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ABSTRACT

A description of the far fields radiated by an electromagnetic
point source in the presence of bounded, lossless, anisotropic media
is formulated in terms of ray optics. The ray-optical description is
a generalization of classical geometrical optics and has previously been
used to describe the fields radiated in isotropic media and those radiated
by line sources in anisotropic media. In formulating the ray-optical
description, the fields radiated by a point source in the presence of
a planar interface between two homogeneous, lossless media of
arbitrary anisotropy are first represented in terms of a double Fourier
integral. This rigorous integral representation is then evaluated
asymptotically to find the first-order stationary point, branch curve

and surface wave pole contributions,

Using the equality of group velocity and velocity of energy
transport for plane waves in anisotropic m edia, the stationary point
contributions are interpreted in terms of direct and scattered (transmitted
and reflected) rays and the associated fields are cast into ray-optical
form. Locally, the dircct and scattered ray fields are those of plane
waves carrying energy in the ray direction and are scattered at the
interface according to Snell's law. The ray-optical forms of these ray
fields exhibit their dependence on properties local to the ray path, thus
permitting the extension of the ray-optical results to problems not
amenable to rigorous analysis, Such an extension is considered for the
case of scattering at a gently curved interface between two homogeneous
anisotropic media. The branch curve contributions are interpreted in
terms of lateral rays whose fields aleo are locally those of plane waves

carrying energy in the ray direction,

In order to interpret the surface wave pole contributions in ray-
optical terms, it is shown that the group velocity of a modal surface wave
in a plane-stratified, lossless, anisotropic medium is equal to the velocity
of energy transport of the surface wave as a whole. Using this relation,
the surface wave pole contributions are interpreted in terms of surface
wave rays whose fields are locally those of modal surface waves carrying
energy in the ray direction., Two examples of the effect of anisotropy on

surface wave propagation are considered.

iii




TABLE OF CONTENTS

Page
IntroduCtion 00000000 ® 6 & & 0 0 4 0 40 6 5B 0 e e e ® & 0 & & 0 & 0 4 40 8 00 l
Chapter 1. Formal Solution for the Fields Radiated by a
Point Source in the Presence of a Planar
Interface
Introduction. .. ..........iivve i, 5
The Field Transforms..... N C 000000000 6
The Modal Fields........co0vieeiv.vuns 10
Evaluation of the One Dimensional
Green's Function. ...oovvvivvnnnnecnnns 15
Chapter II, Evaluation and Interpretation of the Direct,
Scattered and Lateral Ray Contributions to
the Far Fields
Introduction. .. .................. B, 23
Asymptotic Evaluation of the Generic
Integrals......oovtieiiivnronnnnenenns 25
Ray Intepretation for the Stationary Point
Contributions. ......covvvvveiiie i, 31
Ray-Optical Solution for the Fields
Scattered From a Curved Interface....... 42
Branch Curve Contributions to the Far
Fields................. o I At oo™ 49
Chapter IIl. Group Velocity and Power Flow Relations for
Surface Waves in Plane-Stratified Anisotropic
Media
Introduction 000000 ® 6 5 5 5 5 0 P B & 40 4 e e LI ) 56
Stratified Medium Filling All Space....... 59
Stratified Medium Above a Perfectly
Conducting Plane. ..........cco0vvveenn. 65
iv



Surface Impedance and Power
Flow Relations. .. ...ccevvveveennnneen 67

Surface Impedance for the Case of
Evanescent Waves............ 00000 73

Chapter IV, Surface Waves on a Uniaxial Plasma Slab; Their
Group Velocity and Power Flow

Introduction. .......oovviiiiieii i 78
Fields and Dispersion Relation......... 80
Properties of the Dispersion Relation. .. 87

Group Velocity and Energy Transport
Velocity--.--o..oo-- ..... 6 0 0 0 0 0 0 0 0 00 96

Chapter V.  Evaluation and Interpretation of the Surface
Wave Contributions to the Far Fields

Introduction. .. ...e.oceeevecencocacees 100

Surface Wave Contributions to the

FarField..llll.llllll.lll.lllll.lll. 101

Surface Waves in a Gyrotropic Plasma

Above a Perfect Conductor...... SO0 110
Summary ......... o & 0 0 0 0 6 0 ¢ 6 0 0 0 0 ° 0 0 0 O 0 0O ® 0 0 o 0 0 0o 0 e o 0 0 130

Appendix A, Excitation Coefficients of Propagating Plane
wavestl.l..ll..lllllll.llllll.l’lll.ll.l 133

Appendix B. Steepest Descent Evaluation of the Integral

mern.lllll....ll.lllllllll..l....l ..... 135
Appendix C. Scattered-Ray Tangencies to a Caustic and
Ewre'sion'for6......l.llll.ll...lll.l.. 143
Appendix D, Divergence Coefficient for Point-Source Rays
Scattered at a Curved Interface............. 154
v




Appendix E,

Appendix F,

Appensix G,

Appendix H,

Ray-Optical Representation for the Lateral
Ray Field...................l.............

A Surface Admittance Represenation for

~ Plane-Stratified Configurations..............

Group Velocity and Power Flow Relations
for Surface Waves in Periodic Configurations. .

.On the Possible Existance of H-Type Surface

Waves on a Uniaxial Plasma Slab......c....c...

Bibliography.oooooo0000000000000-0000000000000000000000

Page

162

166

168

184
186



LIST OF FIGURES AND TABLES

Page
Fig.lI-1 Interface between two homogeneous,
anisotropic media....... 00000t e0ennn . 16
Fig.1I-1 (a) Ray structure for the scattered fields... 37
(b) Determination of scattered ray directions
from the dispersion surfaces........... 37
Fig.II-2 (a) Ray scattering at a curved interface..... 44
(b) Construction for fjnding the direction of
the scattered (m=4) ray...... L 2 e T Dk 44
Fig.1l-3 Side view of cross-section used in formu-
lating the Fourier representation of the
fields of a scattered ray pencil......... 47
Fig.Il-4 (a) Determination of lateral ray strugture
from the dispersion surfaces (m=3,
branches omitted for clarity)........... 53
(b) Structure of the lateral rays............ 53
Fig.1IV-1 Anisotropic plasma slab configuration... 81
Fig.IV-2 Regions of real 8 and a in the k_-k
planelll..lll'lll.ll..lllllllxll.ylll..l 89
Fig.IV-3 Construction for finding solutions of the
surface wave dispersion relation for the
short-circuit bisectioncase............. 91
Fig.I1V-4 Construction for finding solutions of the
surface wave dicpersion relation for the
open-circuit bisectioncase........c00... 91
Fig.IV-5 Dispersion curves for a typical surface
wave mode with v as a parameter......... 93
Fig. V-1 Grounded gyrotropic plasma configuration.. 112
vii




Fig. V-2

Fig. V-3

Fig. V-4

Fig. V-5

Fig. V-6

Fig. V-7

Table C-1

Fig.D-1

Table E-1

Fig.G-1

Fig.G-2

Fig.G-3

Page

Generating curve for plasma dispersion
surface --wp/'u=5.0. vuc/'v =) I 121

Surface wave dispersion curve for plasma-
conductor interface --wp/-t, =5.0, I:gc/u;|=l. 5, 122

Surface wave radiation pattern for plasma-
conductor interface--mp/m= B O.Imcl'n =l 5 . 126

Direct ray radiation pattern in the (x, y)
plane--mp/w =5.0, |mc/w|=l. T 127

Direct ray radiation pattern in the plane
X=Z == 'up/'u=5. o. ﬁnc/w =10 500 S s 0 0 c0 00000 0 128

Direct ray radiation pattern in the plane
x: = z=u /0 =5. 0, le /wl=1.5.............. 129

The number of tangencies to an actual caustic
of a point source ray scattered by a planar
interface and the value of & mn 2long the

scattered portion of the ray........0000s. 149
Ray scattering by a curved interface...... 155

The shape of the dispersion curves and the
sign of vLY in the const~:* 3 =§c plane

passing through the critical point......... 165
CrOSS-BeCtion Of a unit Cell. #0000 ¢ 20000800 170
Cross-section of cylinder used in proving

b @
that J dv J sudz is independent of u...... 177

o -®

Cross-section of the triangular cylinder... 177

viii



INTRODUCTION

In recent years considerable attention has been given to the prob-
lem of evaluating the fields radiated by localized, time-harmonic, electro-
magnetic sources in the presence of bounded anisotropic media. Interest
in this topic has been stimulated by the growing importance of communica-
tion links, such as earth-satellite links, involving propagation through the

earth's ionosphere., Previous studies in this area have been limited to in-

» when boundaries are present, to the fields radiated

. . 3 [ H 4) 5 1 6 . . .
by an infinite line sourcé3 £ )or to radiation from a point source when

finite media

the configuration possesses rotational symmetry about the optic axis of the

medium. (7,8)

The purpose of the analysis given here is to describe the far fields
radiated by a point source in the presence of lossless, bounded anisotropic
media when no simplif ying symmetries are present, In carrying out this
study, a description of the point source fields was sought in terms of ra-
optics. The ray-optical description is a generalization of classical geo-
metrical optics and has been applied successfully to diffraction problems

(9,10,11)

in isotropic media and to line source problems in anisotropic

media. (4,5,6,12)

The procedure employed in this study to develop a ray-optical de-
scription of the pvint source radiation is to first solve a problem that is
amenable to rigorous analysis and that embodies the features found in a
larger class of problems that are of interest. The formal solution to this
canonical problem is then approximated asymptotically for observation
points far from the source and the various contributions to the approxima-
tion are then interpreted in ray-optical terms. In the ray-optical inter- -
pretation, one looks for ray paths that can be viewed as trajectories of
energy flow. The fields associated with the rays are then cast into a form
displaying their dependence on properties local to the ray path. Having
obtained a ray interprétation dependent on properties local to the ray path

in the canonical problem, the effect of varying the local properties can be



determined. Thus, problems not amenable to rigorous analysis can be
solved by considering the propagation of individual rays, whose behavior

is determined from the canonical problem.

The canonical problem considered here consists of a time-harmonic,
electromagnetic point source radiating in the presence of a planar inter-
face between two homogeneous, lossless, anisotropic, dielectric half-spaces.
No restriction is placed on the anisotropic media filling the half-spaces,
except that it be lossless, e. g., the optic axes of the media may be oriented
arbitrarily with respect to each other and with respect to the interface.

A rigorous double Fourier integral representation for the fields radiated
by the point source is derived in Chapter I in terms of the plane wave or
modal fields of the individual media. The stationary point, branch cnurve
and real pole contributions to the asymptotic evaluation of the double Fourier
integral representation and their ray-optical interpretations are given in

subsequent chapters.

