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Abstract

'The mean square of the temperature differcnce at two points
is used as thc characteristic parameter of the temperature field.
The dependence of this quantity or. the dictance between the points
of observation is deter.mined experLmentally. The order of magni-
tude of the characteristic parameters of the field of temperature
fluctuations in the atmosphere is evaluated..''"

The micro-structure of the atmospheric tomperature field is a problem of
considorable interest for meteorology. Small temperature fluctuations are
responsible for the turbulent transport of heat, the twinkling of the stars, and

- also influence the propagation of sound and other phenomena in the atmosphere.

ol, Rough measurements of the temperature fluctuations in the air layer near
the ground show that the temperature field in the atmosphere is extremely com-

0 plex, like the field of wind velocities. This arises from the turbulent state

of the atmosphere.

In 1941, A. N. Kolmogoroff proposed using the mean square of the velocity
difference at two adjacent points considered as a function of the distance Z
between the points, as a characteristic parameter of the micro-structure of the
turbulent field of velocities. This function we shall call the structural
function of the velocity field.

A comrIloi3ly analogous method may be applied to the statistical description
of the strý'.. re of the field of temperature fluctuation in the atmosphere by
considering the mean square of the temperature difference at two points. The
dependence of this value on the distance between the points of observation
(structural function of the temperature field) characterizes the intensity of
the temperature fluctuations in the sense of a spectrum.

The problem of the local structure of the velocity field in a turbalent
stream has already been discussed in a series of theoretical and experimental

papers (2,3,4), but the problem of the structure of the temperature field has
not previously been discussed. Existing observations of the temperature fluctu-
ations in the atmosphere do not pernit even an approximate esti:mation of the
structural function of the temperature field since suitable measurements at
small distances of separation with sufficiently sensitive apparatus, do not
exist.
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In the prceznt paper a prclimin3ryj atte'.mt is made to consider theoretically

the question of the structure of the field of tompcrature in a turbulent stream.
By ucing the theory of locally isotropic turbulence, we succeed in obtaining a
series of results relating to the structural function of the teurnerature field.
For example, accordinZ to the theory developed below it is shown that for- not too
small distances, the mean square of the difference of temperatures is proportional
to the 2/3'3 power of the distance. it is assumed that the amplitudes of the
temperature fluctuations are sm1ll (cosQred with the mean absolute temperature)
and do not influence the turbulent fluctuations of the velocity field which arise
solely from dynamical causes. In other words, in the present work we neglect the
buoyancy forces arising from the temperature and treat the heat transported by the
stream as a "passive substance".'"

To be consistent with the first assumpt'ion, it is also assumed that the
turbulent motion in the atmosphere may be considered as "incompressible" (accord-
ing to the terminology of Friedman).

Radiative heat exchanges in the medium are neglected in the present investi-
gation, although on a very small scale the latter may become appreciable,
together with molecular heat transfer in the medium.

The mechanism of the equalization of temperature in a suffi.iently large
volue can apparently only be explained by the joint action of turbulence and
molecular heat transfer. Owing to the irregular motions of particles of air
possessing different temperatures, the latter hre able to converge within suchOsmall distances that equalization of temperature between these particles is only
possible through the operation of molecular heat transfer. In other words, the
turbulent motion inside a thermally heterogeneous medium with gradients which are
initially weak can contribute to the local gradients of temperature, which are
subsequently smoothed out by the action of moloicular heat conductivity.

To obtain from this physical stream some quantitative conclusions it is
necessary to introduce a number of auxiliary concepts. Fundamental for further
developments is "the measure of the heterogeneity" of the temperature field.

Section 1. "Measure of Heterogeneity" and "Free Energy' of the Temperature Field.

We consider the temperature field in a medium with a specific heat C,
occupying some region V .•

* The influence of systeMatlc temperature heterogeneities on turbulence is con-
sidered from another point of view (by the method of the semi-empirical theory
of turbulence) in the work "Turbulence in a Heterogeneous Field"(4).

