MEMORANDUM
RM-5883-PR
JANUARY 1068

DIGITAL COMPUTER SIMULATION:
COMPUTER PROGRAMMING LANGUAGES

AD 684124

Philip J. Kiviat

PREPARED FOR:
UNITED STATES AIR FORCE PROCJECT RAND

SANTA MONICA « CALIFORNIA-

MEMORANDUM
RM-5883-PR

JANUARY 1969

DIGITAL COMPUTER SIMULATION:
COMPUTER PROGRAMMING LANGUAGES

Philip J. Kiviat '

This research is supported hy the United States Air Force under Project RAND—Con-
tract No. F41620-67-C-0015- monitored by the Directorate of Operational Requirements
and Development Plans, Deputv Chief of ‘Stafl, Research and Development. Hg USAF.
Views or.conclusions contained in this study should not he interpreted as representing
the official opinion or policy of the United States Air Force.

DISTRIBUTION STATEMENT

This document has been approved for public release and <ale; its distribution is unlimited.

e RAND e

1700 Maiw 3T o SANTA MOWNICA ¢

TALIIOINIA ¢ 20048 s e

-iii-

PREFACE

This RAND Memorandum is one in a continuing series on the tech-
nicues of digital computer simulation. Each Memorandum covers a
selected topic or subject area in considerable detail. This study
discusses computer simulation programming languages. It describes
their characteristics, considers reasons for using them, compares their
advantages and disadvantages vrelative to other kinds of programming
languages and, through examples, compares four of the most popular
simulat{on languages in use today.

The Memoranda are being written so that they build upon one another
and provide an integrated coverage of all aspects of simulation. The
only Memorandum in the series that needs to be read before this one is

P. J. Kiviat, Digital Computer Simulation: Modeling Concepts, The

RAND Corporation, RM-5378-PR, August 1967. All the Memoranda should
be of particular in;erest to personnel of the AFLC Advanced Logistics
System Center, Wright-Patterson Air Force Base, and to Air Force sys-
tems analysts and computer programmers. Persons responsible for
selecting simulation programming languages for particular projects or
for installations of computer systems should find this Memorandum

particularly useful.

-y -

SUMMARY

Simulation programming languages are designed to assist analysts
in the desiga, programming, and analysis of simulation models. This
Memorandum discusses basic simulation concepts, presents arguments for
the 'use of simulation languages, discusses the four languages GPSS,
SIMSCRIPT II, SIMULA, and CSL, summarizes their basic features, and
comments on the probable future course of events in simulation ianguage
research and development.

Simulation languages are shown to assist in the design of simula-
tion models through their "world view,”" to expedite computer programming
through their special purpose, high-level statements, and to encourage
proper model analysis through their data collection, analysis, and
reporting features. Ten particularly important simulation programming
language features are identified: modeling a system's static state,
modeling system dynamics, statistical sampling, data collection, analysis
and display, monitoring and debugging, initialization and language
usability. Examples of each of the four simulation languages, GPSS,
SIMSCRIPT II, SIMULA, and CSL, are used to illustrate how these features
are implemented in different languages.

The future development of simulation programming languages is
shown to be dependent on advances in the fields of computer languages,
computer graphics, and time sharing. Some current research is noted;

outstanding research areas are identified.

wmﬁn||'li|!m|!‘IﬁWlmﬁmm"l;!ﬂi!‘l'ﬂﬁ‘

TIPS 24P A B

L 11 AT o P Y TR

ETUU LR L LT gk o

i

-vil-
CONTENTS
PREFACEccoivunun e ettt e et e e e e
SUMMARY e e hee e e et e e .
Section
1. INTRODUCTION e heces e et

Some Definitions . .u.iiiiinun ittt e e,

Principal Features of Simulation Languages
Reasons for Having SPLsciiiiiiiiiienieinnnanea,

Reasons for Using Existing POLs

..................

II. SIMULATION PROGRAMMING CONRCEPTS
Describing a System: The Static Structure
Describing a System: The Dynamic Structure

Iil. SIMULATION PROGRAMMING LANGUAGE FCA "JRES
Specifying System Structureooiiiirnriennenanns
Repregsenting Statistical Phenomenac.covviiunn.
Data Collection, Anaiysis, and Display
Monitoring and Debugging
Initialization
Other Features

IV, SOME EXAMPLES OF SPLS ...ttt ittt e iiciasaanannnn
SIMSCRIPT II: An Eveat-Oriented Language .. ere e
SIMULA: A Process~Oriented Langudgeooevvnvensenrnes
CSL: An Activity-Oriented Languageeoeevienscnrnas
GPSS/360: A Transaction-Flow Langunge ..

SUMMARY¢c000n0u0s Ceaese ettt erer st .

V. CURRENT SPL RESEARCHcitvevienrnoerenosnenonsennnanson
Regearch on Simulation Concepts Ceeseeanan
Regearch on Operating Systems and Mectanisms

VI. THE FUTURE OF SPLS .

L I R I O A N I I R N A A A U R R A N N W

APPENDIX: CHECKLIST OF FEATURES FOR SPL EVALUATION
REFERENCES

L R I N I I N A A S N I R A S A Y e s e s a s s

97

98

99

I i A S A
’ T B t

vt

1. INTRODUCTION

The introductory Memorandum in this serics presented a rationale
for simulation, discussed why simulation experiments are performed,
and pointed out that, while computers are ;ot mandatory for simulation,
most simulations today require computers because of their complexity
and sampling requirements [34]. Few aspects of computer technology
are vital to simulation,” since one can perform simulations without
specialized equipment. Computers make it easier to perform a simula-
tion study, however, and the frequent savings in time and expense allow
more time to be spent determining the reliability of simulated results
and designing simulation experiments.

Specialized computer simulation equipment can take the form of
either hardware (computers and peripheral equipment) or software
(compilers, assemblers, operating systems). This Memorandum is dedi-
cated to software. It discusses simulation languages, describes their
characteristics, considers reasons for using them, and compares their
advantages and disadvantages relative to other kinds of programming

languages.

SOME DEFINITIONS

A reader completely unfamiliar with digital computers and the
basic concepts of computer programming should consult an introductory
computer programming text before going any further. References {1]
and [22] are good texts for the purpose. Readers familiar with com-
puters and at least aware of the basic concepts of programming should
be able to follow this Memorandum without additional preparation.

A computer programming language is a set of symbols recognizable
by a computer, or by a computer program, that denote operations a pro-
grammer wishes a computer to perform. At the lowest level, a basic
machine language (BML) program is a string of symbols that corresponds
directly to machine functions, such as adding two numbers, storing a

number, and transferring to an address. At a highe:r level, an assembly

*
Excluding analog and hybrid simulation, of course.

-2

language (AL) program is & string of mnemonic symbols that correspond
to machine language functions and are translatable intc a basic machine

language program by an assembly program or assembler. Simple assemblers

do little but substitute bssic machine language codes for mnemonics
and assign computer addresses to variable names and labels. Sophisti-
cated assemblers can recognize additional symt>!s (macros) and construct
complicated basic machine language programs from th=ua.

A comniler is a program that accepts statemcnts written in a

usually complex, high-level compiler language (CL) and translates them

into either assembly language or basic machine language programs --
which may in turn, at least f{n the case of CL to AL translation, be
reduced to more basic programs. Compilation is much more complex than
assembly, as it involves a higher level of understanding of program
organization, much richer input languages, and semantic as well as
syntactic analysis and processing.

An interpreter is a program that accepts input symbols and, rather
than translate them into computer instructions for subsequent processing,
directly executes the operations they denote. For this reason, an

interpretive language (IL) can look like a BML, an AL, a CL or anything

else. Interpretive language symbols are not commands to construct a
program to do something, as are assembly language and compiler language
commands, but commands to do the thing itself. Consequently, even
though programs written in a CL and an IL may look identical, they

call for sharply different actions by the programs that "understand"
them, and different techniques are employed in writing them.

For all but basic machine language and interpretive programs, a
distinction has to be drawn between the program submitted to the com-
puter, the source language program, and the program executed” by the
computer, the object program. An assembler that accepts mnemonic basic

machine codes as its input and translates them into numerical basic

mechine codes has the mmemonics as its source language and the numerical
basic codes as its object language. A compiler that accepts English-

like language statements as its inout and translates them into assembly

*Bxcludtng modi fications wmade durinj loading.

bl

language mnemonics, which are in turn translated into numerical basic
machine codes, has the English-like language as its source language
and the numerical basic codes as its object language. An interpreter
that operates by reading, interpreting, and operating directly on
source codes has no object code. Every time an interpretive program
is executed, a translation takes place. This differs from what is
done by assemblers and compilers where translation takes place only
oncé, from source to object language, and thus enables the subsequent
running of object programs without translation.

Basic machine language and assembly language progréms suffer in

that they are specific to a particular computer. Since tkeir symbols
correspond to particular computer operations, programs written in BML
or ar: AL are meaningful only in the computer they are designed for.
As such, they can be regarded as machine oriented languages (MOL).
Most compilers and interpreters cen be classified as problem
orientea ianguages (POL). As such, they differ from BML and AL that

reflect computer ’'.ardware functions and have no problem orientation.

A POL written for a particular problem area contains symbols (language
statements) appropriate for formulating solutions to typical problems
in that area. A POL is able to express problem solutions in computer

independent notation, using a program that 'understands'" the POL to

translate the problem sclution expressed in source language to a BML
object program or execute it interpretively.

Figure 1 illustrates a BML, an AL, and two POLs. Each example
shows the statement or statements (symbols) that must be written to

express the same programming operation, the addition of three numbers.

BML AL: TFAP | POL: FORTRAN POL: COBOL

+050000 ... CLA A X=A+B+C ADD A,B TO C GIVING X
+040000 ... ADD B
+040000 ... ADD C
+060100 ... STO X

Fig. 1 -- A programming example

The point of the discussion so far has been to establish the
definitions of BML, AL, CL, MOL, POL, assembler, compiler, and inter-
preter. Without these definitions it is impossible to understand the
historical evolution of simulation programming languages or their basic
characteristics.

A simulation programming language (SPL) is a POL with special
features. Simulation being a problem-solving activity with its own
needs, programming languages have been vritten to wmake special features
available tu simulation programmers at a POL level. Historically, this
has been an evoluticnary process. SPLs have developed gradually from
AL programs with special features, through extended commercially avail-
able POLs, to sophisticated, special-purpose SPLs. Some discussion of
these special features is necessary to place the development process
in perspective and introduce the topics that follow. Mor: complete
histories of simulation programming languages and the development of
similation concepts can be found in Refs. 35, 36, 42, 43, 46, 60, and 61.

PRINCIPAL FEATURES OF SIMULATION LANGUAGES

Simulation, as defined in {34], 18 a technique used for reproducing
the dynamic behavior of a system as it operates in time.

To represent and reproduce system behavior, features not normally
found or adequately emphasized in most programming languages &re nzeded.
These features:

(1) Provide data representations that permit straightforward and
efficient modeling,

(2) Permit the facile pcrtrayal and reproduction of dynamics
within & modeled system, and

(3) Are oriented to the study of stochastic systems, {.s., contain
procedures for th§ generation and analysis of random variables and time
series.

The first of these features calls for data structures more elabo-
rate than the typical unsubscripted-subacripted variable organizations
found in, say, FORTRAN and AIGOL. Data structures sust be richer in
two ways: they must be cspable of complex organization, sas in tree

structures, lis's, and sets; and they must be able to stora varieties

of data, such as numbers, both integer and reazl, double-precision ani
cémplex, character strings of both fixed and variable length, and data
structure references. As data structures exist only so that they can
be msnipulated, statements must be available that (1) assist in ini-
tializing a system data base (as we may c;11 the collection of data
that describe a system); (2) permit manipulations on the data, such

ae adding elements, changing data values, altering data structures

and monitoring data flows; and (3) enable communication between the
modeler and the data. PL/I, the newest general-purpose POL, pays great
attention to data structures, although not as much as some people would
like [29]. ALGOL 68, the revised version of ALGOL 60, also leans in
this direction [18]. Activity in the CODASYL committee charged with
improving COBOL shows that they too are aware of the importance of this
topic [55].

The second of the features desls with modeling formalisms, both
definitional and executable, that permit the simulation of dynamic,
interactive systems. Statements that deal witii time-dependent descrip-
tions of changes in syetem state, and mechanisms that organize the
execution of verious system-state-cliange programs so that the dynamics
of a system are represented correctly, are an integral part of every SPL.

The third of the features stems from the fact that the world is
constantly changing in a stochastic manner. Things do not happen
regularly and deterministically, but randomly and with variation.
Procedures are needed that generate smo-called pseudorandom variates
from di fferent statistical distributiona ancd from empirical sampling
distributions, so that real-world variability can be represented. Pro-
cedures are also needed for processing data generated by simulation
models in order to make sense out of the masses of statistical data
they produce. [21]

The history of simulation-oriented programming languages noted
above points ocut that there is no one form a simulation language must
take, nor any one accepted method of implementsing such a language. An
SPL can be an AL with special instructions in the form of macros that
perform similation-oriented tasks, a CL with special statements that

perform essentially the same tasks, or an IL with statements similar

i e S

-

A

g

e e

RTINS

S EEEAT LU S Y I PR

g o e

o

[P

mup

1 e A UG

» . e R 11

IV 71RO LLEW "

to those found in simulation-oriented CLs and ALs but with an eutirely

diiferent implementation. It {s sufficient here merely to point out

the principal characteristics of all SPLs, providing a base for dic-
cussing why SPLs are needed and for understanding some prog and cons

of using specialized SPLs and generai POLs for simulation. Sections

TI ancd I1l discuss the concepts of discrete-avent simulation in sone

detail and thorcughly explore che features noted above.

REASONS FOR HAVING SPLs

The two most frequently cited reasons for having sinulation pro
gramming languages are (1) programming convenience and (2) ccncept
articulation. The former i8 important in the actual writing of com-
puter programs, the latter in tihe modeling phase and in the overall

approach taken to system experimentation.

It is difficult to say which of the two i8 more important. Cer-

tainly, many simulation projects have never gotten off the ground, or

at leagst we.,e not compleced on time, becguse of programming difficulties,

But then, other projects have failed because their models were pooily

conceived and designed, making the programming difficult and the required

experimentation impossible or nearly so.

concept articulation should probabiy be ranked first, since any state-

ments or features provided by a simulation prograraing language must

exist within a conceptual framework.

Succeeding sections examine a nuwber of simulatic. programming

concepts and how they are implemented in different SPLs. Some models

are also described, with comments on how varfous conceptual frameworks
help or hinder their analysis and examination.

It {8 fair to say at this point, before going through this demon-
stration and without documented proof, that SPLs have contributed to
the success of simulation a8 an experimental technique, and that the

two features, programming convenience and concept articulation, are

the major reasons for this 8. ccess. SPLs provide languages for

describing and modeling systems, languages composed of concepts central

to sinulation. Before these concepts were articulated, there were no

words with which to describe simulation tamrks, and without words theve

If it were -ecessary to choose,

1t P i SO Vil DR AGES

i AL B ey

was no comounication -- at least wo communication of the intensity and
scope to oe found today.

A third substautial reason for heving higher-level SPL3 has come
about through their use as communicatiow and decumencation devices.
Wien written in English-like languages, simulations can be explaired to
project mansgers and nonprogramming-oriented users much more easily
than when they are writfen in hieroglyphic ALs, Explanation and

debugging go easfer when a program can be read rether than deciphered.

REASONS FOR USING EXISTING POLs

Cogent arguments, both technical and operational, lave been
advanced for avoiding SPLs and sticking with tried-gnd-true algebraic
compilers. Technical objections dwell mostly on object progrem effi-
ciency, debugging facilities, ard the like. Some of the operational
objections are the noted inadequacy of SPL documentation, the lack of
tranaferebility of SPL programs actoss different computers, and the
difficulty of correcting SPL compiler errors.

Most of these points are valid, althcugh their edge of truth is
sften exceedingly thin. It is almnst necesgsarily true that specialized
simulation programming lenguages are less efffcient in certain aspects
than more general algebraic compilers., Becausc an SFL (. designed for
one purpose, it is legs efficient for another. No single programming
language can be all things to all men, at least not today. Painful
experience i8 proving this to be true. SPLe should be used vhere their
advantages outweigh their disadvantages, but not criticized for their
limitations alone. An SPL should be criticized if it does something
poorly it was des.gned to do, {.e., a simulation-criented task, but
not {f it ig inefficient in & perinheral nonsimulaticn-oriented task.

But techn’cal criticisms are the least of the arguments levied
against SPLe by neople seeking to justify their use of existing alge-
braic POLu. The most serious and justifiable criticiams are those
pertaining to the use of {ndividual SFLs. Unlike the commonly used
POls, such as FORTRAN, ALGO.L, and COBOL, which are produced end main-
tained by computer manufacturers, SPLs, with few exceptions, heve been

produced by individual organizations for their own purposes and relcased

=
£

0 1Lt o RO [o YNSRI 1

v

i N

- 8-

to the public more as a convenience and intellectual gesture than a
profitable business venture. The latter are too often poorly documented,
larded with undiscovered errors, and set up to operate on nonstandard
systems, or at least on systems different from those a typical user
seemst to have. While attractive intellectually, they have often been
rejected because it 15 simply too much trouble to get them working.*
In & programming community accustomed to having computer manufacturers
do all the compiler support work, most companies are not set up to do
these things themselves.

The anewer has been, ''Stick to FORTRAN or something similar."

It {8 eesy to sympathize with this attitude, but it is unwise to agree
in all cases. For a small organization with limited programming
resources, doing a small amount of simulation work under such a strat-
egy 18 probably justifiable; difficulties can be eased somewhat by
using languages such as GASP and FORSIM IV that are actually FORTRAN
programming packages [19], [37], (53]. Large organizations that have
adequate programming resources and do & conesiderable amcun:t of simu-
lation work are probably foolirg themselves when they avoid investing
resources in an SPL and stick to a standard POL. One reason they often
decide to do so is that the direct costs to install and maintain a SPL
are visible, while the increwmental costs incurred by using a POL are
hidden and not easily calculated. This is the worst kind of false
economy. Another often-heard excuse is that programmers and analysta
are unwilling to learn a new programming language. If 8o, they should
reform. When they learn to use an SPL, they are doing far more than
learning a new programming language; they are learning concepts espe-
cially structured for simulation modeling and programming -- concepts
that do not even exist in nonsimulation-oriented POLs.

Today, the designers of simulation programming languages are paving
much more attention to their users than they have in the past, and
computer manufaccurers &are supporting SPLs much more readily. While
the era of the independently produced SPL {e not past, it has probably

seen its heyday. Problems of system compatibility and compiler support

<
Wiith the exception of GPSS, whicn IBM introduced and has main-
tained, supported, and redesigned three times =ince 1962,

will diminish {n the future, and moat operstiona! problems will fade

or vanish. But there ia no escaping the need to learn new languages;

our only choize i8 whether to volunteer or be drafted.

e ot RN

IR

SRR R R

it

TR

-10-

II'

MWW“"'“"WWWMW'YW

SIMULATION PRUCRAMMING CONCEPTS

Every SPL has a small number of special simulation-oriented
features., The way they are eluborated and {implemented makes particular

SPLs difficult or easy to use, programmer- or analyst-oriented, etc.

They support the concepts embodied i{n the definition of simulation

used in this series of Memoranda: the use of a numerical model to

study the behavior of a system as it ocperates over time.

Taking the key words in this definition one et a time sets forth
basic SPL requirements:

p—— TP L TR S

Use . . . to study the behavior:

an SPL must provide facilities
for performing experiments, for presenting experimental

L

results, for prescribing experimental conditions, etc.

Numerical model , . . of a system: an SPL must provide facilities

for describing the structure of & great variety of systems.
Representatione are needed for describing the objects found

in systems, their qualicies and properties, and relationships
between them,

Operates over time:

an SPL must provide facilities for describing
dynamic relationships within systems and for operating upon

the system representation i{n such a way that the dynamic

P

aspects of system behavior are 1eproduced.

This section concentrates first on concepta related to descriptions

of a system's static structure and next on concepts related to repre-

senting system dynamics. Section III discusses features needed for

the efficient and practical use of simulation models,

i R AL TR ST A

DESCRIBING A SYSTEM: THE STATIC STRUCTIURE

The static structure of a s{imulation model {s a time-independent

framework within which system states are defined.

System states are
poasible configuraiion:

1 system can be in; in numerical models, dif-
ferent system states are represented by different data patterus.

Dynamic system processes act and interact within & static data struc-

ture, changing data values and thereb, changing system states.

J NPT

-11-

A definition of a pystem points out characteristics that are
important {n establishing a static system structure: & system i@ an
interacting collection of objects in & closed environment, the bound-
aries of which are cleariy stated. Every system:

(a) contains identifiable classes of objects,

(b) which can vary in number,

(c) Thave varying numbers of identifying characteristics,

(d) and are related to one another and to the environment in

changeable, although prescribed ways.
Sim:lation programming languages must be able to:

(1) define the classes of objects within a system,

(2) adjust the number of these objects as conditiors within the
syatem vary,

(3) define characteri{stice or properties that can both describe
and differentiate objects of the same class, and declare
(numerical) codes for them, and

(4) relate objects te one another &nd to their common environment.
These requirements are not unique to SPLas; they are also found in
languages and programs associated with information retrieval and manage-
went information systema,

While {t might be interesting to examine all SPLs and contrast
the particular ways in which they express structural concepts, {t
would hardly be practical. For one thing, they are too numerous; for
another, many are simply dialects, lineal descerdants or near relacives
of a small number of seminal languages. In the interests of economy
and clarity, only the basic concepts of these languages are discussed
here. Excellent discussions of the features and pros and cons of the
mest widely used simulation languages can be found in Refs. 43, 60, 61,
64, and 606.

identification of Objects and Object Charscteristics

All SPLs view the 'real world” in precey much the sawme way,
and reflect this view in the data structuzes they provide for re-
presentiog ayateme. Sssically, systems are composed of classes

of differeat kinds of objects that are unique and can be tdentified b

b 7 O oAl S S SRR T T S IR SR Sl R o R it

P

FIRp

WA a0 e

S v

w——aT o

distinguishing characteristics,.

