
(

BOLT BERANEK AND NEWMAN iwc

CONSUITING D E V E t O P M E N T S E S E A « C H

1

& AFCRL-69-01Cb

00 THE TEACHABLE LAHGUAGE COKPREHENDER:
5£J A SIMULATION PROGRAM AND THEORY OF LANGUAGE

Q
<

31 January 1969

M. Ross Quillian

Scientific Report No. 10
Contract No. P19628-68-C-0125
Project No. 8668
Contract Monitor: Hans H. Zschirnt, Data Sciences Laboratory

Prepared for:

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
Office of Aerospace Research
united States Air force
Bedford, Massachusetts 01730

This research was spon-
sored by the Advanced
Research Projects Agency
unde»- ARPA Order No. 627

Distribution of this document
is unlimited. It may be re-
leased to the Clearinghouse,
Department of Commerce, for
sale to the general public.

Reproducud by the
CLEARINGHOUSE

for Federal Scientific ^ Technical
Information Springfioid Va- 22151

^
C A M B » I D G E NEW Y O » K CHICAGO I O S A N O E I E S

BEST
AVAILABLE COPY

AD 687746
AFCRL-69-0108

31 January 1969

THE TEACHABLE LANGUAGE COMPREHENDER:

A SIMULATION PROGRAM AND THEORY OF LANGUAGE

M. Ross Quilllan

BOLT BERANEK AND NEWMAN INC
50 Moulton Street
Cambridge, Massachusetts 0213S

Scientific Report No. 10
Contract No. P19628-68-C-0125
Project No. 8668
Contract Monitor: Hans H. Zs-nirnt, Data Sciences Laboratory

Prepared for:

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
Office of Aerospace Research
United States Air Force
Bedford, Massachusetts 01730

Distribution of this document
is unlimited. It may be re-
leased to the Clearinghouse,
Department of Commerce, for
sale to the general public.

This research was spon-
sored by the Advanced
Research Projects Agency
under ARPA Order No. 627

THE TEACHABLE LANGUAGE COMPREHENDER:

A SIMULATION PROGRAM AND THEORY OP LANGUAGE»

M. Ross Qulllian

January 1969

»This research was suoported primarily by the Advanced
Research Projects Agency, monitored by the Air Force
Cambridge Research Laboratories under Contract No.
F19628-68-C-01i:3; and in part by the Aerospace Medical
Research Laboratories,Aerospace Medical Division, Air
Force Systems Command, Wright-Patterson Air Force Base,
Ohio, under Contract F33615-67-C-1982 with Bolt Beranek
and Newman Inc.

The author extends his most grateful thanks to
Daniel G. Bobrow, Principal Investigator on the ARPA
project, for invaluable assistance in writing the TLC
program, \o Tony Bell, who wrote the program's sentence
generation routines; and to Allan Collins, who Is attempting
to test its psychological validity. Thanks also to Joseph
Becker and Bruce Fräser, who along with those Just mentioned
provided valuable criticisms of various versions of the
f resent report. This paper is to appear in the Computational
ingulstics section of the Communications of the ACM in 1969.

ABSTRACT

The Teachable Language Comprehender (TLC) Is a program designed
to be capable of being taught to "comprehend" English text. When
text which the program has not seen before is input to it, it
comprehends that text by correctly relating each (explicit or
implicit) assertion of the new text to a large memory. This
memory is a "semantic network" representing factual assertions
about the world.

The program aJ JO creates copies of the parts of its memory which
have been found to relate to the new text, adapting and combining
these copies to represent the meaning of the new text. By this
means, the meaning of all text the program successfully compre-
hends is encoded into the same format as that of the memory,
this form it can be added into the memory.

In

Both factual assertions for the memory and the capaoilitles for
correctly relating text to the memory's prior contents are to be
taught to the program as they are needed. TLC presently contains
a relatively small number of examples of such assertions and
capabilities, but within the system notations for expressing
either of these are provided. Thus, the program now corresponds
to a general process for comprehending language, and provides a
methodology for adding the additional information this process
requires to actually comprehend text of any particular kind.

The memory structure and comprehension process of TLC allow new
factual assertions and caoabilJ ies for relating text to such
stored assertions to generalize automatically. That is, once such
an assertion or capability is put into the system, it becomes
available to help comprehend a great many other sentences In the
future. Thus, adding a single factual assertion or linguistic
capability will often provide a large increment in TLC's effective
knowledge of the world, and in its overall ability to comprehend
text.

The program's strategy is presented here as a general theory of
language comprehension.

I !
r

AN AGE

I. INTRODUCTION

A. Goals and Sample Output

The ultimate goal of the research to be described here is to

develop a computer program that could comprehend newspapers, text-

books, encyclopedias, and other written text. That is, the program

should be able to extract and somehow retain meaning from natural

language text it has not seen before at a level of skill comparable

to that of human readers. The present paper is an overview of a

program - called TLC, for Teachable Language Comprehender - which

aspires to this goal.

TLC is in the development stage and so far only works on certain

isolated phrases and sentences. Nevertheless, a large part of its

strategy is now worked out in considerable detail, as is the

structure of the memory TLC works with. Together these constitute

a theory of what text comprehension is, and of how to achieve it ;

it is really this theory that we wish to describe here. Viewed

as a theory, a good part of TLC's strategy is independent of the

kind of mechanism that carries it out; one may think of this

mechanism as a computer, a person's brain, or whatever else could
do it.1 Our system is implemented in BBN-LISP (Bobrow, Murphy

and Teitelman, 1968) on an SDS 9^0.

1 We also happen to believe that, given the present state of
psychological theories, almost any program able to perform some
task previously limited to humans will represent an advance in
the psychological theory of that performance. Therefore, while
the reader who disagrees or who has no interest in human behavior
can read TLC's strategy strictly as program specification, we
choose to regard this strategy also as psychological theory, and
will speak of a computer and a person interchangeably as our
example of the mechanism carrying it out. Reaction time data
«Mpporting the notion that people's semantic memories have at
least an overall organization like that of TLC's is reported in
Collins and Quillian (1968).

1

"Comprehending" text is here defined as the relating of assertions

made or implied in that text to Information previously stored as

part of the comprehender's general "knowledge of the world." Corres-

pondingly, the central aim of TLC is the ability to appropriately

relate text to the correct pieces of stored general knowledge of

the world. We assume that this is not only the basic process

involved in the comprehension of language, but also in a great

many other perceptual and cognitive functions.

TLC's second important assumption is that all of a comprehender's

knowledge of the world is stored in the same kind of memory - that

is, that all the various pieces of information in this memory are

encoded in a homogeneous, well-defined format. TLC's memory

notation and organization constitute an attempt to develop

such a format, which is both uniform enough to be manageable

by definable procedures, yet rich enough to allow representation

of anything that can be stated in natural language. This memory

format is a further development of that used in a previous

"semantic memory" program (see Quillian, 1966, 1967, or in

Mlnsky, 1968); it amounts essentially to a highly interconnected

network of nodes and relations among nodes.

If comprehension of text by TLC only meant for tie program to

relate the text appropriately to information in Its memory,

however, its comprehension would not necessarily be discernable to an

outside observer, nor would it necessarily leave any trace to

alter the program's future performance. Therefore, comprehension

in TLC is always followed immediately by encoding in TLC's

memory format a representation of what the program decides the

meaning of the text to be. Figure 1A gives an example of the

program's output.

HEAD(LAWYER'S CLIENT)

OUTPUT!

((CLIENT (EMPLOY (LAWYER)
(BY (*TIiIG* . CLIENT)))

OUTPUT2:

UNDER DISCUSSION IS A CLIENT WHO EMPLOYS A LAWYER.

FIG. 1A An Example of TLC's Output

This figure shows a small phrase input to one version of the

program and TLC's output, the machine's representation of what it

decided the phrase meant. The program always expresses its output

in two forms: the first showing the encoding of the input into

memory format, the second a translation of this into English.

Thus Fig. 1A shows that when TLC was asked to read the phrase

"lawyer's client/' its ccmorehenslon was expressed hy its output

at the bottom of Fig. 1A.

For the moment all that needs to be noticed about the non-English

version of the output is that the machine's comprehension of the

innut phrase has been to build a fairly elaborate internal

structure - the computer's counterpart of a cognitive structure -

wnlcn as tne cngilsn version indicate, is considerably more explicit

ana üetallea than tne piece of input text itself. The imoortant

point here is that in TLC the function of text is viewed not

as explicitly stating information for a reader, but rather as

directing the reader to construct for himself various cognitive

structures. These structures will in large part represe; c asser-

tions that go beyond anything explicit in the text itself, which

is possible because in constructing such structures the reader

includes pieces of information drawn from his prior memory. At

the same time, a text is able to communicate something new to the

reader, something which he did not already have in his memory,

by dictating ways in which he must adapt and recomblne the pieces

of information he draws from memory. These pieces then are used

as components for building the new cognitive structures that

represent his comprehension.

In other words, given a piece of input text to comprehend, TLC

first locates related pieces of information (scattered about) In its

memory, and then creates and adapts copies of these to recombine

into its representation of what the text means.

Defining text comprehension in this way leads to viewing the rich-

ness of a given comprehension of a piece of text as the number of

related memory items that the comprehender finds. For instance,

the output shown in Fig. IB illustrates comprehension of "lawyers

client" of greater richness than does Fig. 1A, since an addicional

related item has been found and used to create the output. TLC

can presently be made to produce the Fig. IB output, but (alas)

only at the cost of overinterpreting ocher phrases. The reason

for this difficulty and a possible extension of TLC to overcome it

will be discussed below in Section 3F. For the moment, all that

needs to be noticed is that one can imagine comprehensions of

greater richness than TLC can safely produce with its present

techniques.

Although TLC cannot necessarily recognize all the things in memory

that are in any way related to a text, it is designed on the as-

sumption that it may have to search a very sizable amount of memory,

Consider a piece of text such as:

One recalls an American president who was once i.ivolved in
an Incident in which he completely severed the main trunk
of a small fruit tree. He went and reported his action
to his father.

Most readers will recognize at some point as they read this that

the earlier president mentioned is Washington, the incident being

the one in which he cut down his father's cherry tree. Unless

the text is related to this fact in the reader's memory, the

paragraph has not been very well comprehended. Notice that

native speakers can establish this relationship even 4nough chey

may not have heard or thought about the cherry tree story for ten

or more years, and despite the fact that the Isn^uage in which

the incident is described above is almost certainly different

READ(LAWYER'S CLIENT)

0UT.UT1:
((CLIENT (EMPLOY (LAWYER)

(BY («THIS* . CLIENT)))
((AOR REPRESENT ADVISE)

(»THIS» . CLIENT)
(BY («THIS* . LAWYER))
(IN (MATTER (TYPE LEGAL))))))

OUTPUT2

UNDER DISrUSSION IS A CLIENT WHO EMPLOYS A LAWYER : IE IS A
CLIENT WHO IS REPRESENTED OR ADVISED BY THIS LAWYER IN A LEGAL
MATTER

FIG. IB An Example of Output .llustrating
Greater "Richness" of Comprehension

in terminology. In syntax, and in surrounulnp; context, from any

language in which they have ever heard (or thought about) the story

before. What the reader must have, then, as he roads the text

above, is an extremely versatile ability to recognize the

appropriate chunk of memory information from among literally

thousands of others he may since have learnea about "presidents,"

about "fruit trees," and about "fathers." Mo&t of the following

1s an effort to describe how TLC attempts to develop such an ability.

