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standing needed to provide more useful services in improving man’s prospects for survival
as influenced by the physical environment. Laboratories contributing to these studies are:

Earth Sciences Laboratories: Geomagnetism, seismology, geodesy, and related earth
sciences; earthquake processes, internal structure and accurate figure of the Earth, and
distribution of the Earth’s mass.

Atlantic Oceanographic Laboratories and Pacific Oceanographic Laboratories: Ocean-
ography, with emphasis on ocean basins and borders, and oceanic processcs; sea-air inter-
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Atmospheric Physics and Chemistry Laboratory: Cloud physics and precipitation;
chemical composition and rucleating substances in the lower atmosphere; and laboratory
and field experiirents toward developing feasible methods of weather modification.

Air Resources Laboratories: Diffusion, transport, and dissipation of atmospheric con-
taminants; development of methods for prediction and control of atmospheric pollu-
tion. (Silver Spring, Maryland)

Geophysical Fluid Dynamics Laboratory: Dynamics and physics of geophysical fluid
systems; development of a theoretical basis, through mathematical modeling and computer

simulation, for the behavior and properties of the atmosphere and the oceans. (Princeton,
New Jersey)

National flurricane Research Laboratory: Hurricanes and other tropical weather phe-
nomena by observational, analytical, and theoretical means; hurricane modification experi-
ments to improve understanding of tropical storms and prediction of their movement and
severity. (Miami, Florida)

National Severe Storms Laboratory: Tornadoes, squall lines, thunderstorms, and other
severe local convective phenomena toward achieving improved methods of forecasting, de-
tecting, and providing advance warnings. (Norman, Oklahoma)

Space Disturbances Laboratory: Nature, behavior, and mechanisms of space disturb-
ances; development and use of techniques for continuous monitoring and early detection
and reporting of important disturbances.

Aeronomy Lahoratory: Theoretical, laboratory, rocket, and satellite studies of the phys-
ical and chemical processes controlling the ionosphere and exosphere of the earth
and other planets.

Wave Propagation Laboratory: Development of new methods for remote sensing of the
geophysical environment; special emphasis on propagation of sound waves, and electromag-
nectic waves at millimeter, infrared, and optical frequencies.

Institute for Telecommunication Sciences: Central federal agency for research and serv-
ices In propagation of radio waves, radio properties of the earth and its atmosphere, nature
of radio noise and interference, information transmission aud antennas, and methods for
the more effective use of the radio spectrum for telecommunieations,

Research Flight Facility: Outfits and operates aireraft specially instrumented for re-
search; and meets necds of ESSA and other groups for environmental measurements for
aireraft. (Miami, Florida) ‘
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A METHOD OF SMOOTH CURVE FITTING ' !

Hiroshi Akima

A new mathematical method of fitting a smooth
curve tc a set of given points in a plane is developed, and
a computer subroutine is programmed to implement the
method. This method is devised in such a way that the
resultant curve will pass through all the given points and
will look smooth and natural. The interpolation between
the given points is performed locally, and no assumption
of the functional form is made for the whole curve. ( )

N
Key words: D1rect1on of tangent, 1nterpola.t1on, poly- _ , |
nomial, smooth curve fitting.

1. INTRODUCTION. "

When we try to determine a relatmn between two variables, we
either perform computatmns or make m»easuremen_ts. The result is
given as a set of discrete points in a plahe.' : ‘Knbwing that the relation
can be represented by a smooth curve, we"nex‘t'try to fit a smooth curve
to the set of points so that the resultanf curve will pass through all the
given points. Manual drawing is the most primftive method for this
purpose and results in a reasonable curve if it is done by a well-trained
scientist or engiheer. But, since this method is very tedious end time
consuming, we wish to let a computer draw a curve. To do so, we must
provide the computer with necessé.ry instructions for mathematically
interpolating points between the given points,

There are several mathematical methods of interpolatiﬁg the
value of a ﬁmction from a given set of values (Milne, 1949; Hildebrand,

1956; Ralston and W11£ 1967), but the apphcatmn of one of these methods

to curve f1ttmg sometimes results in a’'curve that 1s very d1fferent from




one drawn manually. In other words, the resultant curve sometimes
appears strange and unna.tural In this report, we present a new method
of mterpolatmn and smooth curve fitting that is dev1sed so that the re-

sulta.nt curve will look smooth and na.tural

2. DISCUSSION OF SOME EXISTING METHODS

A simple example, taken,.ﬁ'om a study of FM distortion being
conducted by the author, will serve to illustrate difficulties encountered
by exi'sting mathematical methods of interpolation. Assume that the

values of x and y at 11 pdints' are as follows:

x 0 1 2 3 4 85 6.7 8 9 10
Y=y | 10 10 10 10 10 10 10.5 15 50 60 85 °

Knowing from the physical nature of the pﬁl amena that y(x) is a single-
valued smooth function of x, we try to inter .olate the value of y(x) and
to fit a smooth curve to the given set of points.