-12-

Objects are referred to by such names

as entity, object, transaction, resource, facility, storage, variable,

machine, equipment, process, and element.

Object characteristics are

referred to by such names as attribute, parameter, state, and descriptor.

In some languages all objects are passive, i.e., things happen to them;

in scme languages objects are active as well, i.e., they flow through

a aystem and Iinitiate actions.

Table 1 lists several popular SPLe and shows the concept names
and formalisms associated with each.

Table 1

IDENTIFICATION METHODS

Language

Concepts

Example

SIMSCRIPT [33, 39, 45)
siMuLA (13, 14, 59)

GPss (23, 24, 26)

¢sL (7, 9, 11]

Entity, Attribute

Process, Attribute
Transaction, Parameter

Entity, Property

AGE(MAN) read AGE OF MAN

AGE attribute of cur-
rent process MAN

Pl first parameter of
current transacticon
LOAD (SHIP)

read LOAD OF SHIP

Relationships between Objects

There is a class relationship between objects in all SPLs; several

objects have different distinguishing characteristics and are in that

sense unique, but have a coomon bond in being of the same type. For

example, in a aystem containing a cless of objects of the type SHIP,
two ships say have the names MARY and ELISABF™@ The objects are
differsat yet related.

This fcrm of relationship is rarely strong emough for all purposes,

and eusc be supplemented,

Ic {s almost alvaye nscessary tc be able to

relate objects, of the same and different classes, having restricted

puysical or logical relations in common.

For exasple, tt might be

necessary to identify all SHIPs of a particular tonnage or all SHIPs
berthed in & particular port,

o — et e - -

oot - A AT TR

o~

«13-

To this end, all SPLs define relationship mechanisms. ~Names such

as set, queue, list, chain, group, file, and storage are used to

describe them.

objects in, and remove them from relationship structures, determine

whether several objecis are in particular relationships to each other,

and ao on.

Table 2 lists the relationship concepts of the languages shown

in Table 1.
Table 2
RELATIONSHLP METHODS

Language Concept Example
SIMSCRIPT | Set FILE MAN FIRST IN SET(IL);

insert MAN into SET(I)
SIMULA Set PRCD(X,MAN); precede element X with

element MAN in the set to which X belongs
GPSS User chain| LINK I, FLFO;

BIGUp put current transaction first in Chain I

CSL Set MAN.3 HEAD SET(1); put the third man

at the head of Set I

Generstion of Objects

Some languages deal only with fixed data structures that are

allocated either duri.g campilation cor at the start of execution.

These structures represent fixed numbers of objects of different

ciassea. Other languages allow both fixed and varying numbers of

objects. There 18 a great deal of variety in the way different lan-

guages handle the generation of objects. The methods are related

both to the "world view" of the language and the way in which the

language is expressed, {.e., as a compiler, an interpreter, or a POL

program package. Many of

the diffe.ences between SIMSCRIPT and SIMULA

can be treced to compiler features thet have littlec tc do with simula-

tion per se.

The block-s

tructure/procedure orientation of SIMULA,

Each language has operators of varying power that place

which is moted in ALGOL, has influenced the way processes &re generated

R TTT

;
i
3
i
|
i
;
i
i
1

oy

A RO PO AR Lt T w"mm‘mmmﬂmmm‘wmm b

R

o B A 1A A o, PN T PR w1 N TN T e (N . NS (AT

P,

fjg

-14-

and the way they communicate with one another. The global-variable/
local-variable/subroutine orientation of SIMSCRLPT, which is rooted
in FORTRAN, has similarly influenced the way entities are generated
and the way they communicate with one another. In these two cases,
the differences are profound. A SIMULA process contains both a cata
structure and an fctivity program; a SIMSCRIPT entity holds only a
data structure and is linked i{ndirectly tc an event subroutine, Some
of the consequences of this division csn De seen in thne examples of
Sec. 1V,

Table 3 devcrives weveral cbject generation methods.

Table 3

GENERATION METHODS

Language Concent Example

SIMSCRIPI | Generate a new entity

whenever sne 18 needed CREATE A MAN CALLED HENRY
SIMULA Generate a new process

whencver one is needed HENRY:= new MAN
GPSS Generate a new transaction with

some speclfied time n3tween GENERATE 10,3
Bucceasive generatione

CSL Does not exist -

Of necessity, these {llustrations are sketchy and not indicative
of the wealth of descriptive, relational and operational facilities
offered by the languages quoted. This {s not altogether bad, as the
purpose here is to impart a flavor for the wavs in which SPLs describe
static systam atructures and not to teach or compare features of par-
ticular languages. The reuder who {8 interested in the specifics of

individual languages should refer to their respective programming

manuales .

DESCRIBING A SYSTEM: THE DYNAMIC STRUCTURE

Whiie a model's static structure sets the stage for simulation,

it is its dynamic structure that inakes {t possibie. The dynamics of

i
']

- B it ———— — TR e — St = e LS

e = =T : P T LSmMER L R s c—es —— s L mm e - — gk TS

-15-

system behavior in all SPLs {s rapresented procedurally, that is, by
computer programs. While desirable, no nonprocedural SPLs have yet
been invented, although substantial success toward this end has been
achieved in limited areas [25].

~ At present, two SPLs have achieved widespread prominence and use
in the United States, and two others have achieved similar prominence
in Europe and Great Britain. Theese are GPSS, SIMSCRIPI, SIMULA, and
CSL, respectively. Intevestingly enough, each presents a different
view of system dynamics. To understand why this is so, a historical

rather than functional discussion seeme appropriate,.

The Concept of Simulated Time

Soon after academfics and practitioners recognized that simuletiong

of industrial and military processes could be conducted on digital com-

puters, they started to separate the simlaticon-oriented portions of
computer programs from the parts describing the processee Seing simu-

iated. A simulatfon vocabulary was developad; the fivst word in it

was probably ''clock." Program structuree began to reflect the concepts

embodied in the vocabulary.
Since time and its representatfon are the essence of simulation,

it was ratural for it to be the first item of concern. If one could

represent th2 passage of time within 2 computer program and associste

the execution of programs with specific points in this simulated time,

one could claim to have & time-dependent simulation program.

The first simulation clocks ifmitated the behavior of real ounes.
They werze counters that ''ticked" in unict increments represaenting
seconds, minutes, hours, or days, providing a pulse for simulation

programs. Lach time the clock ticked, & gimulation comutrol program

looked around ic see what could happen at that instant in sgimulated
time, ilhet could happer could be determined in two ways: by pre-

dete truction or by search. Before golng into these two

techniques, . me words are in order about simulation control programs .

S

LSRRI - i A

1Y T TS E X

s

L

T S T

) et ki et el i aa A MM ks o i ¢ e

PPTIIRPNGITS

O A ST ST

DR T RETE: WP N

AT LRI W | AT N, Omeiy (v

e

il

o

-16-

Tha Structure of Simulation Control Programe

The heart of avery simulation program, and every SPL, 15 a time
contrel program. This program is referred to in various publicaticns
a8 @ clockworks, a simulation executive, a timing mechanism, a sequencing
set, and the like. Its functions are always the same: to advaunce
sirulation time aund to select a subprogram for executfon that perfurms
a specified simulation activity.

Thus, €very simuletion program has 4 hierarchical streciure. At
the top sita the time control program, at an intermediate level sit
simulation-~oriented routines, at the bottom sit routines that do basic
housekeeping functions such as input, output, and the computation of
mathematical functiona. Every SPL provides s time control program;
when using an SPL, a simulation programmer déea not have to write one
himself -~ or even worse, invent ocne,

Depending on how the time control program workd, a simulaticn
programmer miy or may not have to use special statemnts to interact
with the timing mechenism. Moat simulation languages contain one or
avre 8tatements that permit & prograrmer to organize system act.vities
in a time-dependent manner. Further on, this section deccribes several
different siwmulation control program schemes and the ways in which a
prograamer interacts with them.

First, {f must be understuud that every simulation program 1ia
componed of blocks of statements that deal with spevific system activ-
itifec. These blo~ks may be compiete routines™ or parts ot rcutines.
Thev have been calied events, activities, blocks, processes. and seg-
ments. The distinctions between them will be clarified presently; at
the moment it is only necessary to understand that a simulation program
is composed of i<entifiable modules that deal with different simulat;on
situations.

A simulation control progrim can select & portion of code to

execute ip either of tw> ways: by predetermined instruction or by

*
The words rouiine, subrouiine, program, subprogram, and procedure
are uced here interchangeably.

- asoe v Dine.)

e it 4 At . bl 112k 4

CMRAAE ¢ AN 1O | A s A LA S ML 7 A7 1 i s B T LML e PR 1

. AT P R0

-

-17-

search. Pegardless of how the result is determined, the effect i{s the
same -- the execution of an appropriate block of code. Figure 2 blocks

out the basic structure of every simulation program.

v

Simulation control program

i

Determination of

next executable

program segment

] i

Code block1 Code block2 e ¢ o | Code blockn

L |

Fig. 2 -- Basic simulation structure

Simulation starts at I, where a model is initialized with sufficient
deta to describe its initial system state and the processes that are
in motion within it. Based on information computed in the "aext event"
block, S switches to the code block that corresponds to the proper
simulation activity;

The "search" method of next-event selection relies upon the fact
that when a system operates it movee from state to state in a pre-
determined msnner. The times at which state changes occur may be
random, and represent the effects of statistically varying situations,
but basic cause-and-effect relations still hold. Given that a system
is in state "A", it will always move into state "B" if certain condi-
tions hold; code block AB, say, must always be executed to effect the
change. A "search" method relies upon descriptions of activity-
producing system states and a scanner that examines system state data
to determine whether a state change can tzke place at any particular

clock pulse,

PATHTSRDN

When a state change can be made, the code block representing it
alters data values to reflect the change. Since many system changes
take place over a period of time, some of the data changes are to

"entity clocks." These clocks are set to the simulated time at which

a state change is considered completed. .When the control program finds
that an "entity clock'" has the same time as the master simulation clock,
it performs the activity associated with that clock, e.g., relegating

a working machine to idleness or causing an emptying tank to run dry.

P B

State changes that happen instantaneously, either when a code block

is executed or as the result of some entity clocks equaling the sim-
uiation clock, cause new code blocks to be executed, new entity clocks
to be set, . . ., cause the system activities to be reexamined.

The efflbiency of this rather basic scheme was first improved by
eliminating the uniform clock pulse. Since, in many simulations,
events do not occur on every clock pulse but randomly in time, a great
deal of computer time can be lost in scanning for things to do each
time the clock {8 advanced one {ncrement. It is more efficient to
specify the time at which the next event is to occur and to advance
the clock to this time. As nothing can happen before this time, it
is unnecessary to search for altered system states. By definition of
the next event, no entity clock can have an earlier time. At best,
it can only be equal to the next event time.

The term "next-event simulation' was given to simulation programs
that stepped from event time to event time, passing over increments
of time in which no state changes occurred. _All modern SPLgs use the
next-event technjque. The term critical event is often used in the
same spirit.

Two SPLs that do employ search are GSP [62] and CSL. In both, the
activity is the basic dyrnamic unit. An activity is a program composed
of a test section and an action section. Whenever simulation time s
advanced, all activity programs are scanned for posaible performance.
If all test conditions in an activity are met, state-changing and time-
setting instructions in the action section are executed; if at least

one test condition is not met, the action {nstructions are passed over.

v b RE I VAT S R e RN

S

st e

e T e e T TE TR e o m mme e e e = L e

«19-~

A cyclic scanning of activity programs insures that a&ll possibilities
are examined and ell interactions are accounted for.

In addition to the activities 8can, GSP incorporates an event

scheduling mechanism that enables an activity to specify that some
system event ia to take place at a determined time in the future.
Events that are not affected by other events, i.e., are not heavily
interactive, can be treated more efficien:ly this way, as repeated
scanning is not required to determine when they can be done.

When an activity ecan is not employed, as is the case in GPSS,
SIMSCRIPT, and SIMULA, all system events must be predetermined and
scheduled. The activity-scan and event-scheduling approaches are dif-
ferent solutions to the same problem; an activity scan is efficient
for highly interactive processes involving a fixed number of entities,
€.g., multiresource assignment problems in shops producing homogeneous
products; event scheduling is efficient for less interactive proceases
involving large numbers ¢’ entitiee, e.g., simulations of job shops
producing special order products. Efficiency must be treated as a
multidimensional quality, of course. We must gpeak of modeling effi-
ciency and programming efficiency, as well as computer running-time
efficiency.

The differences between activity scanning and event scheduling

orientations can be pointed out best by procedural deecriptions.

Event Selection Procedures

Take a simple shop eituation in which a man and a machine must
wotk together to produce a part. Each has an independent behavior,
ir that the man starts his day and ends it, takes coffee breaks, and
goee to lunch without regard for how the machine is performing, and
the wachine suffers breakdowis and power failures without regard for

what the man may be doing.

The Activity Scanning Approack. An activity approach to simulating

the processing of a part in this man-machine shop specifies the condi-

ticng for a job to stert processing, and the actions that take place

when such conditions are mert:

B o

FEIN)

2 0l
s

7

1Y Sl 210, AT S LB 0 s, 0o o TN

[R R S R T [T PR RTTT AT TEN

ST I L PRI TU SE

oo PR |

e e T4 s e

«20-

Test saction: 1f part is available AND
if machine {8 1dle AND
{f man is idle THEN do Action section
OTHERWISE return to timing mechanism

Action section: put man in committed state
put machine in committed state
determine time man will be engaged
determine time machine will be engaged

get man-clock o time man will become
available

set machine-clock to time machine will
become availabie

return to timing wmechanism

Emphasis is on the activity of producing the part, not on the
individual roles of the man and the machine. Periodic scanning of

the activity finds instances when all three conditions hold.

The Event Scheduling Approach. An event scheduling approach to
the same problem requires that three programe be written, one for the
man, one for the machine, and one for the part. The programs contain
both test and action statements, and are "menus' for sftuations that
can take place whenever a state change event occurs. For exaample,
one event in the simulation of the above wan-machine shop would be
the return of a man to the idle state from whatever activity he might

have been engeged in. The routine that represents the "man becomes
idle' event might look like:

o

-21-

Test section: if part is available AND

i1 f machine is idle THEN do Action oectionl

CTHERWISE do Action section2

Action aectionl: put man in committed state
put machine in committed state

determine time man will be engaged
determine time machine wiil be engaged
schedule return of man to availability
schedule returm of machine to availabiiity

return to timing mechanism

Action gection,: put uan in idle state

return to timing mechanism

While these two program protocola may look similar, they are
quite different. The event program is executed only when a state change
occurs; the activity program, on the other hand, is examined at each
timing cycle to se¢ if a state change car take place. Furthermore,
the activity contains logic for the availability of part, wan, and
machine, while three event programs must be written for the return of
& man, machine, and part -- testing, respectively, that a machine and
part, wan and part, and man and machine are available.

Neither approach is clearly superiur to the other; each has its
advantages in some¢ situations. Differences among SPLs that utilize one
approach or anotier usually stem frcm their authors' attempts to design
4 language suited to the particular class of problems they study and

hence gain modeling, programming, and executior efficiency.

The Frocess Interaction Approach. One of the difficulties of

the event approach is its division of the lugic of an operating system
into small parts, The activity approach seems to suffer less from this
criticism. A third approach, called the process, attempte to combine
the efficiencies of event scheduling with the concise notation of

activity scenning.

PR, i AN L

o

.rrvGMFMNWJWWW!WWMM’ i '

- Tl PR q..“wqmm-:u.anummw'

G e -

T L [| T oI WA 71 Yy IR I Tyl T HEE L] D

S St

-22.

A process can be defined aa a set of events that are associated
with a system behavior description. The events are interrelated by
special scheduling statements, such a¢ DELAY, WAIT, and WAIT UNTIL,
that interrupt the execution of & subprogram until a specified period
of time has passed or a stated set of conditiona hold. DELAY and WAIT
are time-oriented and are effected through event scheduling techniquea.
WAIT UNTIL, being condition-oriented, requires an activity-scan approach,
A process description thereby combines the run-time efficiency of event
scheduling with the modeling efficiency of activity scanning. SIMULA
is a process-oriented language that has had several years of successful
experience and has undergone one revision [16]. GPSS {s a process-
oriented language with a longer history and even more widespread accep-
tance. Although it is flow-chart-oriented rather than aststement-
oriented, the basic ; rocess concepts expressed here apply to it.

A key feature of process-orientation is that a single program is
made to act as though it is several programs, independently controlled
either by activity-type scans or event acheduling. Each process has
several points at which it interacts with other processes. Each process
can have several active phases; eech active phase of a process is an
eveat. This is different from pure event or activity approaches that
allow an interaction only when all the actione associated with an event
or activity have been completed, e.g., when they return to the timing
rechanism.

The programming feature that makes thig scheme possible is the
reactivation point, which is essentially a pointer that tells a process
routine where to atart execution after some time-delay command has been
executed. Flgure 3 illustrates the concepts of interaction point and

reactivation point for prototype event, activity and process routines.

In Fig. 3a, there is one reactivation poirt and one interaction
point. An event routine always starts at the same executable statement,
and, while it may have several physical RETURN statements, only one can
be executed in any activation. When it is executed, it returns control
to the master control program, which selects the next event (previcusly

scheduled) to occur. All actiong taken within the event routine take

I

-23-

reactivation EVENT ARRIVAL routine declaration
peint ————-
SCHEDULE AN ARRIVAL AT 100.0 creation of a future

interaction point
actions to change system state

RETURN interaction with other
events takes place

END when routine returns
to control program

(a) Prototype event routine

reactivation ACTIVITY BERTHING routine declaration
point —— -

tests to determine if act activity tests
can occur

actions taken during berthing executed if tests
indicate activity
can occur

RETURN interaction with other

END activities when
routine returns to
control program

(b) Prototype activity routine

Tt]

reactivation PROCESS SHOPFPING routine declaration
point

actions to start shopping

reactivation WALT 15 MINUTES interaction point
point ———‘-

-

TP

ctions to shop

Sl W

reactivation WAIT UNTIL SERVER IS FREE interaction point
point ——————=
actions to check out

reactivation DELAY 10 MINUTES interaction point

ol nt ——————pp—
P actions to return home

SCHEDULE SHOFPING IN 15 MINUTES creation of future
interaction point

actions to renew shopping procese

END interaction point

(c) Prototype process routine

=

Fig. 3 -- Concepts of interaction point and reactivation point

Gl et

BTy

Jile

e

e s —

T 4 T4 e 41 sara

-24-

place at the same simulated time, independently of other events. The
event 18 not totally divorced from other events, as all events share
the same system data.

In Fig. 3b, there is again only one reactivation point and one
logical interaction point. If an activities test section permits them
to take place, all actions occur at the same simulated time.

Figure 3c presents a sharply different picture, with many reacti-
vation and interaction points.

Figures 3a, b, and ¢ show that reactivation and interaction points
always come in pairs. A minute's reflection will show that this has
to be 3o. At each interaction point a reactivation point is defined,
which {s the place execution will start when the indicated time delay
elapses or *he condition being sought occurs. Within a procees routine,
all actions do not necessarily take place at the same simulated time,
but through a series of active and passive phases.

The reader should be able to see the differences among the event,
activity, and process prototypes and get a quelitative feel for how
the three differ.

Each modeling scheme has distinct virtues. Each can be shown
to be advantageous in some situations and disadvantageous in others.
There are no rules for selecting one scheme over another in given
situations, nor is it likely that any such rules will ever be stated.
The unilverse of poesible simulation models is 3o large and so diverse
thet there would undoubtedly have to be more exceptions than firm rules.
Several points, however, are clear:

A language employing event scheduling gives a modeler precise
control over the execution of programs.

A language employing activity scanning simplifies modeling multi-
resource systems by allowing conditional statements of resource avail-
ability to be specified in cne place.

A procesg-oriented language reduces the number of "overhead"
statements a programmer has to write, since he can combine many event
subprograms in one process routine. In addition, the overall flow of
a system is clear, as all logic is contained in one routine rather

than several.

I —— e

i o -

-25-

On the other hand, there is nothing one scheme can do that another

cannot. Questions of feasibility must be separated from questions of

efficiency. Also, as more experience is gained with languages employing

these schemes, more efficient algorithms will be developed and efficiency,
per se, will become less of a problem. Eventually, modeling esthetics
will become an overriding consideration.

Table 4 categorizes many of the SPLs used today according to the

1yramic modeling scheme they employ.

Table 4
SPL DYNAMIC MODELING SCHEMES
Event-oriented | Activity-oriented] Process-oriented %
Languages Languages? Languages
GASP As [51)] CPSS
SEAL {56] CSL NSS [50]
SIMCOM (58] ESP [65) OPS {27]
SIMPAC [2] FORSIM-IV SIMPLE [17]
SIMSCRIPT GSP SIMULA :
SIMTRAN [$)] MILITRAN [48) SLANG [32)
SILLY [57) soL [41)
SIMON [31] SPL [52)
9Some of these languages are not '"pure," e.g., :
GSP and MILITRAN have both gctivitv-scan and :
event-selection phases. The principal orienta- 3
tion is as indicated, however. :
%
é

oo Wlbiln 1

L by

A

o 1. e, 1T PRIV Y g
) e
T——— e T L L el i T PR

s oA

ooy

it ey =

P pp

Bt iSRS

=26-

IIl. SIMULATION PROGRAMMING LANGUAGE FEATURES

SPECIFYING SYSTEM STRUCTURE

Every SPL must have some way of describing system structure in

both its static and dynamic aspects.

features needed f{or this; Table 5 summarizes thea.

Table 5

SYSTEM MODELING FEATURES

Statemsnts to:
Define classes of objects within a syatem
Adjuet the number of cbjects within a class

as system conditiona change

Define properties of system objects
Describe relationships among system objects
Define activities, events, or processes
Organize events or procesaes

Frograms to:

Select activity, event, or process sucprograms
for execution
Advance simulation time

REPRESENTING STATISTICAL PHENOMENA

To mvdel the real world, one must have a way of modeling random

factors and effects.

ability with equal ease.

