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SUMMARY

Time-dependent properties of uniaxially fiber reinforced mate-
rials composed of linear viscoelastic matrix and elastic fibers are
investigated. Sample calculations are given for the static and dynamic
properties of a viscoelastic fiber reinforced material. In addition,
the behavior of fiber reinforced viscoelastic structures is investi-
gated, and a number of practical problems for beams, plates, and shells,
subjected to static and dynamic loadings, are analyzed.
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1. INTRODUCTION

The purpose of the present investigation is to study the dy-
namic behavior of uniaxially fiber reinforced material (FRM) for the
case of elastic fibers and linear viscoelastic mat:ix.

A large number of investigations have dealt with the static
elastic behavior of uniaxially FRM. Of these, the most fruitful ap-
proach, in the writer's opinion, has been the analysis given by Hashin
and Rosen [1], which was based on a geometrical model named the compos-
ite cylinder assemblage (CCA). The advantages of this approach are here
briefly summarized:

(a) The geometrical model is based on a random (though
special) geometry.

(b) The mathematical analysis of the model is rigorous.

(c) The analysis yields simple closed expressions for
four of the five elastic moduli of the CCA.

(d) Experimental verification of the results has been
excellent.

The relative simplicity of the approach makes it possible to
extend the approach to more complicated cases. Thus, the CCA model has
been used successfully by Hashin et al [2], to analyrze the elastic prop-
erties of bilaxially FRM. Another extension which 1s of primary impor-
tance for present purposes is a recent analysis by Hashin [3] of the
static viscoelastic properties of a uniaxially FRM on the basis of the
CCA model. Our purpose here is to use the same model for prediction of
the dynam.c properties of a viscoelastic urniaxially FRM. Such a study
is of primary practical importance since:

(a) In many cases, the matrix of a FRM is time dependent
and, to a good approximation, linearly viscoelastic.

(b) Frequently, structural elements of FRM are exposed to
vibrations.

Vibration analysis on the basis of elastic properties will
predict resonant frequencies that should be avoided. However, the time-
dependent and dissipative nature of the matrix produces damping of vi-
brations, which is of beneficial effect. Free vibrations will rapidly
die out, while forced vibrations will have a less dangerous character
than that predicted on the basis of pure elastic behavior. Thus, vibra-
tion analysis which takes into account the viscoelastic nature of the
materials should lead to more realistic design criteria.



2. SUMMARY OF STATIC VISCOELASTIC BEHAVIOR OF UNIAXIALLY FRM

The present summary is based on the results cbtained in Refer-
ence [3]. The static stress-strain relations of any anisotropic hetero-
geneous viscoelastic material may be written in the form

t de
g (t) = C* (t - 1) _fjﬁkgii (1)
ij o ijke dt i
t do, (1)
- * %)
ey (&) = Io Syjke € -V > (2)
where 044 are average stresses, £y are average strains, C are

the effective relaxation moduli, and Si kg are the effectiv creep com-
pliances. The range of subscripts is 1, 2, 3, and repeated subscripts
indicated summation over 1, 2, 3. It should be borne in mind that be-~
cause of the dual nature of (1) and (2), the Cijkl and Sijkl are relat-
ed. This relationship will be given later. It is convenient to take
the Laplace transform (LT) of (1) and (2). We define the LT, ¢(p) of a
function ¢(t) by

$(p) = j e Pt o (t) dt. (3)
(o]

By use of the convolution theorem and the rules for LT of derivatives,
the LT of (1) and (2) assumes the form

~ ~ ~

Gij (p) =p Cijkg (P &, @), (4)

~

2 *
€y (p) =p Sijkl (p) K (p) . (5)

Qf»

It is now seen that the p Ci kg and p Si kg matrices must be reciprocal.
This is the relation between tﬁe effective relaxation moduli and the
creep compliances. This relationship can be transformed to the time
domain. However, it then becomes very complicated and is not very use-
ful in that form.

It is convenient to define the following quantities:

* ~%k

Biij ) =p Cijkz (p) » (6)
x ~R 7
Jijkz (p) =p Sijkg (p . (7)



Then (4) and (5) assume the form

Py

5, ® £, @) (8)

*
(®) = Byjpp

~ ~

Eij(p) = Jijkl(p) Ekl(p) 3 9

The relationships (8) and (9) bear a formal resemblance to
elasticity stress-strain laws. Therefore, the quantities Bi kg are
called transform domain (TD) moduli, and the Jjjk; are callea TD compli-
ances.

The results given so far apply for any anisotropic viscoelas-
tic material. A uniaxially fiber reinforced material is transversely
isotropic, with respect to an axis in fiber direction. As a consequence
of this symmetry, it may be shown that, as in the elastic case, there
are only five independent material functions (i.e., relaxation moduli or
creep compliances). The relation (8) can then be simplified to the form

& * = H =
51,() = By (@) £, (p) + BL,(p) E,,(p) + BL,(p) E45p) ,  (10)

5p (@) = By, () £1,(P) + By (p) £,,(p) + Byy(p) 55(p) ,  (11)

- * 2 * 2 * 2
033(P) = Biy(p) £1;(P) + Byg(p) £55(p) + Byy(p) £445(p) ,  (12)

ol * =
Gy,(P) = 2B,,(p) E,,(P) , (13)
= 5 * =
s * * =
where Xy is fiber direction and Xy x3 are transverse directions
(Figure 1). A similar simplification holds for (9). It is seen that
*

(10) through (15) contain the five independent quantities Bll’ 12°
* ~k

22, %3, and BAA' In view of (6), we may define the quantities Cll’

12, C22, 23, and C44, which are related to the former quantities by

* ~k
Ba® =vpC_ () ; mn = 11, 22, 23, 44. (16)
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Figure 1. Geometrical Model of the Material.



When (16) is inserted into (10) through (15) and inverted to the time
domain, we have

e [, de, . (1) de., (1) dE ., (1)]
11 €22 - 33
g,.(t) = C (tr)-—————+c (t:T)——-——+ (t-1) ———|dt ,
°11 o |1 dr 12 dr 12 IO
22 de. . (1) (1) dE,, (1)
5,,(t) = clz(c =) ——1-1— + C22(t -1) —Z—f— s c;3(c-1) —33——— dr ,
‘o | 1(18)
t [ (1) (1) dE (V)]
5,4(t) = J ¢}, (-0 ——1: + Ch(t-1) —-———zf + Gy (em1) —2—d1
o | 19y
t (1)
5,,(t) = 2 J 4(t -1) —-13—— a7 (20)
(o]
t de, ., (1)
3y5(t) = 2 J C:l‘(t-r) —%— dr , (21)
[o]
.. (t) = Jt [c* (t=1) - C. (t-'r)] 8030 d (22)
23 o [f22 23 dr '

We can write similar relations for expressions of strains in terms of
stresses. Thus, for example, the analogue of (17) would be

t (1) dg,, (1) d3. . (1)
- 51 * 22 * 33
€11(0) "Jo 11(t T) ar S (tm) g 4 Sty dzzi)

etc.

The relations of strains in terms of stresses involve the five effective

creep compliances SIl, SlZ’ S;z, 823, 824’ which are related to the

five relaxation moduli.

The above choice of effective relaxation moduli and creep com-
pliances is not very advantagecus from a physical point of view. To
bring out physically significant quantities, it 1is necessary to use
special states of average strain and average stress. The simplest sit-
uations are presented by (20), (21), and (22), which all correspond to
pure shears. We adopt the notation



* . *
Caa(t’ = ca(:) : (24)

* * X
sz(t) - 023(t) = ZGT(t) . (25)

It is then seen that (20) and (21) are the stress histories produced by
shearing strain histgries, where the shears are in planes parallel to
the fibers. Thus, G_(t) is the effective axial relaxation shear
modulus.

By similar reasoning, G%(t) is the effective transverse relax-
ation shear modulus, for shear in planes normal to the fibers.

The creep compliances g;(t) and g%(t) correspond to (24) and
(25). The meaning of these is brought out by the stress-strain rela-
tions

t do, ., (1)

£,(0) = %f g:(t-r) —S;f—— v , (26)
[o]
t da, . (1)

€13(t) = %J g:(t-T) —dlz— dt , (27)
o]
t do, ., (1)

T,5(0) = %—J g;(t-r) —fi%—— dr . (28)
[0}

Note that the Laplace transforms of (20) through (22), (24), (25), and
(26) through (28) yield the relations

~% 1
PG (p) = ———— > (29)
p g,

~% 1
pGT(P) ke * . (30)

P 8.(p)

We now turn to the more complicated relations, (17) through
(19), between normal average stresses and strains. First, assume the
average state of strain to be

£5,(8) = E55(8) = E(8)

Ell(t) = Elz(t) = 613(t) = 323(t) =0 . (31)



This is an isotropic plane strain system, in planes normal to the fibers.
Introducing (31) into (17) through (19), we have

5,,(t) = Gq(0) = 5(0) (32)
t -
5(t) = 2 J K;(t—r) ngll e (33)
0

* * 4
C22(t) + C23(t) . (34)

*
2K (¢)

Consequently, K;(t) is called the effective plane strain relaxation bulk
modulus,

If we assume the average state of stress to be

Ezz(t) = Gq4(8) = 5(0) , (35)
Gy4(t) = 0),(t) = 0,yqa(t) = 0, (36)

and retain the plane strain condition

€ (1) =0, (37)
then it is easily shown that
£y, (t) = 533(t) = e(t) , (38)
t -
- 1 *or L dei(T)
e(t) = 2 Jo kT(t T) T dt , (39)

*
where kp(t) {s the effective plane strain bulk creep compliance. It is
related to Ky by

pﬁ;(p) = Ai . (40)
ks (p)

Now assume the mixed state of average stress and strain to be
G,,(t) = 345(t) =0, (42)

and all other average shear stresses and strains vanish. This situation
corresponds to uniaxial straining in the fiber direction of a cylinder



with free lateral surface. Under these circumstances, the relation be-
tween uniaxial average stresses and strains 511(t) and Ell(t) is given
by

dsll(r)

- L &
oll(t) = JO Ea(t—r) —— dr1 (43)

dt ’

where E:(t) is the effective axial Young's relaxation modulus. The in-
version of the relation (43) is

dall(r)

- t &
cll(t) = Jo ea(t—r) 4 dr , (44)

*
where e_(t) is the effective axial Young's creep compliance. The func-
tions o E: and e, are related in the Lapla‘2 transform domain by

~% 1
pEa(p) = . (45)
pea(p)

For discussion concerning the Poisson's effect associated with
uniaxial stressing, see Reference [3].

We shall now proceed to discuss some explicit results obtained
in Reference [3] for effective relaxation moduli and creep functions of
viscoelastic fiber reinforced materials. It 1s again recalled that all
results are based on the composite cylinder assemblage model.

It 1s assumed that the fibers are isotropic elastic. The fi-
ber elastic moduli are given the subscript f. Various moduli to be used
are

Af Lamé modulus,
Gf Shear modulus,
Ve Poisson's ratio,
Ef Young's modulus,
kf = )\f+Gf Plane strain bulk modulus.

It is assumed that the matrix is isotropic viscoelastic. In
order to write the matrix stress-strain relations, let the stresses and
strains first be split into isotropic and deviatoric parts. Thus,

= gé —
Oij ouij + sij , O 1/3 Ok (46)



£ = eé,, + e , € =1/3 ‘K (47)

13 i3 © Sij k

The most general viscoelastic stress-strain relations at any
point in the matrix have the form

t
o(t) = 3 Jo K (e-) 920 (48)
t de, . (1)
= Il - -——ij_
Sij(t) 2 Jo Gm‘t 1) I dr , (49)
t
e(t) & 1/3 L 1 (e-r) 4 g, (50)
t ds_, (1)
eyy(8) = 1/2 J Jm(t—T)-—f%}——— dr . (51)
(o}

Here, K;(t) and Gp(t) are the matrix bulk and shear relaxation
moduli, respectively, and In(t) and Jn(t) are the matrix bulk and shear
creep compliances, respectively. The relaxation moduli and creep com-
pliances are connected through their Laplace transforms, as in previous
examples, by the relaticns

pﬁm(p) = — L : (52)
pIm(p)

PG, (p) = —— (53)
pd (p)

The matrix properties as expressed by the functions K;(t),

Gm(t), Im(t), and Jm(t) may be regarded as experimentally measured informa-
tion., It is also customary to approximate viscoelastic stress-strain
relations by time differential operator relations which may be described

by spring-dashpot models. Although these operator relations are a less
satisfactory description than the general relations (48) through (51),

they are used for reasons of mathematical convenience. It should be

noted that (48) through (51) include spring-dashpot model relations as
special cases.

After Reference [3], we introduce for reasons of convenience
the following notation:

K, (P) = pﬁm(p) 5 (54)



I‘m(p) = me(p) . (55)

The Laplace transform of k;(t) is then given by the following
expression:

-1
i - POy 1 l-c
pKT(p) =« (p) +3 ro(p) + + c

1 4
ke - Km(p) -3 Fm(p) Km(p) +3 Im(p) (56)

where ¢ 1s the fiber volume fraction.

Frequently it is permissible to assume that a viscoelastic
material behaves elastically for isotropic stress and that the visco-
elastic effect is confined to shear. Then x (p) in (56) is replaced by
an elastic bulk modulus of the matrix, K%. Also, in practice, the fi-
bers are usually very much stiffer than the matrix. In such cases, the
fibers may be assumed to be rigid. This Jlast simplification when used in
(56) yields the simple result

i 2 g 2 z 4 - c
Ke(p) = K (p) +3 G (p) + [K (p) +3G (p)] T—— » (57)
which may be directly inverted to the time domain and then becomes
T(6) = K (6) +3 G (t) + [K (£) + %G ()] T (58)
Kp m 3 m m 3 m l-c¢°

The Laplace transform of G:(t) is, according to Reference [3],

. Ge(1+ c) +pC (p)(L - c) .
Ga(p) = " G (p) . (59)
Ge(l = c) + pG (p)(L + ¢)

If the fibers are assumed to be rigid relative to the matrix,
(59) simplifies to

b

~k +c -
Ga(P) = o Cm(P) ’ (60)

which can be directly inverted to the time domain to read

* 1+ c
Ga(t) 1-<c Gm(t) : (61)

The Laplace transform of E;(t) is given approximately, but
with a high degree of accuracy, by

10



m* ~ C .
Ea(p) = (1 -c)E (p) + 5 (62)
which, when inverted to the time domain, reads
*
Ea(t) = (1-c¢) Em(t) + c Ef H(t) , (63)

where H(t) is the Heaviside unit step function.

Results for the viscoelastic Poisson's effect and the shear
relaxation modulus G%(t) are more complicated and will not be discussed
here. For discussion, see Reference [3] and subsequent developments in
this report.

11



3. VIBRATIONS AND COMPLEX MODULI OF HOMOGENEOUS,
ANISOTROPIC VISCOELASTIC BODIES

We shall begin with a discussion of the concept of complex
moduli for anisotropic and homogeneous viscoelastic materials. The dy-
namic equations of such materials in the absence of body forces may be
written in the following form:

%zu,
T A (64)
3,3 at2
t 9 €, (%,1)
Oij(i,t) = JO Cijki(t_T) D T dr , (65)
1
Eij =3 (ui,j + uj,i) . (66)

Here 01§» Ui, and €44 are the local stresses, displacements, and small
strains, respectively; p 1s the density; and Cjjx; are the relaxation
moduli. It is seen that there are 6 stresses, 3 displacements, and 6
strains (15 quantities in all). Now there are 3 equaticns (64), 6
equations (65), and 6 equations (66) (15 equations in all). The stresses
and strains can be easily eliminated from (64) through (66) by substitu-
tion of (66) into (65) and the resulting expressions into (64). Thus,
one obtains 3 equations for the three uj. This will not be done here
since the resulting equations are very complicated and will not be
needed here.

With Equations (64) through (66) there must be associated
boundary and initial conditions. A general kind of such conditions for
a body of volume V and surface S is given by

o
ui(S,t) = u; on Su 5 (67)
T,(S,t) = To s (68)
1> R B
ui(zc_,O) = fi(g) . (69)
aui
7T (x,0) =g, (x) . (70)
Here, Ti are tractions expressed by
Ti = Oijnj g (71)



and on the surface S, nj are the components of the outward unit normal.
The displacements are prescribed by (67) as functions of time and surface
coordinates on the part S, of the surface. Similarly, the tractions are
prescribed on the part St of the surface; of course, S; + Sy = S. Con-
ditions (69) and (70) express the fact that the displacements uj and the
Ju

velocities 3?1 are given at initial time zero.

