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By A. K. Obukhov
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1949, pp 58-69
Abstract

"The mean square of the temperature differcnce at two points
is used as the characteristic pararmeter of the temperature field.
The dependerice of this cuantity on the distance bstween the points
of observation is determined experirentally. The order of magni-
tude of the characteristic parameters of the field of temperature
fluctuations in the atmosphere is evaluateAd.

The micro-structure of the atmospheric tezperature field is a problem of
considerable interest for meteorology. Small temperature fluctuations are
responsible for the turbulent transport of heat, the twinkling of the stars, and
also influence the propagation of sound and other phenomena in the atmosphers.

Rough measurements of the temperature fluctuations in the air layer near
the ground show that the temperature {ield in the atmosphere is extremely coxm-
plex, like the field of wind velocities. This arises froa the turbulent state
of the atmosphere,

In 1941, A. N. Kolxogoroff proposed using the mean square of the velocity
difference at two adjacent points considered as a function of the distance
between the points, as a characteristic parameter of the micro-structure of the
turbulent field of velocities. This function we shall call the structural
function of the velocity field.

A comnliotely analogous method may be applied to the statistical description
of the stru:' re of the field of temperature fluctuation in the atmosphere by
considering the mean square of the teaperature difference at two points. The
dependence of this value on the distance betweqn the points of observation
(structural function of the temperature field) characterizes the intensity of
the temperature fluctuations in the sense of a spectrum.

The problem of the local structure of the velocity field in a turbulent
strean has already been discussed in a series of theoretical and experizental
papers (2,3,4), but the problem of the structure of the tezperature field has
not previously been discusscd. ERxisting observations of the tezperature fluctu-—
ations in the atmosphere do not pernit even an approxizate estimation of the
structural function of the temperature field since suitable measurezents at
small distances of separation with sufficiently sensitive apparatus, do not
exist.
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In the present paper 2 prelininary atteant is made to consider thoeoretically
the question of the structure of the field of temperature in a turbulent stream.
By using the theory of locally isotropic turbulence, vie succeed in obtaining a
soeries of results relating to the structural function of the terperature field.
For example, according to thc theory developed below it is shown that for:-not too
small distances, the mean square of the differcnce of temperatures is proportional
to the 2/3'3 power of the distance. It is assumed that the arplitudes of the
temperature fluctuations are smll (cormpared with the mean absolute temperature)
and do not influence the turbulent fluctuations of the velocity field which arise
solely from dynamical causes. In other words, in the present work we neglect the
buoyancy forces arising from the temperature and treat the heat transported by the
strcam as a "passive substance".”

To be consistent with the first assumption, it is also assumed that the
turbulent motion in the atmosphere may be considered as "incompressible" (accord-
ing to the terminology of Friedman).

Radiative heat exchanges in the mediun are neglected in the present investi-
gation, although on a very small scale the latter may become appreciable,
together with molecular heat transfer in the mediunm,

The mechanism of the equalization of temperature in a suffi.iently large
volune can apparently only be explained by the joint action of turbulence and
molecular heat transfer, Owing to the irregular motions of particles of air
possessing different temperatures, the latter are able to converge within such
small distances that equalization of temperature between these particles is only
possible through the operation of molecular heat transfer. In other words, the
turbulent motion inside a thermally heterogeneous medium with gradients which are
initially weak can contribute to the local gracdients of temperature, which are
subsequently smoothed out by the action of molacular heat conductivity.

To obtain from this physical stream some quantitative conclusions it is
necessary to introduce a number of auxiliary concepts. Fundazental {or further
developments is "the measure of the heterogensity" of the temperature field.

Section 1. "Measure of Heterogeneity" and "Free Energy"' of the Temperature Field.

We consider the temperature field in a medium with a specific heat C
occupying some region V .

# The influence of systematic temperature heterogeneities on turbulence is con-
sidered from another point of view (by the method of the semi-eapirical theory
of turbulenco) in the work "Turbulence in a Heterogeneous Field"(4).

##In the present investigation of the temperature field of the atzosphere, the
specific heat C will be identifised with the specific heat C, at constant
pressure so that the total energy of the system replaces the internal anergy.
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Let T be the mean temperature of the fiecld (averaged over the volume V/ )

T4 H féT(*-Qg»Q dv (L)

be - dedyle
M = (g{ai«r (zass of the fluid)

Denote the deviation of tecaperature from the nean by

Tl(%,:yz) =7( 2"'37‘>" By (2)

"

As a measure of the "teaperature heterogeneity" of the field in the region
Vv , it is natural to introduce the quantity G' defined as the integral over
the region \/ of one-half of the square of the temperature deviation.