Uncertainty enters into models in statemenLs guch as:

In situation X, 15 percent of the time Y will occur

and 85 percent of the time Z will cccur.

next stace.
Varigbility enters into models in statements such as:

The time to travel from A to B has &n exponentia!l
distribution with a wean of 3 hours, or the number
of customers expected to srrive per hour has a
Poisson distribution with a mean of 6. A probe-

bilistic mechanism must be available for generating

sanples from statistical distributions.

- B -

Given that
a system 18 in state X, some probabilistic mechanism
is required to select either state Y or state Z a# the

Section Il discussed the principal

It i8 necessary to model undertainty and vari-

- . LTI AL T DB R R LTI

Bt b w R

P L

T T R T T T T mIIE R A T i C e e - vat s s e MiSTERAR RN FSTr S-S ERA L TS

“v..,.“”_"..-—-‘.—
4

i el i .M‘mm.. A

B ey o P s i R g

In reproducing variability or uncertainty, a simulation model

must have a way of generating randem variables. A basic feature of

et L

every SPL is a randcm-niumber generator. Additional features are pro-
i grams that transform random numbers into variates from various statis-
tical distributions and perform related sampling tesks.

A process is random if predictions about its fu:lure behavior
cannot be imgroved irom a knowledge of {ts past behavior, A sequence

of numbers {8 a random sequence {f there is no correlation between

i WAl w Dkt abbe s e

the numbers, f.e., if there i8 no way to predict one number from another.

VG s MBS AL ol S RERS, AL R oot i

Random numbers are needed to introduce uncertainty and variability into

¢ re—

models, hut because of the kinds of experiments that ave performed with

i . simulation models, truly rardom sequences of numbers are not adequate.
1 :

One must have reproducible sequences of numbers that are, for ali
intents and purpnses, random so far as their atatiatical properties

are concerned.

vt atln s s e

|

E ; Pseudorandom numbera, av reproducible streams of randomlike

- numbers are called, are generated by mathematical formulae in such a

f way that they appear to be random. Since they are not random, but
come from ceterministic series, they can only approximate the indepen-

dence of truly random number sequences. Every simulation study calls

PR

for verification of random-number generators to insure that the sta-

H tistical properties are adequate for the experiment being performed

(20]. Every SPL must have a procedure for generating statistically

PP SR

acceptable sequences of pseudorandom numbers.

Pseudorandom number sequences always consist of numbers that are :

statistically independent and uniform” .stributed between O and 1. é %
_ Gereration of a pseudorandom number €4 a real number somewhere 7 !
| E in this range. f

Paeudorandom numbers can be used directly for statistical sanmpling
tasks. They can represent probabilities in a decision sense or in a

: sampling sense. The model statement:

-

Make decision D1 60 percent of the time,

Make decision D2 40 percent of the time,

i . Lo
St A e s 1 sl 1 it 1

PR

L

R P et

-28-

can be implemented in an SPL by generating a pseudorandom numbter and
testing whether it lies between 0.0 and 0.60., If it is, decision Dl
is taken; if it is not, decision D2 is taken. For a sufficiently large
number of samples, D1 will be selected 60 percent of the time, but the
individual selections of Dl or D2 will be independent of previous
gelections.

The model statement:

Produce product P, 20 »ercent of the time,
Produce product P, 10 percent of the time,

Produce product P, 15 percent nf the time,

w -

Produce product P, 20 percent of the time,

p

Produce product P_ 35 percent of the time,

wn

can be implemented {in a similar way by sampling from & cumulative
probability distribution. A random product code can be drawn from

the above product mix by putting the product frequency data into a
table sucn as

Product -ype| Cumulative probability

1 0.20
2 0.30
3 0.45
4 0.65
3 1.00

In thie tsble, the aifference between the successive cumulative prob-
ability values is the probability of producing a particular product;
e.g., product 3 is produced 0.45 - 0.30 » 0.i3 or 15 percent of the
time. When a pseudorandom number is generated and matched sgainst the
table, a randcm product selection is made. Fcr example, generating
the number 0.42 selects product 3. Sincc numbers tetween 0.30 and
0.45 will be generated 15 percent of the time, 15 percent of the product
numbers generated will he type 3.

While this type of ssmpling ie useful for empirica. frequency
distributions, it is less useful for sempling from stetistical

e att sl Sl L i bRl ot and,

———

29~

distributione such as the exponential and normal. 70 use a catle look-
up procedure suca as the one describec above, and sample accurscely

in the tails of a statistical distribution, large tables muat be stored.
Generally, a simuiaticn cannoc afford the tables, needing the storage
for model data and program. Algorithmas rather than table look-up
procedutres are used.

Sampling algorithme arz of many kinda. Some distributions are
easily represented Ly exact mathematical formulae, scme must be approx-
imated. All sampling metnods operate i{n the same way Iinsofar as they
transform a pseudorandom number tc & number from a particular statietical
distribution. References 10, 43, aad 63 discuss guch procedures {n
detail. As simulation is almos: alwsys performed using sampling, pro-
cedures thiat can generate samples from standard statistical distribu-
tions are mandatory in an SPL.

In conducting sampling experiments, which is what simulations
really sre, one is intevested in control and precision as well ae
accura.y of representation. The topics dealt with so far have all “cen
concerned with representation.

Control {8 necessary when one is using siwulation to test and
compare alternative 1rules, procedures, or qualities of equipment. Whean
several simulatior runs are made that differ only in one carefully
alrered aspect, {t is important that all other aspects rewmain constant.
One mus: be able to introduce changes only where cthey are desired.

This is one of the reasons for requiring reproducibie random-number
streams. A feature that alds in this is the provision of multiple
strears of pseudorandom numbers. Having more than one stream enabies
paris of a model to operate independently, as far as data genarstion

is concerned, and not influence other parts. For exsmple, when studying
dec{sion rules for assigning mer to jobs, one does not want to influence
the guoneration of jobs inadvertently. Multiple pseudorendom number
streams increase 8 programmer's control over a medel.

Onz also wants to be able to control the generaticn of random
numbers if doing so can reduce the variability of simulation generated
performance flgur.@. For example, it is always Cesirable to make the

veriance of the estimats of the average length of a walting line within

P msalh b HaNEe

- A

D ar IP

b e
——

3
a
g
L
»
¢
?
¥

-

-

[N
C
i
r

W L —— S

LI K

AN e AP

V)RR W S B

B R o

]
1

et o R R 4 657 R A @yr@m@l,“f"rn"ﬂm N

= oy = e e

~30-

a simuldtion model as small amn possible, The reduction of sample
variance {8 o statistical rather than a programming problem in all but
one respact; a progre mer should be able to control the generation of
paseudorandom numbers {f this is required. One known way to reduce
varlance i8 to use antithetic variates {n geparate simulation runs;
this s discussed in [20]. As the generation of a stream of -ariates
that are anticthetic to a given stream involves no more than a stmple
subtiacrion,” cthis feature should be present in an SPL.

Table 6 summarizes the minimuw statistical sampling features an
SPL should have:

Table 6
STA1LSTICAL SAMPLING FEATURES

Pseudorandon number generation

Multiple rsndom-number streams

Antithetic variates
Sampling from empirical table look-up distributions
Sauvpling from theoretical statistical distributions

DATA COLLECTION, ANALYSIS, AND DJSFPLAY

The performance of a simulated system can be studied in several
ways {34]. The dynamics of the system's behavior can be traced by
looking at plots of relevant simularion va:iables ss they change over
time. The aggregaie performance can be studied by lcoking at statis-
tical analyses of simulation generated data; wmeans, variances, minims,
maxima, and histograms are usually produced for such summaries,

Ideally, an SPL should automatfically produce all data collection,
analysie, and display. Unfortunately, this cannot always be done, since
format requirementa differ among organizations, and display media vary;
what i{s possible on a plotter may not be poussible on & line printer or
a typewriter, Also, efficlencies are gained {f certain data are not
analyted. There {8 no virtue in producing frequency counts of varlables

that are not of direct interest to a simulation experimenter.

*
If r {e a generated pseudorandom number, its antithetic variate
is 1l - r.

Lo

BRI bbb dd L e

-31-

There are several topics to diacuss in this general area: how
data collection is specified, what data collection facilities should
be provided, how display media can be used, how display fo. .s are

specified, and what deta analyses should be performed.

Data Collection Specification

The best one can say of a data collection specification is that
it 18 unobtrusive. While data collection is necessary, statements that
collect data are not per se part of a simulation model's logic and
should not obscure the operations of a model in any way. People find
that debugging is dif{ficult enough without having to ceal with errors
caused by statements intended only to observe the behavior of a model.

The ultimate in unobtrusiveness is to have nc specification
statements at all. Being free from them clearly eliminates any diffi-
culties they may cause when reading or debugging & simulation program
code. Unfortunately, having no specification at all means that every
possible plece of data muat be collected in every possible way, at the
riek of neglecting tuv collect something an analyst may want., In small
models this is probadly worthwhile. In large models it can lead to
(nacceptable increases in core storage requirements and program running
timea. GPSS collects certain data automaticelly and allows a programmer
tc collect other data himself; GASP does acmething similar.

A reasonable alternative {s a linguistically natural set of data
ccllection statements that can be applied globaily Lo & modei. Being
linguistically natural, they will be eaay to use and clearly differ-
entiable from other types of programming statemenis. Being globally
applicable, they need be written only once, rather than at each place
a particular item of data to be collected appears.

Barring this, data can be collected through explicit procedural
pirogram statements. Data-collection specification statements of this
sort are no different from normel variable assignment statements or
subroutine calls. They are the easiest to implement in an SPL, but
the most obrrusive and difficult to deal with. Most SPLs provide
facilities of this kind. SIMSCRIPT I1 [39) has & capability for global

dets-collection specification.

S bl el

S

i
i
j
i

— e ———

At e

Lrnon AL 9 AR AN st e

TR SIPNE Y

o —————. by S ¢

w32a

Data Collection Facilities

One must be able to collect a variety of data, since one should
be :lle to compute all the statistics an analyst might want about a
simulation variable. This includes counts of the number of times a
variable changes value, gsums, sums of squares, maximc and minima of
these values, histograms over specified intervals, cross-products of
specified variables, time-integrated sums and sums of squares for time-
dependent data, and time series displays. Simulation is a statistical
tool, and statistically useful data are required to use it.

Naturally, some data are easier to collect than others. Table

7 118ts8 the minioum data one shculd be able to collect.

Table 7
DATA COLLECTION FEATURES

Number of observations, maxima, and minima for all variables

Sums and sums of squares for time-independert variables
Time-weighted sums and sums of squares for time-dependent variables
Variable valu: histograms for time-independent variables
Time-in-state histograms for time-dependent variables

Time series plots over specified time imtervals

These data should be easily collectable with specialized ctatements.
One should be able to collect any other data without extreme difficulty.
An faportant festure of an SPL is that it allow reasonably free access

to all model data.

Data Analysis

One should not have to progrsm the analysis of data for stendard

statistical calculations, such 88 the zomputations of means and variances.

If global specifications are employed, names attached to statistical
quantities should invoke calculations when the names are mentioned. If
data collection statements are used, standard functions should operate
on named data to compute the necessary quantities.

Table & thows the minimum snalysis one should be able to perform
from collected data. If the data are present, one would also like to

have functions that compute correlation coefficlents und epectra [21].

Table 8
DATA ANALYSIS FEATURES

Meana
Variances and standard deviations
Frequency distributions 1

1
Display Media
i

Standard statistical information i8 easily printed on typewriters
and line printers. Time series plots and histograms are enhanced by
graphic display. As this type of information derives most of its impact
from visual observation, there is little reason it should not be pre-
sented this way. Advanced SPLs should have routines for charting
results, either by simulating a plotter on a line printer or by dis-
playing results directly on a plotter (133, (23], [62].

Today, with a growing number of large-scale computing systems !
making use of cathode ray tube displays (CRTs), these devices are being »
used more and more for displaying s{mulation output [54]. Two situa-
tions lend themselves to CRT application.

In the first situation, the CRT is used only to produce attrac-
tively formatted graphs and reports. The device is not viewed on-line;
pictures are made and used in lieu of printec reports. There i# no
doubt that programmers can use enhanced graphical capabilities if given
the opportunity. Generally, no changes need be made to a SFL to let
them do 8o, other than providing access to general system software
routines. To be specific, a programmer should be able to call upon
library plotting routines from a SIMSCRIPT or GPSS program.

The second situation is the more glamorous, with output produced
on-line a8 a program is executed. Given a language and an operating

system that lets a programmer {nterrupt a running program, alter system

paramsters and variables, and then continue simulating where he left
off, an entirely new type of simulation debugging and experimentation
is possible. This type of interactive, adaptive dialogue between model

and programwer makes on-line, evolutionary model design possible, changes

M e

the economics of sequential, optimum-seeking experimentation, and adds

I—————————y b S

" PR R

R

it "

T,

T 0 i W

<34

a valuable dimencion to program debugging. Several researchers, at

The RAND Corporation and elsewhere, are currently working in this ares

[17], (30).

Specification of Display Formata

There are probably as many types of output statements as there
are people who write programming larguages. Each type, being a little
di fferent, emphas{zes one or more aspecta of cutput control at the
expense of others. Styles range from na specificstion at all (GPSS),
through format-free statements (SIMSCRIPT Il) and formatted statements
(CSL), to special report forms (SIMSCRIPT). There are times when each
style has its merits, and a fully equipped SPL will have a variety of

output display statements.

Four types of diasplay statemcnts that exist in present-day SPLs
are:

(1) Automatic output in a standard format (GPSS, GASP):

Is a tiwe-saver for the programmer and » boon in reasonably

smeil models where 211 dats cen be displayed at a reasnnable
cost.

Doee not force a beginning simulation programmer to deal
explicitly with output.

Is only as good as the exhaustivenesas of its contents.

Is often unsatisfactory for formii reports, forcing subse-
quent typing and graph preparation.

(2) Format-free output (SIMSCRIPT II):

Enables a programmer to control the display of information
without regard for formats.

Is adequate only if it covers all the data structures in a
language .

Is moet useful for debugging, error m#ssage reporting, and
printing duvring program chackout.

(3) Forwmatted output (CSL):

Raquiree the most programmer knowledge, but provides the
maxieum control of informstion display.

Is traditionally the moet difficult part of msny programming
languages, insofar a8 the greatest nusbar of errors are made
by novice programmers in foramst stetements.

I S

4 s e R T N

T . T b {1888 P e A AR 3t

bt Nl 1] AT B A MY ¢ o dib 1111 [et

1 b AP A TP

e

-

R

S 1 bt g St =] S T 3 ey (714 S 4

e e m emT I I i AT TR AR imm et T e g a4 et S SR TR T L

(4} Report Generators (SIMSCRLPT, GST):
Are the ezsiest way of producing specially designed reports.

Must¢ heve a complete complement of control facilities to
cover all reporec situstions.

Can be & nuivance to use in very simple situaticnas.
Usually gensrate an extremely large amount of object code.
Are effigien: from a programming standpoint, but not from
a core-consumption point of view.

Since the producztion of reports is the primary task of all pro-
grams, whether they ere rua for rheckout, for display of computed
results, or for preparatisn of elaborate management reports and charts,
a good SPL should contain statements adapted to all display situstions.
Going back to the discussion of data collection, a programmer should
not have to spend a great deal of his time writing output statements.
He should be able to concenirate on model construction and programming
and not have to dwell at length on conventional output tasks, He
should be able to spend time on scphisticated output statements, how-
ever, to produce displays that are unusual or that deal with exotic

display devices.

MONITORING AND DEBUGGING

Two essential requirements of all SPLs can be served by the same
set of programming facilities. SPLs should be able to assist in:

(1) Program debugging; and in

(2) Monitoring system dynamics.

Debugging can be difficult in high-level programming languages,
as there is gererally a great deal of difference between source and
object codes. Errors can be detected during compilation and execution
that are only distantly related to source-language commands., Moreover,
when an SPL 18 translated into an intermediate POL, as was originally
done in SIMSCRIPT and CSL, execution error messages are often related
to the intermediate language and not the programmer's source statements.
These messages, while meaningful to an expert, can mislead a novice
SPL programmer.

Debugging is also dffficult because the flow of control in a

simulation im stochastically determined. Moreover, it can be difficult

¥
i
]

KR oML R o B B T Nt o G MU kv

YRR .

ek st 1 e

et kil nn

2 A ——. A, i A1

L |

ek e e - - NI TSGR
e ————— e = ————mae s =

_ . - - e A4 et e e - =
[v a o g e ATt

36

to obtain a record of the flow of control, since an SPL-designed
"timing routine' or other form of control program {s the originating
point for all event calls. In some languages, it is impossible to do
so. Without program flow information, and information about the system
state at various times, some simulation program errors can be found
only by luck.

The debugging features an SPL should provide are listed in Table 9.

Table 9
VEBUGGING FEATURES
Report compile and execute-time errors by source
statement related messages;

Display complete progrem flow status when an execute-
time error occurs. This means displaying the entry
points and relevant pa.ameters for all function and
subroutine calls in effect at the time of the error;

Provide accees to control information between event
executions. This allows event-tracing during all or
selected parts of a program, and use of control
information in program diagnostic routines.

These same facilities are needed for menitoring system dynamics.
As one use of simulstion is the study of system behavior, one must be
able to view sequences of events and their relevant data to observe
systea reactions to different inputs and different system states.
Event-tracing {s an important tool for this kind of study.

In an event-oriented SPL, debugging and monitoring ifedatures will
undoubtedly be implemented differently from the same or similaer fea-
tures in activity- or process-oriented SPLs. This is not important.
The basic fssue {s whether some basic faecility existe for assisting

in progrsa debugging and for doing program monitoring.

NIT ION

Because siaulation is the movement of a system model through
simulatad time by changing its state descriptions, it is {important
that an SPL provide a convenient mechanism for specifying initisl

cmsas ae eemmem e e — - e ——wrwaafe ———— i ———————

«37-

system states. In simulations dedicated to studying start-up or
transient conditions, a convenient mechanism for doing this is manda-
tory; in simulationa that only analyze steady-state system performance,
it {s still necessary to start off at some feasible system configuration. ;
Some SPLs start simulation {n an "empty and idle state' as their i
normal condition and requivre special efforts to establish other con- :
ditions. They rely either on standard input statements, formatted or
unformatted, to read in data under program control or on preliminary
programs that set the system in a predetermined state.
An glternative to these procedures is a special form that reduces
i the initialization task to filling out a form rather than writing a
program. While adequate in a la.ge number of situations, this alter-
native suffers from being inflexitle. As with the preparation of
simulation reports, the correct anvwer lies in a mixture of initial-
ization alternatives.
Another aspect of initialization is the ability to save the state
of a system during a simulation run and reinitialize the system to
this state at a later time. This facility i8 crucial in the simula-
tion of extremely large systems, and in copducting seguential exper-
iments. OCne should be able to save all the information about a program,
including reievant data on the status of external storage devices and

peripheral equipment, and restore it on command at a later date.

OTHER FEATURES

There are a number of non-operaticnal features that must be taken
into conrideration when designing or selecting an SPL. A manager or
analyst is interested fn program resdabi liiy; communication of the
structure, assumptions sad operatione of x model i2 fepurtant {f the
model is to be ueed coerectly. A wanager i3 ales interested in execu-
tion efficiency; simulations cen requiraz large numbers ¢t 2xperimentsi
runs, and the coest per run st de low enough to wmske a project eco-
nomical. On the other hand, a managzr oust balaace the costs of pro-
ducing a progvam against program cxeeutiuvi casts. (owplex acaeiing R
languages may compile and exacute leos cfficiently than siapler

languages, but the: make problems eolvable {11 a shorter perind of

p

O Y

.,.
DY W -

«38-

time. If total problem sciving time is important rather than computer
time coets, the evaluation criteria change.

SPL documentation is important to applications and syatem pro-
grammeru. An applications programmer needs a good inetruction manual
to learn a language and to use as a reference guide. As an SH. becomes
more complex the need for good documentation increases. Systems pro-
grammers need documentation to be able to maintain an SPL., This
documentaetion must allow them to inatall the language in the computing
system; with today's complex, hand-tailored systems this is becoming
more dirficulet., It must alsc provide enough infoimation for them to
make modf fications in the SPL itself as translator errors ave dis-
covered. It is less important that users be able to modify an SPL,
either to change the form of statements or to add new ones, but this
can be an important consideration in certain instances. Some languages

in fact are designed to do this easily [16), [381, [50].

S Lot P R bl

e Rl R

oo

< rnnmy

-39

IV, SOME EXAMPLES OF SPLS

This section i{llustrates four SPLs: SIMSCRIPT 11, an event-

3
L3

i
14

oriented language; SIMULA, a process-oriented language; CSL, an
activity-oriented language; and GPSS, a transaction-oriented language.*
With the exception of the SIMSCRIPT Il example, which appears for the
firet time in this Memorandum, the illustrations are taken from pub-
lished descriptions of the respective languages. The examples differ
in detail and speci{icity, but are nevertheless representative of the
concepts the languages employ. As they have been taken from cther
sourceg with only a surface editing, they also differ greatly in style
aund format.

Becauae the SIMSCRIPT II example was written egpecially for this

L T T T T R I

Memorandum, it is the most detailed and illuatrates the greatest number
of features. Consequently, the reader may tend to judge SIMSCRIPT

II a superior language. He should not make such a judgment solely on
the basis of these examples. JIdeally, they should all be cowmparable
and not bias the sought-after end, which is the explication of their
different approaches to providing the SPL features discussed in Sec.
I1XI. We can only hope that our inability to procure 'equaliy repre-
sentative'" examples will not detract from our purpose.

The concepts the languages employ have all been described in
previous sections and readers should be able to follow the examples
without a thorough understanding of each. The format of the following
subsections is: description of a model, sinulation program for the

model, discussion of the program.

SIMSCRIPT I1: AN EVENT-ORIENTED LANGUAGE

The model used in this example is the "executive-secretary system'
described in [34]. The program conforms as closely as possible to

the description given in [36) and the flowcharts of its events.

