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ABSTRACT 

General conditions are given for the convergence of a class 
of cutting-plane algorithms without requiring that the 
constraint sets for the subprobleras be sequentially nested. 
Conditions are given under which inactive constraints may be 
dropped after each subproblem. Procedures for generating 
cutting-planes include that of Kelley [4] and a generaliza- 
tion of that used by Zoutendijk [12] and Veinott [9].  For 
algorithms with nested constraint sets, these conditions 
reduce to a special case of those of Zangwill [10] for such 
problems and include as special cases the algorithms of 
Kelley [4] and Veinott [9].  An arithmetic convergence rate 
is given. 



CUTTING-PLANE METHODS WITHOUT NESTED CONSTRAINT SETS 

by 

Donald M. Topkis 

I consider the problem of maximizing a real-valued continuous function f 

over a nonempty closed subset S of  E .  It is assumed throughout that one 

is given a closed subset T of E  such that S ^ T and  f attains its 

maximum over every nonempty closed subset of T .  The general algorithm to be 

considered proceeds by setting T « E , and, given T.  as the intersection of 

E  and a finite set of closed half-spaces containing S , picking x.  to 

maximize f over T. H T , stopping if x e S , and otherwise letting S.  be 

the intersection of E  and a subset of those half-spaces determining T.  such 

that x,  maximizes f over S. H T , finding a closed half-space H  containing 

S but not x. , setting T. .. ■ S. 0 H. , and continuing. 

T,  will be intersection of E  and at most k closed half-spaces.  It is 

easily seen that if T is convex and f is pseudo-concave  or concave on T , 

then S.  will satisfy the above conditions if S  is the intersection of all 

the half-spaces determining T,  for which x,  is on the boundary and any subset 

I am grateful to Professor Richard Van Slyke for bringing Reference [6] to my 
attention and pointing out the relevance of the concept of uniform concavity 
which allowed the hypotheses of Lemma 7 to be weakened somewhat from an earlier 
version framed in terms of the matrix of second partial derivatives of f at 
points of T . 

Conditions for this are given in Corollary 11, and it is clearly true when T 
is compact. 

A real-valued function f is pseudo-Qonaave  [7] on a convex set T C| E 
if f  is differentiable on T and  (y - x)»Vf(x) * 0 for y , x e T implies 
f(y) i f(x) . A differentiable concave function is pseudo-concave. 



of those half-spaces determining    T.     for which    x.     is an interior point.    To 

be applicable, of course,   the subproblems  (which have linear constraints when   T 

is a convex polyhedron) must be significantly easier to solve than the orlgina] 

problem, and hence this procedure is essentially confined to problems in which    f 

is either linear,  quadratic, or separable in which cases relatively efficient 

algorithms  [1,2,5]  exist for the subproblems.    The algorithms of Kellcy  [4] 

and Veinott   [9] set    S.   - T.     for all    k    so each    T.     is the intersection of    k 

closed half-spaces and    E    .    If each    S.     is  the intersection of    E      and  those 

half-spaces determining    T.     for which    x.     is a boundary point,  then it is scon 

by Lemma 12 chat each    T.     is the intersection of no more than    n + 1    closed 

half-spaces and    E 

Since    x,     maximizes    f    over    S.   ft T  ,  x. ^.    maximizes    f    over    T, ., Hi  , k k k+1 k+1 

and    S.fl T = T. J.1 D T ^ S  , k —   k+1 — 

(1) f(x.) > f(x. ..)  > max f(x) 
K    -        Ki-i    - xcS 

The following slight generalization of an observation of Kelley  [4]   is clear 

from (1). 

Theorem 1; 

If    x.   e S    for some    k ,  then    x.     is optimal.    If    x.   ^ S    for all    k 

and the limit point,    x , of some convergent subsequence of    {x, }    is feasible, 

Chen   x    is optimal. 

The conditions of Theorem 10 (which were already indicated to be sufficient 

for another basic assumption in the first footnote) assure that    {x, }    is bounded 

and hence has a convergent subsequence.    Thus,  the real problem is to find conditions 

under which the limit point of any convergent subsequence of    {x. }    Is feasible, 

and this is considered in Section 1. 