6 = & [ pCY dar 3

It is obvious that G‘-’- O if and only if the tezperature is constant over
the whole ragion. The factor Y2 1s to make an analogy with the kinetic energy
of the relative motion in the fluid. The latter is obtained if, in the above

formula, the temperature is replaced by the vector of velocity. It is convenlent

to introduce a special symbol for the measure of the heterogeneity, referred to
the unit mass of the mediun.

3= = 7w eV

It moy be remarked that the physical significance of G is that it is pro-
portional to the maximun work W , which it i3 possible to obtain froam the non-
uniformly heated substance, considering it as an isolated system (in resard to

heat). e shall call this maxizum work W the "freo energy” of the non-uniformly

heated substance.®*

* The tern "free energy" as used above is rot %o be conlused with the analogous
conception in therzodynamics, which is significant only for isotherzal
processes. Inasmuch as, in the following, we shall not use the classical
expression for f{ree energy, this ternminolcgy should not lead to confusion.

.
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The value of W for a uniformly heated substance is obviously zero since in
this case the substance is in a state. of thermodynamic equilibrium,

we shall now estimate W for the region \/ with a given distribution of
tomperature T(’&, :Y z.) .

In order to extract the miximmn quantity of heat from a2 system, we amust bring
the systen into a state of thermodynamic equilibrium with the ald of sore
roevorsihle process, Tho change in thc total cenerpgy of the system in such a
conversion fron the piven initial state t> the final equilibriun state determines
the value of W . ‘e denote the temnorature of the substance in the final state

o« 1 1s obviously constant, inasrmuch as it refers to a state of thermodynamic
oequilibrium. Thus, mcasuring the maxizum work in heat units, we have

. W = Sg CPT(x‘:S'z)J”’- !((CP%JK - C.M{'T—-?) (%)

where T. is the mean tenperature of the substance.

To determine ? we shall use a reversible process to connect thre initial
and final states of the system. The total entropy of the system in such a process
remains constant. Equating the ontropy of the heat substance léthe initial and
final states, we obtain an expression for the determination of .

oo [feokyriogies [fiolsthe o

froa which &3“-\4 . _‘_l{. jg(o %T(b,&-,_}l,r (6)

~)
T may be termed the "geometric mean" temperature of the substance.

Thus the "free energy" of a non-uniformly heated substance is equal to the

heat derived in a change between the "grithmstic mean" and "geometric mean" values
of the temperature. Substituting for T <froa (6) in (4), we obtain the final

exprossion for W 1
W= cM’F’{\— oxp {3 fgf éﬁ——é—-)T,{_T = ]} )

Expression (7) may be simplified by assuning that the variation of the
temperature T’/ is very small compared with . In this case, since

fl o7y~ o

lfe
and noglecting the integration ¢f powers ofT T greater than the second:
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W = L o1 . = (8)
¥ T M z ¢ <
v
. Thus, the approximate expression (8) for the "free energy" V\/ differs only
by the factor c/:f’- from the measure of the heterogenelity G‘ of the teaperature
field introduced above,

Ve may also estimate in this case the approximate increase of entropy AS
in tho equalization of temperature due to non-reversible processes (hea_g.__ conduc-
tion). Such a process brings the substance to a constant temperature T , so
that the variation of entropy can easily be estimated:

85 = M bT - c.gg o Iy TCe 2 - fg(a@;fg%e}]u |

from which, neglecting teras of highnar order, we obtain a very simple expression
for the lncrease of entropy:

C
AS x = & (9)
Fron (8) and (9) it follows that to the approximation considered

W =T as (109
which also follows from general therrodynamic reasoning.

Thus, based on expression (8) obtained for W and (9) for S , the value
of G~ may be treated in the same manner as tha "free energy" of the field, or as
the nea.s\)u-o of the deficlency of entropy of the tezperature field ("negative
entropy" ).

Section 2. Variation of the Measure of Heterogeneity of the Temperature Field
with Time.

Consider the motion of an incompressible fluld of densit P (assumed to be
constant for simplicity) possessing a variable temperature T (% ,z,h‘) R

Let )\ be tho thermal conductivity and, correspondingly, K th¥ thermal
diffusivity of the fluid. The boundaries of the volume under consideration will
be assunod to be fixed and non-conducting. We shall calculate the change in the
value 0f G- for the whole volume.

