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ANALYTICAL STUDIES PERTAINING TO THE MEASUREMENT OF LIGHT

ABSORPTION IN AIR

Bela A. Lengyel and R. J. Romagnoli

San Fernando Valley State College

ABSTPACT

Experimental methods proposed for the measurement of the absorption
coefficient of light in air are analyzed. The calculationc are primarily
intended for the wavelength regions where, for certain wavelengths, the
absorption coefficient to be measured is estimated to be of the order
of 109 em~!., The effects of scattering, heat conduction, scatic and
acoustic pressure variations are examined and are related to the problem
of detecting the signals produced by the absorption of heat from the
laser beam. Both pulsed and cw schemes are considered. The measurement
¢f the static pressure rise in a narrow tube appears as @ feasible, al-
though marginal methoa which cifers some hope of success. An interfer-
ometer schere also appears feasible. Finaliy, the linear absorption
coefficient for the 10.6u wavelength CD, laser beam has been measured

in air.
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1. INTRODUCTION

Propagation of light at very high intensities produces changes in the
properties of the medium through which the light propigates. These changes
in the medium in turn affect the propagation of th~ beam. Such effects have
been observed in liquids and gases and also take place in the atmosphere if
laser beams of sufficiently high intensity were caused to pass.a The laser
beam would be defocused by the refractive index gradient produced in the
atmosphere by the absorption of energy from the beam. The work of Brueckner
goes beyond this first order effect and treats the combined thermodynamic,
mechanical, and optical instability resulting from the interdependence of
density distribution, temperature and ray path. In this report concern is
primarily with the linear wbsorption coefficient of the atmosphere for high
intensity laser beams of various frequencies, and, in this section, with the
first order effect of defocusing. Hence a review of the principles involved

in determining beam spread is presented here.

ﬁhen thermal energy is deposited in the atmosphere (assumed to be an
ideal gas) by absorption frecm a laser beam, the resulting effects on pressure,
temperature, density, and molecular velocity are determined by: (1) the ideal
gas laws, (2) the equation of continuity, (3) Newton's second law of motion,

and (4) conservation of energy. These effects are derived in many stardard

texts.b Applying the law of conservation of energy, one obtains the energy

a. K.A. Brueckner: 1I1.D.A. Laser Summer Study, 1963, or I.D.A. Research
Paper P-42., Report on Laser Summer Study, The Inst. for Radiation Physics
and Aerodynamics. U.C.S.D., Aug. 1965. :

b. Knudsen £ Katz: FLUID DYNAMICS AND HEAT TRANSFER, McGraw Hill, 1958.



balance equation for idezl gases (Eq. 2-55 of Knudsen and Katz):b

where (o]

=
"

q' =
Assuming K and
q' =

where . a =

b 4 -
a -

oCé %%.= KV2T + %% +q'+ 9, (1.1)

mass uensity

absolute temperature

heat capacity at constant volume
heat capacity at constant pressure
time

pressure

Cé/Cé

thermal conductivity

~ viscous dissipation function

rate of heat generation in gas per unit volume.

¢ negligitle, and

al,

linear absorption coefficient of the atmosphere (ideal gas)
for the laser beam,

intensity (power per unit area) of the laser beam,

then equation (1l.1) becomes,

For an ideal gas

Hence,

'd_T-d_Pz t =
on it "3t - 9 al. (1.2)
_ P
Cé -Cy = °T ° (1.3)
dT _ 1 dP P dp
C, (y -1) —==2— - —_— (l.4)
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Substituting (1.4) into (1.2), one obtains a relationship independent of

temperature as follows:

octy__ 1 1dp P do -dpP . al
p{(c;(y-l) [o dt 0?2 dt dt

Loy 4P _ (yopy 9B _ YRG0,

Y (v It (v-1) e t) al (1.5)
P _yPdo _ (. _

at "~ o at (vy-1) al.

Now make use of a relaticnship for the speed of sound in a gas,
cd = yP/o, (1.6)

and one obtains:

8 (p-c2p) = (y-
Tt (P - c%) = (y-1) al. (1.7)

A concise treatment of the effects of density change on beam spread
and instability has been developed by Brueckner.? His basic eguations

are obtainable from (1.7) by taking the Laplacian of both sides:
d 2 292,) = (y- 2 )
a‘{ (V¢P - COV O) s (Y l) V<la. (1.8)

Now, using the equation of motion
- =0 ¥, (1.9)
dt
the equation of continuity,

]
o .a% = _V_-(py_)’ (1.10)
alorg with the operator identity,

:g_tfy_-_v_, (1.11)

2
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where v is the fluid velocity, one obtains an expression independent of

pressure as follows:

d

VZP = - 9. C¥y = . d_(-_a.‘.). 0 gﬁ_
V- logt) i e T g
= 320 + vV 92 A v.[v (.3.9. + V-VD)‘ (1 12)
YL TR TR '
a%p

= 3{7.- p(9-v)2 - v [202-! + vV,

For small pressure and density fluctuations, neglecting gradients in v,

one can linearize equation (1.12) by the approximation,

92p = 30

at?

Q

Hence tihe equation for density change in a gas traversed by a laser beam

is:
9—~(33§~- c292)p = (y-1) 92I1a (1.13)
dt 3t o ) -

If density changes occur slowly, so that

3%p .
32 << cgV%,

-

they may be approximated to occur at constant pressure, and equaticns (i.7)

or (1.12) simplify to the following:

_32 2 - Y-l L
3t E—z—- la. (lol )

Solutions of (1.13) and (1.14) combined with the eikonal equation have heen
obtained by Brueckner.?® Suffice it here to obtain a very elementary solu-
tion to (1.14) to show how an initial first order effect of the spreading

of an initially rarallel laser beam depends upon a.



Before introducing geometrical optics, it may be helpful to arrive at
equation (1.14) from even more elementary considerations. At constant pres-

sure the heat per unit volume absorbed from the laser beam by an ideal gas is:

NCp dT _ pCp dT

Qa1 ar = P 2 (1.15)
’ where N = number of moles
M = mass per mole
‘ Cp = molar svecific heat at constant pressure
Cy = molar specific heat a«t constant volume
V = volume.
Therefore,
°1‘§R°g{-=';273%='%g% (1.16)

where use is made of the expression found in elementary texts for the speed

cf sound in a gas:

2 ;YR °p - T. - I
o = T o (Cp c,) - Cp(y 1) e

and, at constant pressure,

-—l|0-
-3

Equation (1.16) is another form of (1l.lu4):

© _3£=_Y-l 1 n
s (-:3— a (1.14)

The angular ray deflection may be approximated from Snell's .aw, where
L is the coordinate in the direction of propagation, and r is a transverse

coordinate, as illustrated in Figure 1.1.



./ g n,
5;/ ) dr
Tan 6 = dr/4dL
n sin 6' = constant = n cos 0 (1.17)

Figure 1.1. Ray Trace Illustrating Snell's Law
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Differentiating Snell's law with respect to L, one obtains:

0=-nsin6 3%, N ros
oL oL

or,
36 _ 1 an _iandL _ 1 3n
3L n 3oL °°t o nalL3r n =’ (1.18)

Variations in refractive index of air may be closely approximated by equation

(1.19):€

_ &
én = 5; (no-l). (1.19)

Hence (1.18) hecomes, since n = 1,

o
(o)
]
—
Q

26 p No-l 3p

1
AT S o - ® - (1.20)
n oo, ar I ar
Now equation (1.14) may be iategrated and substituted into (1.20):
0 - P = - liia'ft,
Co
wiere I is the time average intensity.
Hence,
ng-l T
SRR (ol R et S (1.21)
L Po Cé ar

The change in intensity due to spreading of the beam may be approximated by:

T rs2 21, r.2
L.rlyg .. oo (1.22)
Ir r (r(L)]? [r(L)]
Hence equation (1.21) becomes
2(ng-1)(y-1aI t r2 B
B2 o2 1. (1.23)

oL bo <2 (e [r(L]*

c. (Kuiper and Middlehurst: TELESCOPLS, U. Chicapo Press.)
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where B is the constant so defined:

2(n,-1)(y-1)aI t r2
gz —No )(y-1)alot r5 (1.24)

Po °<2>

Equation (1.23) may be integrated easily, for a beam initially parallel,
to determine the beam spread. From Fig. 1.1,

tan6=d—r-=9, or dr = 8 dL.

dL

Substituting these relationships into (1.23), one obtains:

de = B g - B dr | (1.25)
!‘3 !‘3

Then, upon integration, one obtains:

267=/ 6do =B [ i‘—"a-=g[%'%].
r
Hen.e, ° or To T
ar ., B% vp2-p ,
dL r r,

which may be integrated to give:

r L
/——rz-xf - [ rdr _ EEI dL = B%¥ L
To /rz-rg ro, © ro

Hence it follows that the beam radius increases with distance according to
to:

2
r =1y [1+ BLog% (1.26)
To

and the beam deflection or angle of spread is:

A - S . T 7
6 =fdo = [ 1dL——§] - il
o o B% ‘O y
Yo [L2+r—°] To L2+r—°
or B B
2
o = B—‘; [1+ B—f:- -4 (1.27)
To To



Hence it is seen that to a first approximation the beam spread is propor-
tional to B%, and B is proportional to beam power, time, and a, the linear
absorption coefficient. It is therefore important that methods be avail-
able to neasure values of a for various laser frequencies where high in-

tensities are physically realizable,



2a. Statement of the Purpose of the Report.

