7 RUE ANCELLE 92 NEUILLY SUR SEINE FRANCE

Transonic Aerodynamics
*
SEPTEMBER 1968

NORTH ATLANTIC TREATY ORGANIZATION

 ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT (ORGANISATION DU TRAITE DE L'ATLANTIQUE NORD)The material in this:publication has been produced directly from copy supplied by each author.

Printed by Technical Editing and Reproduction Ltd Harford House, 7-9 Charlotte St. London. W. 1.

SUMMARY

The last major international meeting on "Transonic Aerodynamics" was the "Symposium Transsonicum" held in Aachen in 1962. Since that time there have been considerable developments in this field; for both military cnd civilian applications, in a number of NaTO countries and it was' felt that sufficient information had been accumulated to justify a Specialists' Meeting on this topic. It was planned to hold this meeting on 18-20 September in Paris at the Ecole Nationale Superieure de 1' Aéronautique.

Members of the Program Committee were:
M.R.Legendre, France (Chairman), Prof.S.Erdmann, Netherlandsi, Dr.D. Kuchemann, U.K., Dr.J.Lukasiewicz, U.S.A., Prof.A.Naumann, Germany, and Prof.B.H. Goethert, U.S.A. (Co-opted member).
\therefore These proceedings contain a collection of the papers presented at this meeting, the purpose of which was to review and discuss the practical methods available for the study of flows around airplanes flying at subsonic speeds at which local supersonic regions appear.

The collection of papers emphasizes various calculation methods, experimental studies on profiles, with or without viscosity effects, and wing-body interference, to present a good cross-section of the state-of-the-art and to provide guidance for further research and development in this field.

Contributions have come from five NaTO countries.
533.6.011.3

resure

Depuis 1962, où s' était tenu à Aix-la-Chapelle le "Symposium Transsonicum", aucune réunion internationale importante n^{\prime} evait été consacrée à l'aérodynamique Transsonique. Pourtant, depuis cette date, des réalisations considérables, intéressant à la fois les activités civiles et militaires, avaient été accomplies dans ce domaine par un certain nombre de pays de l'OTAN et l' on estima que la somme d'informations accumulées à ce sujet justifiait l'organisation d'une Réunion de Spécialistes. C'est ainsi que prit naissance l'idée de la réunion qui s' est déroulée à Paris, à l' Ecole Nationale Supérieure de l'Aeronautique du 18 au 20 Septembre 1968.

Le Comité du Programme chargé de sa réalisation se composait des membres suivants:
M.R.Legendre, France (Président), Prof.S.Erdmann, Pays-Bas, Dr.D. Kuchemann, Grande-Bretagne; Dr.J.Lukasiewicz, U.S.A., Prof. A. Naumann, Allemagne et le Prof.B.H. Goethert, U.S.A. (admis par cooptation).

Ce compte-rendu rassemble les exposés présentés à cette réunion, dont l'objectif était de passer en revue et d'examiner les méthodes pratiques dont on dispose à l'heure actuelle pour étudier les écoulements autour d'avions volant aux vitesses subsoniques où apparaissent des régions supersoniques locales.

Ces exposés, fruit du travail de cinq pays de l'OTAN, sont consacrés en particulier aux diverses méthodes de calcul, aux études expérimentales sur les profils, avec ou sans effets de viscosité, et aux interférences voilure-fuselage. Ils donnent un bon aperçu de l'état actuel de la techuologie dans ce domaine et contiennent des données permettant d'orienter les recherches et développements futurs.

Cinq pays de l' otan ont donné leur contribution.

CONTENTS

Page
SUMMARY iii
resume iv
Reference
TRANSONIC SHOCK-FREE FLOW, FACT OR FICTION? (INTRODUCTORY PAPER)
by G.Y.Nieuwland and B.M.Spee 1
:AX-WENDROFF DIFFERENCE SCHEME APPLIED TO THE TRANSONIC AIRFOLL PROBLEM
by R.E.Singleton 2
INVISCID SUPERCRITICAL AXRFOIL THEORY by R. Magnus, W.Gallaher and H. Yoshihara 3
APPLICATION OF THE CHARACTERISTICS TO THENUMERICAL COMPUTATION OF A STEADY COMPRESSIBLEFLOW
by P.Carrière and C.Capelier4
time dependent calculation of the flow aboutaIrfoils in a transonic freestreamby D.MacKenzie and G.Moretti5
SUPERCRITICAL TRANSONIC AIRFOIL DESIGN FROM PRESCRIbED VELOCITY DISTRIBUTION by M.S.Cahn, H.R.Wasson and J.R.Garcia 6
ANALOGY dEtERMINATION OF WING PROFILES IN TRANSONIC FLOW
by F.Rigaultdigital determination of sub-critical wing profilesBY THE HODOGRAPH METHOD
by P.Bevière
an experimental Investigation of unsteady transonicFLOW BY HIGH-SPEED INTERFEROMETRIC PHOTOGRAPHYby G.Meler and w. HillerTHEORY OF viscous transonic flow - a surveyby M.Sichel10
the interaction between local effects at the shock and hear separation
by H. h. Pearcey, A.B. Haines and J.osborne 11
THE PREDICTION OF AEROFOIL PRESSURE DISTRIBUTIONS FOR
SUB-CRITICAL YISCOUS FLOWS
by R.C.Lock, B.J. Powell, C.C.L.Sells and P.G. Wilby
EXPERIMENTAL RESEARCH ON SUPERCRITICAL WING PROFILES
by M.Vincent de Paul
LEADING-EDGE SUPERSONIC VELOCITY PEAKS AND THE EETERMINATION OF THE VELOCITY DISTRIBUTION ON AN AEROFOIL IN A SONIC STREAM
by N.Thempson and P.G. Wilby
AN APPROACH TO THE DESIGN OF THE THICKNESS DISTRIBUTION NEAR THE CENTER OF AN ISOLATED SWEPT WING AT SUBSONIC SPEED
by M. M. Freestone
FACTORS AFFECTING THE CHOICE OF A THREE-DIMENSIONAL SWEPT WING DESIGN FOR HIGH SUBSONIC SPEEDS
by A.B. Haines
AN APPROXIMATE METHOD FOR THE DETERMINATION OF THE PRESSURE DISTKI OUTION ON WINGS IN THE LOWER CRITICAL SPEED RANGE
by T.E.Labrujere, W.Loeve and J.W.Slooff
THE AERODYNAMIC DESIGN AND TESTING OF A LIFTING SWEPT WING BODY CONFIGURATION WITH SHOCK FREE WING FLOW $A T M=1.2$
by J.Bridgewater, S.O.Han and H.Kramer
WING-BODY INTERFERENCE AT SUPERSONIC SPEEDS
by K.Stewartson and D.A.Treadgold 19
EXPERIMENTAL INVESTIGATION OF WING BODY INTERFERENCES IN
THE MACK NUMBER RANGE FROM 0.5 to 2.0
by W. Schneider 20
EFFECT OF REYNOLDS NUMBER AND gOUNDARY-LAYER TRANSITION LOCATION ON SHOCK-INDUCED SEPARATION
by J.A.Blackwell 21
WIND TUNNEL EXPERIMENTS ON THE INTERFERENCE BETHEEN A JET AND A WING AT SUBSONIC SPEEDS by J.A.Bagley 22
SOME PROBLEMS OF TRANSONIC FLOW FOR ENGINE NACELLES OF AIRBUS TYPE AIRCRAFT
by G.Meauze and J.Leynaert 23
SOME NET RESULTS ON STEADY THO-DIMENSIONAL TRANSONIC FLOH
by K.OSwatitsch 24
by G.Y. Niourland and B.M. Spee
National Aerospace Laboratory NIR, Ansterdam, Hotherlande

Summary

It has to be rasized that suoh terms as physioal significance and atability, used in the transonio controversy, have different connotations from the engineering, mathematioal and phyaicel point of vior.

The concluaions that have been obtained from an experimental study on quasi-elliptical corofoil neotions way be said to constitute the rslevance of transonic potential flow in the ongineering sense. These conclusions are $:$

- the egreement between experiwent and theory can in principle be made arbitrarily good by eliminating model imperfectiona and boundary layer offecta;
- the shock-free design condition is ambedded in, and can be resohed in a stable mamer from, the neighbouring conditions where shook weves are present.

The only legitimate way to disouss the physical significance of potential flow solutions frot the mathematios point of view is to exhibit such solutions as the limit of molutions of the unstesdy compressible Navier-Stokes equations for Rem- $\rightarrow \infty, t-\infty$. Moravetz's nom-existence theorems for transonic potential flow have therefore very limitap physical content, they are rether concernsd with the computability of suoh flows.

From m physical point of viex, arguments for the instability of transonic potential flows against time dependent disturbances have been advanced by Kuo and others. These arguments diaregard a stabilizing effoct on acoustio wave propagation in the flow, essentially dependent on its two-dimensional nature. This stability mechaniem for unsteady disturbances in a shock-free transonic flow is demonstrated.

It can be olaimed, in spite of earlier oritioism, that the use of potential flow theory in the transonic region is, both mathematioally and phyaicsily, as respectable, as it is anywhere else in aerodynamios.

Notation

- - propagation apsed of amall disturbancu
c_{0} - stagnation value of 0
J - determinant of rate of strain tensor $\nabla \mathbf{q}$
M - Mach number q/c
n - ourvilinear coordinate normal to atreamine
q - flow veloaity
\bar{q} - flow velooity vector
$\overline{\mathrm{r}}$ - unit veotor normal to wave front
s - curvilinear coordinate along streamline
$\overline{\mathrm{t}}$ - unit vector tangential to wave front
α - wave front inclination with respect to velooity veotor
γ - specific huats ratio
θ - flor angle
ω - wave front local rate of turning

Tranconic shock-fres flow, pact or fiotion?
 by G.Y. Hiourland ${ }^{Y}$) and B,N. Spse ${ }^{\text {I }}$

National Aorospace Laboratory NLR, Amsterdam,
Notherlande Netherlande.

1 Historical introduction.

In his preface to the Symposium Transsonicum (Aachen 1962, ref.1), Oavatitsch explains that "... Those conoorned with the transonic oontroversy are split in two camps with different points of view. Rigorous proofs which oouid settle the oontroversy have not yet been round".

There is not muoh point in attempting a documented reconstruction of the two positions involved, but it is probably fair to atate the most ridely held one as follows \&

1) The basic assertion was, that oxperimentally only transonic flows involving shook wavea were found, at least when a well developed supersonic ragion was present, say for $M_{10 c} \max >1.1$.
2) Theoretically, examples of iransonic potential flous can be construoted, exhibiting shook free recompression from the supersonic flow region back to subsonic flow speed. However, if 1) was true, one had to suppose that these aolutions wore unstable in some sense.
3) For this instability, two complementary explanations were given. The first expianation wes sought in the mathematical fact, that a transonic potential flow solution, if it exists for some particular aerofoil shape, can be blom up by an arbitrarily small perturbation of the part of the contour bounding the supersonio region (Busemann, ref.2; Morawetz, ref.3). Secondly, the argament wae advanced that the development in time of a perturbed transonic potential flow around a fixed profile would bo unstable, ae upstream running perturbations would increase exponentially with time in the supersonic recompression region of the flow (Kuo, ref.4; Horner, ref.5). Both these arguments conveyed the suggestion of the collapse of a potential flow solution into the supposediy standard, stable, transonic flow solution with a shock.

Againat this of ten rather agressively held position, the defenses put up by the other camp were, one feels, rather weak; as it now turns out, perhaps unnecessarily so. While the opponents gradually left their trenches to partake in more feshionable activities than the at that time rather out-moded trnnsonic aerodynamica, the whole picture was changed by Fearcey and his group at the lPL. Having first experimentally sorted out the hiehly complex viscous phenomena in the transonic speed range (see ref.6), he next evolved the ooncept of the "peaky" pressure distribution" (ref.?), and showed thet in fact, a for sll practical purposes shook free tranoonic flow could experimentally be realised.

The first opportunity of systematically confronting transonic potential theory and experiment for aerofoil flows, came with the development of the theory of quasi-elliptical aerofoils at NLR (refs. 8, 9).

As a survey of the existing oxperimental information has very recently been given (ref. ic), we will here reatrict to pointing out the main facts. The furpose of the present paper is to demonstrate that the fundamental theorems on the mathematical "non-existence" of transonic potential flo. due to Busemann and Norawetz, together with some recently discovered facts about the time dependent stability aspecte, and the experimental date now available, provide on the level of present day knowledge a consistent physical picture of transonic flow in the bigh subsonic speed range. In our opinion this means that at any rate the old "traneonic controversy" can be regarded as dofinitively settled.
x)

Senior Research Engineer, Aerodynamics Division.

2 Exporimontal faote.

Although now several examples of theoretical solutions for the transonic potential flow sround lifting quaxi-elliptical aerofoilsare available, the oxperiaental evidence is at present entirely based on eymetrical aerofoils. The reason is simply that these were muoh earlier svailsble. This is, bovever, not at all a serious lamitation, as long as the aim is a basic investigation of the stability of the shook-free bupersonic region. As the transonic offects are purely looal, one would not expect to miss anything worthvile this way. From an oxperimental point of view, the symmetrical flow has imporiant berefits. The absence of large wall interference and boundary-layor effects on oirculation makes the interpretation of the experimental results eraier and nore raliable.

Troexamples will be disoussod. The aesofoil shape, theoretical design pressure distribution and shape of the sonic line are given in fig.ia, b. Theso examples wars taken from the colleotion of ref.11, and are designeted as ($0.1-0.675-1.6$) and ($0.115-0.75-1.2$). The first one la a 16% thiok aerofoil with design Mach number Mo $=0.745$, having a peaiky preseure distribution with a maximum looal Maoh number N. 1.47 . The other is 11% thick and has a peaky pressure distribution with a secondary expanaion just in front of the suotion peuk, the design Mach number being $\mathrm{K} \infty=0.806$ and the maximum local Mach number $M_{\text {max }}=1.26$.

Fig. 2a, b shows the comparison between theory and experiment at the deaign condition for the 16 \% thick aerofoil. In fig. $2 a$ the pressure is plotted againgt the chordwise distance measured from the leading edge, in fig. 2b againat the eerofoil ardinate normal to the ohord. The experimantal design Nach number is somerhat higher (0.002) than the theoretion value, in socordance with the estimated blockage offect in the wind tunnel.

The disorepancies between experiment and theory are due to model imperfections and boundary layer offects. The slight underexpansion in the aupersonio rogion, leading to a Fery weak shook rave, is caused mainly by a amall laminar seperation bubble at 8% ohord, free transition boing at 12%.

Fig. 3 shows shadowgraph pioture of the flow around the 16 \% thick orofoil at the design oondition, with the theoretical shape of the sonic line drawn in. The shadowgraphs were obtained with a short duration spark exposure that arrests upetroam-goving disturbances. The distrubances form sharp pressure fronts at these speeds.

The appearance of laminar separation bubbles is a consequence of the rolatively low Reymolds 1 uber (2.10°) of the tests. These soparations would undoubtedily diasppear at full-scalo Reynolde numbers. The only way to avoid separation offects in the wind tunnel is by firing the transition point of the boundary iayer. This, however, has an unfavourable effeot on the agreenent between theory and experiment. The transition strip generally disturbs the flow by genersting a reak shook wave.

A still better agreement between theory and experiment has been found for the 11 \% thick aerofoil, as shom in fig. 4a, b for a Nach number whioh is considerably higher than the design Mach number. The reason for the very good agreement in this particular case is the absence of eeparation. For Mach numbers close to the design value there is a relatively large separation bubble in the laminar boundary layer. At slightly higher Mach numbers, hovever, this separation bubble disappears. The agreement leaves little to be desired. On the basis of pressure plots and optioal obsorvations, the flow is really shook-free.

Having thus settied the design case, the next question of intereat ie the senaitivity of these flows, more generally their off-design behaviour. Fig. 5 demonstrates the development of shooks both below and above the design point for the 11% thick aerofoil. The relevant shadowgraphs are given in fig. 6a, b and 0 . These data show the shock-free design condition embedded in a family of flows involving shock waves. Similar results have been obtained for saall variations in angle of incidence.

From these data, and also from the response of the flow to things like transition strips, one can get the impression of a great asnsitivity of these flows. In a cense, of oourte, this is true. Yet in another sense, the flows are rather insensitive. In fig. 7 the dependence of the drag ooeffioient on Mach number is given for the 16% thiok aerofoil, which shows that although there are shooks in off-design oonditions, the wave drag remains negligible in a rather large interval. In fact, this 16% thick aorofoil has a higher drag rise Nach number than the 12 \% thiok NACA 0012 aerofoil.

The following conolusions may said to constitute "physical significance" of the transonio potential flow solutions in the engineering sense.

1. The difforences betwoen experiment and theory are due to model imperfections and boundary layor effeots. The resulte euggest that the theoretical potential flow can be approached arbitrarily close if these effeots are eliminated.
2. The shock-free design condition is embedded in, and can be reached in a otable manner frow; the neighbouring oonditione involving shocke. In a usefully large interval of corditions, the wave drag remaine negligible.

Mathematioal problams.

Having revieved this experimental material, it is perbaps useful to spend a fer remarks on the interpretation of the famous Moravetz theorems, whioh have been regarded as providing the key to a physical understanding of these flown,

Very roughly, the content of one of these theorems is as follows, Consider a given transonic potential flow solution describing a profile flow, for instance a quasi-elliptical asrofoil flow. This solution can also be regarded as the nolution of a boundary velus probiew for the equations for plane compresatble potential flow, with the given aerofotl shape snd the free stream as boundary conditions. Next, perturb the prefile contour by an srbitrarily saall amount in the supersonic region, and horawetz proves that now no solution to the boundary value problen exists. In contrast to the subsonio flos case, a transonic potential flow is "not continuousiy dependent on the boundary data".

From the physical point of view, we must side with Busemann et al., and conclude - on the principle that nature does not jump - that the boundary value problem in potential flow theory is not a physically adequate model for a real transonic flow. In otber words, the basic assumption of strict irrotationality makes the transonic flow too rigid a fabric to be smoothed around an arbitrary shape. But we must own the other side, that we cannot logioally reverse this conolusion in the sense that if we try to model a given theoretioal solution in a wind tunnel, the resulting type of flow is necessarily drastically different. The results of the lest seotion show that this is not the oass.

If, however, we had to discuss the physical significance of potential flow solutions in the striot mathematical sense, as opposed to the engineering sense of "adequate" agreement between theory and experiment, we would have to study viscous compressible flox solutions in the limit $\mathrm{Re}-\infty$, and also the unsteady variant of those in the limit $t \rightarrow \infty$

The problem would be to investigate under what oonditions these solutions would have a potential flow as the limiting case. Thia problem is far beyond the power of the available mathematical methods, even for incompreseible flow ths eefore the phyaical oignificance of potential flow solutions at any flow speod is at the mocsent in the strict sense, an ontirely open problen.

If, for a moment, we would be allowed to voiture into the realm of soience fiction, and speculate what at some distant ruture date the rinyaioal signlficance of transonio potential flow solutions might look like, se would get susething as follove. In accordance with Moravetz' theorems, we would expoot that in guneral, no transonic irrotational flow limit would exist for a viscous solution as Re-m except for a very apeoial set of inolated "admissible" contours, which would admit a petential flow limit at one particular Mach number each. If then wo could prove, thet fo: Euch kach numbers the disorepancy betwoen a visoous flow solution and a transonio potanisal flow solution could be made arbitrarily small for Re suffioiently ierge and an aerololl nhape surfioiontly near an "admissible" one, we would have obtained a mathemationl conoejt of phyidal aignifioanou whioh rould cover todays experimental data.

Returning to fact rather than flotion, we wunt conolude that the import of Morawete's theorem is computational rather than phyaloai, an it ataten the impossibility of constructing transonio flow solutionn for ativen norofoll by posing a direct boundary value problea in the physical plano for the oquationa for potontial flow. Accordingly, the potential fluws around quasi-ellipiloal noro olin voro mathomatioally defined in a quite different, inverse wayf alternativoly, moderli dovelopente of numeriaal methode for the direct problom do not aake lise of tho oquatiuns for potontial flow but inolude simulated viscosity terms. In conclusion we aight say that the problew of the physical sjgnificance of transonic potential flow sclutions in in the anthematioal sense essentially an open problem, but not (at the moment) a ontrovoruial ono.

4 Unsteady aspects.

A escond line of argument against the physioal exiatence of shock free transonic flowe vas based on the suppesed unstability of these flows as a result of unsteady raves moring upstream into the superconic region. This argument vas developed by Kuc (ref. 4), and also mentioned by Holder (rof. 6). In its briofest outline, the argument was that suoh wavas, when superimposed on a steady shook free basic flow could move upatream as long as the local ateady flow speed was subsonic, but as they entered the region of supersonic local flow speeds would necessarily come to a standstill, coalosce, and interact fith the basic flow until stationary shook wave was formed.

It is clear from the experiments discussed in seotion 2 that this does not, in fact, happen, but we can also give a simple physical explanation why it doea not.

Lot us first perform a numorioal, or rather graphical, experiment. We take a transonic quasi-elliptical aerofoil flow, and at time $t=0$, generate an acoustic pulse at the trailing edee. Rnowing the velocities in the outer flow field, we can easily construct by Huygens' prinoiple, the development in time of the wave front moving locally at a sonic rolative speed. The picture we get in this way is sketohed in fig. 8 . That heppens is that the wave front, in the gradiont field of the basic flow, turns over in auch a way, that on entering the supersonic region, the wave front is everywhere inclined at an angle with the loosi flow velooity larger than the local oharacteristio angle. This means that the component of the flow velooity normal to the wave front is everywhere emaller than the Bonic value, and so the wave front moves locally as if in a subsonic flow. Far from coming to a standstill, the wave moves upstream with respect to a stationary observer, at en oven faster rate in the supersonic region than in the subsonic part downstream.

Now this is only one particular case, and we can ask whether this property holds cenerally. A simpls analysis shows that the answer is in the affermative. Int \bar{q} be the local veloyity veotor, c the looal velooity of sound, and \bar{t} and \bar{r} unit veotors tangential and normal to the wave front. The local rate of turning ω of the wave front can be exprossed as

$$
\begin{equation*}
\omega=\operatorname{grad} \circ \cdot \overline{\mathrm{t}}+\overline{\mathrm{t}}, \nabla \bar{q} \cdot \overline{\mathrm{I}} \tag{1}
\end{equation*}
$$

If now we express the rate of strain tensor $\nabla \bar{q}$ in a local reference frame along and normal to the streamline, we have

$$
\nabla \bar{q}=\left(\begin{array}{cc}
q_{B} & q_{n} \tag{2}\\
q \theta_{B} & q \theta_{n}
\end{array}\right)
$$

with q and oas local velocity and flow angle. In irrotational and isentropic flow we have the equations for continuity and irrotationality in this frame :

$$
\begin{array}{r}
\left(1-M^{2}\right) q_{s}+q \theta_{n}=0 \tag{3}\\
q_{n}-q \theta_{s}=0
\end{array}
$$

The local propagation speed of the wave is

$$
\begin{equation*}
c^{\prime}=c(1-M \sin \alpha) \tag{4}
\end{equation*}
$$

whe $e \alpha$ is the angle of the wave front with respect to the local velooity vector, and the locsl spead of sound is connected with q by $:$

$$
\begin{equation*}
\frac{g^{2}}{2}+\frac{o^{2}}{\gamma-1}=\frac{o_{0}^{2}}{\gamma-1} . \tag{5}
\end{equation*}
$$

Nor if a ravo front vould be stationary, we would have $c^{\prime}=0, \omega=0$. The firet of these relations means, of course, that the wave front is aligned along a charaoteristio. To see whother in that case also $\omega=0$ is possible, we substitute the relation $c^{2}=0$ in eq. (1), and using eqs (2), (3), (4), (5) we obtain:

$$
\begin{equation*}
\omega=-\frac{q \theta_{g}}{M^{2}}\left(2-\frac{3-\gamma}{2} \mu^{2}\right)\left(1-\frac{q_{n}}{q \theta_{B}} \sqrt{M^{2}-1}\right) \tag{6}
\end{equation*}
$$

If we have $\omega>0$, this means that the rave front is rotating into the "safo" direoticn, i.e. the intervel of wave angles in which the local velooity component normal to the wave front is subsonic (fig.9). Now it follows that $\mathcal{W}>0$ obtains if

$$
\begin{align*}
& \theta_{s}<0 \tag{7a}\\
& M^{2}<\frac{4}{3-Y} \tag{7b}\\
& \frac{q_{B}}{q \theta_{s}}<\frac{1}{\sqrt{M^{2}-1}} \tag{70}
\end{align*}
$$

Condition (7a) expresses convexity of the aerofoil in the supersonic region, (7b) eays that the local Kach number should be smaller than 1.58 for $Y=1.4$, and expression (70) nieans that the Jacobian of the hodograph transformation

$$
J=\frac{\partial(u, v)}{\partial(x, y)}<0,
$$

and this is always the case in the class of analytic hodograph flows(ref.9, App.c)and we cculd at most have $J=0$ at an isolated point of the contour of a general aerofoil.

He have then, that the waves are locally always turning into the safe direction, and some further reflection (ref.12) shows this to mean, that all unsteady waves must traverse the supersonic region in a finite time. This turning effect of disturbance waves was disregarded in Kuo's semi-one-dimensional instability arguments, and ie in fact the reason why these two-dimensional flows behave differently from the stability point or fiev than one-dimensional diffuser floks do.

He would like to add one remark on condition (7b). Laitone (ref.1) has conjectured, that $M=2(3-\gamma)^{-\frac{1}{2}}$ would be the maximum possible local speed in a transonic flox. It is essy to see (ref.12) that a transonic flow with a highor local Mach number is unstable againat unsteady disturbances, and so these cannot physically be realised. On the other hand we have as yet not been able to prove that such flows cannot be found, althoush for quasi-elliptical aerofoils the record atands today not highor than $M_{\text {max }}=1.54$.

2 Conclusion.

Shock-free transonic flow : fact or fiction ? The answor depends obriousiy on one is definition of what is "shock-free". Probably nobody would care to deny, that in every real transonic flow, shock phenomena could be detected if scrutinised closely enough.

From the engineer's point of view, hovever, much more interesting is the faot, that agreement between potential flow theory and experiment can be obtained within all practioal limits, if the experiment is conducted with aufficient care. Moreover, the flow changes into off-design conditions in an ontirely scooth and stable way, and tho wave drag remains negligible in a promisingly large interval of neighbouring conditions.

Fron the mathematician's point of view, the problem would be to decide what gense transonic potentiel flow solutions could be regarded as an asymptotic limit of solutions of the equations for viscous compressible flow. Unfortunstely, it locks as if this problem will remainopen for some considerable time.

From the phyaicist's point of vien, the escential differenco between the stability behaviour of transonic one-dicensional, and a two-dimensional flow has been clarified, so that we now can understand how a "shock froe" flow staye alive.

6 References.

1. Cowatitsch, $K_{9}(e d$.
2. Busemann, A.
3. Norawetz, C.S.
4. Kuo, Y.H.

Sympobium Transsonicum, IUTAM Symposium, Aachon 1962. Merlin (1, 64).

The nonexistence of transonic potential flor, in : K.H. Martin (od.), Fluid dymamics, Now York (1953).

On tbe non-existence of continucus transonic flows pset profiles II.
Comm. Pure Appl.Math. vol 10, pp. 107-131 (1957).
On the stability or two-dimensional saooth transonic flows. Journ.Aer.Soc. vol.18, pp, 1-0 (1951).
5. Kerner, H.
6. Holder, D. W.
7. Poarcey, E. H .
8. Nieurland, G, Y.
9. Nieurland, G.Y.
10. Spee, B. M.
11. Boorstoel, J.H.
12. Spee, B. M.

Instabilitat stosefreisr transonischer Profilstromungan. ZANM, VOI 41, pp.448-458 (1961).

Transonio flow pest two-dimensional aerofoils. J.R.Aero.Soo., voI 68, pp.501-516 (1964).

The aerodynamic deaign of seotion shapes for swept wings; in : Advances in Aeronautical Sciences, vol 3, London (1962).

Theoretical design of shock-free, transonic flow around aerofoll sections, in 8
J. Fradbrooke et al. (eds.), Aerospace Proceedings 1966, Iond on (1967).

Transonic potential flow around a family of quasielliptical aerofoil seotions. NLR-TR T\& 172 (1967).

Experimental verification of shock-free transonio flow around quasi-elliptical aerofoil sections. Leoture presented at 6th ICAS-Congress, Munich, Sept. 1968.

A survey of symmetrical transonic potential flowe around quasi-elliptical aerofoil sections.NLR-TR T. 135 (1967).

On the stability of tro-dimensional transonio flows. NLR-TN T. 182

b) aerofos 1 r. 11a-c. $7^{7-1.2}$

Fif. 1 Transonic rotential flow anound guabz-ellirizcai aovorofl.

b) pressure distribution versus $2 / \mathrm{c}$

Fig. 2 Comparison betwoon thoury and experimont, aerofoil $0,1-0,615=1,6$.

Fif. 3 Shadowgraph of flow around aerofoil 0.1-0.675-1.6, design condition.

a) pressure distribution versus $: / \mathrm{c}$

b) pressure diatribution versus z / c

Fis. 4 Comparison between theory and experiment, aerofoil 0,115-0.75-1.2.

Fig. 5 Shook development in off-design conditions, preasure distribution, aerofoil 0.115-0.75-1.2.

a) $M_{t}=0.806$

b) $\mathrm{N}_{t}=0.815$

c) $M_{t}=0.840$

Fig. 6 Shock dovelopment in off-design conditions, shadowgraphs aerofo11 0.115-0.75-1.2.

Fig. 7 Drag oharacteristics aerofoil 0.1-0.675-1.6.

Fig. 8 Acoustic rave propagation in transonic potential flok. Nave front constructed at constant thmo intervals.

Flg. 2 Acoustio wave propagation in looally supersonic region. Turning effect on wave front.

Lax-Wendroff Difference Scheme applied to the Pransonic Airfoil Problem
Robert E. Singleton
Lockheed-Georgia Company, Marietta, Georgia

A numpical mothod in developed for solving the uneteady-flow equatione for the flow of a nonconducting, invicid gas arounc an arbitrary profile. The governing equations are differenced by a two-step, Lax-Wendroff achese, and steady-atate solutions are sought in the liait of long tives. Boindary conditions are numericaliy prescribed and the Lex-bendroff method is shown to give near-steady-state, subaonic kach number distributions after a fow hundred time steps. The we thod gave results for trantonic flow with a shock wave for the one case conaidered. This matter is being further investigeted with a more accurately given airfoil. The procedure requires lerge conputer memory and long oomputer runs.

Lex-Wendroff Difforence Scheme Applied to the Transonic Airfoil Probles ${ }^{+}$

Robert E. Siagleton

Lockheed-Georgia Ccapuny, Purietta, Georgia

I. Introduction.

The mathenatical complexities asaociated with the tranonic potential flow over arbitrary profiles are well know however, the usefulness of a successeul method continues to inepire researcher to look for mods of solution. On heretofore unexplored possibility is to oircumvent sose of the mathematical complexities by bringing the tremendous capabilities of modern high-apesd computers to bear on the problem. This paper attempts to accomplish this task by developing a nuserical procedure for the transonic potential flow over a non-lifting, arbitrary profile to be solved on a high-opeed conputer.

The governing equations describing the conservation of mass, monentum and energy for the unsteady flow of an inviscid, nonconducting gas are written in divergence-free form. By retaining the unsteady terme, these partial differential equations remein hyperbolic, even when the flow is of a nixed type contaiaing both supsrsonic and subsonio regions. The teady atate solution is sought asyaptotically as time approaches infinity. Thia proceduse is also desirable because the shock-wave relations are contained as a spoial case of the governiag equations, provided weak alutions are allowad. Consequently, the shock wave is considerud ae part of the solution and not as a predetermined interior boundery. To rention a few references, Godunov et al. (1), Burstoin (2), and Bohachevsky et al. (3) here all developed this procedure for twodimenional, supersonic, blunt-body flows. Thomen (4) has treated the viscous supersonic flow over a flst plate using this approsch, Burstein(5) has studied supersonic flow in a constricted channel, and Thommen and D'Attore (6) apply this technique to three-dimensionsl supersonic flow fields. Quite recentiy, Yoshihare (7) reported succeseful results for the tranonio flow with shock waves over a circular-arc profile.

Apparently the application of unsteady numerical methods for generating ateady-state solutions is quite wide, and this paper is concarned with the applicetion of this teohnique to blunt, two-dimensighal non-lifting profiles. The grometry of the profile is chosen to be one of Nieuwland's (8) isantropic compression profiles found by using the hodograph method. The governing equations are differenced by a modified two-step Lax-Wendroff difference scheme which is quite aimilar to the schowe used by Thommen (4). The boundary conditions at the airfoil aurface are satiafied by a multiple reflection technique, and the boundary conditiona at the outer edge of the mesh were adjusted to allow unsteady effects to pass through.

The following sections of this paper describe first the actual formulation of the equations and techniques to be used. Secondly, the preliminary results are given and the indicated modifications to the program are discussed. The rext section deals with the final results obteined and the final eection gives the conclusions from this research.
II. Formulation of the Mothod

The coordigates for the chosen airfoil section are given to the nearest one thousandth by Hieuwland (8) who also gare the Mach number distribution over this airfoil, found by uaing the hodograph wethod. a Cartesian coordinate system is, used, with all lengths made dimenaionless $w i$ th the airfoil chord length. The front atagnation point of the airfoil is located at $x=3.8$, $y=3.0$. The calculation grid is distributed in the area $1 \leq x \times 7.6,3.0 \leq y \leq 4.96$. Since the airfoil ia symetric and non-lifting, only the upper surface of the airfoil is conaldered. Thus, the calculation grid extends 1.96 chord lonsths normal to the airfoil and 2.8 ohord lengthe in front of and behind the airfoil. Although the choice of mesh size is a difficult deciaion to make prior to the calculations, it was deoided to let $\Delta x=0.06$ for $1 \leq x \leq 7.6$, $\Delta y=0.04$ for $3.0 \leq y \leq 3.08, \Delta y=0.06$ for $3.08 \leq y \leq 3.20$, and $\Delta y=0.08$ for $3.20 \leq y \leq 4.96$. This initial choice for the grid has 2,997 points. The Courant-rriedrichs-ievy condition for stability as dorived from linearized analysis given a guide for establishing the time atep. It is oasy to ahow that if

$$
\frac{\Delta t}{\Delta} \leq \frac{M_{\infty}}{1+M_{\max }}\left[1+\frac{r-1}{2} M_{\infty}^{2}\right]^{-\frac{1}{2}}
$$

where $\Delta \equiv \Delta x$ or $\Delta y, M_{\text {max }}=$ mariaum local Mach number, $M_{\infty}=$ Ereestream Mach number, then the Courant-Friedriohs-Levy condition ia certainly setisfied. Recognizing that thie requirement for stability can serve only as a guide to nonlinear probleas, a ot of . 008 was chosen such thet the above condition vould be genelourly aatiofied for reasonable values of Mos, $M_{\text {max }}, \gamma$ and Δ.
${ }^{+}$This paper resulted from work aponsored by Aerospace Research Laboratorios, Office of serospace Research, United States Air Force under Contract AF 33(615)-5397.
*Scientizt, Lockheed Georgia Research Laboratory; Lecturer, School of Aerospace Engineering, Georgia Institute of Technology.

The governins equations of motion are next considered by letting c = chord length of airfoil, $\rho^{\prime}=g^{a y}$ density, $u^{\prime}, \nabla^{\prime}$ " ges velooity comporants, E^{\prime}. Internal plus kinetic onergios per unit voluse, $m^{\prime}=\rho^{\prime} u^{\prime}, n^{\prime}=\rho^{\prime} v^{\prime}$. Then by defining dimenoionless veriables

$$
\begin{aligned}
& x^{\prime}=c x, y^{\prime}=c y, m^{\prime}=\rho_{\infty} U_{\infty} m, r^{\prime}=\rho_{\infty} U_{\infty} n, u^{\prime}=U_{\infty} u, \quad v^{\prime}=U_{\infty} v \\
& p^{\prime}=\rho_{\infty} U_{\infty}^{2} p, \quad \rho^{\prime}=\rho_{\infty} \rho, \quad E^{\prime}=\rho_{\infty} U_{\infty}^{2} E, t^{\prime}=\frac{c}{U_{\infty}} t,
\end{aligned}
$$

the conservation of mess, mozentum, and enargy for an inyisoid, nonconduoting ges can be witton

$$
W_{t}=F_{x}+G_{y}
$$

where the subscript denotes differeatiation and W, F, and G are vectors defined by

$$
W=\left[\begin{array}{c}
\rho \\
m \\
n \\
E
\end{array}\right] ; F(W)=\left[\begin{array}{c}
-m \\
\frac{n-3}{2} \frac{m^{2}}{\rho}-(x-1) E+\frac{\gamma-1}{2} \frac{n^{2}}{\rho} \\
-\frac{m n}{\rho} \\
-\frac{v E m}{\rho}+\frac{\gamma-1}{2} \frac{m^{3}+m n^{2}}{\rho^{2}}
\end{array}\right] ; \quad G(W)=\left[\begin{array}{c}
-n \\
\frac{-n m}{\rho} \\
\frac{\gamma-3}{2} \frac{n^{2}}{\rho}-(y-1) E+\frac{\gamma-1}{2} \frac{m^{2}}{\rho} \\
-\frac{\gamma E n}{\rho}+\frac{\gamma-1}{2} \frac{n^{3}+n m^{2}}{\rho^{2}}
\end{array}\right] .
$$

Theee pertial, nonlinesr, differential equations are differenced by the two-steg Lex-Wendroff method to obtain a mecond-order accurete diffarence aghase. This schome is similar to those differenoe achemen given by Thomben (4) and Burstein (2) and is given bolow. Let $W_{1, j}^{k}=W(t+k a t$, $x+(\Delta x, y+j \Delta y)$, then

$$
\begin{aligned}
& W_{i=\frac{1}{2}, j}^{k+\frac{1}{2}}=\frac{1}{2}\left(W_{i, j}^{k}+W_{i \pm 1, j}^{k}\right)+\frac{\Delta t}{2} \frac{F_{i \pm 1, j}^{k}-F_{i, j}^{k}}{x_{i \pm 1}-x_{i}}+\frac{\Delta t}{4} \frac{\left(G_{i, j+1}^{k}+G_{i \pm 1, j+1}^{k}-G_{i, j-1}^{k}-G_{i=1, j-1}^{k}\right)}{Y_{j+1}} y_{j-1} \\
& W_{i, j \pm \frac{1}{2}}^{k+\frac{1}{2}}=\frac{1}{2}\left(W_{i, j}^{k}+W_{i, j \pm 1}^{k}\right)+\frac{\Delta t}{2} \frac{G_{i, j \pm 1}^{k}-G_{i, j}^{k}}{y_{j=1}-y_{j}}+\frac{\Delta t}{4} \frac{\left(F_{i+1, j}^{k}+F_{i+1, j+1}^{k}-F_{i-1, j}^{k}-F_{i-1, j \pm 1}^{k}\right)}{x_{i+1}-x_{i-1}} \\
& W_{i, j}^{k+1}=W_{i, j}^{k}+2 \Delta t \frac{F_{i+\frac{1}{2}, j}^{k+\frac{1}{2}}-F_{i-\frac{1}{2}, j}^{k+\frac{1}{2}}}{x_{i+1}-x_{i-1}}+2 \Delta t \frac{G_{i, j+\frac{1}{2}}^{k+\frac{1}{2}}-G_{i, j-\frac{1}{2}}^{k+\frac{1}{2}}}{y_{j+1}-y_{j-1}}
\end{aligned}
$$

The phyoical boundery condition are that uniform flow conditions exist far from the airfoil, and the normal velocity on the airfoil in zero. However, since the grid system is finite and to floz field is unstesdy, the boundary conditions around the outer edge of the meah syaten are not vell defined. Hlons the inconing boundery, $x=1,3,0 \leq y \leqslant 4.96$, the flov is apecified as unfform, freestreas flou. Although this specification of the boundary condition does not allow for unstasdy effeote, results of the obloulation showed that only very amall disturbances recohed the forwsed boundary, and these small disturbances apparently oaused no problema.

Llong the upper boundary, $1 \leq x \leq 7.6, y=4.96$, it was first meoified that $m 01$, and the other three variables were deternined by beckward inear interpolation in the y-direction. It was thought that, in thi manner, the fruestrean pressure would be maintained along the upper boundary. However, the reaulta of aeveral long-time runs indicated that unatady effacta vere not getting through the upper boundary but wore propagating back fato the flow field near the airfoil and oulusing a divergence there. By speoifying a baokward linear interpolation in the y-direotion on malao, this problem was elininetad. The boundary conditions on the downetream boundary $x=7.6,3.0 \leq y \leq 4.96$ vere aet by beckward lirear interpolation in the x-direotion on sll yaviables. The line of syanetry was peoified by gymetrically zofleotiog ρ : a, and E and sutisymetrically reflecting n across the line $1 \leq x \leq 7.6, y=3.0$.

The application of boundery conditions along general curved surfaces is aluays a diffioult problem in numericel anslyais. The ourved airfoll surface of intereat hore is no exception, but considerable offort was oxerted to dovise a autable schome besed on the reflootion prin-
ciple. ro illustrate the technique, a mesh point which lisu outaide the sirfoil but xith a neighboring meth point, elther a Δx or ay may, lying inside the airfoil in oonsidered. The current value of the vactor W at the outeide point is denoted Wos axd Iikewise the ourrent value of the rector W at the inside paint is denoted W_{f}. The line joining the ingide and outside points cuts the airfoil surface at a uniqus point where the slope iz $\mathrm{dy} / \mathrm{dx}$. The distance from this point on the sirfoil surface to the outaide sesh point is denotod by L_{1} and the distance fros this point to the inside sesh point ia danoted by L_{2}. The W_{1} is deternined as a functic. of W_{0} by requirice that the linear interpolation for the yelocity normal to the airfoil surfice at the point of intersection on the airioil surface be zero. The valuos for the velocity tangeritial to the airfoil surface at the interrection point on the airfoil as vell as ρ and E ars talen as being the sans as the corresponding values at the outside point. These conditions arc satisilied by eetting

This technique requires the calculation of the airfoil slope, $d Y / d x$, at the intersection point. At firat, this was accomplished by looking in the given coordinate table, finding the nearest two points on either aide of the intersection point and calculating the slope from this linear approximation. Later the procedure was modified as will be deacribed in the next section, also, since several outaide mesh pointa can share the same inside mesh point, multiplo storage capability at each inside point must be allowed for.

It was assumed that initial conditions could be arbitrarily chosen subject to compatibility with the boundary conditions. The first calsulatione which ware performed were done with uniform, freestream flow specified at all interior points of the mesh, i.e.

$$
W_{1, j}^{0}=\left[\begin{array}{c}
1 \\
1 \\
0 \\
\frac{1}{2}+\frac{1}{\gamma(\gamma-1) M^{2}}
\end{array}\right]
$$

Since the equations are independent of the Kach number, the initial conditiona and the boundary conditions on the incoming boundary are the only places where the Meoh number onters the calculetions.
III. Proliminary Results

Having written a computer program for the above equations tegecher with their boundary and initisl conditions, computations were oarried out first on ar, IEM 7094 computer and then later with a Jnivac 1108. A long-time run of 250 time steps wan made with Koo -0.704 and a at .008. The resulte for the surface Hach number diatribution are shown in Figire 1 aloug vith a plot of the airfoil surface. The calculations diverge at $K=250$ at $x=4$. 34 , as resulte at sardier values of K demonstrate.
In view of the reaults of Buratein ${ }^{(2)}$, it was perhape not aurpriaing that the calculations did diverge, as Buratoin shove that one might suspect instabilitios to oocur in the vicinity of stagnation points and sonic lines. Since Burstein used a pseudo-yiscous term to achiove atability in his csse, a similar offort was made for the present case. To dasp oscillations which might bo genersted, an artificial viscoosity, tailorod after Burstein's model, was devoloped and added to the besic difference scheme. Hovever, the inclusion of the peeudo-riscous term did not prevent the divergence of the reaultant calculations. Horeovar, a vide variety of values for the rate of increse of dapping, the maximum value of the damping, and the time step were tried with little improvement in the reaulta.

At this point, it was auspected that the divergent oharacter wes porhaps a result of very poor socuracy in the transonic range coupled with very crude initial conditions. To study this
idea, a long-time run of 800 time step was made with $20 x 0$ visconity for $M_{\infty}: 1 / 2$. Pigure 2 shows the reaulte to be converging to a subsonic solution; howvar, sow ceolllations or "wigelas" appear in the Mach number distribution.

The resulte obtained for $M_{\infty}=0.5$ at $X=800$ were then modified by letting

for ell i and j, and then these reaulta are used atinitial condition for $M_{\infty}=0.6$. aftor a fow hundred time stepe of calculatione, the resulte were similerly madified to get initial coaditions for $M_{\infty} . .656$ and then similarly for $K_{\infty}=0.707$. Figure 3 ahows that this approach to the traneonic regiee yields better result than before; hovever, it also appeare that the oscillations which appeared in the subsonic distribution grow to substantial amounts at transonic peeds and thus prohibit any meaningful results.

In order to get better resulta, sevaral modifications to the existing computer program were made. First, the calculetions denonstrated an inability of the existing mesh eize to resolve the flow field accurately in the vicinity of rapid flow changes, i.e., the nose zegion. Consequently, the mesh was made more densa over the front half of the airfoil by ingerting eight sox vertical lines between $x=3.82$ and $x=4.30$, which resulted in 224 additional meah pointe. The method of reprementing the airfoil by linear interpolation between given tabular points wat examined by comparing the resulting airfoil ordinatea and slopes with the theoreticel ordinates and slopes given by Nieuwland. The ordinates and slopes calculated by the oomputer program were found to be accurate to the nearest hundredth, while Nieuwland's theoretical veluee were given to the nearest thousandth. Hence, the computer program was modified to do fifth onjer polynomial interpolation for the airfoil ordinates and slopes were computed from this interpolation polynomial. This procedure gave ordinates and slopes at least as eccurate as Nieuvland's data.

Noxt, attention was given to the numerical probien of deteraining the dependent variablea at non-mesh points from information given at the mesh points. For example, if the Mach number is given at the mesh points close to the airfoil surface, what is the Mach number on the airfoil surface? Thia probles is illustrated in Figure 4. In Figures 1, 2, and 3, the Mach nuaber at x_{3} (see Fig, 4) was determined by a linear extrapolation of the Kach number at points 5 and 3. However, this procedure does not take into account the flow field variables at points 2 and 4. Clearly, the Mach number at some point on the surface between x_{y} and x_{4} should be some sort of suitable average of the Mach numbers at points 1, 2, 3, and 4. Consequently the Mach numbers at $x_{1}, x_{2}, x_{3}, x_{4}$, donoted by M_{1}, M_{2}, M_{3} and M_{4}, are computad by a inaear interpolation between the Slow quantities at the pointe $1,2,3$, and 4 and their respoctively asmociated flow quantitien at the interior point. The resultant Mach numbers are then averaged an are the four abscinsas to give a Mach number at a apecific point on the airfoil. This procedure for caloulating the Mech number on the mirfoil murface allow the surface Mach number to depend on surrounding region rathor than on verticie needie.

IV. Final Results

With these modifications, sevoral calculations wer performed for a freestresp Mach number of 0.5 . The reaulte indicated the need for three nore ohauges in the boundary pointe describing the airfoil surface. The first two given ordinatea for the airfoil nose vere not aufficiently close to allow an acourate approximation by a fifth-order polynomis. Consequently, a parabola wat fit to the noee section from which additional data were generated. The trailing edge presented another probler as the theoretical trailiag edge was a cusp and not a stagration point. Since it was not known how to simulate a cuap nuperically, the trailing edge was treated as a etegretion point. sleo, it wat noticad thet when nesh points in the flow field occurred very close to the airfoll surface, the aalculations diverged at those points after about 50 tiae atepa. This implies that $L_{1} \rightarrow 0$ and oonsequantly very large elementa appear in the reflection metrix. In fact, it was found that if L_{2} / L_{1} exceeded about 10 , divergence occurred. Apparently, an $\mathrm{L}_{2} / \mathrm{L}_{1}$ exceeding 10 implies that the effective Δ is reduced so wuch at the boundary that the Δt is too large for stability. To correct such a situation the verticle mesh lines on the froat and rear of the profile must be shifted somenhat to insure that L_{2} / L_{1} is not large.

Having made all the receseary modifications, calculations were once aqain begun for a freeatrean Mach number of 0.5. Figure 5 showa the results after 800 time stops and the nearsteady state solution has apparently bean resched. tersining initial conditions as described previously, calculations have also been done for $\mathrm{M}_{\infty}-2.6$ and 0.704 . Figure 6 gives the resulte for $M_{\infty}=0.704$ after 1200 time steps and Table 1 illuetrates the changes which occur in the Kaoh number dietributions for increasing tine.
The reaulte shown in Pigure 6 are quite interesting as a shock wave is apparently predicted. The steady-atate aolution is wore slovly approached than for pursly subsonic flow, but Tuble 1
shows that changes in the Mach number distribution with time-stop are quite asall after about 1000 time steps. The shock wave is ameared out over mbout three mesh widthe as is chareoteristic of Lax-Wendroff methods. The shock weve is situeted around $x=4.3$ which is approximately the position of the downstream sonic point predicted by Nieuwland. The diacrepency between Hicuwland's results and the calculated values are apparently due to inacouracies in the definition of airfoil geometry. It is now known that airfoil ordinates accurate to five decinal places muat be furniehed to enable the accurate determination of the surrounding potential flow field. In fact, in view of Moravetz's (9) well know analytical work, it would sot be too surprising if alight deviations from Nieukland'a isentropic profile did produce a misock ware. It ia also interestine to note that the computations show the well known smell region af increased flow velocity behind the shock wave in tranacnic flow over profiles.
Y. Concluaions

The Lax-Wendroff difference schame is apparently capable of predicting both subsondo and transonic flow fiolds over arbitrary profiles. For subsonic flow, the nesr-steady-state solution is obtained after several hundred time steps. Yor transonic flow, the near-steady state solutions require on order of magnitude more time atepa. The truc steady-state aolution, of course, would require many hundreds of time st pa; howavor, enst of the transient effecte become negligible after the first several hundred time stepe. The method of prescribing the boundary conditions apparently functioned well. A check of the parallel flow requirement at the airfoil surface was performed at intervals of 50 time steps, und it was found that no mass flow was crossing the airfoil surface. The boundary conditions around the outer boundaries of the seah also coused no difficultics and apparentiy maintained uniform freestream flow at the ontrance boundary without creating lerge disturbances in the flow field.

The results given in Figure 6 indicate that it would ke very interesting to use the Lex-Wendroff method for a profile which is determined accurately to five decimal places, and to see the rasult when the freestrean Mach number increases. Such airfoil data have beon given by Boorstoel (10) for a profile which exhibits shock-free transonic flow. This calcuilation is currently being done using the program described in this paper with one rodification. The leading edge is now fit with a circular are rather than a parabola. These resulta should be available in a few weoks and will be presented at the AGARD Specialista' Meeting in September.

To be practical, however, consideration must be given to the iimits imposed by the conputer. The existing progrem uses a Univac 1108 computer and requires sbout 50,000 storage locations. The program requtres about 5.3 aeconds per time 8 tep, which amphasizes the need for good initial conditions. Obviously, the program is expensive in terms of computer time and storage requiresents. However, optimizing the current program could possibly reduce the ruaning time by a factor of 2 , and by the time the present methed is developed for arbitrary lifting profiles, bigear and fanter machines will be available(11), if past computer development is any elue to the future.

Reforences

1. Godunov, S. K., Labrodyn, Prokopov, G. P., "A Difference Scheme for Mro-Dimensional Unsteady Problems of Gas Dynarics and Conputation of Flow with a Detached Shook Wave," Zhurnal Vychys1itelnoi Matematiki i Matematicheakoi Fiziki, Vol. 1, No. 6, p, 1020, November-Decanber 1961. Translated by I. 0. Bohachevsky, Cornell Aeronautical Laboratory, Inc.
2. Burstein, S. Z., Finite Difference Calculations for Aydrodynamic Flovs Containing Discontinui-ties, $1 E C$ Rescerch and Devolopient Report, NYO-1480-33, September 1965.
3. 3ohachevsky, I. O., Rubin, E. L., "A Direot Method for Computation of Nonequilibrium Flowe with Detached Shock Waves. I. Two Dimeasionsl Flowa," and Bohachevaky, I. O., Mates, Robert E., "II. Axiaymetric Blunt-Body at an Angle of Attack," presented at AIAA 2nd Aerospace Sciences Moeting, Ney York, Preprint No. 65-24.
4. Thomen, H. J. A Mothod for the Numerical Solution of the Cosplete Navier-3tokes Equations for Steady Flowa, General Dynamice/Astruaautics, San Diogo, Galifornia, GDC-ERR-AN733, April 1965.
5. Burstein, S. 2., "Kumericel Methode in Multidiweneional Shocked Flowe," LIAA Journgi, Vol. 2, No. 12, p. 2111, December 1964.
6. Thomwen, H. O., and D'Attorre, L., Celculation of Steady, Thren-Dimensionsl Supersonic FlowPiolds by a Finite Differenoe Method, Goneral Dynamics/Astronautios, San Diego, California, GDC-ERR-AN719.
7. Yoshinare, H., "Current Status of Transonic Fiow Theories," presented at Short Course in "Special Topios in Traneonic Aorodynamios," Space Institute, University of Tennessee, March 11-15, 1968.
8. Niouwland, G. Y., The Computation by Lishthi l'e Method of Transonic Potential Flow around a Family of quesi-Elliptical Aorofoils, NLR-TR T.83, Soptember 1964.
9. Morawetz, C. S., "On the Mon-Exiatence of Continuous Tranmonic Plows paet Profiles I, Coman Pure ad App. Wath., Yol. IX, pp, 45-68, 1956.
10. Boerstonl, J. W., A Surver of Symatrichl Tranconio Potential Flow around Quali-Elilipticgl Agrofoil Seotions, Ifationel Aeroepece Laboratory IIR, HLR-XR T.136, November 1, 1967.
11. Paley, M. D., Soientific Renearch, p. 17, Merch 1e, 1968.

TABLS I
KACE SOMBER DISTRIBUTION FOR M $M_{\infty}=0.704$

χ	I			
	0	1000	1100	1200
3.8017	0.2313	0.2116	0.2091	0.2108
3.8338	0.8005	0.7487	0.7421	0.7443
3.8688	1.0774	1.0378	1.0328	1.0343
3.8846	1.0982	1.0528	1.0508	1.0513
3.9332	1.0389	1.0489	1.0526	1.0550
3.9702	1.0000	1.0391	1.0413	1.0464
4.0003	1.0333	1.1174	1.1167	1.1221
4.0302	1.0206	1.1514	1.1532	1.1614
4.0602	1.0243	1.1650	1.1682	1.1746
4.0902	1.0127	1.1763	1.1846	1.1912
4.1202	1.0122	1.1623	1.1700	1.1756
4.1501	1.0047	1.1723	1.1789	1.1893
4.1800	0.9995	1.1483	1.1507	1.1679
4.2099	0.9896	1.1684	1.1741	1.1833
4.2399	0.9822	1.1316	1.1359	1.1567
4.2698	0.9708	1.1981	1.2095	1.2010
4.3032	0.9636	1.0876	1.0851	1.0689
4.3590	0.9423	1.0463	1.0656	1.0433
4.4190	0.9222	0.9275	0.9160	0.9069
4.4873	0.8805	0.9271	0.9278	0.9406
4.5633	0.8126	0.9086	0.9087	0.8413
4.5937	0.7858	0.8625	0.8587	0.8096
4.6640	0.6985	0.7588	0.7546	0.7009
4.7377	0.5600	0.6081	0.6052	0.5757
4.7817	0.3981	0.4305	0.4283	0.4102

FIGURE 1. THE ONSET OF DIVERGENCE AT $M_{\infty}=0.704$

figure 2. the convergence of calculations for wholly subsonic flow

FIGURE 3. THE TRANSONIC FLOW CALCULATION SHOWING HOW OSCILLATIONS INCREASE

FIGURE 4. EXTRACTION OF MACH NUMBER ON AIRFOIL

FIGURE 5. MACH NUMBER DISTRIBUTION FOR $M_{\infty}=0.500$

FIGURE 6. MACH NUMBER DISTRIBUTION FOR M 0.704

INVISCID SUPERCRITICAL AIRFDIL TKEORY
R. Magnus, W. Gallaher, H. Yoshihara

Convair Division of General Dynamics San Diego, California

SUMARY

A procedure is presented to calculate the steady planar flow over a prescribed lifting profile. To obtain a properly-posed problem for the mixed elliptic-hyperbolic fiow, an unsteady approach is used, where the desired stcady flou is the asymptotic limiting flow for large times arising from a sequence of unsteady flows generated by placing a "leaky profile in the desired uniform free atream (leakiness initially peraitting the free eirean to flow through the airfoil unhindered) and then impulsively turning off the leakiness. The resulting motion is calculated by a finite difference analogue of the unsteady Euler equations where a "diffusing" difference scheme is used. With this difference scheme an artificial viscosity is introduced by which shock waves acouire a steep profile appearing at their correct location with the proper jump conditions fulfilled. To obtain the required resolution, pine laitice mesh is embedded in the ourrounding coarser mesh at the expected location of the shock wave, as well as about the leading edge. Two examples have been computed. The first is the flow at $H_{\infty}=0.85$ over a biconvex airfoil of 8.4% thickness ratio at zero angle of attack, which is intended to demonstrate the ability of the procedure to evolve shock waves. Although the programmed procedures can treat a bluntnosed profile at angle of attack, we consider instead, for the second example, a biunt-nosed shockless prosile at zero angle of attack computed by Nieuwland and Boerstoel using the hodograph method. The intent here is to deteraine whether this shockless flow is stable, and remains indeed whockless after having been perturbed by the many unsteady disturbances introduced in the process - I reaching a steady state.

1. INTRODUCTION

The design of a transonic aircraft frequently involves the considerstion of a coaplex threedimensionsl supercritical rlow. Neyertheless in the wing design, planar flow piay a significant role because of the large extent of such fiow, efther naturally present as in the case of a high aspect ratio wing, or produced by design as a resuit of a fuselage contouring to obtsin favorable interference effects in the case of smailer aspect ratios. The resulting flow is a viscous one involving a turbulent boundary layer-nomal shock interaction. This interaction is a strong interaction, disallowing the usual decoupling of the inviscid and viscid portions, so that an approximate interaction theory as that due to Gadd (Rer. 1) must be used prior to applying the usual iterstive scheme. In the latter scheme, an essential ingredient will be the calculation of the overlying inviscid flow. It will be the purpose of the present paper to present an axact procedure to calculste such flows.

There presentiy does not exist a satisfactory procedure to calculate inviscid supercritical plows. There has been an extensive effort in England on semi-empirical methods characterized by the work of Sinnott and Osborne, but, despite their significant accomplishments, these methods fall short of desired requirements. Similarly the integral equation approach, first considered by Oswatitsch and subsequently expanded by many others, has had surprising success, but it has been unable to handle blunted, lifting profiles. There appears to be no simpler citernative than to start from the full Euler equations using a numerical procedure. The incompatible characteristics of subsonic and supersonic flows, as well as the problem of systematically locating the shock wave, would discourage a steady approach using the relaxation procedure, which inherently is a subsonic method. He shall therefore adopt an unsteady approach where the desired steady flow will be ohtained as an asymptotic limit for large times by a marching procedure from a given initial flow, The marching procedure for the initial value problem is properly set for both subsonic and supersonic flows. Initially one will start from a uniform parallel flow corresponding to the free stream conditions. At zero time the boundary conditions representing the body will be impulsively "turned on." The consequent unsteady motion will then be treated using a finite difference analogue of the unsteady Euler equstions where a "diffusing" difference scheme (to be described later) is used to approximate the partial derivatives. The use of this difference scheme gives rise to an inherent nortificial viscosity, " similar in nature to that of Von Neumann and Richtuyer; and shock wares will acquire a profile, ceasing to be aiscontinuities, and will appear quite naturally at their proper location. There will thus be no special subroutine required to locate and treat shock waves.

To illustrate the above procedure we shall calculate two examples. The first is a preliminary effort intended to demonstrate the ability of the method to evolve the primary shock wave. For this case we shall consider a sharp-nosed biconvex profile at zero angle of attack. For the second example we bhall recalculate one of the shockless flows obtained by Nieurland and Boerstoel (Refs. 2 and 3) using the exact hodograph equations. Such shockless flows have been questioned by many (see, e.g., Refs. 4 and 5) who have concluded that these flows were unstable leading ultimately to flows with shocks. The purpose of the second example is to attempt to verify this instability (to the extent that one can by a numerical procedure) and to determine whether or not the resulting shock, if it indeed does arise, is weaker than for a comparable "nonoptimum" case. The shockless profile considered is blunt-nosed, symmetric, and norilifting.

The unsteedy procedure used above to calculate these examples is, however, able to handle general lifting profiles, but we shall defer the calculation and the reporting of these cases for a later time.

2. bASIC FLDH EQUATIONS AND AUXILLARY CONDITIONS

The starting point of the numerical approach is the set of Eulor equations re-expressed in a conservation form as follows using the usual notations and a cartesian ccordinate system

$$
\frac{\partial \bar{W}}{\partial t}=\frac{\partial \bar{F}}{\partial x}+\frac{\partial \bar{d}}{\partial y}
$$

where the vectors in component form are given by

$$
\bar{W}=\left(\begin{array}{l}
\rho u \\
\rho v \\
\rho
\end{array}\right\} \quad \bar{F}=-\left\{\begin{array}{l}
\rho u^{2}+p \\
\rho u v \\
\rho u
\end{array}\right\} \quad \bar{G}=-\left\{\begin{array}{l}
\rho u v \\
\rho v^{2}+p \\
\rho v
\end{array}\right\}
$$

and the coordinate x being in the free stream direction,

Since, in flows of interest, shock waves are sufficiently weak that one may aseume an isentropic flow; thus,

$$
\mathrm{p}^{\rho^{-Y}}=\text { Const. }
$$

γ taken subsequently as $7 / 5$.

For the boundary conditions, ve require the flow to approach at all times a preseribed unifonm flow sufficiently far from the airfoil, and at the $\mathrm{m}_{\mathrm{A}} \mathrm{f} 0 \mathrm{ol}$ we require the impulsive condition

$$
(\vec{w} \cdot \vec{n}) \quad H(t)=0
$$

where

$$
|\vec{w}|=+\sqrt{u^{2}+v^{2}} \quad \arg \vec{w}=\arctan \frac{v}{u}
$$

\vec{n}, outward normel to the profile, and

$$
\begin{array}{ll}
0 & t<0 \\
1 & t \geq 0
\end{array}
$$

At $t=0$ we assume a uniform flow at the free stream conditions.
For the lifting case, the Kutta condition is enforced at the pointed trailing edge by requiring the flow in the vicinity of the trailing edge to be locally symetric about a line bisecting the external angle at the trailing edge.

3. DIFFERENCE SCHEME

In the course of the studies attention has not been confined to a single type of finite difference scheme.

The results presented for the biconvex airfoil at zerc angle of attack were obtained with a two step explicit ifnite difference scheme closely related to the procedure given by lax and Wendroff, Fef. 6. The results presented for the blunt-nosed airfoil vere obtained using a aimpler one-step diffueion-stabilized explicit difference scheme for wost of the computation fiejd and an iterative imp"icit scheme to advance the solution in the extra fine mesh region around the airfoil nome.

Since the work being described is exploratory, various methods for satisfying boundary conditions, and applying initial conditions, need to be investigated. Therefore, in order not to be excessively troubled by instability of the computations due to severe starting conditions, or poorly chosen wethods for applying boundary conditions, relatively simple difference schemes baving easily controliable damping properties bare been used. Stability and accuracy in difference schemes are qualities which are more-or-less exchangeable so a more accurate (and less stable) schere will probably be used in future versions of the progrem.

4. FIRST EXAMPLE - BICONVEX AIRFOIL

To illustrate the procedure we shall first calculate the flow over a circular arc biconvex airfoil of 8.4% thickness ratio at zero angle of attack at a frec stream Mach rumber of 0.85 in a closed chennel. The purpose of this simple example is to examine the ability of the procedure to evolve the essentially normal shock. The simple mesh system was used for this example which is sbown in Figure 1. In the dashed region a finer mesh was incorporated at a later time to obtoin a better resolution of the shock wave.

It was found that the twomotep difference scheme had insufficient demping to prevent a satastrophic instability of the calculation from occurring in the part of he field around the airfoll nose. The charscteristic jagged response of the difference acheme to a strons disturbance, see Ref. 6, was sufficiently intense in the nose region that negative absolute pressure weuld occur at a point somewhat aft of the airfoil nose and the calculation scheme would fail. Extra diffusive damping was added to the difference achose (uhich degrades the accuracy) in order to continue the calculation. The resulting pressure disiributions on the alrfoil are shown in Figure 2 at various times for the coarse mesh and with the adition of the exbedded fine mash. The final Nach number contours in the 510 w fleld are next presented in FYgure 3 for Mach number increments of 0.02 . The contours were obtained by a linear interpolation of the Mach numbers at the mesh points.

5. SECOND EXAMPIE - SHOCKIESS PROFILE

For the calculation of the second example, a procedure has been developed which is capable of handing the flow over a blunt-nosed profile with lift. Hore we have incorporated the far ficid boundary condition, the Kutta condition at the trailing edge, and a variable mesh. For the variable mesh in the vicinity of the blunt nose, an extra fine mesh having a apacing of 0.01 chond is used. The airfoil itself is inbedded in a fine mesh with 0.05 chord spacing and the ficld external to the airfoil (within a 3.2 chords square) is covered with 0.2 chord coarse mesh. Cveriapping the coarse cartebian a polar coordinate grid having 9 non-uniformaly spaced ringe and 40 rays extends the field to infinity. Here a suitable scaie transformation of the redial coordinate is carried out.

For the second example we shall recalculate the flow over a shockless profile calculated by Nieuviand and Boerstoel using the hodograph method, and in particular we shall take the profile denoted by the designation .12-.75-1.375 of Ref. 3. The calculation by the finite difference method is in process and will be presented at the oral presentation.

REFERENCES

1. Gedd, G., "Interactions Between Normal Shock Waves and Turbulent Boundary Layers, " British ARC Report Ko. 22559, 1961.
2. NLeuwiand, B. Y., "Transonic Potential Flow Around a Family of Qussi-Elifptical Aerofoil Sections, " NLR (Dutch) Report T172, 1967.
3. Boerstoei, J. W., "A Survey of Symetrical Transonic Potential Flows Around Quasi-Elifptical Aerofoll Sections," NLR Report T-136, 1967.
4. Busemann, A., and Guderley, G., The Problem of Drag at High Subsonic Speeds," British MAP Volkenrode Report 184, 1847.
5. Morawetz, C., Mon the Mon-Existence of Continuous Transonic Flow Past Profiles," I, II, and III, Comm. on Pure and Appl. Math., 1956.8.
6. Lax, P. D., and Hendroff, B., "Difference Schemes for Kyperbolic Equations with High Order Accuracy," Coum. Pure and Appl. Math., 1964.

FIGURE 2. PRESSURE DISTRIBUTION ON THE AIRFOIL.

APPLICATION DE LA NETHODE DES CARACTERISTIQUSS TISTATIONNAIESS

 AU CAICUL NOMERIQUE DIN ECOULMENT PERUMENT COFPRESSIBLEpar

Pierre CarRIERE*
Claude CAPRLIER**
O.N.E.R.A. (92 - Cnttillon - FRANCE)

* Direoteur Scientifiquo do 2 'Aórodynamiquo
** Lajoint Soientifiquo auprès de la Direction Aérodynamiquo.

SOMMAIRE

Abstract

L'écoulement bidirensionnel autour d'un profil est calculé cocme limite asymptotique d'un écoulement non permanent. Corme données initiales on peut, par exemple, utiliser une solution comue et modifier contimement on fonction du teups les conditions aux limites, soit encore imposer dès l'instant initial à un écoulement arbitraire les conditions aux limites souhaitees; 1'évolution de l'f́coulement per étre déterndnóe par la méthode des caractéristiques. Un changeanent de coordonnées tel que les lignos de courant et leurs trajectoires orthogonales soient représentéoe par jes parallèlos aux axos simplifie los relations des caractéristiques ains" que l'oremisation des calcula mmériques. L'organisation génerale du calcul eet déorite ainsi que les solutions adoptés pour lever certaines difficultés: point d'arret, conditior. de JouKOnSKY, limites du resoau, ondee de choo. Queiques résultats de calcule prozramés en Fortran sont présentés et discutés.

SUMMARY

APPLICATION OF TEE METEOD OF UNSTATIONARY CHARACTERTSTICS
TO THE NAERICAL COMPUTATION OF A STEADY COMPRESSIBLE FLOW

The two-dimensional flow around an airfoil is cocputed as an asymptotic linit to an unstationary flow. As initial data it is possible to use, for instance a know solution and modify, as a contimous functim of time, the limiting conditions ; or impose, frca the initial moment, the desired limiting conditions to an arbitrary flow ; the evolution of the flow can then be detormined by the method of characteristics. A change of coordinates such that the current lines and their orthogonal trajectories are representa by lines parallel to the axes simplify the relations of the characieristics as woll as the organization of the mumerical coaputatic.

The genaral organization of an computation is described, as will as the solutions chosen to lift cor'ain difficulties : stagnstion points, JOUKOWSKY's conditions, network linits, shock wawes.

A fow results of computations, programed in Fortran, are presented and discussod.
 stationnaire considére coume limite asymptotique a ét6 froquemment propośo pour Ifsoudre des problemos parti ulièrement diffiailes tels que celui du choo déteché [1-2-3-4].

Quand la solution munórique directe du problime statiomaire impose l'emploi dtune mothode iterrative (problem eljiptique), il ntest jamais cortain a priori que ia comvergence du proosís plus ou moing arbitraire utilisé assure in convargence $;$ si, au contraire, on intrcduit is variable temps, I'caistonce de caractéristiquos rélles dana le nouveau problème pernet de déterminer rationnollement un critère de convergence ; celui-ci est d'ailleurs assurd automatiquemont si l'on utilise une néthode de calcul besée sur les propriétés mêmes des carsctériatiques.

La complication du problème n'est donc qu'apparente : les diverses itérations imposées dans la méthode stationnaire sont alors remplacéos par la suite de calculs effectués aux instants auccessifis

Dans le cas d'écoulements transsoniques, un autre avantage de la méthode instationnaire dee caractéristiquas est de pernettre a priori de prêvoir directement l'eristenoe d'omea de choo dans la solution cherahée et, par conséquent, de choisir la forme du profil pour éviter cet inconvonient.

On paut imaginer un tress grand nombre de variantes d'application de la méthode; citons les auivantans a titre d'exeaple:

- partant d'un écoulement connu autour d'un profil donné (P), on modifie progressivement (P) jusquid la nouvelle forme (P^{\prime}), les conditions (E_{∞}) à l'infini restant invariantes.
- E ∞_{∞} restant fixe, on peut aussi chercher la nouvelle forme (pi)satisfaisant a une distribution différente des pressions sur le profil (problème inverve).
$-(P)$ restant fire, on part d'une solution connue pcur (E_{∞}) et I^{\prime} on passe progressivement de (E_{0}) i (E_{∞}^{\prime}).

L'objet de cet exposo est d'indiquer les principes et les premiers resultats obteras à 1'0.N.E.R.A. dens une tentative do mise en oelvre de ce procédé :

La méthode adoptée se caractérise essentiellement par l'utilisation d'un systèao de coordonńee (X, Y) constitú ì chaque instant par les lignes de courant ($Y=$ cte) et leurs trajoctoires orthogonales ($\mathbf{X}=$ ote $)$.

Ce choir a entre autres avantages celui de ajmplifier beaucoup le calcul numérique a d'une part en effet les conditions aux limites sont écrites toujours sur des lignes $X=$ cte ou $Y=$ ote du réseau; d'autre part, dans ces axes intrinsèques, les équations générales conservent une forme tress simple. Ce choix soulève par contre, comme on le verra, quelques difficultés au voisinage des points de viterse nulle (bord d'attacue par exemple).

TIPOSE DE IA METHODS DE CALCUL

Après avoir défini les formules générales de la méthode, on analysera les problêmos particuliers posés par sa mise en ouvrre.

Formulation generale

On étudie un écoulement de gaz parfait uniforme à l'infini ($p_{\infty}, V_{\infty}, T_{\infty}$), pouvant cumporter óventuellement dar.s certains domaines des variations d'entropie dues ${ }^{2}$ l'apparition d'ondes de ohoo.

SYSTEME DE COORDONEES. Les relations des caractéristiques sont rappelces en annoxe 1. Cos relations sont particulièrement simples oi on les exprime dans des axes locaux x_{1}, y_{1}, t, \bar{I}_{1} étant lo vecteur unitaire porté par la vitease locale à
 l'instant t et \bar{y}_{1} le vectour unitaire directement perpendiculaire, situé dans le plan physique (x, y).

L'anglo $\overline{\mathrm{X}}, \bar{x}_{1}$ sera appelés 0.
Pour pouroir utiliser les relations des caractéristiquos sous cette fome simple, il oot nécessalre de déterminor uno transformation biunivoquo faisant correspondre a tout point du pian physiqua (x, y) un point du plan (x, Y) ot telle que dans ce derniar plan las lignes de coursat et loux trajectoizes orthogonales soiont ropresentbes par dew paralleles auc exes.
 difrectionem ot $\overline{\mathrm{y}}$.

Pocons

$$
\begin{aligned}
& d x_{1}=\alpha(x, y, t) d x \\
& d y_{1}=\beta(x, y, t) d y
\end{aligned}
$$

(\ddagger)
 aymition:

$$
\begin{aligned}
& d x=\alpha \cot \theta d x-\beta \sin \theta d y \\
& d y=\alpha \sin \theta d x+\beta \cos \theta d y
\end{aligned}
$$

(2)
α et β satisfont donc néocssairement à :
(3) $\begin{aligned} \frac{\partial \alpha}{\partial y} & =-\beta \frac{\partial \theta}{\partial x} \\ \frac{\partial \beta}{\partial x} & =\alpha \frac{\partial \theta}{\partial y}\end{aligned}$

D'après les relations (3), α et β intingrent sous in forme:
(4)

$$
\begin{aligned}
& \alpha(x, y, t)=\alpha_{0}(x, 0, t)-\int_{0}^{y} \beta \frac{\partial \theta}{\partial x} d y \\
& \beta(x, y, t)=\beta_{0}(-\infty, y, t)+\int_{-\infty}^{x} \alpha \frac{\partial \theta}{\partial y} d x
\end{aligned}
$$

Leo distribution initiales $\alpha_{0}(x, 0, t)$ ot $\beta_{0}(-\infty, y, t)$ sont a priori arbitraires.

$$
\alpha=\frac{A(x, y, t)}{V(x, y, t)} \quad \beta=\frac{B(x, y, t)}{p V(x, y, t)}
$$

d'apros (3); on effet, on a 3

$$
\frac{\partial A}{\partial y}=\alpha \cdot \beta\left(\frac{\partial V}{\partial y_{1}}-V \frac{\partial \theta}{\partial x_{1}}\right)=\alpha \beta \operatorname{rot} \bar{V}
$$

(5)

$$
\frac{\partial B}{\partial x}=\alpha \beta\left(\frac{\partial p V}{\partial x_{1}}+p V \frac{\partial \theta}{\partial y_{i}}\right)=-\alpha \beta \frac{\partial p}{\partial t}
$$

Cos óquations montrent qua si 1 ' 6 coulement ost impotationnel, condition assurso iai on l'absence d'andee do choo, co a:

$$
\Delta=A(x, t)
$$

fonotion arbitraire, qui pormettra d'écholonner corranablement dans le plan phyaique lee hocrologuas dan ligenes I = ote (confondues alors avec des équipotentiolles).
On remarquera d'autre part que ad rot $\overline{\mathrm{V}}=0$, on a la relation:
(6) $\quad B=\frac{p}{k} \frac{\partial V}{\partial Y}$
où $\left\{\right.$ représente la courbure locale $\frac{\partial \theta}{\partial x_{1}}$ de la ligno de courant dans le plan physiqua. Cette relation eora utile pour l'étude du voiainage du point d'arrot.
 carnctéristique d^{\prime} un point $M(X, Y, t+d t)$ est un cose de sommet M ocupant le plen t saivant wre
 et ont respoativement pour mesures:

$$
\begin{aligned}
& \Omega A=\Omega B=\frac{a}{\alpha} d t \\
& \Omega C=\Omega D=\frac{a}{\beta} d t
\end{aligned}
$$

a étant le óflérité du son.
De cette surface caracteristique, on ne retiendra par exemple que les quatre bicaractéristiquos persant par lessoumets A, B, C et D de l'ellipeo.
suivantes ant verifiéces en strórel $\left(\gamma=\frac{a^{2}}{R / \rho}\right)$ Io long de ces bicaractóristiques, les relations
(7)

$$
\begin{aligned}
& \frac{1}{\gamma \beta}\left(d_{R}\right)_{A M}+\frac{1}{\alpha}(d V)_{A M}=-\frac{V}{\beta} \frac{\partial \theta}{\partial y} d t \\
& \frac{1}{\gamma \beta}\left(\alpha_{p}\right)_{B M}-\frac{1}{a}(d V)_{B M}=-\frac{V}{\beta} \frac{\partial \theta}{\partial y} d t
\end{aligned}
$$

$$
\frac{1}{\gamma \beta}(d \mu)_{C M}+\frac{v}{a}(d \theta)_{C M}=-\frac{1}{\alpha} \frac{\partial V}{\partial x} d t
$$

$$
\frac{1}{\gamma \uparrow}(d p)_{D M}-\frac{V}{a}(d \theta)_{D M}=-\frac{1}{\alpha} \frac{\partial V}{\partial x} d t
$$

D'autre part, l'entropie satisfait à la relation :
(8) $(d s)_{\Omega M}=0$

Si on étudie 2'écoulement isentropique d'un gas parfait $\gamma=$ ote, les reiations se simplifient on posant $P=\frac{2}{\gamma-1} a$. Du fait de l'isentropie $\frac{a d p}{\gamma p}=d P$
Les relations (7) s'farivont alors s
(9)

$$
(d P)_{A M} \pm(d V)_{A M}^{A M},=-\frac{(\gamma-1) P V}{2 \beta} \frac{\partial \theta}{\partial Y} d t
$$

$$
(d P)_{C M}^{C M} \pm V(d \theta)_{C M} \pm-\frac{(\gamma-1) P}{2 \alpha} \frac{\partial V}{\partial X} d t
$$

 et que l'on peut utiliser ces dernieros relations.

ETUDE DE QUELQUES PROBiEMES PARTICULIERS
Le mode de calcul du point courant ne prósente auoune difficulté théorique. Par contre, il est nécessaire de disouter quelquos problemes particuliers.

CALCUL DO POINF COURANTM. Les trois grandours P, V ot θ dafinissant $1^{\prime \prime}$ cooulement au point oourent $M\left(x, Y_{i} t+d t\right)$ serant déternińes par 1'application des quatro rolations carautoristiques (9) nócosselrement coupatibles quo lion pourra rósoudre par la mothode dos moindres carros. on pout éventuellement faire appol ì d'autros blaaractézistiquen.
 $0 \leqslant I \leqslant 1, Y= \pm 0$ du plan trunaforw $X, I_{1} X=0$ correspondent au point d'arritt 0 .
Λ tout point $M(x, \pm 0, t+d t)$ correspond un point \equiv du proîil dont 1 'abeaisse curviligere λ compte 1 partir du bard de fuite est dounbe par:

$$
\lambda=\int_{x}^{1} \alpha(x, \pm 0, t+d \varepsilon) d x
$$

Ia distribution arbitraive $\alpha(x, \pm 0, t)$ ayant 6 to ainsi choisie ot le prosil ótant donof $\frac{1}{2}$ chaque inetemt par in rupartition $\theta(\lambda, t)$, 1 langile θ^{t} est donc conna en chaque point de la coupure $Y=\$ 0$ a condition de connaitise le point d'arntt sur le profil. Loe doux autres grandeurs P et V carnotérisant l'foculement au point courant de la coupuse ou tempe $t+d t$ sercont obtenues par les relaticas (9) le leag dee troie bicaractéristiques Mi, YB et fiD pour un point de $Y=+0$ 。

Pour un point de la coupure $Y=-0$, il faudre considérer les trois bicaractéristiques MA, MB et MC.
Les doux fanctione $\alpha(x, \pm 0, t)$ peuvent stre ohoisios arbitrairement sous réserve de satisfaive aux conditions de formeture du profil dana lo plan physiques.

$$
\begin{aligned}
& \int_{0}^{1} \alpha^{+} \cos \theta^{+} d x=\int_{0}^{1} \alpha^{-} \cos \theta^{-} d x \\
& \int_{0}^{1} \alpha^{+} \sin \theta^{+} d x=\int_{0}^{1} \alpha^{-} \sin \theta^{-} d x
\end{aligned}
$$

Nota $\boldsymbol{z}^{\text {Si }}$ l'obetacle se deforme, il n^{\prime} est pas ligne de courant; l'obatacle défini par affichage de $\partial(\lambda, t)$ sur la coupure est donc distinct de l'obstacle róel pendant la période de déformation
$\left(\frac{\partial 0}{\partial t} \neq 0\right): 00$ point est sans importance pour le probleme étudié, car on n'est intéressé par le profil exact que lorsque l'ecoulemont pormanont est atteint.
$p \pm \begin{aligned} & \text { POINT SUR IE PROFCL : PROBIELE INVERSE, on pout aussi so donnor a priori la distribution }\end{aligned}$ $p^{ \pm}(X, t)$ sur la coupure $0 \leqslant X \leqslant 1$, le profil correspandant étant a déterminer.

Les trois bicaractóristiquee utilisées au paragraphe próódent servirant alors au calcul de $\theta(x, t+d t)$ ot $V \pm(x, t+d t)$ sur oette ooupure.

Apros intégration, il y aum lieu de verifier les conditions de fermeture du profil correspondent dans lo plan physique:

$$
\begin{aligned}
& \int_{0}^{1} \alpha^{+} \cos \theta^{+} d x=\int_{0}^{1} \alpha^{-} \cos \theta^{-} d x \\
& \int_{0}^{1} \alpha^{+} \sin \theta^{+} d x=\int_{0}^{1} \alpha^{-} \sin \theta^{-} d x
\end{aligned}
$$

et

Sinon, on dovra poursuivre to calcul er modifient α^{+}par oremple juequ'ì ce qu'il en soit aingi.
POINT SUR IE SHLLGE. Si lo probleme est dissymótrique, 1 'axe $Y=0(x>1)$ doit aussi atre considéré coame une coupure (siliage) pendant la phase instationnaire du calcul.

Pour le caicul de deux points $Q^{ \pm}$infiniment voising de part et d'autre de $I^{\text {taze }} Y=0$, on utilisera les six bicaraotériatiques $Q A^{+}, Q B^{+}, Q D^{+}, Q A^{-}, Q B^{-}$at $Q C^{-}$ ot on écira la condition da carpatibilité $P^{+}=P$, $\theta^{+}=\rho^{-}$.

On dovin choisir $\alpha(x, \pm 0, t)$ de maniere qu'en tout point de la coupure de aillage; on ait :

$$
\alpha(x,+0, t)=\alpha(x,-0, t)
$$

oe qui assure la coincidence dans ie plan physique des pointe correspoodast aus desx points ${ }^{4}$, is condition de fermeture ayant été préalablement satisfaite.

POINIS D'ARRET. Au voisinage d'un point d'arxt, on no peut calcuier l'absodsee ourvilige par intégration de:

$$
d x_{1}=\alpha d x
$$

car α tend vers linfint coume $\frac{1}{\nabla}$ au point d'arret.
Mais dans son voisinage, ou sdeottre sans domonstration que 1 lfoculemat pout itre considére comse incompressible et irrotationnal.
Son potentíel compleze eat alors de la forme $W=K 3^{*}$

$$
\text { avec } \begin{aligned}
\quad \xi & =x+i y \\
n & =\frac{\pi}{\pi-\left|\theta_{0}\right|}
\end{aligned}
$$

θ_{0} étant l'angle de déviation au point d'arrtt (pour un impact normal, $\theta_{0}=\frac{\pi}{2}$ et $n=2$).
Ayant posé $\alpha=\frac{1}{V}$, on trouvo ainsi qu'su voisinage $\Delta X d^{\prime} u n$ point d'amtt X_{0}, on a:

$$
x_{1}\left(x_{0} \pm \Delta X\right)=x_{1}\left(x_{0}\right) \pm \frac{n \cdot A\left(X_{0}\right) \Delta x}{V\left(X_{0} \pm \Delta X\right)}
$$

CALCUL DE P EN UN PUINT D'ARRET. On a la rolation:

$$
\begin{aligned}
0=\frac{\partial V}{\partial t}+\frac{\partial}{\partial x_{1}}\left(\frac{p}{p}+\frac{V^{2}}{2}\right)=\frac{\partial V}{\partial t} & +\frac{\partial U}{\partial x_{1}} \\
\text { en posant } U & =\frac{(\gamma-1)^{2}}{4 \gamma} p^{2}+\frac{V^{2}}{2}
\end{aligned}
$$

Dans le problème symétrique, $\quad \frac{\partial V}{\partial t} \rightarrow 0$ au voisinage d'un point d'arret, donc U est stationnaire. sur le profil.
On pourra donc écrire:

$$
U_{0} \equiv \frac{(y-1)^{2}}{4 \gamma} P_{0}^{2}=\frac{1}{2}[U(\Delta x)+U(-\Delta x)]
$$

lang un problème portant, le point d'arret peut varier au cours des itérations, de sorte que $\frac{\partial V}{\partial t} \neq 0 \quad$. On admettra néanmoins que le procédé précédeat reste applicabie, pourvu que cette vesiation soit trìs faible, hypothèse généralement vérifíée.

CAICUL DE α et β. Dans tout domaine irrotationnel, α est donné par $\alpha=\frac{A}{V}\left(\frac{X}{(X, t)}, Y, t\right)$, $A(X, t)$ étant une fonction arbitraine.
Il est commade de se donner arbitrairement à chaque instant $\alpha(X, \pm 0, t)$ et d'en déduire par itération $A(X, t)$ qui sert ensuite pour le calcul de α dans tout ie plan.
Dans les zones rotationnellen de l^{\prime} 'fooulement (en aval d'une ande de chon), lo procédé précédont n'est pas valable ; on doit alors opérex par calcul pas a pas de α par l'équation (4) .
Au voisinage d'ur. pcint d'arrêt ($x=x_{0}$), l'intégrale est zégulière, mais on peut ramarquar quo rotv étant nul, $\frac{\partial A}{\partial Y}=0$ ce qui permet d'ferire:

$$
A\left(x_{0}, \Delta y, t\right)=A\left(x_{0}, 0, t\right)=\frac{1}{2}\left[A\left(x_{0}-\Delta x, 0, t\right)+A\left(x_{0}+\Delta x, 0, t\right)\right]
$$

$$
\beta(x, y, t)=\beta\left(x_{\infty}, y, t\right)+\int_{x_{\infty}}^{x} \alpha \frac{\partial \theta}{\partial y} d x
$$

Ters le problime direct, le calcul de $B\left(X_{0} \pm \Delta X, 0, t\right)$ singuilier an X_{0} où $\alpha \rightarrow \infty$ résulte inmádatenant de la rolation (6), la courbure locala k du profil étant dannée, ot le dérivfe $\frac{\partial y}{\partial Y}$

Dans le problime inverse, \mathbf{k} doit aussi être obtemp par itération.
DEIECTION DES OMDES DE CHOC. Des ondes de chos peuvent apparattre an cours de calcul soit parcoe qu'elles aristent dans l'fcoulement permanant cherché, soit parce que les modifications doe oonditions aux limitos ont été trop rapides et ont provoqué la confluence d'ondes de coupression. II y a dono liou de détecter lour apparition, soit pour ralentir les modifications des conditions aux limites, soit pour tenir compte de ces ondes de choc par l'application des relations d'itifeontor.