As part of this description we will first describe the memory, anr*

then trace TLC's processing of the example in Fig. 1 in some detail.

Before this, however, let us briefly indicate where TLC stands in

relation to other work. First, the project is perhaps closest to

efforts such as those of the TEMPO project (Thoraoson et al, 1965)

or of the SDC project (Simmons, Burger and Schwartz, 1968.) These

projects share with TLC the aim of resnondinp; to English input by

using very large, very general stores of information. The fact

that they are designed as question answerers rather than as language

Interpreters turns oui not to be expeclally imnortant; most of the

same problems must be faced in either case. Programs designed by

these three projectr. differ from well-known programs such as those

of Bobrow or Raohael, in that the latter aim at dealing with English

In one strictly limited subject matter at a time and do not attempt

to use an information store of a completely Feneral sort,

even though they make some use of "global" information. (See

papers by the above two authors in fünsky, 1968.) Up to now,

programs aimed at dealing with such a limited subject matter

have been more Impressive at answering questions posed to them

in English than have programs based on a general store of

information. (See the survey by Simmons, 1965; a recent

survey is Siklcssy and Simon, 1968.)

For some text deep comprehension requires reasoning mathematically,

visually, or in some other specialized way; to do this a program

probably will have to incorpor te techniques such as those

used in tfte Bobrow and Raphael programs, as well as in others such

as G.P.S. (Newell et al. 1962). In this regard see also the pro-

grams in Felgenbaum and Feldman, 1963, Reitman, 196^, and

Weizenbaum, 1967.) However, we assume that there is a common core

process that underlies the reacting of all text, whether newspapers,

children's fiction, or whatever, and It Is this core process that

TLC attempts to model.

The relation between TLC, a semantic performance model, and the

syntactic "competence" models of transformational linguistics

(Chomsky, 1965) Is not clear. The efforts that have been made so

far to attach "semantics" to transformational models seem, to this

writer at least, to have achieved little success (Woods, 1968,

being the most significant attempt.) Correspondingly, TLC

so far works with syntax on a relatively local, Drimitive basis,

which has very little if anything new to say to a linguist about

syntax. TLC does differ from most other projects of its type by

not being specifically designed to work on the output of a parsing

program, although a possible way of amalgamating one particular

recent parsing program with TLC will be desjrlbed below.

E. Teachinq TLC To Comprehend

ILC's memcry contains two kinds of material: factual assertions

about the world, and what will be called ''form tests." Form

tests constitute the syntactic part of the program's ability to

recognize that a phrase or sentence of an Input text Is relat-

ed to some particular concept stored in its memory. That

Is, tne ability to correctly relate a piece of text to memory

depends in part on overcoming whatever difficulties the syntax of

that text may nose to recognizing its relations to the

memory, ana this specific syntactic capability is wnat form tests

provide. As the cherry tree example above illustrates, people's

ability to cut through syntactic variation in recognizing relation-

ships to their prior knowledge 1" incredibly good.

TLC's memory is eventually going to have to contain as much factual

information as a person's memory if the program is to comprehend

as broad a range of text. However, any one particular phrase or

clause will never relate to all the pieces of information in sucn a

memory, but only to something on the order of five or ten such pieces.

Similarly, while TLC must eventually have as good an overall syn-

tactic ability as a person has in order to recognize paraphrases of

things in its i.emorv, comr^ehenslon of any one phrase or sentence will
never reauire all of this knowledge of svntax. Therefore, TLC

is designed to fraptment this ability Into a r;reat many separate

form tests, so that both the oropiram's memory for factual assert-

ions and its syntactic ability to recognize relationships can be

built up a piece at a time as each piece becomes necessary for

the comprehension of some particular fragment of text.

To facilitate this, TLC is built to work in close interaction with

a human monitor, its teacher, who proviues each piece of faccual

knowledge and each form test as the program needs it. using an

on-line teletype, the monitor can oversee the program's attempts

to read text, approve or uisanprove of each step it takes, and

.

provide it with additional factual information or form tests as

these are required. The principle components of the TLC system

are shown in Fig. 2. Any piece of knowledge or form test that

the monitor provides for the program is permanently retained in

its memory, which thus gets built up piece by piece.

Our plan is to begin with, say, 20 different children's books

dealing with firemen, and have TLC read all of these under super-

vision of the monitor. We anticipate that although the program

will require a great deal of input by the monitor as it reads

the first book, it will tend to require less and less on successive

books as it accumulates knowledge and form tests pertinent to the

comprehension of such material. Thus the hope is that by the

20th book TLC will be requiring very little aid, and that, over a

long (but finite) period of general reading, the monitor (teacher)

will become completely unnecessary, at least within given subject

matter areas. Reasons for expecting this are brought together in

Section III D. below. However, to date no serious attempt has

been made to actually amass either factual data or form tests in

this way, since almost all our effort has been concerned with

developing the executive TLC program. Our method so far has been

simply to give TLC sample Inputs and memory structures,attempting

to devise counterexamole cases to its successful performances.

10

- _u) c a> *;
CT1

O
E o 0 c:

^ ^ a> E
oiC-- en
0 a» t Q,

♦■* °£: ^ ^
•-I Q. Q> ^ L. + L t- a> o

1 C7) r" Q-xr

E o
C 1 E *-

o *_
Qi o o

c >^ a>
o at

c

m
p

o
ra

r
rk

s
p

a
c

a> a, -
^

Q.

O
_i

E
c

=3
O n

te
n

oc

es

1— Qi Q, O 9» k.

a>
a. Ul •- 5

'
H- i—i CM

♦^
^^ OJ c
«- o a> ■*-

E **

0) a, c «/> tr

o ^ O

o

•» 11.^

T3

•o
o o c o .

JCl s-s a> X Q) a, o
x: -^ ^2

b
o
in O
f
 t

co

m
 p

i
s
u

e

ch
ap

te

x
t

E
a>

■*-'

CO

c
o

■♦-'
o

c

I
"O
c

e
o
o.
E
o
o
O)

QL

c:

C\J

11

II. THE MEMORY

A. The Format For Factual Information

It will be necessary to describe the memory format in some detail.

The general aim of this format is to allow representation of

everything uniformly enough so that it can be dealt with by

specifiable procedures, while at the same time being ^ich enough

to allow encoding of natural language without loss of Information.

Reconciling these aims is not a trivial undertaking, and a great

amount of trial, error and effort has gone into the design of the

format.

First, and foremost, all factual information is encoded as either

a "unit" or as a "property." A unit represents the memory's

concent of some object, event idea, assertion, etc. Thus a unit

is use to represent any of the kinds of thing which can be re-

presented in English by a single word, a noun phrase, a sentence,

or some longer body of test. A property on the other hand encodes
I

any sort of predication, such as might be stated in English by a

verb phrase, a relative clause, or by any sort of adjectival or

adverbial modifier.
I

Figure 3 illustrates a piece of factual information encoded in the

memory. This figure differs from the actual memory network in

that, for the sake of readability, some pointers are shown as

going to words written all in capitals. Actually, these pointers

in the memory always go to other units within the memory. For

example, the pointer shown as going to PERSON would actually point

to another unit. However, since this other unit will also be one

meaning of the word "person," we can refer to it as PERSON, rather

than showing its actual form. Each word shown in Figure 3 in all

capitals should be understood as standing for some unit; in the

actual memory there are no such words, only units and properties.

Hereafter in this report, words in all capitals will be only used

to represent units. Actual English words are stored outside the

memory proner, in a ''dictionary.'' Each word in this dictionary
i

is associated with one or more pointers to units in the memory,

each of which represents one of the word's meanings.

12

Dictionary

"client"^

Fig.3 A Piece of Information In Memory

In Fig. 3 the word "client" is associated with one pointer to a

unit, shown as delimited by two square brackets. Also shown in

Fig. 3 are two properties, each of which Is delimited by paren-

theses.

Any unit's first element (reading left to rieht) must always be a

pointer to some other unit, referred to as that unit's "sunerset."

A unit's superset will in general represent some more generic concent

than the unit itself reoresents. Thus the suoerset of a unit
JOE-SMITH might be MAN, that of MAN might be PERSON, that of

PERSON might be ANIMAL, etc. (Any of these could also be the unit

NIL, used throughout to represent a lack of further information.)

After its first element, a unit can contain either nothing, or

any number of pointers, but each of these must be to a property,

not to a unit. Thus, Fig. 3 shows the superset of the unit

representing "client" to be PERSON, followed by one pointer to a

property.

All properties pointed to in a unit represent predicates which,

when associated with that unit's superset, comprise the concept

the unit represents. In other words, a concept is always repre-

sented in our format by pointing to some generic unit, its super-

set, of which it can be considered a special instance, and then point-

ing to properties stating how that superset must be modified in order

to constitute the concept intended. Properties are therefore the

means by which refining modifications of a superset are encooed.

Note that new units can be freely constructed by creating an empty

unit and using a pointer to some prior unit as the new unit's super-

set. Thus, suppose one wished to construct a new unit to represent

Joe Smith as a boy, or one to represent Joe Smith from the point

of view of his wife, or one to represent Joe Smith when angry.

Each of these could be constructed as a new unit having as super-

set a pointer to the previous JOS-SMITH unit, followed by whatever

U

i

refining properties were necessary to compose the appropriate

particular concept. Suppose further that after creating these

three new units, one wished also to construct a unit representing

Joe Smith at age eleven, and that one wished this to include all

the information stored with the unit representing Joe Smith as a

boy. This is done by simply creating another new unit,

using as its superset a pointer to the JOE-SMITH-AS-A-BOY unit,

and then attaching further refining properties to this newest unit.

This kind of free creation of new units which "include" old units

is a basic step in TLC's building up of new structures to repre-

sent the meaning of text it comprehends.

A property is always essentially an attribute-value pair, but in

the memory format this notion has been broadened well beyond its

usual usage. That is, not only traditional dimensions and values

such as (color white) are encoded as attribute-value pairs, but

also any preposition and its object, and any verb and its (direct)

object. Thus, a property corresponding to (on hill) could be

encoded, as can the property in Fig. 3, (employ professional ...).

In these latter cases the relational concept - the preposition or

verb - is used as the property's attribute, with what would usually

be its grammatical object serving as its value. This broadenine of

the notion of an attribute-value pair picks out the common feature

"relational," from the many diverse ways that this feature is

stated or implied in English, to always represent it uniformly.

It is a major step toward the goal of this format, uniformity

without loss of expressive power.

The first element of any property must always be a pointer to its

attribute, and its second element must always be a pointer to its

value. These two obligatory elements are followed optionally by

any number of pointers to other properties. Like the properties

helping to comprise a unit, these properties represent refinements,

in this case refinements of the assertion stated by the property's

15

attribute-value pair. By using such "sub-properties" a property's

meaning is refined or modified as necessary. All this is illustrated

in Pig. 3: First, the unit representing the memory's concept of

client has one refining property. The attribute and value of this

property assert simply that some professional is employed. However,

a refining sub-property of this property further specifies that

this employing is done by this client himself, since the value of

the attribute BY is a pointer back to the unit representing the

concept CLIENT. In total, then. Fig. 3 simply represents a concept

to the effect that a client is a person who employs a professional.

To summarize, a unit has one obligatory element, its superset, and

a property has two, its attribute and its value. All of these are

represented by pointers, each of which must point to some other

unit. In both units and properties the obligatory element(s)

must come first, and may be followed by any number of pointers to

other properties, which supply the modification necessary to

refine the unit or the property adequately.