- First we apply th‘e‘ njethdd/ of interpolation based on polynomials
(Milne, 1949, Hildebrand, 1956, ch. 2, 3, 4)._ This method 1s perhaps
the one most often used because, as stated by Milne (1949), "poljrnomi-
als are simple in forrh, can be calculated by elementary operations, are
free from singular points, are unrestricted as to range of values, may
be differentiated or integrated without di ffiéulty, and the coefficients to
be determmed enter linearly.! There are séveral variants of this
method, known by the names of Newton-Coteé,_ La.grange, Aitklen, and
Neville., Each has its own advéntagés iand disadvantageé,_,fbut they are

all based on the common assumpt‘ion that y(x) can be closely approxi-

mated by a polynomial of x of order n -1, where n is the number of given |

points. They should give the same result, because the uniqueness of the

polynomial of order n -1 that agrees with given values of y(x) at the
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given n points has been proved (Hildebrand, 1956, p. 44). The result
obtained by applying the 10th order (Lagrangian) polynomial is shown in
figure 1A where the given data points are enéircled.

Next we try to apply the method based on a ratio of two polyno-
mials or a rational function (Hildebrand, 1956, sec. 9.9 -9.12)., This
method is not so commonly used as the polynornial method. Perhaps
its most serious disadvantage is that the desired function does not al-
ways exist; in our example, it does not. Another disadvantage is that
the nonsingularity of the function is not guaranteed. If we omit the
first point (0, 10), however, the function exists. The result thus ob-
tained is shown in figure 1B,

The third one is a well-known method based on the Fourier
series (Hildebrand, 1956, sec. 9. 3), which exemplifies the so-called
orthogonal functions. In applying this mefhod to our data, we assume
that the whole range of x from 0 to 10 corresponds to one-half of the
fundamental period from 0 to m and apply a series of cosine functions
up to the 10th order harmonic terms, The result is shown in figuore
1C. »

Finally, we apply the method based on a spline function (Ralston
and Wilf, 1967). The spline function of degree m is a piecewise func- -
tion composed of a set of p‘oly'nomials, each of order at most m and
applicable to successive intervals of the given data points, It has the
characteristic that the function and its derivatives of order 1, 2, ...,
m -1 are continuous in the whole range of x.v This function includes
the (Lagrangian) polynomial as a special case whenm = n-1, where
n is the number of given points. The result of applying the spline func-
tion of degree three is shOVhi in figure 1D,

In addition to these results of four rather representative mathe-~

matical methods, the curve obtained manually is shown in figure 1lE,

e ARt T s o St o S

i AR AT, L DR K




-,

{A] POLYNOMIAL

{B! RATIO OF
POLYNOMJALS
i
i /\v__—o—-—’—« p
(C) FOURIER (D) SPLINE
(DEGREE 3)
/
——_ oo _ 4 -t ;
(E) MANUAL (F) CRVFIT
Figure 1. Comparison of several methods of smooth curve fitting.
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It is the average of curves drawn manually by several scientists and
engineers. A comparison of the curves in figures 1A - 1D with 1E indi-
cates that the first three mathematical methods are not suitable for the
example given, It also indicates that the curve obtained by the spline
function and shown in figure 1D resembles the one in figure 1E, but we
are proposing an alternate method, discussed in the sections that follow. -
As we see, the curve obtained by the new method, shown in figure 1F, |
is closer than the other curves to the manually drawn curve in figure

1E.

The common difficulty encountered by the existing mathematical
methods is that the resultant curve shows unnatural wiggles, This seems.
inevitable if we make any assumption concerning the functional form for
the whole set of given points other than the continuity and the smoothness
of the curve. When such an assumption is not justified, the resultant
curve is very likely to behave strangely, as in figures 1A - 1D, The
functional form is what we try to derive and not what we assume.

When we try to fit a smooth curve manually, we do not assume
any functional form for the whole curve. We draw a portion of the curve

based on a relatively small number of points, without taking into account

the whole set of points. This local procedure is a very important feature
of manual curve fitting and the basis for our new method. Note that,
although the spline function is a piecewise function composed of a set of

polynomials, all polynomials are determined simultaneously on the basis

N WG O et

of the assumption of continuities of the function and its derivatives in the
whole range, and no individual polynomial can be determined locally,

It is not easy to develop a mathematical method of smooth curve

< RGN e T A o

fitting based on the local procedure. If one of the existing mathematical

methods is applied locally or piecewise without any spe'cial consideration,

b ot

the continuity of the function or its first order derivative is not generally
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guaranteed. This situation is illustrated in figure 2, where the same
data as in figure 1 are used and, for each N, a polynomial of order N -1
is applied to each set of N successive points to interpolate the part of
the curve in a unit interval around the center of the N points. When N
is an odd number, the resultant curves are discontinuous; when it is an
even number, the slopes of the resultant curves are not continuous, and

thus the curves are not smooth.