Il y a apparition dume onde de choo entre les instants t et $t+\Delta t$ si le point de contact d'use bicaractéristique quelconque avec son enveloppe est situé dans cet intervalle de temps.

Ce critère doit êtro appiiqué en chaque point du réseau et, en principe, pour toutes les bicaractéristiques.

Nous n'examinerons pas ici la méthode de calcul à appliquer, dans le cas où une onde de choc étant apparue, al veut suivre son évolution au cours du calcul ile prinoipe de la méthode à partir des équations d'HUGONIOT ne présente d'ailleurs aucune difficulté.

praplque du calcus

heseau de caicul

Connaissant l'écoulemont dans un plan (x, Y, t) on déternine, par les relations des caractéristiques et compte tenu des conditions aux limites, l'écoulement dans le plan ($x, Y, t+\Delta t$).

On choisit dans les plans (X, Y, t) un réseau à sailles uniformss ; dans le cas diun écoulement isentropiqua, cet écoulement est détermiń par la conrsissance des grandeures P, V et θ an chaqua noeud de ce réseau ; il faut également connaitro les valeure de α et β qui déterninent la tranoformation.

Ce maillage régulier facilite les interpolations et la détermination des dérivés nécossaires aur calcule. Le choir des fonctions arbitraires dáfinissent α et β pernet de jouer sur la répartition des points corrospondants du plan physique (x, y) ; on peut en particulier reserrer les points au voisinege du profil et surtout au voisinage des points d'arrtt.

Lo réseau étant nécossairemant vorné, il ost impossible d'afficher les conditions $P_{\infty 0}, V_{\infty}$, et θ_{∞} fixées à l'infini : cette difficulé n'a roçu encore aucune solution théorique correcte. On pent, soit utiliser un prolongement analytique de P, V et θ obtenus au stade t pour calculer los points $Q(t+\Delta t)$ à la frontìre, soit afficher sur cotte frontiere la solution do l'écoulemont permanent obterve par une theorie linéarisée.

Afin do minimiser l'influence dos erreurs d'affichags sur los frontières du resoau on a, de toutos façons, intértt à reporter celles-ci le plus loin poosible du profil.

EXEMPLES DE KISE BN OETVBE DU CALCOL

Deux axemples sont donnés pour illustrer la méthode : un probleac symétrique et un problème portant.
PREHTER EXEMPLE : PROBIEAE DIRBCT SNRETRIqUE. On suppose qua l lon a détervińs l'́coulemant à l'instant t, correspondant à un cortain profil défini par la fonction $\varphi(\lambda)$ exprimant, en fouction de l'abscisse curviligne λ coaptée à partir du bord de fu'te, l'angle φ de la tangente orientée avec la référence fixe \bar{x}.

A lingtant $t+\Delta t$, on modifie le profil en écrivanc :

$$
\varphi(\lambda, t+\Delta t)=\varphi(\lambda, t)+\Delta \varphi(\lambda)
$$

Comneissant $\alpha(x, 0, t+\Delta t)$, on poat déterminer x_{1} et par auite λ on tout point de la coupure $Y=0,0 \leqslant X \leqslant 1$, an connaitt donc φ d'ou ies nouvelles valeure de θ sur oette ocupure.

L'utilisation des relations des caractéristiquas entre les plans X, Y, t et $X, Y, t+\Delta t$ permot de déterniner les nouvelles valeuss de P, V et θ en chaque noend du rébealu.

DEUXIEME EXEMPIE : PROBLENE DIRECT PORTANT. La forme du profil est également donnfó ì l"jnatent t par la loi $\varphi(\lambda)$

Soit λ_{0} l'abscisse curviligno du point d'arrot A et illangle dincidence.

Sur l'intrados ot l'extrados, on a respectivement :

$$
\begin{array}{ll}
\theta^{-}=\varphi(\lambda)-i & x_{1}^{-}=\lambda-\lambda_{0} \\
\theta^{+}=\varphi(\lambda)_{-}-i-\pi & x_{1}^{+}=\lambda_{0}-\lambda
\end{array}
$$

A l'instant $t+\Delta t$, on modifie la position du point d'arret et, éventuellemant, la forme du profil :

$$
\begin{aligned}
& \lambda_{0}(t+\Delta t)=\lambda_{0}(t)+\Delta \lambda_{0} \\
& \varphi(\lambda, t+\Delta t)=\varphi(\lambda, t)+\Delta \varphi(\lambda)
\end{aligned}
$$

On détermino alors, par application des relations des caractéristiques au voisinage du bord de fuite F, la quantite Δi dont il faut faire varier l'incidence pour assurer ia condition de JOUKOHSKI au point F (égalitó des pressions d'extrados et d'intrados).

Connaissant $\alpha(X, \pm 0, t+\Delta t)$, on pout alors, come préoéderment, déterminer la répartition de $\theta(X, \pm 0, t+\Delta t)$ sur la coupuro.

Puis, on détermine les nouvelles valeurs de P, V et θ en chaque noeud du réreaus
preniers resuluats obtems et discussion

Un progranme a étf écrit sur UNIVAC 1108 dans le cas d'un prcbleme symétrique. Il utilise un réseau comprenant au maximum 90 points en J et 30 en Y.

Avant de discuter des premiers résultats obtemus, il est néceseairs d'Étudier le comportement de l'foorlemant au voisinago des points d'arret.

ETUN DE LIECOULIEMT AU VOISDAGE DVN POINT D'ARRET
On a admis qu'au voisinage d'un point d'arret, l'écoulement pouvait tetre considéré come incampresm sible of irrotationnel.

S'il s'afit d'un impact normal, lo potentiol est celui de l'écoulomont autour d'un cercle dont lo rayon R est égal au rayon de aourbure du profil.

$$
v^{2}=k x\left(1-\frac{x}{4 R}+\ldots\right) \quad x>0
$$

(10)

$$
V^{2}=-K x\left(1-2 \sqrt{\frac{-X}{R}}-\frac{9 x}{4 R}+\ldots\right) \quad x<0
$$

euant aux dérivées $\frac{\partial V}{\partial X}$ et $\frac{\partial \theta}{\partial Y}$, olles satisfont aux rolations:

$$
V^{2} \frac{\partial \theta}{\partial y}=-V \frac{\partial V}{\partial x}=-\frac{k}{2}\left(1-\frac{x}{2 R}+\ldots\right) \quad x>0
$$

(11)

$$
v^{2} \frac{\partial \theta}{\partial y}=-v \frac{\partial v}{\partial x}=\frac{K}{2}\left(1-3 \sqrt{\frac{-x}{R}}-\frac{9 x}{2 R}+\ldots\right) \quad x<0
$$

L'anfle θ que fait le vecteur vitesse avec l'axe or dans le oas d'un problemo symétrique est donné par:
(12)

$$
\begin{array}{r}
\theta=\operatorname{arctg}^{[}\left[\frac{u}{1+\sqrt{\frac{y}{2 R u}}+u \sqrt{\frac{u x}{2 R}}}\right] \\
u=\frac{x+\sqrt{x^{2}+y^{2}}}{y}
\end{array}
$$

Si l'impact de la ligno de courant n'est pas normal, la loi d'évolution de la vitesse sur l'are ox est

$$
\begin{gather*}
V=K \cdot|X|^{\frac{n-1}{n}} \cdot\left[1+B \cdot|X|^{\frac{1}{x}}+\ldots\right] \\
n=\frac{\pi}{\pi-\left|\theta_{0}\right|} \tag{13}
\end{gather*}
$$

θ_{0} 6tant l'ansle de dóviation ou point d'arret.

STABILITE DE LA MEIHODE

Un premier programac ayent été écrit dans lo cas d'un problewe symétrique, on a chorché a verifier que, partant diun écoulement permanent connu, cette solution ne se dégradait pas en coure de calour.

On a choisi, a cet offet, un écoulement incompressible autcur d'un profil de JOUKOWSKI.
Les premiers résultata ont óté maurais conme on peut le voir sur la planche 1 où la courbe représente la lof d'érolution exacte de la vitesse sur ce profil; les erofx representent la répartition do vitesse obtemue après 9 cycles de calcul.

Ia dégradation observte provient du fait que les grandeuns on chaque pied des bicaractéristiquea óticient obtomues par interpolation linéaire entre les quatre points du réseau qui l'entourent. Les formules (10) montrent que $\overline{\text { linterpolation doit porter sur le carré de la vitesse. De méne d'apress }}$ la formule (11), on voit que pour déterminor 垪, il faut faire porter la dérivation égalemant sur le carré de la viteses ; pour $\frac{\partial \theta}{\partial y}$, on écrit, dans le voisinage imediat du point d'arret is

$$
v^{2} \frac{\partial \theta}{\partial y}=-v \frac{\partial v}{\partial x}
$$

au cas où la dériation de la ligne de courant au point diarret est différente do $\frac{\pi}{2}$ (cas diun bord de fuite sane point de robrouseement), linterpolation ot la dórivation doivent portor sur $V \frac{n}{n-1}$
Hoyemant ces procautions, la solution no se degrade plus ocma on peut lo voir sur le planaho 1 où lea pointa roprócontent les résultats obtems aveo io nouvesu prosteme apres également 9 oycles do calculs.

TENDS DE CALCUL

La détermination de l'6coulement on chaque point du reseau est relativement rapide, En géxéral, aing itératioss successives sont ouffisantes pour obtenir la procisicn modrale de ie machine; ompencant, si les points ne sont pas suffisamsent serros dana les regions a fort gradient de viteece, le oalcul pout ne pas oonvarger ; dans oes ans, l'expéxience a montro que le onloul redevenalt ocavergent al, pour chaque nouvelle itération, on promait eowse valour initiale des incomrues ia noyenne entre la valeur initiale et la valeur finale de l'itération procedente.

Lintervalle de temps Δt choisi doit stre tel quo la trace dans le plan t du oben do Mach du point $M(X, Y, t+\Delta t)$ soit compeise λ l'interieur du maillage entousant le point (X, Y, t), lu voisinace des romes a fort gradiont de vitesse ou il oat noonssairn do resserrer fortement ies pointe, lee Δt inposís par la condition profodiente deviennant tres patits. Si dono, par oomoditt, oc adoptc, pour l'onsemble du rfsealu un Δt unique o'est-dedire io Δt minimal correspoudinat a la zone ou les pointe sont les plus serrés, un ncmbre important do oycles de calouls derient nécessaire pour obtanir un 6oculament permanont. Les terpe de crlculs so rovelent alors prohibitites io onloul de l'fooulements autour d^{\prime} un corale $\frac{1}{} M=0,4$, offectué dans oes conditious sur UNIVAC 1108 a da otre interrcmpu au

Dans un nouveau progranme en oovrs de rise au point, le résean de oaloul oct subdirise en un oertain nombre de soue-réseaux, dont la dimened an des mailles ost adapté aux gradients de viteese locaux ; cotte solution permet de reseerrer les points dans les regions ou cola est nocessaire, sans trop aggraver le tempis de onloul totel.

CONCLISSIOA

 ont pu êtro resolues.
 de resultats probante, le temps de oalcul nécessair pour attoindre l'état permanent étant alors prabibitif,

Un no. veau programe plus blebont est on ocurw de wise au point: il doit ramener le tempe de calcul a une valaur aoceptable.

Rgiremences
[1] - G. NORETTI et M. ABEETT
"A tine deperdant computational method for blunt body flows" A.I.A.A. Journal - Vol. $4-n^{\circ}$ 12, DScembre 1966.
[2] - A. LAPIDUS
"A dotached shook calculation by second-order finite differenoes" Journal of Ccmputational Physies - rol. 2, no 2, November 1967.
[3] - H. SALERWEISN
"Numexion calculations of multidimensional and unsteady flows by
the method of characteristios"
Journal of Computational Physics, rol. 1, no 3, February 1967.
[4] - M. BALSSETT
WEtude du départ d'un obstacie dans un fluide au repos"
Compte Rendu de 1'Académie des Soiences de PARIS - 29 Novembre 1965.

RELATIORS IES CABACTERESTICOBS IARS LIESPACE $x ; y ; t$

On euit que le cton ournotóristiquit, ou "cono de Kach" on un point Q queleonque do l'espace x, y, t est difind de la fiscon suivante :

Soift, sur le plan $t-d t, q$ la projection de $Q_{1} \bar{x}_{1}$ ot \bar{y}_{1} les axee locaux paralleles et perpendiculairen $i \nabla ;$ portonemur x_{1} un vectour $q \Omega=-\nabla d t$ ot tragons dans le plan ($t-d t$) un cercle de centre Ω ot de rajon adt (a vitesse du am) : oe cercle est la trace du odo de_Kach em Q Soient A, B, C et D los extrindtis des diandtres de oe oercle respectivement paralleles à \bar{x}_{1} et $\overline{\mathrm{I}}_{\mathrm{I}}$.

The efnóratrice quelocquue $Q M$ est bicuractéristique. Soit $\omega=\left(\bar{\Omega} \bar{x}_{1}, \overline{\Omega M}\right)$. La dérivation mivant la direation Q M B'forit:
(14) $\quad\left(\frac{D}{D E}\right)_{Q M}=\frac{\partial}{\partial t}+(V-a \cos \omega) \frac{\partial}{\partial x_{1}}-a \sin \omega \frac{\partial}{\partial y_{4}}$

Par une combinaison linfaire des équations de quantité de mourement et de 1'6́quation de continuite, on pout obtenir la relation des oureotoristiques:
(15)

$$
\left\{\begin{array}{l}
\frac{1}{p a}\left(\frac{D R}{D t}\right)_{a M}-\cos \omega\left(\frac{D V}{D t}\right)_{Q M}-V \sin \omega\left(\frac{D \theta}{D t}\right)_{Q M}= \\
a \cot \omega\left[\sin \omega \frac{\partial V}{\partial y_{1}}-\frac{\sin ^{2} \omega}{\cot \omega} \frac{\partial V}{\partial x_{1}}-V \cos \omega \frac{\partial \theta}{\partial y_{1}}+V \sin \omega \frac{\partial \theta}{\partial x_{1}}\right] \equiv \\
a \sin \omega\left(\frac{D V}{D t}\right)_{M T}-a V \cos \omega\left(\frac{D \theta}{D t}\right)_{M T}
\end{array}\right.
$$

Catte reintion quit ne comporte que doe dórivations selon des directions oomprises dans le plan tangent au obe de Mach montre bien que celui-al ost surfao aarsctéristique.

Si l'foculement n'est pailisentropiqua, il g a limi do tenir compte de la bicaractéristique partioulibre ΩQ lo long de laquelle i'entropie est constante.

Si l'on no s'intórease qu'sur quacre bicaractéristiquas $M, Q 3, Q C$ ot $C D$, la relation (15) permet d'6arise:

$$
\frac{1}{\rho^{a}}\left(\frac{D R}{D t}\right)_{Q A} \pm\left(\frac{D V}{D t}\right)_{Q A}^{Q A}=-a V \frac{\partial \theta}{\partial y_{1}}
$$

(16)

$$
\frac{1}{p^{a}}\left(\frac{D N}{D t}\right)_{a c} \pm V\left(\frac{D \theta}{D t}\right)_{a c}=-a \frac{\partial V}{\partial x_{1}}
$$

TIME DEPENDENT CALCULATION OF THE COMPRESSIBLE
FLOW ABOUT AIRFOIIS
D. Mac Kenzie* and G. Moretti**-

Gruman Aircraft Engineering Corporation
Bethpage, N. Y., U. S. A.

SUMMARY

Guidelines for the efficient formulation of time dependent trensonic flow calculations are presented. Among the paricular points considered are procedures for satiseying boundary conditions at solid boundaries and ensuring well posed problems for illows that are subsonic in the far field. A discussion of the relative merits of the Lax-Wendrof'f technique and an explicit method of treating imbedded shocks is also included. To illustrate the points made, the resulte of several calculations are presented and discussed. These include:

1) The subsonic and supersonic flow about a 6% thick biconvex airfoil lu a duct;
2) The 10 in a converging-diverging nozzie with supersonic exit conditions;
3) The subsonic flow about $\&$ circular cylinder in an infinite stream.

The details of the various finite difference techniques used in these calculations are also presented.

TINE DEPENDENT CALCULATION OF THE COMPRESSIBIE FLOW ABOUT AIRFOIIS

D. Mac Kenzie* and G. Moretti**

Gruman Aircrait Engineering Corporation
Bethpage, I. Y., U. S. A.

I. INTRODUCTION

The present generation of computers is better-suited to the solution of initial-value problems than to the solution of boundary-value probleme. Unsteady flow problems belong to the first category. Steady flows containing subsonic regions cante analyzed, in principle, by solving initial-value problems with the steady state calculated as the unique asymptotic limit of an unsteady fiow process starting from an arbitrary distribution of initial values and subject to steady boundary conditions.

A wide variety of transonic flows of practical interest can be generally divided into two categories depending on the nature of the flow at the non-rigid boundaries which enclose the region of interest:

1) Flows which are supersonic in the far field and contain one or nore subsonic islands;
2) Flows which are subsonic in the far field and contain one or more supersonic islands.

The most popular example of the first category (and probably the simplest) is the fl(\bar{l} past a blunt body in supersonic filght. It has been proven that time-dependent techniques are extremely well-suited to the analysis of the blunt-body problem, and definitively good results from the viewpoint of both accuracy and computational speed have been obtained (ref. 1).

The problems of the second category are much more difficult than those of the first, primarily for the following reasons:

1) The flow field may contain imbedded shocks generated by a coaiescence of characteristics in a region of supersonic flow;
2) The flow on at least part of the computational boundaries is subsonic so that the location and the specification of the data on these boundaries may affect the numerical results. Typical problems of this kind are the choked flow in a converging-diverging nozzle and the transonic flow past an airfoil flying at aupercritical speeds.

We wish to present some guidelines which we have followed in our research and whose effects are discussed in the present applications.

1. Our aim is to provide computational progrems which can be used for practical applications. One of the basic requiremente is a high computational speed and this in turn depends primarily on the use of rather coarse meshes. Therefore, it is imperative to use integration techniques for interior points which are accurate to second order. If there are no shocise in the flow, both the Lax-Wendroff conservation technique (ref. 2) and the similar, jut simpler, non-conservation technique used by Moretti in the blunt-body problem (ref. 1) work equaily well. The advantage of the latter with respect to the former is twofold: namely, it is not neceasary to recast the equations of motion in conservation form $s 0$ that the algebraic manipulations are sinpler and more straightforward, and the computational time is shorter by a factor of 2 , at least.
2. If shocks are imbedded in the flow, the lax-Wendroff technique, in principle, leads to a steady pattern where shocks are replaced by abrupt, but continuous, transitions spread over several meah intervals. The Lax-Wendroff technique has been used in this paper for the calculation of flows containins imbedded shocks. This technique, however, suffers from the following limitations:
(1) The mesh must be relatively fine in the neighborhood of the shock since the computed shock thickness varies directly with mesh sizes
(1i) The physical parameters near the shock show a wavy pattern reminiscent of truncated Fourier expansions in tbs vicinity of a discontinuity.
The incorporation of an explicit shock representation into the simpler interior point technique would eliminate these shortcomings and increase both resolution and calculation speed. However, as discussed in section IV, a balance must be struck between these desirable objectives and several additional considerations. Some elementary examples of the explicit shock technique have already been worked out successfully by Moretti (ref's. 4 and 5).
3. The boundary conditions at alj rigid walls should be laposed using a modified method of characteristics (ref. 3). This 18 crucial to insure over-all accuracy. Figure 1 shows how well the steady pressure distribution obtained from a twomdimensional timemependent calculation agrees with the Prandtl-Neyer Aistribution along a wall with a 15° expansion corner. In this case a second-order non-conservation integration technique has been used at all points except on the wall

* Advanced Development Engineer, GAEC
** Consultant, and Professor, Polytechnic Institute of Brooklyn
where a modified method of characteristics hos been used.

4. If the computational region does not extend to infinity and the flow on its non-rigid boundaries is subsonic, it is physicsily impossible to prescribe proper conditions on these boundaries since all signals froa the interior region (computed) affect the exterior region (not computed) and vice versa, Consequently, oil physical parameters on these boundaries should be allowed to change with time but there is no way of knowing a priori how these changes should occur. While it is true that the flow at some distance from an airfoil or any other obstacie is only slightly perturbed, all artificial limitations on non-rigid boundaries of a computational region will trap out-going waves to some extent. As the computation proceeds in time, these artifically created standing waves may eventully aucumulate and caube the calculation to become unstable. In order to provide the computation with a physically well-posed set of boundary conditions, one should extend the computational region to infinity. This goal is achieved by mapping the infindte region surrounding the obstacle onto a fiulte region where the computation is performed.

The authors are indebted to R. C. Meyer of Grumman whose encouragement and suggestions have significantly aided in the development of the various numerical procedures used in this paper.

II. NOTATION

a	nondimensionalized speed of sound
A, ${ }^{\text {B }}$	matrices $\partial f / \partial \mathrm{w}, \partial \mathrm{g} / \partial \mathrm{W}$, respectively
$\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}, \overline{\mathrm{d}}, \overline{\mathrm{e}}$	defined in equation (14)
$b(x), h(x)$	functions definiog airfoil and duct wall, respectir cly
C_{p}	pressure coefficient $=\left(p-p_{\infty}\right) / \frac{1}{2} \rho_{\infty} V_{\infty}{ }^{2}$
E	total energy $=1 / v-1) p / p+\frac{1}{2}\left(u^{2}+v^{2}\right)$
F,G	functional represencation of cocrdinate transformations
H	total enthalpy $=E+\mathrm{p} / \rho$
1, j	X and Y node point counters in the computation space
$k_{1}, k_{2}, \ldots \ldots$	constants appearing in coordinate transformations
$\boldsymbol{\ell}, \mathrm{m}, \mathrm{n}$	X_{X}, Y_{x}, Y_{y} respectively
M	Mach number
8	nondimensionalized pressure
P	$\log \mathrm{p}$
r, θ, t	polar coordinate system
\boldsymbol{R}	$10 g \mathrm{p}$
$\underset{\sim}{u}$	nondimensionalized velocity components in x, y, t coordinate system
$\underset{\sim}{\text { \% }}$	nondimensionalized velocity components in $5, \eta, \tau$ coordinate system
∇	nondimensionalized velocity vector
V_{B}	nondimensionalized velocity at a surface node point
W,f,g	vectors used in the conservation formulation
x, y, t	coordinates in physical space
X, Y, T	coordinates in computational space
	isentropic exponent
$\Delta X, \Delta Y, \Delta T$	mesh spacins in the computational space
ΔT	$=\Delta T$
$5, \eta, T$	physical coordinates used for characteristics method
$5, \pi$	unit vectors in the ξ, η directions
p	nondimensionalized density

Subscripts: Subscripting a variable with any of the coordinates indicates partial differentiation while the indices i, j indicates the node point. Thus $\mathrm{w}_{\mathrm{TH}_{1, j}}$ indicates the second time derivative of w in the computational space at $X=i \Delta X, j=j \Delta Y$

III. ANALYSIS

Several different forms of the equations of motion are used in the calculations described in this paper, depending on the nature of the flow expected, and/or whether or not a solid boundary is involved. In general, solid boundary points are calculated using a modified method of characteristics. Interior (non-boundary) points in shock-free flows are calculated using finite difference analogues of the usual partial differential equations of motion. For flows containing imbedded shocisa, finite difference analogues of the equations of motion ia conservation form are used for the interior point calculations.
A) Interior Points for Flows with Shocks

The nondimensionalized equations of motion in a cartesian frame can readily te regrouped into what is commonly referred to as conservation form as follows:

$$
(\rho)_{t}+(p u)_{x}+(p)_{y}=0
$$

$$
\begin{align*}
& (\rho u)_{t}+\left(\rho u^{2}+p\right)_{x}+(\rho u v)_{y}=0 \\
& (\rho v)_{t}+(\rho v u)_{x}+\left(\rho v^{2}+p\right)_{y}=0 \tag{1}\\
& (\rho E)_{t}+(\rho u H)_{x}+(\rho v H)_{y}=0
\end{align*}
$$

where for a perfect gas,

$$
\begin{equation*}
H=E+p / p=\gamma /(\gamma-1) p / p+\frac{1}{2}\left(u^{2}+\nu^{2}\right) \tag{2}
\end{equation*}
$$

For simplicity in subsequent manipulations, the following vector notation is introduced,

$$
w=\left|\begin{array}{l}
\rho \tag{3}\\
\rho u \\
\rho v \\
\rho E
\end{array}\right|, \quad f=\left|\begin{array}{l}
\rho u \\
\rho u^{2}+p \\
\rho u v \\
\rho u H
\end{array}\right|, \quad g=\left|\begin{array}{l}
\rho v \\
\rho v u \\
\rho v^{2} \\
\rho v H
\end{array}\right|
$$

so that the equations of motion in conservation form can be rewritten as

$$
\begin{equation*}
w_{t}+f_{x}+g_{y}=0 \tag{4}
\end{equation*}
$$

An auxiliary computational space is defined by the transformation

$$
\begin{align*}
& T=t \\
& X=F(x) \tag{5}\\
& Y=G(x, y)
\end{align*}
$$

The specific forms of the functions F and G depend on the problem to be calculated and are thus deferred until the next section of this paper. In the computational space, the system of equations (4) becomes
where

$$
\begin{align*}
& w_{T}+\ell f_{X}+m r_{Y}+n g_{Y}=0 \tag{6}\\
& \ell=X_{X}, m=Y_{X} \text { and } n=Y_{Y}
\end{align*}
$$

It is noted that the transformation scale factors ℓ, m, n are not incorporated into the X and Y derivatives to yield "conservation squations" in the computational space. It is conjectured that conservation form should be maintained in the physical space rather than in the computational space for calculating shocked flows without explicit shock handing. Following the procedure originated by Lax and Wendroff (ref. 2) the vector w is expanded as a trucated Taylor series in time,

$$
\begin{equation*}
w(T+\Delta T)=w(T)+{\psi_{T}}_{T} \Delta T+w_{T T} \frac{\Delta T^{2}}{2}+\ldots \ldots \tag{7}
\end{equation*}
$$

In equation (7), the vector W_{T} is immediately available from Equation (6), namely

$$
\begin{equation*}
w_{T}=-\left(k f_{X}+m f_{Y}+n g_{X}\right) \tag{8}
\end{equation*}
$$

Assuming the interchangeability of the order of differentiation the second derivative of w with respect to T is given by

$$
\begin{equation*}
w_{T T}=-\left[\ell\left(A w_{T}\right)_{X}+m\left(A w_{T}\right)_{Y}+n\left(B w_{T}\right)_{Y}\right] \tag{9}
\end{equation*}
$$

where A and B are the matrices $\partial f / \partial w$ and $\partial g / \partial w$, respectively. Thus both W_{T} and $w_{T R}$ in the faylor series are expressible in terms of space derivatives of the vectors f and $\frac{\mathcal{G}}{\mathrm{g}}$.

To obtain the finite difference analogues of these space derivatives, the following conventions are employed:

1) In the evaluation of w_{r}, the X and Y derivatives are represented by central differences of form
where

$$
\begin{equation*}
\varphi_{X}=\frac{\varphi_{1+1} j-\varphi_{1-1} j}{2 \Delta X} \quad, \quad \varphi_{Y}=\frac{\varphi_{1, j+1}-\varphi_{1, j-1}}{2 \Delta Y} \tag{10}
\end{equation*}
$$

$$
\varphi_{1, j}=\varphi(1 \Delta X, j \Delta Y)
$$

2) To evaluate the term $W_{T M}$, considering a typical term, $\left(A u_{T}\right)_{X}$, we set

$$
\begin{equation*}
\left(A \omega_{T}\right)_{X}+\left[A_{i+\frac{1}{2}, j} W_{T} T_{i+\frac{1}{2}, j}{ }^{\left.-A_{i-\frac{1}{2}, j} W_{T_{i-\frac{1}{2}, j}}\right] / \Delta X}\right. \tag{11}
\end{equation*}
$$

where

$$
\begin{gathered}
A_{1+\frac{1}{2}, j}=\left(A_{i+1, j}+A_{i, j}\right) \\
W_{T_{i+\frac{1}{2}, j}}=-\left(\varepsilon_{i+\frac{k}{2}, j} f_{X_{i+\frac{1}{2}, j}}+m_{i+\frac{1}{2}, j} I_{Y_{i+\frac{1}{2}, j}}+n_{i+\frac{1}{2}, j} E_{Y_{i+\frac{1}{2}, j}}\right)
\end{gathered}
$$

with similar expressions for $A_{1-\frac{1}{6} j}$ and $w_{\mathrm{TI}_{1-\frac{1}{2}, j}}$. Then the derivatives of f and g are represented by

$$
\begin{gathered}
f_{X_{i+1, j}}=\left(f_{1+1, j}-f_{1, j}\right) / \Delta X \\
f_{Y_{1+\frac{k}{j}}}=\left(f_{i+1, j+1}-f_{i+1, j-1}+f_{1, j+1}-f_{1, j-1}\right) / 4 \Delta Y \\
g_{Y_{1+\frac{k}{j} j}}=\left(g_{1 i: j, j+1}-g_{1+1, j-1}+g_{1, j+1}-g_{1, j-1}\right) / 4 \Delta Y
\end{gathered}
$$

with similar expressions at the point 1 - \boldsymbol{b}^{2} J.
This finite difference representation is then used to updete the vector w at the interior points of flows in which shocks are expected. This dces not of course preclude its use for contimuous flows, but more efficient procedures are avallable for this purpose as discussed below.
B) Interior Points for Continuous Flows

For continuous flows, the conservation form of the equations of motion are not requixed so that the system to be considered, in the same cartesian frame, is given by

$$
\begin{align*}
& R_{t}=-\left(u_{x}+u R_{x}+v_{y}+v R_{y}\right) \\
& u_{t}=-\left(u u_{x}+u v_{y}+p / p P_{x}\right) \tag{22}\\
& v_{t}=-\left(u v_{x}+v v_{y}+p / \rho P_{y}\right)
\end{align*}
$$

where for irrotational flows the energy equation is given by

$$
\begin{equation*}
P=\gamma^{R} \text { and } P=\log p, R=\log \rho \tag{13}
\end{equation*}
$$

This set of differential equations is again transformed into the computational space defined above so that the system becomes

$$
\begin{gather*}
R_{T}=-\left(\overline{d R_{X}}+\delta R_{Y}+l u_{X}+m u_{Y}+n v_{Y}\right) \\
u_{T}=-\left(\bar{a} u_{X}+\delta u_{Y}+\bar{d} p_{X}+d P_{Y}\right) \tag{14}\\
v_{T}=-\left(\bar{a} v_{X}+b v_{Y}+\bar{d} P_{Y}\right)
\end{gather*}
$$

where $\bar{a}=k n, \bar{b}=m u+n v, \bar{c}=k p / \rho, \bar{d}=m p / \rho, \bar{e}=n p / p$ and ℓ, m, n are as previousiy defined. Again each of the variables R, u, v are expanded a.s a truncated Taylor Series in time of the form

$$
\begin{equation*}
R(T+\Delta T)=R(T)+R_{T} \Delta T+R_{T T} \frac{\Delta T^{2}}{2}+\cdots \tag{15}
\end{equation*}
$$

with similar expressions for u and v. The first derivatives, R_{T}, u_{T}, v_{T} are given in terms of apace dexivatives by the original system of equations. To determine the second derivatives $R_{T T}, u_{T T P}, v_{T T}$
 second space derivatives of u, v and $P(o r n)$ sind first space derivatives of quantities $\bar{a}, \bar{b}, \bar{c}, \mathrm{~d}$ $\overline{\mathrm{e}}, l, m, n$. Then, again assuming interchangeability of the order of differentiation, the terms $\mathrm{R}_{T \mathrm{~T}}, u_{T T}, v_{T T}$ are determined. They can ultimately be expressed in terms of first and second space derivatives of u, v and P (or B) and first space derivatives of the quantities ℓ, m, n which are known functions.

At this point, the following central difference formulae are used to represent the first and second space derivatives of the flow variables,

$$
\begin{gathered}
\varphi_{X}=\left(\varphi_{1+1, j}-\varphi_{1-1, j}\right) / 2 \Delta X, \varphi_{Y}=\left(\varphi_{1, j+1}-\varphi_{1, j-1}\right) / \Delta \Delta Y \\
\varphi_{X X}=\left(\varphi_{1+1, j}-\varphi_{1, j}+\varphi_{1-1, j}\right) / \Delta X^{2}, \quad \varphi_{Y Y}=\left(\varphi_{1, j+1}-2 \varphi_{1, j}+\varphi_{1, j-1}\right) / \Delta Y^{2}
\end{gathered}
$$

and

$$
\varphi_{X Y}=\left(\varphi_{1+1, j+1}-\varphi_{1-1, j+1}-\varphi_{1+1, j-1}+\varphi_{1-1, j-1}\right) / 4 \Delta \Delta \Delta Y
$$

This finite difference procedure has been found to be faster than the conservation scheme described previously in those flows where both are applicable. The non-conservation formulation will not work in the case of shocked flows unless explicit shock handing is incorporated and the flow rotationality is accounted for.

C. Characteristice Technique for Solid Boundaries

It has been the experience of the authors that the use of reflection techniques and/or non-centered difference techniques to evaluate the flow on arbitrary curved onlid boundaries either do not work or are highly inaccurate. Thus in these calculations the solid boundary points are calculated using a technique developed and used with considerable success by Moretti (ref. 3).

This technique determines the flow variables on solid boundaries using a quasi-one-dimensional unsteady characteristic formalation. The basic premise is that well points are sensitive rainly to signals originating inside the flow and propagating toward the wail at a speed equal to the sun of the sound speed and the flow velocity normal to the wali. Flow diatortions due to the twomimen. sionality of the flow are treated af forcing functions to the quasi-one-dimensional formulation as discussed below.

At each wall node point, a cartesian frame translating at the local streambise velocity is defined romal to and parallel with the solid boundary as is indicated in figure 2 . In this frame, the equations governing an irrotational flow can be written

$$
\begin{align*}
& R_{\tau}+\tilde{u}_{\xi}+{\widetilde{u} \tilde{R}_{g}}^{n}-\left(\widetilde{v}_{\eta}+\widetilde{v} \tilde{R}_{\eta}\right) \\
& \tilde{u}_{T}+\tilde{u} \tilde{u}_{g}+p / \rho P_{\xi}=-\left(\tilde{v}_{\eta}\right) \tag{17}\\
& \tilde{v}_{\tau}+\tilde{u} \tilde{v}_{g}+\tilde{v_{\eta}}+p / \rho P_{\eta}=0
\end{align*}
$$

where

$$
\widetilde{u}=\nabla \cdot \hat{\xi}, \widetilde{v}=\nabla \cdot \hat{\eta}-v_{B} \text { and } \gamma^{R}=P
$$

It is noted that in the continuity and the 5 -momentum equaiion terms containing η-derivatives are collected on the right hand side aud will be considered as constants at each stage of an iterative procedure used to determine the characteristics solution.

The characteristics directions of the first two of equations (17) can readily be shown to be

$$
\begin{equation*}
\frac{d_{s}}{d_{T}}=\tilde{u} \pm a, \quad a=\sqrt{\frac{y p}{\rho}} \tag{18}
\end{equation*}
$$

where for the coordinate system defined in figure 2 the + sign represents a charscteristic running from within the flow to the wall, and the - sign a characteristic originating within the solid boundary. The compatibility equation along the $(\tilde{u}+a)$ characteristic is given by

$$
\begin{equation*}
\frac{d R}{d \tau}+\frac{1}{a} \frac{d \tilde{u}}{d r}=-\left(\tilde{v} R_{\eta}+\tilde{v}_{\eta}+\frac{\tilde{v}_{\eta j}}{a}\right) \tag{19}
\end{equation*}
$$

At a particular time step, the ($\tilde{u}+a$) characteristic passing through the wall node point is projected back in time to the previous time step, intersecting the plysical plane at the point (*) indicated in figure 2. The corresponding point in the computational plane is then determined and the flow variables and their X, Y and eventually, η derivatives are determined by interpolation and finite difference procedures. Then, since \tilde{u} at the wall is identicaily 0 , the compaibility relation is sufficient to detcrmine an estimate of R at the wall. The reduced tangentail velocity $\tilde{\mathrm{v}}$ is calculated using

$$
\begin{equation*}
\tilde{\mathrm{v}}(\tau+\Delta \tau)=\tilde{\mathrm{v}}(\tau)-\left[\tilde{\mathrm{v}}_{\eta}+p / \rho \mathrm{P}_{\eta}\right] \mathrm{d}_{\tau} \tag{20}
\end{equation*}
$$

where we use the fact that $\tilde{u} 180$ at the wall. This constitutes the first step in the iterative procedure. A new characteristic is defined by
and the process is repeated until convergence is achieved.
This procedure is used in conjunction with the non-conservation formulation described above for the calculation of shock-free flows. A slightly more complicated version of the characteristics procedure is used with the conservation formulation for flows where imbedded shocies may appear.

IV. CALCULATIONS AND RESULTS

Several different programs have been developed using the finite difference schemes described above to attack the various aspects of the transonic alrfoil problem. The specifics of these programs and the results obtained to date are discussed below.
A) Biconvex Airfoil in a Constant Area Duct

Several calculations have been made for the subsonic, and superconic flow about a 6\$ biconvex circular arc airioil aligned with the centerline of a constant area duct. Each of the caiculations were made using the conservation forrculation for the interior point evaluation and the characteristics procedure on the airfoil surface. The tangency condition on the duct wall was imposed using the reflection technique. For the subsonic calculations, uniform horizontal flow has been specified at $x= \pm \infty$.

The inininitely lons duct implied above is reduced to a finite rectangular computing grid using the following stretching and normalization of the streamwise and transverse ccordinates.

$$
\begin{equation*}
X=k_{i} \tanh \left(k_{2} x\right) \tag{22}
\end{equation*}
$$

$$
Y=\frac{y-b(x)}{h(x)-b(x)}
$$

where $b(x)$ is the ordinate of the duct centerline and airfoil and $h(x)$ describes the shape of the duct wail, here a constant. For the supersonic calculation the stretcing ${ }^{*}$ of the streamise coordinate is not required 30 that

$$
\begin{equation*}
X=x \tag{23}
\end{equation*}
$$

and uniform supersonic flow ard constant streamise derivatives of the flow variables were specified $\frac{1}{2}$ chord upstream and domstream of the aixioil, respectively. .

The centerline and surface pressure distributions forfreestream Mach numbers of $0.6,0.7$ and 0.8 are presented in figures 3,5 and 6 . In each case the flow is subcritical so that the aforementioned longitudinal mapping together with the specification of unisform flow at the upstream and downstream boundaries defines a well posed problem. For each of the three freestream Mach numbers àn independent theoretical estimate, consisting of a Spreiter Mach correction to the linearized compressible flow prediction for an airfoil in a duct, is superimposed for comparison purposes.

Surface pressure distributions obtained from the time dependent computer program correlate well with these approximate analytic predictions. The influence of surface slope discontinuties at the airfoil leading and trailing edges is seen to cause some local oscillation in the surface pressure, particularly at the lower Mach number. Fiforts are being made to minimize this effect. A typical time history of the surface pressure at the mid-chord atation is also presented for the $M=0.6$ case in figure 4, which indicates the nature of the decay to the asymptotic steady state flow.

The surface pressure distribution obtained at a freestream Mach number of 2.0 is presented in figure 7. A characteristics solution for the same configuration is also shown for comparison. Over the major portion of the airfoil surface the pressure distributions are seen to agree quite well. The chordwise range of good correlation has been observed to improve consistentiy with mesh refinement. The leaciing edge precompression and subsequent over-compression effect is inherent in the implicit shock representation employed. A similar comment applies at the trailing edge. A Mach profile at the mid-chord station is included in figure 8, which graphically illustrates the shock representation obtained using the conservation formulation. Greater resolution can be achicved by mesh refinement which implies greater computer times. The decision to awitch to an explicit shock representation to obtain further increases in resolution must be carefully weighed against several considerations:

1) Explicit shock representation requires a significant increase in program sophistication;
2) More importantly, it requires a pre-knowledge of the basic shock structure that will develop.

Two approaches have been used in our efforts to obtain supercritical results for the bicomvex airfoil. In both cases, successful calculations have not been achieved to date.

The first approach consisted of increasing the Mach number at the upstream and downstream boundaries of the constant area duct. This specification is not rigorous in the supercritical range but is a reasonable approximation in an exploratory investigation of this type. The supercritical calculations showed an initial tendency toward the expected results, but later on in the computation, certain unresolved disturbances developed, which after reinforcement by reflections at the various boundaries, eventually cause the calculation to go unstable. Efforts to resolve this problem are currently in progress.

As noted above, the specification of uniform fiow conditions at $x= \pm \infty$ is not precisely correct at supercritical Mach numbers. The flow far upstream may still be specified to be uniform, but, becauge of losses generated by the airfoil shock system, the correct boundary condition far downstream cannot be specified a priori other than to note that it is a constant pressure subsonic shear flow. This indeterminacy of the exit station flow and its effect on the flow pest the airfoll can be removed by introducing a second throat duct configuration as indicated in figure 9. In this way the exit flow is forced to be supersonic and no exit-feedback to the airfoil can occur. The simultaneous introduction of a bell-mouth entry section leading from an infinite reservoir to the constant ares test section containing the airfoll constitutes a well posed physical problem. The net result in essence is to create the computational equivalent of a closed throat trensonic wind tunnel circuit' containing an airfoil model in a parallel walled test section,

Calculations for this airfoil-tunnel configuration at supercritical speeds have been attempted with unsatisfactory results. The problem has been traced to an injudicious choice of inlet geometry Which produced disturbances that propagated into the test section and obliterated an otherwise orderly developing supercritical flow. These calculations will be continued in the near future.
B) Nozzle Calculations with a Supersonic Exit

A two-dimensional converging-diverging nozzle affords a natural testing ground for the

* The stretching of the streamise coordinate to permit the specification of boundary conditions at infinity was originaliy suggested by Dr. R. Helnick of the Gruman Research Department
finite difference techniques that are being considered. The nozzle geocetry employed is shown in figure 10. fgain, the streamwise and transverse coordinates are stretched and nomalized as in the previous set of airfoll calculations, except that here

$$
\begin{gather*}
b(x)=0 \\
h(x)=-1+\sqrt{3.34+.66 x^{2}} \tag{24}
\end{gather*}
$$

In the physical plane, the upstream boundary is located at $x=-\infty$ in a reservoir where stagnation conditions are specified. For this purely expansive calculation, the nozzie is truncated somewhat aft of the throat and constancy of the streamuise derivatives constitutes the downstream boundary condition.

The calculations were made using both the non-conservation formulation and the conservation formulation for the interior point evaluations. The centerline and wall pressure distributions obtained using the two techniques are shown in figure 10, with the conservation results shown on the right. The results of the two calculations are practically indistinpuishable and straddle the one-dimensional prediction as would be expected.

Results for the same nozzle configuration with a subsonic (shocked) exit condition using the conservation formulation are planned for the near future.
C) Subsonic Flow About a Circular Cylinder

In order to develop the technology required for handing real airfoil shapes, consideration must be given to rounded leading edges. The program and calculations described in this section were made to evaluate schemes for treating simplified shapes with stagnation points in an infinite subsonic domain. A circular cylinder of unit radius has been chosen for simplicity. The non-conservation formulation was used for the interior point evaluations. The system of equations in the physical plane were in polar coordinates but the philosophy of the development of the finite difference equations parallels that indicated for the cartesian frame in section II-B. The transformation used to relate the computational and physical planes is given by

$$
\begin{gather*}
X=\pi-\theta \tag{25}\\
Y=\tanh k_{3}(x-1)
\end{gather*}
$$

as indicated schematically in figure 11 . The computed velocities along the forward and rear stagnation streamines, aiong the 90° ray and elong the surface are presented in figures 11 and 12 , Since the flow Mach number is . 1 , the results are correlated with incompressible predictions. The agreement between the two is seen to be excellent for the forward stagnation streamline and to diminish somewhat as we procede around the body to the rear stagnation streamline. The excellent correlation in the forward regions of the flow leads us to expect similar results when this technique is applied to rounded leading edge airfoils.

V. FUTURE RESEARCH

Several short term efforts are currently in progress, some of which were indicated in the previous section. These include calculations for:

1) Supercritical biconvex airfoil in both t.r. onstant area duct and the transonic tunnel;
2) Shocked two-dimensional nozzles;
3) Subsonic Joukowski section in an il -ce stream;
4) Supercritical circular cylinder in an infinite stream using the explicit shock formulation.

These short term goals are part of what we consider to be an orderly development of those elements required for the calculation of the supercritical flow about lifting airfoils toward which this research is directed.

As demonstrated in the literature, the time dependent finite difference technique has proven to be a versatile tool for calculating the transonic flow about blunt bodies at supersonic velocities, It was this success which motivated the present application to the equally challenging problem of transonic flow about airioils. The encouraging results achieved to date tend to justify its use in this application.

VI. REFERENCES

1. Moretti, G., "Inviscid Blunt Body Shock Layers (Two-Dimensional Symetric and Axisymetric Flows)," Polytechnic Institute of Brooklym, PIBAL Rept. No. 68-15 (1968).
2. Lax, P. D. and Wendroff, B., "Difference Schemes for Hyperbolic Equations with High Order of Accuracy", Comm. Pure Appl. Nath, 17, 381-398 (1964).
3. Moretti, G., and Abbett, M., "A Time Dependent Computational Method for Blunt Body Flows", ALAA J. 4, 2136-2241 (1966).
4. Moretti, G., "A Critical Comparative Study of Finite-Difference Techniques for Quasi-OneDimensional Unsteady Flows", Polytechnic Institute of Brooklyn (2968) (in preparation).
5. Moretti, G. and Bastianon, R., "Three-Dimensional Erfects in Intakes and Nozzles", AIAA pape: No. 67-224 (1967),

SLRFACE PRESSURE FOR 15° EXPANSION CORNER

Figure 1 Surface Pressure Distributions for a Two-Dimensional 15° Expansion Corner

FORMULATION: CONSERVATION CONTINUOUS

- NODE DT
- INTMED PT
- CHARACT

SURFACE PRESBURE-GACONEX AIRTOK

Figure 3 Surface Pressure Distribution on a 6\% Thick Biconvex Airioil at $M_{\infty}=0.6$

TIWE HISTORY OT MID CHORD PREPSURE

BICONVEX AIRFCK ($+\infty=.08$) $Q M_{\infty}=.0$

SUREAGE PRESSURE- BCONVEX ABEOK

Figure 5 Surface Pressure Distribution on a 6, Thick Biconvex Airfoil at $M_{\infty}=0.7$

SURFACE PRESSURE-BCONKEX AIRFOK

- present techmoue LINEARIZED PREDTMION

SURFACE PREGSURF-BICONUEX AIRFOIL.

$(t / 6=.06) @ M_{\infty}=2.0$ - PRESENT TECHNIQUE METHOD OF CHARACT

MACH PROKILE AT MO CHOROO

SGUENATK TEANSONC TUNWEL-ARRFOK GEOMETRY

Figure 9 Schematic Transonic Tunnel - Airfoil Geometry for Supercritical Calculations

GOWERBMS/ONEPGUE MAELE-GUARPGWMEYIT

GIRCULAR CKNDER N MFWITE STREAM EMAO. 1

Figure 11 Velocity Distributions on the Forward and Aft Stagnation Streamines of a Circular Cylinder at $M_{\infty}=0.1$

CIRCUKAR CKNDOER

SUPERCRITICAL TRANSONIC AIRFOIL DESIGN FROM PRESCRIBED VELOCITY DISTRIBUTION

by
M. S. Cahn, H. R. Wasson and J. R. Garcia

Northrop Corporation, Norair Division

SUMMARY

A method recently developed by Northrop consists of a computer program which will determine an airfoil shape from predetermined supercritical velocity distributions having extensive regions of supersonic flow. The velocity is given versus the distance around the airfoil. This allows a designer to design to a given lift by specifying the required circulation. Also, boundary layer problems can be avoided by restriciling adverse velocity gradients.

Starting with a given compressible pressure or velocity distribution with mixed subsonic and supersonic regions an airfoil shape can be determined. This is done by making a transformation that causes the streamline and potential line network to give an equivalent incompressible flow. This incompressible problem is then solved by complex function theory and the solution is transformed back to the compressible plane. A computer program using this method has been applied to several shapes with known solutions. The results indicate that this method is a useful tool for studying supercritical transonic airfoil shapes.

SUPERCRITICAL TRANSONIC ARFOIL DESIGN FROM PRESCRIBED VELOCITY DISTRIBUTION

by

M.S. Cahn, H.R. Wasson, and J.R. Garcia

NORTHROP CORPORATION, NORAIR DIVISION

INTRODUCTION

Abstract

Supercritical transonic airfoil design requires the solution of flows with mixed supersonic and subsonic speeds. The solution to the problem has proved to be extremely difficult. The usual approach has been to make approximate corrections to the incompressible flow solutions about a given shape. Bec،use of the sensitivity to small variations in airfoil shape this method has not been wholly satisfactory, especially at supercritical speeds.

Abstract

Almost complete reliance on wind tunnel testing has been necessary to get good determination of airfoil characteristics. With a combination of wind tunnel testing and subsequent modification of configuration, designers have had some success in obtaining satisfactory design.

It has now been determined that many of the problems of obtaining a satisfactory supercritical wing design can be solved by first starting with a prescribed velocity distribution in the physical plane. This allows the designer to approach more directly the desired airfoil characteristics. Also, and perhaps more important, this leads to a relatively simple solution to the difficult problem of mixed flows with supercritical velocities. This new method will be demonstrated in this paper.

SYMBOLS

v	- local velocity	s	- distance along streamline
V_{α}	- free stream velocity	n	- distance normal to stream line
ϕ	- velocity potential	Z	- complex coordinate in compressible plane
ψ	- stream function	Z'	- complex coordinate in incompressible plane
ρ	- density	θ	- angle in circle plane
ρ_{∞}	- free stream density	α	- local flow angle in airfoil plane
		ξ	- complex coordinate in circle plane

OUTLINE OF THEORY
Assume that
$\frac{\mathrm{V}}{\mathrm{V}_{\infty}}$ versus S and free stream Mach number are given.
$\phi=\int$ vds can be obtained from a simple integration.
Since $\frac{\partial \phi}{\partial s}=\frac{\rho_{\infty}}{\rho} \frac{\partial \psi}{\partial n}, \phi$-lines and ψ - lines form an orthogonal network of rectangles. The length-width ratio of these rectangles are proportional to the local density $(\rho)^{1}$. The equivalent incompressible flow has ϕ and ψ lines orthogonal and the network forms squares. The compressible flow field can then be transformed to an equivalent incompressible flow by substituting s^{\prime} for s where $d s^{\prime}=f(\rho)$ ds. The transformation is discussed in NACA Report No. 789 (1944) by I. E. Garrick and C. Kaplan. Now ϕ versus s^{\prime} is known for the equivalent incompressible flow.

[^0]
6-2

Consider now the transformation of the airfoil into a circle by the equation $Z^{\prime}=f(\xi)$ where Z' represents the incompressible airfoil plane and ξ represents the circle plane. It can be shown that

$$
\ln \frac{d Z^{\prime}}{d \xi}=\ln \left|\frac{d s^{\prime}}{d \theta}\right|+1(\alpha-\theta-\pi / 2)
$$

From ϕ versus s^{\prime} and knowing ϕ versus θ for the flow about a circle, s^{\prime} versus $\theta, \frac{d s}{}{ }^{\prime}$, and in $\left|\frac{d s^{\circ}}{d \theta}\right|$ can be determined. Since in $\left|\frac{d s^{\prime}}{d \theta}\right|$ is the real part of an analytic function the imaginary part can be found from its Fourier series representation. The imaginary part allows determination of α, the local surface slope of the airioil, and from s' and α the incompressible shape can be plotted. The equivalent compressible shape comes from a retransformation by again substituting ds for $\frac{1}{f(\rho)} d s$.

COMPARISONS WITH EXISTING DATA

The method described above for supercritical airfoil design has been programmed for IBM 360/65 system in basic Fortran IV. The program is relatively simple to use and takes only approximately two minutes of computing machine time to run one case.

In order to shed more light on the program's performance, a circular arc profile was computed. The velocity distribution data for this shape comes from NACA report 1217. The results for a circular arc section are shown in Figure 1. The shape of the section for a Mach Number range from 0.6 to 0.87 shows very little change. This indicates that the compressibility effect is well accounted for.

Once the condition for airfoil closure was established the problem consisted of refining the numerical procedure until there was sufficient accuracy at all points of the airfoil.

The accuracy of the program for supercritical flows is shown in Figure 2, where the results of calculations for an NACA 0012 section at 0.75 Mach Number are given. The input data are relaxation computations from NACA TN 1746. The results indicate that the method is feasible and can give good results. A comparison with supercritical experimental data for a NACA 0012 airfoil (Figure 3) shows the computed shape to grow thicker toward the trailing edge. This is believed due to the boundary layer displacement thickness on the actual experimental airfoil. It should be noted that supercritical flow exists on the NACA 0012 airfoil at the Mach Number tested. The local Mach Number is above 1 from 10 to 30 percent chord and reaches a peak of approximately 1.1.

The program has been applied to other supercritical transonic airfoils with more extensive supersonic velocities and the results indicate similar accuracy to that obtained for the NACA 0012. Among these airfoils were asymmetrical and lifting conflgurations.

APPLICATION TO TRANSONIC AIRFOIL DESIGN

The program described herein is being used by Northrop for the design of transonic airfoils. Three examples are shown in Figures 4 through 9 along with the hodograph plots for these airfoils. The airfoils are designated by a letter and numbers. The letter indicates a specific series. The first two numbers indicate the design Mach Number in 100 ths. The next two numbers indicate the design lift coefficient in 100ths and the last three numbers indicate the airfoil thickness in 1000 ths of the chord. All of the data shown are at the design conditions.

Airfoil G8027-120 has an extensive region of supersonic flow. The hodograph plot indicates that there is no tangency of the boundary streamline with a characteristic line.

Airfoil G-8022-088 has a smaller region of supersonic flow and the lower surface is made to have free stream velocities over most of its distance.

Airfoil G-8040-076 has a similar upper surface distribution to $\mathrm{G}-8022-088$ but the lower surface velocities were adjusted to give a higher lift.

Further analysis on these and other shapes are planned at Northrop. The analysis will include boundary layer stability calculations.

CONCLUSIONS

Results of calculations of airfoll shapes from supercritical compressible velocity distributions indicate that it is feasible to calculate the shapes with reasonable accuracy using a transformation to an incompressible plane, and that the method car be useful for studying transonic airfoil shapes with supercritical velocities.

The program described herein can be used to assist in the design of improved transonic airfoils. The effect of velocity distribution changes on airfoil shapes can be studied at transonic speeds. Higher drag rise Mach numbers may be obtained by designing to avoid limit lines using the hodograph representation.*

[^1]

FIGURE 1. CAICULATED CIRCULAR AIRFOIL

FIGURE 2. AIRFOIL CALCULATION FROM SUPERCRITICAL RELAXATION DATA

FIGURE 3. AIRFOIL CALCULATION FROM SUPERCRITICAL EXPERIMENTAL DATA

FIGURE 4. AIRFOIL G-8027-120

ZIGURE 5. HODOGRAPH FOR AIRFOIL G-8027-120

FIGURE 6. AIRFOLL G-8022-088

FIGURE 8. AIRFOIL G-8040-076

FIGURE 7. HODOGRAPH FOR AIRFAL G-8022-088

FIGURE 9. HODOGRAPH FOR AIRFOIL G-8040-076
deteranation analogique de profils d'aile EN REGIME TRANSSONIQUE
par
F. RIGAUT

Centre de Calcul Analogique 29. Avenue de la Division Leclerc

Chatillon s/s Bagneux (92)

Une methode de calcul analogique, baste sur l'emploi des differences finies est appliquee a la détermination d'écoulements transsoniques a partir de leurs hodographes. Après une brève description des méthodes soit analogiques, soit hybrides applicables en ce donaine il est insiste sur l'etude des profils.

Sur ce sujet il est considere successivenent le cas des profils symériques, le cas des profils a l'incidence de portance mulle et le cas des profils portants. Des exemples et comparaisons sone foumnis qui soulignent les possibilités de la néthode. Enfin un algorithe de calcul est proposé pour déterminer, selon une technique hybride, un écoulement comprenant une onde de choc.

Par ailleurs ce procedes est applicable au calcul de grilles d'aubes et différentes possibilites et exemples seront fournis.

EquATIONS A RESOUDRE.
On considère l'écoulement plan, pernanent et irrotationnel d'un fluide conpressible. Les grandeurs representatives: q le module de la vitesse, f la masse specifique, la pression, f le potentiel des vitesses, ψ la fonction de courant sont rapportees a leurs valeurs critiques,

En introduisant les variables cancniques θ et σ definies par :

$$
\theta \text { : angle de la vitesse } \sigma=\int_{q}^{1} \frac{p}{q} d
$$

les fonctions of et ψ satisfont au système conjugue :

$$
\left.\varphi_{0}^{\prime}=-\psi_{\sigma}^{\prime} \quad \varphi_{\sigma}^{\prime}=k \sigma\right\rangle \psi_{0}^{\prime}
$$

En particulier $\psi(\theta, \sigma)$ est solution de l'equation du second ordre, lineaire et de type mixte :

$$
\begin{equation*}
K(\sigma) \psi_{00}^{\prime \prime}+\psi_{\sigma \sigma}^{\prime \prime}=0 \tag{1}
\end{equation*}
$$

ou K(E) $=\left(4-M^{*}\right) / P^{2}$ est une fonction qui par 1^{\prime} internádiaire de la relation de S^{T} Venant reflète la loi de compressibilite du fluide. Cette fonction varie en signe comme σ et selon qu'elle est positive, mulle ou négative, 1 'équation (1) presentera le type elliptique, parabolique ou hyperbolique ce qui correspond respectivenent a un ecoulement subsonique, sonique cu supersonique. Precisons qu'un point d'arrêt $q=0$ correspond a $\sigma=\infty$ et que l'axe $\sigma=0$ est l'image de la ligne sonique.

Dans le demi-plan $\sigma<0$ le type hyperbolique (1) implique l'existence de caracteristiques donnees sous forme differentielle par :

$$
d \theta^{2}+k(\sigma) d \sigma^{2}=0
$$

et sur lesquelles la dependance des coordonnees permet de relier les fonctions \mathcal{Q} et \mathcal{Y} par :

$$
\begin{equation*}
d \varphi^{2}+r(\theta) d \psi^{2}=0 \tag{2}
\end{equation*}
$$

Enfin la correspondance entre les deux plans x, y et $0, \sigma$ est donnee par :

$$
\begin{equation*}
d x+i d y=\frac{e^{6}}{4}\left(d \varphi+i \frac{d \psi}{p}\right) \tag{3}
\end{equation*}
$$

tandis que les singularites de transformation sont obtenues par les zero ou infini du Jacabien :

$$
J=\frac{D(x, y)}{D(\theta, \sigma)}=-\frac{k(\sigma) \psi_{\theta}^{\prime 2}+\psi_{\sigma}^{\prime 2}}{P q^{2}}
$$

MEIHODE DE RESOLUTION ANALOGIQUE.
Avec les reserves habituelles relatives aux developpements limites et en adoptant un mallage irrégulier schematise figure 1 , 1^{\prime} éq (l) peut être Ecrite sous sa forme aux differences finies. En admettant que les derivées secondes sont les differences rapportees au pas des derivees premières on obtient au troisiàme ordre près (ref. 2)

avec

$$
R=c_{1}\left(\frac{\partial^{3} \psi}{\partial \sigma^{3}}\right)+c_{2}\left(\frac{\partial^{2} \psi}{\partial \theta^{3}}\right)
$$

L'analogie que l'on se propose consiste a identifier la forme (4) avec la relation exprimant l'état de potentiel electrique en un noeud d'impedance. On considere à cet effet un réseau d'inpédances z_{n} groupees en croix et siege d'un etat de tensions alternatives V_{n} dephastes de ef par rapport aux courants in qui y circulent.

A l'aide de la loi de Kirchhoff et de la loi d'Ohm on obtient en un noeud :

$$
\begin{equation*}
\frac{e^{j \varphi_{1}}}{z_{1}}\left(V_{1}-V_{0}\right)+\frac{e^{\lambda \varphi_{3}}}{z_{3}}\left(v_{3}-V_{0}\right)+\frac{e^{j Y_{4}}}{z_{4}}\left(v_{4}-V_{0}\right)+\frac{e^{1 P_{2}}}{z_{2}}\left(v_{2}-v_{0}\right)=0 \tag{5}
\end{equation*}
$$

Du rapprochenent entre (4) et (5) resultent les relations d'identification :

$$
Y=\lambda v \quad \varphi=\frac{\lambda}{H} I
$$

7-2

$$
\begin{align*}
& z_{1}=\frac{2 \Delta \theta_{1}}{\Delta r_{2}+\Delta \sigma_{4}} \cdot \frac{1}{K_{0}} \cdot e^{3 \varphi_{1}} \quad z_{2}=\frac{2 \Delta \sigma_{2}}{\Delta \theta_{1}+\Delta \theta_{3}} \cdot e^{\Delta \varphi_{2}} \tag{6}\\
& \text { analogues pour } z_{3} \text { et } z_{y} .
\end{align*}
$$

et des formules analogues pour \mathbb{Z}_{y} et \boldsymbol{Z}_{q}.
Notons que \mathcal{I} est la fonction de courant Electrique. Elle est accessible a la mesure electrique par l'intermediaire de sa differentielle qui représente le flux du vecteur intensité (\mathbb{I} I.
फ. ids)
Après avoir choisi un hodographe son domaine utile est quadrille. Pour la partie ellíptique le maillage est pris tel que la frontière ne passe que par des noeuds; pour la partie hyperbolique le maillage est tel que le réseau de ses diagonales se confonde avec celui des caracteristiques. De plus le maillage est reserre la ou le gradient est fort (voisinage d'une singularite, effet de pointe, ... etc) et est reiache la a le gradient est faible (point nodal, ... etc).

Ce domaine est ensuite represente a l'aide d'imedances calculees selon (6) et représentant chacune une maille.
a) si le probleme a traiter est elliptique ou elliptique-parabolique $1 a$ fonction k (e) reste positive. Le réseau representatif est alors constitue de resistances ($\varphi_{n}=0$)
b) si le problame est mixte la fonction K cos change de signe. On est alors anene à choisir pour les z_{n} des impedances imaginaires pures, selfs et capacites telles que le terme en êtn affecte les $\left(V_{n}-V_{\bullet}\right)$ du signe voulu $\left(\varphi_{n}= \pm \pi / \varepsilon\right)$

L'application aux contours de tels milieux de conditions electriques en accord avec le problème au limite à resoudre conduit à l'établissement des champs $V(\theta, \sigma)$ et $\mathcal{I}(\theta, \sigma)$ dont on peut par des mesures electriques relever les valeurs.

Il reste alors à integter la relation (3) pour obtenir dans le plan physique toutes lignesdésirees de l'ecoulement correspondant à l'hodographe choisi.

METHODES DE RESOLUTION ASSOCIEES OU HYBRIDES.
On a vu que suivant les problemes cherchés il pouvait être utilisé des réseaux soit résistifs, soit composés de selfs et capacités. D'autres procedés sont possibles.

Si l'on remarque que la methode analogique se prète particulièrenent bien a la résolution de problemes aux limites de type elliptique : Dirichlet ous Newman et si par ailleurs on constate que le calcul sur ordinateur est très efficace pour la resolution de problemes aux limites de type hyperbolique : Cauchy ou Goursat on conçoit que dans le cas d'une equation de type mixte les méthodes analcgiques ou numeriques puissent $s^{\text {taverer conplementaires. }}$

Les problemes aux limites rencontres pour de telles equations permettent en effet un decoupage du donaine d'etude en deux sous-domaines de resolution tel que pour l'un il solt préferable d'employer la méthode analogique, pour l'autre la methode namerique.

D'une façon genérale les données d'un problema mixte sont portées par un arc n du domaine elliptique et un arc ouvert 0 du domaine hyperbolique fig. (2). les domaines interieurs, respectivement Ω_{1} et α_{2}, sont séparés par l'axe parabolique.

11 est souvent possible de remplacer les donnees sur Δ par des donnees sur 1'axe $\sigma=0$. On peut alors resoudre um Dirichlet singulier en a, par analogie ; puis à partir des resultats obtenus deteminer maneriquement la solution dans a par la résolution d'un probleme de Cauchy. C'est le fonctionnement en chaine ouverte : subsonique d'abord, supersonique ensuite. Tel est le cas dans le calcul de tuyère ou de grille d'aubes.

Dans d'autre cas, les donnees sur l'axe $\sigma=0$ ne peuvent être prises arbitrairement et doivent satisfaire a des relations de compatibilite. Dans ce cas il est necessaire d'operer des résolutions alternativement en Ω, (par analogie) et Ω_{z} (par momerique) jusqu'a ce qu'il y ait raccord des solutions le lorg de l'axe g' . C'est le fonctionnement en chaine ittrative. Tel est le cas du calcul d'un profil avec choc.

Ces deux modes de resolutions de problerre mixte relèvent des possibilites du calculateur Hybride actuellement realise au Centre de Calcul Analogique (ref. 3). Le chanp subsonique est traite par réseau, le champ supersonique est détermine par l'ordinateur. L'imposition des conditions aux limites ainsi que la liaison entre $-\alpha_{1}$ et \mathcal{A}_{2} dependent d'une comutation speciale.

CALCIL DE PROFILS D'AILE.

Le calcul pratıque de profils d'aile à partir de leur hodographe se heurte a trois difficultes. La premiere provient des singularités introdultent par la transfomation de l'hodographe : doublet, point critique, ... etc et qui ont des repercussions sur la precision des calculs. La seconde dıfficulte apparait lorsqu'on desire obtenir des profils supportant des repartitions de vitesses nartiellament supersoniques: des precautions sont a prendre afin de n'avoir a résoudre que des
problènes bien poses. Enfin la derniàre difficulté consiste en la présence eventuelle de choc et sur la manière dont on en conçoit 1 'houjographe. Bien que dans le probleme le plus general ces trois questions sont inbriquées, chacune de ces difficultes sera traité à part.

1. SIngliarites et homographe dun profil now portant.
 $\$^{\prime}$ est 1^{\prime} inage du profil, A et $\$ 3$ sont celles de l'axe de symétrie et le point Forrespond a l'écoulement uniforme à l'infini du profil.

Si l'on s'intéresse à la fonction de courant les conditions sux limites sont les suivantes :
$-\operatorname{sur} B^{\prime} \mathrm{C} D^{\prime}, A B$ et $E D: \quad \psi \geq 0$

- $B 日^{\prime}$ et $D J^{\prime}$ sont des lignes de gradient mal ou :

$$
\psi=0 \quad \text { et } \quad \psi^{\prime}=\psi_{\sigma}^{\prime}=0
$$

- en $P\left(\theta_{\infty}, \sigma_{\infty}\right)$ se trave un point critique d'ordre 2 . Il en resuite pour la fonction de courant in developpement dont le terme principal est (ref. 7)

$$
\begin{gather*}
\psi \simeq \frac{c}{\sqrt{\varepsilon}} \operatorname{sen} \frac{\omega}{2} \tag{7}\\
r^{2}=\left(\theta-\theta_{\infty}\right)^{2}+k \cdot\left(\sigma_{-} \sigma_{\infty}\right)^{2} \quad r_{g} \omega=\frac{\theta \cdot \theta}{\sqrt{k}\left(\sigma-\sigma_{\infty}\right)}
\end{gather*}
$$

Sur le reseau correspondant il convient donc :

- Aux frontières $B^{\prime} \subset D^{\prime}$, AB et $E D$ d'imposer un potentiel $V=0$
- aux infinis $B B^{\prime}$ et $D D^{\prime}$ de laisser le potentiel se fixer a la valeur $V=0$
- En P de tenir compte de l'équation (7). Pour cela il est necessaire de resserrer le maillage autour de P et de calculer à l'aide de (7) les résistances qui en sont issues. En ce point il est impose un potentiel $V=1$.

Si maintenant on considère un profil quelconque et place a l'axe de portance nulle le developpement (7) devient :

$$
\psi=\frac{c}{\sqrt{2}}\left(a \sin \frac{\omega}{2}+b \cos \frac{\mu}{2}\right)
$$

Dans ce cas on ne peut se limiter a un demi-champ comme precedenment et 1 'hodographe s'inscrit sur des feuillets de Riemann raccordés en P fig (4).

Pour représenter un tel hodographe il suffit de pratiquer dans le chanp une coupure issue nécessairement de P et rejoignant selon un chemin arbitraire un point du profil : le point d'arrêt par exemple, Sur cette coupure la continuité des fonctions φ et $\boldsymbol{\psi}$ donc I et V est assuree par raccord electrique.
Il convient de remarquer que si le profil corporte une bosse ou un creux (fig, 5) la situation se complique par 1'apparition d'un point critique distinct de P.

Ce fait se comprend intuitivement si 1 'on considere que dans le plan de l'ecoulement le meandre ainsi crée pour les lignes de courant se résorbe peu à peu au fur et à mesure que l'on s'eloigne du profil jusqu'a s'evanouir en un point de vitesse stationnaire N. Lans le plan θ, σ ce fait se traduit par des boucles des lignes de courant (la vitesse repasse 3 fois par la mêne inclinaison). Ces boucles sont situees sur des feuillets de Riemann raccordes autour de l'image N ' de N Une coupure telle que NT permettra de representer un tel chang.
2. SINGILARITES ET IDDOCRNPII: D'IN PROFIL PORTANT.

Lorsqu'on introduit la circulation, les termes predominant pour la fonction de courant a l'infint du profil deviennent ceux de l'écoulenent uniforme et du tourbillon (réf. 4). Dans le plan $0, \sigma$ il en resulte près de \mathcal{P} un developpement commençant par un terme doublet et un terme tourbillon.

Du fait de antte predominance les points de vitesse stationnaire restent a distance finie dans le plan X, y et sont distincts de P dans le plan θ, σ.
Il convient maintemant de distinguer deux sortes de points de vitesses stationnaires afın d'alder a la comprehension de 1'hodographe d'un profil:
a) tout d'abord le point de vitesse stationnaire "principal" qui resulte de la deformation crese dans l'ecoulement uniforme par la presence d'un profil, s'il n'y a pas de portance ce point est a 1 'infini du plan $x, y, s^{\prime} i l y$ a portance il est adistance finie. Dans le plan $0, \sigma$ ceci correspond respectivement a un point critique confoncu ou distinct de \boldsymbol{P}, image de l'ecoulement uniformc. Sa presence est obligatoire pour des profils biconvexes.
b) Ensuite les points de vitesse stationnaire "secondaires" resultant d'eventuelles bosses ou creux du profil. Dans les cas pratiques leur présence est rare.
c) Enfin il faut noter que pour une certaine classe de profil dont l'intrados et l'extrados presentent la mêne courbure et dont les bord d'attaque et bord de fuite sont effiles il n'y a pas de points de vitesse stationnaire.

La transformee dans le plan θ, σ de l'ecoulenent autour d'un profil biconvexe et portant est sch Znatisee figure (6). Sur Abf 9 A image du profil la fonction Ψ prend une vitesse constante. En P image de l'ecoulement uniforme la fonction ψ est approchee par la partie imaginaire de :

$$
\begin{gather*}
f(\omega)=i \frac{\alpha}{\omega}+i \beta \log \omega+o(\omega) \\
f(\omega)=i \frac{\alpha}{\varepsilon} \log \frac{\omega+\varepsilon / 2}{\omega-\varepsilon / 2}+i \beta \log \omega+o\left(\frac{\varepsilon^{2}}{\omega^{2}}\right) \tag{8}\\
\omega=\sqrt{\pi}\left(\delta-\sigma_{0}\right)+i\left(\theta-\theta_{\infty}\right)
\end{gather*}
$$

ou mieux :

Enfin en $\boldsymbol{N}, \boldsymbol{\psi}$ prend une valeur finie tandis que ses derivees y sont infinies (ref. 6):

$$
\theta_{\varphi}=\theta_{\psi}=\sigma_{\varphi}=\sigma_{\psi}=0
$$

Par ailleurs, deux conditions sumplementaires sont à assurer pour que 1 'hodographe corresponde à un ecoulement physiquement reel.

La première est celle de femeture du profil et qui conduit à choisir les constantes α et β de façon a ce que sur un petit cercle entourant P on ait (ref. 5) :

$$
\oint_{c} d z=0 \quad \oint_{c} d y=\Gamma
$$

soit

$$
\begin{equation*}
\alpha=\frac{\pi}{2 \pi} P_{\infty} \quad \beta=\frac{\pi}{2 \pi} \cdot \frac{1}{\sqrt{k}} \tag{9}
\end{equation*}
$$

soit

$$
\alpha / \beta=\sqrt{1-M^{2}}
$$

La seconde est celle de partage, les conditions de Joukowsky doivent en effet être satisfaites au bord d'attaque et au bord de fuite. Il en resulte que les points A et F images des points d'arrêt sont des points nodaux du chanm. En conséquence les dcux demi-images de la ligne d'arrêt PA et PF doivent être issues de A et F, milietxdes abscisses des segnents $A_{1} A_{2} F_{1} F_{2}$ et représentent les discontimuités angulaires de la vitesse.

Sur le reseau correspondant il faut donc :
a) en P representer d'après (8) le doublet par une source et un puits electrique sépare de \mathcal{E}. Si $\boldsymbol{\Gamma} \geqslant 0$ ces sources débitent une intensite écetrique relice à α :

$$
\begin{equation*}
I_{\mathbb{R}}= \pm \frac{\mu}{\lambda} \frac{\alpha}{\varepsilon} \tag{10}
\end{equation*}
$$

b) $\operatorname{sur} A \boldsymbol{A B P A}$ inposer un potentiel V_{c}. L'intensité débitée par cette electrode est reliée a la circulation Γ par :

$$
\begin{equation*}
I_{n}=\frac{\mu}{\lambda} \Gamma \tag{11}
\end{equation*}
$$

c) enfin les points a 1 'infini A et F ainsi que le point critique N ne sont pas alimentés et prennent d'eux-mênes leur potentiel V_{A}, V_{F} et V_{N}.
Le reglage des conditions de partage et de femeture est le suivant :
a) Dans une première expérience ou la circulation est réglé égale a zero, la constante du doublet est évaluée a l'aide de l'equation (10).
b) le doublet étant maintemu au même niveau de potentiel il est régle sur ABFSA la circulation assurant d'après (9) et (11) la condition de femeture. La frontière ABPDA prend alors un potentiel V_{c}.
c) les potentiels V_{A} et V_{F} sont mesures. S'ils sont egaux a V_{c} la condition de partage est assurse. Sinon il faut operer plusieurs essais en jouant sur les positions respectives de \boldsymbol{p} et N puis de rechercher par interpolation la disposition satisfaisant à $V_{A}=V_{B} \approx V_{G}$.
3. CALCUL DES ZONES DE VITESSES SIMERSONIQUFS.
@ue le profil soit portant ou non differents types d'hodograples sont à considerer suivant que le Mach amont est inferieur, egal ou superieur au Nach critique.

Si le Mach amont est inferieur au Mech critique l'écoulement est entièrement subsonique et son
hodographe est situe dans le demi-plan $\sigma>0$ (fig. 7b). Le probleme pose est un Dirichlet et sa solution accessible a l'aide d'un reseau résistif.

Si le Mach amont est Egal au Mach critique, l'hodographe est tangent al'axe $\sigma=0$. Le problème pose est un Dirichlet singulier dont la resolution est torjours possible par la méthode analogique.
En particulier on peut ainsi déterminer des profils dont 1 hodographe est limite par un segment LN de l'axe $\sigma^{\circ}=0$ (fig. 7c). Ces profils supportent une repartition de vitesses du type plateau, le palier Etant à M mi. En plaçant judicieusement le segnent $L N$ par rapport a P on peut espérer obtenir ainsi des profils qui pour des Machs superieurs presenteront des distributions Peaky.

Enfin il reste a considerer le cas ou le Mach amont est superieur au Mach critique mais tout en restant inferieur au Mach d'irréversibilité. Dans ce cas l'inage du profil déborde dans le deni-plan $\sigma \lll$ et son trace est contimu puisqu'il n'y a pas de choc (fig. 8a).

Un réseau de selfs et capacités permettrait de représenter un tel domaine. Toutefois l'unicité du problème au limite ainsi posé est douteuse la forme de MM' pouvant s'avérer incompatible avec les conditions regnant dans la partie elliptique.

Plusieurs méthodes sont possibles. La première consiste à se donner l'hodographe jusqu'a sa frontière transsonique $M s M^{\prime}$ (fig. 8b). Il convient alcrs de resoudre un deuxième problème de Frankl dans le domaine $\mathbf{8}^{\prime} \mathrm{L} \mathrm{m}^{\prime} \mathrm{S}_{\mathrm{ML}} \mathrm{ML}$. Ensuite la partie inconnue de la frontierre mm' est déterminée par la résolution d'un problème du type I (terminologie de Picard) dans e quadrilatère SRTR'.

Uneautre possibilité consiste à remplacer la donnée sur les arcs $4 . M_{\text {et }} N M^{\prime}$ par celle d'une repartition de fonction de courant $\psi(\rho)$ sur 1'axe $\sigma=0$ (fig. 8c). Dans ce cas il faut resoudre un Dirichlet singulier dans le domaine G'N'S $^{\prime}$ NO $^{\prime}$, puis un probleme de Cauchy dans le triangle curviligne LNT a partir des distributions $\Psi(\theta)$ et $\Psi_{\sigma}^{\prime}(\theta)$ sur LN.

L'inconvénient de ces deux procédés est que l'on ne peut prévoir de façon rigoureuse si les parties supersoniques ainsi calculees sont exemptes de lignes limites, done de choc.

Toutefois il faut remarquer que de tels ecoulenenis contimus ne semblent experimentalement exister que lorsque la vitesse maximale n'excède pas $M=1,25$ ou 1,3 . Au dela les chocs deviennent nets et il est nécessaire d'en tenir compte dans les schémas de calcul.

Ce fait se comprend si l'on se rappelle que pour que la recompression soit isentropique il est necessaire qu'aux points du profil ou clle ait lieu la courbure soit faible. Si le nombre de Mach maximum est trop fort, cette recompression devra s'Etendre sur une portion plus large du profil en sorte que la nécessaire variation de la pente, θ variant au maximom de 90° a 0°, entraînera un choc.

Si maintenant 1 'on suppose $M_{\text {mas }}<1,25$, on conprend a 1 'aide des schemas de la figure 9 qu'il importe peu pour une telle gamme de vitesse de se poser le probleme de l'existence d'un choc. En effet sur la figure $9 b$ on peut voir l'hodographe suppose d^{\prime} un choc, dont l'image est L'QL. Si l'intensite du choc est faible l'hodographe prend l'allure schematisee figure ge, et devient ainsi très voisin du schena continu 9a.

Si donc l'on suppose $M_{\infty}<1,25$ on peut supposer qu'un calcul base sur un schema continu conduise pratiquement à des résultats voisins de ceux que l'on aurait obtenus en tenant compte d'un choc faible.

Maintenant donc le schéma continu il est possible dans le cadre de ces hypothèses de simplifier 1'équation (1). Si en effet dans la zone supersonique σ est petit en valeur absolue, on peut poser

$$
K(\sigma) \geq 0
$$

en sorte que (1) devient

$$
\psi_{\sigma \sigma}^{\prime \prime}=0
$$

En se donnant Ψ sur le contour $\boldsymbol{R}^{\prime} \boldsymbol{H} M^{\prime} D^{\prime}$ le problème à résoudre est un dirichlet singulier. Pour 1'analogic la zone supersonique $N M M^{\prime}$ 'L est représentée en reliant l'axe $\sigma=0$ a la frontièreLAN par des résistances.

4. RESULTATS OBTENUS

Plusieurs profils ont ainsi été determines. Tout d'abord la methode a été testee par une comparalson avec des resultats de Nietwland. L'hodographe obtenu a partir d'une distribution $M \approx f(9)$ (cas e de la reférence 7) a éte maille comre 1 'indifuc la figurc 10 . Pour des raisons de cormodités le bord de fuite a éte pris effile. Sur la figure 11 on peut voir les résultats obtenus. les cotes du profil ont été retrotees avec une erreur au plus égale a 18 de 1 'epaisseur maximale.

Ce même hodographe a été zronque al l'axe $\sigma \in 0$. les calculs ont conduit a un profil d'épaisseur moindre et supportant une repartition de vitessesassez voisine (figure ll).

Une autre comparaison a ete faite avec des resultats obtems en soufflerie par Monsieur Vincent de Paul, O.N.E.R.A. Les calculs ont été effectuês a partir d'une distribution $M z$ \& ($)$) cbtenue pour umprofil NACA 64AO1O. Les cotes de ce profil ont été retrouves avec une erreur de 5% (fig. 12). Toutefois une difference est apparve au bord d'attaque sur l'emplacement de la zone supersonique.

Enfin il a ete calcule un cas portant. Pour hodographe il a éte pris un contour voisin d'un des resultats de fr. Vincent de Paul. On peut voir figure 11 les resultats obtemus. Pour ce calcul il est a preciser que la fermeture du profil n'etait pas rigoureuse et que des balancements ont éte necessaires. Ces corrections ont entraine une modification de 1,58 de la portance. Par ailleurs la position du point critique fut délicate a trouver et s'est revelee être très proche de P, image de I'ecoulement amont.

5. ALCORITME DE CALCIL DANS LE CAS DUN COC.

Lorsque le Mach amont approche la valeur du Mach d'irreversibilité, 1'hypothèse du schéna continu devient de moins en moins plausible. L'intersite du choc gagne en vigueur et il existe une plage du Nach amont pour laquelle on peut admettre que l'ecoulement est irrotationnel en aval du choc. Dans ce cas l'écoulement est toujours a potentiel et la methode de l'hodographe est applicable.

Sur le plan résolution ce problène conporte plusieurs difficultés. Tout d'abord l'allure de 1'hodographe et la correspondance ronctuelle sur les images du choc sont inconnues. Cette difficulté sera en partie levée en s'inspirant de resultats experimentaux obtenus a la soufflerie de lille par Messieurs Dyment et Gontier (ref. 9). D'autre part le type de conditions aux limites à satisfaire rend très delicat la recherche de solutions $\psi(\mathbb{n}, \sigma)$. Un schema de calcul est ici propose qui s'inspire de celui de Germain (réf. 8).

En se limitant, pour simplifier, au cas du profil symétrique non portant on peut voir figure 15 le trace surposé d'un tel hodographe.

Sur cette figure les arcs $B^{\prime} L_{\ell}$ et $L_{1} D^{\prime}$ sont les images des parties du profil situees en anont et aval du choc. Sur ces lignes Ψ prend une valeur constante.
Les arcs $L_{2} Q$ et $L_{1} Q$ sont les images des faces amont et aval du choc. En exprimant $1 a$ conservation de la conposante tangentielle de la vitesse et du flux de masse nomal et en tenant conipte du fait que les arcs $l_{2} Q$ et L, Q ont la mene image dans le plan physique on doit satisfaire en des couples de points $\left(\theta, \sigma_{1}\right)$ sur $L_{1} Q,\left(\theta_{2}, \sigma_{2}\right)$ sur $L_{2} Q$ les relations:

$$
\begin{align*}
{[d \psi]_{1}=} & {[d \psi]_{2} \quad[d \varphi]_{1}=[d \varphi]_{2} } \\
{\left[\frac{d \varphi}{d \psi}\right]_{1}=} & {\left[\frac{d \varphi}{d \psi}\right]_{2}= \pm \frac{m_{1} m_{2}}{q_{1} q_{2}} \sqrt{\frac{q_{1}^{2}-q_{2}^{2}}{m_{2}^{2}-m_{1}^{2}}} } \\
& \cos \left(\theta_{2}-\theta_{1}\right)=\frac{m_{2} q_{2}+m_{1} q_{1}}{m_{1} q_{2}+m_{2} q_{1}} \tag{12}\\
m_{1}= & p_{1} q_{1} \quad
\end{align*}
$$

Ces relations montrent que la correspondance ponctuelle entre L, Q et $L_{z} Q$ dépend du chanp a calculer, on peut par exemple supposer que le choc est en chaque point droit : $\theta_{1}=\theta_{2}$. Dans ce cas les relations 12 se simplifient considerablement. Malheureusement cette situation, qui conduit a des lignes limites, ne semble pas reelle.

A partur des iésultats de Dyment et Gontier un tracé représentant cette correspondance est montré figure 15. Il y apparait que droite au pied du choc la correspondance evolue de façon imprevisible Notament au point sonique Q il scmble que la correspondance soit la limite d^{\prime} un choc oblique d'intensite nulle.

Devant la dift.culté de prévoir cette correspondance il semble qu'il soit plus simple de ne se fixer qu'une partie de l'hodographe, puis d'en trotver le complement à l'aide de liz. C'est le principe da schema propose.

Les parties subsonique et sonique de 1 'hodographe sont choisies arbitrairement et les solutions $\Psi(\theta, \sigma)$ et $\varphi(\theta, \sigma)$ sont calculees par analogie. A partir de ces resultats le partie amont du choc est determinee numeriquement et des relations de compatibilite sont a satisfaire sur

la ligne sonique $Q N$

D'une façon plus détaillée on se propose d'opsrer de la manière suivante.
L'inage $B^{\prime} N$ et $L_{1} D^{\prime}$ du profil est fixee et supporte la condition $\psi=0$. Ensuite il est choisi un segnent $Q N$ pour image de la ligne sonique et un arc Q_{L}, pour image de la face aval du choc. Sur ces deux lignes il est pris des repartitions de fonction de courant $n(\theta)$ et $f\left(\theta, N_{1}\right)$ compte tenu éventuellement de la singularité en Q.

Pour l'ensemble du donaine $8^{\prime} N Q L D_{1} D^{\prime}$ le problème à resoudre est un Dirichlet. Entre autres Elements de solution on obtient les repartitions de derivecs normales m(θ) et $g(\theta, r$,$) sur$ QN et Qhi
Les repartitions $f\left(\theta, \sigma_{1}\right)$ et $g\left(\theta_{1}, \pi_{1}\right)$ pemettent alors de trouver le premier membre de (12b)
 de la face amont du choc est alors connue et sur celle-ci les conditions $12 a$ et 12 b sont à respecter.

Si cette ligne est comprise entre les deux caractéristifues issues de Q on peut a partir de la double donné U et $\mathbf{~} \psi$ qu'elle supporte, résoudre un probleme de Cauchy et déterminer 1'arc $R L_{2}$ imape d'une partie du profil. De plus on ohtient une loi de fonction de courant sur la caractéristique $\mathbf{Q R}$.
Il reste enfin a chercher la solution dans le domaine $R Q N$ a partir des repartitions de fonction de courant sur Q R et $Q N$. En plus de l'arc RN il est trouve une nouvelle distribution de dérivé normale $m,(8)$ sur $\dot{Q} N$.

Si $m,(\theta) \neq m(\theta)$ il faut recormencer tout le calcul mais à partir de $m,(\theta)$ au lieu de $n(\theta)$ Ce nowveau cycle conduira a une distribution $m,(\theta)$ et ainsi de suite jusqu'à convergence.
Cette convergence n'est pas certaine et ici il est conpté sur plusicurs essais avant de 1 'obtenir. par ailleurs ces essais preliminaires montreront comment choisir les donnees pour que d'une part l'are Q L $_{2}$ soit bien compris entre les caracteristiques issues de a et d'autre part il n'y ait point de ligne limite. Nous esperons porvoir purlier prochainement des resultats.
6. APPLICATION AII CALCUI D'aubes DF TIRBINE.

Le problème de la díter. ation de grille d'aube diffère de celui du profil isole d'une part par la condition de périodicite du charp de l'écoulement, d'autre part par le fait qu'entre l'amont et l'aval le vecteur vitesse varie.