We do not wish to look into the dynamic problem in such gener-
ality. Instead, we consider the problem of steady-state vibrations. In

this case the displacements have the form
u, (x,t) = u, (x) eltt . (72)
i’ i™=

Here, ui(§) are three space-variable functions, 1 = /:1, and w is the
circular frequency. Insertion of (72) into (66) yields

ey = ey @ e, (73)

where

) o (74)

If we insert (73) into (65), we find that

“T4r (75)

. t
Oij(z”t) = ka(i) 1w Jo Ciij(t-T) e!

However, it should be noted that a physical approximation is
involved in this substitution, for (65) is based on the Boltzmann su-
perposition principle in time and is therefore limited to gentle time
variations. This leads us to the conclusion that (75) is valid for
vibruations which are not too rapid. Since

w = 2mn , (76)

where n is the number of cycles per unit time, the validity of (75) must
be limited to small frequency.

It 1s convenient to perform the change orf variable
1! =t -~ 1 (7.)

in (75). Then the equation transforms into

05(xs8) = Fre(®) 1w et L Cijkﬂ(r')e—lmvdI' . (78)
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The time dependence on the right side of (78) is not a sinusoidal vibra-
tion, for besides the e'wt factor the integral is dependent on t because
of the upper limit of the integral. The assumptions are now made that t
is so large that it can b~ given infinite value in the upper limit of
the integral and that this integral then converges. Note that e!®t ig
not affected by making t large, because it is purely oscillatory for all
times. Then we find that

_ - wwt [ vy —lwT! :
oij(z,t) ckﬂ(i) w e Jo Ciij(T e dt' . (79)
We introduce the notation
® - -t '
1w Jo Ciij(T ) e dt Dijkl(lw) . (80)

Then (79) can be written in the form

(x,8) = o, (@) e, (81)

13 i

o, ,(x)

13 = Dy ) €

g ® (82)

It is seen that now the stress ctime variation is of the nature of a
sinusoidal oscillation and that this happens only after a very long time
has elapsed. This is physically reasonable since a steady state of
vibrations can be achieved only after sufficient time has elapsed for
transient effects to die out.

Because of the formal resemblance of (82) to an elasticity
stress-strain relation, the quantities Djjkq arve called the complex mod-
uli. They may also be written in the form

1

= pR .
Dijki(lw) = Dijkﬂ(w) + .Dijkﬂ(w) S (83)
where DR and DI and the real and imaginary parts, respectively, of
1jke ijka
Dy jin

If (81) and (72) are substituted into (64), the exponential
cancels out and we find that

aij,j+pw2a =0 (84)

It is now seen that the space-dependent parts of the stresses, displace-
ments, and strains enter into Equations (74), (82), and (84). These are

14



precisely the equations governing the space-dependent parts of these
quantities in the problem of elastic vibrations, with elastic moduli
Ciike replaced by complex moduli Dijke-

We still have to discuss boundary and initial conditions for
the space-dependent parts. For this purpose, (67) and (68) have to be
taken in the oscillatory form

u (8,6) - 328 et ons (85)

_ 70 twt
Ti(S,t) = Ti (S) e on ST . (86)

In view of (71), (72), and (73), the boundary conditions (85) and (86)
assume the form

u (8) = uf , (87)
~ ~0
Ti(S) = Ti . (88)

With these boundary conditions, the analogy with the elastic vibration
problem is complete. Equations (74), (82), and (84) together with (87)
and (88) define a unique solution to the problem. No initial conditions
can be prescribed. This is logical, for the assumed oscillatory nature
of all variables prescribes the time variation. Furthermore, this time
variation is steady state; it has, so to speak, '"neither a beginning nor
an end", and therefore initial conditions cannot be imposed.

In practice, boundary conditions of type (85) and (86) will be
given either in the form

~0
ui(S,t) = ui(S) cos wt on Su s (89)
-0
Ti(S,t) = Ti(S) cos wt on ST . (90)
or in the form
e
ui(S,t) = ui(S) sin wt on Su , (91)
-0
Ti(S,t) = Ti(S) sin wt on ST : (92)
It is recalled that
cos wt = Re(elwt) .
sin wt = Im(elwt) . (93)
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Since the coefficients Dy kg in (92) are complex, the solution for ﬁi
and vy4 will also be complex. If the boundary conditions are of type
(89) and (90), the real part of the solution is taken. If the boundarv
conditions are of type (91) and (92), the imaginary part of the solution
is taken.

In view of the similarity to the elastic vibration problem, we
can now formulate an analogy: To solve a viscoelastic vibration prob-
lem, take the solution, for the corresponding elastic vibration problem.
In this solution replace the elastic moduli by the complex moduli. The
resulting solution has a real part which corresponds to boundary condi-
ticas of type (89) and (20) and an imaginary part which corresponds to
boundary conditions of type (91) and (92).

In view of further developments, it is important to point out
an interesting relation between the rclaxation moduli and the complex
moduli. Let the Laplace transforms of the relaxation moduli Cijkz(t) be
defined, as in Section 2, by

10 s}

= -pt
O Jo Cype (0 P de. (94)

C
Furthermore, the LT of (65) is by the convolution theorem

éij(g,p) =P éijkz(p) €1 (KoP) (95)

In analogy with the definition (6) for effective TD moduli, we define
here the local TD moduli

~

Bijkg(p) =p Cijkz(p) g (96)

If we now compare (96) in terms of (94) with (80), we note the very
important relationship

Dijkl(lw) = Bijkl(lw) . (97)

That is: If the ID moduli are known as functions of the LT variable p,
then the complex moduli are given by replacement of p by 1w.
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4. EFFECTIVE COMPLEX MODULI OF
UNTAXIALLY FTBER REINFORCED MATERTALS

The extension of the theory which has been developed in Sec-
tion 3, to composite bodies such as fiber reinforced materials is not a
simple matter. To try to find a detailed solution of the dynamic equa-
tions in fibers and matrix is an absolutely hopeless task, and any treat-
ment must be limited to utilization of effective physical properties.
The questions which arise now are: 1is it permissible to use effective
physical properties in the equations developed in Section 3, and will
the results of the calculation yield the macroscopic dynamic behavior of
viscoelastic fiber reinforced specimens? The answer to these questions
is: theoretically no but practically yes, if the frequencies of vibra-
tion are not high,

To discuss this statement, it should be remembered that calcu-
lation of static effective properties such as effective relaxation
moduli is based on statistically homogeneous states of stress and strain
[3,4]. Such states of stress and strain occur in fiber reinforced mate-
rials in static equilibrium for certain boundary conditions, which are
called homogeneous boundary conditions [3]. However, in dynamic prob-
lems, statistically homogeneous states of stress and strain apparently
can not occur, because even for homogeneous bodies there does not exist
a single case of a dynamic solution in which the states of stress or
strain do not vary in space.

On the other hand, experience teaches us that if continuum
theory with effective properties is applied to dynamic problems, for
moderate frequencies, the results predicted approximate quite well glob-
al quantities such as beam deflections and resonant frequencies. The
investigation of the limitations of this approximation is extremely
difficult, and to date these limitations have not been explored. There-
fore, it will be assumed in the present work that continuum theory with
effective properties is meaningful for fiber reinforced composites.

Sore justification for this may be provided by the following
argument. It may be imagined that a fiber reinforced specimen 1is di-
vided into many representative volume elements (RVE). Each RVE is a
small part of the specimen, yet its cross section contains many fibers.
The stresses and strains in such an element may be thought to be locally
statistically homogeneous. Then the relation between the average stress
and strain in any element is given by (1) and (2), although, in contrast
to the static case, the averages vary from one RVE to another. The
equations of motion of an element then assume a form similar to (64)
through (66) with partial space derivatives replaced by increments of
quantities over space increments, i.e., sides of cubic RVE. The result-
ing difference equations are approximated by the differential equations
(64) through (66).
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Adoption of the fundamental assumptions discussed above, in
conjunction with the results given in Section 2 for effective relaxation
moduli, leads directly to calculation of the effective complex moduli.
The transverse isotropy of a uniaxially fiber reinforced material, with
respect to the x; axis in fiber direction, simplifies (82) in the same
way that (8) simplifies to the fcrm (10) through (15), as a consequence
of the same symmetry. We can therefore write out (82) in the following

form
- * = * nd D* = 98
511 = P11 €31 * Py €39 * Dyp B35 (98)
z x - x - *
999 = Dyp €17+ Dyy Epp + Dyq Eog (99)
= _ * - * ad * 100
933 = D1g €17 ¥ D3 €99 ¥ Dyp €134 (160)
5 = 2D (101)
012 = 2 D4y €99 »
5 2D, f (102)
CEE AL i
= * x =
0y3 = (Dyy = Dy3) E5g (103)
Here, éij and éij are the spacu-dependent parts of the local averages
aij and Eij’ which are of the oscillatory form
- = wwt
34 oij(g) e ; (104)
G (Rt (105)
ij iy —

The D* coefficients in (98) through (103) are the effective complex

moduli. In the Dijkz notation appearing in (82), they have the follow-

ing meaning:

* *
P11 = D11 0 (L85)
Dy - Dzlzz = D,1‘133 ’ SR
D2 = 3222 = P3333 - e
D;3 . D;233 ’ (109)
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* * *

g = Bians (110)

D

Denoting the left sides of (106) through (110) by D;n and using the
result (97), we have

* *
Dmn(lw) = an(lw) . (111)

The meaning of (111) is as follows: To find the effective complex
moduli D , 1t is necessary to replace the variable p in the TD moduli
B; by the variable 1w. The Bp,(p) are known on the basis of the com-
posite cylinder assemblage model and have been discussed in Section 2.
Thus, we have a straighttorward method to give expressions for the
effective complex moduli.

It is also quite obvious that we can define physically mean-
ingful complex moduli, such as axial and transverse complex shear moduli,
axial and transverse complex Young's moduli, and a plane strain ccmplex
bulk modulus, in analogy to similar moduli defined in Section 2. We
shall give ti.2se moduli the same notation as the static relaxation
moduli with an added v above them. Thus, in analogy with (24), (25),
and (34),

v %k *

Ga(lw) = D44(1w) . (112)
vk * *

ZGT(lw) = Dzz(tw) - D23(1w) . (113)
v % * *

ZKT(lw) = D22(1w) + D23(1m) . (114)

The complex axial Young's modulus is defined for states of
stress and strain analogous to (41) and (42). We take a cylinder and
apply average uniaxial oscillatory stress

= 1wt

017 =0yp © . (115)

producing uniaxial oscillatory average strain

- = 1 t
€11 = €11 © w , (116)

then

s vk 4
01y = Ea(xw) €11 ° (117)
The explicit expressions of the effective complex moduli of

the fiber reinforced mateiial will involve the complex moduli of the

19



fibers and the matrix. Therefore, the meaning of these will bte briefly
discussed. The fibers being assumed perfectly elastic and isotropic,
their complex moduli are simply their isotropic elastic moduli. The
stress-strain relation for fiber material is

= 8 3 €
Jij \f 'Lk i + ZGf Lij c (118)
If Oij and Eij have the oscillatory forms
- . lwt
11 = %13 e o (119)
L= twt
ﬁij = ﬁij e . (120)
then insertion of (119) and (120) into (118) gives simply
+ ZG € . (121)

%5 = Mk’ i 14

We see that the elastic moduli A¢ and Gf are trivially the complex mod-
uli. The physical meaning of this is that in a perfectly elastic body
oscillatory stresses and strains are in phase.

For the viscoelastic matrix the situation is of course differ-
ent. It has been described in detail for a general viscoelastic aniso-
tropic material in Section 3, and the present isotropic material is a
special case. Going through the same arguments which lead to (82), we
find for the present isotropic viscoelastic matrix a relation of the
form

v = v -
Oij = Am(lm) €1k dij + 2Gm(1w) Eij . (122)

Here, 01 and Zi are the time-independent parts of (119) and (120).

X m(1w) and ém(lw; are the complex moduli of the matrix, and, since they
are functions of 1w, the stresses and strains are out of phase. The
complex moduli of the matrix must be determined by a vibration experi-
ment, in which a specimen is subjected to oscillatory stresses and
strains with various frequencies w. Note that oj4 and c¢j4 are the
amplitudes of the stress and stra.in variations. %he relation between
these yields the complex moduli.

In analogy to elasticity, various other related complex
moduli can be defined; e.g.,

A\ v
C_ (3vxm +26)
E (10) = (123)
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R (124)
K () = ).m+§cm 5

v \V4
k (lw) =2 +G , (125)
m m m

where (123) is the complex Young's modulus, (124) is the complex three-
dimensional bulk modulus, and (125) is the complex plane strain bulk
modulus. Generally, the complex Young's modulus is the easiest to mea-
sure, and the complex shear modulus can also be determined experimen-
tally. All the other related complex moduli can then be computed.

We now proceed to construct detailed expressions for some of
the effective complex moduli of a uniaxially fiber reinforced material
by use of the method outlined. We start with the effective plane strain
bulk modulus as given by (50), and according to what has been said
before, the transform variable p is replaced by 1w everywhere. We then
have

3 1
KT(lm) = Km(lw) + 3 Fm(lw)

-1
+ { 1 + L=l ¢ .(126)

l kf - Km(1w) - %-Fm(lw) Km(lw) + % Fm(lw)

The left side of (56) is the effective TD plane strain bulk modulus.
Therefore, according to (96) and (97), 5he left side of (126) is the
effective plane strain complex modulus K;(lw). Also, K, (p) and I'm(p) in
(56) are TD bulk and shear moduli, respectively, of the matrix. There-
fore, xp(1w) and I'py(iw) are the complex bulk and shear moduli, respec-
tively, of the matrix; i.e.,

Km(lm) = Km(lw) 3 (127)
v
Fm(1w) = Gm(1w) . (128)
So (126) assumes the form
v % _v 1
KT(lw) = Km(lw) +~§ Gm(1w)
-1
1 -
- _ — L ¢ .(129)
kf - Km(lw) -3 Gm(1w) Km(lw) + 3 Gm(1m)
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When the fibers are assumed to be rigid in comparison to the matrix,
which is a very good approximation for a fiber reinforced material, we
multiply (57) by p on both sides. Taking into account (54) and (55),
we then have

(137)

ﬁmm=<“m)+%%mm+[Kmm+—r

v
Again the left side is K¥(1m), and in view of (127) and (128), we can
rewrite (130) in the form

Av
3 (131)

v X v 1v
‘=
KT(lu, Km(lw) 3

It is often convenient to split a complex modulus into its
real and imaginary parts. Thus, we may write

vk *R *
KT(lu)) = KT (w) + 1 KT (w) , (132)
§m<1w) - W) + 1 kL) (133)
¢ () = Ry + 1 6l . (134)
m m m

It is seen that (131) separates very simply into real and imaginary
parts. Thus,

*R R R 4 R c

R 1
Ky =K +3G +[K +36] 71, (135)
*] I 1.1 I 41 c
KT =K + 3 Gm + [Km + 3 Gm] - < (136)

On the other hand, the separation of (129) into real and imaginary parts
is quite complicated. It is seen that KT and K will be functions of
all of the real and imaginary parts of Km(lw) and ém(1w).

We now turn to the effective axial shear modulus é;(lm). We
multiply (59) on both sides by p. Taking into account (55), the follow-
ing expression is obtained:

. Ge(1+c) + 1 (p)(A - c)
pc, (p)= G.(I-c)+ ro(e+ c) n(®)

(137)

Now p 1s again replaced by ww. Then the left side of (137) becomes
é (tw), and in view of (128), (137) is rewritten as
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Gf(l +c) + Gm(lw)(l - )

Vv

Gm(lw) 1 (138)

vk
Ca(lw) = "
Gf(l -c) + Gm(1m)(1 + ¢)

1f the fibers are assumed to be rigid, then on the basis of
(60),

1l +c
l1-2¢

é:(lw) - & (w) . (139)

This simple expression separates easily into real and imaginary parts.
Writing

é:(lw) i G:R(w) & G:I(w) , (140)

and using (134), expression (139) can be rewritten as

V¥R 1+ c R
Ga B Gm . (141)
vkl 1 +c¢ I
Ga 2 oo Gm g (142)
The shear loss angle 6m of the matrix is defined by
¢y
tan § = — , (143)
m GR
m

Similarly, an axial shear loss angle 6a can be defined for the composite
by

b a
tan éa = o (144)

Inserting (141) and (142) into (144) and comparing with (143), we obtain
the significant result

*
tan § = tan § . (145)
a m

Thus, the presence of rigid fibers does not affect the loss angle.

