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SUMMARY

Birkhoff's normalizing canonical transformation at
an equilibrium of elliptic type with no internal resonance
can be built explicitly and recursively, without partial

inversions or substitutions, by means of Lie transforms.

Invariant sections and ordinary families of periodic
orbits for truncated normalized systems are analyzed in

detail.




Introduction

We consider a conservative dynamical system with m degrees of

freedom whose equations of motion we write in vector form
3
q = — 3, p=- —3[’ (1)

in which q and p indicate vectors with components and pj

Y
(1 < j <m) respectively. We assume that the origin (p =0, q = 0)
in the phase space is an equilibrium point, and that the Hamiltonian
F(q,p) 1s an analytic function of the state variables in a neighbor-

hood of the equilibrium. Hence Taylor's expansion of ¥ in that

neighborhood is of the form

9 (p,q) = Eo ;1;,- 9 (p,q), (2)
n>

where, for each n > 0, 3{n is a homogeneous polynomial of degree

n + 2 1in the state variables. Indeed the constaut term in the develop-
ment of H around the equilibrium does not contribute to the equations
(1), and since (q =0, p = 0) 1is a solution of (1), the first degree
terms in (2) must vanish. Thus the power series for JH begins with

quadratic terms.

We suppose that the series (2) has only real ccefficients, in particular
that the quadratic form 3[0 is real. Let A& be the matrix of the linear

Hamiltonian system derived from 3[0. If \ is an eigenvalue of &, then

its complex conjugate Y and its inverse -} are also eigenvalues of




A. Thus assuming that all eigenvalues of @ are distinct and

purely imaginary, we can represent them by the sequence

1\1,1\2.....1\m,-1\ ,—1\2....,—1\ ’ (3)

1 m

where \1‘\"""‘\m are non zero real numbers. Under these conditions,

there exists a canonical transformation

o

AT < R d il
qj 2 l.jk Ik cos ¢k + bjk 1k sin ‘,"kl,

I<ksm
\

2 sin ¢, l
<k<m :

pJ = ! |ij lk cos "Kk + bjk Ik

from the original state variables (q,p) to angle coordinates ¢ = (@k)

and action momenta 1 = (lk) such that the quadratic form 3[0 converts
into

9t 5 (L,-) Nl (5)

\ .
& k'k

1 m

.

Under the mapping (4), the homogeneous component 3, transforms into
a homogencous polynomial of degree n + 2 in the state variables ‘/I—,,
its coefficients being trigonometric sums in the arguments ¢~‘ with
real coefficients. For each n > 1, the component 3{“(l,¢) has the

dMAlembert characteristic., 1t means that, for a term like

. - Pl
(\/Il)l’l(‘/lz)p_z (‘/lm) m Cos(kl«hl + kg, +ocee +k§ )

A 4 m m

to enter the homogencous component of degree Py +p, + e + Py it

is necessary that, for 1 ~ j <~ m,




Jl P and kg P (mod. 2): (6)

the same condition is to be satisfied by any sine term.

Birkhoff's normalization consists in finding for a given N > 1
a canonical transformation ¢:(L,3) — (I*,$*) such that the converted

Hamiltonian decomposes into the sum

(N)

:H(l*":‘*) =('\,(L*)_) + IN (I*":‘*)n (7)

wvhere XN is a polvnomial with real coefficients in the transformed
actions 1% = (lﬁ) of degree at most equal to (N + 2)/2, and JP(N)
is a series in the action amplitudes J&j. beginning with terms of at
least degree (N + 3), the coefficients being periodic functions of

the angles o,

N
Birkhott (1927) has shown that the normalized part oV(I*,-) of
the Hamiltonian is invariant with respect to the various canonical
transformations leading to it. Hence it vields dynamical characteristics

of the flow of trajectories close to the equilibrium.

By halting the scquence of normalizing transformations after a
tinite number N of steps, we obtain an asvmptotic representation of
the phase portrait at the equilibrium as the actions I"{ —> 0. Practical-
ly the original system as described by H  is replaced by its asymptotic
approximation truncated atter order N + 2 as represented by ¢\, But,

as the angles  ¢F  are ignorable in oV, the dvnamical svstem that it
J

describes is integrable, and its structure in phase space is the product



of an m-dimensional torus by the m-dimensional phase space (Arnold
and Avez 1967). Now most of the invariant tori of quasi-periodic
motions in the flow of trajectories determined by cN will survive

the perturbations induced by the remainder SP(N)

. This may explain
why (although Birkhoff's normalization is only exceptionally convergent
as N — =), it proves useful in revealing the dynamical structures

around the equilibrium for the full system K,

1. Normalization by Lie transforms

It is assumed that the basic frequencies X, ,,A,,...,A_ are
1’72 m

rationally independent of each other.

Traditionally the normalizing transformation is defined from a

generating function

W(I*,0) = O I¥e + 3 W_(I%,4). (8
1<k<m n>1

3
ok =+ D> W, (1 <k <m
k k 1 aIk n
(%)
3
I =Ix+ > —W., (1 <k <m)
|3 k 1 a¢k n
Conversion is then made to the complex variables
1o, ~16,
£ NN Te, n = -1, e (1 <k <m) (10)

s0 that the operations of normalization are performed entirely within
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the algebra of polynomials in 2m letters over the complex numbers.
They have been programmed for automatic processing by computers for
systems with two degrees of freedom: programs originally set up to
deal with resonance cases (Gustavson 1966) have been modified to

operate in the regular case (Chai and Kass 1966).

The use of a generating function in order to build a normalizing
canonical transformation is reminiscent of a well known procedure in
the theory of General Perturbations (Poincaré 1893) that is usually
referred to as Von Zeipel's method. But its shortcomings have recently
prompted the formulation of a more direct algorithm based on Lie trins-
forms (Deprit 1969). This new formalism simplifies to a large extent
Birkhoff's normalization. The present application will in turn check
the general procedure. For we had previously normalized the Hamiltonian
of the restricted problem of three bodies at L, (Deprit et al. 1967),
and we shall find that the algorithm about to be described indeed restores

the already established normalized Hamiltonian.
The basic step is to construct a sequence of functions

wj(l*.¢*) (1 <3 <N)

depending not on mixed variables but on both new angles and new actions.
They will be obtained in the course of transforming the Hamiltonian. For

reasons of clarity, let the exposition refer to the diagram in Fig. 1

A
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Fig. 1. - Recursive normalization of the Hamiltonian.

The functions entering the diagonal 3[0.3(1,3[2,... are the homo-
gencous components in the initial series (2) as expressed by means of
the primitive angles and actions ¢j and 1 (1 <3 =< m); the functions

3
entering the diagonal S[o, 3[(()1) o Sfc()z) sess are their normalized forms.