Trois transitions transsoniques à travers un auhage sont envisageables. Tout d'abord une transition subsonique-supersonique : c'est le regime de "cyer-Laval observe dans les tuyçres. Ensuite une transition subsonicue-sulsonique avec une ou plusicurs zones de vitesse supersonique : c'est le régime de Taylor. Enfin ces zones de vitesses supersoniques peuvent être hordees par un choc.
nans ce qui suit il ne sera considére que le regime de "eyer-Laval. Le cas du regine de Taylor avec ou sans choc peut être traite suivant les mêmes techniques que celles decrites plus haut.
On considère donc une grille d'aubes caractérisée par une entrée subsonique ($\boldsymbol{q}_{1}, \boldsymbol{\theta}_{1}$), une sortie sumersonigue (q_{2}, θ_{1}), la transition Etant du type Meyer Laval (fig, 16). La grille est définie geométriauement nar son pas h, sa section all col 8 , son Epaisseur 8 . Ses paramères aérodynamioues sont la déflexion ' $\delta \boldsymbol{z} \theta_{z}-\theta_{\text {, }}$, le coefficient de survitessé $\mu=q_{2} / q_{1}$, le debit Q et la circulation r. Les lois de conservations donnent:

$$
\begin{aligned}
& Q=\Delta \psi=p_{1} q_{1} h \cos \theta_{1}=p_{2} q_{2} h \cos \theta_{2} \\
& \Gamma=q_{2} h \sin \theta_{2}-q_{1} h \operatorname{sen} \theta_{1}
\end{aligned}
$$

le caractère périodinue de 1 'ecoulement permet de limiter le domaine d'Etude à une bande ne comprenant qu'un seul profil et bordere mar doux lismes arbitraires $P_{1} M P_{2}$ et $P_{1}^{\prime} M P_{2}^{\prime}$, se deduisant l'une de l'autre par une translation \bar{T}.
lintre deux points homologucs M et M^{\prime} la foncion de courant augmente J 'une ouantité constante, tandis que le flux normal est transmis

$$
\begin{equation*}
\psi_{M}=\psi_{M^{\prime}}+\Delta \psi \quad\left(\frac{d \varphi}{d x}\right)_{M}=-\left(\frac{d \psi}{\partial_{m}}\right)_{M^{\prime}} \tag{13}
\end{equation*}
$$

Aux infinis amont et aval la deuxixme de ces relations s'ecrit

$$
\Delta \varphi_{1}=q_{1} h \sin \theta_{1} \quad \Delta \varphi_{2}=q_{2} h \sin \theta_{2}
$$

infin sur le profil la fonction de courant est constante.

Dans le plan de Tricomi (fig. 17) les ecoulements amont et aval ont pour images les points $P_{\text {, }}$ et P_{2} et la transfonnce de l'aube s'applique sur le contour $a a_{1} d_{1} e_{1} d_{2} b_{2} a_{2} a_{\text {. }}$ Le bord d^{\prime} attaque du profil est arrondi, et son bord de fuite est a rebroussement.

La periodicite du chanm se traduira par l'application sur des feuillets de Riemann de chaque bande P. $P_{2} P_{i}^{\prime} P_{1}$. Ces feuillets ont en corran les points P_{i} et P_{2} et sont raccordés par une coupure arbitraire $P_{1} \neq P_{2}$ supportant les conditions 13.
Des singularites de transformation apparaissent aux points a et pay . Au voisisage de ces poirts le comportement de Ψ s'approche par les développements (ref.il) près de e: $\mathcal{Y}_{0}^{\prime}=\psi_{\$}^{\prime}=0$ près de P_{p} :

$$
\begin{gathered}
\Psi=c \log r \cdot\left(c_{1} \cos \alpha+c_{1} \sin \alpha\right) \\
\tau^{2}=k\left(\sigma-\sigma_{1}\right)^{2}+\left(\theta-\theta_{1}\right)^{2} \quad \lg \alpha=\frac{\theta-\theta_{1}}{\sqrt{k}\left(\sigma-\sigma_{1}\right)}
\end{gathered}
$$

Sur la ligne sonique la recherche de solutions se prolongeant analytiquement à travers la frontière transsonique et qui, au-dela, presentent un caractêre trivalent (ref. 12) conduit a resperter des distributions de la forme :

$$
\begin{equation*}
\psi(\theta)=\tau(\theta)=\sum A_{n} \theta^{2 n+\frac{1}{3}}+\sum B_{m} \theta^{2 \pi n+4 / 3} \tag{14}
\end{equation*}
$$

Abstract

1° Le caractère mixte de 1^{\prime} bcculement incite à fractionner 1 'hodographe en sous-domaines de resolution. C'est ainsi qu'on est amene à resoudre successivement un probline de Dirichlet singulier pour le subsonimue, un problème de Cauchy pour le transsonioue, un prohlème de Goursat pour le supersonique. Ces calculs necessitent les donnees suivantes: un contour $a_{1}, b_{1}, b_{2} a_{2}$, une repartition ((0) une distribution de vitesse sur l'axe de la tuyère de sortie. 2° Le problème de Dirichlet est resolu par la méthode d'analogie electrique. La transposition electrique des conditions aux limites consiste a ; sur a_{1}, b_{1} et $a_{y} b_{2}$ imposer le potenticl V, sur $b_{1} b_{2}$ imposer selon (14) une repartition $\mathbf{r (O)}$, sur la coupure pr satisfaire aux conditions (13) a l'aide de transformateurs. Fnfin une intensité I_{p} est reglee en $P_{\text {p }}$ de telle sorte que 1 'image de la ligne d'arrêt aboutisse bien en a. Sa valeur est relife à l'incidence normale 0 , par la relation $$
I p \equiv \operatorname{cotg} \theta_{1}
$$

Ce regime electrique établi, l'intégration du chanm $V(0, F)$ conduit au contour subsonique de 1 'au-

 be, et la mesure des intensités sur $b_{1} b_{2}$ a la distribution de dérivés normales $\psi(\theta)=\nu(\theta)$$3^{\circ}$ Le contour $D_{1} C_{1} O C_{2} b_{1} b_{1}$ de 1^{\prime} hodographe est ensuite détermine à partir des distributions $\boldsymbol{\gamma}(0)$ et $\gamma(\theta)$. L'Equation (1) est Ecrite en differences finies suivant le maillage schématiss figure 17.

$$
\psi_{4}=(2 \alpha+\beta+1) \psi_{0}-\alpha\left(\psi_{1}+\psi_{3}\right)-\beta \psi_{2} \quad \alpha=\frac{\Delta \sigma_{1}\left(\Delta \sigma_{1}+\Delta \sigma_{4}\right)}{2 \Delta \theta^{2}} \quad \beta=\frac{\Delta \sigma_{4}}{\Delta \sigma_{2}}
$$

Partant de la ligne $b_{1} b_{2}$ le calcul des ψ_{y} s'effectue de proche en proche à l'interieur du donaine $b_{1} c_{1} \circ c_{2} b_{2}$. Si le chany obtemu contient une ligne limite il e.t necessaire de modifier la distribution (14) en jouant sur les $A m$ et $B \mathrm{~m}$ et de recormencer les deux étapes precedentes. Le retour au plan physioue conduit ensuite a la partie transsonique de l'ecoulement frontière transsonique incluse.
4^{0} Le calcul de l'aube se termine dans 1 c plan physique par la resolution selon la methode des caractéristiques d'un problème dont les donntes initiales sont la frontière transsonique et la ligne de courant issuc de 0 . Sur les caractéristiques descendantes, déterminees de proche en proche, les points du profil sont obterus en satisfaisant a la condition de debit.

Un calcul a ainsi ette effectur a partir d'un hodographe sulsonimue choisi a priori, d'une distribution $\mathbf{T}(0) \geq \boldsymbol{C O}^{y_{3}}$ et d'une ligne de courant rectiligne issue de 0 et confondue avec 1'extrados du profil. La grille obtenue est présentse par la figure 18.

REFFREMCES.

1. P. Germain. Problemes mathématiques posés par l'apolication de la méthode de l'hodographe. Symposium transsonicum de 1'I.U.T.A.M., 1962.
2. P. Heard de la Marre. Résolution de problemes d'infiltration au mayen d'analogies electriques. S.D.I.T., $n^{\circ} 340,1958$.
3. L. Nalavard, G. Renard. Principe d'un calculateur hybride a réseau d'inpédance. C.R.Ac.Sc., t. 265, p. 189, 1967.
G. Renard, J. Quinio. Realisatior. et essai d'un calculateur nybride à reseau résistif. C.R.Ac.SC., t. 265, p. 263, 35i\%.
4. 5. Bergman. Tho dimensioral subsonic flows of a compressible fluid and their singularities. Transaction of the American Mathematical Society, vol. 62 n 3 , p. 452-498, 1947.
1. F.N. Frankl. Fcoulenent subsonique autour d'un profil comprenant une zone de vitesse supersonique bordée par un choc. Prikladnya matematika i meckanika, t. XX, p. 196, 1956.
2. J.W. Cragg. The Preak down of the hodograph transformation for irrotationnel compressible fluid flow in two dimension. Pac. Cemt. Phil. Soc. 44, p. $360-379,1948$.

7 G.Y. Niewwlard. The computation by lighthill's method of transonic potential flow around a family of quasi-elliptical aerofoils. NLR - TR T 83, 1964.
G.Y. Nieuwland. Transonic potential flow around a family of quasi-elliptical aerofoil sections. NLR - TR 172, 1967.
8. P. Germain. Actualite des problèmes transsoniques. Conférence faite au congrès Canadien de Mecanique Appliquee, TP 513, 1967.
9. A. Dyment et G . Gontier. Methode de determination des conditions de part et d'autre d'une onde de choc. tute FD 64228 I.M.F., Lille, 1964.
A. Dyment et F . Gryson, Ecoulements transsoniques plans présentant une zone supersonique sans onde de choc apparente. Note C.B. 67 N 20 , I.M.F., Lille
10. F. Rigaut. C.R.Ac.Sc., t. 262, p. 1415 , 1966, t. 264, p. 894, p. 1086, 1967 , t. 265, p. 521, 1967, t. 268, 1968.
11. R. Legendre. Recherche Aéronautique, $\mathrm{n}^{\circ} 53,1956$.
12. P. Germain. Ecoulements transsoniques homogènes. Progress in Aeronautical Sciences, 5, Perganon Press, 1964.

Figure 1

2 Problème de Frank!

Schéma de résolution

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 14

Figure 15

Figure 16

Figure 17

Calcul homerique de profis dranles subcritiques

PAR IA HETHODE DE LHODOGRAP:E

par
P. bevierre*
O.N.E.R.A. (92 - Chatillon - FRAMCE)

On se donne l'hodographe relatif à l'écoulement sur un profil portant, la vitesse d l'infini étant subsonique. Cet hodographe peut contenir une région λe_{g} èrement supersonique sans choc.

La pramière phase du celcul utilise la loi de compressibilite de CHAPLYGIN. Des hodographes du typa désiré, dépendant d'un assez erand nombre de paramètres peuvent alors être construits analytiquement, ies conditions de fermeture du profil et la position de l'irage I du point à 2 'infini par rapport au contour de l'hodographe étant déterainées avec précision. Partant de ces résultats comme première approximation, on peut par modification de la position de I déterminer des profils répondant à la loi de compressibilité exacte.

Une méthode de calcul, basée sur la détermination d'une fonction permettant de dégager la singularité relative à l'image du point à l'infini, est éécrite.

DIGITAL DEELRUTNATION OF SUB-CRITICAL WING PROFILES BY THE HODOGRAPH MENHOD

An hodograph is gren for a liftine airfoil with a subsonic velocity at infinity. This hodograph may include a weakly supersonic region without shock.

The first step in the computation involves the CHAPLYGIN compressibility law. Such royired hodograph containins a fairly large number of paramoters are obtaned analytically. The closure conditions of the corresponding oirfoils and the location of I (imase of the point at infinity) with respect to the todograph boundary are obtained with accuracy. Starting from these results (firat stop), the location of I is changed in order to find somo airficils corresponding to an exact compressibility lak.

A computational mathod is then described, involving the determination of a function whieh oxhibits the singular behaviour of the point I.

LOBEE DE CETTE EIUNE est d'apporter une contribution à la déternination dos caractéristiques árodyamiques de profile portants, sownis à un écoulement uniforme ot subsonique à l'infini pouvant comporter un domain transsonique sans choc.

On utilise une méthode de colcul hodographique besée sur uno technique élaborée per R, IEGENDRS, consistant essentiellemant à choisir un contour hodographique A ne comportant, dans sa partie utilo, aucuse autre singilaritt que is doublet-tourbillon au point I_{0}, image de l'infini du plan physique.

Une autre orifinalitt́ de Ia méthode consiste pour faciliter le calcui múrique à dégager l'effet de la singularité $I_{0}{ }^{2}$ l'aide d'un champ auriliaire induit par une suite résuiterement échelonnée de singularittes fientiquas dont toutes sauf celle située on I_{0} sont en dehors du ahemp utile de 1'hodographe H.

Ce champ de singularitter une fois connu, le problème est ramens à la détemination de fonctions régulières complémentairea $\delta \varphi, \delta \psi$ pour le potentiel ot la fanction de courant qui prennent sur le contour de 1 'hodographe des valeurs bion déterminóes. Le calcul de cas fanctions peut alors atre effectué à l'aide de réseaux analogiques ou par uno méthode de releratior.

Le choix da l'hodographo H résulte d'un calcul próliminaire, offectué dans le cedre do l'approanation de CHAPLYGIN. Uno expression analytique de la solution, contenant un assor grand ncabre do coafficients arbitraires, ajant ainsi ét' établie, le calcul muérique de H a été prosramé sur machine de grande capacité.

Cet hodosraphe, éventuellement, légèrement déformé est ansuite traité à l'aido des équations du fluids réel, la poeition de la singularité I correspondante étant méthodiquement recherchóse au voisinaze de I_{0}. Le retour au plan physique s'effectuo ensuite suivant la méthode clessiqua.

Dans ce mémoire, la méthode de calcul baséo sur la techniquo proposée par R. LEcanDRE ost décrite. On exemple numérique de celoul de II dane 1^{\prime} hypothèse du fluide fictif do cHapLYGIN est présont6. Ies tablea numériques des principales fonctions nécessaires à l'établissonent des valeura de $\delta \varphi$ at $\delta \psi$, sur un contour d'hodographo pour un écoulement de fluide réel, sont données.
La mise au point du procédé analogique étant encore on cours d'élaboration, aucun résultat concret ne peut actuellement êtro présenté.

Gereralitis
Après avoir décrit la classe des hodographes envisagés, on indiquera la méthode générale suivie pour le calcil des écoulements ontièrement subsoniques, puis des écoulements mirtes.

COORDONEES ET CLASSE DIHODOCRAPHES CONSIDEREE
q désignant la vitesse locale du fluide ot a_{i} la célérité du son dans les conditions génératrices, on adopte selon les nécessités imposées par le calcul, l'une ou liautre des variables suivantes:

$$
\text { (1) } \quad z=\frac{y-1}{2} \frac{q^{2}}{a_{3}^{2}}
$$

(2) $\sigma=\frac{1}{\tau} \int_{\tau}^{\frac{\gamma-1}{\gamma-1}} \frac{(1-\tau)^{\frac{1}{\gamma^{-\tau}}}}{\tau} d \tau$

Le nombre de Nach est :

$$
M=\sqrt{\frac{1}{Y-1} \frac{2 \tau}{1-\tau}}
$$

$\begin{aligned} & \text { Pour la valeur } \\ & \text { sous la forme : }\end{aligned}=1,4$ du fiuide réel, $2 a$ relation 2) s'intègro on posent $t_{c}=\sqrt{\frac{2}{Y+1}}$ ot $t=\sqrt{1-\tau}$
(3)

$$
\sigma=\left|\frac{1}{2} \ln \frac{1+t}{1-t}-t-\frac{t^{3}}{3}-\frac{t^{5}}{5}\right|_{t_{c}}^{t}
$$

L'hodographe considéré a la forme reprisantée fig. 1 , dans les ares τ, \overparen{O}
Le profil correspondant est dissymótriquo et portant.
Le point I_{o} est l^{\prime} image de l^{\prime} infini du plan physique ; la valeur do τ qui lui correspond est inférieuro a la valour critique : $\tau_{i}<\frac{\gamma-1}{\gamma+1}$ où γ est lo rapport des chalourt apécifiquas, Ia Hene AMF corrospond à l'axtrados du profil. La lieno $A^{\prime} H^{\prime} \mathrm{F}^{\prime}$ de l^{\prime} hodographo correapondant à l^{\prime} intrados du profil présente uno bouole destinéo á óviter la présence de points critiques dans la partie utile de i'hodographe.

POREMTIEL, FOMCTION DE COURAMT, EQUATION DU PROFIL

- désignant la pente locale de la ligne de courant sur la direction de la vitasae à l'infini, on rappelle que le potentiel φ et la fonction de courant ψ satisfont las relations:
(4)

$$
\begin{align*}
& \varphi_{\tau}=\frac{(1-\tau)^{-\frac{\gamma}{\gamma-1}}}{2(\gamma-1) \tau}[(\gamma+1) \tau+1-\gamma] \psi_{\theta} \\
& \varphi_{\theta}=2 \varepsilon(1-\tau)^{-\frac{1}{\gamma-\tau}} \psi_{\tau} \tag{5}
\end{align*}
$$

Avec les variabies $\sigma, \theta: \psi$ satisfalt la relation :
(6)

$$
\psi_{\sigma r}+k(\sigma) \psi_{\theta}=0
$$ avec

$$
h(\sigma)=(1-\tau)^{-\frac{\gamma+1}{\gamma-1}}\left[1-\tau \frac{\gamma+1}{\gamma-1}\right]
$$

Ψ étant mal sur le profil. Celui-ci est obtem par integration de :
(8)

$$
d z=\tau^{-\frac{1}{2}} e^{i \theta} d \varphi
$$

φ étant le potentiel sur le contour.

principe du calcul dun ecoulbaent minierguent subsomique

 dans l'typothèse du fluide fictif de CEAPLYGIN. Cette forme est conservée pour l'écoulement compressible on fluide rosel et en premiere approxmation la position du point I_{∞}, image de l'infini du plan physique, n'est pas modifiée. Il est admis, sans souci de rigueur et sans démonstration, que le problème du calcul de la fonction de courant ψ et du potentiel φ est bien posé avec les données ci-dessus.
φ et ψ satisfaisant à des équations linéairos peuvent être décomposées en deux solutions do ces Ǵquations $\left(\varphi^{\prime}, \psi^{\prime}\right),(\delta \varphi, \delta \psi)$:

$$
\varphi=\varphi^{\prime}+\delta \varphi \quad \psi=\psi^{\prime}+\delta \psi
$$

La solution ($\varphi^{\prime}, \psi^{\prime}$) est une solution ayent en I_{∞} la w太̂me singularité que la solution (φ, ψ) ot n^{\prime} gyant pas d'autres ainsularites dans le domaine utile de l'hodographe. Si ($\varphi^{\prime}, \psi^{\prime}$) peut étre calculéo avec prísision, il reste à déterminer les fonctions $\delta \varphi$ et $\delta \psi$ régulieros dans tout le domaine utile de 1^{\prime} hodographe et telles que $\psi^{\prime}+\delta \psi \quad$ soit mul sur le contour de celui-ci. On élimine ainsi du calcul par réseau analogique ou par différences finies, les difficult's posées par le voisinage des singularités.

La móthede de K_{0} IEGERDRE consiste à choisir pour ($\varphi^{\prime}, \Psi^{\prime}$) le chanp d'uno ligne de doubletstourbillons en nombre infini, régulièroment espacés sur l'axe parallèle à l'are des θ passant par I_{∞}. On peut adopter une suite de doublets-tourbillons identiques espacés de 2π ou mieux, pour réduire l'importance de la solution réguliere ($\delta q, \delta \psi$) une ligne de doublets-tourbillons alternós espacés de π. Dans les doux cas, l'une des singularités est placée en I_{∞}, les autres se trouvent
 de fonctions de CHAPLYGIN qui font intervenir des fonctions hypergeométriques faciles à calculer.

Ces calculs ayant été effectués pour uno position donnée de la singularité I_{∞}, on vérifie si le comportement de la solution au voisinage des points de vitesse mulla est correct. S'il n'en est pas ainai, on recoanence les calcule pour une nouvelle pasition de I_{∞} voisine de la précédente. Ce tatonnement peut 8 tre conduit d'une manière méthodique.

GRINCIPE DJ CALCUL DUN ECOILENBYM TRAISSONIQUE.

Lo contour de l'hadographe n'est, dans ce cas, donné que jusquid la valeur τ_{c} de z égale a l_{a} valeur critique fige 2 . Les données sont $\psi=0$ sur le contour de l'hodoraphe, $\psi=\psi\left(\tau_{c}, 8\right)$
ot $\psi_{c}=\psi_{c}\left(\tau_{c}, \theta\right)$ sur le sogment M_{1}, ψ_{2}, ψ otant mul on M_{1} ot H_{2}.
La méthode de résolution pour la dóternination de Ψ^{\prime} puis de Ψ dans le domaine subsoniqua est identique à celle exposée dans le paragraphe précédont, la valeur de $\delta \psi$ devenant $\Psi\left(\tau_{4}, \theta\right)$ - Ψ^{\prime} sur le segment M_{1}, M2. Le contour $\psi=0$ de la partie oupersönique, supposé trìs voisin de la iigno eonique $\tau=\tau_{c}$, pourra Atre obtemu par la linéarisation auivante :

Avec les variables hodosraphiques classiques σ, θ lo potentiol satisfait a la rolation $\psi_{\sigma \sigma}+k(\sigma) \psi_{0}=0$ et comme sur le segrent sonique M_{1}, ψ_{2}, σ ot $k(\sigma)$ aont mis, on a :

$$
\psi_{\sigma}=f(\theta) \quad \psi=g(\theta)
$$

$f(\theta)$ ot $g(\theta)$ étant fixés dans le problème subsonique précédant. La valeur σ_{f} do σ sur lo
profil est donc donnee au 2ème ordre près en σ sur cheque ligne θ a cte par la relation :

$$
\Psi=\sigma_{+} P(\theta)+g(\theta)=0
$$

On en déduit ia valeur τ_{\uparrow} do τ par la relation (3). La validité de ce procédé a été démontréepratiquement dans un calcul analosíque par la méthode des réseaux.

ANALYSE DETAILLEE IN GROBLEME

Les principes de la méthode de calcul seront exposés ici, sans rappeler les démonstrations rigoureuses établies par R. LEGENDRE ; ils comprennent les différentes phases suivantes :
a) - condition de fermoture du profil,
b) - calcul d'hodographes du type désiré et des profils correspondants dans l'approximation du fluide fictif de CHAPLYGIN,
c) - définiticn, pour l'étude en fluide réel, des fonctions de CHAPLYGIN intervenant dans le calcul des séries exprimant φ^{\prime} et Ψ^{\prime},
d) - valeurs des coefficients des termes de ces séries,
e) - positionnement de la aingularité dans le chamy de l'hodographe de contour donné.

CONDITION DE FERTETURE DU PROFIL.

La aingularité au point imape de l'infini du plan physique est un doublet-tourbillon. Une étude locale de cette singularité (Annexe I) montre que l'axs du doublet est parallèlo à l'axe des θ et que, pour assurer la condition de fermoture, le rapport de l'intensité du doublet B à l'intensité du tourbillon $2 C$ est donné par ia relation:

$$
B\left(1-\tau_{\infty}\right)^{-\frac{1}{\gamma-1}}+2 C=0
$$

APPROXIPATION DE CHAPLYGIN.

Cette approximation est obtenue on faisanc tendre y vers-1, dans les équations générales, on obtient :

$$
\tau=\frac{1}{s^{2} \sigma} \quad k(\sigma)=1
$$

POTEMIEL DES VITESSES - Le potentiel P est donc une fonction analytique de la variable complexe $\lambda=\sigma+i \theta$ ot on pout poser :
(9)

$$
F=t+\frac{1}{t}+2 i \sin \alpha \ln t
$$

$$
\lambda=\sigma_{\infty}-\ln \left(1-t e^{i \alpha}\right)-\frac{\Theta}{\pi} \ln \left(1+t e^{-i \alpha}\right)+f(t)
$$

de sorte que la variable auriliaire t assure la transformation conforme de 1'intérieur de 1'hodographe en I'intériour du cercle de rayon 1 dans le plan $t=R e^{i \omega}$

Au bord d'attaque	$\omega=-\alpha$	(point d'arret)
Au bord do fuite	$\omega=\pi+\alpha$	(point d'arret)
Sur l'extrados	$-\alpha \leqslant \omega \leqslant \pi+\alpha$	
Sur I'intrados	$\alpha-\pi \leqslant \omega \leqslant-\alpha$	

Θ est l'angle de dièdre du bordi de fuite,
$f(t)$ est une fonction régulière à l'intériour du champ utilo de 1 'hodographe.
Létude effectuée pour obtenir des hodographes du type désiré a montré que ai la fonction $f(t)$ ent choisie partout régulière, sa reprósentation par uno série entiere devrait retenir un nombre de tormes considérables. L'artiflce évitant cet inconvónient consiste à introdudre, dans l'expresaion de $f(t)$, des termes singuliors à l'extérieur du cercle d'uniformisation ot n'entrafnant pas la orfation do pointe critiques à l'intéricur du chemp utile.
Minalement, l'exprossion retenue pour $f(t)$ est:

$$
\begin{align*}
& f(t)=(A+l B) \ln \left[1-t e^{i \omega}\left(1-\varepsilon e^{i r}\right)\right] \tag{10}\\
&+(C+i D) \ln \left[1+t e^{-i \alpha}\left(1-\varepsilon^{\prime} e^{i Y^{\prime}}\right)\right]+g(t)
\end{align*}
$$

$B(t)$ étant une correction régulière dont lo développemont on oérie débute par un termo on t^{2} pour ne
pas affecter is condition de fermeture du profil :

$$
g(t)=\left(a_{2}+i b_{1}\right) t^{2}+\cdots \cdots+\left(a_{n}+i b_{n}\right) t^{n}+\cdots
$$

CONDIMION DE FERMETVRE. Al voisinage de la aingularitéa

$$
\lambda=\sigma_{\infty}+t e^{i \alpha}-t \frac{\theta}{\pi} e^{-i \alpha}+\left(a_{1}+i b_{1} t\right)
$$

le dornier terme étant le début du développement de $f(t)$
doù $\quad t=\frac{\lambda-\sigma_{\infty}}{A_{0}+i B_{0}} \quad$ avec $\quad A_{0}=\cos \alpha-\frac{\theta}{\pi} \cos \alpha+a_{4}$
La condition de fermeture (Voir Annexe I) impose :

$$
\begin{array}{lll}
A_{0}=0 & \text { et } \frac{B_{0}}{2 \sin \alpha}=\left(1-\tau_{\infty}\right)^{\frac{1}{2}}=\operatorname{th} \sigma_{\infty} \\
\text { d'où } \quad a_{1}=\cos \alpha\left[\frac{\theta}{\pi}-1\right] & \text { et } \quad B_{0}=\sin \alpha+\frac{\Theta}{\pi} \sin \alpha+b_{1}=2 \operatorname{th} \sigma_{\infty} \sin \alpha
\end{array}
$$

Le caloul de al et b_{p}, déduit de l'expression de $f(t)$, conduit aux 2 relations :

$$
\begin{align*}
{\left[1-\frac{\Theta}{\pi}+C\right] \cos \alpha } & +D \sin \alpha-\varepsilon^{\prime} C \cos \left(\gamma^{\prime}-\alpha\right)+\varepsilon^{\prime} D \sin \left(\gamma^{\prime}-\alpha\right) \tag{11}\\
& -A[\cos \alpha-\varepsilon \cos (\alpha+\gamma)]+B[\sin \alpha-\varepsilon \sin (\gamma+\alpha)]=0
\end{align*}
$$

(12) $\left[1+\frac{\Theta}{\pi}-C\right] \sin \alpha+D \cos \alpha-\varepsilon^{\prime} C \sin \left(\gamma^{\prime}-\alpha\right)-\varepsilon^{\prime} D \cos \left(\gamma^{\prime}-\alpha\right)$

$$
-A[\sin \alpha-\varepsilon \sin (\alpha+\gamma)]-B[\cos \alpha-\varepsilon \cos (\gamma+\alpha)]-2 \operatorname{th} \sigma_{\infty} \sin \alpha
$$

qui assurent la femeturs du profil.
EQUATION DE L'HODCGRAPEE. La séparation des parties réelle et imaginaire de la relation (9) compte tem de l'erpression de (10) de $f(t)$ donne l'équation paramétrique du contour H de l^{\prime} hodographe cherche :

$$
\begin{aligned}
\sigma= & \sigma_{\infty}-\ln \left|2 \sin \frac{\omega+\alpha}{3}\right|-\frac{\Theta}{\pi} \ln \left|2 \cos \frac{\omega-\alpha}{2}\right| \\
& +\frac{A}{2} \ln \left|2-2 \cos (\omega+\alpha)+\varepsilon^{2}+2 \varepsilon \cos (\omega+\alpha+\gamma)-2 \varepsilon \cos \gamma\right| \\
& -B \operatorname{arctg}\left\{\frac{-\sin (\omega+\alpha)+\varepsilon \sin (\omega+\alpha+\gamma)}{1-\cos (\omega+\alpha)+\varepsilon \cos (\omega+\alpha+\gamma)}\right\} \\
& +\frac{c}{2} \ln \left|2+2 \cos (\omega-\alpha)+\varepsilon^{\prime \prime}-2 \varepsilon^{\prime} \cos \left(\omega-\alpha+\gamma^{\prime}\right)-2 \delta^{\prime} \cos \gamma^{\prime}\right| \\
& -D \operatorname{anctg}\left\{\frac{\sin (\omega-\alpha)-\varepsilon^{\prime} \sin \left(\omega-\alpha+\gamma^{\prime}\right)}{1+\cos (\omega-\alpha)-\delta^{\prime} \cos \left(\omega-\alpha+\gamma^{\prime}\right)}\right\} \\
& +a_{1} \cos 2 \omega-b_{2} \sin 2 \omega+\cdots \quad+a_{n} \cos n \omega-b_{n} \sin n \omega
\end{aligned}
$$

Sur l'axtrados $\quad-\alpha \leqslant \omega \leqslant \pi+\alpha$
Sur 1 'intrados $\quad \alpha-\pi \leqslant \omega \leqslant-\alpha$
lu bord d'atteque 1 (point de vitesse mulle) $\omega=-\alpha$
Au bord de fuite : (point de vitesso muile) $\quad \omega=\alpha-\Pi$

La valeur de θ sur l'extrados g'exprime sous la forme :

$$
\begin{aligned}
\theta= & \frac{\pi-\omega-\alpha}{2}-\frac{\otimes}{\pi} \frac{\omega-\alpha}{2}+\hbar \operatorname{arctg}\left\{\frac{-\sin (\omega+\alpha)+\varepsilon \sin (\omega+\alpha+\gamma)}{1-\cos (\omega+\alpha)+\varepsilon \cos (\omega+\alpha+\gamma)}\right\} \\
& +\frac{B}{2} \ln \left|2+\varepsilon^{2}-2 \cos (\omega+\alpha)+2 \varepsilon \cos (\omega+\alpha+\gamma)-2 \varepsilon \cos \gamma\right| \\
& +C \operatorname{arctg}\left\{\frac{\sin (\omega-\alpha)-\varepsilon^{\prime} \sin \left(\omega-\alpha+\gamma^{\prime}\right)}{1+\cos (\omega-\alpha)-\varepsilon^{\prime} \cos \left(\omega-\alpha+\gamma^{\prime}\right)}\right\} \\
& +\frac{D}{2} \ln \left|2+\varepsilon^{\prime}+2 \cos (\omega-\alpha)-2 \varepsilon^{\prime} \cos \left(\omega-\alpha+\gamma^{\prime}\right)-2 \varepsilon^{\prime} \cos \gamma^{\prime}\right| \\
& +b_{\varepsilon} \cos 2 \omega+a_{\varepsilon} \sin 2 \omega+\cdots \quad+b_{n} \cos n \omega+a_{n} \sin n \omega
\end{aligned}
$$

Le point I_{∞} image de l'infini du plan physique a pour coordonnees : $\quad \sigma=\sigma_{\infty} \quad \theta=0$
Les paramètres disponibles sont : $\sigma_{\infty}, \alpha, \Theta, A, B_{\varepsilon} C, D, \varepsilon, \varepsilon^{\prime}, Y, Y^{\prime}, a_{1}, b_{2}, \ldots$
Les 11 premiers doivent satisfaire aur 2 relations (11, 12) qui assurent la condition de fermeture.
On ne discutera pas ici les limitations de choix à imposer aux coafficients arbitraires pour obtenir un hodographe sans points critiques dans la partie utile. le calcul numérique programmé sur machine de haute capacité, qui est d'ailleurs très rapide, permet d'éliminer, après calcul, les résultate qui no conduirajent pas à un hodographe de la classo considérée.

Forme du_profil dans de_plan_physique. Un autre critère de bon choix des paramètres arbitraires consiste à vérifier que le profil correspondant dans l'approximation de CHAPLYGIN possède i'allure souhaitée pour les applications (épaisseur relative, rayon de courbure au bord d'attaque, gradient de recompression au bord de fuite, etc...). Ce profil est obtem, d'après l'équation de l'hodographe, par l'intégration sur l'intrados et l'extrados des relations :

$$
\begin{array}{ll}
\frac{d x}{d \omega}=-8 \operatorname{sh} \sigma \cos \theta \sin \frac{\omega+\alpha}{2} \cos \frac{\omega-\alpha}{2} & \frac{d y}{d \omega}=-8 \operatorname{sh} \sigma \sin \theta \sin \frac{\omega+\alpha}{2} \cos \frac{\omega-\alpha}{2} \\
\text { Le rayon de courbure en un point quelconque du profil est }: & R=\frac{-8 \operatorname{sh} \sigma \sin \frac{\omega+\alpha}{2} \cos \frac{\omega-\alpha}{2}}{\frac{d \theta}{d \omega}} \\
\text { Les calculs de } x, y \text { et } R \text { ont été programrés. }
\end{array}
$$

Exemple : valeurs numériques dos paranàtres :

$\sigma_{\infty}=0,85$	α	$=11^{\circ}$	$\frac{\theta}{\pi}=0,07$	A	$=0,08343$
C	$=-0,054258496$	$B=-0,20$			
ε	$=0,05$	$\varepsilon^{\prime}=0,05$	Y	$=-32^{\circ}$	$Y^{\prime}=-50^{\circ}$
$日_{2}$	$=u_{2}$	$a_{n} \ldots b_{n}$ sont mils			

Avec ces valeurs, les conditions de formeture $(11,12)$ sont satisfaites.
Les résultats des calculs sont indiqués sur les figures (3), (4) ot (5).
La figure (3) donne la forme de l'hodographe. La figure (4) donne la forme du profil. La figure (5) donre la repartition des nombres de Mach sur l'extradcs ot sur l'intrados dans l'approximation de CHAPLYGIN: $M=\frac{1}{c h \sigma}$
L'angle que forme la direction de la ligne de coumant aboutissant au bord d'attaque (point d'arret), avec la direction de la vitesse à l'infini, ost $9^{\circ}, 272$. Langle que forme la bissectrice du diedre de bord de fuite, avec la direction de la vitesse d l'infini, est $13^{\circ}, 15$.

CAICUL DE IA SOLUSION EN FLUIDE REEU.
DEFINITION, POUR LIETUDE EN FLUIDE REEL, DES FONCTIOIS DE CHAPLYGIN INIERVENAMT DANS LE CALCUL DU CHAMP DES SIMCULARITES. Des deux relations (4) et (5), on dóduit en éliminant

$$
\tau(1-c) \psi_{\tau \tau}+\left(1+\frac{2-Y}{Y+1} \tau\right) \psi_{\tau}+\frac{1}{4}\left(\frac{1}{\tau}-\frac{Y+1}{Y-1}\right) \psi_{\theta 0}=0
$$

Les solutions de chuplycin sont les solutions périodiques on θ dépendant d'un paramètre a positif

$$
\begin{array}{ll}
\psi=f_{n}(\tau) e^{n i \theta} & \left.\varphi_{i}=2 \tau(1-\tau)^{-\frac{1}{1}}\right\}_{n}(\tau) e^{n i \theta} \\
\psi_{\tau}=f_{\varepsilon}(\tau) e^{n i \theta} & \varphi=-\frac{2 i}{n} \tau(1-\tau)^{-\frac{1}{\gamma-1}} \psi_{n}(\tau) e^{n i t} \tag{14}
\end{array}
$$

$f_{n}(\tau)$ doit alors satisfaire l'équation:

$$
\tau(1-\tau)\left\{_{n_{\tau \tau}}+\left(1+\frac{i-\gamma}{\gamma-1} \tau\right) f_{n_{\tau}}-\frac{n^{2}}{4}\left(\frac{1}{\tau}-\frac{\gamma+1}{\gamma-1}\right) f_{n}=0\right.
$$

Le calcul de $\left(\varphi^{\prime}, \psi^{\prime}\right)$ fera intervenir deux bolutions particulières de la précédente relation.
La premidre $\mathrm{fn}(\tau)$ est mulle au point d'arret $(\tau=0)$.
La deurdiamo $\mathrm{n}(\tau)$ ost mulle à la vitesse limite $(\tau=1)$.
Solution $f_{n}(\tau)$. On cherche uns solution de la forme : $\quad f_{m}=\tau^{\alpha}(1-\tau)^{\beta} F(\tau)$
$F(\tau)$ est une fonction hypergéométrique $F(a, b, c, \tau)$.
Soules les solutions correspondant à $c>0$ gont retemes. La série hypergéamétrique représentant F est alors comvergente pour $0<\tau<1$ aveo $\alpha=\frac{n}{2}$. Dn calcul facile conduit alors aux résultats suivents : pour $\alpha=\frac{n}{2}$ of $\beta=0$

$$
\begin{array}{ll}
c=1+n & \text { a } \\
\text { pour } \quad \alpha=\frac{n}{2} & \text { ot } \beta=\frac{n}{2}-\frac{1 \pm \sqrt{n^{2}\left(Y^{2}-1\right)+1}}{2(\gamma-1)} \\
c=1+n & \text { a } \\
\text { p }\left\{=\frac{n}{2}-\frac{1-2 Y \pm \sqrt{1+n^{2}\left(\gamma^{2}-1\right)}}{2(\gamma-1)}\right.
\end{array}
$$

Solution $\underbrace{}_{0}(\boldsymbol{\tau})$ - On pose:

$$
\tau^{\prime}=1-\tau \quad g_{n}(\tau)=\tau^{\prime \beta}\left(1-\tau^{\prime}\right)^{\alpha} F\left(\tau^{\prime}\right)
$$

arec les mamos valeurs de α et β que pracédement, F est une fonction hypergeométrique: $F\left(a^{\prime}, b^{\prime}, c^{\prime}, \tau^{\prime}\right)$. Ici il convient d'adopter : $\beta=Y / \gamma-1$. On trouve alors :

$$
\begin{array}{ll}
\text { pour } \quad \alpha=\frac{n}{2} & \text { ot } \beta=\frac{\gamma}{\gamma-1} \\
c=\frac{8 \gamma-1}{\gamma-1} & \left.\begin{array}{l}
a^{\prime} \\
b^{\prime}
\end{array}\right\}=\frac{n}{2}-\frac{1-2 \gamma \pm \sqrt{1+n^{2}\left(\gamma^{2}-1\right)}}{2(\gamma-1)} \\
\text { pour } \quad \alpha=-\frac{n}{2} & \text { ot } \beta=\gamma \\
c=\frac{2 \gamma-1}{\gamma-1} & \left.\begin{array}{l}
a^{\prime} \\
b^{\prime}
\end{array}\right\}=-\frac{n}{2}-\frac{1-2 \gamma \pm \sqrt{1+n^{2}\left(\gamma^{2}-1\right)}}{2(\gamma-1)}
\end{array}
$$

Valeurs de φ et ψ correspondant $\hat{k} f_{n}(\tau)$.
La dérivfe de f_{n} a pour expression :

$$
\begin{aligned}
& \left\{_{n_{\tau}}=\tau^{\alpha-1}(1-\tau)^{\beta-1}[\alpha(1-\tau)-\beta \tau] F+\tau^{\alpha}(1-\tau)^{\beta} F_{\tau}\right. \\
& F_{\tau}=\frac{a b}{c} F(a+1, b+1, c+1, \tau)
\end{aligned}
$$

avec
on adoptora pour ψ la partio imerinaire de l'expression (13): $\quad \psi=f_{n}(\tau) \sin n \theta$
 at on fariva $\quad \varphi=\bar{\xi}_{n}(\tau) \cos n \theta$
avoc $\bar{f}_{n}(\tau)=-\frac{2}{n} \tau(1-\tau)^{-\frac{1}{\gamma^{-1}}} f_{n_{\varepsilon}}$

$$
\text { Pour } \alpha=\frac{\pi}{2} \quad \text { et } \quad \beta=0
$$

$$
\Psi=c^{t} F(a, b, c, c) \sin n \theta
$$

$$
f_{n_{\varepsilon}}=\tau^{4}\left[\frac{n}{2} \frac{F}{\tau}+F_{\tau}\right]
$$

Valeurs to φ ot ψ correspondant à gh($\tau)$

D'autre part:
ou $\tau^{\prime}=$ イー τ
on écrira:

$$
g_{n_{z}}=-g_{n_{\tau}}=-\tau^{\prime \beta-1}\left(1-\tau^{\prime}\right)^{\alpha-1}\left[\beta\left(1-\tau^{\prime}\right)-\alpha \tau^{\prime}\right] F-\tau^{\prime \beta}\left(1-\tau^{\prime}\right)^{\alpha} F_{\tau^{\prime}}
$$

$$
\varphi=-\frac{2}{n} \tau(1-\tau)^{-\frac{1}{r-1}} g_{n \Sigma} \cos n \theta
$$

$$
\begin{aligned}
& \text { Pour } \alpha=-\frac{n}{2} \quad \text { et } \beta=\frac{\gamma}{\gamma-1} \\
& \bar{g}_{n}(\tau)=\frac{2}{n} \tau^{-\frac{1}{2}}\left[\frac{\gamma}{\gamma-1} \tau+\frac{n}{2}(1-\tau)\right]^{\gamma} F\left(a^{\prime}, b^{\prime}, c^{\prime} ; 1-\tau\right)+(1-\tau)^{\frac{Y}{Y-1}} \tau^{-\frac{n}{2}} F_{\tau}
\end{aligned}
$$

Le calcul des fonctions $f, g, \bar{f}, \overline{8}$, ne présente pas de difficultés, les fonctions hypergeométriques qui leur correspondent étent comvergentes. Un extrait des tables de ces fonctions eat donne en annexe.
valeur des coafficirmis des teribe des seribs exprimalt ie poremitey et la forcilon de courant DES SINGuLARITES. Ie champ de la file de doubletswtourbillons tous de méme intensité, espacés de 2π et dont I'un placé en I_{∞} représente la singularité correspondant à l'infini du plan physique, s'obtient par dérivation du champ d'une file de sources par rapport à a auquel se superpose le champ d'une file de tourbillons.
Champ d'une file de_sources distantes de 2π _placée_aur_points_Ik $\left(\tau_{\infty}, 2 k \pi\right)$. on se propose de déterminer une solution formée par deux séries de fonctions de ChApLYGIN in et En_{n} définies précédenment, respectivement valables pour $\tau<\tau_{\infty}$ et $\tau>\tau_{\infty}$. Les relations entre les coefficients des termes de ces séries sont déterminées de manière à assurer leur raccord sur $\tau=\tau_{\infty}$ et la représentation convenable du potentiel et de la fonction de courant de ces sources. Pour $\tau<\tau_{\infty}$, les fonctions f_{n}, f_{n} étant régulières, le potentiel et la fonction de courant sont donc exprimés par:

$$
\varphi_{\Delta}=\sum_{n=1}^{\infty} a_{n} \bar{f}_{n}(\tau) \cos n \theta \quad \psi_{\Delta}=\sum_{n=1}^{\infty \infty} a_{n} f_{n}(\tau) \sin n \theta
$$

Pour $\tau>\tau_{\infty}$, au contraire, le potentiel et la fonction de courant sont exprimés par les séries de FOURIER :

$$
\varphi_{4}=\sum_{n=1}^{\infty} b_{n} \bar{g}_{n}(\tau) \cos n \theta \quad \psi_{t}=\pi+\theta+\sum_{n=1}^{\infty} b_{n} g_{n}(\tau) \sin n \theta
$$

R. LEGENDRE a sémontré que φ_{b} étant uniformo, la condition de raccori entre les deux solutions pour
$\tau=\tau_{\infty} s^{\prime}$ écrit simplement :

$$
a_{n} \bar{f}_{n}\left(\tau_{n}\right)=b_{n} g_{n}\left(\tau_{\infty}\right)
$$

Pour $\tau_{=}=\tau_{\infty}, \psi_{\Delta}$ est contimusi $\theta \neq 2 k \pi$ et croft de 2π au passage de chaque singularité I_{K} ($\theta=2 k \pi$). La discontimuité correspoidante est exprimée par la fonction ESCOLLER :

$$
\pi+\theta+\sum_{n=1}^{\infty} \frac{2}{n} \sin n \theta
$$

Il on résulte que les coefficients b_{n} et a_{n}, assurant cette condition, satisfont les relations :

$$
b_{n} g_{n}\left(\tau_{\infty}\right)-a_{n} f_{n}\left(\tau_{\rho}\right)=\frac{2}{n}
$$

Par suite:

$$
\begin{aligned}
& a_{n}=\frac{2}{n} \frac{\bar{g}_{n}\left(\tau_{\infty}\right)}{\bar{f}_{n}\left(\tau_{\rho}\right) g_{n}\left(\tau_{\rho}\right)-f_{n}\left(\tau_{\infty}\right) \bar{g}_{n}\left(\tau_{\rho}\right)}=\frac{2}{n} \frac{a_{n}\left(\tau_{\infty}\right)}{f_{n} g_{n \tau_{\infty}} \cdots g_{n} f_{n} \tau_{\infty}} \\
& b_{n}=\frac{2}{n} \frac{\bar{f}_{n}\left(\tau_{\infty}\right)}{\bar{f}_{n}\left(\tau_{\infty}\right) g_{n}\left(\tau_{\infty}\right)-f_{n}\left(c_{\infty}\right) \bar{g}_{n}\left(\tau_{\infty}\right)}=\frac{2}{n} \frac{f_{n}\left(\tau_{\infty}\right)}{f_{n} g_{n c_{\infty}}-g_{n} f_{n \tau_{\infty}}}
\end{aligned}
$$

Gropp d'une fille de tourbillons espacés de 2π. On pose conme dans le cas précédent : pour $\tau<\tau_{\infty}$

$$
\varphi_{t}=\sum_{n=1}^{\infty} c_{n} \bar{f}_{n}(c) \sin n \theta
$$

$$
\psi_{t}=\sum_{n=1}^{\infty} c_{n} f_{n}(\tau) \cos n \theta
$$

pour $\tau>\tau_{\infty}$

$$
\varphi_{z}=\pi+\theta+\sum_{n=1}^{\infty} d_{n} \bar{g}_{n}(\tau) \sin n \theta \quad \psi_{t}=\sum_{n=1}^{\infty} d_{n} g_{n}(\tau) \cos n \theta
$$

Dans ce probleme, ia fonction de courant est continue on Ix at le potentiel y oubit une discontimuite de 2π

Un calcui analogue au prócédent donno elors les valeurs de c_{n} et d_{n} :

$$
c_{n}=\frac{2}{n} \frac{q_{n}\left(\tau_{\mu}\right)}{\left\{_{n} g_{n_{\varepsilon_{m}}}-g_{n} f_{n z_{\infty}}\right.} \quad d_{n}=\frac{2}{n} \frac{f_{n}\left(\varepsilon_{\rho}\right)}{l_{n} g_{n \varepsilon_{\infty}}-g_{n} f_{n \varepsilon_{n}}}
$$

CEAMP DTN FILE DE DOUBLETS-TOURBILIONS DE MNE IMEESITE SITUES SUR LAXE $\tau=\tau$ EI ASSURATT
 rapport à θ du champ de sources préeedent :

$$
\varphi_{D}=B \frac{\partial}{\partial \theta} \varphi_{s}\left(\tau_{\infty}, \tau, \theta\right) \quad \psi_{D}=B \frac{\partial}{\partial \theta} \psi_{A}(\tau, \tau, \theta)
$$

Le potentiel at la fonction de courant de la ligne de doublets-tourbillons sont alors définis par les relations suivantes :
pour $\varepsilon<\varepsilon_{\infty}$

$$
\begin{aligned}
& \varphi^{\prime}=-B \sum_{n=4}^{\infty} n a_{n} f_{n}(\tau) \sin n \theta+2 C \sum_{n=1}^{\infty} c_{n} \bar{f}_{n}(\tau) \sin n \theta \\
& \psi^{\prime}=B \sum_{n=1}^{\infty} n a_{n} f_{n}(\tau) \cos n \theta+2 \sum_{n=1}^{=} c_{n} f_{n}(\tau) \cos n \theta
\end{aligned}
$$

pour $\tau>\varepsilon_{\infty}$

$$
\begin{aligned}
& \varphi^{\prime}=-B \sum_{n=1}^{\infty} n b_{n} \bar{g}_{n}(\tau) \sin n \theta+2 C \sum_{n=1}^{\infty} d_{n} \bar{g}_{n}(\tau) \sin n \theta+2 \pi C+2 \pi \theta \\
& \psi^{\prime}=B+2 B \sum_{n=1}^{\infty} n b_{n} g_{n}(\tau) \cos n \theta+2 C \sum_{n=1}^{\infty} d_{n} g_{n}(\tau) \cos n \theta
\end{aligned}
$$

Pour réduire l'importance dos fonctions complémentaires $\delta \varphi$ et $\delta \psi$ R. Legermee a suggeré divers perfectionnements pouvant être utilisés séparément ou simultanément. Il sera, en particulier, avantageur, ce qui n'introduit pas de complications dans les calculs, de substituer au chanp défini précédemmant celui de tourbilions et doublets alternés. Les fonctions φ_{s}, φ_{t}, et ψ_{t}, ψ_{t} qui viennent d'atre définies seront alors remplacées par :

$$
\begin{aligned}
& \varphi_{\Delta}\left(\tau_{\infty}, \tau, \theta\right)-\varphi_{\Delta}\left(\tau_{\infty}, \tau, \theta+\pi\right) \\
& \varphi_{t}\left(\tau_{\infty}, \tau, \theta\right)-\varphi_{t}\left(\tau_{\infty}, \tau, \theta+\pi\right)
\end{aligned}
$$

$$
\begin{aligned}
& \psi_{1}\left(\tau_{\infty}, \tau, \theta\right)-\psi_{\Delta}\left(\tau_{\infty}, \tau, \theta+\pi\right) \\
& \psi_{t}\left(\tau_{\infty}, \tau, \theta\right)-\psi_{t}\left(\tau_{\infty}, \tau, \theta+\pi\right)
\end{aligned}
$$

POSITION DE LA SINGULARTTE DANS LE CHAMP DE LHODOGRAPHE DE CONTOUR DOME. Les calculs préliminaires pour la loi de compressibilité de CHAPLYCIN, ont foumi une premiere approximation do la position relative de I_{∞}. Cette position doit satisfaire les conditions :

$$
\tau^{\frac{1}{2}} \frac{\partial \phi}{\partial \tau}=0 \text { au bord d'attqque, } \quad \tau^{1-\frac{\pi}{\varepsilon \theta}} \frac{\partial \varphi}{\partial \tau}=0 \text { au bord de fuite, }
$$

\Leftrightarrow étant l'angle du dièdre de bord de fuite. Si ces conditions ne sont pas remplies, les calculs du champ de l'écoulement seront repris pour quelques positions de I, voisins de la position prise en lère ayproximation. Pour chaque position $\tau^{1 / 2} \partial \mathscr{S}_{\tau}$ au bord drattaque et $\tau^{1-\pi / 2 \theta}$ au bord de fuite sont généralement finis et non muls. on établira ainsi un moule linéaire perrettant d'obtenir deux équations déterminant les coordonnées τ_{ρ} et θ_{ρ} du point I.

HISE EN OETVRE DE CALCUIS $\&$ EFRECTUER

PARTANT DUN HODOGRAPIE H fourni par l'approximation de CHAPLYEIN pour une singularités $I_{\text {ech }}\left(\tau_{\rho}, \theta_{\rho}\right)$ on se propose du déterminer un profil dans le plan physique admettent ce méme hodographe dans un écoulement de gaz réel, La position de la singularité I_{0} voisíno de $I_{o c h}$ est alors déterminée pour satisfaire aux conditions exprimées précéderment. Cette position ayant été déterminée, on calculera jes valeurs définitivos de $\varphi=\varphi^{\prime}+\delta \varphi$ surle contour de l'hodographe et on déterminera le profil par intégration. Ces calculs donneront les corrections à apporter au profil du plan physique détermiń dens l'approximation de CHAPLYGIN, pour tenir compte de la loi de compressibilite exacte.

POUR DES VALEURS DE τ_{∞} différentes de celles correspondant a 1 'hodographe B , on devra d'abord faire subir à 2 'hodographe une légère déformation (allongemont ou troncature) localisée au voisinage de $\tau=0$. Le suite des calculs est rlors identíque à celle qui vient d'êtro décrite.
conclusion
Un méthode de calcul d'écoulemente subsoniques ou transsoniques róversibles autour de profils portants dont les principes ont été ́́tablis avec riguour par R. LiGENDRE, a été mise on ceurre. Cette méthode applicable à des fomes d'hodogragho, ne comportant pas, à l'intérieur du champ utile, d'autres aingularités que l'zmage du point à l'infíni du plen physique, est guidéo par le souci de dégrgor analytiquemont la partie principale do cette singularité ot réservez ainsi les méthodes numériques aur différences finies, ou anslogiques au calcul de fonctions régulidres. Dans cette méthode, le probleme transsonique est reme place par un problème eubsonique, dont la solution est prolongeable dans un domaine supersoulque modéré,

Les calculs on cours n^{\prime} ont pa oncore aboutir à des résultats concrets dans lo cas $d^{\prime} u n$ éculenent de fluide, satisfaiaant à ls los de compressibilite ezscte.

Iras équations des hodographes proposés dans l'hypothèse du fluide fictif da CHPLYGIN pour servir de bsse au calcul oxact ont été étabises et résolues muerriquomont; les valeure mubriques des principales fonctions auxilieires nécessaires la détermfnation d'un fcoulemont quolconque, correspondent à la loi de compressibilité exacte ont été calculéen.
M. LIGHITHIL -

On the hodograph transformation for high speed flox.
Guart. Appl. Math. $n^{0} 9$ - 1951
R. LEGENDRS -

Singularités critiquas de 1^{\prime} hodographe.
C.K. Acad. Sc. T. 244 - 1957
R. LEGEMDRE -

Calcul de profils pour turbomachines transsonique.
Progr. in Aer. Sc. - 1960
G. NIETWIAND -

Transonic potentiel flow around a Family of quasi elliptical aerofoil.
Section N.L.R. T.N. $172-1967$
R. LEGENDRE -

Singularité de l'hodographe de l'écoulement reversible d'un fluide compressible autour d'un profil portant.
C.R. Acad. Sc. - tome 266 - 1968

NAUURE DE LA SINGULARITE AO POINI TMAGE I DU FLAN PHSSIQNE - COMDITION DE FEBNEIURE DU PROFIL

Si I'on adopte les variables hodographiques σ et θ, la fonction iv courant astisfait la relation $:$

$$
\varphi_{r e}+k(\sigma) Y_{0 G}=0 \quad \text { avec } \quad k(\sigma)=(1-\tau)^{-\frac{Y+1}{\gamma-1}}\left[1-\tau \frac{Y+1}{Y-1}\right]
$$

Au roiainage de $I \quad \tau$ ot σ tendent vers les valeurs conmas τ_{ρ} et σ et

$$
k(\sigma) \rightarrow k_{\infty}=\left(1-\tau_{\infty}\right)^{-\frac{r+1}{\gamma-1}}\left[1, \tau_{\infty}, \frac{Y+1}{\gamma-1}\right]
$$

Après le changement de variables $\sigma^{*}=\sqrt{\text { 血 } \sigma}$ l'équation de la fonction de courant devient è la limite
$\sigma \rightarrow \sigma_{\sigma}$ la relation he izoniquo

$$
\psi_{\sigma=r}+\psi_{\theta \theta}=0
$$

La singularite la plus aimple permettant d'obtanir un hodographe aans poin. critique dans la partie utile ast alors un doublet-tourbillon, dont le potentiel complexe est, au voisinage de I, on posant $\lambda^{*}=\sigma^{*}+i \theta$

$$
F=\frac{A+i B}{\lambda^{*}-\sigma^{*}}-i C \ln \left(\lambda^{*}-\sigma_{\infty}^{*}\right)
$$

Le potentiel complexe P_{1} du doublet s'écrit on coordonnées polaires locales

$$
\begin{aligned}
& \sigma_{0}^{*}=\sigma^{2}-\sigma_{0}^{*}=r \cos \alpha \quad \theta=r \sin \alpha \\
& F_{1}=\frac{A \cos \alpha+B \sin \alpha}{r}+i \frac{B \cos \alpha-A \sin \alpha}{r}
\end{aligned}
$$

Le potentiel complexa du tourbilion est de meme

$$
F_{2}=-i C[\ln r+i \alpha]
$$

Pour τ et θ infiniments petits, la correspondance entre le plan physique et le plan de l'hodagraphe est fournie par

$$
d z=(1+i \theta) \tau_{\infty}^{-\frac{1}{\infty}}\left[d \varphi+i\left(1-\tau_{\infty}\right)^{-\frac{1}{\gamma-1}} d \psi\right]
$$

La variation de z correspondant au doublet sur la circonférence de rayon \because ayant le point I_{0} comse centre est :

$$
d z_{4}=[1+i r \sin \alpha] \tau^{-\frac{1}{2}}\left[\frac{B \cos \alpha-A \sin \alpha}{r}-i\left(1-\tau_{\infty}\right)^{-\frac{1}{1-\tau}} \frac{B \sin \alpha+A \cos \alpha}{r}\right]
$$

Lu parcours de la circonférance de rayon τ du plan de $l^{\prime} h o r l o g r a p h e, ~ c o r r e s p o n d, ~ d a n s ~ l e ~ p l a n ~ p h y s i q u e, ~$ un accroissoment z obtenu on intégrant la précédente relation :

$$
\begin{aligned}
& z_{4}=B \tau_{\rho}^{-\frac{1}{2}}\left(1-\tau_{\infty}\right)^{-\frac{1}{\gamma-1}} \int_{0}^{\frac{1 \pi}{2}} \sin ^{2} \alpha d \alpha-i A \tau_{\infty}^{-\frac{1}{2}} \int_{0}^{i \pi} \sin ^{3} \alpha d \alpha \\
& z_{4}=\pi \tau_{\infty}^{-\frac{1}{2}}\left[B\left(1-\tau_{\rho}\right)^{-\frac{1}{\gamma-2}}-i A\right]
\end{aligned}
$$

La contribution du tourbillon à I^{\prime} accroi rement de z est : $z_{2}=2 \pi C \tau_{\rho}^{-\frac{1}{2}}$

Le condition de fermoturo du profil impose $z_{1}+z_{2}=0$, soit :

$$
A=0 \quad E\left(1-\tau_{\infty}\right)^{-\frac{1}{-1}}+2 C=0
$$

- Annexe 2 -
 TABLE ABRÉGÉE DES FONCTIONS f_{n}, g_{n} ET DE LEURS DERIVEES

0.
$0.50000010 E-21$ 0.100503tse-co $0.156903608-00$ 0.20060460 -0s 6.250000Cut-00

$F(0,6,6 ; \varepsilon)$
0.1cecococ: 001
$0.839 C 52706+00$
0.80117109ETco
c.ez629414E Co
c.77430186E $\cdot 60$
0.725309225 .00

$$
n=2
$$

$F(a, b, c ; z)$	$F\left(a^{\prime}, l^{\prime}, c^{\prime} ; z^{\prime}\right)$	fr $f(\tau)$	$g_{n}(\tau)$	$\mathfrak{f}_{\text {are }}^{\text {a. }} 10000000 \mathrm{E} \cdot 01$	$g_{\text {ne }}$	$\tau^{* / 2} g_{2}(\tau)$
0.180couoetot	$0.52718509 E-01$	0.	\cdots	0.100000005101	--	$0,053603$
0.88cjerijereo	$0.743198715-01$	$0.46019336 E-01$	$0.124212025 \cdot 01$	0.16607138100	-0.21453016E 002	9,062106
9.7712iatserec	0.1Cci76305-00	0.77121816 E-01	0.692809895400	0.5630060 EE00	-0.5777a1abe-01	0,065284
0.672683926 .00	0.129750915-00	$0.10960059 E-00$	0.48974896E-00	$0.318796895-00$	-0.29190819E•01	0,073468
0.582250015000	0.16265942E-00	0.11645000E-00	0.37244676E-00	0.24150COLE-00	-0.19138727E+01	0,075489
$0.501466865 \cdot C 0$	0.198514\%3E co	c. 1253662 IE-00	$0.290200425-00$	0.11814064E-00	-0.14238023[.01	0,172550

$F^{\prime}\left(a^{\prime}, l^{\prime}, c^{\prime} ; z^{\prime}\right)$	
0.100000005-01	0.
0.168000005001	0.
0.1ccooecosicr	
$0.106000095 \cdot 01$	
c.1ccoecoos.01	
0.1scoocaseror	

$\quad f_{n}(\tau)$
0.
$0.20987657 E-00$
$0.278650775-00$
$0.32002256 E-00$
$c .36630515 E-00$
$c .36265460 \varepsilon-00$

$g_{0}(r)$	
	∞
	0.313721116002
	0.216699985408
	$0.146190998 \cdot 01$
	$0.102400015+01$
	0.73070904500

far	gnv
∞	∞
0.183412078:01	-0.51140784E 102
$0.10381482 \mathrm{E}+\mathrm{Cl}$	-0.19639894E+02
$0.65315216 E \cdot 0$	-0.10892662t+02
0.61623722t-00	-0.704cocobe +01
0.248987475-00	-0.46713836E 0 -

$c^{2 x} g_{g}(c)$
10
0,535665
6,671596
0,565195
0,457977
6,365354

$$
n=3
$$

乙
0.
$0.500090608-01$ $0.100000 c 0 t-0 c$ 0.15000 voer-30 $0.200000005-00$ $0.25 c 09505=30$

$F(a, b, c ; z)$	F
3.10ccoocot-01	-0.1
3.02410753E400	-0.1
0.672650c4E.co	-0.1
C.54214555E400	-c.t
0.43073460¢-60	0.1
0.335761805-c0	0.7

0.500003 jog-01 0.10000900E-00 C. 1s00uscoe-0 $0.200000501-00$ 0.250000:0E-U0

$F(a, l, c ; r)$ $0.100 c 0000 \mathrm{ef}$	$F\left(a^{\prime}, b^{\prime}, c^{\prime} ; v\right)$	0. $f(t)$	gas (τ)
0.77245104E 30	-0.21006922E-03	0.18311215t-0:	-0.12893187t-01
$0.584 C 01148008$	-0.411327165-0)	$0.58600114 t-02$	-0.3328a120E-01
$0.435264654-50$	-0.161901385-02	$0.81936+131-02$	-0.256621021-01
0.315271028-co	-0.1929113si-02	$0.123108458-01$	-0.220926171-01
0.22168579t-co	-0.318041351-02	$0.112626105-91$	-0.18638438E-01

0. fre	gar	$\begin{aligned} & c^{*} g_{a}(\tau) \\ & =0,01196 \end{aligned}$
$0.240169336-0 C$	0.3626927SE*01	-0,01385
0.22988880t-00	c.84769762E.00	-6,001223
0.1740049at-00	$0.442393758-60$	-0,0504928
$0.105769396-00$	0.20240299E-00	+0,008266
0.31039101E-01	0.2795627aE-00	+0,0025399

τ	$F(0,6,1 ; \tau)$	$F\left(2^{\prime}, b^{\prime}, e^{\prime} ; z^{\prime}\right)$	$f(x)$	$g(r)$	f_{\sim}	$g=2$	$r^{7} \lg _{n}(\tau)$
0.	$0.180 c 0000 \mathrm{ces}$	0.17360147e-03	0.	∞	0.	-	+0,0005031
c.300000:08-01	0.123238336 .0	$0.115500365-03$	0.404113112 .03	0.172659815-00		-0.9829892st+01	$+0,0006965$
0.100000.0E-vo	-.5097044250;	0.130401836-03	0.1012092bE-02	$0.28315872 t-01$	0.2as310038-02	-0.018B0C14E COO	+0,000902
C.15u00u00E-00	$0.340326245-00$	0.2c38405at-03	0.30153166502	0.132307665-01	0.26307esit-0.	-0.13526822E-CO	+0,001154\%
0.20000300E-80	0.2 99380E-00	$0.293412965-03$	c.409639615-92	$0.151137235-02$	0.14891276E-01	-0.98053233E-08	+90001344
O 1000000E-00	$0.143231 .68-00$	$0.300953568-03$	0.447615708-02	0.3s1ssisse-02	0.41410412E-04	-0.713012748-08	+0,00010986

$8-\operatorname{An} 2-2$

by
G. Meier and W.Hiller

Max-Planck-Institut fur Strönungsforschung, Göttingen, Deutschland

AN EXPERIMENTAL INVESTIGATION OF UNSTEADY TRANSONIC PLOM BY HIGH-SPEED INTERPEROMETRIC PHOTOGRAPHY

G. Meier, W. Hiller

Max-Planck-Institut fur Strömungsforschung, Göttingen, Deutschiand
Introduction
Some years g_{g} o we succeeded in realising a shockfree transonic flow experimentally (Ref.1). This was a plans flow in a curved channel having a supersonic region imbedded into the subsonic flow. The channel boundaries are streamines of an exact solution of the basic gasdynamic equations. This solution describes the compressible flow around a half plane and hes been obtained by a KolenbrockTechaplygin tranaformation (Ref.2).

The experiments showed that the continuous compression of the supersonic flow is relatively stable against pertubations. When the flow speed is dacreased continuously the supersonic region will continuously become smalier. In this velocity regime the supersonic flow is also atable against pertubations of the channel boundaries (Ref.1). If on the other hand the design velocity of the channel is exceeded shocks will be generated at the downstream end of the supersonic region. The flow will then in general become unateady.

Instrumentation
Some of the streamlines of the exact solution are shown in Fig. 1. The chosen boundary atreamlines are emphasized. The supersonic region filis one quarter of the smallest channel cross section. The largest velocity is taken on at the vertex of the convex boundary ($M=1.25$), fig. 2 shows a schematic drawing of the channel.

The channel is driven by a vacuum chamber and is fed with dried atmoopheric air. The flow volume is controlled by a variable nozzle in which the flow is accelerated to the velocity of sound. The boundary layer near the vertex of the convex boundary is controlled by suction. In this part of the channel the wall consists of polished sintered sheet metal. The open area ratio is 0.05 approximately. Typical values for the suction velocity are $1-3 \mathrm{~m} / \mathrm{sec}$.

The flow field is observed with a Mach-Zehnder interferometer, Fig. 3. The sidewalls of the channel in the area of interest are windows of a high optical quality. At the beginning of every experiment the interferometer is adjusted to infinite widh of the interference fringes. Thus the interference fringes will be lines of constant density in the photographs to be shown. As long as no ontropy changes occur all the variables of state will be constant on the interference iringes. It may be interesting in this connection that the lines of constant variables of atate in the caee of the exact solution are circles.

Fig. 3 Equipment for high speed
interferometry
I-IV Mirrors of Mach-Zehnder interferometer.
Drum camera
Electronic equipment
Flash light source

The unsteady flow is registered by high frequency cinematography. As a fule the frame frequency will be 10 kNz . Exposure time for a single frame ie $10^{-6} \mathrm{sec}$.

Results
The comparison between an interference mapping obtained from the exact solution and a photograph of the flow field under optimal conditions shows the degree of agreement between the theoretical flow field and its experimental realisation, Fig. 4a, 4b. If atarting from this steady shockfree flow the velocity is increased woak shocks will be generated at the end of the supersonic region, Fig. 5. As may be seen from the photographs these shocks are unstable with respect to location and strength.

Pig. 4a Calculated interference fringes Numbers indfeate velocity in $m / s\left(T=20^{\circ} \mathrm{C}\right)$.

Fig. 4b Shockfree transonic flow. Velooity in the vertex of boundary $M=1.25$ Flow direction from left to right

Fig. 5 Feak unsteady shocks at the ond of the supersonic region. Flow direction from right to left. Interframetime $t=0.4 \mathrm{~ms}$

Purther increase of the Mach number leads to tronger shocks, Pig. 6. The pressure jump at the foot of the shock will become so large as to cause the boundary layer to separate. The rapidly growing dead water bubble behind the shock will cause the pressure behina the shock to rise and the shock to move upstrean. The point of eeparation of the boundary layer will move upstream together with the shock. The shock strength will decrease during this phase and the shock will reach areas with small pressure gradients. The flow will therefore become attached to the wall again. The dead water bubble floats downstream. The velocity of the flow field now has a minimum. Thus the shock will be dissolved completely. In the following acceleration phaee the supersonic region will grow again. As soon as a certain Mach number at the end of the supersonic region is exceeded a new shock will form. - The whole circle as described will repeat in this example with a frequency of 180 Hz .

Fig. 6 Full cycle of an oscillation of unsteady transonic flow. Mach number at the vertex of boundary $M_{\max }=1.4 ; \mathrm{M}_{\min }=1.2$ Flow direction from right to left Interframetime $t=0.4 \mathrm{~ms}$

At greatly redused suction the boundary layer will be induced to separate even by very weak shocks, Fig. 7. The vibration cycle will be qualitatively the same as in the previous example. However the shock at the end of the supersonic region will be dissolved into a system of compression and rarefaction waves and will move on the separated boundary layer. The frequency is 210 Hz in this case.

Fig. 7 Full cycle of an oscillation of unsteady flow with reduced suction. FIow direction from right to left. Interframetime $t=0.4 \mathrm{~ms}$.

We have studied the influence of the channel geometry, the boundary layer suction and the flow volume on the frequency of the shock vibrations. One result is that a decrease in the distance between supersondc region and flow control nozzle, decrease of suction and increase of flow volume cause the frequency to rise. The measured dependence is shown in Fig. 8. The frequency is plotted versus the

Fig. 8 Prequency of flow oscillations plotted versus suction pressure
Parameters: Length of the duct between vertex of boundary and diffusor (1)-(5), relative change of flow volume in percent.
--- tranaformed frequency ranges
In 1 excitation of harmonic oscillations
suction pressure p_{p} / p_{0} for five different locations of the diffusor, curve parameter is the relative change of flow volume in percent. Vibrations have been obeerved only for those values of the parameters covered by the curves. The vioration regimes for the five different locations on the flow control nozzie may be brought to coincidence by the transformation given in Fig. 8(dashed curve) This transiormation results from the depende.ce of the eigenfrequencies of a resonator carrying flow on the length of the resonator. The part of the channel between the supersonic region and the flow control nozzle obviously acts as auch a resonator, determining the vibration regime to a great degree. Even the excitation of higher harmonics has been observed for a very large length of the resonator.
The essential element of instability and vibration generation is however the separation of the boundary layer coupled to the shock. To support this argument the wave propagation in the channel has been investigated. To this end the time dependence of the density has been inferred from the interferogram for approximately fifty scanning points. An example for such a time sequence is given in Fig. 9 .

Fig. 9 Density in four scanning points plotted versus time.
Density is measured here by the order m of interference fringes

Fig. 10 Example for cross correlations between density time sequencies. Phase shift is indicated by the displacement of the curves

By cross correlating these time sequencies phase relationship for the density waves in the flow may be obtained, Fig. 10, leading to a so called phase plan. Here the lines of constant vibration phase or wave planes are plotted. Fig. 11 shows the phase plan corresponding to the unsteady flow shown in Fig. 7. This indicates that the wave centre is in that part of the flow, where the boundary layer is induced to separate by the shock.

Fig. 11 Phase plan
Wave fronts or lines of constant phase for the flow shown in Fig. 7 .
All crose correlations refer to the time sequency of point 28

Special offects
At greatly reduced suction the boundary layer remaine separated permanentiy, Fig. 12. The shocks at the end of the supersonic region then move on the separatad boundary layer, which reflects the ahocks as rarefaction fans. In this rarefaction fan the flow again expands to supersonic speeds. This supersonic region In turn collapses into another shock. Thus a.sequence of shocks is generated, the first of which influences the point of separation of the boundary layer and causes the flow to become unsteady.

Fig. 12 Unsteady behaviour of the flow when boundary layer is separated permanentiy.
Suction is reduced considerably. Flow direction from right to left. Interframetime $t=0.1 \mathrm{~ms}$

[^2]

Fig. 13 Splitting of a shock wave
Mach number in the vertex of the boundary $M_{\text {max }}=1.5$
Flow direction from right to left
Interframetime $t=0.1 \mathrm{mg}$

7

Fig. 14 A shock wave enters a steady transonic flow. The shock is produced by an exploding wire. Flow direction from right to left Interframetime $t=0.1 \mathrm{mg}$

For another sequence of photographs the different locations of the shock have been superimposed into one single figure, Fig. 15.

Pig. 15 Positions of a shock wave at different times($t=0.1 \mathrm{mg}$) Flow direction from right to left.
Motion of the shock from left to right.
... sonic line
-..- reflected shock

It is noted that the reflected part of the shock takes on the same position at a later time as the forerunning part. The fact that two parts of the shock separate may be explained by a difference of their respective components of speed of propagation in the direction of the flow and by the decrease of flow speed along their pathe.

Apart from the splitting process however the propagation of the shocks is in accordance with a geometric acoustic model. Fig. 16 shows the calculated propagation of a pertubation situated initially at the vertex of the known flow field.

Fig. 16 Calculated motion of a shock. Geometric acoustic model. Initial position of the shock is the vertex of the duct.

Fig. 17 Calculated motion of a shock Geometric acoustic model

- shock and reflected shock
--- direction of phase velocity
-.- direction of group velocity
... sonic line
-..- vertex line

It is seen that the pertubation initially moves downstream in the supersonic region, until it takes on the Mach angle and may propagate into the supersonic region. It must not be concluded however that energy may be tranoported upstream in the supersonic region. Fig. 17 shows for a different initial position of the pertubation in addition to the orthogonal trajectories giving the direction of propagation of the wave two dot-dash lines, the direction of group velocity. This makes clear that energy propagation has a strong component in the direction of the shock. This at the same time explains the rapid decrease in the strength of the shock during the propagation, Fig. 14, and the initial increase of the strength of the initial shock.

[^3]
THEORY OF VISCOUS TRANSONIC FLOW - A SURVEY

 by
Martin Sichel

The University of Michigan, US

THEORY OF VISCOUS TRANSONIC F'LOW-A SURVEY

Martin Sichel*
The University of Michigan

INTRODUCTION

Use of the inviscid transonic equation coupled with the treatment of shock waves as RankineHugoniot discontinulties sometimes leads to paradoxical results or solutions which disagree with experiment. These difficulties usually arise when large velocity gradients, discontinuities in streamline curvature, or highly surved shock waves occur, so that viscous effects cannot be ignored. Such viscous-transonic problems have received increasing attention in recent years, and form the subject of this survey. After briefly discussing some difficulties of the inviscid theory, the deveiopment of the viscous transonic equation is given followed by a discussion of applications.

Starting with the early work of G. I. Taylor (1930) studies of the transonic flow near the throat of a converging-diverging nozzle (Görtler 1939, Emmons 1946, Tomotika and Tamada 1950, Ryzhov 1963) indicated that the inviscid theory cannot explain the smooth transition from symmetrical or Taylor type flow with subsonic velocities both upstream and downstream of the throat to the fully developed subsonic-supersonic or Meyer type of flow. Another difficulty of old standing arises when a weak shock wave is adjacent to a curved surface. Then Emmons (1946) has shown that the Rankine-Hugoniot conditions may lead to infinite streamline curvature where the shock touches the surface. Emmons tried to remedy this problem by introducing a sudden inviscid expansion immediately behind the shock, but gradients of velocity and temperature within this expansion are of the same order as in the shock layer itself. Hence, Emmons has suggested that a viscous theory may be required to properly deal with this portion of the flow. Of course this problem is in some sense an academic one for a boundary layer must always be interposed between the shock wave and the wall and would be expected to influence the flow. However experiments (Sinnott 1960, Pearcey 1964, Holder 1964) do indicate that the pressure rise across the shock terminating a pocket of supersonic flow at the sürface of a transonic airfoil may be appreciably less than the Rankine-Hugoniot value. It seems reasonable that the difficulties observed by Emmons (1946) and these experimental results are related to each other.

In the analysis of the Mach reflection of weak shock waves use of the Rankine-Hugoniot conditions at the triple point leads to results in serious disagreement with experiment. To deal with this problem Sternberg (1959) introduced a region of non-Hugoniot flow in the neighborhood of the triple point which permits an adjustment of the shock structure from that of the incident and reflected shocks to that of the Mach stem. A global analysis of this viscous region in which the shock structure is no longer one dimensional results in reasonable agreement with experiments.

Limit lines, where the velocity gradient becomes infinite also occur near the sonic circle or sphere when the inviscid equations are solved for the classical problem of compressible source and source-vortex flow (Taylor 1930, Von Mises 1958), and the neglect of viscosity in such regions is clearly inconsistent.

A viscous-transonic theory to deal with such problems has becn gradually developed over the past two decades and forms the subject of this survey. The theory is in effect an extension to two dimensions of Taylor's early (1910) analysis of the structure of weak shock waves. In this survey no attempt is made to study viscous phenomena within the boundary layer, rather attention is limited to the theoretical description of viscous effects in the external flow.

THE VISCOUS TRANSONIC EQUATION

In view of the above discussion it is apparent that there are numerous transonic flow problems in which viscous effects must be considered. Szaniawski (1962) has given simple qualitative arguments showing the importance of viscosity in transonic flow. In transonic small disturbance flow It can be shown (Guderley, 1962) that the perturbation potential ϕ ' satisfies the approximate equation

$$
\begin{equation*}
-(\gamma+1) \phi_{\mathbf{x}}^{\prime} \phi_{\mathrm{xx}}^{\prime}+\phi_{\mathrm{yy}}{ }^{\prime}=\Phi \tag{1}
\end{equation*}
$$

[^4]where Φ represents the dissipative terms. Now $-(\gamma+1) \phi_{\mathrm{X}}{ }^{\prime} \phi_{\mathrm{Xx}}{ }^{\prime} \approx\left(1-\mathrm{M}^{2}\right) \phi_{\mathrm{XX}}{ }^{\prime}$ and when the terms ($1-M^{2}$) $\phi_{x x}{ }^{\prime}, \phi_{y y^{\prime}}$, and Φ in Eq. (1) are compared, it is usually found that Φ is negligible compared to the other terms. However, as $M \rightarrow 1,\left(1-M^{2}\right) \phi_{x x}$ vanishes but Φ need not vanish, so domains \mathcal{D}^{-}must exist in which $\left(1-M^{2}\right) \phi_{x x^{\prime}} \sim O(\Phi)$, and where the dissipative terms Φ cannot be neglected. The interior of a shock wave is an important example of such a domain. If the domains O are small compared to the region of interest, so that they can be regarded as surfaces of discontinulty, then the neglect of Φ maybe legitimate. The thickness, η, of weak shock waves (Lighthill 1956) is of order $\bar{\mu}^{\prime} / \rho^{*} 2^{*}\left(M_{1}{ }^{*}-1\right)$ and so can be quite large as the upstream Mach number $\mathrm{M}_{1}{ }^{*} \rightarrow 1.0$. Hence, the region α^{\prime} in which convective and dissipative effects are comparable may be very large. Even when δ is very small amplification may cause the viscous phenomena within \mathcal{O} to exert an important influence on the overail flow. Thus, viscous effects $\ln \mathcal{D}$ may through their influence on jump conditions determine the position of the shock terminating a region of supersonic flow.

A viscous-transonic (V-T) equation was first derived by Liepmann, Ashkenas, and Cole (1948), and was later rederived independently by Ryzhov and Shefter (1964), Sichel (1962, 1963), and Szanlawski (1962, 1963). In the derivation presented here steady flow of a periect gas with constant specific heats, viscosities, and thermal conductivity will be considered. Variation of the thermodynamic properties is taken into account by Sichel (1963), Szaniawski (1962) and Ryzhov and Shefter (1964), but there is no material change in the results. The critical or sonic values of the flow parameters will be used as reference quantities, and it will be assumed that the undisturbed flow is in the x or axial direction.

From the method of characteristics (Guderley 1962) for inviscid flow or from the transonic Hugoniot conditions across shocks it follows that perturbations in the dimensionless quantities $\overline{\mathrm{p}} / \rho^{*} \mathrm{a}^{* 2}, \overline{\mathrm{a}} / \mathrm{a}^{*}, \overline{\mathrm{~T}} / \mathrm{T}^{*}$, and $\bar{\rho} / \rho^{*}$ will be of the same order as the deviation of the dimensionless x or axial velocity component \bar{u} / a^{*} from the reference value of unity. If $\left[\left(\bar{u} / u^{*}\right)-1\right] \sim 0(\epsilon)$; where $\epsilon \ll 1$, these flow parameters can be expanded as

$$
\left.\begin{array}{ccc}
u=\left(\bar{u} / a^{*}\right)=1+\epsilon u^{(1)}+\epsilon^{2} u^{(2)}+\ldots & ; & \rho=\bar{\rho} / \rho^{*}=1+\epsilon \rho^{(1)}+\ldots \\
p=\bar{p} / \rho^{*} a^{*}{ }^{2}=(1 / \gamma)+\epsilon p^{(1)}+\ldots & ; \quad T=\bar{T} / T^{*}=1+\epsilon T^{(1)}+\ldots \tag{2}\\
a=\bar{a} / a^{*}=1+\epsilon a^{(1)}+\ldots
\end{array}\right\}
$$

Barred quantities are dimensional and reference quantities are indicated by an asterisk. The transverse velocity, $v=\bar{v} / a^{*}$, is expanded as

$$
\begin{equation*}
v=\bar{v} / a^{*}=\Delta\left(\epsilon v^{(1)}+\epsilon^{2} v^{(2)}+\ldots\right) \tag{3}
\end{equation*}
$$

If the disturbance is caused by a slender body then it follows from the characteristic or oblique shock relations that $\Delta \sim O\left(\epsilon^{1 / 2}\right)$. In a normal shock, on the other hand, v and herce Δ are equal to zero. From the method of characteristics or the oblique shock relations it can be shown (Sichel 1963, Guderley 1962) that if L is the characteristic length of the problem, then

$$
\begin{equation*}
x=\bar{x} / L \quad ; \quad y=\bar{y} \Delta / L \tag{4}
\end{equation*}
$$

are the appropriate dimensionless coordinates.
Introducing these expansions and coordinates in the Navier-Stokes equations and keeping only the largest terms yields the partial differential equations

$$
\begin{array}{ll}
\rho_{\mathrm{X}}^{(1)}+u_{\mathrm{X}}^{(1)}=0 & \text { continuity } \\
u_{\mathrm{X}}^{(1)}+\mathrm{p}_{\mathrm{X}}^{(1)}=0 & \text { x or axial momentum } \\
\mathrm{v}_{\mathrm{X}}^{(1)}+\mathrm{p}_{\mathrm{y}}^{(1)}=0 & \text { y or transverse monentum } \\
\mathrm{T}_{\mathrm{X}}^{(1)}-(\gamma-1) \mathrm{p}_{\mathrm{x}}^{(1)}=0 & \text { energy } \\
r p^{(1)}=\rho^{(1)}+\mathrm{T}^{(1)} & \text { perfect gas }
\end{array}
$$

Assuming unlform upstream entropy, Eq. (5), (6) and (8) can be integrated to yleld the equations

$$
\begin{equation*}
\rho^{(1)}+u^{(1)}=0 \quad ; \quad u^{(1)}+p^{(1)}=0 \quad ; \quad T^{(1)}-(\gamma-1) p^{(1)}=0 \tag{10}
\end{equation*}
$$

which are identical to the relations between $\rho^{(1)}, u^{(1)}, \mathrm{p}^{(1)}$, and $\mathrm{T}^{(1)}$ in a ieftward propagating acoustic wave. Using Eq. (10) the y mornentum Eq. (7) reduces to the irrolationality condition

$$
\begin{equation*}
u_{x}^{(1)}-v_{y}^{(1)}=0 \tag{11}
\end{equation*}
$$

Since entropy changes are of higher-order in transonic flows and stagnation enthalpy is assumed constant this result could also have been derived from the Crocco relation.

Equations (5)-(9) are five equations for the five unknowns $\rho^{(1)}, u^{(1)}, v^{(1)}, T^{(1)}$, and $p^{(1)}$; however, since from Eq. (5) and (6) it follows that $\rho(1)=p$ (1) the equations of state and energy are identical so that the set of Eq. (5)-(9) is redundant. The second order equations are redundant in $\rho^{(2)}, u^{(2)}, v^{(2)}$, and $p^{(2)}$ and upon eliminating the second order expansion coefficients the following equation relating $u(1)$ and $v^{(1)}$ is obtained (Siche! 1963, Ryzhov 1965)

$$
\begin{equation*}
\frac{1}{\operatorname{Re} \epsilon}\left(1+\frac{\gamma-1}{\operatorname{Pr}}\right) u_{x x}^{(1)}-(\gamma+1) u^{(1)} u_{x}^{(1)}+\frac{\Delta^{2}}{\epsilon}\left(y_{y}^{(1)}+\frac{k-1}{y} v^{(1)}\right)=0 \tag{12}
\end{equation*}
$$

Together with the irrotationality condition (11) this system is sometimes called the viscoustransonic or V-T equation. Re is the Reynolds number $\rho^{*} \mathrm{a}^{*} \mathrm{~L} / \bar{\mu}^{\prime \prime}, \operatorname{Pr}{ }^{\prime \prime}$ is the Prandtl number, $\bar{\mu}^{\prime \prime}=(4 / 3) \bar{\mu}+\bar{\mu}^{\prime}$ is what Hayes (1958) calls the longitudinal viscosity. $\bar{\mu}^{\prime}$ is the bulk viscosity. The integer k equals two in axisymmetric flow and unity for two dimensional flow. From the method of derivation V-T flow might be considered as an acoustic wave with structure determined by higher order viscous effects.

From the definition of the shock thickness η it follows that $(\epsilon \mathrm{Re})^{-1} \sim O(\eta / L)$ so that the viscous term in Eq. (12) will be of $O(1)$ whenever L and η are of the same order. In two dimensional transonic flow it is, as discussed above, appropriate to let $\Delta=\epsilon^{1 / 2}$, and then all three terms of Eq. (12) will be of equal importance. In one dimensional flow $\Delta=0$, and then the ordinary differential equation which is left has as one of its solutions

$$
\begin{equation*}
u^{(1)}=-\tanh \frac{(\gamma+1)(\epsilon \mathrm{Re})}{2\left(1+\frac{\gamma-1}{\mathrm{Pr}^{\prime \prime}}\right)} \mathrm{x} \tag{13}
\end{equation*}
$$

which is identical to Taylor's (1910) solution for the structure of a weak shock.
When (η / L) or $(\epsilon \mathrm{Re})^{-1} \ll 1$ a singular perturbation problem arises with respect to Eq. (12). With $\Delta^{2}=\epsilon$ the flow should satisfy the inviscid transonic equation

$$
\begin{equation*}
-(\gamma+1) u^{(1)} u_{x}^{(1)}+v_{y}^{(1)}+[(k-1) / y] v^{(1)}=0 \tag{14}
\end{equation*}
$$

except for thin viscous regions with a thickness of order η. The singular perturbation nature of the V-T equation may account for some of the difficulties of inviscid transonic theory. A key question which should be posed in all cases is whether solutions of the $\mathrm{V}-\mathrm{T}$ equation approach the inviscid solution as $(\eta / L) \rightarrow 0$.

