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A METHOD OF SMOOTH CURVE FITTING

Hiroghi Akima

A new mathematical method of fitting a smooth
curve to a set of given points in a plane is developed, and
a computer subroutine is programmed to implement the
method. This method is devised in such a way that the
resultant curve will pass through all the given points and
will look smooth and natural. The interpolation between
the given points is performed locally, and no assumption
of the functional form is made for the whole curve. ( )

Key words: Direction of tangent, interpolation, poly-

nomial, smooth curve fitting.

1. INTRODUCTION

When we try to determine a relation between two variables, we

either perform computations or make measurements. The result is

given as a set of discrete points in a plane. Knowing that the relation

can be represented by a smooth curve, we-next try to fit a smooth curve

to the set of points so that the resultant curve will pass through all the

given points. Manual drawing is the most primitive method for this

purpose and results in a reasonable curve if it is done by a well-trained

scientist or engineer. But, since this method is very tedious and time

consuming, we wish to let a computer draw a curve. To do so, we muit

provide the computer with necessary instructions for mathematically

interpolating points between the given points.

There are several mathematical methods of interpolating the

value of a function from a given set of values (Milne, 1949; Hildebrand,

1956; Ralston and Will, 1967), but the application of one of these methods

to curve fitting sometimes results in a curve that is very different from



one drawn manually. In other words, the resultant curve sometimes

appears strange and unnatural. In this report, we present a new method

of interpolation and smooth curve fitting that is devised so that the re-

sultant curve will look smooth and natural.

2. DISCUSSION OF SOME EXISTING METHODS

A simple example, taken from a study of FM distortion being

conducted by the author, will serve to illustrate difficulties encountered

by existing mathematical methods of interpolation. Assume that the

values of x and y at 11 points are as follows:

x 0 1 2 3 4 5 6 7 8 9 10
y= y(x) 10 10 10 10 10 10 10.5 15 50 60 85

Knowing from the physical nature of the phi imena that y(x) is a single-

valued smooth function of x, we try to inter•.olate the value of y(x) and

to fit a smooth curve to the given set of points.

First we apply the method of interpolation based on polynomials

(Milne, 1949; Hildebrand, 1956, ch. 2, 3, 4). This method is perhaps

the one most often used because, as stated by Milne (1949), "polynomi-

als are simple in form, can be calculated by elementary operations, are

free from singular points, are unrestricted as to range of values, may

be differentiated or integrated without difficulty, and the coefficients to

be determined enter linearly. There are several variants of this

method, known by the names of Newton-Cotes, Lagrange, Aitklen, and

Neville. Each has its own advantages and disadvantages,./but they are

all based on the common assumption that y(x) can be closely approxi-

mated by a polynomial of x of order n - 1, where n is the number of given

points. They should give the same result, because the uniqueness of the

polynomial of order n - 1 that agrees with given values of y(x) at the
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given n points has been proved (Hildebrand, 1956, p. 44). The result

obtained by applying the 10th order (Lagrangian) polynomial is shown in

figure 1A where the given data points are encircled.

Next we try to apply the method based on a ratio of two polyno-

mials or a rational function (Hildebrand, 1956, sec. 9. 9 - 9. 12). This

method is not so commonly used as the polynomial method. Perhaps

its most serious disadvantage is that the desired function does not al-

ways exist; in our example, it does not. Another disadvantage is that

the nonsingularity of the function is not guaranteed. If we omit the

first point (0, 10), however, the function exists. The result thus ob-

tained is shown in figure lB.

The third one is a well-known method based on the Fourier

series (Hildebrand, 1956, sec. 9. 3), which exemplifies the so.called

orthogonal functions. In applying this method to our data, we assume

that the whole range of x from 0 to 10 corresponds to one-half of the

fundamental period from 0 to rr and apply a series of cosine functions

up to the 10th order harmonic terms. The result is shown in figure

1C.

Finally, we apply the method based on a spline function (Ralston

and Wilf, 1967). The spline function of degree m is a piecewise func-

tion composed of a set of polynomials, each of order at most m and

applicable to successive intervals of the given data points. It has the

characteristic that the function and its derivatives of order 1, 2, ... ,

m - 1 are continuous in the whole range of x. This function includes

the (Lagrangian) polynomial as a special case when m = n - 1, where

n is the number of given points. The result of applying the spline func-

tion of degree three is shown in figure ID.