3. NEwW METHOD
3.1, Outline of the Method

Our method is devised 8o as to work in two different ways, i.e.,
onc for a single-valued function and the other for a multiple-valued func-
tion, to correspond to the two ways in which a smooth curve is fitted
manually, depending on whether we know that the given data points rep-
rosent a single-valued function or not,

Our method is based on a piecewise function given by a polyno-
mial of the third order in each interval for the case of a single-valued
function, and by a pair of polynomials of the third order for the case of
4 multiple-valucd function. For a single-valued function, our method

is somewhat siinilar to the spline function of degree three. As in the

spline function, the continuity of the function itself and of its first-order

derivative (the direction of the tangent to the curve or the slope of the
curve) arc assumed, But, instead of assuming the continuity of the
noecond=order derivative as in the third-degree spline function, we deter-
mine the direction of the tangent locally under certain assumptions. By
doing wo, we can fit a curve piecewise to the given set of data points
without having discontinuities in the curve and its slope,

We assume that tho direction of the tangent to the curve (or the

slope of the curve) at a given point P, ia determined by the coordinates
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of five points,P.», P4y, Py, Py, and Pyp. In other words, the points
more than two intervals away are assumed not to affect the determination
of the slope. This is discussed in more detail in the next section.

The portion of the curve between a pair of points is assumed to be
determined only by the coordinates of and the slopes at the two points.
This interpolation procedure is described in section 3. 3, Since the slope
of the curve should be determined also at the end points of the curve,
estimation of two more points is necessary at each end point, This ex-

trapolation procedure is described in section 3. 4.

3.2. Direction of the Tangent

Consider five points,1, 2, 3, 4, and 5, as shown in figure 3A,
Let the point of intersection of the two straight lines extended from line
segments 12 and 34 be denoted by A and the same point corresponding
to line segments 23 and 45 by B. We seek a reasonable condition for
determining the direction of the tangenf CD at point 3.

It seems appropriate to assume that the direction of CD should

approach that of 23 when the direction of 12 approaches that of -2—37, and

that angle /23C (the angle between 32 and 3C) should be equal to /D34
when /__1_2_§_ is equal to /_21_5. With these rather intuitive reasonings as
a guideline, the condition of determining the direction of CD is still not
unique. For simplicity we assume that the tangent CD is determined

by the condition

2l
1
s[5l

This condition, however, does not exist for certain configurations of
five points, such as the one shown in figure 3B. In this case the alter-

nate condition,
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does exist, as shown in the figure, and we shall use this condition,
Summarizing the above observations, we assume that the direc-

tion of the tangent CD is determined by the condition

e (1
CA DB

The double sign depends on the configuration of the five points, and the
one for which the condition exists will be selected.

Analytically, as shown in appendix A, condition (1) results in a
quadratic equation with respect to tanf, where 6 is the angle of CD
measured from the x axis. For a given configuration of the points, the
discriminant of the quadratic equation is positive or zero for one sign
and negative for the other, The former should be selected as a matter
of course, so that the equation has real roots. Note that there is no
ambiguity in the selection of the sign.

When one line segment is parallel to another one, the direction
of the tangent CD may sometimes be indefinite under condition (1).
Analytically this corresponds to the case where the three coefficients of
the quadratic equation are all zero. To avoid this uncertainty, we as-
sume the following:

(2) When line segment 23 is parallel to ?Z, the tangent is

parallel to 23. If the direction of 23 is opposite that of
34, the tangent changes its direction by 180° at point 3.
(b) When 12 is parallel to 23 and 34 is paraliel to :1_5, the
tangent is parallel to 24.
(c) When 12 is parallel to 34 and 23 is parallel to 45, the

tangent is parallel to 24.

10




Two roots or solutions, CD and C'D', satisfy condition (1). The
one, CD, should be selected so that the two points, 2 and 4, lie on the
same side of the straight line through C and D. This can be done by add-

ing a second condition,
sin(/ C32). sin(/ C34) > 0. (2)

When this method is applied to a multiple-valued function, the
sense of the direction of the tangent should also be determined. In other
words, we have to determine both cos 6 and sinf, not only tan8. The
sense Should be selecied so that both the positive direction of the tangent
and line segment 34 lic on the same side of the straight line through 2

and 3. This can be done by adding a third condition,
sin(() - 655)- Sin(egg'- em')>0, (3)

where 0=y and Oxr are the angles of line segments 23 and 34 measured
from the x axis, respectively.
Note that the procedure for determining the siope is a geometri-

cal one and is independent of the coordinate system.

