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ABSTRACT
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In a vector space over an ordered field, a positive get is one

that is closed under the operation of forming linear combinations with
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nonnegative coefficients; it may be described alternatively as a convex

i.

cone whose apex 1s the origin. Such sets arise naturally as solutions 3
4

of systems of homogeneous linear inequalities, and the intersection §
3

theorems proved here can be reformulated as consistency theorems for such g

systems. The maln tool used in proving the intersection theorems is a
characterization and classification of sets which enjoy a strong inde-

pendence property with respect to the formation of nonnegative linear

combinations. {
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INTRODUCTION. Helly's intersection theorem [7) asserts that if
C is a finite family of convex sets in RY with NG=0 then @ admits
a subfamily X withNX = ¢ and |X| < d + 1. The shortest proof,
due to Radon [9]), is based on the fact that a subset of Rd is affinely
independent if and only if it does not contain disjoint sets whose convex

hulls intersect. Here a similar approach leads to short proofs of old

and new intersection theorems for positive sets.

Throughout this note, E denotes a vector space over an ordered

field. When E 1is said to be d-dimensional it should be understood

that d 1is finite. A subset P of E 1s called positive provided 1 |

that ax + By € P whenever x,y ¢ P and a,B8 2 0; equivalently, P
is a convex cone with apex 0. (When E = Rd, the intersections of
positive sets with the unit sphere are precisely the sets which are

spherically convexr in one of the common meanings of that term. Thus for

real vector spaces our theorems could be stated alternatively in terms !
of spherically convex sets.) The positive hull pos X of aset X CE
is the intersection of all positive sets containing X; equivalently,

it is the set of all points of the form I A x with A 20 for all

eX
X and Xx = 0 for all but finitely many x. Note that 1lin X =

pos X - pos X, where 1lin X 1is the linear hull of X.

STRONG POSITIVE INDEPENDENCE. A subset X of E ~ {0} 1is called
strongly positively independent provided that pos Y Npos Z C {0} whenever
Y and Z are disjoint subsets of X. This notation was introduced by

McKinney [8] and characterized in various ways by him, Bonnice and Klee (1], ﬁ
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and Reay [10]. The most useful characterizacion is the following, proved

by McKinney when pos X = 1in X. Our proof i1s considerably shorter than
his.

THEOREM (McKinney). A subset X of E tis strongly positively
independent if and only if E can be expressed as a direct sum of linear

subspaces, E = EOO Qa in such a way that

eAa’

() xce ul .,

(b) X'E_ is linearly independent,

(c) for each o € A the subspace E, 78 finite-dimensional «nd
XE, consists of the points of a linear basis for E, ‘together with a
sun of negative multiples of these points.

Proof. For the "if" part it suffices to note that each of the
intersections XFEQ is strongly positively independent. For the '"only
if" part, consider a strongly positively independent subset X of E
and let B be a linear basis for X--that is, B 1is linearly independent

and BCX Clin B. Let A= X B, For each point x of A there

is a unique scalar function ) on B such that A* =0 for all but

b
x
finitely many b ¢ B and x = -zbeBAbxb' Let B = {b ¢ B: Xb > 0}.
Then
= - ik
L ** Then b " hems ()P

and it follows from strong positive independence that both sides of (1)
are equal to 0. Note that Bx F\By = ¢ whenever x, y ¢ A with x ¥y,

For suppose the contrary and let u = max{A:/xz: b e By} > 0. Then
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and it follows from strong positive independence that both sides are 0.
Referring to (1), we conclude that ZbeanByAbxb"O, a contradiction

implying B, F\By =d.