The elements in Table I are to be built recursively according to the

law
‘ (p) _ 4fpP-1) N (9 fa(P-1)
Hq a1 T 0<3<q (j)(‘?‘q-J ’ wJ+1) S
where (31) is the binomial coefficient
(q) L 9(g-1) --- (q-j+1)
j 1.2, *++ j
(p-1),
and (gfq-j 2 wj+1) is the Poisson bracket
(p-1), = N (2 gfp-l) D e -5 O I 1
(32575 W) I:I:m(”ﬁa“'] 517 Ve T SRl e Vi)

Extending a proposition established by Brown and Shook (1933), we can

prove that, if f 1s a homogeneous d'Alembert series of degree p with




respect to the variables vﬁﬁf,v/fg,..., quz ¢i,¢3,...,¢; and g
is a homogeneous d'Alembert series of degree q with respect to the
same variables, then the Poisson bracket (f;g) is also a d'Alembert
series with respect to these variables, but of degree p + q - 2. The
fact is that, while the separate partial derivatives with respect to

the actions I{,I;,...,I; are not d'Alembert series, in each Jacobian

MEg) L1 _3(E,8)
3 (o 1) 21 3G, VIP)

the divisor ,/Ii disappears, and by exact cancellation of all terms

not having the d'Alembert characteristic, the Jacobian of f and g
with respect to ¢¢ and ,/Ii turns out to be a homogeneous polynomial

in the variables ,/If,,/l?,...,,/l; of degree p + q - 2 with the

d'Alembert characteristic.

This proposition assures the consistency of the scheme we propose
here; it is useful as a check on the various parts of a program to be

implemented by computer.

As we shall see, the differential operator

will play an essential role. It is a linear mapping into itself of the

algebra of - 6f(1*,9*) of d'Alembert series with respect to JE;,,/tg,...,

,/I;, ¢t,¢§,...,¢;. More precisely it is a linear mapping into itself

(p

of the vector space of ) Gép)(l*,Q*) of homogeneous polynomials of



- N pre—

degree p in ,/I{, ,/I’E,...,,/It’!‘l having the d'Alembert characteristic

and, under the .ondition that the frequencies X = (),) are rationally

3

independent of each other, the kernel of this restriction 1s the vector
space ?(p) = 4,(p) (I*) of homogeneous polynomials in ,/If,,/]’.?z‘,...,,/I;’“1

of degree p with real coefficients. Notice also that

D(A)cos( z jk¢1’:> = -Il 2 jk}\k]sin( Z jk(t’lt)’
(12)
D(A)sin(lz<m jkd’lt) = | Z Jk’\kICOS( 2 jk¢1’:).

1<k<m
which makes the inverse operator (D(A))"1 a trivial operation over .

Now let us see how the normalization is carried out recursively.

In view of (11),
W ,
3£0 3‘1 + Glo, Wl) K (13)

with the understanding that in 3{0 and 3[1 the letters I and ¢
have been replaced by I* and ¢* respectively. We collect in 3!81)
the terms of ] that do not depend explicitly on the angle coordinates
¢*, Of course, since 9, is an element of Gf(3), there are no such

terms, and we find that 3fél) must be put equal to zero. On the other

hand

Of; W) = = DOOW,,
so that the definition (13) transforms into the linear partial differential

equation

D(A)Wl =3, (14)
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A particular solution
1
"1 = oo h

of (14) is constructed according to the rules (12), and thus it 1is an
element of A2 4 e neglect to complete it by arbitrary elements of
the kernel of D(X); their addition would indeed deny the d'Alembert

characteristic to wl.

Suppose that the first N rows (N > 1) of the triangle in Fig. 1
1 have been computed, that is to say the Hamiltonian has bezn normalized
up to order N + 1 and the first N - 1 generators wl,wz,...,wN_l of
the canonical transformation have been computed. At this step, 1t is
convenient tc put wn = 0 for the time being, and to compute the elements

of the (N + 1)-th row of the triangle in Fig. 1 by the formula (11).

Denoting them by 5'[?), we obviously have that, for p>1 and p+g4q =N,
(p) _ 54p)
= + ) 5
HP = FHT + Gy WY (15)

Notice that each element ﬁ(p) belongs to the vector space Gf(N+2).

q

Making p =N and q =0 in (15), we find the relation

5 (N) ) (M)
:HO + (910, wN) =9, (16)

) 0
H 0

Once more we collect in 0 the terms of JH which do not depend

explicitly on the angle coordinates ¢*. If N is odd, then SféN)

turns out to be zero; but if N = 2M 1s even, Sfc()N) is a homogeneous
polynomial of degree M in the letters I{,I;,...,I; with real coef-

ficients, Let us put

™
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so that we can write the identity (16) as the linear partial differential

equation

D(A)Wy = 2 (18)

of which a soiution is found in accordance with the rules (12):

L1 W)
wN EN) 2, (19)

Observe that the particular solution (19) belongs to the vector space

Gf(N+2)

. If N 4is odd, completing W, with elements of the kernel of

N
D()\) would result in depriving the completed solution of its d'Alembert
characteristic. But, if N = 2M 1is even, that characteristic would not
disappear by adding to WN a homogeneous polynomial of degree M in
the letters Ii,IE,...,I; with real coefficients. Yet, as follows from
Birkhoff's proof of invariance with respect to the group of normalizing
canonical mappings, this complementary term is not going to contribute

subsequently to the normalized Hamiltoni~n. Therefore we decide to omit

it systematically.
Having determined WN, we complet: the elements (15) as follows

:xép) =5tép) -2 (p21,920,p+q=N (209

so as to be ready to extend the normalization, if necessary, beyond the

order N + 2.

So far we have determined the components of the normalized

-
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Hamiltonian, and the generators (wl,wz,...,wN) of the Lie transform.

In order to construct formally the normalizing canonical transformatiom,
we have to compute the Lie transforms of the original angle and action
variables (¢,I). To this effect, we apply the usual triangular algorithm

(Deprit 1969) which converts series like

0g = ¢ O = 0 for n>1
into functions of the normalizing angle and action variables (¢*,I%*).

We proceed in the same manner to express the original state variables

(q,p) as given by (4), if we need them expressed in terms of (¢*,I%).

2. Normalized systems with two degrees of freedom

From now on we restrict o'rselves to dynamical systems with two

degrees of freedom

As we just described it, Birkhoff's normalization has now become
a relatively easy operation to be implemented automatically by computer,
and the analysis of an elliptic equilibrium can avail itself freely of
this routine technique. Hence, from the methodological standpoint, the
emphasis shifts on the problem of how to obtain local information about

the phase space at the equilibrium from the normalized Hamiltonian.

Quite naturally we are led to contrast two kinds of dynamical
systems. On one hand there is the original system described by the

full Hamiltonian FH(I,¢) which, after transformation, takes the form
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(7); on the other hand, at a given order N + 2, there is the integrable
system described by the principal part oN(I*,-). Before we indicate how
the integrable system is a deformed, yet informative, version of the full

system, let us see how we can study in depth the principal part.

