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ABSTRACT 

In a vector space over an ordered field, a positive set is one 

that  is closed under the operation of forming linear combinations with 

nonnegative coefficients; it may be described alternatively as a convex 

cone whose apex Is  the origin.     Such sets arise naturally as solutions 

of systems of homogeneous linear inequalities,  and the Intersection 

theorems proved here can be reformulated as consistency theorems for such 

systems.    The main tool used in proving the intersection theorems is  a 

characterization and classification of sets which enjoy a strong inde- 

pendence property with respect to the  formation of nonnegative  linear 

combinations. (  .    y 
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INTRODUCTION.      Helly's Intersection theorem [7]  asserts that if 

C is  a finite family of convex sets in    R      with    OC" d    then    6   admits 

a subfamily   X   with DX - 0    and     \x\  Z d + 1,      The shortest proof, 

due  to Radon  [9],  is based on the fact that a subset of    R      is  affinely 

independent if and only if it does not contain disjoint sets whose convex 

hulls  intersect.    Here a similar approach leads to short proofs of old 

and new intersection theorems  for positive sets. 

Throughout this note,    E    denotes a vector space over an ordered 

field.    When    E    is said to be d-dimensional it should be understood 

that    d    is finite.    A subset    P    of    E    is called positive provided 

that    ax + By  e P    whenever    x,y t P    and    a,ß t 0;     equivalently,    P 

is  a convex cone with apex    0.       (When    E > R  ,     the intersections of 

positive sets with  the unit sphere are precisely the  sets which are 

spherically convex in one of  the common meanings of that term.    Thus  for 

real vector spaces our theorems  could be stated alternatively in terms 

of spherically  convex sets.)     The positive hull    pos X    of a set    X C E 

is  the intersection of all positive sets containing    X;    equivalently, 

it  is  the set  of all points  of  the form    Z    VX x    with     X    > 0    for all r xeX x x 

x    and    X    - 0    for all but  finitely many    x.       Note  that    lin X ■ 

pos X - pos X,    where    lin X    is  the linear hull of    X. 

STRONG POSITIVE INDEPENDENCE.      A subset    X    of    E 'u {0}     is called 

strongly positively independent provided that    pos Y O pos Z c {0}    whenever 

Y    and    Z    are disjoint subsets of    X.      This notation was Introduced by 

McKinney  [8]  and characterized in various ways by him,  Bonnice and Klee   [1], 
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and Reay [10], The most useful characterization is the following, proved 

by NcKlnney when pos X ■ lin X. Our proof is considerably shorter than 

his. 

THEOREM (McKinney).      A eubset    X    of   E   is strongly positively 

independent if and only if   E   can be expressed as a direct sum of linear 

subspaoes,    E - E0*^ AEa,    in suah a way that 

(a) X C E   U U   AE  , o        OGA a 

(b) X(lEo   is linearly independent, 

(c) for each    a e A    the subspaoe    E     is finite-dimensional wd 

xnEo(   oonsiets of the points of a linear basis for   E      together with a 

sum of negative multiples of these points. 

Proof.      For the "if" part it suffices to note that each of the 

intersections    XTIE     is strongly positively independent.    For the "only 

if" part,  consider a strongly positively independent subset    X    of    E 

and let    B    be a linear basis for    X—that is,    B    is linearly independent 

and    B C X C lin B.      Let    A ■ X ii B.       For each point    x    of    A    there 

is a unique scalar function    A      on    B    such that    A^ - 0    for all but 
b 

finitely many    b  e B    and    x - -l,   gV3^*     Let    B    » {b e B:   A* > O}. 

Then 

(1) x + ZbcB \\ ' hw    (-Vb 
x x 

and it follows from strong positive independence that both sides of (1) 

are equal to    0.      Note that    BOB    - 0    whenever    x, y e A    with    x ^ y. 
x   y 

For suppose the contrary and let p - maxJA^/A^: b G B ) > 0.  Then 

x + EbEBjuB..AbV ^+ EbtB na K - AbX)b + Z 
x    y x    y beB O/B  W 
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and it follows  from strong positive independence  that both sides are    0. 

Referring to (1), we  conclude that    Z.       n    ^b5^"0»    a contradiction 
e x    y 

implying    B   OB    «0. 

