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ANALYTICAL STUDIES PERTAINING TO THE MEASUREMENT OF  LIGHT 

ABSORPTION  IN AIR 

Bela A.  Lengyel and R.  J.  Romapnoli 

San Fernando Valley State College 

ABSTPACT 

Experimental methods proposed for the measurement of thfl absorption 

coefficient of light in air are analyzed.  The calculations are primarily 

intended for the wavelength regions where, for certain wavelengths, the 

absorption coefficient to be measured is estimated to be of the order 

of 10"9 cm-1.  The effects of scattering, heat conduction, scatic and 

acoustic pressure variations are examined and are related to the problem 

of detecting the signals produced by the absorption of heat from the 

laser beam.  Both pulsed and cw schemes are considered. The measurement 

of the static pressure rise in a narrow tube appears as a feasible, al- 

though marginal methoo which offers some hope of success. An interfer- 

ometer scheme also appears feasible.  Finally, the linear absorption 

coefficient for the 10.6u wavelength CO2 laser beam has been measured 

in air. 
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1.  INTRODUCTION 

Propagation of light at very high intensities produces changes in the 

properties of the medidtn through which the light propigates. These changes 

in the medium in turn affect the propagation of th" beam. Such effects have 

been observed in liquids and gases and also take place in the atmosphere if 

laser beams of sufficiently high intensity were caused to pass.a The laser 

beam would be defocused by the refractive index gradient produced in the 

atmosphere by the absorption of energy from the beam. The work of Brueckner 

goes beyond this first order effect and treats the combined thermodynamic, 

mechanical, and optical instability resulting from the interdependence of 

density distribution, temperature and ray path. In this report concern is 

primarily with the linear absorption coefficient of the atmosphere for high 

intensity laser beams of various frequencies, and, in this section, with the 

first order effect of defocusinp  Hence a review of the principles involved 

in determining beam spread is presented here. 

When thermal energy is deposited in the atmosphere (assumed to be an 

ideal gas) by absorption from a laser beam, the resulting effects on pressure, 

temperature, density, and molecular velocity are determined by:  (1) the iüeal 

gas laws,  (2) the equation of continuity,  (3) Newton's second law of motion, 

and ("O conservation of energy. These effects are derived in many stardard 

texts.  applying the law of conservation of energy, one obtains the energy 

a.  K.A. Brueckner:  I.D.A. Laser Summer Study, 1963, or I.D.A. Research 
Paper P-U2.  Report on Laser Summer Study, The Inst. for Radiation Physics 
and Aerodynamics. U.C.S.D., Aug. 1965. 

b'  Knudsen 6 Katz:  FLUID DYNAMICS AND HEAT TRANSFER, McGraw Hill, 1958. 
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balance equation for  ideal gases  (Eq.  2-55 of Knudsen and Katz): 

oC  *1 =  K72T + ^£ + q'  + ♦, (1.1) 
P dt dt 

where p    = mass oensity 

T    = absolute temperature 

Cy = heat capacity at constant volume 

Cp = heat capacity at constant pressure 

t    = time 

P    = pressure 

y  = c^/c; 

K    = the'mal conductivity 

*    - viscous dissipation function 

q'  = rate of heat  generation in gas per unit volume. 

Assuming K and * negligible, and 

q'  = «I, 

where  .       a    = linear absorption coefficient of the atmosphere (ideal gas) 

for the  laser beam, 

I    =  intensity  (power per unit area)  of the  laser beam, 

then equation (l.l) becomes, 

,  dT      dP 

For an ideal gas 

Hence, 

PC^-JL. ,...!. (1.2) 

C^ - C^ = Sj. (1.3) 

C„ (Y - l)dI = l*P  -^ ^P.. (l.U) v dt  p dt   p^ dt 
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Substituting (1.1) into (1.2), one obtains a relationship independent of 

temperature as follows: 

PC 
P((C;(Y-I ) 

1 dP _ P dpi ]. dP . 

p  dt  p7 dtj j  dt 
ol 

Y-l   dt dt  p dt 
al (1.5) 

dP -l£dp. = (   j aI> 
dt  p dt 

Now make use of a relationship for the speed of sound in a gas, 

c23 a Yp/p, (1.6) 

'ind one obtains: 

t (P - c75p) = (y-l) al. 
dt 

(1.7) 

A concise treatment of the effects of density change on beam spread 

and instability has been developed by Brueckner.a His basic esnations 

are obtainable from (1.7) by takinp the Laplacian of both sides: 

dt 
(72p . c2v2p) = (Y.!) V2l0l> 

Now, using the equation of motion 

-VP = P ^ , 
dt 

the equation of continuity, 

-^=v.(ov), 

alonp, with the operator identity, 

d   3 — = -r- + v-7, 
dt  3t  

(1.8) 

(1.9) 

(1.10) 

(1.11) 



where v is the fluid velocity, one obtains an expression independent of 

pressure as follows: 

dt     dt  dt        dt 

= .LP + v.v -
3£ <, v.fv (Ifi ♦ v.vp)^ (i.i2) 

3tz   3t  _. - 3t  

= —-jr - p(2v)2 - v.7[2p7.v ■♦■ v-Vpl. 
3t "*      ~" 

For small pressure and density fluctuations, ne^lectinp gradients in v, 

one can linearize equation (1.12) by the appro".imation, 

3^ 

Hence the equation for density chanpe in a gas traversed by a lasar beam 

is: 

^ (|p - c2v2)p = (Y-D V2la. (1.13) 

If density changes occur slowly, so that 

320    ? ? 

TP ** co7 P' 

they may be approximated to occur at constant pressure, and eauaticns  (i.7) 

or (1.13) simplify to the following: 

*>  • -Ilk    la. (1.1U) 
31 c; 

Solutions of  (1.13)  and  (LIU) combined with  the eikonal equation have been 

obtained bv brueckner.3    Suffice it  here to obtain a very elementary solu- 

tion to (l.lt) to show how an initial first order effect of the spreading 

of an initially parallel  laser beam depends upon a. 
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where use is made of the expression found in elementary texts for the speed 

of sound in a gas: 

c2 = >R T = ^ (C 0  M     Cy  P 
cv' g ■ S1'-1' I- 

and, at constant pressure, 

dT .  do 
T    p ' 

Equation (1.16) is another form of (1.14): 

is. 
3t 

Y-l al. (1.1U) 

1 

Before  introducing geometrical optics,  it may be helpful to arrive at 

equation (1.1U) from even more elementary considerations.    At constant pres- 

sure the heat per unit volume absorbed from the laser beam by an ideal gas  is: 

}a.«*..=jJl pCp dT- 
M 

where 

Therefore, 

N    = number of moles 

M    = mass per mole 

Cp = molar specific heat at constant pressure 

Cv = molar specific heat at constant volume 

V = volume. 

al = i p ^1 = - i T ^ = - !L ^ 
M   dt    M   dt Y-l dt 

(1.15) 

(1.16) 

The angular ray deflection may be approximated from Snell's *aw, where 

L is the coordinate in the direction of propagation, and r is a transverse 

coordinate, as illustrated in Figure 1.1. 



e. '*: 

&   TL Je 

Tan 6  = dr/dL 

n sin 9' ■ constant = n cos 6 (1.17) 

figure 1.1. Ray Trace Illustrating Snell's Law 
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Differentiating Snell's law with respect to L, one obtains: 

0 = - n sin 6 ii + IE cos e 
3L  3L 

or. 

36 _ 1 3n ^_ „ . i 3n dL _ 1 3n /, 1D^ —_-—__ cot 9---—-—=—-— . (1.18) 
3L  n 3L       n 3L lr  n i? 

Variations in refractive index of air may be closely approximated by equation 

(1.19):c 

6n = 5£ in-l). (1.19) 
Po  0 

Hence (1.18) becomes, since n • 1, 

36  1_ np-l 8o  np-l 3p 
3l = n 0 ' 3r a p  3r • 11.20) 

o       o 

Now equation (1.11) may be integrated and substituted into (1.20): 

0 " po = " -^ a^t' 
co 

where I is the time average intensity. 

Hence, 

"..(^UCy.^lI. (1.21) dL p c*    dr 
o        ""O 

The change in intensity due to spreading of the beam may be approximated by: 

iI=iLT ._Io.2__ = . !k!oi . (1.22) 
3r      3r    0 [XL)]2 [r(L)l3 

Hence equation  (1.21)  becomes 

30      2(n0-l)(Y-l)aI0t r2 

£1 = — 0 -"'-—°Z^° _i__ = _JL_.. a 23) 
3L p0 c2 tr(L)]3      rr(L)l- 

c.  (Kuiper and Middlehurst:  TELESCOPLS, U. Chicago Press.) 
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where B is the constant so defined: 

2(nQ-l)(Y-l)orot r* 
B = 

Po co 
(I.?*) 

Equation (1.23) may be integrated easily, for f\  beam initially parallel, 

to determine the beam spread. From Fig. 1.1, 

tan 6 = ^- » 0, or dr « 6 dL. 

Substituting these relationships into 11.23), one obtains: 

de = L. dL = B_ dr . 
r3    r3 6 

Then, upon integration, one obtains; 

6       r 
i «2 e2 = J ede = B J dr s B ^ - L, 

Men-e, 
2     o        TQ r3  2 r2  r2 

drse sB^_^I , 
dL       r rÄ 

which may be integrated to give: 

r /X^J . f    rdr = B^t r 
»       'rs     /-5—5"  _ * ro /r2-r2  r0 o 

dL &  L 

(1.25) 

Hence it follows that the beam radius increases with distance according to 

to: 

[1 + ^L-fr (1.26) r = rr 

and the beam deflection or angle of spread is: 

or 

6 
J dfl 
o 

L 

0^ 

,3     L 
dL.iaj dL . & 

LL2+ r L2t^ 

(1.27) 
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Hence it is seen that to a first approximation the beam spread is propor- 

tional to B'i, and B is proportional to beam power, time, and a, the linear 

absorption coefficient.  It is therefore important that methods be avail- 

able to neasure va'.ues of a for various laser frequencies where high in- 

tensities are physically realizable. 



2a. Statement of the Purpose of the Report. 

It is of interest to know the amount of heat evolved in a material 

through which a laser beam is passir?. A parallel beam of light is attenu- 

ated as it passes through matter and this attenuation is mainly attributed 

to two effects: scattering and absorption. Scattering on material parti- 

cles results in the directional redistribution of the energy of the incident 

electromagnetic wave. Absorption results in the conversion of electromag- 

netic energy into other forms of energy. The energy lost by the electro- 

magnetic field is ultimately converted into heat. This means that, possibly 

through the intervention of processes of atomic and molecular excitation, 

the energy abstracted from the electromagnetic field is redistributed among 

the available degrees of freedom of the material (gas), so that it is ulti- 

mately undistinguishable from energy obtainable from contact with a heat 

reservoir. We shall assume that the atomic and molecular processes res- 

ponsible for the redistribution of energy among the available degrees of 

freedom take place so fast that at the scale at which we contemplate our 

observations the conversion of the absorbed energy into heat may be regarded 

as instantaneous. It should be noted that we are talking here about energy 

redistribution locally and not about its redistribution in space. The latter 

generally proceeds at a much slower rate. We shall thus proceed under the 

assumption that the energy absorbed from the electromagnetic field instantly 

appears at the site of absorption in the form of heat. Such an assumption is 

probably valid if our time resoltuion is no finer than 10~7 sec. 