It is of interest to know the amount of heat evolved in a material
through which a laser beam is passirz. A parallel beam of light is attenu-
ated as it passes through matter and this attenuation is mainly attributed
to two effects: scattering and absorption. Scattering on material parti-
cles results in the directional redistribution of the energy of the incident
electromagnetic wave. Absorption results in the conversion of electromag-
netic energy into other forms of energy. The energy lost by the electro-
magnetic field is ultimately converted into heat. This means that, possibly
through the intervention of processes of atomic and molecular excitation,
the energy abstracted from the electromagnetic field is redistributed among
the available degrees of freedom of the material (gas), so that it is ulti-
mately urdistinguishable from energy obtainable from contact with a heat
reservoir. We shall assume that the atomic and molecular processes res-
ponsible for the redistribution of energy among the available degrees of
freedom take place so fast that at the scale at which we contemplate our
observations the conversion of the absorbed energy into heat may be regarded
as instantanecus. It should be noted that we are talking here about energy
redistribution locally and not about its redistribution in space. The latter
generally proceeds at a much slower rate. We shall thus proceed under the
assumption that the energy absorbed from the electromagnetic field instantly
appears at the site of absorption in the form of heat. Such an assumption is

probably valid if our time resoltuion is no finer than 10-7 sec.

The absorpticn of light in solids and liquids is usually significant

enough so that a direct measurement of the absorption is not difficult. 1In
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gases, such as pure air, the measurement of the absorption of )ight is very
difficult, because the rate of absorption is small and in the visible region
it is completely masked by the much larger effect of scattering. The situ-

ation is somewhat more favorable in thz infrared beyond 1.2 microns.

The optical effects of scattering and abso-ption combine so that the
intensity of a plane wave passing through matter is described by the equation
I(x) = I e Bx , (2.1)
where the attenuation coefficient B is the sum of two terms:
B =a+o. (2.2)
Here a is the absorption coefficient, g the scattering coefficient and x is

the direction of propagation.

In the spectral region where the ratio o/a is large, it is not feasible
to determine a by measuring the attenuation of a light bean chrough matter.
The value of a must thus be determined not by the change produced in the ra-
diation but by the change produced in the absorbing matter. We already noted
that the absorption of radiation results iu an increase in the thermal energy
of the absorbing matter, therefore we shall address ourselves to problems
pertinent to the detection and measurement of small quantities of therma)
energy deposited in the path of a narrow light beam of the type that may be

obtained from a laser.

It has been estimated that for certain wavelengths in and around the
visible region of the spectrum a is of the order of 10-% em~!, Scattering
in pure air, as calculated from Rayleigh's theory, produces a much higher
attenuation. For green light (0.5 microns), o = 1.7 x IO'Z/Em for air free
of all contaminants. We reserve the quantitative data for the next section,

but we note here, that around 10 microns the situation is quite different.

- 11 -



First, significant and spectrally selective absorption is likely to be en-
countered because of the presence of the molecular bands of the constituents
of air in this region. Second, Rayleigh scattering on molecules, which
varies with the fourth power of the wavelength, is reduced to negligible

values around 10 microns.

This report contains calculations pertaining to thermal and acoustic
effects expected as a result of the passage of a powerrul laser beam through
air. The configurations examined are such which are likely to be chosen in
experiments aimed at the determination of 2 in the 0.5 to 1.2 micron spectral
region. We have included here the analysis of the pressure change in a com-
pletely enclosed cylinder whose walls are kept at a constant temperature, the
calculation of the rate of dissipation of heat around a laser beam by means
of thermal conduction, the gcuneration of a quasi-static pressure increment,
and an acoustic pulse by a laser pulse and some problems pertaining to the
detection of an acoustic pulse or a sequence of acoustic pulses. 7The material
as assembled here does not represent a complete investigation. It is a group
of exploratory calculations preliminary to the experimental determination of

the absorption coefficient of light in air.
2b. Relevant Properties of Air.

In this section we have collected such phvsical data concerning air that
seem relevant for computations in later sections, or that may be needed in
evaluating an experimental scheme proposed for the measurement of the absorption

coefficient a.

Atmospheric air free of dust and other contaminations is a wuixture of

gases, primarily N,, 05, Ar, CO, and water vapor. Other gases are present in

- 12 -



such small proportions that their presence does not noticeably affect the
physical properties of air that are of concern to us. Of the gases listed

here only the proportion of water vapor is variable.

In what immediately follows we shall assume that we are dealing with
clean, dry atmospheric air. By this substance we mean a gas mixture from
which all water vapor has been removed and which contains the gases N,, 0,,

Ar and CO, in the proportion as they are universally found in the atmospherel.
We note in particular that such air contains 0.033 percent CO, by volume.
Although this proportion seems small, it is well to remember that a relatively
small amount of CO2 or water vapor significantly affects the optical properties

of air.

It is customary to specify the physical properties of gases at standard
temparature and pressure; i.e, at 0°C and 769 torr. At these conditions the
properties of dry atmospheric air relevant to this study are as follows:

Density: p, = 1.293 x 10~3g em-3,

Specific heats: cp = 0.240, c, = 0.172 cal g-! °c-!,
Sound velocity: ¢, = 3.31 x 10“ cm sec”!,

Heat conductivity: K = 5.68 x 105 cal cm~! sec-! oc-!,

Index of refraction for A = 5000 A: n = 1.000294.

At standard temperature and pressure the particle density of every ideal
gas is L = 2.69 x 10!? cm~3, (Loschmid's number.) The variation of n -1
with wavelength (dispersion) has been studied and is tabulated for a tempera-
ture of 15°C, which must be a convenient laboratory temperature in Sweden.

The following data applicable at 15°C are obtained from the work of Edlén:?

1. Handbook of Chemistry and Physics, 46th ed. p. F-116.

2. B. Edlén, The dispersion of standard air, J. Opt. Soc. Amer. 43, 339, 1953,

-13 -



A(Angstroms) 5000 6000 7000 8000 9000 10000

(n - 1) x 10" 2.78 2.76 2.75 2.75 2.74 2.74

At the more comfortable laboratory temperature of 20°C the following
data are applicable for 760 torr pressure:

Density: = 1.205 g em-3,

P20

Sound velocity: = 3.44 x 10" cm sec"!,

€20
Loschmid's number L = 2.51 x 10!9 em-3,

[} [+
The value of n - 1 varies from 2.73 x 10-% at 5000 A to 2.69 x 10-"“ at 10000 A,

The attenuation of light causec by scattering on the molecules of air is
calculable for Rayleigh's formulal

3 2
o = 32n°(n-1)7 (2.3)

3Lt

At standard temperature and pressure we obtain the following values of a:
A(Angstroms) 5000 6000 7000 8000 9000 10000

o x 107(em-1) 1.70 0.81 0.4l 0.25 0.16 0.10

Both (n-1) and L are proportional to o, therefore o is also proportional
to p. At constant pressure ¢ is inversely proportional to the absolute tem-
perature. Therefore the values of 5 at t = 20°C and 760 torr are about 7

percent smaller than the above tabulated values.

3. Absorption Cxperiment With a Steady Laser Beam.

We shall analyze the problems involved in the measurement of a by means

of the following experiment: A certain volume of air is confined at a known

3. J.W. Strutt, Lord Rayleigh, On the transmission of light through an
atmosphere, Phil. Mag. 47, 374, 1899; Scient. Papers 4, 397.

- 14 -



initial pressure. A laser beam passes through the confined volume and heats
the enclosed air at a rate proportional to a; In a steady state, the heat
losses of the system balance the heat gained from the laser. The increase

of the static pressure within the wessel is measured and is used for computing

the rate at which heat is added to the air.

The simplest experimental embodiment of this idea consists of a cylin-
drical tube kept at a constant temperature. The laser beam passes along
the axis of the cylinder heating a smaller cylindrical volume of air con-
centric with the confining tube. A steady state is established when the
rate at which heat is conducted to the walls is equal to the rate at which

heat is absorbed from the laser beam.

In order that a technique of this type yield a valid measurement of
a, certain physical conditions must be satisfied which are not easy to
achieve experimentally. First, the confining tube must be long enough so
that special thermal effects at the ends of the tube do not significantly
affect the pressure of the confined air. Laser light is brought in through
solid windows whose density; is about 1000 times that of the confined gas.
It is not unreasonable to assume that absorption per unit volume in the
windows will be about 1000 times as great as absorption in the gas.
Second, for A < 1.2y more laser light will be scattered than directly ab-
sorbed. The energy of the scattered radiation must be removed, it must
not be allowed to add to the thermal energy of the confined gas. This
removal could be accomplished, for example, by making the inner surface
of the tube Llack and by making the tube of a material with good thermal

conductivity.

- 15 -



Assuming that these experimental difficulties are mastered, we calcu-
late the pressure increase dp attained in the vessel in the steady state
as a result of energy being absorbed from the laser beam at a constant
rate and conducted away through the air to the walls of the vessel which
are kept at a constant temperature To' We assume a uniform circular laser
beam of radius a8 in a vessel of radius b. Let the power incident in the
iuser beam be W, then the intensity of the beam is I = W/a2n. Heat is
deposited in the unit volume of the gas at the rate aJl, where J = 0.239

cal/joule.

