
ments with comparatively simple means at temperatures up to 3,000°. 
Besides that, these methods, in principle, make it possible to carry 
out also complex measurements on tfte same object. Considerable space 
has also been allocated to work involving these methods. 

In describing the methods of the experimental study, attention 
is, in the first place, given to the methods which are specially in­
tended for high temperatures. The monograph does not include methods 
of classical calorimetry, which are used at high temperatures but are 
not specific for such high temperatures, all the more so since these 
problems: have been presented sufficiently and fully in proper monographs. 

The author considers it his duty to express gratitude to the 
corresponding member of the Academy of Sciences USSR, Professor A. S. 
Predvoditelev, for his constant attention to this work. 
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Chapter I 

General Problems of the Procedure and the Experimental Technique 

§1. Analysis of General Problems of the Experiment 

The basis of all methods for measuring thermal properties is 
the Fourier law 

q = -A.gradT (1.1) 

-+ 
(q is the specific heat flow, A is the heat conductivity coefficient 
which will henceforth be called the heat conductivity) and the deter­
mination of the specific heat capacity 

(1. 2) 

where h is the specific enthalpy. 

The magnitudes that are directly measured in the experiment are 
the spacial and time changes of the temperature in the test objects 
and the amount of energy liberated by the sources of heat in the vol­
ume are on the surface of these objects. 

The relationship of these magnitudes is expressed by the heat 
conductivity equation 

(1. 3) 

where w is the specific power of the volume source of energy. 
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In using this equation for solving specific problems, it is nec­
essary to set definite boundary conditions. Those usually taken as 
such are: 

1) Boundary conditions for the first type when a known (~XPeri­
mentally determined)temperature on the surface of the body is pro­
posed as a function of the coordinates and of the time: 

2) Boundary conditions of the secoQd type: the assignment of 
a specific heat flow q on the surface 

A iJT = q, 
iJn (1. 4) 

where 
i iJn' 

is the derivative with respect to the normals; 

3) Boundary conditions 
of two solid bodies 

of the fourth type in case of contact 

" iJT.._ " iJT 2 T T "'1-.:a. "'2 -; 1 = 2; 
iJn iJn (1. 5) 

4) Generalized boundary conditions of the third type 

or .. 
,_ - + a (T - T0) = q, 

iJrr . (1.6) 

where a is the heat exchange coefficient, q is the density of the 
surface source of heat. (Equation (1.6) is the equation of the 
energy balance on the surface, the sum of the heat flow in the body 
and of the heat loss to the surrounding medium is equal to the power 
of the extraneous source.) 

The heat conductivity equation (1. 3), and the absence of 
heat liberation and when the temperature function of the heat conduct­
ivity coefficient can be disregarded, takes on a simpler usual form 



where 

while 

. _I_· • ~ =vtT 
a at ' 

. 
-. ~- i. 
a=--­

t:pP 

(1. 7) 

(1. 8) 

The temperature diffusivity (temperature diffusivity coefficient), 

is the Laplace operator. 

In exam1n1ng the type of the basic correlations (1.3)--(1.8), 
one can make the following general conclusions. 

1. Experiments in which only the temperatures are being meas­
ured can yield information only about the temperature diffusivity of 
the test body. In this case, it is necessary to study the time 
function of the temperatures (non-s.teady experiments) because only in 
this case will equation (1.7) have solutions that contain as a para­
meter the magnitude of the temperature diffusivity a. 

2. In experiments dealing with the measurement of temperature 
diffusivity in the absence of modern sources of heat, there is no 
need to know the absolute values of the measured temperatures; the 
temperature can be measured with accuracy up to an arbitrary factor. 
(This follows from the type of the equation (1. 7) which remains in­
variant relative to the linear transformation T' = cT.) In this lies 
the important advantage of experiments for the determination of the 
temperature diffusivity. 

The observed circumstance, however, does not mean that in such 
an experiment there is completely no need for measurements of the 
absolute values of the temperature. Absolute measurements are, of 
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course, necessary in order to determine the temperature to which the 
results of the measurement of the temperature diffusivity should be 
referred. At the same time,the temperature field and the changes with 
time do not require absolute measurements. 

3. In order to determine the heat conductivity in using bound­
ary conditions of the first and second type, it is necessary to mea­
sure the power of the volume or surface sources of energy. 

In using boundary conditions of the fourth type, the heat con­
ductivity of the test medium A should be determined on the basis of 
the heat conductivity A2 of another, standard body--relative method 
of measurements. 

In using boundary conditions of the third type, the heat con­
ductivity can,in principle,be determined if the heat exchange coef­
ficient a is known. In some rather rare cases (for heat exchange 
through emission provided the coefficient of the emitting capacity 
of the body is known, see below) ,the heat exchange coefficient can be 
determined by calculation, and it is not mandatory to measure the 
power. However, if a is determined from an additional experiment, 
then in this experiment measurements of the power are mandatory and 
the heat conductivity, in the final analysis, is always determined by 
measuring the power; the heat exchange coefficient plays the role of 
an intermediate link in this case. 

4. In purely steady experiments, determinations can be made 
only of the heat conductivity of the heat exchange coefficient and-

tthe case when a;at = o, equation (1.3) in conjunctivity with the 

boundary conditions does not contain other parameters). 

5. The heat capacity can be determined from experiments of a 
quasi-steady type when the rate of the process which takes place with 
time is not essential. 

that 

Actually, it follows from equation (1.3) when 

t, 
l'wdt 

co=-.!..! __ 
P' Tt-T2 
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This relationship forms the basis of the calorimetric experi-
: t, 

ment in which the values ',Q.= l wdt (the amount of heat introduced 

into the system) are vital and t
1 
~T2 (rise in temperature) are also 

essential, while the nature of the function w(t) does not play a direct 
role. 

6. A study of the unsteady processes makes it possible to de­
termine, generally speaking, all three thermophysical magnitudes, heat 
conductivity, heat capacity and temperature diffusivity. This is an 
important quality of\ nonsteady methods. · · ··-

For an analysis of the gener-al problems of the experiment, it is 
expedient to utilize the methods of the theory of similitude. 

The theory of similitude represents a device which makes it pos­
sible to disseminate information obtained for a definite number of 
objects (systems, processes) over a much broader diversity of these. 
This is achieved by reducing the number of independent magnitudes 
(variables and parameters} which participated in the formulation and 
the solution of the problems under consideration by means of grouping 
these magnitudes into dimensionless combinations--complexes. The cor­
responding functions are expressed, in this manner, as a relationship 
between complexes, while the equations are expressed as a relation­
ship of dimensionless operators. In this instance, the form of the 
dimensionless functions is identical for multiplicity of processes 
which satisfy the so-called conditions of similitude. The number of 
required conditions of similitude include the requirement of geometric 
similitude of the systems under consideration and the condition of 
equality of the so-called determining criteria--complexes which are 
composed of parameters that figure in the equations that describe the 
process and in the boundary conditions. A detailed presentation of 
the fundamentals of the theory of similitude can be found in monographs 
[2-5]. 

Let us examine the basic determining criteria of the heat con­
ductivity problems. In this case we assume, as this is usually done, 
that c p and A. are constants. It follows from the type of basic heat 

p 
conductivity equation (1.3) that there should exist two independent 
criteria 
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'· t• at• K =--=-=Fo 
;I.. Cp p 1,% (I 

(1.9) 

and 

(1.10) 

In these formulas, 1, t*, and T* indicate a characteristic plant, 
time and temperature (difference of temperatures) which figure in the 
boundary conditions. The criterion K1 is called the Fourier criteria. 

K2 has been designated by A. V. Lykov as the Pemrantsev criterion [6]. 

The dimensionless form of equation (1.3) has the form 

(Lll) 

where a = T /T* is the dimensionless temperature, 

T = t/t* is the dimensionless time, and 

-e = ~- ~- !I~,. • z' 
.. t •• - -,. ':)=-

. l l l are the dimensionless coordinates. 

Two other determining criteria figure in the dimensionless form 
of the boundary condition (1.6): 

here, a 
d\) 

08 + Bi(0-60) =Ki. 
iJv .. 

(1.12) 

indicates the derivative with respect to the dimensionless 
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normal, 

Bi = al 
~· 

(1.13) 

l(i = 3.!.__. 
'J.. T* (1. 14) 

The ratio (s-implex) 

tion of ~.n,C and T, 

e __ To 
o -- T*' 

because T
0 

, generally speaking, is a func­

in the general case can depend 

on the coordinates and on the time. The first of these criteria is 
called the Biot criterion and the second the Kirpichev criterion. 

The solution of equation (1.11) and for the boundary conditions 
(1.12) should have the form 

8 = <D(;, TJ, s. 't, Fo, Po, Bi, l(i). (1. 15) 

In order to determine .the thermophysical coefficients, use is 
made of the specific functions of the type (1.15) which contain 1-2 
criteria, the magnitudes of which should be determined from the ex­
perimental values of the function ¢. 

Let us examine the problem of the optimum values of the criteria 
to be determined. Let, for example, 

e = <D (~. rt. ~. 't, K). (1.16) 

where K is the criteria that is to be determined. Let us assume at 
first that K << 1. In this case, ¢ can be expanded into a series 

with respect to K and we can limit ourselves to the first member of 
the expansion: 
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e = (!)o c~. fl, ~. -r) + KcD1 cs. Tj, ~. -r) + ... (1.17) 

The functions ¢0 and ¢ 1 do not contain dimensional coefficients · 

and, for this reason, it is natural to expect that with respect to the 
order of magnitudes they lie between 0 and 1 (the opposite would in­
dicate the existence of special points in the solution of the corres­
ponding problem; we exclude such a case). If in formula (1.17) 

¢
0 

~ 6, f?r the small K and 8 ~ 0, that is, the measured changes 

of the temperatures fall and the case is not suitable for practical 
purposes. However, if ¢

0 
~ 1 , then, when K -+ 0 there is a 

trivial solution and K should be determined from the small difference 
between the trivial solution and the temperature test field 8. Such a 
case is also unsuitable for practical purposes because of the large 
errors. As a result, we come to the conclusion that the case of 

K << 1 is unfavorable for the measurement of the thermal properties. 

Exactly the same reasoning can be carried out for the case of K ~ 1 

for this purpose, it is necessary to examine the expansion of ¢ into 

. -1 
a series with respect to K Thus, it follows from general consider-
ations that, in order to carry out the experiment on the determination 
of the thermal properties, it is necessary to utilize such processes 
for which the values of the corresponding criteria have a magnitude 
of the order of unity. Thus, for measurements of heat conductivity, 
it is necessary that 

(1. 18) 

for measurements of temperature diffusivity 

Fo~l, (1.19) 

for heat capacity, respectively, 
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Po-1 (1. 20) 
/ 

or 

(1. 21) 

The conditions (1.18)-(1.21) determine only the order of magni­
tude of the criteria, The specific boundaries of the region of opti­
mum conditions of the experiment should be established in each specific 
case. 

One more conclusion can be made on the basis of the given reason­
ing. It is precisely when the influence of any one of the criteria 
in the expression (1.15) is undesirable that it is necessary to ac­
complish conditions for which this criterion will be much less than 
unity unity and~ conversely, much more than it, Thus, an undesirable cri-
terion is usually the Biot criterion which contains the heat exchange process on the 
of the body. In order to decrease the role of the heat exchange~ it 
is necessary thus to make it a relative magnitude of very small (heat 
insulation) or, conversely, very large (isothermal conditions). 

All the considerations presented earlier are general and valid 
for high as well as for moderate and low temperatures. The high temp­
erature reading which is of interest to us has its specificity. It 
consists, first of all t of the fact that the basic mechanism of heat 
exchange of free boundaries of a body is the heat exchange by emission; 
besides, the magnitude of this heat exchang e is, as a rule, considerable 
and depends strongly on the temperature. This leads to the situation 
wherein, in many practically important cases, the Biot criterion is com­
measurable with unity, as a result of which it becomes necessary to 
make a special calculation or to exclude a role of heat exchange, 
Either one is, however, made very difficult by the.steep nonlinear 
dependence of the heat exchange coefficient on the temperature. 

Let us examine this program in greater detail. In order to de­
scribe the heat exchange by emission between an element of the surface 
of the body under consideration and its surrounding isothermal shell 

. .... 14 "" 

• 

• 
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at the temperature of T
0

, use is usually made of the approximate formula 

q' = aeq> (T' - T~), (1 0 22) 

where o is a constant of the Stephen Baltzmann law, £ is the 

reduced degree of blackness,~ is the coefficient of irradiance [7,8] . 
The heat exchange coefficient in this case can be formally recorded 
as 

(1. 23) 

The vital dependence of the coefficient a on the temperature 
makes extremely difficult the analytic solution of the corresponding 
problems even in the simplest cases. A way out from the situation is 
the utilization of the experiment of small spacial-time changes of the 
temperature, small temperature perturbations. Such small perturbations 
can be the result of small changes in the power of the surface and 
volume sources of energy or of the· magnitude T

0
--the temperature of 

the surrounding medium. Under these conditions, the temperature T of 
the body can be represented as ·.the sum of the basic member T and the small 
increment tJ, : 

T=T-';-fr, 

.~,z,·t. 
f . 

(1. 24) 

(1. 25) 

In the general case T is a function of the coordinates and of 
the time. 

A specific case of the notation of (1.24) can be considered as 
the result of the expansion of T(x,y,z,t)- into a series close to 
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the values of x0 ,y0 ,z0 ,t0 (the examination of the small local changes 

of temperature). In this case, T = T(x
0

,y
0

,z
0
,t

0
) 

For the condition (1.25), the nonlinear dependence of the emis­
sion heat exchange on the temperature can be approximately linear due 
to the possibility of disregarding the members of the higher order of 

smallness in comparison with'~/T . Actually, in this case the con-
dition (1.6) can be recorded approximately (with an accuracy up to the 
members of the higher order of smallness relative to ~1.1 as 

ar - - a{} 'J.. - -L a (T) (T - T ) - q = - 'J.. ---1-
itn ' o o Jn 

_;__ {)' { ~ [a(T)(T- T 0)]} T=T + 6q. (1. 26) 

Here, oq is the change in density of the surface source of 
energy, which leads to the origin of the test perturbation and the 
temperaturef~ . (If the change in temperature .b is due in its origin 
to the change in T0 , then instead of oq in this, the magnitude 

[ aa·(:;: Tot Jr 6T .. should figure obviously in this formula. This member 

will be present also when T0 changes simultaneously with the change in 

q; in this instance, the relation oT0 and oq should be known.) 

The last part of the equation (1.26), which does not contain a 
magnitude of the temperature deviation~. is equal to zero because the 
magnitude Tis in a sense the solution of the problem under considera­
tion and should satisfy the corresponding boundary conditions. Hence, 
it follows that ~-should satisfy the boundary condition 

). c.H} +it( aa(T-T0)) _ = f:Jq. 
0.1 iff T=T (1. 27) 
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If a does not depend on T, then we get a trivial result 

a'{} 
').. an + a'I'J' = fJq. 

The condition (1.27) has the same linear form also in the gene­
ral case because the magnitude 

a' = ( oa (T- T0 ) ) , _ 

aT T=T (1. 28) 

does not depend on ~ 

(1. 29) 

Thereby, the condition (1.6), which is nonlinear in the general 
case for small changes in temperature (1.25), reduces itself to a 
linear condition. In this case, however, it is necessary to bear in 
mind that a' = a'(T) , generally speaking, is a function of the co-

ordinates of the point on the surface of the body because T can de­
pend on the coordinates. This circumstance makes it difficult to· 
solve the corresponding problems even in such a linear approximation, 
particularly if one takes into account That T is practically assigned 
not in the form of a convenient analytic function, but as the result 
of an experiment for the straight multiplicity of points. Hence, it 
follows that the practically convenient cases of the_perturbation 
method under consideration are only those for which T = const or the 
function T(x,y,z) has a symmetry for which T = const on the sur-

face o£ the test body. 

For emission heat exchange, the magnitude of the effective co­
efficient of heat exchange a 1 is, according· to formulas (1.23) and 
(1.28), equal to 
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(1. 30) 

A condition, sufficient for the validity of this formula,is, 
as it is easy to show.the inequality 

t'ilne Tz (}2e 
12 + 8 oInT + -e- · ~ 

dine 
4:+ dinT. 

« I, r 2 

or approximately, with an accuracy up to the temperature dependence or 
the degree of blackness, 

3 '11 -·-=-<<I, 
2 T 

which is practically equivalent to the inequality (1.25). 

We obtain the basic form of the heat conductivity equation for 
small temperature perturbation ,~ by substituting formula (1.24) into 
equation (1.3) with consideration of the fact that T is the solution 
of the equation (1.3): 

-[(c~)j: + ( OCpf_)-{j] i)f} + ( OCp?' {}~'!'__ = 
aT r <'lt ar Jf ol 

d·v [ ( o}. ) d T-] · ·· [ ,-· ( o).. ) \ -~ 
= I ar 't gra 7 dJ\' ~ "'t . ar t} grad o j :- 0\.il ~" 0. (1. 31) 

Here ow is the perturbation part of the density of the volume 
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heat liberation. (In deriving this equation, the members of the ex­
pansion c p and A into the series with respect to ~ above the first 

p 

order of ~.have been discarded.) For simplification of equation (1.31), 
we assume that 

(1. 32 ') 

a-& ar 
~,....._ -- and gradT- grad tt-. at ac (1.32 1') 

The conditions (1.32), which are superposed on~) are, as a rule 
(with the exception of special cases of an anomalously large cha:nge 
in c p and A near the points of phase transformations), considerably 

p 

less rigid than the condition (1.25), in accordance with the lesser 

temperature dependence of the magnitude c p and A , in comparison with 
p 

q 1 in the formula (1. 2~ . The conditions (1. 32") require that the 
spacial-time changes ~T of the basic temperature field should not 
exceed in the order of magnitude the temperature perturbation 

under consideration. 

In satisfying the conditions (1.32), the equation (1.31) assumes 
a form of 

a-& - ~ n2 .. ~~. -L ow 
co--~'-v IJ' ' 

P' at - (1. 33) 
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with c p and A refer to a certain fixed point of the temperature field 
p 

T. We wish to emphasize once more that the limitations of the spacial­
time changes in temperature (inequality (1.32)), which are necessary 
for the linearization of the heat conductivity equation, are weaker 
than the limitations (1.25) which are required for the linearization 
of the boundary conditions. In this lies the specificity of the high 
temperature region. (For moderate temperatures, only the first limit­
ations are essential.) 

In the linearization of the expression for emission heat exchange, 
the formula for the Bi~t criterion can, in accordance with formula 
(1.30), be written as 

(in the case when 

. 411eq:>T~I 
··BL=----

1. 

atne /?. 4). , or, if TO<< T, as ,--,, 
, iJ In T 

Bi=~. 
"AT 

(1. 34) 

(1. 35) 

In such a form, the Biot criterion is similar with the Ki!pichev 
criterion (1.14). 

Table 1 is given in order to evaluate the order of magnitude of 
the Bi criterion and the experiments with metals at high temperatures; 
this table contains the Biot numbers for a number of values of l as a 
function of the temperature for three different values of A. If mag­
nitude of E~•in this case.is set equal to its maximum value, unity. 

As can be seen from this table.the Biot criterion is sufficiently 
small for characteristic dimensions of the order of 1-10 mm (for the 
latter up to 2,000°K). For larger dimensions there are no grounds for 
hoping for a smallness of heat exchange through emission. Hence, it 
follows that the rational tendency in accomplishing experiments at 
high temperatures is to strive to reduce the dimensions of the test 
specimens. Small scale methods are preferred also in another respect-
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Table l. Values of the Biot Criterion for Emission Heat Exchange. 

1=0,1 MM I= I MM I= I CM I= 10 CM 

--- - -- --

T·K 1. wt/cm. degree 1. wt/cm, degre€ A wt/cm. deg. 1.
1 wt/cm.de-g. 

-
4 l I 

I 
0,2 • 1 I 

I 
0,2 4 I I 

I 
0,2 4 

I 
I I 0,2 -, 

I 
1000 5,8·10-6 2,J.(O-' I ,1·10-s 5 ,8·10-4 2 ,3·10-3 0,011 5,8-I0-3 0,023 0,11 0,058 0,23 I ,I 

1200 I·IO-• 4 -IO·' ~ ·10-3 1-10 :o 4-lo-:• 0,02 U,Ol 0,04 0,2 0,1 0,-1 ~ 

1500 1,9-J0-4 7 ,7. Ill ~ :l,7. J() -3 

I ! '~·· 
10-;; 7.7 !0~ 0 ,OT71 !1.1119 0,077 u .. )/ ! IJ,l\) 0,77 :\.7 

' i I 

l7Q:; :l ,ti .(Q-1 I , 1-IQ-l s.s 10 J I :2 ,, IU- I U, I ill u ,o:.:.! li,IJ:'K (J, i I II,.·. : I I ~; ~ I ,I ;),5 ,u· 

I 
i 

2000 4 ,f..JO-l I ,R· JO-:t 9,0 -Iu-s 4,5- 10 1 l),diK O,IJCI! IJ,Ul5 U,lil U ,'I 11,-J:, 1 ,8 9 
I 

noo 6. JO--t 2.4 -In-" O,Oi:2 I ri-10 1 v,u:n o.12 1 lJ,(J(J u.~-t 1,:' \l,li ::!,-! 12 1 

2500 9-1G~ 3,6·10-3 0,018 9-10·-~ 0 ,(J:)Ii ll, IH I ii,U':l O,JG 1,:-, ll , ~I J,li ltl 

~/'00 I , I· w-:• 4 ,G-Io-a 0,022 0,011 O,OHi 0,22 0,11 0,46 •) •) l ,1 I,G 22 -·-
3000 1 ,5-JO-a 6 ,2·10-3 0,031 0.016 0,062 0,31 (J,I!i U,62 3, I 1 _f) G.~ :'I 

I 1. 



--they require a small expenditure of energy for heating, whereas for 
relatively large specimens, the energy consumed can be very consider­
able, which can be elucidated from Table 2. 

Table 2. Energy Emitted From the Surface of the Specimen 
(E = 1), in wt. 

Surface 

0,1 C.J<a I CM.1 10 CM1 

1000 . 0,57 5,7' 57 
i200 1,2 12 120 
1500 2,9 29 290 
:2DGO 9 90 900 
~nco 13 130 1300 
'2500 22 220 2200 
2:-oo 30 300 3000 
3000 46 460 4600 

§2. Methods of Measuring Small Differences of High Temperatures 

It should be clear from §1 that a necessary element in thermo­
physical studies at high temperatures is the measurement of small 
differences of high temperatures and small time changes in temperature 
(pulsations). In this paragraph•we will dwell on the first of these 
problems--measurement of steady temperature differences. 

First of all, we shall clarify why we are speaking precisely 
about temperature differences and not simply about temperature fields. 
From a fundamental point of view, it is indifferent whether the abso­
lute temperature in the function of the coordinates T = T(x.y,z) is 
measured or the difference of temperatures relative to a fixed point 

~ = T(x,y,z)-T(x0 ,y0 ,z0). In practice, however, it is preferred to 

measure precisely differences. This is related with the fact that 
in absolute measurements of the temperature the allowable relative 
error of measurements should be much smaller than in measurements of 
the differences. Actually, if the required error of measurement of 
the magnitude~~· should be equal to. 6 ~~-& , then the relative error 
of the measurements of the absolute temreratures should in this 
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case amount to 

-------- ~ _, .......... 
. a-tt 6-tt a-tt -tt . -· --,....;.-=-·-, 

f+-tt T -& r· 

that is ·it should be.~/T times less. Thus, if in the experiment at 
the moderate temperature of 1,000°K it is required to determine a 
temperature difference of 10°, (which corresponds to the condition 
(1. 25) )with an accuracy of 1%. (three significant figures), then in 
order to measure the absolute temperatures, the allowable relative 
error should amount to 0.1°/1;000° = 0.01%, that is, the results of 
the measurements should have five significant figures. Further, 
measurements of absolute temperatures are usually classified with 
respect to time an<J, for this reason, a possible instability of the 
average temperature can lead to an additional error; for measurements 
of temperature difference, this error will be considerably less. More­
over, measurements of the temperature difference are possible also 
under quasisteady conditions when the temperature at each point of the 
system depends on the time, while the difference of the temperatures 
between any points remains constant (the so-called regular thermal 
condition of the second type--see §7). 

In measuring differences of high temperatures, use is made 
essentially of two methods: thermocouple and optical (photoelectric). 
Let us examine each of these separately. 

The problem of the utilization of thermocouples for measuring 
temperatures, including also high temperatures, is dealt with in mariy 
review papers (see for example {9, 10, 11, 12]). In this monograph, 
we shall dwell only on problems characteristic of measurements of 
temperature differences and on certain problems specific for high 
temperatures. 

In measuring steady differences of temperature in metals, two 
~ifferent problems are encountered: the measurement of temperature 
differences in the body of metal specimens and the measurement of the 
temperature field of metal surfaces. Let us dwell at first on the 
first problem. In measuring temperatures in the body of specimens, 
it is necessary to have a lead of thermocouple wires to drill channels. 
On the basis of general considerations, it is clear that these channels 
should be as much as possible narrow and long and fall on isotherms. 
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In this case, the junctions of the thermocouples (or at least of one 
of these) should not have an electrical contact with the body of the 
metal; for otherwise, the metal will short circuit the thermocouple 
and measurements will require special devices (see below). One of the 
basic questions in this instance is that as to which temperature the 
thermo couple joint will register in this case and the extent to which 
this temperature differs from the temperature in a given point to the 
metal in the absence of a grill channel. It is difficult to give a 
general answer to this question because the result depends on the 
specific configuration resystem and temperature field. However, certain 
considerations ·can be advanced. 

Let us examine the case when the temperature, in the absence of 
a thermocouple, depends linearly on one coordinate z. Let a channel 
be drilled in the point z = 0 and let the thermocouple be placed in 
this channel. Let us assume that a channel is infinitely long so that 
the temperature along it along the element is the same (thereby we 
shall disregard the loss of heat along the thermocouple and consider 
only the distortion of the temperature field caused by the introduction 
of the thermocouple). 

Assuming that the radius r 0 is much less than its distance to 

the boundaries of the body, it can be assumed that "at infinity" (that 
is, at a sufficient distance from the· drilled channel) there is an un­
perturbed temperature field 

T=VZ. 
(2 .1) 

The problem of determining the temperature field within the out­
side and within the channel reduces itself to the solution of steady 
state equations of heat conductivity ~~2T 

1 
= 0 and ~:, 2 T 

2 
= 0 

with the boundary condition of the fourth type on the surface of the 
drilled channel /.,

1 
cfi1 =A. ar2 ; T1=T2 (it is assumed that the 
ar 2 or 

channel was filled with a uniform medium with a conductivity of A
2

) 

and with the condition (2.1) at infinity. The solution of this prob­
lem can be found without much labor. However, the basic result can be 
obtained also from considerations of a general order. For this 
purpose, we wish to observe that from the formulation of the problem 
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stems the oddness of the functions r 1 and r
2 

with respect to the co­

ordinate z. Actually, the substitution of z by -z with the simultane­

ous substitution of r 1 by -T1 and r 2 by -T2 leads to the identical 

problem. Hence, it follows that from z = 0, r
1 

= 0, that is, the temp­

erature on the channel axis is an accuracy equal to the unperturbed 
temperature--such a schematic thermocouple measures the temperature 
without distortions. The same considerations are valid also in a more 
complex case (for more detailed model of the thermocouple) when there 
are in the channel several coaxial sheets with any thermal character­
istics (thermocouple wire, its insulation), and for a temperature field 
of more complex nature but odd with respect to the coordinate z. 

In measuring the temperature differences on the surface of 
metals specimens, the electrical contact between the thermocouple junc­
tion and the metal is needed because, otherwise, it would be difficult 
to assure a sufficiently good thermal contact. In this case, the 
direct utilization of differential thermocouples is excluded. Never­
theless, here too different measurements are possible. One of such 
methods--the use of fast electromech~nical switches in conjunction 
with "memorizing" condensers. The condensers are periodically con­
nected either to the thermocouples or seriany in oppositi'on to each 
other because a different signal flows into the measurement system 
[13]. Another method is the connection of thermocouples parallel to 
the measurement instrument provided the resistances of the thermocouple 
wires are the same in accuracy [14]. Such a method is simpler; a di~­
advantage, however, is that it is necessary to equalize very thoroughly 
the resistances of the wires. 

Another method of measuring temperature differences on metal 
surfaces is the utilization of the test metal as a thermalelectrode. 
In this method, thin wires are welded (soldered) at the required points 
of the metal; these are probes of a metal which gives a sufficiently 
large thermoelectromotive force paired with the test metal. The thermal 
electromotive force from each pair of probes, just as from an ordinary 
differential thermocouple is determined by the temperature difference 
of the corresponding points. In using probes, only one wire and not 
two runs to each point just as in the case of thermocouples, In ac­
cordance with this, there is a decrease in their indeterminacy of the 
coordinates of the points, the temperatures of which are being meas­
ured; the position of each point can be considered as known with an 
accuracy up to the radius of the probe. Advantages of the probe methods 
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are particularly acceptable when measurements of the temperature 
field are required in many points of a small region of the object. 
A disadvantage of the measurements of the temperature difference by 
means of probes is that it is necessary to know the thermoelectro­
motive force of the pair of metals used and of which one is the''test 
metal. This requires ~he performance of a special calibration ex­
periment. The indicated disadvantage, however, drops out when it is 
necessary to know not the absolute values of the temperature differ­
ences but only their relative magnitudes. 

The principle which forms a basis of the probe method of measur­
ing temperature diff~rences, namely the utilization of a test metal 
as an intermediate, can be used also for other.purposes--in measuring 
absolute temperatures. In this case, when the surface of the test 
metal is isothermal (or an isothermal line is known on the surface), 
instead of a triple junction of thermocouple wires with the surface 
of\the metal, one can make two separate junctions of each of the wires 
with the surface which are apart from each other at a distance that is 
convenient for their installation. The thermocouple readings should 
not in this case depend on the test metal. 

The above,said with respect to the probe differential thermo­
couples.is valid not only for surface thermocouples. Such thermo­
couples can equally be utilized also for measuring temperatures in the 
volume of a metal. 

In measuring temperatures of a metal surface by means of thermo­
couples, one of the basic question~ is that of errors introduced by 
the heat loss. along the thermocouple wire. Two cases should be dif­
ferentiated: 1) heat exchange with the surface\of the thermoco~ple in 
accordance with the Newtonian principle (the coefficient of heat ex­
changes is constant) and 2) the coefficient of heat exchange cannot 
be considered as constant. 

The first case is encountered under conditions when the tempera­
ture readings along the thermocouple are comparatively small, that.is, 
when the test specimen is not strongly overheated with respect to the 
surrounding space (although its temperature can be high). The second 
case corresponds to· a strong overheating of the specimen (for example, 
a calcine specimen in a cold vacuum chamber). Under these conditions, 
very large temperature gradients can exist on the thermocouple wires, 
and the nonlinearity of the emission heat exchange makes impossible 
the utilization of Newton's law with a heat exchan£e coefficient that 
is ·independent of the temperature. 
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The solution of the problem of errors in the readings of the 
thermocouples is classified into two parts: I) the calculation of the 
thermal flow at the end of the thermocouple on the basis of a solution 
of the heat conductivity equation for a thermocouple with consideratien 
of the_ heat exchange on its lateral surface and 2) determination of 
the distortion of the temperature field on the test body for which the 
flow of heat through a transverse cross-section of the thermocouple is 
equal to the magnitude that has been found. Such a partition of the 
problem is possible as a first approximation of a more accurate solu­
tion in which the solution of the first part (boundary conditions of 
this solution) already assumes the solution of the second part as 
known, that is, the accurate distribution of the temperature. It is 
clear, however, that for small distortions of the temperature field 
such a simplification is fully justified. 

In studying the problem of the temperature distribution and the 
flow of heat along thermocouple wires, we shallexamine each wire 
separately, disregarding the heat exchange between wires. Besides 
that, we shall disregard the temperature gradient along the radius of 
the wire, assuming as valid the unidimensional equations of heat con­
ductivity 

. cJ2T 2a · 
A ----(T-T) =·0 

dxa rO> o . . (2.2) 

and 
__!!._ A dT _ 2aeT~ = O , 
dx dx· .ru · 

(2. 3) 

where r
0 

is the radius of the wire, T0 is the temperature of the sur­

rounding medium (see § 4). The first of these equations has been reckon­
ed for the Newtonian heat exchange. and the second for the emission 
heat exchange when T » TO (In both cases, only the heat exchange 

of the wire with the external medium is taken into consideration but 
not that with the body, which is permissible only for approximate 
.evaluative calculations.) The boundary conditions of the equations 
(2.2) and (2.3) are the condition on the left-hand column T = T(O) 
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when x = 0 and the condition on the right-hand T = T when x ~ oo 
0 

(2.2) and T = 0 for x ~ oo for (2.3). The linear equation (2.2) is 

solved elementarily and leads to a formula for the flow of heat when 
X = 0: 

(2.4) 

The equation (2.3) is not solved·in elementary functions. 

An analysis of the quadratures that are possible for the case 
when E and A can be considered constant, makes it possible, however, 
to obtain the formula [15] 

I . . . 

,IJ. = --!_ n~.'l•cr'l•·e'i·r~''T(O)'',_ 
l' 5 (2. 5) 

By using the expression (1. 34) for the Biot criterion in the case of 
emission heat exchange, we can write this formula in a form similar to 
(2. 4): 

(2. 6) 

Formulas (2.4) and (2.6) solve the first half of the problem 
under consideration. 

In solving the second half of the problem, we make a simplifying 
a~sumption, Namely, let us assume that the place of contact of the 
wire with the surface of the specimen represents a semi sphere with the 
radius r 0 ; besides, the distortion of the temperature on the surface 

of this semisphere is the same. Absolute error introduced by such an 
approximation should, with respect to the order of magnitude, be close 
to the temperature gradient in the metal at the distance of the order 
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or r 0 , which can change the result of the calculation by a factor of 

the order of unity. Distribution of the isotherms in the metal is 
shown schematically in Figure 1. This assumption gives grounds for 
representing the temperature distribution in the body of the metal in 
the form of 

T = 8(x,y,z) + ~. 
r (2. 7) 

where 8 is the temperature distribution in the absence of a junction 
(speaking about the isothermal condition of the contact, we thus have 
in mind T- 8). 

Figure 1. Schematic representation 
of the isotherms of the temperature 
distortions in the specimen-­
thermocouple system. 

The second member of this formula, which describes the distorting 
influence of the thermocouple, satisfies the equation of the heat con­
ductivity in the boundary conditions for the semi-space which is heat­
insulated on the surface. An examination of the semi-limited medium 
practically means that influence of the transverse dimensions of the 
body in these evaluations is considered negligibly small, and this is 
natural for objects with dimensions that greatly exceed ,

1 
( ~ <.(.l) 
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The problem of the possibility of disregarding the heat exchange on 
the surface of the body requires consideration. A specific evaluation 
of the influence of the heat exchange on the result can be obtained 
from the comparison of the magnitudes of the specific thermal flows 
along the surface of the body and perpendicular to it (more accurately 
not the flows themselves but their changes due to the presence of the 
thermocouple) . Measurement of the flow along the surface is equal to 

\
A 

ql =I. -. ,z 

where A is the heat conductivity of the specimen. 
flow due to the heat exchange is equal to 

·•r , A q1 =a u =a-
r 

(2. 8) 

A change in the 

(2 .9) 

where a' is the heat exchange coefficient on the surface of the speci­
men. The ratio of these flows is equal to the Biot number 

q a'r . 
:._!_ = . - = Bt 

. ql A (2. 10) 

For the most widely occurring case--emission heat exchange--one 
can utilize the values of the Biot criterion from Table 1. Besides, 
it is easy to become convinced that the values of the distance r, 
for which the Bi criterion is considerably less than unity, lies with­
in the limits of· 1- rnrn- 1 ern at temperatures of lJOQO- 2J000°, which 
is 1-2 orders greater than the radius of the thermocouple wire. Thus, 
forrnul a (2. 7) approximates real distribution of terne.erature and the 
specimen up to regions where the very temperature distortion becomes 
overly small, 

In order to determine the constant A in the solution of (2.7), 
we shall utilize the above-determined expressions for heat flow (2.4) 
and (2.6). If 
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. _ A d_(T;; e) I 2rtr~ = Q (2.11) 
r=r, 

we get 

A=-.....!L 
2nA • (2. 12) 

from this follows the formula for the temperature distortion in the 
location of the junction 

6T=6-T=-.....;;;Q_ (2.13) 
2nAr0 

In particular, for the first case (small gradients on the wire) 

~- = _I_. 'J.''• a'l•r"• T (0)- T0 = ~- . _!:_ Bi'f, T (0)- T0 

T (0) lf2 A 0 T (0) -,12 A T (0) 
(2 .14) 

For the second case (large gradients) 

()T 1 (<per0 'J.PJ· 'I• = _1 __ ~ Bi'i> 
T(OJ = y'"5 h 2·{5 A . (2 .151 

In both cases, the temperature di.stortion is comparatively 
slight, as the square root, and depends on the wire diameter and to a 
great degree on the heat conductivity of the material of\ the body then 
on the heat conductivity of the wire. For the first case, the magni­
tude of the heat exchange coefficient and the temperature difference 
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T(O) - T
0

, are of fundamental significance, while for the second 

case it is the absolute temperature, It is pertinent to observe that 
in the attempt to obtain the formula (2.15) as the specific case of 
the formula (2,14) when T(O) ~ T0 leads to results that differ 

approximately threefold, In order to estimate the specific values of 
oT druing evaluations with formula (2,15), Table 3 lists practical 
examples. It can be seen that for wires of a relatively large dia-
meter and at high temperatures, the distorting influence of the heat loss 
can be considerable. 

The examined system for evaluating the role of heat loss along 
the thermocouple wires can be utilized also for a case when the test 
object is a thin bodx--metal foil. Such a case can be encountered in 
practice during a study of heat conductivity and the electrical con­
ductivity of metals (see § 5). 

Assuming that the thickness of the foil is less than the radius 
of the wire or comparable with it (in the latter case, the resulting 
formulas will be valid with an accuracy up to the factor of the order 
of unity), me can disregard the temperature distribution across the 
foil and solve the unidimensional equation of heat conductivity in 
which the heat exchange on the surface of the foil plays the role of 
a source 

(2,16) 

where aA is the heat exchange coefficient equal to the sum of the heat 
exchange coefficients on both sides of the foil, is the foil 
thickness, In this problem, it is necessary to take into account the 
heat exchange on the surface because in its absence the steady-state 
solution of the heat conductivity equation T = 8 + A ln r does 
not satisfy the condition of infinity. Thus in this two-dimensional 
problem, unlike the problem for a three-dimensiona~ body, the heat 
exchange on the surface of the body should play a substantial role. 
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Table 3. Examples of Evaluations of the Errors Due to 
the Heat Loss Along the Thermocouple Wires 
During Measurements of the Temperature of 
the Surface of a Massive Specimen. 

Wire Diameter I ron 1 ,000°K, Wolfram Platinum Wires 
mm Chromel Wires; 

IOOO"K I500°K ~.;._>Q 1\ 

0,05 I ,6° 0,6• I ,9° -o 
d 

0,1 2,3 0,8 2,7 7 
0,2 3 I ,2 3,8 II) 
0,3 4 I ,5 4.7 1:! 
0,4 4,7 I ,7 5,4 u 
0,5 5,2 1,9 6 16 

Equation (2.16) is nonlinear when there is emission heat exchange 

~· = a'(T) ) , it is linearized for that small portion of the 
solution of ~. which describes the temperature change due to the pre­
sence of a junction with a wire 

where 

tfl(} I 1 -u Yi ' 
-,-. ·--- ·= ,.{}, 
dr2 r !.l.r . 

k-~ 
h.:\. 

For emission heat exchange 
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. -k = 4<r (e' -t- E:") (:)3 

h.\ (2. 20) 

The solution of equation (2.18) for r + oo can be written as 

' . (I' • ' .---. -&=AHo'(q' .lt.r), (2. 21) 

(1) 
where H 0 is the first Hankel function of zero order, 

In order to determine the constant A, it is necessary to utilize 
the boundary condition similar to the conditions (2.il): 

-d t~ ~ . ' 
2."lr0hA -- , = Q. : 

cr I · 
(2.22) 

.""=rl) 

(Here we disregard the small heat losses on the surface of the foil 
which lies opposite the wire end.) It follows from the solution of 
(2.21) and the condition (2,22) that 

(2. 23) 

(1) 
where H is the first Hankel function of the first order. For 

I 
the temperature distortion in the location of the junction, we get 
the formula 

Q 
--&=----

iHb:) (i -,/k r 0 ) 

- H\'' (i l .k ~o) (2.24) 

Before analyzing this expression, we shall evaluate the magni~ 
tude of the argument of the Hankel function, In accordance with 
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formula (2 .19) 

-- (" .~.,\ 

ra V k = \B;t, T)' 
(2.25) 

wfiere 

(2. 26) 

For conditions in which the Biot number is relatively small 

the value of the argument ro·fi·, is also small, because 
~ 

In this case, instead of iff011. 1 H\1) one can utilize its 

asymptotic expression for small .~ lfk, which leads to the formula 

(2. 27) 

where y = 1.78107 [16] . 

. For heat e~change under conditions of small gradients, we get 
in this instance 

OT= - 1-Bi'I•-A · _ro_ln --2
-- [T(O)-T0]. 

-,12 A h Bi'l• ...!.J_ 
'Y h h 

(2. 28) 

(A more detailed derivation of this formula can be found in the mono­
graphs [17] .) 

For the case of large temperature gradients along the thermocouple, 
we get 
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OT = ~1-,-- Bi'l• _A._-· -'0-ln --2--T. 
2..,'5 A h YBi'!.~ h h 

(2.29) 

Formulas (2.28) and (2.29) are similar with (2.14) and (2.15). 
The difference is in the factor 

.!:!.. In ---2-­
h '/ 'o 

YBi •-
h h 

which increases the error aT in comparison with the case of a massive 
body. This factor depends substantially on the heat exchange con­
ditions on the side surface of the bodies; besides, with increasing 
heat exchange, the entire factor becomes small. This is explained by 
the fact that in the case under consideration, the heat loss on the 
surface of the test metal plays a role of a factor which decreases 
the temperature gradients (in its absence, they would be infinitely 
large). 

Examples of calculations with formula (2.29) are given in Table 
4 (wolfram foil, platinum ~ire). One can see that relatively small 
magnitudes of the temperature distortion take place only when the wire 
diameter is approximately equal (or less than) the foil thickness, 

that is, when 
- h - -
-.-.-.....!-? 
d -· The utilization of formulas (2.28) and 

(2. 29) for large values of this ratio is not valid because in this 
case the fundamental prerequisite of the calculation, the two­
dimensional state of the temperature field in the foil--will be dis­
turbed. At the same time, it is clear that for sufficiently large 
h/d, the magnitude aT will approach the values given by the formulas 
(2.14) and (2.15) which will thus become the maximum values in tables 
of type 4 tables. 

Let us examine the photoelectric method of measuring small 
differences and high temperatures. This method is based on a com­
parison of the signals of photoelectric pickups which register the 
emission from two different sections of the test object. 
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The emission intensity of the surface of a body in the visible 
section of the spectrum at temperatures below 3,000°C can, as is known, 
be expressed by the formula [18] 

where v is the emission frequency, h is the Planck constant, cis the 
speed of light, k is the Boltzmann constant. The factor s(v,T) is 

the spectral degree of blackness of the surface and it characterizes 
the difference in emission of the surface of the object from the 
emission of an absolutely black body. It is a comparatively weak 
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function of the frequency and of the temperature. 

The signal at the exit of the photoelectric pickup, which has a 
linear characteristic with resp~ct to the emission intensity ,"will be 
equal to 

00 

Y = i I ( v, T) f ( v) dv , 
(2. 31) 

where f(v) is the ?Pectral characteristic of the system, which is the 
product of the spectral characteristic of the light filters employed 
by the magnitude of the spectral sensitivity of the pickup and the 
temperature factor. 

The expression for the different signals of two identical pick­
ups from the emission of two sections of one surface (or two identical 
surfaces) with temperatures of T and T + oT when 

(2. 32) 

can be represented as a series with respect to the powers of the para~ 
meter oT 

iJY dSY ( iJ1')1 

y (T + tJT) _-Y (T) .= _ iJ'[ OT + . iJTI · - 2 - + · · · =, 

= tJT f(~ + ~ · fJT + .. ·)f(v)dv. J aT ars 2 
. ~ . (2. 33) 

By taking into account the expression (2. 30), thi.s formula can 
be written as 
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and 

.. 
X (T + ~T) - Y (T) - fJT s If ( hv + T a In e) dv ...:.... 

T kT aT ' 
. 0 . 

.. . 

+(~)3 _1 Sit(~+ dine )r dine dv. 
· T 2 kT iJT dT 

0 
(2. 34) 

I h . . h b . th h d . . . T a In e n t 1s express1on, t e mem ers Wl t e er1vat1ves • -
iJT 

1- .f! ln e • are small in comparison with the dimensionless 
2 ars 

magnitude hvjkT • Actually, the values of hv/kT, shown in Table 5, 

are at least an order larger than the magnitudes T iJ Ins' ' which lie or: 
usually within the interval of 0.1 - 0.5. (Thus, for Wolfram in the 

worst case, at the temperature of 2 000°K .
1 
T dine -0 I {19] .) 

' ' i ar . '. 
This gives grounds for examining the member with .. T a In 8 in the 

, ar _. 
first interval of formula (2. 34) as a small correction ·and not to take 
into account similar members in the subsequent integrals which are 
small in themselves. In this approximation, one can write 

00 

Y (T + ~T)- Y (T) = fJT s If c~ + T a !n 
8 

) tlv + 
T kT dT 

. 0 

+ (E...)2 S
00

/f~ (~-l \dv. 
T kT 2kT ) 

0 

For the magnitude y 
dY 

dT 
we get from this 
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oct - •. -.r If-;:.-~~--
dY I o --·--=-·---

y dT T 

\ lfd~ 
0 (2. 36) 

(Without taking into account the corrections for the temperature de­
pendence of Eon T). 

Table 5. Values of the Parameter hv 

kT. 
as a Function of the Tempera-

ture and Lense of the Emission Wave. 

0 

I I A 1000° 1500"' 20Q()" 2,)000 3000° 

4001) 36 24 18 I 14 .l 12 

€000 24 16 !2 

' 

10 l 8 

For a specific case, when monochromatic emission is used, 

T dY hv (2. 37) 
y dT hT 

For another specific case of the p-shaped spectral characteristic 
of the measurement system, we get 
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T dY 
-·--= 

(2. 38) 

If the difference v 
max v . . is sufficiently large so that mln 

is of the order of several units (for this, 

v -- v should in the worst case amount to 1 ,000 - 2,000 A. ) 
max min ' 

then the formula (2. 38) will. assume a form similar to formula (2. 37) 

y fff kT (2. 39) 

The reason for the identity of formulas (2.29) and (2,37) is 
the steep nature or the frequency function of the emission intensity 
(2. 30),. as a result of which the role of the high-frequency boundary 
of the spectral characteristics turns out to be significant, when it 
is not too close to the low-frequency spectral characteristic. It 
follows from this that the relationship of the type (2.37) should be 
approximately valid also for the case of a more complex frequency 
function f(v), if f(v) has more or less a sharp low-frequency (long­
wave) boundary. In the general case, we will, for this reason, write 

T dY hv* 
Y. dT =kf' 

(2. 40) 

where v* is the effective frequency which lies near the long-wave 
boundary of the frequency characteristic of the system. If magnitude 
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v* can, in principle ,be a function of the temperature. Although this 
function should not be as strong. 

The magnitude of the second derivative of Y in the expansion 
(2.33), which characterizes the deviation from the linear type of 
relationship oT and oY on the basis ·of the formula (2. 40), can be writ­
ten as 

(2. 41) 

It follows from this that the correction for the non-linearity 
is determined essentially by the factor 

(2. 42) 

The magnitude of the maximum values of·the temperature gradient 
oT, for which the linear dep~ndence of oY on oT for a wave-length of 
6,000 A takes place with an accuracy of un .to 1%,._ is shown in 
Table 6. As can be seen, this is a rather narrow range of temperature 
differences, which is a disadvantage of the optical method or more 
accurately of the modification of this method under consideration- ... the 
case when use is made of a system that is linear with respect to the 
intensity. This disadvantage, however, is compensated by the high 
sensitivity of the optical method of measurements. Actually, it fol­
lows from formula (2.40) that a relative magnitude of the signal 
measured by the photoelectric pickup exceeds the relative temperature 
difference 10-40 times (see Table 5). 

In measurements of temperature differences, which are greater 
than those shown in Table 6, it was necessary to take into. account the 
correction for the nonlinearity. For this purpose, one can utilize 
the formula 
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-. 
~y = hv* • ~T (t _l_ hv* . fJT) 
Y kT T ' kT 2 (2. 43) 

or which is more convenient, the Inbliss formula 

(2 .44) 

A more radical method of broadening the working range of the 
method is the utilization of the logari:tfunic scale of readings on the 
pickup. In this case (without taking into account tl\e role of the 
degree of blackness), 

6l~Y = l>T--(!!:'!:_)-[r~~ (t-2 d ~~ v*) ]· 
T kT T tlln T (2. 45) 

The magnitude of the correction for nonlinearity is here deter­
mined already essentially by the ratio oT/T and the ra,nge of nonlinear­
ity in the measurements increases 10-40 times irt comparison with the 
nonlogarithmic scale. 

Formulas (2.44) and (2.45) make it possible to reveal one funda­
mental specificity of the photoelectric method of measuring temperature 
differences, namely, the fact that the temperature difference being 
measured for the same (or one and the same) objects does not depend on 
the emission properties ~f t~es-eobjects (with an accuracy up to small 

-d lne 1 

corrections of the type:~ In T · (;; ) ) • The measured temperature differ-

ence is a true difference and not-the difference of the brightness temp­
eratures. In this instance, however, the absolute temperature T in the 
formulas (2.44) and (2.45) should be known. 
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The examined method of determining the temperature difference by 
comparing t~o readings of identical pickups is most convenient in the 
zero-method. When thl.s comparison l.s accomplished by means of a con­
trolled attenuation of one of the signals to a magnitude at which the 
quality (compensation) of ooth signals takes place. The temper9-ture 
difference in this method is related unambiguously with the scale of 
the attenuator. 

Table 6. Temperature Differences for Which a Linear 
Relationship in the Readings of the Photoelectric 
Device (Linear With Respect to the Emission In­
tensity} With the Test Temperature Difference 
Takes Place 

1000 [. 1500 1 2000 1· 2500 3000 

fiT 0,8° .! 

The controlled attenuation of the signal ~n differential optical 
pyrometers can be accomplished in the optical as well as the electrical 
parts of the system. In the first case, there should be in the path of 
one of the rays a variable optical attenuator--photometric wedge, cali­
brated diaphragm, polarization attenuator, etc. (on the path of the 
second ray in this case, a constant attentuator is positioned). In the 
second case, the attenuator can be any electrical attenuator. In this 
and in the other case, during compensation the equality below should 
be valid 

~ ~ 

Jcp0 (v)/(v. T 0}f(v)dv= fcp(v, x)/(v, 7')f(v)d.v, 
0 . ~ 

(2. 46) 

where ¢(V, x) is the attenuation factor, xis the scale divisions of 
the attenuator, ¢0 (v) is the magnitud_e of the constant attenuation in 

the second channel. (During attenuation of the electrical signals, the 
frequency function ¢

0 
and ¢ is absent.) 
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The most interesting,from the practical point of view ,is the 
case when a photometric wedge is· utilized as the attenuator. The 
function <f>(x) for the wedge has· the form 

(2 .47) 

besides, the relatively weak frequency function of the wedge constant 

a can be disregarded in comparison with strong function I(v) For 
this case, 

~ ~ 

<i'o I /(v, T
0
)f(v)dv=<p0e-ttxS<p(v, T)l(vT)f(v)dv 

J 0 

or 

lnY ~-ax+- ln(Y +bY). (2. 48) 

Thus, by utilizing as an attenuator a photometric wedge, it is 
possible to carry out the compensation method of measurement with the 
logarithmic scale with respect to the signal and, consequently, linear 
with respect to the temperature difference (within a comparatively 
large range.), The relationship between the shift in the wedge and the 
temperature difference is in this case given by the formula 

6T Ta 
-= , 

6x c:~) (2. 49) 

while the correction for the nonlinearity is determined by the magni­
tude oT/T. 

It is necessary to observe that in deriving the formula (2. 4 8) 
just as formula (2.36), there is no need to assume that both channels 



of the system are completely identical. It is bnportant only that the 
signal from the comparison channels- is constant when T

0 
= const. How-

ever, when the channels are not the same, one of the afiove~indicated 
advantages of the compensation method--stability of the measurements 
of the temperature differences with changes in the average temperature-­
is lost. (A change in T0 does not have the same effect on both chan-

nels). For this reason, it is highly desirable to utilize identical 
measurement channels. 

In the practical implementation of the photoelectric methods of 
the measurement of small temperature differences, it is much more con~ 
venient to utilize no two identical p'ickups, but one pickup to which is 
fed the emission from one or from another of the comparable objects. 
Such a method makes it possible to discard concern af>out the identity 
of the photoelectric part of the measurement system and the compensa­
tion method becomes simple: in the absence of compensation, there is 
a variable tension at the exit of the system~ which is due to the 
inequality of the signals from the variably connected optical channels; 
during compensation, this tension is close to zero. 

In optical instrument building, use is made of different methods 
of switching optical channels. Those most widely used are modulators 
with an oscillating .mirror, vibrators which overlap one or another 
diaphragm, rotating obturator disks with sectors which open one or 
another optical channel. Devices which compare the emission intensities 
of two objects by means of one photoelectric pickup are used in photo­
meters (see, for example, [20]) spectropyrometers intended for thermo­
metric work ([21, 22]), and differential optical pyrometers. 

Below is described the construction of a differential optical 
pyrometer which is intended for studying the temperature fields of 
small objects and the experience of using these is given in [23, 24, 
25]. 

The basic optical system of the described instrument is shown in 
Figure 2. The comparable sections of the object .1 and 2 are in the 
focus of the lenses of the objectives 3 and 4. In the path of one of 
the parallel beams is placed a neutral light filter 5 and in the path 
of the other beam~-a photometric wedge 6. The lenses 7 and 8 give an· 
image of the object on the plane of the diaphragms 9 and 10, which cut 
out narrow sections of the image. The diaphragms are in turn overlapped 
by the disk obturator 11 so that the image from one or from another 
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section of the object strikes the photomultiplier 12, The measurements 
consist ~f finding the posit~on of the photometric wedge at which the 
variable signal which is taken off the exit of the photomultiplier be­
comes equal to zero (more accurately minimum), which will take place 
when there is equality'in the intensities of the beams that strike it. 
The change in temperature of one of the sections (or the shift of one 
of the objectives to another section) leads to a disturbance in this 
compensation, as a result of which, a variable signal appears at the" 
exit of the photomultiplier. Its compensation will require the shift­
ing of the wedge to another position. The relationship between the 
shifting of the wedge ox and the measured temperature difference oT 
is in this case given by the formula (2.49) . 

Figure 2, Baste Optical System of a Differential Pyrometer. 

A general view of the pyrometer is shown in Figure 3. The .test 
object is located in vacuum chamber 1 in a horizontal position under 
two Like objectives 2 and 3 with a focal distance of 90 rnrn. Each of the 
objectives, together with its rotating prism 4 and 5, has two degrees 
of freedom: it can turn around the horizontal axis and it can shift 
along it. During measurements of the temperature distribution along 
the line on the object, both objectives should rotate at a small angle 
towards the object (.Fig. 4a), in comparing the temperatures of two 
objects, one of the objectives (.or both) can be turned 90° from the vert­
ical (.Fig, 4b). For translatory displacement, the micrometric sc:r~ws 6 
and 7 (Fig. 3) are used; these insure motion distances up to 2s-rnrn 
and the accuracy of the displacement reading up 0.01 rnrn. The micro­
metric screw 8 shifts the photometric wedge·in a vertical direction, 
each screw division having a value also of 0.01 rnrn. In the 
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second optical channel, instead of the photometric wedge, there is a 
holder with a neutral light filter (not shown in the figure). The 
lenses in the sleeves 9 and 10 (focal distance 90 mm) serve for focus­
sing the image of .the object on diaphragms 11 and 13 (when the instru­
ment is installed, the diaphragms are replaced by matte glasses). The 
width of the diaphragms, which determines the regions of the object, 
the temperatures of which are being compared, can be taken as differing 
from 0.5 - 0.1 mm. The disk obturator 12 is positioned flush against 
the diaphragms. During its rotation, one or the other diaphragm is 
overlapped (Fig. 5). The frequency of obturation is 30 cycles per sec­
ond. The lenses 14 and 15 (Fig. 3) serve for focussing the images of 
the diaphragms 11 and 13 on the same place of the cathode and photo­
multiplier FEU -27. In the casine-16 of the photomultiplier is in­
stalled a cathode repeater, the signal from its exit is fed to the 
cathode voltmeter LV-9M. In the operating condition, the instrument is 
closed by a light-impermeable cover. 

Figure 3. General Appearance of an Optical Differential 
Pyrometer. 

The sensitivity of the described system is limited by the minimum 
signal which can be registered on the background of the systems noises. 
In this instrument, the ratio of the noise magnitude to the maximum 
signal, which is obtained with complete overlapping of one of the optical 
channels, amounts to approximately 5 xl0- 4 ~or a temperature region 
above 1,000°K. Thus, the minimum relativ~_change in signal, which can 
be registered by the instrument, is 

1 
w '==' 

5
. 

10
_

4
• From formula (2. 48) 

y 
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we see that from oT/T lies within the :limits of 0.02 at temperatures of 
- ~ -- 0 

approximately 1,000°K to 0.2 at temperatures of approximately 3,000 K. 
These same figures are obtained in another method of evaluating the 
sensitivity, which is based on observing the minimum displacement of 
the wedge, which causes a noticeable change in the output signal. Thus, 
the minimum displacement for the utilized wedge _(a?' O,Ol l/cM) is the 

displacement of approximately 0.02 mm. In accordance with formula (2.49), 
approximately the same values of 0.02 - 0.2° are obtained for oT in this 
case. 

The actual reproducibility of the compensation position, that is, 
of the separate measurement of the temperature difference of fixed sec­
tions of the object, corresponds to these evaluations. Table 7 shows 
for illustrative purposes a series which consists of five successive 
readings of the wedge position (T ,..... 1 ,900°K). 

Table 7. Reproducibility of 
Rings of Differential Optical 
Pyrometer. 

No. of 
Readings 

I 
2 
3 
4 
5 

Average 

Average 
Deviation 

Position of 
Wedge ox mm 

10,23 
10,26 
10,28 
10,30 
10,25 

10,26 

0,02 

The stability of the compen­
sation of the emission flows is 
characterized by a magnitude of 
the change in position of the 
photometri~ wedge with a change 
in average temperature provided 
the objectives are focussed on 
the same specimen. At 1,500-
2,0000K, the maximum change in 
compensation with a change in 
temperature of 100° corresponds 
to 0.2°. For 20°, that is, the 
working range of the instrument 
at these temperatures, the change 
thus amounts to 0.04°, wh1ch lies 
on the boundary of the sensitivity. 
The reproducibility of the measure­
ment of the temperature distri­
bution along the specimen during 
repeat recording of the same 

curve with th~ same objective of the parameter as characterized by an 
error which is close to the magnitude of the instrument sensitivity. 
The maximum deviations of individual points amount to 0.1° ,. the aver­
age to 0.05°. For illustration, Figure 6 shows the temperature dis­
tribution on a wolfram foil that is SO mm thick at 1,630°K. The re­
producible nonregularities of the demonstrated curve are explained by 

local heterogeneities in the test foil. 
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The results of the temperature distribution, which have been ob­
tained by the displacement of one and the other objective, are also in 
good agreement with each other. Deviations from the average curve 
usually do not exceed 0.1°. An example of the temperature distribution 
curve recorded by two objectives is the curve shown in Figure 7. 

a 

~·~~ 
\-~ lld . 

. ~,:. 

Object 

b 

~igure 4. Position of Differential 
Pyrometer lenses. 

Figure 5. Pyrometer Obturator 

The agreement in the readings with the use of different objectives 
is confirmed also by experiments in which both objectives were shifted 
at the same time along the object, that is, they were directed to the 
same sections. The maximum change in compensation in this case did not 
exceed the magnitude corresponding to 0.2°. 

It should be observed that during the study of the temperature 
distribution and the specimens, the emission absorption in the window 
of the chamber in which these specimens are placed is not essential. · 
Thus, when a neutral light filter with an optical density of 0.15 is 
placed on this window, the curve of the.temperature change remains com­
pletely identical; only a systematic shift in the readings by magnitude 
corresponding to 0.1° takes place. 
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Figure 6. An example of a 
temperature distribution 
curve recorded by means of 
a differential pyrometer. 

I 
~ 

0 z 'I 5 

Figure 7. Results of temperature 
distribution measurements ob­
tained by shifting different 
objectives of the parameter. 

The focussing of the objectives by 1 mm along· its optical axis 
leads only to a shift in the zero position of the wedge (bY a magnitude 
corresponding to 0,4°); the wedge displacement values which are being 
measured and the temperature differences remain practically the same. 

Let us dwell on the problem of the calibration of the instruments 
which are similar to that described here. This problem is solved more 
simply for a case when the emission which strikes the pickup is mono­
chromatized, Under such conditions, there is no need for calibration 
as such, the instrument constant can be dteremined by means of formula 
(2.49) from the known frequency and the wedge graduation. Nevertheless, 
in practice this method is not the best. The use of a monochromator 
complicates substantially and raises the cost of the ·construction of 
the pyrometer and decreases its sensitivity because of a decrease in 
the light flux which strikes the photomultiplier. Design-wise it would 
be simpler to utilize an interference light filter instead of a mono­
chromator. However, this path does not always lead to a desired re­
sult because the effective frequency of the system v* in this· case does 
not coincide with the maximum of the filter transmission band [26] . 
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The reason for this noncoincidence is the steep frequency dependence of 
the emission intensity, as a result of which the emission transmission 
in the long wave "tail" of the spectral characteristics of interference 
filter becomes essential. 

The direct graduation of the differential parameter requires the 
recording of the dependence of the readings on the photometric work 
scale ox on the temperature T at a fixed temperature r

0
. The value of 

the parameter divisions in this case can be determined from the angle 
of slope of the curve of ox as a function ofT. The difficulty of 
accomplishing such.a method of graduation is connected with the fact 
that it is necessary to know sufficiently accurately the temperature 
changes of a standard source; this accuracy should amount to 0.1 ~ 0.3° 
(1% of the instrument scale, which amounts to 10-30°). The systematic 
error on the measurement of the temperature can be in this instance 
1-2 orders greater. It is possible, however, to accomplish the grad­
uation of the parameter also when the temperature change can be known 
with a greater error than indicated above, but accordingly within a 
greater range than the range of the instrument scale. In this case, 
it is necessary to measure the signal I at the exit of the instrument 
as a function of the temperature. The magnitude of the effective fre­
quen~y in this instance can be determined by means of formula (2.40) 
rewritten as 

hv* din Y ·--=----
k 1 

d­
T (2.50) 

The magnitude v* is, thus, determined from the angle of the 
slope of the curve ZnY as a function of 1/T. The dependence of ZnY 
on 1/T is, as a rule, linear within the temperature interval which 
amounts to several hundred degrees and this indicates the practical 
constancy of the effective frequency v* in such an interval. The de­
termination of v* by means of the described procedure\with the utili­
zation of a pyrometer with the disappearing filament for reading the 
temperatures of the model of an absolutely black body can be carried 
out with an accuracy of the order of 1%. As an example, Figure 8 
shows the dependence of ZnY on 1/T, which was recorded for the instru­
ment described above;: for temperature measurements, the riticropyrometer 
OMP-19 was used. 
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Figure 8. Determination of 
the effect of frequency 
of a pyrometer from the 
dependence of a signal 
logarithm at the exit 
on the reciprocal of the 
temperature. 

The method of measuring tempera­
ture differences by means of a photo­
electric differential pyrometer is not 
the only possibility of utilizing 
optical pyrometry. There is also 
another method--photographic pyrometry 
in which the test field of the temp­
eratures is determined by photometering 
a photographic image of the object. 
Such a method is convenient in that 
the measurement process itself, the 
photographing, lasts a very brief per­
iod of time as a result of which this 
method can be utilized also for non­
steady, comparatively rapid processes 
(use in movie work). However, the 
method has also a substantial dis­
advantage. In order to convert the 
degree of blackening of the photographic 
plate (film) and the temperatures of 
the temperature differences, it is 
necessary to make an additional ex­
perimental determination of the function 
of the blackening--brightness tempera­
ture, Cor blackening--emission intensity) 
functions. This circumstance complicates 
considerably the processing of the data 
and makes the processing prolonged, 

while the results are less accurate in comparison with measurements by 
means of differential optical pyrometer (although, apparently, the 
accuracy of the photographic method can be no less than the accuracy 
of the -determination of the temperature field by means of absolute 
pyrometers), Nevertheless, in a number of experiments (and in the first 
place, nonsteady experiments), the utilization of photographic methods 
can be quite expedient, and in particular for measurements of an applied 
nature. Details with respect to the photographic method can be found 
in references [18, 27J. 

§3. Methods of Measuring Small Pulsations of High Temperatures 

For measurements of small pulsations of high temperatures, just 
as in the case of measurements of small differences of high temperatures, 
use is made essentially of two methods--thermocouple and photoelectric 
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(optical). It is true that these methods do not exhaust the entire 
arsenal of means for measurements of the temperature pulsations. For the 
number of objects, such as wires, thin rods, strips of foil, the pulsa­
tion of the temperature can be determined from the resistance of the 
very object under study or from the thermalelectron emission from its 
surface. These methods, however, are less universal and, for this 
reason, are examined in §18 which deals with the utilization of temp­
erature pulsation measurements for determining the heat capacities. 

In the practical utilization of thermocouples for temperature 
pulsation measurements, just as in temperature difference measurements, 
one of the essential problems is that of the distortion of the thermo­
couple readings because of heat loss. Here, we shall examine this 
problem for a case of surface temperature measurements, utilizing 
approximately the same system of considerations as in §2, but with con­
sideration of the periodic nature of the temperature changes. 

The nonsteady equation of heat conductivity for wire is written 
as 

iJ err. aT,2a -1.--- = L ()-- -(T-T) 
iJX UX f)• 0£ I r

0 
O 

(3,1) 

(see § 4). 

For the case when the constant as well as the variable temperature 
components vary comparatively weakly along the wire (this will take 
place for the first of the examined cases, when r -To 

__ .::....,~ 1) •. 
T 

the solution of this equation has the form of 

(3. 2) 

where 
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k., (j) .+ 211* M= -t --, 
a /,ro 

• (3. 3) 

eo is the amplitude of the temperature variations of the frequency w 

at the point x = 0, equal (with an accuracy down to the small distor­
tion) to the pulsation of the temperature in the body of the object 
under study. (The use of the complex form for recording periodic 
functions is explained in §8.) The value of the effective coefficient 
of heat e~change a* can in this case be referred to any of the temp­
eratures T (0) or to T0 . (The form of the function (3.2) assumes that 

the variable perturbation of the temperature does not reach the second 
end of the wire.) In accordance with formula (3.2), the distorting 
influence of the thermocouple wire is equivalent to the action of a 
periodic source of heat, which creates a local flow equal to 

(3.4) 

Just as in the case of the steady problem, we shall assume that 
this heat source in the body of the specimen acts within the isothermal 
(relatively variable temperature distortions) of the hemisphere with 
a radius of r 0 , The inaccuracy introduced by this approximation should 

be of the order of unity. 

The.temperature distribution within the massive objective des­
cribed by the equation 

_t_. or = v.,.T, 
A iJt 

where A is the heat conductivity of the specimen. 
this equation is written as 

T = 0 + {};:iwl, 
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(3. 6) 



where 8 is the temperature field in the absence of a thermocouple, 
while ,1'} is the temperature dis tort ion. For ~L we use the formula 

. vrt;; c _,. -. 
'1'}=-e A 

r . ' (3. 7) 

which is a spherically symmetric solution of equation (3.5), valid 
when the body is limited by only one plane on which there is no heat 
exchange. The assumption that a body can be regarded as semilimited, 
actually means that the influence of other boundaries of the body is 
not important. A sufficient condition for the fulfillment of this 
prerequisite is the smallness of the pulsation amplitude,~ on other 
boundaries in comparison with the amplitude near the thermocouple wire, 
that is, the condition 

where R is the characteristic dimension of the body. 
less rigid than the condition 

~- « 1. 

(3. 8) 

This condition is 

(3.9) 

valid for the steady case, which is explained by the more rapid de­
crease in the amplitude of the sphericalltemperature wave (3. 7) in 
comparison with 1/r. Since the condition (3.9) is practically always 
satisfied, the problem of the validity of disregarding the influence 
of the boundaries of the body is considered exhausted. 

The role of heat exchange on the surface, just as in the steady 
case, is determined by the ratio of the normal intengential heat flows 
at the surface, which are governed by the temperature perturbation 8. 
The tangential flow is equal to 
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-- ~ r A 

(3.10) 

The absolute value of the amplitude of this flow is thus greater 

than the magnitude A 
r 

(3.11) 

A change in the flow in the direction of the normal is equal to 

(3.12) 

where a 1 is the effective heat exchange coefficient on the surface of 
the specimen. 

For the ratio of the absolute values q2 to q
1

, we get in accord­

ance with formulas (3.11) and (3.12): 

J.hl < _a:!_ = Bi 
~qd A ' (3.13) 

which coincides with a similar evaluation for the steady case. 

Thus, the evaluations make it possible to consider the use of 
the solution (3.7) as substantiated. 

In order to determine the constants C in the solution (3.7), it 
was necessary to equate the heat flow, found as a disturbing action of 
the thermocouple (3.4), to the heat flow found from the temperature 
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distribution of this perturbation in the body of the specimen 

In this instance, we get for the temperature dis-

tortion .-&. 
l} /. kr0 - = - • --------''-------

.\ 

(3.14) 

The ratio tJV 8 is complex, which indicates the existence of 
amplitude as well as phase distortions in the temperature variations. 

The correction to the amplitude of the temperature pulsations 
has the form of 

where 

·---~-2fl•a· 
X.=--. ·· r

0
'J,.w 

In this instance, it has been assumed that the magnitude 

(3. 15) 

(3.16) 

is small in comparison with unity because the characteristic parameter 

which has an order of unity is ,Rl/~- ~­ (see §8 and 9). The correct-

ion to the phase is determined by the formula 

(3. 17) 
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The resulting formulas can be utilized for specific evaluations 
of distortions and the measurements of temperature pulsations under 
conditions when the radiants of the average temperature along the 
thermocouple are relatively small. For large temperature gradients, 
these formulas can be utilized only for approximate evaluations of the 
order of magnitude of the distortions. 

pp. 44 and 45 of foreign text missing-Tr. 

The direct utilization of a mirror galvanometer--that is the simp­
lest method for recording relatively the values of the amplitudes of 
temperature pulsations--is suitable for periods several times smaller 
than the natural period of vibrations; in practice, in the case of 
galvanometers of the type M-21, M-25, and similar ones, the registra­
tion of temperature variations with periods of 2 seconds and more 'iS 
possible, although the sensitivity of the galvanometers, of course, 
drops noticeably for small periods. We shall allow reading the ampli­
tude on the scale of the mirror galvanometer only in the case, of 
course; when the variations under study are close in form to sinusoidal, 
that is, when the fraction of the highest harmonics is small. Other­
wise, a substantial error can take place through the distortion of the 
signal form because, in view of the non-uniform frequency characteris­
tics of the galvanometer for periods that are co-measurable with its 
natural period, the relationship between the amplitudes and the phase 
of the harmonics will be changed. This non-unifor~ity in the frequency 
characteristics of the galvanometer can play, on the other hand, a 
positive role in measuring signals that are close to sinusoidal when 
the amplitude of the first harmonic should be the measured magnitude, 
while the higher harmonics play the role of distortions; the fract1on 
of these distortions in changes by means of a galvanometer can be 
reduced. 