Since there is no limit on the number or nesting of properties

which can be associated either with any unit or with any property,

concepts and predicates of unlimited complexity can be represented

in the memory format. To further extend the format's expressive

power, space is available in each unit (but not shown here) for

storing quantifiT-like modifications of it, and for allowing a

unit to represent "ome set of other units, bound together by AND,

by INCLUSIVE-OR, or by EXCLUSIVE-OR. This allows units to be

created which represent concepts of individual things, of groups

or classes of things, of substances, etc. This space in the unit

also contains a pointer to the English word(s) associated with

the unit, if such exist.

16

B. The Overall Organization Of Factual Information

In replacing units by capitalized words in Fig, 3> we not only

made the structure more readable, but also cut off the unlimited

interlinking to other units which characterizes the actual memory.

Since all units and properties are made up of pointers to other

units and properties, the overall memory is a large network. Many

units and properties in this network will contain pointers to the

same other units or properties. In fact, all the units which use

a particular concept as a compositional ingredient should contain

a pointer to the same unit, so that no more than one unit will

ever be required in the entire memory to represent explicitly any

particular concept. If two units use the same concept but with

different modifications of it, then each of them will point to

separate intermediate units, whose supersets will be the common

concept. This kind of memory organization removes redundancy, while

permitting one concept to be definea in terms of others.

Such a memory organization also permits common ingredients present

among any given set of concepts to be located swiftly, by a

technique which effectively simulates a parallel search. This

method will be recognized as the same as that used in an earlier

program (Quillian, On Cit). It is based on the fact that, starting

from any given unit in the memory, a program can easily trace to

all the units that this unit contains pointers to, and then (on a

second pass) to all the units these units contain pointers to, and

so on, for as many such passes as is desired. In a rich memory

this breadth-first tracing will tend to fan out on eaCi. successive

pass to greater and greater numbers of units, even though certain

branches of the fan will either circle back to previous units, or

will simply die off due to reaching some NIL unit, i.e., one whose

meaning has not yet been specified in the memory.

17

Next, suppose that as a routine proceeds with such a trace, it

places an "activation tag" on every unit it passes through. This

activation tag names the initial starting concept which led

(however indirectly) to all the units reached and tagged.

Now, suppose that this pi cess is initially given more than one

initial starting unit. Its tracing «ow proceeds breadth-first

through all these concepts at once, moving one level deeper into

each of them on each pass. Thus it simultaneously traces out a

separate "fan" for each initially given unit. The processor

places an activation tag on each unit it reaches, identifying

the particular fan it is a part of by naming the in tial unit at

the fan's head. Moreover, this process now checks every unit it

tags, to see if the unit n^s already been reached during prior

tracing eminating from some othe_2 initial unit. This is easily

determined, since any such unit will have a tag showing it has

already been reached, indicating its initial unit(s). Whenever

such a previously tagged unit is found, it con^citutes an ingre-

dient common to these tv/o initial units, an "intersection."

This method of locating common ingredients of concepts will, in

general, find the common ingredients which are closest to the

initial starting units before it finds those which are further

away. That is, it will locate intersections reachable by short

paths from the initial concepts before it finds those rr ■ nable
only by longer paths. Some restriction on the number of passes

to make before quitting must always be given to such a routine,

whether or not the process is also terminated after some given

number of intersections have been located. Breadth-first

"•earches to find interse tions of concents are used in a number

of ways within TLC, with more elaborate tags which allow the program

to distinguish an intersection unit that is connected to an

initial unit bv a path going only through supersets from one whose

path at some point moves "out" through an attribute or value of

some property.

18

With this general picture of the memory we are ready to plunge

into the considerably more difficult process of how TLC comprehends
text.

19

III. HOW TU WORKS

A. Findinq Memory Properties Related To The Text

Natural language text communicates by causinp; a reader to recall

mental concepts which he already has. It refers him to such

already known concepts either with isolated words or with short

phrases, and then specifies or implies particular relations

between these. In this way the text may be said to direct the

reader to form new concepts. These new concepts contain represen-

tations of the old ones, alonp; with representations of the various

relations asserted between these known concepts. We assume that

such new concepts are formed at least temporarily within the

head of a reader to represent his comorehenslon.

Therefore, TLC's plan for encoding the meaning of text is to retrieve

from its memorv those units that represent the concepts discussed

hv a text, and then create a separate new unit to "include" each

of these as its superset. While the superset of each new

unit will thus be a previously known unt, the new unit's refining

properties must be built to represent whatever relations the text

implies between this unit and others, i.e., whatever particular

assertions the text makes about it. Fig. ^A indicates two ini-

tial steps TLC takes toward achieving such comprehension of an

input phrase.

For each word of the input phrase TLC creates a new unit, shown

in Fig. ^A as delimited by a pair of brackets still empty of content.

TLC will try to add into these new units pointers to appropriate

20

Flg.4A. Initial Steps

Input Phrase, "lawyer's cllent,

i t

CLARENCE^/
DAR ROW

F. LEE
BAILEY

HERBERT
HERSHFAN

~N
^(New Units)

LAWYER

Flg.4B. Output of Comprehension

/ \J

FIG.4 Stages in the Comprehension of ". . , lawyers client. . .'

21

supersets and properties, so as to compose a correct representa-

tion of what old concepts they refer to and what Is asserted

about these. Thus In Flg. 4B, which shows the final output of

the comprehension process, these same two square bracketed units

appear again, but now "filled in" with pointers to supersets and

properties.

When such new units are initially set up, three of the major

obstacles that stand in the wav of filling them in are:

1. Words usually have multiple meanings; how is one (or some
set) of these to be selected to serve as superset of the
word's new unit? (In other words, precisely which old
concepts are referred to in this piece of text?)

2. How is TLC to compose properties adequate to express
what the text asserts about these concepts?

3. In continuous text a great many words refer to things
discus, d earlier In the same text; how is TLC to know
when this occurs, so that it can somehow amalgamate all
the statements made about some given thing throughout
a text? (For example, in the Fig. 4A text ''lawyer"
might or might not refer to some particular lawyer the
text has been discussing. Such previous occurrences of
something referred to later In text are called "anaphoric11

or "generalized pronominal" referents of the later
reference.)

TLC's strategy is to combine all three of these obstacles, and

attempt to overcome th^m all as part of a single process. This

process ijs its detailed theory of language comprehension.

The program begins by setting up for each word of the text it is

working on not only the word's initially emnty new unit but also

a list of pointers. These pointers enumerate all the candidates

for that wcrd's meaning; there is one pointer to each of the word's

possible dictionary definitions and one pointer to each

anaphoric referent the word might possibly have in this text. In

22

Flg. 4A these lists of candidates are indicated as lists of

asterisks; we have assumed that three different lawyers have been

discussed previously in the text, and since there is also one

dictionary meaning of the v/ord, four pointers appear in its candi-

date list. The program must select one of each word's candidates

to fill in as superset of that word's new unit; this will constitute

its decision about that word's present meaning, including whether

or not this meaning is anaphoric.

A word's possible anaphoric referents, having previously been

comprehended, will now each bo represented by the unit created to

represent it, and hence will be of the same format as a dictionary

definition. Thus, TLC can process any candidate unit uniformly,

whether it is an anaphoric referent or a standard dictionary mean-

ing. Recall especially that an unlimited number of properties can

be reached by tracing through the fan of data emanating from any

given unit; this is true of newly filled in anaphoric units as

well as of units serving as permanent dictionary definitions,

since both are made up of pointers to other units in memory.

Now, TLC must somehow compose properties to add to ne„ly created

units. It does this by adanting copies of properties already in

its memory, copies being made of each property that it can find

that relates to the current text. To decide which properties

in memory a piece of text relates to, however, TLC first needs

to know which properties from its memory to consider, and in what

order. Its rule for selecting such properties is simply: consider

properties associated with the candidates of its words, and con-

sider these properties in breadth-first order. More specifically,

TLC picks its way across the candidate units of words in the

piece of text, investigating one at a time the properties pointed

to in these units. For each property it makes a very quick check

for intersection tags to see whether or not the property may be

one that is related to the current sentence. Usually this quick

23

check will not indicate that the prooerty can be related to the

current piece of text, so the program will leave tags on the

property and oass on to consider another property. These tags will

allow subsequent processing to discover any intersection with this

property, in which case TLC will return to consider it again. When-

ever an intersection is found, either in the initial quick check

or later, a more thorough investigation of this possibility is

initiated.

Let us first consider what hanoens whenever these nrccesses do

in fact indicate that some property is related to the current

text. Pindins a property tltat is^ so related has two imnlications.

First, it provides a memory property to recopy and adapt in order

to represent part of the text's meaning. Second, since every

property investigated is associated with some candidate, it implies

that this candidate is the appropriate one to select as its word's

meaning. For instance, if in Pig ^A the first related property

TLC finds is stored with the second candidate for "lawyer," the

program will assume that that candidate is i;he apnropriate meaning

for the word "lawyer," and set up a pointer to it as superset of

the new unit representing "lawyer."

Thus, finding properties that relate to input text simultaneously

provides TLC's solution to the problems of multiple meaning, of

anaphoric reference, and of what pronerties to copy and adapt in

order to encode what the input sayr-. We shall see below that lw

also tells TLC how to adapt each such property. All these results,

however, hinge on TLC's ability to locate particular properties

that are related to a given piece of text. To illustrate how the

program does this, we will again use Fig. 3. (Notice first that

the candidate set up for "client" in Pip:. HA must in fact be the

unit illustrated in Fig. 3.)

24

In tryine to comDrehend "lawyer's client," TLC goes to the

Fig. 3 unit, on which it finds one property (and one nested sub-

property) to try to relate to this input phrase. In its quick

check of these, the program first considers the property's attri-

bute, EMPLOY, and seeks to discover any word in the input phrase

that seems acceptable to identify with EMPLOY. Such a word might

be "employ" itself, or it could be "hire," "work (for)," "engage,"

etc. (Description of the intersection technique TLC uses to see

if the input contains such a word is again best postponed until

we understand the role of such identification in TLC's overall

scheme; it will be described in Section IIIC below.)

In this example the input phrase, "lawyer s client," contains no

word that TLC can identify with EMPLOY. The program therefore turns

from the attribute of the property under Investigation to its

value, PROFESSIONAL. It checks this unit in the same way, attempting

to locate any word of the input string that seems acceptable to

identify with PROFESSIONAL. This time (since a lawyer is defined

in the memory as one particular kind of professional) TLC decides

that ^he word "lawyer" is tentatively acceptable to identify with

PROFESSIONAL.

Now, TLC takes this tentative identification of part of a property

with some word of the text as an indication that the text may imply

a particular relation between two words of the text: the Identified

text word and the word whose candidate contains the property. That

is, the text may in part mean that the identified word, "lawyer,"

relates to the "source" word, "client," in the way this property,

(EMPLOY PROFESSIONAL ...), would indicate if "lawyer" were identi-

fied as the professional. However, at this point this is only

tentative; the program only knows that "client" and "lawyer" both

appear somewhere in the input piece of text; it has not yet con-

sidered the syntactic arrangement or inflections of these two

words, nor what other words appear between or around them.

25

These features of the local context will determine whether the

Input Implies the kind of relationshln named by the property, or

whether the two words Just haopened to appear in the same piece

of text, but with no intention of relating their meanings as

indicated by the pronertv under consideration. To decide this

question entails decinherinn; the implications of particular

syntactic (and semantic) features.