1.  GENERAL CONVERGENCE CONDITIONS AND EXAMPLES 

A mapping (a(x),b(x))  from T - S into E    with a(x) c E  and 

b(x) c E  is a limiting cutting-plane function  if S £ H(x) i {y : a(x)»y > b(x)} 

for all x c T ' S , (a(x),b(x)) is bounded on any bounded subset of T - S , 

and for any {x. : k - 1,2, ...} CT - S with lim x. ■ x e T - S the limit point 

(a,b) of any convergent subsequence of {(a(x. ),b(x,))} satisfies a»x < b . 

The notion of a limiting cutting-plane function was introduced by Zangwill [10]. 

He applied a generalized version of this notion to a class of cutting-plane 

algorithms with S. ■ T.  to obtain a result for which Corollary 5 is a special 

case.  In addition, he presented Lemma 3 and proved a special case of Lemma 4 with 

B - {0} . 

Theorem 2; 

If H(x) is determined by a limiting cutting-plane function, H. ■ H(x. ) , 

11m x  - lim x  ■ x , and x  t H   for all i , then x is optimal. 
1-*»  1  !->- Ji h 1 

Proof; 

Since    (a(x},b(x))    is a limiting cutting-plane function and    x      € H.     « H/x.   \ 
Ji       Ki       \ hj 

for all    1 , 

(2) a/x,   X'x.    > b/x.   \  > a/x,   \ »x, for all    1 a(\)"xJi-bN>aN)'\ 

If    (a,b)    is the limit point of any convergent subsequence of 

then it follows from (2)  that    ä'x ■ b  .    Hence,    x    is feasible since    (a(x),b(x)) 
{{i\rN)y 

'   If    T    is convex and a cutting-plane function exists,   then it is easily seen 
Chat    S    is convex. 



is a limiting cutting-plane function,  and so    x    is optimal by Theorem 1.  // 

The following two lemmas give examples of  limiting cutting-plane functions. 

The function of Lemma 3 was  introduced by Kelley [4].    The special case of the 

function of Lemma 4 with    B ■ {0}    was introduced by Zoutendijk  [12]  although 

he gave no proof  for his algorithm,  and a slightly modified version of his 

algorithm was proven to converge by Veinott   [9].    Throughout,  suppose  that 

S ■ (x  :  G(x)   > 0}    where    G(x)    is a real-valued continuous function on   T  . 

Lemma 3; 

Suppose that there exists a function u(x) from T - S into E  which 

is bounded on any bounded subset of T - S and such that G(y) < G(x) + w(x)*(y 

for all x e T - S and y c S . Then (u(x),y(x)'x - G(x)) is a limiting 

cutting-plane function. 

- x) 

Proof: 

Clearly,     S C H(x)   .     Pick    (x  } c T  -  S    with    lim x    » x  e T  '  S  .    Then 

the limit point of any convergent subsequence of    {(p(x, ) ,p(x. ) «x,   - G(x.)}    takes 

the form    (ü.ü'x - G(x))   .     But    G(x)   < 0    since    x E T  ~  S    so    ü«x < u«x - G(x)   .// 

Kelley  [4] observed that if    T    is convex and    G(x)  -    min    g.Cx)    where 
l<i<m 

each g. is differentlable and concave on T then w(x) - ^Sw^OO satisfies 

the conditions of Lemma  3 if i(x) is chosen such that G(x) - Sw^W • 

Lemma 4; 

Suppose there exists t with G(t) > 0 , s Is convex, and for x c T - S define 

X(x) ■ supU : Xx + (1 - X)t e S} and set w(x) - a{x)x + (1 - a(x))t for any 

o(x) e [X(x),l] with 
G(x) 

e B where B is a nonempty subset of [0,1] 

Suppose also that for P - {w : there exists x c T - S with w(x) ■ w} there 



exists a function u(w) from P into E  which is bounded and bounded away 

from 0 on any bounded subset of P and such that 0 < G(w) + y(w)»(y - w) 

for all w e P and y c S . Then X(x) e (0,1) for all x e T ' S and 

()i(w(x)),M(w(x))»w(x) - G(w(x))) is a limiting cutting-plane function. 

