BOLT B ER

CONSU LTI NG

A NEK AND NEWMAN

I N C

DEV EL O PMENT R E S E A B C H

AD 687746

AFCRL-69-01C6

31 January 1969

THE TEACHABLE LANGUAGE COMPREHENDER:
A SIMULATION PROGRAM AND THECRY OF LANGUAGE

M. Ross Quillian

Scientific Report No. 10
Contract No. F16628-68-C-0125

Project No. 8668

Contract Monitor:

Prepared for:

Hans H. Zschirnt, Data Sciences Laboratory

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
Office of Aerospace Research : o
United States Air Force IRL.

Bedford, Massachusetts

This research was spon-
sored by the Advanced
Research Projects Agency

under ARPA Order

CAMBRIDGE

01730

Distribution of this document
is unlimited. It may be re-
leased to the Clearinghouse,
Department of Commerce, for
sale to the general public,

No. 627

Reproduced by the
CLEARINGHOUSE
for Federal Scientific & Technical
information Springfiold Va. 22151

4

NEW YOrRK THICAGC LOS ANGELES

A bt bbb

BEST
AVAILABLE COPY

AFCRL-69-0108 31 January 1969

THE TEACHABLE LANGUAGE COMPREHENDER:
A SIMULATION PROGRAM AND THEORY OF LANGUAGE

M. Ross Quillian

BOLT BERANEK AND NEWMAN INC
50 Moulton Street
Cambridge, Massachusetts 02138

Sclentific Report No. 10

Contract No. F19628-68-C-0125

Project No. 8668

Contract Monitor: Hans H. Zscairnt, Data Sciences Laboratory

Prepared for:

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
Office of Aerospace R.search

United States Air Force

Bedford, Massachusetts 01730

Distribution of this document This research was spon-
is unlimited. It may be re- sured by the Advanced
leased to the Clearinghouse, Research Projects Agency
Department of Commerce, for under ARPA Order No. 627

sale to the general public.

THE TEACHABLE LANGUAGE COMPREHENDER:
A SIMULATION PROGRAM AND THEORY OF LANGUAGE#*

M. Ross Quillian

January 1969

*This research was supported primarily by the Advanced
Research Projects Agency, monitored by the Air Force
Cambridge Research Laboratories under Contract No.
F19628-68-C-0125; and in part by the Aerospace Medical
Research Laboratories,Aerospace Medical Division, Air
Force Systems Command, Wright-Patterson Air Force Base,
Ohlo, under Contract F33615-67-C-1982 with Bolt Beranek
and Newman Inc.

The author extends his most grateful thanks to

Daniel G. Boobrow, Principal Investigator on the ARPA

project, for invaluable assistance in writing the TLC
program, > Tony Bell, who wrote the program's sentence
generation routines; and to Allan Collins, who is attempting
to test its psychological validity. Thanks also to Joseph
Becker and Bruce Fraser, who along with those Just mentioned
provided valuable criticisms of various versions of the

Eresent report. This paper is to appear in the Computational
inguistics section of the Communications of the ACM in 1969.

UEAARLAERARRECRLRERINRAIRLA L)

TOFTTIC [@F T T T T

ABSTRACT

The Teachable Language Comprehender (TLC) is a program designed
to be capable of being taught to "comprehend" English text. When
text which the program has not seen before 1s input to it, 1t
comprehends that text by correctly relating each (explicit or
implicit) assertion of the new text to a large memory. This
memory 1s a "semantic network" representing factual assertions
about the world.

The program al ;o creates coples of the parts of its memory which
have been found to relate to the new text, adapting and combining
these coples to represent the meaning of the new text. By this
means, the meanlng of all text the program successfully compre-
hends 1s encoded into the same format as that of the memory. In
this form 1t can be added into the memory.

Both factual assertions for the memory and the capabilities for
correctly relating text to the memory's prior contents are to be
taught to the program as they are needed. TLC presently contains
a relatively small number of examples of such assertions and
capablilities, but within the system notations for expressing
elther of these are provided. Thus, the program now corresponds
to a general process for comprehending language, and provides a
metrndology for adding the additional information this process
requires to actually comprehend text of any particular kind.

The memory structure and comprehension process of TLC allow new
factual essertions and capablili‘les for relating text to such
stored assertions to generalize automatically. That is, once such
an assertion or capability 1s put into the system, it becomes
avallable to help comprehend a great many other sentences in the
future. Thus, adding a single factual assertion or linguistic
capability will often prrovide a large increment in TLC's effective
knowledge of the world, and in its overall ability to comprehend
text.

The program's strategy 1s presented here as a general theory of
language comprehenslon.

BLANK PAGE

I. INTRODUCTION
A. Goals and Sample Qutput

The ultimate goal of the research to be described here 1is to
develop a computer program that could comprehend newspapers, text-
books, encyclopedias, and other written text. That 1s, the program
should be able to extract and somehow retain meaning from natural
language text it has not seen before at a level of skill comparable
to that of human readers. The present paper 1s an overview of a
program ~ called TLC, for Teachable Language Comprehender - which
aspires to this goal.

TLC is in the development stage and so far only works on certain
isolated phrases and sentences. Nevertheless, a large part of its
strategy 1s now worked out in considerable detail, as 1is the
structure of the memory TLC works with. Together these constitute
a theory of what text comprehension is, and of how to achieve it
it is really this theory that we wish to describe here. Viewed

as a theory, a good part of TLC's strategy 1s independent of the
kind of mechanism that carries it out; one may think of this

mechanlism as a computer, a person's brain, or whatever else could
do 1t.1 Our system is implemented in BBN-LISP (Bobrow, Murphy

and Teitelman, 1968) on an SDS 940.

1 We also happen to believe that, given the present state of
psychological theories, almost any program able to perform some
task previously limited to humans will represent an advance 1in
the psychological theory of that performance. Therefore, while
the reader who dlsigrees or who has no interest in human behavior
can read TLC's strategy strictly as program specification, we
choose to regard this strategy also as psychologlcal theory, and
will speak of a computer and a person interchangeably as our
example of the mechanism carrying it out. Reacticn time data
supporting the notion that people's semantic memories have at
least an overall organization 1like that of TLC's is reported in
Collins and Quillian (1968).

"Comprehending" text is here defined as the relating of assertions
made or implied in that text to inforration previously stored as

part of the comprehender's general "knowledge of the world." Corres-
pondingly, the central aim of TLC 1s the ability to appropriately
relate text to the correct pleces of stored general knowledge of

the world. We assume that this 1s not only the tasic process
involved ir the comprehension of language, but also in a great

many other perceptual and cognitive functions.

TLC's second important assumption 1is that all of a comprehender's
knowledge of the world 1s stored in the same kind of memory - that
is, that all the various pleces of information in this memory are
encoded in a homogeneous, well-defined format. TLC's memory
notution and organization constitute an attempt to develop

such a format, which 1s both uniform enough to be manageable

by definable procedures, yet rich enough to allow representation
of anything that can be stated in natural language. This memory
format is a further development of that used in a previous
"semantic memory" program (see Quillian, 1966, 1967, or in
Minsky, 1968); it amounts essentially to a highly interconnected
network of nodes and relations among nodes.

If comprehension of text by TLC only meant for the program to

relate the tcxt appropriately to information in its memory,

however, 1ts comprehension would not necessarily be discernable to an
outside observer, nor would it necessarily leave any trace to

alter the program's future performance. Therefore, comprehension

in TLC 1s always followed immediately by enceding in TILC's

memory format a representation of what the program decides the
meaning of the text to be. Figure 1A gives an example of the
program's output.

READ(LAWYER'S CLIENT)

OUTPUTI:

((CLIENT (EMPLOY (LAWYLR)
(BY (*THIS*® . CLIENT)))

OUTPUT2:
UNDER DISCUSSION IS A CLIENT WHO LEMPLOYS A LAWYER.

FIG. 1A An Example of TLC's Output

This figure shows a small phrase input to one version of the

program and TLC's output, the machine's representation of what it
decided the phrase meant. The program always expresses its output
in two forms: the first showing the encoding of the lnput into
memory format, tlie second a translation of this inteo English.

Thus Fig. 1A shows that when TLC was asked to read the phrase
"lawyer's client," its ccmprehension was expressed by its output
at the bottom of Fig. 1lA.

For the moment all that needs to be noticed about the non-English
version of the output 1s that the machine's comprehension of the
input phrase has been to bulld a falrly elaborate internal
structure - the computer's counterpart of a cognitive structure -
wnicn as the bnglish version indicate. 1is conslderably more explicit
and detallea than the pilece of input text itself. The imoortant
polnt here is that in TLC the function of text 1is viewed not

as explicitly stating information for a reader, but rather as
directing the reader to construct for himself various cognitive
structures. These structures will in large part represe:t asser-
tions that go beyond anything explicit in the text itself, which
is possible because in constructing such structures the reader
includes pleces of information drawn from his prior memory. At
the same time, a text 1s able to communicate something new to the
reader, something which he did not already have in his memory,

by dictating ways in which he must adapt and recoimbine the pileces
of information he draws from memory. These pieces then are used
as components for building the new cognitive structures that
represent his comprehension.

In other words, given a piece of input text to comprehend, TLC
first locates related pleces of information (scattered about) in 1its
memory, and then createz and adapts coples of these to recombine
into its representation of what the text means.

Defining text comprehension in this way leads to viewing the rich-

ness of a given comprehension of a piece of text as the number of
related memory items that the comprehender finds. For instance,
the output shown in Fig. 1B illustrates comprehension of "lawyers
client" of greater richness than does Flg. 1A, since an addicional
related item has been found and used to create the output. TLC
can presently be made to produce the Fig. 1B output, but (alas)
only at the cost of overinterpreting ocher phrases. The reason
for this difficulty and a possible extension of TLC to overcome it
willl be discussed below in Section 3F. For the moment, all that
needs to be noticed is that one can imagine comorehensions of
greater richness than TLC can safely produce with its present
technlques.

Although TLC cannot necessarily recognize all the things in memory
that are 1In any way related to a text, it is designed on the as-
sumption that it may have to search a very sizable amount of memory.
Consider a pilece of text such as:

One recalls an American president who was once i.ivolved in
an incident in which he completely severed the main trunk
of a small fruit tree. He went and reported his action

to his father.

Most readers will recognize at some point as they read this that
the earlier president mentloned is Washington, the incident htelng
the one in which he cut down his father's cherry tree. Unless
the text is related to this fact in the reader's memory, the
paragraph has not been very well comprehended. Notice that
native speakers can establish this relationship even *nough they
may not have heard or thought about the cherry tree story for ten

or more years, and despite the fact that the lenguage in which
the incident 1is described abecve 1is almost certainly different

READ(LAWYER'S CLIENT)

OUT. UT1:
((CLIENT (EMPLOY (LAWYER)
(BY (®*THIS* . CLIENT)))
((AOR REPRESENT ADVISL)
(®*THIS* , CLIENT)
(BY (¥THIS* ., LAWYER))
(LN (MATTER (TYPE LEGAL))))))

OUTPUT2

UNDER DISCUSSION IS A CLIENT WHO EMPLOYS A LAWYER : {E IS A

CLIENT WHO IS REPRESENTED OR ADVISED BY THIS LAWYER 1N A LEGAL
MATTER

FIG. 1B An Example of Output _1llustrating
Greater "Richness" of Comprehension

in terminology, in syntax, ang in surrounuing contcxt, from any
languapge in which they have ever heard (or thought about) the story
before. What the reader must have, then, as he recuds the text

above, 1is an extremely versatile ability to recognize the
appropriate chunk of memory information from among literally
thousands of others he may since have learnea about "presidents,”
about "fruit trees," and about "fathers." Most of the following

1s an effort to describe how TLC attemnts to develop such an ability.
As part of this description we will first describe the memory, and
then trace TLC's orocessing of the example in Fig. 1 in some detall.