The canonical transformation 6%*:(q,,q,,p,,pP,) — (¢¥,¢% 1% T*)
1*92°P19P; LA A L)

from the original state variables to the normalizing angle and action

variables is singular along the phase manifolds Ii = I{(ql,qz,pl,pz) =0

* = % =
and 12 - Iz(ql)qzlp]_’pz) 0'
But, for the normalized system, i.e. the dynamical system represented

by the integrable Hamiltonian N, the equilibrium configuration is defined

by It = 15 = 0, Moreover, the frequencies A, and XA, being rationally

1 2

independent, there emanate from the equilibrium two natural families of
periodic orb.ts. The fanmily 91 associated with the frequency Al lies

on the manifold Ig = 0, and conversely any point of the integral mani-

fold 13 = 0 belongs to one, and only one, periodic orbit in the family

9&. Likewise the family gé that Liapunov's theorem associates with

the frequency AZ lies on the manifold IT = 0, and it is coextensive

to that set.

It is easy to show (Deprit et al, 1967) that the nontrivial characteris-
tic exponents for the periodic orbits belonging to 9'1 and 9’2 are

respectively the series




3 2
iy, = # l I*)l = +i(A, + a,I% + a, I*" +¢+4)
1 ol i I*=0 1 3 [ | 271
tiwz z _1(x2 + bllg + b2152 Feos)
2 I*-O

in the powers of Ii or Ig. The independence of Al and AZ over
the rationals implies of course that neither Al nor Az is equal to
zero. Consequently the nontrivial multipliers of the periodic orbits
either in gﬁ or in g& are not equal to one; in other words for these
orbits, the algebraic multiplicity of the multiplier +1 is equal to 2,
which implies that the gradients of the integrals If and I; in the

original phase space (ql,qz,pl,pz) at any point of the integral mani-

=0 and I*¥ = 0 are collinear.

fold I 5

i
Outside the manifolds I; =0 or I; = 0, the normalizing canonical
transformation 0% is regular, i.,e. its Jacobian matrix is invertible.

As a consequence, since the gradients of If and 15 in the phase space
(ql,qz,pl,pz) form two rows of the Jacobian of (6*)_1, they must be
linearly independent. 1In other words, along any solution of the normalized

system, which is neither the equilibrium nor an orbit of 9'1 or &,, the

gradients of the "adelphic' integrals are not collinear.

A torus (I? # 0, 13 # 0) 1is filled by quasi-periodic motions having

the frequencies

k= 29!.- * T%
9 = 51% = VUL,
. acN

X = = = * *
27 v, (I1,13%).

R > o e S oot BN - <A oo P TS R TR
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Orbits in that torus are transformed into each other by properly adjusting
the additive constants in the phase angles ¢i and ¢§. In composition
with the normalizing canonical transformation o*, this translation of
origin in the torus constitutes what Whittaker (1916) called the aldelphic

tnpte format i on,

Exceptionally the constant values given to the integrals I{ and

l1%#  can be such that the frequencies are commensurable: there could

exist a pair (pl'pZ) of relatively prime integers such that
Py (1515 = p 1V, (1F,15). (21)

In this case, the quasi-periodic motions degenerate into the o nary
families of periodic orbits mentioned by Whittaker (1916). For such
orbits, the fact that the adelphic integrals have linearly independent
gradients implies that all multipliers are equal te +1; in each torus,

all the orvits have the same period.

The totality of motlons for the normalized system {s aptlv sum-
marized in the plane of actions (1?,15) (sce Fig. 2). The origin
represents the equilibrium; to each point along the If—axls corresponds
one and onlv one singular periodic orbit in the family STI; likewise
to cach point of the ls-nxls corresponds one and only one singular
periodic orbit in the family 572. Elscewhere in the plane of actions,
the correspondance between pairs (]T,Lg) and orbits of the svstem is

*

one-to-many: any point (llolf) Not on the action axes represents

-
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« I T
0.05 J
C=2%90
O=47/4
7 C=292
=12
0.03 C= 2.94
0=49/4
C=295
o=25/2
ool f//;
|~
I
Fig, 2, = The plane ot actions for the normalization (truncated at

order 14) ot the restricted problem around L, in the svstem sun-
Jupiter, "




the class of quasi-periodic motions transformed into one another by

adelphic cransformation.

There is a natural network of curves coordinatizing the plane
of actions (I{,Ig). On one hand the energy manifolds appear in the

diagram as the one-parameter family of curves defined by the equation

oV(I{,Ig) = constant.

On the other hand the ratio of frequencies

= * T%

which we found suggestive to call the rotation number, defines another
family of curves. When p 1is rational, each point of such a curve
represents the family of ordinary periodic orbits filling the torus
(IT,IE). We shall modify Whittaker's definition, and call ordinary
family of periodic orbits the two-parameter set 0(p2/p1) of ordinary
periodic-orbits corresponding to the curve (20) in the plane of actions.
Let us recall that, along O(pz/pl), the period is a function of the

energy alone (Deprit and Henrard 1968, pp. 62-63).

Much expertise is gained from studying invariant sections through

the phase space of a normalized system.

The figures that follow pertain to the normalization (truncated at
order 14) for the restricted problem of three bodies around the triangular

center of libration L4 in the system sun-Jupiter. The state variables
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are the Cartesian coordinates and velocities in the synodical frame
of reference located at LA' The sections are cut by the hyperplane
x =0 (the x-axis is in the direction of the line of syzygies

oriented from sun to Jupiter).

A plane section of a three-dimensional energy manifold is a two-
dimensional surface, which we project on the coordinate plane (y,&)

by lines parallel to the x-axis.

One way of making this surf{ace apparent in its projection is by
plotting the projection of some of its curves. In the case of an
integrable system, the most informative curves are obviously the traces
of the invariant tori of quasi periodic orbits in the energy manifold,
in particular the tori corresponding to ordinary families of periodic
orbits. Fig. 3 displays for a normalized system sections of several
ordinary families lying on the energy manifold at the equilibrium.

The restricted problem at LA for the system sun-Jupiter was normalized
up to degree 14; the residual in the Hamiltonian was neglected. Then

the curves were computed from the series for the state variables

x,y,i,& in terms of ¢i,¢§,1¥,1§. The integral of energy defines a
region of the plane (y,§) that will not be covered by the projection

of the section (the area shaded in Fig. 3). On each curve that projects
the intersection of a natural family of periodic crbits with the x-plane

passing through the equilibrium, the points at which x > 0 are joined

by solid lines--thev arc located above the projection plane (y,&); the

e - ATt Moo Sy T ST AR ATy e £ oy AT 1 I BN L 3 S e T} e 8O | pramts )
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Fig. 3. - Projection on the plane (y,).’) of the section in thc
energy manifold C = 3 by the x-plane going through LA.

