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Chapter I. Introduvction

Four different chemical explosives were compared for
their efficiency in generating seismic signals when detonated
underwater. Pressure time curves generated by the explosives
were recorded to determine their relative efficiency in gen-
erating hydroacoustic energy,and to provide a control for
studies of the resulting seismic disturbances. The method
used was to compare the explosive properties of three materials
with TNT, for which considerable experimental data has b:en
acquired.

The experiment was conducted in Mono Lake and vicinity,
in eastern California, during September 1966. One ton charges
of four explosive materials of substantially different properties
were detonated at a depth of 70 feet at the same location in
the lake where the water depth was 124 feet. Hydroacoustic
measurements were made in the water at distances ranging from
72 to 261 feet (about 30 to 100 charge ra<ii) from the charge.
Seismic disturbances were measured at eight mobile stations

lccated at ranges of 20 to 72 ¥m from the shot, Ref. (1).
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Chapter 1I1I. Properties of Explosive Charges

The explosive materials chosen for evaluation in these
experiments were determined by a combination of economic and
technical considerations connected with the ultimate use of
the explosives for deep undersea detonation to induce seismic
disturbances.

The materials* used were (1) ANOIL, a granular mixture
of finely ground high density prilled ammonium nitrate with
5.8% by weight of No. 2 fuel oil, (2) SLURRY, a high energy
gelled nitrocarbonitrate slurry containing 15 to 20% aluminum,
(3) NM, liquid nitromethane (CH3N02, 95% minimum purity), and
(4) cast TNT (trinitrotoluene). The anoil was used at a
compacted bulk density of 1.15 g/cc rather than the normal
bulk density of about 0.9 g/cc because this granular explosive
experienéés a compression to a density of 1.15 upon exposure
to a hydroacoustic head of 1,000 feet of sea water. Conpara-
tive technical data for these materials is given in Table 2.1.
The advantages of using any one of the three materials in lieu
of TNT are four: none are classified as explosives; none would re-
quire special safety precautions; all are readily available
commercially; all can be transported aboard ocean going vessels

without undue hazards.

*ANOIL and nitromethane were supplied by Commercial Solvents
Corporation. Aluminized slurry of proprietary composition
(Spe N-C-N-11, *Reg. Trademark) was supplied by the Gulf Oil
Corporation, Chemicals Department.
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TABLE 2.1 DETONATION AND PERFORMANCE PAPAMETERS OF EXPLOSIVES
Explosive Anoil .Slurry Nitromethane Cast TNT
. 1 1 2
Bulk Density, g/cc 1.15 1.35 1.125 1.56
betonation 3,900 5,500" 6,200° 6,640°
Velocity, m/sec
() '
bH4, Calc'a* 0.89 No data**  1.46 1.27
Heat of Detonation
kcal/g
ES' Underwater Shock 1381 1721 1931 1701
Energy, ft-tons/lb
EB’ Underwater Bubble 3011 3841 2921 3011
Energy, ft-tons/lb
Eg + Ey, ft-tons/lb 439 5561 4851 a70t
Performance Indices
Relative to TNT:
AH®
d 0.70 No data** 1.15 1.00
AHg, TNT

(Eg + Ep) 0.93 1.18 1.03 1.00
(Es + EB) TNT
Seismic Amplitude
Equivalency per 0.73 1.05 1.06 1.00
Unit Mass
NOTES:
1

See Ref. (2)

2See Ref. (3)

*®
Assuming reaction to sgable products C02, N

at final temperature 25°C.

on natural products used in formulation.

(V2]

2’

HzO(g), c, A1203(S),

* %
Calculation not feasible because thermochemical data unavailable

o s kit sl SARNE,
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2.2 Signal Properties of Explusive Charges, TNT
The characteristics of the signal generated by underwater
detonation of spherical charges of TNT are well known. Initially,
a shock wave is generated, followed by the formation of a gas
t bubble. The bubble diameter reaches a maximum, after which the
bubble contracts. As the bubble approaches minimum diameter,
| a signal, referred to as a bubble pulse, is 2mitted, after
which, the bubble diameter again increases. This oscillation
. continues until the available energy is exhausted, with the
emission of a bubble pulse each time a minimum diameter is

approached. Figure 2.1 shows the main features of the gen-

erated signal.

{ In addition to oscillation, the bhubble will migrate
towards the surface or bottom depending upon the geometry.
When the bubble undergoes severe upward migration, energy 1s
transferred from the oscillatory to the migratory mode. This
results in a considerable reduction of the peak amplitude of
the bubble pulse. In effect, the higher frequency components
are lost. Finally, if the detonation depth is sufficiently
shallow to permit the bubble to breach the surface prior to
reaching the first minimur, a bubble pulse will not be emitted.