Now let B' be a linear basis for E containing B, let

B), and foreach xe¢ A let E = 1in B ., Then
XeA X X X

E =E °$xs Ex and conditions (a), (b) and (c) are satisfied. O

The subspaces Ea in the above decomposition are uniquely determined
by X, for they are exactly those finite-dimensional subspaces L of E
such that L = pos(X"L) and 1+ dimL = IXﬂLI. (By Davis [3], McKinney

[8] and others they have been called the minimal subspaces associated

with X.) The set X F\Eo is also determined by X, as is Eo itself
when lin X = E, When E 1is finite-dimensional the cardinalities IanoI
and |Xﬂ£a| can be arranged in a finite sequence which starts with IXFEOI
and thereafter lists the numbers IXﬂEal in increasing order and with
proper multiplicity. This sequence will be called the invariamt of X

in E. For example, the sequence (1;2,2,3) 1is the invariant in R

of the eight-pointed strongly positively independent set represented by

the columns of the following matrix:

The term tnvariant is justified by the first part of the following




theoren, whose straightforward proof is left to the reader.

THEOREM. Suppose that E 1ig d-dimensionai. Two strongly posi-
tively independent subsets X and Y of E have the same invariant in
E if and only if E admts a linear automorphism carrying the rays from
the origin through the points of X onto the rays from the origin through
the pointe of Y. A sequence (tgit seenst) of integers i8 the invariant
in E of some strongly positively independent set of cardinality n
if and only if the following conditions are all satisfied:

. 4

OStO;25:15---Str;n-z.°r.i£d+r.

With slight mcdifications the above th:orem can be extended to the
infinite-dimensional case. From the theorem's second assertion it follows
readily that d + [d/j] 1is the maximum cardinality of strongly positively
independent subsets of E in which each j-pointed set is linearly inde-

pendent.

A subset C of E 1is called a cross basis for E (called a
maximal positive basis by Davis [3] and McKinney [8)) provided that ¢
consists of the points of a linear basis for E together with a negative
multiple of each of these points. The following is an immediate consequence

of the preceding theorems.

COROLLARY. Suppose that E ti8 d-dimensional and X C E ~ {0}.
If |X| > 2d them X contains two disjoint subsets whose positive hulls
have a common nonzero point. The same 18 true when |X| = 2d wnless X

i8 a cross basis for E.
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INTERSECTION THEOREMS. When X C E ~ {0} we will say that the
sets of the form pos(X ~ {x}), for x ¢ X, are assoctated with X.
Note that all the sets associated with a cross basis are closed half-
spaces. Before proving the main intersection theorems, we illustrate

the method to be employed by proving the following result of Robinson

(11].

COROLLARY (Robinson). Suppose that E is d-dimensional and P

1e a finite family of positive sets in E with NPC {0}. Then P

i A Al 1

agrits a subfamily @ with NQ C {0} and |Q| £ 2d. Indeed, there
is such a Q@ with |Q| < 2d wnless P consists of the 2d halfspaces
assoctated with a cross basis for E or of such halfspaces together with

E itself.

o i ot

Proof. Let Ql"“’Qn be distinct members of P forming a
subfamily @ with NQC {0} and |Q@| a minimum. For each i there is
a nonzero point X € nj#iqf 1f X=X with 1 ¢ k then Xy eMQ,
We may assume, therefore, that the xi's are all distinct and let X
denote the n-pointed set {xl,...,xn}. If X contains two disjoint
sets whose positive hulls have a common nonzero point v then v €M@,
an impossibility since MQ C {0}. From the preceding corollary it
follows that n < 2d or n=2d and X 1is a crouss basis. It remains
| to examine the nature of 2 in the latter instance. Plainly Qi is a
halfspace associated with the cross basis X, for Qi is positive and
X ’\J{xi}c Qi # E. Consider an arbitrary member P of 2~ Q. If
P > X then of course P = E. If there is an 1 for which x % R4

i

then (P} U (Q ’\'{Q }) is a subfamily of 2 with intersection {0}

i

and by the earlier reasoning is the set of all halfspaces associated




with a cross basis for E. It then follows that P = Qi' a

The special case of the above result in which 2 consists of closed
halfspaces has (or its polar equivalent has) been proved by Steinitz
{12], Dines and McCoy [4], Robinson [11], Gustin [6], Gale [5] and others.
The polar equivalent asserts that if pos X = E then pos Y = E for
some Y X with |Y| 2 2d; further, there is such a Y with |Y| < 2d
unless X 1is a cross basis for E. See Danzer, Griunbaum, and Klee [2]

for references to related results.

