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ABSTRACT

General conditions are given for the convergence of a class
of cutting-plane algorithms without requiring that the
constraint sets for the subproblems be sequentially nested.
Conditions are given under which inactive constraints may be
dropped after each subproblem. Procedures for generating
cutting-planes include that of Kelley [4] and a generaliza-
tion of that used by Zoutendijk [12] and Veinott [9]. For
algorithms with nested constraint sets, these conditions
reduce to a special case of those of Zangwill [10] for such
problems and include as special cases the algorithms of
Kelley [4] and Veinott [9]). An arithmetic convergence rate
is given.
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CUTTING-PLANE METHODS WITHOUT NESTED CONSTRAINT SETS
by

*
Donald M, Topkis

I consider the problem of maximizing a real-valued continuous function f
over a nonempty closed subset S of E" . It is assumed throughout that one
is given a closed subset T of E® such that § CT and f attains its
maximum over every nonempty closed subset of T .* The general algorithm to be
considered proceeds by setting To = g" , and, given Tk as the intersection of
E® and a finite set of closed half~spaces containing § , picking X to
maximize f over Tk N T, stopping if X, € S , and otherwise letting Sk be

the intersection of E and a subset of those half-spaces determining Tk such

that X, maximizes f over Sk T , finding a closed half-space Hk containing
= { 3
S but not Xy o setting Tk+l Sk ] Hk , and continuing
T, will be intersection of E" and at most k closed half-spaces. It {is

k

easily seen that if T is convex and f |is pseudo-concave++ or concave on T ,

then Sk will satisfy the above conditions if Sk is the intersection of all

the half-spaces determining Tk for which X is on the boundary and any subset

*
I am grateful to Professor Richard Van Slyke for bringing Reference [6] to my

attention and pointing out the relevance of the concept of uniform concavity
which allowed the hypotheses of Lemma 7 to be weakened somewhat from an earlier
version framed in terms of the matrix of second partial derivatives of f at
points of T .

v Conditions for this are given in Corollary 11, and it is clearly true when T
is compact.

1 .A real-valued function f 1is pseudo-concave [7] on a convex set T c En
if f 4{s differentiable on T and (y - x)*Vf(x) £ 0 for y , x € T implies
£(y) s £(x) . A differentiable concave function is pseudo-concave.




of those half-spaces determining T, for which x, 1s an interior point. To

k k
i
ﬁ be applicable, of course, the subproblems (which have linear constraints when T
'q is a convex polyhedron) must be significantly easier to solve than the original

problem, and hence this procedure is essentially confined to problems in which f
is either linear, quadratic, or separable in which cases relatively efficient
algorithms [1,2,5] exist for the subproblems. The algorithms of Kelley [4]

and Veinott [9] set Sk = Tk for all k so each Tk is the interscction of k

closed half-spaces and E" . 1If each S, 4is the interscction of E" and thosc

k

half-gspaces deterrining '1'k for which Xy is a boundary point, then it is scen

by Lemma 12 that each Tk is the intersection of no more than n + 1 closed

half-spaces and " .
Since X, maximizes £ over Sk nt, x
and SkﬂTET

b1 maximizes f over Tk+1 nt,

e }
N T25,

; (1) £(x,) 2 £(x, ) > max £(x) .

k+l xeS

The following slight generalization of an observation of Kelley [4] is clear

from (1).

Theorem 1:

1f X, € S for some k , then X, is optimal. If X, £ S for all k

and the limit point, X » of some convergent subsequence of {xk} is feasible,

then x is optimal.

The conditions of Theorem 10 (which were already indicated to be sufficient

for another basic assumption in the first footnote) assure that {xk} is bounded

and hence has a convergent subsequence. Thus, the real problem is to find conditions

under which the limit point of any convergent subsequence of {xk} is feasible,
!

and this is considered in Section 1.




l. GENERAL CONVERGENCE CONDITIONS AND EXAMPLES

1

A mapping (a(x),b(x)) from T ~ S dinto ™ uien a(x) ¢ E" and

b(x) ¢ El is a limiting cutting-plane function if S C H(x) = {y : a(x)*y > b(x)}
for all xe¢ T ~S , (a(x),b(x)) 1is bounded on any bounded subset of T ~ S ,

tk=1,2, ...} ST -5 with limx,_=x¢T -~ S the limit point

and for any ({x K
koo

k
(a,b) of any convergent subsequence of {(a(xk),b(xk))} satisfies a*x < b .+
The notion of a iimiting cutting-plane function was introduced by Zangwill [10].