£




-19-

points at which X < 0 are joined by dashed lines. As can be seen 1
from Fig. 3, invariant curves may have intersecting projections. But
the points having the same projection correspond to distinct phase
states: on one curve, x is >0 whereas, on the other, it is < 0.
In numerical explorations of invariant curves, it has been the rule

for some time to plot only the intersection points at which x is > 0;
Fig. 3 makes it obvious that, on adopting this convention, one discards J
so much information that a correct interpretation of the sections could
be in peril. We see for instance that the locus of intersection points
with x > 0 separates into two disconnected arcs located on both sides

of La; the same is true for the curve of intersection points with x < 0.
However, in each quadrant, the arc corresponding to x >0 falls in

continuity with the arc corresponding to x < 0. Once this continuity

is perceived, it is immediately rationalized: the plane (y,&) cuts

the torus, leaving part of it visible above it, while the rest remains

! hidden under the plane on which the section is projected.

In one respect, Fig. 3 may seem odd: the invariant sections do not

contain the equilibrium L&' But this peculiar feature is just another
" instance of the fact that we are dealing here with the projection of a
surface onto a plane. Had we made the projection on the plane (§,§),
we would have found that section curves in the x-hyperplane do indeed

go around the equilibrium L, (see Fig. 4).

Most analytical treatments of an equilibrium treated so far were

concerned with Hamiltonians without gyroscopic terms (linear in the




hﬂm-.m*wm R T ey e -

-20-

0.04}

0.02}

-0.02}

-0.041-

L -l 1 1 —r 1 1 1

-0.08 -006 -004 -002 0 002 004 006 X

Fig. 4. - Projection on the plane (§,§) of the section in the energy
manifold C = 3 by the x-hyperplane going through L4.
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momenta) wherein the equilibrium constitutes a minimum on the potential

surface. But, in the restricted problem, L4 and L5 are maxima on

the potential surface, whose elliptic character in stability is conferred

by the Coriolis forces due to the rotation of the synodical frame of

reference. One has to expect that the global structures of the phase

space differ substantially on the energy manifolds according as to whether

they lie above (C < 3) or below (C > 3) the equilibrium configur-

ation., We illustrate this change of patterns in the normalized

system cN in Fig. 5 where we present the projection of the section

of the energy manifold C = 2.9 by the x-hyperplane passing through

LA'
Since we have in analytical form the general solution for the

principal part (N, we can without much labor observe the evolution of

invariant sections with changes in the Jacobi constant. By way of

illustration, we followed the projection on the plane (y,&) of the

section by the x-plane going through L4 of the energy manifold for
tne Jacobi constant going from C = 3.0001015 to C = 2.9. On each
manifold we concentrated on the ordinary family of periodic orbits
0(25/2) corresponding to the rotation number p = 25/2, The sequence
of curves (see Fig. 6) begin with two points: these are the intersec-
tion points of the orbit in the natural family gi =.€f out of which
branch the ordinary family. Then for a while, the invariant section
is made up of two disjoint ovals; such is the case at C = 3. Later

on, the components touch one another, and thereon the section takes




=

04}

0.6 0.8 1.0 1.2

Fig. 5. - Projection on the plane (y,&) of the section in the energy
manifold C = 2.9 by the x-hyperplane going through L4. (Normalized
system).
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the shape of two hinged crescents, There will come a value of C at
which the crescents will separate; each closed component will contract
and eventually, at C = 2.559, they will collapse each into a point
corresponding to the orbit in the natural family gé =.€2 on which the

ordinary family terminates.

The same pattern is found for the sections in the ordinary family
of periodic orbits O0(12/1) (see Fig. 7). We know that the family
originates at C = 2.960750380 from an orbit in the natural fanily
.Ei, and that it terminates at C = 2.635008320 on an orbit in the same
family. By the way, in the full restricted problem, the ordinary two-
parameter family of periodic orbits associated with the commensurability
12/1 dissolves into a natural family which is a two lane bridge from

S to £7. Of the curves drawn in Fig. 7, there remain only finite

4 4

sets of isolated fixed points, half of them being elliptic (for the

£

stable orbits in the bridge) and the other half being hyperbolic (for

the unstable orbits). In this respect, Fig. 7 which refers to the
truncated normalized syvstem ¢N should be compared with the corresponding
figure published elsewhere (Deprit and Rabe 1969) for the full restricted

problem of three bodies.

So far we have considered invariant sections in the map defined
by the original Cartesian coordinates. It is not without interest to
analyze them in the normalizing coordinates (¢f,¢§,1§,1§) themselves.
Thus in Fig. 8, we have plotted for three values of the Jacobi constant
C the values of ¢T and Lg of the points at which the periodic

orbits in the ordinary family 0(25/2) intersect the x-hyperplane

o
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ig. 6. - Evolution of the projection on the plane (y,)'r) of the
sections in the ordinary family 0(25/2).
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going through L4. Actually Fig. 8 1is but the transform of Fig. 6

by the normalizing mapping (x,y,px,py) — (¢f,¢5,l;,15). At

C = 3.0001015, i.e. the energy level at which the ordinary family
bifurcates from the natural family .Bf, the section would consist of
two lines @i = constant: the family 0(25/2) reduces there to an
orbit of long period. Somewhere between C = 2.995 and C = 2.9,

the two branches of the intersection curve made a contact, and there-
after the curvz reduces to a closed oval. As it expands in the direc-
tion of the angles ¢%*, it will eventually touch its image in the
congruence modulo 21 which defines tl:e angle ¢I. From this level

of energy onward, the intersection curve will split into two separate
arcs. The evolution terminates when these arcs have become two straight
lines ¢5 = constant. We are then at the energy level C = 2.559 at
which the ordinary family 0(25/2) collapses into a short period orbit

circuited 25 times.

The preceeding explorations cause us to question an empirical defini-
tion given lately for the rotation number p. Given a dynamical system,
usually not integrable, the section of an energy manifold by a hyper-
plane is determined by numerical integration: on an orbit starting
from a selection of initial conditions, the program marks the points at
which the hyperplane is penetrated. In the absence of any qualitative
information about the structure of the phase space around this orbit,

Contopoulos (1967) proposes to define the rotation number as the average
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angle between successive pointers to the intersection points from

what seems to be the fixed point inside the island circumscribed by

the "invariant curve'. Let us explain now on the principal part

N for the restricted problem at L4 how this empirical definition

fails to be satisfactory. At the energy level C = 2,560 a bit after

the family branched out of a short period orbit traveled 25 times,

the orbits of 0(25/2) have 25 well developed loops, and they inter-

sect the section plane in 25 points. But it takes two full rotations
around the fixed point which is the trace of the short period orbit

before the crossings come back on the first intersection point. Hence,
according to Contopoulos, the rotation number would 1lie in the vicinity

of 25/2. But, as C 1increases, the loops contract, so that fewer of

them are crossing the section hyperplane. For instance at the level

C = 2.9, we count only 16 intersections on the orbits of 0(25/2) after
two full rotations: according to Contopoulos' definition, the rotation
number would have decreased now to 16/2. Eventually the family approaches
a long period orbit traveled twice. A little before C = 3.0001015 where
the bifurcation takes place, the plane section presents only two crossing

points, in which case Contopoulos' rotation number cannot be unambiguous-

ly estimated.
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3. The resolution power of a normalization

How does the portrait in phase space for the normalized system
N compare with that of the full system? 1In order to answer that
question, it might seem logical to begin by inquiring about the con-
vergence of Birkhoff's normalizing transformations. The few precise
results mathematicians have so far established look discouraging.
We know that, in an admissible set of power series provided with a
natural topology, the subset of Hamiltonians for which Birkhoff's normali-
zations are divergent is everywhere dense (Siegel 1941), whereas the
subset of Hamiltonians for which these transformations are convergent
is of first category in the sense of Baire (Siegel 1954). However,
Siegel's topology can be weakened sufficiently without yet losing
a certain tightness so that the set of Hamiltonian systems for which
Birkhoff's normalization converges appears as everywhere dense (Contopoulos

1963) .