Now let    B'    be a linear basis for    E    containing    B,     let 

E    - linCB' ^U    AB ),     and for each    x e A    let    E    - lin B  .       Then o xeA x xx 

E - E
ri*wv.rA

E
v    and conditions    (a),   (b)  and  (c)     are satisfied.  □ 

The subspaces    E       in the above decomposition are uniquely determined 

by    X,    for  they are exactly those  finite-dimensional subspaces    L    of    E 

such that    L - pos(XPL)     and    1 + dim L •   |xnL|.       (By Davis  [3], McKinney 

[8]  and others  they have been called the minimal subspaaes associated 

with    X.)     The set    X HE      is also determined by    X,    as is    E      itself 
o -^   '        o 

when lin X ■ E.  When E is finite-dimensional the cardinalities  | XHE | o 

and    |xnE  |     can be arranged in a finite sequence which starts with     | XHE  | 

and  thereafter lists   the numbers   |XTE  |     in increasing order and with 

proper multiplicity.     This sequence will be called the invariant of    X 

in    E.      For example,   the sequence  (1;2,2,3)     is  the invariant in    R5 

of the eight-pointed strongly positively independent set represented by 

the columns of  the following matrix: 

10000000 

0 1-10        0        0        0        0 

0        0        0        1-10        0        0 

00 000 10-1 

00 0000 1-1 

The  term invariant is  justified by  the first part of  the following 
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theorem, whose straightforward proof Is left to the reader. 

THEOREM.     Suppose that    E    is ^-dimensional.    Tuo strongly posi- 

tively independent subsets    X   and   Y   of   E   have the same invariant in 

E   if and only if   E   admits a linear automorphism carrying the rays from 

the origin through the points of   X   onto the rays from the origin through 

the points of   Y.    A sequence    (t0;t.,...,t )    of integers is the invariant 

in    E    of some strongly positively independent set of cardinality   n 

if and only if the following conditions are all satisfied: 

0 < tn;  2  < t. i •••  < t  ; n - Z1^   < d + r. 0' 1 r o i 

With slight modifications  the  above thjorem can be extended to the 

infinite-dimensional case.    From the theorem's second assertion it follows 

readily that    d + [d/J]    Is  the maximum cardinality of strongly positively 

Independent subsets of    E    in which each j-pointed set is  linearly inde- 

pendent. * 

A subset    C    of    E    is called a cross basis for    E    (called a 

maximal positive basis by Davis  [3] and McKinney [8])  provided that    C 

consists of the points of a linear basis for    E    together with a negative 
« 

multiple of each of these points.    The following is an immediate consequence 
! 

of the preceding theorems. 

COROLLARY.      Suppose that    E    is d-dimensional and   X C E ^ {0}. 

If    |x|   > 2d    then    X   contains tuo disjoint subsets whose positive hulls 

have a cormon nonzero point.    The same is true when    |x|  - 2d    imless    x 

is a cross basis for   E. 
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INTERSECTION THEOREMS. When XC E 'MO} we will say that the 

sets of the form pos(X ^ (xl), for x e X, are associated with X. 

Note that all the sets associated with a cross basis are closed half- 

spaces. Before proving the main intersection theorems, we illustrate 

the method to be employed by proving the following result of Robinson 

[11]. 

COROLLARY  (Robinson).      Suppose  that    E    is  d-dimensional and   J» 

is a finite family of positive sets in    E    with  HTC {0}.      Then   T 

admits a subfamily   Q   with  HO C {0}    and    \Q\  1 2d.      Indeedt  there 

is suah a   Q   with     [Ol   < 2d    unless    T   consists of the    2d    halfspaaes 

associated with a cross basis for   E    or of such halfspaaes together with 

E   itself. 

Proof.       Let    (^,...,0      be distinct members of    T   forming a 

subfamily   ö    with   DOC {0}    and     |o|     a minimum.    For each    i    there is 

a nonzero point    x    c ^^Qj-      If    xi " "v    with    * l* k     then    **   e (^O. 