He applied a generalized version of this notion to a class of cutting-plane

algorithms with S, = T, to obtain a result for which Corollary 5 is a special

k k

case. In addition, he presented Lemma 3 and proved a special case of Lemma 4 with

B= (0} .

Theorem 2:

. If H(x) 1s determined by a limiting cutting-plane function, Hk = H(xk) R

lim X, - lim x, =x, and x, € Hk for all i , then x is optimal.
o Kf  few Iy i oK
Proof:

Since (a(x),b(x)) 1is a limiting cutting-plane function and x, € Hk = Hfx
PR ky

for all i,

(2) afx, \*x, > bfx > afx, \°*x for all 1 .
k) 31 ky ki) Ky
If (a,b) is the limit point of any convergent subsequence of {(a(xk ),b(xk ))},
i i

then it follows from (2) that a*x = b . Hence, x is feasible since (a(x),b(x))

iy If T is convex and a cutting-plane function exists, then it is easily seen
that S 1s convex.




is a limiting cutting-plane function, and so x is optimal by Theorem 1. //

The following two lemmas give examples of limiting cutting-plane functions.
The function of Lemma 3 was introduced by Kelley [4]. The special case of the
function of Lemma 4 with B = {0} was introduced by Zoutendijk [12] although
he gave no proof for his algorithm, and a slfghtly modified version of his
algorithm was proven to converge by Veinott [9]. Throughout, suppose that

§ = {x : G(x) >0} where G(x) is a real-valued continuous function on T .

Lemma 3:

Suppose that there exists a function u(x) from T ~ S into E" which
1s bounded on any bounded subset of T ~ S and such that G(y) < G(x) + u(x)*(y - x)
for all x e T ~S and y € S. Then (u(x),u(x)°x -~ G(x)) is a limiting

cutting-plane function.

Proof:

Clearly, S CH(x) . Pick {x}EST-S with limx = x €T S . Then
k<

the limit point of any convergent subsequence of {(u(xk),u(xk)°xk - G(xk)} takes
the form (H,H*x - G(x)) . But G(x) <0 since xeT ~ S so HeX < uex = G(x) .//
Kelley [4] observed that if T 1s convex and G(x) = min gi(x) where
1<i<m

each 8y is differentiable and concave on T then u(x) = Vgi(x)(x) satisfies

the conditions of Lemma 3 if 1(x) 1s chosen such that G(x) = gi(x)(x) 3

Lemma 4:

Suppose there exists t with G(t) >0 , S {3 convex, and for x ¢ T - S define

A(x) = sup{A : Ax + (1 - A\)t € S} and set w(x) = a(x)x + (1 - a(x))t for any

Glw(x
G(x)

Suppose also that for P = {w : there exists x € T -~ § with w(x) = w} there

a(x) € [A(x),1] with € B where B is a nonempty subset of (0,1} .




exists a function u(w) £from P into E" which is bounded and bounded awvay
from 0 on any bounded subset of P and such that 0 < G(w) + u(w)*(y - w)
for all weP and y €S . Then A(x) € (0,1) for all x €T ~ S and

(ww(x)),u(w(x)) w(x) - G(w(x))) 1is a limiting cutting-plane function,

Proof:

Pick any x € T ~ S, If A(x) >1 then there exists z ¢S and Y € (0,1)
with x =yt + (1 - yY)z which contradicts the convexity of S . Also, XA(x)
cannot equal 1 since this would imply that x € S because S 1is closed, so
A{x) <1 . Since G(t) > 0 , it then follows that A(x) ¢ (0,1) .

Now pick {x, } €T ~ S with limx = Xx €T ~S . Then the limit point of
k koo |3

any convergent subsequence of {(u(w(xk)),u(w(xk))ow(xk) - G(w(xk)))} takes the

form (§,p°w - G(w)) where u $# 0 . Let a be the limit point of any convergent

subsequence of the corresponding subsequence of {a(xk)} . Then

we=ox+(l-0a)t,ae(0,1] ,and weE ~S fmply a>0 and G(w) <O .

But since t is in the interior of S, u # 0 , and clearly
0<G(W) +ue(y -w)  forall yeS,
it follows that

(3) 0 <G(w) + pe(t - w)

and so by (3) and G(w) <0




D e

(4) 0 < pe(t - w .

But t - w=oa(t - x) and

(5) §—5=(1-5)(§—t)=-(1:;)(t-6)
a

and so by (4) and (5) if a <1

(6) 0> pe(x - w)

and by (6) and G(w) < 0

(7) 0>GMW) + pe(x -w) .