Proof; 

Pick any x E T - S .  If X(x) > 1 then there exists z E S and Y c (0,1) 

with x - yt + (1 - Y)z which contradicts the convexity of S . Also,  X(x) 

cannot equal 1 since this would imply that x c S because S is closed, so 

X(x) < 1 . Since G(t) > 0 , it then follows that X(x) E (0,1) . 

Now pick {x. } c T * S with lim x - x e T - S . Then the limit point of 

any convergent subsequence of {(vi(w(x )) ,vi(w(x. ))«w(x ) - G(w(xk)))}  takes the 

form (w^'w - G(w)) where u t 0  .    Let a be the limit point of any convergent 

subsequence of the corresponding subsequence of {a(x.)} . Then 

w - ax + (1 - ö)t , ä e [0,1] , and w e E - S imply   Si > 0 and G(w) < 0 . 

But since t is In the interior of S , y / 0 , and clearly 

0 < G(w) + y»(y - w)   for all y c S , 

it follows that 

(3) 0 < G(w) + ü'(t - w) 

and so by (3) and G(w) < 0 
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(4) 0 < y(t - w) . 

But t - w = o(t - x) and 

(5) - w - (1 - 5)(x - t) - -(^^-Vt - w) 

and so by (4) and (5) If o < 1 

(6) 0 > ü'(x - w) 

and by (6) and G(w) < 0 

(7) 0 > G(w) + w'(x - w) . 

If 0-1 then w » x and (7) still holds. 

Since by hypothesis S C H(x) for all x e T - S , the proof is complete. // 

Suppose G(x) ■ min g. (x)  where each g  is a real-valued differentiable 
l<i<m i 

function on E  . Veinott [9] showed that when B ■=' {0} , each g.  is quasi-concave 

on E  , i(x)  is any 1 such that G(x) " gt/ x (x) , and G(x) • 0 implies 

Vg.r v(x) j* 0 , then for y(x) ■ Vg. ^ x (x) the hypotheses about y(x)  in Lemma 4 

are satisfied. For arbitrary B c [0,1] it is easily seen that if each g. (x)  is 

concave and y(x) ■ Vg . . (x)  (with i(x) as above) then this u(x) satisfies 

the hypotheses of Lemma 4. The method of Lemma 4 with B - (0,1) and a(x) c (X(x),l) 

would seem to compare favorably with Kelley's method (which requires a(x) ■ 1 , 

but does not assume the existence of t with G(t) > 0) because the cutting-plane 

for x is generated by a point "closer" to S than x , and the advantage over 

Veinott's method is that with B - {0} finding a(x) exactly  is generally not 

A real-valued function f is quasi-conaave  [7]  on a convex set T if 
{x : f(x) > a , x c T} is convex for all real a . A concave function is quasi- 
concave . 



always possible (although here one would need each g.  to be concave while ho 

only required them to be quasi-concave).  Finally, observe that when B »= {1} 

and a(x) = 1  the method of Lemma 4 is identical with that of Lemma 3. 

The following is an immediate consequence of Theorem 2 by letting j ■ k   . 

Corollary 5; 

If H(x)  is determined by a limiting cutting-plane function, H. ■ H(x. ) , 

and S. » T. , then the limit point of any convergent subsequence of  {x, } is 

optimal. 

Corollary 5 together with Lemma 3 proves Kelley's algorithm [A], and Corollary 

5 together with Lemma A proves Veinott's algorithm [9] and a more general class 

of cutting-plane algorithms. 

The following result paves the way for generating cutting-plane algorithms 

In which inactive constraints (i.e., half-spaces determining T.  for which x. 

is an interior point) may be dropped after each subproblem. It follows immediately 

from Theorem 2 by letting j. ■ k + 1 since x
k +i e Ti, +i £ ^ • 

Corollary 6; 

If H(x)  is determined by a limiting cutting-plane function, H. » H(x. ) , and 

lim x,  ■ lim x.  . ■ x , then x is optimal. 

In order to apply Corollary 6 it is necessary to explore conditions under 

which lim x.  « lim x,  . , and for this purpose the following notions are 

considered. 