3.3. Interpolation Between a Pair of Points

3.3.1. Single-Valued Function

- For a single-valued function y = y(x), we assume that the curve

between a pair of points can be expressed by

Y = Eo t P1X F pax’ 4 pax°, (4)

where the p's arc constants., Since the coordinates of the two points,

say {xy, Y1) and (xa, y2), as well as the directions ¢f the curve tan®9,

11
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and tan 6, at the points, are given, we further assume that x and y sat-

isfy the conditions

y =y, and -3-5=tan‘31 at x = xq,
y:yaemci%ﬁ-:t.a.n‘ia atx = xp, -

From these conditions we can uniquely determine the p constants.
Note that the interpolated curve is independent of the scalings of

the x and y axes,

3,3,2, Multiple=-Valued Function

For a multiple-valued function, we assume that the curve be-

tween a pair of points (x;, y;) and (xg, yz) can be expressed by

S
n

Pc * P12z + paz° + paz”,
, . {(5)
y=1dqp +qQ12+qz2 +Qgaz,

where¢ the p's and @' are constanta and z is 4 parameter that varies

from 0 to | as the curve is traversed from (x;, y,) to (x3, yz). Since

the coordinates of the two points (x;, yy) and (X2, yaz). as well as the : '
directions of the curve (cos 9;, 8inf6;) and (cos 85, =sin&;) at the points,

are given, we further assume that x and y satisfy the conditions

X = X, y=y1,%§—=rcosel, and %=ra'm81 atz =0,
- x=xa.y=y;.%—x;=rcos9g,and%=rsin9;atz=l, .
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where

r=/(xp = %) + (ys ~v1)" .

From these conditions we can uniquely determine the p and g constants,

Note that in this case tle interpolated curve depends on the scal~

ings of the x and y axes,

3,4, Extrapolation of the Curve at an End Point

Except for the case of a closed curve, estimation of two more

points from the given points is required at each end of the curve,

3.4.1, Single-Valued Function

For a single-valued function y = y(x), we assume that the curve

near the end can be expressed by

Y = Bo * g1X *+ g, (6)

where the g's are cornstants, The constants can be determined from
the coordinates of three given puints (X3, Y1), (%3, ya) and (xa, ya).

Assuming that

Xp = X4 = X4 = X3 =T X3 " X3,

we can determine the ordinates y, and yg corresponding to x, and xs,

respectively, from (6).

Note that the extrapolated points are independent of the scalings

"~ of the x and y axes,

3.4.2. Multiple-Valued Function (Nonclosed Curve)

For a multiple-valued function, we assume that the curve near

13
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the end can be expreassed by

b
I

= go t B12 * B;PZE-
: ()
hO + h;z + hgl f

v
H

where the g's and h's are constants and z is a parameter, We further

‘amssume that

x=xgandy=y, atz=1i(i=1, 2, 3, 4, 5),

From the coordinates of three given points (xy, yy), {(xz, yz) and
{x3, ya), the g and h constants can be deiermined, and conseguently,
alnmo the coordinates (x,, y4) and (xs, ys).

Note that the extrapclated points are independent of the scalings

of the x and y axes,

4, EXAMPLES

An example ci the application of this method is shown in figure
lF where the curve is very close to the one in lE determined manually,

rigure 4 gives some cxainples of the application of the method
in different modes., Two curves are drawn for single-valued {functions
y = y(x) (MODE = 1) and x = x(y) (MODE = 2) in A and B, reapectively,
Two examples for nonclosed~-curve, multiple-valued function (MODE = 3)
are given in Cand D, A circle and an ellipse are drawn in E and I,
respectively, as examples for the case of closed curve (MODE = 4},

Figure 5 shows artificial examples for simple configurations
of given poirts that are designed to supplement the description of the
method, especially of the direction of the tangent (see sec. 3.2). This
figure also illustrates how strangely curves may sometimes behave for

adverse configurations of given data points. Application of the third-
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Figure 4. Examples of application of the new methed,

15
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(B) MODE = 1
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(C) MODE = 1

(D) MODE = 1

(€) MODE = 1

(F) MODE = 1

Figure 5. Further examples of application of the new method.
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degree spline function to the same data results in slightly better, but
still not completely satisfactory, curves., All the éxa.mples in this fig-
ure are periodic functions, but neither the hew method nor the spline
function method is devised so as to detect or take advantage of regular-
ity, such as periodicity, Because periodicity is neglected in both these
methods, the resultant curves sometimes appear strange, especially

near their end points.