In addition to these results of four rather representative mathe-

matical methods, the curve obtained manually is shown in figure IE.
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CA; POLYNOMIAL 1 ~I(B) RATIO OF
POLYNOMIALS

(C] FOURIER (D) SPLINE
(DEGREE 3)

SCE) MANUAL (F) CRVFIT

Figure 1. Comparison of several methods of smooth curve fitting.



It is the average of curves drawn manually by several scientists and

engineers. A comparison of the curves in figures 1A - ID with 1E indi-

cates that the first three mathematical methods are not suitable for the

example given. It also indicates that the curve obtained by the spline

function and shown in figure 1D resembles the one in figure 1E, but we

are proposing an alternate method, discussed in the sections that follow.

As we see, the curve obtained by the new method, shown in figure IF,

is closer than the other curves to the manually drawn curve in figure

1E.

The common difficulty encountered by the existing mathematical

methods is that the resultant curve shows unnatural wiggles. This seems

inevitable if we make any assumption concerning the functional form for

the whole set of given points other than the continuity and the smoothness

of the curve. When such an assumption is not justified, the resultant

curve is very likely to behave strangely, as in figures IA - ID. The

functional form is what we try to derive and not what we assume.

When we try tu fit a smooth curve manually, we do not assume

any functional form for the whole curve. We draw a portion of the curve

based on a relatively small number of points, without taking into account

the whole set of points. This local procedure is a very important feature

of manual curve fitting and the basis for our new method. Note that,

although the spline function is a piecewise function composed of a set of

polynomials, all polynomials are determined simultaneously on the basis

of the assumption of continuities of the function and its derivatives in the

whole range, and no individual polynomial can be determined locally.

It is not easy. to develop a mathematical method of smooth curve

fitting based on the local procedure. If one of the existing mathematical k

methods is applied locally or piecewise without any special consideration,

the continuity of the function or its first order derivative is not generally

5
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guaranteed. This situation is illustrated in figure 2, where the same

data as in figure I are used and, for each N, a polynomial of order N - I

is applied to each set of N successive points to interpolate the part of

the curve in a unit interval around the center of the N points. When N

is an odd number, the resultant curves are discontinuous; when it is an

even number, the slopes of the resultant curves are not continuous, and

thus the curves are not smooth.

3. NEW METHOD

3. 1. Outline of the Method

Our method is devised so as to work in two different ways, i.e.,

one for a single-valued function and the other for a multiple-valued func-

tion, to correspond to the two ways in which a smooth curve is fitted

manually, depending on whether we know that the given data points rep-

resent a single-valued function or not.

Our method is based on a piecewise function given by a polyno-

mial of the third order in each interval for the case of a single-valued

function, and by a pair of polynomials of the third order for the case of

a multiple-valued function. For a single-valued function, our method

Is somewhat similar to the spline function of degree three. As in the

Npline function, the continuity of the function itself and of its first-order

derivative (the direction of the tangent to the curve or the slope of the

curve) are assumed. But, instead of assuming the continuity of the

second-order derivative as in the third-degree spline function, we deter-

mine the direction of the tangent locally under certain assumptions. By

doing so, we can fit a curve piecewise to the given set of data points

without having discontinuities In the curve and its slope.

We assume that the direction of the tangent to the curve (or the

slopo of the curve) at a given point P1 Is determined by the coordinates
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of five points P1_2 P-1. Pt PI*s, and P+. In other words, the points

more than two intervals away are assumed not to affect the determination

of the slope. This is discussed in more detail in the next section.

The portion of the curve between a pair of points is assumed to be

determined only by the coordinates of and the slopes at the two points.

This interpolation procedure is described in section 3. 3. Since the slope

of the curve should be determined also at the end points of the curve,

estimation of two more points is necessary at each end point. This ex-

trapolation procedure is described in section 3.4.

3.2. Direction of the Tangent

Consider five points 1, 2, 3, 4, and 5, as shown in figure 3A.

Let the point of intersection of the two straight lines extended from line

segments 12 and 34 be denoted by A and the same point corresponding

to line segments 23 and 45 by B. We seek a reasonable condition for

determining the direction of the tangent CD at point 3.