The tezperature in a moving medium satisfies the following two equations:

4T _ \ AT
CP JF = >\A\
or G Ph;) = KaT w
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O Since v o= O

w3 obtain on substituting T(z,'s,z){;) = '-'\7 “"‘T.,(’&nyZ,t)
in cquation (11), the following equation for the variation of T’(x,,s,z )t) :

i%igf-r JJU’(:;?’?f\JlfT—\) = K AT’ (11a)

where K 1o the thermal diffusivity,

On nultiplying this relation by PT’('?-, ;Z.Q, integrating for the whole
volume V , and applying Gauss' theoream, objerving that for the boundaries of

the volume
'0','“ =0 R T)'m = 0

wo obtain %%- . —K ggp(ﬂ-ﬂmh_ (12)

Using the measure of the temperature heterogeneity referred to a unit of

nass %—: G/M , equation (12) may be written in the form

%ﬁk“ = -K (3"1‘7)1 (12a)

whox_'o the msan reforas to the volume \/ .

This equation is completely analogous to that for the dissipation of energy.
It is assumed by formal analogy to be the kinetic energy, then the dissipa-
tion function of Stokes referred to unit mass for a temperature field will be
given by the expressions:

-\
‘\l « K (8'\‘14 ‘)
wifich dotarmines the rate of equalization of the temperature heterogeneities.

To recall that the thermal diffusivity K and the kinematic viscosity ¥
have the same dimensions and, for air, approxirmately the sarme numcrical values

(72214, K 209 cadfsad.

Zquation (12) shows that in a hypothetical nediua for which K= O inside
a closod boundary, the measure of heterogenelty remains constani. Cn the other
hand forzula (112-{ also shows thit in real modium with a small thermal diffusivity
(alr or vator), the actual oqualication of tezporature heteroguneities (decreaso
of G ) will in practice occur only when local gradients are sufficiontly great.
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Ve mny now fora o qualitative picture of the processes occurring in a tem- <:>
neraturce field in a turbulent medinm sossessinzy only a small thermal diffusivity,
If the initial distribution of temperature is sufficlently uniform, then for a
very smll K | may be considerzd practically equal to zero, not only initially
but also during some period of time subsequently. As is demonstrated in practice,
the irrepular turbulent motion of a fluid affects the temperature field in such
a way that the temperature tends to uniforaity. If we divide the initial volume

V into small cells of volume yY) = V?Q& , then throuzh mixing the mean temperature

———

in the cells will tend to approach a constant | .

Hevertheless, if the total measurs of heterogencity G (or ) remains
finite, then inside every cell the field must be extremely heterogeneous since
the mean amplitude of the teaperaturo fluctuations inside the smll cell will
approach in the mean the amplitude ¢f the temperature fluctuations observed
initially for the entire volume V . Owing to the fact that during the mixing
process the size of the region W , for which a higher average temperature
prevails, must be decreasing, the actual tezperature gradient must be increased
in such a process, and from a certain stage the mechanisa of molecular heat
conduction must become important. it this stage, inside sufficiently small
clements of volume (the size being smaller, the smaller the thermal diffusivity
of the medium) owing to *the influence of molecular heat conduction, equalizaticn
of the temperature heterogencities will take place, that 1s, a decrease in the
vaire of G will occur (increasc of entropy). It is easy to see that during
sone period inside sufficiently small cells, a quasi-stationary (statistically)
regime must be set up, through which increase of the measure of heterogenoity (:>
inside the volume w owing to mixing is compensated by the actual equalization
of the temperature field inside the volune ) as a result of rmolecular heat
conduction.

Thus the influance of turbulence leads to a redistribution of the measure
of the temperature heterogenelity into a "spectruu" of temperature inhomogeneities.
It 1s possible to establish the concept of the spectrua of a temperature field
more exactly by considering the resolution into a Fourier series (integral) and
observing that the value of will be the sum of contribu*tions from different
spactral components, This method of characterizing the temperature field may be
carried out in a completely analogous way to that which has been applied to the
ficld of velocities by A. K. Obukhov in 1941 (3) and somewhat later by Gnsager

(5).

In the present work we shall not consider in detall the application of the
method of spectral resolution to the problea of the micro-structurs of the tez-
perature field. Ve shall attempt, on the basis of the above cualitative notions,
to procced directly to the investigation of the structural function of the ten-
perature fleld, using for this purpose dironsional considarations. This method
is amlogous to that employed by A. N. Kolmogoroff {2) in the investigation of
tho micro-structure of a turbulent velocity fileld.

Sceivon 3, Structural Function of the Temneraturae Field.