The statements of uur main theorems will require some more defini-
tions. For any set Z let dL(Z) denote the maximum of the dimensions

of the linear subspaces contained in Z. For any family Z of sets lct

k@) = min, A (2), k(@) = max, A (2),
and

2(2) = d (UZ).

The family P 1is said to be compatible with the invariant (to;tl""’tr)
provided that there exists a strongly positively independent set X in
E with this invariant such that each member of 2 contains a member

of dix. the family of all sets associated with X.

THEOREM. Suppose that E 1is a d-dimensional space, 0 S k £ & £ d,
and m = min(k+1,2). Let @ be a finite family of positive sets in
E that is minimal with respect to having NQC{0}. If k(@) <k and

2(Q) S L then

@] £ d+m,
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with equality if and only if Q <s compatible with

(d-m=5;2, veey 2,2 + 58)
————
m-1

forsome 0 XZs 24 -m,

Proof. Let Ql""’Qn be the n members of Q@ and let

i
Let (to; tl""‘tr) be the invariant of the strongly

X = {xl,....xn}, where for each i the point x, 1is such that

0¥ Xy € mj#iqi'

pcsitively independent set X and let

E-EOQEIQ' 0 'QEr

be the direct sum decomposition of E described in the first theorem.

Since X n {xi} CQ, for all 1, it follows that
r- 1171 = k@) < k@ < k.

And since, for j > 0, each point of E, 1is a positive combination of

J

proper subset of X MNE it follows that

j'
EIQ NC ‘QErCdeC ue

and

1A
>
.

< r = =
5 zl(t1 1) l(qx) < 2(Q)

We conclude, therefore, that

r £ min(k+1,2) and n 2 d+r £d+ m.

Note that the inequality n X d + m 1is all that is required for the




corollary below.

Suppose now that n = d + m, whence r = m, If tr_1 > 2 then

k 2 k(@ 2 r = min(k+1,%),
whence k = £ and
222Q) 2r+1=2+1,

a contradiction. It follows that tl =, , .= tr_1 = 2, Furthermore,

r-1

1:1_51+2.--§Z1 (ti-l)-l+2—(m-l)=2+2-m.

Let s-tr-Z. Then 0 SsS2 -m and

to-n—thi-d+m-2(m—l)-(2+s)-d-m-s.

Hence the invariant of X |is

(d-m-S, 2, IC',2'2+S)
————
m-1

or simply (d) if m= ., Plainly lQl =d+m if Q 1is compatible

with such an invariant for some 0 < s £ % - m, and that completes the

proof. O

COROLLARY (Robinson). Suppose that E tis d-dimensional and P
18 a finite family of positive sets in E with NP C {0} and k@) = k.

Then P admits a subfamily @ with MR C {0} and |Q] < d+ k + 1.

Proof. Choose Po e P with dL(Po) Lk and let S be a

subfamily of P n {Po} that is minimal with respect to having

it



P.N(NS)C {0}, Let M= {SOP :S cS}. Then L(M) <k and N

is minimal with respect to having N_.M#C {0}, so it follows from the

preceding theorem that |[M| < d + k.  But then I{Po} US| £d+k+1. 0

THEOREM.  Let the hypotheses of the preceding theorem be strengthened

by requiring k(@) < k. Then
(a) when m=d or k=g,

@] = d+m if and only if @ is compatible with (d = m; 2, «v.y 2);

(b) when k=0 agud % = d, .