A real-valued function f is uniformly concave  [61 on a convex set T if 

there exists a nondecreasing function 6(r) > 0 on (O,09) such that 



f(»j(x + y))  > >sf(x) + 4f(y) + «(Ix - y|) 

for all   x  , y c T .    A uniformly concave function is strongly concave [6] if 
2 

6(r) - yr      for some    y > 0  .    It Is easily seen that if    T    Is compact,    f    has 

continuous second partial derivatives on   T ,  and the matrix of second partial 

derivatives of    f    is negative definite at all points of    T  ,  then    f    is strongly 

concave on    T . 

Lemma 7; 

If    T    is convex,    f    is uniformly concave on    T  ,  and    lim x.     ■ x    then 
1-»-    "i 

11m x,   .,  ■ x , 
1-   ki+1 

Proof; 

Since    x.      maximizes the concave function    f    over the convex set    S     0 T 
tt1 ki 

vI •f (\) -1(\+\4 ■ and    *k +1  « Tk +1 
n * E S,,    0 T ,  f/xb \ > f/lj/x^    + x,, ^\\   .    Thus 

'{\) -1(\+ V)) - "'(N)+ "M+ I'N" V1) 
, and so 

'-1 (£K) - 'M)'-21 'K - V) 
But (8) implies that lim ö(Ix.  " x. .. | ) ■ 0 , and since «(•) is positive and 

1-»- \ Kl   Ki •L / 



nondecreaslng on (0,*) this implies that lim |x. ** xi, 4.11 " 0 . II 

Clearly the maximum of a uniformly concave function on a convex set is 

unique if it is attained.    Thus, Theorem 10  (which together with the hypotheses 

of Theorem 8 and  the earlier assumption that    f    attains its maximum on   T 

implies that    (x. }    is bounded), Corollary 6, and Lemma 7 yield the following 

result which allows inactive constraints to be dropped after each subproblem. 

Theorem 8; 

If    H(x)    is determined by a limiting cutting-plane function,    H.   ■ H(x. )   , 

T    is convex,  and    f    is uniformly concave on   T ,  then    {x. }    converges to the 

unique maximum of    f    on    S . 



10 

2.     CONVERGENCE RATES 

Levltln and Polyak [6]  have established an arithmetic convergence rate for a 

cutting-plane algorithm which,  when specialized  to subsetsof    E    ,  has    S.   ■ T. 

(although their proof still holds if inactive constraints were dropped after each 

subproblem) and uses the cutting-plane method of Lemma  3.    Here their algorithm 

and method of proof are generalized to show the same convergence rate for 

algorithms which allow inactive constraints to be dropped after each subproblem and 

for which the cutting plane at    x e T ~  S    may be generated at some point 

w(x)  E T -  S    other  than    x    on the line segment joining    x    to a point    t    with 

G(t)  > 0     (as in Lemma 4,  although here,  unfortunately,    w(x)    must be bounded 

away from    S)  . 

Theorem 9; 

Suppose that    S ■  {x   : G(x)   >_ 0}  ,    T    is convex,    G(x)    is concave on    T  , 

there exists    t    with   G(t)  > 0  , and for    x e T -  S    define 

X(x) ■ sup {X  : Xx +  (1 -  X)t e  S}    and set    w(x)  - a(x)x + (1 - ot(x))t    for any 

a(x)  e   [X(x),l]    with    G(w(x))   <_ eG(x)    where    0 <  t ^1  .    Suppose also that for 

P ■ {w  :   there exists    x E T ~   S    with    w(x)  ■ w}     there exists a function    y(w) 

from    P    into    En    with     |u(w)|   <^ K    for all    w E P    and such that 

0 <_ G(w) + u(w)'(y - w)    for all    w e P    and    y e S  ,    and let 

H.   - {x  :  0 <_G(w(x.)) + u(w(xk))  •   (x - w(x.))}   .     ?.f    T    is compact,    f    is 

strongly concave and differentiable on   T  ,  and    x    is  the unique maximum of    f    on 

S  ,  then for   k ^ 1 

f(xk)-f(x)<^ 

See the remarks following Lemma 4. 
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and 

Ix.   - xl  <   
k aVT 

where 

, . 2Y(5G(ti\2   a . hsm 
ll  <iY\Kbd /  * a2   Kbd 

d - max {|vf(y)| : y e T} , b » max {|y - t] : y e T} , and y is as in the 

definition of strong concavity. 