If a=1 then w=2x and (7) still holds.
Since by hypothesis S € H(x) for all x € T ~ S , the proof is complete. //

Suppose G(x) = min gi(x) where each 8, is a real-valued differentiable
1<i<m

function on E" . Veinott [9) showed that when B = {0} , each 8, is quasi—concave+
on E", i(x) is any 1 such that G(x) = gi(x)(x) , and G(x) = 0 implies

Vgi(x)(x) $# 0, then for u(x) = Vgi(x)(x) the hypotheses about u(x) in Lemma 4

are satisfied. For arbitrary B < [0,1] it is easily seen that if each gi(x) is
concave and u(x) = Vgi(x)(x) (with 1(x) as above) then this u(x) satisfies

the hypotheses of Lemma 4. The method of Lemma 4 with B = (0,1) and a(x) e (A(x),1)
would seem to compare favorably with Kelley's method (which requires a(x) =1 ,

but does not assume the existence of t with G(t) » 0) because the cutting-plane

for x is generated by a point 'closer" to S than x , and the advantage over

Veinott's method is that with B = {0} finding a(x) exactly is generally not

*A real-valued function f 1s quasi-concave [7] on a convex set T if
{x : £f(x) 22, x € T} 1s convex for all real a . A concave function is quasi-
concave,




always possible (although here one would need each 8y to be concave while he
only required them to be quasi-concave). Finally, observe that when B = {1!
and a(x) = 1 the method of Lemma 4 is identical with that of Lemma 3.

The following is an immediate consequence of Theorem 2 by letting ji = k1+l .

Corollary 5:
If H(x) 1is determined by a limiting cutting-plane function, Hk = H(xk) 5

and S =T, , then the limit point of any convergent subsequence of {xk} is

k
optimal.

k

Corollary 5 together with Lenma 3 proves Kelley's algor thm [4), and Corollary
5 together with Lemma 4 proves Veinott's algorithm [9) and a more general class
of cutting-plane algorithms.
The following result paves the way for generating cutting-plane algorithms
in which inactive constraints (i.e., half-spaces determining Tk for which Xy
is an interior point) may be dropped after each subproblem. It follows immediately

from Theorem 2 by letting :j1 = ki + 1 since X 41 € Tk +1 c Hk .
i i i

Corollary 6:

If H(x) 41is determined by a limiting cutting-plane function, Hk = H(xk) , and

lim x = lim x = x, then x is optimal.

foo Kf  fom Kyl

In order to apply Corollary 6 it is necessary to explore conditions under

which 1lim X, = lim xk 41 and for this purpose the following notions are
{4+ 74 i 71

considered.

A real-valued function £ is uniformly concave (6] on a convex set T if

there existsa nondecreasing function 6(r) > 0 on (0,®) such that




£05(x + y)) > LE(x) + %E(y) + 6(|x - y])

for all x , y ¢T . A uniformly concave function is strongly concave [6] if
§(r) = yrz for some y > 0 . It is easily seen that {f T 18 compact, f has
continuous second partial derivatives on T , and the matrix of second partial

derivatives of f is negative definite at all points of T , then f 18 strongly

concave on T .

Lemma 7:

If T 4is convex, f 1is uniformly concave oo T , and 1lim X, = X then
- i+ 71

lim x = x ,
e k1+1

Proof:

Since xk maximizes the concave function f over the convex set Sk na
i i

and x €T hntecs, NT, £fx gf(ls(x + x ).'rhus
k,+1 k +1 ky ( ki) ky k +1

f(xki) > f(k(xki + xk{.'l» > l:f(xki) + l’f(xki+1) + G(kai - xki'l'll) 5

f(xki) - f(xk1+1) > ZC(kai - X, +1|) , and so

i

(8) = > f(xkl) - :z)sc £(x) > f(xkl) - 1];1.: f(xki) - 1§1 (f(xki) = f(xk1+1))

5 i (f(xki) R f(xkiﬂ)) 2 I s(lxki ] xkiﬂl)

But (8) implies that 1lim §f|x, - x |}= 0, and since &(+) is positive and
lﬂ:1 ki+1

-

1v




nondecreasing on (0,») this implies that 1lim |xk
C .

al: - l‘o-//
" ki+1

i
Clearly the maximum of a uniformly concave function on a convex set is
unique 1if it 1s attained. Thus, Theorem 10 (which together with the hypotheses

of Theorem 8 and the earlier assumption that f attains its maximum on T
implies that {xk} is bounded), Corollary 6, and Lemma 7 yield the following

result which allows inactive constraints to be dropped after each subproblem.