The shock wave can be approximately represented by

a decaying exponent.ial, Ref. (4), whose characteristics for

TNT are given bkelcw:
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Figure (2.1)

Time sequence of signal generated
by an underwater explosion, showing
the shock wave, lst bubble pulse,
and 1lst bubble pulse period
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Let:

P_ = Peak pressure (psi)
W = Yield (pounds)
r = Range (feet)
- I_ = Positive impulse (lb..sec/inz)

t_ = Time constant (microseconds)

Then:

1.13
P = 2.16 x 104 (wl/3)

r

[ 0.94
I 1 =1.78 w/3 (w1/3)

r

L -0.22
t = 58 wl/3 (w1/3)
r

The first bubble pulse period is determined by the

yield and detonation depth.

Let:
T1 = first bubble pulse period (seconds)
do =d + 33
d = detonation depth




Then: for TNT:

1/3 -5/6

T, = 4.36 W d

The bubble pulses are rfairly symmetrical and can

be approximated by back to back exponentials.

Let:

9
]

1 Peak pressure (psi)

=
it

1 Impulse (lbosec/inz)

ot
L]

Time constant (seconds)

For TNT, in the absence of migration, we obtain:

/
P, = 3,450 (w1'3)
r

1/3\
I. = 9.58 wi/3 (ﬂ———) a ~1/6
r O

tl = Il/2Pl




For high explosives other than TNT, one would obtain
similar relationships. 1In general, the amplitude constants are
different. The exponentials, for example the 1.13, 0.94 and
-0.22 powers in the shock wave equations, are also altered,
but only slightly.

: l Formulas for other parameters of interest from Ref. (5)
( are given below.

l The maximum bubble radius, a, is given by:

a=12.6 (%/do)l/B

The minimum bubble radinus, b, is given by:

b=74.5w’? + 0.149 w/16

a 11/9
- o

The migration, hl' to the first bubble minimum is

given by, Ref. (6):

g0 w/?

For a one ton charge at a cepth of 70 feet the maximum
and minimum bubbl~ radii, neglecting migration, are 34 and 19
feet respectively; however, an upward migration of the bubble
of about 35 feet can be expected.

Thus, neglecting the effect of the bottom on migration,
one would expect that the bubble pulse would be quite weak,

if it existed at all.
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Chapter III. Test Conditions

3.1 Charges and Charge Placement

The test program involved the detrmnation of three
shots of each of the four different types of explosives.
Each charge weighed approximately 2,000 lbs (one ton).

The anoil, slurry, and NM were loaded into standard
55-gallon fuel drums and shipped to the U. S. Naval Ammunition
Depct (NAD), Hawthorne, Nevada. The one-ton, spherical
TNT charges wer2 cast at NAD and transported to the site
with the other explosives.

To facilitate lifting and handling the TNT charges,

a nylon lifting sling was fitted into the bottom of the mold
prior to casting.

The other charges in 55-gallon containers were placed
on a plywood base and 1/4" steel cables threaded over and
under each drum to provide a lifting sling. The drums were
then banded with 5/8" steel straps to prevent any later
movement or .lippage (Figure 3.1). Each drum of nitromethane
weighed 500 lbs; the slurry weighed 625 lbs/drum,and the
anoil weight ranged rrom 535 to 550 lbs per drum. Four
drums were used in the makeup of the NM and anoil charges
(Figure 3.1), but since the anoil weighed more, approximately
35 to 50 1lbs of the explosive material had to be removed from
each barrel. Each slurry charge weighed a total of 1,875 1bs
and consisted of three 625-1b drums arranged as shown in

“Figure 3.2. A plastic-type explosive, C-4, with a detonation

Wil B
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velocity of about 25,000 ft/sec, was used as the booster.
Cylindrical aluminum tubes,lk inches in diameter with a
threaded 2" shoulder (Figure 3.3) ,were hand packed with 3 lbs
of C-4 and inserted in the 2" opening (bung hole) in the
drums. A hard rubber stopper, cut more than halfway through,
closed the upper end of the cylinder, but allowed the
detonator leads to pass through the cut. Each drum was
individually armed, as shown in Figure 3.3, and the four
detonator leads connected in series.