Discussion of the effective complex axial Young's modulus is
in all respects similar. Multiplication of both sides of (62) by p
gives

PE( =(1-c)pE(p) +ckE (146)

f ’
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which yields for the complex modulus

£ 1 E E 147
Ea(m) = (1 - ¢) m(lu)) + c £ ( )
Separation into real and imaginary parts 1is straightforward; i.e.,
ER - (1-c¢) ER4cE (148)
a m £’
*
EL = (1-c)EL. (149)
a m
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5. LOMITUDINAL VIBRATIONS OF VISCOELASTIC
FIBER REINFORCED ROD

We consider now a typical vibration problem of a rod which is
built in at one end and is subjected to sinusoidal time-variable force
at the other end (Figure 2). The fib.rs are in the direction of the
axis of the rod.

The appropriate end conditions are

u (o,t) =0, (15C)

* Ju 1wt

% o (151)

o (2,t) =

|
m

\
Q
1

where u (o,t) is the longitudinal displacement, w is the frequency, and

P

0
o= ® (152)

where A is the cross-sectional area. In accordance with the general
discussion in Sections 3 and 4, we consider first the associated elastic
problem. The governing differential equation is the one-dimensional
wave equation

2 2
Qu_l_i)u
5 =3 T3 (153)
IxX c 3t
where *
E
2
c =p—a, (154)

in which E¥ is the effective axial Young's modulus, and o is the average
density of the material. We set

wt

u (x,t) = U(x) e (155)

Substitution of (155) into (153) gives the ordinary differen-
tial equation

d2U
_2+
dx c

Uu=20. (156)

'E
NN

Substitution of (155) into (150) and (151) gives the end conditions

U(o) = 0 , (157)
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Figure 2, Longitudinal Vibrations of Viscoelastic Fiber
Reinforced Rod.

o
du(e) o
dx = — (158)
E
a
The solution of (156) with end conditions (157) and (158) is
ooc sin(&%)
U(x) = = T\ " (159)
wE cos('——)
a c
The resonant frequencies w are found by letting
Wl
cos ("Z) -0 (160)

so that U becomes unbounded. Equation (160) in conjunction with (154)
yields

*
E
o =32t n 2 (161)

and the first resonant frequency is accordingly

»*

(162)

N
o 22

© <o)
[sY)

According to the theory in Sections 3 and 4, the modulus EZ in

vk
(159) must now be replaced by the effective complex modulus Ea(tw) as



given by (147), (148), and (149). It is convenient to represent %;(16)
in the usual form

*
vk vk 18
Ea(1w) = IEaI e , (163)
where
vk *R, 2 *xT, 2
- 64
|E, | ‘/(Ea) +(E )7, (164)
*T
* Ea
tan § = *R ° (165)
E
a

In view of (148) and (149),

vk R 2 1,2
|E8| = /(vam +VE)T 4 (vEDT, (166)
* vai
tan § = R . (167)
v E +v_E
m m ff

where v and vg are the volume fractions ot fibers and matrix, respec-
tively.

A typical example of a viscoelastic fiber reinforced material
is an epoxy reinforced by glass or boron fibers. For such materials it
is generally true that

Ef EI
= 25 2 < 0.1, (168)

R

m Em

The E, in the left part of (168) is the static Young's mod-
ulus, which may be interpreted as Eg(w) at zero frequency. Experiments
described in Reference [5] have shown that for an epoxy, E% is a very
slowly increasing function of w, it being necessary to increase the
frequency from 10 to 105 in order to produce a 50% increase in E&.
Therefore, the relative magnitude of Eg to Eg may be taken as about the
same as that of Ef to Ep.

In view of (168) and the subsequent remarks, we can approx-
imate (166) with great accuracy by
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vk
£ =

v ER + v
m m

f

: "
f Ea(m)

(169)

The expression (169) is the effective elastic axial Young's

modulus of a uniaxially fiber reinforced material with the matrix

Young's modulus E; replaced by E%(w).

i In the following it will be
denoted by Ej(w). It should be noted that because of (168) and the

subsequent remarks, Eg(w) is very nearly equal to the static effective

axial Young's modulus.

It also follows from (167) and (168) that

therefore

In view of (163) and (169),

*
/ E:(1w) . (E:)1/2e16 /2

Define ¢ by

From (154) and (172),

*
tan § << 1 ;

* *
tan § = §

0,

é..

*
Ea(lw)

p

*
16 /2
e .

Now replacement of E; by E;(1w) in (159) leads to

We use the approximations (172) and (174) in (175) to obtain

u(x) =

U(x) =

E

o * Q

g ¢
o

sin (2£§)
c

vk

28

wEa(1w) cos (3%%) .

*
" wx =16 /2)
oS 1872 sin(c e
-2 -
(w) cos ((2_2 Rt /2)

(170)

(171)

(172)

(173)

(174)

(175)

(176)



where 0(x) is the space-dependent part of u(x,t) in the viscoelastic
vibration problem.

By Euler's formula,
*

* *
e_16 /2 = cos é? - 1 sin é? ; (177)

and since by (170) and (171) ¢* is a very small angle,

cos 6%/2 =1, (178)
sin 6%/2 = §*/2 . (179)
Thus,
*
i *
eV 2 Ly %2, (180)
s%/2 s
sin(gj')i e ! /) ~ gin (%— 1%—) 3 (181)
c c 2¢
* ; 6*)
cos (QL Sk / ) = ccs(gﬁ'- L . (182)
c c 2c /

Using the usual expression for the sin and cos of a complex
number, we obtain

* * &
sin(ﬂ e_u5 /2\ = sin (9-5\ cosh (wé x\ - 1 cos (ﬂ\ sinh(M\,(lm)
. c 2c c 2¢

* * W
cos ((-”-g-e_16 /23 = cos (4 cosh (wd R\ + 1 sin (gi\ sinh (mé Q),(184)
c c 2¢c c 2c

where cosh and sinh are the usual hyperbolic functions. It would now be

very desirable to show that B%E& is a very small expression, so that we

could use small argument approximations for the hyperbolic functions.
Consider a typical glass fiber reinforced epoxy. Typical material prop-
erties are

E = 0.5 x 10® psi (%)
6
Ef = 10 x 10" psi.

(*)As stated bzfore E% is really a very slowly increasing function of
frequency. The present constant value is merely an order of
magnitude,
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We choose a large matrix loss angle, tan 6m = 0.1. Then

EL = 0.05 x Oy

We take as volume fractions

v o= 0.4 Ve = 0.6 .

Then from (148) and (167),
* 6
Ea = 6.2 x 10" psi

tan 6* = 0.005 .
Take as typical density
p = 3.0 (relative to water).
Then it follows that
c = 12,770 tt/sec.

Let the length of the rod be

g = 10.0 ft.
Then

: 6

SO 25 w100 .

2c

1f
6*
5t o< 0.05,

we have with great accuracy

60\ ws
sinh(“}c ) = “ZCQ , (185)
6*
cosh(ugcg) =1, (186)
Tails corresponds to
w < 20,000 .
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Since
w= 2m ,
the frequency n satisfies
n < 3180 cycles/sec.
This is a high frequency for which the present thcory may not
be valid anymore. Thus, it is seen that (185) and (186) may be safely

assumed.

Since o0 < x < £, we have with better accuracy than (185) and (186)

s1ah ( ‘”5*") . w8 x (187)

2c 2¢c °?

cosh (‘*’6*") =1 . (188)
2¢

Introducing (185) through (188) into (183) and (184), then introducing
the resulting approximations and (186) into (176), we find the first

* *
order of magnitude in Clole and ok
2¢c 2¢c
wX
. ooc sin (—E) X
u(x) = —3 s (1 -+16872) . (189)
wEa (w) cos (—E)
Since
u(x,t) = u(x) eIUt . (190)

we have from (189) and (190)

g ¢ sin 25)
* *
u(x,t) = = wz. [cos wt + 8 /2 sin wt + 1(sin wt - § /2 cos wt)]
wE cos ~7;) (191)

Now if the forcing stress (151) has a cosine varin»tion, 1i.e.,

twt
)

o(e,t) = 0, Cos wt = Re (oo e . (192)

then the displacement is the real part of (191); thus,
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g c
O

* (u) cos(

*
u, (x,t) = (cos wt + & /2 sin wt) . (193)

=)
)

nliolx

If

twt
)

o(e,t) = o sin wt = Im(ooe . (194)

then the displacement 1s the imaginary part of (191). Thus,

c sin (m_)c(_\

(w) cos ((—*—i\

[0)

o
*
ug (x,t) = i (sin wt - & /2 cos wt) . (195)
wE
a
From the elastic analysis at the beginning of this section,

it is seen that the elastic solutions corresponding to (192), (193),
and (194), (195) are, respectively,

in (=)
, . o.c sin ( 5
u. X,t) = E* o W cos wt , (196)
vE (w cos( c)
coc sin(%)
(x,t) = — sin wt . (197)
wEa (w) cos(—

It i{s thus seen that in the viscoelastic vibration problem,
there are out-of-phase componente which are proportional to 6*.

It is instructive to represent (193) and (195) in different
forms. It is seen that these expressions may be rewritten as

o,c ‘l + 6*2/4 sin L—lc(-\
u, (x,t) = - n cos (wt -¢) , (198)
wE (W) cos &—C\
2 X
nch+6 /asin(—
u_ (x,t) = f; sin (wt - ¢) , (199)
5 wE  (w) cos(g-c-
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where

g (200)

(o)
N »*

tan ¢ =

Comparison of (198) and (199) with the elastic results (196)
and (197) shows that the amplitude of the viscoelastic vibrations is

increased by the factor V1 + 6*2/4 and that there is a phase lag ¢ whose
magnitude is given by (200). Since, as has been shown before, 5* 1is
very small for a typical fiber reinforced material, the amplitudes are
practically the same as in elastic vibrations, and also the phase lag
can be safely ignored. It is also seen that because of the occurrence
of cos (wi/c) in the denominators in (198) and (199), the resonant
frequencies are the same as for the elastic vibrations and are thus
given by (161) and (162).

The very important conclusion is that for all practical pur-
poses, the viscoelastic effect can be ignored in the problem of longi-
tudinal vibrations of filer reinforced rods made of typical fiber
reinforced materials.

It should be noted that this phenomenon is due to the fact
that the fibers are very much stiffer than the matrix and that the
matrix loss angle is small. In cases where these conditione ar~ not
fulfilled, the foregoing conclusions may become invalid, and 1t may be
necessary to carry through the analysis without the approximations
which were introduced here. However, such cases do not seem to be of
interest for fiber rcvinforced materials.
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6. TORSIONAL VIBRATIONS OF VISCOELASTIC
FIBER REINFORCED CYLINDER

As a second typical problem, we consider a fiber reinforced
cylinder which is built in at one end and is subjected to a sinusoidal
torque, in time, at the other end. Again we consider first the associ-
ated elastic problem,.

The basic variable is the angle of twist 6(x,t). The govern-
ing differential equation for 0 is

L2 2
ELR RN Goh
ax c Jt
where
*
2 Ga ¢
c = —5—1 . (202)

(see, e.g., Reference [6]). G; is the effective axial shear modulus,

and C is a number which depends upon the geometry of the cross section.
In terms of the Saint Venant torsion function ¢(y,z), C is given by

2, ,2,, 20,3
C JJ (y"+2z" +y 5y = 2 ay) dydz ,
(A)
the integral being taken over the cross section, which is referred to a
Y2 coordinate system with origin at the centroid (see, e.g., [7]).
Note that G C is the torsional rigidity of the cylinder.

Furthermore, p is the density of the material and I is the
polar moment of inertia of the section.

The torque M(x,t) is given by

98
M(x,t) = G C — = (203)
The end conditions are
6(o,t) =0, (204)
90 o wwt
M(L,t) = G C £~ = Mo e . (205)

X={

34



In (205), M,
the frequency.

We seek a solution of the form

B(x,t) =(x) et .

is the amplitude of the sinusoidal forcing torque and w is

(206)

Introduction of (206) into (201), (204), and (205) yields the ordinary

differential equation

AL
dx c
and the end conditions
&(o)go)
v "o

dx

x=4{ G C

[+

The solution of (207), subject to (208) and (209), is

c

M  sin (
& (x) = —5°
a

)
.

w G_ C cos (

olSfn %

therefore, the complete solution is

WX
My sin (<)
¢ (o] S ( C elwt

*
w G cos (2&1
a c

8(x,t) =

The condition of resonance 1s obtained from
cos (Eﬁ\ =0,
c

then

wl 2n + 1

and from (202) and (213),
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5 (214)

— —
. G" ¢
w = '2—;: —'(-i‘ (215)

We now consider the case when the mitrix is viscoelastic.
Then the space-dependent part of the angle 6(x.t) is denoted by 6(x) and
is found by replacement of G; in (210) by the effective complex axial

vk 7 K

shear modulus G,. An expression for G, has been given before for elas-
tic fibers and viscoelastic matrix (l3§). We shall here use the simpli-
fied form (139) for rigid fibers in order to simplify the analysis.
Since in a typical fiber reinforced material with epoxy matrix the ratio
of fiber to matrix stiffness is about 25, at least, this is in general
an excellent approximation. In order to avoid confusion with propaga-
tion velocity c, we shall denote the fiber volume fraction by vg. Then
we have

¢ & 216
Ga(lw) =7T-5 © Gw) , (216)
f
G G G 217
Gm(lw) =G + 1 . ( )
I
tan § =tan § = tan § = — . (218)
m GR
m

Expression (217) can be rewritten with the help of (218) in
the form

¢ (lw) =6 el (219)
m

where

R, 2 I,2 R 2
G = j(Gm) + (Gm) = [Cm 1+ tan™ & . (220)

Hence, from (216) to (220),
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&

*
c:] I e T (221)

1 +v
v f
Ga(lw) 1= vf

We recall that the elastic effective axial shear modulus Ga is
given, in the case of the rigid fibers, by

* 1+ vf

G =
a

G (222)
1 - vf m

(see References [1 and 3]),where G, is the elastic shear modulus of the
matrix.

We adopt the notation
1 +v

1 - vf

W =c W, (223)

in an analogy to the notation used in (169). Then from (221) and (223),

vk * 2 16
Ga (w) = Ga (w) Jl + tan' 6 e . (224)

Denoting c as a function ot E:{lw) by ¢, we have from (202) and (224),

*
G (w) C
el 8 Jl + tanzd gl (225)

p I

Therefore, from (202) and (225),

¢ =c(l+ tan2 *)1/4 elé/2 . (226)
Replacing ¢ by (226) and G; by (224) in (210), we obtain
c M -16/2 sin[g-(l + tanzé)_l/ae—lé/zx]
) == S VT 7 \-174 —13/2 (221)
w Ga {w) C (1 + tan” &) cos[z>(l + tan &) e ! 2]

Since for the usual viscoelastic materials in general
tan ¢ < 0.1 ,

it is seen that tan2 4 can be safely ignored in comparison to 1. Thus,
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w =18
) c Mo _8/2 sin (f e /2x)
0(x) = " e YR (228)
W Ga (w) C cos (E e )
There 1s no difficulty in finding the real and imaginary parts

of (228). The results, however,
continue the calculation for x

are ver
2.