The coefficient of the viscous term in Eq. (12) can also be written as

$$
\delta / a^{*} L \epsilon=\left(\operatorname{Re}_{\delta} \epsilon\right)^{-1}
$$

where

$$
\delta=\frac{\bar{\mu}^{\prime \prime}}{\rho^{*}}+\frac{(\gamma-1)_{K}}{\rho^{*} C_{p}}
$$

is a quantity which Lighthill (1956) calls the "Diffusivity of sound", and is the combination of transport properties governing the attenuation of sound waves. Re δ is a Reynolds number based on δ, and appears more appropriate than that based on just $\bar{\mu}^{\prime \prime}$. With $\Delta^{2}=\epsilon$ the transformation

$$
\begin{array}{lll}
X=\frac{1}{2}(\gamma+1) \in \operatorname{Re}_{\delta} x & ; & u^{(1)}=\frac{1}{2} U \\
\mathbf{Y}=\left[\frac{1}{2}(\gamma+1)\right]^{3 / 2} \in \operatorname{Re}_{\delta} y & ; & v^{(1)}=\frac{1}{2}\left(\frac{\gamma+1}{2}\right)^{1 / 2} v
\end{array}
$$

reduces Eq. (11) and (12) to the normalized form

$$
\begin{gather*}
\mathrm{U}_{\mathrm{XX}}-\mathrm{UU}_{\mathrm{X}}+\mathrm{V}_{\mathrm{Y}}+[(\mathrm{k}-1) / \mathrm{Y}] \mathrm{V}=0 \tag{15}\\
\mathrm{U}_{\mathrm{Y}}=\mathrm{V}_{\mathrm{X}}
\end{gather*}
$$

in which the properties of the gas do not appear. Equation (15) together with appropriate boundary conditions expresses a viscous-transonic similitude (Sichel 1966) closely related to that of inviscid flow (Guderley 1962). In terms of the potential defined by $U=\phi_{X}, V=\phi Y$, Eq. (15) can be replaced by the V-T potential equation

$$
\begin{equation*}
\phi_{\mathbf{X X X}}-\phi_{\mathbf{X}} \phi_{\mathbf{X X}}+\phi_{\mathbf{Y Y}}+[(\mathrm{k}-1) / \mathrm{Y}] \phi_{\mathbf{Y}}=0 \tag{16}
\end{equation*}
$$

Kgeping only the largest terms in the energy equation the dimensionless entropy $S=\bar{s} / C_{p}$, with $\Delta^{2}=\varepsilon$, satisfies the equation

$$
\begin{equation*}
\operatorname{Pr}^{\prime \prime} \in \mathrm{S}_{\mathrm{x}}=\epsilon^{3}(\eta / L) \mathrm{T}_{\mathrm{xx}}{ }^{(1} \tag{17}
\end{equation*}
$$

If $(\eta / L) \sim O(1)$, Eq. (17) implies that

$$
S=\epsilon^{2} s^{(2)}+\epsilon^{3} s^{(3)}+\ldots
$$

is the appropriate expansion for S. Equation (i7) is an entropy transport equation which yields the result, $S_{1}(2)=S_{2}(2)$, when integrated across a weak shock. Subscripts 1 and 2 refer to upstream and downstream conditions. From the equation for $S^{(3)}$

$$
\begin{equation*}
\frac{\partial S^{(3)}}{\partial x}=\frac{1}{\operatorname{Pr} r^{\prime \prime}} \frac{\eta}{L}\left(\frac{\partial^{2} T^{(2)}}{\partial x^{2}}+\frac{\partial^{2} T^{(1)}}{\partial y^{2}}\right)+\frac{\eta}{L}(\gamma-1)\left(1+\frac{\gamma-1}{P^{\prime \prime}}\right)\left(\frac{\partial u^{(1)}}{\partial x}\right)^{2} \tag{18}
\end{equation*}
$$

it follows that entropy production is of third order since $\left(\partial u^{(1)} / \partial x\right)^{2}$ is always positive. These results regarding entropy are in agreement with weak shock theory, as they should be.

Perturbing with respect to a free stream velocity \bar{u}_{∞} / a^{*} other than sonic the $V-T$ equation becomes

$$
\begin{equation*}
\left(\epsilon \operatorname{Re}_{8}\right)^{-1} \tilde{u}_{x x}^{(1)}-(\gamma+1)\left(B+\tilde{u}^{(1)}\right) \tilde{u}_{x}^{(1)}+\frac{\Delta^{2}}{\epsilon}\left(v_{y}^{(1)}+\frac{k-1}{y} v^{(1)}\right)=0 \tag{19}
\end{equation*}
$$

while the normalized potential equation becomes

$$
\begin{equation*}
\tilde{\phi}_{X X X}-2\left(B+\tilde{\phi}_{X}\right) \tilde{\phi}_{X X}+\tilde{\phi}_{Y Y}+[(k-1) / Y] \tilde{\phi}_{Y}=0 \tag{20}
\end{equation*}
$$

In these equations $\left.B=\epsilon^{-1}\left[\bar{u}_{\infty} / a^{*}\right)-1\right]$, and $u^{(1)}=B+\tilde{u}^{(1)}=B+\tilde{\phi}_{X}$. When $u^{(1)} \ll B$ these equations may be linearized and the linearized potential equation

$$
\begin{equation*}
\tilde{\phi}_{X X X}-2 B \tilde{\phi}_{X X}+\tilde{\phi}_{Y Y}+[(k-1) / Y] \tilde{\phi}_{Y}=0 \tag{21}
\end{equation*}
$$

which may also be derived by direct linearization of the Navier-Stokes equations, has been studied by Rae (1960) In an investigation of viscous acoustics. From Rae's work it is clear the V-T flow is closely related to the longitudinal viscous waves discussed by Lagerstrom (1964).

For both supersonic ($\phi_{X}>0$) and subsonic ($\phi_{X}<0$) flow the $V-T$ potential equation (16) is parabolic with the three fold characteristic, $Y=$ const. This property is in distinct contrast to the inviscid transonic equation (14) which changes from an elliptic to a hyperbollc equation as the velocity paeses from sub to supersonic values. The V-T equation is, thus, in some ways simpler to deal with than the inviscid equation. A limited uniqueness theorem for the two dimensional case gives some indication of properly posed boundary conditions. Given a rectan gular domain $\mathscr{R}\left(\mathrm{X}_{1}<\mathrm{X}<\mathrm{X}_{2}, \mathrm{Y}_{1}<\mathrm{Y}<\mathrm{Y}_{2}\right)$, it can be shown (Sichel 1963) that if $\phi \mathrm{X}$ is specified on $\mathrm{X}=\mathrm{X}_{1}$, and if ϕ is specified on the entire boundary ($X=X_{1}, X_{2} ; Y=Y_{1}, X_{2}$) of the domain \mathcal{P}, then the solution of Eq. (16) is unique provided $\phi \mathrm{X}<0 \mathrm{in} \ell$. It is significant that only one condition may be specified on the boundaries parallel to the undisturbed flow just as in the inviscid case. Since the mean surface approximation remalns valid in V-T flow (Sichel 1962) a tentative conclusion is that the boundary conditions which will represent a slender body will be the same as in the inviscid case. Even though the $V-T$ equation is parabolic it is interesting to note that ϕ must be specified over a closed boundary as for second order elliptic equations. The high order of the V-T equation is responsible for this result.

The mathematical behavior of the V-T potential equation is dominated by the terms $\phi \mathrm{XXX}$ and $\phi Y Y$; therefore, the linear equation

$$
\begin{equation*}
\phi_{\mathrm{XXX}}+\phi_{\mathrm{YY}}=0 \tag{22}
\end{equation*}
$$

as well as Eq. (21) have been investigated. Partial differential equations of the type of Eq. (22) have been studied in general by Block (1912), and by Dezin (1958, 1959). Detalled solutions have been given by Sichel (1961), Ryzhov (1965) and Sichel, Yin, and David (1968). As mentioned above, Eq. (21) has been studied by Rae (1960) and periodic solutions of Eq. (21) have been investigated by Sichel and Yin (1967).

Higher order equations for $u(2), v^{(2)}$, etc., which are linear and nonhomogeneous, have been formulated by Szaniawski (1963). In the case of one dimensional shock structure higher order corrections to the Taylor weak shock solution (Eq. (13)) have been found in closed analytical form (Sichel 1960, Szaniawski 1966a). Equations for unsteady V-T flow have been formulated by Ryzhov and Shefter (1964). in the one dimensional case V-T flow is governed by Burgers' equation which is discussed in detail by Lighthill (1956); however, unsteady flows are beyond the scope of the present survey.

EXTERNAL FLOW

Determination of the jump conditions across a non-Rankine-Hugoniot shock wave terminating a region of supersonic flow is one of the key problems in the study of external V-T flow (Pearcey 1964). While this problem remains unsolved some progress in the study of V-T flow past bodies has been possible.

Some simple results can be obtained directly from the V-T equation. The structure of an oblique shock which is simply a generalization of the Taylor solution (Eq. (13)) can be shown to be a solution of the $V-T$ equation (Sichel 1963, Szaniawski 1962). The angle between a transonic shock and the y axis is of $O\left(\epsilon^{1 / 2}\right.$) and thus can be set equal to $\alpha \epsilon^{1 / 2}$ where $\alpha \sim O(1)$. In a curved shock α will vary with y, i. e. $\alpha=\alpha(y)$; however, it can be shown that unless ($d \alpha / d y$) $\sim O(\epsilon)$ or less the oblique shock solution will fail to remain valid. This condition implies that $\eta / \bar{R}_{S} \sim O\left(\epsilon^{2}\right)$, i. e. the ratio of shock thickness η to shock radius of curvature $\overline{\mathrm{R}}_{\mathrm{S}}$ must be second order in ϵ in order that the conventioral oblique shock conditions hold (Sichel 1962).

Formal integration of the two dimensional V-T equation (15) with X held constant yields the result

$$
\begin{equation*}
U_{X}-\{1 / 2\} U^{2}=-\int V_{Y} d X+K \tag{23}
\end{equation*}
$$

where K is a constant of integration. Thus for constant X the $\mathrm{V}-\mathrm{T}$ equation behaves like a Riccati equation. This is a highly significant result since many of the solutions of the $\mathrm{V}-\mathrm{T}$ equation discussed below reduce to the solution of a Riccatl equation with different functions of the independent variable on the right-hand side. In the simplest case, of the weak normal shock the right-hand side of Eq. (23) is a constant. In the case of a weak shock with uniform flow upstream and with $\epsilon=\left(M_{1} *-1\right)$ Eq. (23) yields the expression

$$
\begin{equation*}
U(+\infty, Y)=-\left[4+\int_{-\infty}^{\infty} V_{Y} d X\right]^{1 / 2} \tag{24}
\end{equation*}
$$

for the value of U downstream of the shock. In a normal shock $V=0$ and Eq. (24) yields the usual Rankine-Hugoniot result $U(+\infty)=-2$ or $u^{(1)}(+\infty)=-1$. In an oblique shock with the free stream in the $+x$ direction $V_{Y}<0$ within the shock and according to Eq. (24) $U(+\infty, Y)>-2$ as is actually the case. In the shock terminating a supersonic region it appears reasonable that $\mathrm{V}>0$ because of the wall boundary layer. Then if V decays with increasing $Y, V_{Y}<0$, and Eq. (24) predicts $U(\infty, Y)>-2$ so that the shock pressure rise is less than the $R-H$ value in agreement with the numerical results of Emmons and with experiment (Sinnott 1960).

Fallure of the R-H conditions to hold across shock waves evidently arises whenever the Feynolds number based on shock radius becomes small and the condition $\eta_{\prime}^{\prime} R_{S} \sim O\left(\epsilon^{2}\right)$ is an expression of this fact. A general analysis of non $\mathrm{R}-\mathrm{H}$ shock waves, which may also arise in low density supersonic and hyparsonic flows, has been made by Germain and Guiraud (1964). Although not germane to the present survey, the measurements of flow near a hypersonic leading edge by

McCroskey (1967) provide a clear indication that $\mathrm{R}-\mathrm{H}$ conditions no longer hold when the shock Reynolds number is low.

A desirable objective of any preliminary study of the $\mathrm{V}-\mathrm{T}$ equation would be to examine the effect of viscosity upon a known inviscid solution. In two dimensional or axisymmetric flow past finite or semi-infinite bodies with sonic velocity at infinity Frankl (1947) and Guderley and Yosihara (1951) have found that the asymptotic behavior of the flow far from the body is described by self similar solutions of the inviscid potential equation of the form

$$
\phi=y^{3 n-2} F(\zeta) \quad ; \quad \zeta=x /(\gamma+1)^{1 / 3} y^{n}
$$

Investigation of the singularities of the ordinary differential equation for $F(\zeta)$ shows that the solution with $n=4 / 5$ represents the asymptotic flow past a finite two dimensional profile while $n=4 / 7$ represents flow past finite bodies of revolution,

To examine the effect of viscosity upon these inviscid solutions Ryzhov and Shefter (1964) studied self similar solutions of the normalized V-T potential equation (16) of the same form as Eq. (25), 1. e. they assumed $\phi=Y^{3 n-2} \Phi(\xi)$ with $\xi=X / Y^{n}$. For fixed ξ it then follows that the terms of the V-T equation vary as

$$
\begin{equation*}
\phi_{X} \phi_{X X}, \phi_{Y Y} \sim O\left(Y^{3 n-4}\right) \quad ; \quad \phi_{X X X} \sim O\left(Y^{-2}\right) \tag{26}
\end{equation*}
$$

Equation (26) leads to the conclusion that for $n>2 / 3$ the dissipative term $\phi \times X X$ vanishes faster than the other terms of the $V-T$ equation as $Y \rightarrow \infty$, while for $n \leq 2 / 3$ the dissipative terms will be comparable or greater than the other terms of the $V-T$ equation with increasing Y. Since $4 / 7<2 / 3<4 / 5$ Ryzhov and Shefter concluded that the two dimensional inviscid solutions with $n=4 / 5$ will not be affected by viscosity for large Y, but that viscosity may have important effects on the asymptotic solution for axisymmetric flow with $n=4 / 7$. A consideration of the Reynolds and Peclet numbers $\mathrm{Re}=\rho^{*} \mathrm{U} \ell / \mu^{*} \cdot, \mathrm{Pe}=\rho^{*} \mathrm{U} \ell / \kappa^{*}$ provides another explanation for these results Ryzhov (1965). If the characteristic length ℓ is taken as the horizontal distance between two of the generalized parabolas $\xi=$ const, then $\mathrm{Re}, \mathrm{Pe} \sim \mathrm{O}\left(\mathrm{Y}^{3 \mathrm{n}-2}\right)$ as $\mathrm{Y} \rightarrow \infty$. Thus for $\mathrm{n}<2 / 3$, Re and Pe decrease so that viscous effects will be important thro ughout the flow.

The freedom in the choice of n disappears in the $\mathrm{V}-\mathrm{T}$ case, a similarity solution of the $\mathrm{V}-\mathrm{T}$ equation being possible only for $n=2 / 3$. In that case, Eq. (25) implies that $U=Y^{-2 / 3} f(\xi)$, $V=Y^{-1} g(\xi)$ and the function $f(\xi)$ satisfies the ordinary differential equation

$$
\begin{equation*}
f^{\prime \prime}+\left(4 / 9 \xi^{2}-f\right) f^{\prime}+4 / 9 \xi f+2 / 3(k-2)(c-f \xi)=0 \tag{7}
\end{equation*}
$$

while

$$
g=(2 / 3)(c-f \xi)
$$

with c a constant of integration. Numerical solutions of Eq. (27) were compared to the inviscid similarity solution with $\mathrm{n}=2 / 3$ corresponding to the flow over the semi-infinite body $\mathrm{Y}=\sqrt{(8 / 3) \mathrm{cX}}$. For slender bodies with $c \ll 1$ the difference between the viscous and inviscid solutions was appreciable.

In the case $c=0, k=1$, solutions of Eq. (27) such that f remains bounded in $-\infty \leq \xi \leq \infty$ and that $\mathrm{f} \rightarrow 0$ as $|\xi| \rightarrow \infty$ have also been investigated (Sichel 1961). Such solutions satisfy the mass conservation condition $\int_{-\infty}^{\infty} V d X=0$ for fixed Y, and so may represent the asymptotic behavior of a finite body. Comparison of these solutions with solutions of the linearized two dimensional, $c=0$, version of Eq. (27)

$$
\begin{equation*}
f^{\prime \prime}+4 / 9 \xi^{2} f^{\prime}+10 / 9 \xi f=0 \tag{28}
\end{equation*}
$$

which arises from a similarity solution of the linear V-T equation (22) showed that the non-linear term causes a marked difference between subsonic ($f<0$) and supersonic ($f>0$) solutions and completely changes the asymptutic behavius uf f as $\xi-\infty$. It is, thus, clear that linearized V-T solutions must be regarded with considerable caution.

Self similar solutions of the linearized V -T potential equation for axisymmetric flow have been studied by Ryzhov (1965). Then the function $\mathrm{f}(\xi)$ satisfies

$$
\begin{equation*}
f^{\prime \prime \prime}+(4 / 9) \xi^{2} f^{\prime \prime}+(4 / 3)(n+1 / 3) \xi f^{\prime}+n^{2} f=0 \tag{29}
\end{equation*}
$$

and solutions exist for all values of n. From the asymptotic behavior of this equation as $|\xi| \rightarrow \infty$ it is shown that $n=4 / 3$ is the first eigenvalue for which f can represent the flow past a finite body. In the case $n=4 / 3$ the solutions of Eq. (29) are shown to be confluent hypergeometric functions.

The inviscid similarity solution for a free stream Mach number of unity must have at least one discontinuity at some value of $\xi=\xi_{\mathrm{s}}$ corresponding to a compression shock (Guderley 1962). The key question of whether viscous solutions outside the shock layer approach the inviscid solution as Rej $\rightarrow \infty$ was investigated by Szaniawski (1966b) using the meihod of asymptotic expansions. The flow was divided into outer regions upstream and downstream of the shock wave and an inner or shock layer region, and ordinary differential equations were derived for the first order coefficients of inner and outer asymptotic expansions. It is initially assumed that the terms in these equations with the coefficient $\mathrm{Re}_{\delta}{ }^{-1}$ can be neglected everywhere as $\mathrm{Re}_{\delta} \rightarrow \infty$ The outer solution then becomes the inviscid Guderley-Frankl solution while the inner solution is clesely related to Taylor's weak shock solution. Matching is used to establish a composite expansion and streamline equations are obtained in parametric form. To this point the solution corrects the GuderleyFrankl solution for the finite thickness of the shock layer.

The crux of the analysis lies in the use of the above solution to determine whether the terms with $\mathrm{Re}_{5}{ }^{-1}$ as coefficient, which were dropped initiclly, are really negligible. The inviscid outer solution is consistent in the two dimensional case since then the neglected terms do indeed vanish as $\mathrm{Re}_{\mathrm{o}} \rightarrow \infty$. However, in the axisymmetric case the v iscous $\mathrm{Re}_{\delta}{ }^{-1}$ terms are found to be of the same order as the inviscid terms for sufficiently large ly/ in agreement with the results of Ryzhov and Shefter (1964). However, Szaniawski finds that in the axisymmetric case the inviscid outer solutions will remain valid for $|x| \ll \xi_{s}{ }^{7} \operatorname{Re}_{\delta}{ }^{2}$, $|y| \ll\left(\xi_{s}{ }^{3} \operatorname{Re}_{\delta}\right)^{7 / 2}$, a region which may be very large for large Res. But even when Re_{δ} is very large the viscous terms may have an important inflrence on the asymptotic behayior of the solution far from the body.

An approximate viscous transonic solution for the classical problem of flow past a wavy wall has been determined by Sichel and Yin (1967c) following the method used by Hosokawa (1960a, b) in the inviscid case. The normalized potential ϕ is divided into a linear part $\phi(\ell)$ and a correction g such that $\phi=\phi^{(\ell)}+g$. The potential $\phi^{(\ell)}$ then satisfies the linear equation

$$
\begin{equation*}
\phi_{\mathrm{XXX}}{ }^{(\ell)}-2 B \phi_{\mathrm{XX}}{ }^{(\ell)}+\phi_{\mathrm{YY}}{ }^{(\ell)}=K \phi_{\mathbf{X}}^{(\ell)} \tag{30}
\end{equation*}
$$

which is readily solved for the periodic wavy wall boundary conditions. K is an appropriately chosen constant and the linear so' tion enters in the equation for the correction g. Several approximations then lead to the Riccati equation

$$
\begin{equation*}
U_{0}^{\prime}-U_{0}^{2}=-\frac{B^{2}}{4}+A \sin (\omega X+\beta)+C \tag{31}
\end{equation*}
$$

for $u^{(i)}(X, 0)=U_{0}$, the X velocity component at the wall. The constant A and the phase angle β depend on the amplitude and frequency ω of the wavy wall, and upon B while C is an integration constant. Equation (31) can be transformed into the Mathleu equation from which it follows that solutions may be diverging, periodic, or iinite but aperiodic depending on the value of the constant C. Physically meaningful solutions should be periodic with the wall frequency, and this periodicity condition was used to determine \mathbf{C}.

The 1- viscid solution of Hosokawa (1960b) and the V-T solution are shown in Fig. 1 for a particular set̂ of flow parameters. Hosokawa must introduce a shoct discontinuity in his solution; this is replaced by a smooth transition from supersonic to subsonle fle w in the viscous transonic case.

So far attention has been focused on flows in which the fluid decelerates through a shock layer. Viscous transonic effects are also important in establishing the influence of viscosity upon a Prandtl-Meyer expansion from an upstream uniform flow with $\mathrm{M}_{1} \simeq 1$. Very large velocity gradients occur near the corner in the inviscid Prandtl-Mayer solution and here viscous effects must be significant. This problem was investigated by Adamson (1967) using the method of matched asymptotic expansions for both $\mathrm{M}_{1}=1$ and $\mathrm{M}_{1}>1$. The flow was divided into an inner region about the first Mach line and an outer doynstream region. Since derivatives of the inviscid solution are discontinuous at the first Mach line, the effect of viscosity must be to smooth out these discontinuities.

In the transonic, $M_{1} \simeq 1$ case the first order inner flow near the Mach line is irrotational and satisfies the V-T potential equation (16). The similarity solution (Eq. (27)), with $\mathrm{c}=0$, first
considered by Ryzhov and Shefter (1964), and Sichel (1961) is found to be the viscous transonic solution which properiy matches upstream and downstream boundary conditions. Thus Adamson was also led to an investigation of the equation

$$
\begin{equation*}
f^{\prime \prime}-f f^{\prime}+4 / 9 \xi^{2} f^{\prime}+10 / 9 \xi f=0 \tag{27a}
\end{equation*}
$$

and in the corner problem the appropriate solution of (27a) varies as $(-\xi)^{-5 / 2}$ as $\xi--\infty$, and as ξ^{2} as $\xi \rightarrow+\infty$. The existence of such solutions is verified numerically.

To this point the boundary layer has not been mentioned although it is clear that consideration of the interaction between the boundary layer and the free stream is essential for a complete understanding of the flow. The trouble is that this interaction problem is very difficult in both the inviscid and viscous transonic cases. However, the role of the boundary layer in viscous PrandtlMeyer flow has been considered by Adamson (1967) who found that when $M_{1}>1$ the thinning of the boundary layer near the corner will affect the flow more than viscous effects in the expansion region. Although the matter is not entirely clear it appears that this situation reverses when $M_{1} \simeq 1$ so that viscous effects in the expansion region will be the most important.

Bertotti (1957) indicated a possible approach to the transonic boundary layer interaction problem by showing that the boundary layer approximation remains valid at the foot of a shock wave provided that the shock wave is sufficiently weak and that the boundary layer thickness is sufficiently small. This idea was applied to a study of the leading edge of the shock tube boundary layer induced by a weak shock wave (Sichel 1962). In that case $\mathrm{V}<0$ and $\mathrm{V}_{\mathrm{Y}}>0$ so that, in agreement with Eq. (23) the pressure rise across the shock was found to be greater than the $\mathrm{R}-\mathrm{H}$ value.

An analysis of flow near a leading characteristic, considering boundary layer effects has also been made by Bulakh (1966).

Much work has of course been done on the shock-boundary layer interaction problem, generally based upon an inviscid, free stream flow with R-H shock waves. The present survey is not concerned with such problems but rather with the situation in which the boundary layer influences the viscous structure of the free stream, and in this area the literature is sparse.

NOZZLE FLOW

Transonic solutions for the flow near the throat of a converging-diverging nozzle are of practical and theoretical interest. Conditions at the throat are required to start characteristic calculations for the supersonic part of the nozzle. From a theoretical point of view the nature of the transition from wholly subsonic to subsonic-supersonic flow is of particular interest.

Meyer (1908) first computed the potential flow near the throat of a nozzle with asymmetrical subsonic-supersonic flow using a truncated double power series in x and y. Hence such flows are often called Meyer flows. The solution, which is indirect in that the velocity on the nozzle axis is specified rather than the shape of the nozzle, yields a reasonable description of the flow. Much additional work has since been done on the analysis of Meyer flows, particularly on the important direct problem in which the nozzle wall contour is specifled, and this work is discussed in the review by Hall and Sutton (1964). It appears that other than for the boundary layer, dissipative effects will not be important in such flows.

The transition from symmetrical flow with subsoric velocity on each side of the throat to asymmetric Meyer flow was first studied by Taylor (1930) also using a power serles, and such symmetrical flows are therefore often called Taylor flow. In this case the inviscid theory leads to difficulties. Taylor's calculations showed the development of supersonic pockets near the nozzle surface as the peak velocity on the nozzle axis increased, however, above a certain subsonic value of this peak velocity Taylor found that such symmetrical solutions would no longer exist.

Görtler (1939) showed that the series used by Taylor diverges as the peak velocity on the axis approaches the sonic value, and suggested that this difficulty is caused by neglect of higher order terms in the power series expansion. Görtler attempted to extend Taylor's series solution, however, a number of artificial assumptions regarding the series coefficients makes the convergence of Görtler's solution suspect.

Emmons (1946) applied the method oi relaxation to the transition problem and also obtained supersonic pockets near the wall. When the peak centerline Mach number exceeded a value of 0.812 shock waves terminating the supersonic pockets had to be introduced in order to permit the elimination of residuals in the relaxation calculations. Even then there are difficulties for the shock waves appear suddenly and, as mentioned in the Iniroduction above, a sharp expansion must be introduced immediateiy behind the shock to avoid a discontinuous streamline curvature. In addition to the experimental results quoted in the In'roduction, it is interesting that a rapid pressure rise behind transonic shock waves has also been bserved by Ackerct, Feldman and Rott (1946).

Instead of considering approximate solutions of the full equations o: comprewsible inviscid flow as above, another approach is to study exact solutions of the approximate inviscid transonic equation (Eq. (14)). Tomotika and Tamada (1950), and Tomotika and Hasimoto (1950) obtained an exact similarity solution of this equation describing both Taylor and Meyer flow, however their solutions did not provide for a smooth transition between the two types of flow. The similarity solutions describing Taylor flow also contain supersonic pockets but in the solution for which the pockets just meet on the axis the. lope of the axial velocity distribution becomes discontinuous at the sonic point. This singularity on the axis, which appears to be a source of much of the difficulty discussed above appears related to the fact that here tangents to the sonic line and the characteristics coincide (Ryzhov 1963).

A large family of two dimensional exact solutions have also been developed starting from the hodograph equations (Falkovich and Chernov 1966, Germain 1964), however, the plarar self similar solution of Ryzhov (1963) is of greatest interest here since he considered both the transition from Taylor to Meyer flow and the formation of shock waves. With the sonic point at the origin Ryzhov considers axial velocity distributions of the form

$$
\begin{equation*}
U(X, 0)=A_{1} X \quad, \quad X<0 \quad ; \quad U(X, 0)=A_{2} X \quad, \quad X>0 \tag{32}
\end{equation*}
$$

for then the inviscid transonic equation admits self similar solutions of the form

$$
\mathrm{U}=\mathrm{Y}^{2} \mathrm{f}(\xi) \quad ; \quad \mathrm{V}=\mathrm{Y}^{3} \mathrm{~g}(\xi) \quad ; \quad \xi=\mathrm{X} / \mathrm{Y}^{2}
$$

By an ingenious transformation of variables Ryzhov is able to study the singularities of $f(\xi)$ in detail and thereby determine the properties of the self similar solution. Ryzhov used the criterion that shock waves must appear wherever limit lines along which the acceleration is infinite occur and nozzle flows with shock waves are investigated. These flows all have the feature that the shock is tangent to the sonic line at the center of the nozzle. A weakness of the Ryzhov analysis is the use of the inviscid equations when limit lines with infinite velocity gradients appear.

At this point it appears appropriate to quote from the footnote on page 68 of Guderley's (1962) book:

> "If the nozzle is symmetrical with respect to the throat, then as long as the flow is subsonic along the entire length, there exists a symmetry also in the flow field. This is certainly no longer true when the nozzle is acting as a Delaval nozzle. One would expect that a study of the transition from one behavior to the other would provide an insight into the phenomena of transonic flow. A direct analysis of nozzles has, however, not in fact led to this hoped for result."

It would appear to be more consistent to begin the investigation of such transitional flows with the $\mathrm{V}-\mathrm{T}$ equation, and then to determine when viscous solutions approach the inviscid solution as $\mathrm{Re}_{\delta} \rightarrow \infty$. This problem has been considered by Szaniawski (1964a, b) and in great detail by Kopystyński and Szaniawski (1965).

Kopystyniski and Szaniawski considered flow through a nozzle throat with the contour

$$
\begin{equation*}
\left(\bar{y}_{W} / \pm \mathrm{L}\right)=1+\frac{\gamma+1}{2} \epsilon^{2} \mathrm{f}^{2}(\mathrm{x}) \tag{33}
\end{equation*}
$$

where L is the nozzle half height, and $f(x)$ is an increasing function of x with $f(0)=0, f^{\prime}(0) \neq 0$. Assuming the series development

$$
\begin{equation*}
u=1+\epsilon \hat{U}(x)+\ldots \quad ; \quad v=\epsilon^{2} \hat{V}(x) y+\ldots \tag{34}
\end{equation*}
$$

the boundary condition (Eq. (33)) then leads to the result that $\hat{V}(x)=\epsilon^{2}(\gamma+1) f(x) f^{\prime}(x)$ while the V-T equation reduces to the ordinary differential equation

$$
\begin{equation*}
\hat{\delta} \hat{U}^{\prime \prime}=\hat{U} \hat{U}^{\prime}-f f^{\prime} \tag{35}
\end{equation*}
$$

Here $\hat{\delta}$ is shorthand for $\left[\epsilon \operatorname{Re}_{\delta}(\gamma+1]^{-1}\right.$. The flow considered is thus quasi-one dimensiona) since the variation of u with y is not taken into account. By taking $v \sim O\left(\epsilon^{2}\right)$ instead of $O\left(\epsilon^{3 / 2)}\right.$ the authors have limited the validity of their analysis to streamlines which are very close to the nozzle axis.

When $\hat{\delta}=0$ Eq. (35) has the two solutions

$$
\begin{equation*}
\hat{\mathrm{U}}= \pm \mathrm{f}(\mathrm{x}) \tag{36}
\end{equation*}
$$

and the problem is to determine under what conditions solutions of Eq. (35) approach the inviscid solution (Eq. (36)) as $\delta \rightarrow 0$. Applying the theory of Vasileva (1963a, b) Kopystyniski and Szaniawski showed that the viscous solutions will converge to Eq. (36) as $\widehat{\delta}-0$ everywhere except in the neighborhood of the sonic point $x=0$.

The stretched variables

$$
\begin{equation*}
x=\sqrt{\frac{2}{f^{\prime}(0)}} \hat{\delta}^{1 / 2} \xi \quad, \quad \hat{U}=\sqrt{2 \hat{\delta} f^{\prime}(0)}[\psi(\xi)+R(\hat{\delta}, \xi)] \quad, \quad \lim _{\delta \rightarrow 0} R(\hat{\delta}, \xi)=0 \tag{37}
\end{equation*}
$$

are introduced to examine the structure of the flow near the sonic point in greater detail. Then expanding $f(x)$ in a Taylor series about $x=0$ and keeping only the first term Eq. (35), after one integration reduces to the Riccati equation

$$
\begin{equation*}
(\mathrm{d} \psi / \mathrm{d} \xi)-\psi^{2}=-\xi^{2}+\mathrm{A} \tag{38}
\end{equation*}
$$

where A is an integration constant. The transformation, $\psi=2 \xi-\left(v^{\prime} / v\right)$, changes Eq. (38) to the second order linear equation

$$
\begin{equation*}
v^{\prime \prime}-2 \xi v^{\prime}+(A-1) v=0 \tag{39}
\end{equation*}
$$

The solution of Eq. (39), and hence also of Eq. (38) can be expressed in terms of confluent hypergeometric functions. Depending on the values of A and of the initial value, $\psi_{0}=\psi(0)$, solutions may be continuous or discontinuous, and the region of continuous solutions is determined in the ψ_{0} - A plane. Typical solutions are shown in Fig. 2 and display a behavior suggesting the initial stages of shock formation near a nozzle throat. The problem of matching these inner solutions to the outer inviscid solutions is also considered.

The solutions shown in Fig. 2 are nonunique for all of them asymptotically approach $\psi= \pm \xi$ as $|\xi| \rightarrow \infty$. This is a disturbing result for the solutions should be responsive to the downstream boundary conditions just as in the one dimensional nozzle theory (Shapiro 1953). The difficulty may be related to the quasi-one dimensl al nature of the theory which does not take into account the variation of u with y.

A different approach was used by Sichel (1966) who found that a Tomotika and Tamada (1950) type nozzle similarity solution is also possible in the viscous-transonic case. Using the irrotationallty conditions to eliminate V the normalized $V-T$ tquation expressed in terms of $u^{(1)}$ instead of U becomes

$$
\begin{equation*}
u_{X X X}{ }^{(1)}-\left(u^{(1)^{2}}\right)_{X X}+u_{Y Y}^{(1)}=0 \tag{40}
\end{equation*}
$$

Substitution of the transformation

$$
\begin{equation*}
u^{(1)}=Z(S)+2 \sigma^{2} Y^{2} \quad ; \quad S=X+\sigma Y^{2} \tag{41}
\end{equation*}
$$

which is the same as that used by Tomotika and Tamada (1950), collapses Eq. (40) to the ordinary differentlal equation

$$
\begin{equation*}
Z^{\prime \prime \prime}-2 Z Z^{\prime \prime}-2\left(Z^{\prime}-2 \sigma\right)\left(Z^{\prime}+\sigma\right)=0 \tag{42}
\end{equation*}
$$

The function Z is also $u^{(1)}(x, 0)$, the velocity on the axis $Y=0$. The arbitrary constant σ can be related to the nozzle geometry. Equation (42) is the same as that obtained by $i=$ notika and Tamada except for viacous term $Z=$. The special inviscid solutions $Z=2 \sigma S$, and $Z=-\sigma S$ are also solutions of Eq. (42), and the nozzle velocity distribution obtained from Z $=2 \sigma \mathrm{~S}$ is identical
to that obtained from the first three terms of Meyer's (1908) original series solution. From a study of trajectories in the Z, Z', Z'' space it has been possible to find numerical solutions of Eq. (42) starti"g from $\mathrm{Z}=20 \mathrm{~S}$, passing through a maximum value and then asymptotically approaching the nviscl lecelerating solution $\mathrm{Z}=-\sigma \mathrm{S}$, and such solutions are shown in Fig. 3. As the maximum in r^{\prime} usises beyond the sonic value the deceleration to subsonic velocity ($Z^{\prime}<0$) becomes steeper, resembling the transition through a shock wave. These numerical solutions, which are similar to th : ? found by Kopystyński and Szaniawski (1965), also apparently describe the first stages in the tr:insition from Taylor to Meyer flow.

The solutic above is indirect in that the shape of the nozzle wall cannot be specified in advance, rather, it is nec ssary to accept one of the streamlines produced by the similarity solution as the nozzle contour. Each of the solutions shown in Fig. 3 produces a somewhat different nozzle contour and as the certerline velocity maximum increases undulations occur in the nozzle wall streamline. A typical nozzle flow field showing streamlines and constant velocity lines is shown in Fig. 4 for a ratio of throat half height h to throat radius of curvature R_{t} of $1 / 4$. The beginnings of a shock wave appears just downstream of the nozzle throat. The solutions shown in Fig. 3 are all asymptotic to $Z=-S$ as $S \rightarrow \infty$; however, no conclusions regarding uniqueness can be reached since each curve in Fig. 3 represents a different nozzle contour. Axisymmetric similarity solutions have also been determined (Sichel and Yin 1967a) and their asymptotic behavior as they approach the upstream and downstream inviscid solutions has been investigated.

A completely different situation arises in low Reynolds number flow through very slender nozzles. In that case the flow is dominated by the boundary layer, that is the shear stresses rather than the compressive viscous stresses play the key role. This problem has been considered by Williams (1963). In that case the sonic line is concave downstream in a flow accelerating to supersonic velocities ratner than being concave upstream as in the Meyer solution. A study of the boundary layer free stream interaction problem will probably require a combination of the $V \cdot T$ solutions described above and the fype of analysis considered by Williams.

SOURCE AND SOURCE-VORTEX FLOW

Exact solutions of the equations of two dimensional inviscid compressible flow for source and source-vortex or spiral flow contain limiting circles at or near the sonic velocity where the acceleration becomes infinite (Taylor 1930, von Mises 1958, Oswatitsch 1956). Solutions no longer exist inside these limiting circles, and the inviscid theury clearly fails when velocity gradients become very large. Viscous source flow using the full Navier-Stokes equations was therefore investigated by Wu (1955), Sakurai (1958) and Levey (1954, 1959). Wu and Sakurai were able to find closed form source solutions valid in the region of transonic flow and it has been possible to show that these solutions are also a similarity solution of the V-T equation (Sichel and Yin, 1967b). With the transformation

$$
\begin{equation*}
u^{(1)}=f(S) \quad, \quad S=X+\lambda Y \tag{43}
\end{equation*}
$$

which was first introduced by Tomotika and Tamada (1950), the V-T equation, in the form of Eq. (40) can be reduced to the Riccati equation (Sichel and Yin 1967)

$$
\begin{equation*}
\mathrm{f}^{\prime}-\mathrm{f}^{2}+\lambda^{2} \mathrm{f}=-\mathrm{C}_{1} \mathrm{~s}+\mathrm{C}_{2} \tag{44}
\end{equation*}
$$

The solution (Eq. (43)) may be interpreted as a source-vortex flow with S corresponding to the radial distance from the sonic circle while the arbitrary parameter λ determines the circulation and is zero for source flow. The magnitide of the integration constant C_{1} depends on the source strength.

Without the viscous f' term the solution of Eq. (44) becomes

$$
\begin{equation*}
S+\left(\lambda^{4} / 4 C_{1}\right)=\left(1 / C_{1}\right)\left[1-\left(\lambda^{2} / 2\right)\right]^{2} \tag{45}
\end{equation*}
$$

with a limit circle at $S=-\left(\lambda^{4} / 4 C_{1}\right)$ where $d f / d S \rightarrow \infty$. In the transonic regime the solution (Eq. (45)) is identical to that of Taylor (1930), and has an accelerating or supersonic branch and a decelerating or subsonic branch. The inviscid solution provides no mechanism for transition from one branch to the other. The viscous solution of Eq. (44) can be found in closed form in terms of Airy functions, and is identical to that found by Wu (1955) and Sakurai (1958). Inclusion of the viscous term eliminates the singular behavior at the sonic point. where the acceleration
now remains finite. Viscous solutions exist which first approach the supersonic branch of the inviscid solution, pass through a shock like compression, and then approach the subsonic branch of the inviscid solution. All the solutions asymptotically approach the subsonic branch of the inviscid solution as $\mathrm{S} \rightarrow \infty$. While the inclusion of the viscous term has eliminated the singular behavior near the sonic point, the solution still diverges at some point inside the sonic circle, where the V-T equation apparently fails. The V-T radial solution discussed above remains valid only if the sonic radius $\overline{\mathrm{r}}^{*}$ is of order η / ϵ^{2} where, as before, η is of the order of the shock thickness. It is interesting that $\overline{\mathrm{r}}^{*}$ is thus of the same order as the shock radius of curvature $\overline{\mathrm{R}}_{\mathrm{S}}$ for which the $\mathrm{V}-\mathrm{T}$ oblique shock solution remains valid.

Compressible radial flow in the presence of a gravitational field behaves like the flow in a converging diverging nozzle in that the flow can accelerate from subsonic to supersonic values, and such flows have been used as a model for the solar and stellar wind (Axford and Newman 1967). As in the case of nozzle flows the inviscid theory falls to provide a smooth transition from flows subsonic throughout to accelerating subsonic-supersonic flows. Consequently Axford and Newman (1967) studied viscous transonic solutions for such radial flows with a gravitational iteld. Axford and Newman used a series expansion similar to that used above to develop a viscous-transonic equation which now includes a body force term. Since the problem is one dimensional, integration and sultable transformation of variables reduces the V-T equation to a Riccati equation for which solutions can be found in terms of parabolic cylinder functions. While some of these solutions diverge, there is also a family of solutions which provide a smooth shock like transition from the accelerating to the decelerating branch of the inviscid solution just as in the nozzle problem.

CONCLUSIONS

Use of the viscous-transonic instead of the inviscid equation seems to resolve some of the difficulties of the inviscid theory discussed in the Introduction. The viscous transonic solutions provide for a smooth transition from the Taylor to the Meyer type of nozzle flow; however, the problem of obtaining a truly two dimensional V-T solution for flow near the throat of a nozzle of specified shape remains to be solved. The key problem of determining the jump conditions across a weak shock adjacent to a curved wall has not been solved; however, some progress has been made in evaluating the effect of viscosity on the asymptotic behavior of the flow about bodies. The precise role of viscosity in axlsymmetric flows remains to be clarified. The V-T equation appears to resolve the limit line behavior near the sonic velocity in source vortex flows, and actually the V-T solution is a part of the more general solution of the viscous source-sink problem by Wu (1955), and Sakural (1958). It appears necessary to include viscous . Sects whenever limit lines occur in the inviscid transonic flow theory. At the very least, in these cases, the question of whether in the limit $\mathrm{Re}_{\delta} \rightarrow \infty$ the flow can be represented by inviscid regions separated by Rankine-Hugoniot discontinuities needs to be investigated.

The theory of viscous transonic flow is an extension of the Taylor (1910) theory for the struc ture of weak shock waves. The Riccati equation appears to play a central role in the study of V-T flows. Thus for fixed X the $V-' r$ equation can be formally reduced to a Riccati equation, and many of the V-T problems discussed in this survey, in the end, involved the solution of a Riccatl equation. The fact that the Riccati equation can be transformed to a second order linear equation, made it possible in many cases to obtain solutions in closed form. Almost invariably there were then divergent solutions and solutions which contained shock like transitions from supersonic to subsonic flow. Even such a simple equation as

$$
z^{\prime}-z^{2}=-b^{2}
$$

has the solutions $z=-b \operatorname{coth} b x,-b \tanh b x$. Of these the solution $-b$ coth $b x$ diverges $a t x=0$ while $-b \tanh b x$ is the same as the Taylor weak shock solution. It is to be expected that this Riccati tyoe behavior will also arise in more complicated V-T flows. In any case a key advantage of the $\mathrm{V}-\mathrm{T}$ approximation is that the interaction between convection and dissipation is reduced to a mathematically simple form.

It is felt that the V-T equation may be able to shed some light on the well known 'transonic controversy" regarding the existence of smooth pockets of supersonic flow imbedded in an outer subsonic flow. This controversy has been reopened by the inviscid calculation of transonic profiles by Nieuwland (1967) and by the shock fi ee supersonic pockets produced experimentally by Pearcy (1962). It would be interesting to see how viscosity influences the mathematical question of existence or nonexistence of smooth pockets of supersonic flow. In the case of the nozzle problem the V-T theory quite naturally describes the gradual formation of shock waves terminating th
supersonic pockets at the wall.
The question of the stability of various viscous-transonic flows appears not to have been investigated. There are also a number of magnetohydrodynamic and relaxing transonic flows where viscosity may play an important role.

No comparison between theory and experiment are presented in this review, and this fact reflects a serious gap in the theory of V-T flow. There is a decided need for a checkpoint between theory and experiment if the theory of V-T flow is to do more than provide qualitative explanations.

ACKNOWLEDGMENT

The author would like to express his appreciation to the Army Research Office, Durham, North Carolina which supported this work under contract DAHC 04-68-C-0008.

REFERENCES

Ackeret, J., Feldman, F., and Rott, N., 1946, NACA TM No. 1113.
Adamson, T.C., 1967, Phys. Fluids, 10, 953.
Axford, W.L. and Newman, R.C., 1967, Astrophys. J., 147, 230.
Beriotti, B., 1957, Instituto Lombardo, Rend. Sc. , A92, 132.
Block, H., 1912, Arkiv For Matematik, Astronomi Och Fysik., 7, Part I, No. 13, 7, Part II, No. 21, 8, Part III, No. 23.
Bulakh, B. M., 1966, Prikl. Mat. i Mekh., 30, 607.
Dezin, A.A., 1958, Dokl. Akad. Nauk. SSSR, 123, No. 4.
Dezin, A.A., 1959, Usp. mat. Nauk, 14, No. 3.
Emmons, H., 1946, NACA TN 1003.
Emmons, H., 1948, NACA TN 1746.
Fal ${ }^{\prime}$ ovitch, S. V. and Chernov, I.A., 1966, Prikl. Mat. i Mekh., 30, 848.
Frankl', F.I., 1947, Dokl. Akad. Nauk. SSSR, 57, No. 7.
Germain, P., 1964, Symposium Transsonicum (ed. K. Oswatisch), Berlin: Springer.
Germain, P. and Guiraud, J. P., 1964, J. Math. pures et appl., 45, 311.
Görtler, H., 1939; Z. angew. Math. Mech. , 19, 325.
Guderley, K. G., 1962, The Theory of Transonic Flow. Reading: Addison Wesley.
Guderley, K.G. and Yoshihara, H., 1951, Quart. Appl. Math. , 8, No. 4.
Hall, I. M. and Sutton, E.P., 1964, Symposium Transsonicum (ed. K. Oswatisch), Berlin: Springer.
Hayes, W. D. , 1958, Fundamentals of Gas Dynamics, Sec. D., Princeton University Press.
Holder, D. W., 1964, J. Royal Aeronaut. Soc., 68, 501.
Hosokawa, I., 1960a, J. Phys. Soc. Japan, 15, 149.
Hosokawa, I., 1960 b, J. Phys. Soc. Japan, 15, 2080.
Kopystyñski, J. and Szanlawski, A., 1965, Archiwum Mechaniki stosowanej, 17, 453.
Lagerstrom, P.A., 1964, Theory of Laminar Flows, Sec. B., Princeton University Press.
Levey, H.C., 1954, Quart. of Applied Math. , 12, 25.
Levey, H.C., 1959, Quart. of Applled Math., $\overline{17}, 77$.
Liepmann, H.W., Ashkenas, H., and Cole, J. D., 1948, U.S. Air Force Tech. Rept. 5667
[See also Hilton, W. J., 1952, High Speed Aerodynamics, London, New York Toronto: Longmans Green].
Lighthill, M. J., 1956, Surveys in Mechanics (ed. G. K. Batchelor and R. M. Davies), Cambridge University Press.
McCroskey, W. J., Bogdonoff, S.M., and Genchi, A.P., 1967, Rarefied Gas Dynamics (ed. C.L. Brundin), Suppl. 4, Vol. II, 1047, New York: Academic Press.
Meyer, T., 1908, "Über zweidimensionale Bewegungsvorgänge in einem Gas, das mit Überschallgeschwindigkeit strömt, " Ph. D. Dissertation, GottIngen (See also Carrier, G., 1951 Foundations of High Speed Aerodynamics, New York: Dover).
Nieuwland, G. Y., 1967, National Aerospace Lab., Netheriands, Rept. NLR-TR-T172.
Oswatitsch, K., 1956, Gas Dynamics, New York: Academic Press.
Pearcey, H. H., 1962, Advances in Aeronautical Sciences, Vol. 3, New York: The MacMillan Co.
Pearcey, H. H., 1964, Symposium Transsonicum (ed. K. Oswatisch) Berlin: Springer.
Rae, W.J., 1960, Cornell Univ., Rept. TN 60-409.
Ryzhov, O.S., 1963, Prikl. Mat. i Mekh., 27, 309.
Ryzhov, O.S., 1965, Prikl. Mat. I Mekh., $\overline{29}, 1004$.

Ryzhov, O:S. and Shefter, G. M., 1964, Prikl. Mat. 1 Mekh.. 28 , 996.
Sakurai, A., 1958, Quart. Journ. Mech. and Applied Math., 11, 274.
Shapiro, A.H., 1953, The Dynamics and Thermodynamics of Compressible Fluid Flow, Vol. I, • New York: The Ronald Press.
Sichel, M., 1960, J. Aérospace Sci, , 27, 635.
Sichel, M., 1961, Princeton Univ. Dept. of Aerc. Engrg., Rept. 541. (See also Ph. D. thesis.)
Sichel, M., 1262, Phys. Fluids, 5, 1168.
Sichel, M. , 1863; Phys. Fluids, $\underline{6}, 653$.
Sichel, M., 1966, J. Fluid Mech., 25, 769.
Sichel, M: and Yin, Y. K., 1967a, J.. Fluld Mech., 28, 513.
Sichel; M. and Yin, Y. K., 1967b, Univ. of Michigan ORA Rept. 07146-2-T.
Sichel, M. and Yin, Y. K., 1967c, "Viscous Transonic Flow. Past a Wavy Wall, " VIII Symposium on Advanced Problems and Methods in Fluid Mechanics, Tarda, Poland, Sept. 18-23.
Sichel, M. , Yin, Y. K., and David, T.S., 1968, Univ. of Michigan ORA Rept. 07146-3-F.
Sinnott, C.S., 1960, J. Aerospace Scl., 27, 767.
Sternberg, J., 1959, Phys. Flulds, 2, 179.
Szaniawaki, A., 1962, Archiwum Mechanlki stosowanej, 14, 905.
Szaniawskl, A., 1963, Archiwum Mechaniki stosowanej, $15,904$.
Ṡzaniawski, A., 1964a, Archiwum Mechaniki stosowanej, 16, 643.
Szaniawski, A., 1964b, "Importance des effects de dissipation en ecoulement transsonique," Internat. Council of Aeronaut. Sci. Congress, Paris, Paper No. 64-587.
Szaniawski, A., 1966a, Archiwum Mechaniki stosowanej, 18, 127.
Szaniawskl, A., 1966b, "The Asymptotic Structure of Weak Shock Waves in Flows over Symmetrical Bodies at Mach Number Unity, " Royal Inst. of Tech., Stockholm, Sweden, Rept. KTH No, 70, Gasdynamics.
Taylor, G. I., 1910, Proc. Roy. Soc., A, 84, 371.
Taylór, G.I., 1930, ARCR and M Nos. 1381 and 1382. See also The Scientific Papers of G. I. Taylor, (ed. G. K. Batchelor), Vol. 3, p. 128, 142, Cambridge University Press.
Tomotika, S. and Tamada, K., 1950, Quart. Appl. Math., 7, 381.
Tomotika; S. and Hasimoto, Z., 1950, J. Math. Phys., 29, 105.
Vasileva, A.B., 1963a, Uspekhi Matematicheskikh Nauk, 18, 15.
Vasileva, A. B., 1963b, Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 3, 611.
Von Mises, R., 1858, Mathematical Theory of Compressible Fluid Flow, New York: Academic Press, p. 73.
Williams, J.C. III, 1963, Amer. Inst. Aeronaut. and Astronaut. J. , 1, 186.
Wu, T. Y., 1955, Quart. Appl, Math., 13, 393.

Fig. 1. Comparison of the Inviscid and Viscous Transonic Wavy Wall Solutions (Sichel and Yin 1967c).

Fig. 2. Viscous Transonic Nozzle Solutions of Kopystynski and Szaniawski (1965).

Fig. 3. Numerical Solutions of Eq. (42) for the Axial Velocity Z (Sichel 1966).

Fig. 4. Nozzle Isotachs and Streamlines Corresponding to Curve C of Fig. 3 and for $h / R_{t}=0.25$ (Sichel 1966).

The interaction between local effects at the shock and rear separation - a source of significant scale effects in wind-tunnel tests on aerofoils and wings
H.H. PEARCEY , J. OSBORNE

Aerodynamics Division, National Physical Laboratory, Teddington, England
and

A.B. HATNES

Aircraft Research Association Limited, Bedford, England.

SUTOARY

Attention is drawn to fmportant restrictions to the renge of applicability of the flow model developed in eariler work on shock-induced separation of turbulent bcundary layers on agrofoils and wings, and also corresponding restrictions to the conclusion then dram that full-scale behaviour could readily be reproduced at low Reynolds numbers. These restrictions arise because the model of a bubbie growing progressively from the foot of the shock towards the trailing edge does not include the interaction that sometimes occurs between the disturbance at the foot of the shock and a subsonic-type rear separation if one exists, or is incipient, in the continuous adverse gradient further downstrgam.

Such interactions are shown to be of increasing importance at wind-tunnel scale (as the possibilities of using thicker and more highly loaded wing sections develop) and to introduce real difficulties in reproducing fuli-scale behaviour at low or moderate Roynolds numbers.

NOTATION

4 - Mach number
p - static pressure
H - stagnation pressure
C_{p} - pressure coefficient $\left.L=\left(\mathrm{p}-\mathrm{po}_{0}\right) / \mathrm{SrPOM}_{2}^{2}{ }^{2}\right]$
C_{L} - lift coefficient
R - Reynolds number (based on wing chord)
b - wing span
c - mine chord
x - chordmise co-ordinate
a - angle of incidence
γ - ratio of specific heats

Surfices

- - value in the undisturbed stream

L - value locally on the wing surface.

1. Introduction

In considering shock-induced boundary-layer separation on aerofoils and rings, and the effects that it has on loads and moments, certain broad features have to be taken into acoount in addition to the local interaction betraen the foot of the shock and the boundary layer (Fis. 1). Three such features in particuiar are of ten more important than the details of the local interaction:
(a) the presence of mixed supersonic/subsenic flow, and the compression from one to the other, in the flow external but immediately adjacent to the separated flow;
(b) the presence of a continuous adverse pressure gradient in the subsonic flow over the rear of the aerofoil downstream of the shock and folloring the near-discontinuous gradient through the shock itself; and
(c) the special importance of the trailing eige, and of the variation of trailing-edge pressure in detervining the overall circulation and lift on the aerofoil .- the significant effects on the overall flow do not develop until the separation has disturbed the pressure at the trailing edge.

The patterm of development of the separation and of its effects - and the influence of such variables and parameters as free-stream Mach number, incidence, shock etrength, Reynolds number, transition position - can best be understood by postulating a flow model that incorporates these broad features.

The flow model that has often beon used satisfactorily for this purpose in the past $1,2,3,4$ is one in which the influence of features (a) and (c) tend to be dominant. The bubble that forms at the foot of the shock remains localised so long as the steep pressure rise through such a localised interaction is able to decelerate the upstream supersonic flow to a subsonic one. As soon as the upstream Mach number has increased to a value for which this is no longer possible, the bubble spreads rapidly towards the trailing edge, and in doing so triggers a rapid fall in trailing-edge pressure through its effect on the boundary layer there. It is this fall in trailing-edge pressure that leads to the first significant effects on the overall circulation and loads on the aeroroil and wing.

The success of this model stemmed from the fact, that the effects on the boundary layer at the trailing-edge position were dominated by the rapid bubble growth that is triggered by the spread of supersonic velocities along the edge of the bubble. The influence of the adverse gradient in the downstream subsonic flow (feature (b)) was not sufficient to modulate this pattern.

In particular, scale effects that could stem from difforences in boundary-layer thiciness over the rear of the aerofoil were noticeably absent. It ras shom ${ }^{4}$ that, provided the boundary layer was turbulent at the initial separation point, full-scale behaviour could be well reproduced at quite moderate values of Reynolds number (-1.5×10^{6}). This was because the form of the recompression from supersonic to subsonic flow was well represented, and hence the rapid growth of the bubble.

The major scale effects were then confined to cases for which the boundary layer remained laminar up to the separation point. For these, the precise position of transition in the separated shear layer could influence the nature and magnitude of the steep pressure rise and so determine whether or not subsonic flow was re-established for a given shock atrength. Fven these scale effects could be eliminated by fixing trensition artificially at wind-tunnel scale because the boundar. layer was likely to be turbulent, at the foot of the shock for all relevant full-scale applications.

This remained valid for as long as the wings that were used for excursions into the transonic flow régime remained relatively thin and lightly loaded; for such wings the adverse gradients in the subsonic flow domnstrean of the shock Fere not strong enough to influence the overall pattern.

However, progress in the design of swept-wing aircraft in recent years has oalled for the use of progressively thicker and more highly loaded sections. Inevitably, this has led to steeper adverse pressure gradients in the rear subsonic flow, gradients that now modulate the gross offeot represented in the flow model originally postulated. Clearly, therefore, a new, wore comprehensive model is needed which will incorporate this modulation. In particular, and especially at rind-tunned scale, a second separation tends to occur in the downstream subsonic flom and to spread forward from the trailing edge.

This second separation (Fig. 1b) is the rear, subsonic type which is known to depend critically on the thickness and the velocity prorile of the boundary layor approaching the trailing edge as mell as on the local prossure gradients, Even in the absence of a ahook wave, the occurrence and development of such separations are knomn, for erample, to be sensitive to the effects of Reynolds number and to the manner in which transition is fixed at tunnol Roynolds number in attempting to simulato full-scale cunditions. It is not surprising, therefore, to find these sensitivities carried over into the flows in which the rear soparation and the $20 c a l$ effects of the shock interact with one another, nor indeed, to find them amplified by the irtoraction.

With the progress in swopt-wing design, the tendency has developed for rear separations to occur in mind-tunnel experivents and to bring with them the scalo effects inherent in the
alternative flow model now to be described, and inierent in the change from one flow model to the other as full-scale conditions are approached. The correct full-scale behaviour, for cruise and moderate lift coofficients at least, is probably stifl represented by the original flow model, but this has become much more difficult to reproduce at wind-tunnel seale.

The paper will drar on detailed flow observations - for the idealised situation provided by two-dimensional aerofoils - to describe the differences between the tro flow models and to contrast the sensitivity to scale for the alternative one with the insensitivity for the original. Some examples will be shown to support the details postulated for the alternative model, and to illustrate the order of the scale effects that can be introduced by differences in chord Reynolds number and in the type and location of the agency used to fix transition artificially.

The relevance of this to swept wings will be briefly illustrated by reference to similar observations on a representative model.

Pinaliy, some tentative remarks will be made to indicate the increased difficulties of achieving correct simulation in wind-tunnel tests.

2. The original flow model, A

The development of the flow according to this model is indicated diagrammatically by the sequence of sketches in the extrome left-hand column of Fig. 2. The sequence I to VI can be taken as successive stages in a progressive increase of freestream Mach number or of incidence - in either case the parameter that first caused the separation and then incroased its severity would be the increasing shock strength. This is illustrated, for example, by the family of upper surface pressure distributions show in Fig. 3 for an increase in freo-stream Hach number with incidence held fixed. The shock nave is, of course, the steed pressure rise in the middle part of the chord. It first appears at about $x_{0}=0.7$, corresponding to stage I, say, of the sketches in Fig. 2. From there on, the increasing shock strength is at first revealed in the increasing magnitude of the pressure rise associated with an increasing local Nach number immediately upstream of the shock; later, after soparation has occurred, the steop pressure rise at the surface is limited by the separation itself, but the strength of the shock aray from the surface is, nevertheless, progressively increasing.

The influence of the local bubble at the foot of the shock is first evident for $M_{0}=0.76$ (the first curva after that labelied 0.74), corresponding to stage III in the sketches. The progressive spread of the bubble towards the trailing edge is revealed by the distributions for subsequont free-stream kich numbers. The rate at which the pressure at the trailing edge varies with Mach number is first influenced (first divergence of trailing-edge pressure ${ }^{2}$) for the free-stream Nach number just below $\mathcal{M}_{0}=0.8$, corresponding to stage V of the sketches, and the bubble itself spreads to the trailing edge immediately after $M_{0}=0.8$, corresponding to stage VI.

The progressive growth of the bubble is thus a prominent feature, with the separation point fixed to the toe of the shock and the reattachent point moving downstream torards the trailing edge as the overall strength of the shock increases. For a range of shock strengths beyond that for which separation fidst occurs, the boundary layer remains attached to the surface betreen the bubble and the trailing edge; for the first part of this range, the boundary layer at the trailing odge is not surficiontly disturbed to influence the trailing edge prossure or, through it, the overall circulation and loads.

It is a further feature of this flow model that the influence on trailing-edge pressure and circulation develops rapidly from a particular, fairly clearly defined stage. If one considers the flow with a well developed bubble (Fig. 1a), one finds that a "tongue" of local supersonic flow extends along the edge of the bubble downstream of the toe of the shock. This tongue is existing in a region in which pressure is rising in the domnstream direction and so the stream tubes are contracting. The contraction offsets the tendency for the shear layer to reattach and delays the closure of the bubble. In contrast, a local subsonic fion with expanding stream tubes would help to promote reattachment, and for as long as the prossure rise near the formard part of the bubble re-established subsonic flow, the bubble sizo would tond to be self-limiting. The self-limiting influence is removed immediately the supersonio tongue appoars, and this in turn leads to a snowballing esfect ${ }^{1}$ and a rapid bubble expansion.

Fe thus have the situation in mich the rapid divergence of trailing-odge pressure "significant offeots of soparation" - occurs in responso to a rupid bubblo growth triggered from the toe of the shock. This is a situation which is not particularly sensitive to the thickness or profile of the boundary layer (provided it is turbulent at sept \quad.) and one in mich the growth of bubble from the shock rearnards is too rupid to be strongly ced by smaller changos spreading forward from the trailling odge.

This is why it was possible to reproduco in mind-tunnel tests at relatively low Reynolds number the same flow developments as wore obtained in flight 6 . For example, the comparison in Fig. 5 shows clearly a very similar bubble development betwoen tunnel and full scale from shook streagths that correspond quite olosely (although the section shapes differed slightiy - giving slightly further art shock positions in (alight).

Of course, some scale effects can occur even mith this type of flow, due to changes in the detailed interaction at the foot of the shock reflecting in changes in the magnitude of the steep pressure rise and hence in the range of local upstream Mach numbere for which subsonic flow is reestsblisied in the steep pressure rise. The repercussions of such changes are usually small so long as the overali flow conforms to this model; the real impact of such changes can occur in the alternative flow model because, as we shall see, there is likely then to be an amplifying process involved.

Some further analysis at this stage, of the manner in which surface prossures are affected by separation developing according to the original model, A - and of how the surface pressures can be used to detect the essential features of the flow - will help later in drawing the contrast between the tro flow models.

The product $C_{p}\left(1-x_{0}{ }^{2}\right)^{\frac{1}{2}}$ for a fixed chordisise station (Figs. 7 and 8) varies little with free-stream Mach number unill the pressure at the station in queation is subjected to the local influence of the shock nave (as at point X of the upper left diagram of fig. 7) or of the separation bubble (as at point X of the upper right diagram of Fig. 7). The curves for fixed stations at the rear of the chord will take the form shom in the lower diagram of Fig. 8, with the first influence of separation indicated by the divergent fall in pressure.

The development represented in Fig. 3, then, produces the series of curves shown in Fig. 8 for fixed stations $X 1$ to $X 6$ (indicated on Fig. 3). These again demonstrate clearly that the influence of the shock-induced separation spreads rearmards from $X 1$ to $X 6$ as the flow develops, reaching the trailing edge, X6, last. This is indicated both by the locus of crosses, marking the first influence of the separation, and by the points A, B, C, D, marking a certain approximate level of static pressure in the disturbed flow.

3. The alternative flow model, B

The essential difference betreen this model and model A is the inciusion of a second separation in the subsonic flow approaching the trailing edge (Fig. 2).

This second separation is the classical subsonic, rear, turbulent separation occurring in the adverse gradient over the rear of the aerofoil. The occurrence and dovelopment of this type of separation is known to depend on the magnitude of the pressure gradient approaching the trailing edge and on the boundary-layer thickness and profile, i.e. on the local pressure gradient and on the upstream history of the boundary layer. It is the upstrean history that is of the greater importance in considering the occurrence andor the progressively increasing severity of the rear sepazation in the flow developments that are now in question and that occur as either free-stream Kach number or incidence is increased (domn the page in the schematic representation or Fig. 2). The downstream pressure gradients themselves are changinf only slowly through any particular one of the sequences ahown, but the disturbances to the boundary-layer thickness and profile at the foot of the shock are increasing progressively as the shock strength increases.

This local shock interaction catalyses the development of a rear separation that was already either incipient or actually present in the subsonic rear gradients before shock waves appeared. When the rear separati n occurs, there is a strone, more extensive interaction between the disturbances at the foot of the shock and the rear separation, and this larger interaction accelerates and intensifies the influence or the shock-induced phenomens on the overall flow including the circulation. The larger interaction is now sufficiently strong to prcduce a modulation to the patierm of development previously described for the model-A type of flow. This applies particularly to the well-defined incerval betwoen the f rst appearance of a local bubble at the foot of the shock and the first significant effects on the circulation that stem from changes in the pressure at the trailing edge, and to the connection between this interval and the spread of local supersonic flow domstream from the immediate vicinity of the steep pressure xise at the toe of the shock.

The rear separation is the common feature that distinguishes this flow rodel from model A, but it can appear and influence the flow development in a variety of ways that differ from one another in detail. It is userul to take note of these difrerences at this stage, a though in certain overall respects they are differences only of degreo, esperially, for orample, in contrasting the sensitivity of this flow model to scale effects with that of model A.

The differences botween the various sequences skotched in Fic. 2, as distinct from deveiopments in each sequence, are strongly dependent on the severity or the local pressure gradients in the downstream subsonic flow, as well as on the thickness and prorile of the boundory layer.
$*$

Thus, the combination of domstream gradient and of boundary-layer thickness and profile might be such that the rear separation doss not appear until there is a bubble at the foot of the shock (variant B1), that is, until the local interaction with the shock causes a substantial disturbance to the boundary layer approaching the trailing edge. ${ }^{\text {r }}$

With a somewhat steeper domstream gradient or with a turbulent boundary layer that is thicker as it approaches the shock (e.g. at, lower unit Reynolds number or for a more forward transition position), the interaction with the foot of the shock would be sufficient to develop the incipient rear separation before it produced an actual shock separation bubble (variant B2).

Por more severe domstream gradients still (e.g. for a thicker or a more highly loaded aerofoil) or for thicker boundary layers still, the rear separation could be present even before the appearance of shook waves (veriant B3).

An important feature of all three variants is that the interaction between the local disturbance at the foot of the shock and the rear separation accelerates the development of the whole shoci-induced phenomenon as compared with model A. In turn, the forward spread of the rear separation to link up with the bubble at the foot of the shock, or with the foot of the shock itself, is an important agent in this acceleration; in this connection it is convenient, for variants B 2 and BX 3 to distinguish between the cases where the link up is with a local separation that is alroady present at the foot of the shock, B2a and B3a, and those for which the rear separation spreads to the foot of the shock before separation would otherwise have occurred there, B2b and B3b.

Some divergence of trailing-edge pressure, and hence influence on circulation and loads, starts as soon as the rear separation is present; it builds up as the rear separation spreads forward under the influence of the growing disturbance at the foot of the shock. The link up betreen the two separations, or between the rear separation and foot of the shock, leads to a greatly acceler ated divergence. The rate of development of the rapid divergence of trailing-edge pressure thus differs from one variant to another and in particular between variants B2a and B2b on the one hand and between B3a and B3b on the other.

We are nor in a position to compare the surface-pressure distributions observed for a flow of this type with thoso described for model-A flow in the preceding section; this will also provide a botter background for subsequent discussions of the part now played by the spread of local supersonic flow domstream, from the toe of the shock, of the work of others with flow rodels falling in this general category 7,8 and of the nature of the important scale effects to which this flow model is prono.

The family of upper surface distributions, reproduced in Flg. 4 illustrates the developing offects of separation for a model-B type flow as free-stream Mach number is increased for a fixed angle of incidenct. In the same way as for the corresponding family for wodel-A flow (Fig. 3), the increasing shock strength is the parameter that produces the occurrence ard progressive develupment of shock-induced seperation. Although the aerofoil (NPL 9240) is different from that used for the earlier illustration (NPL 9230), the angle of incidonce is chosen so that the increasing shock strength covers approximately the same range of values and takes place in approximately the same range of free-stream Kach numbers. In particular, the shock first appears at about $M_{0}=0.7$ and the separation develops strongly between $\mathbf{K}_{0}=0.74$ and 0.85 as before.

The Reynolds numbers were the same for the two cayes, and transition was fixed in the same manner in the same chordrise position, so that the thickness of the turbulent boundary layer approaching the shock should have been closely similar (there may have been small differences due to the small differences in the pressure gradients upstream of the shock and in the shock positions). The most relevant difference between the two aerofoils in the present context is in the severity of the pressure gradient in the subsonic flow over the rear of the aerorcil. This feature is better demonstrated by the low-speod $\left(\mathbb{K}_{0}=0.6\right)$ pressure distributions reproduced in Fig. 14.

The result of the significantly more severe gradient for the NPL 9240 aorofoil is a major difference in the development of the separatod flom, and this is shown clearly by the pressure distribution over the rear of the aerofoil for lach numbers between 0.74 and 0.85 (Fig. 4.). In contrast to the progressivoly rearward bulging of the curves for the model-A flow (Fig. 3), reflecting the progressive rearward growth of the bubble, the curves for the model-B flow (Fig. 4) ilustrate a fan-like development centred on the foot of the shock. This reflects the fact that, at a certain stage, the rear separation links inmediately to the foot or the shock to give a flow that is completely aeparated from shock to trailing odge. The pressures at all points over the rear of the aerofoil, including the trailing edge, are influonced right from the start of this procoss, and the pressure at the trailing edge most strongly of all. It can readily be inferred that this will have a strong bearing on the nature of the trailing-edge pressure divergence and, through it, on the effects on the overall ciroulation and forces.
x In postulating the model-A flow, it was, of course, assumed that tho combination of downstream gradient and boundary-layer thickness wero such (i,e. less severe than for B1) that a rear separation mould not ppoar before the rapid rearwarde growth of the shock bubblo, triggered by events near the too of the shock, had dominated the overall development.
\neq

This is further illustrated in Figs. 9 and 10 by the analysis of the variation of pressure at fixed chordwise positions. The sketches in the upper part of Fig. 9 indicate the manner in which the chardrise prossure distribution is disturbed by the occurrence of rear separation: at the rear, under the separated flow itself, the pressures are lower than they ctherwise would be, but inurther forkards, just upstream of the separated flow, they are higher. As the separation point moves form Fard, e.g. Fith increaso of freo-stream lach number from (a) to (b), so the disturbance at points like X_{n-1} charges from an increase in pressure to a decrease. Thus, when the pressures at fixed points, ${ }_{n} X_{n}, x_{n-1}$, say, are plotted against u_{0} in the form shom in the lower diagran, the f'irst influence of rear separation is seen as a fall in pressure at the extreme rear of the chord and an increase further forwards. As the separation spreads and becomes more severe with increasing M_{0}, the pressures at the rear, e.g. at point X_{n}, fell progressively; those at points further formard, e.g. at point X_{n-1}, start to fall as the separation point moves forward over the points in question.

The curves in Fig. 10 have been cross-plotted from the family of chorimise distributions of Fig. 4. The upwards divergence (fall in pressure) in the curve for the trailing edge, X_{6}, indicates that some rear separation was present from about $H_{0}=0.5$ onwards, i e e before the appearance of shock waves. Wle thus have a model-B3 flow.

As K_{0} was increased to 0.74 , the mild upwards-divergence spreads forwards in turn to positions X_{5} and \dot{X}_{4}, indicating a gradual formard spraad of the separated flow.

Increase in M_{0} beyond 0.74 produced an abrupt change in which the separation point spread forwards suddenly; the pressure started to fall at several positions similtaneousiy, and the rate of fall at the trailine edge increased substantially.

The abrupt change in the pressure variations was obviously asscciated with a correspondingly abrupt change in the development of the rear separation that was in turn caused by a change in the disturbance at the foot of the shock. The fact that shock waves were already present for $k_{0}=0,72$ and 0.74 (Fig. 4), and not then noticeably disturbing the previously established pattern of slon development in the rear separation, suggests that it was the occurrence of a locai bubble at the foot of the shock that trigeered the subsequent abrupt change, and, further, that in this change the rear separation point jumped formards to lisk with the shock bubble as postulated ror the model-B3a. fiow.

These curves illustrate clearly how the interaction between the two separations serves to transmit the effect of the shock-induced separation immediately, and in a magnified form, to the trailing edge - in contrast to the situation for model-A flow. In the process of transmitting the offect of tho disturbance at the foot of the shock to the overall circulation about the aerofoil, the rear separation this acts both as a relay and as an amplifier.

The amplification mould be expected to apply to the offect of small differences in the shock interaction rogion, and this was mell illustrated by the work of Littlo. He studied in dotail the stoep prossure rise at the toe of the shock and the ability of this to ro-establish subsonic flow downstream. He showed that a threc-fold increase in the thickness of the turbulent boundery layer approaching the shock toe (equivalent to a proportional decrease in unit Reynolds number of over 200) led to a reduction of the upstream Mach number for which subsonic flow could be re-ostablished from 1.26 to 1.21. By itself, (i.e. with model-A flow), such a change would be expected to produce only a slowly developing effect of decreasing Reynolds number. But in his experiment in which a rear separation was also present (model-B3a flow), the offect was considerably magnified because the rear separation spread immediately formard to the shock bubble as soon as the supersonic tongue began to appear domistream of the shock toe. Here then is one particular mode by which the rolaying and amplifying processes can lead to substantial scale effects.

Thomas ${ }^{8}$ has also examined theoretically the nature of scale effects that can exist with model-B Flows. He postulated the B2b variant in which the shock modiries the profile of the turbulent boundary layer at its foot without causine it to soparate locaily, but in which even this modirication leads to the occurrence and developeent of a rear separation: the rear separation point noves rapidly forward to the foot of the shock as the shock strength increases. He derived the distur bance to the boundary-layer profile at the fog of the shock by assumine that the pressure rise was the Sinnott "equivalent shock pressure rise" 9 and that this rise mas spread sufficiently (over about five boundary-layer thicknesses) to bo treated by conventional boundary-layer theory.

Gadd ${ }^{10}$ has also studied experimentaily the frocess by which shock separation links with that at the trailing edge.

4. Exporimentally observed scale effects rith model-E flows

Sowe of the elearest evidence of the peaily serious discrepancies that can occur between wind tunnol and fligit was presented by Loving and the pressuro distributions shown in Fif. 6 are reproduced from 1.13 farer. Althoun the results of those maisurements are not available in suffiolent da: 1: ts amalyse in the maner doseribod above, in is a reasomable inferonce from the contrast rith th. saricur rosults prosented in Fig. 5 that the flow wis of codol-B type for these Luter mind-tunco: experteonts. For examilo, the strong difforences that Loving observed be, feon t aniel and Cilitht andoubtedis stom fion the poor pressure recevery domnatreas or the shonk in the wind-tumel that:; tho zore formard shock position, and the difforencos in circulation that mould
result from the different trailingedge pressure, are direct consequences of this poor pressure recovery ${ }^{1}$. Purtherwore, there is no evidence of the inflection point betreen shock and trailing edge that is characteristic of the closed bubble, as in Fig. 3, for example.

This inference will be supported by the onsuing discussion of a wider selection of rind-tunnel results, (a) for aerofoils in a given range of unit Reynolda number but with differences in boundary-layor thickness at the shock and domstream introduced by differences in fixing transition upstream; (b) for a arofoijs at dirferent Reynolds numbers; and (c) for a siept wing at difforent Reynolds numbers. These examples have been chosen in such a way that they illustrate a varisty of the problams introduced by model-B flows.

(a) Aerofoils with aifferences in fixing transition

The two widely different curves of variation of lift coafficient with increasing Kach number show in Pig. 11 were obtained on the same aerofoil with different transition bands. The obord Reynolds number increased with Mach number (atmospheric stagnation press ire) from 1,3 to 2.0×10^{6}. The lower, chain-dotted curve was obtained with a relatively coarse transition band, near the leading edge, that provoked transition at or very near the end of the band (i.e. in the region of 5% chord). The upper, full curve corresponds to a finer band, further back, for which transition occurred significantly further downstream, well beyond the end of the band even; although transition mas complete upstream of the shock (at about mid-chord), the thickness of the turbulent layer approsching the shock nould have beon significantly smaller.

The main feature of interest in the curves is the break from a rising coefficient to a falling one, at about $X_{0}=0.7$, that mas caused by the shock-induced separation. The main difference betreen the curves is that the break is earlier and more severe for the thicker boundary layer. This difference is a direct result of the rear separation - and, more specifically, of its interaction with the disturbance at the shock - that developed in the model-B type flow for the thicker boundary layer. The curpes begin to diverge slowly from one another before the broak because a mild rear saparation began to form even-before shocks were present, but the really large differences developed later as the local separation at the shock increased the severity oi the rear separation and produced an interaction between the tro separations.

The pressure distributions corresponding to points A and B of Fig. 11 are reproduced in Fig. 12. The pressure recovery domstream of the shook is noticeably stronger for A than for B, and indeed, there is an indication of the inflection point expected in the presence of a bubble tending to close. This comparison is closely similar to that shom between fiight and tunnel in Fig. 6, In addition, it illustrates how the difference in trailing-edge pressure influences the pressures on the lorer surface; the lower pressures for curve B are associated with the reduced circulation that results from the more severe separation. Reference back to Fig. 5, for which no such differences appeared, serves to emphasise that such scale effects as this were absent so long as model a was appropriate for both wind tunnol and full scale.

An illustration of the importance of the rear pressure gradient in the development of model-B type flows is provided by the comparisons in Fig. 13. The tho lift curves of Pig. 11 (for the NPL 9240 aerofoil) are compared with a corresponding pair for a slightly modified aerofoil (NPL 9241). The modification and the nature of its influence on the rear pressure gradient (in the absence of shook waves) are illustrated in Pig. 14.

For both aerofoils, the effects of shock-induced separation were amplified by the strong model-B interactions that occurred when the thickness of the turbulent boundary layer at the foot of the shock was increased (by the change in transition bend). The difference in lift coofficient produced by the amplification is in each case indicated by a vertical arrow from the curve for thin boundary layer to that for the thick. The difference in the length of the two arrons shows that the amplification was much smaller for the modified aerofoil (NYL 9241) than for the original one (NPL 9240).

The influence of the strong model-B interactions (with the thicker boundary layer) was here clearly affected by some small change in the flow, probably a small change from one aerofofl to the other in the degree to which the rear separation had developed bofore the shook appeared. This is an indication of how critically this type of scale erfoct, as between rind tunnel and flight, midght depend on the precise conditions reproduced in the rind-tunnel experiments.

Of at least equal importance is the demonstration that the comparison between the two aerofoils mas completely distorted by the strong model-B interactions. The small differences in aerofoil profile had praotically no offect on tha rosults when the turbulent boundary layer approaching the ahook was reasonably thin (upper tro curves), but a very significant effect when the boundary layer nas thick (lower two cu:ves). The inforence of this is that completely misleading results can be obtained rith model-B typo flons even when the object of the rind-tunnel tests is restricted to producing a qualitative comparison betreen differont designs.

The results in Fig. is show that similar difforences occur for a shock-induced separation developing nith inoreasing incidence at fixed kach number. The three difforent curves reprosent difforent transition bands. The chord Reynolds number was the same for the three cases, but the u...ckness of the boundary jayer approaching any given thordrise position decreased as the band mas moved further aft towards that position. The three curves are different even for the low values of incidence for which the fiow was attached because the viscous effects on circulation mero already greater for the larger bo man.y-layer thicknesses. These relatively small differences rere, however,
magnified by interactions that occurred as the separated flow developed near the incidence for maximum C_{L} and beyond.

The pressure distributions for the three points a, b, c, near the position of maximum c_{f}, on the respective curves, are shom in Fig. 16a. These reveal that the shock that produced the stall was situated at about 30% chord.

For points b and c, corresponding to the intermediate and furthest forward transition positions respectively, the steep pressure rise is that characteristically associated with a turbulent separation at the toe of the shock (confirmed by flow photographs not herp reproduced) and is just re-establishing subsonic flow. In other words, a further increase in shock strength (i.e of incidence) would be expected to produce a rapidly expanding bubble and hence rapidly developing separation offects, as indeed is confirmed by the subsequent fall in C_{L}. The most significant difference between these two curres is probably the saall difference in trailing-edge pressure which is indicative of a slightly more severe rear separation for point c than for point b. (The difference near the shock for point 'a' is also of considerable significance, but for different reasons - see belor.)

For an increase of incidence to that corresponding to points B and C (Fig. 15), the pressure distributions, Fig. 16b, show how the more severe rear separation interacts with the expanded bubble at the foot of the shock to magnify the difference between the two cases. The differences in pressure at the trailing edge indicate that the rear separation for C is increased more in severity than is the one for B, and that, as a result of the greater reduction in circulation associated with this, the forward displacement of the shock is greater; the supersonic flow at the leading edge is in fact about to collapse ${ }^{12}$. The sequence here, then, was almost certainly that (i) the difference in the thickness of the boundary layer approaching the shock led to a small difference in the strength of the disturbance at the foot or the shock; (ii) this difference, in turn, led to an amplified difference in the severity of the rear separation; (iii) although, even in its amplified form, the difference in rear separation was relatively small, it produced a significant difference in the overall flor development at a critical stage.

For this example there is an indication, in the pressures near the immediate trailing edge, that some small degree of rear separation remained even for the curve B, corresponding to the intermediate transition band. Ever this, therefore, might be subject to some of the effects expected for model-B type flow.

However, other and difforent difficulties wero encountered on moving the transition band still further aft in an attempt to eliminate these effects at the Roynolds number of these tests (1.6×10^{6}). Transition no longer occurred upstream of the separation point at the toe of the shock, but immediately domstream in the separated layer. As a result, the steep prossure riso mas greater in magnitude (see Fig. 16a, point 'a' and Fig. 16 b , point A) and sufficiont to re-establish subsonic flow. Reduced effects of separation would then be expected on this score alone, and it is impossible to resolve how much of the difference that resulted from the second shift of the transition band was due to this, and how much to the elimination of the model-B interactions.

It is indeed frequently and characteristivally more difficult to eliminate the spurious influence of model-B fiows in wind-tunnel tests as incidence is increased and the shock moves forward towards the leading edge, With the rearward shocks that occur at low incidences one is able to offset some of the offect that reduced unit Reynolds number has - in increasing boundary-layer thickness - by allowing the boundary layer to remain laminar over more of the chord; transition can be considorably further aft in the wind tunnel than at full scale but still be complete upstream of the shock. This is no longer possible with the forward shock positions, and one is driven to the need for highor Reynolds numbers in the wind-tunnel tests so twat transition can be fixed upstream of the shock without provoking a spurious rear separation.

(b) Aorofoils at differont Roynolds numbors

Fig. 17 illustrates the effect of increasing Reynolds number, again for a case in which the shock-induced separation develops with increasing incidence at fixed lach number.

The curve for Reynolds number $=1.6 \times 10^{6}$ was obtained, from a similar set of measurements to those of Fig. 15, in the NRL 20 in $\times 8$ in tunnel ($0.51 \mathrm{~m} \times 0.20 \mathrm{~m}$) with a transition band for which transition was not complete upstream or the shock. The curves for higher Reynolds numbers were obtained in a BAC $4 \mathrm{ft} \times 4$ f't tunnol ($1.22 \mathrm{~m} \times 1.22 \mathrm{~m}$); transition was provoked early on the chord by disturbances from pressure holes near the leading edge.

These rosults help to confirm that low Reynolds-number tests with transition incomplotely fixed give spuriously favourable lift curves by comparison with high Reynolds-number results. On the other hand, by comparison rith Fig. 15, it can be deduced that the ertects of shock-induced separation are less sovore for tho high Reynolds-humber tosts than thoy wouid spuriousiy bave been at low Reynolds number with transition fixed near the leading edge.

The difficulties in simulating fuljoscale flows vary in severity from one fart of the range of Nach number and incidence to anothor. This is illustrated by the rusults presonted in Fig. 18. The curves without hatching are the loci of conditions, or boundaries, for which sienificunt orfects of separation - defined by the rapid divergence of truiling-edge prossure - wore first encountered in tests on an aerofoil for three different Regnolds numbers. The wind tunnels and transition conditions were the same as those described above for the results in Fig. 17.

The kach number range has been divided into four parts, starting from the highest, I, which stretches from just over 0.7 upmards, and progressing to IV, which stretches from about 0.56 domwards.

In renge I, the separation was induced by a shock well back on the chora at relatively low ifft coefficients. Even for the lowest Reynolds number, transition could be fixed mell back and still be upstream of the shock, and, moreover, the pressure gradients at the rear were at their weakest for the given design. Model-A flons thus applied for all cases and the effects of Roynolds number on the initiul developments of separation were minimal.

In range II, with the shock having moved further formards, transition was incomplete at the shock for the lonest Reynolds number. The initial developments of separation nere thus postponed In relation to the high Reynolds-number results. A more forward transition band may have beon beneficial for the upper part of this range but not for the loner part because it nould almost certainly have led to rear separations and the spurious results associated with nodel-B flows.

These spurious results are evident in range III. The presence of rear separation for lift coefficients above about 0.6 is indicated by the appropriate hatched ine ${ }^{*}$.

Rear. separation was present even for the highest Reynolds numbers in range IV, and it is dirficult to know just how closely the results for these would be represertative of full scale. As one moves downwards in Nach number in this range, one approaches the regime of low-speed stall which could involve some rear separation even at full scale. The correct simulation might therefore involve the simulation of the rear separation itself and its interaction with any development of local supersonic flow ${ }^{13}$ and shock waves that may be present near the leading edge. As far as the authors know, there have been even fewer systematic studies of scale effects in this range of Mach numbers than in the others.

(c) Srept rings at different Reynolds numbers

Relevant results are available for a wing with 55° of sweep for which the shock-induced separation occurred at low supersonic speeds. The flow was then similar in principle to that for an unswept wing or aerofoil at Mach numbers corresponding to the values of the component normal to the leading-edge of the swopt wing. More specirically, tests on the two-dimensional aerofoil corresponding to the section shape normal to the leading edge of the swept wing have confirmed the broad similarity between the two for the pattern of occurrence of the shock-induced and rear separations that were present in the model-B type flows ${ }^{f}$. Furthermore, none of the tests on less highly swept, subsonic wings to which the authors have had eccess has revealed any features that would run counter in a broad qualitative sense to thoso hers described for aerofoils at one extreme and for the 55° swept wing at the other.

The results shom in Fig. 19 were obtained in the NPL 25 in $\times 20$ in tunnel ($0.63 \mathrm{~m} \times 0.51 \mathrm{~m}$) the lowest Reynolds number - and in the ARA $9 \mathrm{ft} \times 8 \mathrm{ft}$ tunnel ($2.74 \mathrm{~m} \times 2.44 \mathrm{~m}$) - the two higher Reynolds numbers. Transition was fixed upstream of the shock in all cases.

The basic section was such that the adverso gradients in the downstreamflom producod a tendency to model-B flows. Thus, for the lowest Reynolds number (2×10^{6}), rear separation was already present at the lowest luach number (0.9), that is, befcre the appearance of a shock wave. For this Reynolds number, therefore, one would expect the effects of shock-induced separation to be amplified in a model-B3 type of flow. The differences observed between the results for this Reynolds number and those for the higher ones confirm this, and are strikingly similar to the differences between tunnel and full scale shown for a subsonic swept wing in Fib. 6, and betweon two different transition positions shown for a two-dimensional aerofoil in Fig. 12.

In all these cases, the differences can be attributed to the offect of difforences in the thickness of the turbulent boundary layer approaching the shock.

In the present case, the detailed form of the curve for the lowest Reynolds number at $\mathrm{N}_{0}=1.145$ suggests that the rear separation spread right rorward to the shock at an eariy stage, linking either with a small bubble (model BJa) or with the shock itselr (modol B3b). Resulta are not availablo at closo enough intervals of Nach number to resolve this differonce,

The increase in K_{0} from 0.90 to 1.145 produces an interesting chapge also in the differences between the curves for the two higher Reynolds numbers (8 and 12×10^{6}). At $M_{0}=0.90$, a small difference in the rear separation is just discernible in the pressures near the trailing odge, but this difference is significantly magnified at $M_{0}=1.145$, indicating the great extont to which the rear separation amplifies the differences in the degree of disturbance at the foot of the shock.
x^{T} The rear separation disappeared as Mach number increased above a certain value because of favourable changos in preasure gradient - as.a hence boundary-layer growth - upstroam of the shock. spanrise atation were subject to some influence from other parts of the span.