The absorption of light in solids and liquids is usually significant 

enough so that a direct measurement of the absorption is not difficult. In 

10 



gases, such as pure air, the measurement of the absorption of Hght is very 

difficult, because the rate of absorption is small and in the visible region 

it is completely masked by the much larger effect of scattering.  The situ- 

ation is somewhat more favorable in th* infrared beyond 1.2 microns. 

The optical effects of scattering and absorption combine so that the 

intensity of a plane wave passing through matter is described by the equation 

I(x) = I0e-^ , (2>1) 

where the attenuation coefficient ß is the sum of two terms: 

6 = a + o. (2.2) 

Here o is the absorption coefficient, a the scattering coefficient and x is 

the direction of propagation. 

In the spectral region where the ratio a/a  is large, it is not feasible 

to determine a by measuring the attenuation of a light beain chrough matter. 

The value of a must thus be determined not by the change produced in the ra- 

diation but by the change produced in the absorbing matter. We already noted 

that the absorption of radiation results in an increase in the thermal energy 

of the absorbing matter, therefore we shall address ourselvea to problems 

pertinent to the detection and measurement of small quantities of thermal 

energy deposited in the path of a narrow light beam of the type that may be 

obtained from a laser. 

It has been estimated that for certain wavelengths in and around the 

visible region of the spectrum a is of the order of 10"9 cm"1.  Scattering 

in pure air, as calculated from Rayleigh's theory, produces a much higher 

attenuation.  For green light (0.5 microns), o = 1.7 x 10-7/cm  for air free 

of all contaminants. We reserve the quantitative data for the next section, 

but we note here, that around 10 microns the situation is quit«^ different. 

11 



First, significant and spectrally selective absorption is likely to be en- 

countered because of the presence of the molecular bands of the constituents 

of air in this region.  Second, Rayleigh scattering on molecules, which 

varies with the fourth power of the wavelength, is reduced to negligible 

values around 10 microns. 

This report contains calculations pertaining to thermal and acoustic 

effects expected as a result of the passage of a powerful laser beam through 

air.  The configurations examined are such which are likely to be chosen in 

experiments aimed at the determination of ot in the 0.5 to 1.2 micron spectral 

region. We have included here the analysis of the pressure change in a com- 

pletely enclosed cylinder whose walls are kept at a constant temperature, the 

calculation of the rate of dissipation of heat around a laser beam by means 

of thermal conduction, the generation of a quasi-static pressure increment, 

and an acoustic pulse by a laser pulse and some problems pertaining to the 

detection of an acoustic pulse or a sequence of acoustic pulses. The material 

as assembled here does not represent a complete investigation.  It is a group 

of exploratory calculations preliminary to the experimental determination of 

the absorption coefficient of light in air. 

2b.  Relevant Properties of Air. 

In this section we have collected such physical data concerning air that 

seem relevant for computations in later sections, or that may be needed in 

evaluating an experimental schemr. proposed for the measurement of the absorption 

coefficient a. 

Atmospheric air free of dust and other contaminations is a .lixture of 

gases, primarily N2, Oj, Ar, CO2 and water vapor.  Other gases are present in 
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•uch ■»all proportion« that their pr«s«nc« docs not noticeably affect the 

physical properties of air that are of concern to us. Of the gases listed 

here only the proportion of water vapor is variable. 

In what immediately follows we shall assume that we are dealing with 

clean, dry atmospheric air. By this substance we mean a gas tnixti're from 

which all water vapor has been removed and which contains the gases N2. üj, 

Ar and CO^ in the proportion as they are universally found in the atmosphere1. 

We note in particular that such air contains 0.033 percent COj by volume. 

Although this proportion seems small, it is well to remember that a relatively 

small amount of C02 or water vapor significantly affects the optical properties 

of air. 

It is customary to specify the physical properties of gases at standard 

temperature and pressure; i.e. at 0oC and 760 torr. At these conditions the 

properties of dry atmospheric air relevant to this study are as follows: 

Density: p0 = 1.293 x 10"
3g cm-3. 

Specific heats: Cp « G.2U0, cv « 0.172 cal g"
1 0C'1, 

Sound velocity: c0 = 3.31 x I0k  cm sec'1. 

Heat conductivity: K « 5.68 x lO"5 cal cm-1 sec-1 0C-1, 

Index of refraction for X  * 5000 A: a ■ 1.000294. 

At standard temperature and pressure the particle density of every ideal 

gas is L » 2.69 x 1019 cm-3. (Loschmid's number.) The variation of n - 1 

with wavelength (dispersion) has been studied and is tabulated for a tempera- 

ture of 150C, which must be a convenient laboratory temperature in Sweden. 

The following data applicable at lSeC are obtained from the work of Edl4n:2 

1. Handbook of Chemistry and Physics, 46th ed. p. F-116. 

2. B. Cdlin, The dispersion of standard air, J. Opt. Soc. Amer. M4, 339, 1953. 
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X(Angstroms)    5000   6000    7000   8000   9000   10000 

(n - 1) x iO1*   2.78   2.76    2.75   2.75   2.7U    2.7M 

At the more comfortable laboratory temperature of 20oC the follow!np 

data are applicable for 760 torr pressure: 

Density:  PJQ ■ 1.205 g cm-3, 

Sound velocity:  c20 = 3.UU x lO1* cm sec-1, 

Loschmid's number L = 2.51 x iO19 cm-3. 

The value of n - 1 varies from 2.73 x 10-'' at 5000 A to 2.69 x l0-k  at loono A, 

The attenuation of light caused by scattering on the molecules of air is 

calculable for Rayleigh's formula3 

_ . 32Tt3(n-l)2 

3LXV 
(2.3) 

At standard temperature and pressure we obtain the following values of o; 

X(Angstroms)     5000   6000   7000   8000   9000   10000 

o x 107(cm-1)    1.70   0.81   0.UU   0.25   0.16    0.10 

Both (n-1) and L are proportional to o, therefore o is also proportional 

to p. At constant pressure o is inversely proportional to the absolute tem- 

perature. Therefore the values of o at t = 20oC and 760 torr are about 7 

percent smaller than the above tabulated values. 

3. Absorption Experiment With a Steady Laser Beam. 

We shall analyze the problems involved in the measurement of a by means 

of the following experiment: A certain volume of air is confined at a known 

3. J.W. Strutt, Lord Rayleigh, On the transmission of light through an 
atmosphere, Phil. Mag. M7, 37U, 1899; Scient. Papers U, 397. 

1 
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initial pressure. A laser beam passes through the confined volume and heats 

the enclosed air at a rate proportional to a.  In a steady state, the heat 

losses of the system balance the heat gained from the laser.  The increase 

of the static pressure within the vessel is measured and is used for computinp 

the rate at which heat is added to the air. 

The simplest experimental embodiment of this idea consists of a cylin- 

drical tube kept at a constant temperature.  The laser beam passes alonp 

the axis of the cylinder heating a smaller cylindrical volume of air con- 

centric with the confining tube. A steady state is established wiien the 

rate at which heat is conducted to the walls is equal to the rate at which 

heat is absorbed from the laser beam. 

In order that a technique of this type yield a valid measurement of 

o, certain physical conditions must be satisfied which are not easy to 

achieve experimentally.  First, the confining tube must be long enough so 

that special thermal effects at the ends of the tube do not significantly 

affect the pressure of the confined air.  Laser light is brought in through 

solid windows whose density is about 1000 times that of the confined gas. 

It is not unreasonable to assume that absorption per unit volume in the 

windows will be about 1000 times as great as absorption in the gas. 

Second, for A < 1.2y more laser light will be scattered than directly ab- 

sorbed. The energy of the scattered radiation must be removed, it must 

not be allowed to add to the thermal energy of the confined gas. This 

removal could be accomplished, for example, by making the inner surface 

of the tube black and by making the tube of a material with good thermal 

conductivity. 
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Assuming that these experimental difficulties are mastered, we calcu- 

late the pressure increase dp attained in the vessel in the steady state 

as a result of energy being absorbed from the laser beam at a constant 

rate and conducted away through the air to the walls of the vessel which 

are kept at a constant temperature T .  We assume a uniform circular laser 

beam of radius a in a vessel of radius b.  Let the power incident in the 

laser beam be W, then the intensity of the beam is I = W/a2n.  Heat is 

deposited in the unit volume of the gas at the rate aJI, where J = 0.230 

cal/joule. 

Once the steady state is reached, no mechanical work is done.  There- 

fore the heat balance equation is obtained by equating the rate at which 

energy is absorbed to the rate at which it is conducted away.  (It is 

assumed that convection is neglected.) The rate of heat generation per 

unit volume is 

q'(r) = aJI when r < a, 

= 0 when r > a. 

The heat balance equation for a volume V is then 

Jq'dv = - K ^7T-ndS, (3.1) 
V S 

where dS is the surface element, n is the unit normal to the surface, and 

K the thermal conductivity.  It follows then in a well-known manner that 

V2T = - q'/K. (3.2) 

Since the only relevant coordinate in this problem is r, the distance 

from the cylinder axis, we have 

Id   dT    q'(r) 
?dFr dF= " K t3-3) 
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This differential equation is to be solved with the boundary condition 

T = T0 for r = b and the solution is required to remain firite for r < b. 

Although the solution is easily found, we do not need its explicit form 

because we are only interested in the pressure rise in the vessel and this 

is proportional to the increase of the average temperature. 

In place of T we introduce the dimensionless variable 

v(r) « JL(T - T0). (3.U) 
iJI      u 

Equation (3.3) is th^n replaced by 

id_r Jl= - gCr), (3.5) 
r ''r  dr 

where g(r) = 1 for r < a and 0 for r > a.  The boundary condition is 

v(b) = 0.  Then we obtain by integration of (3.5) 

.     r 
r 21 = - / g^Mr'dr' = - f(r), (3.6) 

dr 
o 

where fir)  = x r2 for r < a, and f(r) r y a2 for r > a. 

The average increase in gas temperature over the entire vessel is 

proportional to 
b 2* L b 

v = i / / / v(r)rdrdedz = ^- J v(r)rdr.        (3.7) 
o o o t, o 

Integrating by parts anH noting that v(b) = 0, we get 

b b b 
/ v(r)rdr =  -1 f r2 ^i. dr = i / f(r)rdr. 
o 2 i        dr 2 i 

2   2 2 
;ince J f(r)rdr = / i r3 dr ♦ / i a rdr = a b    [2 - Ä_], we have 

o o 2 a  2 8 bz 

-      *2 -2 
„  =  «_[!. a_^]. (3.8) 

4 2b 2 
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Therefore the average increase o temperature in the vessel is 

d? = 2ii*_ [l - L_]. (3.9) 
UK       2b2 

The final expression for the increase of pressure in the chamber is ob- 

tained from (3.9) by using the gas law and by reintroducin^ the incident 

power W = a2itl. 

dp = !£°^L(i - SL). (3.10) 
T0 UitK     2b 

Ordinarily the expression in the parentneses is nearly equal to one. 