We have from (228),

M

6(1) = ——2— (cos §/2 - 1 sin §/2)

y clumsy, and we shall therefore

sin[E& (cos 6§/2 - 1 sin 6/2)]

wG (w)y C

D * 0O

‘We use the notation

cos 6/2

wl
C

sin &§/2

frid
[

Using the usual expressions for the sine
ties (see, e.g., Reference [8]), we find

cos[g% (cos §/2 - 1 sin §/2)]
(229)

(a)
(230)
(b)

and cosine of complex quanti-

c M
~ - o R _ sin(2a) - 1 sinh(28)
8(2) = ——5— (cos §/2 1 sin &§/2) c0s(2a) + cosh(28) (231)
w Ga (w) C
Thus, the angle of twist at x = { is given by
c M
= wt o sin(2a) - 1 sinh(28) 1(wt-8/2)
6(2,t) 0(2) e Tk cos(2a) + cosh(28) 0 & (252)
wCa(w)C
T€ (205) has the form
M(L,t) = Mo cos wt , (233)
then
6_(i,t) = Re [é(z) 't ] (234)
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If (205) has the form

M(L,t) = Mo sin wt , (235)
then
M. 1wt
OS(R,t) = Im Le(n) @ ] . (236)

It follows from (234) and (232) that

¢ Mo sin(2a) cos (wt - 8/2) + sinh(28) sin(wt - &§/2)

eC(Q,t) = UG:(U)C COS(ZQ) + COSh(ZB)

.(237)

From (236) and (232),

c M

o sin(2a) sin (wt - 8§/2) - sinh(2B8) cos(wt - §/2) (238)

es(z,t) = mG:(w)C cos(2a) + cosh(2R)

It is convenient to represent (237) and (238) in different forms. It
is easily seen that (237) can be rearranged as

¢ Mo Jsin2(2q27+ sinhz(ZB)

eC(Q,t) = wG:(w)C cos(2a) + cosh(2R)

cos (wt - &/2-y) , (239)

where

sinh (28)

ETRt s sin(2a)

(240)

It is thus seen that (239) is a cosine vibration with a phase lag rela-
tive to moment input (233). When (234) is written in the form

ec(l,t) = Amp [6c] cos(uwt -w) , (241)

it 1s seen that the amplitude is given by

¢ Mo J sinz(Zu) + sinh2(28)

¢*(w)C cos(2a) + cosh(2R)
(.LJa(.L)

Amp (6 ] = (242)

and that the phase lag is given by
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=Ntan {5155&3&1} + 82 . (243)

sin(2a)

Similarly, (238) can be written in the form

¢ Mo ;Z;in2(2a17+ sinh2(28)
*

¢ (w)C cos(2a) + cosh(2B)
w6, (w

es(z,t) = sin(wt - 6/2 - ¢) , (244)

where { is again given by (240). Thus, we can also here use the
representation

OS(Q,t) = Amp [68] sin(wt -®Q) ,

where Amp [83] is given by (242) and ¥ is given by (243).

Figure 3 shows a plot of Amp [6.] as a function of input fre-
quency for a viscoelastic fiber reinforced circular cylinder. Also
shown is the amplitude variation with w for the elastic vibrations, with
G%(e) taken as the matrix elastic shear modulus.

The data used are as follows:

£ =5.0 fc. length of cylinder
d = 4.0 in. diameter of section
p = 3.0 density relative to water
R R 1 4 -1
Gm (w) = Gm(O) 1+ 7 1oglo w], 1 <w < 10 sec
G (0) = 0.5 x 10° pst
tan § = 0.1
m
Vo = 0.4 ve = 0.6.

It is seen that in the neighborhood of the first elastic resonant fre-
quency, the viscoelastic amplitude has a peak which 1s about five times
that of the initial amplitude. The next peak which comes behind the
second elastic resonant frequency is already very damped out. The damp-
ing increases further in the neighborhood of higher elastic resonant
frequencies.

It is thus seen that the viscoelastic nature of the matrix has
a very beneficial effect on torsional vibrations.
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7. TRANSVERSE VIBRATIONS OF UNIAXIALLY FIBER REINFORCED BEAM

We now consider the problem of the forced vibrations of a beam
of constant cross section. Let x be measured along the beam axis, which
is also the direction of fiber reinforcement. The equation of motion of
an elastic fiber reinforced beam is

4 L2
a2 *_’_‘i+i_w=_lp(x,t) ) (246)
4 2 pA
X at
*
2 EI
=R (247)

where w is the transverse deflection, p is the average density, o is the
load per unit length on the beam as a function of position and time, I
is the moment of inertia Iy, and A is the cross-sectional area.

We consider the important case of a simply supported beam
which is loaded at x = ¢ by the concentrated force Poe‘m , Figure 4.
For this case the boundary conditions are

82 82
w(o,t) = <5 (0,t) = w(,t) = =5 (L,t) =0, (248)
ax ax

and the loading function p(x,t) assumes the form

p(x,t) = P & (x-£) e'“" (249)

where ¢ 18 the delta function.

The solution to the problem described by (246) through (249)
is well known and is given by

wt

2P e o gin(a £) sin(a x)
E
W(x,t) = = ) e (250)
E It n=1 4 ( w )
a ¥ l = —
n 2
L
n
where
T
a =T (251)
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L —q

Figure 4, Lateral Vibrations of Viscoelastic Fiber
Reinforced Beam,

E*
Wl = o LI
n n pA

We rewrite the solution (25U) in the form

wt

wE(x,t) = e i wE (x) ,
n=1 "

where

ZPO sin(ang) sin(anx)

* 2
E Ig 4 w
a o 1l - —
n 2
W
n

In view of (252), Equation (254) can be written as

wE(X) =

2Po sin(ans) sin(anx)

*
. E Iaa - usz
a n

WE(x) =

The complex viscoelastic solution then has tie form

wVL(x) = elwt z @ ),
n
n=1
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where

21 sin(anﬁ) sin(anx)

W (x) = — 5 (257)
n I A 4 2
Ea(tw)Ian - wp
In view of (147) through (149),
vk *R 1
Ea(lw) - vam + vaf + lvam . (258)

We rewrite (258) in the form

* * *
Ea(lw) = Ea(w)(l + 1 tan § ) , (259)

where E; is given by (169) and also by (148), and tan §* 1s given by
(167). Substitution of (259) into (257) and rearrangement yields

2p
o

* 4 2 * 4 *
Ea(m)lan -wp - \Ea(w)lan tan §
R

Wn(x) -

® * 5 8in (o _£) sin (a x) .
(E (w)Iaa - wzp)2 + (E (w)Ia: tan 6§ )2 gL n

a n a (260)
We shall adopt the notation

.2 4
b =a
n n

E:(w)I
A’ (261)

which is analogous to (252). Note that thg right side of (261) is a
function of w because of the presence of Ea(m). However, because of the
very slow variation of E*(w) with w (see Section 5), (261) is numerical-

ly quite close to the value of (252). With the notation (261), Equation
(260) can be rewritten in the form

2
1 - 95 - 1 tan §
2Po mn
vn(x) = E*( o IV > 7 sin(anx) sin(ang) . (262)
a w o [ 1l - 2—) 4+ tan &
n &2
n

It follows that
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2P

2\2
* *
Ea(w)IfL a:[ 1- w_) + t:an2 )

o

£ irn(x) =

e

W w

R * w2 *
. 1l - = cos wt + tan § sin wt + 1 -3 sin wt - tan § cos wt
n n

+ gin (anx) sin (ans) . (263)

This completely defines the dynamic viscoelastic solution (256). Thus,
if the applied force is P, cos wt,

2

*
3 cos wt + tan § sin wt
n

=
IE

2P ®
0

€

wZE(x,t) = sin(ang) sin(anx) .

st ] ; -
Ea(w)IQ L al‘ 1-50+ tan2 $
n 22
“n (264)

If the applied force is Po sin wt, we have

2
1l - 25 sin wt - tan 6 sin wt

VE 2P° i an

vy (x,t) = sin(ana) sin(anx).
- *
E (w)IL n 1 |:1 el
(265)
Defining

[N

2
w
1- ?) sin(anc) sin(anx)
n

A= ) (266)

2
1 4 *
g 1-—+tan26
n .2
w
n
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*
© tapn § sin(anz) sin(anx)

B = ) 3 = (267)
p=ll aa[(l - E—) + tanz G*]
n o d
]
n -
Equations (264) and (265) may be written in the form
W (x,6) = hmp [w‘c’E] cos (wt -¢) , (268)
WZE(x,t) = Amp [WZE] sin (ut -4) , (269)
where
VE VE VE 2, 2 2,1/2
Ampw}-Ampl:w]-Amp[w]-*—-—[A + B7) (270)
c s
E (w)Ig
a
and
Q = tan 2, (271)

Since s* is a very small angle, it is reasonable to neglect
tan? 6* in the denominator of (271), unless w is almost equal to &p.
Barring this eventuality, if one remembers that Eg(w) is a very slowly
increasing function of w, it appears that the amplitude 1is very nearly
that of elastic vibrations with Young's modulus Ej(0). Also, if w is
not close to &,, the phase lag defined by (271) is very small and can be
neglected.

It is seen that the denominator in (270) cannot vanish, and
thus there I8 no resonance in theory. Yet the denominator can still
become very small. Consider the case

w = &k . (272)

Since &, as defined by (261) involves E:(w), it is seen that (272) 1is an
equation for w which must be solved. Let a solution of (272) be denoted
by wR. 'rhen (266) and (267) assume the form
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c2
Yk
) 1 - ;i ain(anc) sin(anx)
n
it nzl wo 2 )
4 k 2 %
n¥k a 1- ;5 + tan” §
n

© tan 6* sin (anc) sin (anx) sin(akg) sin(akx)

(b) (273)
*
n=1 4 wﬁ 2 2 * a: tan §
ndk a |{1 - 7| t tan 5

n

B=

n

It is seen that for small k, i.e., the first solutions of (272), the
last term in (273b) will become very large; thus, we have a pseudo-
resonance condition,

It is also seen that when (272) is fulfilled, Equation (267)
gives

tan @ -+ =, W.%, (274)

which implies a phase reversal of the vibration, since then
cos (wt -w) = sin wt
sin (ut -~ @) = ~ cos wt . (275)
In order to obtain an idea of the comparison of elastic and

viscoelastic vibrations, the deflection at the center of a beam loaded
at its center has been calculated numerically. In that case,

E=xed (276)

therefore,

nn) - {1 n odd

2
sin(ang) sin(anx) = 8in (E- 0 n even . (277)

Thus for that case,
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W
1-=3
an wn
A=
n=1,3,5 & o 2 ' (278
= n‘1-—2 + tan a:|
&
n
* a
Be=tan 8" x J 1 (279)

2 *
n=1,3,5 a4|: 1 - w_) + tunz 45*j|
n I;.]IZ

n
The amplitude (279) has been calculated numerically as a func-
tion of w for a beam of length ¢ = 50 ft and section 2 in., x 4 in. The
material characteristics chosen were as follows:

p = 3,0 dengity relative to water

tan § = 0.1
m

E 27 x 106 psi

f

EN (o) [1+3 log ], 1w« 10* (sec’h

R
Em (w) 4

1.35 x 10% pei

Ex (o)

v . 0.4 Ve = 0.6.

The variation of the amplitude with w is shown in Figure 5 for
elastic vibrations using E_(o) as elastic modulus and for viscoelastic
vibrations. Elastic analysis is shown by a full curve, and viscoelastic
analysis is shown by circles. It is seen that for the first elastic
resonant frequency resonance is attained for the viscoelastic vibration
also. At second elastic resonant frequency, there is already a small
deviation between the two, but still the viscoelastic amplitude is very
large.
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8. SAMPLE CALCULATIONS OF VISCOELASTIC PROPERTIES

Results for static viscoelastic properties of uniaxially fiber
reinforced materials have been given in Section 2. It has been seen
that considerable simplification is achieved when it is assumed that the
fibers are perfectly rigid relative to the matrix. However, this as-
sumption is not permissible in the calculation of Eg(t); but fortunately,
the assumption is not needed here, since (63) 1is an explicit, simple
expression incorporating finite elastic stiffness of fibers.

In order to obtain an idea of the approxzimation involved in
the assumption of rigid fibers, we perform a sample calculation of the
axial shear relaxation modulus G (t) for the case of elastic fibers.
The Laplace transform of Gz(t) is given by (59). To be specific, it is
assumed that the matrix behaves according to th. simple Maxwell model.
Thus, the deviation matrix stress-strain relation has the form

S & R &
eij zcm + an . (280)

where G 1s the elastic (initial) shear modulus, np is a viscosity coef-
ficient, and a dot indicates time derivative. The theory given in Ref-
erence {3] 4includes the use of time differential operator stress-strain
relations of phases, such as (280), for computation of effective visco-
elastic properties. It is also possible *o tiv in (280) directly with a
more general stresgs-strain relation of type (49). To see this, take the
LT of (49), which is

éij (p) = 2p G_(p) éij(p> : (281)

Now the LT of (280) is

: PSP 8,00 5,0
peij (p) = eiJ(O) = zcm = ZGm + znm d (282)
Evidently ,
s,, (0)
-
eij(O) 2 , (283)

which expresses the initial elastic response. Taking into account (283)
and (282) in (281) and rearranging ylelds

2pn

s,,(p) = —=— e, . (p) , (284)
ij 1+ Tmp ij
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where : '

n
m

is the relaxation time of the Maxwell matrix. Comparison of (284) with
(281) shows that

nmp

Pém(p) “TvTp (286)
m

Now (286) is substituted into (59), yielding

G_.(1+c) (1+T_p) + n_(1-c)p n
f m m m . (287)

Gf(l-c) (1+Tmp) + nn(l—c)p 1+Tp

%
G, (p) = T

Equation (287) is easily inverted into the time domain by the method of ‘
partial fractions. The final result is

* 4c
Ga(t) ¢ [1+CJ exp [_ $(1-c) o E:J + l-—g exp [— ‘t—] , (288)

Gm - ¢(l-c) + l+c ¢(l-c) + l+c T 1+c Tm
where
Ce
¢ = g (289)
m
When the fibers are rigid, ¢ + « and then (288) reduces to
G (t)
a 1+c t
= = 1o eXP [; ir] . (290)
m m

Since Gy exp [-;iﬂ is the relaxation modulus of the Maxwell matrix,
(290) is in accordance with the general result (60).

In order to assess the numerical importance of ¢, (288) has
been plotted in Figure 6 as a function of t/T; for several values of
¢, assuming that ¢ = 0.5. It is seen that for ¢ > 25, which is a
typical value for fiber reinforced materials, the rigid fiber assumption
gives a good approximation. Therefore, this idealization is considered
to be justified.
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Sample calculations of viscoelastic properties of fiber rein-
forced materials have been performed for a polyisobutylene matrix. The
matrix properties have been taken from Tobolsky and Castif[ [10]. Ini-
tial elastic moduli are

K_(0) = 2.32 x 10° pet, G_(0) = 1.85 x 10° psi.

It is assumed that the matrix is elastic in dilatation. Plots of the
shear relaxation modulus G(t) and the shear creep compliance g,(t) are
shown in Figures 7 and 8., With the assumption of rigid fibers, the
axial shear relaxation modulus Ga(t) is given by (61). Plots of G (t)
for various c are shown in Figure 9. The axial shear creep compliance
is simply given by

B (1) = 3 g (1) . (291)

For derivation of (291), see Reference [3]. Equation (291) 1is plotted
for various ¢ in Figure 10.

The plane strain bulk relaxation modulus is given by (58). 1In
the present case, it is assumed that the matrix is elastic in dilata-
tion.

Therefore,

xm(c) =K H(t) , (292)

where H(t) is the Heaviside unit step function. Then (58) assumes the
form

K
xT(c) = H(Y) + i(I 2; G (t) . (293)

A plot of (293) for various ¢ is shown in iigure 11.
. The situation with respect toc the plane strain bulk compliarce
kp (t) is, however, not so simple. The relationship between KT and kT is

expressed in terms of their Laplace transforms by (40). When this
expression is written in the form

R3(p) kp(p) -i; : (294)

inversion by use of the convolution theorem for Laplace transforms leads
to
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e e e e D -

t
J K,:(t-r) k;(r) dr e ¢ (295)

(o}

Equation (295) is a Volterra integral equation with kernel K%(t—r) and
unknown function k%. Introduction of (293) into (295) yields

1 + 3¢

K (t .
———-J H(t-1) kT(T) dt +-§(I:E$

s *
I |, Jo G (t-1) kp(t) dr =t . (296)

Now

H(t-1) = 1 t>1 , (a)
H(t-1) = o t>T . (b) (297)

It is seen that (297b) is impossible since o<t<t. Therefore, H(t-t) in
(296) is simply replaced by unity. Then (296) takes the form

t K
m 1+ 3c *
Jo []rc * 3030 Gm(t_T)] Ll O S o (298)

The integral equation (298) has been solved numerically by the
method of Lee and Rogers [11l]) and by the use of the given experimental
information Ky and Gj(t). Plots of k; for various values of c¢ are shown
in Figure 12.

The Young's relaxation modulus E:(t) is given by the simple
expression (63). Here it is not permissible to assume rigid fibers,
since the (63) would become infinite. While (63) is easily evaluated,
there is little point in doing this; for it has been shown in (63) that
for the usual stiff fibers which are encountered in practice, the time
dependence of (63) is negligible. A very good approximation for (63) is
simply

*
E =
a

cEf = constant, t>o . (299)

Similarly, the Young's creep compliance e;(f) ’s very well approximated
by the inverse of (299). Thus,

R S constant, t>o . (300)

*
e
a cEf

Another important vigcoelastic modulus which has not been dis-
cussed in detail, so far, is GT(t). The definition of this modulus 1is
given by (23) and (25). Unfortunately, the composite cylinder assemblage
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analysis performed 1n Reference (1] has not yielded a closed result for
the corresponding GT in the elastic case. Only lower and upper bounds
have been obtained. The lower bound for GT is given by |

E E

s B e . k- + 26

“1¢) * %m £ cEocE 2af 4
f m m

A (301)

)

g m3 m

where superscripts E genote elastic moduli; see Reference [2], page 19.