5. CONCLUDING REMARKS

We have described a new method of smooth curve fitting. For
proper application of the new method, the follo'wing remarks seem per-
tinent: |

(1) The curve obtained by this method passes through all
the given points. Therefore, the method is applicable
only to the case where the precise values of the coordi-
nates of the points are given. It should be recognized
that all experiméntal data have some errors in them,
and unless the errors are neg‘ligible it is more appro-
priate to smooth the data, i.e., to fit a curve approxi-
mating the data appropriately, than to fit a curve pass-
ing through all the peints.

(2) Use of this method is not recommended when given
data points manifest apparent regularity or when we
have a priori knowledge on the regularity of the data.

(3) As is true for any method of interpolation, no guaran-
tee can be given of the accuracy of the interpolation,
unless the method in question has been checked in ad-
vance against preéise values or a functional form.

(4) The method yields a smooth and natural curve and is

17
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therefore useful in cases where manual, but tedious,
curve fitting will do in principle.

(5) For a single-valued function, the résultant curve is
invariant under a linear-scale transformation of the
coordinate system. In other words, ‘different scal-
ings of the coordinates result in a same curve.

(6) For a multiple-valued function, the resultant curve
is variant under a linear-scale transformation of the
coordinate system. The scalings of the coordinates
should be coincident with the actual size of the graph.

A computer subroutine, named CRVFIT, has been programmed

to implement the method reported on in this paper., It is described in

detail in appendix B.
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Analytical Expression of the Condition for Determining

APPENDIX A

the Direction of the Tangent

Let the coordinates of points, 1, 2, 3, 4, 5, A, B, C, and D in
figure 3 in the text be denoted by (xy, y1), (X2, Y2) (xa, ¥a)s (%2, ya)s

(xSn Y‘é ): (Xl, Ya )v (xb» Yb ): (XC9 Yc )' and (xdr Yd )’ respectively, a'nd

the tangent of the angle of CD measured from the x axis by t.

the following cquations should hold:

Yo = Y2 _ Ye = Vo _ Y2 = V1
Xa = X2 Xe = Xo Xo = X3
Yo = Y _ Ya = Ya _ Y5 = Va
Xg = Xy X4 = Xa Xg = X4
Y?"Ya=y4"'y3
X3 = X, X4 = Xz |
Yo = ¥3 _ Y3 - Ya
Xp = Xa Xa - Xz
Ya = Yo - Ya = Ya _ 4
X3 =~ Xe X4 - Xa '

Condition (1) in the text can be expressed by

_&—-_-zc-g

Xon
Xe

-x‘

-ox Xam Xy

Xg = Xp

If we introduce new constants defined by

ay = X1 = Xy

by = Yy = Y,

Syy = ayby = ayby,

(i
(i
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1, 2, 3, 4),

1, 2, 3, 4),

(i=l, 2. 3; j=2) 3t4= i<j))

Then,

(8)

(9)

(10)

(11)

(12)

(13)

(14)
(15)

(16)

R e



R

and eliminate x's and y's from (8) to (13), our condition reduces to a

quadratic equation of the form

At - 2Bt + C = 0, (17)
where
A = Sm Sm aaa ¥ 513 Sm agz » (18)
B = 812 894 ag ba ¥ 513 534 as bg N (19)
C = Sy Spe b F Sy3 Say b . (20)

The discriminant of (17) is expressed by

D = B® - AC

+ S5 S15 Sos Sy3 Sax - (21)

We will take the upper sign in (1) and (13) when the product S;; Sz4 S13 Sa
is positive or zero, and the lower sign when it is negative. By doing so,
we can always make the discriminant nonnegative.

If the coefficients A, B, and C in (17) are all zero, the solution
of the equation is indefinite. This occurs when

(a) Sza = 0,

(b) Sio = 0 and Sa = O,

(¢) Si;3 = 0 and Sy = 0,

(d) S;2 = 0 and S;5 =0

(e) Sup = 0 and Sag

’

0.