Assuming a laser with 100 watts useful output, an initial temperature 

T = 300oK and a = 10-9, the expression in front of the parentheses is 

1.1 x 10-7 atmospheres. A pressure change of this order of magnitude 

should be detectable provided one can keep the temperature of the walls 

constant to within 0.3 x lO-*4 0C.  It might be quite difficult to 

accomplish this for a tube as long as 1 meter. 

U.  Dissipation of Heat in Air by Conduction. 

In preparation for the discussion of experiments involving the heat- 

ing of air columns by means of short laser pulses we shall calculate the 

rate at which thermal energy initially communicated to an air column is 

dissipated by thermal conduction alone. 

The calculation is simplified by neglecting for the purpose of this 

calculation the aerodynamic properties of air. Thus we shall be concerned 

with a solid substance characterized by a heat conductivity K, density p. 
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and specific heat cv. 

It   is shown  in textbooks'*  that  the temperature v(x,y,z,t)  satisfies 

the differential equation 

V2V-i|l=0, (4.1) 
K  at 

provided that there are no sources or sinks of heat in the region under 

consideration.  Here <  = K/pcv is the diffusivity of the substance. 

We will assume a geometry of cylindrical symmetry and calculate the 

cooling of ar, infinite cylinder of radius a, whose temperature at the time 

t = 0 is one degree above the temperature of its surroundings. All space 

is assumed to consist of the same material characterized by the constant 

K.    The problem then requires the use of only one spatial variable, r, 

the cylindrical polar coordinate. The differential equation becomes 

3t    \3r2  r 3r/ 
(4.2) 

and the initial condition is v(r,0) = f(r), where 

f(r) = 1  for r < a, 

= 0  for r > a. 

As long s no walls are present, no boundary conditions are required, 

This differential equation is readily solved by the Hankel transformation 

technique5 and the following result is obtained: 

u.  H.S. Carslaw and J.C. Jaeger, Conduction of Heat in Solids, Oxford, 19b9, 
2nd ed. p. 9. 

6.  Ref. u, p. 460. 
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where 

v(r,t) = J r0(o)oJ0(or)e-
KO tdo, (k.l) 

o 

r0(o) = J rJ0(or)f(r)dr. («♦.«♦) 
o 

In the present case 

a 
ro(a) = J rJ0(or)dr = * JiCoa). (U.5) 

Hence  the expression for the  temperature  distributicii  is 

2 
v(r,t) = a J J1(oa)J0(or)e-

,co t do. (U.fi) 
o 

It is interesting to calculate the variation of temperature at the axis. 

from {'«.ö) we have for r = 0 

OD 

v(0,t) = a / J0(oa)e-
,co2t do. (U.7) 

o 

This expression is changed by integration by parts into 

00 

v(0,t) = 1 - 2<t / J0(oa)oe-Ko2t do. (U.8) 
o 

Trom the standard formula6 

a2 

)202 -^ -   1  /UD2 / Jn(oa)e-P 
0 odo = J- e UP (u.9) 

o 2p2 

we get 

a2 

v(0,t) = 1 - e U<t. C+.IO) 

6.  G.N.' Watson, Theory of Bessel Functions, Cambridge, University Press, 
1958, p. 393. 
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Thus the temperature at the center line decreases with t accordinr. to the 

formula 1 - e"1'1, whore i = a2/1**.  The quantity T has the dimension nf 

time.  It is the time durinp which the temperature decreases by the 

amount 1/e. Although we are not dealinr, here with a simple exponenti.il 

decay of temperature, it is still reasonable to regard T as a thermalJ re- 

laxation time.  It is proportional to the cross sectional area of the 

'.)Oam. 

Numerical computation of the thermal relaxation time requires the 

knowlcdpe of ic for air in the applicable temporature ranpe.  This quan- 

tity entered first in equation (4.J) which is taken from the theory of 

heat conduction applicable to solids.  When this theory is applied to 

a pas, the question ariseb what kind of specific heat is to be used in 

the equat ion 

PC 

^tirit serves as a definition of K
2
.  Since we are contemplatinr, a steady 

state situation in which no mechanical motion taker, place, no work is 

Neinp done and the entire heat energy that enters a volume of pas   iz 

converted into internal energy. The specific heat at constant volume 

ii. the one which is applicable to such a situation. For air at standard 

pressure and temperature, K  = 0.255 cm2 sec-1.  Althoup,h *: depends on the 

temoerature, th'.s value cf ic is probably a fair approximation to the 

correct vnlue applicable at 20oC.  With the value K = 0.255 cm2 see'1 

we obtain the followinp approximate values of relaxation times and associ 

ated frequencies applicable to beams of convenient cross sections. 
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\u',m  diair. (?a) mm   o.u   0.6   0.8  1.0  1.2  1,4  i.6  1.8  2.0 

Relax,   time (T) msec 0.39?  0.88?  1.S7  2.«4b 3.S3  4.80 Ö.27  7.9»*  'i.ti', 

frequency (T
-1
) Hr    .,ro0  113U  637  408  283  ?0M  160  126  10. 

In a ilvnamic -lituation, when hoat is added to a column of r^s, not 

onlv heat conduction tak"'-. place but the r.^s is set in notion.  This trans- 

ient phenomenon was not taken into account so far.  In what follows later. 

the dynamic phenomenon is of p.reat importance and the results of this section 

are used for guidance concerninp, the situations when tne effect of heat con- 

duction may be nerlected. Clearly one can only justifv neplectinp heat con- 

duction it the dynamic phenomenon (oscillation) occurs so fast that only 

ncpiipible coolinp, takes place durinp one cycle.  Guch will be the rase 

when the frequency of tne sound wave generated exceeds the appropriate 

chai actorist ic frequency T"1 = 4ic/a*'. 

When ehe air colur.n is not free, as heretofore assumed, but confin--; •-. 

a pine kept at a constant temperature, the nethod of calculation is different 

The dif f crenti"»! equation (u . 1) is applicable in this case, but a boundary 

condition, absent in the ca^e of the free air column, must lie added. For a 

cylindrical vessel of inner radius b, the boundary condition is v(b,t) = 0, 

provided that the vessel is kept at a constant temperature T0.  (Here v 

denotoj the excess over this temperature.) The solution of the neat con- 

duction problem for a domain with a boundary is well known .  It is obtained 

by expanding the function to be determined in terms of the eicenfunctions 

of the differential equation (4.1) with the piven boundarv conditions. 

In the case of heat conduction within a cylinder of radius b the result is 

T'.     RcfWr pp. 108-199. 
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2 
v(r,t) = I    AnJ0(anr)e'

,fant, (u.i2) 
n=l 

where the numbers an are  determined from the boundary condition J (o-b) = 0, 

and the coefficients An are calculated from the expansion 

f(r) = I    *vl0ianr)^ (u.13) 
n=l 

which ii the explicit form of the initial condition.  The A 's are deter- 

mined by tne routine procedure applicable to expansions accordinp, to or- 

thogonal functions.  Their values depend on a and b.  In the poneml case 

the value of A does not drop off rapidly with increasinp n.  We must 

therefore take into  account a lar^e number of terms in (U.12).  Each term 

decays in time accordinp, to a different exponential rate <n^.     The time 

constants associated with these modes are ^= (<a^)"1, and an is deter- 

mined from the equation 

where x is the n-th root of the equation J0(x) 
= 0.  The values of the 

n 0 

first five x's are:  2.406, 5.520, 8.65U, 11.792 .nd IK.913.8 The time 

constants are 

b2 
Tn « =-9- . (4.15) 
n   <*n 

We note that the role of the Tp's is not the same as that of T in 

the case of the free cylinder beca-se in the present case the time de- 

pendence of a mode is of the form exp(-t/Tn) and not 1 - exM-t/t). 

By means of a physical argument we can readily infer that the confined 

8. A. Gray and G.B. Mathews, Bessel Functions, 2nd ed.. Dover Publ.. New 
York 1966, n. 300. 
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cylinder will cool more rapidly thnn the free cylindor and that the re- 

laxation time calculated for the free cylinder will he an approximation 

of the effective relaxation time of a confined cylinder for b >;■ a. 

5.  Fresüure Rise in a  Tube Caused by a Sinp.le Laser Puise. 

One nlp.ht attempt to confine air in a  cylindrical tube, shoot a laser 

beam through and measure the rise in pressure in the ube.  The expected 

increase in pressure is proportional to the enerc.y deposited in the air 

by the laser beam.  Hence one expects that the absorption coefficient n 

mir,ht \>i  measured in such an experiment. 

It must be remembered that the walls of the tube holding, the air are 

solid and have a much larper heat capacitance than the confined air.  So 

eventually as thermal equilibrium is approacned, the thermal onerp.y de- 

posited in the air is conducted to the walls, tonperature and oressure in 

the vessel return to their values at the becinninp of the experi.;.rnt.  The 

approach to thermal equilibrium may be thoupht of as consisting of a fast 

process cf pressure equalization followed by a slower process of tempera- 

ture equalization by heat conduction. The pressure equalization m ■' be 

characterized bv the time constant 2b/c where b is the radius of the tube 

and c the velccity of the sound.  The rate at which heat conduction leads 

to thermal equilibrium must be calculated in the manner described in Section 

u.  The time constant t = L2/M< certainly reveals the correct order of mag- 

nitude.  The measurement of pressure increase should take place after the 

elapse of the time 2b/c following the passage of the laser beam but consid- 

erably before the elapse of the time t. Tor a tube of 1 cm radius, 

Jb/c = b x 10"5 sec and T = 1 sec. 
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The laser beam will generally be much narrower than the tube.  Let 

the radius of the beam cross section be a, and let us assume that we are 

dealing with a very short laser pulse.  Then at the end of the pulse we 

have an air cylinder of radius a within which the pressure has been raised 

to p ♦ dp and the temperature to T + dT, while outside this cylinder the 

pressure is p and the temperature is T.  According to the standard equation 

of heat balance 

cvPoa
2nd7 = aJQ, (5.1) 

where Q i^; the energy of the laser pulse in joules, J is the conversion 

factor 0.239 cal/joule, and p  is the density of the air.  From the ideal 

gas law and equation (5.1), we get 

d£=_iL0 (5.2) 
p   cvPoa

zirT 

On substituting the appropriate physica.1 constants of air, we get 

for a = 0.1 cm and T = 300oK: 

1^ = 1.1U x 102 aQ. (5.3) 

Thus a laser pulse of 1 joule and an a = 10"9 cm-1 would give a relative 

pressure incrr se of one part in ten million.  It seems tht i that, using 

a powerful laser of several joules output, an a of the order of 10"9 cm"1 

would be just barely detectable.  This would be the case if the entire con- 

fined space would be within the beam.  Actually the beam diameter must be 

considerably smaller than the diameter of the tube that keeps the air con- 

fined. Consequently the pressure rise observable in the tube is much less 

than the pressure rise in the cylinder swf;/t out by the beam. 
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An estimate of the pressure rise antii.ipatcd in the tube may be ob- 

tained by ascribinp, the entire Ras in the tube some sort of average tem- 

perature T. The heat balance equation (5.1) is then replaced by 

cvp0b
2Ttdf = aJQ. (5.14) 

Thi^ equation differs from (5.1) insofar as b2 takes now the place of a2. 