We may assume,  therefore,   that  the    x  's are all distinct  and let    X 

denote  the n-pointed set    {x,,...,x }.       If    X    contains   two disjoint J n 

sets whose positive hulls have a common nonzero point v then v eHO, 

an impossibility since nOcfO). From the preceding corollary it 

follows that n < 2d or n • 2d and X is a cross basis. It remains 

to examine the nature of T in the latter instance. Plainly Q is a 

halfspace associated with the cross basis X, for Q is positive and 

X ^{x  |c  Q    ^  E.       Consider an  arbitrary member    ?    oi    f ^ Q.       If 

P DX     then  of  course    P » E.       If  there  is  an     i     for which     x.   ^   P. 
i 

then    {P^LMoMQ.})     is  a subfamily  of    T   with  intersection    Cio) 

and by  the earlier  reasoning is  the set  of all  halfspaces   associated 
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with a cross basis for    E.    It  then follows that    P - Q  .    Q 

The special case of the above result in which     ^  consists of closed 

halfspaces has  (or its polar equivalent has) been proved by Steinitz 

[12], Dines and McCoy  [4],  Robinson  [11], Gustin  [6], Gale  [5]  and others. 

The polar equivalent asserts that if    pos X ■ E    then    pos Y - E    for 

some    Yc X   with     |Y|   1 2d;     further,   there is such a    Y   with     |Y|   < 2d 

unless    X    Is a cross basis  for    E.      See Oanzer,  Grünbaum, and Klee  [2] 

for references  to related results. 

The statements of uur main theorems will require some more defini- 

tions.    For any set    Z    let    d (Z)    denote the maximum of the dimensions 

of  the linear subspaces contained in    Z.     For any  family   Z   of sets let 

k(Z) - minZe£dL(Z),      k(2) - max^^iZ) , 

and 

1(2) - dL(U2). 

The  family   T   is said to be compatible with, the invariant    (t0;t.,...,t ) 

provided that  there exists a strongly positively independent set    X    in 

E    with this invariant such that each member of    2*    contains a member 

of   Gfx,     the family of all sets associated with    X. 

THEOREM.      Suppose that    E    is a A-dimensional space,    0 < k < «, < d, 

and    m j mln(k+l,JO.      Let   Q   be a finite family of positive sets in 

E    that is minimal with respect to having   DOCfO}.      If   k(0)  ± k    and 

l(Q)   < I    then 

\Q\   < d + m. 
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uith equality if and only if   Q   is compatible with 

(d - m - s; 2,   ...,   2, 2 + s) 

m - 1 

for some    0 i s 5 £ - m. 

Proof.  Let Q,,...,Q  be the n members of Q and let 
l     n 

X ■ {x1>...lx |, where for each i  the point x.  is such that 

0 y x e ^iWi^i*  Let  ^o* t!»"-»1 )  be the invariant of the strongly 

positively independent set X and let 

E-E^E^ •       •       • OE 

be  the direct sum decomposition of    E    described in the first  theorem. 

Since    X ^ {x } C Q      for all    i,     it  follows   that 

.r-i r - 1 < Ij   ^tj-l)  - kfcfx)   < k(O)  < k. 

And since,   for    j  > 0,    each point  of    E      is  a positive combination of 

proper subset of    X HE.,    it  follows  that 

El® • ErC Uöfx C   UO 

and 

r 1 ^(t^l) = J(^x)   < UQ)  <_ i. 

We conclude,   therefore,   that 

r < min(k+l,0     and    n i d + r < d + m. 

Note  that   the inequality    n i d + m    is all that is  required  for the 
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corollary below. 

• 

Suppose now that    n ■ d + m,    whence    r « m.       If    t        > 2    then 

k I k(0)  I r - inin(k+l,^). 

whence    k ■ A    and 

Ä i «.(0) ^r+1-Ä+l, 

a contradiction.     It  follows that    t,  ■  .   .   . ■ t     ,»2.      Furthermore, 1 r-i 

t    <  1 + Ä - ^f'^tj-l)  - 1 + £ - (m-1)   « 2 + £ - m. 

Let    s ■ t    - 2.      Then    0 ^ s < Ä, - m    and r 

t    - n - lTt± - d + m - 2(m-l)  -  (2+s)   ■ d - m - s. 

Hence the invariant of    X    is 

(d - m - s,  2 2,  2 + s) 

m-1 

or simply (d) if m ■ ^. Plainly |o| » d + m if Q is compatible 

with such an invariant for some 0 £ s 5 £ - m, and that completes the 

proof.   □ 

COROLLARY  (Robinson).      Suppose that    E    is A-dimensional and   V 

is a finite family of positive sets in    E    with Pi? c {0}    and   kCP)  1 k. 