It seems appropriate to assume that the direction of CD should

approach that of 23 when the direction of 12 approaches that of 23, and

that angle / 23C (the angle between 32 and 3C ) should be equal to / D334

when / 123 is equal to / 345. With these rather intuitive reasonings as

a guideline, the condition of determining the direction of CD is still not

unique. For simplicity we assume that the tangent CD is determined

by the condition

2C= 4D

CA DB

This condition, however, does not exist for certain configurations of

five points, such as the one shown in figure 3B. In this case the alter-

nate condition,

8
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=2 C 4D

CA DB

does exist, as shown in the figure, and we shall use this condition.

Summarizing the above observations, we assume that the direc-

tion of the tangent CD is determined by the condition

2C 4D

CA DB

The double sign depends on the configuration of the five points, and the

one for which the condition exists will be selected.

Analytically, as shown in appendix A, condition (1) results in a

quadratic equation with respect to tan 6, where 0 is the angle of CD

measured from the x axis. For a given configuration of the points, the

discriminant of the quadratic equation is positive or zero for one sign

and negative for the other. The former should be selected as a matter

of course, so that the equation has real roots. Note that there is no

ambiguity in the selection of the sign.

When one line segment is parallel to another one, the direction

of the tangent CD may sometimes be indefinite under condition (1).

Analytically this corresponds to the case where the three coefficients of

the quadratic equation are all zero. To avoid this uncertainty, we as-

sume the following:

(a) When line segment 23 is parallel to 34, the tangent is

parallel to Z3. If the direction of 23 is opposite that of

34, the tangent changes its direction by 1800 at point 3.

(b) When 12 is parallel to Z3 and 34 is paraliel to 45, the

tangent is parallel to 24.

(c) When 12 is parallel to 34 and 23 is parallel to 45, the

tangent is parallel to 24.
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Two roots or solutions, CD and C'D', satisfy condition (1). The

one, CD, should be selected so that the two points, 2 and 4, lie on the

same side of the straight line through C and D. This can be done by add-

ing a second condition,

sin C(/32). sin (C34) >0. (0)

When this method is applied to a multiple-valued function, the

sense of the direction of the tangent should also be determined. In other

words, we have to determine both cos 0 and sin 0, not only tan 0. The

sense should be selected so that both the positive direction of the tangent

and line segment 34 lie on the same side of the straight line through 2

and 3. This can be done by adding a third condition,

sin(0 - OM) sin (O=- OM)> 0, (3)

where 0O and 0 5T are the angles of line segments Z3 and 34 measured

from the x axis, respectively.

Note that the procedure for determining the siope is a geometri-

cal one and is independent of the coordinate system.

3. 3. Interpolation Between a Pair of Points

3. 3. 1. Single-Valued Function

For a single-valued function y = y(x), we assume that the curve,

between a pair of points can be expressed by

. 3Y = Pr, + P1 -V+ p2X . p2x , (4)

where the p's are constants. Since the coordinates of the two points,

say (x 1 , yj) and (x 2 , Y2 ), as well as the directions of the curve tan 0.

1I



and tan E at the points, are given, we further assume that x and y sat-

isfy the conditions

y =y and _.:tane at x:x,dx

Y - Y2 and d-:tan9 at x x2 ,dx

From these conditions we can uniquely determine the p constants.

Note that the interpolated curve is independent of the scalings of

the A and y axes,

3. 3, 2. Multiple-Valued Function

For a multiple-valued function, we assume that the curve be-

tween a pair of points (x1 , yl) and (x2 , y2) can be expressed by

x = PC + PIZ + p;2Z + prZ?,

2 3
y = qo + qz + q2 z ý q,3 z

where the p's and q's are constants and z ig a pararnetPr that var"'Ps

fromn 0 to I as the curve is traversed from (xi, yJ to (x2 , Y2). Since

the coordinates of the two points (x1 , y 1 ) and (x;, y2), as well as the

directions of the curve (cos 01, sin 01) and (cos %, sin 02) at the points,

are given, we further assume that x and y satisfy the conditions

dxx =x, y = y- - os eand dy= r sin 61 at z = 0,
dz rdz

x x2 , y = y r cos 6g, and r sin0 2 at z :,
wjdz d

12



where

r /(x2 -x,)• + (yj -y .