Before this, however, let us briefly indicate where TLC stands in
relation to other work. First, the project is perhaps closest to
efforts such as those of the TEMPO project (Thomposon et al, 1965)

or of the SDC project (Simmons, Burger and Schwartz, 1968.) These
projects share with TLC the aim of resovondine to English input by
using very large, very general stores of information. The fact

that they are designed as question answerers rather than as language
interpreters turns out not to be exnecially important; most of the
same problems must be faced in either case. Programs designed by
these three projects differ from well-known programs such as those
of Bobrow or Raphael, in that the latter aim at dealing with English

in one strictly limited subject matter at a time and do not attempt
to use an information store of a completely general sort,

even though they make some use of "global" information. (See
papers by the above two authors in ilinsky, 1268.) Up to now,
programs aimed at dealing with such a limited subject matter
have boen more impressive at answering guestions posed to them
in English than have programs based on 2 general store of
information. See the survey by Simmons, 1065; a recent

survey is Siklcssy and Simon, 13%¢S.)

-
(Ltbeiatt bbbt iid

For some text deep comprehension requires reasoning mathematically,
visuelly, or in some other specialized way; to do this a program
probably will have to incorpor-te techniques such as those

used in the Bobrow and Raphael prougrams, as well as in others such
as C.P.S. (Newell =2t al, 1962). In this regard see also the pro-
grams 1n Feligenbaum and Feidman, 1963, Reitman, 1965, and
Weizenbaum, 1967.) However, we assume that there is a common core
prccess that underlies the reaaing of all text, whether newspapers,
children's fiction, or whatever, and it is this core process that
TLC attempts to model.

The relation between TLC, a semantic performance model, and the
syntactic "competence" models of transformational linguistics
(Chomsky, 1965) is not clear. The efforts that have been made so
far to attach "semantics" to transformational models seem, to this
writer at least, to have achieved little success (Woods, 19068,
being the most significant attempt.) Correspondingly, TLC

so far works with syntax on a relatively local, primitive basis,
which has very 1little if anything new to say to a lingulst about
syntax. TLC does differ from most other projects of its tyve by
not being specifically deslgned to work on the output of a parsing
program, although a possible way of amalgamating one particular
recent parsing program with TLC will be des:ribed below.

E. Teachinag TLC To Comprehend

TLC's memcry contains two kinds of material: factual assertions
about the world, and what will be called '"form tests.” TForm
tests constitute the syntaciic part of the program's ability to
recognize that a phrase or sentence of an input text is relat-
ed to some particular concept stored in its memory. That

is, tne abllity to correctly relate a piece of text to memory
depends in part on overcoming whatever difficulties the syntax of
that text may pose to recognizing its relations to the

memory, and this specific syntactic capability is what form tests
provide. As the cherry tree example above 1llustrates, people's
ability to cut through syntactic variation in recognizing relation-
ships to thelr prior knowledge I- incredibly good.

TLC's memory 1s cventually golne to have to contcin as much factual
information as a person's memory if the program is to comprehend

as broad a range of text. However, any one particular phrase or
clause will never relate to all the pleces of information in such a
memory, but only to something on the order of five or ten such pieces.
Similarly, while TLC must eventually have as pgood an overall syn-
tactic ability as a person 1as 1ln order to recognize paraphrases of

things in its r.emorv, comr-ehension Of anv one phrase or sentence wil!
never reauire all of this knowledge of svntax. Therefore, TLC

is designed to frapment this abllity into a great manyv separate
form tests, so that both the program's memory for factual assert-
lons and its syntactic abllityv to recognize relationships can be
built up a piece at a time as each plece becomes necessary for

the comnprehension of some narticular fragment of text.

To facilitate this, TLC is built to work in close interaction with
a human monitor, its teacher, who provides each pleece of faccual
knowledre and each form test as the program neceds it. Using an
on-~line teletype, the monitor can oversce the nrogram's attempts

to read text, approve or aisanrrove of each step it takes, and

provide it with additional factual information or form tests as
these are required. The principle components of the TLC system
are shown 1n Fig. 2. Any plece of knowledge or form test that
the monitor provides for the program is permanently retained in
its memory, which thus gets bullt up plece by pilece.

Our plan is to begin with, say, 20 different children's books
dealing with firemen, and have TLC read all of these under super-
vision of the monitor. We anticipate that although the program
will require a great deal of input by the monitor as it reads

the first book, 1t will tend to require less and less on successive
books as it accumulates knowledge and form tests pertinent to the
comprehension of such material. Thus the hope 1s that by the

20th book TLC will be requiring very i1ittle aid, and that, over a
long (but finite) period of general reading, the monitor (teacher)
wlll become completely unnecessary, at least within given subject
matter areas. Reasons for expecting this are brought together in
Section III D. below. However, to date no serious attempt has
been made to actually amass elther factual data or form tests in
this way, since almost all our effort has been concerned with
developing the executive TLC program. Our method so far has been
simply to give TLC sample inputs and memory structures,attempting

to devise counterexample cases to its successful performances.

10

%

WalsAs D71 ayy jo suoijdesaju| pue sjusuodwos ajdiduiigd Z°914
2 e
- uoijebousiajul - JO}IUOW UBWNH
sal}ljiqede) pue uojjpwlioju| aulj-ugQ
Jo ynduy }2a341p
é0s §1
ipalaquawal
9q pjnoys
i123110) uoljeboausajul
Juawbas Jo
_ 32U3juas ay} jo
: v uoisuayasdwod « _ }X3} jo
“ $1S3) wao4 (2 s,wesbouy juawbas Jo R
3Jjuajuas
: uA_w“umﬂmm passadsoud tocwwco e jo Jaydeys
| Sapnioul buiaq aouajuas e se yins
L, utuo,h m..:v o EboT e 20 8rdsaiom ‘papuayasdwod
— 1noge spoey uoliebodiajul | Kiesodway (z 3q 0} }x3} o
4 (1 saullnoy Apog awos
:butuiejuod jUsuBWIAd (T

Aiowaw yiom}au

3yl

wetbosd 971 ayy

11

II. THE MEMORY
A. The Format For Factual Information

It will be necessary to describe the memory format in some detail.

The general aim of this format is to allow representation of

everything uniformly enough so that it can be dealt with by

specifiable procedures, while at the same time being ~ich enough

to allow encoding of natural language without loss of information. i
Reconciling these aims is not a trivial undertaking, and a great

amount of trial, error and effort has gone into the design of the

format.

First, and foremost, all factual information is encoded as either

a "unit" or as a "property." A unit represents the memory's

concept of some object, event)idea, assertion, ete, Thus a unit

is use to represent any of the kinds of thing which can be re- ;
presented in English by a single word, a noun phrase, a sentence, f
or some longer body of test. A property on the other hand encodes

any sort of predication, such as might be stated in English by a

verb phrase, a relative clause, or by any sort of adjectival or

adverbial modifier.

Figure 3 illustrates a piece of factual information encoded in the
memory. This figure differs from the actual memory network in
that, for the sake of readability, some pointers are shown as
going to words written all in capitals. Actually, these pointers
in the memory always go to other units within the memory. For
example, the pointer shown as going to PERSON would actually point
to another unit. However, since this other unit will also be one
meaning of the word "person," we can refer to it as PERSON, rather
than showing its actual form. Each word shown in Figure 3 in all
capitals should be understood as standing for some unit; in the
actual memory there are no such words, only units and properties.
Hereafter in this report, words in all canitals will be only used
to represent units. Actual English words are stored ocutside the
memory proper, in a “dictionary.” Each word in this dictionary

is associated with one or more pointers to units in the memory,
each of which renresents one of the word's meaninrs.

12

Dictionary

Ll I N i

—— P W) -

"client® % =
— =
-—-_q_—..ﬂ\.../s—

A e . e

EMPLOY

PROFESSIONAL

BY

Fig.3 A Piece of Information in Memory

In Fig. 3 the word "client" is associated with one pointer to a
unit, shown as delimited by two square brackets. Also shown in
Fig. 3 are two properties, each of which 1s delimited by paren-
theses.

Any unit's first element (readineg left to rieht) must alwavs be a
pointer to some other unit, referred to as that unit's "sunerset."
A unit's superset will in general represent some more generic concent

than the unit itself represents. Thus the superset of a unit
JOE-SMITH might be HAN, that of MAN might be PERSON, that of

PERSON might be ANIMAL, etc. (Any of these could also be the unit
NIL, used throughout to represent a lack of further information.)
After 1ts first element, a unit can contain either nothing, or

any number of pointers, but each of these must be to a property,
not to a unit. Thus, Fig. 3 shows the superset of the unit
representing "client" to be PERSON, followed by one pointer to a
property.

All properties pointed to in a unit represent predicates which,

when associated with that unit's superset, comprise the concept

the unit represents. In other words, a concept is always repre-
sented in our format by pointing to some generic unit, its super-

set, of which it can be considerec a special instance, and then point-
ing to properties stating how that superset must be modified in order
to constitute the concept intended. Properties are therefore the
means by which refining modifications of a superset are encoaed.

Note that new units can be freely constructed by creating an emniy
unit and using apointer to some prior unit as the new unit's super-
set., Thus, suppose one wished to construct a new unit to represent
Joe Smith as a boy, or one to represent Joe Smith from the point

of view of his wife, or one to represent Joe Smith when angry.

Each of these could be constructed as a new unit having as super-
set a pointer to the previocus JOE-SMITH unit, followed by whatever

14

refining properties were necessary to compose the appropriate
particular concept. Suppose further that after creating these
three new units, one wished also to construct a unit representing

Joe Smith at age eleven, and that one wished this to include all
the informa“ion stored with the unit representing Joe Smith as a

boy. This is done by simply creating another new unit,
using as its superset a pointer to the JOE-SMITH-AS-A-BOY unit,

and then attaching further refining properties to this newest unit.
This kind of free creation of new units which "include" old units
is a basic step in TLC's building up of new structures to repre-
sent the meaning of text it comprehends.

A pronerty 1s always essentially an attribute-value pair, but in
the memory format this notion has been broadened well beycnd its
usual usage. That is, not only traditional dimensions and values
such as (color white) are encoded as attribute-value pairs, but
also any preposition and its object, and any verb and its (direct)
object. Thus, a property corresponding to (on hill) could be
encoded, as can the property in Fig. 3, (employ professional ...).
In these latter cases the relational concept - the preposition or
verb - is used as the property's attribute, with what would usually
be i1ts grammatical object serving as its value. This broacenine of
the notion of an attribute-value pair picks out the common feature
"relational," from the many diverse ways that this feature is
stated or implied in English, to always represent it uniformly.

It is a major step toward the goal of this format, uniformity
without loss of expressive power.

The first element of any property must always be a pointer to its
attribute, and its second element must always be a pointer to its
value. These two obligatory elements are followed optionally by
any number of pointers to other properties. Like the properties

helping to comprise a unit, these properties represent refinements,
in this case refinements of the dssertion stated by the property's

15

ML

attribute-value pair. By using such "sub-proverties" a property's
meaning is refined or mcdified as necessary. All this is illustrated
in Fig. 3: First, the unit representing the memory's concept of
client has one refining property. The attribute and value of this
property assert simply that some professicnal 1s employed. However,
a refining sub-property of this property further specifies that

this employing is done by this client himself, since the value of

the attribute RY is a pointer back to the unit representing the
concept CLIENT. 1In total, then, Fig. 3 simply represents a concept
to the effect that a client is a person who employs a professional.

To summarize, a unit has one obligatory element, its superset, and
a property has two, its attribute and its value. All of these are
represerted by pointers, each of which must point to some other
unit. In both units and properties the obligatory element(s)

must come first, and may be followed by any number of pointers to
other properties, which supply the modification necessary to
refine the unit or the property adequately.