Theorem 8:

If H(x) is determined by a limiting cutting-plane function, Hk = H(xk) 5
T 4s convex, and f {is uniformly concave on T , then {xk} converges to the

unique maximum of f on S .
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2., CONVERGENCE RATES

Levitin and Polyak [6] have established an arithmetic convergence rate for a
cutting-plane algorithm which, when specialized to subsetsof £ , has Sk = Tk
(although their proof still holds if inactive constraints were dropped after each
subproblem) and uses the cutting-plane method of Lemma 3. Here their algorithm
and method of proof are generalized to show the same convergence rate for
algorithms which allow inactive constraints to be dropped after each subproblem and
for which the cutting plane at x € T~ S may be generated at some point
w(x) ¢ T -~ S other than x on the line segment joining x to a point t with

G(t) > 0 (as in Lemma 4, although here, unfortunately, w(x) must be bounded

away from S) .

Theorem 9:

Suppose that S = {x : G(x) >0}, T is convex, G(x) is concave on T ,
there exists t with G(t) > 0 , and for x ¢ T ~ S define
A(x) = sup (A : Ax + (1 - A)t € S} and set w(x) = a(x)x + (1 - a(x))t for any
a(x) € [A(x),1] with G(w(x)) < €G(x) where 0 < e <1 . Suppose also that for
P = {w : there exists x € T ~ S with w(x) = w} there exists a function u(w)
from P into E" with |luw)| < K for all w e P and such that
0 <G(w) + u(w)*(y - w) forall weP and ye S ,+ and let
H o= {x:0<G6wx)) +ulwix)) « (x- wix )} . X T dis compact, f is
strongly concave and differentiable on T , and x 1s the unique maximum of f on

S , then for k> 1

- 1
£(x,) - £(x) i-a-iTc-

*See the remarks following Lemma 4,
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and

where

-2 eGStZ)z 2 = 215G§t2
8 " “Y\xbd » 8 % "Kbd ’

d = max {|VE(y)| : ye T}, b=max {|ly-¢t| :yeT}, and Yy 1is as in the
definition of strong concavity.
Proof:

Let Xk = A(xk) » 4 = a(xk) » W = w(xk) , and M " u(wk) . Clearly,

G(Akxk + (1 - Ak)t) = 0 and so by concavity

0 =GOx, + (L= A)t) 2 AG(x) + (1= 2)6(t)

and

(9) “Glx) > ;1; (1 - A)6() > (1= A)G6(t) .
Since t e S,

(10) 02 G(w) +u (t-w).

But X, is the unique maximum of £ on Sk N T and it is easily seen that

X, 4 H  so x. ¢ X1 €Ty NT = HNnsnt and by the strict concavity of f
on T,

(11) 0= G(wk) + uk-(xk+1 - wk)




or

(i2) 0= G(Wk) + akuk.(xk+l - xk) + (1 - ak)uk°(xk+l -t) .

By (10) and (11)
(13) 0> “k°(xk+1 -t),
so by (12) and (13)

(14) 0< G(wk) + akuk-(xk+1 - xk) < eG(xk) + K|x - x

k+1 kl *

By the concavity of f and the optimality of x ;

(15) £ - £ < £(x)) - EQpxe + (=20
< (- Ak) (xk - t)-Vf(Akxk + (1 - Ak)t)
< Q- Ak)lxk - tl-lVf(Akxk * -]

< @-abd .
Combining (15), (9), and (14),

(16) £(x) - £(x) < (1 - A )bd

-

<

0 (-G (xk) Ybd

(2]
~

< Xbd__ Ix - x |
- eG(t) k k+l! °

Since X, o X4l € Sk NT and X, maximizes the strongly concave function

f over the convex set Sk NT, for some y > 0

(17) f(x,) > f(lz(xk tx a2 %f(xk) + hf (x

2
SURSILAEE o

12
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and from (17)
2
(18) f(xk) - f(xk+1) > ZYka - xk+ll c

Now let D = £(x,) - £(x) > 0. By (16) and (18)

2 2
2 [Kbd 2 [xbd 1
b < (sG(t)) L Y (eG(t)) (ZY)(Dk = By
or

2
(19) Dy <D, = &0 =D, (1 -aD) .