From these conditions we can uniquely determine the p and q constants.

Note that in this case the interpolated curve depends on the scal-

ings of the x and y axes.

3. 4. Extrapolation of the Curve at an End Point

Except for the case of a closed curve, estimation of two more

points from the given points is required at each end of the curve,

3. 4. 1. Single-Valued Function

For a single-valued function y y(x), we assume that the curve

near the end can be expressed by

y g go + g1x + g;x (6)

where the g's are constants. The constants can be determined from

the coordinates of thrce given pjuinto (xl, yh), (x2, yQ), and (x3 , yJ

Assuming that

X 5 X4 X4 - X3- X

we can determine the ordinates Y4 and y5 corresponding to x4 and xs,

respectively, from (6).

Note that the extrapolated points are independent of the scalings

of the x and y axes.

3. 4. 2. Multiple-Valued Function (Nonclosed Curve)

For a. multiple-valued function, we assume that the curve near

! 13S- - ---- -- I-----.-~



the encd can be expressed by

x = g0 + gz + g;,z
(7)

y = hc + hz + h2z2,

whert the g's and hW. are constants and z is a parameter, We further

assume that

x x I and y Yi at z i (i 1, 2, 3, 4, 5),

From the coordinates of three given points (x j , yj ), (x2, y2), and

(x 3 , Ya), the g and h constants can be de~ermined, and consequently,

also the coordinates (x4, y 4 ) and (xe, y5).

Note that the extrapolated points are independent of the scalings

of the x and y axes.

4. EXAMPLES

An example ci the application of this method is shown in figure

1F where the curve is very close to the one in lE determined manually.

Y'igure 4 gives somc cxamples of the application of the method

in different modes. Two curveg are drawn for single-valued functions

y r y(x) (MODE = 1) and x = x(y) (MODE = 2) in A and B, respectively.

Two examples for nonclosed-curve, multiple-valued function (MODE= 3)

are given in C and D, A circle and an ellipse are drawn in E and F,

respectively, as examples for the case of closed curve (MODE = 4).

Figure 5 shows artificial examples for simple configurations

of given poix.ts that are designed to supplement the description of the

method, especially of the direction of the tangent (see sec, 3. 2). This

figure also illustrates how strangely curves may sometimes behave for

adverse configurations of given data points. Application of the third-

14
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(A) MODE - MODE 2

- p S
(C) MODE- 3 (D) MODE- 3

_ _ __I t _ _ _ _ _ _ _

Figure 4. Examples of application of the new method.
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(A) MODE I (B) MODE- I

CC) MODE- I CD) MODE i

CE) MODE-I (F) MODE-I

_ __,DE- .1; _ _ _-

Figure 5. Further examples of application of the new method.
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degree spline function to the same data results in slightly better, but

still not completely satisfactory, curves. All the examples in this fig-

ure are periodic functions, but neither the new method nor the spline

function method is devised so as to detect or take advantage of regular-

ity, such as periodicity. Because periodicity is neglected in both these

methods, the resultant curves sometimes appear strange, especially

near their end points.

5. CONCLUDING REMARKS

We have described a new method of smooth curve fitting. For

proper application of the new method, the following remarks seem per-

tinent:

(1) The curve obtained-by this method passes through all

the given points. Therefore, the method is applicable

only to the case where the precise values of the coordi-

nates of the points are given. It should be recognized

that all experimental data have some errors in them,
and unless the errors are negligible it is more appro-

priate to smooth the data, i. e., to fit a curve approxi-

mating the data appropriately, than to fit a curve pass-

ing through all the points.

(2) Use of this method is not recommended when given

data points manifest apparent regularity or when we

have a priori knowledge on the regularity of the data.

(3) As is true for any method of interpolation, no guaran-

tee can be given of the accuracy of the interpolation,

unless the method in question has been checked in ad-

vance against precise values or a functional form.

(4) The method yields a smooth and natural curve and is

17



therefore useful in cases where manual, but tedious,

curve fitting will do in principle.

(5) For a single-valued function, the resultant curve is

invariant under a linear-scale transfornmation of the

coordinate system. In other words, different scal-

ings of the coordinates result in a same curve.

(6) For a multiple-valued function, the resultant curve

is variant under a linear-scale transformation of the

coordinate system. The scalings of the coordinates

should be coincident with the actual size of the graph.