As stated above the program's syntactic recognition ability is

composed of many seoarate form tests stored in the memory. A

form test is a routine which checks for the nresence of particular

features in the input ohrase. It also specifies how u use the

oroperty under investigation if these particular features are

present. The features checked in various form tests include

that "client" come before "lawyer," that a particular word or

symbol (such as "of") apnears between the two words, that one

of the words must have some oarticular kind of ending (e.g.'s),

or that some agreement of endings must obtain between them or

between them and certain words around them. A form test of course

states its features in terirs of the variables "source word" and

"identified word," not in terms of "client" and "lawyer" per se.

I
I

To make it easier for the person serving as TLC's monitor to

snecify form tests, the system provides a language, somewhat
I

resembling a string manioulation language like COMIT, FLIP, I

or SNOBOL (on these see Raphael, Bobrow, Fein and Young, 1968).

The .job of TLC's monitor is to specify such form tests as they

are needed, and to associate such tests with the correct unit

used as an attribute in the memory. Whenever the program

finds Itself able to identify the attribute or value of some

property with some word in the text, it retrieves all / forr

26

2 tests associated with that property's attribute. It then runs

these form test routines one at a time on the piece of text it

is currently trying to comprehend. These form tests continue

until either one test is found whose features are present in the

current piece of input text, or all tests in the set have failed.

In the latter case the program concludes that chis property should

not be used to relate the two tentatively related words after all,

and goes back to looking for other identifications of the property's
attribute or value.

In the present example, one rorm test stored with EMPLOY specifies

that the word tentatively identified with the property's value

("lawyer") have an ^s as its ending, and be followed immediately

by the source word ("client"). Since this is true in this input

phrase, this form test will succeed, leading the program to con-

clude that, indeed, this property is related to the input text.

TLC next checks any property in memory that modifies the current

property (in this case that starting with a pointer to BY, see

Pig. 3), to see if this sub-property also can be related to the

current text. In this it again succeeds, although in this case

by identifying the source word, "client," with the sub-property's
value.

At this point the program has succeeded in relating the input

piece of text to one property (and to its nested sub-property),

and is ready to use the information this provides.

2 Actually, every property's attribute has two sets of
recognition capabilities associated with it, one to be tried
whenever the attribute itself is tentatively identified with
some word of the sentence; the other to be tried if the
property's value is so identified, as in our current example.
Only one of these sets is tried, since different form tests
are appropriate in the two cases.

27

B. The Encoding Process

The property TLC has decided is related to the text was part of

one candidate of "client." TLC assigns this candidate to be the

superset of that word's new unit. (This settles on a meaning

for "client," and would be a selection If there had been any other

candidates.) It similarly assigns as the meaning of "lawyer"

one of "lawyer's" candidate units, namely, the one the Intersection

program Identified with PROFESSIONAL.- The program also revises

the candidate lists for both of the related words, so that further

passes looking for properties related to the current text will

consider none of their candidates except the two now thought to

constitute the correct meanings. (However, this restriction has

a time limit, and so will disappear if the current decisions lead

into a dead end for comprehending the rest of the sentence.)

The program now copies over and adapts the related property and

subproperty with the result shown in Fig. ^B.

As stated above, the topmost unit shown In Flg. 4B Is the came new

unit shown in Fig. ^A for "client;" the other bracketed unit In

Fig. MB is the new unit shown In Fig. hk for "lawyer." In Flg. 4B

these two new units have each been filled in with a pointer to

3 Thus, we see that the use of a property may allow TLC to select
the appropriate meanings of two words of the sentence, a detail
omitted for the sake of clarity in the overview of its operation
above. One might argue that more than one meaning of "lawyer"
can be Identified with PROFESSIONAL, so that actually the set
of these should be made Its superset. One counterargument to
this is that people in reading seem to pick one sensible meaning
for a word, and Ignore others unless this leads to some anomaly.
(Another is that picking one has been easier to program.)

28

the candidate chosen as its superset and to the new nronerty

created by conyinp- over the EMPLOY nronertv of Pig. 3. This cony

has been built uslnr TLC's general rule for adapting memory proper-

ties: copy each nronerty exactly but replace any pointer to a

unit that has been Identified with some word of the text with a

nojnter to the new unit for that word. Thus, the value of the

EMPLOY prooerty In Fir. ^B Is a pointer not to PROFESSIONAL, but

to the new unit for "lawyer," since these have been Identified.

Similarly, the value of the BY orooerty is a pointer not to the

memory's general unit representing a cxient, but to the new unit
reoresentlnR: this client.

Overall, the data of Fig. ^B is the same as that shown (in more

readable form) in Fig. 1A, which TLC generates into English as:

"Under discussion is a client who employs a lawyer." If. during

the process of locating related properties, another distinct

related property is found, a pointer to the adapted copy of this

property is also added onto the new units for "client" and "lawyer"
(See Fig. IB.)

In summary, Fig. ^B shows that TLC draws information from its
memory to produce a representation of
is:

3)

4)

'f a piece of input text that

1) Encoded in the regular memory format.

2) Much richer and less ambiguous than the input text itself,

^N A highly intraconnect^d structure with the various concent;
mentioned in the text linked in v,ayr sunn lied from a
memory of facts shnnt the world.

Linked to the permanent memory by many pointers to estab-
lished concepts (although its creation in no way changes
the permanent memory, except for the addition of temporary
tags used by the intersection routines.)

nrolntl: ' nfme'' an" 0",lts a™ «oeated nentlon o property.
f a
f a

20

C. Identifying Units ^y Information in Memory

The process described above depends on TLC being able to Identify

units such as PROFESSIONAL with candidate units of words in a

piece of text. As stated, such an identification provides a

property tentatively related to the text, and initiates syntact:,',

checking via form tests.

The first condition that two units must meet to be identifiable

is that they have what we call a "superset intersection in memory."

This is said to occur if either:

1) The two units are the same unit.

2) One unit is superset of the other, or suoerset of the
superset of the other, or superset of that, etc. In
this case, we will say that one unit lies directly on
the "superset chain" of the other.

3) The two units' superset chains merge at some point.

TLC is designed to locate superset intersections which occur

between certain kinds of units but to ignore those which occur

between others. To se^ the reasons for this let us consider the

sentence, "John shoots the teacher." This sentence has one

interpretation if John is knowr to be a gangster, and quite

another if John is known to be a portrait photographer. TLC's

problem is to make sure that, whichever of these Is the case,

this knowledge has the same effect on TLC that it has on a human

reader. Let us suppose the second is the case, so that the unit

representing "John" in the compreher. ler's memory has a property

stating, in part: (PHOTOGRAPH SUBJECT(S) . ..)• The situation ?s

indicated in Fig. 5, which shows one candidate each for "John" and

for "teacher," and one property of each of these units in memory.

New, superset intersectio: 3 connecting three separate kinds of

pairs of units can be picked out in Fig. ^. All of these intersect

in the third ->dy mentioned above by merging of superset chains.

First, there is an intersection between the candidate units JOHN

30

■^ •^—
C

cr
•*^

a>

c

o

l_

ro
Q_

T3
C

a»

31

and TEACHER, since their sunerset chains merge at the unit

PERSON. Clearly this Intersection is not particularly useful

Tor comnrehension, however, since it does not involve any pro-

perties of either JOHN or of TEACHER. Second, there is a superset

intersection between SUBJECT(S) and CHILD(REN), whose superset

chains also merpre at PERSON. This intersection connects nart of

a property of JOHN with nart of a pronerty of TEACHER. In other

words, the comnrchender knows something about JOHN and knows

something else about TEACHER, and these oieces of his knowledge

relate JOHN and TEACHER to two other thinp-s, and these two other

things are semantically acccntable to identify. Such intersections,

connectinfic narts of separate nronerties, are very common in the

memory, but, we susnect, are not of much use in direct comprehension,

TLC's only aim at present. V/e will indicate below how intersections

connectinfr properties may be used in indirect comprehension, but,

for the time being, TLC is designed to ignore them. The third kind

of pair having a superset intersection in Fig. 5 is the mix of the

first two: nart of some property is connected to a candidate.

Thus, the sunerset chain of SUBJECTS(S) merges with that of JOHN

at PERSON, as does the superset chain of CHILD(RF.N) with that of

TEACHER, of SüBJECT(S) with TEACHER, and of CHILD(REN) with JOHN.

The first two of these pairs each connect part of a property to its

own parent unit. Such an intersection also is o^ no interest, and

is eliminated by TLC (except in the case of explicit self reference,

as in the BY property of Fig. 3.)

The two remaining intersection pairs, connecting part of a property

with some other candidate, are the kinds of intersections TLC is

interested in. these being the sort which cause it to create hypo-

theses about the input's meaning and then to initiate form tests, as

described above. In this example, if and when TLC finds the inter-

section between JOHN and CHILD(REN), its form tests must not succeed,

so the program will reject the hypothesis that this sentence means

John is being taught.

32

When TLC finds the Jntersection between SUBJECT(S) and TEACHEF

however, a form test should succeed, and lead to interpretation

of the innut sentence. This form test has to be able to recognize

that one meaning of "shoot" can be identified with PHOTOGRAPH^by

intersection of supersets. The interpretation would be to the effect

that: :'under discussion is the photographing of this teacher, done

by John, ...". If John were known to be a gangster instead of a

photographer, the memory would contain different information and

TLC would interpret the sentence differently; but to do so it

would still need to locate intersections which connect part of a

property with some other candidate, but not to locate Intersections

which connect two candidates or parts of two properties.

In order to locate such ''mixed'' intersections, TLC uses a version

of its intersection technioue in which it nuts one kind of

activation tap- on candidates and their supersets, and a different

kind on narts of nroperties and their sunersets. It then always

checks as it marks a unit with one kind of tap: to see if that unit

already nas been marked with the other kind of tag. Thus the first

time TLC reaches a unit which is in fact a nertinent intersection

it will mark that unit, and the first time after that that it

reaches it as the other kind of thing - candidate or nart of a

oronerty - it will recognize the unit to be a relevant intersecticn.

However, It Is also very Important that TLC locate intersections

In something close to a breadth-first order. This means that the

program must appropriately alternate between considering parts of

properties and their supersets, and considering candidates and

their supersets. Therefore, TLC processes an input piece of text

in a number of passes, as follows:

At the time units are first chosen as candidates for the words In

a piece of input text, these units are tagged. Then the program

makes Its first pass looking for properties related to the text.

To do this it takes these same candidate units one at a time, and

"quick-checks" all the properties associated with each. To

33

quick-check any one property is to mark and look for prior lags

on the attribute and value of the property, and on three levels

of superset of each of these units. This procedure is interrupted

at any point that an intersection is found.

After all the properties of some canuidate unit have been quick-

checked, the proRram moves briefly to the superset of that candi-

date. It marks this superset unit to show it Is in the superset

chain of the candidate, and also checks to see if the unit already

has a tag indicating it is also part of some relevant prcpe ty,

or in the superset chain of such a part. Of course, for an inter-

section to be found by this "checkback" step, the property involved

must already have been quick-checked earlier in the processing of

this piece of text. If an intersection is found by this checkback,

the program returns to the property involved and considers using

it exactly as it would have done if the auick-eheck of that pro-

perty had found the intersection.