The upper bound for GT is very complicated and will not be reproduced

here. 1In the event that the bounds are close, the elastic-viscoelastic
correspondence principle for effective properties, as expounded in Ref-

erence [3], may be used to convert (301) into the approximate Laplace

transform, GT(p) of Gp(t) for the viscoelastic fiber reinforced mate-

rial. (Strictly speaking, this is not legal). Considerable simplifi-

cation 1is achieved if the fibers are taken to be rigid and the matrix

is taken to be incompressible. Then it is easily shown that (301) in

transform domain reduces to (60). We thus obtain the approximation ‘

o WO liE—c (1) = G:(t) . (302)

It is to be expected that for rigid fibers and a nearly incompressible
matrix such as a polymer, (302) will provide a fair approximation.

We now turn to the computation of effective complex moduli.
Again, a polyisobutylene matrix is chosen, and the fibers are assumed to
be rigid. The matrix is again assumed to be elastic in dilatation.
This implies that the complex bulk modulus (133) of the matrix satisfies
the conditions

KR (w) = K = constant, (a)
m m

Ki () o . (b) (303)

The complex shear modulus G, (ww) values have again been taken
from Reference [10] A plot of G T is shown in Figure 15 (curve c =
o), and a plot of Gm(w) is giren in Figure 16 (curve c = o), both plots
being vs. log w.

*R, K%I, G*R, G*I, E*R, and E*I have been computed on the
basis of Equations (135), (136). (141), (142), (148), and (149),

respectively. The results for various c are shown in Figures 13 through
18.
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KTI(u) (Polyisobutylene Matrix).

63



6
5 - - |
C = VOLUME FRACTION OF FIBER
4
‘»
a
~~
3
N
« 3
X O
(L]
o
o /

2 CT}(
/;&,’—-—_‘
//c:
-
|
0
-4 -3 2 - 0 | 2 3 4 5 6 7 8 9

log w (sec')

Figure 15, Real Part of Complex Axial Shear Modulus,
*
GaR(w)(Polyisobutylene Matrix).

64




(143w auaLAInqosiAlog) (7) o9
»
‘Sn|npol J4eays |eixy x3|dwo) jo jaeq Aaeuibew) °c| s4nbig

(1.99s) m Doy

e
ZARREANN
vi8 |
\\\\ .

m NU \ 43813 40 NOILOVN4 INNTOA = |

9 0o

D
Ix

(1sd) (™)

65



*(xLa3ey 3ua|A3nqosiA|od) ?meu
*

‘sninpoW s,bunop |etxy xa|dwo) 40 Jaeq |3y °/| 94nbi4
(,-09s) m°' 6o

6 8 ) 9 S v € 4 b o} b- 2- €-

T 2’9
— e - —— T E b — - ——— b —— — - €9

|
—--- 1 - + == —— 1 —— — —t—————{ 9
e ——r €0:9 T 253
“
L | | _ L S R P
|
S e T N N N |
~

| 1 50:0 89

|
e — = 69

_
438914 40 NOILOVH4 IWNTO0A = D

oL

D4 O1
(1sd) (m)8¥3 6o|

66



*(xL43e U3 AINQOSLALOd) Aavmmu

‘sninpol s,6unop |etxy jo jueq Aueurbewy °g| aunbiyg
:-uonvaoo_
8 L 9 $ v € 2 | 0 - 2= €& v
—
\ B
\\\ //.’ |
\\\ ,
/
£
QOuu\\
\\\\nd“u
Yl 1
//lll‘\\\\ 43813 40 NOILOVHA INNTOA =D
S~ I I R ‘

3 bo)

-]
L g

15d ) (") 4

~

o



9. LATERAL VIBRATIONS OF FIBER REINFORCED VISCOELASTIC PLATES

It has been shown in previous sections that the solution of
viscoelastic problems for fiber reinforced materials may be reduced to
the solution of associated elastic problems in a manner identical to
viscoelastic analysis of homogeneous materials. This is done either by
application of the elastic-viscoelastic correspondence principle (Ref-
erences [12) and [13]) or, for steady-state vibrations, by the use of
suitably defined complex moduli (Reference [14]). In this section we
consider the lateral vibrations of fiber reinforced viscoelastic plates,
for which the associated elastic problems are those of lateral vibra-
tion of anisotropic plates.

DERIVATION OF GOVERNING EQUATIONS

The governing equations for anisotropic plates, based on the
Kirchhoff hypothesis, are easily developed by integration of the equa-
tions of linear elasticity across the plate thickness. It will be
remembered that the displacements are of the form

u, = x3yol (xl,xz) a=1,2 (a)

Uy =w=w (xl,xz) , (b) (304)

and that the neglect of transverse shear deformation leads to the
relations

Y, = (305)
where
- W
Wy, = axG (306)

The equilibrium equations for an element of plate are easily obtained,
with the result

aMaB

w -9 =9, (307)
3]

3Q, .

E{: + p = phw 5 (308)

where dots denote partial derivatives with respect to time. It should
be noted that the rotatory inertia has been neglected in Equation (307).
This is consistent with the neglect of transverse shear deformation and
will limit the present theory to frequencies which cannot approach the
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frequency of the first thickness shear mode. This limitation is, how-
ever, not severe for thin plates.

The stress-strain relation for anisotropic plates may be
written as
*

MaB = BaByX ny i (309)
where
K,=3 (r oy ) - (310)
af 2 “a,B B,a
The plate stiffness tensor B:BYA is defined as
* * 3
B, =B I (311)
aByA afyr 12 °
where A% are the components of the elasticity tensor for plane stress
theory for the material referred to the plate axes. It should be noted
that B could also be interpreted as a linear integral time operator

or as co%plex moduli for either formulation of the viscoelastic problem.

Substitution of Equation (310) into Equation (309) gives

*

g™ BaBYA w,YA c (312)

M

The governing equation for anisotropic plates is then obtained
from Equations (307), (308), and (312); the result is

*

BaSyA w’YAaB + phw = p(xl,xz,t) , (313)

where p is the transverse load per unit area.

The appropriate boundary conditions are that on each edge we
must prescribe either w or the effective shear V, and either the slope
or the bending moment. It will be remembered that due to the neglect of
transverse shear deformation, the problem is of the fourth order and
does not allow us to prescribe the shear resultant and twisting moment
independently; we are therefore led to defining the effective shear V,
as

aMaB

axB

VOl = QOl + (no sum on B) . (314)
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Expanding Equation (313), we obtain the governing equation in the form

4 4
o 3 Y * * * * s * *
1111 4 * Brona * Bornn Y Biyag 81100 T3 Byopy * Biog
9X, 909X
o 1°%2
B .. +B .. 4+B .. +B 2 i i i
1221 ¥ B1122 * Bonio * Bo121) T3 3t (Bonyo * Bogay * Brogy
39X, 99X
1%
4 4 2
* 3w * 9w 3w
*+By122) NN E 2222 & toh =5 = plx), x5, 6) . (315)
xlax3 2 at

We recall that the stiffness tensor BanX must satisfy the symmetry

*
relations BOl YA = BBayk = Bygay = BAyan and the above equation there-
fore reduces to

* o w z 3 * 3w
Praan T t e ax3 + (2855 + 48]5)) S
1 172 1°%2
4 4 52
* I w * 0w w
+ 4Byo01 3t B Tt oh 2 5 = P(X,, %5, 8) . (316)
ax13x3 3x2 3t

It will be recalled that the stiffness components B: appearing in all
previouvs equations are referred to plate coordinates. When the plate
material is fiber reinforced with unidirectionally oriented fibers, the
material is orthotropic with respect to axes, which are respectively
along the fiber direction and perpendicular to the fiber direction (Ref-
erence [1]). It is clear that plate stiffnesses can be defined with
respect to material-oriented axes as

3

Dopyr = Aygya 17 0 (317)

=2

where Kae )y are the components of the elasticity tensor referred to
materjial axes. Clearly, then, the stiffness tensor B, aBy) (or BaB \)
obeys the transformation law for a surface tensor of rank 4 which is

* =

BGBYA = e % aYn %\e BVNOE 3 (318)

where a,g are the direction cosines of the plate axes with respect to
the material axes. If we consider a rectangular plate with fibers
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oriented at an angle 6 to the x; direction, it is easily shown that the
stiffness tensor referred to the plate axes is obtained from that re-
ferred to the material axes by the matrix equation

Elements of the matrix [A] are given as follows:

Ay

Ao

A3

Ay

431

A58

Agy

A

)

on

Ay

Agy

Agq

Ay

p— -

Diin
D CEY T
2222 Bi111
-5
D B
1122 2222
-ra) |2
D1212 B1212
-
D112 B1122
Dy222
[ -

A22 = c0346

A21 = sinae

A23 =4 sin26 c0928
AZA =2 sinze c0826
A32 = sin28 c0528

" A3

sin46 + c0546

Aug ®ihq)

(sin26 - cos26)2
= A

3
- A62 = sinf cos™6

- A - sin36 cosf

61

- A 2 (sinze - cosze) sin® cos8

63
2 2
- A64 (sin"® - cos“6) sind cosBd

71

(319)

e (320)




It is clear from Equation (319) that the fiber reinforced plate will, in
general, be anisotropic for 6 # 0. This special type of anisotropy is
ofiten denoted by the term related-orthotropic [15].

VIBRATIONS OF ORTHOTROPIC FIBER REINFORCED PLATES

We first consider the simplified case of fibers oriented along
the x, axis. The plate is then orthotropic, and Equation (316) then
reduces to the form

4 4 4 4
Dia1n T4 ¥ %Pr122 T2 2t Da2gp Tt e T = plxn %y, 8), (32D)
X X, 9X 9xX ot
1 19%9 2
where
* *
D111 = B (a)
D .. =B 28" b
1122 = Bra22 * 2By, ()
’ . 322
D222 = Byooo - (c) (322)
The stress-strain relations (309) reduce for this case to
_ ) )
- |pF AW, gr 2w
Mg == |Baa1 —2 % B 2| @
ax X
I x 3%
L 3w 3w
Mag == Bog11 — 2t Y2220 2| @
X X
28, 2% 323
Mg =My = - 2Byo10 7 - (e) (323)
dxlax2

It will be of interest to consider the case of a rectangular
plate of length "a' and width '"b" simply supported along all edges and
subjected to a sinusoidally varying concentrated load at a point
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For a plate simply supported along all edges, the boundary conditions
are

w=M_.=0 at x, = 0, a , (a)

11 1

w = M22 =0 at X, = o, b, (b) (324)

and we note that, since w diminishes along these edges, the moment
boundary condition, by virtue of equations (323), reduces to

2

é—% =0, at x, = 0, a, (a)

axl

azw

-3 = 0, at x, = 0, b . (b) (325)
axz

If we consider a sinusoidally time-varying concentrated load of magni-
tude P applied at the point (£;, £3) of the plate, the loading function
p(xl, Xy t) may be expressed as

t
P(xqs X, t) = PE(x =E]) & (x,=E,) eVt (326)

It is clear from the boundary conditions, (324) and (325), that the solu-

tion to the present problegxmay be obtained as a Fourier series in the
mx 1
functions sin —gl and sin "~ . We therefore expand p(xl, Xy t) in

such a Fourier series and obtain

o oo mm§ mnXx nné nnx
P(x), Xy, ) = g% ) ) (sin A L sin = L gin T 2 sin T 2) eVt
m=1 n=1 (327)

We now seek a solution for w(xl, Xy t) in the form

© mmX nnx,
wix,, Xy, t) = ) qmn(t) sin — sin — . (328)
m=1l n=1

Substituting Equations (327) and (328) into Equation (321) and equaling
coefficients of like terms in the Fourier series yields one ordinary
differential equation for the functions qp,(t); the result is
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T

N 1 mn. 4 % mn,2 .nmn,2 . * nn.4 %
%n * oh [(a_) Pl * 2 G G Py v D) Dzzzz] g
mné§ nné
4P lwt 1 2
~ Thab © sin 3 sin o . (329)
This equation may be written in the form
" 2 1wt
Unn + “an Imn = Pun € > (330)
where
2 1 mn. 4 _* mn.2 om 2 % nn. 4 _*
“mn ™ oh |:(a ) P *2 G0 GO Dyt G Dzzzz:l (331)
and
4p S L
P = Shab sin S sin 5 (332)

It will be of particular interest to consider only the steady-state
solution of Equation (330), since in the viscoelastic case transients
will be damped out. Thus, we consider a solution of the form

iwt
= e
qmn(t) pmn

and substitute this expression into Equation (330). We then obtain the
steady-state solution as

P
mn wt
L e A (339
(.umn W

Thus, the elastic solution to the problem may be written in the form

wwt
L o e mnx nnx

P
w(x,, x,, t) = X X Lt sin L sin 2 . (334)
1’ 72 a
m=1 n=1 W T

As was clear in the case of the beam solution of Section 7, this solu-
tion may be written in the form

1wt 5 = E
w(xl, X, t) = e mzl nzl wmn (xl, x2) 5 (335)
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where

mn£1 nn&z mmx nnx2
E 4P sin a sin N sin o sin i
Wooo(x,, x,) =- — . (336)
mn -1 2 phab w2 _ w2
mn

The passage to the viscoelastic solution may now be accomplished in a
manner entirely analogous to that of Section 7. Thus, for the visco-
elastic case, we introduce into Equation (331) appropriate complex stiff-
*
nesses for D1j;11, D§222, and D1jj7. These complex stiffnesses are com-
pletely defined by Equation (331§ if the components or the elasticity
tensor are replaced by the corresponding complex moduli. They can be
written explicitly in terms of complex moduli as

3
b, el @ (a)
111 T 12T g g
1 - — %2
a
3 % E* il
~ % h Va o vk
21125 ST R
T %2
1 - e \)a
¥
. a e
3 B
n h T
D2222 =13 E* . (c) (337)
1 -3
a

Under these conditions, Equation (331) is then replaced by the
expression

52 L |@ns mny 2 om2 gk nmy 4 g
“on = oh l:(a) Pi111 ¥ 2 @) G Dpygp + ) Dzzzz]

2
= (1 + 1 tan dmn] : (338)
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It should be noted that amn and 6y, are both functions of frequency w,
since the complex moduli and stiffnesses are frequency dependent. Thus,
the viscoelastic solutions to the problem can now be written in the form

oo Qo

- 1wt VE
W(x), Xy, t) = e Dol (ko) (339)
m=1 n-1
where
mngl nng2 mnx1 nrx
in sin sin sin
VE 4p S a b a b
WO o(x,, x,) = (340)
o =2 phab 62 - w + 1 tan &
mn m
Equation (340) may be written as
VE
wmn (xl, xz) =
=2 2 -2
4P wmn -w - 1wmn tan Gmn . mngl - nngz i mnxl - nnx2
ohab -2 2.2 -4 2 sin =y s Ty sin T sin gy .
w =W )T+ @ tan Gmn
(341)

Following the development previously presented in Equations (260) through
(263), we can obtain the dynamic viscoelastic solution to the problem.

To illustrate the dynamic viscoelastic solution (339), we con-
" _n

sider a rectangular plate of length "a" and width 'b" simply supported
along all edges and subjected to a sinusoidally varying concentrated

load at the center (%, g). See Figure 19. The dimensions of the plate
are

a=60 in., b = 30 in., h = 0.375 in.

The matrix material of the plate is taken to be polyisobutylene, whose
properties are given in Section 8. It is assumed that the matrix is
elastic in dilatation. The material properties of the fiber and the
density of the plate are as follows:

K 5.83 x 106 psi

f

4,375 x 106 psi

«
n
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Lateral Vibrations of Rectangular Plate.
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p = 3.0 (density relative to water)

¢ = 0.5 (volume fraction of fiber).

From (339) and (340), the deflection of the plate at [%3 %J
is found to be
v [% 2, cJ - et S 1 =, (342)
m=1,3,5 n=1,3,5 " T (141 tan §_ ) -w
mn mn
where
4 4
-2 n m * 2 2 =% 4 =%
® o (1+1 tan Gmn) = “hab [ﬁ D1111 + 2m n D1122 + 4n D222é] . (343)

Using (337), the deflection at the center of the plate can
be computed from (342)., The variations of the amplitude with w are
plotted in Figure 20. As in the case of beams, it is seen that there is
no true resonance. However, for forcing frequencies close to the first
natural frequency of the plate, large response amplitude is encountered
and resonance 1s attained.