A computer subroutine, named CRVFIT, has been programmed

to implement the method reported on in this paper. It is described in

detail in appendix B.
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APPENDIX A

Analytical Expression of the Condition for Determining
the Direction of the Tangent

Let the coordinates of points, 1, 2, 3, 4, 5, A, B, C, and D in

figure 3 in the text be denoted by (x1 , y.), (x2 , Y2), (x3, Y9), (x4 , y4),

(x,, Y5), (xa, Ya), (Xb, Yb), (xe, Yc), and (Xd, Yd), respectively, and

the tangent of the angle of CD measured from the x axis by t. Then,

the following equations should hold:

Y- - X2 =C - Y2 Y2 - Y, (8)
xa - X2 XC - X2 X 2 - X1

Y4 - y:b Y4 - Yd Y5 - Y4 (9)
X4 - Xb X4 - Xd X5 - X4

XS Ya Y4 "Y (10)
x3- x X 4 X 3

-b YY - Y2 (1)
Xb X3 X 3 - X2

Y, YC = Yd - Y = t. (12)
X3- Xc X' - X3

Condition (1) in the text can be expressed by

x2 = . CX4 - Xd (13)
Xc - Xa Xd - Xb

If we introduce new constants defined by

at xt+1  - x,, (i = 1, 2, 3, 4), (14)

b- Y , (i= 1, 2, 3, 4)w (15)

St 13 a bt - ajbI, (i = 1, 2, 3; j = 2, 3, 4: i<j), (16)

19



and eliminate x's and y's from (8) to (13), our condition reduces to a

quadratic equation of the form

At 2 - 2Bt + C = 0, (17)

where

A = S 2S4a•- S 13 S3a4 , (18)

B = S1Saa 3 b3 T S 13 S3a 2 b2  (19)

C = S 2S4b2 T S 13 3 S3b• . (20)

The discriminant of (17) is expressed by

D =B 2 - AC

= • S2 S2 S2S S13  . (S1)

We will take the upper sign in (1) and (13) when the product S 12 SA S13 S3

is positive or zero, and the lower sign when it is negative. By doing so,

we can always make the discriminant nonnegative.

If the coefficients A, B, and C in (17) are all zero, the solution

of the equation is indefinite. This occurs when

(a) S2 = 0,

(b) S12 = 0 and S34 = 0,

(c) S3. = 0 and S2 = 0,

(d) S-12 = 0 and S13 = 0,

(e) S2 = 0 and S34 = 0.

For the case (a), we assume the provision that the tangent t is equal to

b2 / a 2 = b3 / a 3 . For cases (b) and (c), we assume that the tangent t is

equal to (b2 + b:3 )/ (a 2 + a 3 ). Cases (d) and (e) are special cases of (a),

and the provision for (a) applies.

20



Equation (17) has two roots, i.e.,

t A "(22)

Of the two, the desired one will be selected so that it satisfies

S20 S03 > 0, (23)

where

S2o = a 2 bo - ao b 2 , (24)

So1 = aob 3 - a 3 bo, (25)

a0 = 1/,/- + t• , (26)

bo = t// 1 F1t77. (27)

Condition (23) can equivalently be written as (2) in the text.

If S 20 satisfies

S20 S2 > 0, (28)

cos 0 and sine are equal to ao and bo, respectively. Otherwise, cos 0

and sin 0 are equal to -ao and -bo, respectively. Condition (28) is

equivalent to (3) in the text.
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APPENDIX B

Computer Subroutine CRVFIT

The CRVFIT subroutine is a FORTRAN subroutine programmed

for the CDC-3800 computer to implement the method of smooth curve

fitting reported on in the text. Necessary information for the user of

the subroutine is given on pages 25 and 26 in a format compatible with

the library function manual. A FORTRAN listing of the subroutine is

given on pages 27 to 30. A binary deck of the subroutine is available

from the library, Computer Division, ESSA Research Laboratories,

Boulder, Colorado, under the name of EZ-IERB-CRVFIT.

Although the CRVFIT subroutine has been programmed for the

CDC-3800 computer, it can be modified without difficulty for other digi-

tal computers that accept a FORTRAN language.