After the checkback, the nrogram moves on to consider another

candidate. If a second nass through a niece of text is necessary,

TLC v.'ill quick-check nronerlies associated with the sunersets of all

candidate units. Similarly, on a third nass It will aulck-check

nronerties a3socjatod with the supersets of sunersets of candidates,

and so on. On each step of such a nass, the orogram nuick-checks

only the properties directly associated with the unit that it has

at hand, and then marks and checks back the superset of that unit

to see if it intersects with any nronerties already nuick-checked.

Overall, the program's procedure locates the relevant kind of

intersecting pairs of units in an order reasonably close to that

which a completely breadth-first search would produce, while

ignoring all the irrelevant kinds of intersecting pairs, and

minimizing the information it must hold in short term memory

Vi

durlnp; searchlnp;. Our guess is that a human's version of this

search is done largely in parallel, which a breadth-fr'rst seach

simulates reasonably well, until narallol searchinr machines be-

come available.

At any time during this process that TLC does locate two units which

have a superset Intersection, either the units are identical in

meaning, one is a superset or the other or both are members of

some common superset; these correspona to tne three possible

kinds of superset intersection enumerated at the start of this

section. In the first two cases TLC immediately reports the two

units as semantically acceptable to identify. In the last case

it checks to see if there is anything contradictory between the

meanings of the two units; only if there are no contradictory

properties are the two units accepted as semantically identifiable.

One more important noint about TLC's search for nronerties

related to a given text is that there are a Kood many units

in the memory which represent sets. TLC may therefore encounter

such a set as the superset of some unit, or as the attribute or

value of some property. Also, the multiple candidates set up for

a word themselves comprise a set. In all these cases, the program

first ord rs the members of the set so that the most pertinent

members come first. That is, possible anaphoric referents are

always put first, other units which are "in context" for the

complete text of which the current input is a part are put next,

and any other units are put last. (TLC recognizes units which

Roughly speaking, two units are Judged contradictory onlv if
they are found to each contain a orooertv having the same
attribute but different values. Thus, "woman," "Spaniard "
"amateur," or "infant," should all intersect with PROFESSIONAL
at the unit PERSON, but only the first two o: these should be
identifiable with it, since the latter two each conflict in one
regard or another with G property of PROFESSIONAL, The routines
to check for such contradiction work by another version of the
tagging and intersection finding technique

35

are "in context," by the presence of old activation tags left in

the memory during processing of prior sentences of the same text.)

This ordering of the members of sets often produces an order

different from the a priori likelihood ordering of sets as they

are stored in memory. It is done to insure that units expected

to be most pertinent in this context will be searched slightly

before others.

3('

n. Automatic Generalization of Data and of Form Tests
in TLC's Memory

The most important thing about TLC's procedure for locatinp;

identifiable units in memory is that it identifies a f'rf-a-t many

pairs of units. Thus, a node like PROFESSIONAL will te identified

with many words besides obvious ones like "lawyer" or "accountant."

In fact, any word referring to any kind of person will share the

superset PERSON with PROFESSIONAL, and the great majority o" these

will prove semantically acceptable to identify with it.

Thus, the EMPLOY property shown in Fig. 3 and related to "lawyer's

client" will be related in a similar way to almost any input phrase

referring to some person's client; given "accountant's client" or

"woman's client" the accountant or the woman will be identified with

PROFESSIONAL, and hence the phrase comprehended as meaning that that

person is employed by the client.

A similar effect results from the fact that TLC's first pass

investigates the properties directly pointed to in candidate units,

its second pass investigates the properties directly pointed to in

supersets of those units, and so on.

The importance of this can be seen if TLC is given a phrase such as

'young client." Correct comprehension of this phrase must supply

the fact that this client's age is being Judged young, which is

not explicit in the text. TLC's way of supplying such information

is by relating the text to a stored property having AGE as an

attribute, and having a set containing YOUNG, OLD, MIDDLE-AGED,

etc. as a value. However, it does not seem reasonable to suppose

that TLC would have any such property stored with its unit for

"client." On the other hand it is not unreasonable to suppose that

such a property would be part of the menory't. unit representing

37

PERSON, a concept for which age is very general and important. If

such a property is stored with PERSON, TLC's breadth-first search

through candidates will reach and relate it to "young client" on

its second pass. (See Pig. 6, example 1)

Similarly, given "young Spaniard," or "middle-aged carpenter" or any

sucn pnrase mentioning some sort of Derson, TLC will reach and use

that same AGE property stored with PERSON.

Now, the important point Dotn aoout TLC's successive passes ana about

its ability to identify a great many pairs of units in its memory is

that they allow TLC to use its memory in an inferential as well as

a literal manner. Thus in comprehending "lawyer's client," the

program implicitly made an inference: since a client emoloys a

professional and a lawyer can be identified as a professional, a

client can employ a lawyer. Similarly, in comprehending "young

client," the inference iLC made is: since a person's age can be

young, and a client is a person, a client's age can be young.

Being able to use its memory inferentially means that any single

property in the memory can be used by TLC to help comprehend a

great many different input phrases. In other words, a relatively

small memory with an Inferential capability is the functional

equivalent of a very much larger store of information. The advan-

tages of this seem obvious; we propose that humans similarly use

their memories inferentially, and hence are able to operate as if

they knew a vastly greater amount than they in fact need to have

stored. (Psychological data in Collins and Quilllan, 1968 and 1969, bears

directly on this hypothesis.) The two types of inferences currently

made by TLC do not exhaust all the valid inferences that can be made

on the basis of paths through such memories, although they do provide

a good start (Lonevear, 1968, discusses some otncrs.)

38

The program's ability to use its memory Inferentlally Is not to

be confused with Its ability to recognize various ways iti which any

given assertion may be stated, an ability which depends on its

form tests rather than on its memory for factual informstion.

However, these abilities are similar in regard to their generaliza-

tion. That is, from the point of view of a monitor, the effect of

the nroerram's ability to use a single property in comprehending many

different sentences is that, having; expressed some fact in the form of

a property and included this nronertv in the meraorv in order to
enable comprehension of one piece of text, he will not have to put

the same fact in again when it is needed in the comprehension

of some other piece of text. This same kind of generalization

occurs when he aods a form test.

To see this generalizing effect let us Imagine that an EMPLOY

property similar to that of Fig. 3 is added to the data compris-

ing the concent LAWYER. This new property states that the client

that a lawyer represents or advises usually employs that lawyer.

Now, suppose the program is given some example input, say, "lawyer

for the client," which it previously comprehended as shown in

example 13 of figure 6. TLC now locates intersections connecting

words of the sentence to parts of the newly-added property and

its sub-property, just as it did in comprehending "lawyer's client."

However, since appropriate form tests are not associated with the

attribute of this property, the program will decide it cannot really

relate this property to this phase, and again give the same output

shown in example 13. To correct this, the monitor will associate

new form tests with EMPLOY and BY, the attributes involved. These

tests must succeed whenever the source word (here "lawyer") is

followed by the word "for," which is in turn followed by the word

tentatively identified with the value of the sub-property (here "client").

In this case, the monitor does not need to define these new form

tests, since appropriate ones have already been defined, and are as-

sociated with the nronertv previously stored with LAWYER. Thus,

he simoly adds these tests to those associated with EMPLOY and BY, and

reruns the example. This time TLC also uses the newly-added

property, and gives the enriched output shown as example 1^ of Pig. 6.

39

However, the Imnortant thing is that a new form test will have been

associated with the unit EMPLOY. Thus whenever, in a future attempt

to comprehend some other ohrase, any other property havlnp: EMPLOY

as an attribute Is investigated, the newly added form test will

again be available,with no intervention by the monitor required.

For instance, if the memory contains oronerties statinp; that agents

are emoloyed by actors and that bookkeepers are employed by com-

panies, the form test just added will provide the syntactic can-

ability TLC needs to comprehend input ohrases such as "agent for

Marlon Brando," or "accountant for Bolt Beranek and Newman," by

relating each to the appropriate EMPLOY property. These outputs

are shown as examnles 15 and 16 of Fig. 6.

In other words, TLC in effect automatically generalizes each form

test it is given to all properties having the same attribute. This

goes some way toward generaizing each capability given to TLC, al-

though obviously not far enough, tänee each new form test should in

fact be generalized to other attributes which are somehow "of the

same sort." TLC allows the monitor to let a set of form tests

associated with one attribute also serve as the set for anv

number of other attributes, although we haven't yet had enough

experience as a monitor to say how effectively this potential can be

used.

^0

E. TLC And Comolex Sentence Structure

In order to deal with strings of text longer than very simple

phrases, TLC nust employ some combination of properties, and hence

some combination of its form tests, much as some combination of

rules in a grammar must be employed to generate any real sentence.

TLC employs several tactics not so far discussed to put together

appropriate combinations of properties and form tests. These can

be Illustrated in its comprehension of a phrase like "lawyer's

young client."

To comprehend this nhrase, the program again sets up new units and

candidate lists as shown in Pig. ^ for "lawyer's client." On its

first pass it again investigates the Pig. 3 property, and tenta-

tively identifies PROFESSIONAL with "lawyer." however in this

case the form test that succeeded for "lawyer's client': will not

succeed, since the interposed word "young" intrudes into the

pattern that that test requires.

How, whenever a form test fails, TLC checks to see if this is only

because of unwanted words interposed in the innut string. If so,

it considers the current property as "pending" some use of the

Interposed word(s) and goes on attempting to find other properties

to relate to the input. In this case, then, TLC holds the Fig. 3

property pending use of the word "young," and continues investiga-

ting properties. On its second pass through the candiaates, it

will come to the AGE property stored with PERSON, and use this f r

comprehending the "young client" part of the input phrase.

At this point it needs to be recalled that each form test consists

both of some pattern of features which must be found in the input

piece of text and of specifications for what to do if this is found.

Among other things, these specifications state which word is to be

considered syntactic "head" of the words mentioned in the form test.

41

if any is. For instance, for 'lawyer's c.Ment,:' the form tests

that succeed specify that "client" must be the head of that

Input phrase, as is indicated in the English output of Pig. 1 when

TLC says, "Under discussion is a client ..." (compare other outputs

in Fig. 6.) Similarly, the form test that succeeds for "young

client" specifies that "client1 must be the head of that input.

The significance of choosing a head is that, whenever any property

is related to a piece of text, TLC marks all the words matched

by the successful form test as "used" except that which the test

specifies as head. This means that in the present examole "young"

now gets markec "used," and the Fig. 3 property, held pending use

of that word, is tried again. Since form tests know they can if

necessary skip over any words that nave been marked 'used," this

form test now succeeds, allowing the pending prooerty to be

related apnropriately to the input phrase and comnrehended as

shown in Fig. 6 as example 2.

Several properties of TLC's operation can be seen in the preceding

exampib. First, holding properties pending allows the propram to

adapt the order in -;'iich these properties are recovered from memory

into an order more appropriace for the syntax of a particular

piece of input text. Second, the specification of a head by each

successful form test allows the program to nest its processing

of a sentence so as to "eat up" long sentences a little at a time,

amalgamating suDorainate constituents into larger and larger con-

stituents until only a single head remains unused with n the

sentence. Notice that as this processing proceeds, the new units

created to represent words of the input string are being filled

In with nev; adapted properties whose values (or attributes) are

pointers to the new units representing other words, in accora with

TLC's peneral rule for adapting copied over pronerties. (See

Section IIIB.