The method used in performing the first-order asymptotic evalua-
tion of the double Fourier integrals is to first apply the steepest descent
technique to the integration over one of the transform variables. The result
of the first integration, which contains saddle point, branch point and sur-
face wave pole contributions, is then integrated over the remaining transform
variable, to first order, by the method of stationary phase. The advantage
of this method for performing the asymptotic evaluation lies in the fact that
it yields the first-order branch curve and real pole contributions, as well
as the stationary point contributions. Furthermore, the first-order contri-
butions are sufficient for the description of the direct, reflected and trans-
mitted ray fields and the lateral ray and surface wave ray fields. While
more sophisticated techniques exist that give all orders of the stationary
point contributions, they do not give the branch curve and real pole contribu-

tions.

In Chapter II, the stationary point contributions to the double Fourier
integrals are found to first order for observation points in the far field and
interpreted in terms of direct, reflected and transmitted rays. The local

behavior of these rays suggests a method whereby the rays reflected from




and transmitted through a curved interface can be found from ray-optical
calculations. This method is discussed in Chapter II. The branch curve
contributions to the double Fourier integrals are also found to first order
in Chapter II and interpreted in terms of lateral rays. The ray-optical
formalism given here is consistent with Keller's diffraction theory for iso-

(9)

tropic media.

In order to inte -pret the real pole contributions to the double Fourier
integrals, it was found necessary to derive the relation between group ve-
locity and the velocity of energy transport for propagating modal surface
waves in plane-stratified, anisotropic, lossless media. Chapter III is de-
voted to a proof of the equality of group velocity and the velocity of energy
transport for modal surface waves in an arbitrarily plane-stratified loss-
less medium. The group velocity of a surface wave is the gradient, in the
transverse wave number plane, of the solution of the surface wave dispersion
relation for the angular frequency as a function of transverse wave numbers.
Since the group velocity vector is independent of the coordinate of stratifica-
tion, it cannot always be parallel to the real part of the local Poynting vec-
tor of the surface wave, which can vary with this coordinate. However,
the group velocity vector is shown to be equal to the real part of the total
Poynting vector, which is the integral over the coordinate of stratification
of the local Poynting vector, divided by the corresponding integral of the
local energy density, i.e., the surface wave energy velocity. It is also
demonstrated in Chapter III that the energy flow and stored energy in a
plane-stratified, lossless configuration that can be represented by an anti-
Hermitian dyadic surface impedance are simply expressed in terms of the
derivatives of the impedance with respect to the transverse wave numbers
and frequency. The significance of the impedance relations for surface

waves is also discussed.

As an illustration of the surface wave group velocity-energy ve-
locity relation derived in Chapter III, this relation is verified in Chapter IV
by direct calculation for a specific configuration. The configuration studied
consists of a uniaxially anisotropic plasma slab in free space. The plasma

anisotropy is assumed to be produced by an infinite static magnetic field

LR
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parallel to the slab. This configuration exemplifies the marked direction-

al dependence of surface waves that is possible in anisotropic media.

The first-order asymptotic evaluation of the surface wave pole con-

tributions to the far fields excited by the point source is given in Chapter V.

Using the relation between surface wave group velocity and energy velocity
derived in Chapter III, the pole contributions are interpreted in terms of
surface wave rays, which are the two-dimensional trajectories of energy
flow. In order to illustrate the effects of anisotropy on the radiation due
to a point source in the presence of a planar interface, the results of
Chapter 1I and the first section of Chapter V are used to compute the fields
radiated in a gyrotropic plasma above a perfectly conducting plane. The
static magnetic field is taken parallel to the interface and the R. F. ficlds
are excited by an electric field impressed in a slot cut in the conductor.

For one set of plasma parameters, the direct ray and surface wave radia-

tion patterns are calculated and clearly exhibit the effects of the anisotropy.
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Chapter 1

FORMAL SOLUTION FOR THE FIELDS RAI'IATED BY A POINT
SOURCE IN THE PRESENCE OF A PLANAR INTERFACE :

A. INTRODUCTION

In this chapter, the form of the double Fourier integral representa-
tion will be established for the fields radiated by a time-harmonic electro-
magnetic point source in the presence of a planar interface between two
arbitrary homogeneous, lossless, anisotropic, dispersive dielectric half-
spaces. The techniques of modal analysis will be used in developing the
Fourier integral representation for the fields. Using a notation similar to
that of reference (13), an orthogonality statement will be developed for the
transverse modal fields of each medium that will prove helpful in deriving
the excitation, transmission and reflection coefficients appearing in the

Fourier integral representation.

Without loss of generality, the interface between the two homoge-
neous half-spaces is taken to be the z = 0 plane of a rectangular coordinate
system and the point source is assumed to be located at (0, 0, zr') with
2'< 0 --- see Fig, 1. The effect of the medium filling the half-space z< 0
on the propagation of time-harmonic electromagnetic waves is assumed to
be described by the relative dielectric tensor € | while the effect of the
medium filling the half-space z> 0 is assumed to be described by the re-

lative dielectric ¢ For convenience, both media are assumed to have

=2
permabilities equal to that of free space. However, an analysis of the more

general case of media having tensor permability would yield the same basic

results obtained in this chapter. The relative dielectric tensors cl and ¢ 5
must be Hermitian since the media are assumed to be lossless, (14,15) but

are otherwise arbitrary, e. g., the optic 2xes may be oriented arbitrarily

with respect to each other and with respect to the interface.
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B. THE FIELD TRANSFORMS

The fields radiated by a localized source in the presence of a planar

interface between two media are the solutions of the inhomogeneous Maxwell
equations satisfying the radiation condition at infinity and the continuity
counditions at the interface. For sources having harmonic time dependence
v
e’ t, Maxwell's equations in an anisotropic dielectric are
v xE () = -jou _H(x) - M(z)
1)
v = 3 € € o +
xH@ =jwe _¢- E@+I@

-
where the factor eJ thas been omitted. In (1), eo and o 2Te the free space

dielectric constant and permeability and € =¢ 1 for z < 0 while for z > 0,
€ =¢€ 5 Also, M and J are the magnetic and electric source current den-

~

sities, respectively. Since x and y c2n vary over the infinite interval, the

electric and magnetic fields may be represented by a double Fourier trans-

form as
E v (k. , -jk
E(@) | “‘ &, 2) ! jk (Ex+n y)dg =
Ho -= | #k, 2) "

Couo, £=§°x+xoy+£ozand5t=§°§ +xon, . Xoand
z, being unit vectors along x, y and z, respectively, Using the orthogonality

where ko =w.

and completeness of the exponentials on the infinite interval, it is found that

the field transforms satisfy

. d v o_ .

(-Jkol—tt *&s dz)x 2y o£ - B

(3)

. d g ;

(-Jkobt+£odz )x & = jo *wl 6+17

where
I, 2) k \2 ” J@) jk (Ex+tny)

ol . e dx dy .

(4)
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In order to solve the equatious ir (3), they are first decomposed into

their transverse and longitudinal parts by writing ¢ in dyadic form

8 =ile | LENE + € + €
~ ~t z‘z—og'o E'0'—zt =tz Eo (5)
where
€ = € + € + + g g
~t xxioio xy"ioxo ¢ yxxoio © yyxo}'o
€ = € + €
zt zX 5o zy ‘zo . (6)
€ = € €
—tz xz Yo * yz Yo
With the help of (6), the longitudinal part of (3) can be written as
-Jkohtx étz ) JuJ"'O'z-o#z "% mz
—' - i e . €
Jko}s'tx'l-‘t Ut o 'z-o(izt 'ét+ 2z 62) +E'o 3’2 ()

and the transverse part of (3) canbe written as

d . :
dz on'ét- Jkohtx'z'o 62 - -quo iJvi: ) mt

d . .

== - 3 € o

T2 Zo* #t Jko k‘x zo#z jw Co(»-t 6t+ 6262) + 7 L
(8)

Equations (7) and (8) may be put into a compact form usi;'m a no-
tation similar to that of reference (13). This notation is based on the
use of matrices whose elements are operators -- in this casc, two-
dimensional dyadics and vectors and scalars -- and will prove convenient
in developing an orthogonality statement for the modal fields. The ortho-
gonality statement will in turn simplify the calculation of excitation, trans-
mission and reflection coefficients and discussion of their properties.

The matrices necessary for this notation are



0 -onl ¢
(9)

on!.t 0

P
"

where Lt = _:_co _:5°+ y_o 10 is the transverse unit dyadic,

. we=|l °°° : (10)
0 wuo lt
rw € _G_t -k z x_l-_('t
wtz 2 o —tz o —o ’ a1)
ko 50 xkt 0
= K 1
—1-— € 2 Xk
€ =zt we € 20Tt
zz o zz
W = 1 (12)
zt
ko
Twu % A 51: ¢ -
- o
1
we ¢ 0
o zz
w = » (13)
z 1
0
w1
o
yt Jz
¢ = ) .t (14)
t mt z m
z
and
5, ’,
4 ¢ = o Y - = . (15)
4 4,

With the above definitions, (7) and (8) can be rewritten as




d
- I = = - iW - - y - ¢ 16
e p DT AW oMot W e oW, (16)
and
£ = . + 3 ] -
Yz wzt Yt sz z a7

As indicated in (16), the dyadic elements of rz and W_are to be
dotted into the appropriate vector elements of ‘i't while the vector elements
of wtz are to be multiplied by the scalar elements of ‘f’z. In (17), the

vector elements of Wz are to be dotted with the appropriate elements of

t
‘i’t and the product Wz ¢ 2 is formed by ordinary matrix multiplication.
Substituting ‘Yz from (17) into (16) it is found that ‘i’t satisfies the vector

differential equation

d ~

——— r . Y + 3 . = - Q

=t NI Y t 18)
where

Wsw -w W, (19)
and the equivalent transverse source transform ’t is given by

8 = Q - ’ .

t t wtz wz z (20)

The elements of the product matrix wtz wzt in (19) are dyadics, i.e.,

w € k
o o
€  twe 4
€ Etz"zt o(iox"}'t)(ioxkt) € 'E'tz(lox Et)
zz zz
W W = .
tz =zt ko ‘”“o
-— (= €
T k) ey, o, m ke e k)
zz zz
- (21)

Observe that W is a function of z in that € = €l for z < 0 while for

z>O,E=f2.
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C. THE MODAL FIELDS

When the equivalent transverse source transform it has z depen-
dence 6 (z - z'), the solution of {18) satisfying the continuity condition at
z=0 (ét and i‘t’ and hence ‘i’t, are continuous across the interface) and the
radiation condition at | z| = ® is the one-dimensional Green's function of
the transform problem., The radiation condition requires that the Green's
function be bounded as | z| ~ ® and that the z component of the Poynting
vector, which is given by Re(ét x J_"t* ), be such that energy is carried
away from the source for | z| - ® ., The radiation condition must be im-
posed in order to uniquely determine the one-dimensional Green's function.
Furthermore, it ensures that the actual fields satisfy the radiation condi-
tion in that the total power passing through any constant z plane, which is

ko 2

. * [ e .
given by Re.r.r Ex Ijt dxdy = Re(zn) , l. étx i‘t d€ dn , will be away

from the source for | zl - ® _--. gee Arbel(7) for further discussion.
The Green's function can be constructed from the homogeneous
solutions of (18) for each medium considered separately, i.e., from the

solutions of

d
—r L 3 [
S0, Y +iw- ¥ =0 (22)

where W is made independent of z by using tHe dielectric tensor appropriate
to the medium under study for all z. Equation (22) represents four coupled,
first-order, ordinary linear differential equations with constant coefficients
Qhose unknowns are the four transform components 5x’ 6}" #x and #y.