The mirror galvanometer can be used also in circuits with an auto­
matic registration of the signals under study. One of such circuits 
described in [28] is a system which tracks the position of a light 
spark of the galvanometer on the scale of the automatic potentiometer 
of the type EPP-09. The pickup of such a system is the differential 
photoelectric cell which is located on the carriage. The outlet of 
the photoelectric cell is connected to the inlet of an electronic 
circuit of a potentiometer. A shift in the light spot with respect to 
the photoelectric cell leads to the appearance of a voltage which 
shifts the carriage to the proper side until the signal from the exit 
of the differential for the electric cell is equal to zero. Similar 
circuits with two photocathodes and a differential photoresistance of 
the type FSK-7 as pickups in combination with a potentiometer EPS-152 
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(the run time of the carriage is 2 seconds) were used and tested in 
[29, 30]. In this instance, it was established that such circuits are 
convenient for use for periods on the order of 12-15 seconds. For 
smaller periods there is observed a certain lag of the carriage from 
the light spot of the galvanometer. An example of the recording of 
temperature variations by means of a tracking system is shown in 
Figure 27. 

The method of reporting temperature variations on the scale of a 
self-recording instrument, with the use of a preyiously amplified 
signal is less inertial. As an amplifier, one can use in this case 
an electric amplifier of direct current or (for more sensitive circuits) 
an amplifier with the conversion of a constant voltage to a variable 
voltage. One can utilize also for the electric amplifiers with the 
low-inertial galvanometers as working elements, for example, the amp­
lifier FEOU-18. One of such amplifiers, made in accordance with the 
circuit shown in the monograph [20], has been used successfully in 
studying the thermal properties of solid and liquid metal [31, 32, 33] 
(see §15). The electrical amplification circuit on the low-inertial 
mirror galvanometer with two photoresistances of the type FSK-1, simi­
lar with the amplifier of the type F-17 utilized in a standard photo­
galvanometer (see f34])has proved itself satisfactorily. Even less 
inertial are systems with the loop oscillograph-as a recording instru­
ment. The utilization of a loop oscillograph requires, however, con­
siderable amplification of the signal with respect to current. 

The photoelectric method of measuring small pulsations of high 
temperatures is based on the registration of the variable components 
or the signal from the photoelectric pickup. The theory of the method 
under consideration repeats almost completely the theory of the photo­
electric method of measuring small temperature differences. 

A change in the signal with a change in the temperature can be 
represented as 

6Y = Y = Y (T ...;-- 6T)- Y (T) = dY ~~T-·-
- di 

I • . ~ 

-+- Wf'f . a~r' ...!- ••• = 6T ('It(' fzv -i-T Jin ·~ dv ..L 
' 2 dT· ' . T J kT JT 
--- --- ----- ... . . 0 . -

(. E._)·! f 11· ~ ( ...!!:!__ - 1 \ dv ...;-+ T J kT \ ~kT ) 
0 

(See (2, 35)) . 
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The first member of this expression can be expressed in the form 
of (2.39), with an accuracy of up to the small correction for the temp­
erature dependence of the degree of blackness, as 

T dY hv• -·--=--, 
Y aT kT 

where v* is the effective frequency. In this approximation, the ratio 
of the variable component of the signal to its constant component is 
equal to 

(3. 19) 

This is the basic formula of the method. The boundaries, where 
this formula linear with respect to iJ -~ is accurate, are determined by 

the magnitude of the second, non-linear member of the formula (2.35). 
In particular, the maximum values of {)T~f_ for measurements with 

an accuracy of approximately I% are given in Table 6. Just as for the 
method of measurements of small temperature differences, the relatively 
small maximum m~gnitude of the amplitudes of the temperature pulsations 
is a disadvantage of such a direct method. The exclusion of the role 
of non-linear members can be achieved when the test signal is harmonic 
(simple sinusoid) or when only the first harmonic of the complex sig­
nal is of interest, In such a case, the influence of the non-linear 
members in formula (2,35) shows up only on the second and higher har­
monics, while the signal of the first harmonic remains undistorted . 

- 61 -



For temperature changes which take place with the sound frequency, the 
signal of the first harmonic can be separated by radio technical means­
-~selective amplifiers, For relatively slow Changes in temperature, 
this can be accomplished by means of a harmonic.analysis of the oscil­
lograms of the output signal. 

For the practical utilization of formula (3.19) it is necessary 

to know the constant of the measuring instrument hv*/k Just as in 

the method of measuring temperature differences, the simplest is the 
determination of this magnitude when monochromatic emission is used. 

The value of hv*/k in this case can be found by simple calculation. 

In the experimental determination of the magnitude hv*/k for non­
monochromatic emission, it is most expedient to find it from the tan-
gent of the angle of the slope of the curve fn Y=f(l/T) 

hv* d ln Y = 

k 1 
d­

T 

(An example of such a curve is shown in Fig. 8 as well as in f26].) 

We shall cite practical examples of circuits which are used for 
measuring small pulsations of high temperatures by the photoelectric 
method. 

One of the simplest systems of this type, which is suitable for 
measuring the pulsations of sound frequencies is shown in Figure 9. 

As an emission receiver in this circuit, use is made of the 
photomultiplier 1 (FEU-27, FEU-31A, etc.) which is fed by a stabilized 
source of voltage (VFS or similar ones). The variable and constant 
components of the signal, which is'taken off from the load of resist­
ance 2 with a magnitude of 0 .1~1 megohm, are amplified by the single­
cascade balance amplifier on the tube 6 N7S--3. In the absence of a 

signal on the photomultiplier, the amplifier is balanced by changing 
the anode load 4 (approximately 20 KQ); in this way, the dark current 
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is also compensated. The variable component is measured by a decathode 
voltmeter 5 (VZ-2 A or a similar one), the constant component is meas­
ured by the needle instrument 6 (for example, M-193). Such a circuit, 
despite its simplicity, has a sensitivity of 0.03-0.05° within the 
temperature range of 2,000-3,000°. The temperature pulsations of ap­
p~oximately 3-5° can thus be measured with an accuracy of approximately 

'1%. Details regarding the operation of this circuit can be found in 
[26] . 

5 

Figure 9. Circuit for the photoelectric 
registration of rapid pulsations of 
high temperatures. 

During measurements of large pulsation amplitudes, in order to 
avoid errors due to the non-linearity in the relationship between the 
emission intensity and the temperature, it is expedient to utilize the 
circuit examined in combination with the selective amplification of 
the variable components. It is expedient to use selective amplifica­
tion also in another case when the measured pulsations are small. The 
selectivity increases the sensitivity of the circuit by reducing the 
ratio of noise/signal, The negative aspect of selective amplification 
is that it is necessary to know the amplification coefficient of the 
selective cascade, without which one cannot utilize formula (3.19) . 
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The circuit similar to that described can be utilized also with 
a photoelectric cell as the receiver [26, 35, 36]. The minimum pulsa­
tions that can be measured are in this case practically the same; how­
ever, large light fluxes are required for the measurements. For this 
reason, when the dimensions of the test objects are small or when use 
is made of monochromatized emission, it is expedient to use photo­
amplifiers. For sufficiently extended objects, when much light strikes 
the receiver, one can utilize also other receivers: photodiodes, 
photoresistances (for the latter it is necessary to pay attention to 
the linearity of their characteristics). Finally, one can use photo­
amplifiers also without' an amplification cascade. The variable com­
ponent in this instance should be measured by a high ohmic cathode 
voltmeter directly on the load of the photoamplifier while the constant 
component of the current should be measured through the load by a 
microameter [37, 38]. 

For measurements of temperature pulsations that are slower than 
sound pulsations, it is necessary to resort to oscillographic registra­
tion of the variations. The most convenient for this purpose are loop 
oscillographs. The relatively low sensitivity of loop oscillographs 
requires, however, the use of more complex amplifying circuits. Some 
of such circuits are shown in [39, 40, 41]. These circuits, when 
used with photoamplifiers of the type FEU-19M and oscillographs of the 
type MP0-2 (with vibrators MOV-2 with the sensitivity of 3.7 mm/ma) 
and in N=700, show registration of temperature variations of 0.03-0.1° 

for frequencies of the order of fractions of cycle per second in the 
region of moderate temperatures of l,000-2,000°K. 

Measurements of the thermal properties with a utilization of 
photoelectric methods of registering the temperature variations are 
described in §9, §16, §18. 
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Chapter I I 

Steady Methods for Measuring the Heat Conductivity of Metals 

§4, Review of Steady Methods Utilized for Measuring High Temperatures 

We shall start a review of the measurement methods with the pro~ 
blem of their classification, It is expedient to divide the entire 
diversity of steady methods for measuring heat conductivity into two 
large groups depending on the type of energy source utilized in the 
experiment: external (with respect to the test specimen) or internal 
(volume), The first group includes all methods which utilize external 
electrical heaters and methods in which use is made of heating by means 
of an electron bombardment; the second group includes methods which 
utilize heat with a current passing directly through the specimen, 
The proposed method of dividing all the methods into two groups makes 
it possible to carry out their distinct, although not completely abso­
lute,separation, Thus, it is possible to indicate the measurement 
method which occupies to a certain degree an intermediate place between 
these two groups--the method in which use i~ made of heating with high 
frequency currents, when the heat liberation is not strictly of the 
surface type but is close to it, Such a method, however, can, without 
stretching,be classified in the first group because the distribution 
of the heat liberation through the volume of the specimen can be taken 
into account in the form of a small correction, 

A second step in the classification of the steady methods under 
consideration are the delineations which are performed within each of 
the two indicated groups, The proposed classification utilizes as a 
basic index the form of isotherms or the temperature field in the 
specimen. Under conditions of the most simple types of symmetry, the 
isotherms can be flat, cylindrical or spherical. The latter, the 
spherical type of isotherms is not used in experiments with metals and 
thus two basic sub-groups of methods remain: with the flat and cylind­
rical isotherms, In the first sub-group the heat flow is directed 
along the axis of symmetry of the specimens, as a result of which this 
conductivity can be called methods with axial or longitucinal flow of 
heat, In the second sub-group, the heat flow is directed along the 
radius of the cylindrical speciment. Methods of this sub-group can be 
called methods with radial flow of heat • 
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The two indicated sub-groups do not completely exhaust the 
diversity of methods with an·external heating. There is, of course, 
possible also intermediate cases when the temperature field is more 
complex as, for example, along the radius of the cylindrical specimen 
and along its axis, It is expediant to classify all intermediate cases 
of this type into a separate third sub-group of methods. 

,. 

Besides the indicated classification, each of the indicated sub­
groups of methods can, at least in principle, be subdivided depending 
on the nature of the measurements--absolute of relative. The utili­
zation of relative variants of the measurement methods leads in many 
cases to a substantial simplification of the procedure, in the first 
place,due to possibility of avoiding direct determination of the 
magnitude of the heat flow, The practical accomplishment of relative 
methods is based on the problem of standardization, that is, the se­
lection of specimens of metals with thermal properties that are known 
with a sufficient degree of accuracy. At the present time, however, 
one can speak of outstanding metals only up to temperatures of 1,000°C; 
as standards, one can use Armce iron copper and platinum [42, 43, 44]. 
The problem of standards for higher temperatures is to a considerable 
degree debatable and requires the organization of broad and high­
quality experimental studies. 

Let us examine the sub.group of metals with axial, longitudinal 
flow of heat. The simplest from a fundamental point of view~ is the 
experiment under conditions where the temperature. distribution in the 
specimen is uniform, that is, when the heat flow in each point of the 
specimen is directed strictly along the axis of symmetry. Such con­
ditions will be created when the electrical surface of the specimen 
which is assumed there are parallelopipid, is heat-insulalated. The 
heat conductivity in this case is d€termined from the formula 

Ql . 
A.=-­

I!T·s· (4.1) 

where Q is the amount of heat passing through cross~sections per unit 
time~ AT ts the temperature difference in the points of the rod, which 
are a distance of Z fTom each other. 

It is not difficult to assure the heat insulation of the lateral 
surface of the specimens at low temperatures when the emission heat 
exchange is very small-~in this case, it is sufficient to place the 
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specimen in vacuum, In the region of moderate, and all the more high, 
temperatures, it is necessary to take special measures to insure heat 
insulation and in order to create around the specimen a field of temp­
eratures T0 (z), which is as much as possible close to the temperature 

distribution along the length of the specimen. For this purpose, the · 
specimen is surronnded by one of several "protective cylinders" which 
are equipped-with special heaters in which the currents are so selected 
that the required temperature distribution along the length of the 
protective cylinders is obtained in this case. The space between the 
specimen and the protective devices is filled with a heated insulating 
filler or the entire system is vacuum. The procedure for adjusting 
the temperature field of the specimen--protective cylinder system is 
not simple; prolonged manipulation with many heating elements is 
required. (In [45], for example,, eight heaters were used.) 

Another aspect of the examined experiments with an axial flow 
of heat is the determination of the magnitude of Q. The ordinary 
method of determining this magnitude consists of finding the capacity 
of the heater that creates the heat flow. Such a procedure requires 
conditions under which the entire heat liberated by the heater enters 
completely the test specimen and is not dissipated. For this, it is 
necessary that all the surfaces of the heater, except that which ad­
joins directly the face of the specimen, should be heat-insulated, 
which can be achieved again by using a system of additional protective 
heaters. In experiments of such a type, it is desirable to have the 
best heat contact between the heater and the specimen, because the 
better this contact, the less the temperature difference between the 
heater and the specimen and the easier it is to insure heat insulation 
of the heater--specimen system. One of the commonly used methods for 
improving heat transfer from the heater to the specimen consists in 
placing th·e small-sized heaters in the hollow of the specimen itself 
(see, for example [46]), which makes it possible to dispense with one 
protective cylinder for heat insulation of the lateral surface and 
one additional heater for heat-insulation of the end face. (The need 
of using the latter can be avoided, if use is made of a symmetrical 
system consisting of two identical specimens, just as this was done in 
[46].) The difficulties related with the determination of the magni­
tude of the heat flow disappear when use is made of a relative diver­
sity of the examined methods of axial heat flow with heat insulation. 
In the relative variant, use is made of two rods--the test rod and a 
standard rod; the heat conductivity of the latter should be: suff~cently_ 
well-known. The rods are positioned end to end within the system with 
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a protective heater. The heater, which develops overheating, is in­
stalled on the free end of one of the rods; the heat insulation of 
the heater is already not mandatory here. If the lateral surface of 
the rod is heat-insulated, it follows from formula (4.1), that 

'l 'I ~Ti, l Sj . ,., :=::::c:,.,~__... ... _ .. _.~ 
- O.T L~ .s (4. 2) 

where the subscript e belongs to the standard rod. In order to deter­
mine the heat conductivity !.. in this manner, it is sufficient to 
measure the temperature differences in two points of the test and 
standard rods I 4 7]. 

Let us cite an example of one of the better installations where 
use is made of the method of axial flow with heat insulation in its 
absolute variant. A description of this installation, besides the 
original paper by the author [48], is in the reference [49]. The heat 
insulation of the specimen--heater system in the installation under 
study is accomplished by means of a protective cylinder which has two 
heaters and a protective cup with a heater that adjoins from above 
the protective cylinder and encompasses the entire flat heater which 
is' located on the end face of the specimen--a cylinder 25 mm in dia­
meter and 80 mm long. The specimen is placed on the heat receiver 
which also contains a heater. The protective devices and the heat 
receiver are made of gold. The entire system is placed in vacuum with­
in a tubular furnace made of stainless steel with multisectional heater. 
A detailed analysis of the operating conditions of the described instal­
lation included calculation of the heat loss due to emission, heat 
loss along the wires of the heater and.the thermocouples, non-uniformity 
in the temperature field of the specimen, evaluations of the errors 
in the measurement of the power, temperatures, and emissions, as well 
as evaluations of the errors due to non-strict steady-state condition 
of the process and due to the change in the heat conductivity with the 
temperature. As a result of this analysis, the authors came to the 
conclusion that the maximum error of.the results in the region of 
temperatures up to 800°C does not exceed 2%; besides, the systematic 
errors amount to approximately 1%. The maximum deviation of the results 
of heat conductivity meastlrements of iron from the average values 
amounts to 0.6%, the average scatter is- 0.35%. 
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The examined method of actual flow in the heat-insulated specimen 
has been used repeatedly to measure the heat conductivity of liquid 
metals. In working with liquid metals, it is necessary, of course, to 
take into account the heat conductivity of the walls of the vessel in 
which the liquid metal is contained. For the given case, when the iso­
therms are perpendicular to the axis of the specimen, this calculation 
is very simple: formula (4.1) should be multiplied oy a correction 
factor 

).• s' 
., = 1+---·-· 

A.. s ' (4. 3) 

where A 1 and s' are the heat conductivity and the area of the cross­
section of the wall. In the rest, the system of measurement as well 
as the corresponding unit do not differ- fundamentally from such for 
solid metals (see, for example, rso, 51, 52]. 

Summarizing the results of the description of the method with 
heat insulation, we emphasize that, despite the fundamental simplicity 
of this method of measurement, its utilization at sufficiently high 
temperatures involves great difficulties. Experimental units are 
comparatively complex and the measurements are prolonged and pains­
taking. It is not accidental that all the experimental studies by 
means of this method are limited to a temperature of 1,000°C. Attempts 
to accomplish this method at higher temperatures are hardly expedient. 

Let us examine the diversities of the method of axial flow, 
which·do not require heat insulation of the lateral surface of the 
specimen, Before describing specific experiments, let us dwell on the 
fundamental question: in which cases and about which approximation 
can one speak about flat isotherms of the temperature and specimens 
which are not heat-insulated? This question is important for further 
presentation because we have included in the group of metals with 
axial fJow feed precisely those in which the isotherms are flat, while 
in the presence of flows from the surface of the specimen, radial 
components of the temperature gradient must exist in the specimen. On 
the other hand, it is obvious. that from metals which have a great 
heat conductivity, the presence of radial flows of heat in the speci­
mens should not cause large temperature differences along the 
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cross-section. 

Let us examine the problem of the calculation of the lateral neat 
exchange analytically. In the case of smallness of the radial temper"'" 
ature gradients, the solution of the heat conductivity equation (here, 
we examine the general, non-steady case for a cylindrical specimen) 

can be given in the form of 

T =a(x, t) +r2b(x, t) + r'1c(x, t) -i- ... 

(the member with the first power of r is lacking in 

because '&' 
-~o when ar 

( 4 ;4) 

(4. 5) 

this expansion 

For sufficiently small radial gradients, the members with the 
power of r 3 and higher powers of flow can be disregarded as a first 
approximation. Then the combination of the radial derivatives, which 
figures in equation (4.4), is simply expressed by the coefficient b: 

iJ2T 1 iJT 
-+-~·-=4b. 

ar2 / 2 ar . . . (4.6) 

The magnitude b can, in its turn, be expressed by the coefficient 
of heat exchange by means of the boundary condition 
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-A. iJT_ = a (T -- T ) ar 0
' (4. 7) 

(for r = R), which gives 

2b = - _C:._ (T- T l. 
).R . o 

( 4. 8) 

substituting formula (4.8) in equations (4.6) and (4.4), we get an 
equation which does not contain derivatives.with respect to the radius: 

iPT iJT 2a 
A.- = c o-+-(T- T ) - -:D 

ax~ P· at R 0 • 

(4.9) 

or 

(-r1T I iJT w 
-·-=-.- +v(T-T )- --, 
axa a iJt . 0 A ( 4. 10) 

where 

2a 
'\1= -. 

).R ( 4 .11) 

Equation (4,10) can be obtained also directly by following the 
heat balance on the assumption that the radial gradients in the 
specimen are absent, but at the same time there is a heat exchange on 
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the lateral surface. Such a course of thinking is somewhat less 
consistent, but it is convenient for generalizing equation (4.10) 
for a specimen with a cross-section of random form (for example, rec­
tangular). In this case, the equation obtained is of the same type 
as in (4.10), but ~ 

ap 
'V= -, 

As 
( 4. 12) 

where pis the perimeter and sis the cross-section (see [53]). 

An evaluation of the limits of the applicability of the uni­
dimensional equation (4,10) can be obtained from the following con­
siderations. The main conditions utilized in the derivation of these 
equations is the assumption of the smallness of the third and suc­
cessive members of expansion (4.5). An evaluation of the magnitude 
of these members, generally speaking, requires an examination of the 
boundary conditions not only in the lateral surfaces of the rod but 
also in its ends, which is related with the concrete definition of 
the corresponding problems. However, if we limit ourselves not to 
finding the corrections to the equations, but only to the evaluation 
of the order of magnitude, then one can take, as a criterion of the 
sufficiently rapid convergence of the series (4.5), the ratio of the 
second member to the first: 

~ = R2 ..!!.._ = a(T-T0)R. 
a · 2A.T · 

The magnitude T--the temperature in the cross-section under con­
sideration--is in its turn relat«;ld to the boundary conditions on the 
ends with the characteristic temperature which is deducted from the 
temperature of the medium T* - T

0 
thus, with an accuracy up to the 

factor of the order of unity, the magnitude ~ is equal to· 
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~= -1 
Bi, 

2 
( 4. 13) 

and the radial temperature gradients can be disregarded under condi­
tions of the smallness of the Biot criterion. 

For the examined steady methods with axial flow without inside 
heating, equation (4.10) assumes the form of 

(4.14) 

This equation can be generalized also for the case of considerable 
axial gradient temperatures when it is necessary to take into account 
the temperature dependence of the coefficient of heat conductivity: 

1 d dT 
-.-A.-== v(T-T0 ). 

). ax dx (4.15) 

For high temperatures, in the presence of heat exchange only 
through emission, in particular, 

( 4. 16) 

The utilization of equations (4.15) and (4.16) depend substanti­
ally on the magnitude of the temperature of the surrounding medium T0 
and how it depends on the coordinate x. We shall differentiate the 
following three types of conditions: 

(1) T
0 

= const are the isothermal conditions; besides e = 

...: 73 "7 

T - T 
0 



is small in comparison with T : 
0 

( 4 .17) 

(2) Non-isothermal conditions, T0 = TO'(x) with the preservation 

of the inequality (4.17); 

(3) T << T 
0 

is the specimen which is strongly overheated 

with respect to the walls of the chamber in which it is located. 

Let us examine the conditions of the first type. By using the 

variable e, equation (4,14) is non-linear in the general case because 

v = v (T) 

where 

can be written as' 

d!a 
--=v0, 

ox3 0 

Vo = 2a' = ~( aa(T-T0 )) 

'J..R ).R aT 1 T=?"o 

(see §1), and, in particular for emission heat exchange, as 

(Later on, the subscript 9 at a magnitude v is dropped.) 
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( 4. 20) 

.. 



The general form of the solution of equation (4.18) is such: 

(4.21) 

The coefficients A and B are determined by the boundary condi­
tions on the ends of the rod. The specific definition is so far not 
necessary. 

Expression (4.21) gives the linear temperature distribution in 
a specific case when the indices of the exponent are sufficiently 
small so as to make possible the use of the expansion 

elfv..: = l + Vv x + ... 
( 4. 22) 

and not to take into account the members with higher powers of x. 

Thus, the role of the right-hand part of equation (4.18), which 
leads to the non-linear temperature distribution along the specimen, 
is determined by the criterion 

ll = v-vt. 
( 4. 23) 

where l is the length of the test rod (or its half for a symmetric 
problem). The magnitude n can be represented as 

.. ,r2B-.,. t ll= y £·•-, 
R 

-. ( 4. 24) 

if in the formula for Bi the characteristic dimension is R (for emiss 
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heat exchange .Bi .~ •. ~e{.3~.l' In order to evaluate the ma~:r-
ni tudes n under conditions of emission heat exchange, Table 9 is given 
which lists the values of l for which n = 1 (>.. - 1 wt/cm·degree £ = 1). 

The dashes in the table correspond to the case when s>O.T 
and thus the unidimensional state of the temperature distribution is 
disturbed. It is seen from the table that the magnitude is suf­
ficiently large so that the right-hand part of the equation (4.15) 
is real, starting already from 1 ,000°K (in any case, for specimen that 
are not very thick). It is not permissible to disre'gard the emission 
from the lateral surface in these cases; the temperature distribution 
along the axis is linear. 

Let us examine further a similar evaluation also for the case of 
heat insulation with a filler. As the coefficient of heat exchange 
in this case, use is made of the formula 

( 4. 25) 

. where A. 3/ is the heat conductivity of the filler material, R is the 

radius of the rod, R is the radius of the protective screen. This e 
formula is strict for the case when the heat flow through the heat 
insulation is radial in accuracy, which can take place only for a 
constant temperature of the rod along its slant. In the case when the 
temperature is not constant, formula (4.25) should be regarded as ap­
proximate. For the criterion n, we get 

lJ = [-2 -] '·• ( ~3 )';, _Rl . 
lnR 3 lR " ( 4. 26) 

For evaluations we assume that -3~R 1..-<102-103
• Then RJ-· .-r 

for l, for which n = 1, we get the values of- <
3 0..&_- 2 for R = 1 mm; 
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< 2-6 for R ~ 3 mm and < 8-20 for R- 1 em. Thus, in the case of the 
use of heat insulation, the magnitude n under real conditions is far 
from being negligibly small and it is necessary to take into account 
the heat loss from the lateral surface. 

Let us examine some specific variants by accomplishing the meth­
ods with the axial flow of heat under isothermal external conditions. 

It follows from the above obtained evaluations that for rods 
with a diameter of 2-6 mm and a length of 5-15 em, even at te~eratures 
of the order of 1,000°K, the magnitude n becomes so large ( vL > 3), 

that the influence of the second member in formula (4.21) will be in­
significant in comparison with the first, and the temperature at the 
end of the rod will practically not differ from the temperature of 
the surrounding medium (the furnace) r 0 . In this case, the tempera-

ture distribution along the rod should be described by the formula 

( 4. 27) 

where 

The magnitude of the coefficient v can then be found from the 
value of the temperature difference el for x = l: 

·v- 1 e, v=-ln-. 
l Oo (4.28) 

If the flow of heat to the face of the specimen Q is known, 
then the heat conductivity of the metal can be determined from the 
formula 
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(4.29) 

Such a method of measurements was first performed by Barat and 
Vinter [54]. The Barat and Vinter method is in principle somewhat 
more convenient than the method of axial flow with heat insulation 
because there is no need of adjusting the temperature distribution of 
the protective cylinder under the temperature distribution in the 
specimen. It is only necessary to have temperature uniformity of the 
screen T0 . In this·instance, however, there is a difficulty which is 

related with the assurance of conditions required for determining the 
magnitudes of the heat flow Q. Another system of experiment by Hogan 
and Sawyer [55] is free of this difficulty. In their method, the 
heat exchange coefficient is not excluded, as is the case in the Barat 
and Vinter method, but, on the other hand, it is determined by means 
of an auxiliary experiment. For this purpose, a heating current is 
passed through the specimen which in the Hogan and Sawyer method is 
thin and long. The heat exchange coefficient is found from the heat­
ing power of a unit length of the specimen and from the temperature 
difference between the specimen and the screen. It is necessary to 
mention also the Forbes method in which the heat exchange coefficient 

. is determined from an additional non-steady experiment (with dis­
cretion of the rate of chilling of the specimen) [56]. 

Although the utilization of systems with axial flow of heat 
under conditions of heat exchange with a shell of constant temperature, 
as already pointed out, reduces some with the difficulties of the 
experiment in comparison with the conditions of heat insulation, it 
is still insufficiently convenient for high temperatures, and, in part­
icular, for this reason that the practical fulfillment of the conditions 
T

0 
= const is related with difficulties. In connection with this, it 

is natural to perform experiments that do not require constancy of 
temperature of the protective cylinder. The principle which forms 
the basis of such experiments is the specific case of the method for 
studying small temperature perturbations and is briefly presented in 
§1. 

Let T1(x) be the temperature distribution which is a solution of 

equation (4.14) in the absence of heating by an external heater, that 
is, the temperature distribution through the heat exchange of the rod 
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with a protective cylinder, the temperature of which is r 0 (x). Let 

further, r 2(x) be the temperature distribution of specimen when the 

end here of power Q is connected. Let us examine the difference 

Assuming that v is approximately constant (heat 

exchange through insulating filler), we obtain for ~the equation 

iP~ -- =\1'6. 
d:rZ . 

the same as for (4 .18) for the case of 

T-T0 = const. 

A weakness of these given considerations lies in the assumption 
that the temperature field of the screen before and after the connec­
tion of the hand heater remains identical. The Laubitz method [57, 
58] is free of this disadvantage; it ~equires only that the walls of 
the shell which surrounds the specimen--screen system be at a constant 
temperature. 

Another path of utilizing measurements with random temperature 
distribution of the screens for two different values of the heater 
power is related with the possibility of excluding the magnitudes v 
from two solutions of the corresponding problem. Such a method of 
measurements was developed and performed by N. A. Nikol'skiy [59, 60] 
and was designated by him as the "method of successive steady states". 
The solutions of the equations are presented by N. A. Nikol'skiy in 
an integral form, which requires measurement of the temperature dis­
tribution in many points of the specimen--screen system. In the cal­
culation of formulas of the method, only the ratios of the members 
with lateral heat exchange play a part, and the magnitude of the heat 
exchange coefficient is thereby excluded provided it is independent 
of the temperature. The method was used by N. A. Nikol'skiy for 
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measuring the heat conductivity of liquid metals. Evaluations of 
the accuracy of the results obtained by this method are difficult in 
view of the complexity of calculating the error introduced by the 
approximation of the calculations of integrals that figure in the 
theory of the method from the results of temperature measurements in 
a discrete multiplicity of points. 

Let us examine experiments in which use is made of the third 
type of boundary conditions of equation (4.14)--the case of strong 
overheating of the specimen with respect to the temperature of the 
surrounding medium. Under such conditions, difficulties of creating 
a shell around the specimen disappear and the system becomes low 
inertial, and the heat exchange is more stable. Overheating of the 
specimen with respect to the medium should be accomplished by adding 
great power to the face of the specimen. This becomes possible by 
using electron bombardment heating, by means of which one can not only 
obtain large heating power but also measure these in a convenient 
manner. The main complexity in accomplishing experiments with great 
overheating with respect to the medium is that under these conditions 
the temperature gradients along the specimen become very large, which 
makes it impossible to carry out the procedure for linearizing the 
equation (4.15) and requires the development of special methods for 
utilizing this equation. These methods, just as the practical accomp­
lishment of such a method of measurements, will belong to D. L. Timrot 
and V. E. Peletskiy [61]. The first of these methods is based on the 
direct integration of equation (4.16) written as 

( 4. 30) 

where q is the heat loss per unit lateral surface of specimen through 
emission. This integration gives 

L 

).. ..!!._ = 2- r q dx + q~ == Q. 
dx RJ 

" 
( 4. 31) 

where q2 are the heat losses from the unit surface of the cold end 

(x = L). The magnitudes q and q2 as well as the temperature gradient 

dT/dx along the specimen are considered as known. 
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Another method for determining the magnitude of heat conductivity 
in such temperatures is related with the approximation of the function 
q(T) of the power relationship 

q =Am. 

Equation (4.27) can in this case bereduced to the form 

dQI = d'J..2( ddTx )2 = 2A. dTq. 
R (n + 1) 

From this, we get for >. the formula 

].. = R (n + I) . dqt 

2 ~Tq 

Table 9. Estimate of Role of Transverse 
heat Exchange by radiation for rods. 
Values of length 1 for which n (4.24) 
is 1. 

l--
1
- c.-. 

; . Yv 
T"t\ 

. ~··_' R-t M.\1 R=3.11JC 

1000 I 1.6 2.8 
};1()0 

I 
0,8 I , 4 

20()0 0,5 0,9 
:!.j:,l) 0 ,·\ 0,7 
:.!0'.") I 0,3 0,5 
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5 
2.5 

- ! 1 ,7 

( 4. 32) 

( 4. 33) 

(4. 34) 



The magnitude of the derivative dQ2/dTq in this formula can be 

found from the angle of the dependence Q(T ), while Q can be deter­
q 

mined from the formula (4.31) from the well-known function of q(T). 

In order to determine the emission heat flow q(T) in the first 
paper by D. L. Timrot and V. E. Peletskiy, use was made of short 
(L/D ~0.2-0.5) specimens of the test material. Afterwards, D. L. 
Timrot, V. Yu. Voskresenskiy and V. E. Peletskiy developed a method 
for measuring- the degree of blackness, which is also suitable for 
long specimens. This was achieved as a result of the utilization of 
electron heating of the lateral surface of the specimen by means of 
cathodes parallel to the specimen [62, 63]. 

In order to measur~ the temperature distribution along the 
specimens, D. L. Timrot, V. E. Peletskiy and V. Yu. Voskresenskiy 
used in their experiment an optical pyrometer which is: cited on 
a drilled hole in the specimen. The maximum error on the measurement 
of temperatures of 2,500-2,600°K amounts to 15% ; at higher tempera­
tures, the error increases considerably. A method was used for meas­
uring the heat conductivity of wolfram up to temperatures of approxi­
mately 2,800°K [62], molybdenum (approximately 2,400°K), niobium 
(appro.ximately 2 ,300°K), zirconium (approximately 1 ,900°K) [62, 63], 
and tantalum (approximately 2,900°K) [64]. 

Let us summarize briefly the examination of the group of methods 
with axial heat flow. The utilization of ordinary variants of method 
with retro-heat insulation or with an isothermal shell can lead to 
good results for temperatures up to approximately l,000-1,500°K 
although the accomplishment of these methods involves serious experi­
mental. difficulties. For higher temperatures, it is apparent that 
only those methods are promising which are similar to the method of 
D. L. Timrot and V. E. Peletskiy in which a considerable overheating 
of the specimen with respect to the surrounding medium is utilized. 
The need for additional experiments in order to determine the emission 
heat flows in this method is completely compensated by the possibility 
of measurements at temperatures above 2,000°K. 

Let us examine the second sub-group of methods with steady ex­
ternal heating--methods of radial heat flow in which temperature 
gradients develop that are directed strictly along the radius. Cor­
responding equation of heat conductivity has the form of 
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iJ2T I ilT -+---=0 a,z , ' or ' 

and its solution leads to the formula 

( 4. 35) 

(4. 36) 

where Q is the amount of heat liberated by the heating source, which 
is within the cylindrical specimen, R

1 
and R

2 
are the radii of the 

cylinder, (T1 - T2) is the temperature difference on the surfaces, 

l is the length of the specimen. Measurements of the heat conductivity 
by the method of radial flow reduce themselves thus to the measurement 
of the temperature difference T1 - T

2
, the power of the heater Q, 

and the geometry of the system. Unlike the.method of axial flow, 
the practical determination of the magnitude Q involves somewhat 
fewer difficulties because the heat .loss is dangerous only from the 
end surfaces; for a relatively long cylinder, the fraction of the end 
heat loss can be made comparatively small even when use is made of 
elementary protective devices. Assurance of conditions of radially 
of heat flow in a specimen presupposes that the heat flows from the 
ends of the rod are negligibly small. In connection with this, it is 
desirable to utilize the longest possible specimens, and for heat 
protection of the ends to use protective cylinders. The danger of 
the formation of axial gradients can be reduced considerably when the 
specimen is made as a composite consisting of a stack of disks; poor 
heat contact between the disks in this instance promote a decrease 
in the axial heat flows ((66, 74, 75]). 

One of the most high-temperature variants of the method of 
radial heat flow was encountered by Rasor and McClelland (66]. Unlike 
the ordinary system of measurements, they placed within the specimen 
not a heater but a heat drain (a pipe with running water). Heating 
on the other hand was accomplished with a cylindrical external furnace. 

In characterizing the methods of radial flow as a whole, one can 
indeed observe that with respect to design and the range of tempera­
tures, which is accessible for utilization, these methods are not 
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inferior to those of the axial heat flow, although they do require a 
somewhat more complex form of the specimens. 

As already observed, the methods of axial and radial flow~ far 
from exhaust the possible diversity of methods with external heating-­
other methods exist in which use is made of a more complex symmetry 
of the temperature field. 

Let us examine one of such combination methods [68]. 

The test specimen, which is a cylinder with a diameter of 0. 8-
2.5 ern and a length of 0.16-4 crn,is placed in vacuum within a suf­
ficiently long inductor of a high frequency furnace so that access 
of the cylinder is parallel to the direction of the magnetic field. 
In the case of induction heating of the specimen, due to the existence 
of a skin effect, the heat is liberated only in a thin layer near the 
lateral surface of the cylinder so that the heating of the specimen 
can be considered actually external. Temperature distribution along 
the end of the specimen u~der steady conditions is determined in this 
sensor by two factors: the coefficient of radiant heat exchange from 
the surface and the conductivity of the material. It follows from 
this that the study of the temperature distribution along the end 
permits in principle to obtain the value of the heat conductivity of 
the material, 

The solution of the corresponding mathematical problem has been 
conducted by the authors using the approximation method on the assump­
tion that the temperature distribution along the end can be approxi­
mated by parabola and that the temperature of the lateral surface does 
not depend on the height (deviation from these approximate conditions 
is taken into account by a correction member). The calculation formula 
includes a magnitude of the degree of blackness of the specirnen,which 
is assumed to be known. 

The described method was used by the authors for determining the 
heat conductivity of molybdenum and vanadium at temperatures of about 
2,000°K, The temperature distribution was determined by pyrometer 
with a disappearing filament. The error of the results is evaluated 
as 15-20%. In a subsequent study [70], this method was generalized 
for a case of material with an isotropic heat conductivity and it was 
utilized for measuring the heat conductivity of different specimens of 
graphite within the temperature range of 1,260-2,200°K. The last 
study [261] dealt with measurements of the heat conductivity of 
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different specimens of molybdenum within the temperature range of 
1,500-2,300°K, 

A disadvantage of the examined method is in need of utilizing 
values of the degree of blackness obtained from other experiments; 
in this respect the method is not closed. Nevertheless, the funda­
mental simplicity of the method and the possibility of using it at 
high temperatures impel us to pay attention to it. 

In the group of methods based on heating with a current that 
passes through the specimen, as well as in methods with external 
heating, one can separate two sub-groups which differ in the symmetry 
of the isotherms: in the first sub-group the temperature varies 
along the axis of the object and in the second it varies along the 
radius of the cylindrical specimen, Let us examine the first most 
numerous group. 

As already mentioned at the beginning of this section, for 
sufficiently small values of the Bi criterion, the temperature dis­
tribution along the specimen is described by the unidimensional 
equation 

d ~ dT _ _!!_~ '• r _ ~1 ) _ .. , -r.-- ,-4 0 ~ .. 
dx dx -~ · (4.37) 

The magnitude of the specific power of the volwne source w is 
equal in this instance to 

p/'! 
W=-a-• 

.s 
( 4. 38) 

where the pis the specific resistance(p = p(T)!) I is the current 
strength, s is the transverse cross-section of the specimen. The 
magnitude of the temperature of the surrounding medium T0 is usually 

selected or is comparatively close to the temperature of the specimen 
(first type of conditions) or, on the other hand, is small in 
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comparison with its temperature (second type of conditions). 

Let us examine at first the conditions of the first type--the 
specimen is surrounded oy a medium with a temperature close to its 
temperature (practically, the specimen is placed within the furnace 
while the current which passes- through the specimen overheats it 
moderately with respect to tne temperature of the furnace). Let 
T

0 
= const. We introduce the variable e = T - T

0 
provided 

6/T « 1, which makes it possible to linearize equation (4.37) and to 
write it as 

d'9 - w 
~-=v8--
d.x'~ }. , 

c 4. 39) 

where 

( 4. 40) 

and >.., a, p and dp/dT refer to the temperature T0 . The solution of 

this equation for boundary conditions e = e
0 

= T00 ~ T
0 

when x = ±L 

(symmetric conditions on the ends of the specimen) has the form of 

(4.41) 

This solution assumes the simplest form under conditions of 

(4. 42) 
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(we arrive here 
imaginary). In 
with respect to 
bola 

1 FVI , because in principle the rv can be also 
this case, the expansion of equation (4.41) is a series 
the index of the exponent gives there a simple para-

T - T = e - 0 = ....!!!_ __ ( L ~ - :.:~). 
00 0 2}.. (4. 43) 

From equation (4.43) we get the.formula for determining the 
heat conductivity 

A= __ w __ La, 
2(T,. -T00) 

(4 .44) 

where TM is the temperature in the point x = 0 (that is, the maximum 

temperature of the specimen). Thus, under conditions of smallness of 
the heat exchange from the surface of the specimen, the heat con­
ductivity can be determined from the values of the temperature in two 
points (in the middle and at the end) of the specimen or from the 
value of the heating power. This is the essence of the well-known 
Kohnrausch method. 

Examining the subsequent members of the expansion (4.41) and 
the series, we obtain a more accurate formula which contains a cor­
rection for the lateral heat exchange: 

where 

vL2 
8=--2 • 

(4.45) 
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I Such a formula was obtained and utilized by Jaeger and Disselhorst 
'[69]. 

I It follows from formula (4.45) in particular that the correction 
for the heat exchange as a first approximation will be equal to zero, 
iif the temperature of the wall differs from the temperature of the 
:end ?f the rod by 1/6 the magnitude of the temperature gradient on the 
·spec1men. 

The refinement of the heat exchange corrections in the case of 
a parabolic temperature distribution of the surrounding medium is 
given by D. L. Timrot [71]. The problem of the calculation of the 
heat exchange corrections is dealt with also in [il2, 7 3]. 

From formula (4.45), as a condition of the smallness of the 
heat exchange corrections, follows the inequality 

I vI L= 
2 <.( I 

( 4. 46) 

or provided 

.!!!'_ '~ .!!f_ . !:___ 
l.s // dT s ' 

(4. 47) 

where 

. T} ~= lf2B£'fs _£ 
. . .. R 

(4.48) 

for a rod of circular cross~.section in accordance with formula (4.24). 

Evaluations of the values of L for which n is approximately 1, 
which were made at the beginning of this section, indicate that the 
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conditions of (4.47} can be fulfilled only within the temperature 
region below 1,000°K. At these low temperatures, the Kohlrausch 
method justifies itself completely and is one of the most popular 
methods. 

Let us dwell somewhat in greater detail on problems re1ated 
with the practical utilization of the Kohlrausch method. Formula 
(4.44) presupposes that the temperature pickup--the thermocouple--is 
directly in the point of the maximum temperature TM. In practice, 

this is of course difficult to achieve, all the more so since the 
temperature distribution along the specimen can be also non-symmetric 
with respect to its ends, if the ends are not under identical condi­
tions. In such a case of measurements, the temperatures in both 
points of the specimen will be insufficient and it will be necessary 
to know the temperature in three points. If the coordinates of the 
points in which the temperatures are measured are x1 , x2 and x3 , 

while the corresponding temperatures are equal to T1 , T2 and T3 , then 

the formula which replaces (4.44) will have the form of 

Ao = ~ • --~-X.:.:....1--;-X_,1 __ _ 

z ( 4. 49) 

In particular, for points that are equal distance from each 
other (x1 - x2 = x2 - x3 = L): 

(4. 50) 

where 

(4. 51) 

Formula (_4,49) with consideration of (4.38) can be written 
als·o as 
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. · 2pAT (4. 52) 

where V is the difference of the potentials on a section having a 
length of L. From formul~ (4.52) is was possible to directly determine 
the ratio of the heat conductivity to the electrical conductivity: 

a 2.1T 
( 4. 53) -=-

Formula (4.53) can be written in a more general form which takes 
into account the temperature function of the ratio A/cr: 

(4. 54) 

It is necessary to pay attention to the fact that in the formulas 
(4.53) and (4,54) the geometric dimensions of the speci.men are not 
included. Moreover, a similar relationship is valid also for a more 
complex configuration of the system when the specimen is a thin and 
short connecter between two massive metallic blocks and the distri­
bution of the electrical potential in temperature is essentially not 
only in the specimen but also in the blocks. The utilization of such 
a system is advantageous in that the correction for the heat exchange 
from the lateral surface is negligibly small\up to the highest 
temperatures. On the basis of this, Hopkins [76] undertook the meas­
urement of the heat conductivity of platinum up to the melting point 
and even in the molten state. The temperature TM in the middle of 

the connecter was measured by him with the aid of an optical pyrometer. 
A disadvantage of metal is the difficulty of converting from the 
measured [illegible - Tr.] temperature to the true temperature, which is 
aggravated by the presence of emission reflected from the blocks. 
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The accuracy of determining the heat conductivity by the 
Kohlrausch method in its usual variant, in accordance with [77], 
amounts to 3%; at relatively high temperatures, the error increases 
considerably, however, due to the role of retro-heat exchange. In 
the temperature range up to l,000-1,200°K, the Kohlrausch method is 
one of the most convenient ones, has found wide application in re­
search and applied measurement (see, for example [77-83]). 

Another method of conducting experiments to determine the heat 
conductivity under conditions of the same type as in the Kohlrausch 
method is related with another integral method for determining the 
heating of a specimen by a current. In this method, the magnitude of 
the average temperature of the specimen is determined from its re­
sistanceM-the specimen thereby plays the role of a resistance thermo­
meter, The difference in resistances of the specimen during its heat­
ing and during the measurements by means of a small current which does 
not practically heat the specimen is determined by the overheating of 
the specimen with respect to the medium, which, in its turn, is 
directly related with the heat conductivity of the material.(see 
formula (4.93)). Such a method of measurement, was used in different 
variants by Diesselhirst and Knudsen, Weber, Cannulic and Meissner 
(see [77]); it is convenient, of course, in the first place for fine 
wire specimens, the resistance of which is measured simply and with 
great accuracy. Also, it is necessary, however, to take into account 
that the thinner the specimen, the greater the role of heat losses 
from the lateral surface and, for this reason, the smaller the temp­
eratures at which this method can give satisfactory results. Measure­
ment by means of the examined variant of the Kohlrausch method are 
limited by lower temperatures. An exception is the work by Cutler 
and others in which use was made of a configuration of the system 
that wa-s used by Hopkins--a narrow connecter between massive blocks 
[84], Thus, the heat conductivity of monocrystals of molybdenum and 
wolfram was measured up to temperatures of 1,700°K [85], as well as 
the heat conductivity of liquid semiconductors and metals [86]. In 
the latter case, the role of the connecter was played by a hole in 
the partition that separated the liquid. The Cutler method combines 
conveniently all the advantages of the Hopkins method-Msmallness of 
heat loss correction with convenience of registration of overheating 
with respect to the resistance. There are all grounds for assuming 
that such a method of measurement, ·even taking into1 account the com­
plexity of the preparation of the specimens, can find wide application, 
particularly if one considers the prospects for the development of 
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this method also for measurements of a non-steady nature, which give 
along with the heat conductivity also the temperature diffusivity. 
Further refinement of this procedure of measurements for liquid 
metals is also expedient. The first experiments in this direction have 
lead to the conclusion regarding the existence of distortions due to 
convective mixing, which is explained apparently by the large magni­
tude of the temperature gradients which take place within the short 
connector even for comparatively small temperature differences [86]. 
This difficulty can, apparently, still be overcome. 

Another type of heating conditions of the test specimens is the 
considerable overheating of the specimens with respect to the surround­
ing medium. All experiments of.such a type are conducted in vacuum, 
the specimen is heated by the current, the chamber walls are not heated 
specially. Equation (4.37) has, under emission heat exchange conditions, 
the form of 

(4. 55) 

(in this case, we disregard the magnitude r6 in comparison with T4). 

In this equation, the first member of the right-hand part, whiG.h de­
scribes the emission heat exchange from the lateral surface of the 
specimen, is real and cannot be considered as small. 

In utilizing equation (4.55) for determining the heat conducti­
vity, there are two basic ways: .numerical solution of the equation 
and the creation of conditions under which the temperature changes on 
a certain section of the specimen are small, which makes it possible 
to linearize this equation. Let us examine the first of these pos­
sibilities. 

Assuming that the heat conductivity depends comparatively weakly 
on the temperature and that the gradients along the specimen are not 
excessively large, equation (4.55) can be utilized directly: 
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d'T c 4. 56) 
ax• 

The magnitude of the second derivative d2T/dx2 can in this 
case be calculated approximately from the values of the temperature 
and three points which are at a distance of l from one another: 

( 4. 57) 

Such a method of measurement was utilized by Ye. S. Platunov 
and V. B. Fedorov [87] for measurements of the heat conductivity of 
wolfram at temperatures up to 2,900°C. It should be observed that the 
errors of such a method of determining the heat conductivity can be 
considerable in view of the inaccuracy of the determination of the 
second derivative of the temperature. 

In the other method of determining the heat conducttvitr, use 
is made not of the equation (4.55) itself but the result of its inte­
gration: 

( 4. 58) 

~e point x0 pertains to the section of the object with a 

constant temperature, where dT/dx = 0. The resulting formula can be 
directly utilized for determining the heat conductivity from the 
results of measurements of the temperature distribution along the 
object T = T(x), if determinations are first made of the dependence 
of the degree of blackness and of the specific resistance on the 
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temperature E; E(T) and p = p(T). Formula (4.58) can be written 
in a somewhat different form, if it is taken into account that on the 
section with a constant temperature 

PaaT4 I~ --'---- = p - • 
. - . - . s __ --- ... . - sl ( 4. 59) 

For this reason, 

J2 s.r· ( p ) )..._~ -ct-T- ,: -1 dx, 
-a' 
dx (4.60) 

where IT is the current strength which assures heating of the section 

of the object with a constant temperature up to a temperature of T 
which is equal the temperature of the given point of the specimen. 

A procedure similar to that described above was utilized by 
Worthingom for determining the heat conductivity of wolfram and tanta­
lum at temperatures up to approximately 2 ,50_0°K [88], and then by 
Osborn for determining the heat conductivity of wolfram and molybdenum 
at the range of 1,100-2,000°C (89], by R. L. Rudkin and others for 
wolfram up to 2,800°K, molybdenum up to 2,100°K, and rhenium up to· 
2,700°K [90]. The objects of the measurement were thin wires. The 
temperature distribution along the wire was measured by an optical 
pyrometer with a disappearing filament. A disadvantage of the method 
under consideration for determining the heat conductivity is the need 
for utilizing graphical integration and differentiation (determination 
of dT/dx) of the results of the experiment and (to a smaller degree) 
the need of preliminary experiments for determining p(T) and IT(T) 

(or, which is the same, s(T)). 

The second method of utilizing equation (4.55) is to examine 
small temperature differences 8 = T - T, where T is the temperature m m 
of a certain point of the specimen, for which it is most convenient 
to take the maximum temperature; for a symmetric specimen, this will 
be the temperature of the mid-point. In order to observe the con­
ditions 
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(4 .61) 

it is necessary that the length of the specimen be sufficiently long 
so that the temperature changes near the maximum would be small on the 
section of the given extent. 

For the condition of (4.61), equation (4.55) can be written as 

L- poeT!, 
5~ s 

4 de 

d29 ( 4.11~P pT 171 dT 
=f..---0 +a---

dx~ s 11. 

do fl ) 
-a~·.---;- (4 .62) 

with an accuracy up to the members of a higher order of smallness with 
respect to 8. All the coefficients and their derivatives in equation 
(4.62) should be referred to the temperature T . 

m 

a 

,m 6J[p . ··~=(~T(~ 
~ .----·- - -- -~ *• ····- ------·-----·-

Figure 10. Temperature distribution along 
the wire which has been heated by a current: 
a, long wire; b, short wire, 
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Henceforth, it is important to delineate two physically differ­
ent cases of temperature distribution near the mid-point of the 
linear specimen--a case of a "long" and "short" specimen. In the 
first case, there is near the mid-point of the specimen a sufficiently 
clearly expressed section with a practically constant temperature 
(Figure 10), after which there is a more or less steep drop in the 
temperature. In the second case, there is no such section; the temp­
erature varies also in the immediate vicinity of the mid-point. For 
the first case, on the section with the constant temperature, the 
temperature gradients are practically absent and all the Joule heat 
liberated per unit plant is completely lost from the lateral surface 
through emission (the heat flow along the specimen is negligibly small). 
For this section,-

pi' aepJ! --=---
s ( 4. 63) 

whence 

( 4. 64) 

(Formula (4 ,64) is obtained also formerly from equation (4 .62) because 

d2e;dx2 is the curvature of the temperature distribution of approximate­

ly 0.) For a short specimen, the axial heat flow cannot be dis­
rega.rded; the liberated heat is lost incompletely through emission, 
as a result of which the temperature in the mid-point of the specimen 
is smaller than the maximum value even by the formula (4.64). 

Let us examine the possibilities opened up by the study of the 
temperature distribution and a "long" and "short" specimen for de­
termining the heat conductivity. Let us start with a "long" specimen. 
The temperature distribution in the region adjoining the section with 
a constant temperature is, in accordance with equation (4.62), described 
by the equation 

tP6 ·-=ve, 
dx~ 
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where 

v = -~- (--l_<I_ep_~_m_ + _a_p_T!_"~_-_:;:=-_- __ dp_ . _1'-). 
f. s s dT s2 

(4.66) 

By taking into account formula (4.64) and, the coefficient v 
can be written as 

v = _1 • .J'!~(-"- + dine _ dIn p ) • 
A. . s2 T,. dT dT ( 4. 6 7) 

The solution of equation (4.65) for the left-half of the temp­
erature distribution can be approximated by the formula 

e = Arl';. 
(4 .68) 

where 'k = Vv, while A is a constant 

(4. 69) 

(By means of a similar formula it is possible to describe also the 
second, right-hand drop of the curve on Figure 10, curve a.) The 
section with a constant temperature corresponds here to large (.within 
the limit infinitely large) values of x. 

Formula (4.68) makes it possible to determine the magnitude of 
k directly from the results of the measurement of the temperature dis­
tribution from the angle of th.e slope of the curve which expresses' 
ln8 as a function of x. 

dIn 0 

dx 
=-k. 
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By means of k, the value of the heat conductivity coefficient 
can be found from the formula 

').. = ~ (-4- + d ln < 
Jl2s~ T m dT 

d \n? \ 

dT )' 

(4.71) 

In order to determine A besides k, it is necessary to know the 
current strength, the temperature T , the electrical conductivity 1/p, m 
as well as the magnitudes of the temperature coefficients ds/dT and 

dp/dT (the latter however, play the role of corrections). 

The method for determining the heat conductivity from the 
exponential temperature distribution was first used by Jain and 
Crishnan (91, 92]; afterwards, this method was developed in [24, 93, 
25]. This procedure is described in detail in §5. 

Let us examine the case of a short specimen (Figure 10, curve b). 
For a short specimen, the origin of the coordinates (x = 0) can be 
conveniently located in the mid-point, at a point of maximum tempera­
ture. The solution of equation (4.62) in this case has the form of 

where, as before, k 

the formula 

(4. 72) 

;-::;-, while the constants 9 0 is determined by 

e = o--( 
r 

0 • s·l 
poeT~ ) l 

s \'~ '_ (4. 73) 

that is, proportional to the difference of the quantities of heat 
liberated by the current and dissipated from the lateral surface of 
the specimen, 
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In the region close to the mid-point of the specimen (kx << 1), 
formula (4.72) can be written in an approximate form by expanding into 
a series with respect to kx1 

(4.74) 

The temperature distribution can thus be approximated by a 
parabola, The boundaries of the validity of this approximation can 
be determined from the condition of the smal1ness of the roll of the 
subsequent members of the expansion (4.72),which gives 

( 4. 75) 

Formula ( 4, 74) can be directly uti 1i zed for determining the 
heat conductivity A from the known temperature distribution (for 
this, it was necessary to find the angle of the slope of the curve 
which describes e as a function of x2 .). And inconvenience of such 
a method is in the need of knowing the degree of blackness. However, 
even with consideration of this, it is of course, more convenient to 
utilize formula (4.74) than integral relationship (4.58). 

The use of the parabolic formula (4.74) for determining the heat 
conductivity was first recommended and carried out by Crishnan and 
Jain [91, 92]. The performance of the examined procedure for measur­
ing the heat conductivity is particularly convenient when it is pos­
sible to utilize at the same time a long and short specimen. In this 
case, the magnitude p aE:T4 I s can be determined by the means of 

m 

the relationship (4.63) for a long rod and formula (4.74) acquires 
the simple form of 

---
a 1 o • - =-. -·-(12-.J2) r 2A sa I' (4. 76) 
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where 11 is the current strength at which the mid-point of the long 

specimen is heated to the temperature T . The method of determining 
m 

the heat conductivity by means of formula (4.76) was proposed and 
carried out by V. V. Lebedev [94, 95]. 

This procedure was utilized by V. S. Gumenyuk and V. V. Lebedev 
for measurements of the heat conductivity of wolfram and graphite at 
temperatures up to 2,200°C [95]. The objects of the study were rods 
(wires) 1-2 mm in diameter. The temperature distribution was deter­
mined by means of OPPIR-09 pyrometer which was fastened on the car­
riage of a cathetometer. The error of the measurements was evaluated 
by the authors as 6%. 

An inconvenience of such a method of measurement involves the 
need of having sufficiently long specimens. Another variant of the 
procedure, proposed by V. V. Lebedev [96~97], is free of this dis­
advantage. In this variant, two specimens of different plans are 
also utilized, but in this case it is not mandatory that a second 
specimen be so long that it have a section with constant temperature, 
The magnitude p/s os~4 in formula (4.74) in this variant is ex-m 

eluded· simply by deducting two such formulas, which assumes that the 
experiments are carried out with two specimens of different length 
under conditions such that the mid-points of the specimens are heated 
to the same temperature: 

c 4. 77) 

This procedure was utilized by V. V. Lebedev [97] for the 
measurement of the heat conductivity of molybdenum up to 1,400°C and 
by V. S. Gumenyuk, V. Ye. Ivanov and V. V. Lebedev [98, 99] for meas­
urement of the heat conductivity of wolfram and molybdenum up to 
2,200°C and of tantalum up to 2,500°C, 

The described methods of measuring the heat conductivity, which 
are based on a study of the temperature distribution along specimens 
that are strongly overheated with respect to the walls of the chamber 
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in vacuum, do not require a knowledge of the specific conditions on 
the ends of the specimens. The temperature of the ends can be random 
and, in particular, close to the temperature of the cold walls--such 
a case is most convenient in practice. There is also possible, however, 
another type of experiments which are carried out under conditions 
when the temperature of the ends of the specimen is close to the 
temperature of its mid-point. In order to create such conditions, it 
is necessary to resort to artificial preheating of the ends of the 
specimen, which can be accomplished conveniently, of course, only in 
the case of thin specimens (wires, foil), when the leads and attach­
ments are also not excessively massive. 

Let us examine the theory of experiments of such a type. As a 
"base temperature", in this case, it is convenient to utilize not the 
temperature of the mid-point of the specimen T , as we did before, but 

m 
the temperature of the ends Tz, determining the variable 8 as the 

difference 

T-T1 = fJ ... 
(4. 78) 

As before, we shall assume that the magnitude e is relatively 
small 

T-Tz 1 ---<( . 
Tz (4. 79) 

The linearized equation of the heat conductivity will in this 
case be identical to equation (4.62), if, instead ofT we substitute 

m 
therein Tz and change the sign for e. The solution of this equation 

will have the form (x ~ 0) corresponds to the mid-point of the 
specimen 
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while the temperature of the mid-point of the specimen e 0 is equal to 

ekL + e-kL _ 2 
e'<L +rilL c 4. 81) 

It can be seen that for a definite current 1
0

, which is deter­

mined by the condition 

r~· p<IeTt 
p--= 

s~ s 
( 4. 82) 

Eb = 0 and 6 = 0, that is, the specimen will be heated uniformly, 

its temperature at all the points will be the same and equal to the 
temperature of the ends. For large currents, the temperature of 
the m.id-point of the specimen wi 11 be greater than the temperature of 
the ends; for small currents, on the other hand·, the mid-point of the 
specimen will be colder than the ends. By means of formula (4.82), 
formula (4.81) can be written as 

ekL+ e-kL_ 2 
ekl. + e-kL. (4. 83) 

and by taking into account formula (4.66), it can be written as 

• 1 

&11- = (~ _ t) ___ 1
- c-'-h_k_L· __ _ 

·rl I~ { 1 olne/p ) 
4 J+4· ainT 

(4. 84) 

This expression can in principle be utilized for,determining the 
magnitude of k and, by means of it the heat conductivity 

- 102 -



.. 

1 

( 4. 85) 

The measured magnitudes should in this case be the following: 
overheating of the mid-point of the specimen with respect to the 
ends e

0
, current strength I, which causes this overheating, current 

strength I 0 , for which the temperature of the specimen is uniform, and 

temperature of the ends Tz· Besides that, it is necessary to know the 

correction 1/4 ,d ln £/p /d ln T to the temperature function of the 
degree of blackness and the specific resistance. However, another way 
of using formula (4.84) is possible which is not related with the need 
measuring e 

0
--a method which utilizes the determination of the average 

temperature from the resistance of the specimen, just as this is done 
in the method by Knudsen and others under conditions of a small heat 
exchange. 

For the average temperature of the specimen, it follows from 
expressions (4.80) and (4.84) that 

- I +\!. ( 1~ ) e =- e dx = T
1 

- _ I ___ 1 
. 2L J2 ( 1 _ " u 4 _!-L-. d!nejp) 

-L . ' 4 dinT 

X 

(4. 86) 

X 1-----[ 
e"'- - e-kL l ] 

. -. e"L+ e-kL . kL . 

If it is taken into account that resistance of the specimen is 

then we get 

R , dR­
= R0 -+- -e 

I ;lT ' 

- 1U3 · 



·r R. .. --r) RG ~· \ 
-- ---- ~T,. _ f ekL __ e·-1!1. I 

(-4~ -1)- = 4(! , _!_. dlnE/p) 1_1- -;k£_+-~=li-. kL} 
' ·~ · T 4 d fn T . 

( 4. 87) 

where 13 = l/R0 ·dR/dT is the temperature coefficient of the resistance 

of the specimen. 

Formula (4.87) makes it possible to determine the coefficient ·k 
and, by means of it, the h~at cond~ctivity from the measured change 
in the resistance as a function of the strength of the current that 
heats the spe'cimen. The procedure of utilizing this equation requires 
a solution of the transcendental equation 

1-
e'<l..- e-kl. 

l!kL + e-kL 

. t!1ilL 
I -- - .!:L-- = c;·. (4. 88) 

The form of the function (~ = ~(kL) is given in the curves 
(Figure 11). The maximum cases for this formula are 

and 

m- = l - - 1
- kL » 1. 

T . kL 

This same figure shows also the function 
izes the sensitivity of the relationship ~(kL): 
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1fl (kL) which character-

(4,91) 



Figure 11 • 

The function 1jJ shows how many 
times the relative error of the mag 
nitude kL, which is found from the 
relationship HkL), is less than the 
relative error eft. . It can be seen that 
for values up to kL ~ 1, the 
error in determining kL is approxi­
mately twice as great as the error of 
eft; with increasing kL, the magnitude 
1jJ decreases, that is, the error in 
determining kL increases, which is 
exp!'ained .by the decrease of the 
curvature of the function eft(kL). 
When kL is~ 3:4, the error okL/kL 
is 2-3 times greater than o~/~. The 
values of kL - 3:4 are for this rea~ 
son maximum magnitudes which can be 

recommended for similar experiments. For the magnitude 2L (the length 
of the specimen), which corresponds to such values of kL, we get at· 
1,000°K values·of 70-120 mm for wires to 0.2-0.6 mm in diameter; for 
2,000°K, we get 24-40 mm and for 3,000°K, we get 12-20 mm (for s- 0.3, 
and A, -'1 wt/cm degree). These magnitudes are'quite acceptable for 
the practical performance of the method. · 

The most advantageous case for performing the examined method 
of measurement is that of kL << 1 , which corresponds to the maximum 
sensitivity in the determination of kL. For the condition of kL << 1 

formula ( 4. 87) acquires the form of 

~R = R-R!)= 
jU.aR0 (Ja- I~) p 

3s1~ 

2 

(4.92) 

Specific evaluations of the factor1 ~L R0p/3s2A lead to the con-

clusion that noticeable differences in ~R can be obtained only when 

I ~ I
0 

. The formula (4.92) can therefore be written in the form of 

(4.93) 
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Since the case of kL << 1 corresponds to conditions under which 
one can disregard the heat loss through emission, then such an accurate 
formula is naturally obtained from the expression (4.43) for experi­
ments with a variant of the Kohlrausch method (see above). 

The set-up of experiments under conditions of kL « 1 for high 
temperatures becomes possible only for very short specimens (mm if not 
fractions of mm). 

The examined procedure of measurement which is based on the ob­
servation of the overheating of the mid-point of the wire located be­
tween the heated leads, was carried out by Bode [100]. Unlike the 
presented variants of the method, which are based on formulas (4.84) 
and (4.87), Bode utilized a different, so-to-speak intermediate' 
variant, in which information is simultaneously required about a 
change of R and B 

0 
as a function of I. The formula for determining 

the heat conductivity by the Bode method can be obtained by excluding 
the exponential members from the formulas (4.84) and (4.87), which 
gives 

( 4. 94) 

By means of such a method, Bode measured the heat conductivity 
of molybdenum, platinum, nickel at a temperature of abour 900°C. In 
our opinion, the Bode procedure is not the most successful, not only 
because it requires the simultaneous measurement of 90 and R, but also 

because the functions R(I) and a (I), in accordance with formulas 
(4.84) and (4,87), are not linear and the procedure of finding the 
corresponding derivatives is, for this reason, not convenient. 

All the examined methods of measurement, which are based on 
heating by current, were classified in the sub-group of methods in 
which use is made of the temperature distribution along the axis of 
the specimen. In the second sub-group, which we are taking under ex­
amination, different conditions are accomplished: the temperature along 

- 106 -



.. 

' 

the axis of the specimen does not vary--there is a section with a 
constant temperature, but due to the utilization of specimens of com­
paratively large radius, there is a temperature distribution along 
the radius (the temperature on the surface differs from the temperature 
in the depth of the specimen). The equation of heat conductivity for 
such conditions has the form of 

1.. --,-·- +w=O (
dST I I dT) 
dr' r dr (4.95) 

(due to the proposed smallness of the change in temperature, we dis~ 
regard the temperature function of the heat conductivity). The magni­
tude of the volume density of the source of heat is equal to 

(4.96) 

The solution of equation (4.95) with boundary conditions of 

T = T1 and dT/dR = 0 for r = R1 (two) has the form of 

(4. 97) 

Hence, if we substitute also the value of the temperature T2 on 

the external surface of the tube (R = R2), we get a formula for the 
determination of the heat conductivity 

w 
/iot=-. 

IR~-R;) 
TI-Tt (4.98) 

The heat conductivity, in accordance with this formula, can be 

- 107 



found from the results of measurements of the temperature differences 
on two surfaces of the tube for a known difference of potentials, the 
electrical conductivity and geometric dimensions. It is pertinent 
that the calculation formula does not include values for the de.gree 
of blackness of the surface. The examined method of measurement was 
carried out for the first time by Engel [101] and then by Powell and 
Schofield [102]. Strauss [103, 104] used this method for measurements 
of the heat conductivity of different specimens of graphite up to 
temperatures of 3,000°C. The heat conductivity of graphite, molybdenum, 
and tantalum within the temperature range of 2,500-3,000°C has been 
determined by Rasor and McClelland [67]. 

The utilization of the examined method for the measurement of the 
heat conductivity of metals is expedient chiefly for high temperatures 
of the order of 2,000-3,000°K. For small temperatures, the measured 
temperature difference T2 - T1 will be extremely small to make possible 

its accurate measurement. In order to become convinced of this, we 
shall make the following calculations. Formula (4.98), which has, for 
a solid rod, the form of 

(4 .99) 

considering that w = 2Q/R, where Q is the heat flow from a unit surface 
of the rod, can be written also as 

Hence, it follows that 

I.= oeT'R 
2!>.T • 

!>.T Bi 
T 8 

(4.100) 

(4.101) 

Let us evaluate ~T/T for one typical case, heat exchange in 
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vacuum r i = o 3 2R 1 B 4aeT3R ) 
\ _';-_ _ , e = , , = c,H, A.= 1 = l wt/cm• 

·deg. In this case, we get ~T = 7° for 2,000°K and~ T 35° for 

3,000°K. Besides the small difference of the measured temperatures, 
a disadvantage of the method is the fact that the test rod shouldlbe · 
sufficiently long in order to have a section with a constant tempera­
ture in its mid-point; in this case, very large currents and powers 
are required for heating it. 

Let us make a brief summary of the examination of the methods 
which have been based on heating the specimens by a current. 

For specimens which are in the form of rods, bars and thin wires, 
one of the most convenient methods of measuring is that based on the 
parabolic temperature distribution in the variant of the V. V. Lebedev 
method. This method is sufficiently simple, but is suitable for high 
temperatures and doesn't require material with a significant degree 
of wetness. . 

Its disadvantage is in need of conducting the measurements with 
two specimens of different length. This disadvantage is absent in 
the method which is based on the measurement of the exponential temp­
erature distribution on specimens in the form of a wire or strip of 
foil. Such a method is also simple, it is suitable for high tempera­
tures, and does not require a knowledge of the degree of blackness. 
The experiment using this procedure is presented in the next section. 
(This section also notes its additional advantages.) 

§5. Experiment Based on the Method of the Exponential Temperature Dis­
tribution 

The essence of the method under consideration, the basis of the 
theory of which are presented in the preceding section (see also (93]), 
consists of determining the index of the exponent of the distribution 
of the temperature ~ which has been established near the section of 
the object with a constant temperature. In order to determine the 
heat conductivity, use is made of formula (4.71) which can be written 
also as 
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(5 .1) 

where k is the coefficient in the index of the exponent of the formula 
that describes the dependence of the temperature on the coordinates: 

e = Tm-T = Ae-~<.~: 
(5. 2) 

(th k _ d ln tl 1 . h . us' - ax )' ' T!" 1S t e as.:r,mPtOtlC temperature (the 

temperature of the average, "flat" section of the curve T(x) --see 
Figure 10, curve a), p is the specific resistance, I is the strength 
of current which heats the specimen, and s is the transverse cross­
section. 

The correction member ~. which takes into account the temperature 
dependence of p and E , has the form of 

1 olne/r 
ll = 4 i} In Tm (5. 3) 

By taking into account the relationship (4.59), this expression 
can be written as-

I iJ lnl/T'fn 
a=~·~---

2 iJinT 
(5. 4) 

which does not contain explicitly the dependence of p and E on the 
temperature. 

Thus, in order to determine the heat conductivity by the given 
method, it is necessary to know: 
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(1) the temperature distribution along the heated object; 

(2) the current strength; 

(3) the transverse cross-section of tne specimen; 

(4) the electrical conductivity. 

It is necessary to emphasize at once the important characteristic 
of the method: in determining the distribution of the temperature T(x), 
there is no need to know the true differences of the temperature 9 , 
it is sufficient to obtain the dependence a(x) on any random scale of 
magnitudes. The units in which the values "of e are determined affect 
only the pre-exponential factor A in the formula (5.2), the magnitude 
k in formula (5.1) does not depend on the unit of measurement of e. 
This is a considerable advantage of the given method in comparison with 
other methods that are based on a study of the temperature distribution 
along the specimen because it makes it possible to utilize for measur­
ing the temperature distribution the differential optical pyrometer 
without its gr.aduation, which facilitates considerably the procedure 
of the measurements. 

The above-said does not, of course, indicate that one can use 
this method without absolute temperature measurements in general. The 
absolute measurements are not required only for the temperature dif­
ferences 6. The value of the temperature T in formula (5.1) should, 

m 
of course, be known (it is also the reference temperature) just as 
well as the value of the temperatures in formula (5.4). Point land 
the recalculation of the magnitudes necessary for determining the 
heat conductivity should for this reason be refined in the following 
manner: The value of the temperature distribution in random units and 
the value of the absolute temperature T . Returning to the remaining 

m 
points of this recalculation, we observe that the determination of 
the electrical conductivity (or of the specific resistance) can be 
carried out in the same experiment if the difference of potentials V 
on the section of length L with a constant temperature is known. (For 
this purpose, use can be made of fine probed taps; for details see 
below.) In this case, formula (5.1) can be represented in one of 
the following forms: 

f..= 4/V (l+L\), 
sLk~T m 

(5. 5) 
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(5. 6) 

Formula (5.5) does not contain a magnitude of the specific re­
sistance, it includes only magnitudes that are directly measurable. 
Formula (5.6) makes it possible to determine directly the ratio of 
the heat conductivity to the electrical conductivity. (1/p). 