*

Although GPSS is process-oriented, in the senge that its models
take a synoptic view of systems, its basic orientation is with the
flow of transactions rather than the occurrence of processes.

e m———

o T———

-40-

The Model

We assume that executives in an office system have two types of
tasks: they procesa incoming communications (invoices, requests for
bids, price queries) and handle interoffice correspondence. The tasks
are not Independeni of cne another; the former are produced by mecha-
nisms external to the office system, the latter arise auring daily
operations. As they result in similar actions we can treat both the
same way, through an event that 'discovers' a task. Other events
assign tasks to secretaries, schedule coffee breaks and departures
for lunch, and handle the review of completed secretarial tasks.

Table 10 lists the objecta that "live" in the office system ~- which

we shall call entities from here on -- and their attributes.

Tabie 10

SYSTEM ENTITIES AND THEIR ATTRIBUTES

Executive Secretary Task
Position: Skill in typing: Type:
hanager words/minute Invoice
Senior errors/100 words Price quotation
Juntor Skill in dictation: Bid
Telephone
State: words/minute ;
Dictetion
Busy errors/100 words
Typing
Aveilable| oui1) yn office work:
On break no work: Characteristics:
general rating 1-100
Time
State: Secretarial requirements
Busy Probabiiity of requiring
Avalilable a follow-up task
On break

Given the s.stic structure defined in Table 10, the nature of
the task-discovery event, and some logic not yet described, we can
conatruct a flowchart model of the actions that take place when a
request enters the system. This model is {llustrated in Fig. 4.

Numbers tc the left of =2ach flowchart block refer to commenta in the

body of the text that descrits the operaticns that take place within
the block. The SIMSCRIPT II program for the mcdel follows the

-41-

REQUEST

Determine
time of next
request

Schedyie

next request to
arcive at this time

Lunch or
coffee break

initicte
task

’ ; Record request
in incoming
request file

Selact

imminent svent

Fig. 4 -- Event number 1l: request to perform a task

. ! v
e TR RIS v’mm}iwmw'WMVMIT&“WWW"‘“w

nyr

WAy e e on

W g

IRRNETH® N9

LANTTE

n

- —

42~

flowcharts and their description. The flowcharts and thelr respective

progrems differ somewhat as the flowcharts are simplified for tl. sake
of clarity.

Block 1 is the entry point to the flowchart. It contains 4 name
that will be used i{n subsequent flowcharts to refer to the '"task

request' event, The directed arrow leading from {t is a symbol com-

monly used to indicate & path and direction of flow.

Block 2 {8 a decision block that splits the logical flow, depending

on the kind of request that has just occurred. To understand how this

block operates we must undcrstand the concept of au event occurrence.

An event occcurs when its ''time arrives,” the time having been

previcusly recorded by an internal scineduling block or observed on an

input darta card. The precire wechanism that cccomplishes these tasks

need not be stated here. It suffices {f the reader understands that

there i« some mechaniem operating in the background of the simlation
prcgram, obse. 13g data carde and previously scheduled events, orxdering
them by their event times, #nd "popping them up”

arrives .

(Block).

when their time
This in fact is the function of the event selection block

The reader will notice that every event terminates with

an event selection block. It {s {n event sclection blocks thet t{ime

discriminations are made, events selectsd,

and the siaulation clock
advanrced.

When & request event e popped up, the simulation prog.am hae

acceds to informstion sesocliated with {t, e.g., how Lt was caused.
The model {5 «ble to look at this infurmation and take action on It

1f the request is for an Internally genarated task, the flowchart
lewds d rectly to Block 5, where a question fe aeke to see if office

workers are available to process the request. [f the request is for

an extemally generated task, the prograa pauses in Blocks 3 and 4 to
read inforwation sbout the next arrivel from en extemal deta source,

and achndule 1ts arvivel at scwe future time. When 1t doee so |t

records a4 memo of a request sr:ival and ite time on a calendur of

evente scheduled to occur. This calendar e pert of the selection

vec.rnlem euployed {nr gequencing events and edvancing esimulerion time.

Thase operatione are perforsed by the SIMSURIPT II syatem and do not
have to be programmed sxplicitly.

.k

v AR o i b

PO PO 11 v T T P S i

r

-43-

By the time the program arrives at Block 5, it ie through with’
scheduling future :vents and is8 concerned with processing the requeet
that has just arrived. Since reai offices do not work continuously,
but pause for lunch and coffee breaks during the day, the model asks
1f such a period is in progrees. Ii it is, the 1equest cannot be
processed immediately but must be filed for later hendling. If the
request can be processed, Block 6 transfers contrcl to a routine that
does so. The routine will return to the request event when it finishes
processing the task.

Block 7 records a request that cannot be lLiandled in a backlog
file; it might be an {n-basket {n real life. The file entry is made
80 that when the office werkers return to their desks they see the
tasks rhat accumulated while they were gone.

Block 8 directs the simulation program to select an event from
the time-ordered file of scheduled events. It might be another request
or the completion of a previous task. ¥hen the next event is selected,
it may or may not indicate a simulation time advance, If it does not,
we think of it and the event just completed as occurring simultanecuesly;
although they are processed in serfes on the computer, there is no time

advance and they atve consfdered as happening at the same time.

Injtiating &« Task

Once the system has accepted a request, 2 mutch muet be made
between {t and the resources nerded to f{1l it. A routine is written
to do this; its logic ts shown in Fig. 5, First a search {s made for
an executive. If one is found who is free and cen handle the request,
4 secretary {8 procured if needed.

Block 1, as alwaye, is an entry block giving the symbolic name
of the routine.

Blnck 2 sturts the match between a task and its resources by asking
1f the request just entered calls for & particular executive, e.8.,
there has been a relephune ceall for a certain person or & request for
a price quotation from a specialisi ‘n a certatn area. If no particular

executive is called for, Block 1 passee tiuw to Block 3, where an exec-

utive i{s selected. i a certain person is requested, flow proceeds to
Block 4, wheire a test {3 made to see 1f this person is available.

el .

i i e At e At o e

L i

- e e

- ——————

[U P S

wlly-

®

Select
on sxecutive for
shis type of job

o wecretary

®

Datermine
time execurive will

nsedéd?

Select
o secrotory for
the (ob

Feoord
reques! in incoming
requatt file

Determine
timgs @racutive
ond secretary

will be nesded

@y

BTy hmrwamagn-

te

buty slate

e nd

Schedule
ticme for ruviow
ot work

L

be occupied with
the 101k

(o,

Pt
snututive
(L]

L bny stots

Schadule time

wher, eracutive
will be avoilkdie

ki

Select
imninett gvent

Pig. 5 -- Ini~.

Schedules 1iae
whon a request

ter.ral trak

?
®

You

Deterrring
chorocteristics of

will be mode F
this tom

oD of a task

routine

this tosk: execytive,

Iypa, otc,

P p——

A

[Ny

I s S

-

-45-

Block 3 1is typical of a8 functional block whose deacription is
short but whose programming content might be large. A procedure to
select an executive can be brief, e.g., managers can do everything,
senior executives can do everything except give price quotations,
junior executives can only answer the telephone; or it can be long
and elaborate, e.g., an executive {8 selected whose personal qualifi-
cations as listed in his personnel file match the requirements of the
task according to a complex and computationally intricate formula.
Many of a simulation model's key assumptions are built into blocks
such as this.

When an executive 1s selected, Block 3 tranefers to Block 4, the
block to which control is passed {f e particular execuilive is calied
for.

Block 4 asks if the executive vequested in Block 2 or selected
in Block 3 is available. 1t does so by examining the executive's state
(status code); if the code is “available,'" the executive is free to
handle the request, if it is 'buey' or "on break,' he 1{s not. Once

~

agaln, as in Block ", the flow lougic 14 split depending on the answer
to thie question.

If the selected executive ia avatlable, flovw passes to Block 8,
where processing of the tagk continues. Before we consider these
actfcns we should discues what happens 1f the executive is not available.

Block 5 asks if a subrtitute is availabie for a busy executive,
implying that a substitution can be made and that a procedure exists
for finding one., This situatfon is a littlc like that of Block 3,
vhere &n executive {n seiected for a particular type of task. Block
S could be expanded to 3 serlee of blocks describting a procedure for
sclecting a substitute, testing for his availlabi' . ity, selecting another
substicute i neceessary, and so on untii all possible candidates are
tried ard accepted or rejected. In our simplified model we do not do
this. We only indicete that {f a subst{tute cunnot be found, cont: ol
Jasses ¢ Block 6, vhich files the unprocessed task.

Block & of this evernt i{s identical to Block 7 of the regquest evant;
it ‘ilws informatfon about the request for later proceaaing. T.is bluck

apntars in the simulation model whenever a requesi cannot be processed
and must be "remembered.”

M |
N R T SR ST R d

R I R N Ao A g 3 40,7

[

U e

L S RPIE IR

AP) P T WA < a1

P

B

~46~

In Bloe™ 7 control is pasoad via an event selection block back
to the "timehleeping' wechanism of the simlation program. Since the
ri'rsent requeat cannot be processed, the model must look ot its calea-
dar of scheduled events to determine what to du next.

Returning to the case where an executive is available to process
a request, we ask next in dlock 8 {f 4 uecretary 18 alsc needed, She
will be 1f the raquest is for dictation or for sowme task where instruc-
tions must be given; she wiil not be Lf the task is simply answering
a telephone call. This question c&an be answersd in a number of ways
in an operating computer program; as with most questions of this type,
we leuve the description of decision-making at the macro level, namely,
that a decision has to be made.

Block 9 starts the flow path for the case where a requeat can be
honcred by an executive alone; it determines the amount of time he
will spend on the task.

Block 10 puts the axecutive in a 'busy' state so that he cannot
be called on tc do another task while he is working on thie one. He
will remsin in this state until the "executive available' event occurs;
this is scheduled in Block il to happen after the lapse of the pre-
viously determined amount of time.

Before proceeding with the simuilation, the mode] must ask i{f pro-
cessing this task, e.g., answering a phone call, induces another task,
e.g., writing a memo. This is done {n Block 12. If 2 task is not
induced, flow passes to Block 7, where the model is instructed to
select another event and proceed with the simulation. I1f a task is
induced, Block 13 determines its characteristics and passes them on
to Block 14, where the iuduced task is scheduled to be requested,

Flow then proceeds to Block 7,

I1f, back in Biock 8, we found that a secretary was needed to work
along with the executive, control would have passad to Block 15, where
a4 secretary must be gelected before a task starts. This logic can
pa‘r a particular secietary with an executive, pool all secretasries
to that they are available to all axecutives, or employ rome immediate
scheme. As was done in selecting an executive, when a secretary is

chosen, her status code munt be tested to see {f she is availeble,

Iyl

AL il i -

B T N e TNt S,

47~

Block 16 performs this test. Like Block 5, it can be ronsidered
a macro block in which alternatives and svailabilities are tested
until a decision is reached. If a secretary ig not available, a
request cannot be processed and must be filed along with other unpro-
cessed requests.

Once a secretary is found, Biocks 17, 18, and 19 datermine the
time the executive and secretary will spend on the job, put the secre-
tary in the ''busy' state, and schedule the time when her work will be
reviewed. It is not necessary that the executive and the secretary
work together on the task for the same period of tiwe; separate cvents
are precvided to schedule ctheir release trom the task at different times.
The release times can be the same, however, if the task 1e¢ a cooper-
ative effort,

Block 19 transfers control to Block 10 after completing its func-
tion, picking up at a part of the flowchart that we have asiready seen.

The reader should be able to see why and how this is done.

Review of a4 Secretarial Task

One of the office rules is that every task a secretary performs
must be reviewed. When a secretary finishes a task she brings it to
the attention of the executive who initiated it. If he is not avail-
gble, she waits.* If he {is avallable, he reviews the work and cither
accepts it or notes corrections that muet be made before another review.
The logic ot the review event is shown in Fig. 6.

Block 1, ae usual, nar s the event. Block 2 aske a guestion about
executive avail=bility - cransfers to Block 3 or 5, depending on
the answer.

Block 3 records the review task in the task backlog file if the
executive is busy. The task is filed slong with incoming requeste
that were filed for reasons we saw in previous flowcharts. Black 4

calls on the simulation timing mechanism toc select the next scheduled

*
This may not be good office practice, but is a feature of our
example,

i ——EIo ngEET EOE T SICNT = A d RTINS e YRR

PG 4L A S 7 W R SRR TR '

- < N

. s - ——

1

JRe—

~48-

REVIEW

is
executive free

Executive review
of secretary's job

Joh

Schedule
secretary os avail-
nble immediately

T

wtisfactory
\?

Determine
time to correct
task

Schedule
job review at
this time

Fig. 6

-~ Event Number 2:

®

Record
review task in
incoming file

Select

imminent @vent

Revieu of a secretarial task

v—-

e A v S A o P TR AR £ 15 TARS . P IR SN I SO S

T

Y . R

B

1 i —r

Ldsab o) " st g

~49-

event. The secretsry is not assigned an "available’ state, bduf remains
“"busy," waiting fcr the executive to become free and review her work.
block 5 i3 another macro block, hiding what might be .au enarmous
amount of logic behind the label "executive review of secretary's work."”
Bleck 6 branches or the previously computed review decision. If
the task has been dune satisfactorily, the secretary is scheduled to
become avatlable jmmediataly (Blockh 9).
An unaatisiaciory task has its correction rtime computed in Block
7 and review reschedulecd in Block 8.
Cencerning this event, Lt is impnrtant to note 1ts hidden basic
assumpticns: a 1eview task takes no time and a secreiary stays with
a job until it gets reviewed. These assumptions can be easily changed
to allow secretaries to do other work while waiting for reviews, cause

executives to spend time making large-scale corrections, and so oa.

Executive Avallable at the End of a Task

This event marks the compietion of arn executive activity. It
returns an executive to an ''availalLle' satate and determines his next
action: another task, a break for coffee or lunch, or an idle (dis-
cretionary time) perfod. The event lagic is shown in Fig. 7.

Block 1 names the event. Block 2 puts the executive in an avail-
able state and aska questions about the nixt executive actions. These
questions are asked in a specific order and imply certain things. From
the logic of the event, we¢ see that a lunch or coffee break cannot
start until a current job {8 completed, but wiil be taken when it is
due regardlecs of task backiogs. This is important as it assumes a
priority sequence impoaed by toe order in which queations are asked
and not by erplicit priority statements.

Block 3, which decides {f a break is due, also contains nidden
logic. When one coneiders the connections between events and the way
in which the mndel operates, he sees that if an executive is fdle (in

the "available" state) and a break rime occurs, there is no mechanism

1 o A s

XD A At it "

PFTRPRER T X

JRRTI

e o

bt i) bl

il

I

e s b ot s

g By Y s N e T

L T RTVIRPTT Yo

.) A - ; ‘1:
Tl N TS YN S T ORI L L Sl
1 SN 5w 7 YT MRRSE MR (AN AL P PRI Y i FA N TR T RIS R v y

TRE [e TR ST

PSRN R S T TN O S e

E= oo o e 2 gy

«50-

\ EXECUTIVE

YM |
@

Put
oxecutive in
avoijoble
stote

Put
in break stote

® {

Determine
time of return

Schedule
executive aviil-
able at this ‘ime

A job in

incoming file

Select
imminent event

Select
job from In-
coning file

Task review

?

Fig. 7 ~- Event Number 3: 4&vallability of an executive at the end of a task

e .4'. . B '-) . ,.-._

GG,

that alerts him of thias. By the way the model 1s constructed, breaks

i A g

can be taken only aftev the completion of jobe. This will have little

=

% practical effect if: <{a) the work rate is high in the office so that
i there are no long periods »f idle time poesible, or (b) the logic of
Block 3 looks ahead and atarts a2 break early 1f one is slmost due.

i Thia small difficulty has been put in the model to acquaint the reader

with problems that can cccur when one sets out to build a model from

scratch,

If a break is due or in progresa, Block 4 places the executive

S s o bR,

in the ''break' state, Block 5 determines its duraticn, [lock 6 sched-

.

wallini it

ules the executive's return to an availability coudition (bky executing
this same event some time in the future after the simulation clock has
advanced past the break point), and Block 7 returns control tc the
event selection mechanism.

If a break is not due, the model mugt decide whether the executive
should be left in the available state or assigned to a waiting task.
It does this by looking, in Block 8, at the file in which we have been
putting requests that could not be processed. It the file is empty,
the executive is left alone and control ie passed to Block 7 to select
the next event.

If the file is not empty, the model must select a job. If there
is only one job in the file, there is no problem, If there is more
than onc, there i{s a conflict situation that must be resolved. Cca-
flict 1is usually 'esolved by priority rules that assign values to
di{ferent types of jobe; & job is selected that has the highest (or
perhaps lowest) value. In cases with ties, multiple ranking criteria
are vsed, Possible criteria that might be used in this model are:
time a job arrives in the system, skill level required to process a
job, etc. The issue cf selection rules is complex, and a model that
i merely says ''select a job'" hides a great deal of work that must be

done to develop an operating model. For exampie, few organizations

[P

have well-articulated and formalized priovity rules, and a modeler

may have his hands full mecely trying to find out the "rules of the

gaoe .

2
t
i
3
H
i
&

D L i AT S e G A W ey e gV ¢ e 1 ik e el + %

Once a task has been selected, however, it (s relatively simple

to route the exzcutive >0 the proper flowchart to process ft, This
is shown in Blocks 14U, 11, and 12,

Secretary Available at the End of a Task

This event i3 similar t¢ event 3 in both irs intert and its form.
When a secretary 18 veleased from a tssk, she becomes availsable and is
either sent on a break, put on a backlogged job, or left jdle, depending
on current conditions. Blocks 1 through 10 in the flowchart of Fig. 8

correspond to similer blocks in Fig. * and need not be commented upon
here,

W e -

Y Sy R N P

-53.

SECRETARY
AVAILABLE

:ob waiting for
a secretary?

@

Put

®
Put
secretory in |
available r lunch
state "/
N

o

Seleoct
jeb from in-
coming file

Fig. 9 -- Event number 4: avsilability of a secretary at the end of a task

in break state

6) {

Determine
time of return

Schedule

secretary avail- |
able at this time /

-S54

The Program

PREAMBLE
NORMALLY MODE IS INTEGER
' 'DECLARATION OF STATIC SYSTEM STRUCTURE
THE SYSTEM OWNS A REQUEST.FILE ~
PERMANENT ENTITIES....
EVERY EXECUTIVE HAS A POSITION AND A STATE
EVERY SECRETARY HAS A STATUS
EVERY TASK.TYPE HAS A TASK.TIME, A NEED, AND
AN INDUCE,PROBABILITY
EVERY SECRETARY, TASK.TYPE HAS A SKILL.FACTOR
" DEFINE TASK,.TIME, INDUCE.,PROBABILITY AND
SKILL.FACTOR AS REAL VARIABLES
TEMPORARY ENTITIES....
EVERY TASK HAS A WHO, A WHAT AND A DELAY.TYPE
AND MAY BELONG TO THE REQUEST.FILE
' 'DECLARATION OF DYNAMIC SYSTEM STRUCTURE
EVENT NOTICES....
EVERY REQUEST HAS AN EXEC AND A CLASS
EVERY REVIEW HAS AN EX AND A SEC
EVERY EXECUTIVE.AVAILABLE HAS AN Exi:
EYERY SECRETARY.AVAILABLE HAS A SEC1
EXTERNAL EVENTS ARE REQUEST AND END.OF .SIMULATION
BREAK REVIEW TIES BY HIGH EX THEN BY LOW SEC
PRIORITY GRDER ''OF LVENTS'' IS REQUEST, REVIEW, SECRETARY.AVAILABLE,
EXECUTIVE .AVAILABLE AND END.OF,SIMULATION
' 'OTHER DECLARATIONS
DEFINE OFFICE.STATUS AS AN INTEGER FUNCTION
DEFINE INDUCE,.TYPE, SECRETARY.REQUIRED.CLASS AND
SUM.REQUESTS AS INTEGER VARIABLES
DEFINE SATISFACTCZY AS A REAL VARIABLE
DEFINE IDLE TO »£AN O

DEFINE BREAK TO MEAN 2

' 'DATA COLLECTION AND ANATVSIS DECLARATIONS

ACCUMULATE AVG.BACKLOG AS THE MEAN AND
STD.BCKLOG AS THE STD.DEV UF N,REQUEST,FILE,

ACCUMULATE STATE.EST(0 TO 2 BY 1)AS THE HISTOGRAM
OF STATE

ACCUMULATE STATUS.EST(0O TO 2 BY 1)AS THE HISTOGRAM
OF STATUS

END

-55-

MAIN '‘'THIS ROUTINE CONTROLS THE GIMULATION EXPERIMENT
"INITIALIZE' CALL INITIALIZATION ''TO ESTABLISH THE INITIAL SYSTEM STATE
START SIMULATION ''BY SELECTING THE FIRST EVENT
' *WHEN SIMULATION RUN IS ENDED CONTROL PASSES HERE
IF DATA 1S ENDED, STOP
OTHERWISE...''GET SET FOR ANOTHER RUN
UNTIL REQUEST.FILE IS EMPTY, DO
REMOVE THE FIRST TASK FROM THE REQUEST.FILE
DESTROY THE TASK
LOOP
GO INITIALIZE ''FOR THE NEXT EXPERIMENT
END

ROUTINE FOR INITIALIZATION
READ N.EXECUTIVE CREATE EACH EXECUTIVE
READ N.SECRETARY CREATE EACH SECRETARY
READ N.TASK.TYPE CREATE EACH TASK.TYPE
FOR EACH EXECUTIVE, DO READ POSITION(EXECUTIVE) AND
STATE(EXECUTIVE) RESET TOTALS OF STATE LOOP
FOR EACH SECRETARY, DO
READ STATUS (SECRETARY) RESET TOTALS OF STATUS
ALSO FOR EACH TASK.TYPE, READ SKILL.FACTOR(SECRETARY, TASK,TYPE),
TASK.TIME(TASK.TYPE), NEED(TASK.TYPE),
INDUCE . PROBABILITY(TASK.TYPE)
LOOP
READ INDUCE.TYPE, SECRETARY.REQUIRED.CLASS AND SATISFACTORY
RESET TOTALS OF N.REQUEST.FILE
END