Since there 1is no limit on the number or nesting of properties
which can be associated either with any unit or with any property,
concepts and predicates of unlimited complexity can be represented
in the memory format. To further extend the format's expressive
power, space is available in each unit (but not shown here) for
storing quaniifiler-1like modifications of it, and for allowing a
unit to represent ~ome set of other units, bound together by AND,
by INCLUSIVE-OR, or by EXCLUSIVE-OR. This allows units to be
created which represent concepts of individual things, of groups
or classes of things, of substances, etc. This space in the unit
also contains a pointer to the English word(s) associated with

the unit, if such exist.

16

B. The Overall Organization Of Factual Information

In replacing units by capitalized words in Fig. 3, we not only
made the structure more readable, but also cut off the unlimited
interlinking to other units which characterizes the actual memory.
Since all units and properties are made up of pointers to other
units and rroperties, the overall memory 1s a large network. HMany
units and properties in this network will ccntain pointers to the
same other units or properties. In fact, all the units which use
a particular concept as a compositional ingredient should contain
a pointer to the same unit, so that no more than one unit will
ever be required in the entire memory to represent explicitly any
particular concept. If two units use the same concept but with
different modifications of it, then each of them will point to
separate intermediate units, whose supersets will be the common
concept. Thils kind of memory organization removes redundancy, while
permitting one concept to be defined in terms of others.

Such a memory organization also permits common ingredients present
among any given set of concepts to be located swiftly, by a
technique which effectively simulates a parallel search., This
method will be recognized as the same as that used in an earlier
program (Quillian, Op g;g). It 1s based on the fact that, starting
from any given unit in the memory, a program can easily trace to
all the units that this unit contains pointers to, and then (on a
second pass) to all the units these units contain pointers tec, and
so on, for as many such passes as 1s desired. In a rich memory
thls breadth-first tracing will tend to fan out on eaci. successive

pass to greater and greater numbers of units, even though certain
branches of the fan will either circle back to previous units, or
will simply die off due to reaching some NIL unit, 1.e., one whose
meaning has not yet been specifled in the memory.

17

BT L L

A M

Next, supposc that as a routine proceeds with such a trace, it 3
places an "activatic. tag" on every unit it passes through. This
activation tag names the initi~l starting concept which led
(however indirectly) to all the units reached and tagged.

Now, suppose that this pi1 cess is initially given more than one
initial starting unit. 1Its tracing .ow proceeds breadth-first

through all these concepts at once, mcving one level deeper iato ;
each of them on each pass. Thus it simultaneously traces out a i
separate "fan" for each initially given unit. The processor

places an activation tag on each unit it reaches, identifying
the particular fan 1t 1s a part of by naming the in tial unit at
the fan's head. HMoreover, this process now checks every unit it
tags, to see if the unit nes already been reached during prior
tracing eminating from some othe- initial unit. This 1s easily
determined, since any such unit will have a tag showing it has
already heen reached, indicating its initial unit(s). Whenever
such a previously tagged unit 1s found, i1t con.citutes an ingre-
dient common to these two initial units, an "intersection."

This methecd of locating common ingredients of concepts will, in
ge.aeral, find the common ingredients which are closest to the
initial starting units before it finds those which are further
away. That 1s, it will locate intersections reachable by short
paths from the inltial concepts before it finds those r-:- ~nable
only by longer paths. Some restriction on the number of passes
to make before quitting must always be given to such a routine,
whether or not the process 1s also terminated after some given
number of intersections have been located. Breadth-first
rearches to find interse tions of concepts are used in a number
of ways within TLC, with more elaborate tags which allow the program
to disilnguish an intersection unit that is connected to an

initial unit bv a path going only through supersets from one whose
path at some point moves "out" through an attribute or value of
some property.

18

With this general picture of the memory we are ready to plunge

into the considerably more difficult process of how TLC comprehe
text,

nds

19

IIl. HOW TLC WORKS

A. Finding Memory Properties Related To The Text

Natural language text communicates by cavsing a reader to recall
mental concepts which he already has. 1t refers him to sucn
already known concepts either with isolated words or with short
phrases, and then specifies or implies particular relations
between these. 1In this way the text may be said to direct the
reader to form new concepts. These new concepts contaln represen-
tations of the old ones, along with representations otf the various

relations asserted between these known concepts. We assume that

such new concepts are formed at least temporarily within the
head of a reader to represent his comprehension.

Therefore, TLC's plan for encoding the meaning of text 1is to retrieve
from its memorv those units that represent the concepts discussed

bv a text, and then create a separate new unit to "include" each

of these as 1ts superset. While the superset of each new

unit will thus be a previously known urt, the new unit's refining
properties must be bullt to represent whatever relations the text

implies betwsen this unit and others, i.e., whatever particular

assertions the text makes about it. Fig. U4A indicates two ini-

tial steps TLC takes toward achieving such comprehension of an
input phrase.

For each word of the input phrase TLC creates a new unit, shown
in Fig. UA as delimited by a pair of brackets still empty of content.
TLC will try to add into these new units pointers to appropriate

20

Fig.4A. Initial Steps

Input Phrase. "lawyer's clien*t'
rrry LAl x (]
CLARENCE,/ kY /
DAR ROW . CLIENT \
~ \
F.LEE . \
BAILEY ™S . .
\(New Units)
HERBERT N— —
HERSHFANG
LAWYER

Fig. 4B. Output of Comprehension
* -X-]

(*9‘6*)

\\
EMPLOY [* *]
'
(¥ %)

7/

CLIENT

FIG.4 Stages inthe Comprehension of ", . . lawyer's client. . .

21

3
3
=
E]

supersets and properties, so as to compose a correct representa-
tion of what old concepts they refer to and what is asserted ' 7
about these. Thus in Fig. 4B, which shows the final output of !
the comprehension process, these same two saquare bracketed units :
appear again, but now "filled in" with pointers to supersets and

properties, 3

When such new units are initially set up, three of the major

ohstacles that stand in the wav of filling them ir are:

1. Words usually have multiple meanings; how is one (or some
set) of these to be selected to serve as superset of the
word's new unit? (In other words, precisely which old
concepts are referred to in this piece of text?)

2. How 1is TLC to compnose properties adequate to express
what the text asserts about these concepts?

3. In continuous text a great many words refer to things
discus: d earlier in the same text; how is TLC to know
when this occurs, so that it can somehow amalgamate all
the statements made¢ about some given thning throughout
a text? (For example, in the Fig. LA text "lawyer" 3
might or might not refer to some particular lawyer the -
text has been discussing. Such previous occurrences of
something referred to later in text are called "anaphoric"
or "generalized pronominal” referents of the later
reference.)

TLC's strategy is to combine all three of these obstacles, and
attempt to overcome tbem all as part of a single process. This
process is 1ts detaileu theory of language comprehension.

Tre program begins by setting up for each word of the text it is
working on not only the word's initially empty new unit but also

a 1list of pointers. These pointers enumerate all the candidates
for that werd's meaning; there 1s one pointer to each of the word's
possible dictionary definitions and one pointer to each

anaphoric referent the word might possibly have in this text. 1In £

22

Fig. 4A these lists of candidates are indicated as lists of

asterisks; we have assumed that three different lawyers have been
discussed previously in the text, and since there 1s also one
dictionary meaning of the word, four pointers appear in its candi-
date list. The program must select one of each word's candidates

to fill iIn as superset of that word's new unit; this will constitute
its declsion about that word's present meaning, including whether

or not thils meaninpg 1s ananhoric.

A word's possible anaphoric referents, having nreviously been
comprehended, will now each be represented by the unit createc to
represent 1t, and hence will be of the same format as a dictionary
definition. Thus, TLC can process any candidate unit uniformly,
whether it 1s an anaphoric referent or a standard dictionary mean-
ing. Recall especially that an unlimited number of properties can
be reached by tracing through the fan of data emanating from any
given unit; this is true of newly filled in anaphoric units as
well as of units serving as permanent dictionary definitions,

since uo2th are made up of pointers to other units in memory.

How, TLC must somehow compose properties to add to ne.ly created
units. It does this by adanting coples of properties already in
its memory, coples being made of each property that it can find
that relates to the current text. To decide which properties

in memory a plece of text relates to, however, TLC first needs

to know which properties from 1its memory to consider, and in what
order. Its rule for selecting such properties is simply: consider
properties associated with the candidates of its words, and con-

sider these properties in breadth-first order. More specifically,
TLC plcks its way across the candidate units of words in the

plece of text, investigating one at a time the properties pointed
to in these units. For each property it makes a very quick check
for intersection tags to see whether or not the proverty may be
one that 1s related to the current sentence. Usually this quick

23

check will not indicate that the property can be related to the
current plece of text, so the program will leave tags on the
property and pass on to consider another property. These tags will
allow subsequent processing to discover any intersection with this
property, in which case TLC will return to consider it again. When-
ever an intersection is found, either in the initial quick check

or later, a more thorough investigation of this possibility is
initiated.

Let us first consider what hapvens whenever these nrocesses do

in fact indicate that some prcperty is related to the current
text. Finding a property iihat is so related has two implications.
First, it provides a memory property to reccry and adapt in order
to represent part of the text's meaning. Second, since every
property investigated 1s associated with some candidate, it imnlies
that this candidate is the appropriate one to select as its word's
meaning. For instance, if in Fig LA the first related property
TLC finds is stored with the second candidzate for "lawyer," the
program will assume that that candidate is cthe aporopriate meaning
for the word "lawyer," and set up a pointer to it as superset of
the new unit representing "lawver."

Thus, finding properties that relate to input %ext simultanecusly
provides TLC's solution to the problems of multiple meaning, of
anaphoric reference, and of what pronerties to copy and adapt in
order to encode what the input says. We shall see below that i.
also tells TLC how to adapt each such property. All thesc results,
however, hinge on TLC's ability to locate particular properties
that are related to a given plece of text. To illustrate how the
program does this, we will again use Fig. 3. (HNotice first that
the candidate set up for "client" in Fig. UA must in fact be the
unit illustrated in Fig. 3.)

24

In trving to comprehend "lawyer's client," TLC goes to the
Fig. 3 unit, on which it finds one property (and one nested sub-

property) to try to relate to this input phrase. In its quick
check of these, the program first considers the oproperty's attri-
bute, LMPLOY, and seeks to discover any word in the input phrase
that seems acceptable to identify with ZMPLOY. Such a word might
be "employ" itself, or it could be "hire," "work (for)," "engrage,"
etc. (Description of the intersection technique TLC uses to see
if the input contains such a word is again best postwoned until

wWwe understand the role of such identification in TLC's overall
scheme; it will be described in Section IIIC below.)

In this example the input phrase, "lawyer s client," contains no
word that TLC can identify with iMPLGCY. The program therefore turns
from the attribute of the property under investigation to its

value, PRUFESSIOHNAL. It checks this unit in the same way, attempting

to locate any word of the input string that seems acceptable to
identify with PROFESSIOIIAL. This time (since a lawyer is defined
in the memory as one particular kind of professional) TLC decides
that *he word "lawyer" is tentatively acceptable to identify with
PROFESSIONAL.

How, TLC takes this tentative identification of part of a property

with some word of the text as an indication that the text may imply
a particular relation between two words of the text: the identified
text word and the word whose candidate contains the property. That

is, the text may in part mean that the identified word, "lawyer,"
reclates to the "source" word, "client," in the way this property,
(EMPLOY PROFESSIONAL ...), would indicate if "lawyer" were identi-
fied as the professional. lowever, at this point this 1s only
tentative; the program only knows that "client" and "lawyer" both
appear somewhere in the input piece of text; it has not yet con-
sidered the syntactic arrangement or inflections of thliese two
words, nor what other words appear between or around them,

25

These features of the local context will determine whether the
input implies the kind of relationship named by the property, or
whether the two words just happened to appear in the same pilece
of text, but with no intention of relating their meanings as
indicated by the prorertv under consideration. To decide this
question entails decinhering the implications of narticular
syntactic (and semantic) features.