The condition under which formula (5.1) was derived in §4 is 
the requirement of the relative smallness of the temperature changes 

(5. 7) 

This condition is sufficient for the fulfillment of the formula (S. 1) 

and its derivative formulas (5.5) and (5.6). An analysis of the 
general non-linear equation (4.37) leads, however, to the conclusion 
that this condition is not a mandatory condition. As such, the 
weaker condition [lOS, 106, .92] should figure therein 

8 ---«1. 
2T m ln 8 (5. 8) 

The values of e, for which 6/T lnB = 0.01; are shown in Table 
m 

10. The comparatively large allowable temperature differences are 
a second advantage of the method which thought should be emphasized. 
(Here, also, however, it is worthwhile to observe that the utilization 
of relatively large temperature differences can be recommended only 
when the temperature dependence for the heat conductivity of the test 
material is small because an evaluation of (5. 8) has been obtained 
without taking into account this dependence. In practice, apparently, 
the change in heat conductivity within the interval of 8 should not 
exceed the magnitude of the allowable experimental error). 
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Table 10. Values of Maximum Temperature Differences 
Allowed in Experiments with Exponential Temperature 
Distribution (Without Taking Into Account the Temp­
erature Dependence of the Properties of the Substance). 

T"' 9 
·~ 

1000 90 
1500 150 
2000 220 
2500 280 
3000 350 

The selection of specimen dimensions which would insure the 
existence of a section with a constant temperature is a fundamental 
problem in the procedure. In order to evaluate the minimum dimensions 
of the specimen, it is necessary to kno~ the pre-exponential factor A 
in the formula for determining the temperature (5.2). According to 
Jain and Crishnan [106], in formula (5.2) (which is valid for a small 
temperature difference which is determined by the c~ndition (5.8)) the 
magnitude A is equal to 

(5. 9) 

where ~=__!_+_l __ I 
2 16 240 

..L 
I •. • • for x, which are deducted from the 

value T = 0 on the end of the specimen of infinite length. The value 
of the magnitude A- makes it possible to determine the distance 7, from 
the end at which the magnitude of the temperature difference e wi 11 
be equal to the small value of e

0
, for example, e0 = 1 o. For this 

distance of 7,, we obtained 

(5.10) 
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The length of the ~pecimen for which the temperature at the mid­
point differs from the asymptotic T by a magnitude of the order of 

m 
eo should be, apparently, at least twice as large as the value of z. 

Finally, we obtain 

kL > 2 1 n T m + 2x. 
So (5. 11) 

This same formula can be written as 

for wire, r is its radius, and for a strip of foil, r =his the thick­
ness. 

The values of L (in em), which correspond to the sign of 
equality in formula (5 .12) and (5 .13) for one of the typical cases 
("A= 1 wt/cm•deg, E = 0.3, e0 = 1"), are shown in Table 11. It can 

be seen that for a wire with a diameter of <0.3 mm in the foil with 
a thickness of <150 me, the length of the specimen - 10 em is suf­
ficient for measurements at temperatures above 1,000-1,500°K, 

The convenient dimensions of the specimens and the small power 
required for heating these is a third advantage of the method. The 
determination of the index of the exponent k in the region where there 
are temperature gradients due to the flow of heat to the ends of the 
test wire is not the only possibility of determining k. Another 
method, which is carried out in [93], consists in utilizing temperature 
nonuniformit~es which are developed artificially on a section with a 
constant temperature by the hanging of a rider. Due to the heat dis­
sipation from the surface of the rider near it, at temperature grad­
ients develop on the specimen, a local temperature nonuniformity 
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originates which is described by equation (5. 2), if the dimensions 
of the section with a constant temperature are sufficiently large. 
The method of determining k on an artificially developed temperature 
nonuniformity is one important advantage in comparison with the use of 
the temperature distribution near the end. This advantage is related 
with the possibility of studying the temperature distribution on a 
section of the specimen before and after the hanging of the rider. 
Measurements conducted before the hanging of the rider make it pos­
sible in this case to reveal the existence of small local perturba­
tions in the temperature constancy on a specimen, which are related 
with the nonuniformity of the specimen itself--temperature "background". 
(Practice shows that it is difficult to find a section of wire or foil 
without small nonuniformi ties.) The deduction of this ''background" 
from the temperature distribution in the presence of a rider makes it 
possible to obtain a completely smooth exponential curve. However, 
the measurements of the temperature distribution are conducted without 
taking into account the temperature ''background", then the resulting 
curves show local perturbations, the magnitude of which can reach a 
degree; in order to determine the index of the exponent in this case, 
smoothing of the curves is required. 

Table 11. Length of Wire for Which the Temperature at 
the Mid-point Differs from the Maximum 
Temperature T By Not More than 1° (In 
em). m 

2h=d=2r 

PI( 0,05 0,1 0,2 O,J 

----~--

1000 5 9 12 15 
1500 3,5 5 7 9 
2000 2,5 3,5 5 6 
2500 1 ,8 2,5 3,5 4.5 
3000' 1 • -t 2 2 8 3,5 

The utilization of temperature nonuniformities developed by the 
writer in measuring k presupposes that there is on the specimen a 
sufficiently standard section with a temperature that is constant. 
For a priori evaluation of the real dimension of the section with 
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a constant temperature, we shall utilize the following considerations. 
The temperature (reckoned from T ) on the middle of the segment, i.e. 

m 
at the distance of L/2 from the ends, is determined by the formula 

'. kl:: 

I eo =Ae-T 

At a distance of l from the mid-point, that is, in the point 
L-

for the coordinate ·X.= 2 -!, · , the temperature wi 11' be equal to 
'._; 

. . . ( L ) 
. . -k 2 -l 0 ...1·l . eo + L\9 = Ae . = 0. e-- •. 

Hence, for the dimensions of a section equal to 2l, on which 
the temperature varies by not more than the given magnitude of ~e~ we 
get the formula 

2 ( ' (\fl \ 2/ = - 1 n 1 --r --) · 
k Ou 

(5. 13) 

In order to determine the magnitude of e 
0

, one can utilize the 

formula (5.12). Calculations show that the magnitude e 
0 

for a speci­

men of given length decreases extremely rapidly with rising temperature, 
that is, the temperature of the mid-point of the specimen rapidly 
approaches an asymptotic value of Tm. Table 12 gives the values of 

~for one of the typical cases (L = 10-cm, A~ 1 wt/cm deg, E = 0.3). 

The magnitudes 2l are the length of the section with the constant 
temperature (in em), which is determined by the change in temperature 
~e, equal toSlo for the same conditions, are shown in Table 13. One 
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can become convinced that for a wire with a diameter of up to 0.2 mm 
and a foil with a thickness of up to 100 microns at temperatures above 
l,000-1,500°K, there are normally constant-temperature sections with 
an extent of the order of a em and higher. (It is ·also necessary to 
take into account in this case that a condition of constancy 1'1 6 = 0 .1 °, 
for which this table has been compiled, is rather rigid; in practice, 
large differences are permitted in use.) Such conditions are quite 
sufficient for experiments with a rider (see below). 

Table 12. Difference in Temperature of the Mid-Point 
From the Maximum Value of T for Wire m 
10 em Long 

d= 2r 

T"K O,Os 0,1 0 ., ~.3 

1000 0,02 0,5' 4 25 
'1500 2- IQ-6 IC-'1 0 ,Oti ~ 
2000 IQ-ll 3- !Q-7 3· iO -1 0 ;~ 

2500 IQ-17 10 ·10 :>- 1 c- 7 :o-; 
3000 1()23 IQ· 15 3 -lQ--10 6-10-3 

The following problem in the procedure of measurements, which is 
subject to discussion, is related with the method of determining the 
function of e (x). In practice, the temperature is never measured 
strictly in the point x = x0 ; there is always a certain averaging of 

the temperature, In particular, in using optical pyrometers, includ­
ing the _differential pyrometer which is described in§ 2, which was 
used in this work, it is not S(x) that is measured, but the value of 
e ef which is average with respect to certain finite although small 

section't:J.: 

x+6. . 

e _, \' e dx. 
ef u j 

(5. 14) X 
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(The magnitude ~ is equal to the width of the slope's diaphragm of the 
optical parameter, which cuts out a test section of the object image; 
for a round diaphragm, ~ is in order of magnitude close to the dia­
meter of the diaphragm). 

Table 13. Length of Section With the Constant (Up to 0,1°) Temperature 
on a Wire Having a Total Length of 10 em. 

d = 2r 

T' K o. 05 o,. 0.2 0.3 

1000 0,7 0.25 O,Ol 0,006 

1500 5,1 3 1 0,04 

2000 7,0 5.5 3,6 0,13 

2500 7,8 6,4 5,6 I ,7 

3000 8,3 7,4 6,6 4,0 

For the exponential temperature distribution (5. 2), we get 

(5 .15) 

The directly measurable dependence of eef(x) is the same exponent 

with the somewhat (insignificantly) changed pre-exponential factor. 
The index of the exponent in this case remains unchanged and, for this 
reason, the final width of the diaphragm of the pyrometer does not in­
troduce an error in the results of the determination of the magnitude 
k. This is one more advantage of the examined method of measurement. 

Let us now pass on to a description of the practical performance 
of the method. The test object--wire or narrow (.,... 2mm ) strip 
of foil 1 having a length of 11 em (Fig. 12) is placed horizontally in 
the cylinder chamber 2, the upper part of which 3 is taken off during 
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the installation of the specimen, The left-hand of the specimen is 
firmly clamped by the screw 4 and the right is tightened by the por­
celain roller with the screen spring 6, The relay 8 serves for the 
han~ing of the rider 7. The probe caps 9 and 10, which are used for 
determining the electrical conductivity, are made of thin (0.05 mm) 
wolfram wire. The ends of the probes are drawn back by small logs. 
The chamber is exhausted through the connection 11 by means of the 
diffusion pump VA-05-1 and a fore vacuum pump PVN-20 to a vacuum of 

-10- 5 mm mercury. 

In order to cool the walls of the chamber, use is made of a brass 
tube 12 which is sorted on its outside surface and through which water 
is passed. The plain parallel glass 13 is ground down to the upper 
surface of the chamber under the window 5. For sealing, use is made 
of a vacuum case. The chamber is located above the objectives of the 
differential optical pyrometer which is described in 92 so that the 
direction of displacement of the objectives coincides with the access 
of the specimens. In measurements of absolute temperature of the 
specimens, a prism is placed on the window of the chamber; the micro­
pyrometer OMP-19 is used for the measurements. 

The specimens are heated from a 24-volt storage battery, The 
voltage on the probes and the current strength are determined by means 
of a PPTB potentiometer and a zero galvanometer (for measuring the 
current strength, normal resistances of 0.1 and 1 ~are used). 

For measurements, the speci~en is annealed at a temperature above 
the maximum temperature of the measurements. Then, at the given temp­
erature T, a record is made of the "background", that is, of the 
function S(x). In the absence of a rider the values I and V are 
measured. The last stage in the measurements is the determination of 
the curve 6(x) in the presence of the rider. Typical curves obtained 
in the experiment are shown on Figure 13 (molybdenum, wire 0.1 mm in 
diameter). The curve a is the temperature distribution in the absence 
of a rider, b is the same with the rider, c is the results of the de­
duction of these two curves (one can become convinced that unlike the 
first two curves, the curve cis smooth; the small nonuniformities in 
temperature are excluded). Curved represents curve c plotted on a 
semilogarithmic scale, Curve dis satisfactorily approximated by 
straight line in accordance with exponential nature of the function 
S(x). From the angle of the slope of this straight line, it is pos­
sible to determine directly the magnitude k: 

k= _ drne 
dx 
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Figure 12. Chamber with the specimen. 

The reproducibility of the values of the coefficient k is il~ 
lustrated in Table 14 which gives the values of k taken from two sect­
ions of the same wolfram foil to the left and to the right of the 
rider; besides, each measurement was made twice by one and the other 
objectives. The deviation from the average value in this series of 
measurements does not exceed 2%. The scatter values as approximately 
the same order as in the series of other similar measurements. 

In order to determine the heat conductivity, use is made of 
formula (5.5,. The magnitude of the transverse cross-sections which 
is in this formula is most simple determined by weighing the average 
part of the specimen of length. Z (weighing is accomplished after the 
measurements are completed; the absence of a noticeable atomization 
of the specimen is controlled by measurements of the electrical 
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conductivity). The error in the measurement of sis in this case 
determined essentially by the inaccuracy in the measurement of Z. 
When Z - 5 em and ol - 0.5 mm, the relative error os/s amounts to 1% . 

II 

9 

8 
7 
6 

.z 
. , .~- -.. L --- ., •"".~~- --· ~ I 

o~q~s~~~~~~~~~~ 

z 

I 

Figure 13. An example of the measurements of the 
temperature distribution along the wire: a, 
without a rider; b, with a rider; c, results of 

·the deduction of curve a from curve b; d, curve 
con a semilogarithmic scale. 

In order to determine the absolute temperature T from the 
m 

readings of the OMP~l9 micropyrometer which is graduated for the bright­
ness temperature, it is necessary to know the spectral degree of 
blackness of the test material. Within the framework of the given 
experiment, the spectral degree of blackness EA can be· determined only 
if the absolute temperature is in its turn known (for example, from 
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the known electrical conductivity of the specimen). For a material 
with properties that are unknown beforehand, tfte experiment is not 
close. Additional determination of the magnitude EA is required. This 
circumstance is, no doubt, a disadvantage of the method. However, here 
it is necessary to emphasize that all methods which are based on the 
heating of a wire by a current suffer from this disadvantage to an 
equal degree, even those in which a use is made of calculation of 
formulas that do not contain an explicitly absolute temperature (it 
is necessary to know to which temperature the result has to be referred). 
The additional experiment for determining the degree of blackness (spec­
tral as well integral) of the same objects under the same conditions 
and on the same equipment will be described at the end of this section. 
For the present, we shall return to the determination of the heat con­
ductivity. 

Table 14. Reproducibility of the Values of the Coefficient 
k(-d ln e/dx) for Measurements on a Section 

of Wire to the Left or Right of the Rider With 
Displacement of Different Objects of the Differ­
ential Pyrometer. 

Section Objective 

.I k. c.:,-1 
(T = J7<>J' K) 

I 

II 

Average value 
·Maximum deviation' 
nne I 

1-ii 
2-il 
1-a 
2-i{ 

2,7t 
2,/G 
2,80 
2,70 

2. i·i 
1) 0.' -.o 

The accuracy of the determination of the absolute temperature T 
m 

is composed of the accuracy of the determination of the brightness 
temperature, which is --0,5%, and the accuracy of the recalculation 
of the brightness temperature to the absolute temperature. The latter 
depends on the error of the determination of EA. Taking into account 
that EA can be determined to an accuracy of 5~10% (see below), we 
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find an error in the recalculation""' 0. 5%. The total error in the 
determination ofT amounts, thus, to 1%. 

m 

The magnitude of the correction for the temperature dependence 
of the specific resistance in integral degree of blackness ~ can be 
found directly from formula (5.4) from the results of the measurements 
of T and I. The values of the correction ~ are in most cases small, 

m 
amounting to several percent, (only in exceptional cases, as for ex­
ample for molybdenum at temperatures > 2,200°K does this correction 
reach 20%). Accordingly, the errors become reduced through the in­
accuracy in the determination of ~ usually to not exceed fractions of 
a percent. The maximum error in the determination of the heat conduct­
ivity, in accordance with the above presentation consists of the double 
error in the determination of k ( 4-6%) , th,e error in the determination 
of T (1%) and of the error in the determination of s in L (each ""'1%); 

m 
The errors in the measurements of I and V are considerably smaller. 

The total error, thus, does not exceed 7-9%. (We do not take 
into account the errors of reference, the magnitude of which depends 
on the temper~ture coefficient of the heat conductivity; this error is 
usually negligibly small.) The natural scatter of the results of 
measurements does not, as a rule, exceed this maximum magnitude. For 
illustrating the reproducibility of the results of the measurements 
under different conditions, we give Table 15 which was obtained in ex­
periments with wolfram [93, 107] (see also §23). 

Table 15. Reproducibility of Results of Measuring the 
Heat Conductivity of Wolfram. 

Object, Conditions of Measurement 

Foil 60 microns thick, dia. of rider 0.2mm, 
round diaphragms in the instrument; 

Foil 60 microns thick, dia. of rider 0.3 mm 
round diaphragms 

F~il 60 microns thick, dia. of rider 0.2mm, 
diaphragms are in the form of slots 

Wire 0,2 mm in dta., dta, of rider 0.2 mm, 
diaphragms are in the form of slots 

Average value 
Maximum deviation 
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1. 21 

1.17 

1.18 

1.10 
1.17 
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As observed above, the accomplishment of a close experiment in 
determining the heat conductivity by the method under consideration 
presupposes the possibility of determining the absolute temperature of 
the object. This possibility can be realized only in two ways: (1) by 
performing additional experiments on determining the electrical don­
ductivity, when the object is placed within the model of an absolutely 
black body; in this case, the true temperature in the experiment for 
determining heat conductivity is found from the values of the resist­
ance of the specimen, in comparison with the brightness temperature 
gives in this case values of the spectral degree of blackness, the 
integral degree of b~ackness is determined from the formula (4.59); 
(2) by determining the spectral degree of blackness under conditions 
when the very test object forms a similitude of an absolutely black 
body; the value of the absolute temperature makes it possible in this 
case to find also the electrical conductivity in the degree of black­
ness as functions of the temperature. A realization of the first of 
these ways is in principle simple. The object is placed within a long 
tube which is heated by current or by an outside heater. The true 
temperature is determined in a small opening of this tube. The nega­
tive aspect of this method is the need to have a special, comparatively 
cumbersome (it is necessary to have a sufficiently long section with a 
constant temperature) and powerful furnace which would make it possible 
to perform optical measurements of the temperature and which would 
have electrical leads for determining the electrical conductivity of 
the specimen. At temperatures above 2,000°, the performance of such 
experiments involves great difficulties. These difficulties are 
absent in the second test in which the role of an absolutely black body 
should be played by the specimen itself which is rolled into a tube or 
into a spiral, In this case, there is not need to utilize a separate 
furnace or chamber. Measurements can be carried out under the same 
conditions as in the experiments for determining the heat conductivity 
and within the same temperature range, that is, at temperatures above 
2,000°, The second advantage of the method under consideration is the 
possibility of internal control of the experiment. Actually, a study 
of the specimen--marble of a black body--makes it possible to determine 
simultaneously the functions p(T) and sA(T0). In this case, the first 

as well as the second functions can be utilized for the independent 
determination of the values of the true temperature of the object in 
experiments for determining the heat conductivity: information on 
the temperature of the object becomes all the more superfluous. Thus, 
the additional experiments of the examined type make it possible to 
accomplish by means of the same equipment a close circle of measurements 
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of a complex of magnitudes: heat conductivity, electrical conductivity, 
integral spectral degrees of Q"lackness. A description of the experi­
ment in this direction is given below. Let us examine at first the 
objects in the form of a foil. The literature [108] describes three 
models of an absolutely black body, which can be made from a strip of 
foil. The first model represents a strip folded lengthwise in such a 
way that a wedge-like gap with an angle of approximately - 10° forms 
within the two halves. This model is one of the simplest, but at the 
same time it has a number of disadvantages: it requires the introduc­
tion of comparatively large corrections, there is danger of formation 
of temperature difference along the resulting wedge (across the strip 
of foil). The second model--a cylindrical spiral with narrow gaps 
between the turns--can in principle better assure the degree of black­
ness close to one; however, the practical. accomplishment of this model 
with consideration of the expansion of the metal at high temperatures 
and the sagging of the spiral is sufficiently complex. The third 
model--a tube with a small opening--is the best as regards the ap­
proach to conditions of an absolutely black emission, however, it is 
not a simple matter to prepare an integral tube from foil. The dis­
advantages inherent to the three examined models of an absolutely blac 
body have justified the work involved in the study of another fourth 
model which is a tube rolled from a strip of foil in such a way that 
the non-linking edges of the strip form a comparatively narrow (0.3-
0.5 mm) slot. Specific evaluations of the magnitude of the effective 
degree of the blackness of emission of the slot lead to the conclusion 
that this magnitude is sufficiently close to one. Thus, for a tube 
of the diameter of- 1.5-2 mm, E - 0.5 and for a wide slot of- 0.4mm, 
the effective degree of blackness is eef = 0.96, that is, the correc-

tion for the "nonabsoluteness" amounts to 4% (for details see [109]). 

For specimens in the form of a wire, a model was tested which 
has the shape of a long cylindrical spiral with a relatively small 
distance between the turns. Unlike the model with a spiral made of 
foil emitted by a "window," here there were no gaps between the turns 
of the spiral but the end of the spiral. For oblique beams of em­
ission which comes from within the spiral, the integrals between the 
turns play a lesser role and the effective degree of blackness of such 
emission is comparatively close to unity, although naturally also not 
so close as for the preceding model. Thus, for a spiral made of wire 
0. 2 mm in diameter with a distance between the turns -o .1 mm for s = 
= 0.5, the effective degree of blackness £ef is equal to 0,93 (see 

[109]). 
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In performing measurements with the described models of the black 
body, the specimens were placed in the same vacuum chamber as during 
the measurements of the heat conductivity (Fig. 12). In experiments 
with a foil, the tube, which is made by rolling a foil, is plac~d hori­
zontally. One end of it is secured to the current lead and the other 
is tightened by a spring and the current is fed to it through a flex­
ible conductor. In two places of the tube, probes were connected to 
it (they were passed through the tube and tightened by loads). In ex­
periments with wire, the spring was suspended vertically in the chamber, 
and the probe caps were fastened near the ends of the spiral. For 
sighting the pyrometer, a prism with complete internal reflection was 
placed on the lateral surface of the spring within the chamber (in 
processing the results, a correction was made for the attenuation of 
the emission by the prism) . 

The determination of the spectral degree of blackness of the 
material is related with the determination of relatively small differ­
ences of the reciprocal values of the absolute values of the brightness 
temperatures on the surface of the tube and the slot: 

"h (' 1.. l \ ln e~. = __3.;_ ---- -r-- J· 
. eef k T elk pov . (5 .16) 

For this reason, the error in determining €A in these experi­
ments is incidentally and always comparatively large. Thus, in using 
an optical pyrometer OMP-19, which assures a relative error in the 
determination of the temperature amounting to 0.5%, for a wavelength 
A= 0,66 microns, the error in determining €A amounts to -20% of 
1,000°K and - 10% at~ 2,000°K. These errors pertain only to individual 
measurements and are essentially governed by the random error due to 
inaccuracy in determining the temperatures. The statistical averaging 
of the series of measurements can to a considerable degree exclude 
these random errors and decrease the total errors severalfold. 

As an example of the determination of the spectral degree of 
blackness, we cite the results of measurement for molybdenum wire 
0.2 mm in diameter (Fig. 14). The degree of blackness was determined 
for a spiral of ~1 ... 1.2 mm in diameter, 6-8 centimeters long with a 
distance between the turns equal to 0.07-0.1 mm. Each point on the 
curve was obtained by averaging four separate measurements. The maximum 

- 126 -

• 

• 



deviation of the point from the averaging straight line amounts to 
5%, the average deviation :i:s 1. 5%. The dashed curve in this figure 
shows the data by Worthing (see [108]). The maximum difference (at 
1, 200°K) amounts to -10%, The existence of such divergence from the 
Worthing data, although small, can partly be determined by the dif­
ference in the surface of the specimens; in the Worthing experiment, 
polished specimens were used, 
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Figure 14, Temperature function of the spectral 
degree of blackness of molybdenum wire. 

The error in determining the true temperature, obtained by re­
calculating the measurements of the blackness temperature by means of 
the values of the spectral degree of blackness, found by means of the 
described method, can be found by the aid of formula (5.16). If the 
maximum values of 20-10%, which are valid for individual measurements, 
are taken as the errors in the determination of EA, then the total 
error in determination of the true temperature would amount to 1.5%, 
if the error in determining the brightness temperature is 0.5%. For 
averaged and smoothened values, the errors of EA will at least be 
half as large in the maximum error in determining temperature amounts 
to """ 1%, 

It was observed above that the experiments with models of an 
absolutely black body, which have been made from a specimen, make it 
possible to perform internal control of the measurements of the 
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totality of the magnitudes d--p. This control can be carried out by 
comparing the values of the true temperatures found from the functions 
EA(T) and p (T) or by comparing the values of p (T) obtained in experi­
ments with an absolutely black body and with a specimen under condi­
tions of measurements of the heat conductivity (tightened specimens). 
A comparison of the functions p(T), which has been described in [109], 
has shown that compatible values with an accuracy up to the errors of 
one or another experiment are obtained. 

In conclusion, we wish to dwell on the determination of the 
integral degree of blackness. Values of £ can be found on the basis 
of the relationship (4.59), from which it follows that 

r-f'!. 
8=--

SpcrP 

This formula can be written in a more convenient form: 

. IV e=--. 
LpcrP 

(5 .17) 

(5. 18) 

where V is the drop in voltage between the probe taps which are resist­
ance of L from one another. 

The maximum error in determining £, in accordance with this 
formula, is equal to the quadrupled error in the measurement of the 
temperature (4%) and the error in the measurement of the geometric 
parameters L and p (1% + 1%), which amounts to a tot·al sum of 6%. The 
results of the determination of the integral degree of blackness of 
the same specimen of molybdenum wire for which data were obtained on 
the spectral degree of blackness shown above is illustrated in Figure 
15. 

The maximum deviation of points from the averaging straight line 
on this diagram does not exceed 5%, the average deviation amounts to 
2%. The dashed line in the figure shows the Worthing data (see fl08]). 
The positive deviations from these data, just as in the case of the 
spectral degree of blackness, can be explained by the fact that the 
measurements by Worthing were carried out with polished specimens. 
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In confirmation of this explanation, we can refer to 1110] where it is 
shown that the degree of blackness of molybdenum, just as this should 
be true for all metals, depends substantially on the degree of rough­
ness of its surface. Data in [110] for a strongly rough specimen of 
molybdenum lie .. above those shown in Figure 15. 
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Figure 15. Results of the measurement of the 
temperature function of the integral degree 
of blackness of molybdenum wire. 

In concl~g the presentation of the procedure for determining 
the degree of blackness~ we wish to emphasize once more that measure­
ments of the complex of thermophysical measurements such as the heat 
conductivity, electrical conductivity, spectral and integral degree of 
blackness, can be accomplished in a single experiment with the same 
equipment within a temperature range from~ 1,000°K to temperatures 
limited only by the intensive vaporization of the test object (in case 
of a noticeable vaporization~ the range of maximum temperatures that 
can be measured can be raised if the measurements are carried out not 
in vacuum but in an atmosphere of a pure inert gas). We wish to observe 
here also' that the same equipment (with small changes) and the same 
objects can be utilized also for determining the heat capacit;ies with­
in the same temperature range (see§ 19). Such complex measurements 
of all thermophysical parameters of a material are, of course, particu­
larly valuable. 
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Chapter I II 

Non-Steady Methods for Measuring Thermal PropertiE 

§6, False Methods. Utilization of a Method 
With a Standard for Liquid Metals 

It was observed in Chapter 1 that a study of non-steady processes 
gives in principle considerably more information on the thermal pro­
perties of the system in comparison with the amount of information in 
the case of steady conditions. This circumstance is related, in the 
first place, with the fact that the temperature fields for non-steady 
processes depend not so much on the coordinates but also on one more 
variable--time; the number of independent variables increases and, 
in accordance with this, the volume of information also increases. On 
the other hahd, the basic equation which describes the space-time dis­
tribution of the temperature--the heat conductivity equation--in the 
general, non-steady case includes a new, in comparison with a steady 
case, parameter--the volume heat capacity. This makes it possible to 
utilize the increased volume of information not only for expanding 
the diversity of methods for studying the heat conductivity of sub­
stances, but also for carrying out measurement of other thermophysical 
characteristics such as heat capacity and temperature diffusivity. 

The great adversity of non-steady experimental methods, which 
differ not only in the space symmetry of the test temperature field 
and in the nature of measurements of the temperature with respect to 
time but also in the beams of the very experiment, that is, with re­
spect to the magnitudes that are precisely being determined in the 
experiment, hinder greatly the classification in the systematization 
of the corresponding method. Nevertheless, it is believed that the 
classification of measurements method with respect to the indication 
of the magnitude that is precisely being measured cannot be the best, 
because in this case, measurement methods which have very little in 
common with one another get placed in one group, while the measurement 
methods of different magnitudes, which utilize the same measurement 
system, are dispersed; inconveniences arise in describing experiments, 
the aim of which is the measurement, not of any one magnitude, but of 
the entire totality of the thermal properties, (namely such methods 
which have been developed recently are of the greatest practical value). 
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It seems more judicious to use the classification of non-steady methods, 
the basis of which is, in the first place, the difference in the nature 
of the change of the temperature field with respect to time and in the 
second place--the difference in the nature of heating (external, in­
ternal) and then, just as in the case of steady methods--the symmetry 
of the isotherms of the temperature field and the more frequent char­
acteristic signs. We shall adhere henceforth to precisely such a 
system. 

With respect to the nature of the dependence of the temperature 
field on the time, the Soviet literature has adopted a classification 
of metals into two large groups. The first group includes metals for 
which the initial conditions are pertinent, that is, the temperature 
field at a time when the test process started. In the methods of the 
second group, on the other hand, use is made of a process in its stage 
when the initial conditions do not play a role--so-called regular 
conditions. In this section we examined only the first group of 
methods. As regards studies of the thermal properties of metals at 
high temperatures, these methods have not been developed substantially, 
which makes it necessary to limit the presentation to general informa­
tion, making an exception only for the pulse.method of heating small 
flat specimens, which is successfully being used at the present. In 
order to familiarize the readers with many highly diverse methods of 
non-regular conditions, which are used for the measurement of the 
thermal properties of four conductors of heat, the reviews in [111, 
112, 113J are recommended. The examined group of non-steady methods 
can be divided into two sub-groups with respect to the method of ere-

. ating temperature changes. In the first sub-group of methods, the 
temperature changes are achieved by connecting (most frequently for 
brief periods of time) surface sources of heat. These are the so­
called pulse methods. In the second sub-group, the test objects are 
brought into thermal contact with bodies which have another temperature; 
the thermophysical characteristics of these bodies are assumed to be 
known and for this reason such methods are called methods with a stand­
ard. 

Let us now pass on to an examination of pulse methods. The 
simplest is the accomplishment of the method under conditions with the 
space change of the temperature unidimensionally, in the first place 
for flat isotherms. As is known from §4, the general equation of heat 
conductivity for specimens in the shape of cylinders reduces itself 
to the unidimensional equation provided there is smallness of the 
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Biot criterion in which the transverse dimension of the cylinder 
figures. Another maximum case, when one can examine flat isotherms 
is a specimen in the shape of a plate with a thickness that is much 
less than the transverse dimensions. The distortion of the isotherms 
in this case will be observed only near the edges of the plate;, in 
the central region of the isotherm, the isotherms will be flat. (The 
same conditions can obviously take place for a massive specimen which 
is limited on one side by a flat surface if the space-time changes of 
temperature are realized only on a small distance from this surface, 
in comparison with the transdiameter of the specimen.) 

Let us examin~ one of the most developed theories of the post 
methods which had been worked out specifically for specimens in the 
shape of a plate [114]. The essence of this method is a study of the 
time dependence of the temperature on the end surface of a flat speci­
men after the opposite side had been subjected to pulse heating. (By 
pulse heating we mean the liberation of a finite amount of heat during 
a small, within the bounds of an infinitely small time.) The theory 
of the method assumes that as a first approximation, the surfaces of 
the specimen can be considered as heat-insulated. The solution of a 
unidimensional non-steady equation of heat conductivity 

(6 .1) 

provided that ·at the moment of action of the heat pulse the temperature 
of the specimen was the same and equal to 0 

T(x, 0) =- 0, 
(6. 2) 

has in this case the form 

. ·; :· .. . . )] •q n:rx n·rt· t 
T(x, t) = --- [ 1 + 2 ~cos-- exp (- ----v- a . 

~pL ~ L, 
. ~I 

(6. 3) 
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Hence, for the point x = L on the end of the specimen, we get 

and 

T(L, t) = --_q_ [r + 2 ~( -ltexp (-~at)-]. 
CppL ."-1 - £2 
' ' _11=1 

For in dimensionless variables 

T 
'f=-

T .. 

where TM is the asymptotic maximum temperature 

00 

"C = 1, + 21: (-l)"exp(- nz~). 
II= I 

(6 .4) 

(6. 5) 

(6. 6) 

(6. 7) 

The curve of the function T (z;;) is shown in Figure 16. This curve 
can be utilized for determining the temperature diffusivity a from the 
results of the change in T during a fixed moment of time t and from 
the magnitude ~· For this it is sufficient to find from the curve 

the value of z;; corresponding to the given ratio T/TM' and determine 

from it a. The optimum conditions for carrying out such a procedure 
correspond to the values of T/TM = 0.5. If T/TM = 0.5, then the temp-

erature diffusivity can be determined directly from the formula 

(6. 8) 

where t 112 is the time required for heating the surface, x = L to half 
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of the maximum temperature. Just as in all experiments which deal 
with the measurement of the temperature diffusi vi ty, in this cas·e a 
knowledge of the absolute values of the temperature and of the power 
of the heating is not required (see §1). 
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Figure 16. Curve of the dependence 
of the dimensionless temperature 
T on the dimensionless time ~ in 
experiments with pulse heating of 
the plate. 

In experiments by Parker 
et alia [114], the specimens 
were metal plates 1-3.5 mm 
thick and ~ 2 cm2 in area. 
The pulse heating was 
accomplished by illuminating 
the specimen with emission of 
a flashbulb. The temperature 
measurements were recorded by 
a thermocouple. The measure­
ments were limited to room 
temperatures. The error of 
the measurements amounted to 
5%. 

A weak spot in the ex­
amined method is a disregard 
of the heat loss from the end 
surface of the specimen x = L, 

which is particularly dangerous at high temperatures. The problem of 
errors introduced by this effect has been examined in [115] where a 
generalized solution has been obtained of the corresponding problem and 
values are given of the correction to the formula (6.8). The magnitude 
of the corrections is naturally an unambiguous function of the Biot 
criteria: 

8
. aL 
'=7· (6 .9) 

The correction are small for Bi of - 0.1 and smaller ,which makes 
it possible to utilize this procedure of measurements under conditions 
of vacuum (heat exchange by emission) up to temperatures of - 3 ,000°K, 
if the thickness of the specimens is equal to- 1 mm (see Table 1). 

Another pertinent problem of the procedure is the role of the 
finiteness of the heating time which is being subjected to analysis 
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in I 116] . In this same reference, brief descriptions are given of the 
measurements which have lJeen carried out at temperatures up to 700°C. 
A laser was utilized as the source of pulse heating. 

The method by Kennedy et alia {117] can be considered a variant 
of the method of pulse heating, in which the temperature diffusivity of 
the specimen is determined by comparing a series of solutions of the 
heat conductivity equation, which have been obtained on an electronic 
computer, with experimental curves of the temperature change wi tli time 
in a fixed point of the specimen. In determining the calculated curves, 
information of the initial and boundary conditions of the specimen, 
which have been obtained in experiment, are fed into the machine. Thus, 
the authors used this method to determine t~e temperature diffusivity 
of iron up to 1,100°C, 

The prospects for the development of pulse method of measuring 
temperature diffusivity, besides projecting it into the region of high 
temperatures, are related apparently with the possibility of accomplish,. 
ing this method as a complex method which makes it possible to determine 
not only the temperature diffusivity but also the heat capacity and con­
sequently also the heat conductivity. On the basis of the solution of 
(6.4), it is possible to obtain the heat capacity if TM and Q are known. 

The determination of Q can in principle be accomplished by utilizing 
pulse heating by means of electron bombardment. Work in this direction 
seems expedient. 

Let us now pass on to the procedure with a standard. These 
methods are based on the solution of the heat conductivity equation for 
the test and standard media with boundary conditions of the fourth type 
as conditions of the conjugation of these solutions. It follows from 
this that the value of the heat characteristics of the standard medium 
is necessary. The source of information in these methods is as a rule 
the dependence of the temperature in one or several points of the 
standard on the time. The methods with a standard, which have been 
worked out in the first place by the efforts of A. V. Lykov and his 
students, make it possible to determine in a convenient manner the 
complex of heat characteristics of poor heat conductors (see, for 
example,-the review {113]). These methods have, however, not been de­
veloped for metals. But such a situation does not at all indicate 
that a utilization of the methods with a standard for metals is in­
expedient. It seems to us tftat a number of variants of these methods 
could successfully be utilized specifically for liquid metals. Below 
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is described work with some of the variants of the method with a stand­
ard-,-the method for determining tfle coefficient of heat activity of 
liquid metals, 

The coefficient of heat activity of a substance is, according to 
·A. V. Lykov I6J, called the magnitude 1 

b = _;._ = VA.c p 
Ya p 

(6 .10) 

This combination of heat characteristics shows up in a descrip­
tion of the non-steady temperature field in systems of boundary con­
ditions of the second, third and fourth types and during the calculation 
of the non-steady flows of heat in the medium. In its physical sense, 
the heat activity is similar to acoustic impedance; this analogy is, 
however, not complete [118]. By itself, heat activity, although it has 
a direct practical significance, still represents limited interests. 
However, its utilization in combination with other parameters makes 
it possible to determine other heat characteristics and, in the first 
place, the heat conductivity. Such a roundabout way of determining 
the heat conductivity is in principle and theory to the method of 
direct measurement. Nevertheless, in a number of cases one should not 
disregard even such indirect methods which could serve as a convenient 
control of the results of direct measuremen.ts and sometimes as their 
substitution. This pertains, in the first place, to liquid metals and 
semiconductors, since the ~eans for their study are rather limited. It 
is particularly expedient to combine measurements of the coefficients 
of heat activity with measurements of the temperature diffusivity. 
Actually, in this case a maximum error in the determination of A and 
c will be made up of the error of the determination of b and half of 

PP 
the error of the measurement of a: 

~). = ~(CpP) = _1_. ~a + ~. 
). CpP 2 a b 

(6 .11) 

1 The terminology here has not been fully established. The literature 
has terms such as the coefficient of heat penetration, the coefficient 
of heat assimilabil:i:ty, or the coefficient of heat accumulation. 
Henceforth, we shall instead of the term coefficient of heat activity, 
write simply heat activity. 
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If it is taken into account tnat the errors 0a/a and ob/b are 

approximately equal lla M -:::..-=n, . then it follows from tnis 

that 
. a b. 

. "1 :o "(CpP.) :::.. } ,5n . 
1 CpP 

(6 .12) 

In the other case, however in utilizing the combination, the 
heat activity is the heat capacity 

and 

.&z .= 2 M + 2 "(Cpp). 
II b CpP 

Hence, even if it is taken into account that 

several times less than . tJb ' n = --'--1 , we get 
. b 

"
1 > 2n, 
1 

&r >2n . 
. II" 

(6 .13) 

(6; 14) 

can be 

(6.15) 

(6 .16) 

The combination of measurements of the coefficient of heat acti­
vity and of tne temperature diffusivity should lead, for this reason, 
to more accurate results. 
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Let us now pass on to the presentation of the essence of the 
described method for measuring the coefficient of heat activity .. Its 
basi:; is the simple "everyday" fact: during cold weather, metal objects 
seem to feel considerably colder than stone and wooden oojects. This 
circumstance is explained by the fact of the temperature, which becomes 
established upon contact of bodies with a different temperature, de­
pends fundamentally on the thermophysical characteristics of these 
bodies. An analytic study of the problem of the temperature distri­
bution in two semi-infinite media (each medium is a semispace) after 
their contact leads to the formulas [119] 

where 
z 

Erfc = l- -:;=Se-t.'~, 
. J' rE 

0 

(6 .17) 

(6.18) 

T~ and T~ are the temperatures of the bodies prior to contact, 

(6 .19) 

It follows from formula (6.17) that the temperature of the surface 
of contact (x = 0) does not depend on the time and is equal to 

(6. 20) 

This formula can oe written also as 
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(6.21) 

Thus, the ratio of the heat activity of two media can be found 
by measuring the constant temperature which becomes established on the 
surface of two extending bodies. If one of the bodies is a standard, 
that is, its heat activity is known, then such an experiment can in 
principle serve as a relative method for determining the heat activity. 

The method of determining the heat activity, which is based on 
the examined principle, was utilized by A. F. Chudnovskim for studying 
the heat activity of soils and grounds, that is for conditions under 
which at least one to two bodies participating in the experiment 
approaches semi-infinite state to the maximum degree [111, 112]. 

A detailed examination of the experimental conditions which 
apply specifically to metals, the details of which cannot be dealt 
with by us here, leads to the following ~onclusions. 

l. The conditions of smallness of the influence of the lateral 
heat exchange of the contacing bodies is the inequality 

_t «I, 
l' (6. 22) 

where T is the characteristic cooling (heating)time. Hence, it follows 
in particular that one of the bodies participating in the experiment 
can be placed within the heater, if the heating time in this case is 
not so small as to disturb the condition (6.22). 

2. Consideration of the difference in the transverse cross­
sections of the contacting bodies leads to the requirement 

Fo « l. (6.23) 
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3. Consideration of the infinity of the length of the specimen 
makes it necessary to satisfy the inequality 

~<0,06. 
La (6. 24) 

4. The existence of an initial temperature gradient in the 
specimens, equal on the order of magnitude to the initial temperature 
differences of the contacing surfaces, will little effect the final 
results if the cond~tion (6.23) is satisfied. 

5. Condition of smallness of the role of the non-ideality of the 
heat contact has the form 

b a -·---=- « 1, 
bt y at (6.25) 

where b and o are the heat conductivity and the thickness of the inter­
mediate layer between the contacting surfaces. ·A specific analysis of 
the resulting evaluations lead to the conc)usion that the correspond­
ing corrections are small for the time interval of 0.01 to 0.06-1.5 
sec provided the magnitude of the surface of the liquid metal differs 
little from the surface of the standard. Measurements of the temp­
erature during the time of the order of 1 sec is not complex and the 
examined procedure of measurements can be realized. 

The main problem in the practical accomplishment of this method 
of measurement, specifically with respect to metals is in the measure­
ment of the temperature of the standard--specimen interphase. There 
are two possible methods of measurement: 1) determination of the 
temperature from the magnitude of the thermal electromotive force 
which develops in the test metal--standard thermocouple, and 2) util­
ization of thermocouples or thermal probes located near the surface of 
contact. At first, let us examine the first method by dwelling not 
on all its possible variants but only on one of those that are most 
convenient ([118]). The basic system for accomplishing this method 
is shown on Figure 17. The liquid metal is placed in this case in a 
U-shaped tube; besides,the second elbow of the tube is kept at a 
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temperature of T
1 

which is equal to the temperature of the standard 

metal (for this purpose, the standard metal can be immersed in the 
elbow with the liquid metal or disequality in temperatures can be 
reached by artificial control). The measured difference of the potent­
ials is vl2' which is proportional to the difference in temperatures 

G--T
2 

and v13 , and proportional to T
1 

-- G. The ratio of the heat 

activities is in this case determined from the formula 

_!'1_. = -~ 
b 1 l"t:! 

(6.26) 

Figure 17. Schematic diagram 
for conducting the experi­
ment (method of contact with 
a standard). 

The accomplishment of the thermoelectric method of measuring pre­
supposes that the emf of the junction of the metal with a thermoelectric 
probe (wire) o~ the same metal is equal to zero or, in any case, is 
very small in comparison with v12 and v

23
. In practice, this takes 

place in a very small number of cases. As a rule, the wires and the 
corresponding sample, even if of sufficiently pure metal, have a notice­
able thermal emf. An exception is copper as well as iron samples and 
pair with annealed shavings from the same samples. Apparently, for 
other metals one can use as a thermoelectrode also small rods cut from 
the same specimen; however, it is clear that a need for special care 
about the smallness of the parasitic thermal emf s is a minus factor 
in this method of measurements. 
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The second method of measurements--with the thermocouple in a 
standard sample near the surface whlch contacts the test metal--is free 
of this indicated disadvantage in principle. 

The first of the variants of this method is shown in Fig. 18. 
The initial difference in temperatures in this variant is measured up 
to contact by means of thermocouples that are connected differentially 
as shown in Figure 18a. After this, the thermocouples are connected in 
Figure 18b; besides, the reading of the thermocouple is proportional 
to the temperature difference r 1--e. The ratio of the heat activities 

in this method of measurement should be determined from formula 

bt -= T1 -T~ -l = ~-1. 
T1 -e V13 

( 6. 2 7) 

This formula is somewhat less convenient that (6.26) because it 
error in determining the magnitude y = b 1/b 2 in this case is greater. 

Actually, it follows from (6.27) that 

(6.28) 

whereas formula (6,26) gives 

(6. 29) 

Thus, in the first case the error is 1 + y times greater and 
the utilization of the examined method of measurements leads to better 
results when b 2/b 1 is comparatively small, that is, the heat activity 

of the standard is greater than that of the test sample. 

Another variant of the same method of measurements is shown in 
Figure 19. 

- 142 -

• 



• 

• 

r, / 

! 
I 

3 
2 
{} 

Figure 18. Schematic for conducting 
the experiment. Variant with 
thermocouples. 
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Figure 19. Schematic for con­
ducting the experiment. 
Variant with thermoprobes. 

It differs from the first variant only in the fact that instead 
of thermocouples it has thermoprobes, which simplify somewhat the in­
stallation of the system (chiefly the junction 3 which should be lo­
cated as close as possible to the end). In order to determine the 
initial difference in temperatures in accordance with this system, it 
is, however, necessary to utilize the thermoelectrode of the standard 
material, which prior to the experiment should close the circuit as 
shown in Fig. 19a. The rest remain just as in the preceding variant. 
In accomplishing the second method of measurements, an important prob­
lem is that of correction for the thickness of the layer of the speci­
men that is between the surface of contact and the thermocouple. This 
correction can be written as 

(6. 30) 

For o- 0.05 em (which is practically realizable) and a- 0.2 

cm2/sec (iron), we find that the correction amounts to 6% fort- 1 sec. 
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Thus, this correction is not negligibly small, but it is still suf­
ficiently small that it can be taken into account precisely as a cor­
rection. It is plain that in this instance a substantial role is play­
ed by the fact as to how small it is possible to make the distance 
and with what accuracy it can be determined. 

0 / 
I 

1/ 

I 

s 6 7 8 g 
t sec' t sec 

Figure 20. Change in temperature difference in 
the measured metal with respect to time: a, 
test specimen with a diameter considerably 
greater than that of the standard; b, diameters 
of the test standard specimens are alike. 

Further we shall pass on to a presentation of the results of the 
practical study of different variants of the examined method for 
measuring heat activity. 

Measurements of temperature gradients in the standard and in 
the sample, as shown above, should be carried out during the time that 
ranges from - 0.1 - - 1 sec after contact. The measurement device 
should for this reason be of flow inertia. In order to measure the 
thermoelectromotive forces in the described experiments, use was made 
of an UF-220 device with a mirrorgalvanometer, which has a stabili­
zation time of -0.1 sec. The dependence of the measured emf on the 
time was recorded on a photographic film. Typical curves for the 
differences of the temperature in the test metal are shown in Fig. 20. 
The curve a corresponds to the case when the rod with- 1 em diameter 
was immersed in the liquid metal that was in a comparatively wide 
crucible. The observed temperature drop at time has a rather steep 
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character and the determination of v12 at the initial moment and in­

volves a certain indeterminacy. The curve b pertains the case when 
the transverse dimensions of the standard and the specimen were com­
paratively close: the determination of vl2 here involves no labor. 

From this one can make the conclusion th~t experiments should be 
carried out as much as possible under conditions for which the radial 
temperature gradients are not significant. This conclusion agrees 
in general with the results of the a priori evaluations carried out 
above. 

The first of the methods for measuring heat conductivity, which 
is based on the registration of the temperature of the surface directly 
from the thermoelectromotive force of the corresponding pair of metals, 
was tested on pairs of solid metals such as tin-copper, tin-iron. The 
taps were made from this same samples (tin strip and iron shavings) 
and, in the case of copper, a coppe~ wire was used. The temperature 
T 

1 
was room temperature (the standa1.·d sample and the junction of T 

1 
were brought into thermal contact). In order to carry on the registra­
tion of the thermal emf v12 and v13 , witho~t repeating the experiment 

a second time (only one registration system was available), use was 
made of a somewhat different procedure of measurements from that des­
cribed on page 104 ). It is precisely for this reason that, instead 
of the magnitude vl3' a determination was made of the magnitude v23' 

prior to contact, which, as can be seen from Figure 17 is proportional 
to T

1 
- T2 . In accordance with this, instead of formula (6.26), use 

was made of the formula 

ba T1-T. · V - = __ _:_ - 1 - _12_- 1 
b1 Tt- 0 - V ' 

IS 
(6.31) 

The results obtained in a series of measurements with the iron­
solid tin pair are shown in Table 16. (The values of v23 and v12 in 

the table are given in arbitrary units.) The table makes it possible 
to judge the reproducibility of results in this method of measurements. 
If it is taken into account that accuracy of the determination of v23 
and V 12amounts to - 2%, then the maximum of the individual measurements 
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of b
2
/b

1 
should be equal to approximately 10% without taking into 

account the errors of the fulfillment of the equality of the tempera­
tures (Ti-T1). Thus, the deviations of the measurement results from 

the average value can be considered consistent with the a priori eval­
uation of the error for the given conditions. The average value of the 
ratio b /bF which was determined in this experiment, coincides with-sn e 

in the limits of the accuracy of the measurements with the magnitude 
0.62 which is obtained from the data by R. P. Yurchak for the same 
samples of iron and tin [31, 33]. Similar experiments were carried 
out also with the irbn-liquid tin pair [118]. The results however, are 
of a preliminary nature so far and, for this reason, are not cited here. 

Table 16. Results of the Measure­
ments of the Ratio of the Co­
efficients of Heat Activity of 
Iron and Solid Tin. 

v.. I 
9,8 
9,5 
9,1 
9,6-
9,5 
9,7 

48,(8) 
45,(5) 
49 ,(8) 
52 ,(3) 

Average 

Maximum 

Average 

6 
5,9 
5.3 
5,8 
5,7 
5,8 

28 .(5) 
29,(0) 
31 ,(3) 
33 ,(5) 

Magnitude 

De vi at ion 

Deviation 

0,63 
0,61 
0,59 
0,65 
0,67 
0,68 
0,71 
0,68 
0,59 
0,56 

0,64 
12% 
60' 10 

Table 17. Results of the Meas­
urements of the Ratio of the 
Coefficients of Heat Activity 
of Iron and Liquid Mercury. 

90 
87 
87 
87 
87 
87 
86 
85 
86 
87 
AA 

Average 

Maximum 

Average 

17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
I6 

Value 

4,3 
·U 
-\,1 
4,1 
4,1 
4,1 
4,1 
4,0 
-\,l 
4.1 
4.-\ 

4,1l 
Deviation/ 7";,. 

:.zo, 
,I) 

Deviation 
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The second of the considered methods of measurements--with the 
utilization of thermocouples near the end of the standard rod--was 
tested specifically in determining the heat activity of liquid metal-­
mercury. In these experiments, the mercury was poured into an iron 
cup made by proper treatment of the end of a massive iron rod (Figure 
21). The diameter of the cup exceeded seomwhat that of the standard 
iron rod. Constantan probes 1 and 3 were welded to the surface of the 
iron, probe 2 was welded within the hold at a distance of- 0.4 mm 
from the end. The piece of fine shaving 4 was, prior to the experi­
ment, immersed in the mercury. The results of one series of measure­
ments are shown in Table 17 (the temperature is given in arbitrary 
units). 

Figure 21. Diagram of an 
experiment with. 1 iqutd 

It can be seen that in the 
series of eleven measurements the 
results are reproduced rather well. 
The maximum deviation from the average 
value does not exceed the calculated 
error which under these conditions 
amounts to 8%. (The error of the de­
termination is 

The average value of the ratio of the 
activities agrees with literature 
data 

mercury. The described studies, which 
are in the nature of "zeroing" ex­
ploratory experiments make it possible 

nevertheless, despite the limited nature, to conclude that further work 
in this direction is justified, inasmuch as there are ground for assum­
ing that measurements of such a type could be sufficiently convenient 
for liquid metals and semiconductors. 

- 14 7 -



§]. Methods of Controlled Conditions 

As already observed, the regular thermal conditions are used to 
designate the stage of the process in which the space-time changes in 
temperature cease to depend on the initial conditions and thereby ac-

- quite a more general "regular" character. At the present time,. it is 
customary to distinguish three types of regular conditions depending 
on the nature of the conditions which lead to changes in temperature. 
The regular conditions of the first type take place upon ·heating or 
cooling of the body of the medium with a constant temperature. In 
another case, when the temperature of the medium varies at a constant 
rate, regular conditions of the se'cond type are ,realized. Finally, 
regular conditions of the third type correspond to a process of a 
periodic change in temperature. In this section, we present briefly 
problems pertinent to the utilization of regular conditions of the 
first and second types. The regular conditions of the third type, as 
more productive and promising, will be dealt with in succeeding sections. 

Let us examine the regular thermal conditions of the first type. 
The basis of the theory of these conditions is the classifical method 
of solving non-steady problems of heat conductivity--the method of sep­
arating variables [6], the essence of which is in presenting the gen­
eral solution of the heat conductivity equation as the sum of specific 
solutions each of which is the product of a function that depends only 
in the coordinates, on a function which depends only on the time (this 
latter function is the exponent): 

"" 
T- T0 = L Api (x, y, z) e-mit, (7.1) 

- l=O 

where T0 is the temperature of the surrounding medium. 

The functions U, in this case satisfy the differential equation 
l 

(7.2) 
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and the boundary condition which, for the problem under consideration, 
is the condition of Newtonian heat exchange 

(~+~) =0. 
dn }. s 

(7. 3) 

Solution of the equation (7.2), which satisfies the condition 
(7.3), is possible only for discrete values of the numbers m of the 
characteristic numbers. The corresponding discrete totality of the 
solution U. is designated as the system of characteristic functions. 

1 

The summation in formula (7.1) is carried 
the characteristic numbers and functions. 

out thus in accordance with 
The factors A. in (7.1), 

1 

which are the coefficients of the expansion of the function 

~r (x~ y, z, O) 

conditions. 

in a series by functions of U., are of initial 
1 

An important characteristic of the totality of the characteristic 
numbers m. is that they are all positive numbers which form an in-

1 

creasing sequence, that is, each m. is greater than m. 1 and less than 
1 1-

m. 1. 1+ 
Hence, it follows that with increasing t, each of the members 

of the sum (7.1) decreases more rapidly than the preceding member, so 
that the greater the time since the start of the process, the smaller 
the numb.er of members of this series which is real; the space distri­
bution of the temperatures (T (x, y, z, t) for sufficiently large t 
will without limit approach the asymptotic 

T -T
0

= AU(x, y, z)e-mt. (7.4) 

The stage of the process where T(x, y, z, t) does not differ 
practically from the expression (7.4) comprises the regular thermal 
conditions of the first type [120]. 
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Let us examine the basic characteristic specifities of the regular 
conditions of the first type. The magnitude m, which bears the designa­
tion of the rate of cooling (heating), is a parameter that does not 
depend on the coordinates, as a result of which the changes in tempera­
ture in any point of the body is the same function of time. The 
temperature fields thus vary similarly themselves; the ratio of the 
temperatures 

T(x. y, :z)- T~ 

T (x' , y' •.. :z') - T e 

does not depend on the time. 

U (x. '/. z)' 

U (x'. L". :z') 

The magnitude of the rate of cooling, which is determined from 
equation (7.2), can, in totality with the condition (7.3), be a 
function only of the temperature diffusivity a, the ratio a/A, and 
the characteristic dimension L: m = m(a, a/A , L). The dimensionless 
expression of this dependence should have the form 

p = f(Bi), (7.5) 

where 

;-;;; 
p = V --; L & Bi = a~ • (7.6) 

From considerations of similitudes, the function f should be the 
same for geometrically similar bodies. 

An important sequence of (7.5) is the assertion that for 
Bi + oo (intensive heat exchange on the surface of the body) 

a= m""'L2 canst = mocK, (7. 7) 
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where K is the so-called coefficient of form--in magnitude which is 
determined only by the form and the geometry of the body. 

The existence of a simple dependence of temperature and time, 
which is the same for all points of the body and this characteristic· 
of the stage of the controlled conditions of the first type and is a 
simple relationship of the magnitude of the rate of cooling m with the 
thermal characteristics of the medium, makes these conditions a con­
venient means for studying the thermal properties. Numerous variants 
of the corresponding methods of measurement--methods of regular con­
ditions of the first type have been developed by G. M. Kondrat'yev 
and his students [120, 121]. These methods have found wide use in the 
study of the thermal properties of a solid body and partly of liquids 
at low temperatures. As an example, we shall examine one of the most 
convenient methods--the method of measuring the temperature diffusivity 
("method of the a-calorimeter"). 

It follows from formula (7.7) that a temperature diffusivity of 
a body can be found directly from the magnitude of the rate of cooling 
of the body under conditions when the Biot number is sufficiently 
large (with intensive mixing of the cooling medium). The determination 
of the rate of cooling m does not present any problem because it fol­
lows from equation (7.4) that 

m=-
In (T (t1)- T0)- In (T (!2) -- T,! 

(lz'-ft) 
(7. 8) 

One needs the measurements of the temperature difference of one 
point of the body T(t, r) for two moments of time and the temperature 
of the medium T0 (instead of the differences T - T

0 
in this formula, 

the differences of the temperature of two points of the body 

T
1

(t) - T
2
(t)). can figure in this formula. The measurements, conse­

quently, are sufficiently simple. It is not, however, possible to 
apply such a procedure to metals because, in view of the large magni­
tude of the heat conductivity of the metals, it is impossible to reach 
sufficiently high values of the Biot criterion even with the utiliza­
tion of liquid metal heat carriers. One of the possible roundabout 
ways is to conduct the experiments for infinite Biot values. 
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Experiments of such a type require a knowledge of the magnitude of a, 
which can be found by conducting experiments of cooling under the same 
conditions of specimens of standard metals the heat constants of which 
are known [122]. Such a type of experiment, which is relative in its 
nature, involves of course larger errors and is less convenient'. 

* * * 
Let us now pass on to an examination of the regular conditions 

of the second type. As already mentioned, this type of regular con­
ditions is realized during heating (or cooling), of a body of the 
medium with a temperature that varies with time in accordance with the 
linear law 

T 8 - T00 + kt. 
(7.9) 

An analytic study of the, general type of the solution of the 
heat conductivity equation. with boundary conditions of the third type 
(Newtonian heat exchange) leads to the conclusion that an asymptotic 
expression which the solution of the problem approaches, should for · 
sufficiently large values of t have the form [6, 121] when 

T = T00 + kt + 0 (x, y, z), (7.10) 

besides, the function· of 8, which does not depend on the time, should 
satisfy the equation 

"8 k v- =-
a (7.11) 

and the boundary condition 

(~+~) =0. 
\dn AS' (7.12) 
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The solution of (7.10) characterizes the space-time variation 
in the temperature of a body during the stage of regular conditions 
of the second type. The basic distinguishing characteristic of this 
is the constancy of the derivative aT/at for all points of the body, 
the same rate of temperature change. It follows in particular from 
this that the difference in temperatures of any two points of the 
body under regular conditions of the second type does not depend on the 
time (the temperature field changes with time differently for all points 
of the body). Such a nature of change in the temperature fields with 
time is naturally very convenient in the practice of thermal measure­
ments. 

For specific evaluations of the methods for determining thermal 
constants in experiments that are based on the utilization of regular 
conditions of the second type, we shall refine the dependence of 8 on 
the parameters a and a/A. An 'analysis of the dimension of the corres­
ponding magnitudes leads to the conclusion that the only form of the 
dimensionless representation of the function of 8 is as follows: 

(7.13) 

(The only pyrometric unit with the dimension of temperature is kL 2/a. 

where L is a characteristic dimension.) 

The function (7.13) should be universal for geometrically similar 
bodies. Further, on the basis of the type of the boundary condition 
(7.12), one can define specifically also the dependence of~ on the 
Biot par~meter by.writing 

~- = p(_!_ _}!_ -~)- _l (_df__). 
kL' L ' L ' L B i d _'!_ 

L s (7.14) 

where F is the function that satisfies the equation 

(7.15) 
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and the boundary conditions 

(f)s = 0. 

An important result stemming from the expression (7.14) is 
difference in temperatures of two points of the body under 
conditions of the second type is inversely proportional to 
ture diffusivity 

(7.16) 

that the 
regular 
the tempera-

(7.17) 

The simple method of measuring the temperature diffusivity, 
which reduces itself to the measurement of the constant difference of 
temperatures in two points of the body is based on the utilization of 
(7.17). This and other similar methods of measurement, which have been 
developed by A. V. Lykov and his students, found use for measurements 
of the thermal properties of nonmetallic materials [6, 121] (for the 
utilization of such a method for liquids see [123, 124]). The pos­
sibilities of using the method of regular conditions of the second 
type is not exhausted however by this. A rather large diversity of 
experiments can be realized in an aggregate study of the temperature 
fields as well as of the heat flows on an external surface of the 
bodies. Such a type of experiment requires naturally the realization 
of other boundary conditions than the conditions of heat exchange 
(7.12). Let us clarify first of all that the bases of the theory of 
regular conditions remain unchanged in this instance. 

Let us start from the fact that the boundary conditions of the 
third type, written in the form (7.12), change in a natural manner to 
boundary conditions of the first type (the assignment of temperatures 
of the surface) when Bi ~ oo • This circumstance follows directly from 
(7.12) because when Bi ~ oo the first member of the relationship 

-" ....:..:.:._ I + () o= 0 j (. ··'I I -
a· d:.),. ~s '- approaches zero, which is equivalent to the 

setting of the temperature of the surface as T = T
0

. Thus, we come to 
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the conclusion that the basic formula of the theory of regular condi­
tions (7.10) remains valid in setting the temperature of the surface 
of the body, which varies linearly with time. 

On the other hand, it follows from formula (7.10) that the flow 
of heat on the surface is under regular conditions of the second type 
constant. It is 'easy to understand that the inverse assertion should 
be valid also.. • 

In assuring ~onstancy (with respect to time) of the heat flow to 
the surface of the body in the course of a certain period of time, 
regular conditions of the second type are established. Actually, the 
solution of the type (7.10) can satisfy the equation of the heat con­
ductivity as well as the boundary condition 

(or) = q, 
on s 

(7 .18) 

besides, in t.he general case (q = q(x, y, z) (the condition (7.12) can 
be regarded as a specific case of this, more general condition). 

The method of heating with a constant heat flow makes it pos­
sible to utilize the regular thermal conditions of the second type as 
a means for determining the temperature diffusivity at considerably 
higher temperatures in comparison with the method of heating in the 
medium the temperature of which varies linearly with time. An example 
of such a high-temperature experiment is that in [125]- in which the 
test cylindrical specimen is placed in a vacuum within a hollow cylin­
der that is heated with high-frequency currents. Under definite con­
ditions, the heat flow to the surface of the specimen change little 
with ·time and regular conditions were realized in the system (the 
method provides at_ the same time the possibility for introducing a 
small correction for the inconstancy in the heat flow). The temperature 
diffusivity was determined from the difference between the time during 
which the temperature on the axis of the specimen becomes equal to a 
certain fixed value in the time during which this same temperature was 
achieved in the point close to the surface. Measurements of the temp­
erature in this reference were conducted by means of a photoelectric 
pyrometer which was sighted from the end of the specimen on a channel 
(drilled hole) on the axis and on a channel_parallel to it near the 
lateral surface (the experiment in this case should be repeated twice). 

- 155 -



The method was utilized for measurements of the temperature diffusivity 
of tantalum in the temperature range of 1,300 - 1,600°C; the maximum 
error amounted to 7%. 

As pointed out above, the heating with constant power is dis­
tinguished not only by convenience at_,high temperatures, but chiefly 
by the possibility of developing diverse methods of study, including 
also such which give information about the entire complex of thermal 
properties. (Speaking about this, we have in mind those experiments 
in which the heating power can be measured.) Let us turn to the 
fundamental aspect of the problem. Let us examine the simplest uni­
dimensional problem: an infinite (with respect to the axis y and z) 
plate of L thickness, subjected to heating from one (x = L) side. The 
opposite side (x = 0) we shall assume to be heat-insulated. 

The solution of equation (7.11), with consideration of the 
boundary condition for x = O(aejax = 0) gives 

(7.19) 

For the difference in temperature in two points with the co­
ordinates x = x1 and x = x2 , we get 

The magnitude 
not given directly. 
on the surface of x 
unit surface of the 

(7.20) 

of k in this formula plays the role of a parameter 
It can be expressed through boundary conditions 

= L, that is, by the magnitude of the power per 
plate q. In this case we get 

k = _15!_. 
L;... (7.21) 

- 156 -

• 



On the other hand, the magnitude of k is nothing other than the 
derivative of the temperature with respect to time: 

ar k=-. at (7.22) 

In order to determine k in the experiment, one can in this 
manner utilize directly the results of the measurement of the speed 
of temperature rise. A combination of the expressions (7.20), (7.21), 
and (7.22) makes it possible to obtain at once formulas for determining 
the different thermal magnitudes: 

ar 

a= iJt 
2 . 2 x 1 -x2 

Tl-T2 2 

A= 
q xT-X~ 

L(T1 -T J 2. 

cPp = q 

Lar 
at 

Attention should be turned to the last of these formulas. 
to see that it can be written also as 

ar c --Q 
P at - • 

(7.23) 

(7.24) 

(7.25) 

It is easy 

(7.26) 

where c is the heat capacity of the entire plate, while Q is the 
p 

complete heat flow. This formula is identical to the general thermo­
dynamic expression which is used for quasisteady processes, that is, 
for cases when the heating takes place without temperature gradients 
in the body. The validity of this formula for regular conditions of 
the second type stems from the constancy 3T/3t in each point of the 
body. 
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The totality of the formulas (7.23)-(7.25) (or similar formulas 
for bodies of another symmetry) makes it possible to determine the 
entire complex of thermal properties of bodies by the measurement of: 
1) the constant temperature difference of two points of the body; 
2) speed of temperature rise of any point; 3) heating power of the 
last are the most difficult of these measurements. 

There are two basic possibilities of ensuring control of the 
heat flow on the surface of the body: 1) utilization of electron 
bombardment in which the surface heat liberation can be determined 
from the strength of the electron current or from the voltage; 2) 
the use of a shell heat gauge which surrounds the specimen on which 
the temperature difference is measured and which is proportional to 
the flow (the heat gauge should first be calibrated). 

Let us examine the first test. The utilization of electron 
heating for determining the complex of thermal properties of metals 
by the method of regular conditions of the second type has been ac­
complished by Ye. V. Kudryavtsev and K. N. Chakolev [126, 127]. A 
characteristic feature of their experiment is the utilization, for 
determining the thermal coefficients, or the readings of one tempera­
ture pickup--thermocouple, and note too as this was assumed in formulas 
(7.23) and (7.24). Let us dwell on this problem in greater detail. 
The utilization of two temperature pickups makes it possible to exclude 
from the solution of (7.19) the indeterminate constant A, the magnitude 
of which cannot be found from an examination of only one regular stage 
of the process. At the same time, if the entire process of temperature 
change, starting from the moment of t = 0, is examined, then it is 
clear that a constant should be a magnitude that is completely deter­
mined by boundary conditions. Thus, the utilization of the solution 
for a body which has been initially heated uniformly (8(x, 0) : 0), 
gives [6, 126] 

Thus, for 8 we get the solution 
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e = _q_. (3xa -L') 
'AL 6 

(7.27) 

From expression (7.27) follows the formula for determining the heat 
conductivity 

q 3x2 -L2 q 
'A=-· =-· 

L 68 L 

3x2 -L~ 

6 T-.T00 ~kt_ 

In order to determine k, one can utilize in this case 

k = T (x • t,)- T (x' t.!) 

'• -I: 

. (7.28) 

(7.29) 

the formula (7.21) makes it possible to find also the heat capacity: 

Cp=_i_. 
P u~ 

(7.30) 

Thus, in order to determine the complex of thermal properties in 
a given variant of the procedure, it is necessary to know the heating 
power, the initial temperature of the sample, and the values of the 
temperature in one point at two different times and that stage of the 
process in which regular conditions have already been established. 
(in [126] the corrections for nonregularity are discussed.) 

The utilization of a single temperature pickup in such an experi­
ment is of course an advantage. However, this advantage cannot 
apparently always be decisive because the measurement of a temperature 
difference which is constant with respect to time and the first 
variant of the method (formulas(7.23) and (7.24)) is practically more 
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convenient than the measurement of the temperature as a function of 
time. (True, it is necessary to state the qualification here that a 
measurement of the temperature difference by thermocouples is difficult. 
in the case of metals when there is an electrical contact of the 
thermocouple junctions with the metal--see §2.) 

Another disadvantage of the method with a single thermocouple is 
more fundamental. Formula (7.27) can be utilized only in the initial 
stage of regular conditions and provided the thermal properties of the 
test substance differ little with temperature, because in deriving this 
formula the magnitudes A and c were soon to be constant. However, 

PP 
if the heating process starts with.relatively low temperatures, while 
the study is carried out at high temperatures, then the utilization of 
formula (7.27) can generally speaking lead to considerable errors. 
On the basis- of these considerations, the procedure of measurements, 
which is based on the utilization of the readings of several thermo­
couples, seems to us more promising. 

The second test for determining the magnitude of the flow on the 
surface of the emissive body is the use of a shell heat gauge or as 
its author Yu. P. Barskiy calls this method--the diathermal shell. The 
diathermal shell represents a homogeneous layer of substance, on the 
opposite surfaces of which are layers of a differential thermal battery. 
(For flat objects, the shell comprises two plates which are placed 
from two sides on the sample.) The magnitude of the heat flow from 
the shell to the test body can be expressed by the formula 

q = A:1t -hk, 
(7.31) 

in which the coefficients A and h are determined only by the properties 
of the shell and do not depend on the thermal characteristics of the 
test body [128]. These coefficients are found by calibrating the 
shell--a procedure which is part of the experiment with the substance 
and the thermal properties of which (for example, the heat capacity) 
are sufficiently well-known. The method under-consideration is thus 
relative. 

The method of the diathermal shell, just as the method of the 
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electron heating, makes it possible in principle to determine the 
entire totality of the parameters a, ). and crf by utili zing the form-

ulas (7.23)-(7.25). Examples of the accomplishment of such measure­
ments can be found in [129-133]. [129] in particular describes the 
high-temperature (up to 1,100°C) variant of the complex procedure for 
me~uring the thermal properties of solid bodies. Specifically for 
metals, however, the method of the diathermal shell has so far not 
been developed . 

Summarizing briefly the examination of the methods which are 
based on regular conditions of the second type, we emphasize that these 

_methods_possess a number of undoubted merits which are the result of 
the simplicity of general correlations of the type (7.10)-(7.14), as 
a result of which these methods can be utilized for measurements of 
a complex nature. Besides, one should in particular delineate the 
circumstance that a process of the measurements ensures by itself an 
overlap of a definite interval of reference temperatures; the results 
give in principle at the same time also the temperature function of the 
test magnitudes .. Here, however, it is necessary to state a serious 
qualification. The fact of the matter is that the theory of the method 
of regular conditions of the second type, which is built on the assump­
tion of constancy of thermophysical characteristics of the object and 
on its unqualified application to the case in which these characteris­
tics vary noticeably with the temperature, is not permissible because 
it is far from excluded that measurements made at the different rate 
of heating lead under such conditions to different results. In con­
nection with this, it seems highly desirable to carry out the work 
dealing with a general analysis of the conditions for utilizing regular 
conditions of the second type in measuring the teJrrQerature function of 
thermal parameters. 