Once the steady state is reached, no mechanical work is done. There-
fore the heat balance equation is obtained by equating the rate at which
energy is absorbed to the rate at which it is conducted away. (It is
assumed that convection is neglected.) The rate of heat generation per
unit volume is

q'(r) = aJI when r < a,

0 when r > a.
The heat balance equation for a volume V is then

fq'dv = - K §9T.ndS, (3.1)
v S

where dS is the surface element, n is the unit normal to the surface, and
K the thermal conductivity. It follows then in a well-known manner that
V2T = - q'/K. (3.2)
Since the only relevant coordinate in this problem is r, the distance

from the cylinder axis, we have

1d dT q'(r)
rdr Tdr - K (3.3)

- 16 -



This differential equation is to be solved with the boundary condition
T =Ty for r = b and the solution is required to remain firite for r < b.
Although the solution is easily found, we do not need its explicit form
because we are only interested in the pressure rise in the vessel and this

is proportional to the increase of the average temperature.

In place of T we introduce the dimensionless variable

K
v(r) = -Q—J‘I- (T - TO)' (3.4)

Equation (3.3) is thon replaced by

1d ,dv. (3.5)
r 3 * ar =(r),

where g(r) = 1 for r < a and 0 for r > a. The boundary condition is

v(b) = 0. Then we obtain by integration of (3.5)

dv 3
= - "I tdpe !
r £ g(r')r'dr

- f(r), (3.6)

where £f(r) = = r? for r < a, and f(r) = 1 a? for r > a.

|-
N

The average increase in gas temperature over the entire vessel is

proportional to

_ . b2 p b
9 8 & | [ [ v(r)rdrdedz o7 [ v(rirdr. (3.7)
ocoo o

]
o
-
o
(1 ]
n
L]
-

Integrating by parts anrd noting that v(b) =

b b b
[ v(r)rdr = -2 [ r2 4V dr = L [ £(r)rdr.
o 2 45 dr 2 4
= ¢ P 22 2
Since [ f(r)rdr = [ Lp3gre[Lard =207 2 27], we have
o o 2 a 8 b
- 2 2
v=3a1n -2 (3.8)
2b2
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Therefore the average increase o temperature in the vessel is

S (3.9)

The final expression for the increase of pressure in the chamber is ob-
tained from (3.9) by using the gas law and by reintroducing the incident

power W = a?nl,

_ Po aJdw (1 a?

- e —ee—— - )o (3010)
P To 4nK 2b2

Ordinarily the expression in the parentheses is nearly equal to one.
Assuming a laser with 100 watts useful output, an initial temperature
L= 300°K and a = 10-9, the expression in front of the parentheses is
1.1 x 10-7 atmospheres. A pressure change of this order of magnitude
should be detectable provided one can keep the temperature of the walls
constant to within 0.3 x 10-“ °C, It might be quite difficult to

accomplish this for a tube as long as 1 meter.

4, Dissipation of Heat in Air by Conduction.

In preparation for the discussion of experiments involving the heat-
ing of air columns by means of short laser pulses we shall calculate the
rate at which thermal energy initially communicated to an air column is

dissipated by thermal conduction alone.

The calculation is simplified by neglecting for the purpose of this
calculation the aerodynamic properties of air. Thus we shall be concerned

with a solid substance characterized by a heat conductivity K, density p,

- 18 -



and specific heat c,.

It is shown in textbooks" that the temperature v(x,y,z,t) satisfies

the differential equation

viv - = 2X = o, (4.1)

provided that there are no sources or sinks of heat in the regicn under

consideration. Here x = K/pc, is the diffusivity of the substance.

We will assume a geometry of cylindrical symmetry and calculate the
cooling of ar. infinite cylinder of radius a, whose temperature at the time
t = 0 is one degree above the temperature of its surroundings. All space
is assumed to consist of the same material characterized by the constant
x. The problem then requires the use of only one spatial variable, r,
the cylindrical polar coordinate. The differential equation becomes

2
a_V: ((_aVi»;l.ﬂ), (u4.2)
at ar? r ar

and the initial condition is v(r,0) = f(r), where

f(r)

1 for r <a,

0 for r > a.

As long s no walls are present, no boundary conditions are required.
This differential equation is readily solved by the Hankel transformation

technique® and the following result is obtained:

4, H.S. Carslaw and J.C. Jaeger, Conduction of Heat in Solids, Oxford, 1659,
2nd ed. p. 9.

5. Ref. 4, p. 460.
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-]

v(r,t) = [ Folo)adg(or)e-x0’tdo, (4.3)
(o]

where

1o(0) = [ rdglor)f(r)dr. (4.4)
o

In the present case

a
Folo) = [ rdglor)dr = & J)(oa). (4.5)
[e] a

Hence the expression for the temperature distributiz. is

v(ir,t) = a f Jl(oa)do(or)e"“’2t do. (u.h)
o

It is interesting to calculate the variation of temperature at the axis.

From (4.6) we have for r = 0
(- -]

v(0,t) = a Jo(oa)e'xozt do. (4.7)
o

This expression is changed by integration by parts into

2
v(0,t) = 1 - 2¢t [ Jy(oa)oe ™"t do. (4.8)
o
From the standard formula®
. a?_
2.2 “unl
f .Jo(oa)e'p 0° gdg = _L_e YP (4.9)
o 2p2
we get
at
v(0.t) = 1 - e X%, (4.10)

6. G.N. Watson, Theory of Bessel Functions, Cambridge, University Press,
1958, p. 393.
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Thus the temperature at the center line decreases with t accordinpg to the
formula 1 - ¢~ 7/t where 1 = a2/ux. The quantity 1 has the dimension of
time. It is the time during which the temperature decreases by the
amount 1l/e. Althoush we are not dealinpg here with a simple exponential
decay of temperature, it is still reasonable to regard 1 as a thermal
laxation time. It is proportional to the cross sectional area of the

Leam.

Mumerical computation of the thermal relaxation time requires the
knowledpe of x for air in the applicable temperature range. This quan-
tity entered first in equation (4.1) which is taken from the theorvy ot
heat conduction applicable to solids. When this theory is applied to
a pas, the question arises what kind of specific heat is to be used in

the equation

R 8 oo (u.11)

*nat serves as a definition of k2. Since we are contemplating a steady
state situation in which no mechanical motion takes place, no work is
heiny done and the entire heat energy that enters a volume of pas is
converted into internal energy. The specific heat at constant volume

iz the one which is applicable to such a situition., For air at standard
nressure and temperature, x = 0.255 cm? sec™!. Although « depends on the
temperature, this value ¢f x is probably a fair apyroximation to the
correct value applicable at 20°C. With the value x = 0.255 em? sec!

we obtain the following approximate values of relaxa*ion times and associ

ated frequencies applicable to beams of convenient cross sections.
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beam diar., (Ja) mm 0.4 0.6 0.8 1.0 1.2 l.4 1.6 1.8 2.0
telax. time (T1) msec 0.392 0.882 1.57 2.4% 3,53 u4.8J) o©.27 7.94 9,04

Frequency (=YY u- 2550 1134 637 408 283 204 160 12¢ 19,

In a dvnamic situation, when heat is added to a column of sgas., not
onlv heat conduction takes place but the gas is set in motion. This trans-
ient phenomenon was not taken into account so far. In what follows later,
thhe dynamic lLenomenon is of great importance and the results of this section
dare used for guidance concerning the situations when tnhe effect of heat <on-
Juction may be neplected. Clearly one can only justifv neglecting heat con-
luction it the dynamic phenomenon (oscillation) occurs so fast that only
neplipible cooling takes place during one cycle. Sucn will be the case
when the frequency of the sound wave generated exceeds the apnropriate

. . - ol
chdaracteristic frequency 1 1 = ucsa”.

When che air colurn is not frec, as heretcfore assumed, but confin:: i-
a pipe kept at a constant temperature, the nethod of calculation is difforent.
The differential equation (4,1) is applicable in this case, but a boundary
condition, absent in the case of the free air column, must be added. For a
cylindrical vessel of inner radius b, the boundary condition is v(b,t) = 0,
provided that the vessel is kept 4t a constant temperature T,. (Here v
denotes the excess over this temperature.) The solution of the heat con-
duction problem for a domain with o boundary is well known’. 1t is obtained
by expanding the function to be determined in terms of the eigenfunctions

of the differential equation (u4.1) with the piven boundaryv conditions.

In the case of heat conduction within a cylinder of radius b the result is

7. Ref. 4. pp. 198-199,




2
Andolanrle ™ ont, (4.12)
1

vir,t) =
n

nwes3 8

where the numbers a, are determined from the boundary condition J (a b) = 0,

and the coefficients A” are calculated from the expansion

£(r) = ]| ApJolagr), (4.13)
n=1

which it the cxplicit form of the initial condition. The A 's are deter-
mined by the routine procedure applicable to expansions according to or-
thogonal functions. Their values depend on a and b. In the general case
the value of A cdoes not drop off rapidly with increasing n. We must
thercfore take into account a large number of terms in {(4,12). FEach term
decays in time according to a different exponential rate za%. The time
constants associated with these modes are 1, = ((u%)’l, and a, is deter-
mined from the equation

and = Xp (L.14)
where Xn is the n-th root of the equation Jo(x) = 0. The values of the
first five x's are: 2.405, 5.520., 8.654, 11.732 .nd¢ 14.913,8 The time

constants Aare

2
= 0 4,15
L :;g ( )

We note that the role of the t.'s is not the same as that of 1 in
the case of the free cylinder because in the present case the time de-

pendence of a mode is of the form exp(-t/t,) and not 1 - exp(-1/t).