The resulting difference in trailing-edge prossure at $M_{0}=1.145$ could be sufficient to produce a significant difference in circulation. In this case, however, the position of the shock itself was not affected. By the time the free-stream Nach number had increased to 1.35 , the separation was fully developed from the shock to the trailing edge with littie difference remaining betreen the, two Reynolds numbers.

5. Concluaing remarks

For flows that conform to the original model A, the pettern of development dapends primarily on changes in the immediate vicinity of the shock, and more on those in the extermal flow adjacent to the separating boundary layer than on those in the boundary layer itself. This applies particularly to the rapid rearwards growth of the shock bubble and to the manner in minch the repid growth starts at a particular stage. It follows, therefore, that for a given shock strength, at a given condition of free-stream Mach number or incidence, the whole shock-induced phenomenon is relatively insensitive to scale effects, and to differences in boundary-layer thickness or profile, provided the boundary layer is turbulent at the separation point. The full-scale pattern of development can thus be fairly readily simulated in wind-tunnel tests.

For model-B flows, on the other hand, the rear separation - already present or incipient when the shock and the separation at the foot of the shock appear - modulates the rate and magnitude of the development, and in rany ceses dominates it.

The rear separation at first increases rapidy in severity as the disturbance at the foot of the shock increases, and then links up with this disturbance to modify it directly. This interaction between the two separations produces a significant amplification of the effects of the disturbance at the foot of the shock. The amplification applies in a broad sense to the pattern of development with increasing Mach number or incidence for a given upstream boundary layer, and in a more specific sense to the differences that are introduced by differences in the upstream layer for a given Nach number or incidence. In the broad sense, the repercussions on the circulation about the aerofoil or wing appear earlier than they otherwise would, and in a magnified form. In the specific sense, small changes in the disturbauce at the foot of the shock, resulting from differences in the thickness or profile of the boundary layer approaching the shock, assume much greater significance than they otherwise would. It is the amplification of the effects of such changes that, it is postulated, leads to the greatly increased sensitivity to scale erfects and to the incroased difficulty in achieving correct simulation in wind-tunnel tests.

Recent evidence confirms that a boundary layer that is laminar as it approaches the shock leads to an interaction that ca.not be relied upon to reproduce full-scale conditions ${ }^{4}$. The example shown in Fig. 20, from some current tests, is typical of the spuriously favourable effects that are produced when the boundary layer is on the point of transition at the separation point.

The prime requirement for corroct 3 imulation thus remains a boundary layer that is turbulent at the point of interaction with the shock. It is now also clear, however, that there is a further requirement of almost equal importance and generality: this turbulent layer must be of a thickness that is not so magnified in relation to rull scale (and must have a profile that is not so distorted) that arter interaction with the shock it will provoke a rear separation that mould not be present at full scale, or will increase signilicantly the severity of such rear separation as might be present at full scale.

To achievo this second requirement for the cases in which rear separation would not be present at full scalo, i.0. model-A would apply at full scale, tunnel Reynolds number should be high enough for transition to occur naturally at an appropriato point or at least high enough for transition to bo provokod artificially with a minimal disturbance. Transition has to be completo upsticam of the shock but it need not be as far forward as it would be in full scale. The dirference in transition position can thus be used to offset the effect of the reduced Roynolds number of the rind-tunnel tests. Moreover, for many cases, the rolative thickness of the turbulent layer approaching the shock could bo greater than for full scale without provoking the offending rear separation.

The difficulties of achieving either of these alternatives pill tend to increase with a number of factors.

First, as attention moves from cruiso lift coerricients with shock waves that are well aft on tho chord to lighor lift coefficionts and lowor Jach numbers for which the shocks approach the leading edge, go the range of difference in transition position that is available for compensating the effects of roduced Roynolds number bocomes smaller and smaller.

Secondly, the same incroase in lift coorficient will incroase the pressure pradients in the downstream flow and herce roduce tha margin of boundary-layer thickness for which rear 3eparation can bs avoided.

Finally, the current trends in design towards ultimate imits of acceptable advorse pressure gradient are reducing the margin or boundary-layor thickness for which the syurious rear separations can bo avolded oven at cruise lift coofficients.

If ono turns nor to the cases for which somo rear separation is present oven at full scale (i.e. modal-B flom applies at full scale), the simulation of the full-scale vattern for the
development of shock-induced separation mould appear to present formidable problems. There might, for oxample, be no real alternative to reproducing the actual boundary-layer thickness at the foot of the shock and hence to a close approach to full-scale Reynolds numbers. This is tantamount to suggesting that highar Reynolds numbers will be necessary than those that are used to give resilistic valuss of $\mathrm{C}_{\mathrm{I}} \max$ in the lon speed stall for which rear separations, in the form of rear stall, are very frequently inherent. The underlying justification for such a suggestion is that the shoci-indused separation upstream of the rear separation introduces a critical factor that is not always present in the low-speed stall. The scale effects are larger as a result and may not decrease to negligible proporions until the highor Reynolds number is reached.

Por such cases, and also for the cases where it was suggested that there would be no margin of boundary-layor thickness (rolarive to ning chord) above the full-scale value for which rear separation could be avoidoa, some further systematic theoretical investigations of the type made by Thomas nould be a valusble complement to the additional experimental mork that is clearly decirablo. Such investigations could, for example, be based on a flon model in which the turbulent boundary-layer growth up to rear ssparation could be studied in the presence of representative pressure gradients, with a rapid gradient representing the shock superimposed on the more gradual adrerse gradient. Boundary-layor thickeness, Reynolds number and pressure gradient could be varied parametrically. It is difficult to envisage that the precise nature of the disturbance at the foot of the shock could be introduced theorotically, especially since this usualiy involves a separation bubble that is critically influenced by the form of the compression from supersonic to subsonic flow, but the effect of the disturbance could probably be simulated by a variable disturbence to boundary-layer thickness and profile.

In the meantime, the evidence available to the authors is inconclusive as to what value of chord heynolds number may ultimately have to be used to eliminate the scale affects of the type now being encountered. But this could well be at least of an order of magnitude greater than the value of about 1.5 to 2×10^{6} that was acceptable when the original flow model was applicaiole for all conditions.

1.	H. H . Prarcey	Some effects of sheck-inducei separation of turbulent boundery layers in tramsonic flow past aerofoils. ARC R \& M No. 3108, (1955)
2.	H. H. PEARCEY	A method for the yrediction of the onset of buffeting tund other separation effects from wind-tunnel tests on rigid models: ABS 20631 ; AGARD Report 223. (1958)
3.	H.H. PEARCEY and D.H. HOLDER	Simple methods for the prediction of wing burfeting resulting from bubble-type separation. ARC 23884 ; NPL Aero Report 1024. (1962)
4.	A.B. HALNES, D.W. HOLDER and H.H. DEARCEY	Scale effects at high subsonic and transonic speeds, and methods for fixing boundary-layer transition in model experiments. ARC R\& M No. 3012 (1954)
5.	J. SEDDON	The flow produced by interaction of a turbulent boundary layer with a normal shock wave of sufficient strength to cause separation. ARC R\& K No. 3502 (1960)
6.	H. H. PEARCEY and D.W. HOLDER	Examples of the effects of shock-induced boundary layer separation in transonic flight. ARC R \& x No. 3510 (1954)
7.	B.h. Littie jr.	Erfects of initial turbulent boundary layer on shock-induced soparation in transonic flow. V.K.I. Technical Note No. 39 (1967)
8.	F. THOMAS	The determination of buffet boundsries for mings in the transonic speed regime. W.G.L.R. Jahrbuch, 1966, pp 126.
9.	C.S. SINNOTT and J. OSBORNE	Revier and extension of trensonic aerofoil theory. ARC R \& : 4 No. 3156 (1958)
10.	G.E. GADD	Interactions between normal shock waves and turbulent boundary layors. ARC R \& \& No. 3262 (1961)
11.	D.L. Lovarg	Find tunnel - flight correlation of shock-induced soparated flon. NASA TN D-3580 (1966)
12.	H.H. PEARCEY	Shock-induced separation and its prevention by âesign and boundary layor control. Part IV Boundary layer and flow control; edited by G.V. Lachmann; Vol. 2, Pergamon Pross (1961)
13.	L.R. HCOTTON	The effect of comprossibility on the maximum lift coofficient of aeroroils at subsonic speeds. J.Roy.Aoro.Soc. Vol.71, No.679, July 1967.
14.	H.A. CARVER and K.M. PAYNE	Tabulatod pressure coofficients and aerodymamic characteristias measured on the wing of the Bell X-1 Airplane in leval flight at Kach numbers from 0.79 to 1.00 and in a pull up at a Yach number of 0.96 . NACA PM L50 H 25 (1950).

(b) Model B(i) at early stage with localised shock
bubble and rear separation
(ii) at later stage with one separ
(ii) at later stage with one separation
extending from shock to trailing edge extending from shock to trailing edge
FIG. I SOME DETAILS (SCHEMATIC) OF THE REGION OF INTERACTION BETWEEN TURBULENT
BOUNDARY LAYER AND SHOCK W.AVE

ORIGINAL MODEL. A
(Only rearward growth of bubble)

Shock
Shock
FIG. 2 ; FLOW MODELS FOR THE INITIAL DEVELOPMENT OF SHOCK INDUCED SEPARATION (SCHEMATIC); TURBULENT BOUNDARY LAYERS
\perp Rear separation in downstream pressue
$\begin{array}{ll}\text { * } & \text { First divergence in trailing-edge pressure (tirst effect on circulation) } \\ * * & \text { Rapid divergence in trailing-edge pressure (major effects on circulation) }\end{array}$

FIG. 3 SUBBLE DEVELOPING REARWARD FROM FOOT OF SHOCK (FLOW MODEL B) M $M_{0}=0.74$ to 0.85
(Upper-surface pressure distributions for NPL 9230 cerofoll at 2° incidence; transition flxed at 0.05 c ; $R=1.1$ to 1.9×10^{6})

FIG. 4 SHOCK SEPARATION LINKING IMMEDIATELY WITH REAR SEPARATION (FLOW MOOEL8), Mo 074 TO 0.85 (Upper surfoce pressure distributions for NPL 9240 ot 3.5° incidence; transition tixed of 0 o5 chord; $R=1.1101 .9 \times 10^{6}$)

FIG. 6 WIDELY DISSIMILAR UPPER-SURFACE PRESSURE DISTRIBUTIONS -
FIG. 5 CLOSELY SIMILAR UPPER-SURFACE PRESSURE DISTRIBUTION IN
TUNNEL AND FLIGHT - FLOW MODEL A

fig. 7 pressure towards rear of aerofoil. showing first the influence of the shock waye \qquad
(KEY TO FIG.8)
and then of the shock-imouced bubble sepagation

Surface pressures .or Mach number(a)

FIG.9: PRESSURES TOWARDS REAR OF AEROFOIL SHOWING
INFLUENCE OF REAR SEPARATION ONLY
(KEY TO FIG.IO)

FIG. 10 PRESSURES AT FIXED CHORDWISE POSITIONS FOR REAR SEPARATION

FIG 11 INFLUENCE OF BOUNDARY-LAYER THICKNESS ON EFFECT OF SHOCK-INDUCED SEPARATION OF TURBULENT BOUNDARY LAYERS FOR MODEL B-TYPE DEVELOPMENT (NPL 9240 AT 5.5° INCIDENCE, Re 1.3 to 2.0×10^{6})

FIG. 12 PRESSURE DISTRIBUTIONS FOR POINTS A and 8 OF FIG.II;

$$
M_{0}=0.76, R-1.8 \times 10^{6}
$$

FIG. 13 "SCALE EFFECTS" (INFLUENCE OF THICK BOUNDARY LAYERS) MAGNIFIED BY SMALL CHANGES IN AEROFOIL SHAPE, OR, CONVERSELY, EFFECTS OF AEROFOIL SHAPE MAGNIFIED BY SCALE EFFECTS (MODEL B - TYPE FLOW)

NPL 9240 and 9241

fig. 14 aErofolt shapes and LOw-5peed ($\mathrm{H}_{0}-0.6$) pressure distaibuilons
(${ }^{\prime}$ ber wrilact only)

FIG. 15 MAGHIFICATION OF EFFECTS OF BOUNDARY-LAYER THICKNESS NEAR $C_{L_{\text {max }}}$ (NPL 3121 at $M_{0}=0.66, R=1.6 \times 10^{6}$)
(See also Fig. f_{6})

Figilg UPPER surbacz palssure oistaicutions for points on and

Piciob upger suabace paessuar oistaibutions for points a, \triangle ND C OF FIG. 15 (NPL 3121 of $\left.\mathrm{M}_{8}=0.06 . A-1.8^{\circ} \mathrm{R}-1.4 \times 10^{6}\right)$

FIG. 17 EFFECTS OF REYNOLDS NUMBER ON A SHOCK-INDUCED STALL

FIG. 19 EFFECT OF REYNOLDS NUMBER FOR A HIGHLY SWEPT WING

FIG.20; A RECENT EXAMPLE OF SPURIOUSLY FAVOURABLE RESULTS
(More rearward shock position and greater circulation at $\mathrm{M}_{0}=0.725$)
Obtained when transition is incomplete at the shock;
NPL 5201 aerofoil; $\alpha=5^{0} ; R \approx 1.7 \times 10^{6}$; pressure distributions
by
RoC. Lock, Aerodynamios Division, National Physical Laboratory
B.J. Porell, Kingston College of Teohnology
C.aic Sells, Aerodynamics Departinent, Royal Alraraft Establisbment and Poge Withy, Aerodymamics Division, National Physionl Laboratory.

The paper summarises recent advanoes in praotioal methods for predioting pressure distributions on aerofoils in tro-dimensional sub-critical flows. First, ε finite difference method is desoribed for solving numexioally the full equations of mation for compressible flow, starting with a conformal mapping of the region exterior to the aerofoil onto the inside of a circle. Next, it is shom hom standard seoond order theory can be modified and extended to provide a rapid approximate method which gives adequate aacuracy for most eerofoils up to the oritical Mach number; several comparisons rith exact theory are given. Finally, an iterative method is described for estimating the effect of viscosity, caloulating suocessively the displacement effeot of the boundary layer and wake on the aerofoil pressure distribution, and the development of the boundary layer under a given exteranl pressure distribution; several comparisons are given with reoent experimental resuits.

1. Introduction

An essential item in the equipment of an aircraft debignar or projeot engineer is the capability of predicting accurately the pressure distribution on an aerofoil in a real compressible Fisoous flows the information is reeded for example in the estimation of drag-rise Maoh number or the caloulation of profile drag - in oither case at a given value of the lift coeffioient or inaidenos. Now it is clear that in practise the development of the flow field about an aerofoil is cruoially dependent on two effects, oompressibility and viscositys and this faot has made the problem a difficult one to solve satisfactorily, even for sub-critical flow. In the past it has bean neoessamy to rely on a vamety of approximate or empirical methods for the invisoid part of the problem, all of doubtful validity andalthough the general principles whereby the influence of viscosity can be obtained, through the displaoement effeot of the boundary layer and nake, have been knom for some time (see e.g. Fef. 11), it has not rreviously proved feasible to incorporate these effioiently into a practical caloulation method.

In the past fer years important developments in invisoid theory have been made by Sells ${ }^{1}$ and Neumland ${ }^{2}$, using advanoed numerival methods in conjunction with the full equations of motion for a perfect gas; and these have at last enabled us to break the vicious oircle that has previously bedevilled the problem, by removing the empirioism from one half of it. It has thus teoome possibla to of'feat a major improvement in accuraoy in a rapid approcimate theory for inviscid flow, using the "exact" numerical methods as a oheok; and then to incorporate this method into an iterative procedure for colculating the effect o. the boundary layer on the pressure diatribution, by applying the prinoipls mentioned above in conjunction with an appropriate oaloulation mothod for laminar and turbulent boundary layers.

The purpose of the present paper is to give a survey of the developments mentioned in the previous paragraph. First, a brief acoount is given of the principles used in the 'exaot' method of Ref. 1 for the invisoid problem. In the next seotion it is shown how standard second order theary oon be modified and extended to give aoceptable aocuracy for most aerofoll shapes up to the oritical Yach number, and a number of oomparisons with exact results are given. In the final section we describe a method for estimating the major effects of the boundary layer, and conolude with comparisons with experimental results for two aerofoils over a range of lach zuber and inoidecoe.
2. Numerical mothod for the solution of the full equations of motion for invisaid compressible flor

The method, whioh is described in detail in Ref. 1 , depends on the existenoe of a conformal mapping of the aerofoil and its exterior in the z plane onto the unit oirale and its interior in the σ plane; we will assume that such a mapping has been done, numerically or analytioally. Then plane polar ooordinates (r, θ) are set up in the oirole (σ) plane and a uniform grid in thesevamiables is used as a computing grid (see sketoh (a)) this has the adiantage that in the physical (2) plane the grid is refined near the nose and tail, where fiom variations are greatest (see sketoh (b)).

Reguiar grid in the roriding (σ) plane

Grid in the physioal (z) plano

$$
z=x+i y
$$

Sketoh (b):

The equations to be solred ares
the equation of continuity
the equation of irrotational INow

$$
d i r(\mathrm{Pg})=0,
$$

dir: (pqu) $=0$,

$$
\cdots(2.1)
$$

\ldots (2.1)
ourl $\alpha=0$,
and Bernouilli's equation for isentropic flow, written in the form

$$
\begin{equation*}
\frac{\rho^{\gamma-1}}{(\gamma-1) x_{0}^{2}}+\frac{1}{2} q^{2}=\frac{1}{(\gamma-1) x^{2}}+\frac{1}{8} \tag{2,3}
\end{equation*}
$$

where
p is the donsity (soaled nith respoot to free stream density)
y is the free stream Kooh number
$\frac{q}{F}$ is the local velooity (soalsd with reapect to free stream velooity)
ana
Taking $p q=f$ (the local mass flow)
and $\tau=p / p_{0}$ (suffix 0 indicates stagnation conditions),
Bernouilli's equation (2.3) can be re-natiten in the universal form (indepenient of Maah number)

$$
\begin{gather*}
P=\tau^{2}\left(1-\tau^{\gamma-1}\right) \tag{4}\\
F=\frac{1}{2}(\gamma-1){f^{2}}^{2} /\left(p_{0}^{2} a_{0}^{2}\right)
\end{gather*}
$$

where
The continuity equation (2.1) admits the introduction of a stream function ψ such that

$$
u_{x}=\frac{1}{\rho h_{2}} \frac{\partial \psi}{\partial \theta}, u_{\theta}=-\frac{1}{\rho h_{1}} \frac{\partial \psi}{\partial r}
$$

where u_{r}, u_{θ} are the velooity oomponents in the physioal plane nomal to the ourres oorresponding to $r=$ oonstant, $\theta=$ constant reapectively in the σ plane (see sketohes (a) and (b)), and h_{1}, h_{2} are the ourvilinear metrios, given by $h_{1}=B$

$$
h_{1}=r B
$$

$$
\text { and } B=\left|\frac{\mathrm{d} z}{\mathrm{~d} \sigma}\right|
$$

The equation of irrotational flow (2,2) oan then be written in the form

$$
\frac{\partial}{\partial r}\left(\begin{array}{cc}
r & \partial \psi \tag{2.5}\\
- & - \\
\partial r
\end{array}\right)+\frac{\partial}{\partial \theta}\left(\begin{array}{ll}
1 & \partial \psi \\
-p & - \\
r \theta
\end{array}\right)=0
$$

Finally, the mass flow f is related to the stream funotion by

$$
\begin{equation*}
f=\frac{1}{B}\left\{\frac{1}{r^{2}}\left(\frac{\partial \dot{\psi}}{\partial \theta}\right)^{2}+\left(\frac{\partial \psi}{\partial r}\right)^{2}\right\}^{\frac{1}{2}} \tag{2,6}
\end{equation*}
$$

Before the fundamental eystem of equations (2,4), (2.5) and (2.6) can be solvad numerioaily, it is neoessary to consider the singular behariour of the streath function at the oentre of the kasio oirale in the σ plane, corresponding to the 'point at infinity' in the phyoioal (z) plane.

It oan be shom (see Ref. 1) that near $r=0$

$$
\psi \sim-\frac{1}{r} \sin (\theta+\alpha)+\sin x-\frac{1}{2} E \ln \left[1-\operatorname{va}^{2} \sin ^{2}(\theta+\alpha)\right]+\beta+O(x) \quad * *(2-7)
$$

and that

$$
\begin{equation*}
p \sim 1-\frac{12 E \sin (\theta+\alpha)}{1-x^{2} \sin (\theta+\alpha)}=O\left(x^{2}\right) ; \tag{2,8}
\end{equation*}
$$

here α is the ungle of inoidence of the aerofoil and B and β are constants, to be determined as part of the salution. It is seen that the stream function has two singularities at the oentre of the oiroles the Iirst, of dipole type, corresponding to the undisturbed straam in the physioal plane, anil the second, of vortex type, due to the oiroulation round the aorofoil. The oonstant E de in faot direotily related to the ofroulation $r_{\text {, }}$ by the equation

$$
I=-\frac{2 \pi \Sigma}{\sqrt{\left(1-x^{2}\right)}}
$$

and is determinod by satisiying the Kutta oondition of zero velooity at the trailing edge of the aexofoil.

In order to arrive at a numericaily regular problen, the two singular terms have to be subtracted from $\dot{\prime}$, Eiving a modified stream function

$$
\begin{equation*}
x(r, \theta)=\dot{\psi}+\frac{1}{2} \sin (\theta+\alpha)-E \ln r \tag{2+10}
\end{equation*}
$$

Which is finite everywhere but whose value at $r=0$ depends on the angle of

$$
\begin{equation*}
x(0, \theta)=-\frac{i}{2} \operatorname{Sin}\left[1-\mathrm{M}^{2} \sin ^{2}(\theta+\alpha)\right]+\beta \tag{2.11}
\end{equation*}
$$

The corresponding boundary oondition on $r=1 y$ derived from the oondtion $\psi=0$, is

$$
x(1, \theta)=\sin (\theta+\alpha)
$$

The two equations (2.5) and (2,6) involving ψ are written in terms of X, and all partial derivatives ocourring in these equations are replaced by central differences on the wafform (r, θ) mesh in the σ plane (see sketah (a)); the truncation errors are thue of seoond order in mesh size. There are Eour basio unknomas to be determineds the stream function $\gamma(x, \theta)$ (or the modified X), the density ratio $\rho(r, \theta)$ f the oiroulation parameter E and the parameter β.

The solution proceeds iteratively, starting with the basio elliptio partial differential equation (2,5) (written in terms of χ), together with the boundary oondtions (2.11) and (2.12). The resulting difference equations are soved by block Gauss-Seidel iteration (see Ref. 1 zor details). Next, the Kutta condition is used to ooloulate the parameter Ef and the second parameter β is determined by means of Kelvin's oiroulation thoorem, thus onouring that the oirculation round any basio ofrouit, corresponding to $r=$ constant in the σ plane, really is I_{*} Finally, the density ρ is found from equations (2.6) and (2, 4) and the fiole prooess is mepeated until convergence is obtained.

The oriterion used for oonvergence is the density ratio p since it ohanges rapidiy when the locai Xach number M approaches unity, but only slowly when M is small, this test is coarse for near-inoompressible flows but is delicate for near-oritical flowne then M exceeds about 0,8 it is necessary to employ under-relaxation in the iterative matrix solution for the modified stream function X - If a superaritioal oase is attempted, the under-relaxation factor (whioh is automatically modified in the program) decreases rapidiy, and when it is less than $1 / 16$ the computation stops. With under-relacation factor of $1 / 16$ solutions with $100 a l$ Haoh numbers of 0.98 to 0.99 are attainable.

In a problem of this nature, with no exact solutions available for comparison, it is diffioult to arrive at a preoise eatimate of the accuracy to be expeoted. From various intexnal oheaks that have been applied it appears that with the mesh size oomonly used (10 elements in the r direction, 60 in the θ direotion) the empr should not exceed 1% in perturbation veloolty, and in most oases should be considerably lesss though it must be stressed that the aoouraoy of the compressible coloulation is vitally dependent on extreme aocuraoy in the initial conformal transformation.

A useful independent oheak is also provided by a oomparison with the third order solution for an ellipse at zero incidence, obtained by Hantzsohes this is given in the table below (see also Fig. 1)

Tabla I

Maximum velooity on ellipses at zero inoidenoe
a) $t / 0=0.10$

Ke	Numerioal method (SelIs)	3ri order (Hantzsohe)	Approximate method (Tiliby i equation 3.2)
0.4	1.1111	1.1104	1.1100
0.5	1.1178	1.1178	1.1176
0.6	1.1292	1.1295	1.1297
0.7	1.1494	1.1500	1.1511
0.8	1.2006	1.1956	1.1990

b) $t / 0=0,20$

y	Numericai method	3 rd order	Approximate method
0.4	1.2239	1.2235	
0.5	1.2405	1.2410	1.2220
0.6	1.2691	1.2706	1.2398
0.7	1.3324	1.3280	1.2710
		1.3338	

It is alear that the agreement between the present numerioal method and third ordar theory is exoellent except at the highest Kaoh number in each oase, when (since the maximum local. Kach number is about 0.98) even the third order expansion mould not be expected to be sufficiently aoourate.

Purther examples obtained by the numerical method will be given later in conneotion with the approximate mathod to be described in the mext seotion.

3. Development of a new approximate method for invisoid flow

The basio two-dimensional invisoid problem aan be solved nunerically (for suboritioal fion) to a high degree of aoouraoy by the method described in the preceding section. For practical application, however, partioularly to aerofoils in a real visuous flow or with a view to possible extensions to three-dimansional wings, it is still essential that an adequate rapid approximate method should be availables and the advent of 'exact' numerical solutions has revealed that no exdsting method is of suffioient aocuraoy for this purpose. It is therofore necessary to adapt and extend the existing second-order 'small disturbanoe' theory, using the exact solutions as a guide.

We start from the standard seoond order solution for the velooity on an aerofoil in compressible flow, due to Van Dyiket or Gretler.5, which may be written in the form (valid away from the leading edge)

$$
\begin{equation*}
q=1+u_{1} / \beta+\frac{1}{2}(K-1) u_{i}^{2}+\mathbb{K}\left(u_{2}+Y Y^{\prime \prime}+\frac{1}{2} Y^{2}\right) \tag{3,1}
\end{equation*}
$$

Skatoh (0)
Here
3. is the free stream Mach number,

$$
\beta=\sqrt{1-\mathrm{M}^{2}}
$$

$K=\frac{(\gamma+1) \mu^{4}+4 \beta^{2}}{4 \beta^{4}}$,
I is the looal aeroroil ordinate (seeaketoh (o))
$I^{\prime \prime} Y^{\prime \prime}$ are its first and seoond dorivatives nith respeot to x and u_{i}, u_{x} are respectively the first and seoond order palooity perturbations in the x direotion on $y=0$ for incompressible flow These oan be oxpressed in terms of the basio integrals*

$$
g^{(1)}\langle f(x)\rangle=-\int_{\pi}^{1} \frac{f^{1}(\xi)}{x-\xi} d \xi
$$

- Using the notation of Heber (seo 0.g. Ref. 7, pp 46-47)

$$
S^{(1)}\langle f(x)\rangle=\frac{1}{\pi} \sqrt{\frac{1-x}{x}} \int_{0}^{1} \sqrt{\frac{\xi}{1-\xi} \frac{f^{\prime}(\xi)}{x-\xi}} d \xi
$$

as follows (alternative sigas denote values on the upper and loner surfaces respectively) -

7here

$$
u_{1}=u_{i_{t}} \pm u_{i_{1}}
$$

$$
u_{t}=S^{(1)}\left\langle Y_{t}\right\rangle
$$

and

$$
u_{i_{1}}=a \sqrt{\frac{1-x}{x}}+s^{(1)}<Y_{c}>t
$$

$$
u_{2}=u_{2_{t}} \pm u_{2_{1}}
$$

whers

$$
u_{2_{t}}=-\frac{1}{2} \alpha^{2}+s^{(1)}\left\langle u_{i t} Y_{t}+u_{i 1} Y_{0}\right\rangle
$$

and

$$
u_{2_{1}}=s^{(\alpha)}<u_{1} t Y_{0}+u_{11} I_{t}>\xi
$$

here Y and X_{0} are respoctively the half-thickness and oamber ordinates of the aerofoil (see skatah (d)).

The values for the maximum velooity on ellipses at zero incidence, predicted by equation (3.1), are shown in Fig. 1 where, they are oompared with the exact results of Selis 1 and with the third order theory of Hantzsohe 3 it is olear that second order theory is inadequate for near-crltical conditions and that some allowance must be made for higher order effeots. It was pointed out by Wilby that a good approximation to these effects could be obtained empirioally by replaoing the terms

$$
u_{1} / \beta+\frac{1}{2}(k-1) u_{1}{ }^{2}
$$

by the expression

$$
\begin{gather*}
u_{1} / B \tag{3,2}\\
B=\left\{1-\mathrm{y}^{2}\left(1-\mathrm{y}_{\infty} C_{\mathrm{p} 1}\right)\right\}^{\frac{1}{2}}
\end{gather*}
$$

Where
and $C_{\text {pi }}$ is the looal inoompressible pressure coeffioient. Corresponding values of the velooity ratio ${ }^{\prime} q$ are given in Table I ($\mathrm{p} \cdot 3$) and shown in Fig. 1 , and are seen to agree olosely (to better than 1% on perturbation velooity) with the nominally exaot values obtained by Sells' method.

For the ellipse at zero inoidence at the maximum thiokness position, the remaining second order terms in equation (3.1) are identically zero. In other oases, partioulary when lifting effeots are to be inaluded, these terms must be retained. For the present the faotor X whioh multiplies them is leit unaltered, giving

$$
\begin{equation*}
q=1+u_{1} / B+K\left(u_{2}+\Pi Y^{N}+\frac{1}{2} Y^{2}\right) \tag{3.3}
\end{equation*}
$$

where B is now doflmed using the looal value of $C_{p i}$ derived at the same inaidonoe.
In order to make this expression uniformiy vaild at the leading edge, we mrite it in the form

$$
\begin{equation*}
q=1+u_{1} / B+K\left(u_{2}^{*}-\frac{1}{2} Y^{\ell 2}\right) \tag{3,4}
\end{equation*}
$$

where

$$
u_{2}^{*}=u_{z}+\frac{d}{d x}\left(X^{\prime}\right)
$$

Here u_{i} * behaves like u_{1} at the leading edges it is finite for symmetrioal casea and $O\left(x^{-\frac{1}{2}}\right)$ in iffing oases. Equation (3.4) at once suggosts the equivalont uniformly volid approximation

$$
\begin{equation*}
q=\frac{1+u_{1} / B+K u_{2} *}{\left(1+K Y^{t^{2}}\right)^{\frac{r}{2}}} \tag{3.5a}
\end{equation*}
$$

In thite expression the denominator is similar to the Rlegels factor used in inoompressible
flow; the muitiplise K mhick now appears is an essential feature of the present method, since it provides the neoessary distortion of the shape of the pressure distribution near the leading edge as the Mach nuaber inoreases. It has been found irom experience that in lifting aases slightiy greater acouracy near the leading edge on the upper surface can be obtained by replaoing K in the denominator by B^{-2} (whioh is of the same order of magnitudes see Ref. 6), leading to

$$
\begin{equation*}
q=\frac{1+u_{1} / B+K u_{2}^{*}}{\left\{1+\left(Y^{1} / B\right)^{2}\right\}^{\frac{1}{2}}} \tag{3.5b}
\end{equation*}
$$

a similar replacement has also been tried in the manator, but the differences produced are trivial in most aases.

The inoompressible second-order velooity perturbation $u_{2}{ }^{*}$ contains a number of termes but in cases where
a) the thiokness form (particulary near the leading edge) aoes not differ too much from an elliptioal shape - and this is true of most 'standard' thiakness distributions
and b) the ourvature of the camber line is everymhere very small (or zero), then ail but one of these terms (the one due to the interaction betreen thiokness and incidence) may be safely neglectea, leading to a simplifled version of the basic formulae which may be mritten

$$
\begin{equation*}
q=\frac{1+\frac{1}{B}\left[S^{(1)} \pm S^{(4)}\right] \pm \frac{\alpha}{B} \sqrt{\frac{1-x}{x}}\left[1+\frac{S^{(x)}}{B}\right]-\frac{1}{2} \alpha^{2} / B^{2}}{\left(1+Y t^{2} / B^{2}\right)^{\frac{1}{2}}} \tag{3.50}
\end{equation*}
$$

the funotions $s^{(1)}, s^{(x)}$ and $s^{(4)}$ are as defined in Ref. 7 ($p .47$), and the alternative signs refer as usual to the upper and lower surfaces respectively. This simplified formula has been used in the theory for visoous flows whioh follows in section 40

In all cases the pressure cooffioient C_{p} is finally coloulated from the velooity q by means of the stendard isentropic fiom relation

$$
\begin{equation*}
c_{p}=\frac{2}{\gamma^{2}}\left[\left[1+\frac{1}{2}(\gamma-1) y^{2}\left(1-q^{2}\right)\right] \frac{\gamma}{\gamma-1}-1\right] \tag{3.6}
\end{equation*}
$$

In Figs. 2 to 7 some comparisons are made between the approximate theory described above and the exact numerioal results of Selis (Ref. 1, see section 2 of the present paper) and Nieuriand ${ }^{2} ;$ some other approximate theoretical results are also inoluded.

Firat, some further examplen are given for ellipses. Pig, 2 shows the overall pressure distribution for $t / 0=0.2, \alpha=0, \mu,=0.7$ (near the oritioalvalue). The superiority of the present method near the maximum thioknels position is confirmél; further forward the distortion of the shape of the pressure ourve due to compressibility is still slightiy underestimated (so that the l.00al velooities are overestimated), but the errors remain small. The next twn figures (3 and 4) refer to an ellipse with $t / 0=0,15, y_{0}=0,68$ at incidence $\alpha=2^{\circ}$, with the roar stagnation point fixed artificially at the trailing edge. In this case the load distribution (Fig. 3) is well predicted by the present method, as is the overall pressure distribution (Fig. 4); but the velooities on the upper surface just aft of the leading edge (near the peak suction position) are again slightly overestimated just as at zero inoidence (of. Fig. 2).

The remaining examples refer to praotioal aerofoll shapes, as folluwss α,

In the first two oases the Kach number is just sub-aritionl, and in the third just superoritioal. In all oases the agreement betreen the present mathod (equation (3.5b)) and the exact solutions is reasonably good; the ohief disorepanoies are usually near the leading edge on the upper-burfece where the volooities tend to be overestimated when the pressure curve is of 'roof top' type (Fig. 6) but underestimated mhen there is a high formard suotion peak (Figs, 5 and7). In Fig. 6 are also inoluded the results from the simplified formula (3.50), whioh in this case happens to be better on the uppersurface near the leading edge, but worse near the position of maximum veloolty; and in Higs. 6 and 7 the results from a former widely-used mathod (Ref. 7, seation 6.1, aquation (4 ath)) are odven to demonstrate the order of improvement now obtained.

The results given hare are typioal of the order of agreement between the approcinate and exact theoriss that have been obtainsd for a ride selection of aerofoils. It should homever be mentioned that there are acsor, notably wher the leading edge shape is particulariy blunt, when the appzoaoh sugeested ebove - essentially an extension of seaond-order theory - falls near the leading edge 8 even in incompresaible flome In suoh cases the devioe sageested by Labrujere, Loeve and sinofis Tho bass thair mathod on an exaot (rather than sevond-order) solution for incompressible flow, should prove advaniageous in oonjunotion with the present method.

Viscous flows
The general principles of the-way in whioh the lift and pressure distribution of an eerofoll are altered by the presence of an attached boundary layer are nell known (geo for example Ref. 11, Ch. IV). Tha prinoipal influence is the displacement effect of the boundary layer and rakes and this oan be estimated to a first approximation by oaloulating the invisold fion about the net displacement surface, as shoma in sisetch (d), the ciroulation being fixed by the condition that the velooities at the upper and lower edges of the boundary layer at the trailing edge shall be equal.

Sketch (d)
It is desirable for oomputational purposes to modify the oriterion that is used to fix the circulation, replacing it instead by the condition that the velocities should be equal at the edges P_{1}, P_{2} of the displacement surfaoe, rather than at the actual edges of the boundary layers this is equivalent to first order to applying the Kutta condition at the trailing edge of a flotitious equivalent oamber line (see sketoh (f) belor).

It is then possible to treat the inviscid flon about the displacement surfaoe by small perturbation theory, and to split it inte two parts:
(a) Symmetrioal flow (at zero inoidence) about the thickness part of the displavement surfaoe Given by $\bar{y}= \pm \mathrm{Y}_{\mathrm{t}}{ }^{*}$, where

Skatoh (e)

The first order perturbation velooity is given, just as in the invisoid oase for an aerofoil, by

$$
u_{1}{ }^{*}=\frac{1}{\pi} \int_{0}^{\infty} \frac{\alpha Y_{t}^{*}(\xi)}{x-\xi} \quad \ldots(4+2)
$$

the oniy difference being the extension of the range of integration to infinity to take into account the thioknese effect of the rake.

The boundary inyer displaoement thiakess over the aerofoil can be oalculated (when the extemal pressure distribution is known) by any surfioientiy acourate method. The oaloulation of the displaosment thiokness of the wake is a more diffioult problem, whioh has not yet been solved. To overoome this difficulty it has been sugcested by Poneli ${ }^{9}$ that $\delta{ }^{*}$ abould be estimated by intorpolation betreen the oaloulated shape of the displaoement surface (aopofoil + bounday layer) ahoad of the trailing edgep and the knom value $\delta^{*} \alpha_{1}^{\frac{1}{2}} \mathrm{C}_{\mathrm{D}}^{+}$at infinity domstream assuming continuity of Rlope of the displacement surface at the Frailing odge.
${ }^{+1 \text { mis }}$ ralationship is preaisely true only for inoompressible flow ${ }^{12}$, but for the subcritioal Maah numbors considered in this papor no appreoiable orrors will be introduced by this assumption.

It has been found from experienos that the predioted distoibutions are not particulariy sensitive to the assumed shapa of the wakes and the further simplifioation has been made of assuming that the wake thickness attains its asymptotic vaius ($\approx \frac{4}{2} \quad C_{D}$) at a finite aistance x domatream of the trailing edge. The oomputation is then sjmplified ab the interpolation an be done by meane of a simple oublo polynomial (see Ref. 9 for details).

Equation (4+2) is thas modified to

$$
u_{1}{ }^{*}=\frac{1}{\pi} \int_{0}^{1+X} \frac{d I_{t}^{*}(\xi)}{x-\xi}
$$

(b) Anti-symetrioal Niow about the distoried oamber line, given by

$$
\xrightarrow[\substack{\text { stream }}]{Y_{0}^{*}=I_{c}+\frac{1}{2}\left(\delta_{u}^{*}-\delta_{1}^{*}\right)} \underset{\begin{array}{l}
\text { distorted } \\
\text { camber line } \\
\text { comber line }
\end{array}}{\text { cail }}
$$

Sketoh (0)

This is equivalent to an effective ohange of inoidence to $\alpha^{*}=\alpha+\Delta \alpha$, where

$$
\Delta \alpha=-T_{0}^{*}(1)=-\frac{1}{2}\left(\delta_{u}^{*}-\delta_{1}^{*}\right)_{I_{*} E_{*}}
$$

and an effeotive camber

$$
Y_{0}^{*}=Y_{0}^{*}-x Y_{0}^{*}(1)
$$

The vorresponding first order velooity perturbation is tinus

$$
u_{i 1}^{*}=\alpha^{*} \sqrt{\frac{1-x}{x}}+s^{(1)}\left\langle Y_{B}^{*}\right\rangle \quad \ldots(4+3)
$$

the Kutta condition at the fiatitious trailing edge having been used to fix the oirculation.
Finally, the first order velooity parturbations derived from equations (4,2) and ($4 \rightarrow 3$) are oombined, together with the prinotpal second order (thiokness/inoidence) term and ocmpressibility oorreotions as described in seotion 3 , to give the velooity ratio

$$
\frac{\left.1+\frac{1}{B}\left[\mu_{1} t^{*} \pm S^{(1)}<Y_{B}^{*}\right\rangle\right] \pm \frac{\alpha}{B} \sqrt{\frac{1-x}{x}}\left[1+\frac{S^{(j)} \alpha_{t}^{*}>}{B}\right]-\frac{1}{2} \alpha^{* 2} / B^{2}}{\left(1+I^{\left.!^{2} / B^{2}\right)^{\frac{1}{2}}}\right.}
$$

an expression preoisely analagous to the 'simplifigd' formula (3.50) above.
To devolop a prooedure for parforming the oaloulations at initio, it is noossary to iterate betmeen successive caloulations of a) the invisoid pressure distribution over the displacement surface (using equation (4al)) and b) the boundary layer devefopment for a give pressure distribution (the 'looal equilibrium' method of Nash and Haodonsid (10) has been used for the oaloulations presented in this paper), stanting with a modifiod invisoid pressure distribution for the basio aerofoil as a first approamation.

A oomputer program has beon waitten mbioh requiras as input
(i) aerofoil ordinates
(1i) Angle of inaidence, Roynolds number and Yach number
(iti) Transftion positions on the two surfacos.
Some under-relacation is necessary to obtain adequate oonvergence, the calculation requiring about 10 iterations. The outyut from the program inoludes overall ift ocefficient and prassure
distribution, boundary layer charaoteristios and drag coefidoient.
As no rellable sethod exdsts for predicting the transition positions, theso must be specified in advance. Expexience has shom that in general the predicted pressure diatributions are omparatively inseritive to the transition gositions. The calculated boundary layor, assuming oontinuity of momentum thickness, has a disoontinuity of δ at the specified transition position. Ir the iteram tive prooess thus disoontinuity is smoothod out in a simple way.

The method deacribed above has been found to give good genexal agreement mith measured pressure distributions, partioulariy if the comparison is made at the same value of the Itft ooaffiofent. The situation with regard to prediction of the lift coefficient (and the detailad pressure diatribution) at a given inodence appears to be oonfused. It has been a matter of general experienos that in the oase of experiments made in solid malled tunels, with standand lift-interference correotions applied to the measured inoidence and lift coefficient, the sirple boundary layer comber model used in the present method usuilly overastimates the lift coeffioient at a given incidenoe (i.e. underestimates the reduction in lift produced by the bouxdary layer) by up to about 5% of total C at incompressible sperds (see e.E. Ref. 11, p. 196 Table V.2), rising to perhaps 10% near the cmitical Mach numbers a similar conolusion has also been reached in the majority of slotted wall tunnels. On the other hand the careful experiments made recently by Pirmin and Cooks in in the $8 \mathrm{ft} \times 6 \mathrm{it}^{12}(2.4 \mathrm{~m} \times 1.8 \mathrm{~m})$ tunnel at RAE Parnborough, using models of different blze with both slotted and solid wall configurations, led to corrected experimental values of C whioh rere actually slightly higher
 researoh on mind tunnel interference on iifting asrofoiis.

In view of the situation desoribed in the previous paragraph, all comparisons with experiment in the present paper will be made with the incidenoe used in the oaloulations adjusted until the lift coefficient agrees with the experimental value. We have chosen as examples two asrofoils considered in section 3 above, for both of whioh extensive pressure measurements have been made reosnty at the Royal Aircraft Establishment by Fixmin and Cook*; these are the 10% thiok RAS 101 (uncambered) and the 14% thiok NDL 3111 (oambered). Results for the RAE 101 aerofoil at $\alpha=2^{\circ}$ nominal (about 1.8° correoted), at Kach numbers 0.4 and 0.675 , are shown in $\mathrm{FH}_{\mathrm{gs}} \mathrm{g} 8$ and 93 and for the NPL 3111 aexofo11 at Maid numbers 0.4 and 0.67 , over a range of inoidenoes in Figs. 10 to 12 . It is olear that the general level of agreement between theory and experiment is very good, and can only be faulted very olose to the trailing edge and over small regions of the upper surface. The discrepanoies near the trailing edge (see in particular Figs. 8 and 9) may be due to defioienoies in the simplified model assumgd for the displacement surface, both in the boundary layer just upstream and in the wake downstream of the trailing edge; they could probably be removed by modifying this model in the light of recent experimental measurements of the boundary layer and wake suoh as those reported in Ref. 12. On the other hand the discrepancies further forward on the upper surface, naar the suation peak induced by inoidenoe (F1gs. 8s 3 and 10) or further aft near the maximum thickness position as the critical Mach number is reaohed (Fig . 11) are mainly due to orrors in the approximate invisoid theory used in the oqloulation method (of. Seotion 3 and Figs. 5 to 7). In the final figure (Fig. 12) it is shown how, at least in one partioular oase, a further small but significant improvement in the agreement betreen theory and experiment oan be achieved by adjusting the theoretioal result to allor for the difference betweon the approximate (equation 3.50) and exaot (seotion2) theories for invisoid flor about the same arofoil at the same lift coefficient (see Fig. 6).

Aoknowledgements

The authors are indebted to Dr . J. Weber ($\mathrm{L}_{0} \mathrm{~A}_{*} \mathrm{E}_{*}$) for contributions to the assessment of the approximate method desoribed in seotion 3, and to Ko C. P. Firmin and $T_{*} A_{0} \operatorname{Cook}\left(R_{\infty} A_{\infty} E_{*}\right)$ for providing the unpublished experimental results quoted in section 40
*These experfmonts are desuribed in Ref. 12, although the measured pressure distributions are not quoted thore.

Moferenoes

1. C.C.L. Sells
2. G. Y N Nieuxlana
3. T. Hantzsohe
4. M.D. Van Dyke
5. W. Gretier
6. P.G. Wiliby
7. J.A. Bagley
8. T. $\mathrm{K}_{\text {. Labrijere }}$ W. Loeve J.IT. Slooff
9. B.J. Powell
10. J.F. Nash A.G.J. Macdonala
11. ed Ihwaites
12. M.C.P. Pirmin T.A. Cook

Flane aub-critical ilon past a lifting aerofoil. B.A.E. Tech. Rop. 67114 (1967)

Transonic potential flow around a family of quasielliptiaal aerofoil seotions N.J.R. Teohe Rep. 172 (1767)

Die Prandtl-Glauertsoie Nauherung als Grundiage fur ein Iterationsorfahron zur Bereohnung kompressibler Unterschallstromungen.
Z. anger. Kath. U. Meoh., 23 (4), 185-199 (194 3)

Second order subsonio aerofoll theory inaluding edge effects
N•A.C.A* Rep 1274 (1956)
Neuere Methode zur Berechnung der ebenen Untersohallstromung an dunen Profilen bei kleinen Anstellwinkeln. Acta Yeohanioa. 1, No. 2 (1965)

The oaloulation of sub-crition pressure distributions on symmetric aerofoils at zero incidence N\& PJ. Aaro Rap. 1208 (1967)

Aerodynamic prinoiples for the design of swept rings
(section 6.1)
Progress in Aeronautioal Soiences, 3, 1-81. Pergamon Press, 1962

An approximate mathod for the determination of the pressure distribution on rings in the lower-aritical speed range. Paper to be presented at AoG.A.R.D. Speoialist's Maeting on Transonio Aerodynamios, Paris, September 1968

The oaloulation of the pressure distribution of a thiak cambered aerofoil at subsonic speeds including the effeot of the boundary layer
NaP.I. Aero Rep 1238 (1967)
The oaloulation of momentum thioknest in a turbulent bounday layer at Maoh numbers up to unity N.P.J. Aero. Rep. 1207 (1966)

Incompressible Aerodynamios O.U.P. 1960

Detailed exploration of the oompressible visoous flow over tro-dimensional aerofoils at high Reynolds numbers. Paper to be presented at 6th I.C.A.S. Conferenoe, Xunioh, September 1968.

FIG. 1 Velocity at maximum thickness of ellipses

FIG. 5 Inviscid pressure distributions

FIG. 8 Pressure distributions in viscous flow

Quasi-elliptic aerofoil ($\tau_{1}=0.7, \epsilon_{0}=0.65, \alpha_{0}=0.07$,

$$
-0.945 \text {) }
$$

FIG. 7 Inviscid pressure distributions

Pressure distributions in viscous flow
FIG. 9

NPL 3111 M $M_{\infty}=0.665, \operatorname{Re-15\times 10^{6}}, \underline{C}_{L}=0.50$

$\overline{\overline{21 \cdot 91]}}$

FIG. Il Pressure distributions in viscous flow

RECHERCHES EXPRRTMEMTALES SUR DES PROFILS DAIILS SUPRRCRITIQUES

par
M. vincemt de paul ${ }^{*}$
O.N.E.R.A. (92-Chatillon - FRAMCE)

Cette communication a pour objet l'étude des répartitions de vitesse d'extrados présentant un pic au voisinage du bord d'attaque. Il est bien connu que ce type de repartitions spparait toujours lors de Ia mise en incidence des profils, mais on peut Également l^{\prime} imposer $k l^{\prime}$ incidence d'adaptation, Dans Ie premier cess, l'importance du pic régit les décollements de bord d'attaque, aux basses vitessos et aux portances élevées; dans le second cas, aux portances modérées du vol è grande vitesse, ce pic détermine le mécanisme de la formation des chocs.

Pour préciser ces problemes, une famille de profils symétriques a été définis, à partir de lois de répartitions de vitesse imposées en incompressibie, à incidence nulle, en fonation de la position ot de l'intensité du pic ainsi que du gradient de racompression qui lui feit suite.
L'étude de l'évolution de la courbure dans la région du bord d'attaque des profils calculés a permis de les classer en 4 grandes catégories. L'anslyse experimentale doit perwettre une critique des qualités aérodynamiques de tels profils aussi bien aux besses vitesses (portance maximale) qu'en transsonique (Mach de divergence en trainée et en portance).

Les pramiers résultats expérimentaux présentés sont relatifs aux essais dans le domaine transsonique.

EXPERTMENILL RESEARCH ON SUPERCRITICAL YING PROFILES

- SUMMARY -

The purpose of this paper is to study aome upper-surface velocity distributions having a peak noar the profile leading-edge.

It is well known that this type of distribution always appears when profiles are at incidence but it can also be imposed at the desien incidence. In the first case the peak governs the separation at the leading-odge, at low speed and high lift; in the second case, at the moderate lift encountered at high speed, this peak determines the mechanism of the shock formation.

Tc oxamino theae problems, a family of sywetrical profiles has been defined, starting from velocity distribution laws in incompressible flow, at zero angle of attack, as a function of the peak position and intensity and also of the folloring rocompression gradient.

The study of the evolution of the curvature in the leading-edge region of the calculated profiles, led to classify them into four main catogories. The experimental analysis aims at oriticizing the aerodynamic qualities of such profiles at low spood (maximum lift) as well as in the transonic range (dras and lift divergence Mach rambor).

The first exporimontal results presented concorn tests in transonic flow.

IL EXISTE BN PRAIICUE deux docaines où les phénomènes transsoniquas limitent les performances d'une voilure (Planche 1).t

- aux portances élevées et aux nombres de Mach faibles;
- aux portances modérées ou mulles et aux grandes vitesses.

AUX CRANDES IMCIDENCES un pic de survitesse se développe dans la région du bord d'attaque ; à partir d'un nombre de Nach M_{0} de 0,3 environ et diune portence de 1 'ordre de 1 , une zone supersonique apparaft dans cette région \ddagger un décollement de la couche limite s'ensuit en général; du probablement à la formation d'un choc, qui provoque une chute précoce de la portance.

Ce phénomène se rencontre notomment à l'extrémité de la palo reculante d'un rotor et limite sa capacité sustentatrice. Pour le comprencire et essayer de le retarder une étude très complète de la rógion du bord d'attaque doit etre faite.

AUX PORTANCES NODEREES ou faibles et aux grandes vitesses, une zone supersonique étendue se développe à l^{\prime} extrados de l^{\prime} aile (et aussi à l'intrados pour les portances faibles). L'apparition des choos entraine un accroissement de trafnée et provoque le décollement de la couche limite et par zuite une chute de la portance, et des variations du moment de tansage;aux faibles portances les dépiacements différents des chocs a l'intrados et à l^{\prime} extrados peuvent Etre aussi a l'origino de fortes perturbations de ce moment de tangage.
 des rotors.

Pour retarder ces troubles transsoniques on a cherché à obtenir des profils pouvant admettre une zone supersonique importante sans chocs suffisament intenses pour détériorer les performances.

Des travaux effectués au N.P.L. [1] ont montré qu'il existait de tels profils (profils de type "peaky").
En particulier, supposons que la géométrie d'un profil soit telle qu'un faisceau d'ondes de détente asser intense prenno naissance au début de la zone supersonique (Planche 2); ces ondes vous se réfléchir sur la ligne aonique en ondes de conpressions de même intensité qui, si elles ne focalisent pas avant d'atteindro la surface, s'y réfléchiront en ondes dont la nature et l'intensité dépendent de la courbure du profil dans la région d'impact ; pour une certaine loi de courbure, qui dépend de l'intensité de la détento initiale, on pourra notanment obtenir une recompression par ondes simples.

Iorsqu' on possède un profll fournissant un faisceau de détente d'intensité convenable, il est possible de cormiger la courbure de l^{\prime} extrados de maniere à tendre vers une recompression quasi isentropique; c'ost ainsi que le N.P.L. a mis au point une méthode approximative simple, baséo sur le calcul des caractóristiques, qui periet, si 1 'on connaft les répartitions de pression expérimentales sur le profil de faire cotte correction. Ie problème consiste donc à obtenir un fajsceau initial de détente adéquate. Il faut a cet effot, que la région de forte courbure du bord d'attaque colncide avec l'origine du domaine supersonique. Les répartitions de vitesse de tels profils présenteront alors un pic près du bord d'attaque.

On constate donc que, tant en transsonique qu'aux basses vitesses la région du bord d'attaque joue un rtle prépondérant. Aussi le but de l'étude dont on présente ici les premiers résultats est-il d'analyser les divers sspects de la fomation de ces pics de survitesse de leur évolution et de leur répercussion.

DSFIIITION DIUNE EAMILLE DE PROFIIS PRESEMIANI UH PIC DE SURVITESSE PRES DU BORD D'ATCAQUE

UNE FAUILIE DE PROFIIS SMETRIQUES a été calculée en incompressible, à partir do répartitions do vitesse à l'incidence nulle, dont le pic près du bord d'attaque differe par sa position x_{p}, son intonsité V_{p} ot enfin par la valeur des paraméres liés a la décroiscance plus ou moins rapide de la vitesse apres ce pic (Planche 3):

- pour $0 \quad \leq<x_{p}$ la vitesse a été prise sous la forme $\frac{V}{V_{0}}=\frac{1}{2} \sqrt{\frac{X}{X_{p}}}\left(3-\frac{x}{X_{p}}\right)$,
- pour $x_{p}<x<x_{R}=0,4 \mathrm{c}$ la vitesse est donnée par une équation dépendant de doux paramètres liés è la position du point d'inflexion I et à la pente en ce point,
- pour $x>$ IR $_{R}$ la distribution des vitesses est la nême pour tous les profils \mid ello est linéaire de $x=0,45$ c à $x=0,8 c$.

LE CALCUL DE CES PROFXLS $z=z(x)$ est offectú đ'après [2] en considérant la vitesse sous la forme :

$$
\frac{V}{V_{0}}=(1+\bar{u}) \cos \varphi
$$

avec cocme valeur approximative de \bar{u} :

$$
\bar{u}=\frac{1}{\pi} \int_{0}^{1} \frac{d z}{d x}(\xi) \frac{d \xi}{x-\xi}
$$

$$
\text { avec } \frac{d z}{d x}=\operatorname{tg} \varphi
$$

L'inversion de i'intégrale permet d'exprimer la pente du profil sous la forme

$$
\frac{d z}{d x}=\frac{1}{\pi \sqrt{x(1-x)}}\left[\frac{z_{B F}}{2}-\int_{0}^{1} \frac{\bar{u}(\xi) \sqrt{\xi(1-\xi)}}{x-\xi} d \xi\right]
$$

où z_{BF} est 1 a dean époisseur du bord do fuite. Ia vitesse étant donnée, cette pente est alors calculée par itcrations.

L'erreur cocmise par cette méthode est faible et localisée dans une région très proche du bord d'attaque. Une coaparaison entre la répartition de vitesse imposée pour le calcul d'un profil par la méthode précédente, et la répartition déterminée à partir d'une distribution de singularités disposée sur le contour de ce profil, montre notammant que l'intensité du pic est un pei plus faible que prévu (Planche 4).

ETUIE DE LA REGION DU BORD D'ATTAQUE

La planche 5 montre les différentes lois de courbure obtenues pour des profils de la famille ayant un pic de même intensité mais une position $\left(x_{p}\right)$ différente. La courbure est représentée en fonction de φ angle de la vitesse avec la direction oxs ce qui permet de dilater sur la figure la région correspondant au bord'd'atteques. on voit que lorsque le pic se rapproche du bord d'atteque, la courbure en ce point diminue et son érolution est totalement différente. On obtient des courbes anslogues quand pour une position firée du pic on fait varior son intensité.

On a pu ainsi mettre en évidence quatre types principaux d'évolution de la courbure dans la région du bord d'attaque. Ils sont représentés sur la Planche 6, où l'on a schématisé des lois de courbures symétriques ; mais il est bien str possible d'obtenir de part et d'autre du bord d'attaque deux types de courbures différents.

Le type $n^{0} 1$ est classique - La courbure est maximale au bord d'attaque (A) et décroft ensuite régulièrement. Une augnentation au rayon au bord d'attaque, diminue les variations de courbure ; d'autre part, le point d'arrét évolue moins rapidement on fonction de l^{\prime} incidence $;$ aussi les pics de survitesses aux fortes incidences sont-ils en général plus faibles. Il en résulte qu'en incompressible où le gradiont do recompression est plus faible, ainsi que dans le domaine $0,3<M_{0}<0,5$ ou la zone supersonique apparaft pluz tand, les décollements de bord d'attaque sont retardée ce qui entrafne un gair. dans les performances.

La courbure, dans le type $n^{0} 2$ - est aussi maximale on A mais son évolution présente une variation plus rapide a partir d'un cortain point P. Cette variation qui peut ©tro assez brutale est intéressante on transsonique car elle peut pormotere d'obtenir la détente nécossaire pour des profils du type "peoky". Aux basses vitesses et aux incidences croissantes, suivant la position de P et la loi de courbure en emont de ce point, le pic pourra etre da soit uniquament à l'effet d'incidence (comme dans le type 1), la variation de courture on P n'intervenant que dans la recompression, soit à l'effet simultané de 1^{\prime} incidence et de Ia variation de courbure on aval de P. Ie promier ces pourrait otre avantageux car il permettrait d'avoir un pic de survitesse autour do l'acaptation, qui ne viendrait pas ultériourement ronforcer 1^{\prime} intersité du pic da à l'incidonce croissante ; la zone suporsonique n'apparaftrait donc pas prématurément aux grandes incidences, Par contre l^{\prime} influence do la variation de courbure on Y sur la recompression pourrait oftre défavorable.
La région du bord d'attaque du type 3 est dreulaire En transsonique elle pout pormottre aussi d'obtenir des profils de type "peaky". Aux basses vitesses et on incidence la variation de courbure en P régira toujours l_{t} pio de survitesse.
Enfin, dans lo 4 ème typo, la courbure maxinale ne se trouve plus au bond d'attaque mais en P. Dos d'adaptation on simule aingi un effet d'incidence qui pourrait réduire l'incidence do décrochage aux basses vitesses.

ETUDE EXPERTMENIALE AUX GRARDES VITESSES

CONDIMIONS DESSAIS -

Les résultats présentés ont été obtems dans la soufflerie transsonique de l'Institut de Kécanique des Fluides de LILLE, dont les principales caractéristiques sont mentionnéss dans la Planche 7. Las faibles nombres de Reynolds atteints dans cette soufflerie avec des profils de 80 min de corde, obligent à déclencher la transition artificiellement. On utilise pour cela la diffusion transversale de la turbulence créée par des files longitudinaux régulierement ospacés on envergure; cette méthode a pour avantage de ne pas trop perturber l'écoulement non visqueur (en particulier elle ne molifie pas le pic de aurvitesse) ; en outre les perturbations produites dans la couche limite permettont de visualiser les ondes de Kach dans les zones supersoniques.

Avec des maquettes aussi petites (80 mm de corde) la réalisation doit être très soignée
L^{\prime} écart trouvé sur la cote 2 est inférieur à $\pm 0,02 \mathrm{~m}$ (sauf pour le profil B premiòre maquette fabriquée où il était de $\pm 0,04 \mathrm{~mm}$ et pour le profil C dans la région du bord d'attaque ($x<0,6 \mathrm{~mm}$)). Ifinfiuence de cette erreur sur les lois de courbure, notament près du bord d'attaque apparaft sur la Planche 8.

PROFILS ESSAYES B S SOUFFLERIE -

Quatre profils ont jusqu'à prísent été étudiés on soufilerie t un profil de reférence (désigné on abrégé par la lettre A) dont la répartition de vitouse est constituée d'un plateau ($V_{R} / V_{0}=1,125$) de 2 à 40% du profil, et 3 autres profils dont la répartition présente un pic de survitesse situé a la nefe abscisse $x_{p}=0,02 c$. Les profils B et C ne diffèrent que par la loi de recompression imédatement apress le pic ; le profil D a un pic beaucoup plus intense. Ces profils ont, dans la région du bord d'attaque, une loi de courbure du type 2. Les planches $9 \& 10$ montrent leurs princicales caracteristiques grométríques et leurs répartitions de vitease en incompressible à incidence nuile.

EIUDE DU PROFIL DE PEFERENCE (A) -

Ce profil est d^{\prime} abord compare (Planche 11) à un profil bien conm, le NACA 64 a 010 , symétrique lui-aussi, d'épaissour relative tres voisine (10% au lieu de $10,17 \%$) et dont le mattre couple se situe aussi un peu avant 40% de la corie. C_{1} profil a été essayé dans la soufflerie $S 4_{\mathrm{L}}$ de Ctaidis, dans des condi-
 le nombre de Mach de divergence de trainés.

Ce profil de reférence (A) a des propriétés extrémement intéressantes on inciderce, en particulier à l'incidence de $2,5^{\circ}$. $1 M_{0}=0,79$ (Plarche 12) ini les pressions a la paroi du profil, ni la strioscopie ne mottent en ovidence un choc à la fin de la zone supersonique i la strioscopie permet de voir la structure de cette zone supersonique t ondes de détente et ondes de compression. Lo calcul de cette zone a été effectué par la méfhode des caractéristıques a partir de la répartition de pression experimentale trouvée sur lo profil (sans tenir compte de la couche linite). La ligne sonique a pu ainsi etre extrapolée.

On a reporté sur la photographie des lignes caractéristiques ainsi calculées (une onde de détente ot ses rériexions successives sur la ligne sonique ot le profil); la comparaison avec les ondes visualisées sur la strioscopie est très bonne. Cola prouve notament que le caractère bidimonsionnel de l'écoulement est fort peu porturbé et confirmo la valeur et l'intérét des renseignements donnés par cette visualisation. L'augentation localiśéo de vitesse, observéssur la rópartition des nombres de Mach locaux à la fin de la recompression est due à l'accroissement de courbure imposé au profil dans cette région (voir la Planche 16).

Sur la Planche 13 on a reporté des caractéristiques calculéos et lis courbes $\varphi \pm \omega, \omega$, étant l'angle de PRANDPL METER sur le paroi du profil. Ces courbes montrent que la recompression no steffectue pas rigoureusement par ondes simples (dans ce cas la courbe $\varphi-\omega$ sorait uno horizontale : $\varphi=\omega$ a $c^{\text {te }}$). Cependant apres $z / c=0,15$ la pente de cette courbe est très faible z les ondes rérléchies par la parol du profil sont toujours des ondes de détente dont l'intensité décroft au cours des réflexions successives pour devenir négligeable. Cet exempio est intéressant car il prouve que l^{\prime} on peut obtenir des profils présentant une zone suporsonique terminée par uns recompression quasi isentropique avoc des profils qui ne aont pas vraiment de type "peoki" dans le sens qui ressort des travaux du N. P. L.

La Plancho 14 montre le champ aérodynamique autour du profil dans les mémes conditions que précédement ($i=2,5^{\circ}$ et $\mathrm{M}_{0}=0,79$) ce chemp est déduit des pressions rolevéos à la paroi de la souffierie ia oncore aucun choc n'est mis on évidence. Ce rolevé permet do préciser encore la structure do la dorniere partio do la zone supersoniquo.

La comparaipon (Planche 15) des zonos supersonial os déduites do ces pressions à la puroi, ot du calcul dést mentionué, basé sur les pressions relevées sur le profil, montre un écart assez important surtout au dóbut do la z ne superseńquo. Ceci ost da à la couche limite assez ópaisse qui se dévoloppo sur la parol de la souffloric, et ausai a l'imprécision du calcul dans cette résion.

EFFET DUN PIC DE SURTITESSE

Le planche 16 montre uno comparaison à l'incidence mulle de l^{\prime} évolution des vitesses sur $1 e$ profll a de référence et sur le profil D qui présente un pic de survitesse près du bord disttaque. Ce pic niest pas assez intense pour donner lieu vers l'aval à une zone supersonique étendue à l'extrados. En effet apres $x=0,1$ C les vitesses évoluent do la même manière sur A ot sur D. On remarque copendant une légère différence en aval du maitso couple. Sur le profil 1 il se produit une recocopression avant le chocs ceci n'est pes da, come on pourrait le penser, a un choc en λ caractéristique diune couche limite ladanaire mais come la atrioscopie le confirne a un effet de la géométrie du profll qui comporte à cst endroit un accroissement de courbusp traduisant la répartition de vitesse choisie en incompressible; le profil D ne présente pas cette anomale à cause d'une léfère fmprécision de réalisation de la maquette dans catte refion (voir Planche 8).

Sur la planche 17 on remarque que la trafnés est plus forte sur le profil D malgré lo gain de succion representé par le pic. Your en pettre en évidence l'origine on a tracé è un nombre de Mach nettement subsonique la répartition des pressione suivant l'axe oz perpendiculaire à la vitesse à l'infini. Le courbe ainsi obtemue, qui donne la tratnée par intégration, est décomposéc en deux boucles, une boucle de succion qui représente une poussée et une boucle do trainée. Pour le profil D cotte dernière boucle est plus importante que pour A; on a vérifí́ que dea modifications de la loi de vitesse qua 1^{\prime} on s'était imposé a priori on amont du pic lors du calcul de ce profil, permettaient de réduire cette boucle de tratnée. Mais les lois de courbure correspondantos dans la région du bord diattaque tendent alors à passer du type 2 au type 3 ou meme 4 ce qui risque d'etre moins favcrable aur basses vitesses.

La planche 18 montre la comparaison des nombres de Hach locaux è l'extrados des profils A et D à 1 !inaidence $2,5^{\circ}$ et à $M_{0}=0,8$, suivant les axes ox et oz (boucle de succion). Pour (D) le choc se produit très:légerement on amont de la crete (point du profil où la tangente est parallele à la vitesse à i'infini). Pour (1) au contraire le choc se forme on aval de la crete ce qui a pour offet de dimimuer la boucle de succion. Sur la Planche 19 on a effectué l'intégration séparée des boucles de trafnée st de succion; cela met en évidencs le fait bien conmu [1] que l'accroissament initial de la trafnée est lié à la seule perte de succion (la boucle de trânée reste en effet sensiblement constante).

La diminution de la succion s'effectue à un nombre de Mach pius éleve pour le profil d ce qui se traduit par un nocibre de Mach de divergence de trałnée (ou par convention $d C \times / d M=0,1$) plue gesind. On constate aussi qu'a catte incidence la portance est madmale à un nombre de Mach (Mach de divergence de portance) plus élevé aussi.

La Planche 20 parmat de comparer les profils B et C. Leurs répartitions de vitesse présentent un pic de meme intensité mais la loi de recompression est différente. Le profil B pour lequel le eradient de recompression est plus important, donne un gain non négligeable sur le nombre de Mach Mre .

La Planche 21 montre les strioscopies de l'écoulement.

COMCLUSION

Il est difiticile de conclure d'après ces quelques exemples, sur les anéliorations à esporer avec un profil presentant, à l'incidence d'claptation, un pic de survitesse pres du bord d'attaque par rapport à un proflil à répartition du type "plateau". On a cependant montré que ce pic devait, otre défini avec soin pour pouvoir espérer un gain appréciable, sur le trafnée notamente

Des éléments nous manquent encore pour faire une critique assez complète des types de répartition de vitesse ot des loje de courbure près du bord d'attaque, qui permettraient d'obtenir de la raçon la plus satisfaisente possible, les performances recherchées tant en transsonique qu'aur basses vitesses ; c'est pourquol ces études vont être poursuivies aussi bien aux vitesses élevées qu'aux basses vitesses nojamsent dans des souffleries à densité variable, ceci ailin d'analyser également l'iniluence du nombre de Reymolds et d'essayer d'ériter le problème très difficile du déclenchement artificiel de la transition sur ce type de profil.

REFARENCES

[1] H. H . PELRCEY -

The aorodymamic design of section shapes for suept wings.
advances in aeronauticel bciences (Vol. 3) - Porgamon Press Ltd - IONDRES (1962)
[2] J, NEBER -
The calculation of the pressure distribution ovor the surface of two-dimmsional and suept wings with symotrical norofoil sections.
ARC - R et M 2918 (1956).

Fig. 1 Les différents types d'écoulement autour d'une aile.

SUPERSONIC AREA

Fig. 2 Structure de la zone supersonique.

Fig. 4 Comparaison entre la méthode de calcul approchée et une méthode numérique exacte.

Fig. 5 Evolution des lois de courbure près du bord d'attaque en fonction de la position du pic de survitesse.

Fig. 6 Différents types de distribution de courbure autour du bord d'attaque.
I.M.F. LILLE TWO DIM. TRAMSOMIC TUMNEL

Fig. 7 Soufflerie transsonique de 1'I.M.F. ITME.
OMERA PROFILES TESTED IN

Fig. 9 Principales caractéristiques géométriques

COMPARISON BETWEEN NACA $64{ }_{A} 010$

AND "A" TYPE PROFILES

Fig. 11 Comparison du profil NACA 64 a 010 ot du profile A.

Fig. 12 Ecoulement à 1 'extrados du profil \mathbb{A} pour $\alpha=2,5^{\circ}$ et $\mathbf{M}_{0}=0,79$.

Fig. 13 Profil $1, \alpha=2,5^{\circ}-M_{0}=0,79:$ zone supersonique calculée à partir des mesures de pressions sur le profil.

Mach number contours from side-wall pressura meduruments $M_{0}=0,789, \alpha=2,5^{\circ}, c_{L 2 D}=0,3$

Fig. 14 Profil A, $\alpha=2,5^{\circ} \ldots M_{0}=0,79$: lignes isobares autour du profil, déterninées à partir de mesures de pression sur la paroi latérale de la soufflerie.

Fig. 15 Comparaisor de la zone supersonique colculée à partir des mesures de pression sur lis profil et de celle déduite de mesures de pression à la paroi de la souffilerie.

Fig. 16 Comparaison des profils A et D à incidence mulle.

Fiॄ 17 Trafnée des profils A et D à incidence mulle.

Fig. 19 Portance et trainée des profils A at D à $\alpha=2,5^{\circ}$

COMPARISON BETWEEN TWO PROFILES " B " and " C ", with different M_{l} (UPPER SURFACE) $^{\text {recompressions after }}$ the velocity peak
 $\alpha=2,5^{\circ}$

$$
C_{L_{M}=0,8}\left\{\begin{array}{l}
B \rightarrow 0,30 \\
C \rightarrow 0,32
\end{array}\right.
$$

$\xrightarrow[1]{-9}$
$M_{0}=0,6$

Fig. 20 Comparaison ides profile B et C ad $\alpha=2,5^{\circ}$.

LEADING-EDGE SUPEFSONIC VELOCITY PEAKS AND the determination of the velocity distribution on an aerofori in a sonic stream
N. Thompson*
(Engineering Sciences Data Unit)
P.G. Tilby**
(National Physical Laboratory)

* Senior Engineer
** Senior Soientific officer

sompary

The geometric features of an aerofoil that are required to produce a supersonic relocity peak at the leading-edge are examined, and a rule is presented for relating the compressible vilocity on a round leading-edge to the incompressible velocity. For a cupersonic peak, the sonic point must lie on a region of sustained high curvature, and the dependence of the recompression on the way in which the curvature is reduced is indicated.

An ompirical method for deteraing the complete velocity diatribution downstream of the sonic point is given for an aerofoil in a sonic stream. The velocity distribution for a given aerofoil is shown to be given by a universal function which is modified by a parametor based on geometry and one involving the position of the soaic point. Several comparisons of predicted and measured velocity distributions are presented.

```
    NOTATION
    aerofoil chord
    pressure coofficient
    thickness parameter f=0.1/[2(z/c) fmax 
    F( )
    FO()
# stagnation pressure in undisturbed stream
& influence factor pertaining to large disturbance flov near leading-edge
M local Mach number
p local static pressure
r local surface radius of curvature
s distance along surface
t aerofoil maximum thickness
0 local velocity
x chordwise distance measured from leading-edge
z aerofoil ordinate meapured from chord line
a angle of incidence
0 aerofoil surface slope relative to chord line
( aerofoil surface slope relative to free-stream direction
\lambda influence factor pertaining to supersonic region of flow
p local surface curvature
\phi angle between local tangent at surface and tangent at stagnation point
\omega}\mathrm{ Prandtl-Heyer angle
Suffixes
pertaining to value at sonic point or point corresponding to
r/c = 0.2 whichever is larger
pertaining to experimental value
1 pertaining to incompressible flow value
s pertaining to value at sonic point
\infty pertaining to free-stream conditions
```


PARTI

leading-Edge supzrsonic velocity penks

B.G. Wilby

1. IhTRODUCTION

As incidence or free-stream Mach number increases, the velocity on the surface of an aerofoil increases and eventually reaches sonic valus at some point. With further increases of incidence or Hach number a region of supersonic flow appears on the aerofoil and is usually terminated by a shock wave which eventually becomes strong enough to cause the boundary-layer to separate. How the strength of the shock wave has been found to depend upon the way in which the supersonic flow develops, and it can be considerably reduced if the pressurs distribution is of the peaky type. The latter involves a rapid expansion to a peak velocity at the leading-edge, followed by a compression which is mainly isentropic but usually finishes with a weak shock. This-type of pressure distribution is essential if one is to achieve a large rirgin in incidence or lach number betwaen the first appearance of supersonic flow and shock induced separation.

However, not all pressure distributions with leading-edge suction peaks are necessarily desirable ones. On the one hand, the peak may grow very quickly with incidence, resulting in a high peak followed closely by a strong shock wave, and on the other hand the peak orowth may be too small in which case the peak is followed by a weak compression and then a further slow expansion that terminates in a strong shock. The way in which the peak develops with incidence or Mach number depends to a large extent upon the geometry of the leading-edge and it is necessary to ind out what the controlling influences are before it is possible to design an aerofoil that sill have the most beneficial development of supersonic flow.

2. THE FORLATIOR OF A LEADIMG-EDGE VELOCITY JEAK

As a first step in the study of leading-edge supersonic suction peaks, it is essential to understand the geometric features of an aerofoil that are responsible for the formation of such a peak. The region of immediate interest is that in which the velocity of the air is supersonic and thus the sonic point is a useful reference point. If the sonic point is very close to the leading-edge then it lies in a region of fairly high surface curvature and the flow continues to expand beyond the sonic point as it turns to follow the aerofoil profile. This expansion of the flow can be considered to take the form of a succession of descrete expansion waves generated at the surface, which are transmitted to the rest of the flow field alonc characteristic lines (Fig. l). Along each of these lines the value of θ - ω, where ω is the Prandtl-Meyer function, is constant. If the entire flow field vere supersonic then these characteristics or expansion waves would continue to infinity and the change in Prandtl-Neyer function (which is a measure of the velocity) as the flow followed the profile would simply be the change in aurface slope. However, the flow field under consideration is a mixed one, being mainly subsonic but containing a small supersonic region. The two resions are separated by the sonic line at which the expansion waves can be considered to be reflected as compression waves. These compression waves are of course members of the second family of characteristics, along each of which $0+\omega$ is constant, and result in a reakening of the generated expansion at the surface of the aerofoil. If there is to be a net expansion then the compression waves must be more widely spaced than the expansion waves, and fuxthermore, if the expansion is to be very rapid then the expansion waves that are produced at the beginning of the supersonic region must be generated in quick succession. Now the value of the Prandtl-Meyer function ν on the generated expansion wares is directly proportional to the expansion angle or the change in slope. Thus if s is the distance along the surface

$$
\begin{equation*}
\frac{\partial \nu}{\partial s}=-\frac{\partial \theta}{\partial s} \tag{1}
\end{equation*}
$$

- ρ (the surface curvature),
and for a rapid initial rate of expansion a high value of curvature is required. The magnitude of the net expansion wili depend upon how long the high curvature is maintained, and the strength of the reflected system of compression waves. Now if surface curvature is maintained at a high value for a considerable range of surface slope then there must, for geometric reasons, follon a rapid reduction of curvature to a very low level in order that the reaulting profile should be of the aerofoil type. The aimplest form of such a profile is shown in Fig. 2 and is un aerofoil formed mainiy by an arc of a circle of large radius but having a circle of small radius for a leading-edge, a small circle being the best way of producing a sustained rapid expansion. Suppose that the sonic point lies on the leadingedge circle where the surface slope is e_{s}; then at some point on the leading-edgo circle, downstream of the sonic point, the net rate of expansion will be given by the combined effects of the generated rate of expansion $P_{0}(-1 / 5)$ and the rate of compression from the reflected

24-2
system of mayes. If the latter is expressed as ρ_{0}, then the net expansion is

ま.e.

$$
\begin{align*}
& \frac{\partial \omega}{\partial \theta}=P_{0}-\eta P_{0} \\
& \frac{\partial \omega}{\partial a}=(1-\eta) P_{0} . \tag{2}
\end{align*}
$$

If
is constant then equation 2 can be integrated to give

$$
\begin{equation*}
\omega=(1-\eta)\left(\theta_{s}-\theta\right) \tag{3}
\end{equation*}
$$

In Fic. 3 , values of ω measured on a circular leadins-edge are plotted against (and apart fron the initial curve, the relationship is seen to be effectively linear, indicating that η is in fact constant $(\eta \approx 0.5)$ and that equation 3 is valid. This initial curved portion of the graph is expected as it can be shown theoretically that ow/o $=0$ at $k=1$. Experimental evidence so far collected indicates that for well established supersonic flow the value of η is effectively independent of free stream Mach number, incience and leadine-edce radius.

Consider now what happens when the: curvature discontinuity is reached. Here, the rate at which expansion waves are fenerated is dramatically reduced from ρ_{0} to $\rho_{1}(=1 / R$ where R is the radius of the arc of the large circle). On the other hand it can be expected that the rate at which compression waves arrive at the surface does not immediately change as it depends upon the upctream conditions. Thus the net rate of expansion can probably be given by

$$
\begin{equation*}
\frac{\partial \omega}{\partial s}=P_{1}-\eta \rho_{0} \tag{4}
\end{equation*}
$$

Which is a negative quantity as $p_{1} \ll \eta P_{0}$, and the net effect is a strong compression. The curvature discontinuity is seen to be the point at which a net expansion is replaced by a net compression and must therefore be the point at which maximum velocity is reached, that is the position of the velocity peak. A typical case for thie type of aerofoil is shown in Fig. ${ }^{\text {, }}$ where an experimental prescure distribution is superimposed on the curvature distribution. In the lower part of the figure the pressure is plotted against diatance from the leading-edge and it is seen that the compression that follows the suction peak is so strong that a shock wave is formed. However, with such a curvature distribution it is possible to locate the position of the suction peak precisely, and give a ciose estimate of its magnitude, It thus forins a useful basis on which to study the effects on the suction peak of such parameters as leading-edge radius, juch number and incidence. Before moving on to these topics it is necessary to examine the way in which velocity increases from the stagnation point up to the supersonic region.

3. VELOCITY DISTRIBUTIONS ON ROUND LEADIMG-EDGES

An experimental investigation of velocity distributions on round leading-edges has shown that for any free-stream Nach number in the range $0<\mu \leqslant l$ the velocity U can be related to the inconpressible velocity in the form

$$
\begin{equation*}
ण / U_{\infty}\left(M_{\infty}, \phi\right)=\sigma_{1} / U_{\infty}(b \phi), \tag{5}
\end{equation*}
$$

where θ is the angular displacement from the stagnation point, and

$$
\begin{equation*}
b=1-\mu N_{\infty}^{2} \tag{6}
\end{equation*}
$$

However, μ was found to vary according to the effective profile. That is, it varies frol. profilo to profile and it also varies as the stagnation point moves on a given aerofoil. An empirical relation between μ and the corresponding incompressible velocity distribution was found to be

$$
\begin{equation*}
\mu=\sqrt{\frac{1+\tau}{2}} 0.42 \tag{7}
\end{equation*}
$$

where $1+\tau$ is the initial value of the slope of the curve U_{i} / U_{∞} againgt oin ϕ. Then t-1 Eqn. 6 reduces to the reault suggested in Ref. 1 for circular cylinders and aerofoils with sustained circular leading-edges. The validity of the above relationships is demonstrated in Figs. 5 to 7 where measured values of U / J_{∞} are plotted against bd for a variety of leading-edge shapes (the appropriate curvature distribution is shown in each figure), and for each case the experimental points are found to collapse fairly woll on to a single ourve phich is very close to the theoretical inviscid incompressible solution. It will be noted that Eqn, 5 indicates that locsl velocity ratio decreases es free-stream Mach number increases,butitis woil knomn that over moat of the aerofoll profile, where the surface slope is amall, the reverse is true. Thus Eqn. 5 cannot be expected to hold for large
values of ϕ. However, it does hoid for aerofoile at incidence (see Fig. 8) and if conditions are such that a well established region of supersonic flow exists close to the leading-adge then it is sufficient to give the velocity up to and including the sonic point. In all cases the compressible velocity diatribution can be related oaly to the incompressible velocity distribution that has the identical stagnation point.

4. TEE EFFECTS OF LEADING-EDGE GEOMETRY AND LACH NOKBER ON THE ZERO INCIDENCE VELOCITY PEAK

With the aid of the above velocity rule it is possible to examine further the geometric features that are required to generate a supersonic velocity peak at zero incidence. It is seen in Figs. 5 to 7 that the longer the leading-edge circle is sustained, the steeper-the velocity gradient becomes and the greater the maximum velocity is, hence the greater the likelihood of sonic velocity being attained at a moderately high value of surface slope. Fig. 9 shows the experimental pressure distribution at $k_{\infty}=0.8$ for the aerofoil referred to in Fig. 5, and the supersonic velocity peak will be noted. In contrast, the theoretical velocity diatribution (calculated by the approximate method of Rei. 2) at the same Naoh number for an elliptic aerofoil of the same thickness is seen to be everywhere subsonio. This once more demonstrates the importance of a considerable extent of high surface curvature.

Returning to the geometrically simple profile defined by two circular arcs (Fig. 2) joined at a large curvature diacontinuity at a fairly low value of surface slope, the velocity distribution on the leading-edge of such a profile will be close to that for a circular cylinder. The way in which the leading-edge velocity rule predicts that tho sonic point will vary with Hach number for this case is shown in Fig. 10. A supersonic peak will begin to form as soon as the sonic point first appears on the leading-edge circle and will grow as iilach number increases and the sonic point moves further forward of the curvature discontinuity. Maximum peak will first be reached when the sonic point reaches its most forward position at $L_{\infty}=0.9$. Consider now a family of this type of gerofoil whare each member has the same maximum thickness and the same chordwise position of maximum thickness. The profile of each member is then determined by the value of the leading-edge radius and in Fis. 11 it is seen that as leading-edge radius increases, the curvature discontinuity moves to a lower value of surface slope. Thus for a fixed lach number and sonic point position (assuming that the sonic point lies on the leading-edge circle), the supersonic velocity peak will grow as leading-edge radius is increased. This is a tendency in the case of more general profiles. It will of course be realised that the sonic point will not in fact remain stationary as the geometry changes but will move in a way that accentuates the effect deacribed.

5. THE VELOCITY PELK ON AN AEROFOIL AT INCIDENCE

A lifting aerofoil is naturally of greater interest but presents a further problem due to the movement of the stagnation point with incidence and Hach number. As the atagnation point moves round to the lower surface with increase of incidence, the sonic point moves further forward and the velocity peak grows. Thus as the deeisn incidence increases then, in order to prevent the velocity peak becoming too hish, the leading-edge geometry must be changed so that the rapid drop in curvature occurs at a higher value of surface slope. There is now an added effect of hach number on peak height as for a fixed incidence the stagnation point moves forward as liach number increases, and the movement of the sonic point is now a combination of its movement relative to the stagnation point and the movement of the stagnation point itself. Fis. 12 illustrates the situation for a particular aerofoll at 30 jncidence and shows the measured variation of surface slope at the stagnation point and the calculated variation of ϕ (the angular separation of the sonic and stagnation points), which combine to give the surface slope at the sonic point. The most forward position of the sonic point is seen to be at $M_{\infty}=0.7$ and this is thus the Wach number for maximum peak height at this particular incidence. This result, together with the zero incidence result, indicates that the Nach number for maximum velocity peak varies with incidonce.

The idealised situation, of an aerofoil at incidence which generates a supersonic velocity peak followed by an isentropic compression, is depicted in Fig. 13 and helps to illustrate the various design problems involved. The accelaration from the atagnation point, located on the lower surface, is shown with sonic velocity reached on the leading-edge circle. Then follows the supersonic acceleration mich is modulated by the reflected compression waves. The latter become dominant after the rapid fall of curvature and it is the delicate balance betreen the generated expansion and the refiectod ccmpression that maintains the isentropic compression. How to design for this ijeal oase is not in general known although Nieuwland has produced some partioular solutions.

Although the ideas expressed here are far from providing a complete solution, they dc assist the appreciation of the various fectors involved in the genoration of a supersonic velooity peak at the leadinguedge of an aerofoil.

1. \quad ILBEY, P.G
2. TTILBY, P.G.

Velocity distributions on round leading-edges for free-stream liach uumbers between sero and unity. Part 1.
KPL Aero Report 1225, isarch 1967.

The calculation of sub-critical pressure distribution on symmetric aerofoils at zero incidence.
NPL Aero Report 1028, Harch 1967, ail C. P. No. 993, 1968.

1. INTROEUCTION TO PART II

The need to be able to predzct the velocity distribution on aerofoils with regions of supercritical flow is an important step in the design of the modern generation of highsubsonic crujse aircraft. The practical significance of this need lies, for example, in the prospect of relating the shock strength to that required to provoke shock-induced separation.

Part I has shown in particular how, for round-nosed aerofoils, a velocity rule may be used to determine local velocities in the initial rapid flow expansion from the stagnation point in the Mach number range $0 \leqslant 3_{\infty}<1.0$. The rule is only valid upstream of the small-disturbance flon region but, in most cases of practical interest, can be used to determine where the sonic point occurs in the initial fiow expansion for freestream liach numbers within the transonic speed range. Part II of this paper deals specifically with conditions at $M_{\infty}=1.0$ and considers, in particular, the problem of predicting local supersonic regions of flow between the sonic point and the shock wave terminating the supersonic region of flow. The derivation of a rapid, but accurate, method is described for obtaining surface pressures in the supersonic region of flow at $W_{\infty}=1.0$ which may be applied to any arbitrary round- or sharp-nosed, lifting or nonlifting aerofoil once the conic point (or the flow condition at ome point downstream of the sonic point) has been determined from priori considerations.

2. THE REGION OF LOCAL SUPERSONIC FLON

The purpose of this section is to show how the local supersonic velocity distribution at $M_{\infty}{ }^{m} 1.0$ on any arbitrarily-dofined section way be expressed in the form of a simple correlation with chordmise distance of a parameter,involving only the local Prandtl-Bleyer angle, the serofoil geometry and a factor dependent on the sonic point location, It follows that for any aerofoil for which the sonic point location and the geometry are known, a method of predicting the local supersonic region of flow is embodied in this simple correlation curve.