§8. Regular Conditions of the Third Type 

As already stated in the preceding section, regular thermal con­
ditions of the third type are used to designate established periodic 
process, that is, a process in the stage in which the space-time temp­
erature changes of the system do not depend on the initial conditions. 
In carrying out regular conditions of the third type, the temperature 
in each point of the body varies with the same period around the average 
temperature which is generally speaking, a function of the coordinate' 
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T = T(x, y, z) +fi(x, !f, z, t), 
( 8. 1) 

besides, 

S(x, !J, z, t + 't') = O(x, y, z, t). (8. 2) 

Just as for any periodic process, the temperature variations 
can be represented as a Fourier series 

.. 
a = E rail cos wt + b11 sin wt1• (8. 3) 

11=1 

where a (x, y, z) and b (x, y, z) are the harmonic components of 
n n 

the variations which determine the amplitude A and the phase ¢ of 
n n 

each of the sine harmonics 

A 
1 ,"-:,-:::; 

= V c:.- -'-- IF 
rJ 'l ~ 11 t 

a 
<;:,, = arctg -f . 

rt 
(8.4) 

A study of the established temper_ature variations in the body 
· thus gives at ol\ce several functions: Ttx, y, z) , A

1 
(x, y, z) , 

A2 (x, y, z), ... ; ¢
1

(x, y, z), ¢
2

(x, y, z) ... , (or, if the variations 

are harmonic, instead of the complex A and¢ it gives A(x, y, z, w) 
· n n 

and ¢(x, y, z,w). It follows directly from this that the method 
~ 

of regular conditions of the third type ensures a considerably larger 
amount of information in comparison with other conditions. This · 
circumstance, which has been emphasized in the foreword, determines 
the great possibilities which are opened by the method of regular 
conditi.ons of the third type. 
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The existence of a large amount of information makes it possible 
to carry out very diverse methods of measuring all the thermal char­
acteristics of a substance; besides, also such methods which possess 
possibilities of internal control of the results of the measurements 
due to the existence of excess information. On the other hand, the 
same characteristic of the method of regular conditions of the third 
type makes it possible, in case of need, to limit oneself to the min­
imum number of temperature pickups; below are described many methods 
which require registration of the temperature variations in only one 
point of the object under study. Finally, and this is particularly 
important, a large amount of information makes the method of regular 
conditions of the third type convenient for performing methods of 
complex study of the thermal properties of solid and liquid metals. 
The enumerated basic merits of the method of regular conditions of 
the third type far from exhaust its positive aspects. We shall become 
acquainted with many of th~::,~ing the subsequent presentation. 
Here, we wish to point out ~a: only one important aspect. The 
method of regular conditions of the third type ensures a natural repeat 
recurrence of the resulting data. The results of the experiments are 
repeats as many times as the periods of the va~iations that are reg­
istered (these periods, as a rule, are small). This repeat reproduc­
ibility at the same time can be conveniently combined .also with the 
study of the temperature function, if the average temperature T in 
the given (slow) manner varies with time. The prospects of carrying 
out such quasiregular conditions are very great. 

In the practical accomplishment of regular conditions of the 
third type, just as in a predominant number of other methods, the 
assumption of the relative smallness of the amplitude of the pulsation 
of the temperature 8 is fundamental. This assumption, which is formu­
lated by the inequality (1.25). And totality with the inequalities 
(1.32) (or only by the lette~ when the boundary conditions are set in 
such a manner that the nonlinear emission heat exchange is not funda­
mental), makes it possible to linearize a problem, reduce it to the 
solution of linear equation with respect to 8 with linear boundary 
conditions. In a linear approximation for describing the periodic 
changes of a complex form, one can utilize the principle of super­
position (the solution being sought can be represented in the form of 
a series of specific solutions for harmonics sinusoidal and cosinusoi­
dal changes). This makes it possible to limit the theory of all 
variants of the method to an examination of the harmonic case, and for 
a description of specific signals of the non-harmonic type, to utilize 

(pages 120 and 121 missing - Tr.) 
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their representation in the form of a Fourier series, by separating 
the members of this series from the experiment curves by means of a 
harmonic analysis. 

The classification of different theories and systems and the 
utilization of the method of regular conditions of the third type can 
most conveniently be carried out as a function of the type of method 
that is used to create and maintain harmonic variations of the temp­
erature. Besides, all the variants of the method,(just as earlier for 
steady methods) will be divided into two large groups--the group with 
external (outside) heating and the group with internal heating (heat­
ing by current). Tha intermediate case--induction heating, when the 
volume of heat liberation is close to the surface heat liberation, 
is classified in the first group. 

Each of \the groups can have its own internal classification with 
respect to the nature of the symmetry of the isotherms: flat, cylind­
rical, spherical and,, in principle, more complex. 

Let us examine general problems of the theory of the methods of 
regular conditions. In the first group of methods, the variable temp­
erature of the surrourlding medium or the variable density of the sur­
face source of heat (variable heat flow) can be set under boundary 
conditions. In the first case, these ~oundary conditions can be 
written as 

A. iJT + a [T - T 
0 

( l --i- me1u;t )} = 0,. 
iJn - .. (8.5) 

and in the second case as 

(8.6) 

where q and q
0 

are the constant and variable components of the surface 

heating power and m is the modulation coefficient. 

For the given periodic function, we utilize the complex form of 
notation, in accordance with which, the sought-for temperature is 
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represented as 

T = T(x, y, z) + 0 (x, y, z)elUJt, (8. 7) 

where Tis the constant component of; the temperature (average tempera-

ture), and is the variable component. 

The utilization of a complex representation simplified consider­
ably all the calculations. Let us clarify the sanctioned method of 
the utilization of the complex representation of the harmonic processes . 

By writing the given process in the form of A.;<wt ·=flc_<2~-'='~t+Jt:~!:~~ 

and taking the real or imaginary part of this expression, we get the 
representation of this function in the form of a cosine or sine. In 
the general case, the sought-for function will have in this instance 

. . . 
a .complex amplitude of l_;=cc:fit +i;•:-

part of the solution ·:f.-·. il':j_r:;s, ;·c·i a 

1_8J~2~wt-Bg_si!!wt _!! Jl2~0S;tJt+ 01 ,;i:·, .. (. 

also in the form of 

For the real and imaginary 

we then get the formulas: 

which can be represented 

where 8 is 

the modulus of the complex number equal to J/02 ~--r-·1 " ·J 1 ~-,.,.,.,; 
• ' I _:..:·. ~ ~'1•4 ··::._ 

while the 

phase of the variations is l-inur_<p=arctge2/8t. 

Thus, the complex representation of the periodic proc~sses makes 
it possible to determine with a convenient and single method the amp­
litude of -the sought-for temperature variations as well as the phase 
with respect to the given periodic change. 

In accordance with the representation of the temperature in the 
form of (8.7), the boundary conditions (8.5)-and (8.6) can be each 
divided into two parts, for the constant and variable components of the 
temperature: 

(8. 8) 
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and 

and 

~ d6 + ' ,._ . a u = amT
0

, 

. "" 

A d6 -i- a'i) =.o qm. 
dn 

(8.9) 

(8.10) 

(8.11) 

The magnitude of the effective heat exchange coefficient a' is 
equal to 

a' = d [a (T- Toll[ ; 
dT ir=f (8.12) 

for the important, specific case of emission heat exchange ·a' is de­
termined by the formula (1.30). 

In accordance with the general methods of linearization, which 
are represented in §1, and the derivation of teh formulas (8.8)-(8.11), 
it was assumed that the amplitude of the temperature variations je[ 
was sufficiently small so as not to take into account the temperature 
dependence (A) and not to take into account the members of the order of 

e2. 

A comparison of the type of conditions (8.9) and (8.11) leads to 
the conclusion that they are formerly alike, if 'one designates the 
constant member a(T)T0 by q. Hence, it follows that the solution of 

the problem of temperature variation for both cases of a periodic 
temperature change of the medium and a periodic change of the surface 
heat liberation is the same,_ although in practice, these cases are 
far from equivalent because in the first case the magnitude q = aT

0 
is usually indeterminant (due to the indeterminacy of a) and should, 
for this reason, be excluded from the, calculation . of formulas, 
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whereas the power of the surface source qm can in many experiments 
be measured directly. 

Just as the boundary conditions (8.8)-(8.11), the very heat­
conductivity equation for the sought-for function of the type (8.7) 
and with respect to small jej also decomposes into two equations: 
the equation for the constant component of the temperature 

(8.13) 

and the equation for the variable component 

. . /CJ) . . 
\V2{}-70 ;= 0- (8.14) 

(It is assumed'here a5 well that the changes T(x,y,z) are comparatively 
small) . 

Equation (8.13) in ~.conjunction with the boundary c£_nditions 
(8.10) or'(8.8) assures completely the determination of T(x,y,z), 
while the equation (8.14) in conjunction with the condition (8.11) 
assures the determination of the complex amplitude G(x,y,z). 

In the second group of methods of regular thermal conditions of 
the third type, methods with heating by current, it is possible to 
use the same boundary condition (8.5) and the conditions (8.8) and (8.9) 
which devolve therefrom by assuming that m,_=.l). This pertains 
to the boundary condition on the lateral surface of the specimens. 
For the end surfaces, to which the current is fed,·the boundary con­
dition is given in the form of a condition of the first side T = r

0
.) 

(As regards the equation of heat conductivity, it will,_have the form 
of 

c- p iJT = div ().grad T) + w ( 1 + nzelfl>t}. 
P at ·· · · · ·· ·- (8.15) 

By writing the solution in the form of (8.7) for small lei and 
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comparatively small changes of Twith the coordinates, we get again 
to equations. The equation for the constant component will have the 
form of 

(8.16) 

The equation for the variable component is written in the form 
of 

( iw. - _1_ . aw ) () = v!e + ~ . 
' a. ).. dT A. 

(8.17) 

In this equation, the change in the volume power of the source 
w as a function of the temperature, which can take place as a result 
of the temperature function of the electrical conductivity, was taken 

into consideration. In the general case, :.:.•=z.::(x,p,:) and 

For samples of constant transverse cross-section s (in practice only 
such samples are used), 

/'Zp 
W=­

s•. , 

where p is the specific resistance. 

(8.18) 

The dependence of w on the coordinates can in this case be de­
termined only by the function of p (T) which can be disregarded under 
conditions of linearization of the equation. 
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Actually, for small changes in the temperature Tone can utilize 
the decomposition of w into a series around a certain average tempera­
ture T

0
: 

cHn p (T T ) , f w=w.,+w-- - o .- •••• 
v aT. . - · 

(8.19) 

Changes in the temperature ofT - T0 should, in accordance with 

(8.16),be proportional to 

dimension (with an accuracy 

r.:.•/'! 
( _.:... ) 

.). 
, where Z is a characteristic 

of up to the factor of the order or unity). 
Thus, 

(8.20) 

On the other hand, it follows from equation (8.17) that an amp!i­

tude of pulsation of the temperature lei should be proportional to 

the factor ( ~fz) • Then from formula ( 8. 20) we get 
J.. 

. (t +- 1 ar atnp·) 
w=w0 -;;;- • ~ (8.21) 

In view of the smallness of lei, the correction for the change 
in heating power with the coordinates is small (it gives in equation 
(8.17) members which are proportions of 82 ). Similar considerations 
make it possible to become convinced of the smallness of the correction 
for the temperature function of w in the left-hand part of the equation 
(9.17) through a change in the variable component of the temperature. 
Equation (8.17) then assumes the form of 
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{(i} Jlp -e=v29+-m. 
a saA 

(8.22) 

Let us examine the form of solutions of the equations for the 
variable component. It follows from equations (8.14) and (8.22) that 
the determining criteria! magnitude which contains a frequency is the 

' :0>L"' 
combination (l24a)-;; which can be expressed by the Fourier 

criterion 

fiJP ~ _ 2n 
- - =-

a.. (':) . Fo 

In the Soviet literature, frequent use is made of the "Pred­
voditelev criterion": 

wl"- =Pd. 
a ( 8. 2 3) 

) ~· 124a ~ 
'a" 

for the magnitude ( which was introduced by A. V. Lykov 

[6]. (In the more general determination by the Predvoditelev criterion, 
A. V. Lykov calls this magnitude . 

Pd=(~) 
d.Fo max 

"which characterizes the intensity of temperature rise 
ing medium e c". For a periodic process~· wl'!:i~h is set 

[dec] ture change of the outside medium, - = CilT0 • 
. dt rna~ . 

by taking into account at 
Fo = -.,­

-.--. _1~. 
· ; it follows that 

(8.24) 

of the surround­
by the tempera-

' fro~Jl which, 

Pd = w:. }· 
For most problems, it is more convenient to utilize not the Pd. 

criterion directly but the square root of this magnitude: 

- 170 -

• 

.. 



"= YPd = v-: /. (8.25) 

The second criteria! magnitude, which figures in the solution 
for the first group of methods with external heating, should contain 
the magnitude qm. The dimensionless combination which includes q is 
known (§ I) . This is the Kirpichev criterion:, 

Ki=~ 
i\.8 • (8.26) 

In this criterion, instead of quasicharacteristic temperature T*, 
we have written the pulsation amplitude of 0 , because no other magni­
tudes with a temperature dimension are contained in the problem of e. 
Hence, it follows that the Kirpichev criterion in the given problem is 
not determining but is on the other hand the sought-for complex. 

A similar sought-four complex for the second group of methods 
with heating by current is the modified Pomerantsev criterion: 

Po =-w_m __ (8. 27) 

Finally, th.e general criterion for the first and second groups 
of methods will be the determining Biot criterion: 

B
. a'l 
&=-. 

I. (8.28) 

which is equal in the case of emission heat exchange to the magnitude 
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Bi = 4aeq>T3! 
A. 

(8.29) 

(see (1.34)). 

Thus, the general formula of the solution for the first group 
of methods should have the form of 

et .:.__ <D ( 3._ ..JL z 8·\ - . )!., L I 
q!m - L ' L 

. 
l J (8.30) 

and for the second group 

flcppW 
= '~'(f-. _}f_ z Bi} • - )!., 

wm L 
(8.31) 

Both types of solutions of (8.30) and (8.31) can be writte~ in 
a similar uniform form, if, instead of q and w, we introduce in the 
first and second cases the total heat liberation Q (its variable com­
ponent): 

(where s is the surface) 
and 

Q= muv 

(where vis the volume). 

Then, the complex 

Q=qsm (8.32) 

can be written in the form of 

ecp(l) a 
--=-. 

mr£• 80 (8. 33) 
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where 

(8.34) 

is the amplitude of the temperature pulsation which would take place 
if the process were to proceed very slowly (w ~ 0), while the bound­
ary conditions would ensure the absence of gradients along the sample. 
(Actually, in this case the equation of the heat balance could be 
written in the form of 

(8. 34 I) 

from which, for the pulsation amplitude of the temperature eo, follows 

the formula (9.34).) 

The compl~x can be expressed by 8/80 : 

(8.35) 

where n is the purely geometric factor equal to 

sl 
11"=- ." u. 

(8.36) 

It can be said equal to 1, if we assume that ends with Z is the 
magnitude 

" "v 
l=-." 

$ 
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In accordance with this, the expression (8.30) and (8.31) can 
be written as one general formula 

. "· ! (8.38) 

For the first group of methods, the equation for F is ,. 

(V1
) indicates the dimensional or plus operator), while the 

bvundary condition (9.11) in this case has the form of 

(8.40) 

For the second group, the equation has the form of 

v?.f -ix2f + 1'.11 = 0. (8.41) 

while the boundary condition 

(8.42) 

on the lateral surface and 

(8.43) 

on the end surfaces. 



• 

• 

In the equations (8.40) and (8.42) as well as below, the prime 
sign indicates the dimensionless derivative with respect to the normal 
while the subscript s indicates that the functions are taken on the 
surface. 

In a 
below, the 
magnitude. 
correction 

predominant number of methods, which will be described 
Biot criterion is small in comparison with the unit of 

In such cases, the Bi role will reduce itself to a small 
in the functions (8.38) can be written approximately as 

(8. 44) 

discarding the members of the higher order of smallness. For correct­
ions to the amplitude and to the phase of the temperature variations, 
the following formulas will be valid in this instance 

1\ t 6 I f 
-.!...--'-- = Bi R.e -F , 

161 (8.45) 

llql = - Biim ~ , (8. 46) 

where Re and lm are the real and the imaginary part of the correspond­
ing expressions. The minus sign has been placed in formula (8.46) 
because the phase delay which is measured in the experiment is equal 
to -¢. The boundary conditions for F and f for the first group of 
methods (external heating) will'-have the form of 

(8. 4 7) 

Besides, F as well as f should satisfy the same heat conductivity 
equation 
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V2F -..:.ix2F = 0, 

V2f- ix2f =,_0,-

-·X~ 

(8;'48) 

Hence, it follows that the function (-1--
F$ 

should be 

identical to 
conditions). 
form of 

the function of F (the same equation, the same boundary 
Because of this, formula (8.44) can be written in the 

(8.49) 

From equation (8.49) we get a simple formula for the amplitude 
and the phases of the temperature variations with consideration of the 
corrections for the Bi values: 

(8.50) 

(8.51) 

where F1 and F2 are the real and imaginary front parts of the function 

F: 

F = F 1 -7- iF!J. 
(8.52) 

For the second group of methods, it is not possible to establish 
a direct relationship between F and f of the type (8. 49); however, the 
boundary conditions for F and f in this case have the simple form of 
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1·=-F s s (8. 53) 

on the lateral surface and 

fs· = 0 
(8.54) 

on the end surfaces. 

The function Fin this case satisfies the equation (8.41), while 
f satisfies the equation (8.39): 

(8.55) 

The above-cited considerations pertain only to the case in which 
the boundary condition with heat exchange has been set on one surface. 
In practice, a more general setup of the problem is encountered in 
which the boundary conditions of such a type are set differently on 
two surfaces. This takes place, for example, in experiments with hol­
low cylinders of n-spheres and _unilateral heating of plates. 

By different conditions of heat exchange on two surfaces, we 
mean a difference in the effective heat exchange coefficients, in con­
nection with which two Biot criteria instead of one should already 
figure in the problems under consideration. 

For the case of small values of these criteria, one can as an 
approximation of (8.44) write 

: = .F + Bidi + Bi.j.,.. (8.56) 
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where f 1 and f 2 are correction functions and which the first takes 

into account the heat exchange on the heated surface (first side) and 
the second--on the opposite surface (second side). The derivatives of 
f 1 and f 2 are equal to zero on the opposite side: on the first and 

second--for f 1 and f 2 , respectively. 

For the group of methods with external heating, the function f 1 , 

just as the earlier function f, can be represented in the form of 

f = _ FF,, , 
1 ... ~ ( 8. 57) 

in the problem of heat exchange on the heated surface is solved just 
as simply as in the case of a body with one heated surface. As re­
gards the function f 2 , it satisfies the following conditions: 

t; = G and S1 , (8. 5 8J 

(8.59) 

(Utilizing these boundary conditions, it is necessary to take into 
account that f' here, just as before, indicates the derivative with 
respect to the dimensionless normal, while the direction of the normal 
on s 2 is opposite to that on s 1 . 

The conditions (8.58) and (8.59) do not make it possible to 
express f 2 directly through F as in the case of f 1 . It is not difficult 

however, to realize that f 2 can be represented in a form similar to the 

expression (8.57): 

!2=- (8.60) 
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if we introduce the function , which is the solution of the 

equation of heat conductivity for the case in which not the surface 
s 1 , but the opposite surface s 2 , is subjected to heating. 

Let us examine the general type of solution of (8.44) from the 
point of view of the possibility of its utilization for determining 
the thermal characteristics of the substance. Assuming that Bi is 
the small correction, we can make the following assertions . 

1. The magnitude of the difference in phases ¢between the 
temperature variations in any point of the sample and the variations 
in the heating power is an unambiguous function of the number K, 

that is, in the final analysis, of the temperature diffusivity. 

Hence, it follows that by measuring the phase of the temperature 
variations, it is possible to determine directly the temperature dif­
fusivity of a substance. This method of measuring the temperature 
diffusivity will henceforth be called the phase method, the phase 
variant of the method of regular conditions of the third type. Funda­
mentally, this method requires the utilization of only one temperature 
pickup. 

Under some conditions, th~ calcul~tion of the phase from the 
variations in the power can be inconvenient In this case, the temp­
erature diffusivity can be determined from the difference in the 
phases of the temperature variations and two points of the sample. 
Such a variant of the phase method will henceforth be called the phase 
method of two points. 

I. The ratio of the amplitudes of the temperature variations 
at two points is also determined only by the value of K (for the given 
geometry and frequency). The temperature diffusivity can be thus 
determined from the magnitude of the ratio of the amplitude of the 
variations in two points of the sample. This method of measuring 
the temperature diffusivity will be called the amplitude method (the 
amplitude method of two points). 

3. The ratio of the amplitudes of the temperature variations 
from one point of the sample for different frequencies and constant 
power of variable heat is also determined only by the temperature 
diffusivity. Unlike the amplitude method of two points, this method 
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makes it possible to limit ourselves to the readings of one temperature 
pickup. Such a method of determining the temperature diffusivity will 
be called the amplitude~frequency method. 

4. By analogy with the amplitude-frequency method, one can sep­
arate also the phase-frequency method, although there is no particular 
need for utilizin~ such a method because, in accordance with point one, 
the. magnitude ¢ for one frequency makes it possible to find the temp­
erature diffusivity. The frequency dependence of ¢ can be utilized 
as additional informatioh for controlling the results. 

5. The determination of the absolute value of the amplitude of 
the temperature pulsation jej makes it possible to find the magnitude 
of e

0 
and, consequently, also the heat capacity of the samples, if the 

power Q fed into the sample is known and the temperature diffusivity 
has been determined (for values of K). 

A combination of these measurements with determinations of the 
temperature diffusivity by methods described in points 1-3 leads to 
different methods of carrying out the complex measurements, that is, 
methods which make it possible to determine the entire totality of the 
main thermal characteristics such as heat capacity, temperature dif~ 
fusivity and heat conductivity from the data on the same experiment. 

The simplest of the complex method is that in which the tempera­
ture diffusivity is determined.by means of the phase variant. This 
method is convenient in that it requires the utilization of only one 
pickup~-temperature gauge; the phase of the recorded temperature varia­
tion makes it possible to determine the temperature diffusivity of the 
specimen, amplitude-heat capacity. 

In examining diverse variants of complex measurements; it is 
necessary to consider the following problem. Properly which parameters 
of the totality of c , A and a are determined directly in such type 

PP 
experiments, considering that these three magnitudes are related by 
the identity a = A/c . It seems to follow from the above considera­

PP 
tions that a and c are determined while the heat conductivity can 

PP 
be found already as a combination of these magnitudes. Such a solution 
is not quite valid because returning to another notation of the general 
formula of the solution, namely to formula (8.30), we can it would seem to 
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assert with equal justification that in the experiment we determined 
a and A, while c is already found as their combination. If this is 

PP 
so, then the problem as to what magnitudes are precisely determined 
directly in the experiment seems to lose sense and it is always neces­
sary to speak about the determination of only the complex of thermal 
characteristics. Actually, this is not entirely true. First of all, 
let us turn attention to the fact that the magnitude of the tempera­
ture diffusivity in the experiments under consideration always plays a 
special role because it can be determined by many methods regardless 
of the measurements of c or A. It is natural to approach with the 

PP 
same measure also the remaining parameters and to see which of the 
determinable magnitudes c or A depends less on the determination of 

PP 
a, that is, which of the functions, ~ in the expression (8.30) or· F in 
the expressions (8.38) and (8.44), depends less on K. If in this 
instance the difference in the nature of the dependence on a is con­
siderable (this is most frequently so in view of the fact that ~ and 
F differ by the factor K2), then it can be said which of the parameters 
in the experiment is determined "more directly" in the sense that the 
results of its determination are less affected by the results of the 
determination of the temperature diffusivit~. 

As an example, one can examine the case of external heating 
(first group of methods) under conditions in which the frequencies w 
(and consequently, also K) are comparatively small. It follows from 
the nature of the process in this instance that, as K decreases, the 
amplitude of the temperature variations /8/ should differ comparatively 
little from the magnitude /s0 / --the amplitude at infinitely slow 

variation (variations in absence of temperature gradients). This means 
that the function ofF in its modulus should differ little from unity 
and, consequently, the determination of the heat capacity by means of 
formula (3.41) will depend little on the determination of the tempera­
ture diffusivity (the latter will be needed only for determining the 
correction for the deviation of IF I from unity). In this case, one 
can speak quite definitely about independent measurements of the temp­
erature diffusivity and the heat capacity; the heat conductivity will be 
a magnitude of the derivative. 

Let us examine another maximum case--that of large values of K. 

For sufficiently large values of K, the amplitude of the temperature 
variations will decrease so strongly with increasing distance from the 
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heated surface that the body will become practically semi-infinite. 
Only the properties and the configuration of the boundary layered 
material will be essential for the process. Under such conditions, 
the role of the transverse dimension of the body} should not be de­
termining and the dimensionless form of the solution of the heat con­
ductivity equation should, as a first approximation, have the form of 

~ x = ~ l;Foo =CD (x, / w) , 
ql:n qm V a V a (8.61) 

where x is the coordinate along the normal to the surface. In a 
specific case of x = 0, for the temperature variations of the heated 
surface 

I) ·= c:onst qm 
b·{w (8.62) 

where b is the heat activity. Measurements of the amplitude of the 
temperature variations on the surface in the case of large values of 
K under consideration no longer yield the heat capacity for the heat 
activity, and the corresponding complex procedure for the measurements 
is a procedure for measuring the temperature' diffusi vi ty and the heat 
activity; the heat capacity and the heat conductivity are derivative 
magnitudes. In subsequent sections, we shall become acquainted with 
different combinations of parameters that are obtained in complex 
measurements. 

In concluding this section, we wish to state a few words about 
the terminology. The variation heat process in the volume of the body, 
initiated by periodic heating of the surface, is customarily called the 
temperature wave. This designation reflects the fact that the amplitude 
and the phase of the temperature variations vary regularly from point 
to point just as in the case of the propagation of a wave in the medium 
with absorption. Nevertheless, one should take into account the fact 
that the periodic heat process is not a weight process because the 
pro"pagating temperature wave does not have a front which delineates 
the region reached by the wave from the unperturbed region and is not 
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related with the direction of the displacement of the energy. The 
heat flow in each point pulsates, changing periodically, so that, on 
the average, during the period is equal to 0. Actually, 

.... 
q = - A grad Oei!it 

- 'f_., 

q = .f q dt = 0) . 
0 

~9. Flat Temperature Waves 

In this section, we examine flat temperature waves, that is, the 
vibrational process which is determined by the periodic heating of one 
surface of an infinite (in a mathematical sense) plate of a finite 
thickness. Quasiflat waves--waves which propagate along the axos of 
cylindrical samples with finite transverse dimensions--are very similar 
with the flat temperature waves; In the former case, the existance of 
lateral heat exchange introduces its specificity, as a result of which 
such actual waves are examined by us in the next section where our 
examination is, however, to a considerable degree bases on results in 
this section. 

In examining flat temperature waves, we shall limit ourselves to 
cases with small values of the Biot criterion, which will be equivalent 
to an examination of comparatively thin plateso It follows from table 
1 that for temperatures of ~ 1,000°K, plates with the thickness of 
< 1 em, can be considered thin plates, for temperatures of- 2,000°K-­
less than several millimeters, for temperatures of - },000°K--less than 
a millimeter. 

The mathematical formulation of the problem in accordance with 
the preceding section will be as follows. 

The sought-for functions are F(x/L, K), which determines the 
dimensionless complex amplitude of the variations of the temperature 8, 
and the function f (x/L, K), which determines the correction for the 
heat exchange: 

:o =' F ( ~ , x) + Bif ( ~ , X) , (9.1) 
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where L is the plate thickness, xis the coordinate which is obtained 
from the surface that is not subjected to heating (such a selection of 
coordinates leads to more convenient formulas); 

of 8
0

, in accordance with formula (8.34), is equal to 

(9. 2) 

for the case of heating with a source which insures variable heat 
liberation mq on a unit surface. 

For conditions of heating by varying the temperature of the ex­
ternal medium, one can, instead of formula (9.2), write 

e _ maTf} 
0 -.,c,pwL ' 

(9. 3) 

where a is the heat coefficient of heat exchange on the boundary x = L, 
mT0 is the amplitude of the temperature variations of the medium. The 

Biot criterion is equal to 

Bi = _rL'L 
\ , 

(9. 4) 

where a' is the effective coefficient of heat exchange on the boundary 
X = 0. 
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1he functions of F and f are subject to the equations 

(9.5) 

(9. 6) 

and the boundary conditions 

dF 
---=0 

d( ~) 1 f 

for'x =D. 
(9. 7) 

s = a' /a' (the ratio of the effective coefficients of heat on the 
0 L 

boundaries x = 0 and x = L), 

dF xs . \ 
d ( ~) 

for X= L. 
df =-F I (9. 8) 

it(~) I 

Let us examine at first the function F, relegating for the time 
being the problem of the correction for heat exchange to a secondary 
place. The solution of the equation (9.5) with the conditions (9.7) 
and (9.8) leads to the function , 
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(9. 9) . 

On the boundaries of the plate, we get 

(9 .10) 

and 

F(L)= ~. 
eYix +r Yfx '1 t· · 
e•'fx_e-Vfx = jlf. th(y·r[x) 

(9 .11) 

The hyperbolic functions sh and th from the argument~-

can in the final analysis be expressed by the product of the hyperbolic 
and trigonometric functions from the actual argument. lt 1s more con­
venient, however, to utilize the already tabulated functions 

(see [6]). 

sh (Vfx) = As (x) + iBs (x) } 

ch ( Vfx) = Ac (x) + iBc (x). (9.12) 

For the amplitude and the phase of the temperature variations on 
the surface x = 0, which lies opposite that being heated, we get 

(9. 13) 
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t A.r + B.r :t , ,t Bs <p = arc g = -- --r- arL e1 -
As -Bs ~ ,., As (9.14) 

Let us examine the phase relationships. ¢ = ¢(K 2) is shown in 
Figure 22. For K 7 0, the shift in phases between the temperature 
variation and the power approaches n/2 (90°). This is a general 
principle that is valid for all cases (when Bi = 0), and it is easy to 
become convinced of this with the aid of formula (8.34'). (For slower 
temperature changes, when the gradients in the body are small, the 
heat flow is proportional to the derivative of the temperature with 
respect to time and, consequently, the temperature is shifted in 
phase by TI/2.) The dependence of ¢ on K2 is quite close to linear 

¢- 90° ~ 20.7K 2 , which makes it possible to evaluate in a convenient 
manner the accuracy of the determination of K2 and, consequently, of 
a and the phase variant of the method for measuring the temperature 
di ffus i vi ty 

fl,l &t~ flq> 
--=-= 

a :rt 
q>--

2 (9.15) 

When o¢ ~ 1 o and ¢ --rr/2 > 30° (K 3 > 4), the a priori error in deter­
mining the temperature diffusivity amounts to- 3%, that is, the phase 
method of determining the temperature diffusivity can in principle be 
made quite accurate. 

It follows from formula (9.15) that the error in determining the 
temperature diffusivity for a given absolute error in the determination 
of the phase o¢ becomes smaller, the larger the value of the measured 
phase difference ¢, that is, the greater the value of K. An increase 
inK, however, only to known limits increases the accuracy in deter­
mination of the temperature diffusivity because, with an increase in 
the frequency the errors simultaneously decrease also in the amplitude 
of the test variations due to a decrease in e0 and of the factor jFJ . 
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In connecti-on \ti,.th_ th.i;__s_, in order to evaluate tlie optimum conditions 
for accomplishing tne phase variant of the metiLod, it was necessary 
to examine also the dependence IFI on K2 , a knowledge of which, on 
the other hand, is decisive for the problem of the conditions of 
accomplishing complex measurements. Dependence of IFI on K2 shown on 
Figure 23. For small values of K, the magnitude IF approaches unity 
in accordance with the general characteristic of the function F for 
all problems with external heating. In this region, 

Q 
101~e =---

o · McpiD 
(9.16) 

and the measurement of the variation amplitudes of the temperature for 
known power Q makes it possible to determine the heat capacity of the 
test material. The relatively small variation and IFI for a compara­
tively broad integral of values of K makes the measurement of the 
heat capacity little dependent on the measurements of the temperature 
diffusivity. If we are speaking about complex measurements, the 
temperature diffusivity--the heat capacity, then the optimum values of 
K should naturally be considered the greatest of this interval 
(K 2 - 4) because in this instance, the maximum accuracy in tne measure­
ment of the temperature diffusivity will be achieved (of course, pro­
vided the amplitude of the temperature variations for these variations 
of K is sufficiently high). 

IF! l 
f --- -- - r------:--

f--- -----
0 z 3 5 6 7 8 

Ftgure 23. Dependence of the modules of the 
function F -- the magnitude which determines 
the amplitude of the temperature variations-­
on the parameter K2 . 
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Figure 22. Dependence of phase difference between 
the variation in the power on the surface of the 
plate and the temperature variat[on on the opposite 
surface on the parameter K2. 

As regards individual measurements of the temperature diffusivity 
by the phase method, it is seen from Figure 23 that within a sufficient­
ly large integral of values of K (up to K2 - 10 and greater) the func­
tion. \F\ changes relatively little in comparison with unity and the 
frequency dependence with the amplitude of the temperature pulsations 
is essentially determined by the factor e

0 
"" 1/w . The selection of 

maximum values of /0/ is determined exclusively by the possibilities 
of the recording equipment. The smaller the pulsation amplitudes /0/ 
it can be recorded without substantial interferences, the greater the 
values of 1<: that can be utilized in the phase variant of the method 
for me-asuring the temperature diffusivity tfian the greater will be the 
phase differences that will be measured in this case, and the greater 
will be the accuracy. 

The possibility of conducting measurements for relatively large 
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values of K, greater than 2, is of interest not only for the phase 
variant of measuring the t'emperature diffusi vi ty, but also for carry­
ing out complex measurements. For K2 > 4, the function /F/ becomes 
noticeably dependent upon K and the measurement of the heat capacity 
cannot already be considered independent of the measurements of the 
temperature diffusivity. However, from an analysis of the function 
/F/ one can make ano:ther positive conclusion, namely that the product 

K/F//2 in the region of values of K2 ranging from 4 to 16 differs from 

unity by not more than 10%. This fact makes it possible to assume that 
a complex method foT measuring in this region gives the combination 

CpP I 

, ----a 
fa unlike the combination c -- a for smaller values of K. 

PP 

In speaking about measurements of the temperature diffusivity, 
we have so far limited ourselves to the phase variant. Let us dwell 
on the amplitude variant. It follows from the relatively weak nature 
of the dependence /FI on K that the amplitude-frequency variant can 
hardly compete with the phase variant because the errors in the deter­
mination will here be comparatively large. The amplitude-frequency 
measurements can be regarded only as a means for additional control of 
phase measurements and only within the region of K2 > 10. As regards 
the amplitude variant in two points, we shall dwell on it somewhat 
later in connection with theory of temper~ture waves in a semi-infinite 
medium. The accomplishment of this variant in the case of a plate is 
also of little expedience. 

Let us examine the following approximation of the theory of the 
method, the function f, which describes the correction for the heat 
exchange. On the basis of the equation (9.6) and the boundary conditions 
(9. 7) and (9. 8), we get for the function f 

(9 .17) 

For x =0, in particular, 

I ; + l 
f (Q) -= - X ff . -sh_(_)"-::--="'i X) t!l J' -f X (9 .18) 
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or in a more convenient form 

(9 .19) 

(the formula (9.19) could have been obtained also directly from the 
general relationships of (8.57) and (8.60), if one takes into account 
the relationship between the functions of F and ~(138a) , which stems 
from the symmetry of the problem.) Hence, for corrections to the 
amplitude and the phase of the variations, we obtain the formulas 

-,-

J!l =IF Ill- EJ (~::f.'1 1) '1'11• 
- .Bo ~ . 

cp = cp0 -Bi'ljl2 (~ + 1), (9. 20) 

where 

(9. 21) 

F1 and F2 are the real and imaginary parts of the function F which can 

be expressed through the functions of (9.12): 

. F (L) = xl/2 Ac(A8 -Bs) +Be (As+ Bs) = 
1 

(As- Bs)2 + (As+ Bs)'l. . 

X (Ae +Be) As+ (Be - Ac) B5 

= yz · Ai+ .a; 
_ F (L) = x y2 Be (As- Bs)- Ac(As + Bs) 

% _ • (As- B5)'~ + (A 5 + Bs)"J 
(9. 22) 

(For~= 0, the formulas (9.20)-(9.21) are identical to the formulas 
(8.50) and (8.51) in accordance with the deductions in the preceding 
section. 
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The functions w1 (~e
2 ) and w2 (~e

2 ) are shown in Figure 24. In 

accordance witn the nature of w1(K2), the correction to the amplitude 

of the variations for small Bi values is small for all the va) ues of 
K. The strong increase if w2 for small K values limits the region of 

the optimum values of K in the experiments for the determination of the 
heat capacity of tne magnitude K -1. 

The experimental accomplishment of the phase method for measuring 
the temperature diffusivity of metals at high temperatures has been 
described by 0. A. Krayev and A. A. Stel'makh {134]. Their procedure 
was intended for materials in the form of thin (0.1 - 0.5 mm) plates, 
in connection with whicn the frequencies w, which are optimum for such 
experiments, amount to hundreds of cycles per second. The utilization 
of such sonic frequencies makes it possible to use radio technical 
means for developing and recording the temperature variations, which 
makes the experiment very convenient and sophisticated. 

H-t--1--- "--- , _____ r------,·--:---1 
I 

' 
:---:--~~---T--i 

! ~ 
-~ 

I 

Figure 24. Function of'¥ 
1 

and 

'Y 2 which determine the correct­

ions to the amplitude and the 
phase of tne temperature oscil­
lations due to the heat exchange. 

According to the method of 0. A. Krayev and A. A. Stel'makh, the 
samples were heated by using electron IDombardment on one of these plate 
surfaces. A wolfram spiral cathode, located parallel to the plate, 
served as the electron emitter. The variable power component was ob­
tained by modulating the anode voltage by means of a sonic generator. 
For recording the temperature variations on the opposite side of the 
plate, use was made of a photoelectric method. The variable signal 
from the photoelectric cell was ampl-ified by a selective· amplifier and 
was fed to a vertical amplifier of the cathode oscillograph. The 
signal from the modulating sonic generator was fed to the horizontal 
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amplifier of the oscillograph through a phase shifter. Measurements 
of the phase difference consisted in selecting the position of the 
phase .shifter for whi_ch_ the. ellipse on the oscillograph screen was con­
verted to a straight line. 

The described procedure was utilized for measuring the tempera­
ture diffusivity of wolfram, molybdenum, niobium and tantalum, within 
the temperature range of 1,800° - 2,000°K to 2,500- 3,200°K [134,135]. 
The error in the measurements is evaluated as 5% by the authQrs . 

The system of the experiment by 0. A. Krayev and A. A. Stel'makh 
is convenient in principle not only for measurements of the temperature 
diffusivity, but also for measurement of the heat capacity, which we 
have already indicated in the reviews [136]. For this purpose, it is 
necessary to measure the current strength in the voltage (their vari­
able components) in the cathode-sample circuit and to determine 
absolute values of the variation a~litude of the temperature from the 
signal at the exit of the recording system, which also does not rep­
resent much of a difficulty (see §3). The work for accomplishing the 
complex procedure of testing thin samples seems very promising. So 
far we have limited ourselves to an examination of flat temperature 
waves and plates of finite thickness. 

Another specific case of flat waves are waves which propagate 
in the semilimited (semi-infinite) space. In practice, this means 
conditions under which the temperature wave is almost completely damp­
ened (absorbed) at the distance comparable with the real object. In 
order to find an expression of 0, one can utilize in this case the 
solution of (9.9) by changing x for L - x (by shifting the origin of 
the coordinates on the heated surface and changing the direction of 
axis x) and ap~roaching L to infinity. In this case, we shall get 

·-

a= mq e- VW:c ---':=- ' 
bYwi (9. 23) 

where is the heat activity. 

For the amplitude and the phase of the temperature variations at 
a distance x from the surface, we get the expressions 
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161= 
mq -- - lj z': x 

V 
e , 

b (I) 

(9. 24) 

V
-

.. ·. :lt (I) 

<p= -+ -X. 
. 4 2a 

(9.25) 

The formulas (9. 23- (9. 25) describe the simplest flat temperature 
wave which in the ordinary notation has the form of 

(9. 26) 

The amplitude of this wave, which is equal to T0 on the surface 

decreases exponentially with increasing depth in the body, the leg 
with respect to the phase increasing linearly. The length of the 
temperature wave is equal to 

(9. 27) 

At a distance equal to the wavelength, the temperature wave is 

dampened e 2 n times, that is, practically completely. (This is one 
more of the reasons which account for the concept of the temperature 
wave being conditional.) 

On the surface x = 0, 
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In accordance with the general considerations ,in §8, the ampli­
tude of the temperature variations on the surface is determined by the 
magnitude of the heat activity. A shift in phases between the varia­
tions in the power and temperature on the surface by n/4 is a general 
characteristic for conditions of semi-infinity. It is related with 
the fact that ~ in formula (8.30) is a function of the complex variab!e 

V . . ~· t- x, 
a . 

, which follows from the type of equation (8.39). 

An analysis of the type of expressions (9.24)-(9.29) makes it 
possible to conclude regarding the possibility of accomplishing the 
following methodical variants for a "semi-infini te"body: 1) phase 
variants of the method of measuring the temperature diffusivity 
(method of one of two points); 2) temperature variant of measuring 
the temperature diffusi vi'ty (variant of two points; frequency-amplitude 
variant is possible, but it has no advantages); 3) independent method 
of measuring the heat activity. A combination of this method with any 
of the methodS for measuring the temperature diffusivity yields a pro­
cedure for measuring the complex of the properties. 

A description of specific experiments for a semi-infinite body 
will be given in the next section which deals with temperature waves 
and rods. 

§10. longitudinal Temperature Waves and Rods 

. This section deals with an examination of the problem of the 
utilization of temperature waves whicl1 propagate in rods along the 
axis--longitudinal or axial temperature waves. Another type of temper­
ature waves and rods--radial or cylindrical--will be examined in §13 
and 14. 

In accordance with the data in§ 4, the equation of heat conducti­
vity fer rods can be written in the form of 

(10.1) 
iPT 1 ar . --=-.-+v(T-T0 l, 
iJx2 a iJt ' 
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where •V=~ 
As• 
-~ 

(a is the coefficient of heat exChange on 

the lateral surface of the rod, which generally speaking is a function 
of rand T , pis the perimeter and sis the cross-section). Equation 

0 . . 
(10.1) is valid under condition~ when the radial temperature gradients 
are small, which takes place in the case of Bi << 1. (We w~sh to point 
out that equation (10 •. 1) still implies the existence of rad1al grad­
ients which are approximated by a parabolic function, that is, the 
examined temperature waves are not strictly flat.) 

ln accordance with the old procedure for linearizing the heat 
conductivity equation, which is already known from §1 and 8, we set 

T ~ T(x) +9(x)eiwt. 
(10. 2) 

for the complex amplitude of the variable component of the temperature 
e, we obtain the equation 

where 

(10. 3) 

-
~· . .,... !!.!.. , l , while a' is the effective coefficient of heat 

·~- ' 

exchange (see formula (8.12)). In accordance with the designations in 
§8 and 9, we set 

(10.4) 

Then equation (10.3) can be written in the form of 
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lflf ( iw · , ') F A ~ r ~ L' -; +- • • 

(10.5) 

which is completely identical to the type of equation (9.5), if.we 
introduce the designation 

• 2 ifJ_.L'! . I " 

'" = ----1- v L-. . 12 . (10. 6) 

Thus, the solutions of the equation for axial temperature waves 
in the complex form are identical to the solution for flat waves, if by 
K we mean a magnitude which is determined by the expression (10.6). 

For most experiments .• the examination of one specific case of the 
function F, which corresponds to the conditions of "semi-infinity," is 
of interest. In practice, this condition means the selection of such 
periods of temperature variations for which the temperature wave is 
almost completely dampened on the length of the test rod. (In sucli a 
problem, there is no longitudinal characteristic (determining) dimen­
sion and the role of the parametric unity of length will be played- by 

the magnitude -·v--·· ' a L= -, 
. . (J} . 

, which is proportional to the length of 

the flat temperature wave.) 

By presenting the solution of (9.23) for the flat temperature 
wave in the form of 

(10. 7) 

the sought-for solution for the actual wave is obtained therefrom by 
replacing K by the expression (10.6): 
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- . . ' ·lr r ~~ . . v..,..- . '· . 1/ v·3 + -- +v' Jl: - ~ , - ---=- t' u1 _ -+v x O ¥2 X 
_a .= aoe ~ = ri . 

(10. 8) 

For the amplitude of the temperature variations, it follows there­
from that 

(10.9) 

which is also an exponential damping, just as in the case of a simple 
flat temperature wave, but with a greater damping decrement (the damp­
ing increases through heat losses from the lateral surface). 

For the phase of the temperature variations, we get 

· <p = 'Po + k' x, 

(10. 10) 

which is also a linear law of the change in phase with the coordinate. 
(Here, the expression for the amplitude ie0 i is not decoded and the 

phases ~O of the temperature variations on the end of the rod x = 0 

because there is no need for this so far.) 

The utilization of the relationships (10.9) and (10.10) in order 
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to determine the temperature diffusivity of the material amounts to 
the substance of the Angstrom method of temperature wave {53, 113, 
137]. 

The main problem of this method is the exclusion of the coef­
ficient v 1

• The two basic ways for excluding v 1 : 1) the direct ut­
ilization of the relationships:.l(-10.9) and (10.10) and 2) the accomp­
lishment of the experiment under conditions for which the role of v 1 

reduces itself to a small correction. Let us examine at first the 
first of these ways, and we shall return to the second one in the 
second part of this section. 

In accordance with the sources 1 presentation § 8, the functions 
T(x), <j>(x,w), JeJ (x,w), serve as sources of information in the utili­
zation of the regular thermal conditions of the third type. Different 
pairs of combinations of these functions give in principle six differ­
ent methods for the simultaneous determination of the coefficients a 
and v 1

• Here, we examine not all of these, but only those which are 
not related with the knowledge of the constant component of the temp­
erature, although, generally speaking, the utilization of information 
on T(x) is far from excluded. 

One of the simplest and most common methods for excluding V 1 is 
the utilization of information of the amplitude and phases of the 
temperature variations for one definite frequency. It follows from 
the expressions (10.9) and (10.10) that 

In its turn, 

kk' =.!!?.... 
a 

k = -1-ln~ 
l ez , 

k' = <p2- fJ.'I 
l 

(10. 11) 

(10 .12) 

(10 .13) 

are the amplitudes and phases of the temperature 
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variations in two points that are at the distance of Z from one another. 

From this, we get the formula for determining the temperature 
diffusi vi ty: 

wr-a = _._ _ _;_ __ _ 
el 

(cp1 - cp,) Ina; (10 .14) 

In order to determine a, we need thus the recording of the temp­
erature variations in two points of the sample. 

The second method of excluding the magnitude v' is the utilization 
of information on the frequency dependence of the amplitudes of the 
temperature variations in two points. From expression (10.9) we can 
get the formula 

(10.15) 

where k
1 

and k2 are the values of k for frequencies of w
1 

and w2 . The 

determination of the temperature diffusivity for this method requires 
thus a measurement of the amplitudes of the temperature variations in 
two points for two different frequencies. 

The third method of excluding the magnitude v' is completely 
similar to the precedin1 one but it pertains to the phases. In the 
case of measurements of the phases in two points for two different 
frequencies, the formula, which is identical to (10.15), is valid 

(10.16) 
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As already pointed out, the first of the examined variants of 
the Angstrom method is most common. It is precisely by means of this 
that measurements are accomplished in most studies (see, for example 
[138, 82, 137, 139-141]. The main advantage of this variant is the 
need not to repeat measurements for another frequency. The second 
variant of the method, which is based on formula (10.15), has been 
accomplished by Starr [142]. ·The third method has been realized by 
King [143] who determined the delay time in the temperature variations 
in two points for different frequencies . 

Let us dwell on the problem of the practical accomplishment of 
the examined variants of the Angstrom method. In most studies, the 
length of the test rod is 15-50 em, the temperature pickups are thermo­
couples which are distributed at distances of several centimeters from 
the end; the corresponding periods of the variations lie within the 
range of 10 to 30 minutes. 

The simplest method for developing temperature variations is that 
of the periodic connection, and disconnection of a heater (see, for 
example [137, f44 ]) . A disaq'vantage of this method is a need to carry 
out a harmonic analysis of the curves of temperature changes, which 
complicates the processing of the measurement results. As a means of 
harmonic analysis, the approximate method of twelve ·coordinates is used 
most frequently. A method of twelve coordinates insures the registra­
tion of five harmonics of the test signal. The non-registered seventh 
harmonic of the temperature variations (even ones, including also the 
sixth harmonic, for equality of the periods of connection and dis­
connection of. the heater should be insignificant) with a ll-shaped 
change of the power on the end of the rod amounts to approximately 5%. 
If the first thermocouple is removed from the end of the rod by a 
distance which ensures a twofold attenuation of the main variations, 
then the seventh harmonic at this distance attenuates approximately 6 
times and its fraction does not exceed 1%. Under these conditions, the 
utilization of the method of twelve coordinates does not lead to an 
error greater 1%, however, if the thermocouples are located closer to 
the end of the ~od, it is expedient to utilize more accurate methods 
of harmoqic analysis, for example, the method of twenty-four coordinates. 
A utilization of mechanical analyzers yields results in all cases that 
are not too bad. It is necessary to point out also the method of 
analysis of the curves of temperature change, _which has been proposed 
by Bosanquet and Aris [145]. These authors prepared normagrams which 
make it possible to process the curves of the temperature variations 
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without the harmonic analysis, d~rectly from the maximum spread of the 
variations in the position of the mean arithmetic value of the tempera­
ture variations. The method assumes that a change in the power on the 
end is strictly IT-shaped in nature, which practically takes place when 
the heater has a small thermal ine.rtia while the period of the varia­
tions is large. 

Another method of accomplishing periodic heating involves the 
utilization of special devices which ensure the sinusoidal change in 
the heater power [138., 140, 146-148] (the latter work pertains to the 
case in which a solar furnace was used for heating). 

These devices are usually mechanical systems which by means of 
shaped cams control the rheostats or autotransformers in the circuit 
of the heater. The design and production of such a system complicates 
the set-up of the unit, but it simplifies the processing of the measure­
ments, making it possible to dispense with the methods of harmonic 
analysis. It is worthwhile to observe that the utilization of mechanical 
sinusoidal modulators of the current doesn•t always give a purely sinus- • 
oidal temperature change, which can be s·een as an example in [138]. 
The curves of the temperature change shown in this reference clearly 
differ from sinusoidal curves. The reason for this is apparently that 
in heating with large currents (in order to obtain sufficient ampli-
tudes of variations) , the resistance of the heater wires changes noti­
ceably in the course of the cycle due to a change with the temperature. 
This nonlinear fact leads to the appearance of a second harmonic of 
temperature variations. 

Let us pass on to an examination of the second method for ex­
cluding the constant of the heat exchange v•--the creation of conditions 
under which this magnitude becomes a part of the calculation formulas 
only as a small correction. It fo·llows from the formulas (10. 9) and 
(10.10) that the dimensionless complex which characterizes the role of 
heat exchange from the electrosurface is the magnitude 

.. 'J'a 
i;_= --. 

(I) 

(10. 1 7) 

For small values of this complex, the formulas (10.9) and (10.10) 
can be written in the form of 
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k = , I_ 1'1) (t -L -~) - V- 2a ' 2 .. 

(10 .18) 

k' = v: ( 1- -~-) _' (10 .19) 

from which follow the formulas for determining the temperature diffusi­
vi ty 

(10. 20) 

(10. 21) 

It is seen from these formulas that a factor ~ for its smallness 
is directly a correction to the experimental values of the temperature 
diffusivity obtained from the formulas which are valid for strictly 
flat temperature waves. 

Let us examine the conditions under which the factor ~ is small, 
limiting ourselves to the case of emission heat exchange. Let us 
represent the magnitude ~ for a round rod with radius R in the form of 

(10. 22) 

where 

and 
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X=r ,., f) 

--- J.\. 
fl 

(10. 23) 

It is obvious that for rods of the given radius of material, a 
magnitude ~will be smaller, the larger the frequency of the temperature 
wave. For sufficiently large values of w, the magnitude ~ can be in 
principle made as small as is desired. The frequency of the wave, how­
ever, cannot be increased too much because, with an increase in w, 
there is an increase in the damping coefficient of the wave and its amp­
litude on the end drops. In order to determine the upper boundary of 
the frequencies (values of K) for which the experiment can be carried 
out without a noticeable drop in its accuracy, we shall go through the 
following reasoning. 

For the given frequency of variations, the selection of the dis­
tance Z between the thermocouples and the realization of the amplitude 
method of measuring the temperature diffusivity is determined from the 
condition of the minimum magnitude of the relative error oa/a, which 
is determined by the inaccuracy in determining the ratio of the ampli­
tudes of the temperature variations. In accor~ance with formulas (10.12) 
and (10.18), 

(10.24) 

The greatest magnitude in this expression is possessed by the 
second member which contains the relative error in the determination 
of the second, smaller amplitude of the temperature variations. In 
order to evaluate this magnitude, the dependence of 682 on the amplitude 

8 is essential. 
2 

For small values of e2 , it can be assumed that 

68
2 

= const~ that is, the error in the measurements is limited by the 

maximum error of the recording device (otherwise, it would be advantage­
ous to utilize even still smaller values of 02 and thereby reduce the 

error of oa/a to an increase ink). Under this condition, the selec­
tion of the optimum position of the second thermocouple reduces itself 
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to finding the value of 0 .. = 0 e-.kt 

kl = 1/ w l =-In _fJt ~~ ~hL~ m~~imum. 
. :.:!a )" • 

, which makes the 

magnitude In order to solve this 

problem, we take into account that: _2_ ·- 2M . , while the magni-
klfJ~ kbO~ 

tude e1 is constant when w = canst. Determination of the extremum of 
-e-kr 

the ratio (:k{') gives kl = 1, that is, the optimum ratio of the 

amplitude is 2.5 - 3. It is pertinent that the values of kle 1 ensure 
simultaneously also sufficiently high accuracy in determining the 
temperature diffusivity by the phase method because the magnitude of 
the phase difference, in accordance with formulas (10 .13) and (10 .19), 
is obtained in this case of an order of one radiant. By introducing 
into formulas (10.22) and (10.23) the value of the optimum distance Z 
between the thermocouples, 

(10.25) 

it is possible to exclude the values of the frequencies from these 
formulas: 

(10.26) 

Formula (10.26) makes it possible to evaluate the values of Z 
for which the correction ~ does not exceed the given smallness of the 
magnitude and the'reby determine the range of temperatures in geometric 
dimensions for which the effect of heat exchange from the electrical 
surface of the rod plays a role of a small correction. The results of 
these calculations for one of the typical cases (A- 1 wt/cm•degree, 
E 1 -0.5) are shown in Table 18. The magnitude Z is shown in centi­
meters,~ is set equal to 0.1 (10%) . 
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Table 18. The Length of Samples for 
which the Correction for the Heat 
Exchange from the Lateral Surface 
Does Not Exceed 10%. 

T K 

ICJOO 
1.:000 

2 r=l CM 

2,3 
1.2 
0,7 

I '~· 0,( 

If it is assumed that 
values of Z > 1 em are allowed 
for the experiment (for thermo­
couples or thermal probes 0.2 
mm in diameter, the error in 
determining the distant cell 
in this instance amounts to 
0.2 mm, that is, 2%), then 
it follows from the table that 
the heat exchange can be con­
sidered as a correction for 
thin c~ 5 mm) rods up to 
temperatures of~ 1,000°K if 
a thick c~ 1 em) rods up to 
temperatures-of about 1,500-
2,0000K, The corresponding 
values of the periods of 
temperature variations, de~ 

termined from formula (10,25), amount to 5--25 sec; which are at least 
an order less than those usually employed, Other evaluations from 
formula (10.22) lead to similar conclusions [30]~ 

The accomplishment of experiments with short periods of tempera­
ture variations has a number of very substantial advantages, The basic 
advantage of these is due to the fact that as a result of the smallness 
of the correction ~. a smaller amount of information, in comparison with 
methods which require the exclusion of relatively large values of v', 
is required for the experiment, This advantage is the possibility of 
the independent determination of the temperature diffusivity in the 
phase and amplitude variants of the method by the utilization of the 
sample calculation formulas (10.20) and (10,21), The possibility of 
determining the temperature diffusivity from the amplitudes of the 
temperature variations alone or from their phases alone makes it pos­
sible to simplify substantially the experiment and the processing of 
its data, while the utilization of amplitude as well as phase data 
makes it possible to exert internal control on the experiment. 

Another merit of the procedure under consideration is the small 
length of the samples employed, Because of the exponential nature of 
the drop in the amplitude of the temperature wave with the distance, 
a sample length of -3Z ensures completely no effect of the second end 
of the rod so that samples with a length of 3-5 em are suitable for 
the experiment. 
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the experiment. The small of the samples and the correspond-
ing dimensions of the unit--quality--is particularly important for 
high temperatures. 

Further, the utilization of small periods of temperature varia­
tions reduces considerably the time for the measurements, makes it 
possible to record practically any number of repeated periodic curves, . 
and thereby obtain repeatedly reproducible results . 

Another circumstance related precisely with the smallness of the 
period of the variations is the low sensitivity of the measurement 
system to nonregular changes and the average temperature of the experi­
ment, which is determined by the instability of the thermal process. 
Actually, at average temperature of the measurement varies with the 
speed c (T = T0 + ct), then the ratio of the "drift" of the temperature 

during the period of TOT CT to the amplitude of the temperature 

variations near the end .0-C\ -c for a constant heating 

power (see formula (9.24) amounts to 

.>.T c ·--·- =-VT, 
.a c 

that is, it decreases substantially with a decrease in period. Besides, 
for still greater decrease in the effect of the temperature drift for 
periods of the order of seconds, it is possible to utilize electrical 
filters which decrease the signal with a frequency much less than that 
recorded (see [146]). These considerations make it possible in the 
case of small periods to carry out measurements under quasiregular 
conditions when the average temperature increases progressively. 

A negative aspect of work with brief periods is a relatively large 
error which is introduced by the inaccuracy in the determination of the 
distance between the thermocouples. A method for decreasing this error 
will be described in §11. Another negative aspect is the small ampli­
tude of the temperature variations obtained under conditions of small 
periods with the introduction of a definite power into the samples; 
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in accomplishing the experiment, it is required, for this reason, to 
pay special attention to the construction of the heaters and to utilize 
more sensitive recording systems than in operating with long temperature 
waves (see §ll). 

The indicated negative aspects of the examined variant of the 
procedure cannot, however, be compared with its positive aspects; the 
advantages of the utilization of small periods exceed considerably the 
disadvantages. The advantages of short temperature waves are particu­
larly large for experiments of a complex nature, in which the minimum 
amount of information required for determining the thermal character­
istics in the absence of a noticeable effect of lateral heat loss makes 
it possible to accomplish measurement methods which are very simple 
in nature. The description of these complex experiments is dealt with 
in §12. In §11 we presented first the experience gained from the 
utilization of short temperature waves for measuring thermal diffusi­
vity and we dwell in particular on the specific features of the experi­
ment with liquid metals. 

§II. Practice of Measuring the Temperature Diffusivity by Means 
of Short Longitudinal Temperature Waves and Rods 

In the preceding section,we presented a theory of the method of 
measuring the temperature diffusivity by means of temperature waves 
and rods (Angstrom method) and we cited arguments in favor of the ex­
pediency of the utilization of short temperature waves for which the 
calculation of the heat exchange from the lateral surface can be achiev­
ed by the introduction of a small correction. This section deals 
entirely with the practical utilization of precisely such short temp­
erature waves. 

One of the important practical problems which arise in the 
accomplishment of experiments with small periods of temperature vari­
ations is, as was observed in §10, that of the selection of the most 
efficient construction of the·heater. The importance of this problem 
is explained by the need to introduce into the test sample a power 
that is as great as possible, because, in accordance with formula 
(9.24), the amplitude of the temperature variations on the end notice­
ably decreases with a rise in the frequency or a constant power, while 
on the other hand, the power transferred from the heater to the sample 
also decreases with rising frequency through an increase (sometimes 
significant) of the thermal resistance of the heater-sample. 

- 208 -

• 

• 



11 

• 

The uniformity of heating over the end is of essential signifi­
cance for short temperature waves because the relative smallness of 
the amplitude of the temperature variations makes desirable a distri­
bution of a heat receiver as close to the end of the test rod as pos­
sible (for the evaluation of the role of nonuniformity in heating of 
the end, see below). 

In the first study where short temperature waves were used 
[146], the heater was a thin ceramic plate covered on both sides by a 
layer of molybdenum. This layer was repeatedly cut on one side in 
such a manner that its total resistance amounted to- 2 ohms at room 
temperature; lead electrodes were soldered to this surface of the 
heater. Another surface of the heater was soldered with a solid solder 
to the end of the sample. An advantage of such a heater is the suf­
ficiently good uniformity in heating along the end. The complexity of 
the technology in the preparation of the described heater has impelled 
us to study other types of heaters [30]. The most successful of these 
are shown in Figure 25. 

L 

a 

Figure 25. Construction of 
heaters. 

The body of the heater,a,com­
prises a sipgle entity with the rod 
(it is milled from one piece of the 
material). The wi~es of the heater 
are placed in horizontal rods having 
a diameter of - 1 mm, which are lo­
cated a distance of 2 mm from one 
another and are insulated by a ceramic 
straw (beads). The heater ensures 
sufficiently uniform temperature 
field along the cross-section and makes 
it possible to introduce into the 
sample a comparatively large power. 
Its disadvantage is a need to have 
the test material in the form of a rod 
(bar) of large diameter (20 mm). 

Tne-heater, b, is a layer of conducting power-- a mixture of 
graphite with aluminum oxide--located between the end of the test straw 
and the contact molybdenum surface, squeezed from above by the spring 
[29]. The composition of the powder is selected in such a manner that 
the resistance of the heater would amount to 10-15 ohms. Such a con­
struction of the heater combines good uniformity of temperature field 
on the end with simplicity of installation and manufacture. Another 
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way for solving the problem regarding the heating of the end is the 
utilization of electron bombardment which is described in §12. 

One of the methodical problems on which we dwell here is that 
of thermal pickups and the recording system. 

In §2 attention was paid to the expediency of utilizing for the 
measurement of the temperature differences of thermal probes and 
thermal electrodes which form a differential thermocouple, an inter- . 
mediate element of which is the test metal. Advantages of the use of 
thermal ohms are particularly great for the problem under consideration 
when the distances between the thermal pickups are small and should, 
for this reason, be measured particularly thoroughly. The utilization 
of thermal probes, that is, single electrodes instead of thermocouples, 
makes more definite the distance between points with the temperatures 
measured in these two smaller errors in the determination of the 
distance. 

The circuit for including the thermoprobes is shown in Figure 
26. The thermoprobes 1, 2, 3 (any number)are soldered to the surface 
of the test rod in locations where• the temperature pulsations should 
be' recorded. The general thermoprobe 4 is located near the end of 
the rod where the temperature variations are practically absent. Inter­
mediate junctions with copper leads should be at the same temperature 
(for example, placed together in a Dewar flask) so that a change in the 
temperature would not give an additional shift in the readings of the 
thermoprobes with time. 

The differential diagram shown in Figure 26 has also another 
advantage in comparison with thermocouples: slow systematic changes 
in average temperature of the sample show up on it considerably less 
as a results of the mutual compensation of these changes by the two 
thermal probes. 

FLgure 26. Diagram for [ncluding 
t~e t~ermal probes, 
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In working at temperature up to 1,000°C, it is expedient to 
use alumel leads as thermal probes, which give a rather considerable 
thermal emf in the pair with the most metal; up to 800°C one can use 
constantan probes. It is convenient to weld the probes by means of 
an electrical spark. Prior to welding, it is expedient to make on 
the surface of the sample the thin annular reference marks (by using 
a milling bench) at distances which correspond to the position of the 
probes and to weld the thermal probes at these reference lines; to 
determine on a comparator the distances between the reference lines 
with an accuracy of~ 0.1 mm is no difficulty. The indeterminacy of 
the distance between the thermal probes, with consideration of their 
proper thickness (diameter of the thermal probes should amount to 0.1 -
0.2 mm) can in this case be taken as ~ 0. 2 mm. 

As a recording system for the experiment under consideration, 
use can be made of any of the systems with photoelectric amplification 
(for example, the sys tern described in the second half of this section) 
or the system with a highly sensitive electronic amplifier using 
direct current. However, the specificity of the measurements of the 
temperature diffusivity is that the measurements do not require the 
knowledge of the absolute values of the temperature variations and the 
true phases of these variations (only the phase differences are import­
ant), it permits the utilization of amplification and recording elements 
which have, generally speaking, random amplitude-frequency and phase­
frequency characteristics; the only requirement for these is that of 
linearity. In particular, it is possible to utilize elements which 
have a definite inertia and even resonance characteristics. These 
elements include precisely ordinary mirror galvanometers. For periods 
of vari,ations rated in ten seconds, the system of objective registra­
tion of the readings of a mirror galvanometer, which is briefly described 
in §3, is convenient. The example of a recording of temperature vari­
ations (4 thermoprobes) shown in Figure 27 pertains to the case when 
the power modulation of the heater is accomplished by its periodic 
connection and disconnection, that is, when the change in power was 
IT-shaped (with the same interval of connection and disconnection). 

Despite such a nature of change, the power;, which registered the 
temperature variations, differs very little from the purely sinusoidal 
ones even for thermal probes that are located in the immediate vicinity 
of the heated end. The reason for this lies essentially in the con­
siderable damping of the higher harmonics of the temperature during th~ 
passage of the signal from the heater to the sample. The large thermal 
resistance of the heater-sample (including also the heater shown in 
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Figure 25b is the damping in the powder) is unfavorable for the trans­
fer of variable heat flow to the sample and from this point of view 
it plays a positive role. Besides that, decrease in the share of the 
higher harmonics takes place also in the recording system itself due 
to the amplitude characteristics of the galvanometer (considering this, 
it was expedient to work with periods close to the natural frequency 
of the galvanometer and to utilize its purely vibrational conditions). 
The closeness of the recorded curve to the sinusoidal curves is an 
additional advantage in working with short temperature waves, which 
makes it possible to utilize the simplest type of modulation--"con­
nected-dis connected" sys tern with minimum corrections for the inharmonic 
state of the recorded curves. {In connection with this, we wish to 
observe that the given circumstance was apparently not properly clar­
ified in the first study with short temperature waves [146] because 
its authors paid much attention to the creation of the mechanism for 
the sinusoidal modulation of the heater power.) 

Figure 27. Example of the 
recording of temperature 
variations. 

A system of automatic power 
modulation in accordance with the 
"connected-dis connected" sys tern can 
be accomplished by means of a mechani­
cal or an electronic device. An 
example of the first of these is de­
scribed in [29, 30, 33]; the system 
of this device is shown in Figure 28. 

The connection and disconnection 
of current in the hea~er circuit is 
accomplished by means of the magnetic 
starter 1. The starter is controlled 
by a lever 2 which is rotated by a 
motor through the reducer 3 which gives 
the necessary range of periods from 
3-30 seconds. (For this purpose, the 

reducer from an automatic PS-383 device is convenient.) As it rotates, 
the lever closes the contact 4 which leads.to the actuation of the 
starter (contact 5 is in this case closed) and the closing of the con­
tact 6 and 7. The starter remains connected also after the disconnec­
tion of the contact 4 on the path of movement of the lever to the 
contact 5 (contact 4 and contact 6 of the electromagnet are connected 
parallel to one another). When the lever opens contact 5, the starter 
is disconnected and remains disconnected during the entire second half 
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of the period until lever 2 again closes contact 4. 

The described modulator ensures sufficiently clear and stable 
operation; the relationship between the connection and disconnection 
intervals are easily controlled by varying the positions of the contacts 
4 and 5. 

Another type of mechanical modulator is described in [39, 40, 
and 41]; its circuit is shown in Figure 29. The connection and dis­
connection of current is accomplished here by means of the relay 1; 
the current through the winding of this relay is interrupted by the 
contact 2 which is controlled by the ·rotating disk 3. The disk closes 
the contact and connects the relay in the course of a half-period of 
rotation. For stable operation of such a device, good quality of the 
contact 2 is very important. 

5 

Vibrationq 
Pickup- - 1 ..__, 

\ 

f 

1 

1~1 
Figures 28, 29. Circuits of the mechanical modulators 

(interrupters) of the circuit. 

The electronic modulating devices are convenient in operation. 
The simplest of these is a multivibrator with a stepwise control of the 
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frequency, which controls the work of the electromagnetic or electronic 
relay. 

Somewhat more complicated is the electronic modulator which 
ensures continuous control of frequency within a broad range from 
scores of cycles per second to hundreds of cycles per second, 

The master generator in this device is the sonic generator the 
signal from which flows to the frequency divider which ensures its 
1,000-fall degrees (for this purpose, use can be made of the scaling 
device of the type PS~lOOO). The signal of the required frequency 
flows to the differentiating cascade, at the outlet of which sharp volt~ 
age peaks form. These peaks control the operation of the trigger device 
which feeds every half-period a regulating signal to the outlet of the 
electrical relay, The complexity of this device is completely compen­
sated by the possibility of its use withing a range of frequencies 
where the utilization of mechanical modulators is practically excluded, 

Let us examine the problem of the accuracy in determining the 
temperature diffusivity. In the amplitude variant of the method of 
short temperature waves, the error in determining the magnitude 

. (\ 
I 1 l " 

h = -1- n u~ is equal to 

(11.1) 

The random error in determining the greater amplitude of 81 is 
comparatively small, of the order of 0,5%, of which one can become 
convinced from an examination of Table 19 which gives the results of 
the measurements of the amplitude of five successive periods of varia~ 
tions (one of a typical series). 

If it is taken into account that the error introduced by the 
inaccurate calculation of the harmonics can also amount to ~ 0,5% 
then the maximum error 881/81 is equal approximately to 1%, 

In order to evaluate the error in the determination of 88 /8 2 2 
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we shall take into account that, in accordance with §10, the magnitude 
of 82 should in the optimum case be approximately 2.5"'3 tiii)es less than 

that of 81• In recording the curves of the temperature variations on 

the tape of an automatic potentiometer of the EPP-09 type, without a 
change in the coefficient of amplification of the recording device in 
changing from one thermocouple (thermal probe) to another, the magni­
tude of the amplitude of 82 will amount to ~ 4 em, if the doubled 

amplitude of 81 extends almost over the entire scale of the potentia~ 

meter (25 em), Besides, the inaccuracy in the reading of the a~li"' 
tude of o82 in the worst case will amount to "" 0, 5 lllll), The cor;J;'es .... 

ponding relative error is- 1.2%, while with consideration the error 
due to the harmonics is~ 1,5% (on the second thermocouple, the 
fraction of the harmonics is considerably less than on the first). 

Thus, the total maximum error is 

(~o, _!._ oo~ -::,. () _ , 
6 '-e ..... >.o. 

1 ~ 

For kl ! 1, which is the optimum condition (see § 10), 

Ok = 2 So' 
k ' .o +~ j 

The magnitude ol/l in accordance with evaluations in § 10, 

t t 2 ° . th t F. 11 . M 4 ~ amoun s o '0 1n e wors case. 1na y, we get-~ .,:.:J 0 ,i. 
k 

The 

error in determining the temperature diffusivity is, in accordance 
with formula (10.20), equal to 

(11.2) 
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The error of ow/w is negligibly small because it is not dif­
ficult to measure the time of a sufficiently large number of periods. 
The inaccuracy in the correction for the heat excnange o~ depends 
fundamentally on the magnitude of this correction. For temperat'ures 
of hundreds of degrees, o~ is practically equal to zero; in the worst 
case, when ~ approacnes 10% due to the inaccuracy in the knowledge of 
the degree of blackness (if the correction is introduced \purely by 
calculation), this error can reach 2-3%. Thus, finally for the maxi­
mum error in the determination of the temperature diffusivity, we get 
9-12%. 

Let us examine the phase variant of the method. The error in 
determining the magnitude k' = (1/l) ~~ is equal to 

~k' bi<p u 
----=-~+ -. (11.3) 

k' ~<p l 

The magnitude of the absolute error in determining the differ­
ence of the phases ~~ is made- up of the errors in reading the :phase 
of the variations of each! of the thermocouples (thermal probes) with 
respect to the marks of the connection and disconnection of heating 
on the tape of the automatic potentiometer. 