By means of a physical argument we can readily infer that the confined

6. A. Gray and G.B. Mathews, Bessel Functions, 2nd ed.. Dover Publ., New
York 1966, p. 300.
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cvlinder will cool more rapidly than the free cylinder and that the re-
laxation time calculated for the free cylinder will be an approximation

of the effective relaxation time of a confined cvlinder for b >» a.

5. Fressure Rise in a Tube Caused bv a Single laser Puise.
£

One might attempt to confine air in a cvlindrical tube, shoot a laser
beam throush and measure the rise in pressure in the wube. The expected
increase in pressure is proportional to the eneryy deposited in the air
by the laser beam. llence one expects that the absorption coefficient a

mirht 1> measured in such an experiment.

It must be remembered that the walls of the tube holding the air are
solid and have a much larger heat capacitance than the confined air. So
eventually as thermil equilibrium is approacned, the thermal enerpgy de-
posited in the air is conducted to the walls. temperature and pressure in
the vessel return to their values at the beginning of the experiincnt. The
appreach to thermal equilibrium may be thoupht of as consisting of a fast
process cf pressurc equalization followed by a slower process of tempera-
ture equalization by heat conduction. The pressure equalization m ' be
characterized bv the time constant 2b/c where b is the radius of the tube
and ¢ the velcclity of the sound. The rate at which heat conduction leads
to thermal equilibrium must be calculated in the manner described in Section
4, The time constant 1 = L2/ux certainly reveals the correct order of mag-
nitude. The measurement of pressure increase should take place after the
elapse of the time 2b/c following the passape of the laser heam but consid-

erably before the elapse of the time tv. For a tube of 1 cm radius,

2b/c = 6 x 1079 sec and 1 = 1 sec.
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The laser beam will generally be much narrower than the tube. Let
the radius of the beam cross section be a, and let us assume that we are
dealing with a very short laser pulse. Then at the end of the pulse we
have an air cylinder of radius a within which the pressure has been raised
to p + dp and the temperature to T + dT, while outside this cylinder the
pressure is p and the temperature is T. According to the standard equation
of heat balance

cvooazﬂd'l = aJQ, (5.1)

where Q ic the energy of the laser pulse in joules, J is the conversion
factor 0.239 cal/joule, and o is the density of the air. From the ideal

gas law and equation (5.1), we get

dp aJqQ
z . (5.2)
p cvooazﬂ

On substituting the appropriate physica! constants of air, we get

for a = 0.1 ¢cm and T = 300°K:

%P— = 1.14 x 102 aQ. (5.2)

Thus a laser pulse of 1 joule and an a = 10-9 cm~! would give a relative
pressure incrr'se of one part in ten million. It seems the¢n that, using

a powerful laser of several joules output, an a of the order of 102 em-!
would be just barely detectable. This would be the case if the entire con-
fined space would be within the beam. Actually the beam diameter must be
considerably smaller than the diameter of the tube that keeps the air con-
fined., Consequently the pressure rise observable in the tube is much less

than the pressure rise in the cylinder swe(t out by the beam.
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An estimate of the pressure rise anticipated in the tube may be ob-
tained by ascribing the entire gas in the tube some sort of average tem-
perature T. The heat balance equation (5.1) is then replaced by

cyPoh2mdT = adQ. (5.4)

This equation differs from (5.1) insofar as b? takes now the place of aZ.
Consequently the pressure rise calculated from (5.4) will be reduced in
proportion to the ratio of the cross sectional ratio of the heam to the

cross sectional area of the tube. If, for example, a = 0.1 cmand b = 1.0 cm

the value of dp/p is recuced by a factor of 100, thus driving it completely

beyond reach for measurement.

It could be objected that the above estimate of dp/p is based on a
dubious assumption of an average temperature and the application of thermo-
dynamics to non-cquilibrium states. The deduction may be replaced by the
following one: After irradiation, the pressure of the air within the beam
is Pys its volume is Vi- In the rest of the vessel the pressure is Po-

The volume of the rest is v,. Both volumes change during the process of
pressure 2qualization which results in a finai pressure P. Assuming no

heat exchanpe,

1/y = pl/y 1/y - pl/y
Py vy p \A and P v, p vﬁ.

Moreover, the total volume does not change, therefore vi + v% = V) o+ Vo

Hence
pl/Y | SURTRE AR , (5.5)
Vl + V2
and
SAREESAR Vlli‘T{ (Pi” - pi/ M. (5.6)
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From this last equation it also follows that in first approximation

P-p ~ "1 (p, - p ). (5.7)
o vy * v, O

6. Generdtion of Sound by a Laser Pulse.

A laser pulse 1s sent through a gas which has a small absorption co-
efficient for the radia*tion sent through it. As a consequence of absorption
a column of gas is warmed and the surrounding gas is set in motion. It is
desired to determine the sound energy gencrated by the pulse and to determine

the spectral distribution of the sound.

The solution of the problem is expected to contain the physica! para-
meters of the gas which normally determine the velocity of propagation of
sound in the gas, the rate at which radiated enc.pgy 1is absorbed in the pas,

the length of the laser pulse and the cross-section of the laser beam.

It will be assumed that the gas is an ideal gas, that the laser beam
is of circular cross-section, that the rate of enersy dissipation and the
pulse length are such that the resulting temperature, pressure and density
chanpes may be treated as differentials of the first order so that the

usual approximations employed in the theory of sound retain their validity.

The effects of heat conduction will be neglected: a simplification
which may only be questionable when it is applied to low frequencies. The
low frequencs li=it of this approximation is the characteristic frequencvy
associated with the cooling of the heated column by conduction. This was

calculated in Section 4.
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The propagation of sound waves is described by a solution of the

wave equation

2
3% _ (2924 = ¢ (6.1)
at?

which is satisfied by the velocity potential ¢ as well as by the pressure
p and the condensatior s in the gas. The differential equation (6.1) is a
homogeneous one, the solution ¢(x,y.z:t) is determined if one knows the

value of ¢ and 3¢/t at the time t = 0,

The physical problem to be solved here must be governed by the dif-
ferential equation (6.1) in the region where no heating takes place. In
the region traversed by the laser beam we exDect to obtain an inhomogeneous
differential equation whose solution is to be obtained for a given right
side. Moreover the solution is to vanish for t = 0: it should represent
an outgoing wave away from the region traversed by the laser beam and is

to satisfy the usual continuity conditions.

The starting point in acoustics is the continuity equation for the

fluid

9p v
kel 9 = 0 6.
= D oV (6.2)

and the equation of motion for the fluid particles:

dav
S— =z - Vp,. 6.3
P it p ( )

Here the vector V denotes the velocity of the fluid, p its pressure, p
its density. All these quantities are functions of position and time.
It is customary to restrict the problem to small velocities and small

displacements from static or average pressure and density p, and o, .



With these restrictions equations (6.2) and (6.3) are replaced by

&, V.V = 1
at vV =0 (6.4)
and
v
—_— Vp = . .
oo 3¢ * P 0 (6.5)

We introduce the velocity potential ¢ defined by

V = -T¢, (6.6)

then (6.5) becomes

9 -
-0, s¥.v¢ + 9 =0, (6.7)
or
3¢ _ Py -
V(at po) 0. (6.8)

We write p = Py * p', where Py is a constant and p' is a variable quantity

small compared to Po: Then

3 _p
3t " g (6.9)

This last equation relates the pressure variation to the velocity potential.

Now the continuity equation (6.4) is rewritten by introducing the con-

densation s defined as follows

p=po (1 +s), (6.10)
or

s = DA;O° (6.11)
Then (6.4) becomes

I 49w =0, (6.12)

at

or
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2)':‘ 2 v2¢.

at

(6.13)

In the classical case the equation of sound propagation [Fq. (6.1)]

is found by assuminp that the pressure variation p' is prcportional to

the condensation s.

dvpamic arfument to bhe cqual to yp,.

With this result one pets

The factor of proportionality is found by thermo-

B = ypos. (6.14)
lience from (6.9)
3¢ YDy 9S
—— S5 (6.15%)
3t p, 3t
Finally
3¢ Yp
—— = 2 g2, (6.16)
2 o,

which is idcatical with equation (6.1).

Its derivation is based on the

assumption that no thermal exchange takes place.