U2

Figure G: Sample TLC Comprehenslonc

Key

The firct eleven examples were run in normal mode. When the

Drop;rani is run in a more closely monitored mode, as in example 12,

it nrjnts out two lines of information eacii tine it uses a prop-

erty to help comprehend the input. This outnut always names what

it will print out, followed by a colon, followed by the information

named. The meaninp: of the names used are as follows:

USING: the attribute and value of the data oroncrty
it is currently usinp.

ATHS: a word in the input which it has identified
with the attribute of the uata property.

VAL*: a word in the input which it has identified
with the value of the data pronerty.

SOURCE: the word of the input whose meaning nrovided
trie data property.

ed. Form tests always are named
n. Any words preceedinjT; trie form

PER: The form test
.••I-I IMT
± ±, i 1-,

test name describe how it was used: ATRI;3 mean

IIEAI

NOW-CAN-USK;

it was used because the property's attribute wa'
intersected; CKBACK means the intersection occur-
red during a "check back"; NESTED means the prop-
erty hr;s been held oending before use.

The word chosen as the syntactic head of the
words currently used.

This is used in place of USING if a nrooerty's
use has been dependent or) the use of one of its
sub-pronerties.

Examnle No.

1 . READCfOLNG CLlF.MT)

((CLIEMT (AQF: (rOUMG))))

AT THIS POIMT ME ARE OISCUSSIMG A fOUMG CLIEMT.

(continued)

Example Ho (continued)

I. READCHE LAWfER 'S VOUMG CLIENT)

((CLIEMT (AGE CrOJNG))
(E^IPLOf (LA'VrER)

(Bf (*HIS* . CLIENT)))))

NOW 'VE ARE TALKIMG ABOUT A fOlNG CLIENT) HE I S A CLIENT
WHO E^IPLO/S A LAWfER.

3. REAOCCLIEMT 'S LAMfER)

(CLAW/ER ({AOR REPRESENT ADVISE)
(CLIENT)
(BV (*THIS* . LAWYER))
(IN (NATTER (TiTPE LEGAL))))))

HERE WE ARE CONCERNED WITH A LAWYER WHO REPRESENTS OR
ADVISES A CLIENT IN A LEGAL NATTER.

i. READ(NAN 'S I AW/ER)

((LAWfER ((AOR REPRESENT ADVISE)
(NAN)
(B/ (♦THIS* . LAWYER))
(IN (NATTER (TiTPE LEGAL))))))

AT THIS POINT WE ARE DISCUSSING A LAWfER WHO REPRESENTS
OR ADVISES A NAN IN A LEGAL NATTER.

5. READ(DOCTOR 'S LAWYER)

((LAWfER ((AOR REPRESENT ADVISE)
(DOCTOR)
(Bf (*THIS* . LAWYER))
(IN (NATTER (TfPE LEGAL))))))

NOW WE ARE TALKING ABOUT A LAWfER W-JO REPRESENTS OR ADVISES
A DOCTOR IN A LEGAL NATTER.

6. READ(LAWrER 'S DOCTOR)

((DOCTOR (CURE (LAWYER)
Cfif (»THIS* . DOCTOR)))))

HERE WE ARE CONCERNED wlTH A DOCTOR WHO CURES A LAWfER

im

Example No. (continued)
7. READCLAWlvR OF THE CLIEMT)

(CLAWfER ((AO? REPRESENT ADVISE)
(CLIENT;
(Sr C+THIS* . LAWYER))
(I>J (MATTER CTf^E LEGAL))))))

AT THIS POINJT WE ARE ül SCUS3IMG A LAWfER WHO REPRESENTS
OR ADVISES A CLIEMT IN A LEGAL MATTER.

8. READCLAWfER 'S REPRESENT ATI ON OF THE CLIENT)

(CREPRESEMT ((*THIS* . REPRESENT)
(CLIENT)
(By (LAWYER))
(IN (MATTER (TfPE LEGAL))))))

Nr.W WE ARE TALKING ABOUT THE REPRESENTING OF A CLIENT
Bf A LAWYER IN A LEGAL MATTER.

9. READ(THE CLIENT ADVISE ED Bf THE LAWYER)

((CLIENT ((ADVISE)
(»THIS* . CLIENT)
(BY (LAWYER))
(IN (MMTTER (TYPE LEGAL))))))

HERE WE ARE CONCERNED WITH A CLIENT WHO IS ADVISED BY
A LAWYER IN A LEGAL MATTER.

13. READ(CLIENT EMPLOY S A LAWYER)

((TO ((*THIS* . EMPLOY)
(LAWYER)
(BY (CLIENT)))))

AT THIS POINT WE ARE DISCUSSING THE EMPLOYING OF A LAWYER
BY A CLIENT.

11. READ(THE CLIENT GuPE ED BY THE DOCTOR)

(((AND CLIENT PATIENT)
((CURE)

(♦THIS* . CLIENT)
(BY (DOCTOR)))))

NOW WE ARE TALKING ABOUT A CLIENT* WHO IS A PATIENT, WHO
IS CURED B A DOCTOR.

I. r-
41)

Example ^Q. (continued)

12. READ CUE CLIENT HEAL El) Bf THE DOCTOR EMPLOf S THE
LAWYER)

USIMG: CURE PATIENT. ATR*: HEAL. VAL*: CLIENT
SOURCE: DOCTOR. PER: ATRIH T29. HEAD: CLIENT

USING: BY DOCTOR. \/AL*: DOCTOR
SOURCE: DOCTOR. PER: NESTED T21. HEAD: CLIENT

USING: E'lPLOf PROFESSIONAL. ATR*: ZVPLOt. \Jf\L*t LAWYER
SOURCE: CLIENT. PER: ATRIB CK8ACK T17. HEAD: EMPLOY

USING: BY CLIENT. VAL*: CLIENT
SOURCE: "LIENT. PER: NESTED CKBACK TH. HEAD: EMPLOY

OUTPUT!:
(EMPLOY ((*THIS* . EMPLOY)

(LAWYER)
(BY ((AND CLIENT PATIENT)

((HEAL)
(♦THIS* . CLIENT)
(BY (DOCTOR)))))))

0UTPUT2;

AT THIS POINT WE ARE DISCUSSING THE EMPLOYING OF A LAWYER
BY A CLIENT, WHO IS A PATIENT, WHO IS HEALED BY A DOCTOR

13. READ (LAWYER FOR THE CLIENT)

USING: BY LAWYER. VAL*: LAWYER
SOURCE: LAWYER. PER: MESTED T32. HEAD: LAWYER

NOW-CAM-USE: (AOR REPRESENT ADVISE) CLIENT. V'AL*: CLIENT
SOURCE: LAWYER. PER: NESTED T31. HEAD: LAWYER

OUTPUT! :
(LAWYER ((AOR REPRESENT ADVISE)

(CLIENT)
(BY (*THIS* . LAWYER))
(IN (MATTER (TYPE LEGAL))-))

0UTPUT2:

NOW WE / TALKING ABOUT A LAWYER WHO REPRESENTS OR ADVISES
A CLIENT .N A LEGAL MATTER.

16

Note; For the follow!
described in aection I
generalization of the
similar to that of Fig
the form tests needed
for the client", namel
EMPLOY respectively.
produced in example 13
that the necessary fae
next two examples with
Note its use of T31 an
these examples.

nr examples, we
II D, in order t
use of form test
ure 3 was added
to let TLC relat
y, T31 S T32, we
Doing this enric
for "lawyer for

ts are in the me
no furtiier inte

d T32 as shown i

went through the sequence
o illustrate automatic
s. First an EMPLOY property
to the concept LAWYER. Then
e this property to 'lawyer
re associated with BY and
hes TLC's output over that
the client." Then, given

mory, TLC comprehends the
rventlon by the monitor,
n its monitored output for

Example No. (continued)

14. READ CL.AWrER FOR THE CLIENT)

USING: EMPLOr LAWYER. VAL*: LAWYER
SOURCE: LAWYER. PER: T32. HEAD: LAWYER

USING: BY CLIENT, VAL*: CLIENT
SOURCE: LAWYER. PER: NESTED T31. HEAD: LAWYER

USING: BY LAWYER. VAL*: LAWYER
SOURCE: LAWYER. PER: NESTED T32. HEAD: LAWYER

NOW-CAN-USE: <AOR REPRESENT ADVISE) CLIENT. VAL*: CLIENT
SOURCE: LAWYER. PER: NESTED T3I. HEAD: LAWYER

OUTPUTl:
CLAWYER (CAOR REPRESENT ADVISE)

(CLIENT)
(BY (*THIS* . LAWYER)))

(EMPLOY («THIS* . LAWYER)
(BY (*THIS* . CLIENT))))

OUTPUT2:

AT THIS POINT WE ARE DISCUSSING A LAWYER WHO REPRESENTS
OR ADVISES A CLI ENTi HE IS A LAWYER WHO IS EMPLOYED BY
THIS CLIENT.

^7

Example No. (continued)

15. READ (AGEMT FOK MARLON-BRANDO)

USING: EMPLOr AGENT. VAL*: AGENT
SOURCE: AGENT. PER: T32. HEAD: AGENT

USING: Bf (AOR ACTOR FIRM). VAL*: MARLON-BRANDO
SOURCE: AGENT. PER: NESTED CKBACK T31. ^AD: AGENT

OUTPUTl:
(AGENT (EMPLOf (*THIS* . AGENT)

(Bf (MARLON-BRANDO))))

0UTPUT2:

NOW WE ARE TALKING ABOUT AN AGENT WHO IS EMPL VED Bf MARLON-BRANDO

NIL
-RT(E4l 15t56)

16. READ (ACCOUNTANT FOR BBN)

USING: EMPLOf BOOKKEEPER. VAL*: ACCOUNTANT
SOURCE: ACCOUNTANT. PER: T32. HEAD: ACCOUNTANT

USING: BY ORGANIZATION. VAL*: BBN
SOURCE: ACCOUNTANT. PER: NESTED T31. HEAD: ACCOUNTANT

OUTPUTl:
(ACCOUNTANT (EMPLOf (*THIS* . ACCOUNTANT)

(BY (BBN))))

0UTPUT2:

HERE WE ARE CONCERNED WITH AN ACCOUNTANT WHO IS EMPLOYED
BY BBN.

40

Thereforej once only one unused head remains in the inout string,

this means that the new unit created to represent that head contains

new properties linking it to other new units, wiich in turn will

in general contain new properties linking to other new units,

and so on, in some way such that all of the input string's new

units are interlinked in a single network. This structure repre-

sents a comprehension which encompasses all the words of this input,

and so the program terminates its processing then only a single

head remains.

The program's performance for longer sentences is illustrated in

Fig. 6, example 12, which TLC comprehends by first amalgamating

"healed by the doctor" into the head "client" and then comprehending

what amounts to "the client employs the lawyer." In this example,

and in the rest of Fig. 6, the output shown is that which TLC

produces when it is run in a more closely monitored mode than that

shown in earlier figures. That is, in this mode the program shows

how it sets up the sentence during the initial comprehension step

(showing that articles and endings are amalgamated into their

heads immediately) and also prints out information each time that

it uses a property, as described in the key to Fig. 6. The rest

of Fig. 6 shows most of the other examples TLC has been taught to

comprehend so far.

Although examples such as the above show that TLC can comprehend

at least some longer sentences and nested constructions, there is

still at least one serious flaw in its present use of form tests.