The arithmetic convergence rate for D, then follows from (19) as in [3] by

k
observing that

1 1 1 A 1
(20) 1—(—:——)-— ! (aD)
Pty "D \L =D D \ydg LK
25 A+ ap) =3 ta
k k
and using induction on (20) to get
i !
= >==+ak
D, =D "%
or
1 1
e ST, SR
, " 4

As in (17) and (18), it follows that

(22) D, = f(xk) - £(x) > Zy|xk - §|2 .




and by (21) and (22)

14
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3. SOME USEFUL ANALYTIC RESULTS

In the introduction to this paper, the somewhat unintuitive assumption was
made that one is given a function f on a closed set T such that f attains its
maximum on any nonempty closed subset of T . Corollary 11 provides intuitively
appealing conditions for this to be true. Theorem 10 was proven by Zoutendijk [11]

under the additional assumptions that T = E" and f is differentiable on T S

Theorem 10:

If T 1is a closed convex subset of " , f 1s concave and upper semi-
continuous on T , and the set of maxima of £ on T 1is nonempty and bounded,

then {x : x e T, £(x) > a} 1is bounded for all a .

Proof:

Let W be the set of maxima of f on T . Since f 1is upper semi-
continuous on the closed set T , it follows that W 1is closed and thus W is
compact and nonempty by hypothesis. Now pick any Xx ¢ W and any y > 0 such that
x € W implies [x-x| <y . Let B={x:xeT, |[x~-x|=y}. If B=9,
then T is bounded by convexity and the proof is complete, so assume B # @ . Let

M = sup £(x) . Since f 1is upper semi-continuous on the nonempty compact set B
xeB

it follows that f attains its maximumon B, so f(x) >M since Wn B =9 .

Now pick any o < f(x) (the result follows trivially for a > £(x)) and any
Let A\ = ——JT ¢ (0,1) and

x €T with |x-x| >y and £(x)>a.
|x - x

z=X+A(x-%x). Then z ¢ T by convexity and |z - X| = Alx - x| =y so

z ¢ B, Thus by concavity
(23) M> £(z) > AMf(x) + (1 - AEx) > da + (1 = A)E(x)

and substituting )\ = ]-;L—:— into (23) ,
X - X
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XE® = a) , g, o3

f(x) - M

and {x : x € T, £(x) > a} must be bounded. || 1

Corollary 11:

If T 1is a closed convex subset of E- » S 1s a nonempty closed subset of
T, £ 1s concave and upper semi-continuous on T , and the set of maxima of £ on
T 1is nonempty and bounded, then f attains its maximum on S . Hence, a strictly
concave upper semi-continuous function which attains its maximum on E® (such as
any strictly concave quadratic function) will attain its maximum on any nonempty

closed subset of En .

Proof:

Pick any y € S . Then it suffices to show that S, = {x : xes, f(x) > £(y)}

is bounded. But S S ({x :x €T, f(x) > f(y)} which is bounded by Theorem 10. I

In the introduction, it was mentioned that if each Sk is the intersection of

En and all the linear constraints of Tk that are active at X, then each Tk
is the intersection of no more than n+l closed half-spaces. This follows directly

by applying the following result and induction.

Lemma 12:

Suppose a, € E® and b1 € El for 1 =1, ..., m+tl , and x , 2z ¢ . If

i

85 +:v, 8 are independent (so m < n) ,

(24) a,°’x = bi for {i=1, .,., m,

i

(25) el < bm+l ’
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and I = {1 : a;z = b1 ,

hence has no more than n elements).

l1<i<m+ 1}, then {a; : 1 ¢ 1} is independent (and

Proof:
Suppose {ai : 1 € I} 1is dependent. Then there exist numbers Ai ,1el,
not all 0 , with 2 Aiai = 0. Since 81, +e0y 8 are independent, m+ 1 € 1

iel

and xm+1 ¥ 0 and so we may suppose Am+1 > 0 . Then

(26) 0= J (\,a)z= J A (a,*z) = ] ib, .
fleThanta ter 11 e TR

But by (24), (25), and Am+ >0,

1

0= J (,a)x= ] Ab, +Xr _.a_ x< ] Ab
{el i1 1eIntl) s [ { m+l m+l 161 i1

which contradicts (26). ||
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4. RELATED WORK

Van.Slyke [8] has considered the result of Theorem 8 in spaces more genecral
than E® and has applied it to an optimal control problem.

C. Eaves and W. Zangwill have recently informed me that they are currently
developing a theory for cutting-plane algorithms which allows inactive constraints
to be dropped after each subproblem. There seems to be some overlap between their

results and mine, although our approaches are different.
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