In order to evaluate these errors, we have assumed that the 
position of the nodal points of the periodic curves recorded on the 
tape of the automatic potentiometer can be determined with an accuracy 
of -0.3 mm (for a line width of -0.5 mm, the position of each mid­
point is fixed with an accuracy of 0.2 mm for a vertical line and 
- 0.3 mm for a line with a slope of -45°). If the period of the 
temperature variations extends over a length of 10-20 em, then the 
error in determining the phase amounts in this case to 0.5-1°. The 
stability of the recorded curves actually ensures-such accuracy in 
determining the phases, if not for individual readings, then in any 
case for the average. For illustration, we present Table 20 which 
contains the results of the reading of the phase of five successive 
variations with respect to the bench marks on the potentiometer tape. 

For o~~ = 28~ = 1-2°, the summary error in the determination 
of k', is thus equal to 3-5%. The maximum error in determining the 
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temperature diffusivity is in accordance with formula (10,21) equal 
to 

{}a ~2M' +6t: 
a k' "'' (11, 4) 

which gives 6-13%, that is, approximately the same magnitude as in the 
amplitude method, 

Table 19. Results of the Recording of the Amplitudes of Five Succes­
sive Temperature Variations. 

-· I 

Number l 2 3. 4 5 
"Deviation 

Avg. Max. Avg.\ 
I 

<p Degree • ..... f ·45,3/45.6 :1 .4_6,SI 45,3 j -t5.3/.J5.71 o.s l O,.J: 

Table 20, Results of the Recording of the Phase of Five Successive 
Temperature Variations. 

Number . l 1 I ~ I 3 I 4 -1 s- !'Avg. ~=~:a!~~~ 
-----------------7----~--~--~----~--~ 

· · · .. · ·· ·l1171 1171 1161 117! 116,5 j 116,7! O,G'.',; l ;J,30,. A, .11.11 • 

The evaluations of the maximum errors in determining the temp­
erature diffusivity in the amplitude and phase variants of the method 
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are more typical than large for the range of high temperatures. Never­
theless, it is quite natural to strive to decrease these errors. The 
real possibility of accomplishing this is opened with the utilization 
of a large number of thermal probes. In particular, it is no problem 
to utilize in the determination of the temperature diffusivity the 
readings of 4-5 thermal probes which are located at the distance of 
2-5 mm from one another. In this case, the magnitudes k and k' can 
be determined already as the most probable values. for the entire r to:tal­
ity of the thermal pickups by means of the formulas 

k = _ 'dIn 9 
dx 

k' = d!p. 
d.r:. 

(11.5) 

(11.6) 

k and k' should thus be regarded as angles of the slope of the straight 
lines ln 8 as a function of x and ~ = ~(x), which corresponds in the 
best manner to the experimental points. Typical curves of these 
functions are shown in Figure 30 a and b. Then the section of the 
curves in Figure 30 is explained by the fact that for different periods 
the coefficient of amplification was different. A comparison of the 
values of k found from formulas (11.5) and (11.6) during a repeat of 
the experiments under identical conditions leads to the conclusion that 
a maXimum error 0i k and k I for 4-5 thermal probeS dOeS not eXCeed 
- 2-3%. 

Table 21. Results of the Determination of the Temperature 
Diffusivity from the Amplitudes and Phases of 
the Variations for Different Periods. 

a_J cm2/sec 
from 

Seconds pmplitudes from phases 

10.2 () .u 1.1, 0 ,G')-; 
15,2 0 ,111.1-, 0 ,:..''14 

20,0 
I 

O,Q'JI (). ( ,•j; 
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Figure 30. a, Dependence of the logarithm of 
the temperature variations on the coordinates 
of the thermal probe; b, The dependence of 
the phase of the temperature variations on 
the coordinates of the thermal probes. 

z reM 

The corresponding values of the maximum error in determining the 
temperature diffusivity amounts to 4-~~ (with considera~1on of the oos­
sible systematic error due to the inaccuracy of the introduction of 
a correction for the heat exchange). The reproducibility of the in­
dividual experimental values, including also those for different per­
iods, are completely in agreement with this evaluation. In results 
of the amplitude and phase measurements agree with one another with 
the same accuracy. For illustration, we show Table 21 (iron at the 
temperature of 433°C, four probes were used). 

In conclusion of this section, we wish to dwell on a problem of 
the utilization of the method of longitudinal temperature waves for 
measuring the temperature diffusivity of liquid metals. 

The main difficulty in this case is related with a need of 
keeping track of the role of rolls of that tube (crucible) in which 
the liquid metal is contained. It is obvious that the effect of the 
tube walls on the results of the measurement will be comparatively 
small when the thickness of the walls is small in comparison with the 
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diameter of the tube. For such thin-walled tubes, the role of the wall 
can be reduced to a small correction. The specific expression for this 
correction is shown in {149]. (Corrections are given as the first ap­
proximation of the solution of the corresponding accurate problem; 
there no conclusion.) 

For small values of the Bi criterion, for which, properly, it makes 
sense to introduce an accurate correction and small values of 

R~-R~ 
= -R~ • 

itself, the 

, that is, for small values of the correction 

expression shown there changes to the following: 

• __:cT~C!._ ( 1 _ .5:1..). 
cp a 

(ll. 7) 

This formula agrees in accuracy wi.th the formula for the cor­
rection given in [150] where it was obtained from the expression for 
the effective temperature diffusivity which was determined as the com­
bination of the average heat conductivity along the cross-section~ 
average heat capacity with respect to the volume, and average weight 
density. 

Measurements of the temperature diffusivity of liquid sodium and 
lithium within the temperature range of 350 to 876° and 1,000°C are 
respectively described in [150]. The test metals were placed in a 
stainless steel tube 230 mm long, 8.6 mm in diameter, and a wall thick­
ness of 0.2 mm. The error of the results of measurements amounted to 
10%. The results of similar measurement of the temperature diffusivity 
of liquid sodium and potassium and of the alloid containing 78% potas­
sium and 22% sodium within the temperature range of 100-150° to 600-
-7500C are given in [149]. 

§12. Procedure for Measuring the Complex of Thermal Parameters 
of Metal by Means of Longitudinal Temperature Waves and 
Rods 

The possibilities of the method of regular thermal conditions of 
the third type, as already pointed out i~ §8, make it possible to 
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utilize it not only for measurements of the temperature diffusivity of 
material, but also for determining the entire complex of thermal 
characteristics suCh as heat conductivity, heat capacity, temperature 
diffusivity [151, 136]. Such a development of the method of temperature 
waves presupposes a knowledge of the variables of the heat flow on one 
of the surfaces of the sample during its periodic heating. The problem 
of the experimental determination of the flows is told by the utilization 
of heating by means of electron bombardment when a specific surface of 
the sample (in the case under consideration--one end of the rod) is 
heated by a stream of electrons which are emitted by a calcine cathode 
or a special gun; the heating power is in this case determined from 
the strength of the electron current and the difference of potential 
between the cathode and the sample-anode. 

Let us examine the theory of the method by limiting ourselves to 
the case of relatively short temperature waves, the advantages of whiCh 
have been explained in § 10 and 11. For such waves, that is, under con­
ditions of smallness of the role of emission heat exchange, the equation 
for the complex amplitude of the temperature waves in a semi-infinite 
rod should have the fonn of 

• j.~ ! : . _; -~ l 
\ 2 J (12 .1) 

where ~ = v'a/w (see formulas (10.17)-(10.19)). 

The amplitude of the temperature variations on the heated end 
of the rod e

0 
should in this case be found from the boundary condition 

on the end: 

(12. 2) 

(this condition is similar to (8.11) with consideration of the erection 
of the axis x), where a

1 
is the effective coefficient of emission 

heat exchange on the end, q is the specific power of the electron 
bombardment, m is the coefficient of modulation. Substitution of 
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the expression (12.1) in equation (12.2) gives for the amplitude of the 
temperature variations and of the phase (with respect to the variations 
of the power) the formulas 

qm I !;' ) lito[=--,=:\ 1---;;- . 
. I W \ "-;l.l; -

I a 

(12. 3) 

(12.4) 

where 

6' = --~---· (12.5) 

"l/~~ 
In the derivation of these formulas, it was assumed that ~ (( [ H s'"(( 1. 

Formula (12.3) makes it possible to determine the value of the 

heat activity 
I;. 

(~) from the results of the measurements of the 
}'a 

power q and the· amplitude of the temperature pulsation on the end 80 . 

In practice, it is however, inexPedient to determine not 80 but the 

amplitude of the temperature variations at a certain distance Z from 
the end. For the amplitude and phase we get in this case the formulas 

(12. 6) 

(12. 7) 

V
.-

1t (t) ffi=-+ -/-6 
T 4 2a 2 ' 

- 222 - • 



• 

The members o1 and o2 are small corrections for the emission heat 

exchange and are equal to 

V
-

~· ~ (!) ~ =-+- -l, 1 2 2 2a (12. 8) 

(12.9) 

The formulas (12. 6) and (12. 7) make it possible to determine both 
thermophysical coefficients A and a, which figure therein, from the 
readings of one thermocouple: 

(12.10) 

(12. 11) 

while 

. (12.12) 

In utilizing the readings of the ~ermocouples (thermal probes) 
for determining the temperature diffusivity, these formulas can, in 
accordance .with §11, be written in the form of 
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(12.13) 

(12 .14) 

where 

a·, --:o ~\ + j_ ( 1 + 1 l w t) = l ( 1 + 2 • I w 1) + ~· . 
2 V ~ 2 V 2a 2 

(12.15) 

Besides the determination of temperature diffusivity from the 
value of the phase of the temperature variations under conditions of 
controlled power, there is also another possibility of determining 
this magnitude: from the amplitude of the temperature variations for 
two or several frequencies (amplitude-frequency method). The tempera­
ture diffusivity can in this case be found from the formula 

The utilization of the amplitude-frequency method makes it pos­
sible to accomplish additional control of the resulting data, which is 
one of the advantages of the described method of measurement. 

In the examined complex method; an independent method is used to 
determine the magnitude of the temperature diffusivity, the second 
thermal characteristic--heat conductivity (or heat activity) is related 
with the determination of the temperature diffusivity (which figures in 
formula (12.11) as the amplitude as well as the phase of the temperature 
variations) . 
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Let us now pass on to a presentation of the problems of the pract­
ical accomplishment of the procedure. The circuit of the experimental 
unit which is intended for measurements by the cathode under considera­
tion is shown in Figure 31 (see [151]). 

Figure 31. Circuit of unit for measuring the complex 
of thermal properties by the method of longitudinal 
temperature waves. 

The test sample 1 is placed opposite the cathode 2 (oxidized 
cathode or wolfram spiral). Two wires 3 and 4 (chromel and alumel, 
0.2 mm in diameter) are welded to the surface of the sample at a dis­
tance of several mm from the end, which forms the thermocouple that 
is lised for recording the temperature variations as well as for meas­
uring the average temperature of the sample (the wires are welded at 
an equal distance from the end). In order to obtain additional in­
formation regarding the space-time distribution of the temperature 
with respect to the rod, several thermoprobes--alumel wires 5 which 
are - 3 mm from one another, are welded to its surface. A common 
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thermoelectric 6 made of the same wire, is welded to the lower end of 
the sample. Each of the thermal probes in pair with the electrode 6 
forms a differential thermocouple, the intermediate metal of which is 
the sample itself. (Figure 26}. The sample is grounded through the 
millimeter 7 which records the electron current. The cathode is con­
nected with the negative pole of the UIP-I type rectifier 8. The 
voltage of the rectifier is periodically connected and disconnected by 
means of a mechanical modulator 9 (see §11). Screen 10 which is 
usually under zera potential, protects the thermocouples against the 
entry of an electron current. The electrical heater 11 is a cylinder 
of molybdenum sheet on which is wound a spiral. The spiral is in­
sulated from the cylinder by aluminum rods. On top of the heater are 
mounted thermal screens which together with the heater are supported 
on the bottom round screens. The entire system is placed within a 
glass vacuum cap 12 with double walls between which water circulates. 
The base of the unit is mounted directly on the flange of a diffusion 
pump of the VA-05-4 type. 

The problem of the methods for recording the temperature varia­
tions is given in §11. In this unit, the constant component of the 
thermal electromotive force of the thermocouples is compensated and 
measured by means of the potentiometer 13 of the PMS type, the variable 
component is fed to the amplifier 14 of the F-117 type, the signal 
from the outlet of which is recorded by ·the automatic potentiometer 15 
of the EPP-09 type (an example of the recording of temperature varia­
tions is shown in Figure 32, the spikes correspond to the moment 
connection and this connection moments of the electron heating). It 
can be seen that the temperature variations in points distant from the 
end are close to sinusoidal as a result of the rapid damping of the 
higher harmonics. 

The curves are processed by the method of approximate harmonic 
analysis: the variations in the points closest from the end by the 
method of twelve coordinates, while in points distant--by the method 
four ordinates . 

The determination of the temperature diffusivity from the dif­
ference in phases between the variations in the power and the tempera­
ture in this method does not differ substantially from the experiment 
described in the preceding section. It is worthwhile to mention only 
that the dependence of ~ rr/4 on x for thermal probes in the examined 
case of electron heating should pass through the origin of the 
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coordinates in accordance wit~ formula (12.7) (with an accuracy up to 
t~e correction o2), whereas for inertia heaters described in §11, the 

initial difference in the phases was indeterminate. This circumstance 
makes it possible to determine the coefficient k' (see formula (11.6)) 
with a somewhat greater accuracy or with the same accuracy from a 
smaller number of probes. 

The magnitude of the' instantaneous 
power of the electron heating can be 
determined as the product of the strength 
of the electron current I, which passes 
from the cathode to the sample, by dif­
ference of potentials between them V . 
Accordingly, the specific power q is 
equal to 

(12 .16) 

Figure 32. Example of the 
recording of temperature 
variations. 

This formula can be considered 
quite accurate in the absence of a 
secondary electron emission from the 

end. In the described experiment where the values of V are small 
(100-200 volts), the influence of secondary emission should not be 
great. A decrease in the role of secondary emission is facilitated by 
the screen 10 (see Fig. 31) on which any potential can be fed. In this 
case, practice shows that the change in the potential of the screen 
from zero (with respect to the anode--sample) to a double negative does 
not show up at all on the results, which can be regarded as an argu­
ment in favor of the absence of a noticeable effect of secondary 
emission in the described experiment. (Identical results are received 
also when the upper flat part of the screen 10 is replaced by a plate 
made of mica.) Another proof of the absence of the role of secondary 
emission is in the coincidence of the results obtained from different 
values of the power (inseparately of the voltages) which differ several­
fold. Some of these results will be cited below. 

In order to pass from values of instantaneous electrical power 
to the magnitude of the amplitude of the first harmonic of the very 
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power variations for a IT-shaped type of modulation in the formula (12.16), 
it is necessary to introduce the factor equal to 2/n: 

2 q=--IV. 
n2[(1- (12 .16 I) 

In some cases, for example, for the close location of the cathode 
with respect to the sample and for high temperatures, the change in 
power with time will not be strictly n-shaped due to the possible change 
in the anode current in the course of a half-period. For small changes 
of such a type, it can be assumed that the power changes linearly, as 
shown in Figure 33. 

ill. J!lr; ~-~ 
IJ., I 

I 
- ---·-

Tjl{ .r;z T 

Figure 33. 

In this case, for the magnitude 
of the amplitude of the first harmonic 
the following formula will be valid 

q=-.% I+---- . 4 [ I ( t,q )2] 
n 2n qo 

A correction to formula (12.16) 
will in this case be negligibly small 
even when l:!q amounts to - 10%. A 

correction to the phase of the power variation is another matter. It 
is equal to 

. . 2 t,q. 2 _!:I_ 
~q>=--.-=--· I • 

:rt qo :rt . 

The magnitude -o~. which is added to the difference in phases 
between the variations in the power and the temperature, can generally 
speaking be perceptible. In connection with this, in performing the 
experiment it is recommended to record the curve of the change in anode 
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current with time by feeding to the potentiometer a voltage with a 
resistance of- 0.1 ohm connected in the gap of the anode circuit. 

The accuracy in determining the power from formula (12.16) is 
determined by the class of accuracy of the instruments used and by the 
stability of the measured values of I and V. In the described experi­
ment, use was made of class 0.5 instruments; no noticeable variations 
in I and V during the time of the experiment were observed for the 
stabilized process; the error in determining q was close to 1% . 

The error in determining the absolute values of the amplitude of 
the temperature variations is made up of the errors in determining the 
first harmonic of the amplitude on the scale of the visions of the tape 
in the automatic instrument, the errors in determining the value of 
the divisions of the instruments in units of the electromotive force 
and the errors of recalculating the electromotive forces of the thermo­
couple to the temperature difference. In accordance with the presenta­
tion in §11, the first of these magnitudes is determined with an ac­
curacy of- 1%. The value of the division of the potentiometer can be 
found with an error of- 0.5% (for control purposes, several readings 
are given), the graduation of the thermocouples makes it possible to 
determine their sensitivity with an accuracy also of 0.5-1%. The total 
error of oiGI/IGI thus does not exceed- 2%. 

Let us examine the problem of corrections for emission. In ac-

cordance with the evaluations of §10, the magnitude of the dimensionless 

parameter, 1/ w t under optimum conditions should be close to 
2a 

unity. In accordance with this, the corrections for emission o1 , o2 and 

o
3 

are determined by the order of magnitude of sands'. Evaluations 

of the first of these have been made in §10. For a sample diameter 
ranging from 5-10 mm the correction turns out to oe ~mall.up to temp­
eratures of'l,000-1,500°K. Thus, for an iron sample 8 mm in diameter, 
the temperature of 1,000°K and the period of 10 seconds, the magnitude 
s is - 0. 3%. 

Formula (12.5), which determines the magnitude s' can be rep­
resented also in the form of 
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s' = 2aal R .. I (J) • 

w'J..R V 2a (12 .17) 

,In case of equality of the coefficients of heat exchange on the 
end and the lateral surface of the sample, 

(12 .18) 

The dimensionless factor is with respect to the 

order of magnitude either equal to unity of less than 

(R ~::.'l r• ( w -1) Hence, it follows that ....., ' V 2a 

(12 .19) 

This conclusion naturally remains valid also when the coefficient 
of heat exchange on the end a is, with respect to accuracy, not equal 
to a, but as close to it in order of magnitude. 

Thus, each of the correction members 61 , 62,and 63 is small, 

amounting to a magnitude of the order of several percent. For the 
temperature range of·- 1000- 1,500°K, the accuracy introduced as a 
result of the determination of the heat conductivity and the temperature 
diffusivity due to the inaccuracy in the calculation of these correct­
ions does not exceed - 0. 5%. 

Another possible source of errors is the nonuniformity of the 
temperature field along the radius of the sample, which is determined 
by the nonuniformity of the electron flow on the end. In order to 
evaluate the role of this factor, let us examine the solution of the 
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three-dimensional problem on the assumption that the distribution of 
the heating power is symmetric to the axis of the sample, for the 
specific heat liberation depends on the radius (q = q(r)). The tempera­
ture distribution in the sample is in this case described by the equa­
tion 

I ii ( a -·T') ri"T -, .-ar \r~, l -..--\ v . ax·! 

iiT 

a rJt (12.20) 

The solution of this equation will 'be sough~ ~n a zero approxi­
mation, disregarding the corrections for the emission heat. exchange. 
In this approximation, the boundary conditions reduce themselves to 
the form of 

and 

_ 1-.. ~ = qm for x = 0, 
ax 

~ = 0 for r ~-= R 
i)r 

(12. 21) 

(12. 22) 

(12. 23) 

while the very equations for the complex amplitude of the temperature 
pulsation has the form of 

_I_. __i__ r __i__ 9 ..:__ er-e - iw 9 = 0. (12. 24) 
r i)r i)r dx! a 

In order to solve the problem, we shall utilize the method for 
the separation of the variables, assuming that 

e = 6-(x),p(r). (12.25) 
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Specific solutions of equation (12.24) in this case have the 
fonn of 

(12.26.) 

where 1
0 

Bessel fun.ction of the first type of zero order, ll is a 

numerical coefficient the magnitude of which, in accordance with the 
boundary condition (12.22),should be determined from the equation 

(12. 27) 

(1 1 is the Bessel function of the first type of the first order), which 

has an infinite discrete series of actual positive roots 

(12.28) 

The totality of the values of the characteristic numbers 

determines the system of specific solutions of the equa-

tion ilt ... t1' The general solution of the equation can in this 

case be represented in the form of an infinite series of characteristic 
solutions: 

(12. 29) 
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The coefficients C of this series can be found from the boundary 
n 

condition (12.21) which leads to the expression 

(12. 30) 
n 

The expression (12.30) represents the expansion of the given function 

q(r) as a series with respect to the Bessel functions 

By utilizing the properties of the orthogonality of the Bessel functions, 
we get for the composition coefficients C the formula 

n 

We get the final solution of the problem in the form of 

r-.--
, 16) 

2m L __ I ___ e- l --;;-+"n.c X B=-- -
· R'~A. r-.--

IJ., ~! 1(1) --1-J.Ln 
. . . . a. .. 

(12.31) 

(12.32) 

Let us turn attention to the fact that for q = const (uniform 
heat liberation on the end) all the members of the series (12.32), 
with the exception of the first c~ = 0), are equal to zero and the 
solution corresponds to a flat temperature wave 
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(12.33) 

the amplitude and the phase of which are described by formulas (12.3) 
and (12.4) (without corrections for the emission). 

For q 'f canst, the same flat wave is given by the first member 
of the series (12. 32); besides, instead of q in the formula (12. 33), 
the average heat liberation figures 

R 
2 \ qrdr 
.b .... ~---.., RJ 

(12. 34) 

which is equal to the ratio of the full power liberated on the. end· to 
its area: 

.f{ 

\" q2:trdr 
(12. 35) 

- Q' 0 
If=--=~--

. ~ :tR~ 

The subsequent members of the series (12. 32) described the dif­
ference of the real temperature wave from the flat wave. In order to 
evaluate the magnitudes of the corresponding distortions, we shall 
examine the first of these members in the points of the surface 
(r-R): 
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We shall assume that 

for which 

"J;;U} 

·-+-u ·;:: .. (12. 36) 

and 

(12. 37) 

As an approximation of (12.37), formula (12.36) can be written 
in the form of 

The amplitude and phase of this member given by the formulas 

(12.38) 

and 

(12. 39) 

The corrections to the main member (flat wave) can be found from 
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the expressions 

~=~cos (lp-q>), 
~61 161 . 

(12. 40) 

.. t I Ml'l ~ gq> = -- sin(¢-q>). 
tg 'P I e I 

(12.41) 

In order to find the magnitude 1~81/181 , which determines 
these corrections, we have the formula 

(12. 42) 

For specific evaluations, it is necessary to set the type of 
function q(r). As an example, we shall examine one specific case when 
the electron flow strikes on the surface which is limited by half of 
the radius, that is, when 

l
qQ 

q(r) = 
·o 

- R. 
r<--

2 

r>-R_ . .z 

(12.43) 

(Only one-fourth of the surface of the end is in this case subjected 
to heating). 

- The substitution of the functions (12.43) and formula (12.42) 
gives for the ratio of the integrals of this formula a magnitude which 
is "" 1. 5. We shall further assume that under optimum conditions 
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., / ~x---1. 
V 2a 

Then we get 

(12.44) 

The dependence of /R, expressed by this formula, is very steep. 

The ratio of 
·r 

(R.-·) becomes very small even for 

IMf 
when x/R = 1.5, ( Iii\.~ is negligibly small (- 0.1%). The result 

should be of a genera'! nature because for the function q (r) of another 
type the results will diffe.r from formula (12.44) only by a factor of 
the order of unity. Thus, even very significant variations from the 
uniformity of the electron flow near the; end should not in any notice­
able manner show up also on the distance from the end of the order of 
one radius. 

Let us now pass on to an evaluation of the total error in de­
termining the heat conductivity. In accordance with the above present­
ation, the error introduced by the inaccuracy in the measurement of 
the magnitudes q, lei and the correction factors amounts to a total 
of 3.5%. In using the readings of one thermocouple for determining 
the temperature diffusivity, that is, in calculations with the use of 
formula (12.11), it is necessary to add to this magnitude the relative 
error in the determination of the distance Z from the end to the thermo­
couple,_ which is equal to 1-2% (ol -o.l mm, Z --5--10 mm), and the 
member 

a(w-f) [ ' -,,-(<p-f-)-:- l] 
:t 1t - ' ' cp-- <p---
4 -! 

(12.45) 

which takes into account the inaccuracy in the determination of the 

phase. For optimum conditions, when 
1t . 1 <p----

- 4 and ~(<p-- ~ )=0,5:-'-1 
., I 

(see §11), this leaves 1-2%. The total maximum error in 
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determining the heat conductivity thus amounts to 5.5-7.5%. 

In utilizing fonnula (12.14), the error in the determination of 
Z does not disappear, and instead of (12.45), the magnitude 

M' ·( I k' + , \ -- --e- t I 
k': k' .J. 

enters which is equal to approximately 2-3% 
dk' . -

(k' ........ ), --2-3''o· k' ' ' 

(see §11). The maximum error in this case lies within the limits of 
4-7%. The results obtained during the refinement of the procedure and 
the experience gained from its use [151) are in agreement with the 
determined evaluations of the experimental accuracy. For illustration, 
Table 22 is given which contains the results of the measurements of 
the heat conductivity and the temperature diffusivity of Armco iron 
for two considerably differing heating powers and three different 
periods. 

It can be seen that the resulting values are in good agreement 
with each other and with literature data. 

The method described here for determining the complex of thermal 
properties can in princiFle be applied also to the case in which the 
test samples have a length that is comparable with the length of the 
temperature wave, that is, when the conditions of semi-infinity, which 
are used in a theory of this method, cease to be valid. The utiliza­
tion of short samples with a length of....., 0.5-1 an is of practical 
interest in the study of costly, rare-earth elements, monocrystals, 
and semiconductors. 

Formula (9.9) for a flat temperature wave can form the basis of 
the theory of the experiment with short samples; this gives the solu­
tion of the sought-for problem as a zero approximation (with corrections 
for heat exchange): 

sh(rllt. f) 
ch(-{f K) (12. 46) 
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where 

~='0L, v ---;;-

Table 22. Example of Simultaneous Measurements of the Temperature 
Diffusivity and Heat Conductivity (Armco iron) . 

tC I q~wt l T, sec.la, I cm
2

; l a [146) ~calf~· lr ). [42]' 

---- -- - sec •sec• C!leg 
10,2 0,120 0,126 

300 2,52 15,2 0,121 0,125 0,127 0,131 
20,1 0,119 . 0,125 

J 6,25 
10,1 0,105 0,122 

370 15.2 0,107 0,110 0,122 0,121 
- 20,2 0,106 0,120 

For the phase of the temperature variations (with respect to the 
power variations) at the distance of x from the nonheated end of the 
rod and from the expression (12.46) there follow the formulas 

(12.47) 

or 

,, I Lx-) --8 'J. 

· n - Be (-x.) t -'-'-
5

-'-'---

~ = -4 + arctg Ac(;") -arc g As( x ~) (12. 48) 
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where ~ . B , A and B are functions which are determined by the 
's s c c 

relationships (9.12). Formula (9.14) for the phase of the variations 
in the point x = 0 (on the end) follows from formula (12.47) as a 
specific case. The form of the curves¢= ¢(K) for the three'fixed 
values of the ratio x/L, which are equal to 0, 1/2 and 1, is shown in 
Figure 34. For all the curves, for small values of K, the difference 
of the phases differs little from n/2. This is the general character­
istic of slow temperature changes, which has been observed in §9. For 
x/L = 0, the curve ¢(K), with an increase inK (aotually the same as 

¢(K 2 ) in Figure 22) approaches an asymptotic straight line 

(12.49) 

which corresponds to a flat temperature wave in semi-infinite rod 
(see formula (12.47)). This should be understood because, with in­
creasing K, there is a decrease in the ratio of the length of the 
temperature wave to the dimension of the sample. 

lf ( x, f) 1,-----,-~,---,----,:r-;;-r. ---n'J-/----,' 
t '-! J1-r-------<~--t---+---+-- : - v .. , 

Figure 34. Dependence of the difference 
in the phases between the variation and 
the heating power of the end and the 
variation in the temperature on the 
parameter K in different points of a 
short rod. 
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In the case when x/L = 
= 1, that is, for temperature 
variations on the heated 
end of the sample, the 
asymptote of the curve 
¢(K) for relatively large 
values of K is the hori­
zontal line 

:t 
If=-. 

4 

As observed earlier 
(see §9), a shift' in the 
phases by n/4 is a prop-
erty which is characteris­
tic of temperature variations 
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of a h~ated surface during the propagation of the temperature wave in 
a semi-infinite medium. 

For temperature variations in the middle point of the specimen 
when x/L = 1/2, the dependence ~(K) has an intermediate nature in 
comparison with the cases when x/L = 0 and 1. Here, the asymptotic 
line is the straight line 

(12. 50) 

An examination of the curves specifically for the ex-

periment on the determination of the temperature diffusivity makes it 
possible to clarify that in measuring the temperature of the heated end, 
K (and consequently also the temperature diffusivity) can be determined 
sufficiently accurately within the range of K- 1. 5; in recording the 
temperature on the opposite end, the region of K > 1.5 is convenient. 
As regards intermediate values of x/L, they are all less favorable in 
comparison with the indicated extreme values (curves ~(K) are more 
slanting). lf it is taken into account besides that that during the 
recording of the temperature of the heated end it is necessary to take 
special measures to insure uniformity of heating on the surface, then 
the most rational position of the heat receiver should be the free end 
of the sample. Experiments with the recording of the temperature on 
the free end of the sample have also the advantage that at distance 
x = L, which figures in the calculation formulas, can be determined in 
this instance in a most convenient and accurate manner. (Besides that, 
the installation of the thermocouples is also facilitated, and the 
wires of these can be welded practically to any two points of the sur­
face of the end, whereas in welding to the electrical surface, the 
wires should without fail be on a single line.) · 

The formula for the amplitude of the temperature variations in 
the general case has the form of 

(12.51) 

- 241 -



It can be written also in the form of 

(12.52) 

where /F0 / is the va1ue of /8///80 / when x/L = 0, that is, the 

function (9.13), as shown in Figure 23. The curves /8///80 / of the 

dependence on K for the values of x/L = 0, 1/2 and 1 are shown in Fig. 
35. 

In all cases for small values of K, /8~ - e0 (the amplitude of 

slow temperature variations is determined only by the heat capacity of 
the sample). The curve for x/L = 0 represents the function /F0 / which 

has been examined in §9. The dependence of /8///80 / on K for x/L = 1 

(the amplitude of the variations on the heated end) has a steeper 
nature .. With increasing K, the values of this function approach the 
asymptotic line 

'6! ---=X 
f flo I ' (12. 53) 

that is, to the function which is characteristic of the temperature 
wave that penetrates into the semispace (see §9); the amplitude of the 
temperature variations /8/ varies here with the frequency less strongly 
than in the case of slow variations which heat up the entire sample. 
The case of x/L = 1/2 is intermediate in comparison with the examined 
extreme cases. It is seen from an examination of the curves of Fig. 
35 that when K- 2, the amplitude of the temperature variations on the 
heated end exceeds the amplitude on the opposite end by 1.5-2 times. 
Nevertheless, the above presented considerations during the examination 
of the conditions for determining the temperature diffusivity compel 
us still to give preference to the method for recording temperature 
variations on the free end of the sample. Thus, the experiment with 
samples in the form of short rods should not in its fundamental basis 
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differ from the method of determining the complex of thermal properties 
of flat samples, as presented in §9. 

X I -c=z-

Figure 35. Dependence of the amplitude of the 
temperature variations on the parameter K in 
different points of a short rod. 

§13. Radial Temperature Waves. 
Measurement of the Temperature Diffusivity. 

Radial or cylindrical temperature waves comprise a vibrational 
process in cylindrical bodies, under which the amplitude of the temp­
erature variations is a function only of the distance of the point 
from the axis of the cylinder, that is, the isothermal surfaces are 
cylindrical. 

The existence of radial temperature waves of two types--converging 
and diverging--is possible. In the first case, the amplitude of the 
temperature variations increases with the distance from the axis of the 
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cylinder and in t~e second it decreases. Converging temperature waves 
take place during variable ~eating of the surface of a cylindrical 
sample and diverging temperature waves take place during the action of 
internal (volume) periodic heat sources or during periodic heating of 
the internal surface of a hollow cylinder. (The case of volume heating 
is not examined by us in this section). Below is given the theory of 
radial temperature waves, which encompasses both of these types of 
waves (see also [152, 153]. 

Let us examine ·a hollow round cylinder with the radius of the 
inside surface being R1 and that of the external surface R2. The lengt~ 

of the cylinder will be assumed to be so large that the temperature 
distribution along the axis of the cylinder can be disregarded. In 
accordance with the general theory of temperature waves, which has been 
presented in §8, the complex pulsation amplitude of the temperature 8 
as a first approximation (when Bi ~ 0), is determined by the function 
F: 

. 9 9 
F=-=---

90 (QfMcpw) (13.1) 

(See formula (8.44)), which depends on the dimensionless variable r/l 
in the parameter 

(13.2) 

where l is a characteristic dimension equal to the ratio of the volume 
of the cylinder to the heated surface 

(13.3) 

The function F satisfies the equation 
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(13. 4) 

(V 2 is here a dimensionless Laplace operator) and the boundary conditions 

F' = x,l! on the heated surface (13. 5) 

and 
r=o on the opposite surface (13. 6) 

(F' is the derivative with respect to the dimensionless normal, 
' . " . 

F'-=-±-·r· the plus sign corresponds·to outside heating, the a-. L 
minus sign corresponds to internal heating)". 

Th,e general solution of equation (13. 4) for a case of cylindrical 
symmetry can be written in the form of 

(13. 7) 

where I is a Bessel function of the first type of zero order, 

is the first Hankel function of zero order. The argument z is equal 
to 

V
-

. . r -iw z=Y=ix.-=r --. 
l · a 

(13. 8) 

The constants c1 and c2 should be found from the boundary con­

ditions (13.5) and (13.6). Let us designate by za and~ the values 
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of z on the heated and the nonheated surfaces. (In case of internal 
heating 

V
-
-/(J) . 

. z •. - R1 · -- = zl' . a 

(13. 8) 

in case of external heating 

(13.9) 

For c1 and c2 we get 

. Ci = + .. /· -. . HP1 
(Zb) 

,. '-'- /J(zb) Hi1> (za) -/1 (za) H\1> (zb) ' · 

Ci ~ + -... ~ -----:---'/t~('-o!Zb:.!..) ----
)" -:- i. h (zbj H\1

) (za) --/dza) H~l 1Zb) '_ 

(13.10) 

where 1
1 

is a Bessel function of the first type of the first order, 

Hil) is the first Hankel function of the first order. For the function 

F, we thus get the expression 

(13.11) 
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From expression (13.11) we can obtain directly formulas for the 
amplitude and phase of temperature pulsation .at any point of the 
sample. 

Let us examine at first the expression for F(z) when z = zb, 

that is, on the side opposite that being heated. From expression 
(13.11) we get in this case 

(13.12) 

In the derivation of this formula, use was made of the identity 

I If\'> -1 H<tl = -2-~ o . . 1 o niz . (13.13) 

The resulting expression for F is the same for inside and outside 
heating, that is, for converging and diverging cylindrical waves. 

From expression (13.12) we get the following formulas for the 
difference in phases between the variation in the power and temperature 
and for the amplitude pulsation of the temperature: 

(13.14) 

(13.15) 

where ¢
1 

and ¢2 are the real and imaginary parts of the denominator of 

the function F: 

(13.16) 
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~l and ~ 2 can be expressed through the derivatives of the Thomson 

(Kelvin) function ber, bei, her and hei [16]: 

«D1 = «D1 (x10 Kz) = bei' (x2) her' (x1} + hei' (x1)ber' (x11) -~ 

- bei' ( X1) her' ( X 2) - hei' ( X11) ber' ( X 1), 

lD2 = lD2 (Y"l, x2 ) = ber' (x1 ) her' (Xoz) + bei' (x:z.) hei' (x1)- J 

- bei' (x1 ) hei' (x.2)- ber' (x.11) her' (x.1 ), 
(13.17) 

(13.18) 

In the specific case when R1 = 0 (external heating of a solid 
cylinder) we get from the expression (13.12) the formulas [155]: 

(13.19) 

(13. 20) 

(13. 21) 

For practical calculations, it was convenient to utilize the 
existing tables for the amplitude and phase of the function 

Then, 

(13.21') 

I 91 "~---=-
9g b (13.21") 
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The magnitudes ~ and lel!e
0 

can conveniently be represented as 

the functions of the variables'K 2 CURt-~;;~ 

x={~-· (13.22} 

and 

(13.23) 

The first of these variables represents the magnitude of K from 
the formula (13.2) for outside heating. The selection of precisely 
such a variable and not, shall we say, Kl or K2 from the formulas 

(13.18) is ~xplained by the circumstance that_ when R1 ~ R2 (thin­

walled cylinder), the magnitude K ~ K-. f t•> L, where V a · 
L =·R2 - R

1 
is the thickness of the walls, that is, that variable 

which was used during the examination of the problem of flat temperature 
waves (see §9). However, the utilization of Kz. instead of K is more 
convenient for two reasons. In the first case, the curves ~(K 2 ) are 
close to straight lines (in a definite region); in the second place, 
the parameter K2contains the sought-for magnitude of the temperature 
diffusivity in the first power. The dependence of ~(K 2 ,s) and 
loi!Go are represented in Figures 36 and 37. 

In this section, we limit ourselves to an examination of only 
one aspect of the utilization of radial temperature waves--the pro­
cedure of measuring the temperature diffusivity. For this reason, we 
shall approach the analysis of the indicated results precisely from 
this point of view. As was observed in the case of the general exam­
ination of the problem of the use of temperature waves in §8, the first 
of these diverse methods for determining the temperature diffusivity-­
the phase method--is based on the study of the phase of the temperature 
variation. The first variant of the phase-method (the method of a 
single point) is based on the utilization of information regarding 
the magnitude ~--the difference in phases between the variations in 
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temperature and the power of variable heating. 

The curve in Figure 36 makes it possible to carry out an analysis 
of the conditions for the fulfillment of such an experiment. From an 
examination of this curve it is seen that the dependence of ¢ of K2 is 
most steep, and consequently is most convenient for examining K for 
the solid cylinder. Cs = 0). With increasing s = R1/R2 , the slope of 

the curves decreases, approaching in the case of thin-walled cylinder 

Cs = 1) the case of a flat layer (the dependence ¢(K 2 ) for s = 1 is 
identical to that in Figure 22). Hence, it follows that in order to 
obtain results equivalent in accuracy for larger values of s (for 
thin-walled samples), it is necessary to utilize larger values of K2 • 

Actually, For this reason, for a constant 

magnitude 8¢, 
error oK 2/K 2 

in order to obtain a giv.en magnitude of the relative 
it is necessary to have equality of the product 

a¢/aK 2 ,K 2 • It is seen from Figure 36 that a¢/aK 2 for s = 0 is approxi-

mately three times larger than for s = 1. The magnitude K2 for a 
solid cylinder can for this reason be selected three times smaller than 
for a flat layer. However, a decrease in K 2 is convenient, first of 
all,' in that the amplitude of the variations of the temperature 

(9o~ ~. increases in this case and the ratio lei /80 also in-

creases somewhat with decreasing K2 , as this is seen from Figure 37). 