Consequently the pressure rise calculated from (b.U) will be reduced in 

proportion to the ratio of the cross sectional ratio of the beam to the 

cross sectional area of the tube.  If, for example, a = 0.1 cm and b = 1.0 cm 

the value of dp/p is reduced by a factor of 100, thus driving it completely 

beyond reach for measurement. 

It could be objected that the above estimate of dp/p  is based on a 

dubious assumption of an average temperature and the application of thermo- 

dynamics to non-equilibrium states. The deduction may be replaced by the 

following one:  After irradiation, the pressure of the air within the beam 

is p., its volume is v..  In the rest of the vessel the pressure is p . 

The volume of the rest is V2.  Doth volumes change during the process of 

pressure equalization which results in a finai pressure P. Assuming no 

heat exchanpe, 

i/y . pl/Y V'  and pl/Y v  = pl/Y v. 
"i    1        1      ro    ?        2 

Moreover, the total volume does not change, therefore v^ + V2 = v^ ♦ V2. 

Hence 
l/y l/y 

pl/Y = PI  vi > Po  V2 t (5t5) 

vl + v2 

and 

pVy  . pl/ir .  -1  ( 1/Y .pl/Y).       (5.6) Ko    vj^ + V2  i     0 
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from this last equation   it  also follows that   in  first  approximation 

P - P    ^      Vl (p,   -  P   )• (5.7) 
0      vl  t v2 0 

6.     Generation of  Sound by a Laser Pulse. 

A  laser pulse  is  sent  through a gas which has a small absorption co- 

efficient  for the radiation sent  through  it.     As  a conr.equonce of absorption 

a column of gas  is warmed and the surrounding gas  is  set   in motion.     It   is 

desired to determine the sound energy pencrated by  the pulse and to detcrminf 

the  spectral distribution of  the  sound. 

The solution of the problem is expected  to contain  the physical  para- 

meters of  the gas which normally determine the velocity of propagation of 

sound  in the gas,  the rate at which radiated energy  is  absorbed  in the gas, 

the   length of the  laser pulse  and the cross-section of the  laser beam. 

It will be assumed  that  the gas  is an  ideal gas,  that the  laser beam 

is  of  circular cross-section,  that the rate of energy  dissipation and  the 

pulse   length are such that  the resulting temperature,  pressure and density 

changes mav be treated as  differentials of the  first  order so that  the 

usual  approximations  employed  in the theory of  sound retain their validity. 

The effects of heat  conduction will be neglected;  a simplification 

which may only be questionable when it  is applied  to  low frequencies.     The 

low  frequenc/  UTit  of  this  approximation  is  the characteristic  frequency 

associated with  the coolinp, of the heated column by conduction.    This was 

calculated  in Section M. 
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The propagation of sound waves is described by a solution of the 

wave equation 

c2?2* = 0 (6.1) 
9t2 

which is satisfied by the velocity potential %  as well as by the pressure 

p and the condensation s in the gas.  The differential equation (6.1) is a 

homogeneous one, the solution <i(x,y,z;t) is determined if one knows the 

value of $ and 3^/3t at the tinm t = 0. 

The physical problem to be solved here must be governed by the dif- 

ferential equation (6.1) in the region where no heating takes place. In 

the region traversed by the laser beam we exoect to obtain an inhomogeneoun 

differential equation whose solution is to be obtained for a given right 

side. Moreover the solution is to vanish for t = 0; it should represent 

an outgoing wave away from the region traversed by the laser beam and is 

to satisfy thu usual continuity conditions. 

The starting point in acoustics is the continuity equation for the 

fluid 

|5. + y.pv = o (6.2) 
ot 

and the equation of motion for the fluid particles: 

p ^- = - Vp. (6.3) 
dt     v 

Here the vector V denotes the velocity of the fluid, p its pressure, p 

its density.  All these quantities are functions of position and time. 

It is customary to restrict the problem to small velocities and small 

displacements from static or average pressure and density p0 and P0 . 
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With  these restrictions  equations  (6.2)  and  (6.3)  are replaced by 

and 

3p 
at"    +  %y-V   '  0 

3V 

We introduce the velocity potential ^ defined by 

(6.U) 

(6.5) 

V = -7*, (6.6) 

then (6.b) becomes 

"(>  r- VO, + 7p 
O dt 

= o, (6.7) 

or 

7(|i - E_) = o. 
at  P0 

(6.8) 

We write p = p + p', where p is a constant and p' is a variable quantity 

small compared to p .  Then 

3t   P0 - 

This last equation relates the pressure variation to the velocity potential. 

Now the continuity equation (6.4) is rewritten by introducing the con- 

densation s defined as follows 

p = pc(l + s), (6.10) 

or 

P - P( 

Po 
(6.11) 

Then (6.U) becomes 

J» ♦ 7-V 
at 

= o. (6.12) 

or 
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-Di - 724. (6,13) 
3t 

In the classical case the equation of sound propagation ( F.q. (6.1) 

is found bv assunir.p, that the pressure variation p1 is prcoortional to 

the condensation s. The factor of proportionality is found by thermo- 

dvnamic arr/.iment to he  equal to YP0'  With this result one gets 

p' = YPQS. (6.14) 

hence from (6.9) 

32(J.  YP0 9s 
(6.lb) 

Finally 

^=^ V^, (6.16) 
at2  o0 

which is idtaticai with equation (6.1).  Its derivation is based on the 

assumption that no thermal exchange takes place. 

When the r,as is locally heated equation (ö.l^) is no longer valid. 

We must calculate the change in pressure when both tt~o volume is changed 

and a certain amount of heat is added.  If the heat la aided reversibly. 

we write dO = TdS.  Then 

dp = (|E) dV + (IE)  dS. (6.17) 
3V c; öS y 

F.quation (6.14) is a special case of (6.17) for dS = 0. 

In tac general case the coefficients of the differentials in (6.17) 

are  evaluated as follows:  The entropy change of 1 mole of an ideal pas 

may be written in the following two forms:9 

l).  M.W. Zemansky:  Heat and Thermodynamics, McGraw-Hill New York, 1043, 
Sections 13.? and 13.3. 
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dS = Cn ^1 - R ^P-, (6.1b) 
P T     p 

dS = C ^ + J dV. (6.19) 

Upon elimination of dT from (6.18) and (6.19) we obtain 

Ü dp = (Y - DdS - Y-P-dV. (6.20) 
P T 

Hence from (6.20)  and the gas law pV = RT it  f .^lows that 

dp  =  - YP dV  + il^JLlTdS, .6.21) 

and therefore 

(||,v.l^-lT. (6.23) 

We wish to express the pressure change p* in terms of the condensation 

s and the heat added per unit volume q. These quantities are related to 

dV and dS as follows 

dp    dV     TdS S = r = " V-' ^ = —• 

Thus 

p' = YP0s + (Y - l)q. (6.2U) 

Equation (6.2U) must be used in place of (6.14) to obtain the equations 

valid in the case of the tieatad gas column. Differentiating (6.9) we 

have 

a1*       1  3p'   YPo 3s  Y - 1 3q 
—-=—-—=  — + — . (6.25) 
3t2  P0 3t   DO 3t   0o  3t 

On combining (6.25) with the continuity equation (6.13), we get 

- 31 - 



= 72^ + , (6.26) 
at2 p0      p0 at 

In the absence of neat transfer by conduction 3q/at is equal to q', the 

rate of heat generation per unit volume.  When thermal conductior. is taken 

into account then 

at" = q' ♦ K72T, (6.27) 

in accordance with the heat balance equations (3.1) and (3.2). Thus, 

when conduction is neglected, we have 

3t2 p0 

where c = /yp /p  is the velocity of sound.  It is apparent from this 

equation that of the energy communicated to the .'as only the fraction 

Y - 1 is converted into an acoustic (hydrodynamic) wave.  In the case of 

diatomic gases, this fraction is 0.U0.  Given a pulsed laser of such total 

output that Q is the energy incident upon the test gas dur'ng a period T, 

the rate of heat deposition per unit volume is 

q' = QQ/AT, (6.29) 

where A is the cross sectional area of the laser beam and a the absorption 

coefficient.  The differential equation (6.28) may then put in the form 

V2* - ^r ^-J- = - ?(x,y,x,t), (6.30) 
c2 hi2 

where 

g = 3LIJL2Q f(x,y,2,t). (6.31) 
P0c

2  AT 

Here f denotes a function which is 1 within the laser beam during the 
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duration of the pu.lse and 0 at every other point in space or outsidr t\:o 

time interval 0 < t < T. 

The solution of this differential equation depends on the initial r.d 

Lioundiry conditions.  We assume the homogeneous initial conditionr. 

♦(x,y,z,0) = 0 and ^ (x,y,z,0) = 0 which correspond to no d'sturbdnce at 

t = 0.  We then have a standard radiation problem solvable in termj of the 

retarded potentials.  In the absence of boundary conditions; i.e. for i 

nomoReneous medium of infinite extent, the solution of (6.30) for homc- 

geneous boundary conditions is given by the formula:1J 

*(x,y,z,t) = J^ /// g(t,n,C,t-r/c)r-1 d^dnd;,      (h.3?: 

wh.-re r = t(x-C)  ♦ (y-n) + (z-O   <     The function p. is a constant timej 

a step function.  We write Eq. (6.31) in the form 

g =   f(x,V,2,t), (t03) 

where 

Ap0c
2T 

ri = (Y-DaO 
(6.314) 

is a constant that has the dimension of time. Then 

*(x,y,z,t) = —-/// 
f(C,n,C,t-r/c) 

dWndC. (6.35) 

The integration is to be extended over the volume of space swept by the 

laser beam.  Its result depends only on the beam cross section and the 

length of the pulse. 

10.  A.N. Tikhonov and A.A. Samarskii, Equations of Mathematical Physics, 
MacMillan, New York, 1963, pp. U61-U65. 
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To evaluate the integral in (6.35) we place the z-axis along the 

direction of the propagation of the laser beam and we introduce cylin- 

drical coordinates R, $, and z.  Assuming circular symmetry, we obtain 

readily 

^P,t) = A_  f   ,  dt; (6.36) 
U,,T1 G A2'{z-02  ' 

where the region of integration is confined to such values of c for 

which 0 < t - r/c < t, or equivalently 

t - T < r/c ^ t. (6.37) 

Equation (6.36) is an aptroximation valid when the distance R from the 

center of the laser beam is much larger than the diameter of the laser 

beam, i.e. when one may replace (x-C)2 + (y-n)2 by x2 ••• y2 = R2 for 

every point (^,n,i;) within the laser beam. We introduce the new variable 

(;' = z-c, Chen equation (6.36) becomes 

^(R,t) = --A. /    ^ (6.38) 
U1,T1 G' */R2nTT 

where the range of integration over £;' is adjusted to be consistent with 

(6.37). This consistency means that 

c2(t-T)2 - R2 < C2   < c2t2 - R2. (6.39) 

The  integration  in (6.38)  is  '■/mmetric »Lout  f;1   =0,  therefore we 

write 

0(R,t)  =  A-    /        . ^ g (0.40) 2,,Ti ^  ÄT^ 

where w, and u~ are non-negative limits consistent with (6.39). We can 

now distinguish three regions: 

a) When R > ct, the disturbance has not reached the observer. 
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u  = 0 and * = 0. 

b) When ct > R > cCt-i), the head of the disturbance has reached 

the observer, but its tail has not.  In this case u, = 0, y^ i 0 
i      i. 

and 

c) When R < c(t-T), the tail of the disturbance has begun to reach 

the observer.  In this case u  } 0 and v    \  §  and 

* = -A- (log (ct+/c2t2-Rz) - log [c(t-r) ♦ /c2(t-T)2-R2]   (6.142) 
2HT i 

It is convenient to introduce the variable R' = R/c and to write 

* in the following forms: 

♦(cR,'t) = i£r 1OR ^R^'2 . (6-u3) 

for t-T < R' < t, and 

^(cR',t) = .r-^- (log (tt/t2^'2) - log [t-T + At-T)2^'2]}    (6.uu) 
21TT i 

for R' < t - T. The graph of ^ as a function of the variable t is sketched 

in Figure 1 for two different values of R'.  The spectral distribution of 

the function * is clearly not the same as that of the source.  The function 

$ is not a square wave.  Its shape depends on the distance R*.  It is ex- 

pected intuitively that an observer near the 2-axis would observe something 

more resembling a square wave than an observer located farther away in a 

region where the sharp corners of the excitation function are washed out. 