Such a system of equations has solutions whose z dependence is of the form

e-Jk°u "y Substituting this z dependence into (22) gives

1
[Kl‘z- R—OW]-Yt‘—‘O (23)

which is an eigenvalue problem equivalent to the simultaneous diagonaliza-

tion of two 4x4 matrices.
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For (23) to have non-trivial solutions, the determinant of the
matrix representation of the operation [n r . kl W]must be zero.
This condition determines the eigenvalues or px?opagation constants
for each medium,which when substituted into (23) allow the determination
of the corresponding eigen or mode vcctors Y (w ) Since the matrix re-

t

presentation of the operator Krz - —k— W| is fourth order, the eigenvalues

o
' , are the.roots of a quartic so that,in general, four eigenvalues and

eigenvectors satisfy (23). The coefficients of the quartic depend on £ and "

so that the vanishing of the determinant yields the plane wave dispersion

relation

Dp(?.n."-)'-'o - (24)

For lossless media € is Hermitian and hence W is Hermitian for real ¥ and
n , as can readily be verified. Thus, since rz is real and symmetric, for
lossless media and real € and n, the coefficients of the quartic will be

real, indicating that the un's are real or occur in complex conjugate pairs,

When the four eigenvalues of (23) are distinct, the four eigenvectors
of (¢3) are linearly independent, and hence complete, in the four-dimensional
space formed by the union of the two-dimensional 5 and Jl» spaces. This
follows from the fact that T is non-singular so that (23) is equxvalent to
the eigenvalue problem k—l' rz o w. ‘f't = u ‘f’t, which is known to have linearly

¥ 1
independent eigenvectors when the eigenvalues are distinct.( 6)

In order to find excitation, transmission and reflection coefficients,
it is first necessary to establish the orthogonality properties of the eigen-
vectors. To this end, let , & and v be any two eigenvalues of (23) and
let ‘i’: be the 2x1 matrix, with vector elements, that is the transpose con-

jugate of the 1x2 matrix ‘i’t. Consider now the quantity

+
&+ 1 1 :
‘*’t(wm)'(’tnrz- k—o'W)' ¥ n)'["mrz"k: W)-‘*t(u.m)] Yl

(25)
which is zero since = and » q 2re eigenvalues of (23). Since rz is real

and symmetric and W is Hermitian, one can write, for example,
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[’w.‘ft(nm)]+. ‘yt(,,n)=‘f':(,,m).w.‘¥t(nn) (26)
so that (25) reduces to
* +
(n _-x" ) [vt(,,m). . vt(un)] =0 . 27)

If the eigenvalues of (23) are distinct (27) implies that

+
. r o - 6 ah
vt(“-m) z Yt(” o <™ o *m y
where . | >
g n# m
b, x * = (29)
n' m = *
1 “n "m

and Mn is the normalizing constant

W P =
Mn_ Yt("n)

T ¥ ) - (30)

Thus, for distinct eigenvalues, the eigenvectors of (23) are orthogonal

with respect to the weight operator Tz in the sense indicated in (28).

If all the eigenvalues of (23) are distinct, then none of the Mn's

are zero. To verify this statement, observe that the diagonal 4x4 matrix

[Mn] whose diagonal elements are the Mn's is given by

“r
[Ma] = w [Falleee ] (31)
P

In (31), the 4x4 matrix [‘i’r(u :)] has for its rows the conjugate of the

eigenvectors of (23) corresponding to the eigenvalues ,(: while the 4x4
matrix [(‘i' t(" n))] has the eigenvectors for its columns. Also, [rz] is
the 4x4¢ matrix representation of [ 2 If the eigenvalues of (23) are all

(16)

distinct, the eigenvectors are linearly independent, and hence
5
det]Y (% )] and det [(‘i’t(u n))] are non-zero. Furthermore, since

det rz is not zero, det [Mn # 0, so that none of the Mn's are zero.

When the medium under consideration is anisotropic, the eigen-

1.

_"
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values of (23), considered as function of the transverse wave numbers £
and n , will be distinct except on certain branch curves in the real (£, n )
plane. On these curves, two or more eigenvalues will be equal, i.e., two
or more solutions of the dispersion relation (24) will have branch-type sin-
gularities, and the corresponding Mn's will be zero., The effect of these

singularities on the radiated fields will be considered in Chapter II.

If the medium under consideration is isotropic, i.e., the relative
dielectric tensor is € = €] where 1l is the unit tensor, the dispersion re-

lation (24) reduces to

4 N2 2
D E.n, )k (e-8%n®uh)z0 (32)

and hence there are at most two distinct eigenvalues of (23) given by

t J‘S_-gz-_;z- While the eigenvalues are degenerate in this case, if
€-p 2. n2 40, four linearly independent eigenvectors of (23) can be con-
structed satisfying an orthogonality condition similar to (28). The E and
H modes commonly used in the solution or radiation problems are one

possible selection. By direct substitution it is easily shown that the E and

H modes satisfy (28) with 6 % defined
“pew
0, L #x * or one mode is E and the
6”. 3 % other H . (33)
N 'm 1, "'n=ur: and both are E or H modes

Throughout this discussion, the case of isotropic media is included if it
is assumed that the eigenvectors have been selected so as to satisfy an
orthogonality condition similar to that described above. Finally, if

g gz_ n2

longer linearly independent.

= 0, all four eigenvalues are zero and the eigenvectors are no

Physically, the orthogonality statement (28) can be interpreted as
a power orthogonality condition for the z component of the modal power.
9 . . % 3%
By direct expansion, (28) can be rewritten as z; (étr.x i‘tm + 4 xJ_Itn) £
M 6
B Mg

ponents of The eigen or mode vector ‘i’t(u n) and &

% » where étn and ytn are the electric and magnetic field com-

- and J—‘tm are those of
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Yt(um). Thus it is seen that the modal fields for each mode having real
propagation constant , Carry energy in the z direction independently of

%
all other modes. For such modes Mn = ZRe(Eo .0 x i‘tn) is twice the

z component of the real modal power. In the case w}::n " is complex or
imaginary, it is seen that the corresponding modal fields cannot by them-
selves carry energy in the z direction. However, if both the modal fields
having complex or imaginary wave number x 3 and the modal fields having

*
wave number n are present, the combined fields can carry energy in the

z direction.
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D. EVALUATION OF THE ONE-DIMENSIONAL GREEN'S FUNCTION

Assuming the eigenvalues and eigen or mode vectors for both the
Sl and EZ media to be known, the one-dimensional Green's function, which
is the solution (18) satisfying the radiation condition and the continuity con-
dition at z=0, can be constructed. Corresponding to a point source located

at (0, 0, z'), the electric and magnetic current densities J and M are of

1| |,
= 6 (x) 5 (y) 6 (z 2') (34)
M) M

where J-o and Mo are the vector source strengths, From (4), (12), (13),

the form

(14) and (20), the form of J and M given in (34) is seen to imply that the

equivalent transverse source transform ?t(ht, z) can be written as

t = Y ) - 2!
kg 2) = ¥ (k)6 (2-2") (35)
where
- ko 2 iot Joz
Y =M= - .
O(Et) (ZTT Wtz Wz M (36)
—=ot oz

Since the source term in (18) is localized to z= 2z', for z# z' the ene-
dimensinnal Green's firnction will be a sunerposition of appropriate modes.
For a lossless medium and any real £ and n , if the dispersion

velation (24) has complex solutions, they occur as conjugate pairs. Thus
(24) has zero, two or four real solutions for any particular real E and n .
At this point it is necessary to assume that half of the real solutions of (24)
for cither medium correspond to modes carrying energy in the positive z
direction and the remaining real sclutions correspond to modes carrying

energy in the negative z directior 5 With this assumption, of the four modes

" In Chapter II, where the asymptotic evaluation of the Fourier integral
r.epre;s{cntatior. is carried out, it will also be assumed that the four solu-
tions “p of the dispersion relation (24), which are functions of € and N
can be defined such that for each n, u n(§ » N ) is a continuous function (;f

€ and " that corresponds cither to an upgoing mode for all £ and N or to
a downgoing mode for all € and N,
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in each medium, two modes carry energy or decay in the positive z direc-
tion -- upgoing modes -- and two modes carry energy or decay in the nega-
tive z direction -- downgoing modes. If this were not the case, some prob-
lems with impedance boundary conditions would not have solutions that satis-
medium, the upgoing modes are

L -

fied the radiation condition. In the €
- - o~ [
labeled with n =1, 2 and the downgoing modes withn=1, 2. In the €

- - &
medium, the n=3, 4 modes are upgoing and the n=3, 4 modes are down-
going. This labeling scheme is indicated in Fig. 1 where the arrows indicate

the direction of energy flow or decay.