As stated above the program's svntactic recognition ability is
composed of many sevarate form tests stored in the memory. A

form test is a routine which checks for the nresence of particular
features in the input ohrase. It also specifies how i. use the
property under Investigation 1f these particular features are
present. The features checked in various form tests 1liclude

that "client" come before "lawyer," that a particular word or i
symbol (such as "of") appears between the two words, that one

of the words must have some particular kind of ending (e.g.'s),

or that some agreement of endings must obtain between them or
between them and certain words around them. A form test of course
states 1ts features in terms of the variables "source word" and i
"identified word," not in terms of "client" and "lawyer'" per se.

To make it easier for the person serving as TLC's monitor to :
snecify form tests, the srstem provides a language, somewhat
resembling a string manipulation language like COMIT, FLIP,

or SNOBOL (on these see Rapheel, Bobrow, Fein and Young, 1968).
The job of TLC's monitor is to specify such form tests as they
are needed, and to assoclate such tests with the correct unit
used as an attribute in the memory. Whenever the nrogram

finds itself able to 1dentify the attribute or value of some

property with some word in the text, 1it retrieves all . forr

26

tests assoclated with that property's attribute.2 It then runs
these form test routines one at & time on the piece of text it

is currently trylng to comprehend. These form tests continue

until either one test is found whose features are present in the
current plece of input text, or all tests in the set have failed.

In the latter case the program concludes that chis property should
not be used to relate the two tentatively related words after all,
and goes back to looking for other identifications of the property's
attribute or value.

In the present example, one form test stored with EMPLOY specifies
that the word tentatively identified with the property's value
("lawyer") have an !s as its ending, and be followed immediately
by the source word ("client"). Since this is true in this input
phrase, this form test will succeed, leading the program to con-
clude that, indeed, this property is related to the input text.

TLC next checks any property in memory that modifies the current
property (in this case that starting with a pointer to BY, see
Fig. 3), to see if this Sub-property also can be related to the
current text. 1In this it again succeeds, although in this case
by identifying the source word, "client," with the sub-property's

value,

At this point the program has succeeded in relating the input
piece of text to one property (and to its nested sub-property),
and is ready to use the information this provides.

————————

2 Actually, every property's attribute has two sets of
recognition capabilities associated with it, one to be tried
whenever the attribute itself is tentatively identified with
some word of the sentence; the other to be tried if the
property's value is so identified, as in our current example.
Only one of these sets is tried, since different form tests
are appropriate in the two cases.

27

B. The Encoding Process

The property TLC has decided 1s related to the text was part of
one candidate of 'client." TLC assigns this candidate to be the
superset of that word's new unit, (This settles on a meaning

for "client," and would be a selection if there had been any other
candidates.) It similarly assigns as the meaning of "lawyer"

one of "lawyer's" candidate units, nam2ly, the one the intersection
program identified with PROFESSIONAL.3 The program als¢ revises
the candidate 1ists for both of the related words, so that further
passes looking for properties related to the current text will
consider none of their candidates except the two now thought to
constitute the correct meanings. (However, this restriction has

a time 1imit, and so will disappear if the current decisions lead
into a dead end for comprehending the rest of the sentence.)

The program now coples over and adapts the related property and
subproperty with the result shown in Fig. 4B.

As stated above, the topmost unit shown in Fig. 4B is the came new
unit shown in Fig. 4A for "client;" the other bracketed unit in
Fig. 4B is the new unit shown in Fig. 4A for "lawyer." In Fig. iB
these two new units have each been filled 1in with a pointer to

3 Thus, we see that the use of a property may allow TLC to select
the approprlate meanings of two words of the sentence, a detail
omitted for the sake of clarity in the overview of its operation
above. One might argue that more than one meaning of "lawyer"
can be identified with PROFESSIONAL, so that actually the set
of these should be made its superset. One counterargument to
this 1s that people 1in reading seem to pick one sensible meaning
for a word, and ignore others unless this leads to sume anomaly.
(Another 1is that nicking one has been easier to program.)

28

the candidate chosen as its superset and to the new pronerty
created by conying over the EMPLOY nropertv of Fig. 3. This copy
has been built using TLC's general rule for_ adapting memory proper-
ties: copy each property exactly but replace any pointer to a
unit that has been identified with some word of the text with a
pointer to the new unit for that word. Thus, the value of the
EE%LOY proverty in Fig. 4B is a pointer not to PROFESS10NAL, but

to the ﬁew'unit for "lawyer," since these have been identified.
Similarly, the value of the BY property is a rointer not to the

memory's general unit representing a ciient, but to the new unit

renresenting this client.

Uverall, the deta of Fig. 4E is the same as that shown (in more

readable form)uin Fig. 1A, which TLC generates into knglish as:

"Under discussion is a client who employs a lawyer." 1If, during
the process of locating related properties, another distinct

related property is found, a pointer to the adapted copy of this
property 1s also added onto the new units for

"client" and "lawyer"
(See Fig. 1B.)

In summary, Fig. 4B shows that ILC draws information from its
memory tc¢ produce g representation of
is:

a piece of input text that

1) Encoded in the regular memor, format.

2) Much richer and less ambiguous than the input text itself.

3) A hirchly intraconnect~d structure with the various concents

mentioned in the text 1inked in wavs sunnlied fron a
memory of factes ahount the worla,

4) Linked to the bermanent memory by many pointers to estab-
lished concepts (although its creation in no way changes
the permanent memory, except for the addi%ion of temporary
tags used by the intersection routines.)

4 In its OUTPUT1, the program rerlaces any repeated mention of 3

unit with a (*THIS* - name), and omits any reneated mention of 3
property.

29

C. Identifying Units Sy Information in Memory

The process described above depends on TLC being able to identify
units such as PRCFESSIONAL with candidate units of words in a
plece of text. As stated, such an identification provides a
property tentativoly related to the text, and inltiates syntacti~
checking via form tests.

The first condition that two units inust meet to be identifilable
Is that they have what we cu’.1l a "superset intersectior. in memocry."
This is said to occur if either:

1) The two units are the same unit.

2) One unit is superset of the other, or superset of the
superset of the other, or superset of that, etc. 1In
this case, we will say that one unit lles directly on
the "superset chain'" of the other.

3) The two units' superset chains merge at some point.

TLC 1s designed to locate superset intersections which occur
between certain kinds of units but to ignore those which occur
between cthers. To sez2 the reasons for this let us consider the
sent2nce, "John shoots the teacher." This sentence has one
interpretation 1f John 1s knowr to be a gangster, and quite
another 1f John 1is known to be a porcrait photographer. TLC's
problem is to make sure that, whichever of these is the case,
this knowledge has the same effect on TLC that it has on a human
reader. Let us suppose the second 1s the case, so that the unit
representing "John" in the compreher ier's memory has a property
stating, in part: (PHOTOGRAPH SUBJECT(S) ...,. The situation !s
indicated in Fig. 5, which shows one candidate each for "John" and

for "teacher," and one proverty of each of these units in memory.

Ncw, superset intersectiors connectin, three separate kinds of
pairs of units can be plcked out in Fig. £. All of these intersect
in the third -~ay mentioneu above by merging of superset chains.
First, there 1s an intersection between the candidate units JOHN

30

syiun buiysassaju| jo saied Jo spuiy aauy $'914

ﬁ..*;

\v“. (7T T(NIWATIHD HOVAL) *H _H

f

NOSY3d

(° ° %(s)Ld3rans :n_<~_wo._.oxav*u_

\/\ [

*

—~—

*
. ddauoeay 3y} sjooys uyor,

and TEACHER, since their sunerset chains merge at the unit

PERSON. Clearly this Intersection 1s not particularly useful

for comprehension, however, since it does not involve any pro-
perties of either JOIIN or of TEACHER. Second, there 1s a superset
intersection between SUBJECT(S) and CHILD(REN), whose superset
chains also merge at PERSON. This intersection connects nart of

a pronerty of JOliN with nart of a property of TEACHLER. 1In other
words, the comnrehender knows something about JOHN and knows
something else about TEACHER, and these piec2s of his knowledge
relate JOHN and TEACHER to two other things, and these two other
thines are semanticallv accentable to idertify. Such intersections,
connecting parts of separate nronerties, are very common in the
memory, but, we susnect, are not of much use in direct comnrehension,
TLC's only alm at present. e will indicate below how intersections
connecting vroperties may be used 1n indirect comprehension, but,
for the time being, TLC 1is designed to ignore them. The third kind
of pair having a superset intersectlion in Fig. 5 1s the mix of the
first two: nart of some propertv 1s connected to a candidate.

Thus, the sunerset chain of SUBJECTS(S) merges with that of JOHN

at PERSON, as does the suverset chain of CHILD(REN) with that of
TEACHER, of SUBJECT(S) with TLACHER, and of CHILD(REN) with JOHN.
The first two of these nairs each connect nart of a property to its
own parent unit. Such an Intersection also 1s of no interest, and

is eliminated by TLC (except in the case of explicit self reference,
as in the BY vronerty of Fig. 3.)

The two remaining intersection pairs, connecting part of a property
with some other candidate, are the kinds of intersections TLC is
interested 1n. these being the sort which causc it to create hypo-
theses about the input's meaning and then to initiate form tests, as
described above. In this example, if and when TLC finds the inter-
section between JOHN and CHILD(REN), its form tests must not succeed,

so the program will reject the hypochesis that this sentence means
John is being taught.

32

When TLC finds the intersection between SUBJECT(E) and TEACHETY
however, a f'orm test shoulu succeed, and lead to interpretation

of the innut sentence. This form test has to be able to recognize
that one meaning of "shoot" can be identifled with PHOTOGRAPI, by
intersection of supersets. The interpretation would be to the effect
that: "under discussior 1is the photographing of this teacher, done
by John, ...". 1If John were known to be a gangster instead of a
photographer, the memory would ccntain different information and
TLC would interpret the sentence differently; but to do so it

would still need to locate intersections which connect part of a
property with some other candidate, but not to locate intersections

which connect two candidates or parts of two properties.

In order to locate such "mixed” intersections, TLC uses a version
of its intersection technioue in which it oputs one kind of
activation tar on candidates and their suvpersets, and a different
kind on parts of nroperties and their supersets. It then always
checks as it marks a unit with one kind of tag to see if that unit
alreadv nas been marked with the other kind of tag. Thus the first
time TLC reaches a unit which is in fac% a vertinent intersection
it will mark that unit, and the first time after that that it
reaches it as the other kind of thing - candidate or vnart of a

property - it will recognize the unit to be a relevant intersecticn.

However, it 1s also very important that TLC locate intersections
in something :zlose to a breadth-first order. Thls means that the
progrem must appropriately alternate between considering parts of
properties and their supersets, and considering candidates and
thelr supersets. Therefore, TLC processes an input piece of text
in a number of passes, as follows:

At the time units are first chosen as candidates for the words in
a plece of input text, these units are tagged. Then the program
makes 1its first pass looking for properties related to the text.
To do this it takes these same candidate units one at a time, and
"quick-checks" all the properties associated with each. To

33

quick-check any one property 1s to mark and locox for prior tags
on the attribute and value of the property, and on three levels
of superset c¢f each of these unlts. This procedure is interrupted

at any point that an intersection is found.

After all the properties of some candidate unit have been quick-
checked, the program moves briefly to the superset of that candi-
date. It marks this superset unit to show it 1s in the superset
chain of the candidate, and also checks to see if the unit already
has a tag indicating it is also part of some relevant prcpe 4y,

or in the superset chain of such a part. Of course, for an inter-
section to be found by this "checkback" step, the property involved
must already have been guick-checked earlier in the processing of
this plece of text. If an intersection is found by this checkback,
the program returns to the property involved and considers using

it exactly as it would have done if the quick-check of that pro-
perty had found the intersecticn.