The spectral distribution is calculated as follows: 
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The time derivative of $  has a very simple form.  In fact. 

,« » il s o for R' > t, 
3t 

2*1, /t^-R'^ 
—- for t > R' > t-T, (6.45) 

2TIT 
1 L /t

2-R^    2/(t-T)2-R,2 
for t-T  > R' 

The following equation is well known: 

J J0(bx) sin axdx = 

for a < b, 

(6.U6) 

/^P 
for a > b. 

Replacing b by R' and a by t we have 

en 

/ J (R'y.) sin txdx = 0 (6.U7) 

for 0  t < R'. We shall restrict our observations to the region R: > T, 

which is the region of the space outside of the cylinder reached by the 

leading edge at the disturbance when the pulse ends.  We integrate (6.U7) 

from t=0tot=T<P' and obtain 

I 
"J0(R'x) 

(1 - cos xx) dx = 0, (6.48) 
o    x 

From (6.45) and (6.46) ve find that 0' may be written as follows 

3t " 2Tn. 
J J0(R,x) sin txdx - / J0(R'x) sin (t-t)xdx . (6.uq) 
o o J 

Integrate according to t from t = 0 to t = s and note that ^(cR^O) = 0, 
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I 
Then 

♦(cR/s) = ^-i- / J0(R'x) p COs(t-T)x   COS 
J* S 

ax 
o 

(6.50) 

AlthouRh J (R'x) 22^_sJi is not integrable from 0 to », the intepral in 
x 

(6.50) iy  convergent because the expression In The brackets is 

cos (S-T)X - 1  1 - cos TX  1 - cos sx   + +   . 

and the product of each of these functions witr. .^(R'x) is intep.rahle, 

In fact the middle term contributes noLhinp (SL-I eq. 6.148).  Then 

_A 
2m' 

J o 

J0(R
,x). 

x 
^(cR',s) = —— / —   [cos (S-T)>  COS SX] dx. (6.51) 

Hence, using ar elementary trigonometric identitv, we get 

.   .  1 _ A  f Jo(R,x)  .  TX  .  ,  T > i(i(cR',s) =   I   sin — sin (s-^x dx. 
''T 1 ■1- o UTi  '      X X o 

(5.52) 

Now i.et t = s - - and x = w, then 

T    A  * J0(R
,u))    „t 

♦(cR'.t+i) / ~  sin ~ sin tot du. 
2     TIT 1 O 

(6.53) 

We have represented ((itcR'.t+y) as a Fourier integral.  The Fourier sine 

transform of $  is thus 

., v .  A  T/D, vSinuiT/2 
I()(UJ) 

s J„(R'w)  n •  o       u, (6.5U) 

Here we define the sine traisform by the relations 

F(CJ) = - / f(t) sin ot dt, and f(t) = / F(u)) sin wt dw. 
o 
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The spectral density of ♦(cR,,t) is therefore 

(6.55) 

It is shown by elementary calculations that the spectral density function 

of a square wave of unit amplitude and of duration T is 

♦s<"'2 = (^ l1^—) 2 • (6-56) 

Comparison of (6.55) and (6.56) shows that in our problem the spectrum of 

the square wave gets distorted by the factor J (R'u). The distortion is 

small near the source where J0 t 1.  For R'w "v 2.U, however, J0 = 0.  This 

means that at a given distance R the frequency for which R = 2.Uc will be 

missing.  Other missinp frequencies correspond to other zeros of J0. The 

reduction in the spectral intensity due to the .^(k'w)  factor can be cal- 

culated from the followinr table which gives the reduction from the inten- 

sity of a square pulse. The entry item of the table is the product Rv in 

cm times cycles per second. Assumed velocity c = 3.3 x 10"4 cm/sec. 

vR(cm/sec)  500  1000  1500  2000  2500  3000  3500  U000  »+500 

(^) 
J^ (2l^\      0.996  0.980  0.960  0.929  0.891  0. BU6  0.79U  0.7U1  0.680 

It is clear that onlv for large distances or high frequencies will 

the Bessel factor affect significantly the spectral distribution of the 

energy. The main determining factor at small distances and moderate 

frequencies is the spectral distribution of the pulse.  This distribution 

is characterized by the function 

2 m 
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which is well known from the theory of diffraction.  It is sketched in Fi,-. 

6.2. The largest part of the fnergy is contained in the spectrum region 

between 0 and UT = 2*.  Thus, in terms of frequency, the interval 0 < v < I/T 

contains most of the energy.  Moreover, it is manifest from Fig. 6.2 that the 

spectral distribution is rather flat in the region in whi^ most of the 

energy is contained.  A pulse of this type is not suitable as a source for 

a signal which is to be detected by a narrow-band detector. 

The question arises, what happens when a pulse of the type described is 

repeated periodically at equal time intervals p.  In this cast the Fourier 

integral is replaced bv a Fourier series and the continuous spectral distri- 

bution shown in Fig. 6,2 is replaced by a discrete spectrum consisting of 

equidistant lines with the separation Av = 1/p.  The relation of this dis- 

crete spectrum to the continuous spectrum of the non-periodic (single pulse) 

case is illustrated in Fig. 6.3. Again the energy is generally broadly dis- 

tributed and only for p *  2f does a significant spectral concentration of 

energy take place. 

Note:  It is possible to remove the restri  ion that the observation 

should be confined to the region R1 > T.  This assumption was made following 

equation (6.U7).  In the general case we cannot assert that the left hand 

side of equation (6.48) is zero, but we can assert that it is a function of 

R1 and T alone.  Let it be denoted by IHR',T). Then we can carry out the 

calculations that lead to equations (6.52) and (6.53) provided we replace 

♦ (cR^s) by (>(cR,,s) t ^(R1,!), where th*^ function 41 is independent of t. 

Consequently the spectrum of ^(cR^t) will be the same as before since the 

time independent term can not affect (>(ai) for u ^ 0. 
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7. The Acoustic Problem in a Confined Region. 

In the preceeding section we analyzed the generation of a sound pulse 

from the thermal energy deposited in a gas by laser pulses.  No boundary 

conditions were imposed, thus implying that the gas was not confined.  If 

the gas were not confined, or if the confining walls were far removed from 

the path of the beam, acoustic energy would radiate in all directions. The 

intensity of the acoustic signal would then decrease as the reciprocal of 

the distance from the renter line of the generating beam. The detection or 

measurement of such a signal depends to a large extent on the experimental 

arrangement used to concentrate a significant fraction of the signal gener- 

ated on a suitable detector capable of converting the incident acoustic 

signal into an electric signal.  It would require a rather sophisticated, 

well-designed system to utilize as much as 20% of the generated acoustic 

energy. Even if much of the energy radiated out is concentrated on the 

detector, by means of reflectors, for example, a serious degradation of 

the detector system will result from the fact that the generated signal 

has a rather broad spectral distribution. 

Now we shall examine the generation of sound in a confined system, a 

cylinder concentric with the laser beam.  It is expected that in such a 

system the efficiency of the utilization of the «-.ound generated will be 

higher, and one might hope to make use of the resonances of the confining 
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tube to enhance detection. The following questions are  worth examining: 

1. How does the confining tube affect the generation and propagation 

of the sound wave? 

2. Is it possible to enhance the measurement of the sound wave gener- 

ated by proper choice of the geometry of the confining vessel? 

The starting point of the analysis is the differential equation (6.30) 

72^ - i i!i = - g(x,y,z,t) (7.1) 
c2 3t2 

with the initial conditions 

♦(x,y,z,0) = 0; ^(x.y.z.O) = 0. (7.2) 

The meaning of the variables was explained in section 6, where it was also 

noted that g is zero except in the part of the space swept out by the laser 

beam.  In this cylindrical region, g has a constant value during the time 

interval 0 < t < T; it is 0 when t > T.  We shall simplify the computations 

by normalizing g so that is has thp values 0 and 1.  Since g has the dimen- 

sion of reciprocal time, it is more correct to say that we set the peak 

value of g at 1 sec"1. 

The presence of the walls of the tube requires the introduction of a 

boundary condition which expresses the fact the normal component of the 

fluid velocity at the walls is zero.  This means 

n-Vd) = 0. (7.3) 

at all boundaries. We shall seek a solution of (7.1) in the region 

x2 + y2 $ b2 for t > 0. A useful technique for the solution of such a 

problem is the eigenfunction expansion.  This technique relies on the deter- 

mination first of the simple harmonic solutions of the homogeneous equation 
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obtained from (7.1) with g i 0. It is well known that, if we set 

4,  = e-iu,t ♦(x.y.z), (7.4) 

then i|/ satisfies the homoger.scus Helmholtz equation 

72i(/ + k'-i^/ = 0 (7.5) 

which is obtained from (7.1) by setting g = 0, substituting (7.U) and 

k = w/c.  It is also known that, given a finite region T   and given 

homogeneous boundary conditions, non-vanishing solutions of (7.U) are 

posaihla only for a discrete set of values of k, called the eigenvalues 

of (7.U) and that solutions corresponding to different eigenvalues are 

orthogonal to each other in the sense 

/ ^ ^ dv = 0, (7.6) 

whenever kn ^ km.  Following standard practices in mathematical physics, 

we obtain an ascending, infinite sequence of eigenvalues 

k  < k- < k. < •••, (7.7) 
i. —  2 —  J — 

and a corresponding sequence of orthogonal and dimensionless eigenfunctions 

^t li-j, • •• 

so normalized that they satisfy the relations 

/ 4». l(»* dv s j  V, (7.8) 

where dv = dx dy dz and integration is over the entire volume V of region 

r  .     It is known that the sequence of such functions is complete for equa- 

tions of the type we are considering and that a ^ell-behaved function of 

x, y, z is expandable in the region Ä, in terms of these eigenfunctions. 
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Converp«*nce in the mean is assured by the standard theorems of functional 

analysis. 