The method, derived here, is based on a consideration of the characteristics network betweon the aerofoil surface and the sonis line and certain transonic similarity laws. The charactoristics netrork, as noted in Part I, can be considered to consist of a family of expanaive aimple waves (of the $8-\omega$ type), generated by a change in slope at the surface, onto which is auperimposed a family of oompressive waves (of the $\theta+\omega$ type) that account for the non-uniformity of the flow approeching the sonic line. Thus, the total compressive effect that returns to the surface up to any particular chordwiae point is given by $(\theta-\theta)-\omega$. The chordvise variation of $\theta+\omega$ therefore gives a measure of this totai compressive effect that reaches the surface from the sonic line and, in particular, the value of $\partial(\theta+\omega) / \partial(x / c)$ is the strength of the compressive diaturbance at any particular point.

A concideration of the transonic similarity laws (Ref. i) showe that for families of symmetrical aerofoil sections given by

$$
\begin{equation*}
z / c= \pm(t / c) F_{0}(x / 0) \tag{1}
\end{equation*}
$$

the transonic flow fields about the aeroioils at zero incidence are similar if the parameter

$$
\begin{equation*}
\xi_{\infty}=\frac{1-\mathrm{N}_{\infty}^{2}}{\left[\Psi_{\infty}^{2}(\gamma+1)(t / c)\right]^{2 / 3}}=\text { constant. } \tag{2}
\end{equation*}
$$

This implies that for $H_{\infty}<1.0$ the flow fields about a family of aymatrical aerofoils, varying only in t / c, will not be similar at the same value of \mathbb{M}_{∞}. Hovever, at $\mathbb{H}_{\infty}=1.0$ the flow fields will be similar since the parameter $\xi_{\infty}=$ constant $=0$.

Consider now the similar flow fields, for $\mu_{\infty}=1.0$, about two related aerofoils as illustrated in Fig. 14. In the flow field at, and away from, the surface it may be deducod from Ref. 1 , within the framework of small-disturbance asaumptions, that related points in the two similar flows, at corresponding values of x / c, will obey the relationships

$$
\begin{align*}
& c_{p} /(t / c)^{2 / 3}=c_{p}^{\prime}\left(t^{\prime} / c\right)^{2 / 3} \tag{3}\\
& z(t / c)^{1 / 3}=z^{\prime}\left(t^{\prime / c}\right)^{1 / 3} \tag{4}\\
& \theta /(t / c)= \tag{5}
\end{align*}=\theta^{\prime} /\left(t^{\prime} / c\right)
$$

(where 2 and Z^{\prime} denote ordinates of related points in the flow fields measured from the aerofoll surface and θ and θ^{\prime} are the corresponding local flow directions referred to the free-stream direction). Thus, at the surface, points at a given value of x / c in the tro similar flow fields are related points. Furthermore, since at the sonic ine

$$
c_{p} /(t / c)^{2 / 3}-c_{p} /\left(t^{\prime} / z\right)^{2 / 3}=0
$$

points P and P^{\prime} (which correspond to the same value of x / c) on the sonic line in the two similar flow fields are slso related points. It therefore follows that, as in Fig. 14, the tro pairs of characteristic lines $\left(\theta_{1}-\omega_{1}\right),\left(\theta_{2}+\omega_{2}\right)$ and $\left(\theta_{1}^{\prime}-\omega_{1}^{\prime}\right),\left(\theta_{2}^{\prime}+\omega_{2}^{\prime}\right)$, which meet the sonic line at the related points P and P, will also originate from, and return to, the surface at the same (related) chordwise points, A and A^{\prime}, B and B^{\prime}. (The values of $\theta_{1}, \omega_{1}, \theta_{2}, \omega_{2}$ etc. here relate to local values away from the surface.)

Along a given characteristic of either the $\left(\theta_{1}-\omega_{1}\right)$ or $\left(\theta_{2}+\omega_{2}\right)$ family

$$
\text { Similarly } \quad \begin{align*}
& \theta_{1}-\omega_{1}=\theta_{2}+\omega_{2}=\theta_{L_{1}} \text { (at the sonic line). } \tag{6}\\
& \theta_{1}^{\prime}-\omega_{1}^{\prime}=\theta_{2}^{\prime}+\omega_{2}^{\prime}=\theta_{L}^{\prime} . \tag{7}
\end{align*}
$$

Thus, in particular, from equations 5,6 and 7

$$
\begin{equation*}
\left(\theta_{2}+\omega_{2}\right) /(t / c)=\left(6_{2}^{\prime}+\omega_{2}^{\prime}\right) /\left(t^{\prime} / c\right) \tag{B}
\end{equation*}
$$

Therefore, for families of symmetrical aerofoils at zero incidence, the value of $(\theta+\omega)$ at any specific chordwise point on the surface is proportional to t / c. (This relationship is, of course, also applicable to related points away from the surface.) Defining a transonic similarity parameter $f=0.1 /(t / c)$ (the factor 0.1 being included so that values of f are close to unity) a general relationship for affinely related symmetrical aerofoils at zero incidence therefore existe, of the form

$$
\begin{equation*}
(\omega+\theta) f=F(x / c) \tag{9}
\end{equation*}
$$

and is applicable to points at the surface.
For affinely related cambered aerofolls at zero incidance a similar relationship may be established by defining f in an appropriate manner, because diaturbances on the lower surface do not significantly affect the upper surface supersonic region of flow (and vice-versa). The similarily parameter, f, for cambered aerofoils at zero incidence, is, therefore, based on the maximum upper (or lower) surface ordinate instead of the overall value of t / c,

$$
\begin{equation*}
\text { 1.e. } f=\frac{0.1}{2(z / c)_{\max }} \text {. } \tag{10}
\end{equation*}
$$

The relationship may also be extended to aerofoils at incidence by including an allowance for the effective change in suriace slope relative to the free-stream direction attributable to the incidence settiag. Effectively, at the surface, the slope, relative to the frsestream direction, changes from θ to $\theta=\theta-a$. a general relationship of the form

$$
\begin{equation*}
(\omega+\theta) f-P(x / c) \tag{11}
\end{equation*}
$$

aay therefore be established for a family of aerofoils, which is exact for affinely related symetrical aerofoils at zero incidence (within tise framenork of small disturbance assumptions) and is approximately true for other cases.

For a family of aerofoils the function $F(x / c)$ is, therefore, unique. However, this is not so for serofoils which are unrelated, as demonstrated in Fig. 16^{*} where valuas of $(\omega+\theta)$ f, obtained from an analysis of experimental data for a mide range of round-nosed section shapes testied in a sonic stream, are presented as a function of $(x / c)^{1 / 3}$. (The abscissa scaie of $(x / c)^{1 / 3}$ is chozen simply to expand the scale of x / c near the leading edge where the variation of ($\omega+\theta$) with x / c is very rapid.) The analyeis domonstrates that the compressive effect (given by the chordwise variation of ($\omega+\mathbb{C}$) varies monotonically with x / c from the sonic point, as illustrated also in the aketches of Fig. 27. This is true even during a very rapid flow expansion from the sonic point and during the flow recompression, brousht about by particular locel chordinise variations in θ or r / c, that often follows such a rapid flom expansion, as discussed in Part I. In addition the chordwise variations of ($\omega+0$) f, although not identical in each case, are very aimilar for a wide range of section shapes.

The aimilarity betweon the chordisise variations of ($\omega+0)$ f with x / c in Fig. 16 for aerofoils which are not related auggests that the approximate collapse of data points about the mean curve of Fig. 16 can be made ovon more complete by formulating a general affine relationship. The aimplest form that such a relationship could take is

$$
\begin{equation*}
(\omega+8) f \lambda=F(x / c) \tag{12}
\end{equation*}
$$

where λ ia a \quad imple numerical constant for any one aerofoil at a particular incidence. The adequacy of this simple form can be evaluated from experimental data by calculating λ at one particular chordwise station from the relationship

$$
\begin{equation*}
\lambda=\left(\omega_{0}+\theta\right) f /(\omega+\theta) f \tag{13}
\end{equation*}
$$

(where the whole denoxinator is given by the mean curve of Pig. 16) and then examining the completeness of the collapse of experimental data for other chordwise stations when presented in the form of Equation 12. This has been done by defining λ at the sonic point and the resulting data collapse is shown in Fig. 17.
dssuming that $P(x / C)$ is a unique function for any aerofoil shape (and this is confirmed, to a close approximation, by the collapse of data in Fig. if), it is interesting to note that, at the sonic point

$$
\begin{equation*}
\frac{(\omega+\theta) f \lambda}{\partial(x / c)}=f \lambda \frac{\partial \theta_{E}}{\partial(x / c)}=F^{\prime}(x / c)_{s} \tag{14}
\end{equation*}
$$

(since, when $\omega=0, \delta \omega / \delta(x / c)=0$) and that

$$
\begin{equation*}
\lambda=\frac{F^{\prime}(x / c)_{B}}{1 \frac{d \theta_{s}}{d(x / c)}} \tag{15}
\end{equation*}
$$

Thus the factor λ (and hence also the local rate of compression at any ohordwise point) is, therefore, dependent on the sonic point location and in particular on the rate of change of surface slope at this point, i.e., to a close approximation, the aurvature at the sonic point. The factor λ may, therefore, be considered to represent the influence of conditions at the sonio point (and, in turn, the influence of the subsonic region of flow) on the downstream supersonic region of flow. Since values of ($\omega+$ tol)f dacrease to a value of about unity at the trailing edga the significance of λ in determining the downstream rate of compression becomes less as $x / c \rightarrow 1.0$.

Evaluation of λ thus requires a knowledge of the sonic point and this is obtained from a prediction of the subsonic flow. The correlation presented in Pig. 17 is based on experimental data obtainad at the Kational Physioal Laboratory. In Section 3 it is shown how mathematical solutions for certain section shapes are also embraced by the empirical correlation of Fig. 17 and hence add to the generality of the method. Horever, before procoeding to these considerations, it is necessary to consider the behaviour of thin, round-nosed aerofoils which have shown certain exceptions to the general affine relationships established up to now.

2.1 The variation of the parsweter f for thin serofoils

In certain cases the analysis of experimental data indicatea that the atrongth uf the oompressive effect at the surface (ropresented by $\partial(\omega+\theta) / \partial(x / c))$ in not as large as might be expected from the corcelation prosented in Pig. 17. These particular cases occur on the upper surface of thin aerofoll: at positive incidence for which the initial expansion is rapid. An explanat:on for this phenomenon is augested below from a consideration of the characteriztice pattern on a thin aerofoil.

The relationship given $b ;$ equation 3 indicates that for affinely-related aerofoils at zero incidence the thinner the aerofoil the smaller are local surface velooities. However, this trend of thickness effect breaks down if, as for thin round-nosed aérofoils at incidence, the sonic point moves onto the wore highly curved region near the leading edge, as illustrated in Fig. 15. In this case the high curvature region just downetream of the sonic yoint produces strong expansions giving high local Mach numbers. The chordwise variation of the compressive disturbance that can be consicered to originate at the sonic line is then reduced for two reasons. Firstly, expansion waves of the $\theta-\omega$ family, originating at the surface near the sonic point, meet the sonic line higher above the surface than on an affinely related thicker aerofoil at an equivalent incidence, as illustrated in Fig. 15. The roflected compressive waves from the souic line (of the $\theta+\omega$ family) therefore return to the surface proportionately further along the chord than in the case of the thicker aerofoil. Secondly, the high local Kach number region, produced by the high surface curvature, causes the incoming family of compressive waves to be deflected even further along the surface than would occur if the initial expanaions were weaker. Both these effects therefore cause the atrength of the chordwise distribution of the compressive disturbance to be weakened, particularly in a region near to the sonic point. Thus, as incidence increases, and the initial expension grows stronger, the chordwise distribution of the compressive effect that actually occurs on a thin aerofoil is less than that indicated by the correlation of Figure 17 which is not based, primarily, on data for thin asrofoils.

This effect can be represented by a variation of the factor f with chozdwise distance. A study of experimental data indicates that when $f>1.3$ (i.e. ($2 / \mathrm{c}$) $<\mathbf{c} 0.0385$) and $a>0$ then the variation of $f\left(f_{L}\right)$ with x / c, downetream of the high curvature region (the limit of which may be taken as the point corresponding to r/omo.2), is given by the relationship

$$
\begin{equation*}
f_{L}=f-k \frac{a}{57.3} \frac{1}{2(2 / c)_{\max }} \tag{16}
\end{equation*}
$$

where the variation of k with x / c is given by Fig. 18. The variation of f with x / c, given by equation 16 and Figure 17 , is such that the increased expansive effect will be greatest in a region downstream of, but near to, the sonic point and almost negligible in a region near the trailing edge.

3. THEORETICAL SOLOTIONS FOR SOME SPECIAL AEROFOIL SHAPES

The purpose here is to examine some theoretical solutions that are available at $\mathrm{H}_{\infty}=1.0$ for some special shapes and, in particular, to see how these solutions compare with the results obtained using the empirical relationshipa obtained in Section 2 for the region downstream of the sonic point.

3.1 Results for a family of sharp-nosed aerofoils

Spreiter and Alksne in Ref. 2, and Rubbert and Landahl in Hef. 3, present theoretical results for a family of sharp-nosed aerofoils at zero incidence defined by the equations

$$
\begin{equation*}
\frac{z}{c}=A\left[\frac{x}{c}-\left(\frac{x}{c}\right)^{n}\right] \tag{17}
\end{equation*}
$$

Equations (17) and (18) give a family of aerofoils having the position of maximum thickness aft of the mid-chord point and forward of the mid-ohord point respectively. The maximum thickness position is determined by n while t / c is determined by A.

[^5]In Refs. 2 and 3, theoretical results are presented for the five aerofoils with the position of maximum thickness at, or near, $x / c=0.3,0.4,0.5,0.6$ and 0.7 and these results are compared with experimental data from Ref: $j_{\text {. These experimental data were obtained from }}$ wind tunnel wall bump tests and using a ventilated working section that may not have been adjusted precisely for interference-free conditions. As a result the experimental data are influenced by the initial wall boundary layer and tunnel-interference effects. Howeyer, Spreiter and alkane's theoretical result for the parabolic-arc section (maximum thickness at $x / c=0.5$) is considered to be almost exact over most of the chord (as demonstrated in Ref. 6). The differencesbetween the theory and the experimental data of Ref. 5 for this aerofoil can therefore be considered to be that due to the effects noted above, except near the trailing edge where viscous effects, asaociated with shock-wave/boundary-layer interaction, are predominant. If an assumption is then made that these same differences are applicable to the experimental data for the other models, at the same values of t / c and at corresponding chordwise stations, then the modified pressure distributi s should be mors nearly correct than the original data.

In Figs. 19-23, the theoretical results of Reis. 2 and 3 for the five aerofoils, and the experimental data of Ref. 8 corrected in the way outlined above, are compared with predicted pressurs distributions domatream of the sonic point estimated using the correlations derived in Section 2. Since the velocity rule derived in Part I breaks down when the surface slope is small and the flow is governed by the laws of small-disturbance theory, an alternative method is required to determine the subsonic region of ilow up to, and including, the sonic point for these five aerofoils. The alternative method used here is given in Ref. 4 and may be used to predict the occurrence and nature of the small-disturbance subsonic region of flow on both sharp and round-nosed aerofoils in a sonic stream. A value of $t / c=0.08$ was chosen for all the comparisons since this is the only common value for which experimental data from Ref. 5 were available for all five aerofoll shapes.

The comparisons in Figs. 19 and 20 show that when the point of maximum thickness is forward of the mid-chord point then Rubbert and Landahl's method and the present method are in substantial agreement over the rear 50% of the chord. The method of Spreiter and Alkane, predicts pressures which are considerably lower in this region. For the aerofoil with maximum thickness at $x / c=0.3$, Figure 19 shows that Rubbert and Landahi's method, the present method and the experimental data indicate a region of decelerating flow over the rear part of the chord. The method of Spreiter and diksne, on the other hand, cannot predict this since the method fails when $d U / d x \leqslant 0$. For the aerofoil shapes with maximum thickness at or beyond the mid-chord point Figs. $21-23$ show that all three prediction methods are in substantial agreement, in the supersonic region of flow at least.

3.2 Results for a particular round-nosed aerofoil

The theoretical methods for evaluating the complete flow about oharp-nosed aerofoils in a sonic stream, such as Refs. A and 6 , are based on a solution of the approximate smalldisturbance form of the transonic flow equstion and are therefore not strictly applicable to round-nosed aerofoils. However, Granam, in Ref. 7, outlines a method for designing a roundnosed eerofoil having a simple-wave compression over most of the forward hulf of the chord at $\mathrm{k}_{\infty}=1.0$. Starting with a circular leading edge, which is maintained until the surface slope falle to a value of 12.5°, Graham uses Chuskin's theoretical solution for a circular cylinder at $\ddot{H}_{\infty}=1.0$ (Ref. 8) to determine the initial rapid flow expansion on the circular region. Iie then uses the method of characteristics in an inverse manner to derive an after-body-shape that, theoretically, gives a simple wave compresoion up to the point where the surface slope is about 0.6°. From this point to the trailing edge Graham uses part of a circular-arc in order to obtain a closed symmetrical aerofoil shape and assumes that the flow is given by simple vave expansion theory in this region.

Graham's theoretical resulte for this aerofoil, designated NPL 9431, are plotted in Fig. 24 for $a=0$ together with experimental data obtained at N.P.L. The predicted pressure distribution obtained using the rethod outlined in Section 2 downstream of the sonic point (the sonic point occuring in the rapid flow expansion from the stagnation point given by Chuskin's solution for the circular cylinder) is given in the same figure. Clearly, there are fairly considerable differences between Graham's theoretical and experimental results between 0.1 c and $0 . j \mathrm{c}$. The prediction obtained using the present method follows the experizental results more closely over this part of the shord. Graham only calculates theoratical results for the NPL 9431 aerofoil at zero incidence. However, in Fig. 25 a prediction of the upper-surface pressure distribution at am 2°, obtained using the present method, is compared with experimental data for $\mu_{\infty}=1.0$. Apart from a certain amount of "waviness" in the experimental pressure distribution, and some discrepancies in the region near $x / c=0.4$, the comparison between present prediction and experiment remaina aatisfactory.

4. THE LEADING-EDGE FLOT RECOKPRESSION

An examination of the continuity between the subsonic flor on a round leading-edge and the supersonic flow further dowstream has also revealed some interesting flow phenomena which are now worth considering.

The rapid flox expanaion from the atagnation point exhibited by many sections is invariably followed by a flow recompression (as lllustrated, for example, in Figa. 26a to 26d) as the local surface radiue of curvature increases rapidiy from the leading-edge value.

The means whereby this recompression may occur downtream of the initial pask velocity may be of one, or a combination, of several forms. If, for example, in the initial rapid flow expansion, supersonic velocity is attained before the peak value of velocity occurs then some isentropic recompression may occur (Figs. 26a, 26\%) and may (Figs. 26b, 26c), or may not (Fig. 26a), be terminated by a local shock compression, downstream of which the flow will be subsonic if a strong shock wave occurs. In addition a local compression in the subsonic flow upstream of the sonic point may occur as illustrated, for example, in Fig. 26d. The varicus forms the recompression may take, and the conditions under which each form is to be expected, are discussed in the following Sections. Examples of some of the forms of leading-edge flow compressions reierred to are presented in Section 5 and are there compared with predicted results obtained using the methods outlined below.

4.1 Recompression occurring in the supersonic region of flow

The flow mechanisu generating isentropic recompression in the superionic region of flow and, in some cases, causing the formation of weak (oblique) shock waves is discussed in Part I and Refs. 9 and 10 from a consideration of the characteristics network in the leadingedge region.

The presence of isentropic recompression in the supersonic region of flow andor a weak (oblique) shock wave (downstream of which the flow is supersonic) will be given, automatically, by the prediction method implicit in Section 2. Since a chorawise varistion of $\theta-\omega=$ constant represents a simple-wave compression, a chordwise variation of θ-w which increases with increasing x / c indicates a compression greater than a simple wave, i.e., a shock wave. Applying this criterion, therefore, will indicate whether an oblique shock occurs in the flow as illustrated in Fig. 27b. That the applicability of the method given by Section 2 is still valid when a weak oblique shock occurs in the flow presumably arises from the fact that the shock, in this particular case, is merely a veak convergence of compression waves. The usubil losses associated with the flow through a shock wave are therefore a minimum and the flow compression is nearly isentropic.

4.2 Other forms of leading-edge flow compressions determined
 by the requirements for flow continuity

A strong shock wave may occur in the leading-edge flow if the surface radius of curvature increases sufficiently rapidly, downstrean of the leading-edge on which supersonic flow has initially developed, such that the surface geometry is not compatible with the preaencs of supersonic flow. The over-expanded leading-edge flow then breaks down and is recompressed to a subsonic level, compatible with the downstream aection shape, through a normal, or near normal, shock wave. Downstream of the shock the flow expands, reaching sonic velocity again at some point further along the surface. The expansion to sonic velocity downstream of the shock obeys the laws of small-disturbance theory and the occurrence and magnitude of loaal subsonic velocities in this region may be obtained from the method noted earlier, in Ref. 4. The existence and location of such a shock may be determined to a close approximation, aa illustrat d in Fif. 26b, by the assumption that the shock upstream velocity (within the supersonic region of flow), predicted by Section 2, and the shock downstream velocity (in the downstrean region of subsonac flow) are compatible with the normal shock relationship. An example of this form of leading-edge compression is given in Fig. 29.

Thus an over-expanded leading-edge flow, in which local velocities have reached a supersonic level, may establish continuity with the presence of a downstream region of sub.0 sonic flow, dictated by the section geometry, by the occursence of a normal shock wave. However, in some cases the shock compression that would be required to compress the flow from a supersonic level (achieved in the absence of any downstream influence arising from a requirement for flow continuity with a downstream region of local subsonic flow to the subsonic level (dictated by the downstream section shape) may be greater than that which can be achieved through the occurrence of a normal shock. In this case experiment euzjeste that the downstream surface shape exerts an influence on the upstream flow reducing the rate of flow expansion from the stagnation point sufficiently either for the remaining compression to aubsonic velocity to be achievable through a normal shock or that sonic velocity is not achieved in the initial expansion. In the latter case the recompression of the flow to velocities compatible with the downstream surface shape takes place at an entirely subsonic level.

An analygis of experimental data, particularly for such cases referred to above, has subsested that when a region of small disturbance subsonic flow exists, its influence on the upstream flow, arising from the requirement for flow continuity, may be represented by an influence factor K. The factor K ia a variable and is go defined that the value of $k V / D_{\infty}$ in the upatream large disturbance flow, may be considered to be the local velocity that nould cocur in the absence of this downstream influence. Thus the large-disturbence velocity distribution, as predicted, for example, by the methods outiined in Part I and Section 2 of Part II, should, more correctly, be interpreted as $\mathrm{KJ} / \mathrm{J}_{\infty}$ even if a leading-edge recompression does not occur. It io then necessary to eatablish whether any leading edge fiow readjustment is required (i.e., K \mathcal{K} 1.0) in order to maintain ilow contiauity and exclude any inoompatibility between the upstream largendisturbance flow and any downotream small-disturbance
subsonic flow that wight exist. A method for determining lacal values of K, for the case of an earofoil in a sonic streag, is given in Ref. 4. she method suggests that near the stagnation point K is approximately unity but that at, and near, the tranaition from the largt- to the small-diaturbance rogiona of flow X nay be significantly greater than unity.

The case when the initial flow expansion rate is reduced so that a normal shock occurs is illustrated in Fig. 26e. Hers the locus of possible values of shock-upstream velocity (obtained by applying the normal shock velocity relationship to the downotream small-disturbance ubsonic flow) is always lover than the predicted upstream variation of $k 0 / \sigma_{\infty}$. The case occurring mhen a larger downetream influence causes the leading-edge flow compression to take place at an entirely subsonic level is illustrated in Fig. 25d and an example is given in Fig. 3l. This case will oocur whenever the locus of possible values of shockupstream volocity is always greater than the prodicted upstream variation of $K 0 / J_{\infty}$.

Instances when K is aignificantly greater than unity are only likely to occur for aerofoils with a radius of curvature (r / c) distribution auch that a sustainad region of small r / c ia followed by a very rapid increase immediately downtream. This type of aerofoil geonetry, sssociated with a low or negative incidence, and particularly at free-stream Mach numbers approaching unity, often leads to the form of velocity distribution featuring a compression in the subsonic region of flow close to the leading edge.

5. FURTHER COMPARISONS OF PREDICTED AND EXPERIMENTAL PRESSURE
 DISTRIBUTIONS AT $M_{\infty}=1.0$

The comparisons of predicted and experimental pressure distributiona for $\mathrm{X}_{\infty} * 1.0$ made so far have been for some sp=cial aerofil shapes, In this section some further comparisons are made for two arbitrarily-defined aerofoil shapes, the latter example being chosen to illustrate the applicability of the present methods in predicting several forms of the particular types of pressure distributions discussed in Section 4.

5.1 NPL 3161 eerofo11, $a=5.2^{\circ}$

The NPL 3161 aerofoil is a thick $(t / c=0.14)$, cambered aerofoil with a variation in locsl aurface radius of curvature which increases monotonically. with increasing x / c. The variation of local curvature near the leading edge does not produce a pressure peak in this region, but the surface near the trailing edge on the lower surface is concave which, at $\chi_{\infty}=1.0$, produces a substantial region of decelerating flow over the rear part cf the chord. Tha compariscn of predicted and experimental pressure distributions is shown in Fig. 28.

5n2 NPL 9422 aerofoil, $a=0^{\circ}, 4^{\circ}$

The NPL 9422 aerofoil has a circular leading-edge region maintained until the surface slope falls to a value of 10°. This feature produces the rapid flow expansion from the stagnation point and subsequent flow compression, referred to earlier. The rapid increase in the local radius of curvature downstream of the circular region is such that, at $a=0$, the conditions for flow continuity, referred to in Section 4.2 and illustrated in Fig. 26b, between the upstream large-disturbance supersonic flow and the downstream small-disturbance subsonic flow, indicates that a normal shock wave occurs in the leading-edge flow compression at about $0.036 c$. A comparison between predicted and experimental duta is shown in Fig. 29.

At $a \times 4^{\circ}$ the upper-surface pressure distribution takes the form indicatod in Fig. 30 . Between about 0.01 c and 0.03 c both the predicted and experimental variations of ($\theta-\omega$) indicate that a compression occurs through an oblique shock.

On the lower surface of this aerofoil at $a=4^{\circ}$ the condition for flow continusty, given in Section 4.2 and illustrated in Fig. 26d, indicates that a subsonic comprossion occurs in the leading-odge region. The predicted variation of local preasure in the leadingedge region, calculated using the methods referred to in Section 4.2 , is presented in Fig. 32 as a function of surface slope. Fig. 30 presents the complete predicted and experimental chordmise variations of local pressure over the whole chord.

6. CONCLUDING RENARKS

The method presented in Part II of this paper, for predicting the supersonic region of flow on any arbitrary serofoil shape, has proved to be both simple in application and reliable for a wide range of round and sharp-noged, lifting and non-idfting section shapes. Because the method is founded on experimental data viscous effects, other than boundary-layer/shock-wave interaction near the trailing edge, are included. Also, since the results of applying this method agree well with other inviscid theories where comparison is poasibie, it follows that the method may be applied over a wide range of Reynolds number.

7. ACENORLEDGEMENT

The suthor wishes to thank the Transonic Aerodynamica Comittee of the Royal Aeronautical Society for their discusaion and suggestions made during this woric and the Aercdynamics Division of the NPL for making available nost of the ezperimental data used in the correlations.

8, REFERENCES

1. SPREITER, J.R.
2. SPREITER, J.R.

ALKSNE, A.Y.
3. RUBBERT, P.E. LAMDAHL, M.T.
4.
5. MICEEL, R.

MARCHRUD, F.
Le GALLOT, J.
6. GRAHAK, T.J.

MacDONALD, A.G.J.
7. GRAHAR, 'T.J.
8. CHUSKIN, P.I.
9. PEARCEY, H.H.
10. GRABAK, T.J.

On the application of transonic similarity rules to wings of finite span. NaCA leport 1153, 1953.

Thin aerofosl theory based on approximate solution of the transonic flow equation. NACA Roport 1359, 1958.

Solution of the transonic airfoil probles through parametric differentiation. LIM Journal Vol. 5, No. 3, March 1967.

4 method for estimating the pressure diatribution on the surface of an aerofoil in a monic atream. R.Ae.S. Transonic Date Kemorandum (to be iesued early 1969).

Influence de la position du maitre-couple sur les ecoulements transsonique autour de profila s pointes. ONERA Pub. No. 72, March 1954.

Interference effects at sonic speeds for a biconvex aeroioil in a wind tunnel with slotted iners. J1. R. Aeronaut. Soc. Vol. 70, March 1966.

A method for the calculation of the flow about blunt leading-edge aerofoils at sonic spead. NPL Aero Report 1i79, January 1966.

Calculations of certain sonic flows of a gas. RAE Trans. 816, April 1959.

The aerodynamic design of section shapes for swept wings.
Advances in Aeronautical Sciences (Vole. 3-4), Pergamon Press Ltd, 1962.

The flow about a family of simple,blunt and sharp leading-edged, two diaensional aerofoils at transonic and low aupersonsc speeds. NPL Aero Report 1189, February 1966.

Sonic line

CHARACTERISTICS AT BEGINNING OF SUPERSONIC REGION ON AN AEROFOIL

Figure 1

CURVATURE DI:TRIBUTION FOR A CIRCULAR ARC AEROFOIL WITH CIRCULAR LEADING-EDGE

VARIAYION OF PRANDTL-MEYER FUNCTION WITH TURNING ANGLE ON CIRCULAR LEADING-EDGE OF AN AEROFOIL

Figure 3

PRESSURE DISTRIBUTION ON AN AEROFOIL WITH DISCONTINUOUS CURVATURE DISTRIBUTION
(NPL 9412 AT $M=0.9$)
Figure 4

VELOCITY ON LEADNG -EDGE OF NPL 9422 AT ZERO INCIDENCE

Figure 5

VELOCITY ON LEADING-EDGE OF NPL 9441 AT ZERO INCIDENCE.

VELOCITY ON LEADING-EDGE OF NPL \%12 AT ZERO INCIDENCE

Figure 6

VELOCITY ON LEADING-EDGE OF NPL. 9612 FOR STAGNATION POINT AT SURFACE SLOPE OF 80°

Figure 8

VELOCITY DISTRIBUTION ON NPL 9422 AND ELLIPTIC AEROFOIL OF SAME THICKNESS AT $M_{\infty}=0.8$

Figure 9

VARIATION OF SONIC POINT POSITION WITH MACH NUMBER

Figure 10

CURVATURE DISTRIBUTIONS FOR A FAMILY OF AEROFOILS WITH FIXED MAXIMUM THICKNESS

Figure 11

A TYPICAL VARIATION OF SONIC POINT WITH MACH NUMBER FOR AN AEROFOIL AT INCIDENCE

Figure 12

ILLUSTRATION OF CURVATURE AND VELOCITY DISTRIBUTIONS FOR IDEAL CASE OF ISENTROPIC RECOMPRESSION FROM A SUPERSONIC VELOCITY PEAK ON A LIFTING AEROFOIL

Figure 13

Fig. 14 The flow fields about two affinely related aerofoils in a sonic stream

Fig. 15 Illustrations showing how an initial rapid expansion on a thin aerofoil affects the chordwise distribution of the compressive disturbance

Fig. 16 Correlation of $(\omega+\theta) \mathrm{f}$ with $(x / c)^{1 / 3}$

Fig. 17 Correlation of $(\omega+\Theta) f \lambda$ with $(x / c)^{1 / 3}$

Fig. 18 Chordwise variation of the factor k when $f \geqslant 1.3$

Fig. 19 Max. thickness at 0.301c

Fig. 21 Max. thickness at 0.50 c

Fig. 22 Max. thickness at 0.60 c

Fig. 20 Max. thickness near 0.40 c

Fig. 23 Max. thickness at 0.70 c

Figs. 19-23 Predicted and experimental data for a family of sharp-nosed aerofoils for $\alpha=0$ and $M_{\infty}=1.0$

Fig. 24 Predicted and experimental pressure distributions for the

NPL 9431 aerofoil at
$\alpha=0$ and $M_{\infty}=1.0$

Fig. 26 The various forms of leading-edge compression

Fig. 25 Predicted and experimental pressure distributions for the NPL 9431 aerofoil at $\alpha=2^{\circ}$ and $M_{\mathrm{oc}}=1.0$ (upper surface)

Fig. 27 Illustration showing characteristics on two blunt leading-edge aerofoils

Fig. 28 Predicted and experimental data for the NPL 3161 aerofoil at $\alpha=5.2^{\circ}$ and $M_{\infty}=1.0$

Fig. 30 Predicted and experimental data for the NPL 9422 aerofoil at $\alpha=4^{\circ}$ and $M_{\infty}=1.0$

Fig. 29 Predicted and experimental data for the NPL 9422 aerofoil at $\alpha=0^{\circ}$ and $M_{\infty}=1.0$

Fig. 31 Predicted and experimental data for the lower surface leading-edge region of the NPL 9422 aerofoil at

$$
\alpha=4^{\circ} \text { and } M_{\infty}=1.0
$$

AN APPROACH TO THE DESIGN OF THE THICKNESS DISTRIBUTION NEAR THE CENTRE OF AN ISOLATED SWEPT WING AT SUBSONIC SPEED
by
M. M. Freestone

Department of Aeronautics, The City University, London
M. Y, FREESTOHE,

Depertment of Aeronautics, The City University, London

1. introduction

Much effort has been directed towards the design of aerofoll sections suitable for use with swept wing aircraft cruising at high subsonic Mach number. However, the aircraft application of the tro-dimensional results is straightforward only wen simple sweep theory is adequate. In regions nesr the fuselage side and towarde the wing tips the three-dimensional nature of the flcm is pronounced and simple sweep theory is greatly in error.

Not surprisingly, the three-dimensional theory of cospressible flow is at a much less developed stage than the corresponding theory of wing gections, indeed only recently has it been practicable to calculate, with reasonable accuracy the pressure distribution according to the first order theory ${ }^{3}$ (linearized theory). Sone improvement on the linearized theory reaults can be obtained if factors are applied to it to account for edge non-uniformities (the Riegels factor for example), and for local variations in Hach number. Such factors are not completely adequate, of course, nor is there any one set of factors obviously better than others which can be suggested. For these reasons, and for simplicity, all such factors are oultted in this paper.

2. General Froblem

The general problem gelected is that of the thickness design of the centre region of an isolated swept wing. The relevance of this problem to practical wing design con be argued quite simply; the problem, or rather its solution, is a step towards the ultimate objective of improving the overall design. To be made practical the effects of a fuselage and of adding a load distribution nust be included. Concentration on the centre region also deserves some explanation. There are two reasons for this. The first ia that the use of curved tip wings provided a partial solution to the tip shock problem; consequently further design of the tipe is not. so urgent. The second is that the centre region is thought to generate the flow features which lead, at low lift coefficients, to the formation of what has been called the 'rear shock' (Ref. 1), thus indicating that attention should be directed at the centre. It is reasonabie to assume that any changes to wing tip geometry would have only a very smali effect on the required centre.

3. Desien Criteria

Ideally one would like to design to a very general criterion such as minimusi drag under given conditions. This is not possible with aerodynamic theory in ite present state, one reason being the inedequacy of drag prediction methods. The approach generally adopted has been outlined by Bagley (Ref. 2). Thus one might choose the sheared wingen pressure distribution on some basis and then determine the wing sweep which ie fust surficient to make the critical Nach number equal to (say) the cruise Nach number. The design of the sheared wing section is then posaible (within practical liaits) by use of two-dimensional theory. Thia section is suitable for the mid semi-span provided the leading edge and tratling edge sweep angles are nearly equal. If the taper effect is too l. .ge then a modiried aplioach using an effective sweep angle which varies over the chord is possible.

* The first order theory calculations presented in this paper have been rade using the numerical method of Ref. 6 .
** Sheared wing is used in this paper to denote a portion of the wing (probably existing only in the imagination) which is rree of the effects of taper and of the proximity of the centre and tipe of the winf.

The dosign task for the complete wing way then be stated by specifying thet the complete wing (and in particular the centre region) should have a critical Nach number which is lower than the pheared wing critical Nach number by the minimu amount.

Limitations imposed by theory make this problem currently insoluble. The flow pettern on a finite wing cannot be predicted up to the onset of shock wave formation. Even if such a calculation could be made the problem of design for high critical Yach number would remain. The present approach adopts a simplified view of the two-fold problem. The firat simplification hase already been remarked upon, and is in the flow calculation wethod, the subsonic linearized theory being used in the design process. The second simplification involves the notional pressure distribution used as a basis for design in conjunction with this theory. This latter simplification takes the form of adopting certain proposed rules which, if obeyed by the notional pressure distribution should lead to shock free (or very weak shook) flows.

The simplest of thesa rules states that if the sheared- $\begin{gathered}\text { ing pressure distribution be }\end{gathered}$ maintained (in the notional pressure distribution) over the whole span then the complete wing should be as shock free as the sheared wing, for the isobars would then maintain their full sheared wing sweep throughout.

Difficulty in applying this rule lies in the observation that except perhaps for singular wing gecmetries (presumably of no practical interest) isobar sweep cannot possibly be meintained right into the centre. This being so, one is left to speculate whether merely reducing the lateral extent over which loss of eweep occurs represents an improvement or not. only experiment at present would resolve this, althoush intuitively one wculd expect an improvement to be the result.

The second rule, which has been suggested as an alternative, is that the notional pressure distribution need have full isobar sweep only in those parts of the wing where the flow is compressing in the streammise direction. The basis for this rule derives from an interpretation of experiments in which the rear shock is believed to be formed as a result of coaleacing compression waves generated inboard. Such waves should not coalesce (it is thought) if their inboard distribution is simdlar to that on the sheared wing.

It may be deduced that to satisfy this latter rule full sweep of the minimum pressure isobar is needed into the centre unless the peak (negative) pressure coefficient is reduced at the centre below its sheared wing value. A quantitative expression of this rule is that the Nach number component resolved in the direction normal to the local isobar direction should not exceed unity in those regions in which the flow is compressing in the streamise direction. A variation of this rule is to relax the condition to apply only where the pressure rise is rapid. No attempt to use this variant is made here.

The conjectural nature of these rules is apparent. Their use is only justified in the absence of a more rigorous approach.

4. Selection and Solution of Particular Problems

4.1 First Problem

The problem first atudied is the one auggested by the first of the rules given above, that of designing the centre region to produce the same chordise pressure distribution as that generated by the sheared wing. The particular problem is defined once the wing planform, the aheared wing pressure distribution and the design Nach number are specified. Here it may be noted that because linearized theory is being used, a consistent change in wing thickness, i.e. a conatant factor on the z-ordinates, will produce a proportional change in the perturbation velocities and also in C_{p} values, for the pressure coefficient is related t) the streamise velocity perturbation u by

$$
c_{p} \approx-2 u / u_{\infty}
$$

(U_{∞} is the free atream velocity.) Moreover, also as a result of using the aimple theory, if a solution is obtained for a given wing at a certain subsonic liach number, the same solution may be applied at any other subsonic Mach number to a different, but related, wing geometry. The relations are expressed by the aubsonic similarity rule, or through the use of the analogous wing. However, the results presented in this peser will not appear to take note of these generalizations and specific thickness ratios, planforms and Yach numbers will be quoted. The advantage of this ia that the practical aignificance of the reaults is more raadily seen.
x On the centre line $y=0, v=0$ and $\frac{\partial v}{\partial x}=0$. Hence, because the flow is potential, $\partial u / \partial y=0$. Thus, inobara (identical in inearized theory with ines of constant u-velocity perturbation) must cross the centre line at right angles.

Ine choice of the chordwise pressure distribution for this exercise is of some significance. The following considerations ghided the selection.

It may first be sald that a distribution such as that produced by a sheared wing of parsbolic arc section or elliptic section, although having the advantage of theoretical simplicity, would most likely be so far removed from any diatribution of practical interest as to make any deduction from its study of doubtíul utility.

At the other extreme any attempt to use a "peaky" pressura distribution is also likely to give spurious results. The reason in this case is that the operation of interest with these aerofoils is when there is supersonic flow over the forward part of the chord, and the subsonic theory is inadequate for such flows.

Virtually by a process of elimination therefore the choice devolves on the rooftop pressure distribution. Even here caution way be needed in mssing to general conclusions from particular results for one rooftop distribution.

The basic wing chosen has been designated elsewhera as RAE Wing A. It is doubly symmetric and has the RAE 101 (9 percent thickness ratio) section throughout. It is e swept tapered wing with straight leading and trailirs edges. Its aspect ratio is 6 , taper ratio $1 / 3$, and it has a mid chord aweep of 30 deg. (A sketch of the wing, together with nomenclature, is given in fig. 1.)

To appreciate the task posed by the design problem the first results give the pressure distributions of this basic wing at (free stream Vach number) $M_{c}=0, M_{c}=0.8$ and $\mu_{\infty}=0.9$, (figs, 2 and 3). It is seen that the mid semi-span pressure is virtually the same as that on the sheared wing while the distributions at and near the centre exhibit the familiar 'centre effeci'.

The problem of deaign formally requires a two variable singular integral equation to be solved, as does the linearized theory problem of deteraining the load distribution on a lifting surface. The similarity of these problems might suggest that techniques for solving the latter would be suited to the former. Thus a modification of Multhopp's method (Ref. 3) or its variants could be employed. The loading functions would be replaced by thickness distributions and the dowawash velocity would be replaced by the atreamise velocity perturbation. The calculation details would neturally be quite different in the two cases.

This rether general approach to the problem is nom probably feasible and might be justified. However, in vier of the conjectural nature of the design criterion and the knowledge that the criterion cannot be quite satisfied, a simpler but less precise method was adopted. In this the centre section of the wing was modified according to a method due to Weber (Ref. 4). Sections outboard of the centre were defined by using straight generators from the centre to a control section positioned at a suitably chosen spanwise station. Sections outboard of this control were constant and the same as the required sheared wing section.

As expected, it was found that this simple approsch would not provide quite the solution required. The centre designed by the method of Ref. 4 is strictly the section shape needed on a uniform swept wing to give the required pressure distribution at its centry. On auch a wing the pressure distributions away from the centre depart markediy from the required variation. Fig. 4 shows the sheared wing pressure on a icentredesigned' uniform wing, and compares it with the desired rooftop distribuvion. Cleariy the centre shape has to be faired rapidly into the sheared wing section to achiave a nearly uniform spanwise distribution of pressure. Such a rapid fairing in turn leads to a reduction in the magnitude of the changes which nould otherwise reault at the centre.

In some respects the pressure distribution produced on a wing designed on the simple basis is acceptably near what is required, despite the abovo observations. Fig. 5 shows results for the design Mach number zero. One possibly important shortcoming, however, is the overshoot in negative pressure coefficient near the leading edge just outboard of the centre. Should it be necessary to remove this feature the simplest approach would be to reduce the very high leading edge radius employed in the centre section.

The choice of zero for the design Yach number in the case illustrated requires some coment. There is indeed no reason why a high subsenic lach number should not be used excopt that to counteract the increase in centre effect with increase in Mach number the centre section shapes required become ever more awkward as sections to use on actual aircraft.

This fact is illustrated in fig. 6 where the centre shapes for various design Nach numbers are shown. In order to demonatrate the effect fairly the sweep angle and sheared wing section ere kept constant while the design luch number is varind. Thus, the centre
is deaigned so as to give the same pressure distribution at the centre as is produced on a sheared wing with a 9 percent thickness ratio RAE 101 section in a flow of the same undisturbed Yach number. There are two difficulties in the sections which result. One is the merked formard trend of maximum thickness position together with a decrease in overall thickness which would make the wing torsion box structure heavier than it would otherwise need to be. The other difficulty is the 'section crosaing' near the trailing edge. The theory is impractical when it produces this result and the feature must be suppressed in any practical application. The result of changing the section Srom what is theoretically required would probably be a lessening of the effectiveness of the centre design.

4.2 Second Prohlem

The results of attempting to solve the first problem suggest another approach It is noted that to achieve the desired pressure distribution the thickness has to be concentrated towards the leading edge at the centre. This indicates that it might be beneficial to let it $g 0$ in this direction by the simple expedient of extending the leading edge forward near the wing apex. Such a planform modification also seems reasonsble on other grounds. It increases sweep locally near the centre just where it is needed. Whether or not the disadvantages of changing from a simple swept wing more then outweigh any advantages found in the present analyais cannot be decided at this stage. However, it may be noted that the same approach has been applied before. It raust suffice here to investigate the type of pressure distribution produced by planforn modifications of a fairly modest extent. The nex feature is that the results of such changes can now be determined easily (albeat only for inviscid flow and even this only approximately) as a result of using three dimensional theory. Previously the preliminary design of planform variations has all very probably been done using 'composite theories of the type outlined in Ref. 5. These are known to give pooz results for cranked planforms.

Initially a rational jasis for arriving at the planform changes selected for study was attempted. Subsequent results invalidated the simplified basis that was used. For this reason only the planforms and their pressure distributions are given here w th no explanation for their selection.

Three planforms for which calculations have been made are show, together with their respective centre region isobar patterns in fig. 9. Results ior one case of extending the chord both forward and aft are included, the aft extension being added to see what the implications of this change are. An aft extension is of ten included in practical designs in order to accomodate the main undercarriage.

The sections on these modified wings were kepi everywhere the same as on the basic wing (9 percent RAE 101). Consequently, the increases in chord correspond to increases in thickness near the centre, a feature of some practical significance.

An assessment of the modifications was next attempted. For this purpose a simplified form of the second of the rules given in Section 3 was employed. The method of assessment adopted was as follows.

Fron the calculated pressure distribution the line of peak negative pressure is identified and its sweep determined as a function of spanwise position. From this 'effective' sweep angle which, by a similar argument to that given before, must drop to zero at the centre, and the flight lach number, the critical pressure coefficient, $C_{\text {perit, }}$ is found. This is the value of pressure coefficient which makes the component of velocity resolved at right angles to the line of peak negative pressure equal to the local sonic velocity. The actual c_{p} calculated by the first order theory is now factored so that the 'sheared wing' is just critical at the calculation lisch number. (A value of 0.8 for this Hach number was used in the present work.) The factor needed is, of course, the factor to be applied to the original value of thickness/chord ratio used in the calculation in order to make the sheared wing just critical. The new values of minimun pressure coefficient, $\mathrm{C}_{\mathrm{p}_{\text {min }}}$, are next determined as a function of spanwise position. If, locally, the value of $\mathrm{C}_{\text {porit }}$ exceeds that of $\mathrm{C}_{p_{\text {min }}}$ then the criterion referred to is not eatisfied in this region.

Fig. 9 shows that on the basis of this assessment the modifications can give a considerable improvement over the basic wing, although in none of the cases is the criterion satisfied everywhere. It is also seen that merely increasing the size of extension does not produce a consistent improvement. The reason for this is that the change in $\mathrm{Cp}_{\text {crit }}$ (unlike that of $\mathrm{C}_{\text {pain }}$) does not take place in regular fashion as it depends on the swesp distribution of the minimum pressure line and this varies in a complex way.

The method of assessing the modificntions is open to criticism for a number of reasons. The acst obvious of these is that to achieve full use of grept wing planCorms (i.e. making the theared wing portion just critical) reaults in velccities which are well in excess of the local sound speed. The subsonic theory is then really iradequate.

For this and other reasons it is imporiant to test the resuits produced by this approach againgt experisental work. It would be rather surprising, however, if at least soms of the improvement shom theoretically were not reflected in the roel flowe.

5. Conclusions

An attempt has been made to design the centre of an isolated non-lifting awept wing on a simple basis. There are indications that improvements to the basic ring ilow can be produced, although the changes which reault from root section modifications are limited by the awkward ahapes required, particularly at high subsonic Mach rumbere. Clearly, not all the possibilities have been explored snd further ideas might produce more significant advantages. Finm progress, however, depends primarily on two advances. The first is that the range of validity of the aimple theory should be found, preferably when edge corrections and Yach number factors are included. Secondly, a simple but effective deaign criterion is needed.

REFERENCES

1. E. W. E. Rogers and I. M. Hall, An introduction to the flow about plane sweptback wings at transonic speeds. J.Roy.Aero.Soc. (August, 1960)
2. J. A. Bagley, Aerodynamic principles for the design of swapt wings Progress in Aeronavtical Sciences, Vol. 3, Fergamcn Press 1962
3. H. Nuithopp, Yethods for calculating the lift distribution of wings R\&M2804 January, 1950
4. J, Webar, The calculation of the pressure distribution on the surface of thick cambered wings and the design of wings with given pressure distribution R \& 4 3026, 1955
5. - Traneonic Data Memorandum 6312, Royal Aero. Soc. 1963
6. M. N. Freestone, Numerical evaluation of aingular integrals of linearized subsonic wing theory ARC 29729 Comp. (F.M.) 133, December, 1967

FIG.I. SKETCH OF BASIC WING WITH NOMENCLATURE.

FIG.2. CENTRE, NEAR-CENTRE, MID-SEMI-SPAN \& SHEARED WING PRESSURE
DISTRIBUTIONS.

FIG. 4.
CENTRE : SHEARED WING PRESSURE DISTRIBUTIONS ON A
UNIFORM SWEPT WING DESIGNED TO GIVE THE REOUIRED
ROOFTOP PRESSURE DISTRIBUTION AT THE CENTRE.
SWEEP ANGLE 30°
MACH NO.O.O

FIG. 5.
CHORDWISE PRESSURE DISTRIBUTIONS
ON A DESIGNED WING.
$\begin{aligned} & \ldots \\ & \ldots \\ & \ldots \\ & \ldots\end{aligned} \mathrm{s}=0.0$

$$
\begin{aligned}
& \text { Design Mach number } 0.0 \\
& \text { Flight Mach number } 0.0 \\
& \text { Planform as RAE Wing A } \\
& \text { Sections: Centre, as fig } 6 \\
& \text { outboard of } y / 5=1 / 8,9 \% \text { RAE } 101 \\
& \text { Inboard of } y / \mathrm{s}=1 / 3 \text {, straight } \\
& \text { generators from centre } t_{0} y / s=1 / \mathrm{s} .
\end{aligned}
$$

EIG.6. DESIGNED CENTRE SECTIONS.

FIG. 7.
CHORDWISE PRESSURE DISTRIBUTIONS ON A DESIGNED WINE.

Flight Mach number 0.8 Wing as on Fig 5

FIG. 8.
ISOBAR PATTERNS ON WINGS HAVING IMCREASED INBOARD SWEED COMPARED WiTh RAE WING A.

$$
M_{\infty}=0.8
$$

All sections are 9% RAE 101 Sponwise limit of extensions is $y / s=0.2$

15-14

FIG.9. COMPARISON OF ASSESSMENT OF BASIC \& EXTENDED WINGS.

A.B. HAINES

Aircraft Research Association Limited, Bedford, England

The paper discusses the likely objectives for a three-dimensional sweptback uing design for operation at high subsonic speeds, and the alternatives that may be open to the designer in order to: achicve these objectives. The main emphasis is on the factors that have to be borne in mind when choosing suitable target pressure distributions and isobar patterns. Results for two wings tested at A.R.A. are used in illustration. For one of these wings, the isobar pattern is relatively uniform and the shock first appears aft of the crest; for the other, the flow pattern is more complex and in particular the shock forms ahead of the crest at a Mach number well below the design cruise condition. The paper refers to some of the compromises that are often accepted to meet engineering or structural requirements, and the need for research to establish the true exchange rates involved in these compromises.

1. INTRODUCTION

The Likely "High Speed" Objectives
This paper is concerned with the aerodynamic design of three-dimensional sweptback wings for operation at high subsonic speeds. Methoda of design are only mentioned incidentally; the main emphasis is on some of the factors that control and some of the problems that arise in the choice of suitable target pressure distributions and isobar patterns to meet specific design objectives. In practice, to be successful, the design of a wing for any actual aircraft project whether it be a civil transport or a military strike-fighter is essentially a matter of compromise, e.g., between aerodynamic, structural, engineering, weight and cost considerations, between low speed and high speed aerodynamic requirements etc. Even just considering the high speed aerodynamics, the wing design will often have to meet various different objectives; typical aims would be to obtain
(a) the highest possible M_{D}, the Mach number for the onset of the rapid increase in wave drag at a given C_{L}, for a given thickness/chord ratio and sweepback. This may be better expressed by saying that the aim will often be to achieye a target value of M_{D} with the thickest possible wing, for the sake of lower structure weight, increased fuel capacity etc, and with a modest and not too extreme sweepback for the sake of better take-off, landing and off-design characteristics,
(b) as low a drag as possible at $M=M_{D}$. To judge from a recent study ${ }^{l}$ of the cruise drag of a number of subsonic transport aircraft, this particular objective should be given added prominence in the initial design stage,
(c) also, the smallest possible iritial rate of increase of C_{D} with M beyond $M=M_{p}$. This point is important since the best cruise performance is usually obtained at a Mach number possibly $0.02-0.03$ in excess of H_{b} and there will often be a tendency to fly as close to the buffet boundary as possible,
(d) a satisfactory $M_{D}-C_{L}$ boundary with probably little variation in M_{D} with C_{L}. This could be particularly important for a short-range aircraft for which there were no dominant $M_{\text {cruise }}, C_{L}$ conditions,
(e) a satisfactory margin between the drag-rise and flow separation boundaries, both in terms of C_{L} at and below $M_{c r u i s e}$ and in terms of M above M_{D} at cruise C_{L},
(f) a progressive flow breakdown at the stall giving not only a satisfactory useable ${ }^{C_{\text {LAX }}}$ but also adequate buffet warning and acceptable pitching moment characteristics.

The relative aims of these objectives will vary according to the type of wing and the typs of aircraft: for example (a) - (d) would be particularly important for a transport, (f) for a fighter etc. Any single wing design considered for a particular application is unlikely to be the optimum solution for each of the above objectives; the designer will have to decide on the best compromise. The aim of the present paper is to illustrate some of the available options and some of the factors that should guide his choice.

2. CHOLCE OF BASIC DESIGN PRESSURE DISTRIBUTIONS

It is probable that before starting on the detailed design of the wing to meet the objectives set out above, the aspect ratio, taper ratio, minimum acceptable thickness/chord ratio and maximum acceptable sweepback will have been defined at least approximately by other considerations. The first aim (at least for a cransport) would then be to design the wing to achieve a sufficiently high M_{D} at the design (usually the cruise) C_{L}. The normal procedure starts by choosing an uppersurface pressure distribution and thickness form for the equivalent two-dimensional section. Obviously, there are many alternative options even at this stage and the thickness/chord ratio for example that will prove acceptable can depend greatly on what option is selected. This point can be illustrated quite simply by referring to the predictions in Ref. 2 for the family of shapes defined in Ref.3. These sections are designed to give a roof-top upper-surface pressure distribution back to a position x_{p}. followed by a linear pressure sise to the trailing edge, combined with a thickness distribution such that the maximum velocity due to thickness also occurs at x_{R}. The importance of x_{R} as a design variable can be seen from Fig.1. This shows that for a given M_{D}, extending the roof-top from $X_{R}=0.3$ to $x_{R}=0.6$ gives an increase of about 0.3 in C_{L} for a given thickness/chord ratio or alternatively, allows an increase of $0.04-0.05$ in thichness/chord ratio for a given design C_{L}. These trends cannot be exploi'ed too far since ultimately, the boundary layer may not be able to negotiate the adverse pressure gradient aft of the roof-top without separating even at full-scale Reynolds numbers. In some instances, this limit may be reached before $X_{R}=0.6$. Even advancing beyond the rear-separation boundary at the best available
tunnel Reynolds numbers may be considered undesizable because of the consequent difficulties in interpreting the model test data. Leaving aside this particular issue, however, this class of section design can still be rated as conservative; tests have shown that significantly higher values of M_{D} can be achieved for a given X_{R}, t / c and C_{L}, e.g. from extra loading at either the front or rear. Improvements could be obtained either by modifying the thickness form while still retaining the same upper surface pressure distribution or by modifying the latter. Fig.2, for example illustrates how two sections of the same thicknes3/chord ratio could be proposed to give the same predicted M_{D} at roughly the same C_{L}. The full-line curves in Fig. 2 are for a section with $x_{R}=0.5$, taken from the farily just described. In this case, a shock wave would be expected to form first at a posirion aft of the crest ($x_{C R}=0.35$) at a Mach number close to the predicted M_{D}. The other section gives a pressure distribution of the peaky-type discussed in various papers ${ }^{4}, 5$ by Pearcey and others. Ir this case, a local supersonic region terminated either by a shock or ideally, a largely isentropic recompression would form ahead of the crest at $\mathrm{M}<\mathrm{H}_{\mathrm{D}}$; with increasing Mach number, the shock wave would move aft, passing over the crest, ($x_{C R}=0.25$) at about $M=M_{D}$. The extra ift from the supersonic region ahead of the crest is one of the reasons why the total lift produced by the two sectiona is virtually the same. These two aerofoils are therefore equivalent in terms of M_{D} for a given t / c and C_{L} but even in two-dimensional flow, could well give a different C_{D} at M_{D} and a different off-design behaviour.

Other comparisons could be presented with for example, sections giving extra rear-luading but it would be wrong to suggest that the choice lies between different classes; e.g., peaky, roof-top or rear-loaded. The comparison in Fig. 2 was included largely because it highlights how the choice of a two-dimensional pressure distribution can have a major effect on the problems encountered in designing the three-dimensional sweptback wing. It is fashionable - although not necessarily correct - to design the three-dimensional wing to obtain a "uniform isobar pattern"i.e. the same chorduise pressure distribution at all spanki a stations. For: the roof-top type, this "merely" invulves knowing how to vary the section shape across the span, how to shape the body and how to modify the planform near the tip, in order to counter the root- and tip-effects in subcritical flow. With a peaky-type distribution such as for section II in Fig. 2 , however, the flow at M_{D} is supersonic over part of the surface and therefore, retention of M_{D} as the design M for the threedimensional wing implies that one can estimate how the three-dimensional root- and tip-effects are likely to affect this supercritical development. The alternative approach of designing for a lower Mach number where the flow would still be subcritical everywhere may wiso have its pitfalls since for a wing of say 35° sweepback, this could mean reducing the design Mach number by as much as 0.15 - 0.2. These matters are currently being investigated in a research progranme at A.R.A. Experimental cesults are not yet available but some of the design calculations for a wing in this programe are referred to in section 5 below (Fig,6).

3. CONSERSION FROM THO-DIMENSIONAL TO THREE-DIMENSIONAL CONDITIONS FOR WINGS (e.g.A) WITH RELATIVELY UNIFORM ISOBAR PATTERNS

For a constant-chord, infinite sweptback wing, the conversion from the equivalent twodimensional section raises no difficulty. It has been demonstrated experimentally on several dimensional ${ }^{7}{ }^{\text {section the the pressure cofficient on the swept wing at a free-stream Mach number } M \text { and }}$ lift coefficiene C_{L} is given by

where Λ is the angle of sweepback and $C_{P_{2 D}}$ is the pressure coefficient in two-dimensional flow at $M \cos \Lambda, C_{L} \sec ^{2} \Lambda$ for the section normal to the leading edge of the swept wing.

For a tapered, fi.ulte wing, hewever, the pracess is less straightforward even when merely considering the mid-semi-span region away from the imediate vicinity of the root or tip. Several possible methods can be suggested. In the past, the common design practice having chosen a suitable $2-\mathrm{D}$ section, has been simply to factor the section ordinates by $\cos \Lambda_{l}$ (where Λ_{ℓ} is the sweepback of the lines at constant x) .a order to derive the $3-D$ section in the free-stream direction. Wing A for which rest data art presented in Figs.3, 4 is an example where this practice was followed. It if .. .ng with 250 sweepback on the 0.25 c line, a taper ratio of 0.33 and an aspect ratio of 8.0 , local sweepback varies from 27.5° at the leading edge to 15.5° at the trailing edgn. It cs se described as a "relatively simple example" in that the sweepback is only modest, the chordwise presenre distributions are fairly similar at all stations across the span and the flow is subcritical everywhere almost up to $M_{D}(0.73)$ at the design C_{L}. The section shape varies however across the spar and only one "equivalent two-dimensional section" was tested. This was incorporated (with minor modifications dictated by practical considerations) in the threedimensional design ar about $0.25 \times$ semispan. Fig. 3 includes a comparison for the design C_{L} and at a Mach aumber slightly above M_{D} between the $3-D$ and $2-D$ data for this station, the 2-D data being converted to $3-D$ conditions simply on the basis of

It will be seen that in general, the converted 2-D and the 3-D data in Fig. 3 are in fairly good agreement. This is true, for example, of the rear-loading. Clearly, however, the supercritical flow development at the rerr of the (approximate) roof-top is already beginning to differ significantly. Amongst the factors responsible for this discrepancy, one can quote the following:
(i) this station at $0.25 \times$ semispan is not far enough from the root to be unaffected by the $3-\mathrm{D}$ root effects. It is believed that this is the main reason why over most of both the upper and lower surface, the pressures are lower in the 3-D case,
(ii) even leavine aside possible root and tip-effects, factoring the ordinates by $\cos \Lambda_{0}$ is only to the first order, the same as aiming for $C_{P_{3 D}}=C_{P_{2 D}} \cos ^{2} \Lambda_{\ell}$. For example,
if one considers the simple case of a symmetrical wing at zero incidence in incompressible flow, the standard formula ${ }^{9}$ in use in the U.K. for estimating the surface pressures over a swept wing, reduces at the maximun thickness position to

It follows that

Similar, but quantitatively different, arguments apply in respect of the velocities due to camber. It is possible to show that accepting the above formula for $C_{P_{3 D}}$ a valid expression for a tapered wing with Λ, thus varying with x, the general result is for $C_{P_{3 D}}<C_{P_{2 D}} \cos ^{2} \Lambda_{8}$ near the léading edge and vice-versa - consistent with the comparison in Fig.3,
and finally,
(iii) even if exact equivalence between $C_{P_{3 D}}$ and $C_{P_{2 D}} \cos ^{2} \Lambda_{\ell}$ were obtained at subcritical speeds, this is not what is required to produce the same supercritical development. This is perhaps the most important point of the three. Suppose, for example, that the 2-D distribution is a true roof-top. The $C_{P_{3 D}}$ distribution derived as above would
then have a peak at the rear of the roof-top but to obtain the same initial supercritical development, one needs a peak at the front and a "sloping roof-top" distribution parallel to the variation of $C_{p}{ }^{*}$ with x (where $C_{p}{ }^{*}$ is the critical pressure coefficient in a direction nomal to the lines at constant x).

This discussion may appear a little academic in relation to the 25° sweptback wing of Fig. 3 but even here, it is estimated that the combined effect is to reduce the drag-rise Mach number at a given C_{L} by about 0.02 . For a wing of higher sweepback or greater taper, the effects would be more appreciable and could well react on the choice of a suitable section/pressure distribution. In view of point (iii) above, it may be preferable to think in terms of "equivalent pressure distributions" rather than "equivalent sections", e.g., a "sloping roof-top" rather than a "roof-top" but even then, the eventual supercritical development could still differ significantly. This is because quite apart from the various 3-D factors to be discussed later in section 6 , the supercritical development depends on both the pressure distribution and the surface curvature distribution.

Two consequences of adopting an "equivalent pressure distribution" approach are first, it tends to reduce the potential advantage to be expected from a rearward extension of the roof-top and second, it implies that on the tapered 3-D wing, more lift can be carried near the leading edge. With $x_{R}=0.4$ - 0.5 , increasing taper should generally tend to increase C_{L} for a given M_{D}, t / c or alternatively, M_{D} for a given $C_{L}, t / c$.

4. STUDY OF RESULTS FOR WING A: AT AND ABOVE "DESIGN"C C_{L}

It has been seen that the method used for converting from 2-D to 3-D on Hing A has led to some reduction in M_{D} at the design C_{L}. For some applications, this could have been serious but in the present instance it did not conflict with the main design aims which were to obtain a high useable C_{L} at all Mach numbers up te the cruise value, and a satisfactory flow breakdown across the wing at the stall. Considerations such as the value of M_{D} at the cruise C_{L} were of rather less importance - always provided some minimum target figure was achieved.

The changes in pressure distribution across the span as shown in Fig. 3 should also be viewed in the same light. The two main trends evident at the cruise C_{L} are
(i) a decrease from inner to outer wing in the suction values near the leading edge thus leading to a stronger shock near 0.4 c on the outer wing,
and (ii) a reduction particularly between 0.675 and $0.88 \times$ semispan in the adverse pressure gradients at the rear of both the upper and lower surfaces. This is achieved by a reduction in the incal thickness/chord ratio near the tip.

At the cruise C_{L}, (i) is clearly harmful in terms of M_{D} and (ii) is unnecessary but they should not be regarded as weaknesses in the design since both were aimed at improving the performance at higher C_{L}.

The wing design was in fact outstandingly successful in its main aim as can be seen from Fig. 4 which presents the pressure distributions for $C_{L}=C_{L_{\text {design }}}+0.04$ at $M=0.71$. Features to note on Fig. 4 include the following:
(a) no trailing-edge pressure divergence at any of the four stations,
(b) the shock front swept back at an angle greater than the local geometric sweepback,
(c) some isentropic recompression ahead of the shock at all four stations
and (d) a fair degree of loading at the rear, again at all four stations.
The results for this wing have shown therefore that the idea of designing for essentially a roof-top pressure distribution over the upper surface at the cruise condition and then shaping the leading edge to obtain some peaky-type development at higher C_{L} is an attractive concept, particularly when good results are required over a wide range of operating C_{L}.

5. DESIGN OF REGION NEAR THE ROOT OF A SWEPTBACK WING

To obtain a particular isobar pattern over the whole wing in the design condition one needs to be able to calculate the pressures over wings of arbitrary geometry in regions where no equivalence with two-dimensional flow can be expected. Common practice in the U.K. has been to use the method largely developed at the R.A.E. over the past $10-15$ years and published ${ }^{9}$ in R.Ae.S. T.D.M.6312. In its present form, the method applies to compressible, subcritical, inviscid flow. It is based on an approximation to the linear-theory solutions for both thickness and lifting effects combined in such a way as to include some of the cross-coupling terms and with corrections to allow for the principal non-linear effects particularly near the leading edge. For the thickness terms, the starting points were the exact linear-theory expressions for the velocities over an infinite yawed wing, and at the root of an infinite swept wing of constant chord and section shape. These two expressions are then linked with the aid of various approximate interpolation factors derived mostly from a study of the exact solutions for wings of relatively simple geometry but partly based as will be seen below on experience from comparisons with experimental data. Similar techniques were followed for the lifting terms except that in this case, the velocity distribution at the root due to camber was itself only known as an approximate expression having an accuracy strongly dependent on the angle of sweepback ${ }^{10}$. Used with due regard for the limitations imposed by the approximate nature of the interpolation factors, the absence of many of the second-order terms and of any allowance for the viscous effects, the method has proved a powerful design tool.

For applications where the drag characteristics at the cruise C_{L} are of paramount importance, the wing design near the root needs special care. As is well known, to maintain fully swept isobars into the root involves either appropriate body shaping and/or changes to the wing section shape such as a forward movement of the maximum thickness position. Any large local changes in the wing section geometry must tend - at least, in principle - to reduce the accuracy of the formula (or indeed, any other method) for calculating the pressure distributions. This point is illustrated by the comparison presented in Fig.5. These results are for the root section of a symmetrical, 40° sweptback wing at zero incidence; in an effort to improve the isobar sweep, the maximum thickness was brought forward to 0.15 c at the root as compared with 0.42 c over most of the span. The main uncertainty in calculating the pressures at the root of such a wing by the method of Ref. 9 lies in deciding what values to assume for the "thickness sweep". For a wing with no change in ection shape across the span, this would normally be taken as the sweep of the lines at constant x, i.e. Λ_{ℓ} as defined earlier, but Fig. 5 shows that if this were done in the present case, the predicted values of $\left(-C_{p}\right)$ over much of the chord would be more than twice those obtained
experimentally. This result was not foreseen when the wing was designed (some 14 years age!) and as a result, the isobar pattern and wing performance were unsatisfactory as described in Ref. 11. Fir. 5 shows however that defining the "thickness gweep", A_{t}, at the maximum thickness position (x_{t}) as the sweep of the maximum thickness line and then varying tan f_{t} linearly both between $x=x_{t}$ and $x=0$ and between $x=x_{t}$ and $x=1$ gives results that are in fairly good agreement with the experimental data, at least back to $x=0.5$.

It is important to realize that a suitable definition for the "thickness sweep" is only one item in a "package". Any change in other items such as the factors for planform and thickness taper or the compressibility factors, could react on what is the most suitable definition for the "thickness sweep". Earlier, for example, when some of these other factors were less soundly based, a mean of the above two definitions appeared to be the most satisfactory but now, this is no longer true! Clearly, this particular wing design is a sorewhat extreme example: the sweepback of the maximum thickness line at the root is 67° as compared with a quarter-chord sweepback of only 40°. In many practical cases, the sensitivity of the results to the gecmetrical assumptions and the other interpolation factors would be less pronounced.

Over the years, the accuracy and range of applicability of the various factors has been steadily improved but results such as those just discussed pose the question as to whether some mare radical changes to parto of the method are required. Considerable thought has been given to this point. Continuing to discuss just the thickness effects, clearly, one of the most important advances in recent years has been the method 12,13 and computer programe developed by A.M.O. Smith and his colleagues for calculating the velocities due to thickness in incompressible flow over wings and bodies of completely arbitrary shape. As a result, an exact linear-cheory solution is now available against which the appropriate "block" in the formula of Ref. 9 can be checked in carefully selected "test cases". Alternatively, this "block" could be actually replaced by the output data from the A.il.O. Smith programe, and this has in fact been done ${ }^{14}$ by Loeve of N.L.R. It should prove most helpful to have this faciiity available for use when required but its drawback when considered as a general design tool, is that this programe would be relatively costly to use and also restricted to the larger computers. In practice, when selecting a wing shape for a given application, one would probably want to calculate the pressures over a fair number of alternative designs and at a number of different operating conditions. There will therefore continue to be a place for treating this tera (velocities due to thickness: linear theory) on a less elaborate basis: either by continuing to use the present factors modified where found necessary or by adoption of a method such as that proposed in Ref. 15 .

One point that must be stressed is that in several important respects, the method of Ref. 9 should be more accurate than linear-theory. It follows that in the future, improvements e.g. inclusion of further second-order terms or of allowance for viscous effects, can be introduced without departing from the essential framework of the present formula. It will thus be possible to continue the steady progressive evolution based on comparisons with other theories and axperiment that has marked the previous development of this method.

This discussion has however been somewhat of a digression from the main theme of this paper, which is more concerned with the question of what are desirable target presuure distributions and isobar patterns rather than what methods one should use to find the geometry corresponding to these pressures. As noted earlier, a common aim has often been to try and obtain a "uniform isobar pattern". This is not necessarily the best solution: research over many years has shown that at least when considering the initial development of a shock, the Mach-number component nomal to the isobars is the relevant parameter and hence there may be a case to strive in selected areas for an isobar sweep greater than the local geometric value. Certainly, one ought as a general rule to try and avoid any serious loss in effective sweep, e.g. through the isobars forming closed loops. This is often difficult to achieve near the root since the major $3-\mathrm{D}$ root effects decay with distance from the root in a hyperbolic fashion. It follows that to obtain a perfectly uniform isobar pattern it would be necessary to have continuous surface curvature (spanwise) with very rapid local changes near the root. In practice, however, the preference has usually been for straight generation between a limited number of control stations. Up to a point, \therefore is may be acceptable but there can be little doubt that with many designs, some aerodynamic perfolcance has been lost through the control stations being either too few in number or wrongly positioned. Some recent calculations for a 35° sweptback wing illustrate what can then happen. Pressure distributions for four stations on the inner wing are piesented in Fig.6. The general aim of this design was to try and obtain similar peaky-type upper surface pressur distributions at all four stations. In the lower picture in Fig.6, stations 1 (i.e., the root) and 4 (the outenost station) are both control stations and the comparison is between results for station 3, considered alternatively as a further independent control station or with its surface geometry interpolated linearly between stations 1 and 4. The upper picture gives a similar comparison for station 21 ying between 1 and 3 . The calculations assume that the flow is still subcritical at $M=M_{n}$; the real flow would be supercritical but with the shock lying near or ahead of the crest, provided the design is successful in its aims.

Fig. 6 shows that a much closer approach to a uniform isobar pattern is achieved if all four stations are allowed to be control stations. If an intermediate station is omitted, relatively high auctions are then predicted for the intermediate region over the forvard part of the chord. Alternatively, it is easy to visualise that if stations $2,3,4$ were recained and the geometry at the root derived as an extrapolation from 2 and 3 , there would then be relatively low suctions at the root and a general loss of isobar sweep inboard of station 2. Either of these alternatives could have particularly unfortunate consequences in the present case as it might upset not merely
locally but over the whole region from 1 to 4, the desired favourable supercritical development expected on the basis of some relatel $2-D$ tests. The consequent reduction in M_{D} and/or increase in C_{D} at M_{D} is difficult to estimate and experimental results are not yet available. General
experience based on far more than just this one example has shown that aerodynamically, 3 should be regarded as the absolute minimum number of control stations over the inner part of the wing; on engineering grounds, 3 is often thought of as a maximum number and efforts are frequently made to persuade the aerodynamicist to accept 2! This is an area where there is an outstanding need for combined aerodyamic, structural and engineering studies to establish the true exchange rates involved in such compromises.

The calculated results in Fig. 6 contain some other features of general interest. For example, it will be seen that even with 4 control stations, the desired peak suction was no: apparently obtained close to the leading edge at the actual wing-root section. In theory, this could have been generated either by adopting a very bluff shape or from extreme inverse droop, but probably at the expense of excess drag. Also, the suctions near 0.6 c at station 4 appear somewhat high; to some extent, this is related to the wing planform with the trailing edge unswept over the inner panel. This has been a common feature of many recent subsonic transport designs, being often introduced to give an unswept hinge-line for a flap or to assist the stowage of the undercarriage. One suspects that a significant loss in performance either in terms of M_{D}, C_{D} at M_{D} or supercritical behaviour may often result from these planform details or from local changes in the wing thickness distributions introduced for similar reasons. Again, this could be a fruitful area for research studies to find the exchange rates and hence, improved all-round "optimum desigus". Wing-root fillets and fairings on the fuselage opposite the wing could usefully form part of these studies rather than being treated in an ad-hoc fashion at a later stage or simply being designed "on past experieace".

6. THREE-DIMENSIONAL INFLUENCE ON SUPERCRITICAL FLOW DEVELOPMENT INCLUDING STUDY OF RESULTS FOR WING B: AT AND ABOVE "deSIGN" M

The discussion in the preceding section was based on "subcritical" calculated pressure distributions; let us now turn to some experimental data for a wing where the flow is already supercritical at $M=M_{D}$ and where even at the design C_{L}, there is considerable non-uniformity across the span. Results for this example, wing B, are presented in Figs.7, 8.

Fig. 7 (a) gives a comparison between 3-D and converted 2-D data for two stations (at 0.28 (I) and 0.60 (II) x semispan) at the design C_{L} and $M=M_{D}-0.10$. Even at this Mach number, the flow is already supercritical near the leading edge at both stations. The agreement with the converted 2-D data is reasonable at station II but at station I, it is not as good as for wing A discussed earlier. Largely, this can be explained in terms of the higher sweepback of wing B (and hence, greater root-effects), the thickness taper related to the section variations across the span and finally, the wing planform geometry which further complicates the process of deciding what is the true "equivalent $2-D$ section". By $M=M_{D}+0.01$, Fig. 7 (b), the order of agreement between the 3-D and 2-D data has deteriorated further and discrepancies are now observed at both stations I and II. Over the rear of the chord, thesi can be explained in the same way as for the lower Mach number the effects have merely increases in magnitude and extended further out, e.g., the higher suctions in the $3-D$ data near $0.4 c$ at station II can be linked with the high suctions near $0.5-0.6 \mathrm{c}$ at station I. Differences are also evident however in the development of the local supersonic region to some extent at II and more particularly at I. It is impossible in this brief account to comment in detail but it is worth pointing out that both the $2-D$ and $3-D$ data are very sensitive to small changes in either M or C_{L}. It is therefore reassuring to sind that at station II at least, there is some "family resemblance" between the variation of the $2-D$ and $3-D$ data with M or C_{L}. At station I, however, there a_{i} ears to be a more substantial difference in behaviour: whereas the 2-D data suggest a supersonic region terminated by a shock, the 3-D distributions indicate a much higher peak suction near the leading edge followed apparently by considerable isentropic recompression and no real evidence of any strong shock. This impression was confirmed by oil-flow studies. One relevant factor is that the sweepback of the isobars over the forward part of the chord near station I is much higher than the local geometric sweepback. This can be seen from the isobar patterns for $M=M_{D}$ and $M=M_{D}+0.04$ presented in Figs. $8 a$, b.

Comparing these two isobar patterns, the shock front near station II clearly moves rearward with increasing Mach number in this range whereas near station I, there is relatively little change. As a result, by $M=M_{D}+0.04$, the sweepback of the shock front near I is near 50° rather than 35°. One would expect therefore that the sate of increase with Mach number in the wave drag associated with this shock front would be less near I than neas II. At first sight, however, this is not borne out by the variation of the local section drag coefficients $\Delta C_{D_{L}}$ as derived from the weasured pressure distributions. These are shown in Fig. 8 c , plotted in the form of $\Delta C_{D_{L}}$ vs. ($M-M_{D}$) where $\Delta C_{D_{L}}$ is the increment in $C_{D_{L}}$ compared with the value at $M=M_{D}$, and M_{D} is the drag-rise Mach number for the wing as a whole. The variation in the overall C_{D} is ploted below for comparison, It is clear that a spanwise integration of the values of $\frac{c}{\bar{c}} \Delta \mathrm{C}_{\mathrm{D}_{\mathrm{L}}}$ would yield a variation with Mach number broadly similar to that obtained in the overall measurements but the changes across the span
in the $\Delta C_{D_{L}}$ yariation are somewhat unerpected. Despite what was forecast above, it is section II which appears to give the most favourable results in. the range up to ($M_{D}+0.04$).

To understand this apparent anomaly, one must consider how three-dimensional effects control the development of the flow over the sweptback wing under supercritical conditions. Fig. 9 helps to explain this in a diagramatic fashion. For any sweptback wing operating at, either $C_{L}>C_{L_{\text {des }}}{ }^{\text {gn }}$ or $M>M_{\text {design }}$, it is likely that the flow over the upper surface, leaving sside the tip region, will be characterised by a 3 (or 4)-shock system as illustrated in Fig.9. These shocks were first explained and described in detail by hall and Rogers in several reports, e.g. Refs.16, 17, from the N.P.L. The forward shock originates from either the wing-root leading edge or the most forward point where the flow is supersonic. The mathematical condition that has to be satisfied for this shock to lie across the wing surface is given in Ref.17; its sweepback is related to the resultant Mach number of the local flow and so increases with C_{L} at a given M, or with M at a given C_{L}; typically, it is around 50°. The main significance of the forward shock is that it marks the inward boundary of the region in which the supercritical flow development can be similar to that over the corresponding two-dimensional section. Hence, in Fig.9, it is only outboard of point A that the "quasi-2D" shock bears some affinity to the 2-D behaviour. Inboard and aft of the forward shock, the flow is affected considerably by the influence of the root. Even if the inner wing sections and the body shape are such as to minimise this influence at the design condition, there can still be a considerable effect at off-design. Generally, the suction will increase over the middle part of the chord of the inner wing and this is then followed by a recompression through a series of waves which coalesce some distance our from the root to focm a "rear shock". This shock intersects the forward or "quasi-2D" shocks at point B. The "outboard shock" has the combined strength of the two inner systems and frequently, therefore, the initial flow separation occurs just outboard of point B. As the Mach number is increased further beyond the design value, the general tendency will be for points A and B to come together and to move inboard but precisely what happens in any given example clearly depends on the section characteristics, wing planform, the wing-body junction shape etc.

With this very brief and simplified description, it is now possible to revert to the drag data in Fig.8c for wing body B for which the flow pattera for $M>M_{D}$ is essentially of the type shown in Fig.9a. Earlier, it was noted that it was difficult to expiain the fairly substantial increase in $\Delta C_{D_{L}}$ with ($M-M_{D}$) at station I at $0.28 \times$ semispan in terms of wave drag associated with the shock
system over the forward part of the chord. Now, in terms of Fig.9a, it can be explained in terms of the development of the rear-shock. Expressed another way, the increase in drag corresponds to che increase in suction aft of the crest ahead of the rear shock. For section II, on the other hand, it is possible to interpret the small increase in $\Delta C_{D_{L}}$ between M_{D} and ($M_{D}+0.04$) by saying that the
increase in wave drag has been partly offset by a reduction with Mach number in the root-influence on this section. This can be seen by comparing the pressure distributions for section 2 inset in Figs.8a, b. The relatively high suctions near $0.3-0.4 \mathrm{c}$ at $\mathrm{M}=\mathrm{M}_{\mathrm{p}}$ were not observed in the tests on the equivalent two-dimensional section (see Fig.7b) and can probably be ascribed to root-influence. No such irregularities were observed aft of the main shock at ($M_{D}+0.04$) or in other words, this section then lies outboard of points A and $B . \Delta C_{D_{L}}$ can therefore be a poor indication of the wave drag associated with the main shock front; the difficulty lies in knowing how $C_{D_{L}}$ would vary with Mach number in the absence of a shock wave. In the present case, the implication is that under such conditions, C_{D} would have decreased with Mach number at station II.

Finally, the comparison between Figs.9a, b has been included in order to illustrate that the choice of basic design pressure distribution can have a major effect on the way the 3 (or 4)- shock system develops at off-design conditiong. The two pictures correspond diagrammatically with the twe alternative 2-D sections considered in Fig.2. With small x_{R}, as in Fig.9a, the tendency is for the quasi-2D shock to link on the inner wing with the forward 3D-shock, thus leaving the rear-shock as a clearly defined separate front. With large x_{R} as in Fig.9b, the quasi-2D shock tends to link with the rear shock leaving the forward shock as the separate system. Obviously, these pictures and this description are grossly over-simplified but even so, certain conclusions are valid. For example, the proportion of the wing span oyer which the local supersonic region can develop as in two-dimensional flow is cleazly greater in case (a); also, with (b), there is a greater likelihood that the supersonic region ahead of the rear shock develops in a manner completely uncontrolled by any expanaion field being generated near the leading edge. It is not however the aim of this paper to pronounce in favour of (a) or (b). This would be both premature and unwise particularly as it is iealiy misleading to think that there are just two classes of design. The distinctions have bean deliberately ove:dram to aimplify the discussion and to highlight the problems that are being investigated in current research.

7. GENERAL DISCUSSION AND CONCLUDING REMARKS

Examples have now been given of how the choice of basic pressure distributions and isobar patterns can affect the drag-rise Mach number (M_{D}) and supercritical behaviour. For a transport aircraft, another vital factor is the standard of achievement in respect of C_{D} at M_{D} and the extent to which C_{D} could be reduced by a change in the target pressure distributions. Indeed, it seems
likely that in the past, there may have been too much stress on obtaining the best value of M_{D} with too little regard for C_{D} at M_{D} or for $\mathrm{dC}_{D / \mathrm{dM}}$ near M_{D}. Recent analysis has suggested ${ }^{1,18}$ that typicklly, an increase of 10% or more in the wing-body drag coefficient (excluding the vortex-induced drag) can be expected between low speeds and $M=M_{D}$ but that the reason for this can vary widely from one design to another. The three most common reasons are:
(i) an increase in the wing profile drag with Mach number at subcritical speeds,
(ii) premature supercritical wave drag apptaring as a sectional effect smmewhere along the span,
and (iii) premature wave drag due to thres-dimensional effects related notably to a loss in isobar sweep near the root.

A method ${ }^{19}$ is now available for estimating (i) in two-dimensional flow; it has been shown to be reliable for a wide range of pressure distributions. Also, a criterion has been issued ${ }^{20}$ for recognizing whecher the pressure distributions are of the "triangular" type ${ }^{4}$ - one of the main sources of (ii). Effect (iii) has already been discussed. Past experience appears to suggest that if the excess drag from any two of these sources is small, the contribution from the third item is appreciable but there is no reason why this should necessarily follow. It is merely an indication that all three effects should be considered at the initial design stage,

This paper, in its examples at least, has tended to concentrate on sweptback wings of high aspect ratio, typical of subsonic transport designs. It is however worth noting that at a design point with fully attached flow the problems encountered in designing a swept wing for a strike/fighter application are likely to be similar in principle, although differing in detail. Even though the wings would be of much lower aspect ratio, it is still possible to relate the behaviour at such a design condition with corresponding results in two-dimensional flow. Naturally, the three-dimensional root effects have a stronger influence but Ref. 9 has still been used as a design method with conspicuous success.

The real differences between the two types of application arise when considering off-design conditions. For example, the stalling behaviour of swept wings of moderate aspect ratio is likely to be determined by 3-D effects such as part-span vortex sheets or a separation induced by a forward- or rear-shock rather than by an outboard quasi-2D shock. Also, for a strike/fighter, a satisfactory flow breakdown across the span at the stall in manoeuvering flight may often be the major criterion when seeking an acceptable wing design. Normally, one wants a progressive rather than a sudden flow breakdown and the choice of a uniform isobar pattern in the design cundition may make it more difficult to realise this aim. Nevertheless, experience has shown that ways can be found for resolving this dilema.

To sumarise, the best possible wing design for any given application must always be a compromise. The object of research must be to find what are the major factors, to establish the exchange-rates and so help the designer co make the best choice. It is hoped that this paper has made a contribution in this respect.

Finally, the author wishes to acknowledge the help received from other members of the A.R.A. staff and from colleagues in industry, the R.A.E. and N.P.L. in the preparation of this paper. He takes full respensibility however for the opinions expressed.

GEFERENCES

1. Haines, A.B.
2.
3.
4. Pearcey, Н.Н.
5. Pearcey, H.H.
6. Lawlor, E.F.
7. Rogers, E.W.E.

Berry, C.J.
Quincey, V.G.
8. Lock, R.C.
9.
10. Weber, J.
11. Haines, A.B.
12. Kess, J.L.

Smith, A.M.O.
13. Faulkner, Sue

Hess, J.L.
Giesing, J.P.
14. Labrujere, T.E.

Loeve, W.
Slooff, J.W.
15. Freescone, M. M.
16. Hall, I.M.

Rogers, E.W.E.
17. Berry, C.J.

Rogers, E.H.E.
Townsend, J.E.G.

Subsonic Aircraft Drag: An Appreciation of Pregent Standards.
A.R.A. Wind Tunnel Note 66, 1967.
R.Ae.S, Journal pp.253-266, Vol.72, 1968.
R.Ae.S. T.D.M. 67008.
R.Ae.S. T.D.M. 67009.

The Aerodynamic Design of Section Shapes for Swept Wings. Paper presented at ICAS Congress, Zurich, 1960.

Shock-induced Separation and its Prevention by Design and Boundary Layer Control.
"Boundary Layer and Flow Control", Vol.2, Part IV, Pergamon Press 1961, edited by G.V. Lachmann.
Wind Tunnel Tests at Mach Numbers between 0.6 and 1.4 of a 60° Swept Wing having an Aerofoil Section designed for Subcritical Flow at a Mach Number of 1.2 .
Part I: 9\% Thick Section with "triangular" Pressure Distribution. A.R.C. C.P.582, May 1961.

Tests at Transonic Speeds on Wings with Wedge Sections and Sweep varying between 0° and 60°.
A.R.C. 23,180, 1961.

The Equivalence Law Relating Three- and Two-dimensional Pressure Distributions.
A.R.C.23,952, 1962.
R.Ae.S. T.D.M. 6312.

The Shape of the Centre Part of a Sweptback Wing with a required Load Distribution.
A.R.C. R.\& M. 3098, 1959.

Wing Section Designfor Sweptback Wings at Transonic Speeds.
R.Ae.S. Journal pp.238-244, Vol.61, 1957.

Calculation of Non-lifting Potential Flow about Arbitrary Three-dimensional Bodies.
E.S.40622, 1962. - Douglas Aircraft Company.