Such theorems show that so far the mathematical problem of con-
vergence is not yet of physical significance. From a purely experimen-
tal point of view, we have learned to use normalization as a tool, much
as a physicist uses a microscope. The ultimate structure in the phase
space around the equilibrium is yet beyond our reach. Numerical
integration of the original equations of motion will provide a detail
here and there, but it will leave us totally ignorant of some global

structures. For instance we might be interested in locating some

invariant tori of quasi-periodic motions surrounding the equilibrium.
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Let us assume that we are in the conditions which guarantee their
existence for the full Hamiltonian . 1In this case, we could act
under the assumption that, if the transformation is carried to a
sufficiently high degree, the normalized system oN will possess tori
in the domain of phase space that we analyze, and that the perturbing
residual 2 will not wipe them all from the phase space of the full

system,

Normalization will reveal some of the features in the phase
space around the equilibrium. Of course on the whole it will simplify
them. Where it tells the story of two basic frequencies so well locked
in a resonance that they generate an ordinary family of periodic orbits,
we have to expect that, in the full problem, the ordinary family breaks
down into isolated natural families of periodic orbits, some of them
being of the elliptic type and thus surrounded by "islands" indicative of
tori of quasi-periodic orbits, others being of the hyperbolic type and
acting as epicentfes in the middle of instability zones. But this dis-
tribution of stability islands and instability faults is very likely
inscribed in annulus bordered by fringes of quasi-periodic riotions
with nonzero measure. The normalization is unable to resolve these
fine details; yet through the blurring, an experienced investigator

might gain a feeling for what complexity there is in the full problem.

A normalization truncated after the first few orders may be out-
rageously simplifying. The higher the order of truncation is, the more

significant the approximation could be. Compare for instance Fig. 12,
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13, and 1 of Gustavson (1966) where a progress for order 6 to 8
results in bringing forth more patently new fixed points in the
sections, i.e. natural families in the phase space. Of course, like
with any asymptotic series, there comes an optimum beyond which the
resolution power of the normalization loses its significance. And

it is likely that, even before the optimum in truncation 1s reached,
numerical accuracy will have failed. For the normalization will have
been obtained by so many operations on the intermediate results that
the high order coefficients in the power series will have lost most,
if not all, of their relative accuracy; besides coordinates and velocities
obtained by adding a large number of small terms soon cease to be

meaningful.

Whereas the mathematician spontaneously looks for bounded domains
in which trajectories can be guaranteed to flow for ever without leak-
ing or for uniform vicinities in which orbits are predicted to stay
for ever close to one another, astronomers and physicists accommodate
themselves with meore realistic and thus less stringent requirements.
In order to build ephemerides for Trojan planets from an analytical
theory, it is sufficient to be certain that an intermediate orbit
provided by a normalizing transformation about LA will stay for a
sufficiently long time, although not for ever, reasonably close to
an approximately quasi-periodic motion of the restricted problem of
three bodies. In this respect we see two reasons why the normalized

model may fail:
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(1) As we carry the normalization up to an assigned order,
truncation errors will steadily decrease the accuracy of the normali-
zation as the normelilzed action integrals move away from their singu-
lar values at the equilibrium,

(i1) But also as the order of the normalization goes to infinity,
we do not expect that the normalizing transformations converge uni-
formly in a neighborhood of the equilibrium. Rather we shall now show
that there are regions where the structures of the phase space for the
full problem differ significantly from the ones predicted by the normali-

zation. In these regions we shall speak of model errors.

As we plan to test the normalizing approximation where we expect
it to be ai its worst, we focused our attention on the ordinary families
of periodic orbits revealed by the normalization. Another test would
have been to compare for the same initial conditions the solution of

the restricted problem and the quasi-periodic motion of its normalization.

Actually the test on ordinary families of periodic orbits has been
done under very convincing conditions. Four years before we even con-
templated normalizing the restricted problem at LA’ we began computing
invariant sections in the neighborhood. The differential and variational
equations were integrated simultaneously by recurrent power series
(Deprit and Price 1965) so as to assure at least twelve significant
figures for the orbit and nine significant figures for the variations
for at least several hundred units of time. At the level C = 3.00007,

we obtained at first several curves strongly suggestive of quasi-periodic
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motions; then we began looking for stable periodic orbits belonging
to natural families and thus causing swirls to appear in the general
stream of quasi-periodic motions. To our dismay, all we could get was
several sets of periodic orbits with equal periods and the stability
index Tr(T) equal to 2 up to eight decimal rigures. Moreover, in
each case, the normal variation n, solution of Hill's homogeneous
equation for the initial conditions n2(0) =0, 62(0) = 1, and the
normal variation n, solution of Hill's nonhomogeneous equation for
the initial conditions n3(0) = 63(0) = 0 checked at the end of the

period the relation
n2(T)n3(T) - [nz(T) = 1]n3(T) =0,
as predicted for an ordinarv periodic orbit (Deprit and Henrard 1968).

Initial conditicns for these remarkable orbits constitute all the
entries of Table I hut the last two ones. The integrations have been
carried out at two different scasons, hence unfortunately a slight varia-
tion of the mass ratio which reflects in the entries of the first row.

It has induced small alterations in the corresponding periods.

The dabundance of seemingly ordinary familics of periodic orbits
seemed odd to us at the time we discovered them. For in the opinion

of some experts, 'ordinary solutions...are never found after extensive

search by many investigators' (Bray and Goudas 1967). Normalization
ol the restricted problem of three bodies was then undertaken to eluci-

date th:ose results.
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We started with initial conditions which, for the normalized
model, correspond to ordinary families of periodic orbits. We inte-
grated numerically the orbits they generate in the restricted problem
and stopped the calculation when we reached the estimate of the period
predicted by the normalization. Then either, within the assigned tolerance,
the final state was equal to the initial one, or there was a discrepancy.
In the former case, the orbit was held to be periodic. In the latter,
by trial and error, the initial conditions were adjusted so as to pro-

duce a periodic orbit.