Empty fuel drums inclosed in a wooden platform with
4 x 4-inch timber supports, with a 5-ton capacity winch
mounted@ on top, provided an excellent means of transporting
and positioning all charges (Figure 3.4). Lateral positioning
was accomplished using lines attached to three 1,500-1b-
concrete anchors placed 120° apart on the lake bottom.
The flotation rig was positioned in the near centcc of this
triangle (formed by the three anchors), with final positioning
controlled by transits on the beach. The winch allowed
accurate depth placement,and, once positioned, the charge

support line was secured and the winch removed.

12
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3.2 Test Geometry

All charges were fired at a depth of 7C feet in 124
feet of water. Nine piezoelectric (tourmaline crystal) gages
varying from 1/2 to 1-3/4 inch in diameter were positioned
at distances corresponding to pressure levels ranging from
700 psi to 3,000 psi. Most gages were located at the same
depth as the charge (-70 feet); however, three were positioned
ten feet off the bottom to determine the influence of bottom
reflection,and to obtain indications of the nature and density
of the bottom materiais.

WES provided five channels of underwater shock measure-
ments; four gages at the 3,000 psi level,with two each paired
at depths of 70 and 114 feet, and the fifth gage at the 70-ft
depth, but at a pressure level of 2,000 psi (Figures 3.5 and
3.6). Underwater Systems, Inc. (USI) provided four channels of
uncderwater shock measurement; two at the 2,000 psi level (one
at the 70-ft level, the other at a 114-ft depth,and one each
at pressure levels of 1,000 and 700 psi, at the 70-ft depth.

fhots 1-7 were fired with the test geometry shown
in Figure 3.5. Prolonged exposures at the 3,000 psi level,

and the long duraticns (8 to 10 msec) experienced during the

tests resulted in an unusually short gage life,which necessitated

an increase in the charge-to-gage distance. Shots 8-12 were
then detonated using the geometry illustrated in Figure 3.6;

the near position in this case was at the 2,500 psi level.

15
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3.3 Shock Refraction

f! Mono Lake possesses a sharp thermocline during the

E summer months. The depth of the thermocline and its stability
depends on local weather conditions as well as the periodic
seiches. Thus, movements of several feet in relatively short

. periods of time are to be expected.

l Hydrodynamic shock waves behave very much like acoustic

[- waves with regard to refraction, Ref. (7). Hence, refraction
effects on the explosive generated shock waves can be evaluated

| by ray tracing techniques.

) A number of temperature measurements were made between

i detonations, and converted to sound velocity profiles. These

o= are shown in Figures 3.7 to 3.11. As may be noted, the

: thermocline is located between 40 and 70 feet, resulting in
severe velocity gradients; above and below this range almost
iso-velocity conditions prevail. It is important to note that
the knee of the curve occurs withiii a few feet of the 70 foot
depth. Ray path plots for the veloci*y gradients shown in
Figures 3.7 and 3.8 are shown in Figures 3.12 and 3.13 respectively.
For Figure 3.7,the depth of source and gages was arbitrarily
shifted to 67 feet, corresponding to the knee of the sound
velocity profile, in order to accentuate refraction effects.

As can be noted, when the source is located at the knee

of the sound velocity profile, two arrivals would be received
at the gajges if they were actually several feet deeper, and

only one arrival if several feet shallower. Since the knee

18
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of the curve will shift upward or downward by several feet,
the position of the gages with respect to the knee is not
precisely known for each detonation.

These results imply that the levels obtained at the
70 foot depth gages may be somewhat in error, by different
amounts for each detonation. It is likely that this error
is not too large. The ray paths shown cover a vertical
range of only a few feet,and it is questionable whether they
are applicable at frequencies below tne order of several
hundred Hz.

These difficulties are not present for the gages
located 10 feet above the bottom. Thus, peak shock wave
pressure levels aredmore appropriately measured at the

deep gages.
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Chapter IV. Instrumentation

4.1 WES Equipment

The WES reccrding equipment was located on an aluminum
pontoon barge anchored 1,200 feet from surface zero (S2Z). Six
channels of cathode followers (impedance modifiers) were shock
mounted on a flotation rig that was anchored 600 feet from SZ.
Signals from the five WES gages were recorded simultaneously
on dual-beam, Tektronic 502 oscilloscopes and an Ampex CP-100,
magnetic tape recorder. The oscilloscopes were set for a sweep
speed of 5 cm/msec or a total recording time of 50 msec. The
CP-100 tape recorder has a 20 kc response in the FM mode and
was operated at a speed of 60 inches/sec.

The WES gages were 1/2 inch, tourmaline cyrstal, piezo-
electric transducers. Each gage was attached to a 1,000-ft
length of low-noise coaxial cable that terminated at tlie cathode
followers. Another 1,000 ft length of four-conductor, shielded,
plastic-coated cable connected each gage from the cathode

followers to the instrument barge.