S' .. 
~~--4---+-~r~'+--~ 

no· 
MO~-+--+-~--~~ 

ISO 
IW~-+~A-~~~--~ 

130 
IZOf--~~Y------::7""'--t...L..----1 

ItO 
mo~~~+-~--~~ 

JO 
~~~--+-~--~~ 

. w~-,~-z~~J--~q~~s 
NJ 

Figure 36. Dependence of the phase of 
the temperature variations (with 
respect to the phase of the power 
variations) on the parameter K2 

for the case of radial temperature 
waves. 
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Figure 37. Dependence of the 
amplitude of temperature 
variations on the parameter 
K 2 for radial temperature 
waves. 

The accomplishment of the ex­
amined variant of the phase method 
for determining the temperature 
diffusivity requires the capacity 
for determining the phase of the 
power variation, which is related 
with the need of utilizing an inertia­
free method of heating which is ex­
emplified by heating with the aid of 
electron bombardment. ·The use of 
electron heating solves at the same 
time also another problem that of 
determining the power of the variable 
heating component, which makes it 
possible as already known from §8, 
to carry out complex measurements of 
the thermal-properties. In connection 
with this, we postpone to§ 14 the 

description of the experimental performance of the phase variant of 
one point as part of a study of the complex of the properties, and we 
pass on to an examination of other methods for measuring temperature 
diffusivity--the phase and amplitude variants of the method of two 
points (the determination of the temperature diffusivity from data on 
the temperature variations in two points of the sample. 

Let us return to the general formula (13.11). With consideration 
of the expression (13.12), it can be written in the form of 

(13. 24) 

From this expression there follow directly the formulas for the 
ratio of the amplitudes and the difference in pha~es of the temperature 
variations in the points that correspond to the variables z1 and ~, 

that is, in the body of the test sample (including as a maximum case 
the heated surface) and on the surface that is opposite to the heated 
surface: 
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where 

t G:la 
~IP = arc g -:;:;- • 

. ""' 

. <D, = hei (x.l) ber' (x.b) + bei' (x.b) her (x.l)­

- ber(x.l) hei' (x.b)- bei (x.,) her' (x.b), 

(13. 25) 

(13.26) 

(13. 27) 

(13. 28) 

(13.29) 

Let us examine the most important cases; internal heating of a 
hollow cylinder and external heating of a solid cylinder. 

In the first case, we shall utilize formulas (13.25)-(13.29), 
assuming that ~ = R2 , in the ?econd case--simplified formulas) obtained 
from previous indeterminacies by expanding for ~ ~ 0: 

(13. 30) 
be. (X) 

d.:p = arctg 1 1 
• 

ber(xJ 
(13. 31) 

(These same formulas can be obtained also directly from the solution 
of (13.7), if it is taken into account that for a solid cylinder 

c2 = 0.) The dependence of 6.<pan~ of 
19.1 
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for s = r 1/R2 = 1 and 0.4 are shown in Figures 38 and 39 (for K the 

same magnitude (13.22) was taken as above). The curves for outside 
heating of a solid cylinder are dotted, those for inside heating of 
the hollow cylinder are solid . 

90 

80~--~--~+----4----~ 

70 

50~--~7----r~~+----, 

so 

z 1 " 
• i1( z 

ttgure 38. The dependence of 
difference rn phases between· 
temperature variations in 
two points of a cylinder on 
the parameter K

2 • The solid 
curves indicate internal 
heating of the hollow cyl in­
der, the dotted curves in­
dicates external heating of 
a solid cylinder. 

diffusivity could be sufficiently 

2 

11e; 
~--~--~--~--'7-~; 

Figure 39. The same fo"'>lhe 
ratio of the amplitud~s ~ 
the variations. 

It can be seen that the 
dependence of ll¢ and le 11 I le 2 1 
on K2 are quite steep .and it 
follows from this that the ampli­
tude as well as the phase methods 
for determining the temperature 

e.ffecti ve in external as well as 
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in internal heating. 

Let us examine the problem of the optimum values of the· parameter. 
K. From the phase curves themselves, one can make only a single con­
clusion: for the same absolute error o~, the accuracy of the determina­
tion of K2 will be greater, the greater the magnitude ~. that is, the 
greater K2 . On the other hand, however, an increase in K above a cert­
ain limit can lead to a decrease in accuracy due to an increase in the 
error in the determination of the phase with a decrease in the ampli­
tude. Specific evaluations of the upper boundary of K require a know­
ledge of the specific relationship of the error in determining the 
phase and the magnitude of the ~litude. This relationship can be 
established only practically on the basis of an analysis of the opera­
tion of a quite fully definite recording system. As regards the lower 
boundary of the magnitude of K, one can find directly from Figure 38 

the values of K2 , which ensure the given error 

= 1~ The corresponding magnitudes are shown in Table 23. 

Table 23. Lower Boundary of the Values of the 
Parameter K 2 , for which the Error 
in Determining the Temperature Dif­
fusivity, Determined by the In­
accuracy in the Measurement in the 
Difference in Phases of 1°, Amounts 
to the Given Magnitude. 

when o~ = 

Outsid~-- -~-- Internal Heati~ 
6x" 

. I I -.% Heating ! ~-=0.4 . ~=I x• 
l . . 

l 
I 

4 
2 1 

I 
3 

3 0.7 -1 . I ,5 

4 (),4 0,3 1 
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The error in determining K2 in the amplitude variant in accordance 
,~K~ - 1 t:lt I . 
·--= 6--

wi th the formula xa __ ----- 0-~- :; ~- ·---
10211 

depends on two factors: 
x:r __.:....--"--'-

the multiplier , which decreases with rising. 

K2, and the magnitude 

which, on the other hand, increases with rising K? For a detailed study 
of the totality of tne effect of these factors, it is necessary to know 
the dependence of tne absolute errors oje

1
j and oje1 1 on the magnitudes 

and, besides that, the absolute values 

of the amplitude je
1

1. The magnitude je
1

j depends not only on K2 , but 

also on the other thermal characteristic c (or A ) while the relation-
PP 

ship of o I e1 1 with /1 e I. depends on the specific characteristics of the 

system being registered. All this together makes difficult a a priori 
analysis of the error in determining the temperature diffusivity as a 
function of K2 . Certain conclusions with respect to the region of opti­
mum values of K2 can, however, be made in the following manner. Let us 
assume that absolute errors in determining the amplitudes for oje

1
1 and 

are the s arne : ' -:.... (" -. ,.. ~-:- ·,-....-------- ' 
,_

1
-·; •:'J; = 0 • 0:! 1 ~ Q! 0! In this case also the 

relative error in determining ~ffi·(e-~!~' %:--) is related with the rela-

tive e1.:ror by the factor 

(13. 32) 
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The dependence of this factor on K2 , although it does not reflect 
the complete dependence of the experimental error on K 2 because of the 
above-said, nevertheless it is a sufficiently convenient characteristic 
of the sensitivity [155, 156, 33]. The corresponding curves are shown in 
Figure 40. 1 The solid curves represent internal heating of a hollow 
cylinder while the dotted curve--external heating. 

From the shape of the curves in this figure, it can be concluded 
that an increase in K

2 above the value of 2-4 does not lead to a know­
ledgeable decrease ih the error of determining oK 2/K 2 , but will more 
likely increase this error if it is taken into account that oje

2
i!le

2
1 

increases in this instance. Thus, the values of can be 

considered optimum for the amplitude variant of the method. As can be 
seen from Table 23, these same values of K2 are sufficient for a rela­
tively accurate determination of the temperature diffusivity by the 
phase method. 

8 \ 

\ 
\ \ 
\ "-..... ,, r--

l'.=o/1 ~-- -

5 

" 
z 

0 t z 3 

l:=! 

-

Figure 40. Curves which characterize 
the error· in determining the tempera­
ture diffusivity in the amplitude 
variant of the method. Solid curves 
represent internal heating of hollow 
cylinder; dotted curve--external heat­
ing. 

1 In order to avoid misconceptions, we wish to observe that in 1155 and 
156] similar curves are given b~t not for 

iix2 ~I e21 --:--, 
X~ ! 621 

as a result of which the corresponding curves have a minimum. 
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Hence, it follows that the determination of the temperature dif­
fusivity by the amplitude of phase method is possible from the results 
of the same experiment; registration of the curves of the temperature 
variation in two points makes it possible to obtain values of the temp­
erature diffusivity by two methods that are independent of each other. 
This makes possible internal control of the results: data obtained from 
information regarding the phases of the variations can be controlled by 
the results of determining the amplitude of the same curves. 

The phase variant of the method of two points was used for the 
first time by Van Zee and Babcock (157] for determining the temperature 
diffusi vi ty of molten gla.Sses within the temperature range of 700-1 ,400°C. 
The amplitude variant of the method (with external heating) was developed 
by Yu. A. Kirichenko [155, 156, 158, 159] specifically for measurement 
of the temperature diffusivity of non-metallic materials (plastics). The 
utilization of the amplitude and phase methods with external and internal 
heating for solid and liquid metals has been accomplished in (31, 160, 
161]. Most of the experience gained in these studies is presented below. 

A schematic representation of the main part of the unit (a dis­
tribution of the specimen, heater and thermocouples) is shown in Figure 
41. 

Figure 4la corresponds to a case of external heating for a solid 
specimen; Figure 4lb corresponds to external heating for liquid metals; 
Figure 4lc corresponds to internal heating for liquid metals. 

The heater which is used for external heating is coiled of ni­
chrome, of wolfram (wire) on top of a thin-walled tube made of molybdenum 
sheet, 25 mm in diameter and 200 mm long. In order to insulate the 
wires from the body, six thin ceramic straws were used which were lo­
cated symmetrically. At the top and bottom, the ceramic straws were 
secured by molybdenum rings. The heater which is used in internal 
heating consists of a ceramic tube on top of which is wound a wire 
spiral. 

In case of external heating, the specimen of solid metal is made in 
the form of two cylinders each- 20 mm in diameter and -50 mm in length. 
The wires of the thermocouple (chromel and alumel 0.2 mm) are calked or 
welded with an electric spark from a charge condenser to the end of one 
of the cylinders on its axis and near the periphery. In order to in­
sulate the wires, use is made of 2-channel porcelain straw 1 mm in 
diameter; the wires in the straw pass through vertical holes in the 
second half of the cylinder . 
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Figure 41. Schematic drawing of the 
main part of the unit for measuring 
the temperature diffusivity. 

The crucible with the liquid metal, shown in Figure 4lb, is made 
of a thin-wall (a- 0.1 mm) tantalum tube; the bottom of the crucible 
is made of molybdenum. In the crucible is placed a system of horizontal 
partitions made of tan tal urn or molybdenum (sheet)- 0.1 mm thick, located 
at a distance of 10-15 mm from one another. The partitions are secured 
by two wires made of tantalum, located along the sides (these are not 
shown in Fig. 4lb). The partitions are intended for increasing the 
possibility of the development of convector circulation of the liquid 
metal. Besides this, the partitions play also another role--they fix 
the position of the thermocouples. The thermocouples, just as in the 
case of the solid metal, are housed in thin (1 mm) ceramic straws. In 
order to prevent penetration of the liquid metal into the channels of 
the straws, the ends of the straws, (but not the junction of the thermo­
couples) is coated with a ceramic paste. The crucible is closed on top 
with a cover made of tantalum (or molybdenum sheet). The crucible is 
filled with the metal in the following manner. A test metal is first 
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melted in a vacuum so that after it solidifies, a result would be a cylin­
drical specimen with a diameter somewhat larger than the diameter of the 
crucible. This cylinder is used to mill washers which are installed to­
gether with the partitions and thermocouples as an integral unit. There 
is also possible another method: the test metal in the form of granules 
is poured into the crucible as the shell with the partitions and the 
thermocouples is lowered into it. After this, a funnel with the same 
granulated metal is inserted into the upper part of the crucible and 
the entire system is placed in a vacuum furnace. Prior to the start of 
the experiment, the crucible with the molten metal, regardless of the 
method of filling, was held for a definite time in a vacuum. Control 
cross-sections of the crucible with the solidified metal have convinced 
us that there are no noticeable voids, the metal filled the entire space 
between the partitions. 

The crucible for the experiments with internal heating, shown in 
Figure 4lc, is made of two thin-walled (0.1 mm) tantalum tubes (in the 
experiments, tubes 8 and 23.8 mm in diameter were used). The bottom of 
the crucible is a molybdenum washer while a cover is provided for the 
upper section. A system of horizontal washers, just as in the case of 
external heating, is placed in the crucible. One thermocouple is placed 
in the crucible near the inside wall (its position is fixed by the wash­
ers) , while the second thermocouple is welded directly to the outside 
wall of the crucible. 

The installation of the working section of the unit (for the var­
iant with external heating) is shown in Figure 42. The test specimen 1 
is secured on three ceramic rods within the heater 2 which creates temp­
erature variations. The second heater 3, which is coaxial with the first 
heater, serves for varying the average temperature. This entire system 
is mounted on the support 4 which is within the aluminum oxide washer.5. · 
Bolts along the. periphery of this washer feed voltage to the heaters. 
Screens 6 made of molybdenum sheet are mounted thereon. The vacuum 
cylindrical cap with a diameter of 120 mm and a length of 650 mm with 
twin walls is held by means of clamp 7 through the rubber lining 8 
against the base 9. The base current leads 10 to the heaters, the leads 
for the thermocouple wires (they pass through the common thick-rubber 
lining 11), conducts for the tubes of the vacuum meter, and a connection 
for the inlet of the inert gas. The vacuum in the chamber (- 10- 5mm 
mercury) is created by the forevacuum pump RVN-280 and the diffusion pump 
TsVL-100. The electrical circuit of the unit is shown in Figure 43. 
Periodic heating of the specimen is accomplished by automatic connection 
and disconnection of the current through the heater by means of a device 
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which consists of a magnetic starter 1 which is controlled by contacts 
that close and open with the rotation of the lever 2. The operation of 
such a device is described in §11. The interval of the variation period 
used in the experiment is 3-30 seconds, which corresponds to the optimum 
conditions K

2 ..... 2 :4) for the interval of values in the temperature dif­
fusivity ranging from 0.03 to 0.3 em/ 2sec (for specimens with R ..... lcm). 

Figure 42. Installation of the working part of the unit. 
l,water. 

The thermoelectromotive force is fed through the thermocouples 
through the nonthermal precision switch 3 to the low-ohm potentiometer 
4 PMS-49 by means of which the constant component of the thermoelectro­
motive force, which corresponds to the average temperature of the 
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experiment, is compensated and measured. The variable component, the 
magnitude of which usually lies within the limits of 20 to 100 micro­
volts (which corresponds to temperature variations of 0.5 to 2.5°) is 
fed to the inlet of the single-tube photoelectric amplifier 5 which is 
assembled in accordance with the scheme described in [20]. The signal 
from the outlet of the amplifier is fed to the automatic recording po­
tentiometer 6 EPP-09. By means of an additional relay, records are 
made on the potentiometer tape of the moments of connection and discon-· 
nection of the voltage to the heater, which are intended for calculating 
the phases. An example of the recording of the temperature variations 
is shown in Figure 44. 

It is pertinent that a form of the temperature variations come 
even for the thermocouple that is located near the heated surface, is 
very close to a sinusoidal curve. This circumstance is additionally 
illustrated in Table 24 which lists data of the amplitude of the first 
three harmonics for the external thermocouples with external heating 
for different periods (in arbitrary units, with different amplification); 
the calculation was carried out by the method of twelve ordinates. The 
influence of the third harmonic was greater than that of the second, 
which can be understood because then -shaped curve of the change in the 
power of the heater, with equality of the half-periods of connection 
and disconnection, does not contain a second harmonic. The relative 
smallness of the amplitudes of the harmonics simplifies the processing 
of the results, making it possible to utilize simpler approximation 
matters of harmonic analysis (for example, the method of four ordinates) 
or (for central thermocouples with small periods) dispense with these 
in general. 

The stability of the registration of the temperature variations 
in the described experiment is not worse than in measurements with longi­
tudinal·temperature waves ( §11). The error in determining the relative 
values of the amplitude of the temperature pulsation with consideration 
of the error of harmonic analysis, amounts to 1% from the difference in 
phases is determined with an error not exceeding 1-2° (see [31, 33]). 

The experiment is conducted as follows. After the installation 
of the SRecimen, the chamber is closed and evacuated; in operating with 
liquid metals, the evacuation is conducted with the heaters connected. 
After evacuation, the chamber is filled with the inert gas helium up 
to a pressure of 100-200 mm mercury. The utilization of helium makes 
it possible to improve considerably the heat e·xchange between the heater 
and the specimen and thereby obtain a sufficiently large amplitude of 
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temperature variations. Simultaneously with the evacuation and the 
filling, variable heating is started. The establishment of periodic 
conditions is controlled by means of a mirrorgalvanometer. The regular 
thermal conditions st~rt usually after 15-20 minutes. (Theoretical 
evaluations of the time required for the establishment of regular con­
ditions are given in [156].) With the establishment of regular conditions, 
the average temperature of the specimen is measured, after which the · 
recording device is connected. For control, the measurements are usually 
repeated for another value of the period of the variations, which dif-
fers twofold. The results of the measurements are processed with curves 
of the type shown in Ffgure 39, which have been plotted for the utilized 
value of the relationship ( ~ = R2/R1 ). 

--~--+-

Figure 43. Electrical circuit of the unit. 
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Figure 44. Example of the recording 
of temperature variations. 

Let us examine the problem of the sources of errors in the experi­
ment. One of the most significant errors is related with the inaccuracy 
in determining the magnitudes R1 and R2. By utilizing external heating, 

the inaccuracy in the installation of the central thermocouple (deviation 
from the axis) plays a secondary role because· aejaR = 0 when R- 0. 

in view of the symmetry of the problem, and the error due to the exist­

ence of oR I 0 is determined thus only by the square of the magnitude 

oR. As regards the error in determining the position of the second, 
external thermocouple, it leads to an error in det~rmining the tempera­
ture diffusivity equal to 

_!-'!:__ = 2 ,)[( 
a R · (13.33) 

mm (the error which is equal to the diameter of the 

thermocouple wires) and R -10 mm, this gives 

In case· of internal heating, the position of the external thermo­
couple can be considered as determined with a greater accuracy if the 
wires of the thermocouple are welded directly to the external surface 
of the specimen. The magnitude oR2 in this case will be equal to the 

indeterminancy in the measurement of the external radius: can be taken 
as sequel to 0.05 mm, with consideration of the possible deformation of 
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crucible, which gives an error of As regards the 

di_stance R1 , the error in oR1 shows up on the inaccuracy in determining 

the parameter ;'r· ~~kl = ~~ and on the inaccuracy in determining 
,.,.,. R. '-

l. It follows from an analysis of the curves in Figures 38 and 39 that 

in the region of optimum values of K2 , a change in o~/~, equal to 1%, 
leads to an error in the determination of K2 , equal to 0.3% when 

for the·phase variant and 0.15% for the amplitude variant. 

It it is taken into account that ·o~ "" o .2 .i!.H _ --"--- ~ o -i- 7OS 
~ .3 -i- 4',\r,\( I 

then for 

the values of ~ the error in oK 2/K 2 due to the factor ~ amounts to 
0.8-2%. 

A second source of error is related with the correction for the 
heat exchange. For the case of external heating of a solid cylinder, 
the problem of the nature of the heat exchange on the external surface 
does not play any role because the magnitude q--the variable power on 
the external surface--does not figure in the formulas for the difference 
of the phases and the ratio of the amplitude. This is an important 
characteristic of this method. 

For the ca5e of internal heating, the nature of the heat exchange 
on the internal surface of the spe€imen, on the basis of the same con­
siderations, is incidental. As regards the heat exchange on the ex­
ternal side, its role should be taken into consideration. 

Table 24. Harmonic Composition of Oscillations 
recorded in temperaTure- - .... 

\ 

I 
I 

I 't. sec r A, .4. A, 

26-,4 85,2 l I ,(} 5,6 
1.3,2 86,8 0,3 I ,6 
6,6 79,4 I 0,7 I ,5 
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In deriving the formulas for the function F, it was assumed as a 
first approximation to the heat exchange on the external surface is 
absent (F' = 0). In order to take this into account, it was necessary 
to examine the following approximation, assuming that 

(13. 34) 

(see §8). Function f should satisfy the same equation as F: 

(13.35) 

and the condition on the external surface 

. df ... 
--=__,.f. (13. 36) 
-a_!_ 

' 
if Bi in the expression (13.34) contains a heat exchange coefficient on 
this external surface. As regards the boundary condition on the external 
surface, for this problem it can be selected entirely at random, inas­
much as the total magnitude of the heat flow on this surface will be 
excluded .in an examination of the ratio of the amplitudes and t~e dif­
ference of the phases. In view of this, we shall utilize t~e simplest 
condition 

/=0 (13.37) 

for r = r 1 . 

The solution of the equation (13~35) with t~e conditions (13.36) 
and (13.37) leads to the function 
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.· • · · ·- ... /0 (z)li1,1l(zJ-/o(Zl)~1l(z) 

f(z)=F(zs) h_(zs)H0 (zJ-lo(zl)Ht(z~}. (13. 38) 

For corrections to the magnitudes of 
. and the difference of the phases, we get 

the ratio of the amplitudes 

~JO~ . . : 
, .. · 2r_l_ = Bi Re f <tt> = Bi _1 _ _ <D:.=&:....<D:.=3:___<D_,_4 <D--=-' . = - Bi ..pl, 

~1 F (zl) " tDi + ID! . 
(13. 39) 

-- t 9~\ 

(13. 40) 

where rt> 3 and ill 4 are determined by the formulas (13. 27) and (13. 28) for 

tl»
1

. =her (x2) her (x1) + bei (x1) hei (x2)­

-bel (xa) hei (x1)- ber (x1) her (x2), 

(1)
1 

= ber (x2 ) hei (x1) + bei (x2) her (x1)­

- ber(xJ.~ei (x2)- bei (x1 ) her(x~~)-

(13. 41) 

(13.42) 

The dependence of wl and w2 on K2 for a fixed ~ = 0.4 is shown in Fig. 

45. In the region of values of K2 , which are used in the experiment, 
the correction factors w1 and w

2 
are less than unity and the correction 

for the heat exchange thus does not exceed the magnitude Bi. For emis­
sion heat exchange within the temperature range up to 1,500°K, the 
correction for the heat exchange, even in extreme cases, does not exceed 
several percent and the error introduced by this in determining the 
temperature diffusivity is 1%. 

The following possible source of error in the experiment--the role 
of the finiteness of the length of the test specimen--has been analyzed 
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in [155] in which it was shown that in the region of optimum values the 
magnitude of the ratio of the diameter of the specimen to its length, 
equal to less than 1/3, insures an error in the measurements of the amp­
litudes which is less than 0.5%; a similar order of magnitude should be 
also in the error of the phases. It is necessary to underscore that.the 
favorable nature of such evaluations distinguishes advantageously the 
methods of the regular conditions of the third type from the steady­
state experimentS- of the same type. (Under conditions of steady radial 
flow of heat in cylinders, the problem of heat losses on the ends is 
one of the most significant ones.) · 

(' 
f-.' ~ 

"' ::::::-~ 
Q I Z-' J 

r--

Figure 45. Functions ~I and ~2 
which determine the dependence 
of the corrections for the heat 
exchange in the ampl·itude and 
phase variants of the method on 
the parameter K

2 

In the variant with internal heating, for the case of liquid 
metals, when the thermocouple is located on the external side, it is 
necessary to take into account one more factor--the correction for the 
role of the external wall of the crucible. A detailed examination of 
this problem, which takes into consideration the distribution of the 
temperature in the wall and the distortion of the temperature field in 
the liquid metal, leads to the conclusion that for the case of a thin 
wall the correction member to the function F should have the form of 

(13. 43) 

where h is the thickness of the wall, that is, the correction gives the 
.same change in temperature and phase as for a flat temperature wave in 
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a thin 1 ayer. 

In order to derive the formula (13.43), the temperature distri­
bution of liquid metal is represented in the form of the sum of the 
fW1ctions F

0
(z) + f

1 
where F

0
(z) is the "unperturbed" function F(z). 

The temperature dis~ribution in the wall is characterized by the fill1ction 
, 
d~ F 1 • 2 

-{---~. = L Xtr F 1 
:r )" • 

, where F
1

Cx/h) which satisfies the equation 

layer ~sumes that 

d ,-.. -
\ , ... i 

The utilization for F
1 

of the equation for a flat 

!!__ // 11 
R "" , f 1 satisfies the equation (13.4): 

and -the boW1dary conditions ;, ·urc = 1\_ dF,) 
'- dr rj.'( · 

= F
1 

for f-:-R~ (x=O} ·and f
1 

= 0 for r = R
1 

(the condition on the inter­

nal surface can be selected at random for this problem because the 
temperature on the internal surface is excluded in the method of two 
points). The boW1dary conditions F

1 
on the external surface is the con-

dition of heat insulation:. F' = 0. The solution of the problem under 
consideration leads to the formula 

when , we get (13.43). 

For conditions of the described experiment, the magnitude of the 
correction to the amplitude and phase lies within the limits of 3-6%; 
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the error due to the inaccuracy in the introduction_of this correction 
can in the worst case amount to 0.5%. 

The last of the secondary factors, the existence of which must be 
taken into account, is the convective mixing of the liquid metal. The 
a priori evaluation of the role of convection is difficult in view of 
the lack of a reliable cri terial relationship which could be utili zed for 
these purposes. The decisive factor here is the experiment. The most 
direct way for clarifying the effect of the role of convection is to 
conduct experiments with different temperature gradients. The differ­
ence in the radial gradient can be carried out by changing the power of 
the variable heating (with preservation of the average temperature 
through a change in the power of the additional heater) as well as by 
changing the frequency. These as well as other changes under conditions 
of the described experiment have always lead to reproducible results that 
are in agreement with each other [33, 160], which can be regarded as a 
significant argument in favor of the absence of a noticeable effect of 
convective mixing. Another argument is the agreement of the results of 
measurements with external and internal peating (see below). On the 
other hand, attempts to make measurements under conditions when the 
partitions which separate the liquid metal were.removed did not give 
satisfactory stable results apparently due to the origin of convective 
flows. The utilization of partitions can, therefore, be considered 
necessary, (we wish to observe in connection with this that the parti­
tions themselves do not introduce a perceptible distortion in the temp_­
erature field on the surface of the crucible; one can become convinced 
of this by comparing the readings of several thermocouples located at a 
different height [33]). 

We shall summarize the information regarding the possible experi­
mental errors. In the variant with external heating, the maximum error 
in determining the temperature diffusivity consists of the error in 

determining oK 2 /K 2 , equal to '~l-7-:.:.; 
\ . in the amp-

1i tude method and Jf+ 1 ,S) .:.\rr; =I-.;.~ 1.~:.· in the phase method (for 

K2 2:4). To this is added the error due to the inaccuracy in determin­
ing the distance to the external thermocouple, equal in both cases to 

4% . 

Thus, the maximum errors in determining a are the same because for 
the amplitude as well as the phase methods and are equal to 5-5.5% . 
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\~= ·N~ ......... o..t.· In the variant with internal heating, for values of . R .• 
·-·--

the error in determining oK 2/K 2 without taking into account .the error 
in s, is somewhat less in the amplitude method than for external heating 

for the same values of • ·:{ ('~%~"" (0,8 -:- I ,5) 
%~ 

method, it is approximately equal to that 

~: 0~: ""' 1 n, ; for the phase 
•0 

! e~ i 
for the case for external heat-

ing The error due to determination of R2 

amounts to 1% and this variant, and due to the determination of R
1 

it 

amounts to 0.8:2%. To these errors one must add the possible error due 
to the introduction of the correction for the heat exchange (0: 1%) and 
the corrections for the wall thickness in the case of liquid metal (0.5%) 
the sum of all these errors is 3.5 + 6% in the amplitude as well as in 
the phase method. 

The results obtained in a refinement of the procedure confirm the 
above cited evaluations. Values of the temperature diffusivity, obtained 
in measurements under different conditions (different variants of the 
procedure, different frequencies, different installation of the thermo­
couples), agree with each other within the limits of several percent. 
Details with respect to the conditions of the experiment and the control 
experiments can be found in [33] as well as in [31, 160 and 161]. We 
shall cite several illustrations. 

Table 25 lists the results of measurements of the temperature dif­
fusivity of liquid tin, obtained in variants with external and internal 
heating by the phase as well as the amplitude methods. 

All these results are in good agreement with each other; the maxi­
mum difference from the average value amounts to 2.5%. 

Figure 46 shows the results of measurements of the temperature dif­
fusivity of Armco-iron (position C, 0.015%; Si, o·.18%; Mn, 0.17%; S, 
0.025%; P, 0.006%), obtained with external heating by the ·amplitude 
and phase methods at three different frequencies, ea~ of which is two 
times greater than the preceding one. All these data are in good agree­
ment with each other and with the res~lts in [146]. 

The results of a study of the temperature diffusivity of solid and 
liquid tin, lead, cadmium, and bismuth, obtained by the described method, 
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are given in §24. 

Table 25. Results of Measurements of the Temperature Dif­
fusivity of Liquid Tin, Obtained in Variants With External 
and Internal Heating by the Phase As Well as By the Amp­
litude Methods. 

t'C 

4~0 
570 

Temperature diffusivity cm2/sec 

External Heating 

VI 
I Cll 
VI "'0 
Cll 0 :J L.._..._. 

I 
VI 
Cll 0 
L .._. VI 

Cll 
..C .._. VI 

0;167 l 
O,i63 ... 

....... u Ill 
Cll..C 

3:0.0. 

0.\fi~---~~ 
0,169 

Internal Heating 

o. 165 
0 ,16·t 

....... 
u 
Cll 
O.VI 
VI CJ.l 
CJ.l VI 
L Ill 

..c 
..c Q_ 
....... 

0 
3: ....... 

Average 
Va 1 ue 

0 ' 1 70 I . 0 • I GS . 
0,171 . 0,167 

. ·-· 

In concluding this paragraph, we shall compare the variants of the 
method with external and internal heating. Both methods give approxi­
mately the same accuracy. The method of external heating makes it pos­
sible to utilize instruments of a more simple configuration, does not 
require.care in ~aking corrections for heat exchange and for the wall 
of the crucible in working with liquid metals. The method with internal 
heating requires placing within the specimen (in particular in liquid 
metal) not two thermocouples, but one thermocouple, which simplifies 
somewhat the technique of the experiment; it makes it possible for the 
same average to introduce into the specimen a greater power and thereby 
obtain greater amplitudes of the temperature pulsation. Finally, the 
variant of the method with internal heating is more convenient in making 
measurements of a complex nature; the presentation of this prpblem is 
dealt with in the next section . 
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Figure 46. Dependence of a(T) for Armco iron, and m2/sec: 
I, 2, 3, measurements by amplitude for 6.6 seconds of 
heating; 13.2; 26.4; 1 1

, 2 1
, 3 1

, measurements by phases 
respectively; 4, from [146]. 

§14. Utilization of Radial Temperature Waves for Determining 
the Complex of Thermal Properties of Solid and Liquid Metal 

Jus.t as in the case of longitudinal temperature waves, information 
on the amplitudes and the phases of temperature variations make it pos­
sible to determine not only the temperature diffusivity of the test med­
ium but also the heat capacity and the heat conductivity, if the variable 
component of the power on the surface of the specimen is known in this 
case. It was already observed in §9 and L.! that a problem of determining 
the power is effectively solved by utili zing heating by means of electron 
bombardment. Below is given an analysis of the theory and a description 
of such an experiment. 

Let us return to formulas (13.4)-(13.18) of the previous section. 
The simplest way for determining the temperature diffusivity by utiliz­
ing low-inertia heating, as exemplified by heating by means of electron 
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bombardment, is the measurement of the phase differences between the 
temperature variation on the side opposite to that being heated (or in 
the center of the specimen in case of external heating) and the power 
variation, that is, the phase method of one point. From the curves 

( 
R

1 
. (-;,--;- R~ -- Rf I 

·~ = cp(K\ ~) ~ = -, K = 1: --··- · ---- .• 
R . a •),, I 

:l • - ;. ' 

shown in Figure 36, one can obtain the dependence of the magnitude 

, (that is, the errors in determining K2 per degree in the 

determination of the phase) on K2 . From the shape of this dependence, 
shown in Figure 47, it follows that an accuracy of- 3%, which is quite 
sufficient for the experiment, can be insured for values of KL ranging 
from 1.5 to 3 ·depending on the magnitude of s· 

Figure 47. Error in determi.ni.ng 
K2 per degree in the determination 
of the phase and the phase method 
of a single point. 

We shall clarify further what 
information can be obtained from 
data on the amplitude of the temp­
erature variation in the same point. 

In the general case, the mag­
nitude lei depends on two thermal 
parameters: the heat capacity 
which is contained in e0 and the 

temperature diffusivity on which 
the function F depends. This de­
pendence on two parameters for 
small values of K. degenerates into 
the trivial relationship 

Q 
\6~ = ao = -M-c_.;;.,-w- (14 .1) 

because IFI in this case differs 
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little from 1 (for slow temperature variations, the amplitude of the 
variation depends only on the heat capacity; the temperature diffusivity, 
which characterizes the spacial nonuniformities of the nonsteady field 
of temperatures, is immaterial in this case). It follows from the shape 
of the curves F(K 2 ,s) (Figure 37) that the magnitude IFI differs com­
paratively little from 1 not only for K « 1, but also for /~2--I,S ::-}"; , 

•. '~- . . 

that is, approximately for the same values of the parameter K2 , for which, 
as already clarified, a sufficiently accurate determination of the temp­
erature diffusivity.from the phases of the temperature variation is 
possible. It follows from this that such a performance of the complex 
experiment, in which the heat capacity is determined in a way which is 
practically independent on the temperature diffusivity (the value of 

K2 is necessary only in order to refine the correction which differ­
entiates IFI from 1) is possible, despite the fact that both magnitudes 
are found from results of the same single experiment. Such conditions 
for conducting the experiment are preferred, although they are not nec­
essary. In principle, it is possible to carry out measurements for large 
values of K2 , for whi.ch IF I differs already significantly from 1. How­
ever, in such a case, the results of the determination of the heat cap­
acity will be related with the data on the temperature diffusivity and 
the error due to this can increase. Besides that, a decrease in IFI 
in comparison with unity causes a rather steep drop in absolute values 
of the amplitude of the temperature varia~ions (due to e

0
, a decrease 

because of I el is imposed on the change of IFI), which leads to an ad­
ditional increase in the errors. On the basis of this, we shall in this 
section examine only the case in which the value of K2 is selected with­
in the interval that can choose a deviation in IFI from 1 within the 
limits of the order of 10%. (In §15 we shall examine the additional 
possibility of determining the temperature diffusivity by the ampli­
tude-frequency method which is based on the change in IFI with a freq­
uency.) For such values of K2 , the a priori error in determining 

for etp~l}, in accordance with Figure 47, amounts to 

-2% for s = 0 (solid cylinder), 2.5% for s = 0.4 and s = 1. The dif­
ference in these maximum errors is, as we see, not great; however, in 
this instance it is necessary to turn attention to the fact that in 
the last case (s = 1) the magnitude K2 , equal to 4, should exceed K2 

for s = 0 twofold, in view of which the magnitude of the amplitude in 
the temperature variations will be half as great in comparison with the 
case of s = 0. 
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a b) 

Figure 48. Diagram of the installation of specimens 
during measurements of the ~omplex of thermal para­
meters. 

And so, the determination of the temperature diffusivity--heat cap­
acity complex is carried out almost in an independent manner from the 
results of a single experiment; in order to find these magnitudes, it 
is necessary to know the variable component of the power in the electron 
bombardment, the magnitude of the amplitude of the temperature variation 
one point of the specimen, and the difference in the phases between the 
variation in temperature and power. (In this respect, there is complete 
analogy with the utilization of temperature in place of the short rods 
(see §9 -12). 

We shall now pass on to a description of the experiment. The in­
stallation of the specimens together with the cathode for electron heat­
ing is shown in Figure 48. 

The diagram a represents a variant with external heating for a 
solid specimen--solid cylinder. The cathode in this case represents a 
wolfram spiral wound on six vertical ceramic rods. The thermocouple 
wires in ~ thin (1 mm) ceramic straw are introduced into the hole on 
the axis of the specimen and welded to the metal by means of a spark. 

- 275 -



The specimen is grounded through the milliammeter. In operating with 
high temperatures, it is rather necessary to surround with insulation 
the thermocouple caps with a shield--metallic tube--for otherwise, in 
view of the noticeable electrical conductivity of the ceramic material, 
a portion of the electron current will strike the thermocouple- and the 
tube should not have a direct electrical contact with the specimen, for 
otherwise, the anode current which strikes the tube will pass through 
the milliammeter and the tube should be grounded independently (the 
insulation of the thermocouple caps can apparently be solved in another 
way--by using a horizontal metal shield near the lower end of the 
specimen. 

Diagram b represents the variant with internal heating for solid 
metals. The cathode is of wolfram wire drawn here along the axis within 
the specimen (in order to increase the heating power, it is possible to 
utilize also a cathode in the form of a spiral-small springs--wound on 
a ceramic tube just as in the diagram c, or simply drawn). In this 
variant, the thermocouple is welded directly to the external surface of 
the specimen, which, of course, is considerably more convenient than in­
stallation within a narrow hole in diagram a. Another advantage of 
diagram b is the effect that there is no need for special shielding of 
the thermocouple wires; the role of the shields is here played by the 
specimen itself. 

The variant with internal heating for liquid metals is shown in 
diagram c. The specimen in this case represents a crucible, the cylin­
drical surfaces of which are made of thin-walled (0 .12 mm) tantalum 
tubes (the diameters of the tubes were taken equal to 24 and 8 rnrn, re­
spectively). The arrangement of the crucible and the method of filling 
with metal have been described in §13. The co.nfiguration of the cathode 
is seen directly in the illustration. The thermocouple wires are 
wei ded to the external surface of the crucible. 

The diagram of the installation as a whole is shown in Figure 49. 
The working part of the device is installed directly on the flange of 
the diffusion pump VA-0 ,5-1, and is closed on the top with a quartz 
cap that is water cooled. The current and thermocouple wires are tap­
ped through the side flange; four plastic washers are used for sealing. 

The source of the cathode heat is the stabilized variable voltage 
which is varied by an autotransformer; the anode voltage· is fed from 
the stabilized rectifier UIP-1, while a voltmeter M80/l (accuracy class 
0.5) is used for measuring the voltage. The current instrument-­
milliammeter 23 MAll/2 (accuracy class 0.5)--is connected between the 
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specimen and the ground when diagram a is used (Figure 48) or between 
the rectifier and the ground when diagram b and c are used (the last 
connection is safer because when the instrument overburns, the thermo­
couples in the interexperimental setup will not be under an anode volt­
age . 

Figure 49. Diagram of the unit. 

The modulating device of the unit has been described in §11-13. 
The recording system does not differ from that described in §13. The 
magnitude of the absolute values of the temperature variations, is 
just as in the preceding experiment, lies within the limits of 0.5-
2.50. 

For fllustration of the degree of stability of the recording of 
temperature variations, Table 26 lists the results of measurements of 
the amplitude and phase of five successive periods of change in the . 
temperature (one of a typical series). The scatter of the individual 
values of the amplitudes in this and a similar series amounts to 0.3%, 
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the absolute error in determining the phases is equal to approximately 
0.5°. The maximum error in determining the absolute values with an 
amplitude of the temperature pulsation, with consideration of the 
errors in the harmonic analysis, a calibration of the thermocquples, and 
determination of the value of the potentiometer scale divisions, just 
as in the experiment described in §12, amounts to 2%. 

The determination of the variab.le compone.nt of the _power is made 
just as for the measurements with longitudinal temperature waves. The 
error of the determination of the magnitude q- 1%. 

The errors introduced by the inaccuracy in determining the position 
of the thermocouples are comparatively small in all the variants of the 
method, which distinguishes advantageously the method used here for 
measuring the temperature diffusivity from the method of two points de­
scribed in the preceding section. Assuming that (0R1 ~ uR 2 ...:. 0~05 

~ ;;.;-

d R ,~~ I ~· . rnrn an 2 - I ern, we get ,--- ..-..... -;-I 5 o,0, 
\__%Z . • ' '.V· 

Let us examine the problem of corrections which are necessary to 
introduce into the complex method under consideration and which are re­
lated with these errors. 

Table 26. Results of Measurements of the Amplitude and 
Phase of Five Successive Periods of Temperature Varia­
tion--Illustration of the Stability of the Recording. 

Parameters Period 

Amp 1 i tude (in mm on I the diagram tape) 2 3 " 5 

Phase 
185 184.5 185.0 

I 
184.0 184.; 

1200 121° 121° 120° 120" 

The error introduced into formula (14.1) in determining the cor­
rection factor jFj can be found from the formula 

(14.2) 
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In the 

magnitude 

selected range of values of K2 , the maximum value of the 

,ro-jF.I ~9 is equal approximately to 1/4 (Figure 37) and 
"- 0%2 -

thus, 

The problem of corrections for emission heat exchange should be 
examined separately for the variants with external and internal heating. 
In the case of external heating, the correction of function f in the 
expression 

(14. 3) 

is found in the simplest manner in accordance with the deductions from 
the general theory of temperature waves ( §8): 

!=- (14.4) 

where R_ = R2 is the radius of the cylinder (see 8.49). For correction 

to the amplitude and the phase of the temperature variations, we get 
the formulas 

ReF 
Bi ocr b'~r' + bei bei'_ = _ B£11• 

2: •) '1'1' 
ber' + bei'" (14. 5) 

,\I 0\ Bi ·---- = -- -·--

Bi Bi bei ber'- ber bei' 
~ql =-;;-lrnF = -;- · ber'~ + bei' 2_ 

= -Bi"¢2 , (14.6) 
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besides, the functions ber, bei and their derivatives are referenced to 

the value of the argument equal to 2K, because . :X= 

at the same time 
;-;;-~ 

. %;~ =~ l· - R . I a 
(see §13). The dependence of 

~land ~2 on K2 is expressed in Figure SO. The curves ~ 1 (K)2 and 

~2 (K 2 ) are qualitatively similar to such for the case of a flat layer 

(see Figure 24). 

Figure 50. Functions of ~l and 

~ 2 which determine the corrections 

for the heat exchange to the amp­
litude and phase of temperature 
variations for the variant with 
external heating. 
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To introduce specific 
corrections for the magnitude 
of the heat exchange, it is 
necessary to possess at least 
approximate values of the 

·effective coefficient of rad­
iant heat exchange, which 
figures in Bi. In evaluating 
this magnitude, general'ly 
speaking, it is necessary to 
take into account that the 
temperature of the cathode 
can vary somewhat as a func­
tion of the temperature of 
the surface, as a result of 
which the heat exchange will 
have a comparatively complex 
nature. 

Let us examine this 
problem analytically. The 
equation .which describes the 
emission heat exchange between 
the cathode and the specimen 
has the form of 

(14.7) 

.. 
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• 
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where E and E 1 are the effective degrees of blackness of the surface 

and of the cathode; ¢ and¢' are the coefficients of irradiation 

and r 0 are the temperatures of the surface of the 

specimen, the cathode and the walls of the chamber. For small temp­
erature variations, when 

T = T+Oeiwt 
(14.8) 

and 
'.!'«1. 
T 

(14.9) 

we get the linearizedequation 

(14.10) 

where Gk is the small amplitude of the cathode temperature pulsation 

(14.11) 

(14.12) 

Equation (14.10) contains a member with the temperature pulsation 
of the cathode, the magnitude of which so far is unknown. In order to 
determine this, it was necessary to employ additional equations-~an 
equation of the heat balance of the cathode. In the nonlinearized 
form, it has the form of 
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(14.13) 

where c and m are the heat capacity and the mass of the cathode, s is 
p k 

its surface whi~h faces the side of the specimen or the opposite side 
(the coefficients of irradiation, which are close to nnity, are not 
taken into account here), w is the Joule heat liberated from heating 
with the current .. In linearization of (14.13), we get 

cptn" Gr. i@ =4ue .. (P e ~ T~ ek)- 4<1e"ft ek. 
s . (14.14) 

For relatively slow temperature variations, the inertia member 

rep n:~ . ') 
--· tW•: .~ ' 

s 
can be disregarded. Then we get 

(we disregarded also the difference between E:' and E"). 
tion of (14.15) in (14.10) gives 

n m =). ~- .J.. 4creq>T3 e (t + 
" 0 . dr 

· Z.t • e'e<pcp. ' ) • 

The Biot criterion thus has the form of 

- • 1 e'<p' ) 

B
. 4oe<p'f36_l ft +-.- . 
~ = --}.- \ 2 e<p 
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The substitu-

(14. 16) 

(14 .17) 
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The correction member of this expression, which is within the 
records, and which takes into account the effect of the temperature 
pulsation of the cathode, is not large. Actually, the magnitude of 
the irradiation coefficient ~' for the cathode, which is a comparative­
lysparse wire spiral, is much less than unity. Thus, for a spiral with 
a distance between the turns 5 times greater than the diameter of the 

wire, fT---:-e~' ~ 1I~ The temperature pulsation of the cathode thus' 

changes the magnitude of Bi by approximately 10%. 

Formula (14.15) for the temperature pulsation of the cathode is 
useful also in another respect: it can be used to evaluate the pulsa­
tion of the anode current, which is determined by the temperature 
variation of the cathode. Taking into account the exponential nature 
of the dependence of the anode current on 1/T, we get 

of eu l e 
-- =- --- . - . -

2 T .~r,, ( ;k r (14.18) 

where u is the work function of the electron, e is the electron charge. 

In the case of a cathode made of wolfram, u 
, ( -- ·--50 OOC, h..._ 2500°K) 

k . . . . 

forT ~ 1,000°K and L- 1° the magnitude of a relative change in current 

6I/I turns out to be equal to 0.06%, i.e. the current is practically 
constant. In utilizing thoriated and oxidized cathodes, this magnitude 
can how~ver be noticeable. 

In case of internal heating, the correction for the heat exchange, 
generally speaking, consists of two parts: corrections for the heat 
exchange on the heated internal surface and corrections for the heat 
exchange on the external surface. 

However, the first of these corrections does not have to be taken 
into account for a low-inertia cathode because the total amount of energy 
fed to the cathode, including the power of the electron bombardment, 
strikes the specimen in one way or another . 

For heat exchange on the external surface of the specimen, we have 
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t) 

- =F+Bif. eo 
(14.19) 

For f, in accordance with the general conclusions in §8 

-F F(z.zl 
f ~ x.' (14. 20) 

where F is the function F fo~ the case of external heating. 

For corrections to the amplitudes and phases in the point which is 
located on the external side of the specimen, we get the formulas 

lllO! 

(14.21) 

and 

(14. 22) 

(14. 23) 

and 
.~--, 

X (14.24) 

where the function i"~ and ~ are equal. to the negative values 
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of ~ 3 and ~4 , with the indices 1 and 2, i.e. 

• - ( 1 ) fl>a (x, ~) == - <I>3 x, T • (14. 25) 

·<I>~ (x. ~) =- <D,(x. T} 
(14.26) 

Where the functions ~land ~2 are shown in Figure 51 (~ = 0.4). 

f 

oL--+--~--~~q~'s 
.JtZ 

In introducing corrections 
for emission, besides the cal­
culated evaluation.of the effect­
ive values of the magnitudes Bi, 
their experimental determination 
is also possible. For this purpose, 
it was necessary to measure the 
change in average temperature of 
the sample ~T when a constant, 
non-modulated electronic heating 
is introduced. In the case when 

Figure 51. Functions of ~I and 

~2 which determine the correct­

ions for the heat exchange in 
the amplitude and phase of the 
temperature variations for the 
variants with internal heating. 

the power of heating is relatively 
~mall in comparison with the 
heating by thermal emission of 
the cathode, the inequality 

(14.27) 

will be valid. 

In case of external heating, we get from equation (14.7) in this 
case 

- ( e'T' ) q 4crT3 ecp+. -~ =-
2 l1T (14. 28) 
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(with consideration of the change in the temperature of the cathode). 

From this, 

(14.29) 

If it is taken into account further that q = q(n/2), where q is 
the first harmonic of the power variation with II - shaped modulation of 
the power of the magnitude q (see formula 12.17), and the magnitude 
q is expressed by the amplitude of th~ temperature pulsation 80 , then 

(14.29) can be written in the form of 

(14. 30) 

Formula (14.30) can be thus directly utilized for determining Bi. 
We wish to observe in this case that the accuracy of this formula is 
greater, the better the inequality (14.27) is fulfilled, that is, it is 
greater, the smaller ~T or the greater the value of Bi itself. For 
~TIT of the order of several percent and 8 of the order of a degree, 
Bi amounts also to several percent, that is, good accuracy of the form­
ula (14.30) is assured precisely under those conditions when the cor­
rection for the emission heat exchange becomes noticeable. 

In returning to the curves in Figures SO and 51, we wish to ob~ 
serve that the values of the functions of ~. which determine the cor­
rections for emission, and which within the optimum range of values of 
K2 do not exceed 1, are equal to 0.3-0.5 while the corrections them­
selves thus amount to a fraction of the Bi numbers. In accordance with 
this, the magnitude of the corrections in the worst case does not ex­
ceed several ( - 3%) percent and the error introduced into the results 
from the inaccuracy in determining Bi does not obviously exceed 1%. 
The remaining sources of error due to the finiteness of the length of 
the cylinder and to the wall of the crucible in experiments with liquid 
metal have been examined in §13. 

The entire presentation with respect to the conditions for con­
ducting the experiment makes it possible to evaluate. the errors in the 
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determination of the temperature diffusivity and the heat capacity. The 
maximum error in determining the difference in phases (with consideration 
of the correction for the phase of power variations due to the differ­
ence of modulation from n -shaped) amounts to 1 o, which gives for a 
maximum error oa/a 2-2.5%. To this error is added the error due to 
the inaccuracy in determining the radii R1 and R

2 
(~ 1-1.5%), the maxi-

mum error in determining the corrections for emission 0-1% and (for 
liquid metals) the accuracy from the introduction of the correction for 
the wall of the crucible (0.5%). The total error thus amounts to 3-4.5% 
for the case of solid metals and 4-5.5% for liquid metals. 

The maximum error in determining the heat capacity consists of the 
error in determining the amplitude of the temperature pulsation (2%), 
the errors in determining the power ( ~ 1%), and the error of the cor-

rection for the temperature diffusivity(~f- 6;
2

~~-1 ~o)~· 

add up to .... 4%. 

, which 

The experimental study of the described procedure for making mea­
surements included a broad program of studies which dealt with the 
study of the reproducibility of the results with the variation of all 
the basic parameters of the experiment; the frequency of modulation, the 
power and conditions (relationship of current and voltage) of the elec­
tron bombardment, the geometry of the specimens, the configuration of· 
the cathode, the installation of the thermocouples, etc. The same 
materials were in this instance studied by means of internal and ex­
ternal variants of the method, which could serve as a means for ad­
ditional control. We shall cite some of the data obtained as a result 
of testing the procedure. 

Table 27 lists the results of measurements of the thermal propert­
ies of Armco iron at 870°C (C, 0.015%, Si, 0.18%, Mn, 0.17%, S,0.025%, 
P, 0.006%) .by means of the variant of external heating. The table makes 
it possible to compare the results of measurement for different heating 
times and different powers. Similar data for the var~an! of internal 
heating are given in Table 28 (iron, 630°C). Table 29 shows there­
producibility of the results of measurements in working with liquid 
metals (lead, 635°C). In all cases, the deviations of the individual 
measurements from the average will not exceed the maximum errors found 
above. 

The developed complex procedure for measurement was utilized in a 
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study of the thermal properties of liquid tin and lead. The results, 
obtained for the heat capacity and at temperature diffusivity are 
given in §24. 

Table 27. Example of the results of the Simultaneous 
Measurement of Temperature Diffusivity and Heat 
Capacity (Variant of External Heating). 

Heating time 
t, sec 

13,2 

26,4 

Average value 

t1ax. deviation 
% 

P e r i o d i ca I I y 
y a ry i n g cap -
aci ty q, wt 

24,4 
51,7 . 

24.4 
51.7 

Temperature 
Di ffus i vi ty 

2 a, em /sec 

0,0535 
0,0528 

0,05~0 
0,0537 

0,0535 

1 ,3 

Heat Capacity 
c p, cal/gm·deg 

j . 0,185 
0.183 

I 0,192 
0 ,19-l: 

I 0,190 

I 2,7 

Table 28. Example of Results of Measurements witn Internal 
Heating. 

Heating time 
t, sec 

. 26,4 

Ave rag_e va 1 ue 

Max. deviation 
% 

Periodically 
Varying cap­
acity q, wt 

2~~. -t 
51 .7 

2-L4 

Temperature 
Di ffus i vi ty 

2 a, em /sec 

O,O:i38 
0,05~0 

51.7 0,05,19 
0.0536 

0.03~0 

- 288 -

Heat Capacity 
c , cal/gm·deg 

p 

! 
I 

0.135 
0 .lSI 

0.189 
0 ,19\ 

0,138 

2V /0 
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Table 29. ExC!mple of tb.e Res.ults. of t1easurements o.f tlie Temp~ 
erature Diffus[vity and Heat Capacity of Liquid Lead (635°C). 

Heating Time 
t, sec 

13,2 

26,4 

l 
i 

Average Value 

Max. Deviation 
% 

Period i ca 11 y 
Varying Cap­
acity q, wt 

i2,9 
2! ,(i . 

12,9 
2LO 

I 

Temperature 
Di ffus i vi ty 

2 a, em /sec 

I 0,107 
0.10-t . 

0,105 
0,109 

0,106 . ! 
_3% 

Heat Capacity 
c , cal/gm deg 

p 

0.033S 
0.03:16 

0,0:35:? 
O.O:J:f 

In conclusion, we wish to dwell on a comparison of the variants 
of the method with internal and external heating. As we have seen, 
both variants insure approximately the same accuracy in the determina­
tion of the temperature diffusivity--heat capacity complex. The ad­
vantage of the variant with external heating is a more simple form of 
specimen. This advantage, however, is not particularly significant in 
the case of liquid metals. The fact of the matter is that for a 
crucible with liquid metals, the introduction of the thermocouple must 
be made from the top of the crucible and in this case it is comparative­
ly difficult to protect the wires of the thermocouple, which pass by 
the cathode, against the anode current. The variant of the method with 
internal he~ting in.this respect is more convenient because the wires 
of the thermocouple are shielded by the specimen itself. Further, the 
variant with internal heating makes it possible to use an additional 
external heater without complications which are related with its bom­
bardment from the cathode as is the case with external heating. 
Finally, the advantages of the internal heating are rather considerable 
in carrying out the high-temperature modification of the measurement 
procedure under consideration, which is related with the utilization 
of a photoelectric recording of the temperature variations: the record­
ing of the emission of the external surface of the cylinder is simpler 
than that of the emission of a narrow channel along its axis. (Such 
a high-temperature modification of the procedure has at present been 
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carried out by the author and by I. P. Mardykin; the recording portion 
of the unit is similar to that described in §16.) 

§15. Radial Temperature Waves and High-Frequency Induction Heating. 

The case of periodic heating of the specimen in a high-frequency 
induction furnace, the field of which is modulated by a low-frequency, 
pertains, strictly speaking, to the case of volume, internal heating of 
the specimen. Neverthel~ss, the presentation of the theory of such 
temperature vats and of the experimental method based thereon should 
expediently be carried out at once in accord with the above presented 
material because the depth of penetration of induction heating is not 
great and the heat liberation is close to the surface heat liberation. 
The magnitude of the effective thickness of the skin-layer in which the 
heating properly takes place is determined by the formula 

cr = 1/- v • 
:l~tf 

(15 .1) 

where ~ is the magnetic permeability, f is the carrier frequency of 
the induction furnace, y is the specific resistance [162]. (The form­
ula is described in the system of NKS units). For frequencies f of the 
order of megahertz and ~ ""'1, the magnitude a for metals amounts, as 
a rule, to a fraction of a mm which is much less in diameter of the 
specimens which amount to mm. This circumstance makes it possible for 
us thereafter to consider the parameter 

(J 
T)=-. 

2R 
(15. 2) 

as a magnitude which is considerably less than unity and to utilize 
the expansion in series with respect to this parameter. 

The specific heat liberation in a solid infinitely long cylinder 
with variable induction heating will be represented in the form of 

w(r, t) = w(r) [l + me<wt], (15. 3) 
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where w is the frequency of the modulation of the induction heating and 
m is the modulation coefficient. 

where 

The function w(r) has the form [162] of: 

R 

W = 2:1 J t<J (r) rdr 
0 

(15.4) 

(15.5) 

is the complete power of heating a unit length of the specimen. 1 

The distribution of the temperatures in the body of the test 
cylindrical specimen is described by the equation of the heat conduct­
ivity with the volume source of heat 

I iJT w (r, t)' 
t;;2T = -.---.:......:...-'-

a at "' (15.6) 

For the variable components of the temperature, we get in this 
case the equation 

1rn formula (5) of [163] a misprint has crept in: instead of the 

factor l'rf :rR • is w_ri t ten . 
r 

J . 2 :rP·1 
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v2a,;, ~a- mw(r) 
a A 

(15. 7) 

As a first approximation, when the effect of the Biot parameter 
can be disregarded, the boundary condition on the surface of the speci­
men can be considered the condition 

d9 = o. 
dr (15. 8) 

The general solution of the equation (15.7) for an infinitely long 
cylinder has the form [164] of 

where 

(15. 9) 

- iw V-
Z=. -a-r; 

(15 .10) 

1
0 

1s the Bessel function of the zero order of the first type; 

is the first Henkel function of zero order; 

z 

F1 (z) = ~ (' z/0 (z)f(z)dz, 
21 .} 

0 

z 

Fz (z) = ; .\ zH~1 > (z) f (z) dz, 
0 

f(z) = w(r)m 

iwcp p 
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It follows from the condition of finiteness of the magnitude eon 
the axis of the cylinder that c2 = 0. In order to determine the constant 

c1, we shall utilize the boundary condition (15.8), which gives 

(15.14) 

(15.15) 

For the temperature pulsation on the surface of the specimen, we 
get the formula 

'l' F (l) -. 'Z) :!! I Ul =-.--, 
:tZ /1 (Z) (15.16) 

or which is the same thing, 

z (15. 17) 
G (Z) = r 2. . Io (z) f{z) dz. 

J z ldZ) 
0 

(In the derivation of (15.16), use was made of the identity 

Ho) I - H('l I = ...!_ ) 
I) 1 I 0 · ;cz 

. ) 

In order to obtain the formula for the temperature pulsation on 
the axis of the cylinder (z = 0), it is necessary to develop the in­
determinacy of the type Ooo, whicn originates in the members of 

By utilizing the asymptotic expressions for the Thompson 

function when z + 0, we get 

(15.18) 

when z -+ 0 . 
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The formula for G (0), has thus the fonn of 

(15. 19) 

or 
:t SZ Wc}l (z) /1 (Z)- ~I) (Z) I? (z) 

0 (0) = -·- z f(z) dz. 
2i ldl) . 

(15.20) 
0 . 

The formulas (15.17) and (15.20) in principle describe completely 
the temperature variation on the axis and surface of the test specimen, 
giving the amplitude as well as the phase of the variations in a func-

tion of two variables: Y. = y- ; · ~. ~ndlJ = 2~ · For 

practical use, however, it is more convenient to rearrange these formulas 
to another form by conducting integration by parts: 

where 

. z 
a (Z) = _ mW • _1_. 10 (Z) _.;- s U (z) 11 (z) dz, 

· 2:ti. Z / 1 (Z) /1 (Z) 
. 0 

mW I I· 
0 (0) ~= - -·--.- • -- + 

2:rj, Z 11 (Z) 

z 
~- IZi :tsv·. 

I 2i • • 
0 • 

ftjl (z) 11 (Z) - H~:, (Z) /1 (z) dz, 

11 (Z) 

z mW z 
U(z) = .\ zf(z)dz =- 2:tA . Z X 

0 

b (
r Y2 ) ber' c~-:12 '\ + bei (r l'~2 ) bei' ( r l~2 ) 

er ----a- . cr ) · • 

"'' ( R ~2}.,• ( R :2 ) + bo; (' :
2 

) bci' ( R :
2

) 

(
U(Z) =- mW )· . 

2:tA 
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The first members of the formulas (15.21) and (15.22) represent 
the solution of the problem for the case in which the volume heat lib­
eration is absent, (it degenerates into surface heat liberation), and 
the second integral member describes the addition due to the distribu­
tion of the heat sources to the volume. The smaller the relative thick­
ness of the skin-layer, the smaller the role that is played by these 
members and the closer is the solution for G to the ideal case of a 
purely surface heating. 

We shall leave for a while the problem of the quantitative cal­
culation of the extent of the heat liberation and we shall analyze the 
possibilities of utilizing variable induction heating in order to de­
termine the temperature diffusivity, on the basis of the nature of the 
functions described by the first members of (15. 21) and (15. 22). 

The formula for the temperature pulsation on the axis of the cyl­
indrical specimen in the approximation under consideration can be 
written in the form of 

where 

e <O> = _ _,-="-­
{-ill<z>' 

(15.25) 

(15.26) 

The solution in the form of (15.25) was already obtained and stud­
ied earlier (s~e formula (13.19)). The solution for the temperature 
pulsation of the heated surface G(Z) in the direct form was not investi­
gated. 

The formula for G(Z) is written in a form similar to (15.25): 

e (Z) 
--=-

eo (15. 27) 
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The expressions for the amplitude and phase (with respect to the 
power variation) have the form of 

where 

I o I = 00 2x2 ]Iii+ F~ , 

t Ft 
gcp = -T· 

1 

·F - !,, 
' ' - - Zl

1 
' 

berber'+ heibei' 

(ber' 2 + bei' !) 2Y. ' 

F q = bei ber' -- ber bei' 
" (ber'~ + bei'~) 2x 

(15.28) 

(15.29) 

(15. 30) 

(15.31) 

(15.32) 

The magnitudes ber and bei are in this sense in functions of the 
variable KR = 2K. For practical calculations, these expressions can 

conveniently be represented in the form of 

~ = xb(2x), eo . 
(15. 33) 

. R ('"' ' . 3 rp = t' ,._X) 1 - -Jt, 
4 

(15. 34) 

/ 0 (x ,IT) 
where b and B are the modulus and phase of the function 

/J (.qri)' 

tabulated in the monograph_ Il6J. The form of the functions ~ (x2) 
eo 

and is shown in Figure 52 and 53 (solid line). 

Let us turn at first to the second of these illustrations. The 
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phase delay lag in the variations of the surface temperature, in com­
parison with the power variation, is close to n/2 for small values of 

K2 ; this is a general characteristic of slow thermal processes, to 
which attention was already drawn in §8, 9, 12, and 14. For large 
values of K2 , the phase displacement approaches asymptotically the maxi­
mum value of n/4, which is characteristic of temperature waves that prop­
agate in semi-infinite medium (see §8 and 12). In the region of inter~ 
mediate values of K

2 , there is a section with a comparatively steep 
dependence on K2 , which can be utilized for determining the temperature 
diffusivity. In order to evaluate the sensitivity of such a method, 
Figure 54 shows the curve of the relative error in oK 2 K2 per degree in 
change of cp. 

It can be seen that near the value of K
2 equal to 1, the a priori 

error in determining the temperature diffusivity amounts to - .S-6%. 
This magnitude is greater than the corresponding error in measurements 
on the axis of the specimen (Figure 47), but nevertheless it is still 
not so great as to make the corresponding experiment invalid, in parti­
cular if it is taken into consideration that a recording of the temp­
erature on the .external surface of the specimen is the simplest and 
most convenient. Thus, along with the already described type of ex­
periment with radial temperature waves, when the temperature variations 
are studied on surfaces that are opposite to that being heated, the 
determination of the temperature diffusivity by the phase method is 
possible even with the recording of the temperature directly on the 
heated surface. Such a possibility can be practically realized only 
with induction heating and photoelectric method of recording the temp­
erature variations. (Under conditions of heating by means of electron 
bombardment, the photoelectric recording of the temperature of the 
heated surface is difficult because of the presence of an incandescent 
cathod~, while a recording by means of thermocouples, it is more ex­
pedient to distribute these on the opposite surface.) 
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Figure 52. The amplitudes of the 
temperat~re variations on the 
surface of a cylinder with variable 
heating as a function of K2 . 
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Figure 53. The difference in 
phases between the temperature 
variations on the surface of 
a cylinder and the variation 
of the heating power as a 
function of the variable K2 
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Figure 54. The error in de­
termining the temperature dif­
fusivity in the phase variant 
of the method with recording 
of the variations in the sur­
face temperature of the speci-

Along with the determination men. 
of the temperature diffusivity by 
the phase method, the recording of 
the temperature on the external 
heated surface of the specimen 
makes it possible to realize also 
another amplitude method for determining temperature diffusivity, namely, 
that mentioned in §8--the amplitude-frequency method which is based on 
information of the frequency dependence of the amplitude of the tempera­
ture variations with constant pow·er of variable heating. In order to 
clarify the possibilities of the amplitude-frequency method, let us ex­
amine Figure 55 which gives a curve of the ratio of the amplitude of the 
variations for the given and doubled frequencies as a function of the 
parameter K2 (reference to the greater of the frequencies}-solid line. 

The magnitude jejw /IGI 2wequal to 2w/w, for small values of 

, for large Values Of K
2 approaches n because under 

conditions of a considerable attenuation of the temperature wave it 
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1 
penetrates into the body IOI_""'aox""' t!J>. In the region of values 

of K
2 ranging from 1 to 2 there is a section of comparatively steep de-

pendence of jej /jej on K2 , which can be utilized for determining the w 2w 

temperature diffusivity. The curve of the dependence of the errors of 
such a determination on K2 , when 

-

I e lw 
~--

lOb = l% 
161(1) -1 e l2ro 

I I 

/ 
~ ,, 
1\' ..... _ 

TI~q, 

\ 
~ ,=u 

1 o 1 z J 11 
xz 

Figure 55. Ratio of the amplitudes 
of the temperature variations at 
frequencies which differ twofold 
as a function of the parameter K2 . 

The region of minimum errors 
(-3.5% lies here near the same values 

(as shown in Figure 56). 

o~--~--~~--~--~q 

xt' 

F i g u re 56 . E r ro r i n de te rm i n­
ing the temperature diffusi­
ity by the amplitude method 
(with the ratio of the 
frequencies equal to two) 
as a function of the para­
meter K 2 . 

of x2(x2""~ 1 ,5), , for which the errors in the phase method are 
also minimum. (If K2 is referred to the geometric mean of the frequen-
cies of wand 2w , these regions coincide in accuracy); the absolute 
values of the errors are comparatively small. Thus, information on the 
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variations in the surface temperature of the specimen under conditions 
of variable induction heating permit in principle to find the tempera­
ture diffusivity of the test material by two independent ways: by the 
phases of the temperature variations and the frequency function of the 
amplitudes. It is of interest to compare the possibilities o~ the 
amplitude-phase determination of the temperature diffusivity in the case 
under consideration when the temperature is recorded on the external 
heated surface with such during the recording of the te~erature on the 
axis of the specimen. The curve of the function lei /IG! 2 in this w w 

last case is shown in Figure 55 by the dot and dash curves just as the 
curve of the errors in Figure 56. It can be seen that in order to 
obtain the same aceuracy of measurements as in the first case, one needs 
here to utilize the values of K2 of the order of 3 and higher. A com­
parison of the amplitudes of the temperature variations leads to the 
conclusion that the amplitudes of the temperature variations on the axis, 
obtained in this case, are four times less than when the variations are 
recorded on the surface. Thus, the ''eggshell" variant of the procedure 
is in this respect less favorable. 

The above-made evaluation of the possibilities of the method per­
tain so far to an idealized state of a purely surface heating. We 
shall clarify now how the volume character of heat liberation in in­
duction heating shows up; for this purpose we s.hall examine the second 
integral members of the formulas (15. 21) and (15. 22) . 

and 

For the rearrangement of the expressions 

z 
M (Z) 2:tA.. = \' U (:z) I; (z) dz 

Wm .; ldZ) 
0 

(15. 35) 

dz 
(15. 36) 

to a form convenient for calculations, we shall perform a series of 
successive integrations by prods with consideration of (15.23) and the 
recurrent relationships for the Thompson functions. As a result, we 
obtain 
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ae (Z) 2:tA. 

mW 

Ml ( Z) ll ber~ + beP = ---=-. ------
2fJo x2 2 berber'+ bei bei' 

ber bei'- bei ber' . lu ___!__ ?"! bei'z + ber'
1 

-Znll - L-
., berber' -r bei bei'- / 1 -

1
/2 berber'+ bei bei' 

. ·z··f :,, z ~\ . -r 11. - \ /1- - ~ j - -

r•!w· 

1} 

= l/2 berber'+ bei bei' 
.!0 (0)· 2;t/. 

tl2 ber bei'- bei ber' 1}' · -z-·-. +Z3- + ... 
! 1 berber'+ bei bei' /1 

(15.37) 

(15.38) 

A continuation of such an operation will lead to th~ appearance of 
members with higher powers of the small parameters n. The resulting ex­
pressions, however, are not an expansion of ~8 in a power series with 
respect to n because the Thompson functions in the formulas (15.37) and 
(15.38) are functions of the argument 1/n~ The utilization of series 
for their asymtotic representation [165] makes it possible to rearrange 
(15.37) and (15.38) into real series with respect to n. After the 
real and imaginary parts of these series, we obtain expressions 
for the amplitude and phase of the temperature variations with 
consideration of the role of the skin-layer: 

where for the points on the surface of the specimen 

F1 ~ F1 + 11 + 112 (1 + 4x2 f'!) + lj3 
( + + 4x2 Fz) + 

+11'(: +6xZF~--i6x2 f1)+ ... 
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while F1 and F2 are given by the formulas (15.31) and (15.32). Similar­

ly, for temperature variations on the axis, 

(15. 43) 

(15.44) 

where 

ZJL(Z) 

Specific calculations by means of the resulting formulas make it 
possible to become convinced that for~< 0.1 the role of the last term 
members of these formulas (n 4 ) is negligibly small (<1%), whicli makes it 
possible to disregard the subsequent members of such expansions. 

For the practical utilization of the formulas (15.39)-(15.44), it 
is convenient to represent the effect of n in the form of corrections 
to the previously determined functions ~(K 2 ) and lei /jej

2 
, more ac-

w w 
curately to their reciprocal functions, that is, to the magnitudes of 

K8, determined for n = 0 from the original values of the angle ~ or 

the ratios of the amplitudes lelw/lel 2w . Such correction factors, 

which pertain to the case in which the temperatures of the heated 
surface are recorded, given in Tables 30 and 31. 

It can be s~en that the effect of the finite thickness of the sKin­
layer in the phase method is not so weak that it can be considered a 
correction when n > 0.03. Greater values of n lead to a noticeable 
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decrease in the curvature of the function ~(K 2 ), which show up on an 
increase in the error of the experiment. In order to evaluate the role 
of the relatively large values of n, Figures 53 and 54 show the corres­
ponding curves for n = 0.1. 

Table 30. Correction Factor Which 
Takes into Account the Finite 
Depth of Heat Liberation. Phase 
Variant of the Method; Recording 
of the Temperature Variations on 
the Surface . 

. 2 x•/~ 
i xo 

'!=O,Ol_ \ I !}=0,03 . !}=0,05 

I 
0.3 1 .04 1 ,12 1 ,21 
0,4 1.0~ 1 ,13 1 ,22~ 
0,5 1.05 1 ,13 1,235 
0,6- . ·1,05 1 ,14 1,24 
0,7 1.0~. 1 ,15 1,25 
0,8 1,055 1 ,15 1 ,25$ 
0,9 1,055 1 ,Is. 1,26 
1.0 1.05. 1,16 1,27 
1 '1 1,06 1 ,17 1,29 
1.2 1,07 1.18 1,33 

Table 31. Correction Factor 
for the Amplitude Variant 
(Ratio of Frequencies Equal 
to Two), Recording of Temp­
erature Variations on the 
Surface. 

. ~ 
x•tx~ 

( fo.r 21.11 
'l=(l,OL I 11=0,03 1 !}=0.05 

0,25 1.00 1,02 1,07 
0,5 1.00 . 1.07 1.12 
0,75 1,00 1.08 1 ,15 
1,0 1,00 1,09 1.18 
1,25 1,00 1,10 1.21 
1,5 1,00 1 ,11~ 1 '21;, 

The effect of the magnitude n on the phase and amplitude of tlie 
temperature pulsation on the axis of the specimen is small, which is 
understandable because the point where the temperature is recorded is 
in this instance removed from th~ region of heat liberation. The cor­
rection factors for this case are shown in Tables 32 and 33. 

The introduction of a correction is necessary for values greater 
0 .01. 

In order to evaluate the values of the parameter n in specific 
conditions, we cite Table 34 which contains the values of n. for wolfram 
at 2,000°C. 

- 303 -



The table shows how important is the utilization of relatively 
high carrier frequencies in induction heating. 

Table 32. Correction Factor for Phase 
Variant with Recording of the Tempera­
ture on the Axis. 

"'"'"~ 
~ 

Tl=O.osl "1'=0,071 Tl =0.1 

],0 1,025 1 ,05 I, 11 
],5 1,025 1,05 l .11 
2.0 1 ,02.'5 1,05 l .11 
2.5 1,025 1,055 l ,12 
3,0 1,025 1,05 1.12 

Table 33. Correction Factor 
for the Amplitude Variant 
With Recording of the Temp­
~rature on the Axis. 

,.2 
%'/Y.g 

0 
'71 -= •).07 'I"= O.l 

2,0 1,02 1,0& 
2,5 1.03 1,07 
2,(} l.(n.s 1,08 

Table 34. Values of the Relative Thickness 
of the Skin-Layer for Wolfram at 2,000°C, 

R of the 
specimen, 

em 

0,5 

f of the Furnace, Megahertz 

- I. 

I 

I o.t 
~-~··· -· 

0,13 

0,06 
. I 

___ l __ -- ! 
I 

0,010 ! . 
I 

i 0,020 

!0 

0,013 

0,006 

Let us summarize the results of the examination of the theory of 
radio temperature waves as applied to experiments for determining the 
thermal properties. We have clarified that the method of induction 
heating can be utilized for measuring the temperature diffusivity by 
the phase method with recording of the temperature on the axis of the 
test specimen or on its surface. The latter method is more convenient, 
although it does insure a somewhat smaller accuracy. An additional 
advantage of recording the temperature variations on the lateral surface 
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of the specimen is a possibility of realizing another independent method 
for determining the temperature diffusivity--the amplitude-frequency 
method. 

Experience with the method of induction heating is presented in the 
next section. 

§16. Measurements of the Temperature Diffusivity by the Method 
of Variable Induction Heating 

The utilization of high-frequency induction heating in order to 
create radial temperature waves in the experiment for determining the 
temperature diffusivities has a number of important advantages. In­
duction heating makes it possible without difficulty to introduce into 
the test specimen comparatively large powers and thereby insure at the 
same time the maintenance of a high ( - 2,000° and higher) average temp­
erature as well as the creation of sufficiently large amplitudes of 
temperature variations. In this instance, it is easy to realize prac­
tically inertia-free control of the heating power and thereby make it 
possible to determine the temperature diffusivity from the phase shift 
between the variations in the temperature·and power. An important 
merit of the method of induction heating is also the possibility of 
recording the temperature directly on the external heated surface of a 
cylindrical specimen, which makes it possible, on one hand, to utilize 
a very simple method of contact-free photoelectric recording the temp­
erature variations and, on the other hand, it makes it possible to re­
alize simultaneously too independent methods for determining the temp­
erature diffusi vi ty: the phase and amplitude-frequency methods. Finally, 
the utilization of the induction heating makes it possible to carry out 
experiments not only in deep vacuum, as is the case in electronic heat­
ing, but also in an atmosphere of inert gas, it is important when work­
ing in the range of temperatures within which there is a comparatively 
intensive atomization of the test materials. 

A schematic representation of the main parts of the experimental 
unit is show~ in Figure 57. The case a corresponds to the recording of 
the temperature variations on the external surface and the case b to 
the registration on the axis of the specimen. In this and the other 
cases, the test specimen with the diameter of 8-15 mm and a length of 
5-8 ern is placed on the axis of the inductor in the high-frequency 
furnace, in its middle. In recording the temperature variations on the 
surface, emission from the section of the image of the lateral surface 
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of the specimen, which is seen through the slots between the turns of 
the inductor, strikes the photomultiplier. In recording the variations 
on the axis, the emission from the image of the channel (perforation) 
1 mm in diameter on the axis of the specimen is fed to the photomulti­
plier. Besides, a more thorough adjustment of the optical system is 
of course required than in the first case. 

The block diagram entire unit is shown in Figure 58: 1, induction 
generator; 2, modulating device which controls the voltage of the rect­
ifier 3; 4, photoelectric multiplier; 5, feedblock with a stabilization 
circuit; 6, amplifier; 7, loop oscillograph. 

As a generato~, use was made in these experiments of a standard 
induction generator GLP-15 f~om the MVP-5 unit. The generator power, 
equal to 15 kw, insured the attainment of average temperatures up to 
2,000°K. In order to decrease the thickness of the skin-layer on the 
specimen, the working frequency of the genera~or, which lies within the 
limits of 0.25 to 0.4 megahertz, was raised to 0.6 megahertz by discon­
necting a portion of the condensors in the circuit. 

b) 

a 

F4gure 57. Schematic representation of two variants recording the 
temperature variations in the method of inducting heating. 
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5 

7 

Figure 58. Block diagram of the unit. 

As a modulating device, use was made of a mechanical system shown 
in Figure 25 b (see also [40, 41]). Recently, this system was replaced 
by an electronic circuit which insures greater stability. In one as 
well as in the other cases, the modulation had aU-shaped character: 
the generator tube was periodically wiped out by feeding a negative 
voltage to its grid. (For details see [41].) A portion of this con­
trol voltage was fed to one of the loops of the oscillograph for re­
cording the moments of the generator connection. The interval of the 
frequency of modulation was 0.2-2 hertz (periods 0.5-5 seconds). 

In the recording portion of the unit we utilized a photomultiplier 
of the FEU-19M type which was fed by a stabilized rectifier of the VSF 
type. The circuits of the utilized amplifiers are shown in [41, 39]. 
For recording the variations, use was made of the loop oscillographs of 
the MP0-2 and N-700 types. The diagram of the installation of the 
specimen (for the simplest case--recording of the temperature varia­
tions on the external part) is shown in Figure 59. 

The test specimen 1 was usually secured on a ceramic straw 2 with­
in the water-cooled quartz cap 3. In the upper part of the cap there 
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is a flat-parallel quartz window 4 which is utilized in recording the temp­
erature variations on the axis and in measurements of the average temp­
erature. (For this purpose, use was made of an OMP-19 micropyrometer.) 

Figure 59. Installation of 
the specimen. 

The inductor 5 was made of copper 
tubing; within the tube flowed water 
for cooling. The length of the inductor 
exceeds 2-3 times the length of the 
specimen (the scales are not shown 
properly in the illustration). The 
entire system was continuously evacuated 
by the MVP-5 vacuum unit of the furnace 
(diffusion pump TsVL-100, forevacuum 
pump VK-46-lM). The system also pro­
vides for the admission of an inert gas. 

The experiment is carried out in 
the following order. After the achieve­
ment of vacuum, in the system and warm­
ing up of the generator and amplifier 
of the recording system, high-frequency 
heating in the modulating device are 
connected. A stable average tempera­
ture is reached comparatively rapidly--
5-10 minutes after the heating is con­
nected. Control of the amplification 
system reduces itself to the compensa­
tion of the constant component of a 
signal at the inlet of the amplifier 
and the establishment of an amplitude 
of the variable component for which 
the variah le signal would not go beyond 
the limits of the linear section of its 
characteristics. The selected condi-
tions for the operation of the ampli­
fier should remain unchanged in changing 

from one frequency of modulation to another. 

Typical oscillograms of the variations in the surface temperature, 
when recorded on the MP0-2 loop oscillograph~are shown in Figure 60. 

The resulting curves are printed in magnification on photographic 
paper (by using the M-700 oscillograph, there is no need for magnification) 
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and are processed by tQe method of twelve ordinates. (There is no 
need for using more accurate methods of approximate harmonic analysis-­
see f41].) The stability of the resulting values of the amplitude and 
phases of the first harmonic is shown in Table 35 which gives the re­
sults of the processing of five successive periods of variations in the 
surface temperature of the specimen (wolfram, 1,890°K, frequency 0.336 
hertz; values of the amplitude are given in millimeters on the photo­
paper). Similar results are obtained also in recording the temperature 
variations on the axis . 

Figure 60. Typical osci llograms. 

Table 35. Results of Processing Five Successive Periods of 
Temperature Variations. 

No. of Periods 

2 

3 

4 

5 

Average Value 
Average Deviation 
Maximum Deviation 

Amplitude 
mm 

68.5 

67.2 
67.0 
67.8 

68.0 

67.7 
0.5 mm (0.7%) 
0 . 8 mm ( 1 . 3%) 
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Phase, deg. 

79.6 

79.4 
79.2 
80. 1 

79.8 

79.6 
0.3° 
0.5° 



The absolute values of the amplitude of the temperature variations 
lie within the limits of 0.2 to 10° depending on the material, frequency 
of modulation, and average temperature, so that the condition of smallness 
of the amplitude, in comparison with the average temperature, required 
for the theory of temperature waves (§ 8), is fulfilled in this experi­
ment. 

The values of the phase in the first harmonic of the temperature 
variations with respect to the first harmonic of the power variations 
are utilized directly ·for determining the temperature diffusivity. The 
calculations carried out by means of curves of functions as shown in 
Figures 36 and 53. The values of the magnitude n are determined from 
the formulas (15.1) and (15.2). 

In determining the temperature diffusivity by the amplitude-frequency 
method, it is possible to utilize the curves in Figure 55. In order to 
increase the accuracy of the results, however, it is expedient to carry 
out the measurements not for two different frequencies, but for a con­
siderably larger number·of these. Thus, the usual series of measurements, 
which is carried out on the described unit, included seven frequencies 
(the recording of such a series of curves does not require too much time 
because the regularization of the thermal conditions in passing from one 
frequency to another takes place rapidly in the course of 1-2 minutes. 
Processing of the results of such a series by the paired combination of 
data for different frequencies which, in addition, are not multiples of 
one another, represents a little effective pro~edure. In connection 
with this, utilization was made of another system of processing, which 
consists of comparing the experimental dependence of ln 8T- 1 on lnT- 1 

(T is the period of vibrations) with the calculated curve ln(jej;e0 
on 

lnK 2 . In practice, this comparison was made by superimposing the ex-

perimental points large 

ordinates on the curve 

on a graph paper 

ln ~ -1nx2 

eu 

e . 
and the (ln- -ln ·r- 1• co-

-c 

(for a specific value of n), 

plotted on millimeter paper. The purpose of this superposition, which 
was carried out with strict parallelism of the axis of the coordinate 
network, consisted in finding a position for which all the experimental 
points could be combined with the theoretical curve as well as possible. 
The difference between the abscissas of these two curves made it pos­
sible to determine the value of the temperature diffusivity in the best 
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manner which describes the entire series of experimental values of the 
amplitudes: 

2:rR~ 
=In 

a 

The described procedure, when repeated, leads, as a rule, to satis­
factorily reproducible results. For illustration, we show Table 36 which 
contains data obtained during a repetition of the determination of the 
most reliable value of the temperature diffusivity (series of seven 
frequencies for wolfram at a temperature of 1,725°K) . 

Let us examine the problem of corrections for the heat exChange. 
As in all the other cases, which have been examined in preceding sect­
ions, the solution of the problem of the temperature variations, with 
consideration of the correction for heat exCh~ge, is written in the 
form of 

a - - = F t- Bif. e, (16 .1) 

The correction function f when Bi is small should satisfy the 
equation and boundary condition 

zf . 2f '\j = lX , 

·f'=-F(Z). 

(16.2) 

(16. 3) 

In comp~ring (16.2) and (16.3) with the equation in the boundary 
condition for a case of external (purely surface) heating of a solid 
cylinder (8/80 =F), we come to the conclusion 

FF(Z} 
f == __; ----;;-- . 

(16. 4) 
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Table 36. Illustration of the Reproducibility of the 
Results in Determining the Temperature Diffusivity 
by the Amplitude-Frequency Method. 

2 
Nt a, em /sec 

1 
0,379 
0,370 

2 0,371 
3 0,371 
4. 0,375 :.5 

Aye rage Va J ues 

\ 
0,374 

Average De vi at ion 0,8% 

Maximum Deviation 1,4% 

Hence, for corrections to the temperature pulsation on the surface 
of a cylinder, we get 

(16. 5) 

(16.6) 

in accordance with formulas (15.27)-

(15.32). The corrections given by formulas (16.5) and (16.6) 
identical to the earlier examined corrections -Biwl and -Biw2 

formulas (14.5) and (14.6)). From the nature of the functions 

are 
(see 

w1 (K 2 ) and w2 (K 2 ), which are shown in the curves of Figure 50, it is 

seen that for the optimum regional values of 
tude w1 varies very insignificantly, by ,_, 3%. 

x2.:_ t"-1,.'1 the magni­
TILe effect of the para-

meter Biw2 on the ratio of the amplitudes of the temperature variations 

on the surface of the specimen does not exceed,for this reason, the 
magnitudes 0.03·0.5 Bi, i.e. - 1.5% of Bi. As regards the corrections 
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to the phase, it lies in the range of 0. 7 Bi to Bi within the s arne reg­
ion of values of K2 . 

For corrections to the temperature variations on the axis of the 
specimen, we get from (16.4) the formulas 

~JQU_ = -Bi Re F (O) F (l) • 
OG 'I'H (0) 

(16. 7) 

!1c:p = Bi Im F (O) F (Z) 
""H (0) (16. 8) 

For conditions for which the effect of the magnitude n has the 
nature of a small correction, it is possible to disregard the differ­
ence between ~(0) and F(O) (i.e. between the magnitudes lel/8

0 
in 

surface and volume heat liberation). In this case, also, for the temp­
erature pulsation on the axis of the cylinder we get the same formulas 
(16.5) and (16.6) if the above made evaluations of the effect of the 
Biot criterion are valid. 

Let us now pass on to the problem of evaluating the errors of the 
experiment under consideration. 

Let us start with the phase method. As follows from the above 
presentation with respect to the reproducibility of the results in 
determining the phase differences, for the first harmonics the maximum 
deviation of the results from the average value usually amounts to 
-0.5°. The maximum error in determining the true phase difference can 
be somewhat gr~ater than this magnitude due to the inaccuracy which is 
introduced in calculating the corrections for the frequency characteris­
tic of the amplifying circuit and (for mechanical modulator) due to 
the different durations of the connection and disconnection (for details 
we cannot stop here). These factors could increase the error in deter­
mining ~¢ to 0. 7-1°. The error reproduced by the inaccuracy in the 
calculation of the heat exchange amounts, as determined, to (0.7:1) 
oBi. For emission heat exchange the magnitude of the effective Bi 
criterion can be considered known with an accuracy of 10 to 30% depend­
ing on the accuracy of the available values of the degree of blackness; 
the indeterminacy in the values of the correction amounts thus to 
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(0.07-0.3) Bi. For values of heat conductivity A - 1 wt/cm deg, the 
degree of blackness E -0.5, and the diameter of tne specimen - 8-15 mm, 
the diameter Bi lies within the limits of 0.002 to 0.005 at 1,000°K, 
from 0.008 to 0.02 at 1,500°K and from 0.02 to 0.04 at 2,000°K. Hence, 
it follows that for the most unfavorable conditions the error introduced 
by the inaccuracy in the calculation of the emission heat exchange does 
not exceed -o. 5°. The total error in determining the phase difference 
thus lies within the limits of 0. 7-1.5 o. The error introduced into the 
magnitude of the temperature diffusivity due to the found error in de­
termining the phase difference depends significantly on the magnitude 
n. For the case in which the correction for the finite thickness is 

negligibly small, the error of 8a/a for measurements of the tem~erature 
variations on the surface of the specimen for optimum values of K2 is, 

in accordance with Figure 54, equal to 5.5% x (0.7 : 1.5) = 3.5 - 8%; 
for measurements on the axis of the specimen for the same values of K2 

we get from Figure 47 -= 3 (0,7 -;-1 ,5) = 2+4.5%' besides for 
a 

larger values of K2 , the accuracy can in principle be even greater if, 
of course, the amplitude of the variation is sufficiently large. For 
finite values of n, the error increases noticeably. For - 0.1 in the 

same cases . 
00 

=8(0,7-1,5) =5,5..;-12% 
a for measurements on the 

surface. To these figures must be added also the error due to the in­
accuracy and the knowledge of the magnitude n. The latter amounts to 

- 3%, if the inaccuracy of the values of the specific resistance for 
the given temperatures is equal to 5%. When1n -o.I, a change inn 
by 3% can lead to an additional error of 8a/a equal to 1%. 

An analysis of other sources of errors such as the finite length 
of the specimens, the possible nonuniformity in the temperature field 
with the height and parameter, inaccuracy in the knowledge of the freq­
uencies of modulation and the carrier frequency of the generator, errors 
in the measurement of the dimensions, the role of nonlinearity in the 
recording system, lead to the conclusion that the contribution of these 
factors to this total error cannot be taken into account (see [41]). 

The above-found errors in the determination of the temperature 
diffusivity in the phase variant of the method characterize the errors 
of individual measurements which include systematic as well as random 
errors. In averaging the series of measurements, the random errors are 
to a considerable degree compensated· and the accuracy of the results 
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increases. Thus, for the· series of seven measurements, the error, which 
is equal to the sum of the average quadratic error and the maximum 
systematic error will be equal to (2.2-6.5)% and (1.2-3.5)% for the case 
of~= 0 for measurements on the surface and on the axis, respectively. 

Let us examine further the errors in the amplitude-frequency method 
of measurement. 

The error in determining the first harmonic of the amplitude of tne 
temperature variations amounts to a magnitude of the order of 1%. For 
the error in determining a, with respect to the amplitudes for two fre­
quencies, we get from the curve on ~igure 56 for the optimum values of 

K 2 oa/a "'3. 5 x 2% = 7% where n = 0 and oa/a "' 14% where n = 0 .1. 

The latter magnitude should be increased by - 1% more due to the in­
determinacy in the values of n. The use of the above-described method 
for processing the results of measurements for a series of frequencies 
makes it possible to decrease significantly the values of these errors. 
Random errors in the util1zation of such a method for determining the 
temperature diffusivity are characterized by an error in the deter­
mination of the most probable value of the temperature diffusivity in 
each series (this is "'1. 5-3% depending on the magnitude of n) and by 
the scatter of these probable values for equivalent series. As some of 
these errors amount to "'3-5% for n = 0 and 6-9% for n "'0 .1. 

Let us cite some results obtained in processing and in testing the 
procedure. 

Table 37 compares the data obtained by the phase (recording on the 
surface) and the amplitude-frequency methods (wolfram, 1,720°K, R = 
= 4.97 mm, L = 80 mm, f --0.5-0.6 megahertz). The values given in the 
table for the temperature diffusivity, which have been obtained by the 
amplitude method, have been found for each frequency after the entire 
totality of these data was superposed on the calculated curve by a 
method described above. The devi·a tions of individual values of a'A and 

a~ from the average values do not achieve the a priori maximum errors. 

Average values of aA and a~ are in good agreement with each other. 

Good agreement has been obtained also for the results of control ex­
periments which were performed with specimens of different diameter and 
different length [166] . 
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Tahle 37. Comparlson of the Results of Measurements of the 
Temperature Dlffustv[ty of Wolfram, Obtained by the Phase 
and Amplttude Methods. 

v. Hertz I j eM'> c.w1 

.,, Degree j aA,- 11-
A, MM 

,. 
sec sec 

0,294 t .80.9 82,9 0.176 0,390 
0,344 69,6 82,1 0,373 0,4.00 
0,417 

\ 

60. [ 79,9 0,371 0,376 
0,477 52,5 78,5 

I 
0,375 0,371 

0,572 43,0 77,3 0,381 0,393 
0,678 38,2 75,5 ' 0,3'36 0,397 
0,744 33.8 73,7 I 0,378 0,375 

' .I Average Value 0,374 0,:386 
Average De vi ati on: . I 1,0°0 2.600 

Maximum Deviation • 1 2,1 ~; 3 .6?6 
I 

Table 3S lists data obtained by the amplitude-phase method under 
conditions when the connection intervals were three times greater than 
the disconnection intervals (wolfram, 1,890°K, the same specimen as in 
Table 37.) 

The utilization of such conditions in the operation of the unit, 
besides additional possibilities for checking the reliability of the 
results, makes it possible to increase somewhat the maximum temperatures 
of the experiment (by an introduction of greater power) as well as to 
utilize in processing the results not only the first but also the second 
harmonics of the temperature variations and thereby obtain a greater 
volume of information. An analysis of the conditions under which the 
relationship of the magnitude of the first and second harmonics is 
optimum leads to the conclusion that the durations of the connection 
and disconnection intervals in this instance should be as 3/1 or 1/3 
[40, 166]. 

It is seen from Table 38 that the values of the temperature dif­
fusivity, obtained from data for the first and second harmonics, agree 
with each other, the deviations from the average value do not have a 
systematic nature. This circumstance makes it possible to utilize the 
second harmonics of the variations on the same footing with the first 
and thereby reduce the series of measurements for different frequencies 
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twofold without a significant decrease in the accuracy of the results. 

Table 38. Results of Measurements of Temperature Diffusivity 
Obtained from Data of the Amplitudes Under Conditions of 
Inequality of the Heating and Cooling Intervals . 

.\'J, Hertz I "'r· Hertz CM1 

A, MM a, 
I sec 

0,289 I 

I 76,5 

r 

(}.,373 
0,331) 67,8 0,373 
0,399 59,0 0,375 
0,448 53,8 0,378 
0,.'529 .46,2 0,375 
0.5~2 41,9 0,371 

0,578 39,8 0,367 
() ,6137 35,6 0,365 

0,6iZ 35,4 0,375 
0,798 31, I 0,375 
0,896 28,3 0,381 
1,058 2·L7 0,366 

Average Value 
0,373 

Average Deviation I ,0% 
Maximum Deviation 2,1% 

Table 39 (wolfram, 1,920°K) compares the data obtained from the 
amplitudes and phases for a ratio of the connection and disconnection 
duration equal to 3:1. The somewhat greater scatter of individual 
values of the temperature diffusivity, in comparison with the case of 
equal half-periods, is related apparently with the decrease in the 
specific weight of the first harmonic. The average values of the temp­
erature diffusivity, obtained from the amplitudes and phases,. are here­
to in agreement with each other as well as with the values obtained for 
different half-periods. The measurements for a ratio of the connection 
disconnection intervals equal to 1:3 lead also to similar results [40, 

166]. 

Some results obtained by means of the described unit are given in 
§23 and in [166, 167, 168]. 

Let us summarize the results. The described procedure in the unit 
makes it possible to determine the temperature diffusivity of metals 
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within the temperature range o£ 1,000-2 ,000°K; besides, by utilizing a 
more powerful generator, the upper limit can be increased. Measurements 
are made on specimens of cylindrical form, the recording of the tempera­
ture variations is made by the contact-free photoelectric method. 

Table 39. Comparison of the Result of the Determination of 
the Temperature ~iffusivity of Wolfram from the Amplitudes 
and Phases Uncle r Conditions of I neq ua I i ty of the Heating 
and Cooling Intervals. 

v, Hert~zl q;,Degreesl A, - aq~• '"''/seE: I a A• '-"•:sec 

0,400 80,0 I 66,2 0,373 0,362 
0,{4;3 79,6 59,8 0,386 0,353 
Q •C.! ,'t ......... 77,3 55,0 0,350 0,356 
0,553 7S,8 47,3 0,366 0,346 
G ,627 76-,5 43,5 0,385 0,359 
0,7:!2 75,2 40,2 0,372 0,37-t 

Average Va I ue 0,372 0,358 
Average Deviation %: 2,4 1 ,8 
Maximum Deviation % 5,9 4,4 

The simplest method is that of recording the variations on an 
external surface. The temperature diffusivity in this instance can be 
determined by two methods: the phase and amplitude methods. Both methods 
insure an approximately equal accuracy result, which varies from 3-13% 
depending on the conditions of the experiment, and in the first place 
on the ratio of the skin-layer to the diameter of the specimen. The 
phase method is more convenient because each measurement of the phase 
difference makes it possible to determine directly the temperature 
diffusivity. The amplitude methodrequires meas1,1rements of a series 
of values for several frequencies and has a somewhat more complex pro­
cedure for processing the results. Nevertheless, the amplitude method 
is a useful addition to the phase method as a method for the independ­
ent control of the resulting data within the framework of the same ex­
periment. 

The variant of the method for recording the temperature variations 
on the axis is more complex experimentally, but for equal conditions 
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has a greater accuracy than the variant with recording of the surface 
temperature. It is expedient in this instance to determine the temp­
erature diffusivity by the phase method alone. 

The prospects for further development of the described procedure 
are related with the possibilities of its utilization as a complex 
procedure which yields not only values of the temperaute diffusivity 
but also of the heat conductivity (or heat capacity). This can be 
accomplished if it is possible to determine the power introduced into 
the specimen. One of the possible ways for determining the power is 
to measure the electromotive force which originates in an open annular 
turn which encompasses the specimen. Another indirect method of de­
termining the power is to utilize information regarding the degree of 
blackness of the surface of the specimen. It can be utilized in prin­
ciple also under conditions when the degree of blackness is not known 
sufficiently accurately, if the surface of the specimen is processed 
in such a manner that the degree of blackness approaches unity (this 
can be done, for example, by coating the surface with a thin layer of 
graphite). 

§17. Nonstationary Variant of the Kohlrausch Method 

The procedure of measurements described in this section belongs to 
those methods which utilize volume heating of the test specimen--heat­
ing by a current that passes through the specimen. 

The scheme for accomplishing this experiment is in principle simi­
lar with that of the known Kohlrausch method (see 4). The test speci~ 
men represents a comparatively thin rod whi~ is secured between two 
massive. bodies that insure the feed of current and removal of heat. 
In the middle of the rod and in one (or two) points near the end, thermo­
couples are secured to the specimen. The lateral surface of the rod 
is heat insulated. In the usual steady-state variant, the rod is heat­
ed by direct current, the measured temperature difference makes it pos­
sible in this instance to determine the heat conductivity of the specimen 
from the formula 

. wV 
A.=---

26T ' (17.1) 

where w is the power liberated per unit volume of the specimen, L is 
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the distance between the central and peripheral thermocouples, ~Tis 
the corresponding temperature difference. 

In the nonsteady variant which is examined here, the current which 
passes through the specimen and, consequently, also the power are modu­
lated with a frequency of w and not only the constant component of the 
temperature (average temperature) is measured, but also the variable 
component (temperature variations). 

The values of the constant components of the temperature in the 
nonsteady experiment could be utilized exactly in the same manner as 
the constants of the temperature in the steady-state method; formula 
(17.1) makes it possible to obtain in this instance the magnitude of 
the heat conductivity. The variable components, their amplitude and 
phase make it possible to obtain information also on the heat capacity 
and the temperature diffusivity. The nonsteady measurements thus add 
new information and enrich significantly the possibilities of the ex­
periment. 

In accordance with the general theory of regular thermal conditions 
of the third type, which is described in §8, the dimensionless function 
F, which describes the spacial distribution of the complex amplitude of 
the temperature variations 8 

(l 7. 2) 

(see formulas (8.33), (8.34), (8.38)), satisfies the equation (8.41) 

(17. 3) 

in the boundary condition (8. 43) 

IlL X F=F
0
=- for -=l. 

00 L 

(17.4) 

(The temperature pulsation is set in the point to the distance of L 
from the middle of the rod, in particular, at the end.) 
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Solution of the equation (17.3), which is symmetric in the point 
x = 0 (middle of the rod),has the form of 

. vTx >•- - t7 x -i--
F=-i-1-C(e ·· +e '"). (1 7. 5) 

The value of the constant Cis found from the condition (17.4): 

(17. 6) 

For the temperature pulsation in the point x = 0, we get 

(17. 7) 

Let us examine at first the case when <'~~==-~ (the temperature 

pulsation on the ends of the specimens is small), which will take place 
if the relatively tense specimen is held in massive tongs. 

For the amplitude and phase of the temperature variations, we get 

l ( ( l -:c)! -+: B~ 
• A~+ B~ 

(17. 8) 

B~- .-lc (f-A c) 
tg 'F = 

Be (17. 9) 

or 

Be Ac -l 
'F = arctg --- + arctg 

8 Ac c 
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where A and B are the real and imaginary parts of 
c c 

ch lii x, 

tabulated in the monograph [6]. 

For slow variations, when K is small, A is close to 1, while 
c 

B << 1. 
c 

and 

(17.10) 

(17.11) 

The amplitude of the temperature variations can, in accordance with 
(17.10), be written in the form of 

jSI = 
wmL2 

2A. 
(17.12) 

Comparing (17.12) and (i7.1), we come to the conclusion that the 
amplitude of the slow temperature variations, with an accuracr up to 
the modulation coefficient m is equal to the steady-state difference in 
temperatures or, which is the same thing, to the difference of the con­
stant component of the temperature. 

1 e !(J)-+o- !lTm. (17.12') 

The phase of the temperature variations in this instance coincides 
with the theories of the power variations. 

Thus, the low-frequency measurements of the amplitude of the temp­
erature variations can be utilized for determining the heat conductivity. 
Formula (17.12') makes it possible in this instance to compare the 
information on the constant and variable components and thereby 
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accomplish internal control of the experiment. 

In another case, for relatively small values of K 

The amplitude of the temperature variations is unambiguously re­
lated to the heat capacity 

(17.12") 

For relatively high frequencies, the proce~s in the experiment 
under consideration takes place just as for low frequencies in the 
group of methods with surface heating. Ths reason for this can be 
understood, if one takes into account that it is precisely at high 
frequencies, as a result of the significant denting of the temperature 
waves, that the effect of the ends of the test specimen becomes rela­
tively small and the process in the middle of the specimen approaches 
the case of variable heating of an infinitely long rod, which should 
precisely be described by formula (17 .12") in view of the absence of 
temperature gradients on the test section. 

The general form of the dependence of 

on K is shown in Figures 61 and 62. In order to evaluate the errors 
in the determination of the magnitude K2 from these curves, Figure 63 
shows curves of the relative error oK 2/K 2 foro¢= 1° and for ole! = 

o .o1 lo 1. 
The following conclusions can be made from an examination of all 

the indicated curves. 

1. It is expedient to carry out the determination of temperature 
diffusivity by the phase method within the interval of the parameters 
K ranging from 1 to 3 (the optimum value is 1.5). The sensitivity of 
the method in this instance will be equal to 3-5% foro¢= 1°. The 
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magnitude of the amplitude of the temperature pulsation under these 
conditions amounts to 0.9 to 0.2 values of the temperature gradient in 
the steady-state Kohlrausch method (for modulation coefficient m equal 
to unity). · 

2. Within the interval of values of the parameter ranging from 
0 to 1, it is possible to determine the heat conductivity from formula 
(17.12), which is practically independent of the measurements of the 
temperature diffusivity. (A correction to formula (17.12) for the 
difference in the function !ei/~T from unity, does not exceed 10%.) m 

3. The determination of the heat capacity by means of formula 
lei = e0 , which is independent of the measurements of the heat conduct-

ivity, is possible for values of K > 4. (Correction for the difference 
in the magnitude /el/80 from unity does not in this instance exceed 

10%.) Values of the amplitudes of the temperature pulsations in this 
instance amount to 1/10 of ~T and less. The utilization of this method 
is thus feasible only under conditions when the volume heat liberation 
of the specimen can be made sufficiently large (thin tubes, wires at 
high temperatures). 

4. Within the intermediate region of values of the parameter K 

ranging from 1 to 4, it is possible to determine the temperature dif­
fusivity from the experimentally determined ratio jej/~T ; in this 
instance, the error in the determination of K amounts to 1-5% when 

5. In case it is desired to determine the complex of thermal 
properties from one experiment, that is, from one value of K, it is 
expedient to combine the phase method of determining the temperature 
diffusivity with the determination of the heat conductivity from the 
formula 

A. = _w~m.:...L_lt_ ( _1_9 I_). 
161 llTm (17.13) 

(The magnitude within the brackets should be found from the curve in 
Figure 62.) The optimum values of K for such a complex method lie 
within the interval of 1:1.5. 
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Figure 61. Dependence of the phase 
difference between the power and 
temperature variations on the 
parameter K. 

Figure 62. Dependence of the 
amplitude of the temperature 
variations (with respect to 
the constant component 6T or 
with respect to 80) on the 

parameter K 

Figure 63. Errors in determining the 
temperature diffusivity from data 
of the amplitude and phases of the 
temperature variations. 

The entire presentation pertains to t~e case in whicli t~e tempera~ 
ture pulsation and t~e point at a distance of L from t~e middle of the 
specimen is negligibly small. If these conditions are not observed 
completely accurately in practice, then formula (17.8) and (17.9), in 
accordance with (17.7), should be replaced by the more complex 

(17.14) 

q> = arctg !!.£.... + ardg (Ar- ll +I si:-2_~ 
Ac f cos Cf~ + Be 

(1_7 .15) 



where ~O is the phase lag for the temperature pulsation in the points 

x = ± L, f is tlie modulus of the function F0 , that is 

(17.16) 

For small values of K, when , formula 

(17.14) degenerates to the analog of (17.12): 

(17 .17) 

This relationship can be utilized directly for determining the 
heat conductivity under conditions of slow variations. 

In another maximum case, relative to the large values of K, the 
expression (17 .14) approaches the previous asymptotic formula (17 .12"), 

which is understandable because the boundary conditions with an in­
crease inK, play a decreasing role as a result of an increase in the 
damping of the temperature waves and a decrease in its related "thermal 
relationships''--the middle of the specimen with its ends. 

Within the intermediate range of values of K, the formulas (17.14) 

and (17 .15), when f « 1 , can be represented in the form of 

where 

and 

__!!l_ == v (Ac -,-1}' + B~ (1 + /)1), 

. 60 A~+~ 

. <p = arctg ~ + arctg Ac -
1 + "~· 

Ae Be ~ 

6 =/Be cos <p0 + (Ae- I) sin !fo 
1 B~+(Ae-1)2 

-Be sin <p 0 + (Ac- I) co; lfu 

~ + (Ae- 1)3 
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Corrections of o1 and a21 if they are not large can be introduced 

after K and ). have been found in their absence. The problem of 
the role of heat exchange in the experiment under consideration will 
be studied, just as earlier,on the assumption of the smallness of the 
Bi number. 

As shown in §4, for small values of Bi the heat exchange, lateral 
surface of the rod can be calculated by introducing into the uni­
dimensional equation of the heat conductivity a member with a negative 
source of heat, proportional to the temperature: 

iJIT 1 iJT w · ---.-+- -\·(T-T0 ) = 0 
· cU1 a iJI I. 

(17.22) 

(see equation (4.10)), where v= 
A.R 

For the function F, we get in this instance the equation 

(17. 23) 

F" -ix2F + x2 -BtF = 0, 
where 

Bt = a~2 . ~ = Bi ( {-r. 
(17.24) 

The form of the resulting expression for the effective criterion 
Bi* makes it possible to clarify the role of the transverse cross­
section of the test specimen, the magnitude of which did not figure in 
the problem without taking into account the heat exchange. It is seen 
that a utilization of thin specimens can lead to a serious increase in 
the role of the heat exchange. 

In particular, for emission heat exchange in the region of temp­
eratures of-1,000°K, the values of Bi* can already be of the order 
of unity for specimens of the same type as used in the 
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steady-state Kohlrausch method. The problem of taking into account the 
heat exchange in this case is just as urgent as in the steady-state 
method. However, in these conditions also it is possible to conduct 
the experiment for relatively large values(conditions for meas-
uring the heat capacity) by introducing comparatively small correct­
ions. For an analysis of this problem we shall examine the solution 
of equation (17.23), without limiting ourselves to the assumption re­
garding the smallness of Bi* in comparison with unity. This solution 
for x = 0 has the -form of 

x• ,. l ] 
F=--tl-Bi" + iK2 ch -{iK2 + Bi" ' 

(17.25) 

The amplitude of the phase of the function F are expressed by 
the formulas 

where 

V (.4 - l)t + iJ2 , . lFl=~==-i 1 +.v1 A'+~ 

m = arctg -1 + arcta _l!_- arctg _.!___ . 
T v b A A-1' 

A~ ch~.x_ V V v2 + l +vcos _;_ V 1-l v~+ 1-v, 
. f2 ., 2 

(17.26) 

'(17.27) 

B = sh ~ V V v2 + 1 + vsin _:- V V v2 + 1-v, 
. }""2 ., 2 (17.28) 

Bi* 
'V = --. 

"2 
(17. 29) 

(17. 30) 

Specific evaluations of the changes in the modules and phase of 
the function F for values of Bi * "" 1 lead in the case of x"" 0 - 1 
to values that amount to ""30%; with an increase inK, these changes, 
however, decrease comparatively rapidly, which is related with the 
circumstance that in the formulas (17.26) and (17.27) the Bi* criterion 
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figures only in the combination Bi*/~2. For relatively small values 
of the parameter v, it is expedient to expand the expressions (17.26) 
and (17.27) into a series with respect to v. In this instance, we get 
the formulas 

where 

---- '+ --_:: M Bi• {· ·.t 

F x' 2 Vi 
th v'i z 1 

I·~ h f l ;~ - :} J ' 

· A=(Ac-l)(A~-BJ--B,~A.,-T- B,), 

B = (Ac-l)(Ac + BJ ·+- B,(A~-B,)._ 

The dependence of 
161 Bi• 

and 

(17.31) 

(17. 32) 

(17. 33) 

(17. 34) 

(17. 35) 

64. It can be seen that the corrections to the amplitudes amount to a 
small fraction of the Bi* criterion. ForK > 1.2, this correction is 

< 1/10 Bi* and decreases sharply with increasing Bi*· Corrections to 
the phases do not exceed 1/10 Bi*, starting with K > 1.5, i.e. pre­
cisely in those places where phase measurements make sense. 

Figure 64. Corrections to the amplitudes 
and phases of the temperature variations 
due to lateral heat exchange. 

- 329 -



And so, the problem of the role of heat exchange in the nonsteady 
variant of the Kohlrausch method is significantly more important than 
in other previously examined methods which are based on tlie utilization 
of the regular conditions of the third type. Nevertheless, the,effect 
of the heat exchange on the conditions of the experiment for the de­
termination of the heat capacity (K > 3) is much less noticeable than 
in the steady-state experiment and in the measurements of the heat con­
ductivity and temperature diffusivity for K- 0-2. In one way or another, 
in operating within the temperature range starting with 700° K and above. 
it is desirable to achieve a decrease in the heat exchange from the 
lateral surface of the specimens by utilizing a heat insulating filler. 

For the practical realization of the nonsteady variant of the 
Kohlrausch method, it is significant that in this instance use can be 
made, without any kind of modification, of the working part of the unit 
in the ordinary steady-state Kohlrausch method. All that is required 
is the introduction of a modulating device and the addition of an 
electron measuring part with a device for recording the temperature 
variations. The complete presentation makes it possible to consider 
the development of the method under consideration as very promising. 

§18. Measurement of the Heat Capacity by the Method of Variable 
Heating with Current 

The preceding section, during the examination of the problem of 
variable heating of rods by means of a current passing there through, 
it was observed that under conditions when 

D • IDL~ -· . 
X"=-->~U, 

a 
(18.1) 

the temperature pulsation of the middle of the specimen is entirely 
determined by its heat capacity 

(18.2) 

The conditions for carrying out such experiments are most favor­
able for comparatively thin specimens (rods, wires, strips of foil) 
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because with all other conditions being equal the amplitude of the 
temperature pulsation in thin specimens is greater, the smaller the 
diameter of the specimen. Moreover, for specimens in the form of wires, 
a sufficiently large magnitude of the amplitude of the temperature pul­
sation can be obtained on frequencies that lie within the range of 
sonic frequencies, which makes it possible to utilize in the recording 
part of the unit a radial technical means for measurement. On the other 
hand, the performance of the experiment with the use of wires is ad­
vantageous in the study of critical and costly materials (for example, 
rare-earth elements). This procedure has particularly great advantages 
in the region of high temperatures when the methods of measurement, in 
particular calorimetric, require the use of a comparatively cumbersome 
and powerful equipment. However, in the case of wires, there is no need 
to use any kind of additional heating devices. The wire itself can be 
heated to a high temperature. 

We shall dwell below on some other merits of the method of vari­
able heating with current. 

A significant characteristic of the experiment with thin and long 
specimens is the existence of more or less significant sections with 
a practically constant average temperature of the specimen and a mag­
nitude of the temperature pulsation. The problem of the steady-state 
distribution of the temperature along the wires was examined in §5. 
In order to evaluate the length of the section of wire with a constant 
amplitude and phase of the temperature pulsation, we shall examine the 
asymptotic form of the solution of equation (17.22), which is valid 

for s; « 1, x3 )) 1 amlx > y; 
xs 

and x > 0: 

o : -- vi x ( 1 - ~ J 
-=-t[l-e , L}. 

Oo 
( 18. 3) 

(This solution implies a constancy of thermal coefficients along the 
wire up to the "cold quartz" end; for evaluative calculations, this 
is however, not pertinent.) For the amplitude and phases, we get from 
the solution of (18.3) the formulas 

_2-(•-~) 1t ( X) e., -181 = 2e ti . L . co~ JIZ 1 - -L . 
8., 

(18.4) 
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-~(t--=-) - ( ) q>-~ = arctge- Yi L sin~ 1- -~ . 
2 Y2 - L (1 ~- 5) 

For the values 

(18.6) 

the first formula gives 3.5%, the second< 1°. In order for such or 
smaller changes in the amplitude and phase of the temperature variations 
to take place on the length which amounts to one-half the length of the 
entire wire, the magnitude K, in accordance with the inequality (18.6), 
should be graded in 10: 

(18. 7) 

The fulfillment of the condition (18.7) insures that the existence on 
the wire of a considerable section where the temperature pulsation is 
constant. For such conditions, the summary equation of the heat bal­
ance will have the form of 

(18. 8) 

where M is the mass of the section of the specimen with a constant 
temperature, W is the total power liberated on this section, s is the 
surface. Assuming that 

(18.9) 

we get equations for t~e constant and variable components of the temp­
erature provided t~e latter is small in comparison with the former: 
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(18.10) 

and 

(18.11)" 

where 

eetwt = T-T 
(18.12) 

( ; « 1 )· (18.13) 

a'= (18.14) 

In a specific case,when the specimen is placed in the chamber 
with cold walls and vacuum, 

(18.15) 

- (. 1 dfne ) -a.' = 4aeP 1 + - · ~ 4<reT~. 
4 dinT 

(18.16) 

-- ( w )''• T-- . 
, a~ (18. 17) 

The equation (18.11) gives for the complex amplitude of the temp­
erature pulsation the formula! 

(18.18) 
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which can be written in the form of 

where 

( z 

B
., · a'l 
t =--. 

- ),; 

l=~ 
s 

R = - for specimen with a circular cross-section) 
s 

(18.19) 

(18.20) 

(18. 21) 

(18.22) 

It follows from formula (18.19) that for small values of B{'/Kt 

the correction to the amplitude of the temperature variations 1s 

determined normally by the negligibly small magnitude (B~ ' 
"'i 

while the correction to the phase is equal to 

Bi' 
~<p = -2-. x, (18. 23) 

In order to evaluate the magnitude of this ratio, the formula for 
the amplitude of the temperature pulsation is represented in the form 
of 

191 

(18. 24) 

where 
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B
. al 
£= -. (18.25) 

). 

For emission heat exchange, when T
0 

<< T 

4Bi = Bi' (18.26) 

(with an accuracy up to the small correction for the temperature func­
tion for the degree of blackness). In this instance, 

Bi' I a I - = 4--=-· xr T 
(18.27) 

Taking into consideration the inequality . 1 ~t_,'l" I 
:T '-"- ' 

, we 

come to the conclusion that 

(18.28) 

is a small correction. The same conclusions are obviously valid also 
for another type of heat exchange because Bi and Bi' have the same order 
of magnitude. 

·r~r_ 1 o-3. In the measurement method described below, T (0 com-

prises the degrees for average temperatures of~ 1,000°K and higher) .. 
The correction 6~ is thus very small and, in accordance with formula 
(18.19), the temperature variations lag behind the power variations by 
exactly Tr/2. 

The heat capacity can in this instance be determined from formula 

mW 
c P = -.-M;,;_w_l_ll_l (18.29) 
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Let us examine the basic methods of modulation whi~ are used for 
creating a variable heating. ~ere are two of these: heating with an 
alternating current and heating with a current containing alternating 
and direct components. 

Let us start with heating by an alternating current. Let the test 
object which has the resistance of R (strictly speaking, by R we should 
understand the resistance of the section with a constant temperature), 
connected in series with the resistance R1 to the source of the vari­
able voltage 

v = v_cosmt. (18. 30) 

The current strength to the specimen will in this instance be 
equal to 

I= 
v. 

(18.31) 

where 8 is the variable component of the temperature. This formula 
takes into account the periodic change in the resistance of the object 
due to the temperature pulsation. 

For the power W, whi~ is liberated in the specimen, we get 

vs(R+*~) 
( R + R1 + ';. ~) 

(18. 32) 

(just as in the preceding sections, the conversion factor here is 
omitted). Taking into account the relative smallness of the magnitude 

til.~€) , this expression can be written, with an accuracy up to 

the members of the second order, in the form of 
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where 

w = -------'-- -Y'R [t 
(R+ R!)2 

R-Rt 
R+Rt 

· · l -dR 
~=-·-

R dT 

is the temperatue coefficient of the resistance. 

Taking into account that 

. y2 
-yt' ==-~ (1 +cos 2rot), 

2 ·. 

we get further 

besides 

(18.33) 

(18.34) 

(18. 35) 

(18. 36) 

(18. 37) 

A change in the power thus takes place with a frequency equal to 
the double frequency of the change in voltage. After .the changeover to 
the complex variable, we get for the effective modulation coefficient 
the expression 

m = 1-8~ R-R, 
R+R1 .Cl8.38) 

where 8 is the complex amplitude of the temperature variations. The 
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substitution of this expression in formula (18.18) (for Bi "'0) leads 
to the conclusion that a correction for the temperature function of the 
resistance of the specimen changes only the phase of the temperature 
pulsation by the magnitude 

~"' = l e i ~ R - R L (18. 39) 
R+R1 

leaving practically unchanged its amplitude. In the worst case, when 
--

RI---o & 1 e 1 ---10°, the correction to the phase amounts to a total 

of only 3°. 

We wish to underscore the basic characteristics of the method of 
heating with alternating current: 

1) Heating takes place with a frequency equal to the double fre­
quency of the change in voltage; besides, the power varies harmonically; 

2) The modulation coefficient is constant and with an accuracy up 
to the small correction it is equal to unity. 

Let us now pass on to an examination of the case of modulation in 
the presence of a constant component of voltage when 

(18. 40) 

The current through the specimen, with consideration of the temp­
erature pulsation, is equal to 

1= (18.41) 

The power liberated on the specimen is determined by the formula 
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v:_ v:_ ) R w = (v!. + -
2

- + 2V =V _cos rot+ -
2
-. cos2w~ -(R-+-R--~-,2 " 

x(t- R-R1 ~&). 
R+R1 

(18.42) 

It is seen from this formula that, unfike heating with alternating 
current, the change in power is not strictly harmonic because the 
signal of the change in the power has a second harmonic (frequency 2w) . 
A constant component of the power is, in accordance with formula 
(18.42) equal to 

(18.43) 

The modulation coefficient for the first component is determined 
by the formula 

m= (18. 44) 

Just as in the case of heating with alternating current, the cor­
rection factor within the brackets has practically no effect on the 
amplitude of the temperature variations and gives only a small cor­
rection to the phase. The absolute values of the modulation coeffic­
ient can vary from 0 to a maximum magnitude equal to 

( ~ (when ~=- = ~} , depending on the relationship between the 

direct and alternating components of the voltage. For a maximum value 
of the modulation coefficient, heating with the direct current te com-

ponent can insure thus a n greater magnitude of the amplitude of the 
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temperature pulsation :ln comparison with heating with alternating 
current for the same frequency of modulation and an average temperature. 

Formula (18.29) for determining the heat capacity, with consider­
ation of the formulas (18.43) and (18.44), takes on the form of 

c = p (R + RJZ Jloo 1 e I 
(18.45) 

or, if V - and V = are measured directly on the specimen: 

2V_V= (18. 46) 
c =----

{1 RMoo I 8\ 

The basic characteristics of the method of heating with a direct 
current component are: 

1) Heating takes place with the same frequency as the frequency 
of the change in voltage, but the second harmonic of the power is also 
present; 

2) 

varies 

The modulation coefficient depends on the ratio V- and 
v_ 

from 0 to 12. 

A comparison of the two examined methods for modulating the heat­
ing does not make it possible to express the decisive preference for 
either one. 

The method of heating with alternating current is simpler and 
convenient as a result of the harmonic nature of the power and temp­
erature variations. In the method of heating with a direct current 
component, it was necessary to separate the second harmonic of the 
signal of the temperature change or to work with small modulation 
coefficients in ,order to make the amplitude of this harmonic relatively 
small. At the same time, this latter method has advantages when the 
recording device employs synchronous detection because the voltage 
itself, which is used for modulation, can here be used as the reference 
signal of the synchronous detector; in the method of heating with 
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alternating current, an additional frequency multiplier is required 
for this purpose. 

A second fundamental problem of the procedure of measurement is 
that of determining the magnitude of the temperature pulsation. In 
order to measure the amplitude of rapid temperature variations of 
wires (or other such objects) along with the photoelectric method 
already described in §3, it is possible to use also methods which are 
based on a change in the thermoelectron emission and the resistance of 
the specimen. Here, we combine the examination of the characteristics 
of realizing different methods for measuring the temperature pulsations 
with a description of specific experimental operations. 

Measurements of the heat capacity by the photoelectric method of 
recording the temperature variations are described in T26, 37, 35, 36, 
38, 169]. In all these references, heating with alternating current 
was employed. 

In order to determine the amplitude of the temperature pulsation 
in [26, 35, 36], use was made of the relationship 

~· 

:j i =· 
(18. 4 7) 

a y 

where Y ""and Y ""are the alternating and direct current components 

of the signal at the exit (by Y is meant the current as well as the 
voltage). The coefficient a is equal to 

(18.48) 

where v* is the· effective frequency of emission. The relationship 
(18.47) has been discussed in detail in §2 and 3. Measurements were 
carried out with a narrow spectral interval of emission (use 
was made of interference light filters) as well as with a broad inter­
val·(work was carried out without light filters). The coefficient a 
was, found from the angle of the slope of the experimental curve of 
lnY as a function of 1/T. The magnitude a was in this instance practi­
cally constant within the temperature range of the order of hundreds 
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of degrees. Photomultipliers and photoelectric cells were used to 
receive the emission. One of the systems used is shown in Figure 9. 
Such a method of measuring the magnitude of the temperature pulsation 
was subjected to a detailed check by a broad variation of the experi­
mental conditions. In particular, a study was made of the reproduci­
bility of the results obtained with different emission receivers, and 
work with light filters and without light filters, a study was made of 
the role of the operating conditions of the photomultipliers, the 
effect of noises was evaluated, etc. The object of the study in this 
work was the wolfram filament of the LM-2 manometric tube which was 
heated with an alternating current of a frequency of SO Hertz. The 
average temperatur~ of the filament was determined by a twin method-­
with an OMP-19 optical pyrometer and from the resistance of the fila­
ment itself; both methods gave results that agreed within the limits 
of ~ 1%. The resistance of the filament was measured by means of a 
potentiometric circuit with the filament being heated with direct cur­
rent. The average temperature of heating with a direct current was 
established as being equal to the sought-for average temperature of 
heating with an alternating current by selecting a direct current for 
which the signal at the exit of the recording device would be equal to 
such during measurements with alternating an current (see [26, 35]). 

As a result of the completed work, it was established that the 
method of measurements under consideration insures reproducibility of 
the values of the amplitude of the temperature variations of the order 
of degrees with an error of 0.5-1%. The maximum error consists, es­
sentially of random error and possible systematic errors due to the det­
ermination of (Y~ (0.5-2%); Y = (Q.S-4.5-7%); a(O.S-1%) and f 2 (1 + 1%): 
its sum can reach up to 4.5-7%. The difference in the values of the 
heat capacity of wolfram, obtained for the temperature range of 2,000-
3,0000K by means of the described variant of the procedure from data 
by other authors, does not exceed this magnitude [26]. 

The relative variant of the measurements of the amplitude of the 
temperature variations by the described method was employed by I. A. 
Akhmatova for determining the heat capacity of liquid tin within the 
temperature range of 900-1,700°C [38]. Tin was included in the capil­
laries made of niobium, 60-80 mm long and having an internal and outside 
diameter (in mm) as follows: 0.155 and 0.28; 0.285 and 0.485, respect­
ively. Heating was with alternating current of a frequency of 18 
Hertz. A photomultiplier served as the emission receiver; the direct 
current component was determined by means of a current instrument which 
was connected in series with the load of the photomultiplier, the alter­
nating current voltage on the load was determined by means of a cathode 
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voltmeter (such a circuit of measurements was used earlier by Lowenthal 
[37].) The specific feature of the experiment, which makes the measure­
ments relative, consisted in carrying out two measurements--with hollow 
and filled capillaries. These measurements were carried out for the 
same values of the direct current component of the current through a 
photomultiplier, that is, for equal average temperatures. Such a meth-
od measurements made it possible to exclude from the final formula the 
value of the constant a and to express the heat capacity of the emit-
ting liquid metals through the heat capacity of the material of the 
capillary walls. The error in determining the volume heat capacity was 
evaluated by the author as S-7%. (Data by I. A. Akhmatova are given in 
§21). A somewhat different method to determine the amplitude of the pulsa-
tion temperature was used in the work by Ya. A. Krafmakher and V. 0. 
Shestopal (169]. Formula (18.47) is also the basis of this method; 
however, this formula is not used directly for determining the ampli­
tude, but for a formula which contains in the right-hand part the dif­
ference of two similar expressions obtained from experiments with two 
light filters: 

(18.49) 

In the opinion of the author, such a method should give values of 
the constant A that are more steady than the values of a, because in 
determining A, the effect of the temperature function of the degree of 
blackness is almost completely excluded. (The correction to the magni­
tude A due to the temperature function of the degree of blackness is 
determined not by the magnitude (d lnE /dl/T ), as a correction to a v .. 
(see fo:mula (2,35)), but by the magnitude , in 