Sveol NZQUEST GIVEN EXEC AND CLASS SAVING ThE &VIIT " Tloe

ADD 1 TO SUM.REQUESTS ''COUNT NUMBER OF TASK REQUESTS

IF REQUEST IS EXTERNAL, READ EXEC AND CLASS ''FROM A DATA CARD
REGARDLESS. ..' 'PROCESS THE REQUEST

IF OFFICE.STATUS=WORKING,
NOW INITIATE.TASK GIVING EXEC AND CLASS GO AHEAD

OTHERWISE...''FILE THE REQUEST UNTIL THE BREAK IS OVER
CREATE A TASK ''TO ACT AS A MEMO
LET WHO=EXEC ' 'RECORD WHO THE REQUEST WAS FOR
LET WHAT=CLASS ''RECORD THE TYPE OF TASK

LET DELAY.TYPE=0 ''RECORD THAT THE MEMO REPRESENTS A REQUEST
' 'RECEIVED CURING A BREAK PERIOD
FILE THE TASK IN THE REQUEST.FILE
‘AHEAD' DESTROY THE REQUEST
RETURN ''TO THE TIMING ROUTINE
END

'NO.EXEC'
'NO .WORKER'

'SEC.TEST'

-56=

ROUTINE TO INITIATE.TASK GIVEN EXECUTIVE AND CLASS
DEFINE EXEC,TIME AND SEC.TIME #S REAL VARIABLES
IF EXECUTYVE, 'NO EXECUTIVE .S ZEEN SPECIFIED, SELECT ONE
FOR EACH EXECUTIVE WITH STATE=IDLE AND POSITION GE NEED(CLASS),
FIND THE FIRST CASE
IF¥ YOUND, GO TO 'SEC.TEST'
ELSE...''NO EXECUTIVE AVAILABLE FOR THIS TASK
LET D=1 ''INDICATING THE TASK IS WAITING FOR AN EXECUTIVE
CRFATE A TASK LET WHO=0 LZT WHAT=CLASS
40 DELAY TYPE=D
FILE THE TASK IN THE REQUEST.FILE
RETURN ''TO THE TIMING ROUTINE
ELSE...''AN EXECUTIVE HAS BEEN REQUESTED

IF STATE - =IDLE, X
' 'REQUESTED EXECUTIVE IS BUSY, LOOK FOR SUBSTITUTE
CALL SUBSTITUTION GIVING EXECUTIVE YIELDING EXECUTIVE
THEN IF EXECUTIVE=0, '°'NC SUBSTITUTE CAN BE FOUND
GO TO NO.EXEC
ELSE ''AN EXECUTIVE IS AVAILABLE, IS A SECRETARY REQUIRED?
IF CLASS >= SECRETARY.REQUIRED.CLASS,
''A SECRETARY IS REQUIRED FOR THIS TASK
PERFORM SECRETARY.SELECTION YIELDING SECRETARY
iF SECRETARY=0, ''NO SECRETARY IS AVAILABLE FOR TASK
LET D=2 ''INDICATING THE TASK IS WAITING FOR A SECRETARY
GO TO NO.WORKER
ELSE...''DETERMINE TIME EXECUTIVE AND SECRETARY WORK
LET EXEC.TIME=EXPONENTIAL.F(TASK.TIME(CLASS),1)
LET SEC.TIME=EXEC.TIME + EXPONENTIAL.F(TASK.TIME(CLASS),1)*
SKILL.FACTOR (SECRETARY, CLASS)
LET STATUS=WORKING ''SET THE SECRETARY IN THE WORKING STATE
SCHEDULE A REVIEW (EXECUTIVE, SECRETARY) IN SEC.TIME MINUTES
REGARDLESS. ..
IF EXEC.TIME=0 ''EXECUTIVE IS WORKING ALONE AND MUST COMPUTE
"'HIS TIME
LET EXEC,TIME=2*EXPONENTIAL.F(TASK.TIME(CLASS),1)
REGARDLESS. ..
LET STATE=WORKY!G ''SET THE EXECUTIVE IN THE WORKING STATE
SCHEDULE AN EXECUTIVE.AVAILABLE(EXECUTIVE) IN EXEC.TIME MINUTES
IF CLASS > INDUCE,.TYPE, ''CHECK FOR AN INDUCED TASK
CREATE A REQUEST CALLED INDUCED
LET EXEC(INDUCED)=EXECUTIVE
LET CLASS(INDUCEI=CLASS-1
SCHEDULE THE REQUEST CALLED INDUCED IN UNIFORM.F(0.0,1.0,1) HOURS
REGARDLESS
RETURN ''TO THE TIMING ROUTINE
END

et SR Dottt o,

R T i i

Sl e BT

-57-~

ROUTINE SUBSTITUTION GIVEN EXEC YIELDING EXEC!

"'FIND THE FIRST IDLE EXECUTIVE WITH AT LEAST THF SAME RANK

FOR EACH EXECUTIVE WITH STATE~IDLE AND POSITION >
POSITION(EXEC), FIND UXECI-THE FIRST EXECUTIVE

IF NONE, LET EXEC1=0

REGARDLESS RETURN ''TO THE CALLIVG PROGRAM

END

ROUTINE FOR SECRETARY.SELECTION YIELDING SECRETARY
''FIND THE FIRST IDLE SECRETARY

FOR EACH SECRETARY WITH STATUS=IDLE, FIND THE FIRST CASE
IF NONE, LET SECRETARY=0

REGARDLESS RETURN ''TO THE CALLING PROGRAM

END

EVENT REVIEW GIVEN EXECUTIVE AND SECRETARY

IF STATE=~=IDLE, ‘'EXECUTIVE BUSY, CANNOT REVIEW JOB
CREATE A TASK
LET WHO=EXECUTIVE LET WHAT=SECRETARY
LET DELAY.TYPE=3 ''INDICATING A DELAYED REVIEW
FILE THE TASK IN THE REQUEST.FILE
DESTROY THE REVIEW
GO RETURN

ELSE...''EXECUTIVE REVIEWS SECRETARY'S WORK

IF RANDOM.F(2) LE SATISFACTORY,
' 'TASK HAS BEEN PERFORMED SATISFACTORILY
SCHEDULE A SECRETARY.AVAILABLE(SECRETARY) NOW
GO RETURN

ELSE...''TASK MUST BE CORRECTED
RESCHEDULL 1dIS REVIEW IN 1> MINUTES

'RETURN' RETURN '‘'TO THE TIMING ROUTINE
END

'AHEAD'
‘RETURN'

"RETURN'

-58-

EVENT EXECUTIVE.AVATLABLE GIVEN EXECUTIVE
LET STATE=IDLE ''PUT EXECUTIVE IN THE IDLE STATE
IF OFFICE,.STATUS —=WORKING,
''A BREAK PERIOD IS IN PROGRESS
LET STATE=BREAK ''PUT THE EXECUTIVE IN THE BREAK STATE
RESCHEDULE THIS EXECUTIVE.AVAILABLE AT TRUNC,F(TIME.V)+l
GO RETURN -
OTHZRWISE...''EXECUTIVE 1S FREE TO WORK ON BACKLOGGED TASKS
IF REQUEST.FILE IS EMPTY, GO RETURN
ELSE...''FIND TASKS NEEDING EXECUTIVE ATTENTION
FOR EACH TASK IM THE REQUEST.FILE WITH DELAY.TYPE = =2
FIND THE FIRST CASE ''NOT WAITING FOR A SECRETARY
IF NONE, GO RETURN ''NO BACKLOGGED EXECUTT'T. JOBS
ELSE...''EXAMPLE TASK
REMOVE THE TASK FROM THE REQUEST.FILE
IF DELAY.TYPE=0 OR DELAY.TYPE=l, ''WAIT IS TO START A NEW TASK
CREATE A REQUEST SUBTRACT 1 FrOY SUM.REQUESTS
SCHEDULE THE REQUEST (WHO, WHAT)NOW
GO AHEAD
ELSE ''TASK IS A SECRETARY REVIEW, THE VARIABLE 'WHAT"
''IS USED FOR THE SECRETARY IDENTIFICATION
SCHEDULE A REVIEW(WEO, WHAT)NEXT
DESTR2Y THIS TASK
RETURN ''TO THE TIMINC ROUTINE
END

EVENT SECRETARY.AVAILABLE GIVEN SECRETARY
LET STATUS=IDLE ‘'PUT SECRETARY IN THE IDLE STATE
IF OFFICE,STATUS - =WORKING,
''A BREAK PERIOD IS IN PROGRESS
LET STATUS=BREAK ''PUT THE SECRETARY IN THE BREAK STATE
SCHEDULE THIS SECRETARY.AVAILABLE AT TRUNC.F(TIME.V)+1
GO RETURN
ELSE...''SECRETARY IS FREE TO WORK ON BACKLOGGED TASKS
IF THE REQUEST.FILE IS EMPTY, GO RETURN
ELSE...''FIND TASKS NEEDING SECRETARIAL ATTENTION
FOR EACH TASK IN THE REQUEST.FILE WITH DELAY.TYPE=2,
FIND THE FIRST CASE
IF NONE, GO RETURN ''NO TASKS WAITING FOR A SECRETARY
ELSE...
REMOVE THE TASK FROM THE REQUEST.FILE

CREATE A REQUEST SUBTRACT 1 FROM SUM.REQUESTS

SCHEDULE THE REQUEST(WHO, WHAT)NOW
DESTROY THIS TASK

RETURN ''TO THE TIMING ROUTINE

END

-59-

EVENT END.OF .SIMIITATICH
NOW RLFORT
FOR I=1 TO EVENTS.V, ''EMPTY THE EVENTS LIST
UNTIL EV.S(I) IS EMPTY, DO
REMOVE THE FIRST J FROM EV.S(I)
GO TO REQ OR REV OR SEC OR EXEC PER I
- 'REG' DESTROY THE REQUEST CALLED J

GO LOOP
'REV' DESTROY THE REVIEW CALLED J
GO LOOP
'SEC' DESTROY THE SECRETARY.AVAILABLE CALLED J
GO LOOP
'"EXEC' DESTROY THE EXECUTIVE.AVAILABLE CALLED J
'LocP’ LOOP
RETURN ''TO THE TIMING ROUTINE
END

ROUTINE FOR OFFICE,STATUS
DEFINE T AS A REAL VARIABLE
LET T=MOD.F(TIME.V,24)
IF 12 = HOUR.F(TIME.V) OR 10.75 < T < 11 OR

15.75 < T < 16, RETURN WITH O ''INDICATING BREAK IN PROGRESS
ELSE RETURN WITH 1 ''INDICATING OFFICE NOW WORKING
END

ROUTINE REPORT
START NEW PAGE
PRINT 2 LINES WITH AVG.BACKLOG AND STD,BACKLOG THUS
AVERAGE BACKLOG IS ** %% TASKS
STD.DEV IS % %k
SKIP 3 OUTPUT LINES
BEGIN REPORT
BEGIN HEADING
PRINT 2 LINES THUS
ANALYSIS OF EXECUTIVE STATUS
IDLE WORKING BREAK
END ''HEADING
FOR EACH EXECUTIVE, PRINT 1 LINE WITH STATE.EST(EXECUTIVE, 1)/
TIME V, STATR EST(EXFCUTIVE,2)/TIME.V, STATE.EST(EXECUTIVE,3)/
TIME.V AS FOLLOWS
* dk %* Kk * Kk
END ''REPORT
SKIP 3 OUTPUT LINES
BEGIN REPORT
BEGIN HEADING
PRINT 2 LINES THUS
ANAL7SIS OF SECRETARY STATUS
IDLE WORKING BREAK
END ''HEADING

-60-

FOR EACH SECRETARY, PRINT ! LINE WITH STATUS .EST(SECRETARY, 1)/
TIME.V, STATUS.EST(SECRETARY,2)/TIME.V, STATUS.EST(SECRETARY, 3)/
TIME.V AS FOLLOWS
* ok * Ak * dek
END ''REPORT
SKIP 5 OUTPUT LINES
PRINT ! LINE WITH SUM.REQUESTS AND TIME.V LIKE THIS
**%¥REQUESTS WERE PROCESSED IN *¥#%% % STMULATED DAYS
RETUKY ''7TO CALLING PROGRAM
END

e e e F

-61-

Description of the Program

Rather than describe the SIMSCRIPT Il program in detail, we dis-
cuss only those statements that highlight SPL features mentioned in
previous sections. The purpose of the exaﬁplea is to show how various
languages implement eimulation programming concepts, not to describe
the languages themselves., Those who wish to understand the examples
and the languages more fully can do so by studying their respective
programming manuals.

The preamble to the subprograms that make up the SIMSCRIPT II
model declares the static system structure of the model, using the
entity-attribute-set organization framework; declares the events that
compose the dynamic structure; defines special properties of the two
structures, such as the mode of attributesg, the ranking of sets, and
the priority order of events; and specifies data-collection and analysis
tasks. The preamble is a set ofi global declarations that describe the
system being simulated to the SIMSCRIPT 1I compiler. In the case of
the data-collection and analysis statements and some debugging state-
ments not illustrated in the example, the preamble also specifies tasks
that the compiler is to perform.

The main routine provides overall simulation experiment control.
It calls on a programmer-written routine to initialize the static
system state and provide events for the timing routine that will set
the model in motion. The START SIMULATION statement removes the first
scheduled event (the initialized event with the earlicst event time)
from the file of scheduled events and starts the simulation by trans-
{erring program contro. to {it.

Eventually, either by running out of data or by programmer action,
all events are processed, no new ones are created, and control passes
from the timing routine (represented by the START SIMULATION statement)
to the statement that follows it. If there are no more data, the
sequence of experiments is terminated. If there are more data, the
system is initialized for another run,

The two routines MAIN and INITIALIZATION {llustrate the primary
features SIMSCRIPT Il provides for controlling simulation experiments.

-62-

In the next routine, an cvent named REQUEST, the ifeatures of
interest are the statements CREATE, FILE, and DESTROY. The CREATE
statement generates a new entity of the class TASK whenever it is
executed; this statement is SIMSCRIPT I!'s way of dynamically allocating
storage to system entities as they are rneeded. The DESTROY statement
takes a named entity, REQUEST in this exampie, and returns it to a
pool of free data storage, providing space for the subsequent creation
of additional entities. The FILE statement takes a named entity and
puts it in a set along with other entities. 1In this example an entity
nsmed TASK 18 put in a set named REQUEST.FILE.

In the routine INITIATE.TASK, the features to note are IF and FOR
statements that perform logical tests and searches, the statistical
function EXPONENTIAL.F, and the event-scheduling statements. The IF
and FOR statements are SIMSCRIPT II's way of dealing with the common
programming problem of determining the state of objects, or of the
system itself, and selecting among objects according to stated criteria.
The statistical function indicates the way sampling is done to repre-
sent statistically varying phenomena. The last argument in the
EXPONENTIAL.F function-call selects one of ten built-in number atreams;
if the argument is negative the antithetic variate of the generated
pseudorandom number is used. The SCHEDULE statements are the basic
‘mechanism for specifying events that are to occur in the future. When
a SCHEDULE satatement is executed, an entity, called an event notice,
of a specified type is put in a time-ordered file that is ordered by
the schedule time; when the simulation clock advances to this time,
the event is executed and is said to "occur."”

The event routines EXECUTIVE.AVAILABLE and SECRETARY.AVAILABLE
contain REMOVE statements. These statements retrieve entities from
sets according to criteria that are either implied or specified in
the preamble. One of the functions of the preamble is to specify such
things as the relatiornship that entities in sets have to one another.

The REPORT routine illustrates SIMSCRIPT II's facilities for
generating reports. N- output i{s collected, analyzed, or prir.ted
automatically by SIMSCRIPT II. Rather, the data-collection and anel-
ysis statements of the preamble and the report specification features
pictured are used to tailor reports to simulation experiment requirements.

63~

Naturally, this brief explanation has not made the program clear
in ali {its details -- that was not its intent. Rather, its purpose is
to show how SIMSCRIPT Il provides the simulation-oriented features dis-
cussed in Sec. IIL. All three of the foliowing examples follow this

same patteru.

SIMULA: A PROCESS-ORIENTED LANGUAGE

This example has been taken from Chapter 13 of [13].* Its model
is similar to those used in many SPL descriptions, and aside from

terminology, structurally very eimilar to the SIMSCRIPY II model just

presented. The program is quite different.

The Model

A job consists of machine groups, -each containing a given number
of identical machines in parallel. The syatem is described from a
machine point of view, {.e., the products flowing through the system
are represented by processes that are passive data records. The
machines operate on the products by remote accessing.

The products consist of orders, each for a given number of product
units of the same type. There is a fixed aumber of product types. For
each type there is a unique routing and given processing tL;ea.

For each machine group (number mg) there is a set availlmg] of
idle machines and a set guelggl, whizh 18 a product queue common to
the machines in this group. The products are processed one batch at
a time. A bateh consists of a given number of units, which must belong
to the same order. The batch size depende on the product type and the
machine group.

A product queue is regarded as a queue of orders. The queue dis-
cipline is essentially first-in-first-out, the position of an order in
the queue being defined by the errival of the first unit of that order.
However, 1f there i{s less than an acceptable batch of units of a given
order waiting in the queue, {.e., if the batch size 1s too small as
yet, the next order is cried. The last units of an order are accepted

*
Courtesy of the Norwegian Computing Center.

-64-

as a batch, even if the number of units is less than the ordinary
minimum batch size. If a machine finds no acceptable batch in the
product queue, it waits until more units arrive.

Although the individual pieces of product are "units," a unit is
not treated as an individuval item in the present model. For a given
order and a given step, i.e., machine group, in its schedule, we define
an opart (order part) record to represent the group of units currently
involved in that step. The units are either in processing or waiting
to be processed at the corresponding machine group.

An order is represented by a collection of opart records. The
sum of units in each opart is equal to the number of units in the
order. Each opart is a mewber of a product queus. If a machine group
occurg more than once {n the schedule of a product type, there may be
more than one opart of the same order in the product queue of that
machine group.
| Among the attributes of an opart record are the following integers:
the order number, ono, the product type, the step, the number of units
waiting, nw, and the number of units in processing, np. The flow of
units in the system is effected by counting up and down the attributes
nw and np of opart records.

An opart record is generated at the time when the first batch of
units of an order arrive at a machine group. It is entered at the end
of the corresponding product queue. The opart will remain a member of
this queue until the last unit has entered processing. It will drop
out of the system when the last unit has finished processing. A
Boolean attribute last is needed to specify whether a given opart con-
tains the last uuits of the order involved in this step.

At a given time the units of an order may be distributed or sev-
eral machine groups. There will be an opart record* for each of them.
An opart proceas* will reference the one at the next step, {.e.,
machine group, through an element attribute "successor." An order is

thus represented by a simple chain of opart records. The one at the

*
The terms 'record" and 'process" both refer to the data structure
associated with a particular group of units., See Lines 5-7, p. 66.

Ity Coc 0]

head has no successcr, the one at the tail has its attribute "last"

equal to true. The chain "moves' through the system by growing new

-

weads and drepping off tails.

que[i] quei k}

N

machine group i machine group j mechine group k

Fig. 9 -- Flow of products through the shop

Figute S shuws thiree consecutive steps in the schedule of products
of a given type. A product queue consists cf{ oparts (circles) connected
by vertical lines. Oparts belcnging to the same order are connected by
horizontal lines. Machines are represented by squares. A dotted line
between an opart and a machine indicates a batch of units in processing.
When the batch of the third opart in que_ i) is finished, a new opart

receiving this batch will be generated and included in que{k].

The Program

The following program fragment is pact of the head of a SIMULA

block descrilbing the above system. A machine activity is given. For

vt 4l

e

r‘r

e

I

T ——

WA e e

-66-

clarity, only statements essential for the behavior of the model are

shown. The program is not complete. Underlined words are SIMULA

kevwords.
l. set array que, avail [l:nmg); integer U;

2. integer procedure nextm (Lype, atep); integer type, step,....;
3. ieal preccedure ptime (type, step); integer type, 8tep;....;
4. integer procedure bafze (type, mg); integer type, mg;....;
5. activity opart (ono, type, step, nw, np, last, successor);
6. integer ono, type, step, nw, np;
7. Boolean last; element successor;
8. activity machine (mg); infteger mg;
9. bezin integer batch, next; Boolean B; element X;

10. serve: X:=head (quelmg]);

11. for X:=suc (X) while exist (X) do

12, inspect X when opart do

i3. begin batch :=bsize (type, mg);

14, if nw < batch then begin

15. if last then batch :wnw elde go to no end;

16. nw :®nw - batch; np :anp + batch;

17. if lastAnw = 0 then remove (X);

18. activate first (avail{mg));

16. hold (batch x ptime (type, step)xuniform (0.9, 1.1, U));

20, np := np - batch; B :« lastAnw + np = O,

21. next = nextwm (type, step);

2. inspect successor when cpart do

23. begin nw := nw + batch; last :e B end

24, otheruvise begin successcr :=

25. new cpart (omo, type, step + 1, batcu, 0, B, none);

26. {nclude (successor, que {next]) end;

27. activate first (avail [next]);

238. 82 _to serve;

29. no: end;

30.

wait (avail [mg]); remove (current); go to serve end;

e mRE T e e - - R = . c-

Description of the Program

Line 1 The sets contain oparts and idle machines, respectively.

The variable U defines a pseudorandom number stream

(line 19).

Lines 2-4 The functions '"mextm'" and "ptime' specify the next
machine group and the current processing time for a
given product type and step in the schedule. ‘'bsize"
determines the batch 2ize, given the prnduct type and
machine group number. ‘the three functions are left

unspecified, {.e., their programs are not shown.

Lines 5-7 The meanings of the attributes of opart processes have
been explained in the model description. The activity
*
bedy 1is a dummy statement: an opart process iS a data

record with no associated actions.

Line 8 The machine activity extends to and includes line 30,
The parameter mg is the machine group number. Machines

belonging to the same group are completely similar.

Line 9 "batch'" is the size of the current batch of units,
"next" is the number of the next machine group for the
units currently being processed, the meaning of "B’ {is

explained below (iine 20), aud "X'" {s used for scanning.