**In the present investigation of the temperature field of the at--sphere, the
specific heat C will be identified with the specific heat Cp at constant
pressure so that the total energy of the system replaces the internal energy.
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Let -r be the mean te.poraturc of the field (averaged over the volume V) F
V

where r17

M , JAr (-ass of the fluid)

Denote the deviation of temperaturo from the mean by

T (2)

As a measure of the "temperature heterogeneity" of the field in t'he region
V , it is natural To introduce the quantity G defined as the integral over

the region V of one-half of the square of the temperature deviation.

) f. 4(3)

It is obvious that &- 0 if And only if the temperature is constant over
the whole region. The factor i is to make an analoa with the kinetic energy
of the relative motion in the fluid. The latter is obtained if, in the above
formula, the temperature is replaced by the vector of velocity. It is convenient
to introduce a special symbol for the measure of the heterogeneity, referred to
the unit mass of the medium.

V

It nay be remarked that the physical significance of G is that it is pro-
portional to the miximun work V/ , which it is possible to obtain from the non-
uniformly heated substance, considering it as an isolated system (in regard to
heat). ;'Oe shall call this maximum work W/ the "free energy" of the non-uniformly
heated substance.*

*The term "free energy" as used above is rot to be confused with the analogous
conception in thermodynamics, which is significant only for isothermal
processes. Inasmuch as, in the folloAin, we shall not use the classical
expression for free energy, this terminology should not lead to confusion.
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The value of for a unLformly heated substance is obviously zero since in
this case the substance is in a state- of thermodynwmic equilibrium.

.,e shall nov: estim-ate W for the region V with a given distribution of
temperature T(-4, ? Z.) •

In order to extract the .aximitam quantity of heat from a system, 'e must bring
the system into a state of thermodynamic equilibrium with the aid of some
reversible procoss. The change in thc total energy of the system in such a
conversion from the given initial state tV the final equilibrium state determines
te value of VW . "'Ie denote the temperature of the substance in the final state

T is obviously constant, inasmuch as it refers to a state of thermodynamic
equilibrium. Thus, measuring the maxi_-m •'ork in heat units, we have

W CpT(..,-u , ,-- (4)
V

where-T is the mean temperature of the substance.

To determine : we shall use a reversible process to connect the initial

and final states of the system. The total entropy of the system in such a process
remains constant. Equating the entropy of the heat substance i'a the initial and
final states, we obtain an expression for the determination of-

0 % = ff~TI~r (5)

froa which 3,X r_(6)SSff

T may be termed the "geometric mean" temperature of the substance.

Thus the "free energy" of a non-uniformly heated substance is equal to the
heat derived in a change between the "a/ithr.etic mean" and "geometric mean" values
of the temperature. Substituting for T from (6) in (4), we obtain the final
exproesion for V i F

V

Expression (7) may be simplified by assuming that the variation of the
temperature T/ is very small compared with¶. In this case, since

V

and neglecting the Integration of )owers of greater than the second-

C4



f s- wVC,~I~r~

o% (8)
V

Thus, the approximate expression (8) for the "free energy" VI differs only

by the factor T from the measure of the heterogeneity G' of the temperature

field introduced above.

71e may also estimate in this case the approximate increase of entropy as
in the equalization of temperature due to non-reversible processes (heat conduc-
tion). Such a process brings the substance to a constant temperature T , so
that the variation of entropy can easily be estimatedt

Sm ~7 &¶~~T.~•}i

from which, neglecting terms of higher order, we obtain a very simple expression
for the increase of entropy:

(9)

From (8) and (9) it follows that to the approximation considered

r (10)

which also follows from general therzodynamic reasoning.

Thus, based on expression (8) obtained for V and (9) for S , the value
of G- may be treated in the same manner as the "free energy" of the field, or as
the measure of the deficiency of entropy of the temperature field ("negativeentropy'")

Section 2. Variation of the Measure of Heterogeneity of the Te=perature Field
with Time.

Consider the motion of an incompressible fluid of density (assumed to be
constant for simplicity) possessing a variable temperature l(•,zb )
Let X be the thermal conductivity and, correspondingly, K thý thermal
diffusivity of the fluid. The boundaries of the volume under consideration will
be assurgod to be fixed and non-conducting. We shall calculate the change in the
value of Gr for the whole volume.