which the ratio of the degree of blackness for the two wave lengths 
figures as well as for the correction to the color temperature.) It 
should be observed, however, that a utilization of such a procedure of 
measurements, which is twice as complicated, would be justified if the 
magnitude a varied with the temperature so strongly that this would 
make it inconvenient to process the results and it would show up on the 
accuracy of the measurements. In practice, however, the magnitude a 
varies weakly with the temperature. Besides, the existing dependence 
of a on the temperature is explained apparently not so much by the role 
of the temperature function of the degree of blackness as by the in- . 
sufficient monochromatization of the_emission (see Evaluations in §2). 
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s pertains all the more to the case of 
acity of graphite, which were carried out 
tion because in the case of graphite, the 

measurements of the heat cap­
in the work under considera­
magnitude E varies with the 

v 
temperature more weakly than in the case of metals. 

The recording device used by Ya. A. Krafmakher and V. 0. Shestopal 
is similar with that described in the previous work. The test spyci­

were rods 0.6-0.8 mm in diameter; heating was .with an alternating 
current of a frequency of 50 hertz. The measurement encompassed the 
temperature range of 1,750 to 2,850°. A study was made of five speci­

of pure graphite. The error of the measurement was 5%. 

Another method of recalculating the readings of the recording 
system to values of the amplitude of the temperature variations was 
used by Lowenthal [37]. He used for this purpose the power formula 

from which as a first approximation 

T y_ 

I S]-~­b(T) y 

(18. 50) 

(18. 51) 

Such a form of the dependence Y(T) was selected by Lowenthal ap­
parently because of a desire to approach this dependence to the Stephen­
Boltzmann law, and having in mind the relatively broad spectral inter­
val which was used in the experiment without the light filter. 

The utilization of formula (18.51) does not have any advantages 
in comparison with formula (18.47). On the other hand, the dependence 
of b on the temperature shows up comparatively strongly. Thus, with a 
change in the temperature from 1,200 to 2,400°K, the magnitude b varies 
from 12 to 7.3. The measurement system which was used by Lowenthal, 
and as already pointed out, consisted of a multiplier, current instru­
ment, and cathode voltmeter. Measurements were made of the heat capa­
cities of wolfram, (from 1,267 to 2,410°K), molybdenum (from 1,288 to 
2,015°K), tantalum (from 1,256 to 2,300°K), and niobium(from 1,471 to 
2,260°K). 
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The prospects for further perfection of the measurement of the 
heat capacity with photoelectric recording of the temperature pulsa­
tions are related with the utilization of heating by means of a sum 
of direct and alternating currents. For such heating, we get from 
formulas (18.46) and (18.47) the equation 

2V=aY V'_ 
c =---.--

p Rl•rlwT2 Y _ 
(18.52) 

A fundamental characteristic of this formula is the fact that the • 

magnitude V -and Y - , the error in the measurement of which introduces 

one of the most significant contributions into the error of the deter­
mination of the heat capacity, enter the formula as a ratio. This makes 
it possible to exclude the systematic error in the determination of 
V - as well as of Y -, if the measurement of these magnitudes is car-

ried out by the same instrument (cathode voltmeter) so that this in­
strument would·always show"the same voltage, which is a part of 
V -andY -, which is taken off from the calibrated voltage dividers. 

As a variable arm of the voltage dividers, use can be made of the non­
reactive resistance boxes (for example, MSRB-48). Formula (18.52) will 
in this instance have the form of 

2V=Ya. 
c = -----:=--

. P· RMw'f2 

(r+r1)r2 

(r + r2) rl 
(18.53) 

where r is the resistance of the constant arms of the dividers; r 1 and 

r 2 are the resistances of the variable arms of the voltage dividers in 

the circuit V -and Y- , respectively, for which readings of the 

recording instruments are equal toe- --to the same value in all the 

measurements, selected on the edge of one of the instrument scales. 
The errors in the determination of r 1 and r 2 in such measurements will 

be determined only by the sensitivity of the instrument employed near 
the values of e- and by the stability of V ""andY- . The maximum 

error in the determination of the heat capacity in these measurements 
will amount to 2.5-4% . 
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A second method of determining the magnitude of the temperature 
pulsation, as specifically for the method of heating with an alternating 
current, is based on the utilization of the effect of the thermal 
electron emission. This method is obviously suitable under conditions 
of comparatively high temperatures when the emission current from the 
test object is sufficently great. 

In order to determine the amplitude of the temperature pulsations 
from the thermal electron emission, the test specimen should be a 
cathode of a double-electrode electron tube, that is, it should be 
placed in a vacuum of the order of 10- 5 mm mercury along (or within) 
with the second electrode--anode. In heating the cathode-specimen with 
alternating current (with the direct current component or without it), 
the anode current through the tube will have, along with the direct 
current component (average current I), also an alternating current com­
ponent I ~ which is determined by the temperature pulsation of the 

specimen. The relationship between I~ and the amplitude of the puls­

ation lei for small lel/f is obviously given by the formula 

1 
19 I= dl , 

dT 

which can be rewritten in ~he form similar to formula (18.47): 

where 

~ I_ 
101=-·-, 

a I 

dIn/ a=---
1 dr 

(18.54) 

(18. 55) 

(18. 56) 

The temperature function of the anode current described by the 
Dashman formula (see, for example, [162]) 

ttl 

I= AL-e-Tf' (18. 57) 

where e is the electron charge, u is the work function of the electron, 
A is the coefficient which does not depend on the temperature. From 
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this formula we get for a 

· · eu 
-a=-+2T. 

k (18. 58) 

Considering that eu/k for refractory metals is in order of magni­

tude equal to 5•10 4 , we come to the conclusion that a should depend 
weakly on the temperature just as the similar coefficient in the photo­
electric method of recording. Besides, in accordance with formula 
(18.58), the correction for the temperature function can be made in a 
simple manner: 

I 
dln-

P a=----2T. 
I 

d­
T 

(18.59) 

Thus, the coefficient a can be determined from the calibration ex­
periment from the angle of the slope of th~ straight line ln (l/T2) as 
a function of 1/T. 

The first work which deals with the measurements of the heat cap­
acity with recording of the temperature variations from the thermal 
electron emission was carried out in 1922 by Smith and Bigler [170]. 
In order to record the temperature variations, they utilized a loop 
oscillograph which was connected in the anode circuit of the diode, the 
test wire, which was heated by alternating current to the frequency of 
60 hertz, served as the cathode of this. Measurements were carried 
out within a narrow temperature range of 2,370-2,485°K. In 1925 simi­
lar measurements were made by Bocksteller [171]. A much wider range of 
temperatures was utilized by Zwikker [172] (2,200-2,500°K for un­
treated wolfram and 1,600-1,873°K for thoriated wolfram.) In order to 
re·cord the alternating current component, Zwikker used a more improved 
system--rectification by means of a separate diode, a measurement with 
a mirror galvanometer. 

The data obtained by Zwikker agrees with these measurements which 
were carried out by another method in observing the rates of temperature 
change of wires with a rapid change in heating. (The characteristic 
time of the process of temperature change was determined by means of a 
pendulum system. As soon as the tension on the test wire, which varies 
with the variation in the resistance with time, reached a definite mag­
nitude, a high voltage was fed from the Ruhmkorff coil to the pendulum by 

-347-



means of a relay. As a result of this, a spark discharge developed at 
the end of the pendulum, the position of this spark was determined). 
_Here, it is pertinent to mention also other work which deals with the 
measurement of the heat capacity of wires at high temperatures by means 
of the pulse variation and heating. The first of these was carried out 
in 1912 by GorbinO [173]. The rate of temperature change in the wire 
with time was determined from the integral effect--the reading of a 
ballistic galvanometer to which a voltage was fed which was proportional 
to the devi'ation of the resistance of the test wire from the equilibrium, 
steady-state voltage. The C.orbino method was utilized in 1918 by 
Worthing in order to measure the heat capacity of wolfram [174]. Along 
with this method, Worthing utilized also another method which was his 
own and in which the time-dependence rate of change in the current and 
voltage, which passed through the test wire, were determined by means 
of a pendulum system which included a recording galvanometer, after a 
definite, known time interval following change in heating. The last 
work with pulsed stepwise heating was carried out in 1964 by Taylor and 
Finch [175]. In order to record changes in current and voltage, use 
was made of a cathode two-beam oscillograph. (The utilization of step-
wise heating of samples in a form of rods is described also in [67, 90]. 
The work by Ye. S. Platunov [176] deals with the utilization of so-called 
pulsed-dynamic conditions under which the average temperature of the 
surrounding cells varies monatomically, while the heat is introduced 
into the specimen in pulses.) A more complex form of the pulse, which 
consists of two half symmetric, lines with respect to a horizontal straight 
line, was utilized in 1954 by Pokhapskiy [177]. The measurement~ which were 
of a relative nature (graduation by measurements with platinum) encompas­
sed a temperature range from 0 to 650°C. 

The results of a detailed study of the thermal electronic method 
for determining the temperature pulsations are presented in [35]. The 
circuit which was utilized for this purpose is shown in Figure 65. 

The object of the measurements was the same manometric tube LM-2 
(the same speciment as in the above-described experiments with the photo­
electric method of determining pulsations). The two grids made contact 
with the anode. For measuring the constant component of the anode cur­
rent, use was made of the M-193 milliammeter, the variable component of 
the kind was, determined from readings of a cathode voltmeter (LV-9M) 
and from the known load resistance. The form of the voltage oscilla­
tions was controlled with the aid of a cathode oscillograph. The temp­
erature was determined from the resistance of the incandescent filament 
by means of a potentiometric circuit with a constant current (potentio­
meter PPTN-1 with a mirror galvanometer M 21/4). The magnitude of the 
direct current was selected so that the constant component of the anode 
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current would be equal to such during incandescence with an alternating 
current at the selected temperature. The evacuation system consisted of 
a forevacuum pump of the VN-461 type, a diffusion pump TsVL-100, and a 
titanium pump. The program of studies included measurements with dif­
ferent loads of the tube, with a different anode voltage, for different 
vacuums, depending on the different conditions of prior incandescence 
of the specimen. The basic results are as follows: 

Figure 65. Circuit of unit 
for measuring the heat cap­
acity (thermo-electric 
method for recording temp­
erature variations). 

The determination of the coef­
ficient a by means of the relation­
ship (18.59) requires that a reading 
of the values of the currents and 
of the average temperature should 
be conducted as rapidly as possible. 
If the series of measurements is 
recorded in the course of an hour, 
the dependence of I/T2 on I/T differs 
from a rectilinear function, which 
is explained by the slow change of 
the anode current with time, which 
takes place despite the preliminary 
incandescence of the specimen for 
many hours at a much higher tempera­
ture. Experience shows, however, 
that this change is not related in 
any way with any noticeable change 
of the work functions because tQe 
values obtained for different times 
but sufficiently rapidly, are re­
produced satisfactorily, within the 
limits of 0.5-1% (it is most con­

venient to determine a directly from the two values of I and T). The 
good reproducibility (approximately 1%) is observed also as a whole for 
values of the amplitude of temperature variations, obtained under the 
most diverse experimental conditions; besides, th~ values found agree 
with the same accuracy with the values obtained by the photoelectric 
method (maximum difference 1. 6% and average difference 0. 5%). This 
circumstance is illustrated by Figure 66 (the ordinate axis shows the 
ratio of the amplitude of the temperature pulsations lei to the heating 
power W). 

As a result of the work, it can be concluded that the method which 
is based on the thermo-electron emissions assures measurements of temp­
erature pulsations with approximately the same accuracy as the photo­
electric method. A disadvantage of the method is the need to carry out 
measurements in vacuum and the above indicated instability of the current. 
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Figure 66. Comparison of the values of temp­
erature puisations, obtained by recording 

. the thermo-electron emission (solid curve) 
and by the photo-electric method (points). 

A third method for determining the amplitude of temperature pulsa­
tions--from the resistance pulsations--is accomplished in a different 
manner for heating with alternating current and for heating with direct 
components. 

Let us examine the first of these cases. In heating with a1ternatJ 
ing current, the specimen resistance pulsates with a double frequency: 

(18. 60) 

It is easy to show that such a periodic change in the resistance 
of the circuit of variable voltage (V - coswt) leads to the appearance 
of a component of alternating current of a combination, triple frequency. 
Actually, 

l-= V coswt = 
R+R1+R_ 

v_coswt 

R+ R1 

= ----- cos tilt---.---_!- sin wt -V [ 1 R·G' ] 
R+R1 2 R+R1 , 

v _R~ t e r . ') t 
1
· 

1 
-

Stn uli) = w- 3w· 
2 (R + R1) 2 

(18.61) 

Measurement of the current component of triple frequency was car­
ried out for the first time by corbino in 1911 {178]. In order to 
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observe I 3w' Corbino used an oscillographic device in which scanning 

along one of the axis was carried out with a current of basic frequency 
and along the other axis--by the difference of the currents (I- - I ) 

w 
(For this purpose, use was made of a coil with two windings). The rela­
tive magnitude of the current of tripled frequency was evaluated from 
the dimensions of the Lissajou figure. 

Another method of separating the current component of triple fre­
quency is to measure the voltage on the diagonal of the bridge circuit, 
in one of the arms of which the test specimen is connected, under con­
ditions such that the circuit is balanced on the basic frequency. On 
the basis of (18.61), it is easy to show that the voltage of the triple 
frequency on the diagonals of the bridge in. this case (with an accuracy 
up to a small correction proportional to I e j 2s2 ) will be equal to 

(18.62) 

where R1 is tQe resistance of the adjoining arm. 

Such a circuit for measurements was utilized in [179, 124, 180], 
in which the measurements of the temperature pulsations of a strip of 
foil placed in a liquid served as a means for determining the thermal 
activity of the liquid (see Figure 67). In order to separate the volt­
age of triple frequency, the signal from the diagonal of the bridge of 
variable current 1 (rheochord bridge R-38)was fed to the selective 
amplifier 2 assembled in accordance with the'system with T-shaped 
RC-filters in a circuit of negative feedback. In order to control the 
absence of voltage of basic frequency at the output of the amplifier, 
the cathode oscillograph 3 was connected, the frequency of scanning of 
wQich was selected equal to the frequency of 3w. In the presence of 
voltage of frequency w, the screen shows three shifted curves, one with 
respect to the other, WQich merge.into one single curve with complete 
equilibration of the bridge at the frequency of w. 

In order to compensate the reactive component of the resistance, 
which deyelops as a result of the appearance in the current of basic 
frequency of a component that is shifted in phase with respect to the 
feed voltage (under conditions when the foil is placed in a liquid), 
a magazine of capacities 4 was introduced into the bridge circuit. The 
measurements of the voltage v

3
w reduce themselves to the selection of 

the magnitude of resistance 5 (the magazine of nonreactive resistances 
of the type MSRB-48)--one of the arms of the voltage divider taken from 
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the diagonal of the bridge--for which the signal at the output of the 
amplifier was equal to a previously selected magnitude, at the edge of 
the scale of the cathode voltmeter c of the LV-9-M type). Such a method 
of measuring the voltage decreased the errors related with the reading 
of the voltmeter scale and the errors which could be caused by the non­
linearity of the amplifier characteristics. In order to see the bridge, 
use was made of a sonic generator of the 3G-2A type (the working freq­
uencies were within the range.of 20 to 200Hz) or a voltage of SO Hz 
from a network. The generator 7 was utilized for calibrating the amp­
lifier. The adjustmen.t of this generator for a frequency of 3w was 
controlled by the oscillograph 8 (from daily Lissage figures). (Instead 
of a generator, one can use a frequency multiplier which insures the 
development of a third harmonic.) 

7 

0 
.3 

Figure 67. Circuit of unit for measuring 
resistance pulsations of a wire heated 
with alternating current. 

The amplitude of the alternating voltage of frequency w on the 
sample was measured also not directly but from the ratio of the arms of 
the voltage divider 9, similar to the divider 5. The voltage indicator 
was the cathode voltmeter 10 (the functions of the oscillographs 3 and 
8 and of the voltmeters 6 and 10 could of course be combined). The 
scribe system insured measurement of temperature pulsations on the order 
of tenths of a degree with a random error of - 1%. 

A similar method of determining temperature pulsations was utilized 
by Holland [181] in measurements of the heat capacity of titanium. As 
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a bridge circuit, Holland used a Thompson double bridge. The signal 
from the diagonal of the bridge, after amplification, flowed to a syn­
chronous detector. As a support signal for the synchronous detector, 
use was made of the signal from the frequency tripler, the input of 
which was connected to the source of the alternating current that fed 
the bridge circuit (frequency 8.6 and 14.95 Hz). The sample had a dia­
meter of 0.25 mm and a length of 40 mm. The measurements encompass the 
temperature range from 600° to 1,345°K. The error in the results varied 
from 3-7% . 

Another, somewhat more complex method for determining temperature 
pulsations from the temperature function of the resistance when heating 
with alternating current was used by Gerlich,Abeles,and Miller. [182] 
for measuring the heat capacity of semiconductors. In this method, a 
low frequency (1 Hz) voltage for variable heating and a voltage of car­
rying frequency of 300Hz were fed simultaneously to the test specimens. 
The temperature pulsation of the specimens resulted in the appearance 
of a low-frequency two-Hertz modulation of the signal of the carrying 
frequency, while the component of the signal of. 1 Hz was compensated at 
the input. The modulated voltage was amplified and detected with the 
aid of a phase detector and was fed to the·vertical plates of the cathode 
oscillograph. The voltage of the heating current of 1 Hz was fed to the 
horizontal plates of the oscillograph. The Lissajou figures on the os­
cillograph were photographed. By means of the described method, the 
authors measured the heat capacity of germanium, silicon and two of 
their alloys within the temperature range of 300-1,000°K. The repro­
ducibility of the results in this work was approximately 2% and the 
systematic errors ranged from 3-5%. 

Later, we shall present the method of determining temperature pul­
sations from the resistance under conditions of heating with a direct 
current component. The idea of this modification of the method of 
measurement, which belongs to Ya. A. Kraftmakher [183] is based on the 
fact of a shift in phases, which is close to n/2 between the modulating 
voltage and the temperature and thus between the voltage and the pulsa­
tion of the resistance, this shift in phases, which exists also between 
the voltage and the additional component of the alternating current, 
caused by the pulsation of the temperature, is equivalent to the apparent 
reactive component of the resistance of the specimen, which has a capa­
citance nature. This reactive component, which depends on the heat 
capacity of the specimen, can be measured from the electrical capacitance 
with which it is necessary to shunt the adjoining arm of the bridge in 
order to balance the bridge on the basic frequency. 
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In order to derive the relationship between the equivalent electri­
cal capacitance C and the heat capacity c , we present formula (18.41) 

p 
for current through the specimen in the form of 

~+~~ ~~ 
f= =fuJ+f~w+~-----

Rl + R- R~ I 0 i ieiwt ll = 
R1 + R- R · v_ i 11 i i~ 

(18. 63) 

(In this instance, it was assumed that I R_j /R « 1.) The last member 
of this formula gives the expression for current of frequency w. For 
impedance of the entire circuit we get from this 

Z = R 1 + R - R v.:, ! o i iP. 
l?..,. ' t'· (18.64) 

This impedance can be represented as a sum of the active resistance 
R1 and the impedance ZR, formed by the active resistance R and its 

parallel capacitance resistance iwC: 

(18.65) 

For the equivalent capacitance, we get from this the formula 

(18.66) 

or, if V= is measured directly on the specimen, 

2V!,p c----- (18. 67) 
fJ>IMcpR" 

Formula (18.67) makes it possible to determine the heat capacity 
from the magnitude of the measured equivalent capacitance C. 

In the unit developed by Ya. A. Kraftmakher [183], use was made of 
specimens in the form of a wire 0.03-0.05 mm in diameter and 30-60 mm 
long; the frequency of the modulation was equal to 120 Hz. The signal 
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from the output of the bridge circuit, after amplification was fed to 
the synchronous detector. The sensitivity amounted to 0.1% for an amp­
litude of temperature pulsations of -1°. The reproducibility of the 
results reached 1%. An evaluation of the maximum error was not made. 
The heat capacity of wolfram [184], molybdenum [185], tantalum [186], 
and niobium [187] was measured. 

In comparing the presented modifications of the experiments, which 
are based on determining the temperature pulsations from the temperature 
function of the resistance, we wish to emphasize the following points. 

The advantages of the Ya. A. Kraftmakher method are the simple, 
compensatory nature of the measurement and the circumstance that, in 
order to determine the heat capacity by this method, alternating voltages 
are not required. A disadvantage of the method is the comparatively 
strong, quadratic decrease in the measured capacitance with rising fre­
quency, which hinders the utilization of this method for relatively 
large frequencies (for the desirability of studies on high-frequencies, 
see the next section). The method which was used by Gerlich, Abeles 
and Miller, is distinguished by the fact that it is possible to use it 
for measurements with small frequencies which are required when working 
with comparatively massive specimens, that is, under conditions when 
others of the methods examined here are not suitable. As regards the 
first of the described methods, which is based on the separation of the 
signal of triple frequencies when heating with alternating current, it 
is not infe.rior to the Ya. A. Kraftmakher method with respect to its 
sensitivity, but it can give a somewhat greater error because of the need 
of measuring the alternating voltages. In order to work with relative­
ly large frequencies, this method should, however, be more suitable than 
the other two. 

The above.described methods for determining temperature pulsation, 
which are based on the temperature function of emission, thermal elec­
tron emission, and resistance, can be carried out in one more modifi­
cation, the idea of which is, for all the methods that utilize heating 
with a totality of direct and alternating currents. 

Let us examine the circuit in which the signal Y _ , which is taken 
from the outlet of the recording circuit, is fed to the block that con­
tains the wide-band amplifier with a constant amplification .coefficient 
k and a phase filter which shifts the signal phase by rr/2. The signal 
from the exit of this block flows to the circuit for heating the speci­
men in succession with a source of direct current voltage, that is, it 
plays the role of the magnitude V _ 
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Such a circuit, which contains the circuit of positive feedback, 
will represent an auto-oscillating system, the frequency of the oscil­
lations of which can be found from formula (18.46) and the relationships: 

V .... =kY .... 

and 

Y av= · -=-raJ ar · 

In this instance, we get the expression 

2kV!_ 
.Ctl = ----,----RM alnV_ 

. Cp iJT 

(18. 68) 

(18. 69) 

(18.70) 

This formula can be utilized for determining the heat capacity from 
the magnitude of the constant component of the voltage, frequency, and 
amplification coefficient. The advantages of such a method are related 
with the absence of the need for measuring the values of the variable 
voltages. If the magnitude k is stable and the frequency range under 
consideration, the determination of c by means of this formula will 

p 
give comparatively small error. 

Let us summarize finally the results of all the methods for deter­
mining the temperature pulsations. With respect to the sensitivity, all 
the basic methods of measurement are approximately equivalent, they 
ensure a reproducibility of results with an accuracy of 0.5 to 2% for 
an amplitude of temperature pulsations from several tenths of a degree 
to degrees. All three methods in one or another form need calibration 
measurements: in the photoelectric method it is necessary to determine 
the effective length of the wave; in the thermal electron method, it is 
necessary to determine the work function of the electrons; in the re­
sistance method, it is necessary to determine the temperature coeffic­
ient of the resistance. Each of these magnitudes can be found approxi­
mately with the same accuracy. The differences amount essentially to 
the convenience in determining these magnitudes. The effective wave­
length and the temperature coefficient of the resistance are determined 
alike simply. However, measurements of the second magnitude is pre­
ferred because this very magnitude is of fundamental interest, being 
an important characteristic of the metal. On the other hand, in mono­
chromatization of the emission in the photoelectric method, it is 
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possible in general to avoid calibration measurements, whereas in the 
method which is based on temperature function of the resistance, 
measurement of the coefficient S is always desirable (it is not recom­
mended to utilize tabular values). As regards the thermal electron 
method, as already pointed out, the calibration measurement in this 
case are less convenient. There is a difference also in the minimum 
average temperatures allowable for the study. The method based on the 
resistance makes it possible to study a broader temperature range, then• 
follows the photo-electric method and, finally, the thermal electron 
method. 

As regards the convenience of conducting measurements and the sim­
plicity of the experimental units, the ther~al electron method is in 
this respect, indeed, the simplest method (if one does not take into 
account the need for utilizing deep vacuum), while the remaining two 
methods are approximately alike. An additional advantage of the photo­
electric method is that in the convenience of combining it with measure­
ments of the heat conductivity by the wire method with the utilization 
of a differential optical pyrometer (see §5). In this case, the same 
recording circuit insures measurement of both thermal parameters .[ 188]. 

It follows from all that has been presented above that it is hardly 
expedient to give a universal recommendation for the selection of a 
method for determining pulsations and the examined method for measuring 
the heat capacity; the problem can be solved under different conditions 
in a different way. At the same time, it can be emphasized that all 
the diverse methods for accomplishing such experiments possess advant­
ages that are common for all of them: the working part of the instrument 
(specimen plus vacuum chamber) is simple to the maximum degree; the 
experiment is carried out rapidly; a temperature range up to the very 
melting point of the most refractory materials is assessible; the 
measurement circuit, which is based on the utilization of radio tech­
nical devices' ensures a convenient and reliable recording of the nec­
essary parameter; the accuracy of.the measurements is comparable with 
the accuracy of the best calorimetric experiments. 
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Chapter IV 

Heat Capacity of Metals 

§19. Basic Correlation in the Behavior of the Heat Capacity of Solid 
Metals at High Temperatures 

We shall briefly present the basic physical considerations which 
pertain to the problem under consideration. 

It is known that a basic theoretical correlation in the temperature 
range above the Debye point is the Dulong and Petit law in accordance 
with which the heat capacity for a constant volume of solid mono-atomic 
bodies, referred to as gram-atom should be equal to the constant magni­
tude of 3 R"' 6 cal/deg (see, for example, [189]). Experimental studies 
show, however, that such a simple correlation takes place only for com­
paratively low temperatures and in addition not completely accurately. 
Deviations from the Dulong and Petit law increase rather rapidly with 
rising temperature, reaching in a number of cases tens of percent. In 
order to become convinced of this, it is sufficient to examine one of 
the curves shown in §20. 

The most elementary reason for the devi.ation of the experimental 
data from their magnitude predicted by the DeLong and Petit law is the 
difference in the measured values of C from the heat capacity at the 

p 
constant volume of C . 

v 
For the difference C - C , we get from thermo p v . 

dynamics the general formula 

C -C = t~Ta2 
p • U ~ I (19. 1) 

where a is the coefficient of the volume expansion,. 8 is the isothermal 
compressibility, vis the atomic volume. Specific calculations by 
means of this formula are difficult because of the absence of experi­
mental data for the magnitudes of S at high temperatures. Nevertheless, 
if it is taken into consideration that the magnitude S varies with the 
temperature usually comparatively weak, evaluative calculations be­
come quite real. Such calculations have been conducted in particular 
by Lowenthal [37] on the basis of the assumption that a ratio v/S re­
mains constant and equal to such at 300°K. The results of the calcu­
lations lead to the conclusion that the difference of C from C is 

p v 
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relatively small at low temperatures, increases comparatively rapidly 
with rising temperature, and reaches magnitudes which amount only to a 
noticeable, although far from basic, part of the difference C - 3R. 

p 
Thus, for example, for wolfram C - C /C at 300°K is equal to 0.01, 

p v p 
at 1,500°K, it is equal to - 0.05, while above 2,200°K -0.1. 

Another method for the approximate calculation 
C - C has been proposed by B. N. Oshcherin [190]. 
p v 

Y = C /C he gave the formula 
p v 

aT 
y =I+-·-, 

a_ 

of the difference 
For the magnitude 

(19. 2) 

where a is the relative packing density of the atoms; a= 0.74 for a 
cubic phase centered lattice; 0.68 for a body centered lattice; and 0.34 
for a lattice of the type of diamond. Calculations in accordance with 
this formula lead apparently to better agreement with the calculations 
in accordance with a strict thermodynamic formula (19.1) than the cal­
culations in accordance with the Nernst an~ Lindemann empirical re­
lationship 

C _r = ar.Z.T 
P ~a r_P ' 

(19.3) 

(a is the constant), which was utilized in most references ([174, 191, 
192]). 

- c 
v 

The formula by B. N. Oshcherin gives a weaker dependence of C 
p 

on the temperature in comparison with the formula (19.1) for the 

ratio v/B which was independent of the temperature. In accordance with 
this, the magnitude C - C /C at high temperatures is, in accordance 

p v p 
with the evaluations by B. N. Oshcherin, somewhat smaller than in ac­
cordance with the evaluations by Lowenthal. Thus, for the same wolfram 
at a temperature of 2,300°K, B. N. Oshcherin gives C - C /C ~ 0.065. 

p v p 

Thus, the difference between the heat capacity at a constant pres­
sure and constant volume is one of the factors which determine the 
deviations of the experimental values of the heat capacity from the Du­
long and Petit's law at high temperatures, in particular near the melting 
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point, The contribution of this factor explains, however, only a small 
share of these deviations, 

A second possible reason for the deviations from the Dulong and 
Petit law at high temperatures is the role of the anharmonicity of the 
vibrations of the atoms in the lattice. The physical cause of the in­
fluence of this effect consists of a violation of the classical law of 
the uniform distribution of energy by degrees of freedom when the thermal 
vibrations of the atoms are not harmonic, that is, when the potential 
energy of the system contains not only quadratic members of the magni­
tude of the displacements of the atoms from the equilibrium positions, 
but also members of the third and higher powers. An analytic examina­
tion of this problem [194] leads to the conclusion that a magnitude of 
the anharmonic contribution to the heat capacity depends simultaneously 
on two anharmonic parameters: the coefficient for the third and fourth 
powers of decomposition of the potential energy with respect to the re­
displacement of the atoms; besides, the first of these gives a positive 
contribution and the second a negative. Such a complex nature of this 
function makes any kind of accurate calculations of the anharmonicity 
difficult, 

Evaluations of the magnitude of the anharmonic coefficients, ob­
tained by using experimental data with respect to the coefficient of 
expansion and the temperature function of the module of elasticity, 
give only approximate values for the summary contribution of the an­
harmonic members in view of the small accuracy of the original data. 
Nevertheless, the results of such evaluations for sdium [194] and iron 
[195] give grounds for assuming that the role of anharmonicity is not 
negligibly small and should be taken into consideration, TI1is, however, 
does not mean that one can use the anharmonici ty to account for all 
deviations from the Dulong and Petit law, as this was done, for example. 
by Holland f181]. 

A third possible cause for the violation of the Dulong and Petit 
law is the role of the electron heat capacity, It is known that, as a 
result of the degeneration of the electron gas and metals, the magnitude 
of the electron heat capacity amounts usually to a very small share of 
the total heat capacity, It is possible to detect the existence of 
electron heat capacity only in the range of very low temperatures due 
to the fact that electron heat capacity varies with the temperature 
linearly: 

C = yT electron (19. 4) 
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whereas the heat capacity of the lattice at low temperatures depends 
on the temperature at T3: 

cl . att1ce (19.5) 

The electron heat capacity at low temperatures becomes noticeable 
on a background of low heat capacity of the lattice . 

The region of high temperatures is the second region where the role 
of the electron heat capacity can be noticeable as the result of the 
constancy of the lattice heat capacity (in a harmonic approximation) all 
the more so since, in accordance with formula (19.4), the electron heat 
capacity for large T becomes greater. 

A quantitative study of the problem of the magnitude of the electron 
heat capacity at high temperatures is of great interest because it makes 
it possible to expand substantially the information which is obtained 
from low temperature studies. Work in this direction is all the more 
desirable since a knowledge of the coefficient of electron heat capacity 
y, in accordance with the zonal theory, makes it possible to obtain in­
formation on the fundamentally important physical magnitude--density of 
electron state near the Fermi surface N(EF) [196]. 

We wish to point out that the term Fermi surface is used to desig­
nate a surface in the k-space, the space with wave numbers of electrons, 
which are characterized by this fact that the energy of the electrons 
at this surface is equal to the Fermi level EF, determined as the upper 

boundary of the energy of the electrons at absolute zero: 

f,/1' 

rt= J N(E)d£. (19.6) 

The 'Fe:rmi level 1for a degenerated gas does not practically differ 
from the Fermi :energy--chemical potential of electrons, which figures 
in the Fermi-Dirak distribution law: 

f= (19. 7) 
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For a degenerate electron gas in a metal, the function f differs 
little from the stepwise function 

f = I for E < EF. 

/=0 for E>Ep. 

(19. 8) 

(19. 9) 

The values of the function f, which differ from 1 and 0, lie with­
in a narrow range of values of E near EF. The width of this interval 

has an order of magnitude of kT; besides EF >> kT (it is precisely this 

condition that is the criterion of degeneracy of the electron gas). It 
is pertinent that only the electrons which are in this narrow layer near 
the Fermi surface have practically a finite probability of condition from 
one state into the other, that is, it is precisely these and only these 
that respond to an external effect, they are active electrons while the 
remaining electrons are "frozen". It is precisely this circwnstance 
that determines this primary role which the Fermi surface.pl~ys in the 
electron theory of metals. 

In the case when the Fermi surface differ comparatively little 
from a spherical surface N(EF) makes it possible to determine the so-

called effective mass of the electron m*--the magnitude which character­
izes directly the dynamics of the electrons in the external field. If 
the ratio of m* to the natural mass of the electron is in this case 
close to unity, the behavior of the electron differs little from such 
for a model of free electrons--the most simple model which does not take 
into account the direct interaction of the electrons with the ionic 
lattice. Considerable differences between the ratio of m*/m from unity 
indicates the strong influence of the ionic shell on the inertia pro­
perties of the electrons [197]. 

The problem of a possible explanation of the deviations from the 
Delong and Petit law by means of the role of the electron heat conduct­
ivity was discussed by Lowenthal {37] and Kohlhaas~ Braun and Otmar 
{193]. Lowenthal obtained for the coefficient of electron heat capacity 
of molybdenum and wolfram at high temperatures values which were quite 
close to those found from low-temperature measurements; for niobium and 
tantalum, the high-temperature coefficients are however, 3-4 times smal­
ler. Kohlhaas, Braun and Otmar obtained for the coefficient of elec­
tron heat capacity of titanium, vanadium and chromium, values which in 
order of magnitude agree with the theoretical calculations. 
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The conclusion which can so far be made from these references is 
that the electron heat capacity introduces without a doubt a potential 
contribution into the heat capacity of metals at high temperatures. 
As regards the problem of the possibility of making conclusions of a 
quantitative . nature, it is necessary so far to show care in this case, 
considering the existence of errors caused by the inaccuracy of the 
calculation of the difference C - C and by the indeterminancy of the 

p v • 
correction for the anharmonicity. All the effects that have been ex­
amined up to now. explain only a relatively weak cause of the depend­
ence of the heat capacity on the temperature, it is close to line·ar. 
Not one of these is in a position to explain the steep rise of the heat 
capacity, which was observed in the range of temperatures above approxi­
mately 0.8 T lto 0 This latter effect is ascribed by most authors to me Ing 
the role of the vacancies (Shottki effects)--unoccupied points of the 
lattice--which form in crystals near the melting point. The transition 
from one temperature to another is related with the change in the equi­
librium concentration of the vacancies; formation of new vacancies with 
rising temperatures requires the expenditure of energy, as a result of 
which the heat capacity increases. In accordance with this, the add­
itional heat capacity should be equal to 

c 0 vacancies 
(19 .10) 

where E is the energy of formation of the vacancies, n is the equilib­
rium concentration of the vacancies. For the magnitude n, the statis­
tical theory gives 

from this, 

c . ::: 
vacancies 

E 

n = Ae :.r (19.11) 

(19. 12) 

The magnitude C 0 should increase steeply with rise in temp-vacancies 
erature. 

A comparison of the formula (19.12) with ·the results of the experi­
ment (with a magnitude of the excess of heat capacity at high temperat­
ures over the linear function at low temperatures) makes it possible in 
principle to determine the energy of the formation of vacancies as well 
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as their equilibrium concentration. Evaluations of such a type have been 
performed in [184-187, 198]. For the energy of activation in this case, 
values have been obtained which amount to approximately 1/3 of the heat 
of vaporization, which is in agreement with the considerations of a theo­
retical nature. Reasonable values (from fractions of a percent to sev­
eral percent) are obtained in this case also for maximum concentration 
of the vacancies (at the melting point). On the other hand, in accord­
ance with the evaluations by Taylor and Finch [175], the magnitude of 
the energy of the vacancies, found from the measurements of the heat 
capacity, is considerably greater than that calculated theoretically, 
which leads these authors to conclude that there are other facts that 
are responsible for the high-temperature rise in the heat capacity. 
Rasor and McClelland [67], come to approximately the same conclusions. 
It is necessary to mention also the work by V. N. Kostrukova and P. G. 
Strelkov [199] who established a defect of the anamolous increase in 
heat capacity near the melting point of mercury can be caused by the 
introduction of a small amount (fractions of a percent) of impurities. 

In considering the. problem of the role of vacancies, one should 
apparently pay attention to the following situation. 

Formula (19.12) was obtained on the assumption that a transition 
from one temperature to the other is accomplished so slowly that equi­
librium concentration to vacancies has time to become established fully. 
At the same time, in measurements which were carried out by the method 
of intermi ttant heating with current, the changes in temperature take 
place comparatively rapidly; the change cycle takes place in fractions 
of a second. In this instance, the natural question is whether the 
equilibrium concentration of the vacancies can take place under such 
conditions. It is known that with sufficiently fast cooling of the 
body it is possible to "quench" vacancies, that is, to preserve in the 
body an excess number of vacancies in comparison with the equilibrium 
condition. The problem of the role of the relaxation time of vacancies 
in heat capacity measurements has to this day not been discussed. 

For quantitative evaluations of the relaxation time of the equi­
librium concentration of the vacancies, we site the following consider­
ations. 

The space-time distribution of the concentration of the vacancies 
in the body of the test object should be described in the diffusion equa­
tion 

ilrz - D z n -- v , at 
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while the coefficient of diffusion D is equal to 

I l'JI 
D=--.-

6 l: • 

(19.14) 

where 6 is the width of the potential barrier, approximately equal to 
the dimension of the atom of the metal; T is the average well time of 
a vacancy in one position (see [200]) . 

For a formulation of the boundary condition, we shall examine the 
flow of the vacancies on the boundary of the body. A change in the 
number of vacancies in the surface layer due to the "swallowing" of the 
"holes" by the surface and a decrease in the number of formed vacancies 
as the result of the emergence of the vacancies on the surface. 

The first of these causes makes a contribution to the flow of the 
vacancies, which does not depend on the concentration (because this 
concentration is very small). The second cause results in a flow that 
is greater the larger the concentration of the vacancies. The summary 
flow of the vacancies at the surface is, thus, ·equal to 

j = A-Bn. 

In the equilibrium condition, when there is no directed flow of 
vacancies at the surface, 

A= Bn.·. 

where n* is the equilibrium concentration. 

Thus, 
j = B(r.·- n). 

By utili.zing Fick's first law, we get for the boundary condition 

where a/av is the derivative with respect to the normal. 

The magnitude of the coefficient B can, on the other hand, be 
expressed by the average speed of movement of the vacancies 
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As a result, we get 

lt. iJn. ( • 
u ·av = n-n ). (19.15) 

The problem of the space-time distribution of vacancies, determined 
by the diffusion equation (19.13) and the boundary conditions (19.15), 
is fully analogous to the problem of the leveling of the temperature 
with the boundary condition of the third type. 

The role of the Biot number in this case is played by the ratio 
L/6, where L is the characteristic dimension of the body. The equivalent 
Biot number is thus very large, as a result of which we have on the 
surface of the body 

(19 .16) 

This conditions is equivalent to the isothermal conditions in the 
corresponding heat problems. Physically, the equality (19.16) is the 
result of the fact that a diffusion process of the vacancies in the 
volume is much slower than the establishment of the equilibrium concent­
ration on the surface. The utilization of ready solutions for the es­
tablishment of the temperature under isothermal conditions on the sur­
face (see [6]) gives for the characteristic times the expressions 

for a sample in the form of a plate and 

R' 
'C'R=~-

. 2,4D 

for a sample in the form of a cylinder. 

(19.17) 

(19 .18) 

It is necessary to turn attention to the fact that solutions of 
the problem are obtained not in the form of simple exponential relation­
ships and that the relaxation time is more or less determined clearly 
only for the regular stage of the process; the nature of the leveling 
of the nonequilibrium concentrations of the vacancies depends in the 
general case on the initial conditions. 
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The substitution of expression (19.14) for the Goefficient of 
diffusion of the vacancies in the formulas (19.17) and (19.18) gives 

(19.19) 

and 

T:R = - -- T:. ( 
R )2 6 
1' 2,4 (19.20) 

then we shall take into account that 

where E is the energy of activation of the jump of the vacancies (the 
energy of activation of self-diffusion), close in order of magnitude to 
the energy of the formation of the vacancies, while 'o is the time which 

is characteristic of the vibrational movement of the atom in the crystal: 

'o - lo- 13 sec. As a formula for evaluating the order of magnitude of 

the time required to establish the equilibrium concentration of the 
vacancies, we get the expression 

(19. 21) 

Specific evaluations by means of this formula lead to the con­
clusion that at temperatures close to the melting point the magnitude 
'L becomes less than -I0-2 sec. only when L is less than 10-4 em. For 

greater distances between the sources (runoffs) of the vacancies, the 
yalues of the relaxation time will be greater, which should show up on 
the experiments that are conducted by the method of intermittent heat­
ing of wires. It follows from this that either under real conditions 

L - 10- 4 em (which can take place if the sources--runoffs of the vac­
ancies are dislocations) or that the results of the experiment con­
ducted at high rates of heating are distorted by the role of the 
kinetics of the formation of the vacancy. In order to solve this 
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problem, it is very desirable to conduct experiments by the method of 
intermittent heating within a wide range of frequencies. For periods 
of temperature change, which are comparable with the relaxation time, 
the excess heat capacity due to the vacancies should be less than for 
slow vibrations; this effect should increase with rising temperatures. 
The systematic performance of such status is one of urgent problems. 

Summarizing the results of the examination of the problem regard­
ing the behavior of the heat capacity of metals at high temperatures, 
we emphasize that a detailed experimental study of the correlations 
that exists here is important and gratifying work which makes it pos­
sible to obtain information on magnitudes which are interesting from a 
physical point of view--electron heat capacity, concentration in energy 
of the formation of lattice defects. For more effe'cti ve performance of 
this work, it seems desirable to conduct a complex of studies of the 
heat capacity, thermal expansion, and ultra-acoustic characteristics 
which would make it possible to review clearly the behavior of the heat 
capacity at a constant volume and thereby facilitate a quantitative 
study of the electron heat capacity and of the contribution made by the 
defec~. 1 . -r-- _ 1 jj __ I r- ,r ) )-~ 

( J I ,r" ~ 4- ' --o:..;, ...._, _.,...-~ .· .I ·';- (/l.., ~ / 
, I i t<'. . .' _,_, .• , ./l. . r / 
~ I -~ 

§20. Results of the Measurements of the Heat ~-<i!P.c?.~HY of Refractory 
Metals at High Temperature~ 

~The content of this section deals with the systematization, com­
parison, and analysis of literature data on the measurements of the 
heat capacity of refractory metals.] We shall limit ourselves here es­
sentially to an examination of m~s of the fifth and sixth groups of 
the periodic system. It is precisely for these metals (tantalum, 
niobium, wolfram, molybdenum) that studies are available which encompass 
a wide range of temperatures including the highest temperatures; besides, 
not only absolute temperatures but also those reduced to T/6 0 b . e ye 
~dies have been performed recently with the utilization of the most 

diverse experimental methods, including also methods of intermittent 
heating, which are examined in this monograph. A comparative analysis 
had resulted in measurements of refractory metals and is for this reason, 
of interest from a methodical point of view. On the other hand, the 
metals under consideration crystallized in the same lattice--cubic body 
centers--and they do not have polymorphic transformations over the 
entire interval of state. This circumstance makes the refractory metals 
convenient objects for studying the behavior of the heat capacity within 
a wide range of temperature:Jand, in particular, at the highest existing 
ratios of T/ 6 Debye · -/ f . 39 1 
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One of the basic results of the examination should be tables (curves) 
of the values of the heat capacity which could be recommended as the 
most reliable at this time. The performance of such work involves a 
serious difficulty which develops almost always when a comparison is 
made of the data by different authors. The fact of the matter is that 
the divergencies among the data by different authors, as a rule, ex-
ceeds considerably the author's evaluations of the experimental accuracy, 
so that it turns out to be very difficult to judge the degree of re­
liability of the results. The situation is made more complex also by 
the fact that in many cases the authors describe the experimental con­
ditions in a skimpy manner so that it is far from always possible to 
reveal the possible sources of the errors. This makes unavoidable the 
introduction into the work of definite elements of subjectivism, which 
always accompany the utilization of intuition. 

The simplest way of comparing the results is by averaging in which 
the weight factors are determined in accordance with the evaluations 
of the measurement errors. Such a method is however far from ideal 
because the results, which differ considerably from the remaining due 
to the systematic errors not considered by the authors, can cause a 
considerable deviation of the average values from those that are most 
probable. A more consistent way in this respect is that utilized by 
us earlier in compiling tables of the heat conductivity of liquids I201]. 
This way, which is used when data are available for a number of sub­
stances from many authors and the results of the study by individual 
authors encompass a broad circle of substances, consist of the follow­
ing. 

For each of the well-studied substances, there are at first average 
values of zero approximation, obtained by simple averaging of all the 
available data. Then, for the data of each of the authors, we find the 
magnitud~ of deviations from these average values. In a predominant 
number of cases, these deviations have a nonsystematic nature. The 
magnitudes, which is the reciprocal of the average square of these de­
viations is utilized then as a weignt factor in finding the average 
values of the first approximation. Then, the entire procedure is re­
peated. After this, the refined values of the squares of the deviations 
of the data by individual authors, which objectively characterize the 
errors of the corresponding experiments, utilize for finding the average 
values of the second, last approximation. The degree of reliability of 
the resulting data is characterized by the magnitude ~ which is deter­
mined by the formula 
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(20.1) 

where 6? are the quadratic deviations of the data by two different 
1 

authors. The utilization of such a procedure for finding the most re­
liable values of the t~ermal Characteristics of metals at high tempera­
tures is difficult to a considerable degree because of the small amount 
of experimental data and the need of conducting the averaging within a 
wide range of temperatures, considering the possible dependence of the 
error of the results on the measurements on the the temperature. Never­
theless, we will strive to approach to a maximum degree such a system 
in order to acquire the possibility of revealing least subjectively the 
most probable data. 

c ca 1 _ 
11 gram·atom·de 

2500 T"l'. 

Figure 68. Literature data on the 
heat capacity of molybdenum; 1, 
Eger and Venster I202]; 2, Richert, 
Bennett and Johnston !37]; 3, 
Rasor and McClelland !66]; 4, 
Taylor and Finch Il75J; 5, Kirillin, 
Sheyndl in and Chekhovskoy !203, 
204]; 6, Lazareva, Kantor and 
Kandyba [205]; 7, Lowenthal I37]; 
8, Kraftmakher Il85J; 9, Yurchak 
and Filippov (see Figure 69). 

Below is given a comparison of specific experimental data and a 
presentation of the averaging procedure. The fitted literature data 
for the refractory metals of molybdenum, wolfram, tantalum, niobium at 
high temperatures are shown in Figures 68, 70, 71 and 72. (This col­
lection includes only the results pertaining to a comparatively broad 
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range of high temperatures). Data for molybdenum have been supple­
mented by the results of measurements, obtained by the method of inter­
mittent electronic heating [167] (for a description of the method, see 
§14). These results are shown in particular in Figure 69. The speci­
men contained 99.9% molybdenum, 0.01% nickel, 0.01% sesquioxides, 0.001% 
silicon monoxide. 

C cal/gm·atom•degree 
p 

6 !:=:--l--..L-c-::-:=----
S!JO :cc:; iJ!)(T 

Figure 69. Results of measure­
ment of the heat capacity of 
molybdenum, obtained by the 
method of intermittent elec­
tronic heating (see §14). 

For my comparison of the cited 
literature data, the following 
conclusions can be made. In the 
range of temperature up to- 2,000°K, 
where there is still no steep rise 
in the heat capacity, the diverge­
encies between the data of differ­
ent authors are relatively small; 
deviations from the average values, 
as a rule, do not exceed 5%. At 
higher temperatures, these devia­
tions incr~ase considerably. 

rhe existence of comparatively 
numerous experimental data for re­
fractory meta-ls makes i.t possible 
not only to determine the most 
probable average values, but also 
to reveal the experiment, the re-
sults of which are closest to those. 
most probable values for the entire 

totality of the substances, and to give to these a quantitative char-· 
acteristic--th€~ average quadratic deviation. This characteristic can 
then be utilized for finding the refined average values obtained by the 
averaging procedure in which the data by different authors are utilized 
with different weight factors, as was already stated about this above. 

Let us examine specific results of such evaluations and of the 
averaging. The group of early calorimetric experiments, the results of 
which have been published by Jaeger and Veenstra[202] and Jaeger and 
Rosenbohm (206], belong to the best. The average quadratic deviations 
of these data from the most probable (average) curves amount for wolfram, 
molybdenum, and niobium to 0.8%. In finding the average weighted values 
the magnitude 1.5 ~ (1/0.8) 2 was taken as the weight for these studies . 
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Figure 70. Literature data for the heat capacity of wolfram: 1, 
Worthing {174]; 2, Zwikker 1172]; 3, Jaeger and Rosenbohm I206]; 
4, Hoch and Johns ton 1207]; 5, Ki r[ llin, Shenydlin ,- Chekhovskoy I2D8]; 
6, Lowenthal £37]; Kraftmakher {184]. 

In good agreement with the average values are the latter calori­
metric experiments which encompass a wide range of temperatures--the 
work by V. A. Kirillin, A. Ye.Shenydlin, V. Ya. Chekhovskoy and I. A. 
Zhukova Il98. 203, 204, 208, 241]. The average quadratic deviations for 
these data amount in the case of molybdenum to 2.4%, wolfram 1.4%. 
(Here and henceforth, in examining the deviations from the average val­
ues, only the range of temperatures up to 2,000-2,400°K where there is 
a sufficient number of data by various authors, is taken into consider­
ation.) As a weight of the results of these experiments, the magnitude 

? 

0,25::::::: :! . ,12 ~ 1 ,t: was taken. In finding the average weighted values 

at temperatures where the heat capacity depends more steeply on the 
temperature, a somewhat smaller weight should be ascribed to these 
measurements just as to all other calorimetric data because of the in­
accuracies which arise in determining the heat capacity on the basis of 
data for the enthalpy when the changes in the enthalpy are small but take 
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place over a relatively small range of temperatures. (Thus, according 
to the data from [198], a change in the enthalpy due to the formation 
of vacancies amol.lllts to a total of 6%.) Considering this, we henceforth 
ascribed a weight to the high-temperature calorimetric data, which was 
equal to half of the weight at temperatures below 2,000°K. Approximately 
the same agreement with the average values takes place for the results 
of the calorimetric study by L. S. Lazareva, P. B. Kantor and V. V. 
Kandyba [205]. The deviation of their data from the average values 
amounts to 1.8%, which does not exceed the author's evaluation of the 
accuracy (5%); the weight up to a temperature of 2,000° was taken equal 
to 0.3, and above that--0.15. 

cal c 
~ gram•atom•degree 

10

11~----~-----1 ~-J 

g r---- ,-----~ 

-- "-·----1 I 

8 r---- ~=-=------=L- ______ j ,-
ZOOO 2-'0v' j](£/ 
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Figure 71. Literature data on trre heat capacity of tantalum; l, Jaeger 
and Veenstra{202]; 2, Taylor and finch {l75J; 3, Rasor and McClelland 
[66]: 4. Hoch and Johnston [207]: 5. Lowenthal [37J; 6, Kraftmakher 
[ l 86] . 

The results of the calorimetric measurements of the heat capacity 
of niobium, obtained by P. V. Gol'd ·and F. G. Kusenko [209], close to 
the data obtained by V. A. Kirillin, A. Ye. Sheyndlin, V. Ya. Chekhovskoy 
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and I. Ya. Zhukova (198] and Jaeger and Veenstra(202]. 
the accepted weight was 0.1 (with consideration of the 
due to the correction for the content of impurities in 
study by these authors.). 

cal 

For these data, 
additional error 
the sample under 

1000 1500 2000 ZSOQ. T"K. 

Figure 72. Literature data on the heat capacity of niobium: 1, Jaeger 
and Veenstra[202]; 2, Gol 'd and Kusenko I209]; 3, Lowenthal I37]; 
4, Kraftmakher [187]; 5, Kiri11in, Sheynd1in, Chekhovskoy and Zhukova 
[198]. 
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The situation was different with respect to the groups of calorimetric 
experiments by Hoch and Johnston {207] and Reichert, Bennett, and John­
ston (the results of the latter work are taken from {37]). These data 
differ most strongly from the average values; besides, the deviation in­
creases with rising temperature. For wolfram, the average quadratic 
deviation amounts to 4.5%, for molybdenum it is 4.2%, for tantalum it 
is 1.4%. The average weight of these data is 0.08. 

A contradictory picture is obtained for data by Lowenthal [37] 
which had been obtained by the method of intermittent heating with a 
current with .registration of the temperature variations by means of a 
photoelectric method (see §18). For wolfram and tantalum, the data by 
Lowenthal are in good agreement with the av~rage values (the quadratic 
deviation is 0.7%), for molybdenum however the average quadratic dev­
iation amounts to 5.9%, which is twice as great as the evaluation of 
the maximum error by the author. In an analysis of the evaluations of 
the error of the author, the very small magnitude of the error in deter­
mining the magnitude of the ratio of the anode current at the axis of 
the photomultiplier i to the voltage of the alternating-current com-

a 
ponent ~Vis, in accordance with Lowenthal, equal to 0.7%. This magni­
tude includes apparently only the random but not the systematic error. 

Assuming that oi /i - 1% and ~V/V- 1.5%, we get for the maximum error 
a a 

a magnitude of 3 to 5%. We took a weight of 0.05 for the Lowenthal 
data. 

The results of the series of studies by Ya. A. Kraftmakher [183-
187], which have been obtained by the method of intermittent heating with 
a current with the registration of the temperature pulsations with re­
spect to the resistance"' the method of compensating the reactive com­
ponents, see §8) for molybdenum, wolfram, and tantalum, in compara­
tively good agreement with the average values (the quadratic deviations 
amount to 1.9, 1.0 and 1.5%). For niobium, however, the data by Ya. A. 
Kraftmakher are 8-10% below those for the remaining. The source of 
error in the data by Ya. A. Kraftmakher could cause inaccuracies in the values 
of the ~emperature coefficient of the resistance, which the author did 
not measure directly but took from literature data. Apparently it is 
precisely this that is used to explain the indicated difference in the 
data for niobium. Evaluations of the maximum errors of the experiments 
in the work by Ya. A. Kraftmakher are lacking; there is only information 
on the reproducibil·ity of the results (- 1%, for wolfram above 3,300°K 
it is 4%). If it is taken into consideration that for wolfram, molyb-
denum, and tantalum the temperature coefficient of the resistance is 
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known apparently with an accuracy of 1-2%, then values of 2-3% should 
be taken as the errors of the results for these metals (with exception 
of the highest temperatures). (The weight factors are 0.25-0.1). 

The results of the work by Taylor'and Finch [175], performed by the 
method of pulse heating of a wire specimen with a current, are in good 
agreement with the average values. The average quadratic deviation for 
molybdenum and tantalum is equal to 0.9%. The author gives for the error 
of the average values 4% up to 2,400°K and 7% at higher temperatures. 
One can completely agree with these evaluations of the author because 
the work contained a study of the reproducibility of the results for 
different specimens, while for the temperature coefficient of there­
sistance, their own results were utilized. The weight factors for the 
data by Taylor and Finch lie thus within the limits of 0.05-0.02. 

The results of early experiments in which wires were heated are in 
comparatively good agreement with the average values also. Thus, the 
data by Worthing [174] for wolfram (see §18) have an average quadratic 
deviation of 1.2%. Considering, however, that the scatter of points 
for the work by the author is comparatively large (6%), a magnitude of 
0.1 was taken for the weight factor in this work. 

Data by Zwikker [172], obtained by two methods (pulse heating and 
heating with alternating current with registration of the temperature 
variations with respect to thermal ele~tron emission, see §18), differ 
from the average values by 2.2%. The weight factor of the Zwikker 
data is equal to 0.2. 

The results of measurements of the heat capacity for molybdenum by 
R. P. Yurchak and L. P. Filippov (Figure 69) differ from the average 
values by 3.5%, which lies within the limits of the maximum error of 
the results of the measurement (4%), see §14. The weight factor is 
0.05. 

The results of the work by Rasor and McClelland [67]( method of 
monatomic heating of a rod and wire) differ from the average values for 
molybdenum by 4.4%, for tantalum by 2.0%. The scatter of points with 
respect to the average curves by these authors is comparatively large; 
the deviations frequently reach 10%. For this reason a value of 0.03 
was taken as the weight factor for these data. 

The curves of the temperature function for the most probable values 
of the heat capacity of refractory metals, which have been obtained by 
the above-described method, are shown in Figure 73, 74, 75 and 76. On 
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each of these curves, the region of the probable error is indicated. 
In Figure 73, a fine dotted curve, which has been obtained as a first 
approximation, with simple averaging, has been drawn for molybdenum. 
It can be seen that the refinement introduced by adding the differences 
in the weights during averaging is small; hence, it follows that the 
elements of randomness which take place in the evaluation of the weight 
factors affect relatively little the final results. In the case of 
wolfram, tantalum and niobium curves have also been drawn for the heat 
capacity at a constant volume C ; these have been obtained by utiliz-v 
ing the magnitudes C /C from the already mentioned work by B. N. 

p v 
Oshcherin [190]. 
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Figure 73. Heat capacity for molybdenum. The most ~robable values. 
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Figure 74. Heat capacity of wolfram. The most probable values. 
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Figure 75. Heat capaclty of tantalum. The most probable values. 
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Figure 76. Heat capadty of niobium. The most probable values. 

From an examination of the inside of curves the following conclu­
sions can be made. In all cases up to temperatures of - 1,500-2,000° 
(i.e., approximately up to 0.5 melting point) the heat capacity varies 
with the temperature in a practically linear manner. 

The magnitude of the angle of the slope (dC /dT) (cal/gm•atom•deg-
P . 

ree 2 ) decreases in the following sequence: molybdenum 1.39•10- 3 

niobium 1.15·10- 3 , wolfram 0.88·10-3 , and tantalum 0.75·10- 3. Similar 
derivatives for the heat capacity at a constant volume dC /dT are equal 

v 
to the following: for niobilim 0.82·10-3, for wolfram 0.65-10-3, and for 
tantalum 0.43.10-3. These magnitudes for niobium and tantalum are 
several times less than the values of the coefficient of electron heat 
capacity y, found from low-temperature data [210]; for wolfram on the 
other hand the magnitude y is approximately half as large as dC /dT. 

v 
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As regards the values of the heat capacity in the temperature range 
above 2,000°, the values here, whiCh have been given as the most prob­
able, depend much more on the selection of the weight factors of averag­
ing because the data by different authors in this range of temperatures 
differ strongly. The utilization of these values for quantitative 
evaluations of the concentration and the energy of the formation of de­
fects is indeed premature. Here, further systematic studies are neces­
sary. 

In conclusion, we shall make an attempt at an empirical generaliz­
ation of the results of measurements of the heat capacity of refracto:ry 
metals. For this purpose, we shall examine the dependence of the atomic 
heat capacity on the dimensionless variable T/T 

1 
. , where T 

1 
. me t1ng me t1ng 

is the melting point in Kelvin degrees. The utilization of the dimen­
sionless variable for the temperature makes it possible, from point of 
view of the theory of similitude, to exclude from the function under 
consideration one of the implicitly appearing molecular constants which 
characterize the individuality of the substance. In this case, one can 
expect the appearance of functions which are related to a smaller degree 
with the individuality of the separate substances, whiCh are approxi­
mately valid for a relatively wide group of metals. In this instance, 
it is necessary to take into consideration that the magnitude of the 
atomic heat capacity is, from the point of view of the theo~ of simili­
tude also dimensionless (with an accuracy up to the dimension of the 
constant of the gas constant or completely dimensionless, if the temp­
erature is expressed in energy units). For this reason, there is no 
need of introducing any other dimensional factor in order to obtain 
dimensionless relationships. 

The curves of the function 

' T ] C =C 1-.-
P P \ T' 
. · melting 

(20.2) 

are shown in Figure 77. 

In plotting the curves, use was made of the above-found values of 
the heat capacity of molybdenum, wolfram, tantalum and niobium, sup­
plemented by data for other representatives of the same groups of 
metals--chromium, vanadium--the results for which are taken from the 
work by Kohlhaas et alia [193]. Besides that, the same curve shows 
data for metals of the eighth group--osmium and iridium--the heat capa­
city of which has been measured by Jaeger and Rosenbohm [206], and the 
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metal from the seventh group--rhenium--(data by Taylor and Finch [175]). 
All the examined metals have a cubic body centered (V, Nb, Ta, Cr, Mo, 
W), cubic face centered (Ir), or hexagonal densely packed (Os, Re) 
structures. 

c cal 
p gram·atom·deg. 

g 
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v 

0 
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Figure 77. Dependence of the heat capaclty Cp' cal/gm atom degree on 

the dimensionless temperature T/T 1 t' . me tng • 

From the figure it can be concluded thqt within the interval of 
values of -T/T lt· ranging from 0.1 to 0.5 the corresponding curves me ~ng 
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for all the examined metals are rather close. A maximum deviation of 
individual values from the average straight line is 

C - 5 69 --'-.. 3 1 __!_ p- ) I , ... 3 , , 
r. me 1 t i ng (20. 3) 

only in one case (chromium) exceeds 2.5%. The accuracy with which the 
relationship (20.3) is valid is only a little less than the accuracy of 
the corresponding experimental data. 

At temperatures in the range of T /T 
1 

. , the deviations from 
me t1.ng 

the average curve (it is shown by a solid line in Figure 77) increased 
to 5%; at higher temperatures, the differences become even greater; 
however, they are not much more than those which take place between the 
data of different authors for the same substance. It is interesting 
that even in those cases when the very nature of the temperature func­
tion of the heat capacity is different (positive curvature), as this 
was found by Jaege~ and Rosenbohm for paladium and rhodium I206], the 
values of C in the function T/T lt" do not all the same, differ very p me 1.ng · 
strongly from the average values in the totality under examination. 

Thus, we come to the conclusion that the relationship of the vari­
ables C and T/T lt" leads to a function which gives a good correla-p me 1.ng · 
tion for a group of refractory metals. The formula (20.3) can be rec­
ommended for practical use. 

We wish to point out that the function of the type (20.3) can be 
established also for the group of metals with relatively low melting 
points. Thus, L. I. Ivanova [211] has shown that the data for the heat 
capacity of monoatomic substances (predominantly metals) is satisfactor­
ily described by the single formula 

cp = 5,283 + 1 ,987 _r_ 
· Tlst ph.ilse 

(20.4) 

where T lst pllase is the temperature of the first phase transition (melt­

ing distillation or conversion). The average deviation of the individual 
values from this formula amounts to 2.5%. This same formula is valid 
also for a wide class of compounds, if the right-hand part of the formula 
(20.4) is multiplied by the number of atoms of the substance .. 
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§21. Heat Capacity of Liquid Metals 

The problem of the liquid state of matter is one of the most serious 
problems in molecular physics. The nature of liquid has at the present 
time been studied much less than the nature of solids and gases. The 
reason for this is the complex, dual nature of the structure of liquids 
and of the thermal motion of molecules therein. On one hand, liquids 
have much in common with gases: the molecules of the liquid are mobile 
(the liquid has fluidity), there is a continuous series of states of 
matter from that of an ideal gas to a liquid near the crystallization 
point. On the other hand, the liquid at relatively low temperatures 
has also characteristic features of a solid body: the liquid has a struc­
ture which indicates to a definite degree the structure of the correspond­
ing phase. This structure is however, different from the structure of 
the crystal lattice and extends over a distance of only several molecular 
radii; it describes the statistical ordering of the nearest environment 
of the molecule under consideration, the so-called "close order," which 
differs from the "distant order" in the crystal lattice (ordered distri­
bution of molecules in an ideal lattice is. not limited in space). There 
are also other features which relate the liquid at temperatures close 
to the crystallization point with a s~lid body: the relative smallness 
of the latent heat of melting, the small change in density, closeness 
of the heat capacity [200]. · 

A theoretical study of the liquid state of matter involves a number 
of very serious difficulties. Despite the considerable number of studies 
(see, for example, the monographs [212, 213]), the theory of liqui~s is 
still far from the possibility of giving a satisfactory quantitative 
description of even the basic thermodynamic properties. In connection 
with this, broad experimental studies of the properties of liquids are 
an absolutely necessary element in studying.the nature of the liquid 
state. 

Studies of the properties of liquid metals are of special interest. 
Liquid metals belong to the simplest mono-atomic liquids and from this 
point of view, a study of the structure and properties is particularly 
desirabie. On the other hand, liquid metals have their specificity-­
the existence of an electron gas which shows up in particular on the 
existence of electrical conductivity and electron heat conductivity. 
A study of the electron properties of liquid metals is all the more im­
portant, because there are still very little clarity in understanding 
the specificity of these phenomena. At the same time, liquid metals 
are finding greater use in the new technology, particularly in atomic 
power engineering, which makes an exhaustive study of the properties 
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and in particular of the heat capacity and heat conductivity, an absolute 
must. 

In studying the heat capacity of liquid metals, the following two 
problems are, in the first place of interest: 1) change in the heat 
capacity during melting; 2) temperature function of the heat capacity 
of liquid metals. Information on the change in heat capacity of metals 
during melting can be found in [214-218, 199]. 

The basic correlation which takes place here is as follows: the 
change in heat capacity is small, amounting to several percent (thus 
for 10 it is ~C /C -3% [217]; for lithium, it is 3.5% 1216]; for 

p p 
sodium, it is 1. 5% [215]; for lead it is 6 ± 1% [214]; for mercury it 
is close to zero [199], [218]). The smallness of the change in the heat 
capacity during melting is regarded usually as one of the arguments in 
favor of the closeness of the nature of the liquid and solid phases 
near the melting point. 

However, one should not assume that the problem of the jump in tlie 
heat capacity during melting is exhausted by the existing studies. The 
fact of the matter is that for a sure quantitative analysis of this mag­
nitude, it is necessary to have very detailed and thorough measurements 
of the heat capacity in the solid phase in view of the complex nonlinear 
nature of the change in heat capacity near the melting point, which is 
determined by the formation of lattice defects (see ·§ 19 and 20). This 
change, although it is comparatively large (tens of percents), takes 
place within a relatively narrow range of temperatures and can be re­
vealed sufficiently clearly in measurements of a calorimetric nature 
because the very change in enthalpy in this case is small, amounting 
only to several percent. Systematic experimental studies in this 
direction are very desirable. During their accomplishment, it is ex­
pedient to pay attention to the problem of the behavior of the heat 
capacity at the constant vollime, the magnitude of which.reflects in a 
more direct manner the changes in the spectrum of the collective vibra­
tions of the atoms of corresponding media. 

The problem of the temperature function of the heat capacity of 
liquid metals also cannot be considered at present sufficiently studied. 
A number of experimental studies performed within a wide range of temp­
eratures is very small. 'The results to which different authors come 
are contradictory to considerable degree. In a number of papers, a 
decrease in heat capacity with rising temperature has been found, while 
in others--increases ;in some studies the heat capacity is almost constant 
while in others--the function is nonmonotonic. 
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Below we give a comparison and analysis of the results of experi­
mental studies. 

The values of the heat capacity of alkali metals--lithium, sodium, 
and potassium--are shown in Figures 78, 79, and 80. 
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Figure 78. Heat capacity of liquid lithium: 1, Nikol 1 skiy et al [60]; 
2, Douglas et al [217]; 3, Redmond and Lons (see [217]); 4, Bates and 
Smith (see [217]). 
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Figure 79. Heat capacity of 1 iquid sodium: 1, Ntko1 1 skty et al I60]; 
2 , G i n n i ng s e t a 1 I 2 I 5 ] . 

It is seen from these figures that for sodium the results of two 
fundamental studies by Ginnings, Douglas and Ball [215) and N .. A. 
Nikol 1 skiy, N. A. Kalakutskaya, I. M. Pcheikina, T. V. Klassen and V. A . 
Vel 1 tishcheva [60] (see also [220]) are close to each other; the data 
for lithium are to a certain degree contradictory; for potassium, there 
is observed good agreement between two existing experiments (60] and 
[219]. 
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Figure 80. Heat capacity of liquid potassium: I, Nikol tskiy et al I60]; 
2, [219]. 

Yu. P. Os'minin [221] made attempts to generalize the experimental 
data on the heat capacity of alkali metals; he utilized for this purpose 
the relationship of the variables C /C and T/T , as well as the 

P Pmp mp 
variables C /C 

p Pmp 
and T/Tk' where Tk is the critical temperature. U.P. 

Os 'minin showed that in these variables, the experimental data for 
sodium and potassium fits satisfactorily on single curves and on the 
basis of this he attempted to evaluate the temperature function of tlie 
heat capacity of rubidium and cesium. Although the conclusions made on 
the basis of the comparison of the behavior of the properties of only 
two substances seemed doubtful, the utilization of the simplex T/T as mp 
a dimensionless variable, as we have already seen where the example of 
the heat capacity of solid metals, can lead to practically useful re­
lationships. In connection with this, it is pertinent to recall the 
references (222, 223 and 224] in which the variables T/T was success-. mp 
fully utili zed to describe the viscosity and the heat conductivity of 
liquid metals. As regards the variable C /C , it is our view that 

p Pmp 
the introduction of such a simplex is not necessary because the magni­
tude C is by itself dimensionless (which has been pointed out in the p . 
preceding section). The practical usefulness of the relationships 
written for the variable C /C is not great because by means of these 

P Pmp . 
it is possible to evaluate only the temperature function of the heat 
capacity and not the heat capacity itself. 

The curves of the function 

-386-

• 



• 

• 

' 

f T ' c = f -.-' 
p 1'- ·) 

mp 
(21.1) 

for liquid alkali metals are shown on Figure 81 (for lithium, only the 
data by Douglas et aZia have been used; for sodium and potassium, the 
values are the average ones of those shown in Figures 79 and 80). It 
is seen from the figure that the curves for sodium and potassium in 
these variables are in agreement with each other exactly as if the ratio 
C /C had been taken as the dependent variable. The curves for lith-
p Pmp . 

ium lie somewhat below, but even for lithium the maximum deviation from 
the average (dotted) curve does not exceed 3% . 

C , ca 1 .Br------.-----.------,-----~----~~-----, 

p gram·atom•degree 

K 

,f z 

Figure 81. Heat capacity of liquid metals C cal/gm·atom·degree as 
p 

a function of the variable T/T mp 

The succeeding Figures 84 and 85 show the values and heat capacity 
of tin and lead which have been studied most in this respect (for the 
remaining metals only single data are available as a rule). 

Figures 82 and 83 separately show the primary results of measure­
ments of the heat capacity of tin and lead, obtained by means of the 
method of measurement of a complex of heat properties, described in 
§14 (the high temperature points of these data differ from earlier 
published data [227] by 1.5 for tin and 2.8% for lead.because corrections 
were made for emission.) This figure shows in different ways the re­
sults obtained for different heating periods, which makes it possible 
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to judge the reproducibility of these measurements. The maximum devia­
tion of the results of individual measurements from the smoothing straight 
lines for tin does not exceed 1.5% and for lead 3%. 
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Figure 82. Results of measurements of the heat capacity of liquid tin, 
obtained by means of the method described in §14. t; , period 6.6 sec; 
0 ,period 13.2 sec; o, 26.4 seconds. 
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Figure 83. Results of measurements of the heat capacity of liauid 
lead, obtained by means of the method described in § 14. 0 , period 
13.2 sec; 0, 26.4 sec. 

From an examination of Figures 84 and 85 one is ast~nis~ed by the 
serious contradiction of the results obtained by different authors. The 
differences in the values of the heat capacity reach up to 10 and even 
more percent, without mentioning even the different temperature cores. 
The greatest deviations from the available totality are shown by the 
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by the data of I. A. Akhmatova f38J and the temperature range of 1,100-
1,2000K. From an examination of the primary, non-smoothed results of 
the measurements by I. A. Akhmatova, it is seen that a curve in the 
temperature range below 1,600°K has been drawn only from three experi~ 
mental points. Apparently the data by I. A. Akhmatova should be con­
sidered as sufficiently reliable only at temperatures above 1,600°K 
where there are comparatively many measurements, besides it is neces­
sary to take into account that the error in the method of measurements 
utilized by I. A. Akhmatova (see §18) increases with decreasing temp­
erature. 

c ' p 

cal 
gram• atom· 

• degree 

Figure 84. Literatire data on the heat capacity cif liqutd tfn: 1, 
Klinkhardt {216]; 2, Nikol 1skiy et al {60]; 3, Orr et ali:'a 1225]; 4, 
Akhmatova [38]; 5, Figure 82. 
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Figure 85. Literature data on the heat capacity of liquid lead: I, 
Klinkhardt [216]; 2, Nikol 1skiy et alia [60]; 3, Dixon and Rodebush 
[226]; 4, Douglas and Dever {214]; 5, Figure 83. 
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It is impossible to give preference to any one of these or to 
select a group of most reliable values; the scatter of the results is 
too great. It is interesting, however, to see how the curve of the 
most probable function C (T/T ) which has been found from the results 

p ~ 

of measurements of the heat capacity of alkali metals (see Figure 81), 
fits in among the cited data. Such curves are shown in Figures 84 and 
85 as dotted curves. It can be asserted that the corresponding functions 
are far from contradictory with respect to the experimental data. The 
difference from the data by different authors is not greater than the 
difference between these very data. This gives grounds for assuming 
that a single function C (T/T ) encompasses a comparatively wide group 

. p mp 
of liquid metals. For more definite evaluations of the correlations 
which govern the heat capacity of liquid metals, further experimental 
studies are necessary. 
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Chapter V 

HEAJofONDUCTIVITY OF METALS 

Heat Conduct.!_~_ of Solid Metals at High Temperatures 

A distinctive characteristic of the heat conductivity of metals, 
as is known, is the existence of electron conductivity of heat, which, 
as a rule, exceeds considerably the heat ·Conductivity of the lattice 
and makes the heat conductivity of metals one to two orders greater 
than the heat conductivity of dielectrics. 

In accordance with the existence of two mechanisms of heat transfer 
in metals, the observed heat conductivity of the metals can be repre­
sented as the sum of two members ) 

A = X + Al . electron att1ce 

) 

·\electron and lattice heat conductivity. I The summation of these members, 
however, does not mean that the mechantslms of electron and lattice heat 
conductivity are additive and do not affect each other. In the general 
case, the process of heat transfer by the lattice of the metal is not 
identical to the process which would take place in a similar lattice of 
a dielectric; the existence of "electron gas" can affect the nature of 
heat transfer by the vibrations of the lattice. 

The basic fundamental correlation which pertains to the electron 
heat conductivity of metals at high temperatures is the Widemann-Franz 
law which establishes the relationship between the magnitudes of the 
electrqn heat conductivity and the electrical conductivity of metals ~= 

A /crT = electron L = ~2 (-:-r (22. 2) 

where k is the Boltzmann constant, e is the electron charge. The numeri­
cal values of the constant L, the so-called Lorentz number, is equal to 

2.445•10- 8 wt·ohm/deg2 . The Widemann-Franz law is derived in the elec­
tron theory of metals with a minimum number of initial assumptions and 
is a law which is valid for all metals at temperatures above the Debye 
temperature. 

1-
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The existence of the Widemann-Franz law does not yet solve com­
pletely the problem of the heat conductivity of metals even if it is 
assumed that a magnitude of electrical conductivity is known accurately. 
The Widemann-Franz law gives information only about one of .the components 
of the heat conductivity. The problem of the relationship between the 
electron and lattice heat conductivity requires a separate knowledge of 
the magnitude of the lattice component. The process of heat transfer 
by the lattice is usually described by means of the concept of quasi­
particles--quanta of elastic vibrations of the lattice, which are called 
phonons. For high temperatures, however, the introduction of this con­
cept is not mandatory; it is possible to utilize also the "classical" 
terminology--to speak about the propagation and scattering of elastic 
waves in the continuum. 

A theoretical examination of the problem of the magnitude of the 
lattice heat conductivity, based on simple considerations of the model 
type, leads to a formula which is similar to the corresponding formula 
of the molecular-kinetic theory of gases: 

AI . att1ce = (22.3) 

where v is the average speed of propagation of the phonons (elastic 
waves), lis the average length of their run. 

The main difficulty in calculating the heat conductivity of the 
lattice (just as the heat conductivity of dielectric) is in the magni­
tude of the average length of the free run. Several processes take place 
which limit this magnitude: scattering of the phonons on phonons 
(interaction of lattice vibrations, which is determined by the anharmonic 
effects), scattering of phonons on lattice defects (on point defects: 
atoms of impurities, vacancies, Frankel defects; on linear defects-­
dislocations, and planar defects--boundaries of crystal and grains or 
boundaries of a monocrystal) and a scattering of phonons on electrons. 
A theoretical examination of all these processes involves many compli­
cations. A theory gives usually only ~uantjtative results--the order 
of magnitude of the corresponding effect, its dependence on the temp­
erature. The case of high temperatures examined here is one of the 
most simple. At high temperatures, only one effect of scattering of 
phonons on phonons is pertinent; besides, the theory leads to a simple 
expression for the dependence on the temperature 

. l 
L---­T . 
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The dependence t - 1/T leads also to similar temperature dependence 
of the lattice heat conductivity because the.magnitude of c at high 

temperature is constant while p and v vary with the tempera~ure slightly 

Al . att1ce 
-:::::,..!:_. 

T" (22.4) 

The relationship (22.4) for solid dielectric is called sometimes 
the Eucken law. 

The existence of formula (22.4), even if it is regarded as absolvtely 
correct, is far from solving the problem·of lattice heat conductivity 
because one still needs to know the value of the constant C, the thea~ 
retical calculation of which does not lead to satisfactory quantitative 
data. An experimental study is necessary. 

A somewhat different approach to the examination of the problem 
of lattice heat conductivity, even though it is related to the ideas of 
Debye, is given by A. S. Predvoditelev [228]. The starting point in the 
theory by A. S. Predvoditelev is the principle of the conformance be­
tween the acoustic vibrations which describe the heat movement in the 
body and the temperature waves in this medium (the length of the temp­
erature wave is equal to the average length of the wave of transverse 
or longitudinal acoustic vibrations). The theory leads to the formula 

A = lattice (22. 5) 

where E is Young's modulus, d is the average distance between the atoms. 
This formula is similar with (22.3) and is derived therefrom if it is 
assumed that the average length of the free run of elastic vibrations 
is proportional to the distance between the atoms. The temperature 
dependence A 

1 
tt. should, in accordance with formula (22. 5) , possess a 1ce · 

a weaker character than (22.4). 

Let us now return to the Widemann-Franz law. For the dependence 
of the electrical conductivity of metals on the temperature within the 
range of high temperatures, the theory predicts a relationship close 
to linear 
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(22.6) 

In this instance, it follows from the Widemann-Franz law that the 
electron heat conductivity should be a constant magnitude. If it is 
taken into account that the lattice heat conductivity could exist with 
rising temperature, the summary heat conductivity should decrease weakly 
with rising temperature, approaching the constant value equal to the 
electron heat conductivity. 

The conclusion regarding the constancy of the electron heat con­
ductivity the high temperature can be made also directly without ref­
erence to the Widemann-Franz law, if the electron heat conductivity is 
written in a form similar to (22.3), 

;i ::: 1/ 3C nv . l 
electron electron electron electron (22.7) 

by utilizing the concept of the average length of the run of electrons 
in the metals l 1 t . Let us assume that because of the statistical 

e ec ron 
degeneracy of the electron gas in the metal 

C ::: yT 
electron 

(22. 8) 

the average thermal speed of the electrons v 1 t does not depend on e ec ron 
the temperature and that the volume concentration of electrons is also 
constant. As regards the magnitude l 1 t , it depends on the temp­e ec ron 
erature similar to (22.4): 

l 1 
~-· 

(22.9) 
electron T 

It follows directly from formulas (22.7), (22.8) and (22.9) that 
>.. 1 t - const. e ec ron 

The results of an experimental study of the heat conductivity in­
dicates that as a rule the heat conductivity of metals at high temperatures 
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is actually a weakly decreasing function of the temperature (Figures 
104 and 106). At the same time, there are cases when the experiments 
lead to other results. Thus, for iron there is a comparatively strong 
decrease in the heat conductivity with rising temperature. For the 
heat conductivity of tantalum and niobium, a positive temperature co­
efficient has been obtained (see below). These examples indicate that 
the existing theory of the heat conductivity of metals cannot yet give 
an exhaustive qualitative description of the temperature function of 
the heat conductivity. A broad experimental study of the heat conduct­
ivity of metals is, for this reason, absolutely necessary . 

Besides the study of the general correlations of the behavior of 
the heat conductivity of metals at high temueratures. one can point out 
also a number of specific problems which are of interest in such studies. 

We have already indicated the importance of a study of the lattice 
component of heat conductivity. Here, it is of interest to clarify the 
correlations which govern the absolute values of the lattice heat con­
ductivity for different metals and to clarify the nature of its temp­
erature function. The latter problem is·far from useless because the 
literature data do not always confirm formula (22.4) and, moreover, 
sometimes they give also a positive'dependence of the heat conductivity 
of the lattice on the temperature (see, for example, [77]). The other 
problem is the study of the role of vacancies in the crystal lattice, 
which originate at high temperatures (see §20). From general consider­
ations, it can be expected that the formation of vacancies should in 
principle show up on the processes of transfer of electricity in heat 
because these disturbances in the ordered distribution of the atoms are 
a source of additional scattering of electrons and phonons. The effect 
of the formation of vacancies on the electrical resistance of metals is 
considered an established fact--small, but an anomalous with respect to 
the nature of the temperature dependence increase in the electrical 
resistance of a number of metals, found in a number of references (see, 
for example, [229]), is ascribed precisely to the role of vacancies and 
is utilized for evaluating the energy of their formation. (The effect 
of vacancies on the electrical resistance is evaluated also from the 
change. in resistance during rapid cooling--quenching of metals--see, 
for example {230, 231].) It is obvious that because of the existence 
of the Widemann-Franz law a similar effect should take place also in 
the case of electron heat conductivity of metals. On the other hand, 
the existence of defects in the lattice can change also the lattice heat 
conductivity and lead to its steeper decrease at high temperatures. 
For metals with a noticeable contribution of lattice heat conductivity, 
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it is possible in principle not only to clarify this effect, but also 
to evaluate tlie energy of the formation of vacancies. 

It is necessary to say a few words about the problem of. the role 
of the grain dimensions in polycrystalline specimens on the heat con­
ductivity. At high temperatures, the length of the free run of elec­
trons and phonons are substantially less than the grain dimensions, and 
the scattering on the boundaries of the grain should not lead to a 
noticeable effect. Nevertheless, it is not excluded that specimens of 
the same composition subjected to different heat treatments could ex­
hibit a different heat conductivity as the result of a different dis­
tribution of impurities in the volume. A rather large effect of such 
a type was discovered not too long ago by Jun and Hoch £261]. Although 
the results of the measurements by these authors contain, apparently, 
considerable systematic errors (see §24), the problem of the possible 
effect of heat treatment deserves attention. 

f§23. 
CJLL.(_ 

Results of Studies of the ~~mperature Q~sivity and the Heat 
Conductivity of Refractory Metals 

This section as well as §20 and 21 compare and analyze the existing 
experimental data on the temperature diffusiv~ty and the heat conduct­
ivity of refractory metals at high temperatur:::J The objects of the 
studies were the s arne metals as in § 20. J,2--..~ 

The task of analyzing data on the heat conductivity and temperature 
diffusivity, and in particular the qualification of the most reliable 
values, is much more complex in comparison with such for the heat capa­
city. There are several reasons for this. 

In the first place, differences in the data by qifferent authors 
for the heat conductivity and the temperature diffusivity are, as a rule, 
much greater than for the heat capacity. In the second place, in dis­
cussing the reasons for these differences, there is always concern that 
these differences are determined not only by the systematic errors in 
the experiments but also by differences in the material itself, because 
it is known that the heat conductivity and the electrical conductivity 
are magnitudes which are rather sensitive to impurities, lattice de­
fects, etc., although it must be said that in the range. of high temp­
eratures this effect is less than at low and medium temperatures. 
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In the third place, it is necessary to take care that the data 
proposed as the most reliable for the heat conductivity, temperature 
diffusivity, and heat capacity are mutually coordinated, although, on the 
other hand, the need for su~ coordination can be regarded also as a 
positive factor that facilitates additional control of these data. 

Let us examine the material on the temperature diffusivity. The 
number of references dealing with measurement of the temperature dif­
fusivity of refractory metals at high temperatures is not large and this 
makes the possibility of directly separating the most probable values 
of the temperature diffusivity debatable. A more thoughtout procedure 
is to find the most reliable values of the temperature diffusivity from 
those for the heat conductivity and heat capacity. On the other hand, 
the utilization of specific experimental data for the temperature dif­
fusivity and the most probable values for the heat capacity makes it 
possible to obtain values of the heat conductivity, which could be 
utilized in determining the most reliable data for the heat conductivity. 
In determining the weight of these values, one can utilize deviations 
of the experimental data with respect to the temperature diffusivity 
from the above-indicated most probable values of the temperature dif­
fusivity. Thereby the procedures for finding the most reliable data 
for the heat conductivity and the temperature diffusivity will be inter­
linked. 

The results of measurements of the temperature diffusivity of moly­
bdenum, wolfram, niobi~, obtained by the method of variable heating 
in a high-frequency furnace, described in§ 16, are shown in Figures 86, 
87 and 88 [166, 167, 168, 41]. The test specimen of molybdenum contained 
99.9% molybdenum, 0.001% nickel, 0.01% sesquioxides, 0.001% silicon 
oxide. The density of the specimen at room temperature (25°C) was equal 
to 10.20 gramf.cm3 , the specific resistance of the same temperature 
amounted to 5.78·10-6 ohm·cm. Besides this specimen, measurements were 
also made with a specimen of technical molybdenum which contained 0.18% 
Zr and 0.28% Ti (lower curve in Figure 86). The d~nsity of this speci­
men at room temperature was equal to 10.17 gm/cm 3 , the specific resist­
ance was 6. 52 ·10- 6 ohm· cm--13% greater than for the first specimen. The 
specimen of wolfram contained 99.95% wolfram, 0.035% molybdenum. The 
density of the specimen at room temperature was equal to 19.17 gm/cm 3 • 

Measurements of electrical conductivity, carried out within the tempera­
ture range of S00-900°K, yielded values which were 9% less 'than the 
electrical conductivity of pure wolfram [19]. The specimen of niobium 
had the position of 99.20% niobium, 0.3% tantalum, 0.08% titanium, . 
0.04% iron, and 0.04% silicon. The density at room temperature was 8.54% 

gm/cm 3 . The specific resistance at room temperature was 14.8·10-6 ohrn•cm 
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Figure 86. Results of measurements of the temperature diffusivity of 
two specimens of molybdenum, obtained by the method of intermittent 
heating in a high-frequency furnace (§16): 0 , data obtained from 
phases of temperature variations; 6 , from the amplitudes. 
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Figure 87. Results of measurements of the temperature diffusivity of 
wolfram, obtained by the method of variable heating in a high-frequency 
furnace:~ 0 , results of phase and amplitude measurements, respectively, 
for an equality of heating and cooling intervals; •• , the same for 
unequal intervals;+, .. , the results of phase and amplitudes measure­
ments of a specimen of smaller length. 

-398-

I 



• 

' 

I 

a s.ec 

Figure 88. Results of measurements of tne temperature dlffusivity of 
niobium: 0,~ , results of phase and amplitude measurements, respective­
ly, obtained by the method of variable heating in an induction furnace 
(§16); e,~ , the same.for a specimen of smaller diameter; • results 
obtained on a unit with electronic heating (§14). 

The data obtained by means of the amplitude and phase variants of 
the method are shown differently in the figures. For wolfram, besides 
that, the figures show the results of measurements with unequal inter­
vals of connection and disconnection of the generator. For niobium, 
data are given which were obtained for two specimens of different dia­
meter (12 and 15 mm). The same figures show also experimental data 
obtained for the same specimen of niobium by I. P. Mardykin and the 
author by using the method of radial temperature waves with electronic 
heating on a unit with a photoelectric registration of the temperature 
variations, mentioned at the end of §14, f232]). 

·The smoothed data by different authors for molybdenum, wolfram, 
tantalum, and niobium are shown in Figures 89-91 . 

• 
For molybdenum, the results from the work by 0. A. Krayev and A. A. 

Stel'makh [135] at temperatures of 2,000°K lie between the data for pure 
technical molybdenum, shown in Figure 86, closer to technical molybdenum. 
Unfort~ately, the references by 0. A. Krayev and A. A. Stel'makh have 
no information on the purity of the metals which they tested as well as 
data on the electrical conductivity from which one could indirectly 
evaluate the magnitude of the impurities. If it is assumed that these 
authors measured specimens of technically pure metals, the agreement in 
the data for molybdenum can be considered satisfactory. Data by 
Wheeler f233] for molybdenum lie considerably below the three preceding 
values. It is significant that these data give also values of the 
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Lorentz numbers obtained by utilizing tabular values for the electrical 
conductivity of pure molybdenum, 14% less than the theoretical Sommerfeld 
number 2.45•10- 8 wt•ohm/deg2 . The reason for this can be the presence 
of considerable impurities in the specimen tested by Wheeler, although 
according to data by the author the content of impurities (Fe) did not 
exceed 0.01%. The problem of a contradiction in the result for molyb­
denum will be taken up by us when we discuss the data on the heat con­
ductivity. 
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Figure 89. Literature data on the temperature diffusivity of molybdenum: 
1, Krayev and Stellmakh {135J; 2, Wheeler {233]; 3, 4, Figure 86. 

The differences between the data by various authors for wolfram 
also depend apparently to a considerable degree on the purity of the 
test materials. The greatest values are obtained for wolfram with a 
purity of 99.95%, then follow the data by Wheeler for wolfram of 99.5% 
(Impurities of fine molybdenum) and the results by 0. A. Krayev and 
A. A. Stel'makk for wolfram of a known cdmposftion. 
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a 

Figure 90. Literature data on the temperature diffusivity of wolfram: 

a 

I, Krayev and Stel'makh [135]; 2, Wheeler [233]; 3, See Figure 87. 
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Figure 91.. Literature data on the temperature diffusivity of tantalum: 
I, Krayev and Steltmakh [135]; 2, Wheeler [Z33]; 3, Cape et alia [125] . 

The data by Wheeler and 0. A. Krayev and A. A. Stel'makh for tan 
talum are in relatively good agreement at temperatures of 2,000°K and 
diverge at higher temperatures. Here .it is necessary to point out 
that the less steep nature of the temperature dependence is character­
istic for all the metals which they measured. In running ahead, we wish 
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to observe that this leads to a constancy in the Lorentz numbers obtained 
by Wheeler, whereas the data by most other authors and considerations of 
a theoretical nature yield Lorentz numbers which decrease with rising 
temperature although weakly. The data by Cape et alia [125] near the 
same temperature of 2,000° are close to one in the other, however, the 
positive temperature coefficient found by these authors is of little 
reliability due to the considerable scatter of points in this experiment 
and the narrow temperature range. 

The agreement between the data which exists for niobium can be con­
sidered satisfactory, which is apparently due to the closeness in the 
composition of the _test specimens. 

In comparing the data on the heat conductivity, the problem arises 
as to whether it is necessary to compare directly the values of the heat 
conductivity or to give p~eference to the Lorentz numbers or, finally, 
to concentrate attention only on the lattice heat conductivity. In 
principle, the comparison of the Lorentz numbers is a procedure that is 
more effective than a comparison of the values of the heat conductivity, 
because relatively large changes in the heat conductivity, determined 
by the presence of impurities, have a much smaller effect on the Lorentz 
numbers. At the same time, if we limit ourselves to a comparison of 
the Lorentz numbers only, we will lose the opportunity of utilizing the 
experimental material for which the data on the· electrical conductivity 
are lacking. This pertains, for example, to the high-temperature data 
by 0. A. Krayev and A. A. Stel'makh [134, 135]. Besides that, in order 
to pass from Lorentz numbers, selected as the most reliable, to values 
ofcheat conductivity, it is necessary to make a similar analysis for the 
data on the electrical conductivity. Considerations of this type lead 
to the conclusion that in an analysis of the experimental material on 
heat conductivity it is hardly feasible to limit ourselves to some 
single possibility of those under discussion. It is desirable to study 
the heat conductivity 1 s values as well as the Lorentz numbers in the 
magnitude of the lattice components, all the more so since this creates 
an additional possibility for the mutual control of the results in aver­
aging each of these magnitudes. 

The smoothed values of the results of heat-conductivity measure­
m~nt: and of the Lorentz numbers for molybdenum, wolfram, tantalum, 
n~ob~um are :hown in Figure 95.and t~ose that follow. Among those 
under co~ar~s~n.are also the values obtained from data of the temp­
erature d~ffus~v~ty and the haat capacity; besides, in the case of the 
heat capacity, use was made of values which have been recommended as 
the most reliable (Figures 91, 92, 93, 94). The experimental material 
for molybdenum and wolfram was suppl~mented by us with data obtained by 
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the method described in §5 I234, 109, 107] (see Figures 93, 94). The 
test molybdenum (wire 0.5 mm in diameter) contains 0.1% iron. The meas­
urements of the electrical conductivity of this specimen, obtained with­
in the temperature range of 1,200-2,400°K by two methods (see §5), gave 
values which are in agreement with each other within the limits of 2-3%. 
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Figure 92. Literature data on the temperature diffusivity of niobium: 
I, Krayev and Stel 1makh [135]; 2, Figure 88 . 
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Flgure 93. Results of the measurement of the heat conductLvity of 
mo I ybdenum lsee § 5). 

Measurements of the heat conductivity of wolfram were carried out 
for different specimens: wires 0. 3 and 0. 2 nun in diameter (wolfram of 
grade VA-3-P) and foil 60 mk thick (wolfram of grade VCh). 
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Figure 94. Results of the measurement of heat conductivity of wolfram: 
0, t:,., foi.l 60 mk thtck, 2 mm wide (2 specimens); e , foi 1 60 mk 
thick, 3 mm wide; 0, $, wir:-es 0.3 and 0.2 mm. 
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Figure 95. Summary of li.terature data on the heat conducttvity of 
molybdenum: 1, Osborn !89]; 2, Cutler and Chen~y l85J; 3, Bode }100]; 
4, Lebedev (97]; 5, Gumenyk, Ivanov and Lebedev I98J; 6, Rason and 
McClelland I66J; 7, Allen et alia [235]; 8, Krayev and Stel 'makh !135] 
(calculated from temperature di.ffusi.vity ); 9, Timrot and Pe]etskiy 
(62]; 10, Timrot, Peletski.y and Voskresenski.y I6JJ; 11, Fielhouse 
(see (238]); 12, Tye [236]; 13, Wheeler l23J]~-calculated from data 
on temperature diffustvi.ty; 14, 15, from data on the temperature dif­
fusivity and F(gure 86; 16, see Figure 93; 17, 18, 19, Jun and Hoch 
!261]. 

Let us examine the heat conductivity of molybdenum. It is seen 
from Figure 95 how large the difference is between the data by different 
authors with respect to the absolute values as well as with respect to 
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the nature of the temperature function. In order to select an aggregate 
of more reliable data, it is of great help to examine the behavior of 
the Lorentz numbers shown in Figure 96 for data from papers in which the 
authors cite information on the electrical conductivity of the test spec­
imens, even though for a limited temperature range (the data by Wheeler 
are an exception). As the result of an analysis of the cited data, we 
excluded the following from the most reliable and did not utilize these 
for finding the most probable values: 

1. Data by Allen et alia [235] fall out sharply from the aggre­
gate under consideration, and _not only for molybdenum; a critique of 
this work is given by V. Yu. Voskresenskiy [237, 238]. 

2. Data by V. V. Lebedev [97] and V. S. Gumenyuk, V. Ye. Ivanov, 
and V. V. Lebedev {98] not only because these authors, in using the same 
methpd obtained two series of results which differ strongly from each 
other, but also because their data yield obviously reduced values of the 
Lorentz numbers. 

3. The Wheeler data {233] which also leads to sharply reduced 
values of the Lorentz numbers. 

4. The Osborn data {89], which also give anomalously low values 
of the Lorentz numbers at high temperatures. 

5. The Jon and Hoch data [261] which have an anomalous temperature 
course. The reason for possible distortions of their results can lie 
in the approximation of the assumptions which are utilized in the theory 
of the method of measurement (see §4), in particular in not taking into 
account the corrections for the volume character of the heat liberation. 
A certain suspicion is aroused also by the data which have been found 
by these authors for the degree of blackness (for 2 specimens these were 
smaller than the tabular data for polished molybdenum). It is a pity 
that the authors do not cite information on the electrical conductivity 
of their test specimens; such data could have been of great help in 
clarifying the problem of the actual role of heat treatment. 

Besides this, in averaging the data on the heat conductivity, we 
did not take into account the results of measurements for technical 
molybdenum, which are shown in Figure 86 (lower curve). The averaging 
of the remaining aggregate of the data which, in our opinion, are the 
most reliable was carried out in an independent manner from the heat 
conductivity from the Lorentz numbers; besides all the data were given 
equal weight (simple averaging). Recalculation of the average values 
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of the Lorentz numbers with the utilization of tabular values for the 
electrical conductivity gave heat conductivity results which lie sys­
tematically 4% above the curve that was obtained by averaging the heat 
conductivity data. Assuming that the most reliable curve is the average 
between these two, the data for the average values of the heat conductiv­
ity will increase by 2%, while the data for the average values of the 
Lorentz numbers were reduced by 2%. The curves obtained in this case 
are shown in Figures 104 and 105 (dotted curves). The data by differ­
ent authors from the separated aggregate differ, as a rule, by not more 
than 8% from the found most probable values of the heat conductivity, 
which is close to the error of the measurement. 

wt·ohm 

Figure 96. Values of the Lo~entz number for molybdenum. The numbers 
correspond to Figure 95. 

The greatest difference (16%) is observed for the Rason and Me 
Clelland data [67]; the results by these authors differ also in their 
large scatter of individual measurements (up to 20%). 

From the found probable values of the heat conductivity and heat 
capacity of molybdenum, the most probable values of the temperature 
diffusivity were determined. The results are shown by the dotted curve 
in Figure 89. 

A summary of the results of the measurements of the heat conducti­
vity of wolfram is shown in Figure 97. It can be seen that the sum of 
the results here are no less contradictory than for molybdenum. Just 
as for molybdenum, some data were excluded by us from the examination 
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during the evaluation of the most reliable data. This pertains to the 
sharply falling out data by Allen et alia I235] and the data by Worthing 
[ 88], Zwickert l239], and Forsyte and Worthing l240], whlch have a posi­
tive temperature coefficient. The values of the Lorentz numbers are 
shown in Figure 98. Just as for molybdenum, the average data were ob­
tained separately for the heat conductivity and the Lorentz numbers and 
were then compared. The maximum difference of the corresponding curves 
(at 1,000°K) amounted to 5%. The average, most reliable values of A 
and L are shown in Figure 97 and 98 by a heavy dotted line. The same 
type of dotted line in Figure 90 gives the most reliable data for the 
temperature diffusivity. 

wt A---,----
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JOO 1000 tJOO zooo ZSDO JOOO T"K 

Figure 97. Summary of literature data on the heat conductivity of 
wolfram: I, Osborn [89]; 2, Cutler and Cheney [85]; 3, Worthing [88]; 
4, Zwikker [239]; 5, Gumenyuk, Ivanov and Lebedev [98]; 6, Figure 94; 
7, Allen et alia [235]; 8, Krayev and Stel'makh [134] (calculated 
from the temperature diffusivity); 9, Timrot and Peletskiy [61]; 
10, Forsyte and Worthing [240]; II, Platunov and Fedorov [87]; 12, 
Tye [236]; 13, Wheeler [233] (calculated from temperature diffusivity 
data); 14, from temperature diffusivity data of Figure 87. 

The results of measurements of the heat conductivity of tantalum 
are shown in Figure 99. With the exception of the data by V. S. Gumenyuk, 
V. Ye. Ivanov and V. V. Lebedev I98], Worthing 188], and Allen et alia 
[235], the results of high-temperature measurements are in general quite 
satisfactorily in agreement with each other and have a qualitatively 
like positive dependence on the temperature. The values of the heat 
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conductivity, whi~ are most probable, lie close to t~e data by Rasor 
and McClelland 166] and V. E. Peletskiy and V. U. Voskresenskiy f64]. 
As regards t~ Lorentz numbers for tantalum, it is seen from Figure 100 
that the values lie close to the theoretical magnitude of 2.45 10-s 
wt. ohm/deg and, if they exceed this, then it is insignificant. 
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Figure 98. Values of the Lorentz number for wolfram. The numbers 
correspond to Figure 97 . 
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Figure 99. Summary of llterature data on the heat conductivity of 
tantalum: 1, Cape et alia 1125] (calculated from temperature dtffusi­
vity data); 2, Pozdnyak and Akhmetzyanov 1242]; J, Worthing I88]; 4, 
Fielhouse (see 1238]); 5, Gumenyuk, Ivanov and Lebedev I98]; 6, Rasor 
and McClelland {66]; 7, Allen et alia {235]; 8, Krayev and Stel 1makh 
{135] (recalculated from temperature diffustvity data); 9, Peletskiy 
and Voskresenskiy 164]; 10, Wheeler l233] (calculated from temperature 
diffusivtty data); 11, Tye {236]. 
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Figure 100. Values of the Lorentz number for tantalum. The numbers 
correspond to Figure 99. 

The heat conductivity of niobium has a positive te~erature core 
similar to tantalum (Figure 101). In the region of temperature above 
l,000°K, the results of four studies are generally in good agreement 
with each other (the most probable values are given by the dotted 
curves), there is satisfactory agreement also in the range of temperature 
of 500-l,000°K. The data by N. Z. Pozdnyak and K. G. Akhmetzyanov !242], 
obtained by the Kohlrausch method, differ most strongly from the remain­
ing; this difference is determined apparently by the role of the heat 
exchange £238]. The values of the Lorentz number for niobium [Figure 
102) exceed the theoretical value by several percent. 

Let us summarize some of the results of the study of the heat con­
ductivity of refractory metals. 

The main share of heat transfer in the metals under consideration 
is by the electron heat conductivity. The share of the lattice heat 
conductivity amounts to several percent in the case of tantalum and 
niobium and up to 17-20% in the case of molybdenum and wolfram (at a 
temperature of - 1,000°K). The absolute values of the lattice heat 
conductivity lie below 0.2-0.25 wtjcm. deg. The lattice heat conduct­
ivities of other metals f77] as well as of solid dielectrics of the 
oxide type [245] have approximately the same order of magnit~de. With 
rising temperature, the lattice heat conductivity of the metals under 
consideration decreases. This decrease for molybdenum is close to 1/T. 
For wolfram, the temperature function is weaker. This fact, however, 
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cannot at all be considered as finnly established because the reliabil­
ity of the values obtained as the most probable is not so high: small 
changes in these values lead to a comparatively strong change in the 
nature of the temperature function of the lattice heat conductivity. 
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Figure 101. Summary of literature data on the heat conductivity of 
niobium: 1, Tottle [243]; 2,Pozdnyak and Akhmetzyanov [242]; 3, from 
[244]; 4, Fielhouse (see [238]); 5, from temperature diffusivity data 
of Figure 88; 6, Krayev and Stel 'makh [134] (recalculated from temp­
erature diffusivity data); 7, Timrot, Peletskiy and Voskresenskiy 
(63]. 
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Figure 102. Values of the Lorentz number for niobium. Tbe numbers 
correspond to Figure 101. 

-410-

• 



.. 

• 

The temperature function of the summary heat conductivity is deter­
mined in the first place by the electron heat conductivity. It is pre­
cisely tne behavior of the electron heat conductivity which determines 
the positive nature of the temperature function of the heat conductivity 
of tantalum and niobium, which distinguishes these from most metals. 
In order to determine the reasons for this, it is necessary to make a 
theoretical analysis of the specific characteristics of the mechanism 
of the transfer of heat and electricity to these metals, Since we do 
not find it possible to take upon ourselves such a task, we shall risk, 
however, in making the statement that these characteristics are related 
to the behavior of the electron heat capacity 

§24. Heat Conductivity of Liquid Metal 

The problem of the heat conductivity of liquid metals belongs to 
those areas that have been least studied theoretically as well as ex­
perimentally. The complexity of the theoretical study of the processes 
of the transfer of heat and electricity in liquid metals is understand­
able if one takes into account that in this instance difficulties which 
are inherent in· the similar problem of solid bodies, multiplied by the 
complexity of the problem of the liquid state of matter (see§Zl). The 
paucity of the experimental materials is also understandable. It is 
explained by the serious experimental difficulties which stem from the 
difficulties that are usual for high-temperature studies and the ad­
ditional difficulties such as concern about the lack of convective mix­
ing, the need of taking into account the role of the walls of the vessel 
in which the liquid metal is contained, intensive evaporation ~f the 
metal, and others. 

At the same time, the experimental study of heat conductivity is 
one of the fundamental means of studying the electron properties of 
liquid metals, which is all the more important because the data on the 
heat conductivity are basically necessary in a number of branches of 
the new technology such as atomic power. 

We shall briefly dwell on the ways for developing the theory of 
electron ..Properties of liquid metals. · The attempt to apply to liquid 
metals the methods of research developed for solid metals belongs to 
A. I. Gubanov [246]. The starting position of A. I. Gubanov is the 
zonal theory of solid bodies, modified in such a way as to take into 
account the disturbances in the ideally ordered distribution of atoms 
in the lattice, which are inherent in the liquid state. These dis­
turbances were assumed by A. I. Gubanov to be very small so that a 
significant disturbance in the ordered distribution of the atoms takes 
place only at relatively large distances. On the basis of such concepts, 
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A. I. Gubanov obtains a generalization of the basic results of the zonal 
theory, which pertain to the energy spectrum of elect~ons and processes 
of electron transfer. In particular, the theory leads to the conclusion 
regarding the existence in liquids of an additional, specifically liquid 
mechanism for scattering electrons, scattering which is governed by the 
structure of this order, by the disturbances in the ideal-crystalline 
packing. This additional scattering, which is added to the scattering 
due to thermal vibrations, leads to decrease in the effective length 
of the free run of the electrons and to an increase in the thermal and 
electrical resistanc~. At the same time, the electrical conductivity 
and the electron heat conductivity change parallel to each other in such 
a manner that the Widemann-Franz law for liquid metals should, in ac­
cordance with A. I. Gubanov, preserve its validity. 

The fundamentals of the theory by A. I. Gubanov are not free of 
criticism. The concept of the structure of a liquid as a little-dis­
torted crystal lattice does not apparently characterize sufficiently 
fully the disorder which exists in the liquid. In any case, such an 
approach is contradictory to the concept by D. Bernal in accordance 
with which the disorder distribution qf the molecules of the liquid dif­
fers radically from the ordered structures of a solid body so that the 
continuous transition from the solid body to the liquid is basically 
impossible [247]. 

Another direction in the development of the theory of electron prop­
erties of liquid metals is to a certain degree in opposition to the 
first because it is based on the relationship of liquids, not with a solid 
body, but with a gas, more accurately with plasma. This direction has 
recently been under intensive development, but the results obtained so 
far pertain chiefly to the electrical conductivity, they do not make yet 
possible any kind of a reliable quantitative description of the aggre­
gate of the electron properties of liquid metals. 

The absence of more or less definite theoretical concepts regarding 
the basic correlations of the behavior of the heat conductivity of 
liquid metals makes it entirely necessary to perform a broad program of 
experimental studies. The basic problems in an experimental study of 
the heat conductivity of liquid metals are in this case as follows. 

1. Clarification of the correlations of the change in the heat 
conductivity of metals during melting. 

2. Study of the nature of the temperature function of the heat 
conductivity of liquid metals Within a bro~d temperature range. 

-412-

• 



• 

• 

3. Comparison of the heat conductivity and electrical conductivity 
of liquid metals, determination of the temperature function of the 
Lorentz number, and clarification of the problem of the Widemann-Franz 
law. 

A study of the first of these problems assumes the availability of 
information regarding the jump in the heat conductivity during melting. 
which would make it possible to evaluate the radical extent of the 
change in the nature of heat transfer during the transition from the 
solid state to the liquid state. A comparison of the jumps in the 
electrical conductivity and the heat conductivity reflects in this case 
the degree of preservation of parallelism in the mechanisms of the trans­
fer of heat and electricity, even though in an ambiguous manner, because 
the measured heat conductivity is the sum of the electron and "lattice" 
(molecular) components. The establishment as much as possible of the 
general correlations of the change in the heat conductivity with temp­
erature makes sense not only from the viewpoint of empirical system­
atization, but also directly for solving the problem of tlie heat transfer 
mechanism. A special role in this belongs to· the study of the behavior 
of the Lorentz number, the absolute valu~s and the temperature function 
of which reflects fundamentally the nature of the processes of electron 
transfer. In attempting a theoretical interpretation of the existing 
experimental correlations, it is expedient to turn back to the con­
clusions which can be made from analysis of the results that pertain to 
the electrical properties of liquid metals; the electrical conductivities 
and the Hall effect. In accordance with A. R. Regel's [249], it follows 
from the available data that during the melting of metals, as a rule, 
there is no fundamental change in the mobility of the current carriers. 
In order to explain the changes in electrical conductivity with an in­
variable mobility, it is necessary thus to make the conclusion that the 
concentration of the electrons during melting in most metals decreases 
approximately two times. On the other hand, Bush and Tieche [250] came 
to the conclusion that their experiments are in good agreement with the 
calculations on the assumption that a number of free electrons per atom 
in a liquid metal is equal to the number of valance electrons (lead and 
bismuth are.an exception). The ambiguity of the resulting conclusions 
is related with the contradiction of the experimental material with re­
spect to the Hall effect; values of the Hall constant in accordance with 
data by different authors differ not only in magnitude but sometimes 
even in sign (for example, for antimony and tellurium) . 

Before studying a systematization and discussion of the experimental 
data, we shall cite the original material which is at our disposal. 
Figure 103 and 104 show the results of measurements of the temperature 
diffusivity of tin, lead, bismuth, cadmium in the solid and liquid state 
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[160], [227]. The measurements were made by the method of radial temp­
erature waves, described in lil4. The high-temperature data for tin and 
lead were obtained by the method of measuring the complex of thermal 
properties, described in §15. (The primary material: results of meas­
urements obtained by the phase as well as the amplitude variants of the 
method, for each--at 2-3 different periods are given in [160].) Table 
40 gives the results of the measurement of the specific resistance of 
the same specimens of tin, lead, and bismuth [160]. 
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Figure 103. Results of measurement of the temperature diffusivity of 
tin and lead: 0, measurement by the method of radial temperature waves, 
described in §13; A, measurement by means of a complex procedure de­
scribed in §14. 
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During measurements of electrical conductivity, the liquid metal 
was in a tantalum tube 24 em long and 8 mm in diameter with a wall 
thickness of 0.1 mm. the tube was placed along the axis of the cylind­
rical heater. Current leads were fed to the end of the tube and near 
the middle, two pairs of thin potential wires wfiich were at a distance 
of 5 and 10 em from each other were welded thereto. Current of the 
order of ampheres was pressed through the tube, its magnitude being deter­
mined from the drop in voltage on a standard resistance of 0.001 ohm 
which was connected in series with tlie tube. The voltages on a stand­
ard resistance and in the working section of the tu5e, whi:clL amounted 
to hundreds of microvolts, were measured by a PMS~48 potentiometer. 
In order to exclude thermal electromotive forces, the measurements were 
carried out in two opposite directions of the current through the tube 
and the results were averaged. Before each series of measurements, a 
determination was made of the resistance of the empty tube. In experi­
ments with liquid metals, this resistance was considered as connected 
in parallel. In ordex to have confidence in the observence of the con­
ditions of equipotentiality of the transverse sections, the measurements 
were conducted on two sections of the tube (short and long). Agreement 
of the values of the electrical conductivity obtained in this case 
indicated the smallness of the distortion of the equipotentiali ty due 
to the influence of boundary conditions. 

In measuring the electrical conductivit~ of solid metals, use was 
made of rods 6 mm in diameter. The maximum error in the resulting 
values of the electrical conductivity for solid as well as for liquid 
metals does not exceed l-2%. The resulting data are in agreement with 
the literature (see [160]). 

The values of the heat conductivity of liquid tin and lead, obtained 
from the temperature diffusivity data in Figure 103 and the values of 
the heat capacity found in the same complex experiment (see Figures 82 
and 83), are shown in Figures 105 and 106 together with the results by 
the other authors. (For the solid phase the literature data of heat 
capacity was taken; values of the heat capacity below 850°K were extra­
polated.) 

Similar results for cadmium and bismuth are shown in Figures 107 
and 108. In recalculating the data with respect to the temperature dif­
fusivity, we made use of literature data {219]. The Figures 109-111 
contain a summary of literature data on the heat conductivity of liquid 
alkali metals. The comparable data contain also results of determination 
of the heat conductivity, obtained from measurements of the temperature 
diffusivity by I. I. Novikov et alia [149] and I. I. Rudnev et alia [150] . 
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Figure 104. Results of measure­
ments of the temperature d(f­
fusivity of cadmtum and btsmuth 
obtained by means of the method 
described in §13. 

An examination of the entire 
aggregate of decided data con­
vinces one of the considerable 
contradiction in mQst results. 
Deviations of several tens of per­
cent are not rare. As a rule the 
differences increase with rising 
temperature; near the melting point 
agreement is better. The cited 
data do not permit any kind of 
general conclusions regarding the 
nature of the temperature function 
of the heat conductivity of liquid 
metals, not only because this 
function is frequently different 
depending on the data of different 
authors, but also because the gen­
eral tendency of the change in the 
heat conductivity for different ~ 
metals is apparently also differ­
ent. Of the data pertaining to 
divalent metals, attention is drawn 
by the constancy of the heat con­
ductivity over a large temperature. 
(600-700°, which was clearly traced 
for tin and lead) and partly for 
cadmium and bismuth, which we con­
sider sufficiently firmly estab­
lished, considering the multiple 
control of the results of the 
corresponding experiment (see 

11 
13 

and 14). 

The summary of the results of 
the measurements of the jump in the heat conductivity during melting is 
given in Table 41. It can be seen that these data are, as a rule, in 
satisfactory agreement with each other. 

The last column of this table shows the values of the jump in elec­
trical conductivity during melting. The data which are given within the 
brackets pertain to the results from Table 40. 

A comparison of the values of\ 1.d/\1 . .d and~ 1.d/o1. .d so ~ ~qu~ so ~ ~qu~ 

makes it possible to observe the presence of parallelism between the jump 
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in the heat conductivity and the electrical conductivity. This paral­
lelism shows up clearly in the data for bismuth in the case of which 
the anomalous positive change in the heat conductivity during melting 
is accompanied also by a similar anomalous change in electrical con­
ductivity. (The anomalous nature of these changes is related with the 
fundamental change in the structure of tlie short-range order of bismuth 
during melting). A detailed comparison of the magnitudes A 1. d/ so l. 

/A
1

. .d and cr 1 .d/cr
1

. "d makes it possible to establish that a jump· 
1.qu1. SO 1 1.qu1 . 

in electrical conductivity is greater as a rule than the jump in the 
heat conductivity. If it is taken into account in this case that the 
Lorentz number before melting just as well as after melting most freq­
uently exceeds the theoretical magnitude 2.45·10- 8 wt•ohm/deg2 , then 
this difference can be ascribed to the lesser change in the molecular 
(lattice) heat conductivity during melting in comparison with the change 
in the electron component. This conclusion is confirmed in directly by 
the results of the measurement of the change in heat conductivity during 
melting of nonmetallic materials, which were carried out by us £259]. 
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-
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Figure 106. Results of measurement of the heat conductivity of solid 
and liquid lead: 1, data obtained by the method of measurements de­
scribed in 14; 2, data by Konno [25·1]; 3, data by Nikol'skiy et al 
[60]; 4, data by Powell and Tye [252]. 
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Figure 107. Results of measurements of 
tne heat conductivity of solid and 
liquid cadmium: 1, data obtained from 
results of measurements of the temp­
erature diffusivity in Figure 104; 
2, data by Brown [253]. 
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Figure 108. Results of measurements of the heat conductivity of solid 
and liquid bismuth: 1, data obtained from results of measurements of 
the temperature diffusivity of Figure 104; ~. data by Konno {251]; 
3, data by Nikol 'skiy et alia [60]; 4, data by Powell and Tye 1252]. 
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figure 109. Sw:nmary of llterature data on heat conducttvi ty ·of 1 iqui d 
lithium: 1, Ni.kols 1kiy et alia I60J; 2, Cooke I5U; 3, Webber et alia 
I254J. 
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Figure 110. Summary of literature data on the heat conductivity of 
liquid sodium: 1, Nikol 1skiy et alta I60]; 2, Novikov et alia ll49J 
(recalculated from temperature diffusivity data); 3, Rudnev et alia 
[150] (recalculated from temperature diffustvity data}; 4, Ewing et 
alia ISO]; 5, Hall [52] . 
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figure 111. Summary of 1i.terqture data. of heat conducttvtty of 1 iqui.d 
potassium: 1, Ntko1 1skiy et alia [60]; 2, Novikov et alia Il49] · 
(recalculated from data on temperature diffusivity); 3, Ewing et alia 
[51]. 
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TABLE 40. RESULTS OF MEASUREMENT OF THE SPECIFIC ELECTRICAL RESISTANCE 
(MICRO OHM CM} OF TlN, LEAD, AND BISMUTH IN THE SOLID AND 
LIQUID STATES. 

20 
108 
145 
212 
222 
241 
295 
40-t 
485 
565 
640 
700 
750 

' I 
11,65 so I i d 
15,05 
1&,9 
20,7 
21 ,56 
49,1 liquid 
51 ,6 
53,2 
55,8 
57,5 
59,4 
61 '1 
62,.3 

1° C 

I 
20 2! .t so I i d 

-138 30 .1 
172 3.t,.~ 
255 42.\ 
260 43 ,.) 
280 44,:\ 
300 47.0 

---:3so-- ----w;i:i ITqu i d 
375 99,:1 
425 102.'1 
460 105,•1 
509 107 ,(1 

600 !12.1· 
701 117,8 

t- c -I 

21) ! 
i6':1 1 
195 