For the case (a), we assume the provision that the tangent t is equal to
by/az = bs/az. For cases (b) and (c), we assume that the tangent t is
equal to (b, + ba)/ (az + as). Cases (d) and (e) are special cases of (a),

and the provision for (a) applies.
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Equation (17) has two roots, i.e.,

t = E—*—A“/——-ﬁ- : (22)
Of the two, the desired one will be selected so that it satisfies
S20 S > 0, (23)
where
Sy = agbg - ag bs, (24)
Sx = agbs - aszbg, (25)
ag = 1/J1 + ¢, (26)
bo = t/V1 + t° . (27)
Condition (23) can equivalently be written as (2) in the text.
If S, satisfies
Sz0 Szz > 0, (28)

cos 8 and sinf are equal to a, and by, respectively. Otherwise, cos 0
and sin 6 are equal to -a, and -bg, respectively. Condition (28) is

equivalent to (3) in the text.
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APPENDIX B
Computer Subroutine CRVFIT

The CRVFIT subroutine is a FORTRAN subroutine programmed
for the CDC-3800 computer to implement the method of smooth curve
fitting reported on in the text. Necessary information for the user of
the subroutine is given on pages 25 and 26 in a format compatible with ‘
the library function manual. A FORTRAN listing of the subroutine is
given on pages 27 to 30. A binary deck of the subroutine is available
from the library, Computer Division, ESSA Research Laboratories,
Boulder, Colorado, under the name of E2-IERB-CRVFIT.

Although the CRVFIT subroutine has been programmed for the
CDC-3800 computer, it can be modified without difficulty for other digi-
tal cbmputers that accept a FORTRAN language.

The CRVFIT subroutine is devised so as to compute coordinates
of closely spaced points on a smooth curve determined by a set of given
points, and not to compute a value of ordinate for a specific value of

abscissa, But there is no difficulty in modifying the subroutine for this

purpose,




CRVFIT

CRVFIT

PURPOSE: To fit a smooth curve to a set of given points in a plane;
i.e., to compute coordinates of a new set of points (output
points) that are located on a smooth curve determined by
a set of given points (input points) in a plane and are more
closely spaced than the set of input points on the curve.
(This subroutine interpolates points between each pair of
input points, and the output points consist of both the input
points and the interpolated points.)

FORTRAN CALLING

SEQUENCE:

CALL CRVFIT(MD,L,X,Y,M,N,U,V)

where

MD

n un

"

mode of the curve (input parameter),

1 for a single-valued function Y = Y(X),

2 for a single-valued function X = X{(Y),

3 for a multiple-valued function, nonclosed curve,
4 for a multiple-valued function, closed curve,

number of input point (input parameter),

arrays containing the abscissas and ordinates
of L, input points (input parameters),

number of divisions between each pair of input
points (input parameter),

number of output points (output parameter), and

arrays where the abscissas and ordinates of
N output points are to be displayed (output
parameters).

ERROR MESSAGE: When L < 0 or M< 0, the error message

stesteole L

A

0/NEG OR M = 0/NEG,
(value of L) Q = (value of M)

ERROR DETECTED IN ROUTINE CRVFIT

will be printed on the standard output unit, and the job will be

aborted.

STORAGE: 826 locations.

TIMING: (55M + 710)L microseconds for MD
(68M + 720) L microseconds for MD
(70M +1000) L. microseconds for MD

1,
2,
3 or 4.
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(CRVFIT) (CRVFIT)

METHOD:

Step 1. Except for MD = 4, two more points are estimated at
each end point of the curve by assuming that the curve
near the end point can be expressed by

Y = Bo +81X+g2xz for MD =1

and

o + 812 + g22°
y=ho +hyz + h,2z° for MD = 3.

Step 2. The direction of the tangent
to the curve at point 3 is
determined by the configu-
ration of 5 points, 1, 2, 3,
4, and 5, shown in the

X

2

figure, by \
C S
2C | _| 4D A B
CAl |DB

Step 3. The curve between a pair of points is computed by
X=Ppo +t P12
y=qo+q1z+q2za+q3z3 for MD =1
and
Po + P12z + Paz- + paz°
Qo + Q12 +g22° + qaz°  for MD = 3, 4.

X

y
Computation for MD = 2 is made by interchanging the X and Y

arrays, applying the method for MD = 1, and finally interchanging
the U and V arrays.

26
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SUBRUUTINE KRVFITIMUDE sl OsXoYeMDIaAQeslisV )
SMOOTH CURVE FITTING
PROGRAMMED BY HINQGSHL AKIMAs ESSA~ITS

MODE = 1 FOR Y = YiX)
MUDE = 2 FUR X = X{Y}
MODE = 3 FUR X = X{S) AND ¥ > ¥Y(iS}e
MODE = & FUR X s Xi5) AND Y = ¥{iS)e

Lo = NOo OF INPUT POINTSe
NQ = NUe LCF UJUTPUT PUINTS.
Mo = NOe OF DIVISIONS

UECLARATION STATEMENTS

DIMENSION X201 eY110)sUE100 ¥ i 100)

CIMENSION AQL2)eB0OC2)

EUUIVALENCE SA*AO0LLI2)oiBeAGIZIeROI2) )i CeBOI2)),
(PO X2 olQCeY 2 el DXsA2) (DY ep2?