@l =d+m if and only if @ 1is compailble with (0; d + 1);
(¢) when m<d and 0 < L -k <d,
Q] Sd+m=-1=4d+k, with equality if and only if Q <is compatible

with (d = k; 2, veuy 2) Or k=d-2 and Q 1is compatible with

05 2, uvy 2). K
d -1

Proof. If IQI =d+m then Q is compatible with

(d=-m=5; 2, «vv, 2, 2 + 8)

m-1
for some 0 2 s < g - m. There are the following cases to consider:

(i) m+ s < d. Then

k 2 E(qx) = zf(ci-l) =m+s,

whence m £k, k=£, and s = 0.
(ii1) m=d and s =d~-m=20.
(1i1) 1 =m and s=d ~1>0. Then s S £ -m implies & =4d
and k =0,

(iv) 1 <m<d and s

d - m {is impossible, for it implies

eas -
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d=g and k2k@) =m-1+s=d-1
whence m = d,
That settles the "only if" parts of (a) and (b), the first part of (c),
and supplies all the information needed for the corollary below. The

"if" parts of (a) and (b) are obvious,

For the remainder of the proof we assume m«<d, 0 < 2 -k <d,

and |@| = d + k. Note first that
k2rsk+1

where the left-hand inequality follows from n S d + r and the right-hand

inequality from
s = N r 1 > _
k Z k«ﬂx) 2 Zz(ti 9 ESE =

Now suppose first that t, ” 0. Then

k2k@ly) = If(e=1) Zr+ e -2,

whence r = k and ti = 2 for all 1 > 0. Hence X's invariant is

(d-k; 2, «vo0y 2).

k
Suppose next that t; =0 and r =k + 1. Then

> 1 -r - > -
k2XE) = D(e-) 2k + e -2,

whence t1 = 2 for all 1 >0 and

d+ k = Ziti = 2(k+1).

Hence k = d - 2 and X has invariant (0; 2, ..., 2).
A ————

d -1
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Suppose, finally, that to =0 and r = k. As t >2 or t_ >3

would imply
> > 1Fe -1 >
k_k@{x)_iz(til)_k+l,

it follows that t1 =, , .= tr-l = 2 and t, = 2 +s with 0 s 2 1.

This implies
t, = 2(k-1) +2+s Z2k+1

and hence k 2 d -1, contradicting the fact that k < & and m < d.
Thus it cannot happen that t, = O and r = k, and the discussion of

(c)'s "only if" part is complete. Again, the "if'" part is obvious. [J

COROLLARY. [Let the hypotheses of the precedina corollary be
strengthened by requiring that k(P) <k and that 0 <k <d -1 on
L(P) < d. Then P adrits a subfamly Q with NQRQC{0} and

Q] £ d + k.

Proof. Let Q be a subfamily of 2 that is minimal with respect

to having NMQC{0}. Apply the theorem just proved.

e




1l

7.

10.

11.

12'

=12=

REFERENCES

W. Bonnice and V. Klee, The generation of convex hulls, Math. Ann.
152(1963), 1-29.

L. Danzer, B. Griinbaum, and V. Klee, Helly's theorem and its relatives,
Amer. Math. Soc. Proc. Symp. Pure Math. 7(Convexity), 1963, 101-180.

C. Davis, Theory of positive linear dependence, Amer. J. Math.

4(1954), 733-746.

L. L. Dines and N. H. McCoy, Un linear inequalities, Trans. Roy. Soc.
Canada, Sect. III, 27(1933), 37-70.

D. Gale, Linear combinations of vectors with non-negative coefficients,
Amer. Math. Monthly 59(1952), 46-47.

W. Gustin, On the interior of the convex hull of a Euclidean set,

Bull. Amer. Math. Soc. 53(1947), 299-301.

E. Helly, Uber Mengen konvexer Korper mit gemeinschaftlichen Punkten,
Jber. Deutsch. Math.-Verein. 32(1923), 175-176.

R. L. McKinney, Positive bases for linear spaces, Trans. Amer. Math.
Soc. 103(1962), 131-148.

J. Radon, Mengen konvexer Kdrper, die einen gemeinsamen Punkt enthalten,
Math. Ann. 83(1921), 113-115.

J. R. Reay, Unique minimal representations with positive bases, Amer.
Math. Monthly 73(1966), 253-261.

C. V. Robinson, Spherical theorems of Helly type and congruence indices
of spherical caps, Amer. J. Math, 64(1942), 260-272,

E. Steinitz, Bedengt konvergente Reihen und konvexe Systeme. II,

J. reineangew. Math. 144(1914), 1-40.