If its characteristic exponents came all four very close to zero,
then we restarted the search for periodic orbits along the invariant
curve of the ordinary family of periodic orbits in the normalized
problem. This was a cumbersome and time-consuming investigation; the
usual differential corrections to converge onto a periodic orbit fail when
the characteristic exponents are so definitely close to zero. Thus
we had to satisfy ourselves with a few orbits for each invariant case.
Anyway, first we recovered in this manner the ordinary families that
had been discovered prior to the normalization, and, then, on each
of them, we added a few more. It is reasonable to conclude that, in
a close neighborhood of LA’ within the accuracy at present available
by careful calculations in double precision the structure of the phase
space about L4 cannot be magnified beyond the resolution of a Birkhoff's
normalization of the thirteenth order. The ordinary families of the
normalized system for the rotation numbers 25/2, 35/3, 51/4, 64/5 and

77/6 could not be broken down into natural families of periodic orbits.
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5,

Yet further away from the equilibrium in the phase plane (Ii,Ii

the torus of the normalized system which is filled with the ordinary
periodic orbits corresponding to the rotation number 13/1 is washed
away from the restricted problem. In its place, numerical integration
detected long and thin islands. But the crossing points on the section
curves move so slowly that we did not think it worthwhile to calculate
the complete pattern. In one case, we had followed a trajectory for
1600 units of time (i.e. 30000 solar years), and vet we had not even
traveled halfway around the island. Instead we applied variational
corrections to converge onto the subsiding natural periodic orbits.
One of them (see the last two lines of Table I) has unstable charac-
teristic exponents, and we discovered later on by numerical continua-

tion that it is an element of the family £3£ on its way back from its

maximum Jacobi constant. The other natural periodic orbit has characteris-

tic exponents of the stable type; we also established later on that it

belongs to the bridge ZR(13S,14S) of periodic orbits connecting an

S

4 traveled

element of 172 traveled 13 times to another element of £

14 times.

The dissolution of the family 0(13/1) could be rationalized
on two grounds: not only does the resonance 13/1 occur in the normalized
system further away from the equilibrium than the commensurabilities
previously encountered, but also, as indicated by Contopoulos (1967),
the width of an island at the resonance m/n is proportional to
1(mtn-4)

» where ¢ 1is an estimate of the distance to the equilibrium.

In the present case, the sum m+ n drops to its minimum value when
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the rotation number passes by the ratio 13/1, and therefore in an
intuitive way, we expect significantly wider islands along the in-

variant curve of 0(13/1).

The breakdown of an ordinary family into a pair of natural
families with characteristic exponents of opposite type in stability
is but an illustration of familiar statements of Poincaré. What it
tells also is that the normalization is only a local tool, and that
it fails to reveal the global structure of the phase space. Indeed,
in the normalized approximation, the ordinary family 0(13/1) consti-
tutes a two-parameter bridge connecting a natural orbit of-gf' and

a natural orbit of £ travelel thirteen times. But, in the restricted

=~ 0

problem, the two natural families which survive the destruction of

0(13/1) have certain terminations modified.

Our findings at the energy level C = 3.00007 are presented in

Fig. 9.

A similar analysis has been undertaken at the energy level C =
2.90. We find there the same pattern. Close to the fixed point belong-
ing to the short period orbit--an element of the natural family Lzz-—the
ordinary families of the normalized system subsist in the restricted
problem. Such is the case, for instance, of the family 0(35/3).

But at a greater distance, the invariant curves of the ordinary families
break down into intersperscd subsets of isolated fixed points correspond-
ing to natural families of periodic orbits. The invariant curve of

the ordinarv family O(12/1) gives way to the elliptic fixed points
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(the small circles on Fig. 10) of a stable periodic orbit and the
hyperbolic fixed point (the crosses on Fig. 10) of an unstable periodic

orbit; they belong respectively to the stable and the unstable lane

of a bridge B(125,12S) connecting a short period orbit at C

2.960750380 traveled 12 times to the short period orbit at C
2.635008320 also traveled 12 times (Deprit and Rabe 1969). The

ordinary family O0(25/2) dissipates likewise, making place to the

stable and unstable lanes of a natural bridge 2(25S,2L) connecting

the short period orbit at C = 2.559466612 traveled 25 times to the

long period orbit at about C = 3.0003 traveled twice. Also the curve

of O0(13/1) survives only in the elliptic fixed points imprinted by

the orbit in the stable leg of the bridge B(135,14S8), and the hyper-

bolic fixed points of the unstable orbit in the family -Bﬁ on its

way from a maximum C to its termination on the short period orbit

at  C = 2.501429345. Beyond this invariant curve, the normalization
truncated beyond order 13 is no longer a valid approximation. In the
shaded area of Fig. 10, we have marked by «x's the intersection points

ot the unstable periodic orbit in the return leg of the bridge B(18S,19S8),

although we have not tried to elucidate the structure of the phase space

in that remote part of the energy manifold.

In this respect we cannot leave our readers unaware of the over-
abundant amount of numerical integrations required to produce but the
handful of conclusions we came to so far. As an illustration we have
blown up in Fig. 11 a minute area of the cross section plotted in

Fig. 10. This is a rectangle covering the dissipated invariant curve
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relative to ((25/2) between two successive hyperbolic fixed points
belonging to the two-lane bridge 2(255,2L). The closed curve around
the elliptic fixed point demanded that the numerical integration be
extended over 5723 units of time (i.e. about 10,000 solar years), yet

keeping fixed 10 decimal figures of the Jacobi constant.

At the level C = 3.00007, the ordinary family 0(25/2) of the
normalized system seemingly subsists in the restricted problem, at
least within the constraints of an accuracy limited to the double
precision arithmetic of arn IBM 7094; but at C = 2.9, it has dissolved.
The dissolution is progressive as the Jacobi constant recedes from its
value C = 3 at the equilibrium state. As the natural family B(25S,2L)
moves from its bifurcation out of .Bi, we noticed that the stability
index at [irst grows larger than 2 along the unstable lane of the bridge,
then decreases toward 2 and, starting with C = 2,99, it stays equal
to 2 up to nine decimal figures (see Fig. 12). At this point the natural

tamily has entered the zone around LA where the restricted problem

cannot be detached from its normalizing approximation.

The neighborhoods of the equilibrium that we considered often
times in this analysis are of course defined in the plane of normalized
actions (IY,I?). Mapped back into the original Cartesian phase space,
the orbits we had under study usually depart significantly from the
testbook concept of an infinitesimal neighborhood of L&. By way of

illustrating this contrast, we have drawn in Fig. 13 the unstable orbit

of the bridge B(125,12S) that we discovered on the energyv manifold

i By | —*——-"1
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Fig. 1l1. - Quasi-periodic motions on the energy manifold C = 2.9
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Conclusions

The relations between a dynamical system having an equilibrium
and its truncated Birkhoff's normalization around that critical element
may stir as much controversy as the existence of the so-called third
integral in galactic dynamics. As a matter of fact the two formalisms
bear on the same technique which is to approximate, of course in a
conveniently unspecified topology, a dynamical system--integrable or
not--by one whose variables are obviously separable. The technique
of the third integral consists in building formally an integral that
is both independent of the energy and in involution with it; from
thereon one relies on Liouville's theorem to provide the capability of
constructing a system of separable coordinates. On the other hand,
Pirkhoff's normalization aims straightforwardly at constructing these
separable coordinates, in such a way that, the angle coordinates being
ignorable, the action momenta turn out to be the independent integrals

in involution sought by the technique of the third integral.