When the ras is locally heated equation (6.14) is no longer valid.
We must calculate the change in pressure when hoth tre volumz2 is changed
and a certain amount of heat is added. If the heat i:; aided reversibly.

we write d0O = TdS. Then
= (P) av + (3B) as. 6.17
dp (3V)s d (BS)V ( )
Equation (6.14) is a special case of (6.17) for dS = 0,

In the general case the ccefficients of the differentials in (6.17)

are evaluated as follows: The entropy change of 1 mole of an ideal gas

may be written in the following two forms:9

9, M.W. Zemansky: Heat and Thermodynamics, McGraw-Hill. New York, 1943,
Sections 13.2 and 13.3.
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as = ¢c_ 49T _ g dp (6.18)

PT P
dT |3
= = — dv. .
ds Cv T + T d (6.19)

Upon elimination of dT from (6.18) and (6.19) we obtain

o

g_dp = (y - 1)dS - yfr’. av. (6.20)

RT it f..lows that

Hence from (6.20) and the gas law pV

dp = - .\Y/R dav + (_Y_\;__}_).Tds, . 6.21)
and therefore
(%&) 28 o %R, (6.22)
S
9 -1
(38 = Ig—. (6.23)

We wish to express the pressure change p' in terms of the condensation
s and the heat added per unit volume q. These quantities are related to

dV and dS as follows

Thus

P' = vpys + {y - l)q. (6.2u)

Equation (6.24) must be used in place of (6.14) to obtain the equations

valid in the case of the heatad gas column. Di¢ferzntiating (6.9) we

have
3¢ 1 ' Yp, s v -13q ,
— = — 3 —— g — - — 6.25)
at? o, 3t o, 3t b, 3t

On combining (6.25) with the continuity equation (6.13), we get
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— = — 92¢ 4+ - . (6.26)

In the absence of nhedat transfer by conduction 3q/3t is equal to q', the
rate of heat generation per unit volume. When thermal conductior. is taken
into account then

3
. g e ke2T, (6.27)

in accordance with the heat balance equations (3.1) and (3.2). Thus,

when conduction is neglected, we have

0 c2g2y o X2 2 qQ' (6.28)

where c = /;6375; is the velocity of sound. It is apparent from this
equation that of the energy communicated to the ras only the fraction

y - 1 is converted into an acoustic (hydrodynamic) wave. In the case of
diatomic gases, this fraction is 0.40. Given a pulsed laser of such total
output that Q is the energy incident vpon the test gas dur‘ng a period 1,

the rate of heat deposition per unit volume is
qQ' = aQ/Ar, (6.29)

where A is the cross sectional area of the laser beam and a the absorption

coefficient. The differential equation (6.28) may then put in the form

2
VZO - l_u z - z(x’y,z,t), (6.30)
C2 a.:2
where
g = X 1aQ ey o). (6.31)
pocz At

Here f denotes a function which is 1 within the laser beam during the



duration of the pulse and 0 at every other point in space or outside tti.e

time interval 0 < t < 1.

The solution of this differential equation depends on the initial 1 !
boundary conditions. We assume the homogeneous initial conditions
¢(x,y,2,0) = 0 and ¢t(x.y,z,0) = 0 which correspond to no disturbance at
t = 0. We then have a standard radiation problem solvable in terms of the
retarded potentials. In the absence of boundary conditions: i.e. for a
homogeneous medium of infinite extent, the solution of (6.30) for homo-

gencous boundary conditions is given by the formula:!Y

6(x,y.2,t) = i [[f gl&,n,g,t-r/c)r"} dednde, (.37
where p oz W(x-£)2 + (y-n)y + (2-7)¢. The function g is a constant times

a step function. We write Eq. (6.31) in the form

g = l—f(x.y.z.t). (v.%3)
1

where

Ap°c21

Tl = _(y-l)uO (6.3u)

is a constant that has the dimension of time. Then

.1 f( 3Ny 9t‘P/C) z
o(xy,2.0) = g [ Banet dednde. (6.35)

The integration is to be extended over the vulume of space swept hy the
laser beam. Its result depends only on the beam cross section and the

length of the pulse.

10. A.N. Tikhonov and A.A. Samarskii, Equations of Mathematical Physics,
MacMillan, New York, 1963, pp. u4b6l1-u65.
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To evaluate the integral in (6.35) we place the 2-axis along the
direction of the propagation of the laser beam and we introduce cylin-

drical coordinates R, ¢, and z. Assuming circular symmetry, we obtain

readily
A dg
$(P,t) = [ . (6.36)
uml G £2r(z_c)2

where the region of integration is confined to such values of [ for
which 0 < t - r/c < 1, or equivalently

t -1<r/cst. (6.37)
Equation (6.36) is an aprroximation valid when the distance R from the
center of the laser beam is much larger than the diameter of the laser
beam, i.e. when one may replace (x-£)2 + (y-n)? by x2 + y2 = R? for
every point (£,n,g) within the laser beam. We introduce the new variable

¢' = 2z-t, then equation (6.36) becomes

o(R,t) = A A (6.38)

Mnrl G ﬁz*c,z

where the range of integration over ' is adjusted to be consistent with
(6.37). This consistency means that

c2(t-1)2 - R? <« '2 ¢ c2t?2 - RZ, (6.39)

The integration in (6.38) is <ymmetric ~tcut ' = 0, therefore we

write
A e ag!
B(R\t) = e [ o (6.40)
2nrl i) ﬁi:sz

where My and u, are non-negative limits consistent with (6.39). We can
now distinguish three regions:

a) When R > ct, the disturbance has not reached the observer,
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u2 = 0Oand ¢ = 0,

b) When ct > R > ¢(t-1), the head of the disturbance has reached
the observer, but its tail has not. lu this case uy = 0, Mo # 0

and

6 = 5 A log ctwcitE-R2 . (6.41)
LS R

c) When R ¢ c(t-7), the tail of the disturbance has begun to reach

the observer. In this caseu 4 0and v % 0 and

¢ = 5;%— {log (ct+/c2t2-RZ) - log [c(t-1) + ve2(t-1)2-r7} (6.u2)
1

It is convenient to introduce the variable R' = R/c and to write

¢ in the following forms:

2 pr2
A lof t+/t2-R (6.43)

R'.,t) =
¢(c ) Znt, P R' ’

for t-1 < R' < t, and
¢(cR',t) = ﬁ’:— {log (t+/t2-R'2) - log [t-t+/(t-1)2-R'2]} (6.44)
1

for R' < t - t. The graph of ¢ as a function of the variable t is sketched
in Figure 1 for two different values of R'. The spectral distribution of
the function ¢ is clearly not the same as that of the source. The function
¢ is not a square wave. Its shape depends on the distance R'. It is ex-
pected intuitively that an observer near the z-axis would observe something
more resembling a square wave than an observer located farther away in a
region where the sharp corners of the excitation function are washed out.

The spectral distribution is calculated as follows:
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The time derivative of ¢ has a very simple form. In fact,
6t = 320 for R > t,

= A __ L _ for t > R' > t-1, (6.u5)

211y Yti-R'2

ot

for t-1 > F

- A 1 R
?"Tl[vftz—‘l"z 2/(t-1)2-R'2]

The following equation is well known:

0 for a < b,
/ Jo(bx) sin axdx = (6.46)
o

ln_m= for a > b.
/aZ_b?
Replacing b by R' and a bv t we have
@

[ 9, (R'x) sin txdx = 0 (6.47)
e

for O t < R'. We shall restrict our observations to the region R > 1,
which is the region of the space outside of the cylinder reached by the
leading edge at the disturbance when the pulse ends. We integrate (6.47)

fromt = 0 to t = 1 < R' and obtain

“J,(R'%)
f 3——::»(1 - cos 1x) dx = 0, (6.u8)

o X
From (6.45) and (6.46) ve find that ¢' may be written as follows

-] -

3 . _A / Jo(R'x) sin txdx - [ Jo(R'x) sin (t-T)xdx|. (6.49)
at  2mry | o o

Inteprate according to t from t = 0 to t = s and note that ¢(cR',0) = 0.
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Then
A (t-1) |°
¢(cR's) = —— [ U (R'x) [SSif-T)x  cos ‘XJ dx (6.50)
2n1, X x o
(9]
Although J (R'x) €05 _SX is not integrable from 0 to =, the intepral in
X

(6.50) is convergent because the expression in the brackets is

cos (s-1)x -1 . 1 - cos % . 1 - cos sx
X X X

and the prcduct of each of these functions witr /! (R'x) is inteprable.

In fact the middle term contributes noihing (sc. eq. 6.48). Then

« Jo(R"x)

_ A
¢(cR',s) = — /

4

[cos (s-1)>» cos sx]) dx. (6.51)

Hence. using ar elemen:ary trigonometric identitv, we get

“Jo(R!
¢(cR',s) = i%h f Ji&;—il sin if-sin (s-%\x dx. (5.52)
1o

Now iet t = s - % and X = w, then

A% Jo(R'w)

J

sin 2% sin wt duw. (6.53)

' Ty .
¢(CR ,t*i) - . 2

'ﬂ!l

We have represented ¢(cR',t+%) as a Fourier interral. The Fourier sine

transform of ¢ is thus

olw) = Mg (R'y) Sin w/2 (6.54)
n 1 o w

Here we define the sine traasform by the relations

F(w) = % [ f£(t) sin ot dt, and f(t) = [ F(w) sin wt du.
(o]
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The spectral density of ¢(cR',t) is therefore

9 2
#()? = J2(r) (i Ul (6.55)
° ] B O
1
It is shown by elementary calculations that the spectral density function

of a square wave of unit amplitude and of duration t is

¢5(w)? = (%)2 (§12_21£Z) . (6.56)

w

Comparison of (6.55) and (6.56) shows that in our problem the spectrum of
the square wave gets distorted by the factor J (R'w). The distortion is
small near the source where J, ~ 1. For R'w ~ 2.4, however, J, = 0. This
means that at a given distance K the frequency for which R = 2.4c will be
missing. Other missing frequencies correspond to other zeros of J,. The
reduction in the spectral intensity due to the .J (k'w) factor can be cal-
culated from the followinp table which pives the reduction from the inten-
=ity of a square pulse. The entry item of the table is the product Rv in

cm times cycles per second. Assumed velocity ¢ = 3.3 x 10" cm/sec.

vR(cm/sec) £00 1000 1500 2000 2500 3000 3500 4000 4500

g2 (ZI!&) 0.996 0.980 0.960 0.929 0.891 0.846 0.79% 0.741 0.680
c

It is clear that only for large distances or high frequencies will
the Bessel factor affect significantly the spectral distribution of the
energy. The main determining factor at small distances and moderate
frequencies is the spectral distribution of the pulse. This distribution
is characterized by the function

. 2
sin 9T

wT

2
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which is well known from the theory of diffraction. It is sketched ir Fi;.
6.2. The largest part of the energy is contained in the spectrum region
between 0 and wt = 2n. Thus, in terms of frequency, the interval 0 < v < 1/1
contains most of the energy. Moreover, it is manifest from Fip. 6.2 that the
spectral distribution is rather flat in the region in whi~h nost of the
energy is contained. A pulse of this type is not suitable as a source for

a signal which is to be detected by a narrow-band detector.