Finally, we note that the algebraic and numerical calculations
for this case are at least one order of magnitude more complex than
those for the case of beams, which was treated previously. This is due
to the appearance of four distinct moduli in Equation (331), each of
which has different frequency dependent real and imaginary parts; this
causes the "loss tangent", tan ép,, to depend on the mode under con-
sideration. Some simplifications may, however, be possible for
particular materials,
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10. ELEMENTARY THEORY OF BENDING AND SHEARING
OF VISC S I

We consider a beam of constant cross section. The system of
axes to which the beam is referred is shown in Figure 21, It is assumed
for the sake of simplicity that the y-axis is an axis of symmetry of the
cross section. The beam is uniaxially reinforced by fibers in the x-
direction.

It will be our purpose to develop a theory of such beams which
is analogous to the Euler-Bernoulli theory of homogeneous beams., We
note in this respect that for homogeneous elastic and viscoelastic beams
in pure bending, the Euler-Bernoulli theory is rigorous, provided that
the bending moments on the terminal beam sections are .pplied through a
normal stress distribution which varies linearly over the section. Sup-
pose that such a stress distribution is applied on the terminal sections
of a uniaxially fiber reinforced beam. The beam may be thought of as
being represented by the composite cylinder assemblage model. Since
there are a very large number of composite cylinders passing through the
section, the normal stress oyxx on any composite cylinder end section is
uniform. Then it 1s known that in such a composite cylinder, the axial
strain ey, will be uniform throughout fiber and matrix (see Reference
[1]), except for some local perturbation at the end regions. Since the
strain eyy 1s proportional to the stress oyx, it follows that ey, is
very nearly linearly distributed over the section of the cylinder. We
therefore conclude that in pure bending, the Euler-Bernoulli theory
should be applicable with high accuracy for a fiber reinforced beam.

Because of the assumption that plane sections remain plane and
since y is an axis of symmetry of the section, we write, as in the usual
strength of materials development,

Ex (Ko¥,t) = E?i??? , (344)

where R(x,t) is the radius of curvature of the deformed beam, which here
depends also on time because of the time dependence of the material.

The average stress axx on the section of a composite cylinder is then
given by

t ) exx(x,y,r)

Exx(x,y,t) = Jo E: (t-1) Y dr . (345)

Note that the y-coordinate represents positions of central axes of com-
posite cylinders only. Since there are very many of these, y may be
approximated by the continuous variable y.

Introducing (344) into (345), we have
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Figure 21, Beam Coordinate System.
0 (X:y,t) =y B(x,t) , (346)
where
B = LI . (347)
(x,t) = ,Fa (t-1) a7 | o) T .

In the absence of axial forces on the beam, equilibrium demands that

’

J ) Exx(x,y,c) dA =0 . (348)

Introducing (346) into (348), it follows that

J ) ydA = 0 . (349)
(A

This implies that the linear distribution (346) must pass through the
centroid of the section and that the stress and strain vanish at the
centroid.
From moment equilibrium at any section, we have
Mxx(x,t) = M(x,t) = J(A) Gxx(x,y,t) ydA . (350)

Introducing (346) into (350), we find that
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M(x,t) = B(x,t) I , (351)

where

2
I-Izz-JydA (352)

is the moment of inertia with respect to the z-axis. Combining (351)
with (346), we have

5, (y,t) = ML), (353)

which 1s the exact analogue of the strength of materials stress for an
elastic beam. It is thus seen that the stress Gy, is independent of the
viscoelastic nature of the material. It should be noted that in accor-
dance with the present development, the moment M is reckoned to be
positive 1f it produces tension below the neutral axis and compression
above the neutral axis of the section.

In order to analyze the deflection of the center line w(x,t),
we assume this deflection to be small in comparison to section dimen-
sion. Then

2
R(x,t) & - 2008 (354)
ax
The negative sign in (354) stems from the choice of positive y downward

and bending moment sign convention. It follows from (354) and (347)
that

2 ¢t
*
B(x,t) = - 2-3 J Ea (t=1) 2!%%;11 dt . (355)
X ‘o

Introducing (355) into (351), we have

2 ot
*
M(x,t) = - I 9—-2—J Er (t-1) 3—"’%‘3 dt . (356)
9X o

Equation (356) 1s the governing equation for the beam deflection. End
conditions for w have, of course, to be specified.

The present form of (356) 1is somewhat inconvenient. We shall

now proceed to transform it into a different form. For this purpose let
us take the time Laplace transform of both sides. Then
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~ 32 ~k ~
M(x,p) = - 1 —5 [p E, (p) w (X.p):| " (357)
Ix

where we have uged the notation (3) for Laplace transforms. Let us con-
sider the very important case where the load i1s applied to the beam at
time t = 0 and is then held constant.

In that case,

M(x,t) = M(x) H(t) ,

(358)
where H(t) is the Heaviside unit step function defined as
0 t <0
H(t) = {
1 t 30 .
It follows that
M(x,p) = %M(x) i (359)
From (45),
Ak 1
PE (G =7, (45)

pea(p)

where é:(p) is the transform of the Young's creep compliance e;(t) which
enters into the relation

30 (1)

tox XX d
exx(t) = . ea(t—r) T .

31 (360)

Thus, e*(t) is the longitudinal strain produced in a fiber reinforced
materiai by constant unit average stress Oyx.

Introducing (359) and (45) into (357), we find that

24
~%
dulup) MW, (361)
ax

which can be directly inverted into the time domain to give

2

9 *

duGne) | M0 ) | (362)
9x
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Equation (362) is the analogue of the well-known differential equation
for an elastic beam. As is ugually done for elastic beams we shall now
make the assumption that, although derived for the case of pure bending,
Equation (362) is also applicable when shear forces are present. Then
(362) represents the differential equation of viscoelastic fiber rein-
forced beams in bending.

We now consider end conditions for w. Typical end conditions

are
simple support at X, w(xo,t) =0 (a)
ow
built-in support at X % (xo,t) =0 ., (b) (363)
Set
*
wix,t) = W(x) e (t) . (364)

Then Equation (362) reduces to

aNe | MG

. (365)
dx2 I
Also, introduction of (364) into (363) gives
w(xo) = 0 (a)
dw(xo)
) 0. (b) (366)

It 18 seen that (365) together with (366) represents an elas-
tic deflection problem with unit Young's modulus. The viscoelastic
solution is then obtained from (364). Since in any elastic beam deflec-
tion problem EI occurs in the deflection denominator, we can now formu-
late the following simple rule: In order to find the deflection of a
viscoelastic beam, simply take the elastic deflection and replace the
reciprocal cof the Young's modulus by the viscoelastic Young's compli-
ance.

As an application, congider a simply supported beam, of length
£, which is loaded uniformly by p, per unit length. The elastic deflec-
tion 1is

p X 2

wE(x) = (23-22x +x3) . (367)

*
24E I
a
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The viscoelastic deflection is

p_xe (t)
VE(x,t) = 2t (-2mle) (368)

The maximum deflection is at the center x = £/2

Lo 2‘ '
VE 0 *
(2/2,t) = 3841 ea(t) . (369)

It has been shown in Reference [3] that the viscoelastic effect
in uniaxial stress is negligible for conventional fiber reinforced mate-
rials in which the fibers are very stiff in comparison to the matrix.

In other words, if the creep compliance e,(t) is replaced by the initial
compliance e (o), the error produced is insignificant; but according to
the development given in Reference [3],

e:(o) = *1 , (370)
Ea(O)

where from (63)

E:(o) = (1-c) E_(0) + cE, , t30 . (371)

f ’
(It should be recalled that ¢ is the volume fraction of fibers and that

Ep(o) is the initial (elastic) Young's modulus of the matrix.) Thus,
(368) assumes the form

. R
VE(x,1) 2 —2— (Foanhd) (372)
24Ea(o)I

Equation (372) is no lopger time dependent and is precisely
the elastic solution (367) with Ej(o) used as an elastic Young's mod-
ulus. It is also quite clear that similar conclusions would hcld for
bending deflection analysis for any loading, and we may thus state the
following important conclusion: Under time-constant load, the bending
deflections of uniaxtially fiber reinforced viscoelastic beams, in which
the fibers are very much stiffer than the matrix, may be approximated
with high accuracy by the time-independent deflection of elastic beams
with Young's modulus taken as the initial E;(o).

We now turn to the effect of shearing forces on the deflection

of fiber reinforced beams, and we shall adopt the usual strength of
materials approach. It will first be recalled that bending stresses are
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given by (353). 1In the event of constant load for t2o, the moment {is
given by (358); consequently, the bending stresses are given by

5, (xay) =-ﬂ§51 Lo (373)

It will be recalled that the shear stress 0y, follows accord-
ing to strength of materials simply from equilibrium considerations with
the use of the bending stresses only. Since (373) is the exact analogue
of the strength of materials bending stress, it follows immediately that
the shear stress Oxy is also given by the strength of materials expres-
sion, Thus,

g (R09) = §é§§§§11 , (374)
where
S(x) = Shear force at x-section,
Q(y) = First area moment with respect to the neutral
axis of the part of the section above vy,
b(y) = Width of the section at height y,

I = Moment of inertia Izz'

The overbar in (374) denotes local averages. The maximum shear
stress always occurs at y = 0. It may be conveniently written in the
form

= _ = - S(x)
cxy — oxy(x,o) k n , t30 (375)

where A is the area of the section and k is a geometrical section shape
factor given by

Ag{o

k= Th(o)

(376)

For a rectangular section, k = %1 for a circular section, k = %-.

The shear strain produced on the neutral axis by the stress
(375) is given by

- * -
gy (0200 = > e (0) 5y (100) (377)

This expression needs some explanation. Since the stress (375) is con-
stant in time for t:o, the strain produced 1is directly proportional to
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the appropriate creep compliance. This creep compliance is g;(t) since
the shearing action proceeds in places parallel and transverse to the
fibers.

On the basis of the treatment given in Section 9, the creep
compliance for stiff fibers can be very well approximated by the creep
compliance for rigid fibers. Accordingly, we use

() =12 g (1) . (378)

According to strength of materials theory, there is an addi-
tional shear deflection wg which is superposed on the usual Euler-
Bernoulli bending deflection w,. Since wy produces no shear, we have

ow

- 1l_ s
cxy(x,o) =2 5% " (379)

Substituting (375) into (377) and substituting the resulting expression
into (379), we find that

ow

—=£ . kg gf o (380)
ax A a ’
Now from equilibrium
ds
B - (381)

where p(x) is the load per unit length of the beam, taken as positive in
the y (downward) direction. Differentiating both sides of (380) and
using (381), we obtain

dw
S

8x2

k *
= -4 px)g (v) . (382)

This is the governing equation for the shear deflection of the beam.

Equation (382) 1s similar to (362) and can be solved by analo-
gous methods. We set

W (6,8) = () gl (t) . (383)

Introducing (3863) into (382), we obtain for ws the differential equation

dzw

dx2

2= - % p(x) . (384)
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As an example, we consider again the case of a simply sup-
ported uniformly loaded beam with p, per unit length for t3o. The bend-
ing moment is then given by

P
M(x) = -?r- (-x) . (385)

Introducing (385) into (365) and integrating, we have

2 (- 5]
o |&x"  x_ b b
wb(x) =-371 % 12 + Clx + 02 . (386)
From (364) and (386),
)y (.3 4
p.e
_ _-.92a £x X
wb(x,t) = 51 ( 3 12)-+ C.e (t) ¥ + C (t) . (387)
Integration of (384) for constant P, yields
kpo 2
ws(x) =~ o5 X + Clx + C . (388)
Consequently, from (383),
*
kpoga(t) ]
ws(x,t) = - TToh X + C (t)x + C2 8, (t) 3 (389)

The total deflection is then given by

wix,t) = w (x,t) + w (x,t)
b s

* *
p e (t) 3 4 kp_g_(t)
_O_.Q__(.% A X_)_ o a___ x2 + Cl(t) X + Cz(t) y (390)

21 12 2A
where
b * , S %
c,) (1) = cr e:(t) +c g:(t) . M) (391)

The end conditions of simple support are
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w(o,t) = w(2,t) =0 . (392)

Insertion of (390) into (392) yields

Cz(t) =0, (393)
3
P AT, p ki
o 2 <
C,(8) = 347 e (t) + 8,(t) . (394)
Hence, finally,
oX P, kx

xR @3 - 2x® + %) e (:) + (¢-x) g, *(t) .(395)

241

The first part of (395) is recognized as the bending deflec-
tion wp (368), while the second part is the shear deflection wg.

Inspection of the expressions obtained for wp and wg shows a
fundamental difference. According to previous discussion the time de-
pendence of wy 1s negligible, and for all practical purposes this is an
elastic deflection which does not vary in time. However, g,(t) in wg
has a considerable time variation. Indeed, the rigid fiber approximation
(378) shows that ga(t) is directly proportional to the shear compliance
of the matrix g (t), and this compliance can assume very large values,
and, theoretically speaking, can even become unbounded. We thus arrive
at the conclusion that a viscoelastic fiber reinforced beam can become
unserviceable due to excessive shear deflection.

As an example, consider the deflection (395) at the center of
the beam, where it attains its maximum. We have

5po9.4 kpol2 l1-c
w(L/2,t) = + g, (t) » (396)

*
384Ea1 8A 1+c

where we have neglected the time dependence of e *(t) in accordance with
previous discussion and have replaced 1t by l/Ea Also, the rigid fiber
approxim_tion (378) has been used for ga(t) Denoting the first term
on the right side of (396) by 8o, we rearrange (396) in the form

48ko E
w(e/2,t) = de l:l + —— g (t:):l (397)
S

where > 1s the radius of gyration of the section; i.e.,
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0 =J‘;€_ (398)

A plot of (397) is shown in Figure 22 for a beam of rectangu-
lar section. The dimensions of the beam are

b =2.0 in.
h = 4.0 in.
2 = 60.0 in.

The material characteristics chosen are as follows:

E? O e

Em(o) = 3,62 x 105 psi

Ve = A5)0
The matrix is taken to be polymethyl methacrylate (Reference [9]),
whose shear creep compliance is shown in Figure 23.

The deflection is plotted against logarithmic time starting
out at 1 sec, when the shear deflection is negligible in comparison to
the bending deflection. The initial deflection doubles (assuming con-
tinued linearity in log t) after 10107 hrs. The enormous amount of time
required to double the deflection shows that there is no danger of

failure within a reasonable lifetime of the beam.