With these preliminaries we can reduce the solution of our original 

problem to the calculation of t'.ie excitation of an infinite number of 

oscillators by a given exciting force. We write 

♦ = I  u (t)K/ (x,y,z), (7.9) 

K = I  Rn(tHn(x.y,z). (7.10) 

The coefficients Pn(t) and gn(t) are calculated as follows: 

V un = / Wn* dv, (7.11) 

V gn = / gK,n* dv. (7.12) 

The differential equation (7.1) then requires that 

un" + ^n2 un = Rn (7.13) 

for n = 1,2,3, "•.  Since the g 's are calculable from (7.12), the solu- 

tion of the complete problem now reduces to the determination of the ex- 

citations of the harmonic oscillators whose equations are given above. 

The excitations depend on the characteristic frequencies of the-se oscillators, 

ii) , and on the functions gn(t). 

The total energy fed into the n-th oscillator is proportional to 

00 

/ |gn<t)|2dt 
o 

and to another factor which represents the response of the n-th oscillator 

to a normalized exciting force.  This response factor depends on üün and on 
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the time dependence of the exciting force « ,  (It is to be noted that g 

has the sane dimension as g, which is not that of force. At the same time, 

the dimension of u  is that of ♦.) 

In principle the calculations require the solution of infinitely many 

differential equations of the form (7.13) for very general functions gn(t) 

on their right side.  Practically the situation is much simplified because 

the physically relevant part of the solution may be obtained by solving 

only one or a few equations of the type described. There are two main 

reasons for this simplification.  First, in a situation with some degree 

of symmetry many of the functions gn(t) are identically zero, because the 

spatial part of the excitation function is orthogonal to many ^'s.  Second, 

the sequence k^, k2, ''' increases rather rapidly and consequently only a 

rew of the harmonic oscillators which are described by equation (7.13) have 

resonant frequencies in the region in which f has a significant harmonic 

component. 

We shall return to the theory after exhibiting some of the well-known 

eigenvalues and eigenfunctions appropriate for sound propagation in a long 

circular cylinder. 

The eigenfunctions appropriate for a right circular cylinder of 

length L and radius b are the non-vanishing solutions of equation (7.5) 

which satisfy the boundary conditions 

|i = 0 for r = b, and 1^ = 0 for z = + L/2. 
3r 3z - 

After separating equation (7.5) in cylindrical coordinates, one obtains 
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solutions of the form 

^ ■ eine J (/k2-hzr) cos hz (7.m) 
s        n 

and 

* = eine J (A2-h2r) sin hz, (1.1b) 
i        n 

where the subscript s denotes a function Symmetrie for the reversal 

of the z-axis, while subscript a Uenotes an antisymmetric function.  J  is 

the Bessel function of order n, where n must be an integer to insure unique- 

ness of the solution. These functions are not yet normalized. We note that 

if the cylinder contained one or more septum; i.e. a boundary plane contain- 

ing the cylinder axis, then n need not be an integer. We shall avoid this 

situation. 

The possible values of h are determined by the boundary conditions 

at the cylinder ends. These require that, for symmetric functions sin 

hL/2 = 0; i.e. 

ht = 2ln/L; t = 0,1,2,.... (7.16) 

For antisymmetric functions cos hL/2 = 0; i.e. 

hj = (21 ♦ 1)IT/L; I  = 0,1.2,.... (7.17) 

Boundary conditions on tne cylinder surface r = b require that 

V (^-h2b) = 0. (7.18) 

Therefore k can only have such values for which the number x =  /k2-hzb 

is a solution of the equation Jj/'x) ■ 0.    ^or each  index n, the deriva- 

tive of the n-th order Bessel function has an infinite number of discrete 

positive roots.    We write these  in ascending order as xn_; "i = l,?,"*. 

The eigenvalues of the differential equation (7.5) consistent with the 
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boundary conditions described above are calculated from the equations 

(knmt ' h2t)b2 = Xnm; n = 0'1'--,; " = *"2'"-'     ^-^ 

where h are the numbers determined from (7,16) and (7.17).  The symmetric 

eigenfunctions are 

^snml = eine Jn(^nn,r/h) cos V' (7-20^ 

while the antisymmetric eigenfunctions are 

♦.„«I s ein6 Jr,(Xnmr/b) sin htz. (7.21) anmi       n nm        l 

Of the triple infinity of eigenfunctions (or oscillation modes) given in 

(7.20) and (7.21), certain types are of particular interest to us.  Only 

1=0 produces z-independent eigenfunctions. These are called transverse 

modes.  Their equations are 

*   = eine J (x r/b). (7.22) 
snm        n nm 

Modes which  have rotational symmetry about the  z-axis are all of the form 

<W '  Jo^omr/b)  cos IT2 (7-23) 

and 

^aom£ ' VW^   Sin  iJJlpir* (7'2U) 

The  first  few roo+z of J0'(r)  =  0 are  3.832,  7.016,   10.173,   13.32U. 

Those of Jj/fr)  =  C are  1.841,  5.330,  etc.11 

Let us now calculate the excitation of a cylindrical resonator with 

a force function that depends only on r and t;  i.e. which is  independent 

IT.     See Ref.   8. 
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of 6 and z.  In this case every integral of the type 

b  2ir 
/ / g(r,t) J  (y    r/b)eine rdrde 
'   ' n   Tim 
o o 

vanishes for n ^  0,  leaving only the eigenfunctions with n = 0 to interact 

with g.    Similarly the  integrals over z involving the product of g with 

sin h-z and cos h^z will vanish except for ros 0z.     Thus, when evaluating 

the expansion of g(r,t)  in terms of the eigenfunctions of the problem, 

only the symmetric eigenfunctions with n =  0 and  1=0 need to be consid- 

ered.    The relevant eigenfunctions are J,Jx^_r,/b).     Their normalization o    om 

factor is calculated from the standard formula12 

/  tJo( WVb)]2rdr " ? b2CJo(^om)]2' (7-25) 

o 

valid for every Xom ^or w^icb ^o'^Xom^ =  ®'    ^e normaiized functions are 

*m= Jo(Xomr/b)/Jo(xom). (7.26) 

When the excitation is of unit magnitude in a small cylinder of radius a 

centered around the polar axis and lasts from t  =  0 to t = T, we have from 

(7.12) and  (7.26) 

a 

/ 
'o^ Aom'  o 

where f(l) = 1 sec"1  for 0 <  t  < T, and 0 for t  > T.     For small values of 

Vgn.(t)  = J-TTS ' J  (xomr/b)rdrf(t). (7.27) 

a we may replace J  (x    r/b) by 1 and obtain the approximation 

where v = a2i'L is the volume swept out by the laser beam. 

12.    Ref.  8, p.91. 
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The next problem is to deal with a set of harmonic oscillators with 

pulse excitation.  Before losses in the oscillators are considered, their 

equations ha^e the form 

u; t »\  -  Rr,, (7.29) 

where g,,, is given in (7.^8).  The characteristic frequencies are 

"m = Xomc/b. (7.30) 

Taking c = 3.3 x lO1* cm/sec, we get for the lowest symmetric transverse 

frequency (corresponding to Xol 
= 3.832) 

2.0xl0'4 

and for the next lowest 

3.66x10** , 
V2 '   b 

where b is in cm, v in sec"i.  Thus the lowest such frequency for a tube 

10 cm in diameter is U000 sec-1, the next 7330 sec"1.  A small tube of 1 

cm diameter would require acoustic frequencies which are prohibitively 

high. 

Generally the oscillators will have a certain loss rate associated 

with them.  Losses are not only unavoidable but necessary when the res- 

onator is a part of a svstem used for measurement, because measurement 

consists of converting a part of the acoustic disturbance into an elec- 

tric signal. Thus a resonator will have an output which constitutes the 

measured signal, or else the energy is communicated to another frequency- 

sensitive device, the detector, which converts it to an electric signal. 
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In any case, we are  interested in devices which subject the disturbance 

to a harmonic analysis.    The noise discriminating property of the detecting 

system improves as  its bandwidtii is restricted.    Unfortunately, as we shall 

see, narrowing the bandwidth drastically reduces  the signal. 

For the  sake of simplicity,  let us assume that the detector is the 

cavity itself,  that  is, we do away mentally with a second tuned device to 

which the cavity may be coupled.     If there is such a separate device,  the 

detected signal will be less because some of the energy will not be trans- 

ferred and new sources of noise will be  Introduced.    We thus have a  sequence 

of oscillators with an output and we concentrate on the one with the lowest 

frequency.    When the effects of oscillator loss  (energy conversion) are in- 

corporated in the equations of the harmonic oscillators, we obtain for the 

oscillator of the  lowest frequency13 

U"  + Ali'  + ui*u = g^t). (7.31) 

The quantity A has the iinension of reciprocal time. Let W denote the 

energy stored in the free running harmonic oscillator. It is known that 

A = 4^- w" ' (7.32) 
Qt 

One can readily show the following: When g is a sinusoidal function 

of time, the excitation of the oscillator is significant only if the fre- 

quency of the exciting force is nearly equal to that of the free-running 

oscillator. Then by means of Fourier analysis one concludes that in the 

case of a general time-dependent force, the excitation of the oscillator 

13. P.M. Morse, Vibration and Sound, McGraw-Hill, New York, 1948, Ch. II, 
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depends largely on the harmonic component of the exciting force which lies 

near v, . After a short calculation one finds that the average energy of 

the oscillator is approximately 

W ^ J x   ! (7.33; 
2A 

where G(v)  is  the  Fourier  transform of  the  exciting  function g(t)  and 

v.   =  iü./2n.    The  power output  of such an oscillator  is 

^=   AW  v ilGUi)!2 (7.3«4) 

Only part of this is useful power output in the detector, hut this brings 

in only a factor of about one-half, which is not significant,  "he important 

matter is that the rate at which power is absorbed by the oscillators is 

proportional to the Fourier transform of the excitation function at the 

resonant frequencies of the oscillators. 

The effect of the confining tube is that the acoustic signal generated 

within it is resolved into its spectral components according to the resonant 

frequencies of the cavity.  As we have seen in section 6, the power spec- 

trum of a single pulse of duration T is rather broad, most of the energy is 

in the spectral interval 0 to 1/T.  Periodic repetition of the pulse pro- 

duces a spectral distribution of the acoustic energy among the harmonics of 

the repetition frequency in the manner illustrated in Fig. 6.3. 

In order to obtain good utilization of the acoustic energy generated, 

the experiment should be so designed that a large fraction of the acoustic 

energy generated by the source is concentrated in the frequency region cap- 

able of exciting a single selected cavity resonance because the detector 
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will only be coupled to one resonance.  Such concentration of the acoustic 

energy is not easily achieved.  With a single pulse it is just about hope- 

less to obtain success in this manner.  With pulses repeated at the rate of 

a resonant frequency of the cavity, the situation is better, but reason- 

able cavity dimensions require rather high pulse repet'tion frequencies. 

We calculated that the lowest resonance of a cylindrical cavity of 10 cm 

diameter is at UOO0 Hz, therefore we would have to operate with the laser 

pulses shorter than 0.1 msec repeated U000 times per second  The success 

of the scheme of this type depends not only on the construction of a power- 

ful laser with appropriate pulsing mechanism but also on the construction 

of a nighly sensitive acoustic detector coupled with the proper mode of 

oscillation of a cylinder. 