No running record is kept of the sentence's syntactic structure

as this structure gets deciphered during comprehension. Just

how serious the consequences of this are is not clear, but

without it, form tests will sometimes check for features which

couldn't possibly exist given the sentence's syntactic

structure as already understood. A much more serious consequence

would occur if form tests, in order to take account of different

H9

contexts In which the features they require appear, had to keep

being redefined as longer and longer patterns in order to work

properly. We do not really believe that this is a likelyh^od,

but in any case there is a gcod way available of keeping such a

running syntactic record. This is the method used in "predictive

syntactic parsers" (for example, Kuno, 1965.) In view of this,

we are now considering incorporating into TLC large parts of one

predictive parsing program, that written by Thorne, Bratley, and

Dewars (1968),

This extremely interesting and ingenious program6 does not output

as a parsing a tree structure, but rather a set of nested strings.

However, in building these strings it succeeds in "undoing" a num-

ber of syntactic transformations, replacing deleted elements and

rearranging others. Most pertinently, the program is very good at

avoiding unnecessary or redundant syntactic processing by keeping

a record of what has been decided so far. This record is made

during a single pass through an input sentence, in the form of an

"•»nalysis network" which records all acceptable parsings of the

sentence as paths extending through this network.

At a time when the program's analysis has progressed as far as

some given word of the input sentence, all viable analyses extending

to that point will be represented by "live" nodes in its analysis

network. To proceed on, the program refers to its grammar to obtain

all the syntactically allowable next steps from those particular

live nodes. Then it tests each such step to see if it actually is

acceptable, given the next word and particular prior history of this

sentence. All the steps which prove acceptable are recorded as

extensions of the analysis network, thereby prcducipg a new set

of live nodes for the next stage of the analysis. The analysis

b The author is indebted to Daniel Bobrow for drawing attention
to the advantages of Thome's program for TLC.

50

network often branches, while previous paths that have no acceptable

extensions die off automatically. By only attempting to extend

nodes that are live, this procedure automatically restricts syntactic

processing to consider exactly and only things which may be possible,

given the analyses viable up to the current word. Each path extend-

ing to the end of the sentence constitutes a syntactically accept-

able Tarsing of it, and can be printed out as a nested group of

strin i. Note that steps along such an analysis path are equivalent

to pa^ icular syntactic relationships between the words at the

beginning and end of each step, so that the grammar may be said to

propose particular syntactic relationships between words of Input

sentences.

As we visualize it at this point, TLC would use such a procedure

by constructing a Thorne-llke analysis network in addition to its

comprehension. However, at most stages, instead of extending the

analysis network by trying all steps enumerated in the grammar

for currently live nodes, TLC's tentative comprehensions would be

used to propose extensions of this network. To do this, TLC's

form tests would be rewritten to name various steps (possible

syntactic relationships) specified in the grammar. That is.

Instead of naming some pattern of features required in the input

string, each form test would simply name a particular syntactic

relationship (step) in the grammar, and name particular words of

the input string to be related in that way. This would mean that

at the point at which TLC now executes form tests, some group of

Thome's syntactic relationships would Instead be proposed between

the words TLC tentatively relates.

To check out any such proposed syntactic relationship (step) a

first check would be made to see if the node that that relationship

required as its starting point was "live" at the stage of the

analysis network corresponding to the word TLC specified. If not.

51

that syntactic relationship would be considered impossible (at

least at this time). If the beginning node was live, the same

kind of checks that Thome's program makes now of a particular

step would be made to see if it was syntactically feasible at this

point. If it was, the analysis network would be so extended, and

TIwC would consider that form test successful.

This kind of use of Thome's procedure would provide two very

desirable features. First, it would allow much faster elimination

than at present of the syntactic relationships sought by form

tests, since this would use a record of prior processing (is the

beginning node live?) rather than having to look each time at

features of the input string itself. Second, only syntactic

analyses which make sense semantically would be produced. To the

degree that the parser 01^^ extended the analysis netwoT \ via

steps proposed by TLC's tentative semantic interpretations, these

semantic interpretations would "drive" the syntactic analysis of the

input. This would pare away syntactically acceptable but meaning-

less parsings, which not only are unwanted, but which account for

most of the processing activity of present parsers.

The procedure above is not yet programmed, and it is probable that

between certain words a purely syntactic analysis such as Thome's

program now makes may have to be made, at least temporarily. This

might be the case, for Instance, whenever no semantic information

is available about a string of unfamiliar words. Also, it might

In sor.e cases prove more difficult to specify how to make the

{.arsing step required to establish a syntactic relationship between

two words than it would be to generate all syntactically accepta»le

steps from one to the other and then see if these Included any paths

having certain characteristics.

However this may turn out, though, incorporation into TLC of a parser

like that whioh Thorne et_ al have built would seem to offer some

attractive possibilities and is being actively explored, with

Daniel Bobrow currently duplicating a version of Thome's program

at B3N.

*

52

F. Unsolved Problem'

In addition to a need for keeping a better record of syntactic

processing, TLC at present lacks other capabilities more or less

related to its tasks. One such need is for an ability to recognize

that many input phrases refer to memory information stored as other,

not directly mentioned concepts. For example, "male child" should

evoke the comprehender's knowledge of the concept BOY, and "old

man" should evoke its knowledge of the concept OLD-MN, even

though, in English, this concept has no single word name. (There

is of course no restriction in the memory format against having

concepts without English names, and in fact our present memories

necessarily include such concepts.)

Another ability lacking in TLC is any ability to reason spatially,

or to generate visual-like imagery. Beyond this, TLC is missing cap-

abilities which begin to shade off into things which (we assume) arc

less directly essential to language comprehension per se. One

of these is the ability to assimilate the meaning of a piece of

text it comprehends. While the monitor can add TLC's encoded

output to the program's memory, the program itself makes no

attempt to do so, nor to solve the problems inherent in doing so.

One of these problems, for example, is where to store such infor-

mation. One can see this problem in almost any sentence; is

"Battleships in World War I had 16 inch guns," about battleships,

about World War I, about guns, or about, perhaps, naval history?

Or is it abou': all of these? The way that this question is

answered will determine where the comprehension of the sentence

is stored, and hence which words or phrases will be capable of

retrieving its Information in the future. The question clearly

must be answered not so much on the basis of anything present

in the input text Itself, as on the basis of the overall interests

or orientations of the memory. (For possible approaches to this

5 3

problem pee Abelson and Carroll, 1965, and Tesler, Enea and

Colby, 1967.) As of now TLC sets up the properties needed to

express what a piece of text means, and then usually adds pointers

to these properties to all the new units created to represent

words in that frrgment of text, as was done in Fig. ^B.

TLC also as yet makes no effort to get rid of most of the new

units created during comprehension of text. Such new units

represent known concepts plus things said about them in specific

instances, and any adequate learning mechanism must forget most

such specific instances, while extracting any important generali-

zations from them and adding these to the more general concepts

left in the memory. Some method of achieving such generalization

and forgetting must probably be programmed before a significant

amount of TLC's memory can actually he built up by reading text.

It was mentioned in the introduction that currently TLC can

encounter problems of overinterpretation if too much richness of

comprehension is sought. Consider for instance the following

phrases, all of which deal with a lawyer and some othei person.

1. 2.

enemy's lawyer lawyer's enemy

wife's lawyer lawyer's wife

client's lawyer lawyer's client

Assume that a property stored in memory with the unit LAWYER states

that a lawyer has as occupation the representing or advising of

person(s) in legal matter(s). Now, in comprehending the three

phrases of column 1, it is always appropriate to consider this

stored property related to the phrase: "enemy's lawyer" means

this lawyer is representing or advising this enemy in a legal

matter, "wife's lawyer" means this lawyer is representing

54

or advising this wife in a legal matter, etc. Furthermore, it

appears that no matter wha; sort of person Is substituted for the

first word in such a phrase, the use of this stored property in

this way remains appropriate.

However, the first two phrases in the second column are not

correctly seen as related to this stored property: "lawyer's

enemy" does not mean this lawyer is representing or advising this

enemy in a .legal matter. Moreover, if additional phrases of the

column 2 type are generated, very few turn out to be correctly

comprehended by use of this particular property.

If given a phrase from either column above to comprehend, TLC's

intersection procedures will in all cases locate a superset

intersection connecting part of the property stored with LAWYER —

specifically, the unit PERSON(s) — with the person named by

the other word of the phrase, "enemy," "wife," etc. However, the

phrases of column 1 are distinguished from those of column 2

syntactically; the word "lawyer" comes after the possessive

word only in the column 1 phrases. It is therefore easy to make

TLC decide that the property stored with LAWYER is related to all

phrases like those of column 1, but to decide it is not so

related to any like those of column 2; one form test will succeed

on all phrases where "lawyer" comes after the possessive word,

fhile a different form test is needed for all phrases like those

of column 2. It therefore seems a very good idea to store the

form test necessary for column 1 phrases with the stored property,

but not to store that that would succeed for column 2 type phrases.

However, for a few phrases of the column 2 type, such as "lawyer's

client," use of this stored property of lawyer is correct

(see Fig. IB). TLC should recognize such relations to produce a

richer comprehension. As stated in the Introduction, such

55

"indirect c -mprehension" is still a problem for TLC, and all we

will do here is indicate a general plan for routines to achieve

this.

First, such routines locate intersections which connect parts of

two properties in memory, as described in Section IIIC, Second,

one of the units so connected must always be part of a property

that TLC has already found it can relate directly to the piece of

text being comprehended. For instance, to comprehend "lawyer's

client" TLC would first find this phrase's relation to the EMPLOY

property stored with CLIENT, in the manner described in previous

sections. Then, the routine for indirect comprehension would

consider relating other properties to the sentence indirectly.

Among these properties would be the one stored with LAWYER, statin«

that a lawyer's occupation is to represent or to advise people

in legal matters. This routine would find a superset intersection

connecting OCCUPATION with EMPLOY! Having found this connection,

the routines should be able to copy and adapt the OCCUPATION

property in accordance with the way the EMPLOY property is copied

and adapted. This will produce an output like that of Fig. IB,

but one which will not overgeneralize to phrases like "lawyer's

enemy." The key element of this solution is that the OCCUPATION

property is not directly related to the text, but rather is

implied by another property which is so related: employing

someone has implications about their occupation. Several parts

of this process still involve unsolved problems.

We also believe that, ultimately, a human-like memory should

relate descriptive knowledge of the world to perceptual-motor

activity, in a manner like that indicated by Plaget (Plaget, I960,

Qulllian, Baylor and Wortman, 1961.) This, however, is far

beyond our present scope.

56

IV. SUMMARY

This paper does four things:

1) proposes a structure for a memory of knowledge of the
world

2) describes a theory of how natural language may be
comprenended using such a memory

3) offers reasons why a computer program embodying this
theory may be able to be tau^.it, in a finite length
of time, to comprehend language

4) displays the outputs so far produced by one such program

The memory structure represents factual information about the

world in a richly connected network. Given any set of concents
represented in this memory, it is possible for a program to locate

the conceptual Ingredients they have in common, their "intersections"

in memory. Every conjeft represented in this memory, every "unit,"
is directly associated wltn some set of factual assertionb, its

properties, and indirectly chained to an unlimited number of otiier

"superset" units and, hence» with the Drooertles associated with all

these other units. The meanings of natural laneuaee words are

considered to be pointers to oarticular units in the ntemorv.

The theory of text comprehension is more difficult to summarize.