~~~-r 305 
J:20 
~25 I 

4,)5 l 
~iw - r . 
575 
725 

294,2 solid 
276, I 
274,0 
'270,7 
131 ,9 I i qui d 
132,4 
133,3 
138,4 
139,3 
H3,7 
146,0 
155,1 

TABLE 41. SUMMARY OF RESULTS OF MEASUREMENTS OF THE JUMP lN KEAT CON­
DUCTIVITY DURING MELTING. 

Metal 

Li 
Na 
I( 
Sn 
Pb 
Cd 
Zn 
AI 
Hg 
Bi 

A 1• d/>.. 1• • d Experiment 
SOl LQUL 

2.01 _for l255lJ . · ..... · · · . · 
1 ,33 [51] . .. - - . . . • . . • . . • • • . . . . 
1,55"for [255H ............. . 
1,75 (251], 1,82 [256], 1,82* . 
1,77 (251], 1,93' .....•. 
2,6 [251], 2,4 [257], 2,5* 
I ,57 [251] . . . . . . .. 
1.61 [2511 1 . . . . .. , 
1,90 for J255J . . . . .. · 
0,42 [251], 0,5 [258], 0,3* 

"soli/ 

/A liquid 

0 l. d/ SO I 

/ol · · d .I QUI 

Calculation [246) 

1 ,90 
1 ,52 
1,53 
2,34 
1,67 
1,86 
1,77 
2,00 
1,82 

1,68 
1 ,45 
1,56 

2' 1 (2 ,28) 
1 ,94 (1 ,98) 

1.93 
2.24 
2.2 
3,4 

0.45 (0,5) 

An asterisk tndtcates values obtained from experiments described in 
§ 13 and 14. 
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~e calculated values of A /A shown in Table 41 have been 
solid liquid 

obtained from the formula 

\olid 

A liquid 
= e 

r 
c--.J!P-

T 
mp (24 .1) 

(r lt" is the heat of melting), proposed by Mott for the jump in the me 1ng 
electrical conduc·tivity. For the jump in the heat conductivity, the 
coefficient c from this formula should in accordance with I. Z. Kopp 
[255], be taken equal t~ 1/4. It is seen from the table that the calcu­
lated values correspond only approximately to the results of experiments 
and correlate more readily with the values of the jump in the electrical 
conductivity (attention should be paid to the data for tin and cadmium). 
Considering the rather unilateral nature of the assumptions made by 
Mott in deriving these formulas (see [246]), the approximate nature of 
the relationship of the type (24.1) is not surprising. 

In order to evaluate the dependence of the Lorentz number of liquid 
metals on the temperature, the dotted curves in Figures 114-120 show the 
calculated values of the electron components of the heat conductivity. 
It is characteristic that in most cases the experimental values of the 
heat conductivity at temperatures close to the melting point lie ·above 
the magnitude of electron heat conductivity, that is, the Lorentz number 
is somewhat greater than 2.45·10- 8 wt•ohm/deg2 . In this region one can 
apparently speak about the fulfillment of the Widemann-Franz law for the 
electron component. With rising temperature, however, in almost all 
cases there is observed a distinct tendency to a decrease in the Lorentz 
number beyond the limits of the value 2.45·10- 8 wt•ohm/deg2 , that is, 
the measured heat conductivity becomes less in a calculated electron heat 
conductivity. The nature of the temperature function of the Lorentz 
number differs with the data from different authors; however, it is nat­
ural to assume that the decrease in L with the temperature is monotonic. 
In any case, this fact arouses no doubt in the case of tin and lead. 

The negative deviations from the Widemann-Franz law are apparently 
one of the characteristic features of the behavior of the heat conduct­
ivity of liquid metals. 

Summarizing the ~esult of the examination of the experimental 
material on the heat conductivity of liquid metals, it is necessary to 
assert that a study of this problem is in the very initial stage and 
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in order to make a clear clari£ication of the definite correlations and 
the possibility of tfi.e theoretical interpretation, it is absolutely nec­
essary to perform furtlier studies on the heat conductivity and the com­
plex with the electrical conductivity, the thermoelectromotive force, 
and the Hall effect. 
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