90



‘weag JO uOL3II[43Q [e4d3e] °22 3unbiL4

(d9s) 4 °' boy

4 I

o

2'el

£¢l

1 A

g'el

9°¢l

L€l

8¢l

6¢l

(uy,orx(3'2/y)m

91



*aje|Aadeyiay |Ay3awk| o4 40 adueidwoy) dasuay Jeays

(29s) 3 %' bo)
¢ 2 |

€2 danbr4

09°0
$9°0
V=]
pog
ozo S
1é ]
=
<
[ o
§2°0

080

92



T y———_

11. TORSION QOF FIBER REINFORCED CYLINDER

The theory of torsion of uniaxially reinforced cylinders when
the fibers are in the direction of the generators fortunately proves to
be very simple. Consider a cylinder whose xj-axis is in the generator
and fiber direction, while xp, x3 are the transverse axes in the plane
of the transverse section A. We make an 1sotropic elastic torsion-type
assumption

up = ale) ¢ (x5, x3) (a)
u, = - a(t) X35 X1 » (b)
uy = a(t) Xps X; (c) (399)

where a(t) is the time-variable angle of twist per unit length of cylin-
der and ¢ is the torsion function., The only nonvanishing strains are
then

€ a5 a(t) [ g0 _ Xq ] , (a)

12 2 8x2
il 3¢
€13 =% a(t) ax3 + Xy . (b) (400)

Because of (20), (21), and (24), the only nonvanishing stresses are then

. 3512(1)
0y = 2 e Ga(t-r) " dr , (a)
9
o m [ e PN dt . (b) 401
13 /o @ oT ¢ ( )

Inserting (400) into (401) we find

,

t
_ 3 * da (1
%12 = \8—3'2'_ *3 ] Jo G, (e=1) —dé—)- dv, ()
5 Y[ d
013 ) \ -5% ¥ x2 J Jo Ga(t-T) —35’(_)- € * (b) (402)
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Noting that
t
*
L(t) = J 6l (t=1) 95;—}11 a3 (403)
0

where L(t) is a known function of time, the only surviving equilibrium
equation is

a0 a0

12 13
—_— 4+ ——=— = o, (404)
3x2 8x3

Substitution of (402) into (404) yields the equation

2 2
v2¢=i&2+3—1’5=o. (405)
ax2 3x3

Satisfaction of the zero traction boundary conditions on the
curved surface of the cylinder, for the whole time range, leads
precisely as in the elastic torsion problem (see, e.g., Sokolnikoff [7])
to the ¢ boundary condition

%% = x; cos (xz, n) - X, cos (x3, n) , (406)

on the contour C of the section A, where n is the normal to the contour,
Equations (405) and (406) define ¢ uniquely except for an immaterial
arbitrary constant., We conclude that the present function ¢ is the same
ag that in the isotropic elastic torsion problem,

The torque on the cylinder 1s given by

= { 4 -

MT jj (%5014 x3012) dx2 dx3 . (407)
(A)

Substituting (402) with (403) into (407), we find that

2 ; 2 % 3¢
[xz + q + x2 sz X, axz] dx2 dx3 0

(408)

v [

We note that the initial elastic torsional rigidity of the cylinder is
given by

(A)

Ix 3 9x

*
D = G_(o) x4 xlan Ay g dx. . (409)
ek, a A 2 3 2 3 2 273
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Therefore (408) may be rewritten as

M (e) = H-p (410)
6" (o) el,
a
Furthermore, the stresses (402) in the cylinder can be written as
( *
0y, = L) gﬁ— - x, ] a(0)G (o) , (a)
u(o)Ga(o) S 2
( *
0. = —u(t) % 4 x ]a(o)G () . (b) (411)
13 * Ix 2 a
a(o)Ga(o) . 3
It is seen that if "elastic'" stresses are defined by
e, _ (38 _ *
919 [ 8x2 Xy J u(o)Ga(o) 5 (a)
er. . {20 : 2
Oys [ 3x3 + x, ] a(o)Ga(o) . (b) (412)
then (411) assumes the form
o - L(t) o el, ) (a)
12 * 12
a(o)G (o)
a
o ke —LE) __  oeb. (413)
13 * 13
a(o)Ga(o)

As an application let us consider the case when a viscoelastic
tiber reinforced cylinder is subjected to a constant torque Mr® for
t > o, In that event

Mo (L) = MT° H(t) (414)

where H(t) is the Heaviside unit step function, How take the Laplace

transforms of (403), (410), and (414), and combine the results. This
gives
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*
. ® G_(o)
a(p) = E%:;;fL——-—— . (415)

P Ga(p)DeIL.
If (29) is recalled, it 1is seen that (415) assumes the form

- ° G:(o) K
alp) = —p5—— ga(p) . (416)
efl.

This result can be directly inverted into the time domain, obtaining

*
° G (o)

Deﬁ.

*

a(t) = g (t) . (417)

To find the stresses, take the Laplace transform of (413),
using (403)., The result is

A* ~
P Ga(p)a(p)

812 = * °12e2' » (@)
a{o0)G (o)
a
G (p)a(p)
5 p G (palp ,
915 = 01362' . (b) (418)
2(0)6_ (0)

Introduce (415) into (418) to obtain

S =g ke _.__EE:L.._. (a)
12 12 p a(o) Del. ’
3 el, MT°
13713 pa@oD,, © @ e
efl,
Because of (417),
*
* G (o) ,
a(o) = —5 g (o) , (420)
el,
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but

*
g, (0) = — . (421)
G, (o)
Therefore, .
a(o) = T 3 (4622)
D
el.
Introducing into (419) and inverting, it follows that
efl,
019 = 999 H(t) , (a)
el,
913 " 993 H(t) . (b) (423)
Using (412), (423) can be rewritten in the form
M, G (0)
)
-1 _a |3 _
12771 [ 7% "3] (L) (a)
el, 2
M° G (o)
o
. a 3
013 = DeQ [ 3x3 + X, ] H(t). (b) (424)

Equations (424) imply that if the torque is kept constant in time, the
stresses also are constant in time and are those obtained for the elas-
tic problem,

To give an example of the preceding theory, w¢ consider the
torsion (414) of a circular cylinder of radius a, in which the fibers

are rigid. In this case, the torsional shear stress 6 is simply given
by

0 T T4 T %ro E (&zsy
e

In order to compute the angle of twist from (417), we note that
for a circular cylinder

Dy = Gi(o) Z2— (426)
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Furthermore, it has been shown in Reference [3] that

8, (t) 8, (t) (427)

1+c
where gn(t) is the shear creep compliance of the matrix, Inserting

(426) and (427) into (417), we find that

a(t) = —7 5o &,(t) - (428)

It is seen that if g (t) becomes unbounded, which is quite often the
case, then a(t) becomes unbounded.
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12. QUASI-STATIC DEFORMATION OF VISCOELASTIC FIBER REINFORCED PLATES

We consider here the case of quasi-static bending by trans-
verse loads of a thin, rectangular fiber reinforced plate. The rein-
forcement direction is taken as xj. The middle surface of the plate of
thickness h is referred to the plane Cartesian system of axes x1, X2.
The x3-axis is chosen normal to the middle plane, pointing downwaid
(see Figure 19).

The deflection of the middle surface is

U3(xl) xzs 0, t) = W(xl’ xzs t) , (429)

where t is the time. We use the usual Kirchhoff hypothesis of thin
plate bending, according to which the deformations are given by

ax

)
Xys X5, t) = - Xq —EI , (430)

l(xl)

ow
uz(xl, Xps Xq, t) = - X4 axz . (431)

The strains in x; - x, planes associated with (429), (430),
and (431) are then given by

_ d w
ST S (432)
X
1
azw
€225 " X3 3 (G
IxX
2
32w
€. = - x . (434)
12 3 3% %,

It will be convenient to continue the analysis in Laplace
transform domain. The Laplace transforms of (432) through (434) are
written compactly as

27
3 w(xl, X5s p)

€19(%1s Xp X30 P) = - %y o, ax ¥

(435)
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The Laplace transformed viscoelastic stress-strain law of the
uniaxially reinforced plate material may be written in the form

ok
11 va(p)
- 0

p a(p) P a(p)

™ >

(436)

11 % 22 °

>

~ %
v_(p) 0
" . a 22
€0 =~ Tow ~ 91t Tk . (437)
pE_(p) pEL (p)

g
g w12 (438)

12 ~ %
2pGa(p)

Here E* (p) is the LT of the axial Young's relaxation moaulus,

EX T(P) is the LT of the tiansverse (normal to fibers) Young's relaxation
modulus, c* a(p) is the LT ot the axial shear relaxation modulus, and

v (p) is a transform domain "Poisson's ratio'" which will be discussed
later It has been assumed in (436) through (438) that 033 can be
neglected, as is usually done in theory of plates. The form of (436)
through (438) follows directly from the discussion given in Section 2,
according to which a Laplace transformed viscoelastic stress-strain law
is completely analogous to an elastic stress-strain law with p-
multiplied transforms of relaxation moduli replacing elastic moduli;
hence, the form of (436) through (438).

I’:‘:* - - ~% é* -
€ v, EBlE
5 - p a 11 T 22 ’ (439)
11 ~* 5
Er
1 - P
gF e
A
TSR
R € v o€,
5 - t 22A a 1 ’ (440)
22 *
E. 2
il
l -—=v
EE®
a
; 206" ¢ 441
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The LT of the bending and twisting moments in the plate are
given by

h/2
ﬁi = J 81 xydx; . (442)
RS Ve 1,j = 1,2

Substituting (435) into (439) through (441) and substituting the result-
ing expressions into (442), we find that

Ak A k Ak A
0. lﬁi E Vi1 + v ET Wi 443)
11 P12 = 3
T ~%
1 - — va
E
a
3A*~** o
o . e ET(v Vi1 + w,22) )
e P A ) ~ % ’
E. .2
1 - L3
% Y
E
a
’ B 26"y 445
e ™= 17 ¢ Gy ¥sp5 ¢ (445)

Here, &,11, &’22 and lez denote the second partial derivatives of W
with respect to xj and xj.

The quasi-static equilibrium equation of a plate in terms of
bending moments is given by

2 2 2
3 Mll ‘ 3 Ml2 3 M22
+ 2 + ~
3x 2 3x1 3x2 3x. %
1 2

+q(x), x,, £) = 0, (446)

where q is the transverse load per unit area of plate, positive downward.
See, e.g., Timoshenko and Woinowsky-Kreiger [16]. Taking the LT of (446)
and substituting M from (443) threcugh (445), we find that

ij
4~ 4~ 4~
A* a ~% a W ~% a W N
Diynr T a2 D1g T3t Doggy g = A0y Xy ), (44D
xl 3)(1 3)(2 sz

where
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ok _h7 Pt g
Pini1 ° 12 * (448)
E 2
=
I - =
E a
a
3 Jka‘*
v i Ve ~
D ol=n - v |, (449)
E 2
T ~%
1l - T
[':: a
a
3 £
<k h P 5
Dy222 = 12 > (450)
E 2
T -%
1 ey Va
E
a

Equation (449) is the governing differential equation of the LT of the
deflection of the plate.

We now consider a typical boundary ccndition. For a freely
supported rectangular plate, 0 < X, < a, 0 < X) < b.

w(oi xz, t) = w(a, x t) = W(xl, 0, t) = W(x19 b, t) =0 ’ (451)

2’
w,,l(O, Xy, t) = w,ll(a, Xy t) = w’22(x1’ 0, t) = w’22(x1’ b, t) =0,
(452)

For a built-in plate, (452) is replaced by

wol(oa x2’ t) = W,l(a, X2, t) = w’z(xl’ 0, t) = w’Z(wl’ 0, t) =0 .
(453)
Since our governing equation is for tune LT w of w, the bound-
ary conditions (451) through (453) have to be Laplace transformed.
They obviously remain in the same form after Laplace transformation.
For a simply supported plate, we thus have

w(0, Xy, P) = w(a, X)) P) = &(xl, 0, p) = &(xl, b, p) =0 , (454)

Ws11(05 %55 P) = wap (@, Xy, p) = W, (%), 0, p) = Wy, (x5 b,y p) =0 .
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Suppose now that the load on the plate has the form

a(x;s %y £) = q (%, X)) 6(8) (456)

where ¢(t) 1s any function of time. Then the Laplace transform of (456)
is given by

a(x;, %y, p) = q_ 4(p) , (457)

and this expression now has to be used on the right side of (447).

Let q, in (456) be expanded into the double Fourier series

qo(xl’ xz) - mzl ngl P sin a X, sin B x, , (458)
where
mn
O T (459)
B = b (460)
4 a b
e Jo Ja q,(x;5 %,) sin a x; sin 8 x, dx,dx, . (461)
. a solution of (447) in the form
w(xl. Xps p) = mzl nzl won 810 a x, sin B X, (462)

It 1s seen that (462) satisfies all the boundary conditions
(454) and (455) of the simply supported plate. Now substitute (458)
into (457), and then substitute the resulting expression and (462) into
(447). Equate coefficient of sin a_x. sin B x, on both sides. This
m 1l n 2
procedure yields

. a, ¢(p)

Yon P 2 s 7 2 % 4 (68)
R T ™
1111 %n ¥ 2P1122 %0 B * Do222 By
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Equation (463) must be inverted into the time domain to yield

w () = Ll T (464)

It follows from (462) and (464) that

w(xl, Xy t) = Z Z wmn(t) sin o X, sin an

9 (465)
m=1 n=1

This completes the formal solution of the problem of the sim-
ply supported rectangular viscoelastic plate.

The numerical exploitation of the solution which has been
given here uggortunatelz involves immense difficulties. The quanti-
ties D1y9;, D1122, and D3222 in the denominator of (463) are defined in
terms of transforms of viscoelastic relaxation moduli, (448) through
(450), which are themselves complicated functions of transforms of
viscoelastic relaxation moduli of matrix and of elastic moduli of fi-
bers. Analytical inversion is, in general, out of the question, and
the inversion should be carried our numerically by the use of compu-
ters. Here no attempt will be made to carry out numerical inversion by
computer. Instead, we shall approximate the viscoelastic effective
properties of the fiber reinforced material with the aim of making an
analytical inversion possible. The purpose is thus not to solve one
case precisely from a numerical point of view but, rather, to obtain an
estimate of the viscoelastic behavior of r reinforced plates in
bending. We shall assume, whenever convenient, that the matrix is
incompressible. This is generclly a fair approximation for polymeric
viscoelastic materials.

The first quantity to be discussed is Qg(p). Its interpreta-

tion is as follows:

suppose that the fiber reinforced material is sub-

jected to a uniaxial stress constant in time for t>o, oll(t) =0y1 H(t),

in fiber direction.

transform €7;(p) and a transverse average strain f;,(t) = €33

This produces an axial average strain El%(t with
t) with

transform €37(p) = £43(p). The transform domain Poisson's ratio vg(p)

is defined by

~

N €,,(p)
V:(p) g o2t (466)

€11 (P

A physical time-dependent Poisson's ratio may be defined by

104



x £9(®)
v (8) = - 75 - (467)

“11

ok *
Note that va(p) is not the transform of va(t).

It has been shown in Reference [3] that for incompressible
viscoelastic matrix and stiff elastic fibers, va(t) is time
irdependent and is given by

* . = + v _v * ( ) (468)
= = ~ < < .
va(t) 5V VeVe =V, <t <

Here, v, and v¢ are the volume fractions of matrix and fibers, respec-
tively, and v¢ is the elastic fibers' Poisson's ratio. The middle
quantity in (268) is henceforth denoted v;.

It follows from (467) and (468) that

~ ~

- *
622(p) - va

11(p) . (469)
Comparison of (469) with (466) then shows that
WOE TN 470
va(p) = v . (470)

Next, we consider ﬁ;(p), which is the transform of the axial
Young's relaxation modulus. It has been shown in Reference [3] that
E;(t) is practically time independent and is given by

E:(t) 2 (B v+ Ev,) H(t) = E: H(t) , (471)

where*Em and E;. are respectively matrix and _iber elastic Young's moduli,
and E; without time argument henceforth denotes the middle quantity in
(471). Hence, we have from (471),

*
E
. -
Ea(p) = 5 (472)

Now the transverse Young's modulus E? of a uniaxially fiber
reinforced material is much smaller than the axial modulus E;; see
Hashin and Rosen [1]. The same is true to a larger extent for a visco-
elastic fiber reinforced material; i.e.,
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‘* *
La(c) >> ET(t) . (473)

Equation (473) is physically obvious, since for axial loads the stiff
elastic fibers take the major part of the load, while for transverse

loads the weak viscoelastic matrix takes the major part of the load.

Since

f 0o

* -
E_(£) e Pt 4 , (474)
(o]

~K
E_(p)

po0

* -
B (£) e Pt 4¢ (475)
[0

~K
Ex(p)

it follows from (473) through (475) that
£ E 476
E_(®) >> Ep(p) . (476)
A typical value of (468) is given by

Ve = v = 0.5, vf = 0.2 .

Then
*
v, = 0.35 . (477)

Using (476) and (477) in (448) through (450), it is seen that the quan-

ticy 5;2 ﬁ;/é; can be safely neglected in comparison to unity. Further-

more, we introduce (470) and (472) into (448) through (450). We then
obtain the approximations

3
~k - h”
Dyj11 =17 B2 (478)
S B4 28h (479)
D112 =12 P Vg Bp ¥ 265
3
~% ~ h Ak
Dyo22 =712 P Ep - (480)
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We now have to consider the quantity E%, which is the trans-
form of the transverse Young's relaxation modulus (normal to fibers).
The elastic Ep can be expressed in terms of other moduli in the follow-
ing way (see Reference [2], p. 16):

*
4G
E = L . (481)

y 1+ G*/ * + 4G* *Z/E*
T KT Tva a

If the matrix is incompressible or even nearly incompressible, then KT
becomes very much larger then G, and, consequently, the ratio GT/KT can
be neglected in the denominator of (481) In addition, for stiff fibers
E;, is generally very much larger than G and v*z is a small quantity.
So the third term in the denominator of ?481) car also be neglected. We
thus obtain the approximation

*x ~ *
E; = 4Gy (482)

valid for incompressible matrix and stiff fibers.