After the checkback, the ororram mcves on to consider another
candidate. If a second nass through a riece of text is neocessary,
TLC will auick-check nronertles assoclated with the supersets of all
candidate units. Similarlv, on a third rass it will cuick-check

nroperties azsociated with the surersets of sunersets of candidates,

and so on. On each ctern of such 2 nass, the nroesram auick-checks
only the properties directlv associated wit!i the unit that it has
at hand, and then marks and checis back the surerset of that unit

to see if it intersects with anvy rrorerties already nuick-checked.

Overall, the program's procedure locates the relevant kind of
intersecting pairs of units in an order reasonably close to that
which a completely breadth-first search would produce, while
ignoring all the irrelevant kinds of intersecting pairs, and

minimizing the information it must hold in short term memory

during searching. Our puess 1s that a human's version of this
search is done larrelv in narallel, which a breadth-f’rst seach
simulates reasonably well, until narallel searchins machincs be:--
come avallable,

At any time during this process that TLC does locate two units which
have a superset intersection, either the units are identical 1in
meaning, one 1is a superset o the other or both are members of

some common superset; these corresponda to the three possible §
kinds of superset intersection enumerated at the start of this

section. 1In the first two cases TLC immediately reports the two

units as semantically acceptable to identify. In the last case
it checks to see if there is anything contradictory between the
meanings of the two units; only if there are no contradictory

properties are the two units accepted as semantically identifiable.5

One more imnortant onoint about TLC's search for pronerties
related to a given text is that there are a good many units

in the memory which represent sets. TLC may therefore encounter
such a set as the superset of some unit, or as the attribute or

value of some property. Also, the multiple candidates set up for

a word themselves comprise a set. In all these cases, the program

first ord rs the members of the set so that the most pertinent
members come first. That 1s, possible anaphoric referents are
always put first, other units which are "in context" for the
complete text of which the current input is a part are nut next,

and any other units are put last. (TLC recognizes units which

5 Roughly speakinc, two units are Judred contradictory only if

they are found to each contain a property having the same
attribute btut different values. Thus, "woman," "Spaniard."
"amateur," or "‘nfant," should all intersect with PROFLESSIONAL
at the unit PEESON, but only the first two o these should be
identifiable with it, since the latter two each confiict in one
regard or another with & property of PROFESSIONAL. The routines
to check for such contradiction work by another version of the
tagrcing and intersection findin; technlgue

35

are "in context," by the presence of old activation tags 1left in
the memory during processing of prior sentences of the same text.)
This ordering of the members of sets often produces an order
different from the a priori likelihood ordering of sets as they
are stored in memory. It is done to insure that units expected

to be most pertinent in this context willl be searched slightly
before others.

36

D. Automatic Generalization of Data and of Form Tests
in TLC's Memory

The most important thing about TLC's procedure for lcocating
ldentifiable units in memory is that 1t identifies a rreat many
pairs of units. Thus, a node like PROFLESSIONAL will te identifiea
with many words besides obvious oncs like "lawyer'" or "accountant."
In fact, any word referring to any kind of person will share the
superset PERSON with PROFESSIOHAL, and the great majority o° chese

will prove semantically acceptable to identify with it.

Thus, the EMPLOY property shown in Fig. 3 and related to "lawyer's
client” will be related in a similar way to almost any input phrase
referrirg to some person's client; given "accountant's client" or

"woman's client” the accountant or the woman will be identified with

PROFESSIONAL, and hence the phrase comprehended as meaning that that

person is employed by the client.

A similar effect results from the fact that TLC's first pass
investigates the properties directly pointed to in candidate units,
its second pass investigates the properties directly pointed to in

supersets of those units, and so on.

The importance of this can be seen if TLC is given a phrase such as

'young client." Correct comprehension of this phrase must supply

the fact that this client's age is being Jjudged young, which 1s

not explicit in tne text. TLC's way of supplying such information

is by relating the text to a stored property having AGE as an
attribute, and having a set cuntaining YOUNG, OLD, MIDDLE-AGED,

etc. as a value. However, it does not seem reasonable to suppose

that TLC would have any such property stored with its unit for

"client." On the other hand it is not unreasonable to suppose that

such a property would be part of the mewnory's unit representing

37

PERSON, a concept for which age is very general and important. If
such a property 1s stored with PERSON, TLC's breadth-first search
through candidates will reach and relate it to "young client" on
its second pass. (See Fig. 6, example 1)

Similarly, given "young Spaniard," or "middle-aged carpenter" or any
sucn pnrase mentioning some sort of person, TLC will reach and use

that same AGE property stored with PLERSON.

Now, the important point botn about TLL's successive passes ana apbout
its ability to identity a great many pairs ol units in its memory is

that they allow TLC to use its memory in an inferential as well as

a literal manner. Thus in comprehending "lawyer's client," the
program implicitly made an inference: since a client empnloys g
professional and a lawyer can be identified as a professional, a
client can employ a lawyer. Similarly, in comprehending "young
client,” the inference 1LC made is: since a person's age can be
young, and a client is a person, a client's age can be young.

Being able to use its memory inferentially means that any single
property in the memory can be used by TLC to help comprehend a

great many different input phrases. In other words, a relatively
small memory with an inferential capability is the functional
equivalent of a very much larger store of information. The advan-
tages of this seem obvious; we propose that humans similarly use
their memories inferentially, and hence are able to operate as if
they knew a vastly greater amount than they in fact need to have
stored. (Psychological data in Collins and Quillian, 1968 and 1969, bears
directly on this hypothesis.) The two types of inferences currently
made by TLC do not exhaust all the valld inferences that can be made
on the basis of paths through such memories, although they do provide

a good start (Longyear., 1968, discusses some otucrs.}

38

The program's ability to use its memory infercptlially 1s not to

be confused with its ability to recornize various ways in which any
glven assertion may be stated, an ability which depenas on its

form tests rather than on its memory for factual informution.
However, these abilities are similar in repard to their generaliza-
tion. That is. from the point of view of a monitcr, the effect of
the orogram's ability to use a single property in comprehending many
different sentences is that, having expressed some fact in the form of
a& property and included this provertv in the memorv in order to
enable comprehension of one piece of text, he will not have to put
the same fact in again when it 1s needed in the comprehension

of some other piece of text. This same kind of generalizaticn

occurs when he adds a form test.

To see this generalizing effect let us imagine that an EMPLOY

property similar to that of Fig. 3 is added to the data compris-

ing the concent LAWYER, This new provnerty states that the client

that a lawver represents or advises usually employs that lawyer.

Now, suppose the program is given som2 examnle input, say, "lawyer

for the client,"” which it previously comprehended as shown in

example 13 of figure 6, TLC now locates intersections connecting
words of the sentence to parts of the newly-added property and

its sub-property, just as it did in comorehending "lawyer's client."
However, since appropriate form tests are not assoclated with the
attribute of this property, the program will decide it cannot really
relate this property tc this phase, and again give the same output
shown in example 13. To correct this, the monitor will associate

new form tests with EMPLOY and BY, the attributes involved. These
tests must su-cceed whenever the source word (here "lawyer") is
followed by the word "for," which is in turn followed by the word
tentatively identified with the value of the sub-property (here "client").
In this case, the monitor does not need to define these new form
tests, since appropriate ones have already been defined, and are as-
soclated with the nrovertv previously stored with LAWYER. Thus,

he simply adds these tests to those associated with EMPLOY and BY, and
reruns the example. This time TLC also uses the newly-added

property, and gives the enriched output shown as example 14 of Fig. 6.

39

However, the imnortant thing 1s that a new form test will have been
associated with the unit EMPLOY. Thus whenever, in a future attempt
to comprehend some other ohrase, any other property having EMPLOY
as an attribute is investigated, the newly added form test will
apain be available,with no intervention by the monitor required.
For instance, if the memory contains pronerties stating that agents
are employed by actors and that bookkeepers are emploved by com-
panies, the form test just added will prrovide the syvntactic capo-
ability TLC needs to comprehend input phrases such as "agent for
Marlon Brando," or "accountant for Bolt Beranek and Newman," by
relating each to the appropriate EMPLOY opronerty. These outputs
are shown as examples 15 and 16 of Fig. 6.

In other words, TLC in effect autcmatically generalizes each form
test it is given to all properties having the same attribute. This
goes some way toward generdizling each capability given to TLC, al-
though obviously not far enocugh, dnce each new form test should in
fact be generalized to other attributes which are somehow "of the
same sort." TLC allows the monitor to let a set of form tests
associated with one attribute also serve as the set for anv

number of other attributes, although we haven't yet had enough

experience as a monitor to say how effectively this potential can be
used.

bo

E. TLC And Complex Sentence Structure

In order to deal with strings of text ionger than very simple
phrases, TLC nust employ some combination of properties, and hence
some combination of its form tests, much as some combination of
rules in a pgrammar must be employed to renerate any real sentence.
TLC employs scveral tactics not so far discussed to put together
appropriate combinations of wproperties and form tests. These can
be illustrated in its comprehension of a pnrase like "lawyer's
young client.”

To comprehend this phrase, the program again sets up new units and
candidate lists as shown in Fig. 4 for "lawyer's client." On its
first nass it aprain investigates the Fig. 3 property, and tenta-
tively identifies PROFESSIONAL witn "lawyer." ilowever in this
case tne form test thit succeeded for "lawyer's client' will not

succeed, since the interposed word "young" intrudes into the

pattern that that test requires.

llow, whenever a form test fails, TLC checks to see 1f this 1is only
because of unwanted words interposed in the input string. If so,
it considers the current property as "pending" some use of the
interposed word(s) and goes on attempting to find other properties

-

to relate %o the input. 1In this case, then, TLC holds the Fig. 3

property pending use of the word "young,"

and continues investipa-
ting properties. On its second pass through the candidates, it
will come to the AGE property stored with PERSCN, and use this f r

comprehending the "young client" part of the input phrase.

At thls point it neceds to be recalled that each form test consists
both of some pattern of features which must be found in the input
piece of text and of specifications for what to do if this is found.
Among other things, these specifications state which word is to be

considered syntactic "head"” of the words mentioned in the form test,

41

i1f any 1s. For instance, for 'lawyer's client,” the form tests
that succeed specify that "client" must be the head of that

input phrase, as is indicated in the =nglish output of Fig. 1 when
TLC says, "Under discussion is a client ..." (ompare other outputs
in Fig. 6.) Similarly, the form test that succeeds for "young
client' specifies that "cliernt" must be the head of that invut.
The significance of choosing a head is that, whenever any property
is related to a pilece of text, TLC marks all the words matched

by the successful form test as "used" ezcept that which the test
specifies as nead. This means that in the present exampnle "young"
now gets marked "used," and the Fig. 3 property, held pending use
of that word, is tried araln. Since form tests know they can 1if
necessary skip over any words that nave been marked "used," this
form test now succeeds, allowing the pending nroverty to be
related appropriately to the input vhrase and comprehended as
shown !n Fig. € as example 2.

Several properties of TLC's operatlon can be seen in the preceding
exampe. First, holding properties pending allows the prorram to
adapt the order in =«.ich these proobertles are recovered from memory
into an order more appropriace for the syntax of a particular
piece of input text. Second, the specification of a head by each
successful form test allows the program to nest 1ts processing

of a sentence 55 as to "eat up" long sentences a little at a time,
amalgamating supordinate constituents into larger and larger con-
stituents until only a sinrle head remains unusod with'n the
sentence. Notice that as this processing proceeds, the new unilts
creatzd to represent words of the input string are being filled

in with new adapted propertles whose values (or attributes) are
polnters to the new units rerresenting othner words, 1in accora with
TLC's peneral rule for adantine conled over pronerties. (See
Section IIIZ.