Line 10 Prepare for scanning the appropriate product queue.

Select the first opart in que(mg)].

Line 11 Scan. Tne controlled statement is itself a connection

*ok
statement (lines 12-29),

*
in the SIMULA nomenclature, a process is a dynamic¢ structure of
an activity, 1.e., an activity is a prncess prototype.

*

“Connection' is a means of accessing local variables from out-
aide the block in which they are defined. In this instance, attributes
of the oparts stored in queimg] are being referenced.

T

S

RO

-68-

Line 12 lThere is only one cennection branch (lines 12-29),
Since a product queue contains only opart records,
connection must become effective. The attributes of
the connected opart are accessible inside the conner-

tion block.

Line 13 Compute the standard batch size,
lines 14, 15 A smaller batch accepted only if the opart i& at the

|) tail end of the chain. 1In this case '"nw' {8 nonzero
: (ci. line 17), and the units are the last ones of the
order. Otherwise the next cpart is tried by branching

to the end of the set inspection loop.

Lire 16 "batch'" units are transferred from the waiting state
to the in-processing staie by reducing nw and increasing

np.

Line 17 The opart is removed from the product queue when pro-

cessing has started on the last units of the order.

Line 18 The current machine has found an acceptable batch of
units, and has updated the product queue. There may
be enough units left for another bat-h; therefore the
next available machine in this group (wg) 18 activated.

If there is no idle machine, the set avail[mg] is empty

and the statement has no effect. See alao lines 27
and 30.

Line 19 The expectec processing time is proportional to the
number of units in the batch. The actual processing
time is uniformly distributed in the interval + 10%

around the expected value. The sequence of pseudo- |

random drawings is determined by the initial value of
the variable U,

Line 20 Processing is finished; np is reduced. The Boolean

variable B gets the value true if and only {f the last

Line 2]

Line 22

Line 23

Lines 24, 25

Line 2%

«69-

units ot an order have now been processed, 1n that

case the connected opart should drop off the chain at
this system time (see comments to line 28). It follows
that B is always the correct (next) value of the attrib-

ute "last'" of the succeeding opart (lines 23, 25).

Compute the number of the machine group (Lo receive the

current batch of units.

The element attribute “'successor' is inspected. The

counection Statement, lines 22-26, has two branches.

This is a connection block, executed if ''successor"
refers Lo an opart. The latter is a member of the
product queue of the next machine group. It receiv.s
the processed batch of units, which are entered in the
waiting state. The attribute "laet'" is updated. Notice
that the attributes referenced in this inner connection
block are those belonging to the successor to the opart

connected outside (X).

If the connected vpart (X) is at the head of the chair,
the value of "'successor'" is assumed equal to none, and
otherwise branch is taken. A new opart is ¢cpnerated,
and a reference to it is stored in '"successor.'" The
new opart has the same "ono" and ''type' as the old one,
and 1ts "'step' is one greater. It has 'batch" units

in the waiting state and none in processing. Its
attribute ''last' is equal o 'B". Since the new opart
has become the head of the chain, its 'successor"
should be equal to none. Notice that the initfal
value of "last” may well be true, e.g., if the order

contains a single unit,

The new opart is included at the end of the product

queuve of the next machine group.

) 4 S e i — . —— Al _————— - — = — = —rshs —err—— e T SRR e R e - -

Line 27 The current machine has now transferced a batch of

units to the product queue of next machine group.

| Therefore the first available machine (if{ any) of that
) greup is activated, If that machine finds an accept- {
' able batch, it will activate the next machine in the

same group (line 1u). This takes care of the case in

which the batch transferred is larger than the standard !

batch size of the next machine group for this type of
product.
£
Line 28 The machine {rmediately returns to the beginning of 1

its operatiuvn rule to look for another acceptable batch,
starting at the front end of the product queue. At

this point, if B is true, the connected opart is empty

- of units and will not be referenced any more. We can
regard it as having dropped off the chain. It {s easy
to demonstrate, however, that the opart wiil physically

leave the system, {.e., that its reference count is

i dar e kil Al alh

reduced to zero. The possible stored references are:
(1) The variable X and the connection pointer "opart"
; of this machine or another one of the sawme group. The
RO lo statement leads out of the connection block,
which deletes the connection pointer. X is given

ancther value in line 10. Any other machine referencing

this opart wouid have to be suspended in line 1Y, which
is impossible since np is zero (cf. the second atate-

ment of line 16).

(2) Set membership in que{mg]. The opart must have
been remcved from the queue (by this machine or another
one) since 'last" {s true and nw is now zero (line 17). §
(3) The attribute "successor'” of the opart preceding %
this one in the chain. The first opart of this order
to enrer the systems has no predecessor. Provided
that this first one drops cut when I. is empty, our

conclusion follows by induetion (see below).

am ey o g

g
5

T NI " MPTURITPR ™0, 40 1. gy wotyrmms s | mag. - ba

«71-

Line 29 The end of the connection block and of the statement

controlled by the for clause in line 1ll.

Line 30 If, after having searched the entire product queue,
the machine has fcund nc acceptable batch, it includes
i*self in the appropriate "avail' set and goes passive.
Its local sequence control remains within the wait
statement as long as the machine is in the paesive
state. When the machine {8 eventually activated (by
anothe1r machine: line 27 or 18), i removes itself
from the "avail" set and returns to scan the product
queue. The "avafil' sets ate operated ia the f{rst-in-

first-out fashica,

The mechanism for feeding orders into the system is not shown
above. This is typically done by the Main Program or by one or more
"arrival' processes, which generate a pattern of orders, either spec-
ified in detail by input data, or by random drawing according to given
relative average frequencies ot product types and order sizes.

An arrival pattern defined completely '"at random" is likely to
cause geverely fluctuating product queues, 1{f the loau on the system
is near the maximum, The following is a simple way of rearranging
the input pattern 8o as to achieve a more uniform load. The algorithm
is particularly effective if there are different '"bottle-necks' for

the different types of products,.

31. activity arrival (type, mgl, pt);
32. integer type, mgl; real pt;

33. begin integer units;
34. loop: wselec: (units, type); 1d := id + 1;

35. include (new opart (id, type, 1, units, 0, true,
none), que(mgl]));

36. activate first (avail [mgl]);

37. hold (ptxunits); go to loop end;

38. procedure select (n, type); value type; integer n, Lype; ...;
39. integer id;

e U < gt e

Al

Ao

i

LI I g e

Lt e

Syt

JRTRIT [RTE

W

TR

Line 31

Line 34

Line 33

Line 36

Line 37

«72-

There will be vne "arrtval" process for each product
Lype. mgli"

in the schedule of this type of product. "pt" is a

1s the number of the first machine group

stipulated ''average processing time' per unii, chosen
80 as to obtain a wanted average throughput of units

of thia type (see line 37).

The procedure ''select' should choose the size, 'units,"
of the next order of the given type, e.g., by random
drawing or Ly scarching a given arrival pattern for

the next order of this type. ''id" is a nonlocal integer

variable used for numbering the orders consecutively.

An order is entered by geuerating an opart record that
contains all the unita of the order. The units are
initially in the waiting state. The order is filed
into the appropriate product queue. The set member-
ship is the only reference tu the opart stored by the
arrival process, Consequently, this opart will leave
the system when it becomes empiy of units, as assumed

*
earlier (line 28).

A machine {n the appropriate group is notified of the

arrival of an order.

The next order of the same type is scheduied Lu ariive
after a waiting time proportional to the size of this
order, which ensures a uniform load of units (of each

type).

The "output' of units from the system can conveniently be arranged

by routing all products to a dummy machine group at the end of the

schedule.

It contains cne or more ''terminal machines'" (not shown here),

*In SIMULA, process records that sre nc lenger needed, i.e., are
not referenced by any other process, are automstical'’y returned to
available storage. This contrasts with the DESTROY statem.nt used by
SiMSCRIPT for the same task.

-73-

which may perform observational functions such as recording the com-
pletion of orders.

The dynamic setup of the system is a separate task, since ini-
tially the Main Program is the only process present. The Main Program
should generate (and activate) all processes that are "permanent" parts
of the system, such as machines, arrival processes, and observational
processes. The system can be started empty of products. However, a
"steady'" state can be reached in a shorter time if orders (opart
records) are generated and distributed over the product queues in
suitable quantities.

Experimental results are obtained by observing and reporting the
behavior of the system. Three different classes of outputs can be

distinguished:

(1) On-line reporting. Quantities describing the current state

of the system can be printed out, e.g., with regular system
time intervals: lengths of product queues in terms of units
waiting, the total number of units in the system, the number
of idle machines in each group, etc. A more detailed on-

line reporting may be required for program debugging.

(2) Accumulated machine statistics. By observing the system

over an extended period of system time, averages, extrema,
histograms, etc., can be formed. Quantities observed can
be queue lengths, idle times, throughputs, and so on. The
accumulation of data could be performed by the machine

processes themselves,

Example. To accumulate . frequency histogram of the i{dle
periods of different lengths for individual machines, insert
the following statements on either side of the "wait' state-

ment of line 30:

"tidle := time' and "histo(T, H, time - tidle, 1),'" where
"tidle" is a local real variable, and T and H are arrays.
T{i] are real numbers that partition observed idle periods

(time - tidle) into classes according to their lengths, and

-74-

H{i] are integers equal to the number of occurrences in

each class. The system procedure "histo'" will increase H{i]
by one (the last parameter), where i is the smallest integer
such that T[i] is greater than or equal to the idle period,
“time -~ tidle.” T and H together thus define a frequency
histogram, where T{i] - T{i - 1] is the width of the i'th

column,, and H{i] is the column length.

(3) Accumulated order statistics. During the lifetime of an

opart record, the "history" of an order at a given machine
group can be accumulated and recorded in attributes of the

opart. The following are examples of data that can be found.

The arrival of the first unit of the order at this machine group
is equal to the time at which the opart is generated. The departure
time of the last unit is equal to the time at which the variable B
gets the value true (line 20 of a machine connecting the opart),

The sum of waiting times for every unit of the order in this queue
is equal to th2 integral with respect to system time of the quantity
. nw (which is a step function of time). The integral can be computed

' The statements ''nw := nw + batch"

by the system procedure "accum.'
(lines 16 and 23) are replaced by "accum (anw, tnw, nw, + batch),"
where the real variables anw and tnw are additional attributes of the

' respectively. The

opart process, with initial values zero and "time,'
procedure will update nw and accumulate the integral in anw. It is
equivalent to the statements: anw := anw + nw x (time - tnw);

tnw := time; nw = nw + batch.

It is worth noticing that arrival times, waiting times, etc.,
cannot in general be found for individual units, unless the units are
treated as individuals in the program. Neither can the maximum waiting
time fcr units in an order. The average waiting time, however, is
equal to the above time integral divided by the number of units in
the order.

The complete history of an order in the shop is the collection
of data recorded in the different oparts of the order. These data

can be written out on an external storage medium at the end of the

1 apm———

-75-

lifetime of each opart. That is, an output record could be written
out before line 23, whenever B is true, containing items such as the
order numnber, ono, the sum of waiting times, anw, the current system
time, etc. When the simulation has be;n completed, the data records
can be read back in, sorted according to order numbers, and processed
to obtain information concerning the compiete order, such as the total
transit time, total waiting time, etc,

The same information can be obtained by retaining the complete
apart chain in the system until the order is out of the shop; however,
this requires more memory smace. The chain can be retained by making
the arriva! process include the initial opart in an auxiliary set, or
by having a pointer from the opart currently at the head of the chain
back to the initial one. The opart chain can be processed by the ter-
minal machine. (The order is completely through the shop at the time
when the attribute "last'" of the opart in the terminal product queue
gets the value true.) In the former case the terminal machine should
also remove the appropriate opart from the auxiliary set, in order to

get rid of the opart chain.

CSL: AN ACTIVITY-ORIENTED LANGUAGE

i 4
This example has been taken from [11]. While unlike the two
previous models, it is indicative of the kinds of models industrial

firms construct to solve practical operating problems.

The Model

This example is a simulation of the operation of a simple port,
which consists of an outer deep-water harbor and a series of berths.
Each berth can hold one large ship, which can berth only at full tide,
or three small ships, which can also move at half-tide. The tide runs
in a 12-hour sequence, out for seven hours, half-tide for an hour.

A distribution of unloading times for large ships is available
as data, and unloading times for small ships are normally distributed.

Interarrival times are negative exponentially distributed.

- ,
Courtesy of the IBM United Kingdom Data Centre.

The program is to record the waiting times of large and small
ships and the times for which the berths are empty. The purpose of
the simulation might be to study the operation as a basis for exper-
iments to find a more efficient way of scheduling the working of the
port, or to determine the effect of providing extra bertha. The

scheduling used in this model is a simple first-in first-out scheme.

-77~

The Program

OO0 OO0

OO0

oo oOn

PORT SIMULATION EXAMPLE PROGRAM

CONTROL

CLASS TIME SHIP.l100 BERTH.4
DEFINE CLASSES OF 100 SHIP's AND 4 BERTHS

SET OCEAN HARBOUR LARGE SMALL FREE FART FULL

SET SHIPIN(BERTH)
DEFINE THE SETS REQUIRED, INCLUDING AN ARRAY OF A3
MANY SET" .3 THERE ARE BERTHS, SHIPIN(X) WILL HOLD
A LIST O: THE NAMES OF SHIPS IN BERTH X

NAME S B

INTEGER TIDE TLARGE TSMALL

TIME CHANGE ARRIVE FIKISH
DEFINE TWO NAME VARIABLES, AN INTEGER VARIADLE TO
SHOW THE STATE OF THE TIDE, AND ADDITIONAL TIME
CELLS. ALSO TWO INTEGERS TO HOLD TOTAL ARRIVALS
OF LARGE AND SMALL SHIPS RESPECTIVELY.

HIST LARGEQ 25,2,5 SMALLQ 25,2,5 1DLE 25,2,5

HIST UNLOD 20,3,5
DEFINE THE HISTOGRAMS REQUIRED. LARGEQ HAS 25
CELLS WLITH RANGE 0-4 (MIDPOINT 2), 5-9,10-14 ETC.
UNLOD WILL CONTAIN TnE UNLOADING TIME DISTRIBUTION
FUR LAPGE SHIPS.

INITL

ACTIVITIES

TIDES ARRVL BTML BTHS DBTH ENDING
SPECIFY THE LIST OF SECTORS (ACTIVITIES)

END

SECTOR IRITL
T,FINLISH»24000
T.CHANGE=7
T.ARRIVE=0
TIDE=0
THILS SECTOK IS ENTERED ONLY ONCE AND SETS \P THE
INITIAL STATE OF THE MODEL. T.FINISH REFERS TO THE
TIME AT WHICH STMULATION IS TO FINISH, T.CHANGE TO
THE TIME AT WHICH THE TIDE NLKT CHANGES AND TIDE
SHOWS THE STATE OF THE TIDE AS FOLLOWS -
0 TIDE OUT 1 HALF IN 2 TIDE FULL 3 HALF IN
T .ARRIVAL SHOWS THE TIME BEFGRE THE NEXT ARRIVAL OF
A SHIP AT THE PORT.
FOR X = 1,SHIP
SAIP.X INTO OCEAN
FOR X = 1,BERTH
BERTH.X INTO FREE
T,BERTH .X=0

R

kI LSRG o

il

]

20

30

-

[+ e o]

15
100

-78-

INITIALLY ALL SHIPS ARE IN UCEAN

AND ALL BERTHS FREE
READ (5,10) UNLOD

READ IN THE DISTRIBUTION GIVEN AS DATA.
FORMAT (14)
END

SECTOR TIDES
THIS SECTOR 1S CONCERNED WITH TIDE CHANGES
I.CHANGE EQ 0
WHICK CAN ONLY OCCUR WHEN THEY ARE DUE
TIDE+1
GOTO (10,20,10,30) TIDE
CHANGE TIDE MARKER AND RESET TIME CELL FOR NEXT
CHANGE
T .CHANGE=1
GOTO 60
T.CHANGE=3
GOTO 60
T .CHANGE=7
TIDE=0
DUMMY
AND RETURN TO CONTROL SEGMENT
END

SECTOR ARRVL
THIS SECTOR IS CONCERNED WITH ARRIVALS OF SHIPS
T.ARRIVE EQ ¢
WHICH CAN ONLY OCCUR WHEN ONE 1S DUE
FIND S OCEAN FIRST &l5
S FROM OCEAN INTO HARBOUR
T1.5=0
FIND THE FIRST SHIP IN THE OCEAN MOVE IT TO THE
HARBOUR AND ZERO ITS TIME CLL
T .ARRIVE=NEGEXP(7)
SAMPLE THE TIME TO THE NEXT ARRIVAL
UNIFORM(SYSTEMSTREAM) GT 0.75 &13
S INTO LARGE
TLARGE+1
GOTO 14
S INTO SMALL
TSMALL+1
GOTO 14
A QUARTER OF THE SHIPS ARE LARGE, OTHERS SMALL.
GO BACK TO START OF SECTOR IN CASE NEGEXP HAS
GIVEN :. ZERO SAMPLE
WRITE(6,100) T.FINISH,CLOCK
LINGEN

-79-

1 NOT ENOUGH SHIPS IN MODEL - SIMULATION TERMINATED
2 TIME LEFT d%%%%x TIME ELAPSED k*#w#%
T.FINISH = O

C IF A SHIP IS NOT FOUND IN OCEAN, WRITE MESSAGE
C AND SET T.FINISH SO THAT SIMULATUON CEASES IN
C SECTOR ENDNG.
GOTO ENDNG.
END

SECTOR BTHL
c THIS SECTOR IS CONCERNED WITH BERTHING LARGE SHIPS

TIDE EQ 2

FIND B FREE aNY

FIND S HARBOUR FIRST

S IN LARGE

C THE TIDE MUST BE FULL, THERE MUST BE A FREE BERTH
C AND A LARGE SHIP WAITING IN THE HARBGUR

ENTER -T.S,LARGEQ
C WHEN THE SHM1¥P ENTERED THE HARBOUR ITS TIMFE CLLL
C WAS SET TO ZERO. SINCE THEN IT HAS BEEN REDUCED
C AT EACH TIME ADVANCE AND SO -T.S IS THE WAITING-
C TIME OF THE SHIP. THIS IS RECORDED IN THE
C HISTOGRAM

B FROM FREE INTO FULL

S FROM HARBOUR INTO SHIPIN(B)
C THE BERTH TS NOW FULL AND THE SHIP MOvi> FKOM THE
C HARBOUR INTO THE BERTH

ENTER -T.R,IDLE
C JUST AS -T.S SHOWED THE SHIPS WAITING TIME SO -T.B
c SHOWS THE BERTH IDLE TIME

T .S=SAMPLE (UNLOD)
C SAMPLE AN UNLOADING TIME FOX THE SHIP

RECYCLE
c CAUSE ANOTHER PASS THROUGH THE SECTORS (BECAUSE
c MORE THAN ONE SHIP MIGHT BERTH AT THE SAME TIME)

END

SECTOR BTHS
C THIS SECTOR IS CONCERNED WITH BERTHING SMALL SHIPS
C AND 1S SIMILAR TO THE PREVIOYS ONE

TIDE GE 1

FIND S HARBOUR FIRST

S 1Y SMALL

FIND B PART ANY &20
c THE SHIP IS MOVED TO A PARTLY FULL BERTH IF THERE
c IS ONE

SHLPIN(B) EQ 2 &30

B FROM PART INTO FULL *
c IF THE BERTH ALREADY HAS TWO SHIPS IN IT, IT NOW
C BECOMES FULL

GOTO 30

2 oAy e e

s Ty

20

OO0 N0

00

et Ee KXo

|
l
u}
|
.‘1
|

- 80-

FIND B FREE ANY
B FROM FREE INTO PART
IF NO PARTLY FULL BERTH WAS FOUND, SEEK A FREE
BERTH WHICH NOW BECOMES PARTLY FULL
ENTER -T.B,IDLE
RECORD IDLE TIME
ENTER -T,S, SMALLQ
T.S=DEVIATE(5.0,20.0)
S FROM HARBOUR INTO SHIPIN(B)
RECYCLE
AS IN BERTHING OF LARGE SHIPS
END

SECTOR DBTH
THIS SECTOR 1S CONCERNED WITH DEBERTHING
TIDE NE O
THE TIDE CANNOT BE OUT
FOR X = 1,BERTH
DEAL WITH EACH BERTH SEPARATELY IN TURN
FOR S SHIPIN(X) FIRST &15
T.SLE O
CHAIN
S IN SMALL
OR S IN LARGE
TIDE EQ 2
DUMMY™
FIND A SHIP IN THE BERTH WHICH IS READY TO LEAVE
(TIME CELL HAS BFEN REDUCED TO ZERO OR BEYOND BY
TIME ADVANCE) AND WHICH CAN DO SO AT THE PRESENT
STATE OF THE TIDE. IF NONE - GC ON TO TRY THE
NEXT BERTH
RECYCLE
SET RECYCLE SWITCH TO TRY SECTORS AGAIN BEFGRE
TIME ADVANCE (IN PARTICULAR BERTHING SECTORS
MAY NOW SUCCEED)
S FROM SHIPIN(X) INTO OCEAN
S IN LARGE &16
S FROM LARGE
T.BERTH,X=0
BERTH.X FROM FTULL INTO FREE
GOTO 15
IF SHIP LEAVING 1S LARGE BERTH IS NOW FREE.
2BERO ITS TIME CELL SO THAT IDLE TIME CAN BE
COMPUTED LATER. THEN GO TO NEXT BERTH.
S FROM SMALL
SHIPIN(X) EQ 0 &17
BERTH.X FROM PART INT:. 7 <E
TO.BFRTH.X=0
GOTO 15 .

*DUHHY {8 a statement that does nothing shen executed.