=
wj

o )
~p

Fig.1-1 Interface between two homogeneous, anisotropic media

In view of the foregoing assumption on the energy flow of the modes,
for 2z'< 0, i.e., for the source below the z =0 plane, the radiation cond!-

tion implies that in the region z > 0, the Green's function will be a super-

- -

position to the n=3, 4 modes of the €2 medium, while in the region z < z',

"¢
it will be a superposition of the n=1, 2 modes of the ¢ 1 medium. For

2'< z < 0, the Green's function will be a superposition of all four modes of

the € medium. Thus, the one-dimensional Green's function ‘Yt(z) can be

written as

o —— R :




v -jkoumz
/ b Y (x )e (z > 0)
=, m t m
3,4
-jk w z T -jk » _z
Z a (¥ e 3 +L Cc Yt(u e o (2z'< z <0)
S B i
b LI -jk o n_z
T , ’
Z, an‘*t("n)e ol Z Cm‘ft(nm)e e (S
1,2 1,2
(37)

where the amplitudes a_, bm and ¢y, are to be found from the continuity condi-
tions at z=0 and the jump conditions at the source. In (37) 'Yt(z) for z< 2!

has been written for convenience in terms of two sums, the first of which can
be interpreted as a direct field contribution and the second as reflected con-

tribution, as will be seen presently,

When the source term in (18) is of the forn} given in (35), Yt(z) can
have no stronger discontinuity that a step at z=z'. Thus integrating (18) from

z' -/ toz'+A , where A is a small positive quantity, gives

Fz.[\f’t(z'+/\)-‘£’t(z'-/\)]=-6° ! (38)

Substituting for ‘Yt(z' + A ) and Yt(z' - 4 ) the forms given .in (37) and taking
the limit as A - 0, (38) becomes

STPAL Wity ' .
o n
r . Y A ¥x)e -3 a ¥ (n e -8 . (39)

o

I, 2 )

T

+ ok
Dotting both sides of (39) by Yt (w n) and using the orthogonality relation (28),

the amplitudes are found to be

/™M (40)

- Jjk n =z
- +  * o n
an.-eﬂ[\f't("'n). Qo]e

where

-

B et = it

— me—
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(41)

—
3
n
-1
(VR |

The coefficients bm and c ., can be found in terms of the an's from
the continuity of ‘Yt(z) at z =0, i.e., the continuity of the transverse fields
across the interface., Since ‘f’t(z) is continuous at z=0, it is seen from (37)
that

PR NN ) SR b (42)
3 '4 1 ) 2 llz

which is equivalent to four equations in four unknowns. In order to solve (42)

for the b 's, dot both sides of (42) with ‘t'+(n **) . ' and then with ‘f'+("‘ -*) o L)
m t z = 2 z

to obtain the set of equations

Y ANy By TG g g
(43)
W My =gz by Ty 20
where
M =vT 5T ¥ ) 44)
nm t("'n)' z t¥m! (

%
In (44), "-n is an eigenvalue of the € . medium while o is an eigenvalue of

the € 5 medium, The solution of (43) for the bm's is

b =z I uy , mei,.a (45)
m > mn n
n=1,2
where

r-c-l: - - = 9 - - = . = - =

37 SMp Mz 3/d; T35 =-Mz Mp 2/d
(46)

r-'-‘ 3 o - iy - - = - - -

41 Ml MZB/d' I:‘4»2 MZ Ml 3/d

with




__._
i

(47)

In order to solve (42) for the cm's, dot bhoth sides of (42) with

) + 3 0 + E3 : 9
Y t(K ‘1") . F7 and then with ‘i’t ("”2' ) . rz to obtain the equations

) =GR DR AR Eeen
(48)
Gz My “W5 3 b5 * Mg 9

where M is as defined in (44). Using (45) for the b_'s, c, and c_ can be
nm m 1 2

written as

r J v 1.5
s 2-. “mn a_, m Iy 12 (49)
n=1,2
where
I"—ao: — - ot a — - 8 - =
Tl (M13M24 Ml4 M23)Ml /Mld
r’"*: i - e S — —_ — =y -—
] 3 iy Mypme oL v R
(50)
I‘.—_. = — =, — TES -, -
1 (M23 M24 M24 M23)Ml /MZ .
r‘ﬁ-—.z — - B B, - - ) O
2 12 (M24M13 M23M14)M2/M2d

All of the coefficients in the one-dimensional Green's function (37)
have thus been determined in terms of the propagation constants x n and the
mode vectors ‘i’t(’t n) of the two media and the equivalent transverse source
transform ¢ o The terms in (37) whose a:nplitudes are the an's may be
interpreted as representing modes excited directly by the source. Those

terms in (37) whose amplitudes are the bm's and cm's can be interpreted in



20

- =

terms of modes excited at the interface by the incident n=1, 2 modes.

The interpretation of the terms in (37) whose amplitudes are the a 's

follows from the fact that expression (40) for a_ depends only on the propa-
gation constants and mode vectors of the medium in which the source is
located, i.e., it is not influenced by the presence of the interface. In addi-
tion, the corresponding modes are such that they carry energy or decay
away from the source. The interpretation of the terms in (37) having the
bm's and cm's as amplitudes is based on (45) and (49), which state that bm
and e depend linearly on the incident mode amplitudes ay and agy and on
the coefficients rmn that describe the plane wave scattering (reflection and
transmission) properties of the planar interface. Moreover, in this case

the corresponding modes are such that they carry energy or decay away from

the interface.

The z component Y z(z) of the field transforms can be found from

(17), which for z£k z' gives

‘Pz(z) = - wzt. ‘Yt(z) . (51)

Since Wzt can be taken inside the summation signs of (37), 'Y z(z) will be

given by (37) with Y t(u n) replaced by

‘l’z(u n) z - Wzt. Yt(wn) . - (52)
which represents the z components of the modal fields. Finally, defining

Y (z) & ‘i’t(z) +£° ‘i’z(z)
(53)

F() =Y e )tz ¥ )

it is seen that the complete Fourier transform Y (z) of the fields radiated by
the point source is given by (37) with Yt(u n) replaced by Y (* n)' Note that
the electric and magnetic field vectors én and J_/-n in Y (y n) are those of the

plane wave propagating as exp [-jko(gx LRUT nz)J in the appropriate medium.
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For convenience in later chapters, let

Aﬂ:-en[w+ ).éo]/M (54)

Jjknw =z
so that a_ in (40) becomes a_ = An s ¥ F (in Appendix A, a useful form

for An is derived for the case of real % n). Substituting Y (z) as given in (37)
with ‘i't(un) replaced by Y (x n)' into (2) and using (40), (45), (49) and (54),

the actual fields radiated by the point source can be written as

-jk [fx+ny+n z- Z']

e 1 ém o m
. Z Z .”‘ I A e " d§ dn
- - mn n
H(r) m=3,4 n=1,2 -® i‘m
(55)
in the region z > 0, while in the region 2'< 2z <0,
(-} .
E(x) | &n -k [Extny +x (2-2)
s Z IJ A " n J d€ dn
[ — -® &
H(r) n=1,2 H
== -n
5 it 0]
« 0= -jk 1 Extny+tu_z-u z']
% Z “‘ T P oL m n i
o T # mn n
= = - @
m=1,2 n=1,2 (56)

where én and é!n are the electric and magnetic field polarization vectors in

¥ n), i. e., they are the vector amplitudes of the plane wave fields propagating
-jko(§x+ny+unz)

as e . In the region z< 2z'
«© La - ]

E(r) én Jko[§x+ny+gn(z z )]

= ff A_e de dn
H) | n=l,2 -=

- /] -jk [§x+ ty_z-wn_2z')
£ J Y %
im b )N T i LYY S mon e an
ey A 4 mn- n
m=],2 n=]l,2 -® =m

(57)
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In writing (55), (56) and (57) the order of integration and summation has
been interchanged to facilitate the asymptotic evaluation of the fields. Al-
so, while the integrations are indicated as being over the real (§, n) plane
in (55), (56) and (57), the actual surfaces of integration must be suitable
deformed into complex (§, n ) space about the singularities of the various

integrands, as will be discussed presently,

The first sums in (56) and (.7) represent the primary or direct {ields
radiated by the source into the € medium while the double sums in (55),
(56) and (L7) represent the secondary or scattered fields generated by the
direct field incident on the interface. The asymptotic evaluation and ray-
optical interpretation of the various integral contributions in (55), (5€) and

(57) are considered in subsequent chapters.
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Chapter II

EVALUATION AND INTERPRETATION OF THE DIRECT, SCATTERED
AND ILATERAL RAY CONTRIBUTIONS TO THE FAR FIELDS

A. INTRODUCTION

In Chapter [ & rigorous Fourier integral representation was found
for the fields radiated by a time-harmonic point source in the presence of
a planar interface between two homogeneous, lossless, anisotropic media.
The asymptotic cvaluation of this integral representation for observation
points in the far-field region is considered in this chapter. The results of
the asymptotic evaluation are cast into a coordinate invariant, ray-optical
form containing such physically significant quantities as ray directions, ray:
lengths, ray phases, divergence coefficients and plane wave scattering
coefficients. This ray-optical form exhibits explicitly the local nat‘ure of
wave propagation. It is precisely this local behavior that permits a gen-
eralization of the ray-optical theory to gently curved geometries, which may
not be amenable to a rigorous treatment. The ray-optical formalism deve-
loped here for anisotropic media is consistent with Keller's theory of

(9)

diffraction in isotropic media.

The asymptotic evaluation of the double Fourier integral representa-
tion is carried out by first integrating over one of the transform variables
using the steepest descent technique (see Appendix B). The result of the
steepest descent evaluation is then integrated over the second transform
variable by the method of stationary phase (see Section B and the first part
of Section E). In Section C, the stationary point contributions to the asymp-
totic evaluation are interpreted in terms of direct, reflected and transmitted
rays. Some properties of the scattered ray fields that are associated with
caustics are considered in Appendix C. The lateral ray interpretai:lion of

the branch curve contributions is given in Section E and Appendix E.

An extension of the ray-optical results obtained for the planar inter-
face problem is postulated whereby the fields reflected from and transmitted

through an arbitrary gently curved interface between two arbitrary homo-
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geneous, anisotropic, lossless media can be found. The details of this ex-
tension are presented in Section D and are found to require a suitable modi-

fication of the ray divergence coefficient, which is carried out in Appendix D.