EGUIVALENCE (FiMsTSeZ) et UPeJS)s
EDUSDAID X1 2tDVeDReReYL )
£S2:5209A1)0(53:503B2)»
iP13S5121eiP2:C120VeiP2.R12)
(Q1+51372:6Q2+C1329:03,P123)}

DIMENSION ERLI(ZISERZL2eMOGID)

TYPE DOUBLE DERI»DER2

EUUIVALENCE CLoERLELIIDISIMERILZII(DERISER])
CEMISERZITIIoIMMEILERZ2(2))0(DEP2sER2)

DATA IMSG224HE = Q/NEG OR M = O/MEG,

STATEMENT FUNCTION
SCRUISTISeC IS =ABSFISEII-ABSFICLJII®] ,0E~-8

PRELIMINARY PROCESSING

MD=MOCE $ L=LPS=zLO
IFLLolEeQeOReMeLELO)} GO 0 900
KPi=L#M+] : 4 IP=L+}

DC 19 JP=lel $ KPLl=KPi-M
UiKpPlisxe[p} ) J vVikKPl)sYL]IP)
COMT INUE s KpP2=zKpP3=1

DC 20 [I=2,.L $ KP2=KP2+M
IFLUIKPZ) sEQeUIKPI) oANDVIKP2) oEQ.VIKP3) }
KP3=KP3+M & UirP3)=UIKP2)
CONT INUE : 2 L=KP3/M+]
IFiNeEQel) G0 70 89¢
IFIMDNES2) GO TO0 5¢

DO 40 KPa=]1sNeM

ISzuUiKPa} b J UIKP&)I=VIKPS&)
CONT INUE

MMl=M-1 $ FLM=M
IF(LeEGe2? GO 70 100
IMI=L~1 b J 6o 10 2n0

27

NONCLOSED CURVE
CLOSED CURVE

X AND Y ARE INPUT POINTS

U AND v ARE OUTPUT POINTS

MsMO

1p=1P-]

GO 70 20
VIKP3)sVIKP2)
N=KP3

VIKP4) =TS

DZ=1.0/FLM




100

110

200

230

240

260
270

280

290

SMOCTH CURVE FITTING FOR L = 2

DUstUiNI-VILl))eD2
00 110 KS=1lsMM]
UIKS+1)sUEKD)+DU
CONT INUE

SMOOTH CURVE FITTING FOR

X3=sUél)
XostiM+l)
KS=1+MeM
AZsx4-N3
AbsX5-%4
S34mA30B4-ALD)
IFiMDoLES3)
K1zN-M=-M
K2sK1l+M
Al=x2-X1
A2sX3=%2
S12=A1°82-A2"B]
S13=A1°B83-A3%B] .
S$23=A20B3-A30B2
524=A2%B4-ALPB2
ASSIGN 240 TO LBL
00 290 I=2.L
X2=sX3

X3=sX&

XanX5

A2=A3

AlspL

512=5823

S$S13=S524

523=534
COS2=SGNR(C0S)
IFilet ToLM1)
IFIMDLEQes)
IFC1eEQetML}
ALxAS
IFIKS5.GT N}
X5=UEKS)
AbmX5-X4
S26=AZ2%B4~-AL?H2
S5345A30B4-AL%H)
ASSIGN &g0 TO LBL
CONT INUE

)

[ N ]

RAAMAS w

VAV AAVNAARAVRARNLA AP VAVAE VRV AWN

DVz(ViNI=-VI1})2D2

ViIKS+]1)sVIKS) DV
GO 10 800

L GREATER THAN 2

Y3avil)
YosyYiMe]l)
X5si}iKs)
B83svYa~-Y3
BasyYS-vas
CIa=A3BAL+BISBS
GO TO 400
X1sUiK]l)
X2sUix2)
Blsy2-v1
B23Y3-Y2
Cl12=A12A24+81°82
Ci3=A1*A3481%83
C23=A25A3+82983
C24=A2%A4+R2%B4
GO TO0 500
K5sK5+M

Y2sY3

Y3svs

Yanv5

82=B3

83=84

R12sR23

_ R132R26

C23=C34
SIN2=SGN®SINT
GO 1O 270

GO TO 260

GG TO 450

Bo=BS5

K5=]1+M

Y5=VIKS)
864=Y5-Y4 .
C24=A23A4L4B82%86
Cl4=A33A44+p3984
GO T0 S00

GO TO 800

[ B

[N N N

Y53VIKS)

" R353SCRIS36+C34)