From the mathematircal standpoint, the basic concern so far has
been with deciding whether or not the third integral exists, or equivalently
whether Birkhoff's normalizing transformations form a convergent sequence.
Whatever the answer to that question may be, and it may well be in the
negative, one cannot but wonder at the many and deep physical insights
these mathematically crippled techniques provide in astronomy. In a
way numerical experimentations in celestial mechanics compel us to

adopt the kind of pragmatism that pervades observational astronomy.
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Birkhoff's normalization acts as a lens focused on a dynamical system.
It helps in penetrating the complexity beyond the first order appear-
ances. Yet its resolution power is limited. There comes a threshold
beyond which the present computer equipment does not allow us to separate
the normalized image from the real phase space. Fortunately, at least
in the case we have had under special investigation, to learn that there
is a hard core in which double precision arithmetic cannot divide the
restricted problem from its normalization truncated beyond order 13 is
not unwelcome news. At least it offers a way of substantially improving

the theory of Trojan planets by building it on Birkhoff's normalization.

On the whole the present study ... .ants numerically the views held
by Contopoulos and others (see for instance Walker and Ford 1969). For
librations around the equilibrium with sufficientl; small amplitudes, : .
orbits are not influenced by resonances in a way that could presently be

detected by accurate integrations carried over a long time; yet one is

already able to detect exceptional motions influenced by isolated resonances.

Mathematically speaking these motions are densely populating the area
covered by the well behaved majority; however Birkhoff's normalization
filters only a few of the exceptional motions, namely those corresponding
to the smallest resonances, and thus isolates them. We have shown here
that numerical integration, however accurate, could do no better than

normalization in this respect.
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Appendix 1

The program

The basic information on how we represent Poisson series (3-3)
in the computer has been given elsewhere (Deprit and Rom 1968 a, 1968 b).

We concentrate here on the specific program which implements Birkhoff's

normalization.

The function BCOEF(N,M) computes in double precision arithmetic
the binomial coefficient (i). Dr. David Walkup, our colleague at

B.S.R.L., is the author of this program.

Refore we describe the next subroutines, let us agree on some
conventions. We operate cxclusively with Poisson series ot the type

(3-3): elements of a series are of the form

n, n,n
X, X, X, cos(myy, + myi, + my
L2 ( 171 2R 3 3)’
n, n, n
e 20
X, X, X sin(m,;, + m,:, + m,: >
HEh (e R 3i3)

The first polvynomial argument is not used, the second stands for v L,
and the third for .?T} the first trigonometric argument refers to (,

the second refers to s, and the third is not used.

The subroutine PDS(A,B,J) differentiates the Poisson series A
with respect to the pulynomial argument X and stores the result as

the Poisson series B.

The subroutine PDJS(A,B,x,7,y) applies to the Poisson series A

the differential operator
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and stores the result as the Poisson series B.

The subroutine PROD3(A,B,C,a) stores as the Poisson series C

the result of the operation C + oAB.
These three commands enable us to compute the Jacobian determinants

3A 9B _ 3A 3B dA OB _ 3A OB
a@l 8x2 3x2 8¢1 8¢2 3x3 8x3 3¢2

But, when we compute the Poisson bracket of two functions in L, S, 1

and s, we should not overlook that X, stands for YL  and not for
L, and that Xq stands for V'S and not for S. Therefore

3(A;B) _ 11 _5(A,B)

3(L,1) 2 Xy a(¢1,x2) ’

1(AB) _ 11 _3(a,B)

(s,5) 2 x5 3(3,,%y)

Therefore we need the subroutine DVLS(A,J) which replaces the Poisson

series A by the series A/x;.

The various partial derivatives of a d'Alembert series and their

products do not necessarily possess the d'Alembert characteristic. But

. x JA OB JA 5B
the exceptional terms in the products 57 5L and 3L 37 cancel one
another in the formation of the Jacobian determinant 3%%l%% . In the
*

computer, should we proceed in integer arithmetic, all the exceptional
terms would disappear in the 'acobian which thus would possess the

d'Alembert characteristic exactly. But, as we proceed only in double
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precision, the evpected cancellations are missed by relatively small
amounts. The subroutine DALPIC(A,B) remedies this deficlency: it
scans the elements of A checking for each one such that [mll in,,
|m2] S0y 0y Smy (mod. 2) and ny - m, (mod. 2). The terms which

satisfy these properties are stored as the Poisson series B.

The preceding subprograms are called in the subroutine
DPBRAC(/A/,/B/,/C/). The Poisson series A and B are assumed to
have the d'Alembert characteristic, the resulting Poisson series C

is the d'Alembert series

_ +(A,B) 3(A,B)
RS ’(ZnL) d '.‘(S,S)

i.e., the Poissun bracket (A;B), of the functions A _ A({,s,L,S)

and B B({,s,L,S) in the phase space ({,s,L,S).

DPBRAC is the main ingredient of the subroutine LTRAN(F,W,P,Q,N,/ANS/).

[t is assumed that all Poisson series entering the triangle

£
(1)
g r§
£ fil) fé“)
(1) (2) (3)
£y £, f] fo

have been defined up to and including those belonging to the (n-1)-th

row. Note that these elements are labeled in FORTRAN as follows
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F(1,1)
F(1,2) F(2,1)
F(1,3) F(2,2) F(3,1)

F(1,4) F(2,3) F(3,2) F(.,1)

Also it is assumed that the Poisson series wl,wz,...,wn have received
a FORTRAN name, W(1),W(2),...,W(N). The subroutine computes the element

f(p) from the rule

(P) \ Q) (P-1) ) (p-1)

f = f JW + f
Q 0-3<Q ( ( Q-3 i+l Q+1

and stores it as the Poisson series ANS. One should not overlook that

LTRAN assumes that input and output scries have the d'Alembert charac-

teristic; it cannot be regarded as a general subroutine to compute any

element in the triangle of a Lie transform under any canonical trans-

formation.