Then   V   admits a subfamily    Q   with   noc{0}    and    \Q\  1 d + k + 1. 

Proof.       Choose    ?    z   T    with      d  (P  )   < k       and let   S    be a 
o L    o 

subfamily of    2* «v {P  ]     that  is minimal with respect  to having 
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P   O (OS) C  {0}.      Let   M- {SOP   : S  e S}.      Then    %<Jt)   < k    and Jf o l       o J 

is minimal with respect  to having nJ*C{0},    so it follows  from the 

preceding theorem that     \M\   < d + k.       But then     | {PJ US|id + k+l.  □ 

THEOREM.      Let the hypotheses of the preceding theorem be strengthened 

by requiring    k(Q)  < k.      Then 

(a) when    m » d    or    k «  fc, 

|Q| » d + m    if and only if   0    is oornpatible with    (d - m;  2 2); 

(b) when   k - 0    and    ^ - d, 
m 

|Q| = d + m    if and only if   Q    is aompatlhle with    (0;  d + 1) ; 

(c)    when    m < d    and   0  <  Ä - k   < d, 

|Q| id + m- 1 - d + k,    üith equality if and only if   Q   is aompatible 

with    (d - k;  2 2)     or   k - d - 2    and   Q   is oornpatible with 

(0;  2.   ....  2).       k 

d -  1 

Proof.       If     |ö| ■ d + m    then    O    is compatible with 

(d - m - s;   2,   .... 2,  2 + s) 

m - 1 

for some 0 < s < £ - m.  There are the following cases to consider: 

(i)  m + s < d.   Then 

4 

k > k^fx) - ^(t^D - m + s, 

whence m i k, k " i, and s 

(ii)  m » d and s * d 

(iii)  1 = m and s » d 

and k * 0. 

(iv)  1 < m < d and s 

0. 

m * 0. 

1 > Ü.   Then s < ^ - m implies  «• = d 

d - m  is impossible, for it implies 
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cl - £    and    k > k^ )  -m-l + s-d-1 

whence    m ■ d. 

That settles the "only if" parts of (a)  and (b) ,  the first part of (c) , 

and supplies all the  information needed for the corollary below.    The 

"if" parts of  (a)   and   (b)   are obvious. 

For the remainder of the proof we assume    m<d, 0<£-k<d, 

and    |Q|   ■ d + k.      Note  first that 

k < r < k + 1 

where  the left-hand inequality follows  from    n ^ d + r    and  the  right-hand 

inequality from 

k 1 k(efx)   > ^(^-1)  > r - 1. 

Now suppose first that  t > 0.  Then 

k > k(^x) - ^(t^-l) > r + tr - 2. 

whence    r ■ k    and    t.   ■ 2    for all    i > 0.       Hence    X's invariant is 

(d - k;  2,   ....  2). 

Suppose next that    t0  ■ 0    and    r * k + 1.       Then 

k I k(Cfx)   - tlit^l)  lk+ tr - 2, 

whence    t^  ■ 2     for all    i > 0    and 

d + k = lTlti - 2(k+l) 

Hence    k » d - 2    and    X    has Invariant     (0;  2,   .... 2). 

d - 1 
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Suppose,   finally,  that    t    ■ 0    and    r » k.      As    t        > 2     or    t    > 3 

would imply 

k > k^x)   > I^t^l)  > k + 1, 

it  follows  that    t    "   . .=t     ,=2    and     t    =2 + s    with    0  < s  < 1. r-1 r 

This  implies 

,-r 
d + k = Ejt.  = 2(k-l) + 2 + s I 2k +  1 

and hence k ^ d - 1, contradicting the fact that k < I and m < d. 

Thus it cannot happen that t. = 0 and r = k, and the discussion of 

(c)'s  "only  if" part  is  complete.     Again,  the  "if" part  is  obvious.   □ 

COROLLARY.     Let the Hypothesen of the preaeding aovollaru be 

strengthened by requiring thai    k(T)  1 k    and that    0  < k ^  d - 1    or 

Si(T)   <  d.       Then   T    adrn'.ts a sub family   Q    with   OOCfo)     and 

\Q\   1  d + k. 

Proof.       Let    Q    be  a subfamily  of   T    that  is  minimal with  respect 

to having    nCc{0}.       Apply  the  theorem just proved. 

4 
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