L2

Figure &: Samrle “LC Comnrenensions

oo
HWey

The first eleven cxamples were run in normal mode. When the
profram is run in a more closcly monitored mocde, as in exarole 12,
it prints out two lines of informatioun eaci time it uses a prop-
erty to help comprenend the input. This outout always names wnat
it will print out, followed by a colon, followed by the information
nameG. The meaning of the namcs used are as follows:

U3TiiG: the attribute and value of tihe data oroperty
it is currently usinge.

ATR¥: a word in the innut which it has identified
with the atiribute of the data property.

VAL¥: a word in the innut whieh it hnas iuentifica
with the value of the data pronerty.

SOULCE: the worda of the input whose meaning nrovided
the data nropertyv.

PER: “he form test used. Torm tests always arc named
T, T2, . . ., Tn. fnyv words preceeding the form
test name describe how it was used: AUVRIB means
it was used recause the property's attribute wa-r
intersected; ChBACH means the intersection occur-
red durinr a "cheeck back"; LEETLD means the prop-
erty has been held nending before use.

HEAD: ‘The word chesen 4s the syntactic head of the
words currently used.

HOW-CA}-USE: This is used in place of USING if a proverty's

i
use has been dependent on tile use of one of its
sub-properties.

Lxamnle [lo.

1. READ(YDUNG CLIEND

CCCLIENT C(AGE (YOUNG))I))

AT T4I1S POINT WE ARE DI SCUSSING A YOUNG CLIENT.
(continued)

f

Examnle Lo. (contlnucd)

2. READCTHE LAWYER 'S YOUNG CLIEND

(CCLIENT (AGE (YOUNG))
(EMPLOY (LANWYER)
(BY (*THIS* . CLIENTY))))

NIOW WE ARE TALKING ABNUT A ¥YNUNG CLIENTs HE IS A CLIENT
WAD EMPLOYS A LAWYER.

3. READCCLIENT 'S LANWYER)

((LAWYER ((ANR REPRESENT ADVISE)
(CLIEND
(BY (*xTHIS* . LAWYER))
(IN (MATTER (TYPE LEGAL))>))>))

AERE WE ARE CONCERNED WITHA A LAWYER WHN REPRESEMTS NR
ADVISES A CLIENT IN A LEGAL MATTER.

4. READ(MAN *'S | ANYER)

((LAWYER ({ANR REPRESENT ADVISE)
(MANY)
(BY (+«THIS* . LAWYrER))
(IN (MATTER (TYPE LEGAL)))>)I)

AT THIS POINT WE ARE DISCUSSING A LAWYER WAN REZPRESENTS
OR ADVISES A MAN IN A LEGAL MATTER.

S. READ(DOCTOR 'S LANWYER)

(C(LAWYER ((A0X REPRESENT ADVI SE)
(DNCTOR)
(BY (*THIS* . LAWYER))
(1IN (MATTER (TYPE LEGAL))>))Y))

NNW WE ARE TALKING ABQUT A LAWYER WHN REPRESENTS OR ADVISES
A DACTOR IN A LEGAL MATTER.

6. READC(LAWTE<Z 'S DNOCTAR)

((DNCTNR (CURE (LANWYER)
{(BY (*THIS*x . DACTNARIII

HERE WE ARE CONCERNED wIT4 A DGCTOR WHAN CURES A LAWYER

]

Example Ho. (continued)
T READC(LAWYFER OF THE CLIENT

(CLAWYER ((AQ7? REPRESENT ADVISE)
(CLIENT:
(BY («THIS*x . LAWrER))
(IN (MATTFER (TYPE LEGAL))))))

AT THIS POINT WE ARE DISCUSSING A LAWYER WHAO REPRESENTS
OR ADVISES A CLIENT IN A LEGAL MATTER.

3. READCLAWYER 'S REPRESENT ATION OF THE CLIENT)

(CREPRESENT ((*#THISx . REPRESENT)
(CLIENTD)
(BY (LAWrER))
(IN (MATTER (TYPE LEGAL))>)>)))

NCW WE ARE TALKING ABNOUT THE REPRESENTING OF A CLIENT
BY A LAWYER IN A LEGAL MATTER.

9+ READCTHE CLIENT ADVISE ED BY THE LAWYER)

CCCLIENT (CADVISE)
(*THIS* . CLIENT)
(BY (LAYWYER))
CIN (MATTER (TYPE LEGAL)>)>))))

HERE W& ARE CONCERNED WITH A CLIENT w40 IS ADVI SED BY
A LAWYER IN A LEGAL MATTER.

13, READ(CLIENT EMPLNY S A LAWYER)

CCTO ((*xTHIS*x . EMPLOY)
(LAWYER)
(BY (CLIENTY)Y)))

AT THIS POINT WE ARE DISCUSSING THF EVMPLOYING OF A LAWYER
BY A CLIENT,

11« READCTHE CLIENT CuPE ED BY THE NDICTOR)

CCCAND CLIENT PATIENT)
((CURED

(xTHIS* . CLIENT

(BY (DHACTORIII

NOW WE ARE TALKING ABOUT A CLIENT, w40 IS A PATIENT, w40
IS CURED B° A DOCTNR.

I
L“)

bxampnle

3% o {continucd)

12. READ (THE CLIENT HEAL ED BY THE DOCTOR EMPLNY S THE
LAWYER)

USING: CURE PATIENT. ATRs: 4{EAL. VAL#*: CLIENT
SOURCE: DNCTNAR. PER: ATRIB T23. H4EAD: CLIENT

USING: BY DOCTOAR. VAL*: DNCTOR
SOURCE: DOCTNR. PER: NESTED T21. H4EAD: CLIENT

USING: EMPLOY PROFESSINONAL. ATR#*: EVPLOY. VAL*: LAWYER
SOURCE: CLIENT. PER: ATRIB CKBACK T17. AEAD: EMPLOY

USING: BY CLIENT. VAL#*: CLIENT
SAURCE: ~“LIENT. PER: NESTED CKBACK Ti3. HAEAD: EMPLOY

OUTPUTL:
CEMPLOY C(xTHIS* . EMPLOY)
(LAWYER)
(BY C(CAND CLIENT PATIENT)
((HEAL)
(*THIS* . CLIENT)
(BY (DACTORIIIIM

OUTPUT2:

AT THIS POINT WE ARE DISCUSSING THE EMPLNYING OF A LAWYER
BY A CLIENT, WH0 IS A PATIENT, WHD IS 4EALED BY A DNCTOR

13. KEAD (LAWYER FJOR THE CLIENT)

USING: BY LAWYER. VAL*: LAWYER
SOURCEZ: LAWYER. PER: NESTED T32. HEAD: LAWYER

NNW-CAN-USE: (ANR REPRESENT ADVISE) CLIENT. VALx: CLIENT
SOURCE: LAWYER. PER: NESTED T3l. HEAD: LAWYER

OUTPUTL:
(LAWYER ((AOR REPRESENT ADVI SE)
(CLIENT)
(BY (#THISx . LAW/ER))
C(IN (MATTER (TYPE LEGAL))))

ouTPUT2:

NOW WE £ TALKING ABOUT A LAWYER WH0O REPRESENTS OR ADVI SES
A CLIENT (N A LEGAL MVATTER.

iy

Hote: For the followiny examples, we went Lhrouph the sequence
described in section III U, in order to iliustrate automatic
generalization of the use of form tests. IFirst an LIPLOY property
similar to that of I'igure 3 was added to thc concept LAWYLEK. Then
the form tests needed to let 'LC relate this oronerty to "lawyer
for the client", namely, T31 & T32, were associated with BY and
LIPLOY respectively. Dcing this enriches TLC's output over that
produced in example 13 for "lawver for the clicent." 'Then, given
that the nccessary facts are in the memory, TLC comprehends the
next two examples with no furtiner intervention by the monitor.
Note its use of 731 and T32 as shown in its monitored output for
these examples.

Exampnle lio. (continued)

14, READ (LAWYER FOR THE CLIENT)

USING: EMPLOY LAWYER. VAL*: LAWYER
SOURCE: LAWYER. PER: T32. HEAD: LAWYER

USING: BY CLIENT. VAL*: CLIENT
SOURCE: LAWYER. PER: NESTED T31. HEAD: LAWYER

USING: BY LAWYER. VAL*: LAWYER
SOURCE: LAWYER. PER: NESTED T32. HEAD: LAWYER

NOW-CAN-USE: (AOR REPRESENT ADVISE) CLIENT. VAL*: CLIENT
SOURCE: LAWYER. PER: NESTED T31. HEAD: LAWYER

OUTPUTI:
(LAWYER ((CAQR REPRESENT ADVI SE)
(CLIENTD)
(BY (*THIS* . LAWYER)))
(EMPLOY (*THIS* . LAWYER)
(BY (*THIS* . CLIENT))))

ouTPUT2:
AT T4IS POINT WE ARE DISCUSSING A LAWYER WH0O REPRESENTS

OR ADVISES A CLIENT3 HE IS A LAWYER WHO IS EMPLOYED BY
THIS CLIENT.

Examnle lo. {continuecd)

15. READ (AGENT FOR MARLON-BRANDO)

USING: EMPLOY AGENT. VAL*: AGENT
SOURCE: AGENT. PER: T32. HEAD: AGENT

USING: BY (AOR ACTOR FIRM). VAL%*: MARLON-BRANDO
SOURCE: AGENT. PER: NESTED CKXBACK T31. HEAD: AGENT

OUTPUTI!:
CAGENT (EMPLOY («THISx . AGENT)
(BY (MARLON=-BRANDO)))
NDUTPUT2:
NOW WE ARE TALKING ABOUT AN AGENT WHO IS EMPL YED BY MARLON-BRANDOD

NIL
«RT(EA4l 15155)

16. READ C(ACCOUNTANT FOR BB

USING: EMPLOY BOOKKEEPER. VAL%*: ACCNHUNTANT
SOURCE: ACCOUNTANT. PER: T32. HEAD: ACCOUNTANT

USING: BY ORGANIZATION. VAL*: BBN
SOURCE: ACCOUNTANT. PER: NESTED T31. HEAD: ACCOUNTANT
OUTPUTI:
(ACCOUNTANT (EMPLOY (*THIS* o ACCOUNTANT)
(BY (BBN)>)Y))
OUTPUT2:

HERE WE ARE CONCERNED WITH AN ACCOUNTANT wWAN IS EMPLOYED
8Y BBN.

44

Therefore, once only one unused head remains in the input string,
this means that the new unit created to represent that head contains

new properties linking it to other new units, waich in tuen will

in general contain new properties linking to otler new units,

and so on, in some way such that all of the input string's new

units are interlinked in a single network. This structure repre-
sents a comprehension which encompasses all the words of this input,
and so the program terminates 1ts processing then only a single

head remains.

The program's performance for longer sentences is illustrated in
Fig. 6, example 12, which TLC comprehends by first amalgamating
"healed by the doctor" into the head "client" and then comprehending
what amounts to "the client employs the lawyer." In this example,
and in the rest of Fig. 6, the output shown 1is that which TLC
produces when it 1s run in a more closely monitored mode than that
shown in earlier figures. That 1s, in this mode the program shows
how it sets up the sentence during the initial comprehension step
(showing that articles and endings are amalgamated into their
heads immediately) and also prints out information each time that
it uses a property, as described in the key to Fig. 6. The rest
of Fig. 6 shows most of the other examples TLC has been taught to
comprehend so far.