The ray interpretation of the surface wave contribution to the far
fields is not considered in this chapter since it requires a knowledge of the
relation between the group velocity of surface waves and their energy flow.
This relation is derived in Chapter III and the ray interpretation of the sur-

face wave contribution is given in Chapter V.
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B. ASYMPTOTIC EVALUATION OF THE GENERIC INTEGRALS

As discussed in Chapter I, the fields radiated by the point source in
Fig. I-1 contain a component §d radiated directly by the source into the €
medium and a scattered component ET generated by the direct field incident

on the interface, 8 From (I-56) and (I-57), the direct component _E_Td is seen

to be
f, 2 for 2' < z2< 0
Eg=) 1, . n=f_ (1)
¥ o 1, 2 for z< 2!
where N ,
-] X : R T
Jk°L§x+ny+xn(z z)J

L= A (En)8 (5 n)e dfdn

) (2)
én(g , N ) being the polarization vector of the nth plane wave and An(g , n) its

excitation coefficient. The scattered component _I-_Zr is seen from (I-55),

{1-56) and (I-57) to be

3,2 for z> 0

(3)

™l
3

1,2 for z< 0

-ET =Zzlmn' n=f,

where

ol T '
o & s L
JkoL = X+n ytu L

L =[[& (5T _ (Ein)A (8. n)e d€ dn

(4)

and the scattering coefficients I‘mn(; , M) are found from the continuity condi-
tions at the interface. Recall from Chapter I that the n= f, ] plane waves of

the € medium are upgoing (they carry energy or decay in the positive z
direction) while the n=1, 2 plane waves are downgoing (they carry energy

or decay in the negative z direction). In the Cz medium the n=3,4 plane

"‘For simplicity, only the expressions for the electric field are given here.

The exp essions for the magnetic field differ from those for the electric
field only in that the plane-wave magnetic field polarization vector J_I»n re-
places -én'

P

e
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waves are upgoing aud the n=3, 4 plane waves are downgoing, as is de-

picted in Fig. I-1.
The integrals defined in both (2) and (4) are of the generic form

y -jk_P(%,n)
1=[[EE,mMe ° df dn (5)

and will be evaluated for large values of ko. The asymptotic evaluation of

(5) is predicated on the existence of a large parameter in the exponent, which
we have taken to be ko for convenience. However, a more detailed investiga-
tion of the exponents appearing in (2) and (4) will show that the distance from
the source to the observation point can also be factored out of PE , "), thus
permitting the removal of the restriction on ko, substituting instead the re-
quirement that the observation point be many free-space wave lengths from

the source. This comment applies throughout.

1. Comments on the Method of Integration

The method employed in performing the asymptotic evaluation of
the integrals appearing in (5) is to first apply the steepest descent technique
to the N integration with € an arbitrary real parameter. This result, which
includes the saddle point, brach point and pole contributions, is then integrated
over £ to first order by the method of stationary phase. This method of
evaluating the double Fourier integrals has been chosen since it yields both
the branch curve contributions (lateral rays) and the real pole contributions
(surface wave rays) in addition to the first-orde., real stationary point con-

tributions (direct and scattered rays).

The stationary poinis are those values of £ and N at which the first
derivatives of the phase with respect to £ and” are zero and it is from the
neighborhood of the stationary points that the principal contributions to (2)
and (4) arise. The complete asymptotic series representing the statiomry
point contributions for the double integrals has been found by several authors
-- see Chako(l7'18'19), Nagel(zo) and Jones and Kline(zh, }Nho survey pre-

vious work. The terms in the asymptotic series go as integral powers of

l/ko, i.e., the first term goes as I/ko, the second as l/kg , etc. At those




27

stationary points for which the phase function is real, the evaluation of

the double integrals used in this paper gives the first term of the asymptotic
series. This term results from the saddle point contribution to the inte-
gration and is the only term of importance in formulating the ray-optical
representation for the stationary point contribution to the far fields of

the source.

However rigorously other methods are able to descr‘ibe the stationary
point contributions to the double integrals of (2) and (4), they do not as yet
seem to have been developed sufficiently to give the branch curve contribu-
tions or the pole contributions. * The branch curves are the loci of points
in the (£ , 1) plane at which two or more of the four solutions of (I-24) for
e of the ¢ 1 medium are equal, or at which two or more solutions of (I-24)

~

for « . of the ¢ , medium are equal. Branch curve contributions, which

2
occur only in the scattered field integrals (4), arise from the branch point
contributions to the steepest descent integration over n and will be shown in
Section E to be O(I/kz ). Although the second term in the asymptotic series
for the stationary point contribution, which is also O(l/kz ), will be neglected,
the branch curve contribution is retained since in shadow regions, where all
orders of the stationary point contributions are exponentially small, the
branch curve contribution, when present, is of algebraic order and thus will
give the dominant contribution to the far fields. The method used here to
evaluate the branch curve contributions was previously employed in a

(5)

different context by Rosenbaum’ ™ ' for double integrals of a somewhat simpler

generic form.

For completeness, a brief discussion of the steepest descent integra-
tion over n , which has been discussed by several authors, is given in

Appendix B.

2. Evaluation of the Stationary Point Contribution

The first-order caddle point contribution to the n integration of (5)

The poles give rise to residues in the nintegral, which are then integrated
over £ by the method of stationary phase. This contribution can be inter-
preted in terms of surface wave rays using the energy transport properties
of surface waves in plane-stratified, anisotropic, lossless media, which are

derived in Chapter III.
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is given by (B-3) of Appendix B, which is valid when the saddle points are
isolated from one another and from the branch points of _F_'(",n) and P(7,n).
Since PZ(",T]) 234 P(°,n)/2 M is a function of £ andn, solving the saddle
point condition P2(§ M)=0or ns gives the possibly multivalued function

n_xTnEw (6)

S

If ns(".) is indeed a multivalued function with branch points at which P(’,"S)

F

is real, then two or more saddle points will coalesce as £ approaches the

branch point of T‘q(’) and P (",ns) will approach zero. Near the branch

point of ns(f), (B-3) is invazlzid so that the branch point of T‘.S(F»,) would seem
to be a singular point for the stationary point result. This is, however, not
gencrally the case, since this singularity is usually introduced only by the
choice of the (x, y) coordinates and its location depends on the choice of the

coordinates. Accordingly, it will be seen that the stationary point result for

the point source is not necessarily singular at points for which P22 = 0.

While the saddle points may be isolated from the branch points of
F(€,7) and P(E,n) for most values of %, as © varies a saddle point and
branch point may approach cach other and coalesce at some value of £, How-
ever, as long as the stationary phase points in the £ integration are not near
the values of 7 at which a saddle point and a branch point coalesce in the com-
plex N plane, the stationary phase evaluation will be valid since the principal
contribution to the intcgral of the terms of (B-3) over £ comes from neighbor-
hoods of the stationary phase points. The actual singularities of the station-

ary point contributions to the point source fields will be discussed later.

The stationary phase points for the integration of each term of (B-3)

over Z are those values of £ for which p(?,ns) is real and

d =
37 PELn) = P50 )+ Py(En ) sEn (8) = 0 (1)

(the subscripts 1 and 2 refer to partial differentation with respect to £ and M). .

" Note that sgn P;5(%,Mg) in (B-3) is constant except for a jumg of * 2 occurr-
ing at the branch points of N (f), where Py &, n_) = 0.
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But PZ(’, ”s) = 0 is the saddle point condition in the n integration so that,
in view of the sum in (B-3), a contribution to the double ini2agral comes from

cach stationary point (Fs,ns ), defined by the condition

P (&,n)=P,(5 M) =0 (8)

for which P(’s, ns) is real. Note that the above analysis does not apply when

ahy  Fdlsn )
the solution of (8) for £ is such that — = - ———,—i— -~ ® (seec after (10))
s df P,,Z( ,r\s)

since this would imply that in then integration two saddle points are close to-

gether or that a branch point of P(£,n) is near the saddle point. Performing
(22)

the stationary phase integration of the terms in (B-3) over £ and summing

over all stationary points gives the stationary point contribution ls to the in-

tegral in (5) as
-ik P(& m) 2

o Al d P
on F(E.n)e -3 (sgnP22+sgn 2)
L -5 e %
o J1 2. 52 "
S. P. | Pzzl | a“p/ac®| (8..7)
(9)

where (§s.n s) is the stationary point and dzl:z’/dg2 is the total second deriva-
tive of P[ 5.1’]8(5)] . Using (7) and (8), the total second derivative of

P(E, ns) is seen to be

2 dn dn | 2
a°p . -
AT 5 + .
o2 Py t2P, gg * P, () (10)

1 E = &= .
Furthermore, since PZ[ S s(E):] 0 for all €, dns/d_ 13’12/13’22 at

n = T’s(?) so that (10) can be written

d P 1 Z
==L (. p,_-P2). (1
sz P22 11 22 12

Substituting (11) into the denominator of (9) gives
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-jk_P(E ,n) -
& F(§,n)e -IiNg
i - & y - e ¢ (12)
s kO L J 3
3 hal
5P Ipnpzz plzI (20 )
where & is defined by
2 ) o2 P2
= sgn P,,2 + sgn 5 = sgn pZZ + sgn( i pZZ 12 ). (13)
B ds 22
In Appendix C it is shown that § can be written as
P
£z sgn Puu + sgn va (14)

where P u and puv arec the second partial derivatives of P in the (u, v)

u
coordinate system, which is rotated from the (7,n) coordinate sysiem and
for which the mixed second partial puv= 0. This expression for & will

prove useful later on.

The stationary point result given in (12) is valid whenever

2
pll pZZ - P12 #0 and, as previously mentioned, is the first term in the

complete asymptotic series for the contribution from isolated stationary

points. Observe that if P22 =0, in which case (B-3) is not valid, the

quantity P. P Pl need not be zero. The Hessian P, P will be

2
b 22" 12 11722 M1z

zero when the observation point lies on a caustic surface or on a shadow
boundary of the point source. For such observation points a different asym-

totic expansion than that leading to (12) is required for the evaluation of (5).
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C. RAY INTERPRETATION FOR THE STATIONARY POINT CONTRIBUTIONS

The ray interpretations of the stationary point contributions to the
integrals defined in (2) and those defined in (4) will be considered separately.
The ultimate goal will be to obtain a coordinate-independent representation
for the stationary point contributions in terms of physically significant ray-

optical quantities.

Many aspects of the ray interpretation of the stationary point contri-
butions, as well as the branch curve contributions, will be explained in terms
of the plane wave dispersion surfaces of the € andi 2 media. For this
reason a brief discussion is given below of several important pro.perties of
the dispersion surfaces that are pertinent to the present discussion. The
plane wave dispersion surface of either medium is the locus of points in
real (£, ™, « ) space that satisfy (I-24). The shape and orientation of the
dispersion surface for each medium is determined by the parameters and
optic axes of the medium anq does not depend on the choice of the (x, y, z)
coordinate system. The most important property of these surfaces for the
ray interpretation of the far fields in lossless media is that the real part of
the complex Poynting vector of a plane wave having wave vector k =§_°§ &
&h 4 z* is parallel to the unit normal V to the dispersion surface at the

HEES) In all that follows, the unit normal

point (E , n, x) on the surface.
V will be assumed to have the same sense as the real part of the complex

Poynting vector of the corresponding plane wave.