The CRVFIT subroutine is devised so as to compute coordinates

of closely spaced points on a smooth curve determined by a set of given

points, and not to compute a value of ordinate for a specific value of

abscissa. But there is no difficulty in modifying the subroutine for this

pur'pose.



CRVFIT CRVFIT

PURPOSE: To fit a smooth curve to a set of given points in a plane;
i. e., to compute coordinates of a new set of points (output
points) that are located on a smooth curve determined by
a set of given points (input points) in a plane and are more

closely spaced than the set of input points on the curve.
(This subroutine interpolates points between each pair of
input points, and the output points consist of both the input
points and the interpolated points.)

FORTRAN CALLING SEQUENCE:

CALL CRVFIT(MD,L,X,Y,M,N,U,V)

where

MD = mode of the curve (input parameter),

= 1 for a single-valued function Y = Y(X),
= 2 for a single-valued function X = X(Y),
= 3 for a multiple-valued function, nonclosed curve,
= 4 for a multiple-valued function, closed curve,

L = number of input point (input parameter),

X, Y = arrays containing the abscissas and ordinates
of L input points (input parameters),

M = number of divisions between each pair of input
points (input parameter),

N = number of output points (output parameter), and

U, V = arrays where the abscissas and ordinates of
N output points are to be displayed (output
parameters).

ERROR MESSAGE: When L • 0 or M< 0, the error message

L = 0/NEG OR M = 0/NEG.
A = (value of L) Q = (value of M)

ERROR DETECTED IN ROUTINE CRVFIT

will be printed on the standard output unit, and the job will be
aborted.

STORAGE: 826 locations.

TIMING: (55M + 710) L microseconds for MD = 1,
(68M + 720) L microseconds for MD = 2,
(70M +1000) L microseconds for MD = 3 or 4.



(CRVFIT) (CRVFIT)

METHOD:

Step 1. Except for MD = 4, two more points are estimated at
each end point of the curve by assuming that the curve
near the end point can be expressed by

Y = g0 + g 1 x+ g 2x2 for MD = 1

ane3

2x = go + gIz + g2 z

y=ho +hlz +haz 2  for MD =3.

Step Z. The direction of the tangent
to the curve at point 3 is
determined by the configu-
ration of 5 points, 1, 2, 3, 4
4, and 5, shown in the

figure, by
C D

24 ýD A

SAT 1DB

Step 3. The curve between a pair of points is computed by

X = Po + Piz

y = qo +q1 z +qz 2 +q 3z 3  for 1MD = 1

and

X=Po +P-Z +Paz2 + p 3 Z3

y = qo + q1 z + q 2 z2 + q3 z 3  for MD = 3, 4.

Computation for MD = 2 is made by interchanging the X and Y
arrays, applying the method for MD = 1, and finally interchanging
the U and V arrays.
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bUBRU(UT[NE CKVFIT#MUOELO.X.1.Mtf).Ds0.Uov1
C SMOO0TH CURVE FITTING
c PftUGRAMME6 ) OY 9'IWOSeH AXINA* E.SSA-ITS

C MODE a I FOR Y * YtXl

C MODE a 2 FUR X x XlYY
C MODE a 3 FUk X a XIS) Aftf, Y lSl. POOKLOSED CURVE
c WMULE a 4 FUk X a Alb) ANDO Y Y 1151 CLOSEP CURVE
C La a N4o. OF 114PUT POINT$,. X AND V ARE INPUT P01INTS
C No = We UF OUTPUT PUIfNTS. U AND V ARE OUTPUT POINTS

c "o wko. OF DIVISIONS

c L)ECLARATIOI4 bYATLMENTS

DIMENSION Zl103.VB10h.UIIOOIVl1001
DIMENSION A0121.SO12I
tUUIVALENCE LA.AOilIJ.18,AOiZI.80f1133#C.SOIZII.
I iPO.121 .400.121 .401.AZJ .101.21
EUUIVALENCE IFL49,TS*Zl.IJP*JS1.

I £DU9DAvD*X11.ltiV9.DORoY!)9
2 1S29S20vAI~l.(3vS03o8')
3 lPlvS121.IP2*CJI .1#P3vR12)
4 1Q1*S13J*1029C13!vC03*P?3?