The question arises, what happens when a pulse of the type described is
repeated periodically at equal time intervals p. In this case the Fourier
integral is replaced by a Fourier series and the continuous spectral distri-
bution shown in Fig. 6.2 is replaced by a discrete spectrum consisting of
equidistant lines with the ceparation Av = 1/p. The relation of this dis-
crete spectrum to the continuous spectrum of the non-periodic (single pulse)
case is illustrated in Fig. 6.3. Again the energy is generally broadly dis-
tributed and only for p ~ 2t does a significant spectral concentration of

energy take place.

Note: It is possible to remove the restri 'ion that the observation
should be confined to the region R' > 1. This assumption was made following
equation (6.47). In the general case we cannot assert that the left hand
side of equation (6.48) is zero, but we can assert that it is a function of
R' and t alone. Let it be denoted by y(R',1). Then we can carry out the
calculations that lead to equations (6.52) and (6.53) provided we replace
¢(cR',s) by ¢(¢R',s) + y(R',1), where the function y is independent of t.
Consequently the spectrum of ¢(cR',t) will be the same as before since the

time independent term can not affect ¢(w) for w # 0.
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Fipure 6.1.
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Figure 6.2, The spectral density function of 4 square pulse.

- 4] -



T\c}(w)\;

PN o I I B O \L gL ‘\n"-‘l\" | >

- 27 0 & 2n w
T F a2

Figure 6.3. Fourier analysis of a square pulse of length T repeated periodically
at intervals p.
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7. The Acoustic Problem in a Confined Region.

In the preceeding section we analyzed the generation of a sound pulse
from the thermal energy deposited in a gas by laser pulses. No boundary
conditions were imposed, thus implying that the gas was not confined. If
the gas were not confined, or if the confining walls were far removed from
the path of the beam, acoustic energy would radiate in all directions. The
intensity of the acoustic signal would then decrease as the reciprocal of
the distance from the center line of the generating beam. The detection or
measurement of such a signal depends to a large extent on the experimental
arrangement used to concentrate a significant fraction of the signal gener-
ated on a suitable detector capable of converting the incident acoustic
signal into an electric signal. It would require a rather sophisticated,
well-designed system to utilize as much as 20% of the generated acoustic
energy. Even if much of the energy radiated out is concentrated on the
detector, by means of reflectors, for example, a serious degradation of
the detec%or system will result from the fact that the generated signal

has a rather broad spectral distribution.

Now we shall examine the generation of sound in a confined system, a
cylinder concentric with the laser beam. It is expected that in such a
system the efficiency of the utilization of the sound generated will be

higher, and one might hope to make use or the resonances of the confining
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tube to enhance detection. The following questions are worth examining:
1. How does the confining tube affect the generation and propagation
of the sound wave?
2. Is it possible to enhance the measurement of the sound wave gener-

ated by proper choice of the geometry of the confining vessel?

The starting point of the analysis is the differential equation (6.30)

2
v2¢ - 1 3%¢ - . g(x,y,2,t) (7.1)
c? 3t?

with the initial conditions

¢(x,y,z,0) = 0; ¢ (xyy,2,0) = 0. (7.2)

The meaning of the variables was explained in section £, where it was also
noted that g is zero except in the part of the space swept out by the laser
beam. In this cylindrical region, g has a constant value during the time
interval 0 < t < 1; it is O when t > 1. We shall simplify the computations
by normalizing g so that is has the values 0 and 1. Since g has the dimen-
sion of reciprocal time, it is more correct to say that we set the peak

value of g at 1 sec”!,

The presence of the walls of the tube requires the introduction of a
boundary condition which expresses the fact the normal component of the
fluid velocity at the walls is zero. This means

n-v¢ = 0. (7.3)
at all boundaries. We shall seek a solution of (7.1) in the region
x2 + y2 s b2 for t 2 0. A useful technique for the solution of such a
problem is the eigenfunction expansion. This technique relies on the deter-

mination first of the simple harmonic solutions of the homogeneous equation
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obtained from (7.1) with g = 0. It is well known that, if we set

¢ = e-lut v(x,v,z), (7.4)
then ¢ satisfies the homogenzcus Helmholtz equation

v2y 4+ k" = 0 (7.5)
which is obtained from (7.1) by setting g = O, substituting (7.4) and
k = w/c. It is also known that, given a finite region ¥ and given
homogeneous boundary conditions, non-vanishing solutions of (7.4) are
possihle only for a discrete set of values of k, called the eigenvalues
of (7.4) and that solutions corresponding to different eigenvalues are

orthogonal to each other in the sense

[w, v,* dv=o0, (7.6)

whenever k, # k,. Following standard practices in mathematical physics,

we obtain an ascending, infinite sequence of eigenvalues

k., <k

P

ik f_'°'9 (7.7)

2 3

and a corresponding sequence of orthogonal and dimensionless eipenfunctions
Uy Yoo oo
so normalized that they satisfy the relations

[ v w? dv = 6.V, (7.8)

where dv = dx dy dz and integration is over the entire volume V of region
¥ . It is known that the sequence of such functions is complete for equa-
tions of the type we are considering and that a well-behaved function of

X, ¥, 2 is expandable in the region R in terms of these eigenfunctions.
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Convergerce in the mean is assured by the standard theorems of functional

analysis.

With these preliminaries we can reduce the solution of our original
problem to the calculation of the excitation of an infinite number of

oscillators by a given excitinp force. We write

Z un(t)wn(x,y.z). (7.9)

©
n

) gty (x.y,2). (7.10)

Jya
]}

The coefficients uﬁ(t) and gn(t) are calculated as follows:

v [ e * dv, (7.11)

¥n
Vg, = i g¥n® dv. (7.12)

The differential equation (7.1) then requires that

Un' + Wp" ¥p T Bp (7.13)
for n = 1,2,3, ***. Since the gn's are calculable from (7.12), the solu-
tion of the complete problem now reduces to the determination of the ex-
citations of the harmonic oscillators whose equations are given above.

The excitations depend on the characteristic frequencies of these oscillators,

wys and on the functions g (t).

The total energy fed into the n-th oscillater is proportional to

[ len(t)]|2dt
o

and to another factor which represents the response of the n-th oscillator

to a normalized exciting force. This response factor depends on w, and on
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the time dependence of the exciting force n- (It is to be noted that &n

has the sane dimersion as g, which is not that of force. At the same time,

the dimension of Y is that of ¢.)

In principle the calculations require the solution of infinitely many

differential equations of the form (7.13) for very general functions gg(t)

on their right side. Practically the situation is much simplified because
the physically relevant part of the solution may be obtained by solving
only one or a few equations of the type described. There are two main
reasons for this simplification. First, in a situation with some degree

of symmetry many of the functions g,(t) are identically zero, because the
spatial part of the excitation function is orthogonal to many y,'s. Second,
the sequence k), ko, *°* increases rather rapidly and consequently only a
few of the harmonic oscillators which are described by equation (7.13) have
resonant frequencies in the region in which f has a significant harmonic

component .

We shall return to the theory after exhibiting some of the well-known
eigenvalues and eigenfunctions appropriate for sound propagation in a long

circular cylinder.

The eigenfunctions appropriate for a right circular cylinder of
length L and radius b are the non-vanishing solutions of equation (7.5)

which satisfy the boundary conditions

¥ - 0forr=b, and &Y = 0 for z = + L/2.
or 0z =

After separating equation (7.5) in cylindrical coordinates, one obtains
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solutions of the form

v, = eind Jn(/kz-th) cos hz (7.14)
and
v, = eind Jn(fgi-hzr) sin hz, (7.15;

where the subscript s denotes a function symmetric for the reversal

of the z-axis, while subscript a denotes an antisymmetric function. Jn is
the Bessel function of order n, where n must be an integer to insure unique-
ness of the solution. These functions are not yet normalized. We note that
if the cylinder contained one or more septum; i.e. a boundary plane contain-
ing the cylinder axis, then n need not be an integer. We shall avoid this

situation.