27




4.2 USI Equipment

Block diagrams of the monitoring instrumentation used

by USI are shown in Figures 4.1 and 4.2. A dual recording
system was utilized, four tourmaline gage outputs being both
recorded on a local IERIG FM tape recorder and telemetered

i to a receiving station on shore. The instrumentation in
Figure 4.1 was housed in a waterproofed box suspended by

i- shock cord inside a buoy situated approximately 650 feet

from SZ. The shore based telemetry receiv..ng station was

i approximately one mile from SZ. The four tourmaline gages,

- three 7/8" gages at the closer in positions.,and one 1-3/4"

gage at the 700 psi position, were connected by 1,000 feet of
low noise cable to the instrumentation buoy. The gage outputs
were impedance transformed by 4 solid state differential

§ amplifiers functioning as electrometers. The telemetry system

.- consisted of four constant bandwidth channels driving a 2 watt
transmitter operating FM with a center carrier frequency of
241.5 MHz. Discriminator outputs were recorded on an IRIG wide
band FM tape recorder, (operating at 7-12 ips). The overall
frequency response of the telemetry system was DC-2 kHz, while
that of the local recording system was DC-1 kHz. A fifth
channel was used as a timing channel, recording the output
from a chronometer with an accuracy of better than 10_9/day.
The chronometer was checked frequently against WWV. Voice
identifications of time marks and upcoming events were also

made on this channal.

28
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Chapter V

5.1 Resulte

The firing program was conducted during the period
2-9 September 1966. Information relative to each shot, includ-
ing the type of explosive, its weight, date, time of detonation,
etc., is listed in Table 5.1.

The underwater shock parameters as recorded at the two
close-in positions during each shot were tabulated according
to type of explosive and are shown in Tables 5.2 through 5.5.
Plots of the parameters, pressure, impulse, energy, duration
and arrival times avre shown in Figures 5.1 through 5.3. The
P-t signals {wave forms) recorded at the positions were repro-
duced and are presented in the appendix.

A listing of the relative peak pressure levels for each
shot is shown in Table 5.6. These levels were extracted from
USI's telemetered deep Gage data. The average relative peak
pressure levels for each explosive type have been found to be
in excellent agreecment with those obtained by WES.

Relative pressure levels were also obtained from
USI's local recording system. These are in substantial
agreement with the telemetered data, and with the results
obtained at other USI gage locatiouns, and are omitted here

to avoid unnecessary duplication.

31
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TABLE 5.6

RELATIVE PRESSURE LEVELS OBTAINED FROM USI's
TELEMETERED DEEP GAGE DATA

Shot No. Explosive Pressure Level
Type db, re: shot 5
1 TNT ~0.2
2 Nitromethane -0.4
3 Slurry Mix -1.4
4 Anoil -5.2
5 TNT 0
6 Anoil -1.
7 Nitromethane +1.
8 Slurry Mix -
9 TNT +0.6
10 Slurry Mix -1.9
11 Nitromethane +0.8
12 Anoil -
SUMMARY OF LEVELS
TNT: -0.2, 0, +0.6 average = +0.1
Nitromethane: -0.4, +1.0, +0.8 average = +0.5
Slurry Mix: -1.4, -1.9 average = -1.6
Anoil: -5.2, -1.9 averace = -3.5
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Chapter Vi Discussion of Results

6.1 Partial Detonations

Shot Nos. 8 (slurry) and 12 (anoil) were probably partial
detonations. The booster explosive for each detonated in high
order,but the parent material reacted passively.

The slurry charge, Shot No. 8, was positioned at the
7¢ ft depth and, due to operational circumstances, remained
in place for more than 12 hours before detonation. At this
depth the temperature is about 43°F; since the gums and resins
are known to solidify et temperatures higher than this, it
is believed that the prolonged exposure to the near-freezing
temperature, adversely affected the explosive materials and
resulted in its inert reaction.

Anoil 1s a mixture of ammonium nitrate (NH4N03) and
diesel fuel. Due to the availability of its contents and the
ease of preparation, it is sometimes called the "homemade
explosive."

Anoil is very susceptible to moisture,and experience
has shown that the ammonium nitrate prills can break down
during moderate temperature changes (>900F). Taouygh it would
not be directly affected by exposure to near-freezing temnpera-
tures, any water in the anoil mix could cause an incomplete
detonation. When used during these tests, it is conceivable

that one or more of the drums leaked due to the rather high
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hydrostatic pressure (330 psi),but it is highly improbable
that all four experienced leakage during any one test. No
valid explanation is available for the partial detonation of

Shot No. 12.