The temperature in a moving medium satisfies the follor:in; two equations:

or © (11)
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ri.) obtain on substituting T r&..,_ '(Z' Z'
in equaition (11), the following equation for the var:.%ation of "(,,Z

where K is the thermal diffusivity.

On mUItIplying this relation by ('z., .•,z, integrating for the w.ole
volume V , and applying Gausst theorelm, ob erving that for the boundaries of
the volume

we obtain (12) S~e~ T~~

Using the measure of the temperature heterogeneity referred to a unit of

mass =/M, equation (L!) mny be written in the form

=- -K (1a

where the mean refers to the volume V

This equation is completely analogous to that for the dissipation of energy.
If is assumed by formal analogy to be the kinetic energy, then the dissipa-
tion function of Stokes referred to unit mass for a temperature field will be
given by the expressions-

which dotarmines the rate of equalization of the tenperature heterogeneities.

We recall that the thermal diffusivity K and the kine,-atic viscosity )0
have the same dLnensions and, for air, approxir.ately the s3a1e numerical values

Equation (12) shows that in a hypothetical medium for which KuO inside
a closed boundary, the measure of heterogeneity remains constant. On the other
hand formula (12) also shows that in real mediwm with a s3all thermal diffusivity
(air or v,ater), the actual equalization of temperature heterogeneities (decrease
of G- will in practice occur only when local gradients are sufficiently great.
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".:c 0zy now form a qualitative picture of the processes occurring in a te.- 0
per:,turc field in a turbulent medium possessin.- only a small thermal diffusivity.
If the initial distribution of tennerature is sufficiently uniform, then for a
very rsll K , W1 ma..y be considcez'd practically equal to zero, not only initially
but also during some period of tim.e subsequently. As is demonstrated in practice,
the irr.gular turbulent motion of a fluid affects the temperature field in such
a way that the tcmperzture tends to nilformity. If we divide the initial volume

V into small cells of volume W v Vu/k , then through mixing the mean temperature

in the cells will tend to approach a constant T.

71cvcrtheless, if the total measure of heterogeneity & (or % ) remains
finite, then inside every cell the field must be extremely heterogeneous since
tho mean a.mplitude of the temperature fluctuations inside the sm=ll cell will
approach in the mean the amplitude of the temperature fluctuations observed
initially for the entire volume V . Owing to the fact that during the mixing
procezs the size of the region W , for which a higher average temperature
prevails, must be decreasing, the actual temperature gradient must be increased
in such a process, and from a certain stage the mechanism of molecular heat
conduction must become Liportant. At this stage, inside sufficiently small
elements of volume (the size being sm.aller, the smaller the therr.-al diffusivity
of the medium) owing to the influence of molecular heat conduction, equalization
of the temoorature heterogeneities will take place, that is, a decrease in the
valuie of 5- will occur (increase of entropy). It is easy to see that during
3some period inside sufficiently small cells, a quasi-stationary (statistically)

( i• regime must be set up, through which increase of the measure of heterogeneity ,-

inside the volume WA owing to mixing is compensated by the actual equalization 0./
of the temperature field inside the volwme W as a result of molecular heat
conduction.

Thus the influence of turbulence leads to a redistribution of the measure
of the temperature heterogeneity into a "spectrmv" of temperature inhomogeneities.
It is possible to establish the concept of the spectrum of a temperature field
more exactly by considering the resolution into a Fourier series (integral) and

observing that the value of will be the sum of contributions from different
spectral components. This method of characterizing the temperature field may be
carried out in a completely analogous way to that which has been applied to the
field of velocities by A. %. Obukhov in 1941 (3) and somewhat later by Onsager
(5).

In the present work we shall not consider in detail the applicition of the
method of spectral resolution to the problem of the micro-structure of the tem-
perature field. We shall attempt, on the basis of the above qualitative notions,
to proceed directly to the investigation of the structural function of the teo-
porature field, using for this purpose dimensional considarations. This method
is analogous to that employed by A. N. Yolmogoroff (2) in the investigation of
the micro-structure of a turbulent velocity field.

ct:• •. Structural Function of the Temnerature Field.