The nth branch of the dispersion surface will be defined as the set of
points ( €.n ,Kn(i, n)] where n(%,ﬂ ) is a continuous, single-valued solu-
tion of (I-24) and £ and n are such that » n(%,n ) is real. A branch of the
dispersion surface may be of infinite extent, i.e., x n(g,n ) real for all €
and n . However, if v_n(g,n ) is not real for all real & and n, the nth branch
of the dispersion surface will have a boundary curve or rim. The projection
of this rim into the (f,n ) plane is a poartion of the branch curve since

Kn(g, n ) changes from real to complex as the projected curve is crossed,



312

which can happen only if two or more real solutions of the quartic (I-24)
are equal on the projected curve. Furthermore, if the dispersion surfaces
are smooth, i.,e., the unit normal to the surface is a continuous function of

position on the surface, the normal to the surface at points on the rim will be

parailel to the (, n ) plane. " It is assumed that the € 1 and € o media are
such that the dispersion surfaces are smooth. Uniaxial crystals and gyro-
(24)

tropic, cold, electron plasmas, except at plasma or hybrid resonances,

are examples of such media.

1. Direct Rays

For the integrals defined in (2), P(?,n ) = x #n y + xn(z -z') and the

stationary point condition (8) becomes

3?{n >.nn f,é’ for z-2z'> 0
az!l) — = -z! =0: =
x + (z 2)3’ y +(z Z)B" O0:n={_ .

. 1,2 for z -2'<0

(15)

In order to interpret (15) in ray-optical terms observe that the unit normal

th
Xn to the n branch of the dispersion surface may be expressed as

an \2 an)z
(‘5) (aﬂ LR

e

where the minus sign is to be used for n=1, 2, since -\in has been assumed

N
n
v = 4 _—_+ _.—-z
-n (io Az XO )

to be in the direction of energy flow of the corresponding plane wave and for

these values ¢ n, the plane waves carry power in the positive z direction.
L

For similar reasons, the plus sign must be used for n=1, 2 . In subsequent

sections where the normal to the dispersion surface of the € | miedium will

~
-

be needed, (16) can be used with the minus sign for n=3,4 and the plus sign

—_— -

for n=3, 4.

Defining L= X X i Yy + _z_o(z - z'), which is the displacement of the

observation point from the source, it is seen that (15) is equivalent to the

By dquct expansion of (I-30) for x , real it can be shown that M ZRc(z
én xﬂ ) so that M =0 on the rim of the nth branch of the dlspcrswn sur-
face, i.e., when thc eigenvalues of (I-23) are degencrate,
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statement that Lx V_n= 0and L . ‘in> 0, i.e., that Xn be in the direction of

L. In view of the sum in (12), the stationary point condition (15) for the

direct field integrals defined in (2) implies that a contribution to _I_n comes
from every point on the nth branch of the dispersion surface at which Xn is
parallel to and has the same sense as L. Hence, taking into account the sum
indicated in (1), a stationary point contribution to the direct fields at a point

in the € medium arises from every point on the entire dispersion surface of
the € medium at which V is in the same direction as the displacement vector
L. In other words, while the source radiates a continuum of rays correspond-
ing to all points on the dispersion surface of the €, medium, only those rays

in the direction L contribute to the fields at the observation point.

For the direct field integrals (2), F(£ , n) evaluated at the stationary
point is the vector amplitude An én of the plane wave carrying energy in the
direction of L. Since the wave vector of this plane wave is k =x § + y_o'ﬂ +

= = o

z % , for the integrals defined in (2), P(E , " )= LN where L = | L| and
o n s s n =

N =V .k 17
n -n -n

thb

is the ray-refractive index of the n ranch of the dispersion surface.

2

The quantity P. . P B in (14) can be put into ray-optical terms

Id "2 " 12
if it is recognized that the Gaussian curvature Gn of the nth branch of the
dispersion surface can be written(zs)
azn I} 3 2y n 3 2y 2 2 "
G = - cos 8 (18)
n 3 §2 amn 2 e € an n

. where 8 A is the angle betwen LY and z - Because of the form of P(§ ,n)

in the integrals given in (2), using (18) it is seen that

2 2 2
P“PZZ-P12 = L Gn/cos en . (19)

Finally, in Appendix C it is shown that & defined in (13) can be written in

terms of the principal curvatures K ; and K, of the nth branch of the
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dispersion surface as

b = 0
sgn Kn + sgn Kn (20)

1 2

Equation (20) was derived assuming the principal curvatures to be positive if
the associated centers of curvature lie on the same side of the dispersion sur

face as Xn and negative otherwise.

Using (19) and (20) in (12) as well as the form for P(€ Y n S) and
F(§ g’ n S) described above, the stationary point contributions to the direct

fields (1) are given by

. g
g2 7y |Raaleostyl RN, peenkgeeny
L i ) €,
n S.P. n 8’ 8
(21)

which is the total far-field ray contribution to the direct ficlds (no branch
point or pole contributions occur in the N integration in (2), as is discussed
i N M) (20), BeT, 2 WBr B'< W< 0 wnle(6E < At HE1; 2.
As previously explained, the double sum in (21) is equivalent to summing over
the contributions from every point on the total dispersion surface of the €
medium at which V is in the same directionas L.

The term |cos 8 nl in (21) does not describe a fundamental property

of the ray fields since from (A-7) it is secen that

k 2 3 3 4
An| cosen| = - (3_—;}) (&, - I _+H4 - M) /2| Rc(énxil;)l . (22)

which is independent of the choice of the (x, y, z) coordinate system. That
Anlcos 6 n| , and hence (21), are independent of the choice of the (x, y, z)
coordinate system reflects the fact that expressions (1) and (2) for the direct
field are the same as thosc representing the ficlds radiated by a point source
in an infinite El medium, which can be evaluated in any (x, y, z) system. (2)
Morcover, while the derivation leading to (21) is not valid for cos 6 = 0
(the stationary points are near branch curves), the ray fields of (21) are

still valid since for another choice of the z axis, the stationary points would

not be near the corresponding branch curves. The asymptotic expression for
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gd given in (21) is not valid for observaticn points near a shadow boundary,

in which case Gn ~ 0 at a stationary point.

Examining the ray fields in (21), they are seen to be determined by
the following factors: a) the polarization vector én of the plane wave carry-
ing energy in the direction of L; b) the invariant excitation coefficient

12(—: Anl cos b nI of this plane wave, which together with exp[-j% (sgn Knl +
sgn an)] gives the ray field excitation; c) the phase change cxp(-jko LNn)
of the plane wave along the ray; d) the angular ray divergence coefficient
L«,’—l—G—nT_. The quantity l/L2 | Gnl is the relative ray flux density at a

distance L along the ray.

2. Reflected and Transmitted Rays

Starting with the formal asymptotic stationary point result given in
(12), this result will be interpreted for the scattered (1eflected and trans-
mitted) fields. As a first step, the ray interpretation of the stationary
point condition will be considered. Subsequently, the significance of the
various quantities appearing in (12) and their ray-optical interpretation will

be considered.

In the integrals defined in (4), the phase functionis P(§ , N ) =

Ex+ny+x mZ - * 7' so that the stationary point condition (8) is

AR K BKm - 0 E,Z for z> 0

x + axgn-z' agn=y+zW-=0:n=l,2;m=._,_ .
1,8 for z< 0

(23)

with the assumption that V has the same sense as energy flow, (23) can be
interpreted as requiring £ L and ‘f]s to be such that a ray leaves the source
along the direction gn(g o n s) and upon incidence con the interface at

(x', y', 0) is reflected or transmitted from this point along the direction
Xm(g s,'ﬂs) to :he observation point (x, y, z) -- see Fig. 1. Defining

l"n‘ X X +xoy - Eoz' and l"m =X (x-x") + xo(y -y') + z 2 and using (16),
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it is easily shown that (23) is equivalent to the conditions V x L =V xL 0
-n~ =n —m —m

for the same £ andn withV - L andV . L positive. Thus (23) im-
s s =n = -m -m

plics that for lossless media, the ray path, whose segments are I-:n and ]._..m,

is the trajectory of energy flow of locally plane waves that are scattered at

the interface according to Snell's law.

For the integrals under discussion, £(£ o’ T’ls) = er

A is the
n n
vector amplitude of the scattered plane wave carrying energy in the direction
of I:m Also, since P(€ ,n ) can be written in the form P(£ ,n )= € x'+

LI n 1 + K t n r ] . a : F - 3 3 +

Ny 2 € (x-x")+n(y y)+sz, it is seen that P(.s S) Lnl\n
L. N where L = I L l , L = |L | and N and N_ are the ray-refractive

m m n -n m -m n m
indices defined in (17) of the nth and mth branches of the dispersion suifaces

evaluated at the stationary point.

2 1
57 ° P‘12 can be found with

the help of the relationz = L _cos 6 _, wherecos € =V .2z , and ex-
m m -m o

A ray-optical form for the Hessian P“P

pression (18) for the Gaussian curvature Gm of the mt branch of the dis-

persion suiface. Using these and for Gm 70,

2 G 2 cos3e 8 an AZK n e ZK m BZK n
m m
P - P = L il 7' +
11 " 22 12 cos®8 m m Gm La.:.2 - aﬂ2 >EZ
BZK azn cosZB BZV. BZK 527. 2
o m n +z'2 m % n n
g
€ 3an af an Gm a§2 BTEZ a,an/
(24)

The coefficients of z'2 and Lmz' in (24) can easily be put into invariant form;
however, such an expression for the coefficient of L,z' is complicated. The
expression inside the brackets of (24) is quadratic in Lm and thus if the roots

of the quadratic are designated by Lm and LmZ’ (24) can be written as

1

G
m
2 (Lm } Lm l)(Lm =
cos ©

P B. BT

11522 ~ e (25)

mZ)

The roots Lm and Lm are invariant under a rotation of the (£ , N ) co-

1 2

2
ordinate system sincec the Hessian P“P P, is, thus permitting the ray

A
optical interpretation of (24), which will be given presently,
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(a) Ray structure for the scattered fields

K BRANCH OF g, MEDIUM

K BRANCH OF ¢ MEDIUM

¥ ms(i, §)

(b) Determination of scattered ray directions from the dispersion surfaces




38

Using the form for F(£ o )and P(§ , N q) discussed above and
- s s’ s

writing & of (14) as mn’ it is scen with the help of (25) and (12) that the

stationary point contribution to _I-;I.. of (3) can be written as

il g
4 mn .
y - + B 1
(Er ) 2n W émrmnAn| Cosem| ¢ eJko(LnNn Iml\m)
=I's.P. © &k Z &
9 m,nS., P, v’ler v/ ILm-Lml[ le- I"mZ‘
£ n
(€,.n)

(20)

where n=1, 2 and for observation points in the £_ medium m =3, 4 whilc

~
- -

for observation points in the €. medium m=1,2 . The first sum in (20} is
taken over all possible stationary points for particular values of m and n, and
together with the second sum indicates that contributions come fromm all

possible scattered rays reaching the observation point.