6.2 Evaluation of Pressure-Time Results

In analyzing the water shock results listed in Tables 5.2
through 5.5 and plotted in Figures 5.1 through 5.3, only compari-
sons for TNT should be made,since controlled experiments invol-
ving the other explosives have not been conducted. 1In addition,
the paucity of data limits detailed analysis, but comparisons
with TNT results (free water) are shown.

Figure 5.1 shows peak pressure measurements from the
different explosives compared with free-water results, and
indicates that TNT agrees closely with predictions. Nitro-
methane appears to yield slightly higher pressure wvalues than
TNT. The slurry and anoil mixes result in lower pressures
than TNT shots in free-water. The detonation velocity of TNT
and NM are approximately equal, 21,000 and 20,500 ft/sec,
respectively, while anoil has a value of 11,200 ft/sec. A
detonation velocity for the slurry was not immediately avail-
able,but probably lies in a range of 11,000 to 13,000 ft/sec.

The impulse and energy values (Figures 5.2 and 5.3) are
higher than free-water results. However, this is expected,
since integrations were not stopped at 6.7 6, the normal stopping
point for free-water records. Here,6 is the time required for

the shock wave pressure to decay to a value of pm/e (om is the
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peak pressure). For the tests reported herein, the integrations
were carried for the full duration of each shock; i.e., until
the pressure curve went negative. Except for the closest gages,
channels 1 and 2 of the Appendix, the time at which the signal
goes negative corresponds quite closely with the computed
arrival for the surface reflection. Thus, it is likely that

the integration time was controlled, in part, by the arrivai

of the surface reflection. 1In addition, bottom reflections

would increase the impulse and energy values.

6.3 Likelihood of a Bubble Pulse

The maximum bubble radius generated by a one ton TNT
charge at a 70 foot depth was previously given as 34 feet.

The vertical migration of the bubble due to its buoyancy is
about 35 feet. The net effect of the migration is twofold:

(1) To decrease the hydrostatic pressure surrounding the bubble
so that its minimum is not much smaller than its maximum and
(2) The bubble is very close to the surface and its migration
will be strongly affected by the boundary. These two para-
meters point to a low peak amplitude bubble pulse,if it exists,
and points out the possibility for non-existence.

From the geometry and charge size involved,Ref. (8)
implies that a bubble pulse should occur approximately 1.2 sec.
after detonation. The magnetic tape recorded was run more than
5 seconds after the arrival of the shock wave, but a thorough
examination of the entire rccord does not indicate a bubble pulse.

If the pulse is present,it is very weak and undiscernible.
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Two test shots of 300 1b of TNT were detonated before
the actual test began to make certain that all equipment was
operational. The pressure time curves for these shots indicate
a weak bubble pulse. Thus, the large charge size and shallow
detonation depth precluded significant bubble pulse amplitudes,

if at all present for the one ton charges.

6.4 Bottom Reflection

Reflected pressure waves of varying amplitudes were
recorded during these tests, but in many cases their existence
was not obvious; in nost instances it was determined by means
of arrival and travel times,which were based on test geometry.
The amplitude of the reflection varies with the different
explosives,and the weak signals (see the pressure-time traces
reproduced in the Appendix) lead to the conclusion that the
pc (density-velocity) quantity for the bottom material is only

slightly greater than that of water.
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Chapter VII Conclusions and Recommendations

It should be recognized that the limited amount of data
obtained during these tests precludes other than cursory observa-
tions concerning the underwater explosion characteristics of
the material involved.

Completely reliable information describing the behavior
of TNT under similar circumstances is readily available,and,
where practicable, the performance of the other explosives
used in this study has been compared with TNT.

In these experiments, the performance of TNT and nitro-
methane appears comparable when the pressure, impulse, and energy
values are examined. Correspondingly, the slurry and anoil
results closely resemble one another, but they are obviously
less effective as generators of the various underwater shock
parameters i1Figures 5.1 through 5.3).

The experimental results indicate that nitromethane
would be a suitable substitute for TNT should a liquid explosive
be needed or required in undcrwater effects programs and/or
experiments.

The test provided measurements of the seismic wave
amplitude from the shock wave only, since the bubble pulse
was very weak or non-existent. Hence, in the evaluation of
these explosives for use as a source, if a few db change
in source level becomes important, then the bubble pulse

contribution from each explosive needs to be evaluated.
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APPENDIX

Figures Al through A8 present the pressure-time output
signals as recorded from the 5 WES gages during each shot.
The traces are arranged according to type of explosive,and
represent, in graphic form, the values listed in Tables 5.2

through 5.5.
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