Although examples such as the above show that TLC can comprehend
at least some longer sentences and nested constructions, there is
still at least one serious flaw in its present use of form tests.
No running record is kept of the sentence's syntactic structure
as this structure gets deciphered during comprehension. Just

how serious the consejuences of this are is not clear, but
without it, form tests will sometimes check for features which
couldn't possibly exist given the sentence's syntactic

structure as already understood. A much more serious consequence
would occur if form tests, in order to take account of different

hg

contexts in which the features they require appear, had to keep

being redefined as longer and longer patterns in order to work

properly. We do not really believe that this is a likelyheod,

but in any case there is a gcod way available of keeping such a *
running syntactic record. This 1s the method used in "predictive

syntactic parsers" (for example, Kuno, 1965.) In view of this,

we are now considering incorporating into TLC large parts of one

predictive parsing program, that written by Thorne, Bratley, and

Dewars (1968).

This extremely interesting and ingenious program6 does not output
as a parsing a tree structure, but rather a set of nested strings.
However, in building these strings it succeeds in "undoing" a num-

ber of synta~tic transformations, replacing deleted elements and
rearranging others. Most pertinently, the program 1is very good at
avoiding unnecessary or redundant syntactic processing by keeping
a record of what has been dec!ded so far. This record is made
during a single pass through an input sentence, in the form of an
"analysis network" which records all acceptable parsings of the
sentence as paths extending through this network.

At a time when the program's analysis has progressed as far as

some given word of the input sentence, all viable analyses extending
to that point will be represented by "live" nodes in its analysis
network. To proceed on, the program refers to its grammar to obtain
all the syntactically allowable next steps from those particular
live nodes. Then it tests each such step to see if it actually is
acceptable, given the next word and particular prior history of this
sentence. All the steps which prove acceptable are recorded as
extensions of the analysis network, thereby prcducing a new set

of live nodes for the next stage of the analysls. The analysis

& The author is indebted to Daniel Bobrow for drawing attention
to the advantages of Thorne's program for iLC.

50

network often branches, while previous paths that have no acceptable
extensions die off automatically. By only attempting to extend

nodes that are live, thls procedure automatically restricts syntactic
processing to consider exactly and only things which may be possible,
given the analyscs viable up to the current word. Each path extenc-
ing to the end of the sentence constitutes a syntactically accept-
able rarsing of it, and can be printed out as a nested group of

strin s. Note that steps along such an analysis path are equivalent
to pa: icuiar syntactic relationships between the words at the
beginning and end of each step, so that the grammar may be said to

propose particular syntactic relationships between words of input
sentences.

As we visualize it at this point, TLC would use such a procedure
by constructing a Thorne-llike analysis network in addition to its
comprehension. However, at most stages, instead of extending the
analysis network by trying all steps enumerated in the grammar
for currently live nodes, TLC's tentative comprehensions would be
used to propose extensions of thils network. To do this, TLC's
form tests would be rewritten to name various steps (possible
syntactic relationships) specified in the grammar. That is,
instead of naming some pattern of features required in the input
string, each form test would simply name a particular syntactic
relationship (step) in the grammar, and name particular words of
the input string to be related in that way. This would mean that
at the point at which TLC now executes form tests, some group of

Thorne's syntactic relationships would instead be proposed between
the words TLC tentatively relates.

To check out any such proposed syntactic relationship (step) a
first check would be made to see if the node that that relationship
required as its starting point was "live" at the stage of the

analysis network corresponding to the word TLC specified., 1If not,

51

that syntactic relationship would be considered impossible (at

least at this time). If the beginnin: node was live, the same

kind of checks that Thorne's prcgram makes now of a particular
step would be made to see if it wzs syntactically feasible at this

point. If 1t was, the aralysis network would be so extended, and
TLC would consider that form test successful.

This kind of use of Thorne's procedure would provide two very
desirable features. First, 1t would sllow much faster elimination
than at present of the syntactic relationships sought by form
tests, since this would use a record of prior processing (is the
beginning node live?) rather than having to look each time at
features of the input string itself. Second, only syntactic
analyses which make serse semantically would be proauced. To the
degree that the parser ot .y extended the analysis netwo* ' via
steps proposed by TLC's tentative semantic interpretations, these
semantic interpretations would "drive" the syntactic analysis of the
input. This would pare away syntactically acceptable but meaning-
less parsings, which not only are unwanted, but which account for
most of the processing activity of present parsers.

The procedure above 1is not yet programmed, and 1t 1s probable that
between certaln words a purely syntactic analysis such as Thorne's
program now makes may have to be made, at least temporarily. This
might be the case, for instance, whenever no semantiz information

1s avallable about a string of unfamiliar words. Also, it might

in sore cases prove more difficult to specify how to make the
rarsing step required to establish a syntactic relationship between
two words than 1t would be to generate all syntactically acceptavle
steps from one to the other and then see 1f thecse included any paths
having certain charactericstics.

However this may turn out, though, incorporation into TLC of a parser
like that wnich Thorne et al have built would seem to offer some
attractive possibilities and is being actively explored, with

Daniel Bobrow currently duplicating a version of Thorne's program
at BBN.

52

e

S

!
i
i
i
i
i
3
i
i
i

F. Unsoclved Problem-

In addition to a need for keeplng a better record of syntactic
processing, TLC at present lacks other capabilities more or less
related to its tasks. One such need is for an ability to recognize
that many input phrases refer to memory informaticn stored as other,
not directly mentioned ccncepts. For example, "male child" should
evoke the comprehender's knowledge of the concept BOY, and "old
man" should evoke its kanowledge of the concept OLD-MAN, even
though, in English, this concept has no single word name. (There
is of course no restriction in the memory format against having
concepts without English names, and in fact our present memories
necessarily include such concepts.)

Another ability lacking in TLC is any ability to reason spatially,
or to generate visual-llke lmagery. Beyond this, I'L” 1s missing cap-
abilities which begin to shade off into things which (we assume) are
iess directly essential to language comprehension per se. One

of these 1s the abllity to assimiiate the meaning of a plece of

text it comprehends. While the monitor can add TLC's encoded

output to the program's memory, the program itself makes no

attempt to do so, nor to solve the problems 1lnherent in doing so.
One of these problems, for example, 1s where to store such infor-
mation. One can see this problem in almost any sentence; 1s
"Battleships in World War I had 16 inch guns," about battleships,
about World War I, about guns, or abcut, perhaps, naval history?

Or is 1t abou’ all of these? The way that this question 1s

answered will determine where the comprehenslon of the sentence

1s stored, and hence which words or phrases will be capable of
retrieving its information in the future. The question clearly

must be answered not so much on the basis of anything present

in the 1nput text itself, as on the basls of the overall interests
or orient~tions of the memory. (For possible approacnes to this

53

problem see Abelson and Carroll, 1965, and Tesler, Enea and

Colby, 1967.) As of now TLC sets up the properties needed to
express what a plece of text means, and then usually adds pcinters
to these properties to all the new units created Lo represent
words in that frrgment of text, as was done in Fig. UB.

TLC also as yet makes no effort to get rid of most of the new
units created during comprehension of text. Such new units
represent known concep‘s plus things said about them in specific
instances, and any adequate learning mechanism must forget most
such specific instances, while extracting any important generali-
zations from them and adding these to the more general concepts
left in the memory. Some method cf achieving such generalization
and forgetting must probably be programmed before a significant
amcunt of TLC's memory can actually he bullt up by reading text.

It was mentioned in the introduction that currently TLC can
encounter problems of overinterpretation if ton much richness of
comprehension is sought. Consider for instance the following
phrases, all of which deal with a lawyer and some othe. person.

1. 2.
enemy's lawyer lawyer's enemy
wife's lawyer lawyar's wife
client's lawyer lawyer's client

Assume that a property stored in memory with the unit LAWYER states
that a lawyer has as occupation the representing or advising of
person(s) 1n legal matter(s). Now, in comprehending the three
phrases of column 1, it is always appropriate to consider this
stored property related to the phrase: "enemy's lawyer" means

this lawyer 1s reoresenting or advising this enemy in a legal
matter, "wife's lawsyer" means this lawyer is representing

5

or advising this wife in a legal matter, etc. Furthermore, it
appears that no matter wha: sort of person 1s substituted for the
first word in such a phrase, the use of this stored property in
this way remains appropriate.

However, the first two phrases in the second column are not
correctly seen as related to this stored property: "lawyer's
enemy" does not mean this lawyer 1s representing or advising this
enemy in a legal matter. DMoreover, if additional phrases of the
column 2 type are generated, very few turn out to be correctly
comprehended by use of this particular property.

If given a phrase from either column above to comprehend, TLC's
intersection procedures will in all cases locate a superset
intersection connecting part of the property stored with LAWYER =
specifically, the unit PERSON(s) -— with the person named by

the other word of the phrase, "enemy," "wife," etc. However, the
phrases of column 1 are distinguished from those of column 2
syntactically; the word "lawyer" comes after the possessive

word only in the column 1 phrases. It 1s therefore easy to make
TLC decide that the property stored with LAWYER is related to all
phrases like those of column 1, but to decide 1%t is not so

related to any iike those of column 2; one form test will succeed
on all phrases where "lawyer' comes after the possessive word,
ihile a different form test is needed for all phrases like those
of column 2. It therefore seems a very good idea to store the
form test necessary for column 1 phrases with the stored property,
but not to stere that that would succeed for column 2 type phrases.

However, for a few phrases of the column 2 type, such as "lawyer's
client,” use of this stored property of lawyer is correct

(see Fig. 1B). TLC should recognize such relations to produce a
richer comprehension. As stated in the introduction, such

55

|

it

i

"indirect ¢ 'mprehension" is still a problem for TLC, and all we

will do here is indicate a general plan for routines to achieve
this .

First, such routines locate intersections which connect parts of
two properties in memory, as described in Sectinn IIIC. Second,
one of the units so ccnnected must always be part of a property
that TLC has already found it can relate directly to the piece of
text beling comprehended. For instance, to comprehend "lawyer's
client" TLC would first find this phrase's relation to the EMPLOY
properiy stored with CLIENT, in the manner described in previous
sections. Then, the routire for indirect comprehension would
consider relating other properties to the sentence indirectly.
Among these propertles would te the one stored with LAWYER, stating
that a lawyer's occupation is to represent or to advise people

in legal matters. This routine would fiand a superset intersection
connecting OCCUPATION with EMPLOY! Having found this connection,
the routines should be able to copy and adapt the OCCUPATION
property in accordance with the way the EMPLOY property is copied
and adapted. This will produce an output like that of Fig. 1B,
but one which will not overgeneralize to phrases like "lawyer's
enemy." The key element of this solution 1s that the OCCUPATION
property 1s not directly related to the text, but rather is
implied by another property which is so related: employing
someone has implications about their occupation. Several parts
of this process still involve unsolved problems.

We also believe that, ultimately, a human-like memory should
relate descriptive knowledge of the world to perceptual-motor
activity, in a manner like that indicated by Plaget (Plaget, 1960,
Quillian, Baylor and Wortman, 1964.) This, however, 1s far

beyond our p.esent scope.