Proof: 

Let    Xk - X(xk)  , ak - a(xk)   , wk - w(xk)   , and    uk - u(wk)   .    Clearly, 

G(X.xk +  (1 - X.)t) ■ 0    and so by concavity 

0 - G(Xkxk +  (1 - Xk)t)   >  XkG(xk) +  (1 - Xk)G(t) 

and 

(9) -G(xk)   >      -^ (1 - Xk)G(t)   >    (1 - Xk)G(t)   . 
k 

Since    t e S , 

(10) 0 <.G(wk) + yk-(t - wk) 

But    x.     is the unique maximum of    f    on    S.  n T    and it is easily seen that 

x.   i Hk    so    x.   j* xk .  c Tk , nT-ILn Si.nT    and by the strict concavity of    f 

on    T  , 

(ID o-^V + vK+i-V 
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or 

(12)       0 - G(wk) + Vk.(Xk+i . Xk) + (1 . a^.^^  . t) . 

By (10) and (11) 

(^ 0 > v  '(x        - t^ - yk ^k+1  t; ' 

»o by (12) and (13) 

(")       0 < G(Wk) + Vk.(Xk+i . Xk) 1  eG(Xk) + ^^ . Xk| ^ 

By the concavity of f and the optimality of x , 

<15)       f(xk) - f(x) < f(xk) - f(A x + (l - x )t) 

l(l-Ak)(xk- t).7f(Xkxk+ (1- xk)t) 

< (1- Ak)|xk- t|.|7f(X.x. + (1 - xjt) 
'k-k ' Vi  ^k^ 

1 (1 - \)bd . 

Combining  (15),   (9),  and (14), 

(16) f(xk) - f(x) 1 (1 - Ak)bd 

-oh) (-G<x
k))bd 

< Kbd 
- eG(t)    xk ' xk+l 

Since    x.   , xk -   c Sk fl T   and    xk   maximizes the strongly concave function 

f    over the convex set    Sk n T , for some    y > 0 

(17) f(xk)  > f0i(xk + xk+1)) > »if(xk) + ^(x^) + Y|xk - xk+1|
2 



and from (17) 

13 

(18) f(x.) - f(x,+1) > 2Yk " k+1' k  "k+1'  ' 

Now let Dk - f (xk) - f (x) > 0 . By (16) and (18) 

-UG(t)/ 'Xk " Xk+ll -(eG(t)) (ly) (Dk - V^ 

or 

(19) Dk+1 i 
Dk - alDk " V1 '  alDk> 

The arithmetic convergence rate for Dk then follows from (19) as in [3] by 

observing that 

(20) 

and using  induction on (20)  to get 

k        o 

or 

(21) D.   < -1 <J^ 
k-^+ak-alk 

D     + Hj^lC 1 

O 

As in  (17) and (18),  it follows that 

(22) Dk '  f(xk)   "  f(^ i2Y|xv - 
-i2 



and by (21) and  (22) 

14 

|xk - x|  < 
/27^k" 
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3.  SOME USEFUL ANALYTIC RESULTS 

In the Introduction to this paper, the somewhat unintuitive assumption was 

made that one is given a function f on a closed set T such that f attains its 

maximum on any nonempty closed subset of T .  Corollary 11 provides intuitively 

appealing conditions for this to be true. Theorem 10 was proven by Zoutendijk [11] 

under the additional assumptions that T ■ E  and  f  is differentiable on T . 

Theorem 10; 

If T is a closed convex subset of E , f  is concave and upper semi- 

continuous on T , and the set of maxima of f on T is nonempty and bounded, 

then {x : x e T , f (x) ^ a}  is bounded for all a . 

Proof; 

Let W be the set of maxima of f on T .  Since  f is upper semi- 

continuous on the closed set T , it follows that W is closed and thus W is 

compact and nonempty by hypothesis. Now pick any x e W and any y > 0    such that 

x c W implies |x - x| < y • Let B « {x : x e T , |x - x| * y} • If B * 0 , 

then T is bounded by convexity and the proof is complete, so assume B # 0 .  Let 

M ■ sup f(x) . Since f  is upper semi-continuous on the nonempty compact set  B 
xeB 

it follows that f attains its maximum on B , so f (x) > M since W fl B ■ 0 . 