In transform domain, the relation (482) becomes

Ak 4A*
Ep = 4G . (483)

According to the discussion given in Section 8 for incompressible ma-~
trix and stiff fibers, the transverse relaxation modulus G¥(t) is

approximately given by (302). Taking the transform of this equation and
introducing it into (483), we obtain

21 L K l+c
ET AGa l1-c¢

5 (484)

where c is the volume fraction of fibers. Consequently, we can now
further approximate (478) through (480), obtaining

. N
Diinn =172 Ea v (485)
~k RN B *
D; 1oy = o5 206, (L + 20) , (486)
g* < h3 aoi

2222 = 17 4P6, - (487)
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We now assume that the load on the plate is constant in time
for t>o. This means that ¢(t) in (456) is given by

¢(t) = H(t) . (488)
Consequently,
- 1
¢(p) = Sk (489)

Introducing (484) through (488) into (463), we obtain

b -
17 Yoo (P =

1
& 2 2 4
Gm(p) (1 + Zva) a Bn + Bn]

1
(p) . (490)

4 l+c¢c
m l1-c¢

Equation (490) cannot be inverted without specification of the func-
tional form of G,(p). We make the simple assumption that the visco-
elastic matrix is characterized by a simple Maxwell model. In that
event, p Gy(p) 1s given by (286). Introducing this result into (490),
we have, after rearrangement,

h3 R qmn 1+ TD
12 Wmn(P) ) TAmn (E* a4 JTA + p) ’ (“n
P ¥ %o/ g TP
(no sum on m,n)
where
* *
L e e - R N S P L (492)
mn a m ml-c¢c a m n n

Equation (491) is easily inverted after separation of the right side
into partial fractions. The result is

*

q E a
mn 1 1 a t

w (t) = ( = = exp (- . =)+
mn h3/12 Amn Ea aa Amn T

4
m 1

¥ 3 H(t) 1 . (493)
m aam

Equations (465) and (493) specify the deflection of the plate. It is of

interest to compute the initial deflection of the plate w(xl, Xy o) and
the final deflection w(xl, Xy =), From (493), we have
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q

o, (0) = 5, (494)
h™ A /12

mn

q
v (2) = —— (495)

o S B o®/12
a m

It is seen that in spite of the fact that the Maxwell matrix by itself
has unbounded creep deformations, the plate deformation has a
finite 1imit, This phenomenon is due to the effect of the fibers.

Tigure 24 shows the variation with nondimensional time t/T
of the deflection at the center of a square, simply supported, visco-
elastic fiber reinforced plate. The plate and material data are as
follows:

5.0 x 105 psi

E =
m
6
Ef = 10.5 x 10" psi
Ve = 0.2
5
G =1.7 x 107 psi
m
¢c=20.5
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13. AXISYMMETRICALLY LOADED VISCOELASTIC
FIBER RETNFORCED CIRCULAR CYLINDRICAL SHELL

The shell is shown in Figure 25 with its coordinate system,
Axisymmetry under axisymmetric loading rcquires that material properties
also be axisymmetric. For uniaxial reinforcement, this is possible only
for two cases: when the fibers are in generator direction or when the
fibers are in circumferential direction, normal to generators. In view
of previous notation for material properties where x; always was in
fiber direction, we can here make the following identification:

Longitudinal reinforcement x > x) 8 - X, (496)
Circumferential reinforcement X - X, 6 -~ X e (497)

We consider a static shell whose only load per unit shell area
is in z~direction, normal to the shell surface,

9, = q = q(x) . (498)

In the axisymmetric case the shear membrane force Nyg, the twisting mo-
ment Myxg, and the shear force Qg all vanish, Furthermore there is no 6
dependence in any quantity. Simplifying the shell equilibrium equations
accordingly (see,e.g., Reference [17]), we obtain

de

ix e (499)
de Ne

a;'-'ﬁ-+q(X)=0, (500)
de

T Qx =0, (501)

where Ny, No are normal membrane forces, My is normal bending moment,
and Q, 1s the shear force, Elimination of Q, from (500) and (501) yields

d2M N

7 - iﬁ’“ q(x) = o, (502)

dx

while (499) implies that

=z
]

No = const, (503)
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Figure 25, Cylindrical Shell Coordinate System.

In order to simplify the discussion, we shall derive the
equations of an elastic fiber reinforced shell, and we shall then proceed
to the viscoelastic case via the correspondence principle. On the basis
of the Kirchhoff assumption, axisymmetry, and the thin shell approxi-
mation h/R << 1, the only surviving strains in the shell are

2

d d

Cxx E% -2 ——% ’ L
dx

€op =-§ . (505)

Here, z is measured from the shell middle surface, rormal to
it and positive outward, u and w are displacements in x- and
z-directions, respectively.

Let it now be assumed that the reinforcement is longitudinal.
Then (496) applies, and the stress-strain law is given by

*
Oxx va
€ = ——* - -—* g N (506)
XX E E 66
a a
*
v o
a 06
o6 = = Tx Ty + = . (507)
E E
a T
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*
where E* is the axial Young's modulus, v, is the axial Poisson's ratio,
% 1 's mod 4 (507) f
and ET is the transverse Young's modulus. Solving (506) and ( or
the stresses yields

= 08
Opx ™ Axx Cxx T Aw “xo S
%0 = Axo “xx T o6 “op S0
where
*
Ea
A, = = ) (510)
XX E 9
T
1- o
E
a
* W
v
Ay = _._iijfi___ (511)
E 2
| e
E
a
£
T (-4
Apg = ~ : (512)
ET {2
1= v,
E
a

The shell membrane forces and bending moments are given by

h/2 h/2

Nx = J_h/z Oxx dz o Ne = J_h/z CI9 dz , (513)
h/2 [ h/2

Mx = J_h/z Ox 2 dz d Me = J_h/z O4p 2 dz . (514)

We now introduce (504) and (505) into (508) and (509), and we introduce
the resulting expressions into (513) and (514). Thus, shell membrane
forces and bending moments are obtained in terms of u and w. These are
in turn introduced into the equilibrium Equations (502) and (503). This
procedure leads to
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3 4

h du _ h du
12 Axx 4 +'§ (AXO dx 68 R) (515)
dx
h(a, S84 ¥ . N, (516)
xx dx x6 R =
Elimination of %% ylelds the equation
4 12 A
e s e (517)
dx h™A RhA
XX XX
where
2
A A - A
66
e (518)
R°h A
XX

The membrane force N, in (517) is equal to the constant pre-
scribed membrane force in x-directions at the end sections x = 0, L of
the cylinder, If there is no membrane force prescribed, N, vanishes.

Usual boundary conditions at x = 0, L prescribe any two of the

quantities w, %%, Mx’ and Qx'

For a viscoelastic fiber reinforced shell cylinder, E;, ET,
and v have to be replaced by pﬁa(p), pET(p), and va(p) in an analogy to
the treatment given in Section 12, The load q is now q(x,t), a func-
tion of time also, and has to be replaced by its transform q(x,p)

Let it be assumed for simplicity that the cylinder is not sub-
jected to longitudinal membrane load at the ends, Then (517), written
for the Laplace transform of w(x,t) which is denoted by w, becomes

Al e e 129
=+ P = TE— (519)
dxa h3 A_(p)
XX P
where
A._(p) A (p) - A (p)
~ 8 .
y(p) = ;22 XX ~g LR (520)
R"h Al (p)
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and

= a
Axx(p) - s ’ (521)

A_(p) = 2 , (522)

Aop) = ———. (523)

For very stiff fibers and nearly incompressible viscoelastic
matrix, the approximations used in Section 12 apply in a completely
analogous way. These are contained in Equations (4.%) through (487) for
the approximate TD plate stiffnesses. In the present case, Equations
(521) through (523) become

Axx(p) - Ea . (524)
-~ 4 [ ak =
Ao(P) = 4vpG , (525)
A (p) = 4pE
Introduction of (524) and (526) into (520) yields
*
- 48p Ca
Y(p) = e (527)
thzE:

In the elastic case, Equation (517) is easily solved in gen-
eral, and the solution is then fitted to the boundary conditions. It
should, however, be borne in mi.d that the homogeneous solution of (517)
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contains the_terms exp[(-y)l/al. In the viscoelastic case, Y has to be
replaced by y(p) as given by (527). Thus the Laplace transform w will
be obtained in a very complicated form, end the inversion will prove to
be extremely difficult, Indeed, analytical inversion 1is out of the
question, It is therefore more convenient to use a Fourier method for
the solution of (519), since this results in a much simpler form of W

Let
q(x,t) = z qn(t) sin ax, (528)
n=1
nn
a - i (529)
Then
q(x,p) = ) an(p) sin a x . (530)
n=1

Assume that a solution of (519) is the form

) w (p) sin a X . (531)
n=1

Introduce (530) and (531) into (519), also taking into account (524),
Equating terms of identical sine functions, we have

12 &n

W (p) = (532)
n 3. % ~ 4, °

h7E_[v(p) + o ]

where y(p) is given by (527). The solution in form (531) satisfies
boundary conditions of simple support at x = 0, L; 1i.e.,

3\

w(x,t) = o > ;(x,p) = 0
r x = 0, L. (533)
a2 x, t - .. dzﬁgx,EQ - o
2 2
dx dx J

Let
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w_(t) = Lt & (). (534)

Then the solution to the problem of the simply supported shell is given
by

wix,t) = J w (t) sin a x . (535)
n n
n=1
Suppose now that the loading is uniform and does not vary in time. Then

q(x,t) = qo H(t) ,

. (536)

L - R

q(x,p) = q_

The Fourier expansion of 1 in o £ x < L is given by

[}

1= %- ) % sin a x . (537)
n=1,3,5 "

Hence, in the present case,

.~ 4

[o)
qn = '.,';;;5 n=1,3, 5--, (538)

Suppose again that the matrix is represented by a simple Maxwell model.
Then as in Section 12,

ak 1+ c 'mP
pG = .
a 1l-cl+Tp

(539)

Introducing (539) into (527) and introducing the resulting expression to-
gether with (538) into (532), we obtain

o 2
12 1+T
v (p) = 53 é 2 pz 7= (540)
Eah p{¢Tp + ¢BT P~ + a (1 +7Tp)°}
where
R2h2 l-c¢ E: b
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ro
—
<+
0

«

B =1-4v (542)

B o*
—
!
(g}
»7sls
L]

Here, Gy is the initial matrix shear modulus, Equation (540) can be
written in the form

4q 2 2
- 1 + +
v (p) = *23 . Lt 2Tp T;pz i (543)
Eah unmn p‘1+2'¢%9'+p.2',
Ww
where
L.orh+88 (544)
w 4
a
n
9
2 + %
an
[ = ————————r (b)
2 1+ 488
4
a
n

The Laplace inverse transform of (543) is

12 0 1 2 2 2222
wn(t)-*3 7 1+—-—-—-[(1+2TCw1-—Tw + 2T %w")

Eah nnan 1 - C2

+ 02 -8 @riwdtc et g (1, [1-2 e+ | 5e5)

where

. (546)

2 2
V4 tan -1 _2Twd 1l -¢ (1 -Tzw) _ o -1'[1--;5

1202 (2¢2 - 1) + 1 - 2Tcw

1138




—_— = e

8.

9.

10,

11.

12,

13.

REFERENCES

Hashin, Z., and Rosen, B. W., The Elagtic Modulti of Fiber Rein-
forced Materials , J. Appl. Mech., Vol. 31, No. 223, 1964,

Hashin, 7., Brull, M. A., Chu, T. Y., and Zudans, Z., Determination
of the Effective Elastic Properties for Biaxially Fiber Reinforced
Materials, FIRL Final Report F-B2455, USAAVLABS Technical Report
67-41, U. S. Army Aviation Materiel Laboratories, Fort Eustis,
Virginia, August 1967, AD 662 774,

Hashin, Z., Viscoelastic Fiber Reinforced Materials , AIAA
Journal, Vol. 4, No. 1411, 1966.

Hashin, Z., Viscoelastic Behavior of Heterogeneous Media , J. Appl.
Mech., Vol. 32, No. 630, 1965,

Bodner, S. R., and Lifshitz, J. M., Ezxperimental Investigations on
the Dynamic Strength of Composites , EOAR, USAF, Contract AF(052)-
951, Report No. 5, MML, Technion - Israel Institute of Technology,
Haifa, Israel.

Nowacki, W., Dynamics of Elastic Systems, J. Wiley, New York, 1963,

Sokolnikoff, I. S., Mathematical Theory of Elasticity, McGraw-Hill,
New York, 1956.

Churchill, R, V,, Complex Variables and Applications, McGraw-Hill,
New York, 1948.

Sato, K., Nakane, H.,, Hideshima, T., and Iwayanagi, S., Creep of
Polymethyl Methacrylate at Low Temperature , J. Phys. Soc., Japan,
Vol., 9, No. 413, 1954,

Tobolsky, A. V., and Castiff, E., £Elastoviscous Properties of Poly-
igobutylene (and Other Amorphous Polymers) from Stress Relaxation
Studies IX , J. Poly. Sci., Vol. 19, No. 111, 1956.

Lee, E. H., and Rogers, T. G., Solution of Viscoelastic Stress
Analysisc Problems Using Measured Creep or Relaxation Junctions ,
J. Appl. Mech., Vol, 85, No. 127, 1963,

Brull, M. A., A Structural Theory Incorporating the Effect of Time-
Deperdent Elasticity , Proceedings of First Midwestern Conference on
Solid Mechanics, Urbana, Ill., 1963.

Lee, E, H., Viscoelastic Stress Analysie , Structural Mechanics,
edited by Goodier and Hill, Pergamon Press, New York, 1960,

119



14,

15.

16.

17.

Bland, D. R., The Theory of Linear Viscoelasticity , Pergamon
Press, New York, 1960,

Kingsbury, H. B., Stresses and Deformations of Amisotropic Plates
and Shells, Ph, D, Dissertation, Universi‘y of Pennsylvania, 1965.

Timoshenko, S., and Woinowsky-Kreiger, S., Theory of Plates and
Shells, 2nd ed., McGraw-Hill, New York, 1959,

Flugpe, W., Stresses in Shells, Springer-Verlag, New York, 1960.

120




Unclassified
‘ locudt‘ Ch:g&“m

(Socurity classilication of title, bedy of ob 1

DOCUMENT CONTROL DATA-R& D

and indexing fon musi be ; whon the everall repert e clasellied,

1. ORIGINATING ACTIVITY (Corperate suiher)

Philadelphia, Pennsylvania

28, REPOAT BECURITY CLASSIFICATION

The Franklin Institute Resea:ch Laboratories Unclassified

35, SAOUP

3. AEPORT TITLE

MATERIALS AND STRUCTURES

STATIC AND DYNAMIC VISCOELASTIC BEHAVIOR OF FIBER REINFORCED

4. OESCRIPTIVE NOTES (Type of repert and insiusive dates)

Finzal Report
l-_Au—fm'El name, middle Inltlal, laet neme)

Z. Hashin T. Y. Chu
M. A, Brull Z. Zudans

JE REPORY DATE 78. TOTAL NO. OF FAGES 5. NO. OF REFS
October 1968 136 17

s. CONTRACT OR GRANT NO.
DAAJ02-67-C-0050

& PROJERCT NO.

Task 1F162204A17001

4

98, ORIGINATOR'S REFPORT NUMBEDD)

US AAVLABS Technical Report ¢0-7C

. 8| ther pumbore ]
0. g'v.nlu u:naf NO(S) (Any o et may bo scsigned

F-C2041

10. DISTRIGUTION STATEMENY

is unlimited.

This document has been approved for public release and sale; its distribution

p—
11. BUPPLEMENTARY NOTES

12. SPONSORING MILITARY ACTIVITY

US Army Aviation Materiel Laboratories
Fort Eustis, Virginia

1. ABSTRACT

Time-dependent properties of uniaxially fiber reinforced materials composed of
linear viscoelastic matrix and elastic fibers are investigated. Sample calculations
are given for the static and dynamic properties cf a viscoelastic fiber reinforced
material. In addition, the behavior of fiber reinforced viscoelastic structures is
investigated, and a number of practical problems for beams, plates, and shells,
subjected to static and dynamic loadings, are analyzed.

DD /o™ 1473 sercr sor s oo

—— AR
1 JAN 84, MICH 1B

Unclassified
“Security Classification




Unclassified
Tecurity Classilication

1a4. LINK A LiINK @ LINK €
KEY WORODS

AoLeE LAA noLe LAd ROL & LAd

Viscoelastic properties of materials
Fiber reinforced material

Uniaxial fibers

Complex moduli

Relaxation moduli

Creep compliance

Shell stiffnees tensor

Unclassified
Security Classification