8.  Interferometer Method. 

It is plausible to contemplate a two laser experiment in which one 

high intensity laser pulse heats the air and tho second probe laser beam 

travels the same path which is a branch of an interferometer.1** Then the 

heating effect produced by the intense laser pulse would cause a shift in 

the interference pattern of the probe beam due to a change in the optical 

path length of one of the branches of the» interferometer.  See Figure 8.1. 

The absorption chamber ray be evacuated to determine the effect of the in- 

tense laser pulse on the end windows; or, if measurements are to be made 

in the atmosphere, the end windows may be removed. 

Ii Q is the energy transmitted in the intense pulse of cross sectional 

Ik.    Longaker and Litvak: Refractive Index Changes in Absorbing Media by 
a Pulsed Laser Beam.  Bull. Am. Phys. Soc. 11, No. 1, 129, 1966. 
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area A, then the energy balance over a unit length of the gas traversed 

by the Intense pulse gives: 

Qa = ApJ'CpöT, 

where    c is the specific heat of the gas at constant pressiu'e 

J' = 4.19 joules/cal. 

6T is the increase in temperature of the gas. 

Hence 

A J'pc. 
■P 

The temperature increase 6T produces 4 density change 6p.    In the case of 

an ideal gas, where the temperature change is assumed to take place quickly 

enough to occur at constant pressure, 

T p 

The change of density causes a change in the refractive index according to 

the relation, 

n-1   p__ 

"o"1 ' Po * 

where n is the refractive index of the gas at the frequency of the probe 

laser beam. 

From these relations it follows that 

6n = (n-1) & = - (n-1) £ , 
0 1 

fin = - i£Ü       9°        . 
T        AJ'pCp 
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Now if L is the length of the absorption chamber, the change in optical 

path length for the probe, or monitor, laser beam is L 6n, which will be a 

certain fraction, F, of its wave length. Hence, 

L 6n = FX, 

and one has 

F = k (n-l)a tT,
Q , . 

X       AJ'pCpT 

The minimum value of a which can be detected depends upon how small a value 

of F one can measure for a given value of the other physical quantities in 

the experiment. 

For example, assuming Q/A = 20 joules/cm2, L = 100 cm, X = 5 x 10~5 cm, 

(n-1) = 3 x 10-\ T = 300oK, p = 1.3 x 10-3 gm/cm2, Cp = 0.2U cal/gm 0C, 

one has F » 3 x 10** a. 

If one can measure a path length change, or phase shift, of a thousandth of 

a wave length (F ■ 0.001), one can then detect a of 3 x 10"8 cm-1. One can 

increase the energy and path length to perhaps detect an o of an order of 

magnitude less. But a phase change of a thousandth of a wave length is dif- 

ficult to measure by methods usually associated with interferometry. 

In order to measure extremely small phase shifts, of the order of 

X/1000, or possibly smaller, the second branch of the interferometer probe 

laser beam is also varied in optical path length, but at a frequency of the 

order of 105 Hz.15 This may be accomplished by the insertion of a crystal- 

line Kerr Cell in the optical path, or by making one mirror a Piezo-electric 

crystal, either one driven by a 105 Hz. oscillator. The interference pattern 

15. P.H. Lee and Skolnick:  "A Phase Comparison Optical Discriminator", 
IEEE J. Quantum Electronics, QE-2, No. 12, p. 784-785, 1966. 
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is detected by a phutomultiplier tube whose output will be the 105 Hz. 

signal caused by the driven crystal. This is fed into a synchronous de- 

tector, together with a signal directly from the 105 Hz. oscillator. 

Now a servo-mechanism is used to apply a varidox« high D-C voltage to the 

crystal in order to further vary the optical path of the second branch in 

the sauie amount that the intense laser pulse varies the optical path of 

the first branch, thus keeping the time average optical path of the second 

branch equal to the optical path of the first. See Figure 8.2- The inter- 

ference pattern is then kept in phase, and the D-C servo-voltage required 

to do this is proportional to the phase shift that would otherwise occur. 

Hence the small phase shift is converted into a measurable voltage. 

The limitations here are determined by the constancy in optical path 

one can achieve by carefully constructing the interferometer and by the 

homogeneity of the wave fronts in the first branch through which the in- 

tense laser is pulsed. A detectivity of a down to the order of 10~9/cm 

should be achievable under favorable conditions. This appears as the most 

promising alternate to the spectrophone, especially for intense laser 

pulses at frequencies where scattering is appreciable.  Smaller values of 

a might be detectable by measuring effects over long ranges, as might be 

possible in a mile long tube. 
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Intense 
Laser Detector 

Figure 8.1.    Interferometer 

58 - 

^ 



Intense 
Laser 
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Figure 8.2.    Interferometer With Phase Comparison Optics15 
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9. The Absorptivity Spectrophonv and Measurement of a. 

The absorptivity spectrophone, a practical, direct method for precise 

measurement of weak uptical absorptivity in gases, especially for wave 

lengths at which scattering is not significant, has been designed by Edwin 

L. Kerr and John G. Atwood.16 They used the spectrophone to measure the 

absorption coefficient of the 9.6 micron line of a CW CO2 laser in mixtures 

of COj - Nj. At 300 ppm CO« in Nj, the standard concentration of CO, in 

air at sea level, the absorptivity reported was 5.8 x 10"7 cm"1.^16^ 

The same equipment, the theory of which has been discussed in Section 3, 

was used by us in an attempt to measure the absorption coefficient of the 

10.6 micron line of a CW CO2 laser in the actual atmosphere. At 2**°  ♦ 1° C 

with a relative humidity of (70 +5)% and an unknown amount of air pollu- 

tants present in the air in the Western San Fernando Valley, the measured 

value of the atmospheric absorption coefficient is (1.0 +^0.2) x 10~6 cm"1. 

Time and experimental difficulties did not permit the accomplishment of a 

more ambitious goal, that of measuring a in controlled, known mixtures of 

N2 - O2 - CO2 - H2O while simultaneously monitoring the spectral distribu- 

tion of the .Laser beam. 

The spectrophone measures absorptivity by sensing the thermal expan- 

sion of a confined sample of gas. A complete description of the device is 

contained in the Perkin-Elmer Report^l6^. Only a brief description is con- 

tained here. The laser was made in house, except for the pyrex tube which 

was loaned to us by a prominent manufacturer of same. The length is 0.7 

meters with an inside diameter of 0.5 inches. Using one plane and one 

16. Earl L. Sloan and Edwin L. Kerr, Perkin-Elmer Corporation Report No. 
8884, Absorption of Light, 31 July 1967. 
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spherical mirror, it supplied an output of just under one watt during the 

experiments while excited by a D-C voltage of 12,000 and containing the 

following (closed) gas mixture: 

1.0 Tor.« CO«, 2.5 Torr N2, 11.0 Torr He, 0.2 Torr H20. 

The spectral distribution is dependent upon many factors, including proper 

alignment of the end mirrors. Spectral measurements were not made simul- 

taneously with atmospheric absorption. Hence all that can be said is that 

measurements inade at different times, when the laser is tuned for maximum 

power, as during the experiments, indicate that the laser power is almost 

entirely at 10.6 microns.  Laser power was measured with a Korad Model K-PM 

Power Meter. 

The absorptivity measurements were made by detecting the pressure rise 

in a gas sample chamber while the CW CO. laser beam is passed through. The 

sample chamber and pressure transducer were obtained from the Perkin-Clmer 

group, where they were used for similar measurements. The sample chamber 

is aluminum, 2 cm I.D., 10 err O.D., 20 cm path length, i|.2 kg mass, and 

has 5mm KBr windows at Brewster's angle. The chamber is massive to insure 

a uniform constant temperature. Thermal and acoustic shielding is provided 

by an outer cylindrical aluminum tank which is sealed. The laser beam power 

was monitored by a Korac K-PM power meter. The pressure rise was measured 

by an MKS Baratron pressure transducer with a minimum resolvable differential 

of 10~5 mm Hg. or lO-8 atm. A steady state temperature distribution is 

reached in a few tenths of a second after the shutter open) to allow the beam 

to shine through the chamber. 

As derived in Section 3, with the simplifying assumption of a perfectly 
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defined cyiindrlcsl beam, the pressure rise is: 

(-Ä «■^^--^i »•"' 

where    P0 = initial pressure 

T0 s initial temperature 

a = linear absorption coefficient 

W ■ beam power 

K = thermal conductivity of gas in sample chamber 

J =0.239 cal/joule 

a = beam radius 

b = sample chamber radius. 

In actual practice, the power density of the laser beam is approximately a 

Gaussian distribution, witn the intensity eiven by: 

Kp)-  W e-p2/w2 

where w = half beam widtti at e-1 points, p = distance from axis. With this 

refinement, the quantity in parenthesis (1 - JLJ is replaced by I6 

2b2 

[I . g. ♦ (4 - 5L) e-b2/w2] - (1 - 4> ^r • < b. 
b7  b7  2W7 b7 

The reproducibility of measurement of the pressure rise, dP, was of the 

order of 10%, hence a precise measurement of w is unnecessary, as 

w2 (1 - Z—)  a  0.98 t 0.01 in our experiment. 
b2 

The absorption chamber was baked out at temperatures in excess of 100oC 

purged with dry nitrogen several times to attempt to rid the KBr windows of 

contaminants, but enough remained to give an equivalent absorptivity of 
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10-7 cm-1 with dry N« at atmospheric pressure in the cell. The N2 was 

evacuated and air was admitted to the cell, and absorptivity measurements 

were made on several days ~ all of which were midly smoggy. With the 

consistent weather in the Western San Fernando Valley, the climate con- 

ditions were similar on all days. Temperature (2U + 1)0C. Pressure 

7U0 + 5 mm Hg. Relative humidity (70 ♦ 5)%. Very mild smog conditions. 

Under these conditions the measured value of a = (1.0 + 0.2) x 10-6 cm-1. 

10. Conclusions. 

The following conclusions were reached concerning the measurement of 

the absorption of raoiation in air for wave length regions where a < 10"8 

cm"1: 

1. It is probably possible to make absorption measurements in air 

using a steady laser beam and noting the static pressure in- 

crease in a sealed tube if the following conditions can be met: 

a) The tube is long enough to render the end effects negligible. 

b) The heating effect of the scattered light is eliminated. 

c) The temperature of the confining tube is maintained constant 

to within lO-1* 0C. 

2. The static pressure rise due to a single laser pulse can probably 

not be measured if a is as low as 10"9 cm'1. 

3. The measurement of the acoustic wave generated by a single laser 

pulse depends on the   issing of the acoustic wave and on an 

extremely sensitive broad-band detector. It is doubtful that 

this can be achieved. 
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»». The meesureraent of the acoustic signal generated by periodi:ally 

repeated pulses, whose repetition frequency is matched to that 

of a resonant cavity, is a possibility tha ■ should be investigated 

further. 

5. By use of a phase comparison optical discriminator described in 

Section 8, values of a in the range ICT8 to lO'9 cm  probably can 

be measured by interferometric methods. 