A L

W

s b s St

-8l-

)

SIMILARLY IF SHIP LEAVING IS SMALL AND NOW THERE
ARE NONE LEFT IN iHE BERTH.
7 SHIPIN(X) EQ 2 &20
BERTH.X FROM FULL INTO PART
GOTO 20

- OO0
alin DL SR T TRy

o LF SMALL SHIP IS LFAVING AND BERTH WAS PREVIOUSLY
C FULL, RECORD FACL THAT IT IS NOW ONLY PARTLY FULL
o IN EITHER CASE GO BACK TO SEE IF ANY MORE SHIPS
C ARE READY TO LEAVE THIS SAME BERTH
: 15 DUMMY
DUMMY
END
SECTOR ENDNG
C THLS SECTOR IS CONCERNED WITH OUTPUT OF RESULTS
T.FINISH EQ O
c WHICH IS TO BE DONE AFTER TIME HAS BEEN ADVANCED
C SO THAT T,FINISH HAS BECOME ZERO
WRITE(6,100)

100 LINGEN SKIP PAGE
1 PORT SIMULATION RESULTS
WRITE(6,101)
i 101 LINGEN SKIP 2
1 TOTAL LARGE SMALL
WRITE(6,102) {TLARGE+TSMALL) ,TLARGE ,TSMALL
102 LINGEN SKIP 1
1 wkkak dokkkk dkkak SHIPS ENTERED HARBOUR
t J=0
FOR S HARBOUR
S IN LARGE &10
! J+1
10 DUMMY
: K=HARBCUR-J
WRITE(6,103) (J+K) ,I K
103 LINGEN SKIP 1
' 1] ki dobnk dekk% SHIPS LEFT IN HARBOUR

" e, TR ¢ e ke s

LaLARGE-J
M=SMALL-K
WRITE(6,104) (L4+¥) ,L M
104 LINGEN SKIP 1
1 Awik# dockk dokkkr GHIPS STILL IN BERTHS
TLARGE-J
TSMALL-~K
c CALCULATE NUMBERS OF SHLPS THAT HAVE LEFT HARBOUR
WRITE(6,100)
WRITE(6,200)
200 LINGEN SKIP 2
1 CELL RANGE LARGEQ SMALLQ IDLETIME
Y=0
J=0

K=(

[Rar S g R N

EE LIAHS

Inpmeme

o gy

|
g
§
|

:;

C
C
c
c
c

300

400

-82-

FOR X=1,25
WRITE(6,300) Y,(Y+4) ,LARGEQ(X) ,SMALLQ(X) , IDLE(X)
Y45
J+LARGEQ(X)
K+SMALLQ(X)
DUMMY

LONGL=TLARGE -J

LONGS=TSMALL- .
TLARGE NOW HAS TOTAL NUMBER OF LARGE SHIPS WHICH
HAVE LEFT THE HARBOUR. J HOLDS THE TOTAL NUMBER
OF ENTRIES IN THE HISTOGRAM. THEREFORE TLARGE - J
IS THE NUMBER OF SHIPS WHOSE WALTING TIMES WERE
OUTSIDE THE RANGE CF THE HISTOGRAM

WRITE(6,400) LONGL,LONGS

STOP
LINGEN SKIP 1
deick T(dekk edrdeik seddodok ik
LINGEN SKIP 1
OVER Aedek ok *ewdoirk
END

ATTNERE) | 3¢

e g P AR T

e

TR AR s LA FE ¢ P,

REETe

Description of the Program

s

The comments embedded in the program document its micro behavior
rather well. What is not obvious from the program is its macro
behavior, i.e., how activities are controlled, initiasted, and performed.

The CONTROL segment of the program has four tasks: it defines
global variables, it defines functions, it detinea global FORMAT and
LINGEN statements, and it specifies activities through the sector list,
Of these, only the last is important to us now. Note that the CONTROL
segment of CSL is similar to the SIMSCRIPT Il preamble.

A short discussion of how time ia represented within CSL models
and how almulation is carried out should clarify the operations of
the program. :

Interactions in a real system are dependent on time and the system
moves through time. It is therefore necessarv to have some means of
representing time in a simulacion program. Time values are held in
variables called T-celis. T-cells may arise in two ways; they are
either defined as integer cells or arrays, or as cells attached to
their names with "T'", For example, if the class of ships is defined

thus:

CLASS TIME SHIP,.100

then this serves to define entity names as above, and also 100 T-cells
addressed as T.SHIP.1l,..., T.SHIP.,100. An array of integer T-cells

could be defined as
‘TTMFE. BREAKDOWNS (10)

T-cells have all the properties of other integer cells and may par-
ticipate normally in arithmetic and tests. Their time-advancing
properties are additional.

Time advancement is performed in a repeated two-stage process
as follows. Stage 1 scans all T-cells to find the smallest positive
nongero value in any cell, This is regarded as the time of the next
event, or the time at which an event is next able to arise in the
system. The program is now advanced te this position in time by sub-

tracting this value from all T-cells. This completes stage 1.

b Ll

In stage 2 the program itself is entered. The user must specify
his program as a series of individual routines called activities, and
phase 2 consiatg of an attempt to obey each of the activities in turn.
Each activity describes the rules relating to the performance of one
kind of activity {n the system; for example, that of unberthing a ship.

The program statements in an activity normally begin with a series
of tests to find out whether the activity can be {nitiated; these may
be teats on T-cells to see whether, for instance, any snips are due to
ieave a berth. Following the opening tests are the statements that
actually carry out the work of the activity, e.g., arithmetic and set-
manipulation statements.

The actual questicn of division of the program into activities
is governed by individual programming style. The activities must
clearly cover all possible courses of action available in the system,
but this is not the whole story. For instance, in the example program
the bercthings of large and small ships are handled as separate activ-
ities. The orders in these are largely duplicate; should they there-
fore be combined in one? This is purely a question of taste and as
such is unresolvable on logicel grcunds.

The structure of a CSL test can now be more fully explained. The
most frequent use of a test is at the start of an activity; under
these circumstances, 1f the test fails, {t may be zssumed that the
activity cannot be carried out.

For this reaeon, the customary operaiion of computer test ordere
has been changed; a test failure leads to tianefer of control, usually
to the next activity, whereas in the case of success the next state-
ment is obeyed. To provide wore detailed control of flow a statement

label may be specified; e.g.,

DATA (10) EQ 4 & 87.

In event of failure, control goes to the statemsnt lnbeled* 87.

The second phase, it will be noticed, consists of an attempt to
obey all the activitiea specified in the system. Apparently, this
involves much redundant effort, as at most points i{n time one or twe

activities ouly are likely to be entered successfully and the rest

*An & before a number indicates that it is & statement label.

-85«

will be abandoned after a test or two; but a closer analysis shows j

§ that computing time to carry out work of this kind must be expended
in any sfmulation programming system, whether {t is carried out under

: direct control of the programmer or not. It seems, therefore, most
useful to make the necessary testing explicit and under the user's

. control.

When all the activities have been entered, the normal procedure
ig that a return to phase 1 takes place and time {g further advanced.

This procedure is not in itself sufficient; activities are interlinked

SR T T IR e Y

; and the completion of ore ectivity may enable the {nitiation of another.

For example, the unberthing of ore ship will free a berth that another

HHO b s

may use. The user can control this in two ways: (f{irst, by careful
choice of the order in which activities are specified, and second, by
the use of a special recycling device to cause further attempts to

obey the activities to be made.

GP3S/360: A TRANSACTION-FLOW LANGUAGE

A simple harbor model is used to illustrate GPSS. While not
identical to the CSL model, the match is close enough to provide some
feel for how the languages represent similar systems. The example is
taken from [2&].*

; The Model

Ships arrive at a small port with a known arrival pattern., While
in port, the ships unload some of their cargo, taking a certain amount
of time, and then proceed on their voyages. There being only one pier,
8 ship must wait if it arrives while another is unloading. If several

ships are waiting, the one that arrived first will be unloaded first,

e ey e a

Of interest here i{s the total smount of time a ship will spend in port, .

including the time spent waiting for the pizi to become availadle.

w
Reprinted by permiseion from (H20-0304-1 General Purpose Simula-
tion System/360 Introductory User's Manual), @ (1967), end (H20-0186-1
General Purpose Simulation System/36C Application Description), @ (1966),
by International Business Machires Corporation.

I S Y

it

3
£
3
v

"

I,

I IR R T T T R S

A

R S

ill

FPus s

L | Y

1 s

e

B s BT TS

-86-

The gross behavior of the system

hips arrive at harbor in
specified arrival pattern.

Arrival Average time between

arrivals {s 32 hours.

1

If pier 1s free, dock ship.
Weiting If pler is busy, joiun the
line of waiting shi-~s.

Begin to unload cargo.
Seize Facility Unloading time i8 25 + 20
Hold for Process hours. When finiashed,
Release

ship leaves pier.

Record time ship spent
Statistics in harbor.

Leave Syatem Ship leaves harbor.

The Program

Unlike most SPLs, GPSS has two representatione, a flowchart ard

a coding form language. The flowchart model of the simple harbor
system is shown in Fig. 10,

The coding form, or statement language model, is shown in Fig.

11. There is & direct correspondence between its statements and the

flowchart symbolsg of Fig. 10.

can be pictured quite siamply as:

Lo AL 6 sam ¢

ORIV AT

RO N X [T TYRTT e

PRV L

~87-~

' o
L] T

o Rl -

Generate transactions (ships) at an
average rate of one every 32 time units

(hours) . 3
ueue up trangaction (ship) in queue 1.)
QUEVE 1f facility 1l (pier) is busy. .
SE1ZE \ Seize facility l(pier) 1f it is free or, :
- when {t becomee free, make it busy.
Depart from queue 1, since tvansaction
DEPART (shLP) 18 no longer waiting for facility
1 (pier).
-
Advance time while this transaction is
ADVANCE delayed (ship unloaded) for 25 + 20 time
25 + 20 units (hours).
RELEASE \\:// Release facility 1 (pler), making it free.
Tabulate in Table 10 the total time spent
TABULATE 10 by transaction (time ship was in harbor).
—
]
TERMI -
NATE 1 Turminate transaction (ship leavee harbor).

p Fig. 10 -- GPSS flowchart for the simple harbor system

‘JI\I\IJ] P]“JI}
) 11 1 qﬂﬂﬂw + 1
([4 -] A lLL||L|L||||*|Jl||..|
3 Y _
F]
H L & i _
H It)]
| 3 P! . 1 1
i —
.“LLAL!LLall.Q.Hlll _ LlﬂlLlLll
[s 1 — T .ﬁl, 1 1 .L :
| & RS N T 7 . s !
= T pIﬁri, Yyt —imet)
s ot s et L L L
anLI.LqMﬂL.I_AH%I.dﬁl_I_ - i
R R R R i il b e e e e
2 H T T = SR LTTTTW T %
<]] - O U7 | SEES S e o
3 o e e
Wi s
| T OT X2 DU T X L] 7 T
H R T R R e et 7 st s o Bt bt b s
: R TIYON] s
T TTAFT o =2 F TS
B — upl.tg, ﬂu!r.?a_l b
- ST I LN TR 1L
T RIS R E
5 b~ 90 S S HE g = o e | A A= - -
=2 DU ST L U € SO .
Y o U T ErE X <3|
(20 RIS IR NI L SR
= 7] LTRUR A SO AN L 3—4- b
o S oA S Hdl-l - _ -2 0 ot ol R ol Iﬁ _
£ Bl A ey NI W o 4 B I e .
% W =T 1> 4EEIEEY 1
iTT T3 p yw T] T=T r
% H T Tw = e LlCilWh..h“:.L‘ L k4
P] @ U C S J L
| R pep o o T g . o -
's e Bt B e Bl - —_t = =] =] - ;llllll
M : LP [*,Lul .iT*-I_fln*i —_—)4 xlﬁ L
, oYk
3 LT_ . = —t
AN [SR e
s §) (Y ! — =
N &4 b Buhy 0 s i s e Y Bt s s gy Bt B
3 i 4 o - L ““wm :
o. T - R ;) T - T T - et e +
B P e e . 0 e i
by LA R &l q.ZT« =TI I%a] o T
) a1 g e e T R P 3 I T
RN SRR AR .
§ T ,Qu_ % J u:.lllﬁ|d* DU SR T
¥ [l e 4 — g —4
z|[1TT LS SRS bt —~4 -4 —!
etvtr ——t- h.LdJi.._rAr- M= -"0 u —t
St4— - — .Jn.v.}] i — g
3 50 [FR S S CRC AN v At IS T3 0 [O
EEEES TS N EEREEERC
o . . 24 Ae—ir - - 4
S B e S I sy e g
LA C v D uW_ 0w mwlrh.lol_uik....lﬂnnjl,.—.wl q BER
- R A T i S SR o3 T
Rees] A T ISR 3 —
1 J v 3 T "
150 A e st S S
[S R N B O B U, 1
17 [T I RISTI T
Hv - e — } 1 -
m grd A T _Iuwn ..I.,JP..LMW..A.I..LD..M DD
i RSN I .13) A L) U

1l -~ GPSS Harbor Model

Fig.

-89~

Description of the Program

The dynamic entities in GPSS are called “'transactions.' These
represent the uunits of traffic, such as ships in this example. They
ave 'created" and 'destroyed" as required during the simuiation run,
and can be thought of as moving through the system causing actions to
occur. Agsoclated with each transaction are a number of parameters,
to which the user can assign values tu represeat characteristics of
the transaction, For example, a transaction representing a ship might
carry the amount of cargo it is to unload in a parameter. This number
could then be used in the simulator logic to determine how long the
unloading operation would take. Transactions can be related to one
another by placing them in groups that can be searched, scanned, and
modified.

Entities of the second class represent elements of system equip-
ment that are acted upon by transactions. These include facilities,
stores, and logic switches. A facility can handle only one transaction
at a time, and could represent the pier in the example given. It
represents a potential bottleneck. A store can handle several trans-
actions concurrently, and could be used to represent a parking lot or
a typing pool. A logic switch is a two-state indicator that can be set
by one transaction to modify the flow of sther transacticns. It could
model a traffic light or the '"next window" sign of a bank teller.

In order to measure system behavior, two types cf statistical
entities are defined: queues and tables. Each queue maintains a
list of transactions delayad at one or more points in the system,
and keeps a record of the average number of trausactions delayed and
the length of these delays. A table may be used to collect any sort
of frequency distribution desired. These two entities provide a
ma jor portion of the GPSS output.

The operational entities, called "blocks,' constit te the fourth
and final class. Like the blocks of a diagram, they provide the logic
of a system, instructing the transactions where to go and what to do
next. These blocks, in conjunction with the other three classes of

entities identified above, constitute the language of GPSS.

o

Lo e
3 !
§f
% «90-
£ i
g To provide input for the simulation, control and definition cards
g are prepared from a flowchart of the system. This constitutes the
g, model in GPSS language. Once the system model is loaded, the GPSS
% program generates and moves transactions from block to block according !
§ to timing information and logical rules incorporated in the blocks f
E themselves. Each movement is designated to occur at sume pairticular :
é point in time. The program automatically maintains a record of these g
B !
% times, and executes the movements in their correct time sequence. E
§ When actions cannot be performed at the originally scheduled time -- 3
% for example, when a required facility is alreadv in usc -- processing ;
g tempurarily ceases for that transaction. The program automatically ;
% maintains a status of the conditinn causing the delay, and as soon as Z
it changes, the transaction is activated again. g
% SUMMARY
F Four different SPLs have been presented to give the reader a é

helpful glance at different concepts, featuree, and language styles in

.

use today. Except for SIMULA, the examples illustrate the latest
releases of the languages.* SIMULA 67 has been discussed in public

{167, but since no written material was available at the time this
Memorandum was written, an exampie of it is not included.

As these examples are small and simple, they do not illustrate
all, or even necessarily the beat, features of all four languages.
Some languages fare better than others in these short destinatiouns.
The reader should bear in mind that the author's f{ntent has not been

language instruction, but a broad-based review. No languege selections

e e S ALY) GRS | YT) R

should be based on the details of this section alone. Still, it will

P

be a useful exercise for the reader to look back and see how the

different languages handle similar operations such as time control,

‘ é entity generation, random sampling, and set manipulatiou.

AT S

M s o e
Bl b

; ‘ *To be fair, it omust be stated that of the fouxr examples prcsented,
: E the one describing GPSS/360 is the least representative of the power of

ite full language. The complete GPSS/360 lenguage contains 14 entity and
43 block tjypes.

B

T LT ST, T 06 yare ORI TR (SRR E

91~

V, CURRENT SPL RESEARCH

SPL reesearch is currently going on in nonprofit corporations,
universities, research organizations of ccuputer manufacturers and
computer software companies, industrial research organizations, and
some military staft groups. With only a little simplification, one
cui say that this research falls in either of two general categories:
the development of new simulation concepts, and the development of
improved simwulation systems. The two are quite different, yet, since
all SPL projects seem to combine some elements of each, few people
Zeel they are doing strictly one ov the other. Researchers developing
new concepts make advances in operating systems; experimenters devel-
oping new operating systems find new concepts arising from their w«ork.
While few projects can qualify as either pure concept development or
pure operating system design, this distinction is made in the following

discussion.

RESEARCH ON SIMULAT]ON CONCEPTS

The 1967 LFIPS Working Conference on Simulation Languages [8]
produced several important papers on SPL delign.* Several of these
described modifications to existing languages, others described new
languages bated on refinements of existing concepts. The spirit of
the conference, however, was evolution rather than revolution.

Despite the fact that many SPLs are in use today, there have only
been a few instences in which a language introduced concepts signif-
Lcantly different from its predecessors. The languages best known ror
introducing new simuletion concepts are: GSP, GPSS, SIMSCRIPT, SOL,
SIMULA, end SIMPAC.

So far as we know, no completely new simulation concepts are
being developed today. Most language research is aimed at uni fying
existing)language concepts (NSS [50) is an integration of SIMSCRIPT
uud SIMULA with sowe original ideas added**), extending an accepted

*
IFIPS 1s the International Federation of Information Processing
Societies,
*k
The most notable of these is a sophisticated version of the
WAIT UNTIL command of SOL.

a
3
3
E1
E
3

TR

T . - ——— - a1

B

o1t AN

-92-

ianguage (SIMSCRIPT II extends SIMSCRIPT as SIMULA 67 extends SIMULA), %A‘
or writing a compiler for an existing language in a widely used pro-
cedural programming language (SPL [52] is being writtem in PL/I and

is derived from SIMULA and SOL). A good deal of work being done
throughout the programming community on data-base concepts ie finding
its way into simulation languages (e.g., SIMULA 67 and SIMSCRIFT II)
and general-purpose programming languages (reference variable exten-
sions to PL/I and ALGOL 68). Many concepts exploited in SPLs for some
time are at present being integrated into COBOL.

There will always be room for this kind of research. Programming
being what it is, it has no theoretical limit and there will alwaya be
opportunities for improvements, refinements, and extensaions. Until a
standard simulation programming language evolves, if that day ever
comes, people will be rewriting SPLs in new languages, discovering
new ways to do old things better, and making evolutionary changes in
concepts and implementations.

A fertile field for SPL research {s language concepts. One area
in particular that has hardly been touched is the integration of
discrete-event and continuocus-time simulation. Today, continuous-
time simulation is conducted on both analog and digital computers,
with a trend toward increased use on digital and hybrid machines [6].
The languages used for simulating continuous systems on digital com-
puters differ greatly from the SPLs we have been discussing. There
i aimost no relationship between discrete-event and continuous-time
SPLs. Tnis is a sad and hopefully short-term condition thet will be
alleviated when more research effort is expended on language integration.

A second promising area is the synthesis of modeling languages with
procedures for performing statistical experiments and analyzing therr
results. While some work has been published on efficient statistical
analysis and experimentation techniques [20], (49, no simulation pro-
grameing languages presently contain such procedures. In part, this
is because little research has been done on identifying and develcping
statistical procedures adapted especially to simulation studies. As

this area receives more attention, however, both from researchers and

practitioners, language designers will begin to consider experimentation

o,

-93-

and analyses as well as modeling and true "simulation systems' will be
developed. Statisticians, language designers, simulation analysts and
computer programmers will contribute jointly to such efforts.

To speak of evolution in simulation concepts and attempt to pre-
dict the future from the past, one can be guided by these facts:

Activity- and event-oriented SPLs emerged at roughly the same
time. GSP, CSL, GPSS, end SIMSCRIPT were developed more or less {in
parallel.

Process-oriented SPLs came later. SOL and SIMULA evolved from
the above languages and ALGOL.

Current research is attempting to unify and extend the activity-,
event-, and process-orientations [8].

Iaterest in the statistical analyses and interpretation of

simulation results seems to be growing more rapidly each year.

It seems a good bet that research in simulation modeling concepts
will continue for some time. A great many modeling techniques still
seem forced and artificial; there is much room for improvement in
programming techniques. Topics that are well identified as needing
research attention are: decision specification -- decision tables
have not been used in SPLs; simultaneity -- parallel interactions are
currently di fficult to account for; synchronous and asynchronous behav-
ior specification ~- richer vocabularies for synchronizing system
processes and for executing activities asynchronously are required;
data-base definition -- we are atil) far from being able tc specify
complex state descriptions simply and elegantly; data-base wmanagement --
efficient ways of partitioning data bases end unifying them without
complication remain to be worked out. For some solutions to these
problems, see [4], (15], and [47].

RESEARCH ON OPERATING SYSTEMS AND MECHANISMS

As simslation i{s an experimental technique, people &re always
interested in making simulation programs easier to use. The standard

way of performing & simulation expariment today is to =make a series

of experimental runs at different system paraweter settings by

o TR SRR A ST

sl . 111 0 IR M LR

AL

My ok

submitting a set of programs and data decks for batch processing. While
this procedure does the job, it has several sericus defects: 1) pro- !
gram development and debugging is slow and painful; 2) more program !
runs than necessary are usually made because of the rigidity of a scheme

requiring that a program be run cowupletely before any information about

{ts behavior can be obtained and used; and 3) it ig difficult to get a

e RTar T L L 'MPI‘"WWW"WWWW”I‘W v

feel for system dynamics by locking at a sequence of after-the-fact
system state snapahots.