Comparison of Experimental Pressure Distributions with those Calculated by the Douglas Neumann Program.
LB.31831, 1964. - Douglas Aircraft Company.
An Approximate Method for the Determination of the Pressure Distribution on Wings in the Lower Critical Speed Range.
Paper to be presented at the AGARD Specialists' Meeting on Transonic Aerodynamics, 18-20 September 1968 - Paris.

An Approach to the Design of the Thickness Distribution near the Centre of an Isolated Swept Wing at Subsonic Speeds.

Paper to be presented at the AGARD Specialists' Meeting on Transonic Aerodynamics, 18-20 September 1968 - Paris.

Experiments with a Tapered Sweptback Wing of Warren 12 Planform at Mach Numbers between 0.6 and 1.6 .
R.\& M.3271, 1960

A Study of the Effects of Leading-edge Modifications on the Flow over a 55° Sweptback Wing at Transonic Speeds.
A.R.C.21,987, 1960.
18. Haines, A.B.
19. Nash, J.F.

Osborne, J.
Macdonald, A.G.J.
20.

Recent Research into some Aerodynamic Design Problems of Subsonic Transport Aircraft.
Paper to be presented at ICAS Congress, Munich, 1968.
A Note on the Prediction of Aerofoil Profile Drag at Subsonic Speeds.
A.R.C. 28,075 , 1966 .
R.Ae.S. T.D.M. 6407.

FIG. 4 PRESSURE DISTRIBUTION FOR 25° SWEPTBACK WINGA

(a)

IOR WINO WITH 20 PRESSURES WITM SMALL x_{R}

(b) for wing with 20 pressurzs with laroz X_{k}

FIG. 9 TYPICAL SHOCK PATTERNS AT $M>M_{\text {D\&SION }}$ OR $\quad C_{L}>C_{L_{\text {DISION }}}$

in the Iower Critical Spoed Range

by
Th.E. Labrujere, H. Loove and J.H. Sloofi
National Aerospace Laboratory NLR, Amsterdam Nethorlands

Sumary

The design of alrcraft for officient flight st bigh subsonic speede demands for wothods by whioh the pressure distributionts on winga can be prediotiad aocurately.

The present paper is conoerned with an approximating method that is based on the fat that the main oharacteristion of subsonic flow about winge are desoribed rather well by the linoarised potential equation. In view of thia, similar to Goethertis rule; the compresmible flow is rélated to the incompressible flow eround an analogous configuration Thich is obtained from the original one by an affine transiormation. The incompressible fiow te determined by means of e curface distribution of singularities and the coothert relation is gupplomonted with momi-ompirical factors. Viscosity, effeots are taken into account by applying the method to a configuration that $i s$ obtained by modifying the oontour of the aerofoil for the differential growth of the boundary layer displacement thicikneas on the upper and lower surface.

The accuracy of the method is shom by comparison with exact resuas for tro-dimensional flowe and experimental results for two and three-dimensional flows.

Notations

Symbols.
c length of local chord
r body radius
t maximum thickness of aerofoil section
u perturbation velocity on the surface of the aerofoll
$x \quad$ chordwise coordinate
y spanwise coordinate
z coordinate measured normal to the reference plane of the aerofoil
Br vompressibility factor accoraing to Hilby (raf.2)
C_{p} pressure coefficient
$C_{\text {I }} \quad$ lift coofficient
Ma Mach number of the onset flow
V total velocity non-dimensionalized by the velocity of the onset flow
$\alpha \quad$ angle of attack
$\beta=\left\{1-N a^{2}\right\}^{\frac{1}{2}}$
η spanwise coordinate non-dimensionalized by the semi-span
$\left.\begin{array}{l}\tau_{1} \\ \varepsilon_{0}\end{array}\right\}$ parameters defining lifting quasi-eliptical aerofoil section (ref.1)

Subscripts.
a refers to the analogous configuration
1 refers to the incompressible flow

Suporsoripts.

(1) refers to the first order approximation

F refers to the critioal condition

An Approximate Method for the Determination of the Preseure Distribution on Winge

in the Lower Criticsl Sneed Range

by

Th. E. Labrujere, W. Loote and J. W. Slooff
National Aerospace Laboratory NLR, Amsterdam
Netherlands

1 Introduction.

For flight at high-subsonic speeds special attention must be paid to the avoidance of large drag, which ocour as a resulit of pressure losses due to viscous effeots and shooks. To keep these phenorens within aoceptatile limite an iteration process is applied, in practice, in which use is made of both measurements in wind tunnels and aerodynamic calculations. The convergenoe of this process largely depends on the accuracy by which details of flow phenomena on ring-body combinations can be predicted. As exact solutions for risoous compressible flow about such configurations do not exist, only approximating methods oan be applied.

Recent developments in transonic xing-design appear to lead to geometries for whioh in many cases oxisting methods are no longer satisfactory. The present paper is concerned with an approximating method which has been devoloped with the object to improve this situation. In doing so special attention has beon paid to the prediction of compressibility effects at conditions where the velocity components normal to the isobars are near-sonic.

2 Description of the method.

2.1 Genergl remarks.

It is well known that the main characteristics of subsonic attached flow are described rather well by the linearised potential equation. In the present method the solution of this equation is approximated in a way very similar to the Prandtl-Glauert and Goethert rules. Considering a wing-body combination in an onset flow with Mach number Ma, the compressible flow around the given configuration is related to the incompressible flow around an analogous configuration. This analogous configuration is obtained from the original one by shrinking all dimensions nomal to the onset flow direction by the factor $\beta=\left\{1-\mathrm{Ma}^{2}\right\}^{\frac{1}{2}}$. When applying linearised theory the incompressible flow is usually determined by means of a ohord-line distribution of singularities. In the present method, however, a surface distribution is applied. Also non-linear comprossibility orfocto are approximated somi-empirically by supplementing the Goethert rule with correction ractors depending on local flow conditions. It may be emphasizod that the present mothod has beon developed in such a way that wings both with and without body may be treated.

2.2 Outline of the method for the limitine case of two-dimensional symmetric flok.

According to full linearised theory, as formulated by Goethert, the perturbation velocity u on a given aerofoil in compressible flow, is related to the perturbation velocity u_{θ} on the anaiogous aerofoil in incompressible ilow. Considering first order approximations, this is extablishod by the well-known relation

$$
\begin{equation*}
u^{(1)}=\frac{1}{\beta^{2}} \cdot u_{a}^{(1)} \tag{1}
\end{equation*}
$$

where the supersoript (1) refers to first order perturbations, lion-dimensionalizing the velooities by means of the undisturbed velcoity, the total velocity on the aerofoil is then determined by :

$$
\begin{equation*}
v=1+u^{(1)} \tag{2}
\end{equation*}
$$

This result is in prinaiple only valid for thin aerofoils with cusped leading and trailing edges. In the incompressible case the first ordor result can be made uniformly valid for
x)

Senior Research Engineer, Aerodynamics Division.
Ix)

Research Engineer, Aerodynamics Division.
aerofoils with round loadingedges by applying Riegels factor, viz :

$$
\begin{equation*}
v=\left[1+u^{(1)}\right] \cdot\left[1+\left(\frac{d z}{d x}\right)^{2}\right]^{-\frac{1}{2}} \tag{3}
\end{equation*}
$$

Where $z= \pm(x)$ is the aerofoil oontour in the concerning symetric case.
For compressible flow KMohemann and Weber (ref.1) havo modified this result in order to take into account non-linear effects:

$$
\begin{equation*}
V=\left[1+\frac{u_{a}^{(1)}}{\beta B_{w}}\right] \cdot\left[1+\left(\frac{d z}{d x} / B_{w}\right)^{2}\right]^{-\frac{1}{2}} \tag{4}
\end{equation*}
$$

The compressibility factor B_{w} may be chosen eocording to the suggestion of Vilby (ref.2) viz :

$$
\begin{equation*}
B_{w}=\left\{1-M a^{2}\left(1-M a \cdot C_{p_{i}}\right)\right\}^{\frac{1}{2}} \tag{5}
\end{equation*}
$$

C_{b} is the looal pressure coefficient in incompressible flow.
p_{i} Then eq. (4) represents a formula for the determination of the velocity on the aerofoil, which is sdequate for asofoils with elliptic nose shapes. Important discrepanoies with exact results have been found for aerofoils rith non-elliptio nose shapes. As may be expected, when applying first order approximations, this is already the case at the determination of the ircompressible flow ($\beta_{m} B_{k}=1$). In principle, the approximation determined by eq. (3) may be improved by applying higher order expansions of potential theory along the lines of Irai, Van Dyke and Cretler (refs 3,4,5). However, it has been observed, when applying Gretler's approximation, that, espeoially in cases with rapid variation of curvature, slok convergence may cause serious errors in both incoupressible and compressible solutions. An example is given in fig.1. Also, this approach is not very well autted for application to three-dimensional configurations, especially when wing-body combinations are concerned. oq. (4) by :

$$
\begin{equation*}
u_{a}=v_{a}\left\{1+\left(\frac{d z_{a}}{d x}\right)^{2}\right\}^{\frac{1}{2}}-1 \tag{6}
\end{equation*}
$$

Here V is the exact local velooity on the contour of the analogous aerofoil in incompressible flow. Then eq. (3) gives trivially the exact solution in the limiting asse of inoompressible flow, while in the case of compressible flow the solution is.
approximated by

$$
\begin{equation*}
V=\left[1+\frac{V_{a}\left\{1+\left(\frac{d z_{a}}{d x}\right)^{2}\right\}^{\frac{1}{2}}-1}{\beta B_{W}}\right] \cdot\left[1+\left(\frac{d z}{d x} / B_{w}\right)^{2}\right]^{-\frac{1}{2}} \tag{7}
\end{equation*}
$$

Y_{a} is determined by applying a distribution of sources along the contour of the aerofoil.

2.3 The tro-dimensiorni iifting case.

For the two-dimenaional lifting oase eq. (7) is generalized by formal substitution of the quantities for upper and lover surface respectively. The incompressible flow around the analogous profile is determinad by a surface distribution of vortices.

2.4 The throe-dimensional oase.

The three dimensional version of the present method is obteined by generalizing the tro-dimensional result. This is aohieved by applying eq. (7) looally in the approximate direotion of the perturbation velocity. The velooity component thus obtained, is combined with the undisturbed component of the onset flow to give the total velooity on the surface of the wing. In the case of non-lifting wings the basio solution, i, θ. the perturbation velooity on the anelogous wing in incompressible flow, is obtained by means of the wethod of Ross and Suith (ref.6).

The determination of the incompressible flow about an analogous lifting configuration is in the stage of prosramaing. Again coaprestibility corrections will be applied formally in the non-lifting case.

3 Viscous effects.

When applying approximating methods for the calculation of pressure distributions on wings, it is usually assumed that the main offects of viscosity oar be taken into acoount by determining the inviscid flow around a modified aerofoil, which is obtained shen the boundary layer displacement thickness is added to the ordinates of the aerofoil contour. Due to the wake this modified aerofoil extends to infinity domstrean. The modification of the aerofoil may be resolved into two wain effects viz : a ohange of angle of attack and camber and a change of thickness.

The latter only influences the flow in the immediate vicinity of the trailing edge. It appears that for practical design purposes this offect can be negieoted. Therefors, uithin the present method viscosity is taken into account by meroly considering the offoot on camber and angle of attack. This is achieved by adding to the ordinates of the contour half the difference between the displacement thickness of upper and lower surface. Then the inviscid flow around the distorted aerofoil is determined along the lings indicated above. An iterative procedure, where, alternately, the inviscid flow and the diaplacement thickness are determined, leads to a pressure distribution adapted to the main effect of viscosity.

4 Examples of application.

On the majority of wings, designed for high subsonic epeeds, the flow near the wing surface is, up to a large extend, defined by the local geometry. Therefore, the applicability of the present method can be illustrated by means of results obtained for the limiting case of two-dimensional flow. This offers the possibility to check the accuracy of the results by comparison with exact solutions of the full potential equation. Thus, uncertainties that are present, when comparing with measurements, are avoided. Exact solutions of the full potential equation have been obtained by Nieukland and Solls, Nieurland (ref.7) applies an inverse hodograph methoa, by which the shape of a quasi-elliptical aerofoil is determined together with its pressure distribution for a given Nachinmber of the onset flow. Sells (ref.8) applies a direot method, which, however, can only deal with subcritical pressure distributions, x)

4.1 Non-lifting cases.

Figs. 2, 3 and 4 are concerned with three non-lifting quasi-elliptical aerofotls which have been determined for sub-oritical flow. The nose shape of the aerofoil of fis. 2 is nearly elliptio. Those of figs. 3 and 4 deviate increasingly more from the elliptioal shape. The pressure distributions obtained through the present method as well as the results obtained by the Von Karusr-Tsien pressure rule and the Goethort rule are compared with the exact solutions. It apr ars that considerable improvement is achieved by the present method. Fig. 5 deals with a quasi-elliptical aerofoil which has been determined for super-oritioal flow. In fig. 5a the result obtained by the present method for near oritical flow is compared with the results of NLR experiments. Fig. 5b provides the comparison of the present approximation with experimental results and the exact solution for the design Kach number. It way be concluded that the present method is a useful means to predict pressure distributions up to and including the lower critical Mach number. As might be expected the approximation breake down at super-oritical Mach numbers.

In figo 6 results of the present method are given for a non-lifting wing with geometrigal characteristics in the range of practical interest (aspect ratio 6, mid ohord sweep 30°, thickness/chord ratio 0.09). From comparison with results obtained by means of the Coethert rule it appoars that the difference between the two approximations is of the same importance as in the two-dimensional cases of figs. 2, 3 and 4.

A comparison with experimental results is given in fig. 7 for a wing of symmetrical a arofoil section attached to a body of oircular cross section at zero incidence.

The agreement betreen the present approximation and the measuresents is good. The disorepanoles at the rearuard part of the wing are due to a laminar separation bubble during the experiwents.
x)

The results of Sells have been obtained through the llational Physical Laboratory and the Rojal Airoraft Establishment.

4.2 İfting cases.

As bas been mentioned before the computer programe for the determination of the three-dimensional incompressible flou around lirting wings is not yet ready. As a consequence only two-dimensional cases are presented as axamples.

In figs. 8 and 9 the results obtainer by means of the present method for a lifting quasi-alliptical aerofoil and for the NPL 3111 section are comparen with the eraot solutions for potential flow together with the results obtained by the Von Karman-Tsien pressure rule and the Coethert rule. It appears that the differences are of the same importance as in the non-lifting uases.

Fig. 10 deals with an aerofoil which, like the aerofoil of fig. 9, has been designed for a "rooftop" type of pressure distribution. It appeara that, if the influence of the boundary layer is neglected, the disorepancios betreen the measured and calculated pressure distribution presented in fig. 10 are larger than the comprrable discrepancies betreen the exact and the approximate results of ifg. 9. This situation is improved when viscous effeots are taken into account in the way described in sect. 3. In this case the boundary layer has been calculated by means of the method of Nash and Mo Donald (ref. 9).

5 Referenoes.

1. Klichemann, D. and J. Heber
2. Hilby, P.J.
3. Imai, I.
4. Van Dyke, M.D.
5. Oretler, H.
6. Hess, J. L. and R.M.O. Soith
7. Niourland, O.Y.
8. Solls, C.C.L.
9. Nash, J.F. and A.G.J. Maclonald

The subson!c flow past swept wings at zero lift without and with body:
R \& M No. 2908 (1956).
The calculation of aub-critical pressure distributions on symetrical aerofoils at zero incidence. NPL Aero Rep. 1208 (1967).

Approximation method in compressible fluid dynamice. Univ. of Maryland, Techn. Note BN-95 (1957).

Second-order subsonic airfoil theory and its practical application. NACA TN 3390 (1955).

Neuere Nethode zur Berechnung der ebone Untersohallströmung an dume Profilen bei kleinen Anstellwinkeln. Acta Nech. Vol I/2, 1965
Caloulation of potenticl flow about arbitrary threedicensional bodies.
Douglas Airoraft Co, Rep. Es 40622 (1962).
Transonic potential flow around a family of quasielliptical aerofoil sections. NLR TR T. 172 (1967).
plane aub-oritical flor past a lifting aerofoil. RAE Rop. TR 67146 (1967).

Tho calculation of momentum thickness in a turbulent boundary layer at Mach numbers up to unity. NPL Aero Report 1207 (1966).

FIG. 1 EXAMPLE OF SLOW COHVERGEHCE OF THIN-AEROFOLL EXPANSIOW SOLUTION
(QUASI-ELLLPTICAL AEROFOIL 0.09-0.75-1.4).

CCMPARISON OF PRESSURE DISTRIBUYONS ON BON.LIFTING OUASIELLIPTICAL AEROFOILS

\cdots COMPARISON OF PAESSURE DISTRIEUTIONS OW MON - LIFTMG OUASI-ELLIPTKCAL AEROFOLL OF 'PEAKY' TYPE

CALCULATED ISGEAR PATTERM AND CHORDWISE PRESSLRE DISTRIBUTION ON A NON -LIFTIMG WINC AT MA a O.E

by
J. Bridgewator x) $\begin{gathered}\text { (National Phybical Laboratory, } \\ \text { Teddington) }\end{gathered}$
x Teddington)
S.O.T.H. Han
x) (Nationaal Lucht- on Ruintevarartlaboratorium,
H. Kramer
x) (Nationaal Lucht- en Ruimtevaartlaboratorium, Ansterdam).

Sumary

A wing-body configuration has been designed; with the intention of giving oconomical cruise charactoristics at low supersonic speeds. The design aim was to reduce the wave drag as far as possible by designing tine wing and body in such a way that boundary. layer separation and shocks on the ring are avoided, A wind tumnsl model was made according to this deaign, consisting of a 55° swept warped wing mounted on an axisily symotric waisted body.

The presentation of the wind tunnel test resulta has been oonfinel to the design Nach number $M=1.20$ and the design incidence $\alpha=2.5^{\circ}$. The experimental pressure distributions-show good agreement with the theoretical pressure distributions except for a slight overeexpansion on the wing uppersurface near 30% of the chord and a compression on the wing lower surface, Due to these pressure deviations the measured wing lift is slightly higher than the caloulated value. From the test reeults it appears that over the man part of the wing uppersurface the flow is superoritical. In spite of this the flow suggests no indioation of the presence of shock waves.

It can be concluded that the design aim of achieving a wing-body combination possessing good lift-drag oharacteristics at $M=1.20$, has been fulfilled.

Notations

c	chordiength
${ }_{0}$	rootchord
$\stackrel{\rightharpoonup}{c}$	aerodynamic mean chord
c_{D}	dragcoefficient
${ }^{c}$	liftcoefficient
c_{p}	pressure coefficiert
$\mathrm{c}_{\mathrm{p}}{ }^{\text {\% }}$	critical pressure coefficient
ℓ	wing loading
10	Nach number
$\mathrm{Re}_{-}^{\text {c }}$	Reynolds number based on the aerodymamic mean chord
x	streamkise coordinate
y	spanwise coordinate
z_{6}	camber coordinate
$z_{\text {twist }}$	height of wing L.E. above wing reference plane
$\boldsymbol{\alpha}$	angle of attack
$\alpha_{\text {twist }}$	angle of wing twist
\wedge	angle of sweep
q	spanwise coordinate in fractions of half wing span.

The Aerodynamic Design and Testing of a infting Swept Hing-rody

Configuration with Shock Free King Flow at $M=1.20$

by
J. Hridgenater x) $\begin{gathered}\text { (National Physical Laboratory, } \\ \text { Teddington) }\end{gathered}$
S.O.T.H. Han
x) (Nationasl Lucht- on Ruimtevaartiaboratorium, Amsterdan)
H. Kramer
x) (Nationaal Iucht- on Ruimtevaartlaboratorium, Amsterdan).

1 Introduction.

In the United Kingdom during the past decade much attention has been paid to the development of swept wing-body combinations, intended to cruise economically at low supersonic speeds (ref.1). The design aim is to reduce the wave drag as far as possible by avoiding boundary layer separation and shooks of appreciable strength on the wing. Boundary layer separation is avoided by choosing a suitable target pressure distribution, having moderate pressure gradients. Strong shocks are avoided by designing the wing and body waisting in such a way that over as much as possible of the wing the isobar pattern is similar to the straight isobar pattern on the corresponding infinite yaved wing with subcritical flow. By making use of this approach, the flow on the wing can then be related to the flow on an equivalent two-dimensional section, having the aame thickness distribution as the wing in the direction normal to the isobars. Since for three-dimensional flow calculations only linearised theory can be used at present, this two-dimensional section approach enables non-linear local thickness-lift interaction effects on the wing to be included in the design.

The present paper concerns a detailed investigation of the applicability of the desien procedure, which formed part of an anglo-netherlands cooperation program, and involved not only the National Lucht- en Ruimtevaartlaboratorium (NLR, Amsterdam) and the National Physical Laboratory (NPL, Teddington), but also the Royal Aircraft Establishment (RAE, Farnborough and Bedford) and the Aircrart Research Association (ARA, Bedford).

2 Detailed design procedure.

According to the above mentioned method a lifting swept wing-body has been deaiened to have a fully ewept isobar pattern and to have a target streamwise uppersurface pressure distribution based on a "rooftop" back to 30% of the chord just close to critical conditions at the desien Nach number $\mathrm{N}=1.20$.

The overall dimensions of the wing-body design have been chosen to be gimilar to those of a promising preceeding design (ref.2). The configuration consists of a 55° swept wing with curved tips, uses a 6% RAE 101 section thickness distribution in streambise direction combined with three-dimensional camber and twist and has a waisted body (see fig.1) based on the supersonic area rule.

The wingpressure distribution due to thickness hes been oalculated in three dimensions using a linearised method (ref.3) in which the souroe strength at the wing leading edge has been corrected by means of the atandard type of multiplicative Riegels faotor. In this way a correction is made to the first order thickness effect for the blunt wing leading edee. In addition the body side is treated as a plane of reflection in these calculations. By adding the pressure field calculated by linearised theory due to the symetrically waisted body, the combined pressure distribution due to thickness on the wing-body combination was then obtained. When compared with the isobar pattern on the corresponding infinite wing, these combined results show a loss of isobar sweep over the forward part of the innerwing. Attempts to atraighten the isobars by a redesien of the body waisting lod to inacceptable body contours from both area rule and model making points of view. Sinoe rosults available from earlier tests had indioated thet a gentle loss of isobar sueop in a region where the flow is accolerating could be tolerated, it uss decided not to modify the body waisting in this way.

[^6]For the corresponding lifting surface caloulation the winguarp distribution hes been designed for a given chorduise loading, invariant in the spanwise direction. This approximately gives a straight isobar pattern due to lift on the inboard part of the wing. On the outerwing, the isobar sweep increases towards the tip because of the planform shape and hence the appearance of a tipahock at the design conditions is thereby avoided. The streamwise loading taken for this three-dimensional wing warp calculation was derived directly from the camber and incidence of the associated two-dimensional cection at its design condition of $\mathrm{K}=0.688$ and $\alpha=2.15^{\circ}$. This section had been designed by the Weberkuchemann method (ref.4) to give the just critical inviscid rooftop pressure distribution show by the curve labelled "non-linear theory" in fig.3a. Standard thin aerofoil thecry was then applied to a slightly smoothed version of the camber line and the corresponding ilnearised loading distribution thereby obtained. This was ammended by the infinite skeep equivalence lak and the resulting linearised streamwise loading used in the linearised wing warp theory assuming full reflection at the body side. Thus for the chosen design conditzone of $M=1.20$ and linearised $c_{I}=0.136$, the desired wing warp shape was calculated. However, on the finite wing, the two-dimensional non-linearised loading distribution muitiplied by $\cos ^{2} 55^{\circ}$ is expeated to exist rather then this linearised loading if it is assumed that the non-linear effects on the equivalent two-dimensional section and on the finite wing are similar. Details of the resulting streasoise camber lines are given in fig. 2 a .

The wing-body angle has been besed on the experimental lift curve slope of a previous model. Hith the wing at its design incidence, the body has been set at a positive angle of 2.5°, so that the body upwash may help counteract the tendency for the measured loaddistribution at the wing-body junction of a wing-body combination in general to be lower than the calculated loaddistribution. The wing twist distribution with the body axis in the main stream direotion is given on fig. 2 b . At this condition, the model is at its approximate zero lift incidence at $\mathrm{N}=1.20$.

In order to estimate from the tro-dimensional calculation what the final wing upper suxface pressure distribution will be, it is assumed that for the warpod wing at the design incidence, the differences between the pressure coefficientefor the infinito yared wing and for the actual finite wing are the same as those calculated for the symetrical wing at zero incidence. The lower surface pressure distributions are obtained from the upper surface pressure distributions by subtraction of the calculated non-linear king loading distribution. The kinks in the theoretical pressure distrik tion on the inner wing are due to the compression at the Mach-line emanating from the intersection of wing trailing edge and body. The calculated wing pressure coefficients at the design conditions $\alpha=2.5^{\circ}$ and $N=1.20$ are given on fig. 4 and the corresponding wing loading distributions on fig. 5 .

3 Description of experimonts.

To varify the applied design techniques, wind tunnel measuremente have been made on a model of the equivalent tro-dimengional section and on a model of the wing-body configuration. The presentation of the test resulte will be confined to the design oonditions.

On the tro-dimensional model pressure measurements have been made in the $0.42 \mathrm{~m} \times 0.55 \mathrm{~m}$ pilottunnel of the NIR. The test seotion has olosed side walls and slotted horizontal ualls. The measurements jave beon carried out with both free and fixed boundary layer transition. Fization of the transition has beon realised by means of a roughness strip from 16.7% to 18.4 \% of the chord. The Reynolds number, besed on the 0.18 m ohord, was 2.1×10^{6} at the design Nach number $M=.688$.

On the wing-body combination, measurements of forces, moments and surface pressures have been carried oat in the transonic wind tunnel of the MLR. The $2.0 \mathrm{~m} \times 1.6 \mathrm{~m}$ test section has colid side walls and siotted horizontal walls. All model waves reflect downstream of the modelbase for $N \geqslant 1.15$. Tho tests wero done with both freo and fixed boundary layer tranaition. On the wing the transition has fired by means of a roughness strip from 5% to 10% of the $200 a l$ chord. At the design Noin number $M=1.20$ the tests were oarried out at a Reynolde number 1.16×10^{6}, baced on the aerodynamio mean ohord.

The rebults of the tro- and three-dimensional pressure measurements with transition fixed havg been correoted for the local influence of the roughness strip on the pressure distribution, making use of the transition free pressure measurementa.

4 Discussion of results.

4.1 Comparison of measured and calculated results on the equivglent tyo dimensionsl section.

On fig. $2 a$ the target inviscid rooftop pressure distribution oalculated from the KeberKuchemann method is compared with the pressure distribution meacured on the equivalent twodimensionsl section at the designconditions $\alpha=2.15^{\circ}$ and $M=0.688$.

The agreement between theory and experiment is good except for a supercritical overexpansion on the forwerd part of the uppersurface, which is not predioted by the non-linear calculation method. In spite of the appearance of this aupercritioal flow region, no shocks appear to oocur on the seotion upper surface. The caloulated linearised and non-linearised loading distribution and the measured loading distribution are compared on fige3b. On this figure, the separate effects of non-linearity, compressibility (mainly on the forward part of the seotion') and viscosity (mainly on the rearward part of the section) are clearly visible.

More recently, better non-linear theoretical mathods (ref. 5 and 6) have become available, whicb take into account viscosity as well as using improved compressibility terms. Even though these methods are striotly only valid for subcritical flows, some preliminary calculations made with them indicate that closer estimates can be obtained for the measured superoritical region because in this case the flow remains shock-free.

4.2 Comparison of the measured and the oabulated results on the wing.

The pressure distributions on the wing, measured at the design conditions $\alpha=2.5^{\circ}$ and $M=1.20$ are given in fig.4, where they are compared with the calculated wing pressure dintributions. In addition, a set of "expected" thres-dimensional wing pressure distributions deduced from the two-dimensional experimental results have also been shown. To obtain these expected wing pressure distributions, the same pressure corrections with regard to the linearised thickness pressures vere applied to the two-dimensional m e a s ured pressure distribution as had been applied previously in converting the two-dimensional theoretioal pressure distribution to the three-dimensional theoretical pressure distributions on the finite wing.

Before trying to interpret the pressure distributions on the wing, it is useful to recall the assymptions inherent in the method used to design the wing and to examine their consequences :
(a) the equivalence of the flow on an infinite yawed wing and the flow on an appropriate trodimensional soction iz assumed to be related by $c \cdot \sec ^{2} \Lambda$ and $M . \cos \Lambda$, where Λ is the angle of sueop of the infinite wing. This $p_{\text {implies that viscous effects, com- }}$ proseibility effects and non-linear effects are assumed to behave aimilarly on the equivalent tro-dimensional seotion as on the corresponding infinj.te wing.
(b) the complex phenomenon of interaotion effects between the waisted body and the thiok lifting wing has been assumed to be taken into account by treating the fuselage side as a plene of refleation and by adding the linearised pressure field around the isolated body to the separate pressure field due to wing thickness. This rather oversimplifies the problem and as a consequence leads to only an approximate allowanoe for the wing-body interference.

Now the differences between the caloulated and expected three-dimensional pressure distributions are directly releted to the corresponding pressure differences betreen theory and experiment in the two-dime.sional oase. To eliminate these differenoes arising from insufficiently acourate allowances for viscosity and compresaibility effeots in the trodimensional oase, the comparison in the three-dimensional case wili be confined to the expeoted and the measured wing pressure distributions. Hence, any deviations between these pressure distributions will then be due to
(a) limitations within the three-cimensional wing warp and pressure due to thioknegs theorias,
(b) the influence of the wing-body intersction,
(c) the influence of three-dimensionality on the compressibility, non-linear and viscous effeotb.

Though it is not always possible to attribute exactly the pressure deviations to each of the abovo headings, something oan be said of the general charaoter of the pressure deviationa due to the above mentioned causes. For oxample, the kingmbody influence generated by the body, especially the waisted part, will be greatest near the root and will propagate
along Mach lines in a direction dotermined by the loosl uing pressures. the influence of three-dimensionality on the compressibility and non-linear effects will be noticeable mainly on the forward part of the chord. Finally, the threa-dimensional influence on the viscoue effects will be most marked over the rearward part of the wing, and is likely to Encrease towards the tip. Differences arising from the limitations of the three-dimensional wing warp and pressure due to thickness theories are more likely to exhibit global pattorns rather then the localised trends suggested above, and can be checked directiy against measurement from the design calculation curves given in fig.4.

Inspection of the uppersurfaoe pressure distributions (fig.4) showe that the super critical overexpansion also appears in the thres-dimensional measuremento, but when compared with the expected wing pressure distribution, it is found to be concentrated nearer the 30% position of the chord. The level of the measured minimum pressures inoreases slightly towerds the tip. At the tip tie agreement of the measured pressure distribution with the expected pressure distribution is unsatisfactory near the wing leading edge, but there is some evidence that the theoretioal supervelooities due to thickess oalculated with the basicly innearised theory method are too low, and this behaviour is also reflected in the expected wing pressure distribution. On the forward part of the innerwing somewhat higher pressures are measured than yere expected. Near the wing-body junotion, the local influense of the body upwash on the measured uppersuriace pressure distribution is noticeable at the wing leading edge.

On the wing lower surface, comparison of the measured and oxpeoted pressure
distributions shows larger deviations than on the upper surface. The deviations consist of a compression towards the rear of the most inboard seotion and this moves forward over the ving at stations further outboard. Undoubtly, the main part of these prossure deviations is due to body interference.

Not unexpectediy, these pressure deviations are also apparent in the wing loading distributions $e^{i v e n}$ on fis.5. When comparing the expeoted and measured wing loadirg distributions, it is seen that over the rear of the wing ohord, the influence of threedimensionality on the visoous effects gives a loss of loading towards the tip. This is directly associated with the spankise drift of the three-dimensional boundary layer as the tip is approaohed.

The isobar pattern, corresponding to the measured wing uppersurface pressures at the design conditions, has been given in fig. 6 . Except at the wingroot, where doviations due to the thickness design were anticipated, the isobar pattern consists of almost atraight isobars. On the forward part of the wing, the result of the inorease towards the tip of the overexpansion on the direction of the isobars is noticeable. With regard to the shape of the isobar pattern good aerodynamic properties may be expeoted. This is confirmed by the results of the forces and moments testa. on fig. 7 the experimental lift vs inoidcnce curve is given. At the design inoidence $\alpha=2.5^{\circ}$, the measured liftcoeffioient ($c=0.15$) exceeds the theoretical Inear inftcoeffioient ($c_{1}=0.136$) by about 10%. This is the to the over expansion on the wing uppersurface and the compression on the wing lower surface resulting mainly from the faot that the body itself is inducing extra wing lift. Fig. 7 also shows the dragcoefficient C_{D} vs Mach number ourve for the measured liftooefficient at the design incidence and it should be noted that there is only a gentle increase in drag after the design Kach number has been reached.

5 Conclusions.

Comparison of the theoretical and experimental reaults on the wing shows differences which are mainly caused by an overexpansion on the wing uppersurface and by a compreasion on the wing lower surface. As a consequence the measured ifftcoeffioient exceeds the oalculated liftocoffinient by about 10%, on the wing uppersurface the pressure deviations are almost constant in the spanwise direotion and this explains why the experimental uppersurface isobar pattern has atraight ieobars excopt for a small region near the uingroot. The good transonic properties of the combined RAE 101 thiokness distribution and wing warp prevent the supercritical overexpansion recompressing into an undesirable strong akock formation. Thus in apite of small deviations betweon theory and experiment, the design aim of achieving a wing-body configuration having favourable liftmarag oharacteristios at $\mathrm{K}=1.20$ has been olosely fulfilled.

To achieve oloser agreement between theory and experiment for the wing pressures, it is necessary to employ improved correotions for compressibility and viscous effecta in the non-innear two-dimensional design. The rovised calculation methods dovoloped at NLR and NPL (ref.5 and 6) go some kay towards achieving this ond.

6 Reforences.

1. Lock, R.C. and J. Bridgewater
2. Haines, A.B. and J.C.M. Jones
3. Haines, A.B., K. Rollins and J. Osborn
4. Baglgy, JoA.
5. Labrujere, Th.E., H. Loeve and
J.K. Slooff
6. Look, R.C., B.J. Povell,
C.C. Solls and
P.G. Wilby

Theory of sexodynamio design for avept-winged aircraft at transonic and supersonio apeeds t
Progress in Leronautioal Saionces, $\mathrm{Vol}^{2} 8$, Pergamon Press, 1966.

Transonic tunnel tests on a 6% thick warped 55° ewept back ying model:
ARC Rep, \& Nemo 3385, 1965.
The caloulation of the velocity distribution due to thiokness for swept wings with subsonic edges at eupersonio speeds s ARC Current Paper No 654, 1962.

Some aerodynamic principles for the design of swept winge :
Progress in Aeronautioal Soiences, Vol 3; Pergamon Preas, 1962.

An epproximate method for the determination of the pressure distribution on wings in the lowermcritiosl speed range :
Paper 17, AOARD Specialists' Meeting on Transonio Aerodynamics, Paris, September, 1968.

The prediotion of serofoil pressure distributions for sub-oritionl riscous flows
Paper 12, AOARD Specialiats' Mecting on Transonio
Aerodynamics, Iaris, Soptamber, 1968.

FIG. 1 GENERAL ARRANGEMENT OF THE MODEL.

a) CAMBER DISTRIBUTION

b) SPANWISE TWIST DISTRIBUTION

FIG. 2 WINGCAMBER AND TWIST DISTRIBUTION CALCULATED FOR A GIVEN CONSTANT

FIG. 3 PRESSURE AND LOADING DISTRIBUTIONS ON THE EQUIVALENT TWO. DIMENSIONAL SECYION AT THE DESIGN CONDITION.

FIG. 4 CALCULATED AND MEASURED WING PRESSURE DISTRIBUTIONS AT THE DESIGN CONDITION.

Fig. 5 Calculated and measured wing Loading distributions at the design condition.

FIG. 6 EXPERIMENTAL ISOBARPATTERN AT THE DESIGN CONDITION.

EIG. 7 CIVB \triangle FORM $=1.20$ AND CD VS M FOR $C_{L}=0.15$,
$\mathrm{R}_{\theta_{\mathrm{C}}} \times 1.2 \times 10^{6}$, TRANSITION FIXE.D.

FING-BODY IMTERFERENCE AT SUPERSONIC SFEDDS

K. Stewartson, University College London,
and
D. A. Treadgold, Aerodynamics Department, Royal Aircraft Establishment, Farnborough.

SUMMARY

The problem considered is that of the interference between a body, consisting of an infinitely long circular cylinder aligned in the direction of motion, and a thin wing lying approximately in the diametral. plane of tho cjlinder.

Solutions according to linearised theory are discussed for three regions typified by:-
(1) large distances from the start of the interaction,
(2) the neighbourhood of the surface bounding the initial interaction region
and, (3) the neighbourhood of the root chord of the Fing excluded from (2).
The structure of the solution is presented for regions (2) and (3) There existing theoretical methods are inadequate.

Finally in illustration is given making use of the results obtained and a comparison is given of some calculated results with some experimental measurements.

He consider the flow of a compressible inviscid fluid, moving with uniform speed V and at Mach number $\$(>1)$ when undisturbed, past a fixed body consisting of an infinite circular cylinder of radius a whose generators are parallel to the undisturbed direction of motion of the fluid and a thin ming lying in a diametral plane of the cylinder. This problem may be regarded as the prototype of the wing-body interference problems even though an infinite cylinier is unrealistic. In practice the cylinder would have a nose but provided, it is not bluff, its effect on the flow field near the wing is additive to the interference and can be regarded as known.

Untimately the solution of interference problems will be achieved by fully numerical procedures, probably using the panel method and either linear or non-linear hyperbolic equations. At present however these procedures have not been developed and a significant amount of analysis is required to prepare the ground for any numerical rork that is done. It is believed that such analysis is of some permanent value in that it leads to a fuller understanding of the flow and can guide the computation in particular cases.

Without any $203 s$ of generality we can take $M=\sqrt{2}$ and suppose that $\varepsilon(\ll 1)$ is a characteristic measuro of the flon deflection caused by the body. Te also define an orthogonal set of Cartesian coordinates $0 x y z$ where 0 is a convenient point on the axis of the cylinder, Ox points downstream along this axis and $O y$ is in the plane of the wing. Then since the flow is irrotational we can mrite $q=\operatorname{grad} \phi^{*}, \phi^{*}=V(x+\varepsilon \phi)$ where q is the fluid velocity, ϕ^{*} is the velocity potential and, on neglecting squares of ε, the equation satisfied by ϕ is

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}=\frac{\partial^{2} \phi}{\partial x^{2}} \tag{1.1}
\end{equation*}
$$

The boundary conditions satisfied by ϕ, are that $\frac{\partial \phi}{\partial z}$ is prescribed on that part of the plane $z=0$ occupied by the wing, ϕ is continuous on the remainder of the plane $z=0$ outside the cylinder being zero upstream of the Mach lines drawn downstream from the edge of the wing and

$$
\begin{equation*}
\frac{\partial \phi}{\partial r}=0 \quad \text { when } \quad r=a \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
y=r \cos \theta, \quad z=r \sin \theta . \tag{1.3}
\end{equation*}
$$

Our aim in this paper is to discuss the present state of the problem posed by (1.1)-(1.3) restricting ourselves to the exact theory of the detailed flow structure and excluding consideration of overoll properties and of approximate results. The choice is made puraly in view or the limited time available and in no way reflects our opinion of the relative importance of these other aspects. The exact theory may be divided into three parts - first, the asymptotic structure for x large; secord, the naighbourhood of S the initial surface bounding the interaotion region but excluding the neighbourhood of the root chord of the ming; and third the region near S excluded in the second part. We shall discuss these in turn.

2 THE VEHOCITY FIELD FOR LARGE x

The method and principal results here are due to Niolsen (1951, 1957). We restrict attention in this sootion to rings symmetrically disposed to the oncoming stream or, if not, to rings with supersonic leading edges. The significance of this restriction is that it is necessary for the success of the mothod that $\frac{\partial \phi}{\partial z}$ is prescribed at all points of the plane $2=0$ satisfying $|y|>a$. That being so we can tako the Laplace transform of ϕ with rospeot to x, using s as parameter and denoting the result by $\bar{\phi}$; a differential equation for $\bar{\phi}$ is obtained rith boundary conditions that can be solved, formally very simply. Suppose for example that the wings approximately occupy that part of the plane $z=0$ dafined by $|y|>a, x>0$ and are at incidence ε so that the boundary condition on this plane reduces

$\frac{\partial \phi}{\partial z}=-1$	$x>0,\|y\|>a$
$\frac{\partial \phi}{\partial z}=0$	$x<0,\|y\|>a$

Then $\bar{\phi}$ satisfies

$$
\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}=s^{2} \bar{\phi}
$$

- together with

$$
\begin{equation*}
\frac{\partial \bar{\phi}}{\partial r}=0, \quad r=a, \quad \frac{\partial \bar{\phi}}{\partial z}=-\frac{1}{s} \quad \text { on } z=0,|y|>a . \tag{2.2}
\end{equation*}
$$

The formal solution of $(2,2)$ is

$$
\begin{equation*}
\ddot{\phi}=\frac{\operatorname{sgn} z}{s^{2}} e^{-s|z|}+\frac{1}{s^{2}} \sum_{n=0}^{\infty} A_{n} \sin n \theta \frac{K_{n}(s r)}{K_{n}^{\prime}(s a)} \tag{2.3}
\end{equation*}
$$

where K_{n} is the Bessel function of order n, of the second kind and with imaginary argument, and where A_{n} are constants determined by

$$
\begin{equation*}
\sin \theta e^{-\operatorname{sa}|\sin \theta|}=\sum_{n=0}^{\infty} A_{n} \sin n \theta \tag{2.4}
\end{equation*}
$$

What remains to be done to determine ϕ is then the inversion of (2.j) which can be written down as a series of integrals involving W functions, defined by

$$
\begin{equation*}
\frac{1}{a} \int_{0}^{\infty} e^{-s z} w_{n}\left(\frac{x}{a}, \frac{r}{a}\right) d x=\left(\frac{a}{r}\right)^{1 / 2}+e^{s(r-a)} \frac{K_{n}(s r)}{K_{n}^{1}(s a)} ; \tag{2.5}
\end{equation*}
$$

extensive tables, but necessarily incomplete, of these functions have been prepared by
Yersman (1954) and Nielsen (1957). Using these tables a number of workers le.g. Randall (1965), Chan and Sheppard (1965)] have successfully computed pressure distributions on the body and, to some extent, on the wings. The most important region where the computation fails is the neighbourhood of S the surface separating the domair where the interference is identically zero from where it is not zero. The precise form of S in $z>0, y>0$ is

$$
\left.\begin{array}{ll}
x=\sqrt{r^{2}+a^{2}-2 r a \cos \theta} & \text { if } y>a \tag{2,6}\\
x=a \theta-a \cos ^{-1} \frac{a}{r}+\sqrt{r^{2}-a^{2}} & \text { if } 0<y<a
\end{array}\right\}
$$

The reason is that this neighbourhood corresponds to sa large in (2.3) when the series is only slowly convergent. The olugidation of the flow near S therefore is equivalent to an elucidetion of the properties of $\bar{\phi}$ whon sa $\gg 1$. Before looking at this aspect however we note that Nielsen's approach cannot deal with lifting mings having subsonic edges and such interactions can at prosent only bo doalt with in the limit caso of slender wings.

3 THE MEIGHBOURHOOD OE S

The structure of $\bar{\phi}$ when sa $\gg 1$ can be determined in two ways. Either we can develop methods for summing (2.3) directly or we can revert to the basic equation (2.2) and investigate the simplifications that appear when sa $\gg 1$. Both methods are successful; indeed the first
has a long history in the closely related field of short wave diffrection. The second method which is newer, while lacking somenhat in rigour, does have the advantaga of being immediately applicable to arbitrary convex cylindrical bodies. The essential results are also easier toobtain and we shall concentrate on it here. For an account of the alternative approach the reader is referred to Jones (1964), who in another paper (Jones 1967) givas an aiternative account of the second approach to the detemination of the solution near S.

We now consider the structure of S near [but as we shall see later, not too near] $r=a$, $\theta=0$, concentrating on wings without sweep and restricting attention to the region $z>0$. Define Ψ by

$$
\begin{equation*}
\bar{\phi}=\frac{1}{s^{2}} e^{-s z} \Psi(y, z) \tag{3.1}
\end{equation*}
$$

so that outside the interaction region $y=1$. Then in virtue of (2.2) Ψ satisfies

$$
\begin{equation*}
\frac{\partial^{2} \Psi}{\partial r^{2}}+\frac{1}{r} \frac{\partial Y}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \Psi}{\partial \theta^{2}}-2 s\left[\sin \theta \frac{\partial \Psi}{\partial r}+\frac{\cos ^{2} \theta}{r} \frac{\partial \Psi}{\partial \theta}\right]=0 \tag{3.2}
\end{equation*}
$$

together with the boundery conditions

$$
\begin{array}{rlr}
\frac{1}{r} \frac{\partial \Psi}{\partial \theta}-s \Psi & \theta=-s & \theta r, r>a \\
\frac{\partial \Psi}{\partial r}-s \Psi \sin \theta & =0 & r=a, \theta>0
\end{array}
$$

as $r \rightarrow \infty$

So far no app ximations have been made to (2.2) but now we take advantage of the fact that sa >>1. Two regions near $0=0, r=a$ can be distinguished. The first is when $\theta \sim(s a)^{-1}$, ($x-a$) $\sim s^{-1}$ and here, although (3.2) simplifies, the best treatment is by cone-field theory and we shail postpone its consideration until the next section. The second region is characterised by $(r-a) \sim s^{-2 / 3} a^{1 / 3}, \theta \sim(s a)^{-1 / 3}$. In order to discuss it we write

$$
\begin{equation*}
R=\frac{r-a}{a}(s a)^{2 / 3}, \quad \theta=\theta(s a)^{1 / 3} \tag{3.4}
\end{equation*}
$$

and after expressing Ψ as a function of R, θ we let $s a \rightarrow \infty$ when (3.2), (3.3) reduce to

$$
\begin{gather*}
\frac{\partial^{2} \Psi}{\partial R^{2}}-2 \theta \frac{\partial \Psi}{\partial R}-2 \frac{\partial \Psi}{\partial \theta}=0 \\
\Psi(R, 0)=1, \quad \frac{\partial \Psi}{\partial R}=\theta \Psi \quad \text { when } R=0, \quad Y(\infty, \theta)=1 \tag{3.5}
\end{gather*}
$$

The relative errors in (3.5) are all $0(3 a)^{-2 / 3}$. The simpler problem posed by (3.5) can be solved exactly. For details the reader is referred to Stewartaon (1966); the solution is

$$
\begin{equation*}
\Psi=\exp \left\{\theta-\frac{1}{6} \delta^{3}\right\} \sum_{n=1}^{\infty} \frac{A i\left[2^{1 / 3} R-k_{n}\right]}{k_{n}\left[A i\left(-k_{n}\right)\right]^{2}} e^{-2^{-1 / 3} k_{n} \theta} \int_{-k_{n}}^{\infty} A i(\rho) d \rho \tag{3.6}
\end{equation*}
$$

where $A i$ is the Airy function and $-K_{n}$ are the successive zeros of $A i^{\prime}(x)$.
Having obtained this solution valid in a certain domain fairly near the intersection of S and the root chord of the wing the formal extension to the remainder of S turns out, after some rather complicated argument, to be straightforward. In the r, θ, x space the intersection of S with the cylinder is known to be the curve $r=a, x=a \theta$ for $0<\theta<\frac{\pi}{2}$ [if $\theta>\frac{\pi}{2} \mathrm{~S}$ is determined by the other half of the wing approximately lying in $z=0, y<-a$]. Hence for $0<\theta<\frac{\pi}{2}, \vec{\phi}$ must be dominated by a factor $\exp (-$ as $\theta)$ whon $\theta \sim 1$ and $r \rightarrow$ a. We find in fact that replacing the exponential factor outside the summation sign in (3.6) by $s^{-2} \exp (-$ as θ) is sufficient to give $\bar{\phi}$ near $r=a$ for $0<\theta<\frac{\pi}{2}$. On inverting we find that near S and $r=a$

$$
\phi \sim a A\left(\frac{x-8 \theta}{a}\right)^{7 / 4} \theta^{-9 / 4} \exp \left\{-\frac{1}{3} k_{1} \theta\left[\frac{a}{2(x-a \theta)}\right]^{1 / 3}\right\} \quad x>a \theta
$$

provided $0<\theta<\frac{\pi}{2}$, where A is a known constant.
The structure of ϕ at points of S not near $r=a \quad$ can also be worked out but the results are rather complicated and are not reproduced here. Λ full discussion of its properties may be found in the paper already quoted. The behaviour of ϕ at points well downstream of S and noither on the body nor the fings can obviously be found from Nielsen's series taking advantage of the comparative smallness of the relevant values of as. Further, although it has not been explicitly demonstrated, it is likely that these two expansions cover a sufficiently large portion of the flow field for practical purposes. Certainly this appears to be so in the related problem of the diffraction of sound pulses by a cylirder.

Unfortunately the one part of the flow field excluded by these analysis, namely the immediate neighbourhood of the leading edge of the root chord of the wing, is of particular importance in practice and so it is necessary to develop a third procedure to handle it. Before doing so however wo observe that, as with Nielsen's method, the discussion of the solution near S depends on the wings having supersonic leading edges or being symemetrically disposed to the undisturbed stream. Although it has not been investigated the extension to subsonic leading edges does not seem impossible, but it will probably be necessary to work in the x, y, z plane rather than use Laplace transform methods.

THE LEADING EDGE OF THE ROOT CHORD
Defining the wings, as before, by $z=0, x>0,|y|>a$ and the cylinder by $y^{2}+z^{2}=a^{2}$ the -egion we are interested in is the neighbourhood of ($0, a, 0$) and specifically when $\frac{x}{a} \ll 1$. From continuity ϕ vanishes when $x=z=0, y=a$ and the value of $\frac{\partial \phi}{\partial x}$ follows by Bagley's argument (1961). The idea here is to note that the cylinder is normal to the wing on the root chord and hence to a first approximation it may be replaced by an infinite plane. Thus the value of $\frac{\partial \phi}{\partial x}$ at the leading edge is the same as if the wing wero continued through the cylinder by its reflection in the infinite plane and the cylinder then removed. For the unswept wing defined sbove it follows that $\frac{\partial \phi}{\partial x}$ at $x=0$ is the same whether the cylinder is there or not. For swept wings the equivalent problem is to determine $\frac{\partial \phi}{\partial x}$ at the apex of a delte wing, the solution of whioh is well-known.

In order to make a convincing join [graphically speaking] with the asymptotic solution when $\frac{x}{a} \gg 1$ on the root chord it is nowever necessary, at least, to know the value of $\frac{\partial^{2} \phi}{\partial x^{2}}$ as $x \rightarrow 0$ and this is a more formidable problew. Not, it should be omphasised, because of the difficulty of formulation, but rather the amount of manipulation and computation which seems at first sight to be necessary. The line of approach is as follows:
(a) The ning is extended by its mirror image and the cylinder neglected. An expression is derived for the velocity potential ϕ_{1} at a generei point of space. It is used to compute $\frac{\partial \phi_{1}}{\partial r}$ on $r=a$, which, to first order is equal to the value of

$$
\begin{equation*}
\frac{y}{i} \frac{\partial \phi_{1}}{\partial y}+\frac{z}{a} \frac{\partial \phi_{1}}{\partial z} \tag{4+1}
\end{equation*}
$$

when $(y-a)=-\frac{z^{2}}{2 \mathrm{a}}$. After neglecting all terms $O\left(x^{2}\right)$ we denote the resulting form for (4,1) by

$$
\begin{equation*}
x F(\tau) \quad \text { where } \quad \tau=\frac{2}{x}: \tag{402}
\end{equation*}
$$

(b) A new solution ϕ_{2} of the potential equation is constructed to cancel the value of $\frac{\partial \phi_{1}}{\partial r}$ on $r=a$ given by (4.2). To order x^{2} in ϕ it is surficient that this be done on the plane $y=e$, i.e. we replace the cylinder by this plane and require

$$
\frac{\partial \phi_{2}}{\partial y}=-x F(\tau) \text { on } y=a
$$

The determination of ϕ_{2} is a standard problem and solved by means of a distribution of souroes of density $-x F(\tau)$ on $y=a$.
(c) The final step is to cancel the dommash produced by ϕ_{2} on the wing without introducing a normal velocity component on the cylinder, at least to order x. If the donnwash produced by ϕ_{2} on the ring

$$
\begin{equation*}
-x G(\eta)+O\left(x^{2}\right) \tag{40.4}
\end{equation*}
$$

where $\eta=\frac{y}{x}$, the ner potential ϕ_{3} is ohosen to satisfy

$$
\begin{equation*}
\frac{\partial \phi_{3}}{\partial z}=x G(|\eta|) \tag{40.5}
\end{equation*}
$$

on the wing and on its mirror image in the tangent plane to the cylinder at the root chord. The error in the normal velocity at the cylinder induced by ϕ_{3} is $0\left(x^{2}\right)$ and negligible.

If the ring is unswept the value of $\frac{\partial^{2} \phi}{\partial x^{2}}$ at the leading edge of the root chord was first found by Nielsen (1951). He showed that if ϕ satisffes the boundary conditions (2.2), then as $y \rightarrow a+, z \rightarrow 0+$

$$
\begin{equation*}
\phi \rightarrow x-\frac{x^{2}}{3 \pi a}+O\left(x^{3}\right) \tag{4.6}
\end{equation*}
$$

If the wing is swept there are two oomplications. The first concerns the determination of ϕ_{1} at points near the plano $y=$ a. For wings with supersonio edges (1,0 , the leading edge is given by $y=a+m x, m>1$) it, is best to work with the Laplace transform of ϕ_{1}, i. $\theta_{\text {. }}$

$$
\bar{\Phi}_{1}=m \int_{-\infty}^{\infty} \frac{d \omega \exp \left(1 \omega(y-a)-z \sqrt{s^{2}+\omega^{2}}\right\}}{\left(s^{2}+\omega^{2}\right)^{1 / 2}\left(s^{2}+\omega^{2} m^{2}\right)}, \quad z>0 \quad(4.7)
$$

Which satisfies (2.2). On the other hand if the wing has a subsonic leading edge (m<1) and is lifting; as implied by (2,2), the two sides of the wing $(2=0 \pm)$ are not indepenent and the corresponding form for $\bar{\phi}_{1}$ is

$$
\begin{equation*}
\frac{m^{2}}{2 B} \int_{-\infty}^{\infty} \frac{2 \omega \exp \left[i \omega(y-a)-2 \sqrt{\omega^{2}+s^{2}}\right]}{\left(s^{2}+\omega^{2} m^{2}\right)^{3 / 2}} \tag{4.8}
\end{equation*}
$$

where E is the complete elliptic integral of the second kind, with modulus $\sqrt{1-m^{2}}$ although the Leplace trensform is really no further help in these cases. It is noted that if the wing is symetric aboul $z=0$ there is no need to differentiate in this way between $m<1$ and $m>1$.

The second complication arises in the determination of ϕ_{3} when $m<1$. This is formally a standard problem in generalised cone-field theory about which there is an extensive literature. However it was found that the primitive method of source distributions gave the necessary results in the easiest way. As a preliminary we first find a ϕ_{4} such that

$$
\begin{equation*}
\frac{\partial \Phi_{4}}{\partial z}=H(\eta) \tag{4,9}
\end{equation*}
$$

on the delte wing and then integrate the solution from $x=0$ with respect to x. For a suitable choice of H and provided we add a simple standard solution of the potential equation this proceaure gives ϕ_{3} and completes the determination $\frac{\partial^{2} \phi}{\partial x^{2}}$ at $y=a+, z=0+, x=0$. The reader is referred to Stewartson (1968) for further details of the argument: considerable numerical work is needed to determine

$$
B=-2 a \text { Lt } \frac{\partial^{2} \phi}{\partial x^{2}} \quad \text { as } x \rightarrow 0_{+}, y \rightarrow a+, z \rightarrow 0_{+}
$$

and the results are set out in the table below

m	B	m	B
∞	0.1061	0.966	0.0551
3.864	0.0851	0.866	0.0508
2.000	0.0732	0.707	0.0435
1.414	0.0656	0.500	0.0316
1.155	0.0606	0.259	0.0133
1.035	0.0577	0	0
1	0.0567		

Kany questions remain of course and most of them will need extensive computing to answer. It morld be useful howaver if an analytio means of joining the solution near the leading edge of the root chord, given in seotion 4, With the solution for the remainder of the neighourhood of S given in section 3. Ono wonders whether it will also be possiblo to extend Nielsen's asymptotic theory to lifiling rings with subsonio edges and how it fits in with slender body and not-so slender body thenry. Little progress in these directions has unfortunately been made up to nor.

As referred to eariier in the paper, the formal solution of the wing-body interference problem was set down by Nielsen in 1951. His method was to reduce the problem to that of numerical calculation of the sum of an infinite series of certain convolution integrals in order to find the pressure st any point in the field of the interaction. The convolution integrals involye ' W ' fucctions, which have now been fairly extensively tabulated by Mersman (1954), and also the coefficients of the Fourier series representing the normal velosities induced at the body boundary by the velocity potential of the wing, (together with its arbitrary extension within the body) which must be cancelled by those of the interference potential.

In any practical calculation using an electronic computer, the 'W' functions may be stored as a table or, perhaps more conveniently, generated by use of the approximate functions suggested by Luke (1964). The evaluation of the Fourier coefficients is, however, a somewhat tedious task except in rather specicl cases where they can be determined analytically, e.g. for a wing of simple wedge section. An alternative technique which obviates the need to colculate these coefficients is possible for the symmetrical problem when the wing has straight spanmise generators, since it is possible to solve the problem by a simple superposition of the solution for wings of wedge section. Fig. 1 illustrates how an arbitrary section may be built up of elementary wedge wings, QRST, for mhich the solution is known. Such a solution was given by Randall (1965).

For the superposition it is convenient to define an 'influence' function $\mathrm{P}(\xi / \beta a)$, which is the difference between the pressure coefficient at any point on the medge wing-body combination and that at the corresponding point, assuming the body side to act as a reflection plane, (i.e. that for the net wing).
$F(x / \beta a)$ is thus defined as

$$
\begin{equation*}
F(x / \beta a)=\frac{\beta}{\delta}\left[C_{P}\left(\frac{x}{\beta a}\right)\right]_{\substack{\text { Ting-body } \\ \text { combination }}}-\frac{\beta}{\delta}\left[C_{P}\left(\frac{x}{\beta a}\right)\right]_{\text {net wing }} \tag{5.1}
\end{equation*}
$$

where $a=$ body radius
$\delta=$ wedge angle
$\beta=\sqrt{n^{2}-1}$
and, in general, is a function of the sweep angle Λ.
By superposition, we have for the wing-body junction, for example,

$$
\begin{equation*}
\beta \Delta C_{P_{I}}=\left[\frac{\mathrm{d} z_{\mathrm{F}}}{d \xi}\right]_{\xi=0} F\left(\frac{x}{\beta a}\right)+\int_{0}^{x} \frac{d^{2} z_{\mathrm{w}}}{d \xi^{2}} F\left(\frac{x}{\beta \varepsilon}-\frac{\xi}{\beta Q}\right) d \xi \tag{5.2}
\end{equation*}
$$

or

$$
=\int_{0}^{x} \frac{1}{\beta a} \frac{d z}{d \xi} F^{\prime}\left(\frac{x}{\beta a}-\frac{E}{\beta a}\right) d \xi
$$

where $\Delta C_{P_{I}}$ is the increment to be added to the pressure coeffiaient for the not ring, and the ning section is derined by $z_{w}=z_{w}(\xi)$.

Use is made of the foregoing analysis to evaluate the required forms of $F\left(\frac{x}{\beta a}\right)$ for small values of the argument which gives

$$
\begin{equation*}
F\left(\frac{\xi}{\beta a}\right) \approx-\frac{4 m}{3 \pi}\left[\frac{m \pi}{4}\left(m^{2}+\frac{1}{2}\right)-\frac{1}{2} m^{2}-\frac{m^{4}}{2 \sqrt{1-m^{2}}} \cosh ^{-1} \frac{1}{m}\right] \frac{\xi^{3}}{\beta a}+0\left(\frac{\xi}{\beta a}\right)^{2} \tag{5.3}
\end{equation*}
$$

for a subsonic sweep angle, and

$$
F\left(\frac{\xi}{\beta a}\right) \approx-\frac{4 m}{3 \pi}\left[\frac{m \pi}{4}\left(m^{2}+\frac{1}{2}\right)-\frac{1}{2} m^{2}-\frac{m^{4}}{2 \sqrt{1-m^{2}}} \cos ^{-1} \frac{1}{m}\right] \frac{\xi}{\beta a}+0\left(\frac{\xi}{\beta a}\right)^{2} \quad(m>1)
$$

for a supersonic sweep angle; where $m=\beta \cot \Lambda$.
Fig. 2 illustrates the pressure distribution at the junction of a body and a 55 degree swept ring at zgro incidence and a Mach number of $1 \cdot 2$. The calculated results can be compared with those for the nev wing. The influence of the opposite wing panel on the junction pressures is readily apparent. The figure also gives some experimental measurements made in the R.A.E. $8 f^{\prime} t \times 6 \mathrm{ft}$ Transonic Wind Tunnel on the model illustrated and these are seen to be in fair arreement with the calculated values.

REFERENCES

1	J. N. Nielsen	1951:	Ph.D. Thesis California Inst. of Technology
2	J. N. Nielsen	1957:	NACA Technical Note 3873
3	7. A. Mersman	1954:	Proc. Inter. Cong. Math. Amsterdar 2
4	D. G. Randall	1965:	A.R.C. Current Paper No. 704
5	Y. Y. Chan and L.N. Sheppard	1965:	Australian Defence Scientific Service WRE Report HSA i8
6	D. S. Jones	1967:	Mathematika 14, 68-93
7	D. S. Jonts	1964:	Theory of Electromagnotism (Pergamon Press)
8	K. Stewartson	1966:	Mathematika 13, 121-139
9	J.A. Bagley	1961:	R. A. E. Report. Aero 2650
10	K. Stewartson	1968:	Aeronautical Quarterly 12, 135-148
11	Y.L. Luko	1964:	Quart. Journ. Mech and Applied Maths, Vol.XVII, Pt. 1 91-103

$$
\begin{aligned}
\beta \Delta c_{p_{I}} & =\left[\frac{d y}{d t^{m}}\right]_{t-0} F\left(\frac{x}{f a}\right)+\int_{0}^{x} \frac{d^{2} z \pi}{d t^{2}} F\left(\frac{x}{f a}-\frac{f}{f a}\right) d t \\
0 \quad & =\int_{0}^{x} \frac{1}{d a} \frac{d j \pi}{d t} F^{\prime}\left(\frac{x}{f a}-\frac{t}{\beta^{a}}\right) d t
\end{aligned}
$$

Fig. 1 Superposition procedure for a symmetrical wing and body combination

Flg. 2 Pressure distribution at the junction of a body and a 55° swept wing at zero incidence and a Mach number of 1.2

EXPERIMENTAL INVESTIGATION OF WING-BODY INTERFERENCES

 IN THE MACH NUMBER RANGE FROM 0.5 TO 2.0by
W. Schneider

Aerodynamische Versuchsanstalt Göttingen Göttingen, Germany

SUMMARY

In order to investigate the effects of interference on wing-body combinations, three-component measurements were performed in the Transonic Wind Tunnel of the Aerodynamische Versuchsanstalt Göttingen in the Mach number range from 0.5 to 2.0 . Three basic wings, a rectangular wing, a sweptback wing, and a delta wing with aspect ratio A between 2.3 and 2.75 were investigated alone and in combinations with two pointed cylindrical bodies of different length and diameter. For these wing-body combinations the interference effects in lift, pitching moment, wave drag, and shift of the aerodynamic center due to interferences were determined.

RESUME

Afin de rechercher l'interaction aérodynamique entre l' aile et le fuselage des measures de force ont été efféctuées avec des ailes, avec des fuselages et avec différentes combinaisons d'ailes et de fuselages dans le régime du nombre de Mach de $\mathrm{Ma}=0,5$ j $\mathrm{Ma}=2,0$. Ces measures ont été execurées dans la souffierie transonique de Aerodynamische Versuchsanstalt Göttingen. On n'a recherché que trois ailes de géométric fondamentale : une aile rectangulaire, une aile en flêche et une aile delta d'un allongement géométrique entre 2,3 et 2,75 . Ces ailes ont été combinées avec deux differents fuselages. Avec les differentes combinaisons on a recherche les effects d'interaction aérodynamiques sur la portance, sur le moment de tangage, sur la trainée due aux ondes de choc, sur les gradients de la portance et du moment de tangage et sur le déplacement du centre de poussée.

A
a. c.
b
c (y)
$\overline{\mathbf{c}}$
${ }^{c}{ }_{D}$
${ }^{c}$ M
${ }^{c}{ }_{r}$
${ }^{\mathrm{c}} \mathrm{t}$
d
$\frac{d c_{L}}{d \alpha}$
$\frac{{ }^{d c}{ }_{M}}{d \alpha}$
D
L
M
Ma
MRC
p
wing aspect ratio, $A=b^{2} / S$
aerodynamic center of the wing
wing span
local wing chord
mean aerodynamic chord, $\bar{c}=\frac{1}{S} \int_{-5}^{+g} c^{2}(y) d y$
drag coefficient based on total wing plan-form area for wings and combinations
lift coefficzent based on total wing plan-form area for wings and combinations and on base area for bodies
pitching moment coefficient about quarter-chord point of mean aerodynamic chord for wings and combinations, based on total wing plan-form area and mean aerodynamic chord for wings and combinations
root chord of wing
tip chord of wing
body diameter
lift-curve slope, per radian
pitching-moment-curve slope, per radian
drag
lift
pitching moment
Mach number
moment reference center
local static pressure
free-stream dynamic pressure, $q_{\infty}=\frac{1}{2} \rho_{\infty} V_{\infty}^{2}$
local quarter-chord point
quarter-chord point of mean aerodynamic chord
Reynolds number, $\quad \operatorname{Re}=\frac{V_{\infty} \bar{c}}{v_{\infty}}$
wing semi span
wing plan-form area
free-stream velocity
longitudinal coordinate, meabured along body axis from body nose for body alone, or measured along wing root chord from wing apex for wings and combinations, positive downstream
distance of the aerodynamic center from MRC, positive downstream, $\Delta x_{a c}=-\left(\frac{d c_{M}}{d c_{L}}\right)_{c_{L}}=0$
distance of qep from wing apex
distance of $Q C P$ irom wing apex, $x_{Q C P}=\frac{1}{S} \int_{-S}^{+s} x(y)_{q C p} \cdot c(y) d y$

Subscripts

B

INT
w
WB
∞
lateral coordinate
angle of attack
taper ratio, $\lambda=c_{t} / c_{r}$
sweep angle of wing leading edge
kinematic viscosity of air
density of air
body alone
interference
wing alone
wing-body combination
free-stream flow

EXPERIMENTAL INVESTIGATION OF WING-BODY INTERFERENCES

IN THE MACH NUMBER RANGE FROM 0.5 TO 2.0

W. Schneider

1. INTRODUCTION

The purpose of this investigation is an experimental contribution to aerodynamics of wing-body interferences in the subsonic, transonic, and supersonic speed range. For incompressible flow the wing-body problem is discussed in some detail in Ref. [1] and [2], whereas at transonic and supersonic speeds systematic experimental investigations are scarce. Available publications are presenting mostly very special wing-body combinations, concerned with practical problems, especially the drag reduction. In this paper, in the first place the effect on lift, pitching moment, and the shift of the aerodynamic center due to interferences has been investigated. With regard to the basic character of these investigations, three wings of simple plan-form were chosen, a rectangular wing, a sweptback, and a delta wing. These wings were combined with two pointed cylindrical bodies of different diameter in order to investigate the influence of body thickness. With the chosen magnitude of aspect ratios the results may be also of some interest for modern aerodynamic applications.

2. TEST FACILITIES

The tests were performed in the $1 \times 1 \mathrm{~m}^{2}$ Transonic Wind Tunnel of the Aerodynamische Versuchsanstalt Göttingen, which has been described in Ref. [3]. This ciosed circuit continuously operating wind tunnel is equipped with a flexible-plate Laval nozzle for tests at supersonic speeds (Mach number from 1.25 to 2.25), and an adjacent section with four perforated walls for tests at subsonic and transonic speeds (Mach number from 0.4 to 1.2). A Reynolds number variation is achieved by changing the stagnation pressure in the tunnel from $1 / 10$ of an atmosphere to approximately 2 atmospheres. The tunnel is equipped with strain-gauge balances for measuring aerodynamic forces on sting-supported models. Data are recorded by a system of dc-amplifiers and digital voltmeters. The measuring range of the data handling system lies between 10^{-2} and 10^{+3} volts; the accuracy is $+3 \cdot 10^{-4}$ of the measuring range.

3. MODELS

The wings (Fig. 1) used for these investigations - a rectangular wing, a sweptback wing, and a delta wing - belong to a series of wings, which was tested already in some detail in Ref. [4] and [5]. All wings had the same plan-form area of $S=327 \mathrm{~cm}^{2}$ and the same symmetrical profile NACA 65 A 005 . For the wing-body combinations a second set of wings was manufactured in connexion with cylindrical bodies of $\mathrm{d}=60 \mathrm{~mm}$ diameter. The bodies (Fig. 1) composed of a parabolic nose and a cylindrical afterbody, had fineness ratios of 10.0 and 12.0 . The ratios of wing span to body diameter were 3.3 and 5.0 . The wings were fixed to the bodies (Fig. 2) in such a way, that the quarter-chord points of the mean aerodynamic chords had the same distance from body apex for all combinations. The wings were located inside the Mach cones originating irom body apex, so that disturbances from body nose could not reach the wings at supersonic speeds. The pitching moment reference point was the quarter-chord point of mean aerodynamic chord. For the investigation of the influence of body thickness, the cylindrical part was thickened by two shells up to $d=90 \mathrm{~mm}$. For a body diameter of $d=60 \mathrm{~mm}$ the wing-body model had a blockage of 0.3% of the test cross-section, and for $d=90 \mathrm{~mm}$ a blockage of 0.7%. This means that the size of the models was in an appropriate relation to the test section of the tunnel. The models were manufactured at the $A \because \therefore$, all wings were made of hardened tool steel and were finished by grinding, the other parts were made of duraluminum.

4. TEST PROGRAM

The tests comprised three-component force measurements - lift, pitching moment, and drag of wings, bodies, and wing-body combinations (Fig. 2) at the following Mach numbers, Ma * 0.50; $0.70 ; 0.80 ; 0.85 ; 0.90 ; 0.95 ; 1.00 ; 1.05 ; 1.10 ; 1.15 ; 1.52$ and 1.97 . Nominal angle of attack range was $\alpha=-5^{\circ}$ to $+15^{\circ}$. For the rectangular wing and its combinations it was not possible to keep this angle of attack range at all Mach numbers because of strong model vibrations. Near zero-incidence relatively large shifts of the center of pressure oceurred on some models, caused by boundary layer effects. Thus it was necessary to repeat some tests in this incidence range ($\alpha=-5^{\circ}$ to $+5^{\circ}$) with boundary layer transition fixed. This was done by carborundum strips, 3 mm wide and 0.03 mm high, fixed on the upper and lower surface of the wing at $15^{\circ} / 0$ chord position and on the bodies by the same strips at $15^{\circ} / 0$ of the length of the nose.

For all tests the tunnel was running at a stagnation pressure of 1 atmosphere and a stagnation temperature of $50^{\circ} \mathrm{C}$. Reynolds number per cm was $9 \cdot 10^{4}<\operatorname{Re}<1,4 \cdot 10^{5}$. The permitted deviation from nominal Mach numbers was $\Delta \mathrm{Ma} \approx \pm 0.005$. Angle of attack could be adjusted with an accuracy of $\Delta \alpha= \pm 0.05^{\circ}$.

5. RESULTS

5.1 Experimental Results

From the three-component measurements the aerodynamic coefficients, the slopes of the lift and pitching moment curve, and the aerodynamic center positions were evaluated. Reference magnitudes for the coefficients of wings and wing-body combinations are wing plan-form area and mean aerodynamic chord as given in Table 1.

Fig. 3 shows the lift-curve slopes, Fig, 4 the aerodynamic center positions versus Mach number of wings and wing-body combinations.

Wing-body interferences are defined as the differences between the aerodynamic coefficients or their derivatives of the wing-body combination and the sum of the same coefficients or derivatives of wing and body alone.

The interference effects on the wing-body combinations are defined by the following formulae
a) Total lift-interference ratio

$$
\begin{equation*}
\frac{c_{L_{I N T}}}{c_{L_{W}}+c_{L_{B}}}=\left[\frac{{ }^{c_{L_{W}}}}{{ }^{c_{L_{W}}}+c_{L_{B}}}-1\right] \quad \alpha=\text { const } \tag{1}
\end{equation*}
$$

see Fig. 5 to Fig. 7
b) Interference in pitching moment

$$
\begin{equation*}
{ }^{c_{M_{I N T}}}=\left[{ }^{c_{M_{W B}}}-\left({ }^{c_{M_{W}}}+c_{M_{B}}\right)\right] \alpha=\text { const } \tag{2}
\end{equation*}
$$

see Fig. 8 to Fig. 10
c) Wave drag interference ratio

$$
\begin{equation*}
\frac{{ }^{\Delta c_{D_{I N T}}}}{\Delta_{c_{D_{W}}}+\Delta c_{D_{B}}}=\left[\frac{\Delta c_{D_{W B}}}{\frac{\Delta c_{D_{W}}+\Delta c_{D_{B}}}{}-1}\right] \alpha=0 \tag{3}
\end{equation*}
$$

see Fig. 11
d) Lift-curve slope interference ratio

$$
\begin{equation*}
\frac{\left(\frac{d c_{L}}{d \alpha}\right)_{I N T}}{\left(\frac{d c_{L}}{d \alpha}\right)_{W}+\left(\frac{d c_{L}}{d \alpha}\right)_{B}}=\left[\frac{\left(\frac{d c_{L}}{d \alpha}\right)_{W B}}{\left(\frac{d c_{L}}{d \alpha}\right)_{W}+\left(\frac{d c_{L}}{d \alpha}\right)_{B}}-1\right]_{\alpha=0} \tag{4}
\end{equation*}
$$

see Fig. 12
e) Interference in pitching moment curve stope

$$
\begin{align*}
& \left(\frac{d c_{M}}{d \alpha}\right)_{I N T}=\left\{\left(\frac{d c_{M}}{d \alpha}\right)_{W B}-\left\{\left(\frac{d c_{M}}{d \alpha}\right)_{W}+\left(\frac{d c_{M}}{d \alpha}\right)_{B}\right]\right\} \quad \alpha=0 \tag{5}
\end{align*}
$$

see Fig. 13
f) Shift of aerodynamic center position due to interferences

$$
\left(\frac{x_{a c}}{\bar{c}}\right)_{I N T}=-\left[\left(\frac{d c_{M}}{d c_{L}}\right)_{W B}-\frac{d\left(c_{M_{W}}+c_{M_{B}}\right.}{d\left(c_{L_{W}}+c_{L_{B}}\right)}\right]_{c_{L}=0}=0
$$

see Fig. 14

A representation of pitching moment interference ratio was not possible, because the pitching moments of wing and body were nearly of the same amount but of different sign at some Mach numbers.

5.2 Theoretical Results

To give an impression of the agreement with theoretical data, a few theoretical points, which could be computed without much computational effort, are shown in the diagrams. The computations were limited to lift-curve slopes and aerodynamic center positions of the wing-body combinations. For the rectangular and delta wing-body combinations the computation is based on a theory of PITTS, NIELSEN, and KAATTARI, Ref, [7]. For the sweptback wing at subsonic speeds the method of HAFER, Ref. [6], and at supersonic speeds the method of FERRARI, Ref. [8], were used. In applying the latter method to a sweptback trailing edge configuration, the wing was represented by superposition of two wings with unswept trailing edges.

6. DISCUSSION OF RESULTS

6.1 Lift-Curve Slopes (Fig, 3)

a) Rectangular wing

At subsonic speeds there is no essential difference between the lift-curve slope of the wing alone and that of the wing-body combination. For Ma <0.8 the lift-curve slope of the wing is lying below those of the wing-body combinations. On the other hand at supersonic speeds the lift-curve slopes of the wing-body combinations become considerably larger than those of the wing alone. This increase in lift at supersonic speeds, as compared with that at incompressible flow, can be explained by a different loading distribution, induced by the wing on the body. At supersonic speeds the part of the boly in front of the wing can not be influenced by the wing; on the other hand the part of the body downstream of the wing is strongly influenced. The contribution of the induced loading on this part of the body can be essential for the increase in lift. A comparison of experımental with
theoretical values shows that the agreement is good at supersonic speeds; at subsonic speeds liftcurve slopes are somewhat overestimated by theory. The effect of a fixed boundary layer transition on lift is insignificant for the configurations of the rectangular wing.

b) Sweptback wing

For the sweptback wing the lift-curve slopes of the wing-body combinations are considerably greater at subsonic and supersonic speeds than those of the wing alone. For this particular wing the interferences are targe through the whole Mach number range. Theoretical values only show the tendency of the experimental curve, but the agreement is unsatisfactory at all speeds. The effects of a fixed boundary layer transition are more pronounced than on the rectangular wing. Differences are marked at subsonic speeds and near the speed of sound.

c) Delta wing

Lift-curve slopes of the delta wing and the wing-body combinations do not differ múch in the tested Mach number range. Except for $\mathrm{Ma}=2$, where the leading edge of the wing becomes a supersonic edge, the lift-curve slope of the combination is higher than that of the wing alone. The agreement of theory with experiment is good at subsonic speeds, but at supersonic speeds theory overestimates lift. The effect of a fixed transition is negligible.

6.2 Aerodynamic Center (Fig. 4)

a) Rectangular wing

The curves of the aerodynamic center positions are similar for both wing-body combinations. The influence of the body on the shift of aerodynamic center is significant for these configurations. For the $W_{1} B_{1}$ combination it amounts to nearly 15% of the mean aerodynamic chord and nearly to $40^{\circ} \%$ for the $W_{1} B_{2}$ combination.

As it was mentioned already, considerable movements of the center of pressure occurred on the configurations at subsonic speeds. Such movements of the center of pressure are caused in the first place by boundary tayer effects (separations) and are strongly dependent on Reynolds number. In wind tunnel testing it is usually not possible to reproduce the Reynolds number of a normal type of airplane. Experimental results with a fixed boundary layer transition therefore correspond more to real flow conditions. For comparison, the theoretical aerodynamic center positions were plotted in this diagram; the agreement with experiment is unsatisfactory especially at transonic speeds.

b) Sweptback wing

For the sweptback wing the shift of the aerodymamic center due to the body is smaller than for the configurations of the rectangular wing; for the $\mathrm{W}_{2} \mathrm{~B}_{1}$ combination it does not exseed 8% of mean aerodynamic chord, and 25% for the $\mathrm{W}_{2} \mathrm{~B}_{1}$ combinations. Differences between aerodynamic center positions with and without fixed transition are nearly twice as high as for the configurations of the rectangular wing. In the lift boundary layer effects were already noticable. With increasing sweep of the wing those effects become more marked with respect to the pitching moment behaviour and the aerodynamic center position is strongly dependent on such effects. Theoretical and experimental values are in a fair agreement.

c) Delta wing

The curves of the aerodynamic center position of delta wing configurations are similar to those of the sweptback wing configurations. The amounts of shift of the aerodynamic centers lie between those of the rectangular and the sweptback wing configurations. On a delta wing, flow separates at the leading edge; the boundary layer of the reattached flow on the wing's upper side is largely turbulent. Boundary layer trips are, therefore, ineffective on such wings, which is shown by experiment. A peculiar feature of the aerodynamic center positicn of thes -ombinations is its downstream shift at relatively low Mach numbers ($\mathrm{Ma}<0.7$) and its upstream shift at supersonic speeds with increasing Mach number and body diameter. Comparison of theoretical with experimen. tal values shows good agreement.

6.3 Lift Interference Ratios

a) Rectangular wing (Fig. 5)

Near the speed of sound the experimental points of both wing-body combinations scatter increasingly with increasing angle of attack. At higher angles of attack the beginning of the scatter is displaced slightly to lower Mach numbers. This can be explained by the fact that the speed of sound is attained locally on the model at higher incidence, which evidently is connected with a change of lift distribution. The interference curves are similar for both wing-body combinations. At supersonic speeds interference ratios increase with Mach number up to an angle of attack of nearly $\alpha=8^{\circ}$. The lift of the wing-body combination is larger in this range than the sum of lift of wing and body alone.

b) Sweptback wing (Fig. 6)

The course of lift interference ratio curves is largely simitar to those of the configurations of the rectangular wing. However the amounts are larger. Thus, for angles of attack of $\alpha>3^{\circ}$, the lift of the wing-body combination is less than the sum of lifts of wing and body alone. These losses in lift attain their highest values near $\mathrm{Ma}=1.5$.

c) Delta wing (Fig. 7)

For the delta wing in combination with body $2\left(\mathrm{~W}_{3} \mathrm{~B}_{2}\right)$ the mean losses in lift are about 10% higher than for the combination with body $1\left(W_{3} \mathrm{~B}_{1}\right)$. These losses in lift are nearly constant for the $W_{3} B_{1}$ combination in the range $1.2<M a<1.8$, they begin only to decrease near $\mathrm{Ma}=2.0$. Considering in conclusion the behaviour in lift interference of the combinations of the three wings, it can be seen that the combinations of the rectangular wing show the smallest losses in lift as compared with the sum of lift of wing and body alone.

6.4 Interference in Pitching Moment

a) Rectangular wing (Fig. 8)

For both wing-body combinations the interference moment is positive in the tested range of incidence up to $\mathrm{Ma}=1.5$. In the transonic speed range scatter of the experimental data occurs, similar to the scatter of the lift data. Above $\mathrm{Ma}=1.5$ the interference moment changes its sign and tends to higher negative values with increasing Mach number. This tendency to negative values becomes stronger with increasing body diameter.

b) Sweptback wing (Fig. 9)

Here the interference-moment is of negative sign in the tested Mach number and incidence range. Tendency to higher negative values at supersonic speeds with Mach number is not so marked as for the configurations of the rectangular wing, but the negative interference moment becomes larger with increasing incidence.
c) Delta wing (Fig. 10)

Moment interference curves of the delta wing-body combinations are similar to those of sweptback wing configurations; also the values of the interference-moment agree largely. A comparison of the interferences in pitching moment of the configurations of the three wings shows a similar behaviour of the combinations of the delta and the sweptback wing. The interference-moment is of negative sign in the tested Mach number- and incidence range; for the configurations of the rectangular wing negative values occur only above $\mathrm{Ma} * 1.5$.

6.5 Interferences in Wave Drag (Fig. 11)

A comparison of the wave drag interference of the tested wing-body combinations definitely shows the more favourable behaviour of the configurations of the delta wing to those of the rectangular and the sweptback wing. As expected, the combinations of the rectangular wing have the highest wave drag, which is only 20% to 25% less on the average than the sum of drag of wing and body alone. For the combinations of the sweptback wing this reduction in drag is nearly 35% to 40%. Influence of body diameter is insignificant, except for the sweptback wing.

6.6 Lift-Curve Slope Interference Raiios (Fig. 12)

a) Rectangular wing

The lift-curve slopes interference ratios are different for the two wing-body combinations. Near Mach number $\mathrm{Ma}=0.9$ the curves of both configurations show a distinct minimum, which is reduced with increasing Mach number. For Ma>1.2 the amount of the lift-curve slopes of the combinations exceed the sum of amounts of wing and body alone, which is caused by additional body lift on the combination at supersonic speeds. With increasing body diameter the interference ratic of tift-curve slope is strongly reduced at subsonic and transonic speeds but increased at supersonic speeds. Test results with and without fixed transition differ only at subsonic speeds. Agreement of theory with experiment can be considered satisfactory.

b) Sweptback wing

In contrast to the rectangular wing, the configurations of the sweptback wing do not show the distinct minimum of lift-curve slope interference ratio near $\mathrm{Ma}=0.9$. Disregarding the scatter of interferences at transonic speeds, the curves indicate, that the differences between the interference ratios of the combinations become smaller with increasing Mach number. and nearly disappear at $\mathrm{Ma}=1.5$. Experimental values with and-without fixed transition differ strongly at subsonic speeds. The agreement of theoretical with experimental values is unsatisfactory for these wing-body combinations.

c) Delta wing

In the tested Mach number range the lift-curve slope for the $W_{3} B_{1}$ combination is only somewhat smaller than the sum of lift-curve slopes of wing and body alone. With increasing body diameter the lift-curve slope of the wing-body combination decreases, similar as for the combinations of the other wings. Interference ratios are of negative sign at all Mach numbers; the greatest negative values were measured near the speed of sound. At supersonic speeds losses in lift-curve slope become smaller with increasing Mach number, the differences between the interference ratios of the two combinations become smaller too. Theory and experiment agree satisfactorily at subsonic speeds, but at supersonic speeds discrepancies appear.

6.7 Moment Curve Slope Interferences (Fig. 13)

a) Rectangular wing

For the configurations of the rectangular wing interferences in pitching moment curve slope differ not much. After a slight ascent of interferences with Mach number at subsonic speeds a sudden increase occurs at $\mathrm{Ma}=0,9$. At the speed of sound interferences reach a maximum and drop off at supersonic speeds. Near $\mathrm{Ma}=1.2$ interferences disappear, for Ma $\boldsymbol{\lambda} 1.2$ they become negative. The presentation definitely shows the destabilizing effect of the interference moment of the configurations near zero incidence at transonic speeds and a stabilizing effect with increasing Mach number at supersonic speeds.

b) Sweptback wing

In the tested Mach number range pitching moment curve slope interferences are of negative sign for both combinations of the sweptback wing; the amount of interferences increases with body diameter. At supersonic speeds these interferences tend to higher negative values above maxi.5.

Interferences in pitching moment near zero incidence are strongly dependent on Mach number for the combinations of this wing.

c) Delta wing

The uterierence moment near zero incidence has negative valuts for these configurations in the whole Mach number range; at supersonic speeds the amount is increasing with Mach number.

A comparison of pitching moment curve slope interferences between the combinations of the wings in the tested Mach number range shows interferences of negative sign on the combinations of the sweptback and the delta wing, which are increasing at supersonic speeds with Mach number and body diameter. On the combinations of the rectangular wing, negative interferences occur only at supersonic speeds, near the speed of sound the interference moment becomes strongly positive.

6.8 Shift of Aerodynamic Center Positions Due to Interferences (Fig. 14)

a) Rectangular wing

Comparing the diagram of the shift of aerodynamic center positions due to interferences with interferences in pitching moment, it can be seen, that the shift of the aerodynamic center is strongly dependent on the pitching moment. On the combinations of the rectangular wing the aerodynamic center is shifted upstream, at transonic speeds, corresponding to the destabilizing interference moment, and downstream at supersonic speeds, corresponding to the stabilizing interference moment. On the $\mathrm{W}_{1} \mathrm{~B}_{2}$ combinations the shift of the aerodynamic center is nearly twice as much.
b) Sweptback wing

For the combinations of the sweptback wing the shift of the aerodynamic center has positive sign in the tested Mach number range and reaches relatively high values at supersonic speeds. Body thickness has the same effect as for combinations of the rectangular wing.

c) Delta wing

Shifts of aerodynamic center are of positive sign at all Mach numbers but smaller than on the configurations of the other wings. A distinct downstream shift occurs at supersonic speeds and increases with body diameter. Shift of aerodynamic center due to interferences has positive sign on the configuration of the sweptback and the delta wing at all Mach numbers, except for the combinations of the rectangular wing, which show a shift of negative sign at transonic speeds. The strong downstream shift at superbunic speeds occurs on all configurations of the three wings.