The situation in the wave length region around 10 microns is quite different 

from that investigated here. First, Rayleigh scattering is no longer a 

limiting factor. Second, the absorption in air is considerably higher at 

10 microns than it is in certain parts of the visibl- region. Hence several 

of the contemplated methods would work. The absorptivity spectrophone was 

used to measure a in air for the 10.6w CO2 laser line, o = (1.0 +0.2) 

x 10-6 cm-1 

- 6U 

/ 
 1 L 1  



 üNCiAs^TrTr.n 
IrvUfUv C lassifu alion 

DOCUMENT CONTROL DATA    R&D 
urily i f.is •.*/!> iinon i»l Mfli*.  ln<J*   <>t .,/>- tr.it l .iti>l itnlr* in,) immmtmliim mu. f hr fi if« fiu 'vhrn U,i-   ivi-rult rrpnrl Ts i l.ishjlleU} 

I     ORIGINATING   ACTIVITV   (('.»rpiir.irr .Kirhor) 

San Fernando Valley State Coilop,e Foundation 
18111 Nordhoff Street 
Northridpe, California    91^?M         

2«. HI »'OHT srrunitr CL*ssiftr*i ION 

UMCLASSXrZED 
?h.   CNOUP 

H f PO*» 1     1 I T l   f 

ANALYTICAl, STUDIES  PCRTAINING 10 TUE MLASURLMLNT  OF   LIGHT ABSORPTION  IN AIR 

<    JESCWiPiivt  NOT ES (Type «I tfporl .im/ inrliisivi' il.ilni 

Final Report 
%    AUTi40RiSl fh'irst nnmr, muUlli- tniltat. laut ritinifl 

Bela A.   Lengyel and Robert J.   Romapnoli 

f.     niPOHT    OATI 

30 October 1968 
;«.    TOTAL   NO     Of-    f'AGES .h.   NO    OF   Rr FS 

70 19 
t«l     r ON THACT   OR   GRANT   NT 

N0001il-66-C0098 
h.    PRO If C T   NO 

ARPA  Order 306 

■*«.   OHIGINATOH'S   HtcCMT   NUMEURIS) 

<^^   OTHFH HC.POHI  NOlsi (Any nihrr numbcrit lhal mny b» mitlgnnl 
this rt'porti 

DISTRIBUTION   »TATEMTNT 

Distribution of this document is unlimited 

11      SUP PLt »-'I  NTARy   NOT!  5 12     SPONSO RING   Wl L t T AR T        CTIVITV 

Advanced Research Projects Agency 
Office of Naval Research 
Department  of  befensr 

n     A MS T R -*C 

Lxperimental methc-i"  proposed   for the measurement  of the absorption coefficient 
of  light   in air are analyzed.    The calculations are primarily intended for the 
wavelength region where,  for certain wavelengths,  the absorption coefficient to  . 
be measured is estimated  "o be of the order of iO-9 cW1 .    The effects of \ 
scattering, heat conduction,  ntatic and acoustic pressure variations are examined 
and are related to the problem of detecting the signals produced by the absorption 
of heat  from the laser beam.     Both pulsed and cw schemes are considered.    The 
measurement of the static pressure rise  in a narrow tube appears as a feasible, 
although marginal method which offers some hope of success.    Also an interfero- 
metric method appears feasible.    Finally the absorption coefficient of the 10.6y^ 
COo  laser beam was measured  in air.^ , a =  (1.0 + 0.2) x 10-^ cm-1. 

00.^1473   ,PAG  '' 
S/N   010 1-807.6801 

nuriA^iFiED  
Srcuritv Classification 

■v_ 



UMCLASSiriED 
Sec unty Claamificaiion 

I 
K  t    -     MONOt 

nocc nou c 

Atmospheric absorption 
Laser beams 
Experimental measurement 
Acoustic pressure variations 
Static pressure rise 
Scattering 
Heat deposition 
Interferometer 
Spectrophone 

DD ^..1473  BACK, 
,PAGF   2) 

UNCLASSIFIED 
Security Claitification 



INSTRUCTIONS TO FILL OUT DO FORM 1473 ■ DOCUMENT CONTROL DATA 
(Sec ASPR 4-211} 

1.    ORIGINATINC ACTIVITY:    Enter the nam.- and jddrt-ss of 
the cuntrat'tor, ■ubrontraclor, firtintFf, D'parlmi'nl »f Defense 
activity or other orKanization frorporüli' •iuf/i»r) issumit the 
report. 

2«.   REPORT SECURITY CLASSIEICATION:    EnltT Ihe over- 
m'.' »eii'riiy i UssifualKin of Ihe report.    Indw ale whether 
''Restrit led Da'a" is included.   Marking la to be in accord- 
ance with appropriate security regulations. 

2b        ROUP:   Automatic downgrading is specified in UoL) direc- 
tive     JOO 10 and Armed Forces Industrial Security Manual. Enlet 
the group number.   Also, when applicable, show that optional 
markings have been used for Croup J and Group 4 as authorized. 

y    REPORT TITLE:   Enter Ihe complete renort title in all 
r      capital letleru.   Titles in all cases should be unclassified. 

If a meaningful title cannot be selected without clasaifica- 
lion, show title classification in all capitals in parenthesis 
immediately following Ihe title. 

r     4-    DESCRIPTIVE NOTES:   If appropriate, enter the type of 
report, e.g., interim, progress, summary, aniuai. or final. 
Give the inclusive dates when a specific reporting penrd is 
covered, 

S.    AUTHOR(S):   Enter the name(s) of Ihe author(s) in normal 
order, e.g., full first name, middle initial, lasl name.   If military, 
show yrail • and branch of service.    The name of ihe principal 
aulhor is a minimum requirement. 

h.    REPORT DATE:    Enter Ihe date of Ihe report as day. month, 
year; or month, year.   If more than one date appears nn Ihe re- 
port, use dale of publication. 

7a.    TOTAL Nl'MUER OF PAGES:    The total page » ount 
should f   Mow normal pagination procedures, i.e,. enter the num- 
ber of pages containing information. 

7b.    NUMHER OK REFERENCES: 
references cited in Ihe report. 

Knler the total number of 

8a.    CONTRACT OR GRANT NUMBER:    If appropriate, enter 
Ihe applu able number of Ihe contract or grant  under wh.ch 
the report was wnllen. 

8b. Re. and 8(1.    PROJECT NUMBER     Knler the appropriate 
mititarv department idenlifii alion, such as projeil number, 
task area number, systems numbers, work unit number   ttt 

9a.    ORIGINATOR'S REPORT NUMIIER(S)     En'er Ihe niucial 
report number by which the document  will be uientifi-'il and 
controlled by Ihe originating activity.    This number must lie 
unique to this report. 

Pb. OTHER REPORT NUMnER(S): If the report has l.een 
assigned any other report numbers feifher by Ihr ontinalot 
or by Ihr sponsor), also enter this number(s). 

10.    DISTRIBUTION STATEMENT 
statement pertaining to Ihe report. 

Enter Ihe one distribution 

Contractor-Imposed Distribution Statement 

4      The Armed Services Procurement Regulations f^SPR), pflra 9-203 
stipulates thai each piece of data to which limited rights are 
to be asserted must be marked with Ihe following legend 

"Furnished under United States Government Contract 
' No. .   Shall not be either released outside the 

Government, or used, duplicated, or disclosed in whole 
or in part for manufacture or procurement, without Ihe 
written permission of . except for: 
(i) emergency repair or overhaul work by or for the 
Government, where Ihe item or process concerned is 
not otherwise reasonably available to enable timely 
performance of Ihe work, or (n) release to a foreign 
government, as Ihe interests of Ihe United Stales may 
require, provided that in either case Ihe release, use, 
duplication or disclosure hereof shall be subject to Ihe 
foregoing limitations.    This legend shall be marked on 
any reproduction hereof in whole or in part." 

If Ihe above statement is to be used on this lorm, t alcr 
Ihe following abbreviated statement: 

"Furnished under U. S. Government Contrail No. . 
Shall not be either released outside the Government,  or nsi il, 
duplicated, or disclosed in whole or in part  for manufai lure 
or procurement, without the written permission of . 
per ASPR 't-JO 1. " 

DoD Imf   sed Distribution Statements (refereni .■ Dn/) Dir, . five 
S2(H) 20   ) "Distribution Statements fOther (hiin Serunryj on 
Technual Documenis," March 20.  IQ6S. 

STATEMENT NO   1     Distribution of this document is unlimited. 

STATEMENT NO   ] (UNCLASSIFIED document) • This document 
is subject to spei lal export controls and each transnutl.il to 
foreign governments or foreign nationals may be made only with 
prior approval of (till in ronlrolling DoD office). 

(CLASSIFIED document) - In addition to security require« 
ments which must lie met, this document  is subject to spei i,il 
export controls and each transmittal to foreign governments or 
foreign nationals may he made only with prior approval (lill 
in i onlrollmfi f)o/) Office). 

STATEMENT NO    i (UNCLASSIFIED document) - Fach irans- 
miltal of this document outside Ihe agencies of the U. S. 
Government  must have prior approval of (till in i onirnllinf 
DoD Ollm \. 

(CLASSIFIED document) • In addition to security require- 
ments which apply 10 this document and must be met. each 
transmittal autside ihe agent les of the U. S. Government must 
have prior approval of (till in i onlroltinß D'>D Office). 

STATEMENT NO   4 (UNCLASSIFIED document) - Fach trans- 
mittal of this document outside the Department of Defense 
must have prior approval of (lill in c omro/hng DoD O/d. t i. 

(CLASSIFIED document) • In addition to secunu require« 
ments which apply to this document and must be met,  e,u h Iians- 
mittal outside the Department of Defense must have prior ap- 
proval of (till in i onlrolhnfi DoD Of/n e). 

STATEMENT NO   S (UNCL \SSIFIED document)     This AM urm-nl 
may be further distnhuted by any holder only with spec ifu 
prior approval of ffiH m ! oM(ro//in>,' DoD Offii e). 

(CLASSII'll-l) document) - In addition to security require- 
ments which apply to tins document  and must be met,  it ma\ 
oe further distrihuled \ \  the holder ONLY with specific   prior 
approval of (lill in i onlrollinQ DoD Of/ne). 

II.    SUPPLKMINTAKV NOTES 
notes. 

Use for additional explanütory 

12.    SPONSORING MILITARY ACTIVITY     Enter Ihe name of 
Ihe departmental project office or laboratory sponsoring (paying 
for) the reseanh and development.    Include address. 

IJ,    ABSTRACT     Unter an abstract giving a brief and factual 
summary of the dorumenl indicative of the report, even though 
it may also ajipear elsewhere in Ihe body of Ihe technu al re- 
port.    If additional apace is required, a continuation sheet shall 
be attached. 

It is highly desirable that the abstract of classified re- 
ports be unclassified.    Kach paragraph of the abstract shall 
end with an indication of the military security classification 
of Ihe information in the paragraph, represented as (TS), (S), 
(C), or (U). 

There is no limitation on Ihe length of Ihe abstract.   How- 
ever, the suggested length is from ISO to 22S words. 

14.    KEY WORDS    Key words are technically meaningful tem.t 
or short phrases that characterize a report and may be used as 
index entries for cataloging the report.    Key words must be 
selected sti that no security classification is required.    Iden- 
tifiers, such as equipment model designation, trade name. 
military project code name, geographic location, may be used 
as key words bul will be followed by an indication of tr- hm- 
cal context.    The assignment of links,   roles, and weighli is 
op"on"- (PAGE   3) 