System8 are being designed today that assist

g

in each of these areas.

ol

These systems use interactive languages, time-
sharing, and graphics.

s

Interactive Languages

The beat-known interactive SPL is OPS-3 (27]. This language was

designed and fmplemented at M.1.T. and used successfully to demonstrate

the feasibility cf interactive modeling. Operating in a time-shared

environment under the M.I.T., Compatible Time Sharing System (CTSS),
OPS-3 provides a user with on-line, interactive communication between

himself and a programming system. Using it, one can, in a single

sitting, compose a program, test and modify it, expand and embellish

it, and prepare it for subsequent production use. That interactive

languages will become standard in the future is a fact eatablished Ly

*
OPS-3, JOSS, BASIC, RUSH, and nther interactive languages. Greenberger
and Jones (28] have specified in great detail the features of an ele-
gant interactive simulation system.

Lo (L A R Y

Time-sharing is not mandatory for interactive man-machine dialogue,

as the above discussion might imply. At M.I.T., an SPL named SIMPLL is

being designed and programmed to operate on atn IBM 1130 computer [17].
Or such a small machine, it is economically feasible to allow one person

to have full use, even though the computer is inactive a great deal of

the time. Time-sharing allows multiple users to fully utilize a com-

puter, but it is not necessary for an interactive language.

In the future, widely used SPLs. will undoubtedly have two modes

of operation. They will be able to be used interactively to build

*
JOSS is the trademark and service mark of The RAND Corporation
for its computer program and services using that program.

ELLTE

b
£
H
H

3 e T 2 23

L T S

-95.

models; for this either incremental compilation or interpretation will
be used. They will also be capable of efficient code generarion through
optimizing compllation. This is necessary if large simulation studies

requiring lengthy experimental runs are to be made economically.

Time-Sharing

Time-sharing enters into simulation in that {t makes certain things
possible, such as interactive modeling. During model construction and
testing, when programmer-program interaction is important, time-sharing
makes interaction economical. Time-sharing can also be useful during
model utilization, when production runs are made. When it is necessary
to study a model's behavior, rather than run it merely to derive steady-
state statistics, time-sharing can offer substantial benefits; when a
man can enter a program from a console, watch its performance, and either
leave it alone, stop it permanently, or stop it temporarily to adjust
some parameters and start again, a new plateau in the use of simulation
will be reached. It will then become possible for man to enter into
the exploratory and experimental process more ccmpletely and more effi-
ciently than he can in today's batch environment. For this reason,
substantial future research will be devoted to this area. The SIMPLE
language mentioned above is, in fact, designed to do this. IBM's con-

tinuous-time simulation language, CSMP, operates in this mode todey {12].

Grapnice

A considerable amount of simulaticn-oriented graphics research is
going on right now. At the Norden Division of United Aircraft, an IBM
2250 18 used to modify source language GPSS progrsms and view their
output in graphical form [54]. At The RAND Corporation, the Grail sys-
tem and the RAND Tablet ave used to construct GPSS programs on-line
from hand-drawn flowcharts [30]. At M.I.T., the SIMPLE project ia
using graphics for wan-computer interaction during modeling and exper-
imentation. Papers have been written on the use of graphics in simu-
lation modeling and the use of existing graphics packages for asnalyzing

simulation-generated output [44].

Wi LBlE | i |m‘,}m;ﬂw

BETTL TR PP

e e

[i e

R o e

—

L.

g

ot

SR,

et A T e g

=96

There is little Joubt that interactive modeling is carried out
better with a CRT device than with a typewriter or line printer. When
designing programs, flowcharts and other symbolic notation can be dis-
played. For analyzing performance data, graphs provide more insight
than do lists of numbers. The growing use of line~printer plotting
simulators testifies to the utility of graphic outpurt,

Research in SPL graphics will take several directions in the
future. Graphical input {8 an area of great interest that is just
getting started. Graphical output i8 on a far firmer footing and has
had some operational success. The difficult thing about incorporating
graphics in an SPL {s its ultimate dependence on graphic hardware and
software that are not properly part of a simulation language. State-
ments in SPLs that perform graphical tasks will, for a long time, be
computer-system dependent, and not independent concepts. Graphical
research will also prosper for interactive modeling and program modi-

fication. The successes and benefits claimed to date virtually insure
this.

wspmm

=97«

VvIi. THE FUTURE OF SFPLS

The preceding section has demonstrated thst a great deal of

research remains to be done. We are far from knowlng all there is to

[P

know asbout simulation, both in concept and in practice. It will be

a long time before we come to a point where we wish to standardize on
a single language, and change from a dynamic era of research and
development to one of slow evolution.

The greatest challenge today lies in unifying discrete-event and

TR A IR ST

continuous-time simulation languages. Some think that this cannot be

done. Some think it should not be done. Certainly, we know little

*
about how to do {t.

BTSRRI

The researcher faced with the selection of & research project in
the simulation language area does not lack aiternatives. There are
still advances to be mace in modeling concepts; our ways of modeling
both static and dynamic structures are incomplete. And certainly,
the flelds of interactive compilers and/or interpreters and graphics
are exciting ones and in the mainstream of modern programming vesearch.

Today, the manager or programmer faced with the task of selecting
an SPL does not always have a clear choice. His choice will probably
be less clear in the future, as languages are drawing closer together
on many issues, but remaining apart on others. It is our hope that
this Memorandum wi{ll make 8Some language selection choices easier and

more objective, and will provide some direction to SPL research.

*A recent publication, D. A, Fahrland, "Combined Discrete-Event/
’ Centinuous Systems Simulation,' SRC-68-16, Case Western Reserve
: University Systems Research Center, July 1968, may provide the needed
' impetus tc initiate a constructive dialogue on this topic.

-, o

-98~

APPENDIX
CHECKLIST OF FEATURES FOR SPL EVALUATION 4

Feature

Coamant p

i

MODEL IMC A SYSTEM'S STATIC STATE Stwuletlon progresming langusges wuet be abie tu;
{1) defins the classes O odjectns within & syetes, A
(2) adjust the number of tness objects es conditione within the aystes very,

(3) define charscteristice or propsities thet csn both describe and 4iffer- .
catists abjects of the same clase, and dacltare nusericsl codes for them,

{4) Telate objacts to one sncther and to their common enviTonmant.

MODELING SYSTIN OYNAMILS The hearr of every sieulerion progran, and svery SPL 1o 4 time control praogram.
Tte functions ara slweys the ramm: to edvance similation time and to mslact for 1
axscution a progras that performs a specifind simulation activity. An $PL wmust .
sontain such a program, statemants that dafine events, activities or processes, 3
and statemants that organiaze thess events, activities or proce .. 3
STATISTICAL SAMPLING fesudorandom mmber generation _
Multiple rsndow number otlresms H

Antithetic vartates

Sampling fiom empiricsl table look-up distributions
Sawpling from theoreticsl avacterical distributions 3

DATA COLLECT IOW SPECIFICATION The nicest thing one cen may about a dara collection spacification {s that it Lo
unobtvusive, Whila dsta collection 18 necwsuary, statemmnta that ere wviittan to
obtain data but are not thesaslves part of a o ation wodel's logic, should not
obscure the operatiors of ¢ wndel in any wey

IWTA AMALYSiS Means

Varignces and Standard Devistionc

freaquency Distribyt ione i

UATA COLLECTION Mamber of obssrvations, max{ma and minima for all variablas

Suma, and sume of squarsy for tims-indopendent varisblag
Ties-waighted sume, and susa of squares for ctisa-dsperndant veriedles
Vartable velus hisrsgrams for ¢ilwm-indspendent varilablas
Tims.{n-state hietcgrame fny tism-dependant varisblee _

Tlee series piote ovar specified time intervals :

at DY ¢ TR (1)

DISPLAY PORMATS $ince the production of reports {s the primsry task of ail proprams , whether they

€7e tun for progrem cheackout, tor the display of computed reaults, or for che prep-
arstion of elaborates mansgemsnt reporid and charte, & good 5L should comtsin
statsmantes sdaptéd tvo all dieplay situscions.

(1) Automatic output in .tendard fotmst

e atll e

{2) Pormat-frees output
(1) Fermattea output -
(&) Raport generstors

ST 7Y e TS T

MOMTTORIMC AND ORBLOS INC Reporting execute-time orrors by soutce statemsnt releted mesesyes

W

Diepioylng complote prograa flow atatus whan a0 axecvile-ilcs OVEST cccurs. Ihia
saang displayleng ths entry points and relevant pavemsters for ell tunction and
subrgutine calls tn effect ot the cims of the error.

M

g e

Accugslng control fnf{ormation barween svant executions. Thia allowa event trecing

during sll or sslected parts of 3 program, and use of control inforsation in pro-
grom disgnostic routines.

= TRIT TALIZAT IOM As atmulatlon is antisliy cha movemsnt of 4 eystes wodel through simulated time =
by changing ire etate descriptions, it is {mportent thét an SPL provide » convan.
fent mechenism for epecilying Lnitisl etates. This cén ba duns either by:

{(8) & special initialisetion form; or
4 {») conventent dats input sratemsats end formats.

One should aleo be able to save el the (niorwstion about s prograw, including
relavent data on the stetus of external storage devicos snd peripharal equipment
sud restete 1t on cosmand.

OTHEK Progrem readabllqey

e

Execution efficlency :
Modeling efficloncy i
Documssnt st lon

fur lastruction

for Lnstalletion
for maintenence

£ g
: 3
f 3
£
-99- :
! REFERENCES i

il e

1. Arden, B. W., An Introduction to Diplital Computing, Addison-Wesley,
Inc., Reading, Mass., 1967,

2. Bennett, R. ., et al., "SIMPAC User's Manual," System Development
Corporation, TM-602/000/00, April 1962.

1t e v

3. Blunden, G. P., and H. §. Krasnow, ''The Frocess Concept as a Basis
for Simulation Modeling,' SIMULATION, Vol. 9, No. 2, August 1967.

vine ke

! 4. Blunden, G. P., "On Implicit Interaction in Process Models,"
: presented at the 1967 IFIP Working Conference on Simulation
* E Languages, Oslo, Norway.

o A

[P

: S, Braddock, D. M., C. R, Dowling, and K. Rochelson, "SIMIRAN--A
: Simulation Programming System for the IBM 7030," IBM SDD,
Poughkeepsie, N.Y,, July 1965.

6. Brennan, R, D., "Continuous System Moceling Programs: State-of-
the-Art and Prospectus for Development,’ presented at the 1967
IFIP Working Conference on Simulation Languages, Oslu, Norway.

. 7. Buxton, J. N., and J. G, Laski, ''Control and Simulation Language,'
¢ The Computer Journal, Vol. 5, No. 3, 1962,

8. Buxton, J. N. (ed.), Proceedings of the IFIP Warking Conferencs
On Sim.lat_on Languages, The North-Holland Publishing Company,
Amste':dam, 1963.

9. Clementson, A, T., "Extended Ccntrol and Simulation Language,"
The Computer Joumal, Vol. 9, No. 3, November 1966.

10. Colker, A., et al., The Generation of Random Samples from Common
Statistical Distribtutions, Unite. States Steel Ccrporation,
Applied Research Laboratory Report 25.i7-016(1), November 1962.

11. IBM United Kingdom Limited Data Centre, CSL User's Manual, London,
1966,

12. 1IBM Corporation, Continuous System Modeling Program (CSMP/360),
Application Description, H20-0240, 1967.

; 13. Dahl, 0. J., and K. Nygaard, 'The SIMULA Language,' Report from
the Norwegian Computing Center, May 1965.

14. Dahl, 0. J., and K. Nygaard, "SIMULA--An ALGOL-Based Simulation
Language,' Communications of the ACM, Vol. 9, September 1966.

gt

15. Dahl, 0. J., and K. Nygaard, "Class and Subclass Declarations,"
presented at the 1967 IFIP Working Conference on Simulation
Languages, Oslo, Norway.

RS S e

l6.

17.

18,

19,

20.

21,

23.

24,

25.

26,

28,

29.

30.

31.

-100-

Dah , 0. J., B. Myhrhaug, and K. Nygaard, ''Some Featureg of the
SiMULA 67 Language,' Proceedings of the Second Conference on
Applications of Simulation, New York, December 2-4, 1968,

Donovan, J. J., J. W. Alsop, and M. M. Jones, "A Graphical Facility
for an Interactive Simulation System," Proceedings of IFIPS
Congress, 1963.

Dxnft Report on the algorithmic language ALGOL 68, working paper
¢f the IFIP Working Group on ALGOL, (WG.2.l), Februvary 1968,

Famnlari, L., "FORSIM IV User's Guide," SR-99, The Mitre Corpora-
tion, February 1964.

rishman, G. S., and P. J. Kiviat, Digital Computer Sfmulation:
Statisticai Considerations, The RAND Corporation, RM-5387-PR,
November 1967.

Fishman, G. S., and P, J. Kiviat, '"Tne Analysis of Simulation-
Generated Time Series,' Mgmt. Sci., Vol. 13, No. 7, March 1967.

Galler, B. F., The Language of Computers, McGraw-Hill Book Company,
Inc., New York, 1962,

TBM, General Puipose Simulatjon System/360 User's Manual, H20-0326-2,
1967 .

IBM, General Puipose Simulatijon System/360, Application Description,
H20-0186-1, 1966,

Ginsberg, A. S., H. M. Markowitz, and P. M. Oldfather, Programming
by Questionnaire, The RAND Corporation, RM-4460-PR, April 1965,

Gordon, G., "A General Purpose Systems Simulator,” IBM Systems
Journal, Vol. I, 1962.

Greenberger, M., et al., On-Line Computution and Simulation: The
OPS-3 System, The M.I.T. Fress, Cambridge, Mamsachusetts, 1965.

Greeaberger, M., and M. Jones, '"On-Line, Incremental Simulation,”
presented at the 1967 IFIP Working Conference on Simulation
Languages, Oslo, Norway.

IBM, IBM Operating Syetem/360, PL/l: Language Specifications,
File No. $-360-29, Forwm C28-6571-1, IBM Corporation, 1967,

Haverty, J. P., Grai1/GPSS, Graphfic On-line Modeling, The RAND
Corporation, P-3838, January 1968,

Hills, P. R,, "SIMON-A Computer Simulation Language in ALGOL,"
in S. H. Hollingdale (ed.), Digita]l Simulstion in Operational
Research, Awerican Elsevier Publishing Cc., New York, 1967,

-

32

33

34.

35

~-101-

. Kalinichenko, L. A., "SLANG--Computer Description and Simulation-
Oriented Experimental Programming Language,' presented at the

1967 IFIP Working Conference on Simulation Languages, Oslo.
Norway.

. Karr, H. W., H, Kleine, and H. M. Markowitz, "SIMSCRIPT I.5,"
Consolidated Analysis Centers, Inc., CACI 65-INT-1, Santa Monica,
Calif., Juae 1965.

Kiviat, P. J., Digital Compute~ Simulation: Modeling Concepts,
The RAND Corporation, RM-5378-PR, August 1967,

. Kiviat, P. J., "Development of Discrete Digital Simulation Languages,"
SIMULATION, Vol. 8, No. 2, February 1967.

36. Kiviat, P, J., "Development of New Digital Simulation Languages,'
Journal of Industrial Engineering, Vol. 17, No. 11, November 1966.

37. Kiviat, P. J., "GASP--A General Activity Simulation Program,"’
Project No. 90.17-019(2), Applied Research Laboratory, United
States Steel Corporation, Monroeville, Pea., July 1963.

38. Kiviat, P. J,, Introduction to the SIMSCRIPT II Programming Lan-

guage, The RAND Corporation, P-3314, February 1966.

39, Kiviat, P. J., R, Villanueva, and H, M, Markowitz, The SIMSCRIPT

40

41.

42,

43,

46,

45,

Il Programming Language, The RAND Corporation, R-460-PR,
October 1968.

Kiviat, P. J,., Simulution Language Report Generators, The RAND
Corpcration, P-3349, April 1966.

Knuth, D. C., and J. L. McNeliey, ''SOL--A Symbolic Language for
General-Purpcse System Simulation,' 1EEE Transactions on Elec-
tronic Computers, August 1964,

Kraenow, H. S., "Dynsmic Representation in Dliscrete Interaction
Simulation Languages,' in S. R. Hollingdale (ed.), Digital

Simulation in Operational Research, American Elsevier Publishirg
Co., New York, 1967.

Krasnow, H. S., and R. A, Merikallio, 'The Past, Present and

Future of Simulation Languages," Mgmt, Sci., Vol. 11, No. 2,
November 1964,

Lackner, M. R,, "Graphic Forms for Modeling and Simulation," pre-

sented at the 1967 IFIP Working Conference on Simulation Lan-
guages, Oslo, Norway,

Markowitz, H. M., H. W. Karr, and B, Hausner, SIMSCRIPT: A Sisu-
lation Progremming Language, Prentice-Hall, Inc., Englewood
Ciliffe, N. .J., 1963.

e

il

eyt

R

Tl e W

R e 1A

ATHORe T vy

L R T

P o Do Tt O PN YIRS §

Rl L7 TP RO

-102-

46, McNeley, J. L., "Simulation Languages,'" SIMULATION, Vol. 9, No. 2,

August 1967,

47. McNeley, J. L., "Compound Declarations," presented at the 1967
L{FIP Working Conference on Simulation Languages, Oslo, Norway.

48. Systems Research Group, Inc., MILITRAN Programming Manual, Report
ESD-TDR-€4-320, June 1964,

49. Naylor, T. H., et al,, Computer Simulation Techniques, John Wiley
and Sons, New ‘York, 1966.

50. Pavente, R. J., "A Language for Dynamic System Description,' IEM

Advanced System Development Division Technical Report 17-180,
1966.

51. Parslow, R. D,, "AS: Aa ALGOL Simulation Language,' presented at
the 1967 IFIP Working Conference on Simulation Languages, Oslo,
Norway.

52, Petrone, L., "On a Simulation Lenguage Completely Defined Onto
the Programming Language PL/I," presented at the 1967 IFIP
Working Conference on Simulation Languages, Oslo, Norway.

53. Pritasker, A,A.B., and P. J. Kiviat, Simulati n with GASP Il: A

FORTRAN Rased Simulagtion Language, Prentice Hall, Inc., Englewood
Cliffs, R. J. (forthcoming).

54. Reitman, J., "GPSS/360 Norden, The Unbounded and Displayed GPSS,"
Proceedings of SHARE XXX, Houston, Texas, February 29, 1968,

55. Report to the CODASYL COBOL Committee, COBOL Extensions to Handle
Data Bases, prepared by Data Base Taak Group, January 1968,

56, IBM, Simulation Evaluation and Anelysis Language (SEAL)., Syatem
Reference Manual, January 17, 1v68.

57. United States Steel Corporation, Simulation Language and Library

(SILLY), Engineering and Scientific Computer Services, February
1968.

58. General Electric Company, SIMCOM User's Guide, Information Systems
Operations, TR-65-2-149010, 1964,

59. UNIVAC, SIMULA Progremver's Reference Manual, UP-7556, 1967.

€0. Teichroew, D., and J. F. Lubin, "“Computer Simulation: Discussion

of Techniques and Comparison of Languages,' Communications of
the ACM, Val. 9, No. 4, October 1966.

61. Tocher, K. D., "Review of Simulation Languages," Operational

Research Quarterly, Vol. i6, No, 2, June 1965.

W i 1l

:
t
i

3
;
H
i
:
v
]

LR

v

-

IR ——

62,

63.

64.

65.

66.

-103-

Tocher, X. D., and D. A. Hopkins, "Handbook of the General Siwmula-
tion Program, II," Report 118/0RD 10/TECH, United Steel Ccmpanies,
Ltd, Sheffield, England, June 1964.

Tocher, K. D., The Art of Simulation, D. Van Nostrand Company, Inc.,
Princeton, N. J., 1963,

Weinert, Arla E., "A SIMSCRIPT-FORTRAN Case Study,' Communicationas
of the ACM, Vol. 10, No. 12, December 1967,

Williams, J.W.J., "The Elliott Simulator Package (ESP)," Computer
Journal, Vol. 6, No. 4, January 1964.

Young, Keren, "A User's Experience with Three Simulation Languages
(GPSS, SIMSCRIPT and SIMPAC)," System Development Corporation,
TM-1755/000/00, 1963.

. oMM b BB 1. i LT |

o A e o S SR

=
3
Ef
1
3
F
2

T

DOCUMENT CONTROL DATA

|. ORIGINATING ACTIVITY " 20. REPORT SECURITY CLASSIFICATION
: . UNCLASSIFIED
THE RAND CORPORATION 25 GROUP

3. REPORT TITLE
DIGITAL COMPUTER SIMULATION: COMPUTER PROGRAMMING LANGUAGES

4. AUTHOR(S) (Last na na, first name,initial)

Kiviat, Philip J.

11 roam a5 a0t

S. REPORT DATE 60. TOTAL No. OF PAGES 6b.No. OF REFS.
: January 1969 110 66
7. CONTRACT OR GRANT No. 8. ORIGINATOR'S REPORT No.
; FL44620-67-C-0045 RM-5883-PK
E 90. AVAILABILITY/ LIMITATION NOTICES 9b. SPONSORING AGENCY
; bpe-1 United Stetes Air Force
. Project RAND
10. ABSTRACY .» -, - N il. KEY WORDS
“ A discussion of »eimulation languages, Computer simulation
their characteristics, the reasons for Computer programming languages
using them, and their advantages and dis- Ships
advantages relative to other kinds of pro- Sealift
granming languages. Simulation languages Statistical methods and processes
are shown to assist in the design of
_simulation models through their *“world
view,” to expedite computer programming
through their gpecial purpose, high-level

‘ statements, and to encourage proper model
analysis through their data collectiom,
analysis, and reporting features. Ten
particularly inportant simulation pro-
grameing langusge features are identi-
fied: modeling a system's static state,
modeling system dynamics, statistical

R sampling, data collection, analysis and
i display, monitoring and debugging, ini-
tialization and langusge usability.
Exaxples of each of the four simulation
langusges, GPSS, SIMSCRIPT II, SIMULA,
and CSL, ara used to illustrate how these
features are implemented in different
languages. The future development of
simulation programming languages is de-
pendent on advances in the fields of
computer languages, computer graphics,
and time sharing. Some curreat research
is noted, and outstanding research areas
are identified. . -—-

T i il BRI

- - — -

R B o B etenior..~ 3 Sy)) o