The possible values of h are determined by the boundary conditions
at the cylinder ends. These require that, for symmetric functions sin

hL/2 = 0; i.e.

hl = 2&8n/Ly £ = 0,1,2,--+, (7.16)
For antisymmetric functions cos hL/2 = 0; i.e.
hl = (22 + 1)n/L; £ = 0,1 2,---, (7.17)

Boundary conditions on the cylinder surface r = b require that

J.' (/k2h?p) = o. (7.18)

n
Therefore k can only have such values for which the number x = AZ-nlp

is a solution of the equation Jn'(y) = 0, For each index n, the deriva-
tive of the n-th order Bessel function has an infinite number of discrete

positive roots. We write these in ascending order as Xpms ™ = V2000

The eigenvalues of the differential equation (7.5) consistent with the
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boundary conditions described above are calculated from the equations

(k?

s h2)R2 = o2
nm{ hl)b X

im0 0,l,-+v5m=1,2,++., (7.19)

where hl are the numbers determined from (7.16) and (7.17). The symmetric

eigenfunctions are

Yerme = eind Jn(xnmr/b) cos h,z, (7.20)

while the antisymmetric eigenfunctions are

Vg * eind J_(x, r/b) sin hyz. (7.21)

Of the triple infinity of eigenfunctions (or oscillation modes) given in
(7.20) and (7.21), certain types are of particular interest to us. Only
£ = 0 produces 2z-independent eigenfunctions. These are called transverse

modes. Their equations are

- oiNB
wsnm e Jn(xnmr/b)- (7.22)

Modes which have rotational symmetry about the z-axis are all of the form

278

wsoml = Jo(xomr/b) cos —E—z (7.23)
and
- . . (2241)n
Yoome © Jo(xomr/u) sin -—_Ef__z (7.24)

The first few roo*s of Jo'(r) = 0 are 3.832, 7.016, 10.173, 13.324,

Those of J,'(r) = C are 1.841, 5.330, etc.!!

Let us now calculate the excitation of a cylindrical resonator with

a force function that depends only on r and t: i.e. which is independent

11. See Ref. 8.
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of 6 and z. In this case every integral of the type

n
glr,t) Jn(xnmr/b)eine rdrd@

0 U
0 =N

vanishes for n § 0, leaving only the eigenfunctions with n = 0 to interact
with g. Similarly the integrals over z involving the product of g with
sin hyz and cos hyz will vanish except for cos 0z. Thus, when evaluating
the expansion of g(r,t) in terms of the eigenfunctions of the problem,
only the symmetric eigenfunctions with n = 0 and £ = 0 need to be consid-
ered. The relevant eigenfunctions are Jo(x°mr/b). Their normalization

factor is calculated from the standard formulal?

b
\ 2 = 1,2 2
£ (3, (x qt/b)]?rdr = > b 09, (xp )12 (7.25)

valid for every xon, for which J,'(xgm) = 0. The normalized functions are

Vo = I (xgn /D) /g (x ) (7.26)

m

When the excitation is of unit magnitude in a small cylinder of radius a
centered around the polar axis and lasts fromt = 0 to t = 1, we have from

(7.12) and (7.26)

a
2nL
v = J b)rdrf 5 7.27
gm(t) m£ (xomr/ J)rdrf(t) ( )

where f(1) = 1 sec™ for 0 < t < T,and 0 for t > t. For small values of

a we may replace Jo(xomr/b) by 1 and obtain the approximation

(t) = ¥ f(t) , (7.28)
Em v Jozxomj

where v = a?rL is the volume swept out by the laser beam.

/

12. Ref. 8, p.9l.
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The next problem is to deal with a set of harmonic oscillators with
pulse excitation. Before losses in the oscillators are considered, their

equations have the form

1 2 -
' o+ ow Uy T B (7.29)
where g is given in (7.28). The characteristic frequencies are
Wy = Xom</b-. (7.30)

Taking ¢ = 3.3 x 10" cm/sec, we get for the lowest symmetric transverse

frequency (corresponding to Xg, = 3.832)

_ 2.0x10"% ,

\)l 5

and for the next lowest
v, = 3.66x10%
2 b
where b is in em, v in sec” . Thus the lowest such frequency for a tube
10 cm in diameter is 4000 sec~!, the next 7330 sec™!. A small tube of 1

cm diameter would require acoustic frequencies which are prohibitively

high.

Generally the oscillators will have a certain loss rate associated
with them., Losses are not only unavoidable but necessary when the res-
onator is a part cf a system used for measurement, because measurement
consists of converting a part of the acoustic disturbance into an elec-
tric signal. Thus a resonator will have an output which constitutes the
measured signal, or else the energy is communicated to another frequency-

sensitive device, the detector, which converts it to an electric signal.
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In any case, we are intercsted in devices which subject the disturbance
to a harmonic analysis. The noise discriminating property of the detecting
system improves as its bandwidta is restricted. Unfortunately, as we shall

see, narrowing the bandwidth drastically reduces the signal.

For the sake of simplicity, let us assume that the d~tector is the
cavity itself, that is, we do away mentally with a second tuned device to
which the cavity may be coupled. If there is such a separate device, the
detected signal will be less because some of the energy will not be trans-
ferred and new sources of noise will be Introduced. We thus have a sequence
of oscillators with an output and we concentrate on the one with the Jowest
frequency. When the effects of oscillator loss (energy conversion) are in-
corporated in the equations of the harmonic oscillators, we obtain for the
oscillator of the lowest frequency13

' o+ Ap' o+ wfu = g (t). (7.31)

The quantity A has the divnension of reciprocal time. Let W denote the

energy stored in the free running harmonic oscillator. It is known that

p = ¥ -1 (7.32)

One can readily show the following: When g is a sinusoidal function
of time, the excitation of the oscillator is significant only if the fre-
quency of the exciting force is nearly equal to that of the free-running
oscillator. Then by means of Fourier analysis one concludes that in the

case of a general time-dependent force, the excitation of the oscillator

15. P.M. Morse, Vibration and Sound, McGraw-Hill, New York, 1948, Ch. II.
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depends largely ou the harmonic component of the exciting force which lies
near v, . After a short calculation one finds that the average energy of

the oscillator is approximately

G(Vl)|2
wa L oU?
% 24

(7.33)

where G(v) is the Fourier transform of the exciting function g(t) and

v, = wl/2n. The power output of such an oscillator is

dw _ 1
3t AW ~ -2—|G(Vl)|2 (7.34)

Only part of this is useful power output in the detector, but this brings

in only a factor of about one-half, which is not significant. The important
matter is that the rate at which power is absorbed by the oscillators is
proportional to the Fourier transform of the excitation function at the

resonant frequencies of the oscillators.

The effect of the confining tube is that the acoustic signal generated
within it is resolved into its spectral components according to the resonant
frequencies of the cavity. As we have seen in section 6, the power spec-
trum of a single pulse of duration 1 is rather broad, most of the energy is
in the spectral interval 0 to 1/t1. Periodic repetition of the pulse pro-
duces a spectral distribution of the acoustic energy among the harmonics of

the repetition frequency in the manner illustrated in Fig. 6.3.

In order tc obtain good utilization of the acoustic energy generated,
the experiment should be so designed that a large fraction of the acoustic
energy generated by the source is concentrated in the frequency region cap-

able of exciting a single selected cavity resonance because the detector
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will only be coupled to one resonance. Such concentration of the acoustic
energy is not easily achieved. With a single pulse it is just about hope-
less to obtain success in this manner. With pulses repeated at the rate of
a resonant frequency of the cavity, the situation is better, but reason-
able cavity dimensions require rather high pulse repetition frequencies.

We calculated that the lowest resonance of a cylindrical cavity of 10 cm
diameter is at 4000 Hz, therefore we would have to operate with the laser
pulses shorter than 0.1 msec repeated 4000 times per second. The success
of the scheme of this type depends not only on the conctruction of a power-
ful laser with appropriate pulsing mechanism but also on the construction
of o highly sensitive acoustic detector coupled with the proper mode of

oscillation of a cylinder.

8. Interferometer Method.

It is plausible to contemplate a two laser experiment in which one
high intensity laser pulse heats the air and the second probe laser beam
travels the same path which is a branch of an interferometer.!* Then the
heating effect produced by the intense laser pulse would cause a shift in
the interference pattern of the probe beam due to a change in the optical
path length of one of the branches of the interferometer. See Figure 8.1.
The absorption chamber ray be evacuated to determine the effect of the in-
tense laser pulse on the end windows; or, if measurements are to be made

in the atmosphere, the end windows may be removed.

I+ Q is the energy transmitted in the intense pulse of cross sectional

14. Longaker and Litvak: Refractive Index Changes in Absorbing Media by
a Pulsed Laser Beam. Bull. Am. Phys. Soc. 11, No. 1, 129, 1966,
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area A, then the energy balance over a unit length of the gas traversed

by the intense pulse gives:

Qa = ApJ'cPGT,
where c is the specific heat of the gas at constant pressure
J' = 4,19 joules/cal.
8T is the increase in temperature of the gas.
Hence

=2_¢
§T i 3TEE; S
The temperature increase 6T produces = density change §p. In the case of

an ideal gas, where the temperature change is assumed to take place quickly

enough to occur at constant pressure,

: o.

HIS
‘ol_g.