"In the introduction wa spoke of the structural function of a temperature
j. field. This function describes in a statistical sense the mean value of the 0

square of the difference of the temperatures at two points M .0.4 M/

7



C.e zal••l assume that the temocrature field is lo'xlly isotropic. This means
that the fun:ntion ~1 ,)dopýýnids only on Ow!~ dist.-t-ce t t-t'het-:en the points

* N ani M' ,vnich are chosen so that th.ý distance between them is small in
co..arison v::ith the scale of turbulcnce to . The scale 4o for given conditions
of flow is deturrined by the geometr-/ of the systen. For exanple, eo rmay be
determined according to the theory of Prandtil. This method is copiletely
analogous to that which was proposed by Mol=ogoroff in 1941, for local isotropy
of a ti rbulcnt velocity field. It is natu-al to assume local isotropy for the
temperature field in a turbulent flovw pattern.

Using the condition of the local isotropy in the temperature field, we my
write

~(M ~ VU/~e (14)

for e< e, where

0 It is obvious that for = , 0 equals zero. From sy~etr.V it also follows

that K/(O) 0

The second dtrivative of the structural function for zero value of its

argument, as is readily shown, is directly expressible in terms of the mean
value of the squa-e of the temperature gradient. Considerir.7 the coordinate
points M and ti' as independent variables(' ., .,zLzj , we have
from equation (13)

Here the dot denotes the tensor product of vuctors and the right and left hand
sides represent bi-scalar products. Dividing ty the product of the vcctors
£ and gM/, it follows that

The right hand side of (15) may be evaluated, using th3 c•ndit'on of local
isotropy (14)t

o ~4J~ ~ (16



beinzg the components of the vector deter.ning the dJ.r.;ction from the point
to MA'

teProceeding tc the llmlt M/ -),~1 Pe4)and su.~mrdng for the indicas, eoti
the desired forula for the itean square of the temperature gradient.

M'ultiplying both sides of equation ý-7) by the thermal diffusivity 1< , we
obtain an expression for the parameter W (given above Section 2) determining the
rate of equalization of the temperature heterogeneities.

t'I~ (18)
Hence for very small g (later we shall defiine more precisely the meaning of

The structural function for the temperature field H(4 ) may, roughly
speaking, be treated as a measure of the intensity of the te=perature hetero-
geneities (calculated for unit mass) for values not exceeding & . The
heterogeneft ies considerably larger than 9 will not influence to any extent
the difference of temperatures at. the distance e . The Pelation between the
spectrum of temperature heterogeneities and the structural function may be
established more exactly by the method of the Fourier integral.

Using the preceeding picture of the equalization process for the temperature
heterogeneities in a turbulent stream, we may now obtain an expression for the
structural function "(P) for (not very small) values of t , where the direct
influence of thermal diffusivity of the medium Is negligibly small. It I's
natural to suppose tha* in this region in a iuasi-stationary regime of temperature
fluctuations, the size of 4(Re) must be de ar--Ined only by the value of
(the analog of the dissipation energy in Kol=)gorof+fs theory) and by the
characteristics of the turbulence.

In this region the coefficient of ther.-al diffusivity does not enter
directly. According to Kolmogorcff's theory, in tnis range the structur3 of the
field of turbulent fluctuations of velocities is completely detor-.'.ned by the
mean dissipation energy , calculated for unit mass of the mcdi'. Thus we
may i,.-itu

C rh (23)

Deforo considering the for- of the function R(R) as drived from cimansional
analysi, it is necessary to make one rem-:,rk regZrdLin the diLmensicns of tcmpera-
turo. Sinco we have as-uxed a "passive" character for the heat transported in the

9



thflow, i.. t•t t!-ýhe.o•,ncity of" t-::,, rture ftcld does not influence
the field of turbulence (thi3 ;;ill be the c1.se for small fluctaation3 of teocra-
ture from the :-eain -.nd consid:.r!,ble turhu2Cnci; of d'trnamdc origin), the nechanical
equivalent of heat does not appear i.on,-' the determininrg rram.-ters. Thus, in
the difner.iornal anal:~~._. , we nAy us,,, an nr rbitrary scale, not depending on the
scales for the dynamic quantitics.n

For the dir.ensions of the ru;ntiti.1-: irnc-rin- in for.-.uia (23) we u-ite

(In this formula ( is the dimension of tise.2

Fron these valuen it is possible to set only one e.7:ensionioss co-bina-
tion:

from which it follows that the structural function his the for-;=

or 0*(22)

where k is a numerical constant obviously of the order unity.