In the introduction wo spoke of the structural function of a temperature
fleld. This function describes in a statistical scnse the cean value of the <:>
square of the differonce of the terperatures at two points M ond, M/

¢ . r—————
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H(v,m) = (T()-T tﬂl (13)

We shall ussune tnat the temperaturce {ield is lo:ally isotronic. This means

_that tac fu;;'xon ..(N1 M’) depends only on the distance £ tetwean the points

ani M’/ , waich are chosen so that th: distance between then is small in
comparison with the scale of turbulcnce 40 . The scale eo for given conditions
of flow is detsrzined by the geometry of the systom., For exanple, é; ray be
dotermined according to the theory of Prandtl. This method is conpletely
analogous to that which was proposed by Xolzogoroff in 1941, for local isotropy
of a tirbulent velocity field. It is natw-al to assume local isotropy for the
temperature f10ld in a turbulent flow pattern.

Using the condition of tha local isotrcoy in the texzperature field, we zay
write

H. () = H(e) (14)

tor £< Zo » where

=|G - @2

It is obvious that for‘e o, H equals zero. Frox symzetry it also follows
that H(0)=0 .

The second dorivative of the structural function for zers value of its
argunent, as is readily shown, is directly expressible in terams of the mean
value of the square of the temperature gradi nt. Considerir> the coordinzte
points M and M’ as independent variables x, Xy, "‘u"xﬂcs) , We have
from equation (13)

(V.7 H (M M) EM.6M7)) = - z((zr.LT(Mj, ZNL-‘—(W)QM.W»

Here the dot denotes the tensor product of vectors and the right and left hand
sides rcpresent bi-scalar products. Dividing ty the product of thz vectors
M and $M’, it follows that

'K*JI T(M). 8“‘1‘(5/01) Q,Js H(e) (15)

Tho right hand side of (15) may be cvaluated, using thae coaditlion of local
isotropy (14)s

O b6 gl () = 25 KOS, o2 [W) 4Gy
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being the components of the vector deter.ciaing the dircction from the poirt M

(<

to M’.

Proceeding tc the limit M")M (e-"ro>:~.nd sunndng for the indices, we obtain
the desired forzula for the mean square of the temperature gradient.

2, 2 n
[Z’\ALT] ey H (o} (17)

Lultiplying both sidss of equation {17) by the thermal diffusivity K , we
obtain an expression for the parameter V (glven above Section 2) deterzining the
rate of equalization of the temporature hoterogeneities.

N = 3K H(o) (16)

Hence for ve)zry small ﬂ (later we shall dafine more precisely the meaning of
"szall" , '

H(C) ~ + H'(c) 8™ = -\13' -&l-\;- g* (19)

The structural function for the tezperature field H(&) ray, roughly
speaking, bo treated as a measure of the intensity of the tezperature helero-
geneities (calculated for unit mass) for values not exceeding . The
heterogeneities considerably larger than ¢ will not influence to any extent
the difference of temperatures at the distance . The elation between the
spectrux of temperature heterogencities and the structu:al function ray be
established more exactly by the method of the Fourier integral.

Using the preceeding picture of the egualization process for the texperature
heterogeneities in a turbulent strezm, we may now obtain an expression for the
structural function H([i,) for (not very szall) values of € , where the direct
influonce of thermal diffusivity of the zediua is negligibly szall, It 's
natural to suppose tha* in this reglon in a nuasi-stationary regine of tesmperature
fluctuations, the size of H(-Z) oust be de 2rzined only by the value of
(the analog of the dissipation energy in Kolagorof{'s theory) and by the
characteristics of the turbulence.

In this region the coofficient of thermal diffusivity docs rod eater
dircctly. According to Kolmogorcff's theory, in tnis range the structurs of the
field of turbulent fluctuations of velccities is completely detcorzined by the
zean dissipation energy 7.5- » calculated for unit mass of the mediu<-. Thus we

my write
He) = F(N, T, 4) (20)

Before considering the fora of tho function H(E) as derived fronm dirensional
analysis, it is neccssary to make ono resark rezarding the dirensicns of Lezpera-~
turo. Sinco we have as-uwed a "passive” charactor for the heat transported in the

9
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flow, i.c¢, that the hotoromeneity of che tonneribure ficld does st iafluence

the flcld of turbulence (bYIJ will bLe t“ﬂ ease for small {luctuztions of tempera-
ture frox the mein and considrrable turrulpncb of dynanic oririn), the mechaniecal
equivalent of heat does not a; ear

amone the deternininge sara**ters. Thus, in
the dimensional analvsis, we may use an a roitrary scale, not depending on the

scales for the dynanic quantltlc

k n

For the dirensions of the cuantiti:c nresring in formula {23) we write

Hl=0* [l 273, N]= 67" [7] =L

\

a—
(In this formula | 4is the dimension of ti-e.)