The characteristic features of the scattered ray fields are contained

chntained in the denominator of (26) and ¢ n’ which will be considerced to-
m

gether with their ray-optical interpretation in relation to the caustics of the

- .

scattered ray fields. Along the reflected (m=1, 2 ) or transmitted (m = 3 y )

portion of a ray, Lm is positive and measures the distance along the ray from

the interface. Thus, fo1 cach term Lml and LmZ in (20) that 1s positive real,
there vill be an observation point along the ray at which Pl 1p22 - Pl 22, and

hence the denominator of (26), are zero, indicating that the scattered portion

of the ray is tangent to the caustic at this observation point. * Similarly, to
cach term Lml and LmZ that is negative real, there will be a point on the

mathematical extension of the scattered portion of the ray to negative values
of Lm at which the extension is tangent to a virtual caustic. Hence fo: Lml

and L real, (L - L _ )and(L_ - L _.) representdistances along the
m m ml m meo

2
scattered ray to the observation point from the ray tangencies to real or

virtual caustics. However, L and Lm may be a complex conjugate pair,

m 1 2

in which case the particular scattered ray will never be tangent to a caustic,

virtual or real. A discussion of the possibility of predicting whether L 1 and
m

Lm are complex, positive real or negative real from a simple inspection of

The vanishing of Gy, for a particular ray indicates that the entire scattered
portion of the ray lies in a caustic or shadow boundary or that the denomina-
tor of (26) is linear in Ly, i.e., one of the roots of (24) is at infinity.
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the aispersion surfaces is given in Appendix C.

Consider now the phase term 6mn in (26), which is defined in (14).
Although (14) does not display the ray-optical character of 6mn’ a ray-
optical expression for it does exist; however, the ray-optical expression
is not always simple and useful. In order to verify this statement, first
consider the behavior of § as deduced frora (14). Since P and P are

mn uu vv
equal to the eigenvalues of the symmetric matrix whose elements are
2
32/ z-n ), BE/BN( iz - n ' yand 3 BE BT n =R 2
m n m n m n
they will be continuous functions of Lm =2/cos em along a scattered ray.
As such, Puu and va can change sign along a scattered ray only by going

through zero, in which case P, . P P . T Puu pvv = 0 and the ray is tan-

117227 712
gent to a caustic Consequently, 6mn’ which from (14) can only take on the -
values 0 or £ 2, will be constant along the ray except for jumps across the
ray tangencies to a caustic of value *2 if the tangency is simple, i.e.,
L1 . Lma:
to # _ z in calculating the signs of P and P. ., Hence as L, — ® the value
m uu vv m

As Lm - ®  the term % nz' in P can be neglected as compared

of 6mn becomes equal to that for a point source located at the origin in an

infinite medium having % m 352 branch of its dispersion surface, and from

(21) is seen to be

) = sgn Km (27)

+ sgn K
mn m

1 2

where K_ . and Km are the principal curvatures of the mth branch of the

ml 2
dispersion surface. Since 6mn changes only at the ray tangencies to a
caustic, b is as given in (27) for all L_ > max. (L__ ., L__).
mn m ml "m2

As a result of the behavior of 6mn described above, one is led to con-
jecture for L . and L real that 6 can be writtenas sgnK_ (L - L _ .)+
ml m2 mn ml m ml

sgn Km (L_-L 2) since this quantity is constant along a ray except at the

2 m m ;

ray ‘angencies to a caustic, across which it jumps by £2, and since it reduces
s s . . v

to (27) for L 7 max. (Lml' LmZ)' T}?e foregoing expression can readily be

identified as 6mn when Kml and sz are of the same sign --- see the first

four cases in Table C-1 of Appendix C. However, in order to use the above

expression when Kml and sz are of opposite sign, it is essential to have a

rule for assigning the proper curvature to Ly} aand Ly,2. Incorrect assignment

— ——————C

_".l#"
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will yield a change in f‘mn across the ray tangencies that if of opposite sign

to the correct value. In order correctly assign the principal curvatures in
this case, one should first find the change of 6mn across the ray tangencies
from (14) or from (C-20) of Appendix C. Although the description of the change
in 6mn given in (C-20) is a purely ray-optical one, (C-20) is not very con-
venient to use since it requires a knowledge of the normal to the caustic sur-

face at the ray tangency in question. For this reason, when K and Km

ml 2
are of opposite sign, 6mn is most easily found directly from (14) or, when

applicable, from the [ifth case in Table C-1.

The description of émn given in the first five cases of Table C 1 is
derived from (27) and the facts that 6 = 0, £2; the change in is £2
mn mn

for L #L__;atL_=0, i.e., on the interface, and hence everywhere be-
ml m m

2
tween the interface and the first ray tangency to a caustic,

) = sgn Kn (28)

+
— sgn Kn

1 2

Relation (28) holds since at z = Lm cos 8 ey ® 0, P(§,n) is identical with the
phase function for the direct fields at z=0. In the last case of Table C-1,
are positive real since it

ml 2
will depend on the magnitude of the curvatures and the orientation of the mth

6 cannot be simply specified when L and L
mn m

and nth branches of the dispersion surfaces. When Lm and Lm are complex

1 2
or negative real in the last case of Table C-1, 6mn = 0 everywhere along the

scattered ray. If Lm =1 the point of tangency of the ray to the caustic

le m2'
is also a focus and 6mn changes by 0 or 4. In effect, the phase factor
-j% 8 mn
e gives the connection formula for the fields along the ray as the

point of tangency is crossed.

Aside from observation points on or near a caustic or shadow boundary,
(26) is not valid when a stationary point is near a brach curve of either » m ©F
iy (Em or I-:n is approximately parallel to the interface when this happens).
Since the interface, in general, couples the plane waves corresponding to all

branches of the dispersion surfaces of both media, [ will depend on all the

mn
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X 's. Thus it is possible for a stationary point to be near a branch curve of

the dispersion surfaces that appears in rmn but is not a branch curve of Km

or Kn' In this case, which corresponds to the onset of lateral rays, the

stationary point result in (26) is a f{irst approximation to the llko term in the

. 26
correct asymptotic expansion. (26)
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D. RAY-OPTICAL SOLUTION FOR THE FIELDS SCATTERED FROM A
CURVED INTERFACE

In the preceding section it was shown that for lossless media the
stationary point contributions to the ficlds can be interpreted as the fields
associated with rays of cnergy proceeding from the source to the interface
and thence to the observation point. Locally the ray ficlds are planc waves
since the stationary point condition implies quadratic phase .change (no
linear change) between neighboring rays when the observation point moves in
a plane perpendicular to the wave vector of the ray. The ray scattering at
the planar interface obeys Snell's law, and the scattering coecfficients are

those found from a plane wave analysis.

In this section the ray-optical method for finding the scattered ficlds
will be generalized to the case of a gently curved, but otherwise arbitrary,
interface. This extension is suggested by the fact that only the local, plane
wave propertics of the fields incident on a planar boundary determine the
scattered raysso that only the local properties of the curvcd interface would
be expected to govern ray scattering at the curved interface. The ray-optical
method is essentially one of ray tracing with the scattering at the interface
being determined by the locally plane wave properties of the ray fields. This
method permits one to calculate the scattered far fields for problems not
amenable to a rigorous trcatment. Conceptually, at least, this method is

easily extended to take into account multiple scattering of the rays.

A point source is assuimed to be located in a homogeneous, lossless

medium, described by the dielectric tensor € ., that adjoins a second homo-

=q]"

geneous, lossless medium, described by €_, at some gently curved surface

2
--- see Fig. 2-a. Bascd on the analysis for the planar interface problem,

it is assumed that the source radiates direct ray fields into the €, medium as

~

if this medium were unbounded. Consider now one such ray originating from
the source and corresponding to a point on the dispersion surface of the €
medium defined by the wave vector _l_(_n If this ray is incident on the interface,
its field g‘n at the interface will be one of the terms in (21) with L= I:n’ as

shown in Fig. Z—aé
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If the principal radii of curvature of the interface are large com-
pared to wave length, it is reasonable to expect that the ray scattering
occurs in a similar manner to the scattering at a planar interface when
this planar interface is taken to be the tangent plane to the curved inter-
face at the point of incidence. The scattered rays are shown in Fig. 2-a.
Their directions are inferred from the dispersion surfaces of the two
media and Snell's law, k -n(k -n )=k -n(k .n ), where n is the

=n —o-n =o' -m =—o-m =0 -0

normal to the interface at the point* of incidence and -Lm is the wave vector
of a scattered ray. Geometrically, the scattered :ay direction can be de-
termined by finding the intersection in k space of a line through the tip of

3 th . : 2
hn' and parallel to 9-0' with the m~ branch of the dispersion suiface, as is
illustrated in Fig. 2-b for the m= 4 scattered ray of Fig., 2-a. The radius
vector to the point of intersection is k _and the normal V_ at this point is

-m ~m
in the direction taken by the scattered ray. Knowing k and V_, the ray-
Syl -m

refractive index N and the corresponding plane wave polarization

= k . V
M. —m —m
vector ém of the scattered ay field can be found. The ray scattering co=
efficient rmn is taken to be that of a planar interface when the tangent plane

is regarded as the interface between the € ; and ¢ 2 media.