Now pick any a < f (x)  (the result follows trivially for a >_ f (x)) and any 

x e T with Ix - xl > y    and f (x) > o . Let X *  e (0,1) and 
lx-xl 

z - x + X(x - x) . Then z e T by convexity and  |Z-X|=\|X-X|"Y so 

z e B . Thus by concavity 

(23)        M > f(z) > Xf(x) + (1 - X)f(x) > Xa + (1 - X)f(x) 

and substituting X » ^  into (23) , 
Ix - xl 



T^—■^m^~mmm~^^^^^K^m 
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Y(f(x) - ^ ^ |x . -, 

f(x)  - M 

and    {x  : x e T ,  £(x)  >_ a}    must be bounded.   || 

Corollary 11; 

If    T    is a closed convex subset of    E    ,5    is a nonempty closed subset of 

T ,  f    is concave and upper semi-continuous on    T , and the set of maxima of    f    on 

T    is nonempty and bounded, then    f    attains its maximum on    S  .    Hence, a strictly 

concave upper semi-continuous function which attains its maximum on    E      (such as 

any strictly concave quadratic function) will attain its maximum on any nonempty 

closed subset of    E    . 

Proof: 

Pick any y e S . Then it suffices to show that S - {x : x E S , f (x) >_ f (y)} 

is bounded. But S c {x : x e T , f (x) ^ f (y)} which is bounded by Theorem 10. | | 

In the introduction, it was mentioned that if each S.  is the intersection of k 

E     and all the linear constraints of    T.     that are active at    x.     then each    T, 

is the intersection of no more than n-t-1 closed half-spaces.    This follows directly 

by applying the following result and induction. 

Lemma 12; 

Suppose a. e E  and b. e E  for i - 1, ..., m+1 , and x , z e E . If 

a., ..., a  are independent (so m < n) , im —   " 

(24) a.'x - b.      for 1 • 1, ..., m , 

(25) Vi,x < b«+i • 
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and I ■ {i : a »z «b. ,l<^i<^m+l}, then {a. : 1 e 1} is independent (and 

hence has no more than n elements). 

Proof: 

Suppose {a. : i e 1} is dependent. Then there exist numbers X  , i e I , 

not all 0 , with  ^ X.a. ■ 0 . Since a., ..., a  are independent, m + 1 e I 
iel 

and X . )* 0 and so we may suppose X  . > 0 . Then 

(26) 0 -    I    (X a ).z - I    X^a -z) - I    X^ . 
lei id id 

But by (24), (25), and X ^ > 0 , 

0 " I  (X.a.)'x -   y   X.b. + X ^.a .,«x < I    X.b, 
iel iel-fci+l) iel 

which contradicts (26). 



m^^wm—^^K^m—^^^mm 
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A.     RELATED WORK 

Van Slyke  [8]   has considered the result of Theorem 8 in spaces more general 

than    E      and has applied  it to an optimal control problem. 

C.  Eaves and W.  Zangwlll have recently informed me that  they are currently 

developing a theory for cutting-plane algorithms which allows inactive constraints 

to be dropped after each subproblem.     There seems to be some overlap between their 

results and mine, although our approaches are different. 

. 



19 

REFERENCES 

[I] Dantzig, G. B., LINEAR PROGRAMMING AND EXTENSIONS, Princeton University 
Press, (1963). 

[2]      Dantzig, G.   B.  and R. W.  Cottle,   "Positive  (Semi-) Definite Programming," in 
NONLINEAR PROGRAMMING  (J.  Abadie, ed.), John Wiley & Sons,   Inc., 
pp.   55-73,   (1967). 

[3]      Frank, M.   and P.   Wolfe,  "An Algorithm for Quadratic Programming," Naval 
Research Logistics Quarterly.  Vol.   3, pp.  95-110,   (1956). 

[A] Kelley, J. E., Jr., "The Cutting-Plane Method for Solving Convex Programs," 
Journal of the Society for Industrial and Applied Mathematics. Vol. 8, 
pp.   703-712,   (1960). 