• appears as the fundamental characteristic of the local

structure of the temperature field.

The fundamental form of the mean square of the difference of temperature in
a turbulcnt stream as a function of the distance between points of observation
is completely analogous to the "two thirds law" for a field of velocities as
obtained by Kolmogoroff and Obukhov in 19,1l (2,3).

I L (23)

* '7e may note that the t.'ansforzation of nec.anical enr" r.- . (duo to
dissipation) in turbulent flow causes ne~li-lble chinjes o.' t•z.erature so
that we may disregard this process.

0 ,
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where C is a numerical constant c' tl;.c orer unity.'
Thus a unirue si milarity exists bh ctien the structure of a t e..perature field

nd a fielo codtions of locl isoropy. It follows that the

behavior of the .tcan scuare nnplituie of the nifferened of tem.peratures and the
difeCrencei- of velocities doc not depend upona the distance between points of
observation and :.as the formFAT-

It Is now pzsihl to t tc the, vlu, of the temoerature heterc:eneities
for vwhich the lIeld -L:,)proach as linr:,rity o:iing to the absence of thcr.nl
diffusivity. This re..ion corresponrds to ajy;ýVtctic exransion of the structural
function H(' for s•all e. . ; dcterr;ine a suitable dimension e by the
interzcction of two asymptotic re rrc5nttions (19) and (21) for
correzoonding to "zzali •nd "lareu" val.u- of Z (Fig. 1.---oe the broken line
repreoents the hypothetical form of in the transitional zone.)

,fir

Thus must satisfy the equation:

. Ax

from where - (24)

The magnitude of does not depend upon the intensity of the temperature
fluctuations. Owing to the fact that the ?randtl number for air is of order of
unity, the magnitude of e, , is of the sane order as the characteristic
parameter of turbulence C, iven in the above cited theorcm of Kolmogoroff:

0 11
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The abovec dscssion cenccrninrn tha z ~icro-ztructure of the temperature field
in a turhulcnt flo'.*: pattern :.14itht be a:-r1'cd in meteorolojy to the study of the
fluctu.%tions of temner.aturn in tho ncdr-ground layer, provided the velocities of
the field be sufficiently Lre:-t ;nd turbulence of dynamic origin.

It i; •xs•iblc to Jt u-te rou hly the ordcr of .a,--ntud,.- of the basic
para.ctcrs of the structural function of the tc*.perature field in the at.-.os-hcra.

o Using the ni...ilarity ý.nionz forute above for the temaorature and velocity
fields, w' may calculate the converzLon factor from the amplitude of the velocity
to Lmplitudc of te:.v.cirature fluctuations vy comparirn w:ind and temperature
observations obtalnd under sfzilar con.4itiens. UsItig the data given in Lettau's
book, it is possible to estimate this w3nversior. factor to ba of the order of
magnitude of 0.50 for In/sec or 5 l- 3 cw- 1 zcc.

Then using measura:.ents of the fluctuation ef wind velocity, lodecke (7) and
the author (8), the characteristic of the micro-structure of the temperature
field, a (the ccefficient of proportionality for Oin the exprcssý-n of the
mean square difference of tomperature) may be esti.mated at a few hundredths of a
degree for ovw'. This corresponds for a bAse of one meter to a mean amplitude of
the difference of temperatures of the order of a tenth of a degree.

According to dita given by ,odccke, the inner scale of turbulence .may be
estimated as being of the order of 1 c.m. The value of J, specifying theQ temperature heterogeneity of the atmosphere may be deduced from such a value.

This coarse evaluation must naturally be made more precise by means of
special measurements of the rapid oscillations of temperature differences in the
atmosphere over small distances (from several centimeters to a meter).

Investigations of the same type are of interest not only in connection with
the theory developed above, but for the explanation of certain questions relating
to accoustics and optics in the atmosphere.

Academy of Science USSR Geophysical Institute - Submitted 28 Karch 1948

Translated by V. Bartlett, Camp Detrick, September 1950
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