DIMENSION ERI(2I.ER2f2)9MbiGl3l

T YPE DOUBLE DERI.DERZ
LUULVALENCE IL.ER111))1.INER112))o(DERI.ER1).

I 6LMX ,ER2I111 .4MM194ER2(2)1 IDE2E
DATA INSGa2404L x 0/MEG ORf M a 0/hEGo I

C STATE.MErNT FUNCTION

SCRISIJCIJ'=A8SF(SIJ1-AASF(CIJJ'1.OE-8

C PRELIMINARY PROCESSING

MD=MODE s L-LPS-LO s mM~O
IFtL.LE*0oOf4.MeLEo0J GO T0 900
KPI=L*M.1 I lPsL.
DO 10 JPZI.L s KPIzKPI-M s IP.IP-1
U(KPl-Xf IP, s VIKPIzsYlIPI

10 CONTINUE s KP2xKP3=1

DO 20 1=29L s KP2=KP2+m
IF(UIKP2).EU.U(KP3)oAND.VIKP2).EOoV1KP3)I GO TO 20

KP=P+ UIVP3)sUIKP2) s V(KP3)NV(KP2)
20 CON4TINUE S LzKP3/M.1 % tdmKP3

IF(N.EQ.1) GO TO 890
IFtMD*NEoZ) GO TO 50

30 DO 40 KP4=1,NgM
tb=UtKP4) s UIKP4)=VIKP4) s V(KP4)zTS

40 CONTINUE
50 pMql=M-1 s FLMzX S DZsI.0/FLM

IF(LoEQ*21 GO To 100
LMIzL-1 s GO TO 200
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C SMOOTH CURVE FITTING FOR L a 2

100 DUI$Ugt*-Utl))*DZ s DV~lVfft)-ylIII.DZ
DO Ito KSuINM1
UIKS.1ltJ(f~bDU s VIKS*1RaVgKSI*DV

110 CONTINUE s GO TO 600

C SMOOT" CURVL FITTING FOR L. GREATER THAN 2

200 X3=Utl) s sil
X4wUl?4+11 s V'bsV6m.1
KS=lM+14 s X5u(K~5I s Y5sVIK51
A3sX4-X3 s B3wY4-Y3
A4sX5-X4 s s4uYS-YA
S34xA3#b4-A4*b3 s C34wA3*A4+B3.t54 s R34xSCR(S34,C34)
IFiNDoLE*31 GO TO 400
K.1wN-M-M s X~aUlI) s YlUV(KI)
K.ZsKI+P9 s X2=UIK2) s Y2=VIK2)
Al'X2-X1 s &51uY2-Y1
A2ux3-x2 s B2aY3-Y2

230 SlZmA1*B2-A2*BI 5 CIZ=A1*fA2.BI'B2 s R12wSCR(S129Cl2)
S13sAI*B3-A3*B1 s C132A1*A3*810B3 6 R13zSCRfSl39Cl3)
S23nA2*83-A3*B2 s C230A2*A3*82083 s R23=SCR(S239C23)
5Z4nA2*84-A4*02 s C24-A2*A4+02*84 s R24vSCR(S24,C24)
ASSIGN 240 TO LOL s GO TO S00

240 DO 290 Ix?,L s K.SsKS*,
X~zX3 s Y2wY3
X3wX4 s Y32Y4
X4uX5 s y4uys
A~wA3 s 82=83
A3sA4 s 83=e4
St2xS23 s R12wR23
513-524 s R13xR24
S23=S34 S C23sC34 s R23zR34
COSZ-SGN*COS3 s SIN2=SG?4.SIN3
IFlIeLTeLM1J GO TO 270
IFIMD*EO*41 GO TO 260
IF(IeEO.L.Ml) GO TO 450
A4wA5 s b4xB5 S GO TO 280

260 IFIK.5.GT*N) K.5=1+4
270 X5=U(KSI s YSxVIK5)

A4wX5-X4 s 94xYS-Y4
280 524=AZ'B4-A4'I02 s C24zA2*A4+S2*B4 s R24sSCR(S24,C24)

S34nA3*84-A4*b3 s C34xA3*A4+83.B4 s R34-SCR(S349C34)
ASSIGN 60o TO LBL s GO TO 500