Essentially, it asserts that to read text a comprehender searches

his (her, its) memory, looking for properties wnicr can be con-

sidered related to that text. This search begins simultaneously

at all the representations of concepts, all the "candidate units,"

which the words of a given fragment of text point to, These will

include units corresponding to all of the dictionary meanings of

these words, p.nd to any possible anaphoric referents these words

may have. These initial units are all considered candidates for the

meaning of the word which led to them (until a property related

to the text is found, which will provide for a choice among

57

candidates.) TLC's search through memory is Intended to

locate, In breadth-first order, intersections connectine orooerties

in memory to words of the input text. Each such intersection

that is found causes TLC to form a hypothf sis about part of the

Intended meaninp; of the current text. Cpeclflcally, this hyoo-

thesis is that the text means to imply a relationsh.'p > somehow

similar to the one the property represents , between particular

words of the text . These words are the "source" word - that

which supplied the initial candidate leading to this property -

and the "identified" word - that which has been found to have an

intersection with this roperty.

Having generated such an hypothesis, (on purely semantic grounds,

note), the hypothesis is further checked for syntactic feasibility.

That is, certain syntactic relationships between the word;; hypothe-

tlcally related will allow the hypothesis to remain creditable,

while other syntactic relationships will not. Such compatible

syntactic relationships must somehow be srecified and stored with

the property in the memory. At present, such syntactic relation-

ships are represented by routines, "form tests," which check the

input string for features allowing particular syntactic relation-

ships to be assumed. (We have discussed the desirability of re-

specifying form tests as steps in a network grammar.) But, however

such relationships are specified, tests must be made at the time an

hypothesis about part of the input string's meaning is formed, to

see if any one of the compatible syntactic relationships is

feasible in the current piece of text. If any is, TLC con-

siders its hypothesis confirmed: the source word and the identified

word are considered to be related in a way similar to that soecified

by the property. Thus the current memory property may be said to

be related to this text. This is taken to indicate that the

particular candidate of the source word and the particular candi-

date of the identified word that led to the current intersection

58

should be considered as the meanings of those worr" i in this text.

The memory property related to the text Is also iken as a model

to be recopied and the copy adapted to encode a part of the
text's meaning.

By this technique the comprehension procedure may find a number

of properties related to a piece of text, and, using adapted

copies of these, create a complex, intra-linked structure. In the

same format as the memory, representing the particular meaning
of the current input string.

An important feature necessary to make the above strategy work on

nested syntactic constructions is the "pending" procedure. TMs

allows the order in which intersections are found within the

comprehender*s memory to be adjusted so as to adequately match

the order required by syntactic nestings of input sentences.

Overall, the most distinctive features of this theory, as compared

to other models and theories of language of which we are aware,

are its exnlicltness and detail, and its reliance on "knowledge of
the world." The theory assumes that in general very sizable

amounts of memory must be searched in order to comprehend text.

TLC is designed to carry out such searching with as little wasted

effort as possible, and in a breadth-first order, which simulates

a largely parallel search mechanism. This kind of "semantic"

processing controls the entire comprehension process, with

syntactic analysis used in the service of deciphering meaning,

rather than, as is often suggested, the reverse.

The argument for TLC as an efficiently "teachable" computer program

rests on the fact that both the program's knowledge of the world

and its ability to perceive syntactic relationships are fragmented,

so that they can be built up in a machine piece by piece. The

memory structure allows automatic generalization of each such
piece added to this memory, since TLC will recognize a given

59

property's relationship to text despite considerable variation

in the form of that text. Specifically:

1) A property is in general reachable via many different
input words.

2) Once reached via some word, either its attribute or Its
value can be identified with many different other input
words.

3) Once part of a oroperty is thus identified with some
input word, all the form tests previously associated
with any property having the same attribute are
available to help determine whether or not the text's
syntax implies use of this property.

Finally, examples of TLC's output to date are presented in

Figures 1, 48 and 6. We have tried to point out why these begin

to Illustrate machine comprehension of text, as well as what

would seem to be the program's most important current flaws and

limitations. As a large and not at all simple program, TLC is -

after more than two years of continuous debugging and redesign -

still not performing nearly as well as we feel certain it can.

Nevertheless, it does at least confront, in considerable detail,

the central problem of how to Interpret continuous text by

relating it to a large memory. We suggest that only to the degree

that there is some such detailed, working model of general memory

and its use, can language behavior and most other cognitive

processing ever be understood by psychologists or linguists, or

can reasonable performance on language tasks ever be obtained

from a computer.

60

BIBLIOGRAPHY

Abelson, R.P., and Carroll, J.D. (1965). Computer simulation of

individual belief systems. The American Behavioral Scientist.

Vol. VIII, No. 9, PP. 2H-30.

Bobrow, D.G., Murphy, D.L., and Teitelman, W. (1968). The BBN

LISP system. Cambridge, Massachusetts: Bolt Beranek and

Newman Inc.

Chomsky, N. (1965). Aspects of the Theory of Syntax. Cambridge,

Massachusetts: The M.I.T. Press.

Collins, A.M., and Quillian, M.R. (1968). Retrieval Time from

Semantic Memory. Report No. 1692. Cambridge, Massachusetts:

Bolt Beranek and Newman Inc. To apj..jar In The Journal of

Verbal Learning and Verbal Behavior, 1969.

Collins, A.M., Qu.Hlian, M.R. (1969). Semantic memory and language

comprehension. In L. Gregg,Cognition in Learning and Memory.

New York: John Wiley & Sons, (forthcoming)

Feigenbaum, E.A., and Peldman, J. (1963). Computers and Thought.

New York: McGraw Hill.

Kuno, S.K. (1965). The predictive analyzer. Communications of

the ACM. 8 (7), pp. H53-HS2.

Longyear, Christopher R., (1967). The semantic rule. General

Electric Tempo - 67TMP-55, Santa Barbara, California.

Mlnsky, M. (1968). Semantic Information Processing. Cambridge,

Massachusetts: M.I.T. Press.

Newell, A., Shaw, J.C., and Simon, H.A. (1962). The processes of

creative thinking. In H.E. Graber, G. Terrell and M. Werthelmer

(eds.) Contemporary Apprcaches to Creative Thinking. New York:

Atherton Press, pp. 63-119.

Piaget, J. (1950). The psychology of intelligence. Translated try

M. Cook and D.E. Berlyne. London, England: Routledge and

Kegan Paul.

Quillian, M.R. (1966). Semantic Memory. Report No. 1352.

Cambridge, Massachusetts: Bolt Beranek and Newman Inc. In

Minsky (1968).

Quillian, M.R. (1967). Word concepts; a theory and simulation of

some basic semantic capabilities. Behavioral Science, 12,

pp. ^10-^30.

Quillian, M.R., Wortman, P. and Baylor, G.W. (1965). The program-

mable; Piaget: behavior from the standpoint of a radical com-

puterist. Unpublished dittoed paper. Carnegie Institute of

Technology.

Raphael, B., Bobrow, r.G., Fein, L., Young, J.W. (1968).

A brief survey of computer languages for symbolic and

algebraic manipulation. This paper appears in D.G. Bobrow

(editor). Symbol Manipulation Languages and Techniques, 1968,

North Holland Press.

Reitman, W.R. (1965). Cognition and thought: An information

processing approach. New York: John Wiley & Sons.

Siklossy, L., and Simon, H.A. (1968). Some semantic methods for

language processing. Complex information processing,

Paptr #129. Plttsburg, Pennsylvania: Carnegie-Mellon Unlverslt

SlmmonSj R.P. (1965). Answering engllsh auestions by computor:

a survey. Communications of the ACM. 8(1), pp. 53-70.

Simmons, R.P.,, and Burger, J.?. (196c). A Semantic Analyzer for

English Sentences. Report No. SP 2987. Santa Monica,

California: System Development Corooratlon.

Tesler, L., Enea, H., and Colby, K.M. (1967) A Directed Graph

Representation for Computer Simulation of Belief Systems.

Deoartment of Computer Science, Stanford University.

Thompson, P.B. (1965). The deacon project. General Electric

Tempo - 65TMP-69, Santa barbara, California.

Thorne, J.P., Brat ley, P. and Dewar, v. (1968). The syntact^

analysis of English by machine. In Machine Intelligence 3,

Michie, Donald (ed.) New York: American Elsevier Publishing

Co., Inc., pp. 281-309.

Weizenbaum, J. (1967). Contextual understanding by computer.

Communications of the ACM, 10(8)» pp. ^7^-i]30.

I

Ü

IS

1 >

--mi

AG

Unclassified
Si'curtty C'assjftcaMnn

AD
DOCUMENT CONTROL DATA -R&D

S'-vurtty tfassiiiraiian ai title, hudy ul rthsitat t mid indexing annotation must be entered H/M f> ■'■roll rrport is r/iis sz/iei/)

1 Of<U..iNA ;:NG A C T i V ! T T (Ciiffittrtitf uitfhorj

Bolt iieranek and Mev/man Inc
50 I'-oulton Street
Cambridge, Massachusetts 02138

Iff, RFFORT SLCukiTY CLASSIFICATION

unclassified
Sli. GROUP

j RLPORT Tin r

THE TEACHABLE LANGUAGE COEPREHENDER: A SIMULATION PROGRAM AND THEORY
OF LANGUAGE

4. DLSCNIPTIVE hiOTES (Typv vf rrport nnd,inclusive dates)

Scientific Interim
*i ^u THORiSi fFirsf nHme, tmddlr initial, last name)

M. Ross Quillian

TOTAL NO OF PAGES

60
6 REPORT DATE

31 January 1969
7h. NO OF REFS

18
8a. CONTRACT OR GRANT NO

P1962S-68-C-0125
b. FROJEC T NO

8663

DoD Element 615W1R

$a. ORIGINATOR'S REPORT NUMBERS)

BBN Report Mo. 1693
Scientific Renort No. 10

»6, OTHER REPORT Noisi f/lny othrr numbers thai may be assigned
this report)

AFCRL-69-0108

10 DISTRISUTION STATEMENT

Distributior; of tHis document is unlimited. It may be released to
the Clearlnchouse, Department of Commerce, for sale to tHe general
nublic.

It- SUPPLEMENTARY NOTES

This research was sponsored by
the Advanced Research Projects
Agency

12 SPONSORING MILITARY ACTIVITY Air Force
TambridRe Research Laboratories (CRB
L.G. Hanscom Field
Bedford, Massachusetts 01730

fS ABSTRACT

The Teachable Language Comnrehender (TLC) is a program designed to
be capable of being taught to "comprehend" English text. When text
which the program has not seen before is input to it, it comprehends
that text by correctly relating each (explicit or implicit) assertion
of the new text to a large memory. This memory is a "semantic network"
representing factual assertions about the world.

The program also creates copies of the parts of its memory which
have been found to relate to the new text, adapting and combining these
copies to represent the meaning of the new text. By this means, the
meaning of all text the program successfully comprehends is encoded into
the same format as that of the memory. In this form it can be added in-
to the memory.

Facts and reading abilities may be taught to the program as needed.
This information is generalized in TLC and hence a single addition can
often orovide a large increment in TLC's effective knowledge of the
world, and in its overall ability to comprehend text.

The program's strategy is here presented as a general theory of
language comprehension.

DD FORM I473

S-'N 0101 -807-681 1

(PAGE 1)
Unclassified

SPcuritv Classiljrotinn
A ■ .IMOs

Unclassified
Security Classification

KEY WORDS

HOUE WT

Natural Language

Semantics

Language Comprehension

Computational Linguistics

Psychololnpulsties

DD .^M!473 '^K
S/N oioi-so^-seji

Unclassified
Security Classification