7. CONCLUSIONS

Three-component force measurements were performed in the Transonic Wind Tunnel of the Aerodynamische Versuchsanstalt Gobttingen in the Mach number range Ma=0.5 to 2.0 on a rectangular-, a sweptback- and a delta wing and on combinations of these wings with two pointed bodies of different thickness. The main purpose of these investigations was to determine the wingbody interferences. For all wing-body combinations the interferences in lift, in pitching moment, in wave drag, in the lift-curve slope, in the moment curve slope, and the shift of the aerodynamic center due to interferences were determined and discussed. Itoccarred, that on all combinations these interferences are increasing with Mach number at supersonic speeds.

8. ACKNOWLEDGEMENT

The author wishes to acknowledge the proposals given to these investigation by Professor Dr, -Ing, E. TRUCKENBRODT, Technical University of Munich.

9. REFERENCES

[1] Schlichting, H. Truckenbrodt, E.
[2] Donovan, A. F. Lawrence, H. R.
[3] Ludwieg, H Lorenz-Meyer, W. Schneider, W.
[4] Becker, E. Wedemeyer, E.
[5] Stahl, W.
Mackrodt, P. A.
[6] Hafer, X.
[7] Pitts, E. C.
Nielsen, J. N.
Kaattari, G. E.
[8] Ferrari, C.
[9] Ferrari, C.
[10] Nielsen, J. N Pitts, W. C.

Aerodynamik des Flugzeuges, Bd. II
Springer Verlag (1960)
Aerodynamic Components of Aircraft at High Speeds Vol. VII High Speed Aerodynamics and Jet Propulsion, Princeton (1957)

Der Transsonieche Windkanal der Aerodynamischen Versuchsanstalt Göttingen Jahrbuch der WGLR 1966, pp. 145-155

Untersuchungen an fünf Flugeln mit verschiedenen Umrißformen bei hohen Unterschallgeschwindigkeiten Z. Flugwiss. 8, (1960), pp. 44-52

Dreikomponentenmessungen an symmetrischen Tragfluge in verschiedener Umrißformen in therschallströmung 2. Flugwiss. 11, (1963), pp. 150-160

Untersuchungen zur Aerodynamik der Flugel-RumpfAnordnungen
WGLR J., 1957, pp. 191-207
Lift and Center of Pressure of Wing-Body-Fail Combination at Subsonic, Transonic, and Supersonic Speeds NACA Tech. Rep. 1307 (1957)

Interference between Wing and Body at Supersonic Speeds. Theory and Numerical Application
J. A. S. Vol. 15, (1948), pp. 317-336

Interference between Wing and Body at Supersonic Speeds. Note on Wind Tunnel Results and Abbendum to Calculation J. A. S. Vo'. 16, (1949), pp. 542-546

Wing-Body Interference at Supersonic Speeds with an Application to Combinations with Rectangular Wings NACA TN 2677 (1952)

Table 1: Geometrical Properties of Wings

Rectangular Wing Sweptback Wing Delta Wing

Fig. 1 Dimensions of Wings and Bodies

Fig. 2 Model Arrangements

 ————Theory WH_{2}

 ————Theory Wig,

- W B_{2} (Transition of B.L.fixed)

Fig. 14

EFFECT OF REYNOLDS NUMBER ARD BOUNDARY-LAYER TRANSITION LOCATION
ON SHOCK-INDUCED SEPARATION
By James A. Blackwell, Jr.

NASA Langley Reseurch Center Langley Station, Hampton, Va.

A tro-dimensional experimental and theoretical investigation has been condücted on an MaCA 651-213 airfoil to deternine the effect of Reynolds number and transition location on shock-induced separated flow. The experimental investil tion was conducted st Mach numbers from 0.60 te 0.80 , angles of attack from 0° to 40 , and Reynolds numbers from $1.5 \hat{\hat{c}} 10^{6}$ to 16.8×10^{6}. Transition locations from 0.05 to 0.50 chord were utilized.

The results indicate that variation of the Reynolds number from full-scale to the usual windtunnel values results in substantial changes of the shock location, trailing-edge prisaure recovery, and boundary-layer josses at the trailing-edge. By properly locating the boundary-layer transition point on the wind-tunnel model, full-scale results can be simulated st the usual wind-tunnel Reynolds numbers. The required location of the transition point can be predicted theoretically with acceptsble accuracy by simulating the boundary-layer characteristics at the airfoil trailing-edge.

EFFECT OF REENOKDS NUMBER AND BCUNDAPY-LAYER TRANSITION ICCATTON

ON SHOCK-MTDUCED SEPARATIOX

By James A. Blackwell; Jr.
NASA Langley Research Center
Iariqley Station; Fampton, Va.

INTRODUCITION

The correlation of data obtained at the usual uind-tunnel values of Reynolds number on windtunnel scale models and of ciata obtained during filght tests at much higher Regnolds numbers indicates thet st speeds where cubstantial shock-induced separation is present scale effects may occur. In particuiar, a large Reynolds number differeace may affect the shock-wave location on the model and the presence and extent of shock-induced separation. An example of the problem or a large transport airplane is shown in flgure 1 , reproduced from reference 1 . A recent investigation into the nature of these scale effects and their minimization has resulted in a wind-tunnel technique that provides good agreement betreen flight and wind-tunnel data for the conditions investigated. The technique consists basically of properly locating the point of boundary-layer transition on the wind-tunnel model. This paper will discuss the results of this investigation.

The basic phenowena of scale effects at speeds where shock-induced separation is present are illustrated schematically in figure 2. In filght, at large Reynolds numbers, the boundary layer becomes turbulent near the airfoil leading edge. At transonic Mach numbers, a shock wave forms and moves rearward with increasing Mach number. When the shock is sufficientiy strong, the shock induces the boundary layer to separate, hence, the term "shock-induced separation." Presently for most wind-tunnel investigations, the boundury layer is made turbulent near the leading edge of the airfoil with a boundary-layer transition trip. Since the difference in wind-tunnel and filght Reynolds numbers may be large and the relative thickness of the turbulent boundary layer varies inversely as approximately Reynolds number to the $1 / 5$ power, the relative thickness at any given percent chord station is greater on a small-scale wind-tunnel model with transition fixed near the leading edge than on a similar full-scale wing with nautral transition near the leading edge in flight. Due to the greater thickness of the wind-tunnel boundary layer, the flow separates at a lower Mach number and is more severe than in flight. The greater displacement of the separated flow tends to push the shock farther forward than in flight.

No general procedure has been developed for correcting wind-tunnel data to flight conditions when shock-induced separation is present. Therefore, a new experimental wind-tunnel technique is desired to minimize scale effects for these conditions. The results presented in the recent paper entitled "Wind-Tunnel-Flight Correlation of Shock-Induced Separated Flow," (ref. 1) Indicate that by moving the point of transition rearward on the wind-tunnel model when the flow has separated, the shock position on the model approached the same location as on the flight airplane. Based on these results, a solution to minimize scele effects in shocirinduced separated flow might ile in properly locating the boundary-layer transition position on the wind-tunnel model such that the boundary layer encountered in flight is simulated on the wind-tunnel model in the region of separation.

In order to obtain a better urderstanding of the factors involved in minimizing the effects of Reynolds number when shock-induced separated flow is present by moving the boundary-layer transifion point rearward, a comprehensive two-dimensional wind-tunnel experimental and theoretical investigation has been conducted over e wide range of Reynolds numbers with varying transition location. The results of this investigation will now be presentea. It should be emphasized that the research on the concepts presented here is continuing on an intensive babis, and the present paper should be considered a status report rather than a final surmation.

The author is indebted to R. T. Whitcomb who proposed the basic approsch to this research, to A. A. Luoms who conducted the experiments, and to R. D. Samuels who assisted in the theoretical boundary-layer calculations, all of the Langiey 8-Foot Tunnels Branch.
pressure coefficient, $\frac{p-p_{\infty}}{q_{\infty}}$
chord of airfoll, in. (cm)
boundary-layer shape factor, $\delta^{*} / 0$
free-stream Nach number
local static pressure, $1 \mathrm{~b} / \mathrm{ft}^{2}$ (newton/meter2)

21.2	
P_{∞}	static pressure in undisturbed stream, $2 \mathrm{~b} / \mathrm{ft}^{2}$ (newton/meter ${ }^{2}$)
Δp_{t}	totel-pressuire loss, $1 \mathrm{~b} / \mathrm{ft}^{2}$ (newton/meter ${ }^{2}$)
q	dynemic pressure in undisturbed stream, $\mathrm{lb} / \mathrm{ft}^{2}$ (newton/meter ${ }^{2}$)
R	Reynolds number
x	ordinate along airfoli reference line measured fromairfoll leading edge, in. (cm)
a	geometric angle of sirfoil reference line, deg
δ^{*}	boundary-layer displacement thickness, in. (cm)
θ	boundary-layer moxentum thickness, in. (cmi)

Subscripts
T. \quad denotes boundary-layer transition locetion
F.S. fwll scale

EXPERTMENTS

Wind Tunnel

The experiments were conducted in the Langley 8 -foot trensonic pressure tunnel. This facility is well suited to the investigation of the effects of Reynolds number on tho-dimensional models at transoulc speeds. The wind tunnel has solld side walls which act as end plates for the twodimensional model. Also, substantially larger chord models may be tested in this facility than could otherwise be teeted in tunnels designed for twomimensional testing since the wind tunnel is approximately 7 feet (2.80 m) in height. Good results may be obtained in this facility for large chord models since the upper and lower wolls are slotted, which allows a development of the flow fleld in the vertical direction approaching that for free flight. The slot opening at the position of the model was approximately 6.4 percent of the upper and lower surface walls. Further, the 8-foot tunnel is a variable-pressure tunnel which allows investigations to be conducted over a wide range of Reynolds numbers with the same model.

Model

The two-dimensional model investigated is shown in figure 3. The model was teated in an inverted position. The alrfoil is the NACA $651-213$ with $\alpha=0.5$ mean line (fig. 4). This air. foil was selected for several reasons. It is the same shape as the midsemispan section of the T- 33 airplane for which fight data arc available (ref. 3). A sketch of the T- 33 airplane is ahoun in figure 4. Since the T- 33 wing is essentially unswept and has a high-aspect ratio, correlation with two-dimensional data at the midsemispan was expected to be good. The six-series airfoil was also selected because it represents a class of airfoils that have been recently used in high subsonic speed airplane design. The model chord was 3 feet (0.91 m) in length.

Transition Strips

Transition trips were located at the same position on both the upper and lower surfaces of the model. Results were obtained for transition strips located at $5,20,30,40$, and 50 percent chord. The strips were 0.1 inch (0.25 cm) wide consisting of carborundum grains set in a plastic adheaive. The size of the carborundum grains for each location was calculated using reference 4.

Measurements

The lift force acting on the airfoil was obtained from surface pressure measurements along the center line of the tunnel.

Draf forces acting on the alrfoil were derived from vertical variations of the wake total and static pressures measured with the rake shown in figure 3 ; however, these results will not be presented in this paper.

The boundary-layer data presented herein were derived from measurements taken with a totol head rake located at the trailing edge of the model. The total head tubes were flattened horizontally and closely spaced.

The total head and static pressures were measured with the use of electronically actijated pressure-scanning valyes. The range of the gages in the valves was varied, depending on type of measurement and on the wind-tunnel conditions.

Corrections

The major effect of the wind-tunnel wall on the results presented herein is a substantial upfiow at the position of the irrerted model so that the real aerodymamic angle of attack is
significantly leas than the geometriceangle. The mean value of this. upflow at the midehori of the modex, in degrees as determined by the theory of reference 2 , is approximately 4.4 times the section-lift coefficient. For the design section-lift coefficient of 0.20 ; this angle deviation is approximately -0.88. For the present investigation, where the lift has been obtained by surface-pressure measurements, this deviation hesilittle effect on the validity of these results. It merely causes a change of the geometric angle of attack at winich a given set of results are obtained. The angles of attack used in the results presented herein have not been corrected for this upflow.

The theory of reference 2 indicates the tunnel-wall blockage effect is mall.

Range of Tests

The investigation was conducted over a Mach number range from 0.60 to 0.80 . The angle of attack varied generally from sbqut 0° to 4° in 1° increments. The Reynolds number of the investigation was varied from 1.5×10^{6} which approximates the lowest yalues usually used for wind-tunnel investigations to 16.8 miliion, which is near the Reynolds number for which full-scale filght results were obtained on the $\mathrm{T}-33$ airplane (ref. 3).

dISCUSSION

Wind-Tunnel Results

Flight wind-tunnel correlation.- A comparison of the wind-tunnel results and flight results from the T-33 airplane (ref. 3) are presented in figure 5 for a Mach mumber of 0.8 . The flight data were obtained at a Reynolds number of 19 million based on the local chord, and the twodimensional wind-tunnel results are presented at 16.8 million. The transition strip was fixed near the leading edge of the two-dimensional airfoll at 5 percent chord since this was thought to be representative of the natural transition location of the upper-surface flight results. The comparison shown in figure 5 and in other data not presented indicate generalily good agreement between the fligit results and the wind-tunnel results obtained at full-scale. Reynolds numbers. Therefore, for the subsequent analysis, the wind-tunnel data taken at 16.8 million will be considered representative of full-scale results. It should be noted that for the condition presented, a gmall amount of shock-induced separation is present.

Effect of Reynolds number and transition location,- In IIgures 6 to 8, the effects of Reynolds number and transition location on the section aerodymanics are presented. The results shown indicate, flist, the effect of increasing the Mach number at a constant angle of attack ($\alpha=0^{\circ}$) from subcritical speeds to a condition with shock-induced separation and, second, of increasing the angle of attack so that shock-induced separation occurs. It is felt that these examples are representative of the data obtained during the investigation. The data presented include pressure distributions on the airfoil and profiles of the boundary-layer total head loss $\left(\frac{\Delta p_{t}}{q_{0}}\right)$. Results are presented for only the airfoil upper surface in order to simplify the ansiysis. The upper surface is generally the most critical as regards shock-induced separation; however, all conclusions reached regarding shock-induced separation on the alrfoil upper surface will also apply to the lower surface.

For each comparison, three sets of date will be shown. The first set of data was obtained at 16.8 million with the transition located at 5 percent chord and represents what will be referred to as full-scale results. The second set of data represents data taken at the usual uind-tunnel Reynolds numbers of 3×10^{6} with the transition fixed near the leading edge (0.05 c). As previously indicated, this is the wind-tunnel technique presently in general use. The third set of data represents dsta obtained at wind-tunnel Reynolds numbers with the point of transition moved rearward of the leading edge to a location that best approximates full-scale results.

The results at subcritical speeds ($M=0.70$) for an angle of attack of 0° are presented in figure 6. These results indicate that at the same trassition location (0.05 c) for full-scale and wind-tunnel Reynolds numbers, there are only small variations in the pressure distribution over the airfoll. However, it should be noted that the trailing-edge pressure recovery is less for the wind-tunnel Reynolds number. Also, as would be expected, the boundary-layer profiles indicate a thicker boundary layer at the alrfoil trailing edge for the wind-tunnel Reynolds number. When the transition is moved rearvard to the position for the best correlation of the trailine-edge pressure recovery for the high and low Reynolds number (40 percent chord), the boundary-layer profiles aiso are the same.

The effects of Reynolds number and transition location when the Mach number 18 increased from 0.70 to 0.80 at $a=0^{\circ}$ are shown in figure 7. For the full-scale case, boundary-layer sexaration has been induced by the strong shock wave. However, for the data obtained at a Reynolds number of 3×10^{6} with the transition near the leading edge, the separation is substantially greater, the shock yave is farther forward on the airfoil, and the trailing-edge pressure is decreased. When the transition point is moved rearward at wind-tunnel Reynolds numbers, the trailing-edge pressure coefficients, the shock-wave locstion, snd the trailing-edge boundary-layer profiles are all in good agreement with full-scale resulto for the transition location at approilmately 45 percent
chord. It should be noted that the data presented ct $x_{1} / c=0.45$ are interpolated from the data obtalned at $x_{11} / c=0.40$ and 0.50 .

As another illustration of the effect of Reynolds number and transition location, data are shown for an increase in the angle of attack to 3° at a Mach number of 0.75 in figure 8 . As in the previous example, good agreement is obtained between the data for the fuli-scale case and for windtunnel Reynolds numbers when the transition is moved rearward. For this case, the transition locition for best agreement was at the 40 -percent chord.

Based on the above results and other data not presented, it is concluded that for conditions at which shock-induced separation is present, good agreement can be obtained between full-scale data and results obtained at wind-tunnel Reynolds number with the proper location of the tranaition strip. However, the reaults also show that the transition point for the best agreement varies somewhat with changes of the test conditions.

Theoretical Analysis

To allow general utilization of the experimental appmach to simuiating full-scale shockinduced boundary-layer separation characteridtics by moving the boundary-layer transition location, a method must be developed to pradetermine the transition location for any alrplane or flight condition without resort to ejperiments. This requires a more complete understanding of the fundamental factors governing the boundary-layer development. In order to provide some. insight to this problex, a limited theoretical anslysis was undertaken̈.

The experimental results (figs. 6 to 8) indicated that even with shock-induced separation present, the transition locations for best agreement between data at wind-tunnel/ Reynolds numbers and full-scale Reynolds numbers do not vary appreciably from the location for subcritical speeds (40 percent chord). It therefore appeared that a theoretical analysis based on sixberitical pressure distributions and boundary-layer theory, might be applicable. Various theorles (reis. 5 to 8) were considered for the boundary-layer analysis. It was found that the results were not significantly different using the theorles investigated. For the following study, the boundary-layer calculations will be based on reference 5 for the laminar portion and reference 8 for the turbulent portion.

Theoretical boundary-layer characteristics for subcritical condition.- In figure 9, theoretical boundary-1ayer characteristics (8^{*} and H) are presented using the abovementioned theories for the subcritical pressure distribution of fligure 6. Data are presented for the conditions representing the full-scale results and the wina-tunnel results with the transition located at 5 percent and 40 percent chord, the 40 -percent chord tranaition location being the experimental condition for best wind-tunnel-full-scale correlation of the trailing-edge pxessure recovery and boundary-layer proflles. It may be seen that at the trailing edge the theory also provides a good agreement of the boundary-layer characteristics.

For the distribution of the theoretical displacement thickness over the chord, it is obvious that the 8^{*}, distribution at the wind-tunnel Reynolds numbers with transition at 40 percent chord is a good approcimation to the displacement thickness at full-scale Reynolds numbers over the critical rear portion of the airfoil. The large effect of Reynolds number and transition location on the boundary-layer characteristics is indicated by comparing the fulliscale results and windtunnel Reynolds number results at $x_{T} / c=0.40$ with the wind-tunnel Reynolds number characteristics for the transition located at 5 percent chord.

On the right side of figure 9 ; the theoretical boundary-layer-shape factor (H), which indicates the boundary-layer separation characteristics, is presented over the rear portion of the airfoil. With the transition located at 40 percent chord for windotunnel Reynolds numbers, the data indicate the full-scale separation characteristics are adequately ofmulated over the rear portion of the airfoil; in particular, they are watched at the airfoil trailing edge. This is signiflcant since the oil-flow photographs taken during the investigation indicate the shock-Induced boundary-layer separation originates at the airfoil trailing edge and not at the shock wave. The shape factor indicates the flow for the transition located at 5 percent for wind-tunnel Reynolds numbers to be substantially nearer separation than for the full-scale results.

Basic criteris.- Since separation does occur initially at the trailing edge experimentaliy, in the theoretical analysis the assumed criteria for best wind-tunnel-rull-scale correlation will be to match the boundary-layer characteristics at the airfoil trailing edge. Further, since the primary interest is separation, the values of H are made equal. Throughout the following analysis this approach will be referred to as the "trailing-edge criteria."

Theoretical variation of transition location uith Mach number and pressure distribution.- The txansition locations obtained experimentaily (figs. 6 and 7) varied as the free-stream Mach number was increased to supercritical speeds for a constant angle of attack. Therefore, it appears that the transition location for best wind-tunnel-full-scale correlation might be sensitive to the freestreem Mach number or to the change or the shape of the pressure distribution as Nach number is increased. In order to deteraine the sensitivity of the transition location, theoretical calculations were made for a range of pressure distributions for various Mach numbers. The pressure distributions considered are shown in figure 10. The primary variables are (1) shape of leadingedge pressure distribution, (2) trailing-edge pressure, and (3) shape of the aft end presaure recovery. The shape for the pressure distribution with the favorable gradient over the forward
portion of the airfoll is typical for near-zero lift conditions such as obtuined in a dive: The rooftop pressure distribution represents the conditions generally expected in filght it the higher lift conditions. The variations of the pressure distributions over the aft portion oi the alrfofl are similar to those noted experimentally on various types of airfoile.

Using the subcritical pressure distributions shown in figure 10 , the tiansicion locations ware calculated theoretically for various Nach numbers with a full-scaile Reynolds number of 16.8×10^{6} and a wind-tunnel Reynolds number of 3.0×10^{6}. The results indicated very 1 ittle effect or Mach number on transition locations (less than 1 percent). Also, the mall effect of Mach number on the transition location appears to be independent of the pressure distribution, since the same conclusions as obtained for the present analysis may be reached using flat-plate theory of reference 9.

The effect of the changes in pressure-distribution shape on transition location have been calculated for a Mach number of 0.70 and are presented as vertical lines on the horizontal scale of figure 10. On the basis of this limited annlyais, it can be seen that the changes in the shape of the pressure distributions over the forward part of the airfoll produce significant varisitions in the theoretical transition locations. However, the changen in the aft end distributions have only slight effects on these locations.

An analysis of the basic factors involved sugsests that the primary influence on the theoretical transition location is the variation of the pressure gradient in the region of transition shift; hat is, where the boundary layer is turbulent for the full-scale Reynolds number case and laminar : wind-tunnel Reynolds number condition. This conclusion is strengthened by the fact that flatpl. e theory for momentum thicknese (ref. 9) piedicts generally the same transition locations (0. . chord) as that calculated for the flat or "rooftop" forward pressure distribution.

Comparison of Experimental and Calculated Results

The preceding theoretical analysis suggests that-for conditions where severe shock and separation is not present, at least, correlation of experimental and calculated transition locstijrs at wind-tunnel Reynolds numbers might be achieved when the pressure gradients-over the region of transition shift are similar. For the $M=0.70, \alpha=0^{\circ}$ experimental case ($11 \mathrm{~g}, 6$) the pressure gradient over the region of transition shiftifs similar to that for the schematic distribution or the theoretical analysis as shown by the dasied line on the left side of flgure 10 . The best experimentally determined transition location (0.40 chord) is the same as the calcilated position.

Cases where substantial shock and separation is present will now be considered. For the $M=0.75, \alpha=3^{\circ}$ experimental rise (fig. 8) the pressure gradient over the region of transition shift is also similar to that of the dashed line on the left side of figure 10. Again, the best experimental transition location is the same as that calculated (0.40 chord). For the $M=0.80$, $\alpha=0^{0}$ experimental condition (fig. 7), the pressure gradient from 0.05 to 0.45 chord is similar to that for the solid line of the theoretical spalysis. Again, the experimental transition location (0.45 chord) is the same as the calculated value. In these two cases, correlation is achieved even though the nature of the actual flow is substantially different from the assumptions of the theory used for the calculations. These reasons for this agreement are not yet fully understood.

Application

The agreement of the calculated and measured transition locations for simulating full-snaie characte-istics suggests that the theoretical "trailing-edge criteria" is a reasoniole approach to the pred.ction of the transition location. This agreement further indicates that in the calculations only the pressure gradient over the region of transition shift need be considered.

Effect of ratio of wind-tunnel Reynolds number to full-scale Reynolds number.- In order to indicate the variation of the theoretical transition location on the wind-tunnel model for various full-scale Reynolds mumbers, figure 11 is presented based on a wind-tunnel Reynolds number of 3 million. Theoretical calculations indicate that only small variations occur (order of 1 percent) in the results shown for realistic changes in the reference wind-tunnel Reynolds number for a given Reynolds number ratio. Variations representing the two extremes of pressure gradients over the forward portion of the airfoil in flgure 10 are show. Also shown in figure il is the transition location curve calculated using flat-plate theory for momentum thickness (no pressure gradient).

Effect of variations of transition location fron the optimum.- In conducting a vind-tunnel test, it is not always convenient or practical to change the transition location uith a change of test conditions. Therefore, an attempt has been made to assess the effects of varying from the optimum transition location. An indication of the effects is provided by cross-plota of the experimental dats obtained for various locations. For the cases where shock-1nduced separated flow is present, a change in the transition of 5 percent chord produces a movement in the shock wave of approximately 1 percent chord.

Limitations of appiicability.- Certain comments as to the limitations of the applicability or the method are warranted. Since laminar flou must be maintained ahead of the transition strip, the method ie 11 mited to classes of pressure distributions that do not have severe leading-edge peaks
at supercritical speeds that would resull in natural boundary-layer transition ahead of the transition strip. It should also be noted that the model must be maintained absolutely smooth in front of the transition strip to prevent transition of the boundary layer.

Rficults of a number oi' investigations conducted in the 8-foot transonic pressure tunnel have Indicated that, when the transition is rearvard as specified by the proposed criteria and a strong adverse gradient is present ahead of the transition, more severe boundary-layer separation may be present than when the transition is in the nomal location near the leading edge. For such conditions, more applicable results are obtained with the transition forward.

Fiesults not presented indicate that when the transition strip is just ahead of the base of the shock, laminar separation occurs ahead of the transition strip. Thus, the maximum rearward movement for which applicable results can be obtained is limited. For the airfoll or the present Invegtigation, the limit is appmximately 50 percent chord.

Further Study

In addition to the results presented herein, considerable effort is being devoted to further analyzing the great body of data obtained during this investigation. Also, work is planned in two additional areas. One, the extension of the preacet tau-dimensional method to the threedimensional cases, and second, a study of the applicability of the technique to the proper simulation of fullscale buffet characteristics.

CONCLUDIN: REMARKS

A two-dimensional experimental and theoretical investigation has been conducted for an MACA 651-213 airfoil to determine the effect of Reynolds number and transition location on shockinduced separatf* Yow. The results have led to the following conclusions:

1. Variati the Reynolds number from full-scale to the usual wind-tunnel values results in substantial chang. "the shock location, trailing.edge pressure recovery, and boundary-layer losses at the trailing e.
2. By properly locating the bouncary-layer transition point on the uind-tunnel model, fullscale results can be simulated at the usual wind-tunnel Reynolds numbers.
3. The required location of the transition point can be predicted with acceptable accuracy by theoretically simulating the boundary-layer characteristics at the airfoil trailing edge. In this procedure, only the surface pressure gradient in the region where the boundary layer is turbulent for the full-scale Reynolds number and laminar for the wind-tunnel Reynolds number need be considered.

REFERENCES

1. Loving, Domid I.: Wind-Tunnel-Flight Correlation of Shock-Induced Separated Flow. NASA TN D-3580, 1966.
2. Davis, Don D.; and Moore, Dewey: Analytical Study of Blockage- and Lift-Interference Corrections for Slotted Tunnels Obtained by the Substitution of an Equivalent Homugeneous Boundary for the Discrete Slots. NACA RM L-53E07b, 1953.
3. Brown, Harvey H.; and Clousing, Lawrence A.: Wind Pressure-Distribution Neasurements up to 0.866 Nach Numbers in Jilght on a Jet-Propelled Airplane. NACA TN-1181.
4. Braslow, Albart L.; and Knox, Eugene C.: Simplified Method for Determination of Critical Height of Distributed Roughness Particles for Bolndary-Layer Transition at Nach Numbers From 0 to 5. NACA TN-4363, 2958.
5. Schlichting, Hermann (J. Kestin, Trans.): Boundary-Layer Theory. McGraw-Hill Book Co., Inc., 1955, Chapter 15, pp. 355-363.
6. Bennett, J. A.; and Goradia, S. H.: Methods for Analysis of Two-Dimensional Airfolls With Subsonic and Transonic Applications. Lockheed-Georgia Company report number ER-8591, July 1966.
7. Truckenbrodt, E.: A Nethod of Quadrature for Calculation of ;he Iaminar and Turbulent Boundary Layer in Case of Plane and Rotationally Symetrical Flow. NANA TN-1379, May 1955.
8. Nash, J. F.; and Nacdonald, A. G. (Miss): The Calculation of Komentum Thickness in a Turbulent Boundary Layer at Nach Numbers up to Unity. C.P. No. 963, British A.R.C., 1967.
9. Somer, Simon C.; and Short, Barbara J.: Iree-Fight Measurements of Turbulent-Bourdary-Iayer Skin Friction in the Presence of Severe Aerodynamic Heating at Mach Numbers From 2.8 to 7.0 . NACA IN-3991, 1955.

FIgure 1.- Supercritical pressure distribution. $M=0.85$; $\alpha_{f} \approx 0^{\circ}$.

WIND TUNNEL

FLIGHT
HIGH REYNOLDS NUMBER

Figure 2.- Effect of boundary layer on shock-induced separation.

Figure 3.- Wind-tunnel installation of two-dimensiornil model.

NACA 65 - 213 AIRFOIL $(a=0.5)$

Figure 5.- Correlation or wind-turnel-flight results.

$$
M \approx 0.80 ; c_{2}=0.056 .
$$

FHgure 11.- Effect of Reynolds number on theoretical transition location. $M=0.70 ; \mathrm{R}_{\mathrm{W} . \mathrm{T}}=3 \times 10^{5}$.

WIND YUNNEL EXTERIMENTS ON THE INTERFERENCE between a jet and a wing at subsonic speeds
by
J. A. Bagley

Royal Aircraft Establishment, Farnborough

In most wind-tunnel experiments on complete aircraft models it is not possible to represent the engive jet flow. A series of experiments are reported in this note in which the influence of a blown jet, simulating the exhaust stream of a fan-jet engine, on the pressure distribution on an adjacent wing has been measured. A brief survey is given of the effects of flight Mach number, jet pressure ratio, vertical and horizontal spaciag between engine naceife and wing, and shape of the nacelle, on the incremental wing pressures due to the jet. The possibility of representing the blown jet by a solid body extending behind the nacelle is also discussed.

1 INTRODUCTION

Many current design proposals for large transport aircraft have large engines of high bypass ratio mounted on short pylons beneath wings of about 25° or 30° sweepback. The engixas have a front fan, and the annular fan nozze is fairly close to the wing leading edge. With such an arrangement, it is possible that the jet flow passing close to the wing has 2 significant infuence on the wing pressure distribution, and on the lift and drag. To measure such effects on a complete model of the aircraft at high subsonic speeds is very difficult, and most wind-tunnel tests are therefore made with the engines represented by simple open "flow nacelles", in which only the external geometry of the engine nacelle is represented and no attempt is made to simulate the jet flow.

The experiments described in this paper were an attempt to find out, using a simpler apparatus, whether jet interfetence effects are likely to be large for an engine installation similar to that on current large subsonic transport seroplanes, or whether the conventional wind-tunnel model without jet will still give a satisfactory representation.

An aircraft of this type will normally be designed to have a subsonic type of flow over the wing, with straight isobars and a chordwise pressure distribution of the type shown in Fig.1. This kas a "roof-top" shape, with a flat plateau over the front part of the section with near-sonic local velocities and a fairly steep pressure recovery behind it. A fairly thick section is normally used, and the lower surface velecities are likely to have a fairly high peak around mid-chord, as shown. There are three places where any alteration of this pressure distribution in the presence of the jet may lead to particular problems:
(1) around the nose, which has been carefully shaped to develop a favourable supersonic peak as incidence or speed increases,
(2) around midchord on the lower surface, where any further increase in local velocities may well lead to the formation of shocks;
(3) towards the rear of the lower surface, where any increase in the adverse pressure gradient may lead to flow separation.

2 FIRST SERIES OF EXPERIMENTS

Ail these problems could be investigated using an unswept wing. and the model shown in Figs. 2 and 3 was therefore constructed. For the najority of the tests, a wing of 10 inches span and 5 inches chord was used which had been tested in a smalker tunnel at N.P.L. This was mounted between end plates as shown, and carried on a box framework from the traversing gear of the $2 / 2 \mathrm{ft} \times 1 / 2 \mathrm{ft}$ Transonic Tunnel The pressure holes on this wing were distributed across the middle 4 inches of the span, so it was necessary to traverse the wing past the jet to obtain a complete chordwise pressure distribution. Tests were made at a Reynolds number of about one million (based on chord length) over a range of Mach numbers from 0.6 to 0.74 .

The engine nacelle and jet were represented in these tests by the pipe shown, coming from the setling chamber of the tunnel and terminating in a double nozzle simulating the two nozzles of a bypass engine. A fairly thick boundary layer develops along the jet tube. and this is reduced in thickness by applying suction through the slots shown. Both nozzles were supplied by a common air supply, as shown in Fig.4, and were arranged to choke at the exit, so the flow from the nozzles exhibits the characteristic pattern of alternating expansion waves and shocks shown in Fig.S. Note here that the flow pattern expands with increasing jet pressure ratio in the usual way. The jet pipe and wing were mounted quite separately in the tunnel, and no attempt was made to represent a pylon.

The displacement flow around the jet pipe itself modifies the wing pressures, so the influence of the jet is measured by companng pressures measured on the wing wher the jet is blown at a preseribed pressure ratio (appropriate to the type of engine being simulated) with the pressures measured when the jet total head is equal to that of the free stream. This latter condition corresponds to that obtamed with a free flow nacelle in a conventional model test.

A typical experimental result ${ }^{*}$ is shown in Fig.6, at a jet pressure ratio of 2.4 (corresponding to an engine of bypass ratio about 5) and for a wing-nacelle spacing appropriate to an airbus type of aeroplane with short fan cowls. The Mach number $M_{0}=0.7$ gives approximately local sonic velocity at the peak velocity on the upper surface, so corresponds essentally to the desugn condition at higher Mach number on a swept wing, (As will be seen later, the phenomena under discussion do not seem to change significantly over a farly wide range of subsonic Mach numbers.)

It is immediately obvious that the jet has had very little influence on the upper surface prexures, although the presence of the jet pipe has changed them somewhat This conclusion, that there is virtually no jet interference on upper sufface pressures, was confirmed throughout the whole range of configurations tested, so the upper surface will not be mentioned again.

Tuming to the lower surface, it is ciear that in this case there is no significant increase in the peak suction and little if any change in the adverse pressure gradient over the rear part of the section. The peak inas been moved ferward by the combined effects of the jet and the displacement flow around the jet pipe, and on a suept wing this would imply some change in isobar sweepback, but for this case no serious problems would be anticipated. The pressure increments due to the jet flow do not exceed $\Delta C_{p}= \pm 0.1$, and the change in sectional lift coefficient is only about $\Delta C_{L}=0.02$.

The results of this first test are rather cornforting to the wind-tunnel engineer, suggesting that the use of free.flow nacelles on his complete models should not give misleading answers (at least in this context), but it seems desirable to explore the influence of vanous changes. In the next few figures we show ΔC_{p}. The difference in lower stuface pressures when the jet is blown at the prescribed pressure ratic and those when its total head is equal to the free-stream. Fig. 7 shows the results for the datum configuration (with $Y / D_{\rho}=044 . \angle \prime D_{c}=029$ at xeteral free-stresm Mach numbers, and it is clear that there is only a small increase in $\Delta C_{p l}$ over thus range of free-strann Mach numbers, although the local Mach number at the peak varies from $3_{\mathrm{Q}}=0.85$ to 12

Fig 8 shows the effect of meving the nacelle vertically closer to the wing, and as might be expected there is a change m magnulude of ΔC_{p}, but a remarkably constant shope of cune is obtaned For the closest position, the peak again represents a locally some
*The experinental results are more fully reported in Ref.1
velocity, and it would hardly be possible to ignore this amount of jet interference. However, this position seems to be closer to the wing than any aircratt dexign published so far.

Fig. 9 shows the infivence, of increasing the jet pressure ratio, and exactly the same pattem appears as in Fig.8. As jet pressure increases, the magnitude of $\Delta C_{p j}$ increases, but the shspe of the curve remains virtually constant until at $H_{j} / p_{o}=4$ the rear peak seems to be somewhat broader. This seems a rather surprising result - the pattenn of altemate compression and expansion waves in the jet tengthens as jet pressure ratio increases, and it might be expected that this would be shown up by an expanding pattern of peaks and troughs in $\Delta C_{p j}$ on the wing.

For the wing-nacelle configurations so far considered, the first peak in $\Delta C_{p j}$ falls on a part of the wing chord where the velocities on the isolated wing are no higher than the freestream velocity. In Fig. 10 is shown an example where the peak suction of the interference field falls on a part of the wing where the velocity is already high, ard the interference effects are thereby magnified. The nacelle was moved back by about 25% chord, so that the annular fan nozzle now lies behind the wing leading edge (probably a rather unlikely position in practice). The peak staction of the interference field has moved back (but only about half as much as the nacelle movement) and now falls on top of the suction peak of the basic wing pressure distribution. The interference is magnified considerably, and might now be a serious problem to the aireraft designer.

Before discussing some further work which was done in the search for an explanation of these observations, it is worth mentioning ore technique which has been used in some wind-tunnel experiments to simulate the effects of a blown jet. The jet is represented by a solid extension of the naccile, in the hope that the displacement flow about a suitable solid body will be similar to the displacement flow around the jet. To check this point, in one test the blown jet was replaced by a solid body extending some distance behind the wing trailing edge, as shown in Fig.4. Measurements showed that the jet from the annular nozzle followed closely the contour of the centre body, and expanded at only about 1° behind this (confirmed by Lawrence's measurements ${ }^{3}$ of the expansion of a similar flow with cylindrical afterbody), so the shape of the solid body was made to represent a constant area jet. The "jet interference" on the wing with this solid body is shown in Fig. 11 for two cases, compared with $\Delta C_{p j}$ due to the real jet. It is obvious that there is little or no resemblance between the two curves, and it seems very doubtful whether this technique of jet simulation has any validity.

3 SECOND SERIES OF EXPERIMENTS

With the experimental rig shown in Figs. 2 and 3, it was impossible to make schlieren or shadowgraph observations of the flow. These seemed to be desirable, so a new wing was made to span the width (30 inches) of the tunnel. For this purpose the slotted sidewalls wers replaced by solid glass walls. The wing section chosen was slightly different to the previous one, and for various reasons the wing chord was increased from 5 to 6 inches. The jet tube was unchunged.

Fig. 12 shows a comparison of $\Delta C_{p j}$ for the new configuration and the previous one. The forizontal coordinate has been measured in terms of the fan nozzte diameter (which remained constant) rather than wing chord. It is seen that there is consideable similarity in the shape of the inteference curve and in the magnitude of the front peak: the rearward peak is somewhat smaller. Fig. 13 shows the corresponding schlieren picture of the flow at $H_{j} / p_{O}=2.4$, whilst Fig. 14 shows the flow pattern at $H_{j} / p_{0}=2.9$. These begin to show why in the earlier tests there was little change in the shape of the interference curve: although the pattern of shocks in the jet on the far side of the nozzle expands with increscing jet pressure ratio in the conventional way, on the side of the jet near the wing the shocks are spparently "fixed" by the iniluence of the wing. This leads to a lack of symmetry in the jet behind the second nozzic, which is evident in Fig. 13.

Fig. 15 shows the values of $\Delta C_{p j}$ obtained for this nozzle position, compared with those obtained for a much closer position. In the second case the pressure increments increase considerably with increasing jet pressure ratio, and the peaks tend to move rearwards at the same time. Here it seems that the pattern of shocks and expansions in the jet is directly influencing the wing pressure distribution Although the wing is not fully immersed in the jet (as schlieren photographs show), the jet interference seems to be different in character from that in the carlier examples. It is siggested that there may well be a entical spacing between wing and nacelle, below which the jet directly influences the wing, as here; this minimum spacing may be larger at higher jet pressure ratios.

At this point of the investigation, it seemed likely that the shape of the nacelle afterbody might have a controlling influence on the shape of the jet interference curve - the main suction peak in $\Delta C_{p j}$ seemed to occur just behind the narrowest part of the gap between the wing and nacelle, for example. As the latest trend in engine design is towards longer fan cowls and correspondingly short afterbodies, the centre-body of the jet nozule was shortened as shown in Fig.16. The fan nozule is unchanged, and is in the same position relative to the wing.

As anticipated, this change makes a very makked alteration in the interference pressure curve, Fig.17. The main suction peak now appears further back, and is a little higher than with the previous nozzle. There is the same effect with increasing jet pressure ratio that the shape of the curve is almost constant but the magnitude of $\Delta C_{p 1}$ increases, this seems even more surprising in the present case for the datum jet pressure ratio $I I_{i} / p_{o}=2.4$ the peak value of $\Delta C_{p i}$ is only a little higher than it was in Fig.15, but because this is super mposed on the suction peak of the wing field there is a "mpanification" of the pressure increment with increasing jet pressure ratio as occurred in earlier cases when the two suction peaks coincided.

4 CONCLUSIONS

The invesugation reported here has been rather limited in scope, and general conclusions must be rather tentative. Fuller details of the experiments are reported in Refs. 1 and 2, these results have been tuken into account in reacting the conclusions listed below. All thrse points refer specifically to aurcraft of mall or moderate sweepback operating al subcritial Mach numbers and with engines of faul) high bypass ratio for which the ratio of engine diameter to wing chord is around $1 / 3$.
(1) Except when the jet is very close to the wing, it has no significant effect on the presoures on the upper murface.
(2) Wher the vertical syacing between the fan jet nozule and the wing kading edge is kess than about one-firth of the nozzk diameter, the jet-induced pressures on the wing are markedly dependent on jet presaure ratio, and the wing can be regarded as being immersed in the jet. This limiting spacing increases with increasing jet pressure ratio.
(3) When the vertical spacing between wing and jet is greater than this limit, the shape of the incremental pressure distribution on the wing, $\Delta C_{p ;}$ is characteristic for a particular nozzle and afterbody configuration and fore-and-aft location reistive to the wing. The magnitude of $\Delta C_{p j}$ increases as the jet is brought closer to the wing and as the jet pressure ratio increases, but increases only slightly as free-stream Mach number is rased.
(4) The dominant feature of the jet interference curve, $\Delta C_{p j}$, is a velocity peak, which may be followed by a subsidisry peak further downstream. For a range of configurations which appear to be of practical interest, the maximum suction increment is $-\Delta C_{p j}<0.15$ at $H_{j} / p_{o}=2.4$; this is unlikely to lead to a large change in overall wing characteristics. If the suction peak due to jet interference falls close to the suction peak on the wing in the presence of the nacelle without jet, the values of $\Delta C_{p j}$ increase rapidly with increasing jet pressure ratio, and might be of major practical significance in some cases.

ACKNOWLEDGEMENTS

The bulk of the experimental work reported here was undertaken by my colleagues D.J. Raney, A.G. Kurn and C. Young, to whom my thanks are due.

REFERENCES

1 D.J. Raney, A.G Kum, B,A. Bagley. Wind tunnel investigation of jet interference for underwing installation of high bypass ratio engines. R.A.E. Tectiscal Report 68049, March 1968

2 A.G. Kum. R.A.E. Report in preparation

3 R.L. Lawrence Afterbody flow fields and skin friction on short duct fan nacelles. Journal of Aircraft Vol.2, pp.318-327, July 1965

Fig. I Typical modern aerofoil design pressure distribution

Fig. 2 Wing and jet nozzle in tunnel

Fig. 3 Wing and jet nozzle in tunnel

Fig. 4 Nozzle and wing in datum position
($x / D_{e}=0.44, z / D_{e}=0.29$)

GTGIDNGOYのड़ษ JON

GTGIDNGOYdM甘 ION

$$
b M_{0}=6.7 \quad H_{j} / p_{0}=3.0
$$

Fig. 5 Schlieren photographs of flow from bypass nozzle

Fig. 6 Wing pressures with and without jet blowing

Fig. 7 Effect of Mach number

$$
H_{j} / P_{o}=2.4, Z / D_{e}=0.29, x / D_{e}=0.44
$$

Fig. 8 Effect of jat/wing separation on lower surface pressure increment due to jet blowing $H_{j}=2.4 p_{0}, M_{0}=0.7, x / D_{e}=0.44$

Fig. 10 Pressures on lower surface of wing: rearward nacelle position

Fig.ll Pressure increments due to jet and to solid body of similar shape

Fig. 12 Jet interference on two wings

Fig. 13 Schlieren picture of flow
$X / D_{e}=0.38,2 / D_{e}=0.29, M_{0}=0.72, H_{j} / p_{0}=2.4$

Fig. 14 Schlieren picture of flow
$\mathrm{X} / \mathrm{D}_{\mathrm{c}}=0.38, \mathrm{Z} / \mathrm{D}_{\mathrm{c}}=0.29, \mathrm{M}_{\mathrm{o}}=0.72, \mathrm{H}_{\mathrm{j}} / \mathrm{p}_{0}=2.9$

Fig. 15 Jet interference for two vertical spacings of nacelle and wing C

Fig. 16 Schlieren picture of flow with long-cowl nacelle $X / D_{e}=0.38, Z / D_{e}=0.29, M_{o}=0.72, H_{j} / p_{o}=2.4$

Fig.17 Jet interference for nacelle with short afterbody

par

J. LEmardT*
G. YERUZE***
O.N.E.R.A. ($92-$ Chatilion - FRANCE $)$

* Chef de Groupo de Recherches
** Ingénieur de Reckarchos

In développement dee avions de transport subsoniques a grande oapecité a conduit au choix de aros turbo-réactsurs ì doubie flux ayant un taux de dilution éevs : il en résuite des problemes árrodynamiques noureaux, lifa a l'inportance dos debita captés par la prise d'air ot aux offets de l'interaotion du jet froid du "fan" sur l'Gcovleant extérieur lorsque le réacteur est suspendu sous la voilure.

Fr ce qui concerno la prise d'air, on doit rechercher un compramis asourant un éoculement sans décollement interne au décollags ot sans survitesse prohibitive sur la carèno on régime de croisiére.

La forme diun profil réailisant ce compromis a été rechorchbe à l'aide de la méthode des analogies éleotriques, dont les résultats valables pour un écoulement de révolution incompressible ont été affeotés des corrections classiques pour la transposition au régime compressible de croisiere.

Le fonctionnement aux trea faibles vitesses ot notament au point fixe fait apparaitre une distorsion non uégligeable de l'écoulement interne, imputable au régime transsonique qui g'établit au contournement du bord d'attaque ot aux décollements qui on résultent.
Los résultats expérimentaux correspondants sont présentés ot discutés.
Une otude en soufflerie de la confluence du jet primaire et de 1'bcoulement extérieur transsonique au voisinage de la sortie du jet est également présentée, pour metire en éridence l'influence du régime du moteur eur la structure de cot Gooulement.

High by pass ratio turbofans used for large subsonic transport ajrcraft envolve new aerodynanio problems due to the importance of the mass flow both at the intake and at the arhaust.

For the intake lip problew, a compromise must be found to obtain a flow without internal separation at tako-off, and without excessive oxternal super velocitiss during cruise.

Electrical analogy has made posaible the study of various forms of lip profiles, by an incompressible flow aimulation correctad for compressibility effect, and the solution of the problem to a first approxination.

At very low speec, hovever, and in particular in the static case, transonic flow and shock waves at the leading edge may cause local flow separation internally, and distorsion of the total pressure profile.

Exparisantal studies of these phanomans are presented,

For the arhaust problem and angine nacelle boattail drag, some transonic wind tunnel preasure msasuramente on ropresentative models ary also disoussed.
 d'attention l'aérodynamiqie des necelles dont l'ieportence relative par rapport aux dimanaions gónó rales de l'evion est fortement accrua. La trafnfe de aotorination on vol de croisidre atteint 7 a 8\% de la trafnée totale de l'ajion, et l'enjou d'uno otude d'optiaisation de l'ensmable a partir d'une configuration deffaie on vertu de quelquan règlas empiriques approchées peut tire de $1 / 2 \% \mathrm{de}$ la poussée.

Lun des buts de cette étude preliminaire a été de définir un carénage évitant les gurvitessen tranmsoniques sur les profils externes en vol de croisidre, et la trainé qui en résulte par andes de cboo éventuellen et frottement acoru. S'il s'avérait toutefcis nécessaire d'accopter de tolios surfitesses, des profils de moindre trafnée typo "peaky" [1] [2] soraient λ considéres.

Ia premiers phase consiste a étudier le fuseau seul et ì en recherchor uno forme optisecle qui servira do point de départ pour l'optimisation de l'enserble nacelionarion [3ì7]. Tro solution type de oe probleme est représentcefigure 1. Les répartitions de pression our les profils de carene ot diarriere corpe traduisent les caractéristiques auivantes : aur le prafil arterne de la prise d'air, une aruVitesse subcritique a peu près constante jusqu'au dalk du mattro-couple ; de mane sur le profil interne du diffuseur, une plage do survitesses subcritiques. Un bord d'attaque moins épais permettrait d'attf nuer ces survitesses, mais les performances au décollage saraient pénalisées, coame nous le verrons. Sur 16 rétreint de la carèno, on observe vers l'arriero une reconpression regulidre de l'booulament. Sur le corpe central, le joi du "Fan" se détend a ure pression voisine de la pression ambiante, damant naissance la une succession d'ondes de détente ot de compreasion trìs atténubes.

Ces diffórents éloments vont totre maintenant examinés plus on détail, on considérant succeseivemant sous leurs aspects transsoniques le probleme de la prise d'air au décollage ot on croisière, calui. de ia prise d'air au point fixe et aux très basses Fitesses, ot la problème du rétreint de la carène ot du corps cantral on vol de croisière.

OPTDISATION DE LA PRTSE D'ALR AU DECOLLAGE ($A_{\infty}=0,2$) ET EN VOL DE CROISIERS ($H_{\infty}=0,85$)

Un processus très élémentaire a été cuivi pour rechercher catte optinisation : une cortaino forme de carénage de la prise d'zir étant définio a priori, le champ de l'écoulement de révolution autour de cotte carene est détermiń en incompressible. A cet effot, on itilise la néthode d'analogie électrique des écoulements de révolution [8] dans une cuve à fond incliné où est disposé un secteur de la maquetto do la prise d'air, on matóriau léger isolant (fig, 2). Le relové du champ áradynamique fait apperaftre les zones de st vitesses à corriger, et permot d'orienter la rechorche d'une nouvelle forme améliorfe. Par des essais .dccessifs, on aboutit ainsi très rapidement au choir d'uns configuration dant l'essai en soufflerie donne une évaluation précise des performances. A partir de ce résultat, un nouvel ajustement peut ℓ^{+}re rechorché en s'apphyant à nouveau sur le sens des indications recueillies dans l'anulogie incompressible.

Un certain nombre de règles empiriques ont été dégagées par différents auteure pour définir la forme initiale de la carène et du fusoau moteur [9 a 12]. Un calcul nuárique en régine incompressible ost utiliś par d'autres auteurs [13], mais il n'erists pas encore, a notre connaissance, de méthode de caloul pour l'écoulement compressible، Une telle méthode est en cours de développenent à l'O.N.E.R.A. [14]. La méthode suivie a donc consisté à procédor à une correction des resultats obtenus on incour pressible par la formule de KARMAN-TSIEN, considérée comme donnant une approximation grossière, mais suffisante pour guider le chojr d'un profil.

Los figures 3 et 4 présentent deux étapes successives de la définition do la forme de la prise d'air. Ces figures donnent les distributions do pression calculées come 11 vient $d^{\prime \prime} / \mathrm{stre}^{2}$ dit, pour les nombres de Mach de vol Mon 0,85 et $M_{\infty}=0,2$. Lorsque ce calcul fait apparaftro des zones supercritiques
 préciaion mais avertit seulement que la vitesse critique sera cortainement franchio. Ainsi, le profil initial "\&" do la figure 3 fait prévoir d'une part une forte aurvitesse sur la carène axterne à $M_{\infty}=0,85$ consécutive ì une courbure locale trop accentú́o du profil. D'autre part, à $M_{\infty}=0,85$ corme ì $H_{\infty}=0,2$, une survitesse apparaft également sur le profil du diffuseur interne, au volsinago de l'antrfe : sachant par analogie avec les borde d'attaque de voilure qu'en redressant son squelette, on pourra atténuer ces survitesses internes, on a défini la solution "B". Dans cotte solution, les survitesses internes sont effectivement ramenécs à un niveau acceptable, mais, à l'"extrados" (profil externe de la carìne), la faible dimirution de courbure donnée au profil n'a pas compensé l'accélération de l'écoulement due à l'aumentation de l'"incidencs", ot le survitesse est devemo supériaure a ce qu'elle était anteriourement. On observe toutefois qu'au voisinage immediat du bord d'attaque, les vitesses externes sont faibles, et il sera par conséquant admissitio de les accroftre on adoptant un profil de plus forte courbure locale. Cette disposition permettra on même tempa de réduire la courbure plus on aval, dans la région où elle eat trof accentuée. Le profil "C" comparé au profil "B" (figure 4) répond à ces conditions. La répartition de pression sur la carène externe ost presque uniformo, i un nombre de Mach subsonique constemment voisin de 1. Au nême nombre de Kach $M_{\infty}=0,85$, lea pressions sur le profil interne de la carène sont pratiquement inchangées ot restent satiafaisantes ; $\mathrm{A} \mathrm{X}_{\infty}=0,2$, on observe toutefois un accroissement le la survitesso au contowrnement du bord d'attaque, cunsécutive ì l'augmentation de courburo. Cette survitesse dépasse la valour critique, mais pourra aans doute otre atténuéo par une légere modification de la répartition des courbures du profil interne à l'antróo.

L'obtention à $M_{\infty}=0,85$ d'une vitesse $^{\prime}$ critique quasi-constante sur tout l^{\prime} extrados indique que 1^{\prime} on est proch diune configuration optimale.

Une premiere série d'essals a até entreprise sur la configuration "C" dans une soufflerie à basse vitesee pour vérifier son comportement interne au region de décollage ot aus très besses vitesses ou des troubles transsoniques sont a crairdre au voisinage du bord d'attaque.

La figure 5 représente le montage utilisé dans la soufflerie 53 de Chaiais Youdon. Le débit de ia prise d'air est assuré par une trompe d'oxtraction disposée à la suite d'un débituètre vanturi. La carène de la prise d'air, d'un diamètre de 165 mm au plan d'entrée du moteur, est équipée de prises de pression statiqus le lonf a'une génératrice. Un peigne de pressions d'arret permet de relever le profill de l'écoulezent au plan d'entréo du moteur. Le vitesse de la soufflerie est limitée à $100 \mathrm{~m} / \mathrm{s}$. Les résultats obtenus ì $K_{\infty}=0,2$ aont reportés figure 6 .

L'allure de la répartition des prossions autour du bord d'attaque est correctement prévie par le calcul, mais la survitasse interne au borí d'attaque est inférieure à la valeur prédite. La différence provient on partie du fait que le calcul est effectue en incompressible, mais aussi en partie du fait que l'on a'cst contenté de mesures approchées dans la cuve d'analogie électrique.

Las résultats montrent l'absence de phénomènes transsoniques parasites autour du bord d'attaque au
 point fixe et a tras basse vitesse.

PRISE D'AIR AU ROINT FIXE ET A TRES BASSE VITESSS

La figure 7 montre l'évolution de l'écoulement autour du bord d'attaque a l'entrée de la prise d'air lorsquo le nombre de Yach de vol passe de $K_{\infty}=0,3$ a $K_{\infty}=0$, le moteur f́tant au régime marimum. Io contournement du bord d'attaque étant de plus on plus accentué, on observe d'abord une survitesse croissante, localement supersarique à $M \infty=0,1$, suivie d'uns recompression très brutale de l'écoulemont. Loraque le nombre de Yach est réuit ì 0,08 , la couche limite au bord d'attaque décolle ; le phónomène se manifeste sur le profil des preseions par l'f́tablissement d'une plage isobare remplaçant la pointe de survitesso. Cette plage de décollament s'étend, lorsque y ∞ décroft jusqu'ì 0 .

La dégradation des profila de pression d'arrét dans le plen d'entrée du "fan" reportéa figure 8 traduit l'effet du décollement. L'efficacité, rapport de la pression génératrice moyenne dans le plan d'entrée
 coure le montre la courbe reportée figure 8.

Pour ∇ érifier le róle du nombre de Reynolds dans ces phénomènes, des essuis en "transition déclanchée" au bord d'attaquo ont été réalisés. La transition a été assuméo par des fils longitudinaur collós sur le bord d'attaque, dans des plans méridiens réguidèrement espacés (figure 9). Par ce procédé, la diffusion transversale de la turbulence émise le long des fils assure la transition de la couche limite sans provoquer de perturbation localo, indépendement de la position du point d'arrtt au bord d'attaque, et on limitant al mieux l'épalssissement indtial de la couche limite [15]. L'effet de la transition ainsi déclanchéo est très importont, comme le montre les répartitions de pressions comparóes figure 9 i i $H_{\infty}=0,08$, la couche limite maintenant turbulente n^{\prime} est pas décollée, contrairement à l'essai en transition naturelle. A $M_{\infty}=0, l^{\prime}$ '́tendue du décollement est sansiblement réduite. Les pressions d'arrêt dans le plen du compresseur ainsi que l'officacité globale (ilgure 10) reproduisent les nêmee effets. Les perturbations transeoniques de contournement du bord d'attaqus peuvent etre évitées, si besoin est, par l'aménagemant de portes auxiliaires dens la prise d'air, mais ceci est un autre sujet.

EIUDE DE LA PARTIE ARRIERE DE LA NACELJS

L'installation d'essai de la partie arrière du fuseau moteur est présentée figure 11. Les parois haut ot bas de la velie ont une perméabilité de 8%. La dimension de la maquotte pormet un équipament des profils on prises ds prossion.

La figure 12 montre les répartitions do pression aur le rétreint de la carène et sur l'arrière corpa aux conditions nominales de la croisiere. Sur le rétroint de la carène s'exerce vera l'arriere une recompression subsonique réfuliere, sans choc ni décollement. le jet supersonique du "fan" est à peu près isobare à la pression ambiante; sa atructure est néancoina marquée par une auccession d'ondes de détente et de compression de faible intensit6, come le montre la visualisation strioscopiqua, maia que décèle ì poine la répartition des pressions.

La figure 13 montre l'effet d'une variation du noabro de Mach pour un rapport constant de la pression
 carbne roate réguliere à $K=0,9$, tandis que l'acoroissement du taux de détente $P 4 / 1 / p_{0}$, aver le nombre de
 tion de l'onde de détente initialo, i le confluence des deur écoulesents. Cet effet ee retrouvo, plus accentue, figure 14 , où est doané l'effet d'une variation du rapport pıjF/po à $\mathrm{H} \infty$ donné.

Les pressions sur la caréno ne cont pes affectés par la variation du taux de détente, dans les liaites átudioes, mais les ondes de detente et de conpressicn du jet s^{\prime} intensifient fortenent avec le rapport de pression.

Cat ensemble de résultats montre que l'ecoulement autour des formes choisies pour la partie arrière du fuseau moteur est très régulier, au régime normal de vol de croisièrs. Le principe méme du montage d'essai se prte $^{\prime}$ toutefois à quelques critiques. C'est ainsi par exeaple que la non-représentation du bord d'attaquo de la prise d'air conduit ì des aurvitesses au mattre-couple vraisemblablement moins élevées que les survitesses réelles. Par ailleurs, la présence d'une couche limite sur le rétreint de la carène relativement plus importante que sur l'avion peut modifier légerement les conditions locales de confluence des écoulements externe et interne à la sortie du "fan", et la structure du jet qui on résulte [16]. A cet égard, des essais avec aspiration de la couche limite en amont du carénage peuvent stre envisagéa [17].

COMOLUSION

Quelques exemples de phéncuènes transsoniques rencontrés dans l'étude des carénages d'un moteur double flux à taux de dilution 仑levé ont été présentés. Les méthoses de calcul en incompressible actuellement encore utiliśes, ne parmettent de prévoir ces phwnomènes qu'en premiere approrimation, mais sont cependant un guide utile pour orienter la recherche d'une solution appropriée.

Les décollemente de la couche limite au berd d'attaque, rencontrés dans certajnes configurations, sont évidemment tributaires du nombre de Reynolds, et la plus grande attention doit étre apportés à l'offet de ce paramètre, et au déclanchement naturel ou forcé de la transition de la coucho límite.
[1] B. H. PEARCEI
The serodynamic design of section shapes for swept wings Advances in Leronautical Sciences, Vol. 3, pp. 277-322
[2] K. VINCENT DE PaUl
Rochorchos experimentales sur les profils d'aile supercritiques A.G.A.R.D. "Abrodynamique transsonique" - Paris (septembre 1968)
[3] i.c.C. STLN
A discussion of selectod cerodynamic problems on integration of propulsion systems with airframe on transport aircraft
ACARDOgraph 103, "Aerodynamic of power plant installation" (octobre 1965)
[4] J. SEDDOS
Factors detormining ongine installaticn drag on subsonio and supersonic long-range aircraft A,G.A.R.D. CP no 9, part. I - Cav turbin (1966)
[5] J.T. SUTNET
High bypasa vorsus low bypass ongine installation considerations S.A.E. paper 660735 (Octobre 1986)
[6] J.H. PATERSON
Lorodynamio design features of the C 54 diraraft engineoring (June 1968)
[7] Ph. POISSOR-QUINTON et M. VINGENT DE PAUL
Contribution à l'Gtude afrodynomique diun avion de type "AIRBUS" Gème Congries I.C.A.S. - Munioh (Septembre 1968)
[8] L.C. MALAVABD
L'emploi des analogies rhfoélectriques on aérodynaxique -GARDograph 18 (Aout 1956)
[9] W.M. DOUGLISS
Lorodynamic installation of high-bypass ratio fon engines
S.A.E. papor 660732 (Octobre 1966)
[10] G.T. FRLZIER
Aerodynamic considerations for ongine exhaust design for subsonic high-bypess fan ongines S.A.E. paper 650734 (Oatobre 1966)
[11] Y.S. VIUL
derodymanic considerations for ongine inlet design for subsonic high-bypass fan ongines S.A.E. papar 660733 (Octobre 1965)
[12] R. SCHERAER and K.E. ANDEESON
Preliminary investigation of a family of diffusers designed for near sonic inlet velocities NoA.C.A. T.N. 3668 (Ferrier 1956)
[13] J.L. HESS and A.K.O. SXITE
1 ganoral mothod for calculating low speed flow about inlots
LCARDOgraph 103 - "Aorodynsmic of powar plant installation (Oetobre 1965)

[14] P. CLBRTERE at C. CLPRSTIER

Application de la méthode des caractóristiquen instatiomaires au calcul numérique d'un fcoulemont parmenont compressible
A.G.A.R.Ds "1́trodynamique transsonique" - Paris (Septembro 1968)
[15] R. RICBEL et M. SIRIRIX
Déclenchowezt de la transition per fila iongitudinaur ceinturant la maquette In Recherch 16ronautique $n^{\circ} 52$ (1956)
[16] P. Chrbisers
 I.C.A.S, - Yanich (Soptembre 1968)
[17] D.J. Ranst, ag. munn, J.A. blgiey
Wind tunnel investigation of jet interfarence for underwiag installation of high-bypass ratio onginos
R.A.E. SR 69049 (1968)

Fig. 2 CuVe d'amalogie rhéoélectrique simulation de l'écoulement de révolution autour de la careme

EH INCOMPRESSIBLE

Fig.7_CONTOURNEMENT DU BORD
D'ATTAQUE AU POINT FIXE ET AU
DECOLLAGE. (Débit réduir constant)

Fig.10. EFFET DU DÉCLENCHEMENT DE LA TRANSITION AU BORD D'ATTAQUE

Fig. $11 . \mathrm{S}_{5}$ Chalais. MONTAGE DOUBLE.FLUX POUR ETUDE DE L'ARRIERE-CORPS

SIMULATION $\left\{\begin{array}{l}\text { Nombre de Mach et vitesse du jet "Fan", } \\ \text { Nombre de Mach du jet central, } M_{j_{j}}, ~ V\end{array}\right.$

Fig.13_ RÉPARTITION DES PRESSIONS
$p_{i j F} / P_{i \infty}=1,44 \quad M_{\infty}=0,80,0,85,0,90$

Corps central

$$
M_{\infty}=0,85 \quad P_{i j F} / P_{i \infty}=1,20 \cdot 1,44 \cdot 1,60
$$NEW RESULTS ON STEADY, TWO-DIMENSIONAL

 TRANSONIC FLOW
 by
 K. Oswatitsch
 Institut für Theoretische Gasdynamik der DVL Aachen, Germany

Abstract

A brief report on the doctoral research of two students is presented. The contribution or H . Sobieczky is concerned with the construction and discussion or two-dimensional transonic flow patterns. In the thesis of H . Norstrud the integral 1. Introduction equation method is used to treat transonic fiows past lifting airfoile.

New Results on Steady, Two-dimensional
Transonic Plow
By K. Oswatitsch ${ }^{+}$)
Institut fur Theoretische Qasdynamik der DVL, Aachen, Germany

My present paper informs you about the doctoral research of two of my students. One has finished his thesis, the other is still working on it. Both investigations are concerned with two-dimensionel, transonic flow. This type of flow is a rather crude approximation of the actual transonic flow about an aircraft. The two papers under consideration are theoretical. I know that an ergineer does not appreciate highly theoretical work. Nevertheless, I hope that my informations will prove useful to you, because two-dimensional transonic flow is basic for the understanding of three-dimensional transonic flow. Furthermore, the theoretical treatment I am going to present is relatively simple, an engineer may find it not too difficult.

2. Basic Equations

Two-dimensional irrotational transonic flow is described by the well-known gasdynamic equation and the equation or irrotationality. In what follows we assume small disturbances in the vicinity of the sound speed $W=c^{*}$. The two basic equations mentioned can then be written
$(x+1)\left(1-w / c^{*}\right) \frac{\partial}{\partial x}\left(1-w / c^{*}\right)-\frac{\partial \vartheta}{\partial y}=0$. $\frac{\partial}{\partial y}\left(1-W / c^{*}\right)-\frac{\partial v}{\partial y}=0$.
W, v, x and c^{*} are, respectively, the $a b-$ solute value of the velocity, the flow angle, the ratio of the speciric heats and the critical sound speed. Let the positive x direction ve parallel to the oncoming stream. Thus, we have to fulfil the boundary con-

[^7]ditions
\[

$$
\begin{equation*}
\sqrt{x^{2}+y^{2}} \rightarrow \infty ; W=W_{\infty} ; \quad V^{\prime}=0 . \tag{3}
\end{equation*}
$$

\]

3. Transonic Flow, Subsonic Domain

The paper of Helmut Sobleczky [1] is mainly concerned with the subsonic domain of flows with free stream Mach number one. However, the calculation can be continued across the sonic line. It is wellknown that the system (1), (2) can be innearized without loss in generality using transformations similar to those already used by Timman [2] and M.Schafer [3]. Now let us introduce a new dependent variable

$$
\begin{equation*}
q=-\frac{2}{3} \sqrt{x+1}\left(1-W / c^{*}\right)^{3 / 2} \tag{4}
\end{equation*}
$$

one can choose new independent variables s, t so that the following Cauchy-Riemann equations hold

$$
\begin{equation*}
-\frac{\partial q}{\partial s}+\frac{\partial v}{\partial t}=0 ; \quad \frac{\partial q}{\partial t}+\frac{\partial v}{\partial s}=0 \tag{5}
\end{equation*}
$$

x and y must satisfy the Beltrami differential equations

$$
\frac{\partial x}{\partial s}=-K(s, t) \frac{\partial y}{\partial t} ; \quad \frac{\partial x}{\partial t}=+K(s, t) \frac{\partial y}{\partial s}(6)
$$

K is 2 function of q only

$$
\begin{align*}
K(s, t) & =\left|\sqrt{(n+1)\left(1-W / c^{*}\right)}\right|= \\
& =\left[-\frac{3}{2}(x+1) q\right]^{1 / 3}=A q^{1 / 3} \tag{7}
\end{align*}
$$

All quantities in the latter equation are taken real. It then follows from equation (4) that $W<c^{*}$ and we have $K(s, t) \geq 0$ because of $A<0$ and $q \leq 0$.
In the direct method $1-W / c^{*}$ and v^{2} are sought as functions or x and y and in the hodograph method x and y must be determined as functions or W and v. However, In the system (5), (6) both $q, 2 r$ and x, y
are functions of s and t. It is possible to assign a linear system of Beltrami equations to any solution of equation (5), in particular to any analytic function

$$
\begin{equation*}
E(s+i t)=q(s, t)+i v(s, t) \tag{8}
\end{equation*}
$$

Although the Beltrami equations are linear their solution is the main problem, because the system (6) has variable coefficients. I continue with some remarks concerning this situation.

Let us focus our attention to the system (6). In case of an incompressible flow we would have $K=1$ and $-q, v^{r}$ could be interpreted as components of a velocity disturbance. x, y satisfy Cauchy-Riemann differential equations and the system (5) is mapped onto itself by a conformal transformation of the coordinates. Now we recognize that a particular solution of (5), for instance

$$
\begin{equation*}
q=s ; \quad v r=t \tag{9}
\end{equation*}
$$

can lead to different flows, if we assign different solutions of the Beltrami equations (6) to (9).

Furthermore, the solution of the Beltrami equations (6) and the corresponding CauchyRiemann equations (with $K=1$) diifer qualitatively only slightly. This is due to the fact that K depends on the cubic root of q only (picture 1).
x, y are orthogonal coordinates in both cases. The solutions of the Beltrami equa* tions end at the sonic line $q=K=0$. But one can always find solutions for $K=A q^{1 / 3}$ and $K=1$ which differ only silghtly from each uther. This is very helpful in finding a desired flow pattern.

Restricting the Beltrami equations (6) to the subsonic domain means that the solution ends at the sonic line. It does not necessarily mean that the flow ends at the line $W=c^{*}, q=0$ and a limit line occurs there, The acceleration of the flow in the physical plane has to be regular at the sonic inne. We can then continue the flow in the
supersonic domain using the method of characteristics. Such a requirement does not lead to additional difficulties.
In picture 2 the vicinity of the sonic Ine in the $s, t-p l a n e$ and the x, y-plane are compared. In the $s, t-p l a n e$ the lines $x=$ const and $y=$ const are quite similar to the ilnes $s=$ const and $t=$ const. The curves $v^{\mathscr{\prime}}=$ const, which are orthogonal to the sonic line in the $s, t-p l a n e$ have a perpendicular tangent in the x, y-plane because of $W=c^{*}$. This follows from equation (1). $\left(W=c^{*}, d V^{*} / d y=0\right)$. Nevertheless, the streamlines are smooth at the sonic line.

4. Particular Solutions

All subsequent solutions are based upon the solution (9). The Beltrami equations (6) then take the form

$$
\begin{equation*}
\frac{\partial x}{\partial s}=-A_{s}^{1 / 3} \frac{\partial y}{\partial t} ; \quad \frac{\partial x}{\partial t}=+A_{s}^{1 / 3} \frac{\partial y}{\partial s} . \tag{10}
\end{equation*}
$$

We now proceed to discuss some particular solutions of this system. (Picture 3).

$$
\begin{align*}
& x=A\left(C_{1} t-\frac{3}{4} C_{2} s^{4 / 3}\right) \tag{11}\\
& y=C_{2} t+\frac{3}{2} C_{1} s^{2 / 3}
\end{align*}
$$

represents the flow in the vicinity of the sonic line in a curved duct. (Picture 4).

$$
\begin{align*}
& x=A\left(C_{1} t-\frac{3}{2} C_{2} s^{4 / 3} t\right) ; \\
& y=\frac{3}{2} C_{1} s^{2 / 3}-\frac{3}{4} C_{2} s^{2}+C_{2} t^{2} \tag{12}
\end{align*}
$$

is the local supersonic domain corresponding to the Ringleb solution.
In the further discussion we make use of polar coordinates

$$
r=\sqrt{s^{2}+t^{2}} ; \quad \operatorname{tg} \rho=t / s
$$

The solution
$x=-\left(A \cdot \frac{1}{2} r^{2 / 3}\left[(1+\sin \varphi)^{2 / 3}+(1-\sin \varphi)^{2 / 37}\right]_{(13)}\right.$, $y=C r^{1 / 3}\left[(1+\sin \varphi)^{1 / 3}-(1-\sin \varphi)^{1 / 3}\right]$.
describes the flow through a Laval nozzle in the vicinity of the sonic line which is shown in picture 5.

Another particular solution reads

$$
\begin{aligned}
& x=C \cdot A \cdot r^{-1 / 3}\left[(1+\sin \varphi)^{3 / 3}+(1-\sin \varphi)^{2 / 3}\right] \\
& y=C r^{-2 / 3}\left[(1+\sin \varphi)^{1 / 3}-(1-\sin \varphi)^{1 / 3}\right]
\end{aligned}
$$

Equation (14) describes the behavior of a flow with free stream Mach number one in the vicinity of a stagnation point. This behavior is illustrated in picture 6. Muller-Matschat [4] found an asymptotic solution for the two-dimensional flow about an airfoil at $W=c^{*}$ (picture 7). This solution is given by
$x=C \cdot F \cdot r^{-4 / 3}\left[(1+\sin \varphi)^{2 / 3}(2-3 \sin \varphi)+\right.$

$$
\begin{equation*}
\left.+(1-\sin \varphi)^{2 / 3}(2+3 \sin \varphi)\right] \tag{15}
\end{equation*}
$$

$y=-C r^{-5 / 3}\left[(1+\sin \varphi)^{1 / 3}(1-3 \sin \varphi)-\right.$

$$
\left.-(1-\sin \varphi)^{1 / 3}(1+3 \sin \varphi)\right]
$$

It is worth noting that the various examples are exact solutions. A variation of the arbitrary constant C_{i} is equivalent to applying the transonic similarity rules. A portion of the discussed solutions is already known. In a recent paper Zierep [5] gives a representation of the flow about the so-called Guderley profile in the physical plane. Sobieczky obtains the Guderley solution by superposing the nozzle flow equation (14) and the asymptotic solution (15) (picture 8).
All results mentioned are based upon the same linear Beltrami system. Consequently, one can superpose all solutions mentioned.

I give you an example. The comolned solution (11) + (14) + (15) represents the sonic flow about a curved profile which secms to be a new result.

5. General Solutions

The variety of solutions is not reduced essentially by the sclution (9). This has ailready been pointed out and is in accordance with what we found in the foregoing discussions. The Beltrami equations (10) belonging to equation (9) can be written as second order differential equations for x and y

$$
\begin{align*}
& x_{s s}+x_{t t}-\frac{1}{3} \cdot \frac{1}{s} x_{s}=0 \tag{19}\\
& y_{s s}+y_{t t}+\frac{1}{3} \cdot \frac{1}{s} y_{s}=0 \tag{16}
\end{align*}
$$

The homogeneous solutions of these equations ($\nu=$ integer)

$$
x=r^{\frac{2}{3}+v} \cdot F(\rho) ; y=r^{\frac{4}{3}+v} \cdot G(\varphi)(17)
$$

are hypergeometric functions of a simple kind. This feature is characterized by the fact that $F(\rho)$ and $G(\varphi)$ can be written as a finite sum of funstions of an angle. The usual nozzle solution (14) and the Maller-Matschat solution (15) are the special cases $\nu=0$ and $\nu=-2$ of eqs. (17). The solution $V=-1$ (1.e. the solution (13), picture 5) which seems to be a new result mjght also be of particular interest. Using further solutions $V>0$ one can complle a whole table of sonic flows about cusp-nosed airfoils. It seems that this table widens the possibilities of theoretical treatment and makes the treatment itself easier.

$$
\begin{align*}
& U=\frac{W-W_{\infty 0}}{c^{*}} \tau^{-2 / 3}(x+1)^{1 / 3} ; V=\frac{y^{9}-v_{\infty}}{\tau} ; \\
& X=X ; \quad Y-\tau^{1 / 3}(x+1)^{1 / 3} y: \tag{18}\\
& \lambda=1-\left(1-M_{\infty}^{2}\right) \tau^{-2 / 3}(x+1)^{-2 / 3}
\end{align*}
$$

τ denotes the thickness ratio and λ is a transonic similarity parameter which takes the value $\lambda=1$ for $M_{\infty}=1$. Eqs, (18) give one of yarious possible reductions in the transonic regime.

With the aid of eqs. (18) the system 1,2 can be rewritten to give

$$
\begin{align*}
& \frac{\partial U}{\partial X}+\frac{\partial V}{\partial Y}=(\lambda+U) \frac{\partial U}{\partial X} ; \\
& \frac{\partial U}{\partial Y}-\frac{\partial V}{\partial X}=0 ; \tag{20}
\end{align*}
$$

From equation (20) it follows that a velocity potential exists:

$$
\begin{equation*}
\varphi_{x}=U \quad ; \quad \varphi_{y}=V \tag{21}
\end{equation*}
$$

Let the subscript L refer to the solution of the linear system, $1, e$, the system In which the right hand side of equation (20) vanishes. We can use the linear solutions in order to satisiy the boundary conditions at the body. The complete solution can be written as a set of noniinear integral equations
$\left.\begin{array}{l}\rho_{X}=\varphi_{L X}+\frac{1}{2 \pi} \iint\left[\lambda+\varphi_{\xi}\right] \rho_{F} \frac{\partial}{\partial \xi} \ln r d \xi d \eta ; \\ \varphi_{Y}=\varphi_{L Y}+\frac{1}{2 \pi} \iint\left[\lambda+\varphi_{\xi}\right] \varphi_{F \xi} \frac{\partial}{\partial \eta} \ln r d \xi d \eta\end{array}\right\}$ (22)
6. Integral Equation for Cambered Profiles
H. Norstrud [6] uses the integral equation method to treat the flow about cam. bered profiles at angle of attack. First of all, let us introduce reduced quantio ties
$\frac{\partial}{\partial \xi} \ln r=\frac{X-\xi}{(X-\xi)^{2}+(Y-\eta)^{2}} ;$
$\frac{\partial}{\partial \eta} \ln r=\frac{y-\eta}{(X-\xi)^{2}+(Y-\eta)^{2}}$

In the integral equation method the two- with dimensional integrals in (22) are approximated by one-dimensional integrals. In this way one obtains one-dimensional, non-ilnear integral equations. The main problem is to solve these integral equations.

The approximations just mentioned do not play an essential role in the subsequent considerations and will therefore not be discussed in more details.

Let us focus our attention to the solu* tion of the nonlinear integral equations. With regard to the large possibilities Which electronic computers offer one can proceed as follows. Starting with a known subcritical flow with $\lambda \mathrm{krit}^{<} \lambda$ we proceed step by step taking a new value for λ in each step. It is permitted in each step to linearize the equations for the disturbances of the unknown quantities. Thus, each step results in solving a system of ilnear equations. This method of solution is closely related to the method of parametric differentiation developed by Rubbert and Landahl [7] for a very general cesc.

The integral equetion method has been used several times in the case of a nonlifting symuetric airfoil. In this case only the rirst equation (22) is needed. It turns out that the method of parametric differentiation fails soon after increasing the free stream Mach number above its critical value, The reason for this fallure is the occurrance of both compression and rarefaction shocks in the solu ${ }^{\text {W }}$ tion obtained by the method of parametric differentiation. Such a solution is useless from the physical point of view.

$$
\begin{array}{ll}
\rho^{+}\left(X_{1} Y\right)=\rho^{+}(X,-Y): \rho^{-}\left(X_{1} Y\right)=-J^{-}\left(X_{1}-Y\right) ; \\
U^{+}(X, Y)=U^{+}(X, Y) ; U^{-}(X, Y)=-U^{-}(X,-Y) ; \\
V^{+}\left(X_{1} Y\right)=-V^{+}\left(X_{1}-Y\right) ; V^{-}\left(X_{1} Y\right)=V^{-}(X-Y)
\end{array}
$$

Observe that V does not have the same sign as \mathcal{Y} and U becausc of equation (21). Equations similar to equation (25) hold for the linear solutions. Let the subscript L refer to these linear solutions. φ_{L}^{+}can always be represented by a source distribution on the x-axis and \mathcal{Y}_{L} can be represented by a vortex distribution on the x-axis. Thus, in determining \mathcal{J}_{L}^{+}one encounters a linear problem associated with a symmetric non-lifting airfoil of finite thickness. The determination of φ_{L}^{-} leads to a linear problem associated with a lifting profile of zero thickness. We shall see that the calculation of \mathcal{P}^{+} leads again to a problem associated with a non-lifting profile or finite thickness. However, \mathcal{f}^{-}does not describe a flow about a lifting airfoil of zero thickness in the non-linear case. The latter remarks are not relevant for our conclusions.

In case of an inclined or cambered profile all calculations are based on distri~ butions on the x-axis. We therefore specialize the subsequent equations taking $Y=0$. Numerous terms then cancel each other. Carrying through the decomposition we obtain

$$
y=+0:
$$

$$
U^{+}=U_{L}^{+}+\frac{1}{2 \pi} \iint\left[\lambda \frac{\partial U^{+}}{\partial \xi}+U^{+} \frac{\partial U^{+}}{\partial \xi}+\right.
$$

$$
\left.+U^{-} \frac{\partial U^{-}}{\partial \xi}\right] \frac{X-\xi}{(X-\xi)^{2}+\eta^{2}} d \xi d \eta
$$

Qiven the velocity potential of a flow about an incilned or cambered profile of finite thickness. This potential can be decomposed into a symmetric and antisymme tric part with respect to Y.

$$
\begin{equation*}
\varphi(X, Y)=\varphi^{+}(X, Y)+\varphi^{-}(X, Y) \tag{24}
\end{equation*}
$$

$$
\begin{align*}
V^{+}= & V_{L}^{+} ; U^{-}=U_{L}^{-} \tag{26}\\
V^{-} & =V_{L}^{-}-\frac{1}{2 \pi} \iint\left[\lambda \frac{\partial U^{-}}{\partial \xi}+U^{+} \frac{\partial U^{-}}{\partial \xi}+\right. \\
& \left.+U^{-} \frac{\partial U^{+}}{\partial \xi}\right] \frac{\eta}{(X-\xi)^{2}+\eta^{2}} d \xi d \eta
\end{align*}
$$

Clearly, we have $U^{-}=V^{-}=0$ for $U_{\dot{L}}^{-}=V_{L}^{-}=0$. However, $U^{+} \neq 0$ for $U_{L}^{+}=V_{L}^{+}=0$. This is not necessary, if the effect due to inclination and camber are small in comparison with the effects due to thickness. This condition was assumed to be true in an earlier paper by T. Gullstrand [8]. In the paper by H. Norstrud however, the disturbances due to thickness are assumed to be of the same order of magnitude as those due to lift.

8. Results

The method of parametric differentiation can also be applied to flows about ifting profiles of finite thickness. One of Norstrud's results is presented in picture 9. His calculations show that the method of parametric differentiation does not lead to difficulties and provides smooth solutions as long as the partial solutions U^{+}and U^{-}remain subcritical. This result as such does not seem to be very surprising.

A supercritical solution can be composed of two subcritical solutions without difficulties. In this way one obtains supercritical solutions for the lifting profiles without a compression shock and consequently without drag. This statement obtained from an approximate method seems to be quite plausible. Increasing the Mach number above its subcritical value does not at once lead to drag in case of a non-lifting profile. The shifting of the suction downstream the maximum thickness occurs when the mass flow density at the maximum thickness reaches about the value of the mass flow density or the oncoming stream. In this situation there is no longer sufficient space for the flow at such high velocities in the plane through the maximum wing section. In case of a ifting airfoil there is sufficient space for the air on the pressure side to flow past the airfoil. Lack of space on the suction side can therefore be compensated.

Observing H. Norstrud's results one may doubt whether intensive search on transonic flows past non-ilft s airfoils is
reasonable. In practice one is of course mainly interested in lifting airfoils. Being aware of the fact that the conclusions concerning lifting airfoils are based upon an approximate method we must expect that the lifting and non-lifting airfoil in transonic flow are essentially differrent problems.

References

[1] Sobleczky, H.E., "Exakte Lysungen der schallnahen gasdynamischen Gleichung", Dissertation, T.H. Wien, in preparation
[2] Piman, Proc. Seventh Int. Congress App. Mech. 4 (1948) S. 28 - 48
[3] Schafer, M., "Eine einheitilche Charakteristikenmethode gur Behandlung gemischter Unterschall-Uberschallstromungen", (19'j3) Mech. and Anally., Vol. 2 Nr .3
[4] Muller, E.A., Matschat, K., "Xhnlichkeitslösungen der transsonischen Glenchungen bel der Anstrommachzahl $1^{\prime \prime}$, Sonderdruck Applied Mechanics, Proceedings of the Eleventh Internationeil Congress of Appl. Mechanics, Munich 1964

Ierep, J., "Schallnahe ind Hyperschallstromungen", G. Braun Karlsruhe 1966
[6]
Norstrud, H., "Numerische Lösungen vo schallnahen Stromungen um ebene Profile", Dissertation, T.H. Wien, 1968

Rubbert, P.E. and Landahl, M.T., "Solution of the Transonic Airfoil Problem through Parametric Differentiation", AIAA J. 5, March 1967, 470-479
[8] Gullstrand, T.R., "The Flow over twodimensional aerfoils at incidence in the transonic speed range", KTH-Aero TN 27, Stockholm, 1952

Fig. 1. Beltrami differential equations

Fig. 2. s,t-plane and x, y-plane

Fig. 3. Slope of the sonic line and streamline curvature

Fig. 4. Local supersonic domain

Fig. 5. Nozzle flow with acceleration

Fig. 6. Stagnation point

Fig. 7. Asymptotics flow about an airfoll

Fig. 8. Transonic flow about an airfoll

Fig. 9. NACA 23015 profile at zero incidence

Information regarding the availability of further copies of AGARD publications may be obtained from

The Scientific Publications Officer, Advisory Group for Aerospace Research and Development,
7, rue Ancelle. 92 Neuilly-sur-Seine, France.

[^0]: *Mr. Cahn, Mr. Wasson and Mr. Garcia \sim Research Engineers in the Aerodynamics Group.
 ${ }^{1}$ Shapiro, Ascher H., The Dynamics and Thermodynamics of Compressible Fluid Flow, Pg 296
 (Ronald Press, 1953)

[^1]: *Cahn, M. S., Journal of Aircraft, May-June 1967 (AIAA).

[^2]: At very large fiow volumes strong λ-shocks may be observed, which penetrate deeply into the subsonic region while moving against the flow. As soon as the foot of the shock comes to rest the shock is split into two. The unsteady part moving. further on against the flow leaven benind it a nearly steady normal shock, Fig. 13 This may be explained as a strong deflection becoming especially apparent in the next example.

 To investigate the behaviour of the unsteady shock, we generated a shock by a wire explosion in the downstresm part of the channel, which moves into a steady transonic flow, Fig. 14. The behaviour of the shock may be described to great extent by geometric acoustic model given down below. In contrast to this model the reflection at the convex boundary is given initially in the form of a normal shock. This strong reflection does not last howevar. The part of the shock moving forward and becoming weaker is now subject to weak reflection and separates from the strongly reflected part.

[^3]: Summary
 The formation of unsteady motion in transonic channel flow is studied experimentally. The starting point is a steady shockfree transonic flow corresponding to an exact solution of the gasdynamic equations.

 Changes in flow parameters generate shock waves causing a more or less unsteady behsviour of the whole flow field. The essential element of instability is the separation of boundary layer coupled with the shock formation.

 The flow is recorded cinematographically by high speed interferometry. The frame rate is $10 \mathrm{kc} / \mathrm{s}$. Characteristic model of flow oscillation are shown in a motion picture.

 The evaluation of the recordings by statistical-numerical methods gives the frequency of oscillation, the propagation of density waves and the origin of the waves. An interesting result of a direct visual evaluatior of certain pictures is the splitting of the shock waves under special flow conditions, The propagation of weak unsteady shocks is in accordance with a geometric acoustic model.

 References

 1. E. Roppe

 G. Meier \quad| Erfahrungen mit optischen Me thoden bei der |
 | :--- |
 | Untersuchung transsonischer Strömungen, |
 | 2eitschrift fur Flugwissenschaften, 13(1965) |
 | Heft 5, S. $149-157$ |

 fur angewandte Mathematik und Mechanik, 20(1940)
 S. 185 - 198

[^4]: *Prof ssor of Aerospace Engineering.

[^5]: I 1.e., the actual value of $\left(\omega_{\theta}+\Theta\right) f \lambda$ at any chordwise point is larger than the corresponding value given by Figurel7.

[^6]: x)

 Research Engineor.

[^7]: +) Professor of fluid mechanics, head of the DVL-Institut fur Theoretische Qasdynamik