56

IV, SUMMARY
This paper does four things:

1) prcposes a structure for a memory of knowledge of the
world

2) describes a theory of how natural language may be
comprenended using such a memory

3) offers reasons why a computer program embodying this
theory may be able to be taugat, in a finite length
of time, to comprehend language

) displays the outputs so far produced by one such program

The memory structure represents factual information about the

world in a richly connected network. Given anv set of concents
represented in this memory, it is possible for a program to locate
the conceptual ingredients they have in common, their "intersections”
in memory. Every con:ert represented in this memory, every "unit,"
is directly associated witn some set of fractual assertionus, its
properties, and indirectly chained to an unlimited number of other

"superset" units and, hence, with the oroperties associated with all
these other units. The meanings of natural language words are
considered to be pointers to varticular units in the memorv,

The theory of text comprehension is more difficult to summarize.
Essentially, it asserts that to read text a comprehender searches
his (her, its) memory, looking for properties wnici can be con-
sidered related to that text. This search begins simultaneously
at all the representations of concepts, all the "candidate units,"”
which the words of a given fragment of text point to. These will
include units corresponding to ail of the dictionary meanings of
these words, and to any rossible anaphoric rcferents these words
may have. fUrese initial units are all considered candidates for the
meaning of the word which led to them (until a property reclated

to the text is found, which will provide for a choice among

57

HipH

HH

M

L]

i

candidates.) TLC's search through memory is intended to
locate, in breadth-first order, intersections connecting orooerties
in memory to words of the input text. Each such interse:tion
that 1s found causes TLC to form a hypothrslis abcut part of the
intended meaning of the current text. Specifically, this hypo-
thesis 1s that the text means to imply a relationsh'p , somehow
similar to the one the property represents, between particular
words of the terxt. These words are the "source" word - that
which supplied the initial candidate leading to this property -
and the "identified" word - that which has been found to have an
intersection with this roperty.

Having gensrated such an hypothesis, {(on purely semantic grounds,
note), the hypothesis 1s further checked for syntactic feasibility.
That 1s, certain syntactic relationships between the words hypothe-
tically related will allow the hypothesis to remain creditable,
while other syntactie relationships will not. Such compatible
syntactic relationships must somehow be specified and stored with
the property in the memory. At present, such csyntactic relation-
ships are represented by routines, "form tests," which check the
input string for features allowlng particular syntactic relation-
ships to be assumed. (We have discussed the desirability of re-
specifying form tests as steps in a network grammar.) But, however
such relationships are specified, tests must be made at the time an
hypothesis about part of the input string's meaning 1is formed, to
see if any one of the compatible syntactic relationships is
feasible in the current piece of text. If any 1s, TLC con-

siders its hypothesis confirmed: the source werd and the ldentified
word are considered to be related in a way similar to that specified
by the property. Thus the current memory property mav be said to
be related to this text. This 1is taken to indicate that the
particular casndldate of the source word and the particular candi-
date of the identified word that led to the current Intersection

58

should be considered as the meanings of those worc; in this text.
The memory property related to the text is also iken as a model
to be recopled and the copy adapted to encode a part of the

text's meaning.

By this technique the comprehension procedure may find a number
of properties reiated to a piece of text, and, using adapted
coples of these, create a complex, intra-linked structure, in the
same format as the memory, representing the particular meaning

of the current input string.

An important feature necessary to make the above strategy work on
nested syntactic constructions is the "pending" procedure. Tiis
allows the order in which intersections are found within the
comprehender's memory to be adjusted so as to adeguately match
the order required by syntactic nestings of input sentences.

Overall, the most distinctive features of thls theory, as compared
to other models and theories of language of which we are aware,
are its explicitness and detail, and its reltsnce on "knowledge of
the world." The theory assumes that 1in general very sizable
amounts of memory must be searched 1n order to comprehend text.
TLC is designed to carry out such searching with as 1little wasted
effort as possible, and in a breadth-first order, which simulates
a largely parallel search mechanism. This kind of "semantic"
processing controls the entire comprehension process, with
syntactic analysis used in the service of declphering meaning,
rather than, as is often suggested, the reverse.

The argument for TLC as an efficiently "teachable" computer prograr
rests on the fact that both the program's knowledge of the world
and its ability to perceive syntactic relationships are fragmented,
so that they can be built up in a machine pilece by plece. The

memory structure gllows automatic rgeneralization of each such
plece added to this memory, since TLC will recognize a given

59

et

T——

"

property's relationship to text despite considerable variation
in the form of that text. Cpecifically:

1) A property is in general reachable via many different
input words.

2) Once reached via some word, either its attribute or its
value can be identifled with many different other input
words.

3) Once part of a property is thus identified with some
input word, all the form tests previously associated
with any property having the same attribute are
available to help determine whether or not the text's

syntax implies use of thls property.

Finally, examples of TLC's output to date are presented in
Figures 1, 4B and 6. We have tried to point out why these begin
to illustrate machine comprehension of text, as well as what
would seem to be the program's most important current flaws and
limitations., As a large and not at all simple program, TLC is -
after mure than two years of continuous debugging and redesign -
still not performing nearly as well as we feel certain it car.
Nevertheless, 1t does at least confront, in considerable detail,
the central problem of how to interpret continuous text by
relacing it to a large memory. We suggest that only to the degree
that there 1s some such detailed, working model of general memory
and 1ts use, can language behavior and most other cognitive
processing ever be understood by psychologists or linguists, or
can reasonable performance on language tasks ever be obtained
from a computer,

60

BIBLIOGRAPHY

Abelson, R.P,, and Carroll, J.D. (1965). Computer simulation of
individual belief systems. The American Behavioral Scientist,
Vol. VIII, No. 9, pp. 24-30.

Bobrow, D.G., Murphy, D.L., and Teitelman, W. (1968). The BBN
LISP system., Cambridge, Massachusetts: Bolt Beranek and
Newman Inc.

Chomsky, N. (1965). Aspects of the Theory of Syntax. Cambridge,
Massachusetts: The M.I.T. Press.

Collins, A.M., and Quillian, M.R. (1968). Retrieval Time from
Semantic Memory. Report No. 1692. Cambridge, Massachusetts:
Bolt Beranek and Newman Inc¢. To apg2ar in The Journal of
Verbal Learning and Verbal Behavior, 1969.

Collins, A.M., Quillian, M.R. (1969). Semantic memory and language
comprehension. In L. Gregg,Cognition in Learning and Memory.
New York: John Wiley & Sons. (forthcoming)

Feigenbaum, E.,A., and Feldman, J. (1963). Computers and Thought.
New York: McGraw Hill.

Kuno, S.K. (1965). The predictive analyzer. Communications of
the ACM. 8 (7), pp. U453-462,

Longyear, Christopher R., (1967). The semantic rule. General
Electric Tempo - 67TMP-55, Santa Barbara, Califoraia.

Minsky, M. (1968). Semantic Information Processing. Cambridge,
Massachusetts: M.I.T. Press.

Newell, A., Shuw, J.C., and Simon, H.A. (1962). The processes of
creative thinking. In H.E. Gruber, G. Terrell and M. Wertheimer
{eds.) Contemporary Apprcaches to Creative Thinking. New York:
Atherton Press, pp. 63-119.

Piaget, J. (1950). The psychology of intelligence. Translated by
M. Cook and D.E. Berlyne. London, England: Routledge and
Kegan Paul.

Quillian, M.R. (1966). Semantic Memory. Report No. 1352.

Cambridge, Massachusetts: Bolt Beranek and Newman Inc. In
Minsky (1968).

Quillian, M.R. (1967). Word concepts: a theory and simulation of

some basic semantic capabilities. Behavioral Science, 12,

Quillian, M.R., Wortman, P. and PRaylor, G.W. (1965). The program-
matle Plaget: behavior from the standpoint of a radical com-

puterist. Unpublished dittoed paper. Carnegie Institute of
Technology.

Raphael, B., Bobrow, [.G., Fein, L., Young, J.W. (1968).
A brief survey of computer languages for symbolic and
aigebraic manipulation. This paper appears in D.G. Bobrow
(editor), Symbol Manipulation Languages and Techniques, 1968,
North Holland Press.

Reitman, W.R. (1965). Cognition and thought: An information
processing approach. New York: John Wiley & Sons.

Siklossy, L., and Simon, H.A. (1968). Some semantic methods for
language processing. Complex information processing.
Paper #129. Pittsburg, Pennsylvania: Carnegie-Mellon Universit

1 11114 ke

Simmons, R.F. (1965). Answering english auestions by computer:

a survey. Commuaications of the ACM. 8(1), po. 53-70.

Simmons, K.F.., and Burger, J.7. (196t¢). A Semantic Anaiyzer for
English Sentences. Renort No. SP 2987. Santa Monica,
California: System Develonment Corporatilon.

Tesler, L., Enea, H., and Colby, K.M. (1967) A Directed Graph
Representation for Computer Simulation of Belief Systems.

Devartment of Computer Sclence, Stanford Unlversity.

Thompson, F.B. (1965). The deacon project. General Electric
Tempo - 65TMP-69, Santa barbara, California.

Thorne, J.P., Bratley, P. and Dewar, 1, (1968). The syntact’e
analysis of English by machine. In Machine Intelligence 3,
Michie, Donald {(ed.) New York: American Elsevier Publishing
Co., Inc., po. 281-309.

Welzenbaum, J. (1967). Contextual urderstanding by computer.
Communications of the ACM, 10(&), pp. 474-480C.

BLANK PAGE

. L0 3 e Py
Unclassifiec AD 5% g éf

by

Security Classification LY
DOCUMENT CONTROL DATA-R&D
:Security classification af title, budy of abstract and indexing annotaticn must be entered whe n the uveryll report is classified)
T ORIGINATING AC TIVET Y (Corputale author) 2o, REFORY SECURITY CLASSIFICATION
T - . . <
Bolt Beranek and liewman Inc Unclassified

50 lMoulton Street 2h. GAGUR
Cambridre, fassachusetts 02138

4 KRUPDRY TITLE
THE TEACHABLE LANGUAGE COMPREHENDER: A SIMULATICN PROGRAM AND THEORY
OF LANGUAGE

4. DESCHIPTIVE NOTES {Type of teport and,inclusive dates)

Sclentific Interim

% AU THORIS) (First name, middle initial, last name)

M. Ross Quillian

6. REPORTY DATE 74. TOTAL NO. OF PAGES 7h, NO. OF REFS
31 January 1269 60
8a. CONTRACT OR GRANT NO %93. ORIGINATOR’S REPORT NUMBEKR(S}

F19628-68-C-0125

b, FROJECT NO

8668
<, DOD Element 6 15 u 5 OlR k. &x«ggoc’a‘fponr NOi5) (Any other numbers that may be assigned
AFCRL-09-0108

BBN Report Ho. 1693
Scientific Renort Ho. 10

10. DISTRIBUTION STATEMENT
Distribution of this document is unlimited. It may be rzleased to
the Clearinchouse, Department of Commerce, for sale to tie general
nublic.

tt- SUPPLEMENTARY NOTES 12. SFPONSORING MILITARY ACTIVITY
Ailr Force

This research was sponsored by | .
T e ° [Fambridre Research Laboratories (CRB)
the Advanced Eesecarch Projects F . G. Hanscom Field

Apency PBedford, HMassachusetts 01730

13 ABSTHACT

- The Teachable Language Comorehender (TLC) is a vorogram designed to
be carable of beins taupht to "comprehend" English text. When text
which the program has not seen before 1is input to it, it comprehends
that text by correctly relating each (explicit or implicit) assertion
of the new text to a large memory. This memory is a "semantic network"
representing factual assertions about the world.

The program also creates copies of the parts of its memory which
have been found to relate to the new text, adapting and combining these
coples to represent the meaning of the new text. By this means, the
meaning of all text the prcgram successfully comprehends is encoded into
the same format as that of the memory. In this form it can be added in-
to the memory.

Tacts and reading abilities may be taught to the program as needed,
This information is generalized in TLC and hence a single addition can
often provide a large increment in TLC's effective knowledge of the
world, and in its overall ability to comprehend text.

The program's strategy is here presented as a general theory of
language comprehension.

FORM
DD |NOVF$1473 lpeYez) Unclassified

S/N C0i101-807-6811 Security Classification

A-3140%

ikt

Unclassified
Security Classification

14, LINK A LINK B LINK C©
KEY WORDS
ROLE wY ROLE wT ROLE wT
Natural Language
Semantics
Language Comprehension
Computational Linguistics
Psycholoingulstics
FOR
DD INOV.OD1473 (BACK) Unclassified

S/N 0101-8067-6821

Security Classification

h-3140%