BIRKOF(NMAX) essentially performs a cycle to generate from the

sequence 3{0,3(1 N0 ;’{\ll‘iAX the sequence 3{0,3[(()1) - of JI(EN}MX) that
is the normalized Hamiltonian, and the sequence wl,wz,...,wNMAx that

defines the normalizing transformation. The N-th cycle begins by set-

ting N,‘J equal to zero; it is accomplished by declaring that wN-—whose

FORTRAN designation is W(N+l)--is the Poisson series in formation at
the bottom of the stack. As long as no element is entered in WN, it

will represent the null d'Alembert series. Then the provisional ele-

Sﬂéfi,fné_l,...,3% ) are formed by calling recursively LTRAN;
they are stored in the disk, except jﬁéN)

ments

which is kept in core in
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the temporary series H. The subroutine COLECT transcribes in
(N) ; o (N) T
3, the nontrigonometric terms of 3!0 » as indicated by the value
(0,0,0,0) given initially to its argument TPART (N.B. Nontrigono-
metric terms in Poisson series of type (3,3) are characterized as
having the last four flags of their label word equal to zero). At
this point we have obtained a new component of the normalized Hamil-

tonian.

The computation of W, begins by storing in P the purely trigo-

N
nometric part SYéN) by means of the subroutine SCREEN. Then IPDJS

accomplishes the quadrature

1

W, = —F——P

N D(A,0)

and stores the resulting Poisson series in W It is punched in

N
hexadecimal (HEXOUT) and it is written on the disk (disk address

stored in W(N+1)). Unless the program has reached the last component
5(1) 5(2) i(N-l)
- Iy

hk to be obtained, the triangle elements N-1°TEN_2oe - are
then completed by subtracting from each of them the periodic part P
of fﬁéN). The N-step of the cycle ends on a reading of the clock to

show the time spent in the operations at that stage.

The subroutine BIRKOF(NMAX) is escorted by another program which

roduces the Lie transform of the coordinates x,y and the velocities

o

§,§. Obviously it is built around a cycle calling recursively the sub-

routine LTRAN.
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Appendix 2

Listings




FORTRAN 1V

0001
0002
0003
0004
0005
000é&
00C?
0008
0C0S
oolo0
0011
€012
0013
0014
€015
COleé
col1?
cols
cols
0C20
0021
c022
023
0024
002%
Co26
Co27
0028
0029
€C30
CC1il
00132
c03
C03«
CGCis
00136
0C1¥?
€038
<039
CN&o
Coal
Co42
C043
0044
C045
Claé
CCal

~53-

MCDEL 44 PS VERSION 2, LEVEL 1 DATE

10
12

2C
101

40
100

SUBROUTINE BIRKOF(NMAX)

REALSE LAMBDA,SIGMA
CCVVMCN/HAM/LAMBDA,SIGMAL,F(20,20) oM (20)
INTEGER PyCoyYPARTI(4)/4%0/

CC 1CO N\=z]l ,NMAX

CALL DEFINE(WI(N+]l))

CALL GETIME(LI]1)

C=N-] )

CC 10 J=1,N

CALL LTRAN(Fo4WeJ9yQe20,H)
1F(J.EC.N) GC TO 12

CALL SEEK(C)

CALL WRITEP{HFlJ*]1,C¢]1),-1,0)
CALL ERASE(NW)

C=(C-1

CALL CCLECT{HoFIN®L,1),TPART)
CALL LIST3(FIN+]1,1)¢9'H*'y=N]}
CALL HEXCUT(FIN+]1,1))

CALL SCREEN{H,P,TPART)

CALL ERASE(H)

CALL JPDJUS(P,wWN,LAMBDA,SIGMA)
CALL FEXCUT(wN)

CALL SEEKI(C)

CALL ERASE(WINe+]l))

CALL WRITEP(mNywi(N+1),y~-1,200¢N)
CALL ERASE(WN)

IF(NJEC.L1) GC TO 101
IFIN.EC.NMAX) GO TO 101

Nlz=N-]

C=N

CC 20 J=1,N]

JlsJel

CALL CEFINE(TEMP)

CALL ACUM] (P, TEMP,-1.00)

CALL ACUMItF(GQeJ]1)oTEMP,1.000)
CALL SEEKI(F(C,J1))

CALL wWRITEP(TEMP,F{QyJ1)y=1,0}
CALL ERASEITEMP)

C=L-1

CALL GETIME(]2)

ETre]2-11

ETM=(FTM/]162C0.)760.

PRINT 4O, N,ETM

FORMAT(SX,*TIME FOR',13,* = *,F7,2)
CALL ERASE(P)

RETURN

END

AP o o, el Wl A e T e e
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FORTRAN 1V

0001
0002
0003
0004
0005
€006
0007
0008
0009
€010
co1ll
0012
Qo013
CO0l4
0015
0o1leé
0017
cols
0019
0020
co2l
0022
0023
0024

FORTRAN 1V

0001
0002
0003
0004
c0os
0CCeo
0007
0008
0009

I 010
0011

col2
0013

FORTRAN [V

ccol
€002
c003
CCo4
Co0CS
0006
occ?
0008
Ccco9
0010
0011
col2

S

MCDEL &4 PS VERSION 2, LEVEL 1 DATE

10

10

20
30

50
60

SUBRCUTINE OPBRAC(/F/,7G//PB/)
REAL®8 LS(242)/1.00¢0e90e91.00/
CALL CEFINE(PB)

CC 10 I= 1,2

CALL DEFINE(P]1)

CALL PDJISIF,DF LStlel)oLS(2,1),0.00)
CALL PDSI(GyCGel+])

CALL PRCD3I(DF,DG4Ply.500)

CALL ERASE(DG)

CALL ERASE(DF)

CALL PDS(F,DFyl1¢])

CALL PCJUS(G,CGOyLSULlel)oLS(241),0.D0)
CALL PROOD3I(DOF40GyPly-.500)

CALL ERASE(OF)

CALL ERASE(DG)

CALL CRCER(P])

CALL DvLS(PL, 1)

CALL ACUMLI(P]1,PB,1.D0)

CALL ERASE(P])

CALL CALPIC(PB,SPB)

CALL ERASE(PB)

CALL PXCA(PB,SPB)

RE TURN
ENC
MOCEL 4«4 PS VERSION 2, LEVEL 1 DATE

SUBRCUTINE LTRAN(F WoP¢QsNy/ANS/)
REAL*8 BCOEF

INTEGER P,(

DIFENSICN F(NyN) W (N)

NJ=Qe]

CALL CEFINE(ANS)

00 10 Jl=1,NJ

CALL DPBRAC(F(P,Q=J1¢2),W(J1*1),B)
CALL ACUM]1(ByANS,BCOEF(CyJl-1))
CALL ERASE(B)

CALL ACUML(F(PyQ+2),ANS,1.00)
RETURN

ENC

MCDEL 44 PS VERSION 2, LEVEL 1 DATE

COUBLE PRECISION FUNCYION BCOEF(NyM)
18C=1

IF(2eM.LE.NIGO TO 20
18asN=M

GO 7C 30

18sM

IF(IB.LE.O)GO TO 60
CO 50 I=1,18
IBC=((N=1¢1)21BC)/1
BCCEFs]BC

RETURN

ENC

68271

68271

68271
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