From these values it 13 possible to set up only one dizensioniess corbina-

ion: Jj_jk—- A
0/4156, 4% <1'“‘JLJ‘>

froa which it follows that the structural function E{(QZ) has the forx

TORE S -2, 1) ’
oo o (8) = [ECO)-T(R] - B o @) |

where 4£ is a numerical constant obviously of the order unity.

8- AT

appears as the fundamental characteristic of the local

structure of the temperature fleid.

The fundamental form of the mean square of the difference of teagerature in
a turbulent stream as a function of the distance between points of observation
is completely analopgous to the "two thirds law" for a fleld of vclocities as
obtained by Kolmogoroff and Obukhov in 1941 (2,3).

[(Fi) - FG" = c 4™ eh (23)

# ‘e may note that the tansforzation of mechanical enersy 1740 beat (duc to
dissipation) in turbulent flow causes neglizible chinzes o' tozperature so '
that we may disregard this process,

10 ;
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vhere C is a numerical constant of the order unity.

Thus a unicue Si"l'l:ﬂ"lt] exists ‘nt\.\.en the structure of a temperature field
and a field of velocities in conditions of locnl isotropy. It follows that the
behavior of the mcan scuare amplitude of t‘.e adifference of termneratures and the
differcnce of velocities docc _nct depend upon the distance between points of

obzoervation and has the fora 1N/5

estinate the vilue of the temperature heterc-enelities
for which the lield annroach 235 lincurity owing to the absence of thermal
¢iffusivity., Trhis regsion corr po ds Lo ..¢y ntetic exsansion of the structural
function H(.&\ for small . We dctersine a sultable dirmension € by the
istersection of two aSJmatotic resrescatations (19) aad (21) for H(e) ,
corresponding to "omall" and "large" vilues of (Fig. l.--Yerc the broken line
represents the hypothetical fora of H'(e) in the transitiocnal zone.)

It is now nossible to est
-

He)A

/7

/4

Hn 2

VN

€~ = - - b
¢ Fv\ l
Thus et nust satisfy the equation:

SR A A,

3
AN 3&6 K3
A
The mapnitude of e does not depend upon the inten..x..,r of the texzperature
fluctuations. Owing to the fact that the Prandtl nuzber for alr is of order of

nity, the magnitude of 2 » 13 of the saze order as the characteristic
para...et.or of turbulence qz , givon in tho above clted theorem of Kolmogoroff:

from where (24)

il
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¢

The above discussion ccnccrnin; the micro-structure of the temperature ficld
in a2 turktulent flow pattern ;icht be applied in meteorololy to the study of the
fluctuations of temperature in the acar-ground layer, provided the velocities of

the field be suffici\“tly sreat and turbulence of dynamic crigin.

It i< poszidle to wsbimate roushly the order of magnitude of the basie
parameters of the structural functica of the temperature f£ield in the atroschere.
Using the sixilarity conditions formulated above for tha temperature and velcciuy
fields, we may calculate the conversion factor from the amplitude of the velocity
to amnlitude of tenperature fluctuations oy comparing wind and tezperature
obzervations obtain.d under similar corditisns. Using the data glven in Lettau's
book, it is possible to estimate this conversion factor to bo of the order of

magnitude of 0.5° for 1m/sec or 5 10-Jer -1 . cc.

Then using measurerents of the Tluctuation ¢f wind velocity, Sodecke (7) and
the author (8), the characteristic of the micro-structure of tho temperature
field, B (thc ccefficient of prono"t.ionuit.v for &/Ain the expres sian of th
rean square differonce of temnerature) may be estitated at a few hundredths cf a
degree for oﬂﬁf This corresponds for a bise of one meter to a mean axplitude of
the difference of temperaturcs of the order of a tenth of a degrce.

According to data gaven by fodecke, the inzer scale of turbulence may be
estimated as being of the order of 1 ca. The value of 45, specifying the
temperature hoterogenaity of the atmosphere may be deduced from such a value.

This coarse evaluation must naturally be made zore precise by means of
special measurexzents of the rapid oscillations of temperature differcnces in the
atmosphere over small distances (froz several ceatimeters to a meter).

Investigations of the same type are of interest not only in connection with
the theory developed above, but for the explanation of certain questions relating
to accoustics and optics in the atcosphere.

Acadexy of Science USSR Geophysical Institute - Subzitted 28 Larch 1548

Translated by V. Bartlett, Camp Detrick, September 1950
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