290 CONTINUE s GO TO 800
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EXTRAPULATtUN AT THE. BEGINNING

400 1FtR34*LE..0#0I GO TO 430
lF(MoL~dQ*3) Go T0 420

410 Al=A2=A3 s D~3z2#A3*!#34/fA4*(A3+A4))
b2ab3-LUB s blzb2-DB s GO TO 230

420 ?A=A4-A3 s DIB*-B3
A2=A3-L'A s b2*83-DB
AI=A2-UA S h.I=B2-DB s 6O TO 230

430) Al=A2=A3 S BlxB~uB3 s 6O TO 230

C E.XTRAPOLATIUP4 AT THE END

450 IF(R23oLE.o0. GO TO 480
LF(M*LU*) 60TO 470

460 A~=A4=A3 s D8=2*A3*S23/(A2*lA2+A3))
b~k~Lbs 85zB4+08 S GO TO 280

470 UAxA3-A2 s DBwB3-B?
AI~zA3*CIA s 8~zB3+DB
A5zA4.L)A s B5zb4+OB S GO TO 280

480 A5:A4zA3 5 B5sB483 s GO TO 280

c ULTE..RMLNATIUN OF THE. DIRECTION

500 SGN=1*0
lF(R23*LE*o0*0 GO TO 550

LFfR12oLE*00.o.DNoR34oLE.0o0' GO TO 580
lF(R13oLEw0*0oAND*R24eLE*0.o0 GO TO 580
lFCRI2*LEeo.o.oR* R24eLEe0*O) GO TO 560

IF(R13&LEoo0.o.Ro R34oLE*0.0) GO TO 570
!>2=b12*S24 s b3x=S13053'
1F(!62*>3oLT.o.oo 53~-53
A=S2*A30A32-S3*A2*A2
0=S2*A3B3-S3*A26S2
C=S2eB3*0'3-S3eB2*B2
0=S23*SORTF(.62*S3)
IFI8*DoLTo0o03 D=5 6=840+
520=A24 801 1)-AC( 1)*P2
603 ZAOI 1) *3-A3*B0(l1
IF (620*S03&LEoO*O) GO TO 510

COS3=AO(1) s S1N3=03(l) S GO TO 520
51a S2o0A2*80(2)-AO(21*B2

COS3=AO(2) s 51IN3*80(21
520 IFIS20#523-61*O.O) GO TO 590

C0S3-C0S3 s S1N3=-SIN3 s GO TO 590
550 IF(C23*LTo0o0J G=-o
560 C0s3=AZ s S1N3=2 s GO To 590
570 C0S3=A3 s SIN3B83 s GO TO 590
580 C0S3=A2+A3 s SIN3=B2+83
59C lFtMD.LE92) GO TO LBL9 (2409600)

R=SURTF (COS3*CUS3,SIt43*S1143)
C0.S3=C0S3/R s SIN3=SJN3/R
GO TO LBLO (2409600)



C INTERPOLATIUN IN A SECTION

IF(MDGT.2)GO TO 660
60KS1= KSO

P1= DX
Ul=P1.SIN2/COS2
02 =3*DY-2*01-Pl*SIN3/COS3
U3=DY-0l-02
DO 620 JS=1'MM1
KSI=KS1+1 s Z=Z+DZ
U(KS1 2=P0+Z*Pl

620 V(KSIJ=QO+Z*(U1+Z*(o2+Z*03)) s GO TO 290
660 KS2=KSO

R=SORTF CDX*DX+DY*DY I
P1= R*CO 52
P2=3*DX-R* C2*COS2+CO53I
P3=DX-Pl-.P2
QI=R*SJN2
U2=3*DY-R*( 2*5!N2+SIN3)
U3=DY-Ul-02
DO 670 JS=1#MMI
KS2=KS2+1 s Z=Z+DZ
UCKS2J=PO+Z*(P1+L*(P2+Z*P3))

670 V(KS2100O+Z*(CJ1+Z*(02+Z*03)) S GO TO 290

C NORMAL RETURN

800 IF(MD.NEo21 GO TO 890
DO 810 KR=19N
T.S=UCKR) s U(KR)=V(KR) V(KR)=TS

810 CONTINUE
890 LO=LPS S NO=N S RETURN

c ERROR EXIT

900 DER2=DERI S CALL O80ERROR(O,MSG)

END

30 u.,