[5]      Lemke,  C.   E., "Bimatrix Equilibrium Points and Mathematical Programming," 
Management Science. Vol.   11,  pp.  442-453,   (1955). 

[6]      Levitin,  E^  S.  and B. T.  Polyak,  "Constrained Minimization Methods," 
Zh.  vychisl. Mat, mat.  Fiz.   (in Russian), Vol.  6,  pp.   787-823,   (1966); 
also,  U.S.S.R.  Computational Mathematics and Mathematical Physics  (in 
English), pp.  1-50,   (1968). ' ~ --^  ^_-»     . 

[7]      Mangasarian, 0.  L., NONLINEAR PROGRAMMING,  to appear,   (1968). 

[8] Van Slyke, R., "Cutting-Plane Algorithms and State Space Constrained Linear 
Optimal Control Problems,"  to appear,   (1969). 

[9]      Veinott, A,   F.,  Jr., "The Supporting Hyperplane Method for Unimodal 
Programming." Operations Research.  Vol.  15, pp.  147-152,   (1967). 

[10]    Zangwill,  W.  J.,  NONLINEAR PROGRAMMING: A UNIFIED APPROACH,   Prentice Hall, 
Inc.,   (1969). 

[II] Zoutendijk,  G., METHODS OF FEASIBLE DIRECTIONS,  Elsevier Publishing Company, 
(1960). 

[12]  Zoutendijk, G., "Nonlinear Programming: A Numerical Survey," Journal on 
Control of the Society for Industrial and Applied Mathematics. Vol. 4, 
pp. 194-210, (1966). 



Unclassified 
S<iiirilv Cl.i'.sifuj'um 

DOCUMENT CONTROL DATA -R&D 
iSvi'unty rf.tk.M/lr Afion vt lltlv, bi'tt*   ot iiJ>*tttH't *li> t Htdv%n^' .xmuf.tfi.-n ti'ift he vtif*-u *( nhi ti flic >■ vvr ill r% t**'! i    i Ui .•Mftrth 

l    OH'ClN* liNG  »CTlviTv  (Ci<lP'>r»l* sulhur) 

University of California, Berkeley 

W». •• t «'O« »   »I. i;u>>. ' »    f l  » .VI» K- » • «.vf. 

Unclassified 
il.    exou"' 

J    ««.»OWT   TITLt 

CUTTING-PLANE METHODS WITHOUT NESTED CONSTRAINT SETS 

4   oriC*i"Tivc Notts (Typ* ol trpotl tnd,tnctu*lvu Julrt) 

Research Report^ 
*   * j THORI9I (Ftn' name, midillm initial, i»at nsmt) 

Donald M.  Topkis 

6     nF.POHT   O* TE 

June 1969 
til.    CONTRACT   OX   CMANT   NO 

Nonr-222(83) 
6.   PWOJtC T NO 

NR 0A7 033 
c. 

Research Project No.: RR 003 07 01 

7«.    TOTAL   NO     O»    •'»01» 

19 
1h    NO     O»    Kt   » S 

12 
*«.   OIIIOINATOH'i   HLtO«T   NuMUl   H.JI 

ORC 69-1A 

»6. OTMIH MLPOHr NOiil [Any olhrr nnmbrrs Ihol m.iy 6'- »N»i/n.  ( 
Ihn nport) 

10.  OISTKIBUTION STATCMCNT 

This document has been approved for public release and sale; Its distribution is 
unlimited. 

it »uppttMENT»*» Norel Also supported by the 

National Science Foundation under Grant 
GP-8695. 

M     SPONSORING MILI T ANT    ACTIVITY 

MATHEMATICAL SCIENCES DIVISION 

SEE ABSTRACT. 

DD/r.sMTS   (PAGE,, 
NO 

S/N  0101-807-6811 
UnclasslEled 
Security Cla^ntficalion 

A-.1l4rt* 



Unclassified 
S'Tunty n.i  sifi.ation 

K CY WOMOt 

Nonlinear Programming 

Algorithms 

Cutting-Plane Algorithms 

Convergence Rates 

Uniformly and Strongly Concave Functions 

DD /r..l473 «BACK) Unclassified 
S/N 0101•«07-«SJl Security Ctatiification *-}M0» 

■•«^■•4'T 