Y1sviK]l)
Y2=ViK2)

R12=SCR(S12,C12)
R133SCR(S513,C13)
R23=S5CR{S523+C23)
R24=SCR(524+C24)

R23=R34

GO TO 280

R24=SCR(S24+C24)
R34=S5CR1S34+C34)



400

@l0

420

“20

450
50

%70

480

500

510
520

550
560
570
580
59¢

EXTRAPOLATION AT THE BEGINNING

IFIR3GeLE Qo)
IFiMLL.EQed)
AlsA2=A)
B2=b3-08B
DA=AL-AD
A2=A3-DA
Al=A2~-DA
AlsA2=A2

PR PANNP

EXTRAPOLATIUN AT THE END

fFIRZ3eLEeNe0)
[FIMDobLQe3!
ASzA4LzA)
bB4zb3+bbs
PDAzAI=A2
AszA3+DA
ASzAL+DA
ASzALz=A)}

VPR ARPSN

GO TO 430
60 10 420

DB320A39534 /1AL LADZLAL))

B1=82-DB
DB=B4-83
82=83-D6
nl1=82-D8
Bl=B2=B3

GC 10 a80
GO TO 470

$

DR=28A3#523/71A2%(A2+A3) ]}

85zB4+D8
DB8=83-82
B4=B83+D8
85=b4+0B
B52B4=83

DETERMINATION OF THE DIRECTION

S50N=1.0
[FIR23eLEeneD)

[IF{RI2ebLEeO000eBNDeR244LECDO)
IFIR13eLEe0e0eANDeR24sLESCO)
IF{RL12eLEe(e0eCRe R24eLEC0O!
IF(R1I3elLEeNeQeCRe RIGelLELD0)

52=512%524 $
[Fi52253,LT40.0)
A=S2RA3PA3-530A20 2
B=S29A3#B3-538A2%R2
C=52#R3»g2-.538p2%R2
D=523#5QRTF(52#853)
IF(B*Det.Te0e0)
520=A2%B0!11-A0(1)#P2
503=A011)#*B3~A3#BG(]1)

IF{520#503.LEe0.0)}
C0S3=A0(1} 3
520=A2#B0(2)1-A012)%B2
C0S3=A0(2) s
lF‘520’5230610000)
C0S$3=-C0s3 $
IF(C23+LTe0e0)
C0s3=A2 L 3
C0S3=A3 b J
C0S3=A2+A3 s
IF{MD.LES2)

53=S513»534
$3=-53

SIN3=B0(1)
SIN3=B0(2)

SIN3==SIN3
SGN=-1,.0
SIN3=82
SIN3=B3
SIN3=B2+4B3
GO TO LBL»

R=SURTF (COS3#CUS3+SIN3#*SIN3)

C053=C053/R $
GO TO LBLs (2409600

SIN3=SIN32/R

29

(2405600)

s

GO TO

GO 10
GO T0

G0 TO
GO0 TO

B8=B+D

GO TO
GO 10

GO TO
GO TO

GO JO
GO 10

230

230
23¢

280

280
280

550
580
580
560
570

510
520

590
590

590
590
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600

610

620
660

670

800

810

890

900

INTERPOLATIUN IN A SECTION

KS0={]-2)%#M+] s 22040
IFI{MDGT,42) GO TO 660
KS1=KS0

Pl1=DX

Ql=P1#SIN2/COS2
Q2=3%DY~-2%Q1-P1#SIN3/C0OS53
Q3=DY-Q1-Q2

DO 62p JS=1sMM1

K51=K51+1 $ 2=2+D2
UIKS1)=Po+2#P]
VIKS11=2Q0+2*(Q1+Z%(Q2+2%Q3))
KS$2=KS0

R=SQRTF (DX*DX+DY#*pY )
P1=R*C0S2
P2=3#DX~R#*(2%#C0S52+C0S3)
P3=DX-Pl1-P2

Q1=R*SIN2
Q2=3%DY~R*(2%SIN2+SIN3)
03=DY-u1-Q2

D0 670 JS=19sMM1

K52=KS52+1 $ 2=2+4D2

UIKS2)=P0+Z*(P142%(P2+72%P3))
VIKS2)=Q0+Z#(Q1+2#{Q2+2#Q3))

NORMAL RETURN

IF(MDoNEL2)

DO 810 KR=1sN
TS=U(KR) ]
CONT INUE

LO=LPS $ NO=N

GO TO 890

ERROR EXIT

DER2=DER1 $
END

30

U{KR)=V(KR)

CALL Q8QERROR(0QsMSG)

$

$

$

$

GO TO 290

GO TO 290

VIKR)=TS

RETURN
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