The change of density causes a change in the refractive index according to

the relation,

n-1 _

p_ »
no-l Po

where n is the refractive index of the gas at the frequency of the probe

laser beam.
From these relations it follows that

én = (n-1) $o - . (n-1) $T 5
P T

or

. _(n-1) _Qa
6n = T Ad'pc
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Now if L is the length of the absorption chamber, the change in optical
path length for the probe, or monitor, laser beam is L én, which will be a
certain fraction, F, of its wave length. Hence,

L én = FA,

and one has

=L (n-1)e L
F=3 (n-1)a ATToegT °

The minimum value of a which can be detected depends upon how small a value

of F one can measure for a given value of the other physical quantities in

the experiment.

20 joules/cmz, L =100ecm, A =5 x 10°5 cm,

For example, assuming Q/A

(n-1) = 3 x 10-“, T = 300°K, p = 1.3 x 10-3 gm/cm?, cp = 0.24 cal/gm °C,
one has F = 3 x 10" a.

If one can measure a path length change, or phase shift, of a thousandth of
a wave length (F = 0.001), one can then detect a of 3 x 10-8 cm~!. oOne can
increase the energy and path length to perhaps detect an a of an order of

magnitude less. But a phase change of a thousandth of a wave length is dif-

ficult to measure by methods usually associated with interferometry.

In order to measure extremely small phase shifts, of the order of
A/1000, or possibly smaller, the second branch of the interferometer probe
laser beam is also varied in optical path length, but at a frequency of the
order of 10° Hz.1% This may be accomplished by the insertion of a crystal-
line Kerr Cell in the optical path, or by making one mirror a Piezo-electric

crystal, either one driven by a 105 Hz. oscillator. The interference pattern

15. P.H. Lee and Skolnick: "A Phase Comparison Optical Discriminator",
IEEE J. Quantum Electronics, QE-2, No. 12, p. 784-785, 1966.
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is detected by a photomultiplier tube whose output will be the 10° Hz.
signal caused by the driven crystal. This is fed into a synchronous de-
tector, together with a signal directly from the 105 Hz. oscillator.

Now a servo-mechanism is used to apply a variaoie high D-C voltage to the
crystal in order to further vary the optical path of the second bran:h in
the sawe amount that the intense laser pulse varies the optical path of
the first branch, thus keeping the time average optical path of the second
branch equal to the optical path of the first. See Figure 8.2. The inter-
ference pattern is then kept in phase, ard the D-C servo-voltage required
to do this is proportional to the phase shift that would otherwise occur.

Hence the small phase shift is converted into a measurable voltage.

The limitations here are determined by the constancy in optical path
one can achieve by carefully constructing the interferometer and by the
homogeneity of the wave fronts in the first branch through which the in-
tense laser is pulsed. A detectivity of a down to the order of 10~%/cm
should be achievable under favorable conditions. This appears as the most
promising &lternate vo the spectrophone, especially for intense laser
pulses at frequencies where scattering is appreciable. Smaller values of
a might be detectable by measuring effects over long ranges, as might be

possible in a mile long tube.
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9. The Absorptivity Spectrophone and Measurement of a.

The absorptivity spectrophone, a practical, direct method for precise
measurement of weak uptical absorptivity in gases, especially for wave
lengths at which scattering is not significant, has been designed by Edwin
L. Kerr and John G. Atwood.l® They used the spectrophone to measure the
absorption coefficient of the 9.6 micron line of a CW CO, laser in mixtures
of COp - No. At 300 ppm CO, in N,, the standard concentration of CO, in
air at sea level, the absorptivity reported was 5.8 x 10~7 cm-!.(16)

The same equipment, the theory of which has been discussed in Section 3,
was used by us in an attempt to measure the absorption coefficient of the
10.6 micron line of a CW CO, laser in the actual atmosphere. At 2u° + 1° C
with a relative humidity of (70 + 5)% and an unknown amount of air pollu-
tants present in the air in the Western San Fernando Valley, the measured
value of the atmospheric absorption coefficient is (1.0 + 0.2) x 1076 em=!.
Time and experinental difficulties did not permit the accomplishment of a
more ambitious goal, that of measuring a in controlled, known mixtures of
Ng = Oy - COp - HoO0 while simultaneously monitoring the spectral distribu-

tion of the laser beam,

The spectrophone measures absorptivity by sensing the thermal expan-
sion of a confined sample of gas. A complete description of the device is
contained in the Perkin-Elmer Report{16). oOnly a brief description is con-
tained here. The laser was made in house, except for the pyrex tube which
was loaned to us by a prominent manufacturer of same. The length is 0.7

meters with an inside diameter of G.5 inches. Using one plane and one

16. Earl L. Sloan and Edwin L. Kerr, Perkin-Elmer Corporation Report No.
8884, Absorption of Light, 31 July 1967,
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spherical mirror, it supplied an output of just urder one watt duping the
expariments while excited by a D-~C voltage of 12,000 and containing the
following (closed) gas mixture:

1.0 Tor: CO,, 2.5 Torr N2, 11.0 Torr He, 0.2 Torr H,0.

The spectral distribution is dependent wpon many factors, including proper
alignment of the end mirrors. Spectral measurements were not made simul-
vaneously with atmospheric absorption. Hence all that can be said is that
measurements iade at different times, when the laser is tuned for maximum
power, as during the experiments, indicate that the laser power is almost
entirely at 10.6 microns. Laser power was measured with a Korad Model K-PM

Power Meter.

The absorptivity measurements were made by detecting the pressure rise
in a gas sample chamber while the CW CO, laser beam is passed through. The
sample chamber and pressure transducer were obtained from the Perkin-Elmer
group, where they were used for similar measurements. The sample chamber
is aluminum, 2 em I.D.,, 10 em 0.D., 20 cm path length, 4.2 kg mass, and
has 5mm KBr windows at Brewster's angle. The chamber is massive to iunsure
a uniform constant temperature. Thermal and acoustic shielding is provided
by &n outer cylindrical aluminum tank which is sealed. The laser beam power
was monitored by a Korad K-PM power meter. The pressure rise was measured
by an MKS Baratron pressure transducer with a minimum resolvable differential
of 10-5 mm Hg. or 10-% atm. A steady state temperature distribution is
reached in a few tenths of a second after the shutter opens; to allow the beam

to shine through the chamber.

As derived in Section 3, with the simplifying assumption of a perfectly




defined cyiindrical beam, the pressure rise is:

dp = :::‘:: (1 - 2::) (3.10)
where P, = initial pressure
T, = initial temperature
a = linear absorption coefficient

W = beam power

x
"

thermal conductivity of gas in sample chamber
J = 0.239 cal/joule

beam radius

b

sample chamber radius.

In actual practice, the power density of the laser Leam is approximately a

Gaussian distribution, with the intensity given bv:

2 /2
W e pe/w
YUnw

I(p) =

where w = half beam width at e”! points, p = distance from axis. With this

- 2
refinement, the quantity in parenthesis (1 - _25) is replaced by 16
2b

we

w2 b2 -b2 /w2 w?
- - = 1 o .
(1 b1- + (i;!- 5;2-) e ] ( b1-) for w <)

The reproducibility of measurement of the pressure rise, dP, was of the
order of 10%, hence a precise measurement of w is unnecessary, as

2
(1 - %50 = 0,98 + 0.01 in our experiment.

The absorption chamber was baked out at temperatures in excess of 100°C
purged with dry nitrogen severali times to attempt to rid the KBr windows of

contaminants, but enough remained to give an equivalent absorptivity of

=




e et g -~ A oS e A g - A . oy — ot

10-7 em-! with dry N2 at atmospheric pressure in the cell. The N2 was
evacuated and air was admitted to the cell, and absorptivity measurements
vwere made on several days -- all of which were midly smoggy. With the
consistent weather in the Western San Fernando Valley, the climate con-
ditions were similar on all days. Temperature (24 + 1)°C. Pressure

740 + 5 mm Hg. Relative humidity (70 + 5)%. Very mild smog conditions.

Under these conditions the measured vzlue of a = (1.0 + 0.2) x 10-6 em-1,

10. Conclusions.

The following conclusions were reached concerning the measurement of
the absorption of radiation in air for wave length regions where a < 10-8
cm-!:

1. It is probably possible to make absorption measurements in air
using a steady laser beam and noting the static pressure (n-
crease in a sealed tube if the following conditions can be met:
a) The tube 13 long enough to render the end effects negligible.
b) The heating effect of the scattered light is eliminated.
c¢) The temperature of the confining tube is maintained constant

to within 107" °oC,

2. The static pressure rise due to a single laser pulse can probably
not be measured if a is as low as 10-? cm-l,

3. The measurement of the acoustic wave generated by a single laser
pulse depends on the 1ssing of the acoustic wave and on an
extremely sensitive broad-band detector. It is doubtful that

this can be achieved.
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4. The mecsurement of the acoustic signal generated by periodically
repeated pulses, whose repetition frequency is matched to that
of a resonant cavity, is a possibility tha: should be investigated
further.

5. By use of a phase comparison optical discriminator described in
Section 8, values of a in the range 10-8 to 10-2 em probably can
be measured Ly interferometric methods.

The situation in the wave length region around 10 microns is quite different
from that investigated here. First, Rayleigh scattering is no onger a
limiting factor. Second, the absorption in air is considerably higher at

10 microns than it is in certain parts of the visibl~ region. Hence several
of the contemplated methods would work. The absorptivity spectrophone was
used to measure a in air for the 10.6u COp laser line. a = (1.0 + 0.2)

x 10-6 em-1.
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