With the above results, one can write the fields along the mth
scattered ray as the product of the following factors: a) the amplitude of
the incident ray at the interface, which is the coefficient of § in (21);

b) the scattering coefficient rmn; c) the phase factor e-jk ‘N Lm along

the scattered portion of the ray; d) the reciprocal of the ray flux tube di-
vergence coefficient Dmn' which will be discussed presently; e) the addi-
tional phase change that occurs when the ray is tangent to a caustic surface,
which will be combined with the incident ray phase factor sgn Knl + sgn an

and the combination written as 6mn' Consequently, the scattered ray field

Em due to a point source in the presence of a gently curved inteiface is

n
r -3 -j— 6
ém mnAnlcosenI e Jko(LnNn+LmNm) 3 I3 mn

i
I‘—:mu"m) - %—
o an I Gnl Dmn

(29)
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CURVED INTERFACE
SOURCE

(a) Ray scattering at a curved interface

Ym

PORTION CF
Xm BRANCH

PORTION OF
Km BRANCH

8y28n=00(8n 00)* B0 (Km0,

(b) Construction for finding the direction of the scattered
(m = :}.) ray
Fig. II-2




Calculation of the divergence factor Dmn is based on the principal
of power conservation in the scattered portion of a tube of rays, i.e.,
equality of the power passing any cross -section of the scattered portion of
the ray tube. If da(Lm) is the area of the normal cross-section of the
scattered portion of a narrow tube of rays at a distance Lm along the scat-
tered ray tube, the power passing through this cross-section is
da(Lm)Rc {Xm . rgm(Lm) X I-_inj: (Lm)] } Here Em(Lm) is given by (29)
and Iirn(Lm) is also given by (29) with ém replaced by the properly defined
magnetic field polarization vector _J_Jm. At Lm=0 the divergence coefficient
Dmn must be unity if, as has been assumed, the amplitude of the scattered
field at the interface is to differ froimn that of the incident field only by the
scattering coefficient rmn' Using this fact and requiring the power passing
through any cross-section of the scattered portion or the ray tube to be
equal to the power passing through the cross-section at Lm= 0, one finds

that

D_.(L )= / da(Lm)/da(o) . (30)

. . . h

The area ratio in (30) is determined by the shape of the mt and nth branches

of the dispersion surfaces in the vicinity of the points k _and k_and from
-m -n

the curvature of the interface. An expression for the area ratio is derived

in Appendix D.

In order to calculate the total field due to several ray contributions,
it is essential to know the phase term fmn in (29) along the individual rays.
At the interface 6mn = 6n and it remains constant along the scattered portion
of the ray except across the points of tangency of the ray to a caustic, where
it changes by *2 if the tangency is simple. Note that Dmn’ as discussed in
Appendix D, is quadratic in Lm. Hence, at most two such points of tangency
exist for each ray. In crder to evaluate this change in 6mn it is assumed
that the structure of a scattered ray pencil can be deteimined solely from
the phase distribution over a cross-section of the pencil and the o branch
of the dispersion surface. This assumption is consistent with the local

nature of the ray-optical fields and can be used to obtain a Fourier
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representation that asymptotically gives the fields of the scattered ray
pencil, including the change in 6mn across a caustic, The cross-section
is taken to be the intersection of the pencil and a constant z plane lying
between the interface, at the points of incidence of the rays in the pencil,
and the points of tangency of the rays in the pencil to a caustic. This
selection of the cross-section is depicted in side view in Fig. 3 for a trans-
mitted ray pencil. The (x, y, z) coordinate system in Fig., 3 is taken such

that x and y lie in the plane used in forming the cross-section.

Performing a double Fourier transformation on the ray fields at the

cross-section by assuming the ray fields outside this crcss-section to be
kR (B M)

m

and Am are slowly varying compared to ko‘f’ (E,Mn ). Using this transform,

zero results in a transform of the form ém A Here ém
the ray fields of the pencil at z # 0 can be found from the first-order asymp-
totic evaluation of the inverse double Fourier transform

-jk [Ex+ny+x 248 (8,n)]
-[[ & ac ° h g an . (31)

The justification of expression (31) for E-m is found in the fact that the
asymptotic evaluation of the double integrals will yield the ray fields of the

pencil with the original phase distribution in the z=0 cross-section,

From the representation of the ray fields given in (31), the change in
6 mp 2C¥O8S the ray tangency to a caustic can be calculated without an a~tual
knowledge of ¢ (§ N ) if the caustic itself is known. In order to see this,
recognize that the phase term in (31) is of the same form as that found for
the scattered ray integrals (4) in the planar interface problem with - nz'
replaced by ¢ (€,1n ). With this observation we can use the results derived

at the end of Appendix C to find the change A 6 ind across a ray tan-
mn mn

gency to a caustic, i.e.,

Aémn= 2 sgn Cm (32)

where Cm is the curvature at the point k  on the dispersion surface of the

curve formed by the intersection of the Km branch of the dispersion surface
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with the plane parallel to X-m and to the normal to the caustic. The term
$(€,n ) influences (32 only through the normal to the caustic. The normal
may be found from the ray equations ¥V x L =V x L =0 and the caustic
=h TR m —m
condition D = 0. Thus, knowing that & = & at the interface and that
mn mn n
6mn is constant along the ray except for the change given in (32) at the ray

tangency to a caustic, 6mn can be found everywhere along the scattered ray.

With the foregoing results, the functional form of all the terms in
(29), and hence the scattered ray fields E_?m due to a point source in the
presence of a gently curved interface, can be found directly from ray-optical
considerations. Note that the method described in this section gives the
locus cf observation points at which a particular scattered ray contributed
to the fields. While the inverse problem of determining the rays that con-
tribute at a given observation point for the case of a curved interface would
be based on the same ray tracing concepts, in general it poses a much more
difficult analytical problem. This is especially true if multiply scattered

rays are present,
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E. BRANCH CURVE CONTRIBUTIONS TO THE FAR FIELDS

In this section the branch curve contributions to the far fields will
be evaluated and interpreted in terms of lateral rays. The branch curve
contributions first appear as the branch point contributions to the steepest
descent integration over N as found in Appendix B. Recall from the dis-
cussion given in Appendix B that a branch point contribution to the N in-
tegration may occur in the scattered field Fourier integrals (4) but not in
the direct field integrals (2). Such contributions arise only from those

branch points of the # , 's appearing in F(€, 7 ) that are not at the same

time branch points of :m and X g appearing in P(§,Nn ). Furthermore,
branch point contributions to the total fields come from only those branch
points of %, at which KL is real --- see Appendix B. Finally, in Appendix
B only the branch points of KL lying on the real N axis and at which & . and
Kn are real were considered since the contributions from branch points not

satisfying these conditions are exponentially small.

1. Stationary Phase Evaluation

In the isolated saddle point contribution (B-3) to the N integration,
g[‘; N S(§ ):;' will have branch point singularities at the branch points of
Kéfg e} S(§ ):|. However, these branch points do not give riseto lateral rays
and hence, only the branch point contributions to the N integration give rise
to lateral rays. This conclusion follows from the fact that for § near a
branch point of KL[g N s(§ )] , in the N integration a branch point of
E(E ,N ), considered as a function of N, lies near a saddle point. When a
more accurate steepest descent integration over N is carried out for this
case, it is found that the branch point in § occurring in the isolated saddle

(26)

point result is no longer present.

A more detailed discussion of the nature of F(£,N ) near the branch
curves than given in Appendix B is necessary in order to cast the branch
curve contribution into ray-optical terms. To this end consider the vicinity
of a branch curve of some 4 1 that appears in F(€ ,n ) but that is not a branch

of P(§,n ). Inthe vicinity of the branch curve of % 1 but away from cusps
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or crossings of the branch curve, % , ~ gz (E.,n)= m_.'ﬂ_) where gi
and g, are real and regular and 8 is zero on the branch curve -- the zero
is simple along any trajectory crossing the branch curve. For convenience,
the plus sign before the root is taken if "y corresponds to an upgoing wave,
and the minus sign is taken otherwise. The argument of m is
assumed to be defined in such a way that the above sign convention holds.
The branch curve condition g, (§,Mn)=0 can be solved for N as a possibly

multivalued function

n=n.(¢) . (33)

In the vicinity of the branch curve and excluding cusps or crossings of the
ke

branch curve, g, (8, M) can be approximated as

g, €)= [0 -0 €)] [55 8, (6.0)] AEALY £0.

n =N b(§ ) n=nb(§ )

(34)

Since F(§,N ) is explicitly a function of % ,+ in the vicinity of the branch curve
of ", one can write F(E,n)=F(8,n , v 8 ). Using this form for F(%,n)
and with the help of (34), F(§,n) for constant § can be approximated to first

order about N =1 b(§ ) as

-~ OF oF Pg e
3. o n
8

A

where F, F /3N, 3F/v g, and d3g, /3N are all evaluated at N -, (€ ).
Comparing the expansion in (35) with that given in (B-4) it is seen that the

The condition -B% gL(g,n )] #~ 0 corresponds to two branch points
n=n

being close together in the N inte;ration for this value of § . For critical

points at these values of § and N, the derivation of the branch curve con-

tribution is no longer valid but the ray-optical representation for the con-

tribution is, since this singularity is introduced only by the choice of the

(x, y) coordinates,
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quantity 3F /d v/ N -N, appearing in the branch point contribution (B-7) can

oF dg
be replaced by ’\/ L . Recall that in Appendix B, +/n -n p, Was taken

B
to be positive for N -T]b positive real, thus requiring from (34) that

arg JBgL(g. nb)/bn = arg ,/g’(g. Ny + A ) where A > 0 is small.

The integral of (B-7) over § can now be evaluated by the method of
(22)

stationary phase, thus obtaining the branch curve contribution I

B.C to
the integrals in (4). The stationary phase points in the § integration of the

terms in (45) are the solutions of

d a 1.d _
3t P8 &) =P [en, 8] +B,[E.n, (5)] 55 18 =0.
(36)

It is assumed that dnb/d§ at the stationary phase point is finite (were it in-
finite, two branch points would have coalesced in the N integration, in which
case (B-7) would no longer be valid). Equation (36) is equivalent to the condi-
tion that the tangential derivative of p(gh,n ) on the branch curve of KL be
zero. Thus, the branch curve contributions come from the critical points

{4 o n C) on the branch curves at which the tangential derivative of P(§,N)

vanishes. Performing the stationary phase integration, one finds that
2

" . M. 3P, d°P
iy 3F ag{ e-Jkope-J4(3sgna—ﬁ +sgrr—-;_r-‘s )
ls.c.” X ) Z U[t("s'"b)] 3 211/2
.c. e, |
(o] gL

n 3/2, .2
- | 3 p/an| | a°p/at

(§.n)

(37)
where the first sum is taken over all critical points, at which P(§,n ) is *
real, on that portion of the branch curve of nL on which o is itself real.

The second sum is taken over the various branch curves appearing in

F(8,n ) but not in P(§,Nn ).
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2. Ray Interpretation of the Branch Curve Contribution

As pointed out in Section C, the branch curve of #, on which % is

1 1
real is the projection into the (£ ,n ) plane of the rim bounding the {4 ' branch

of the dispersion surface. On the rim, the {,th branch adjoins another real
beanch np of the dispersion surface and the normal is parallel to the (£ ,n )
plane -- see Fig. 4-a where A-A is a segment of the rim. With this descrip-
tion of the dispersion surface near the rim of the Lth branch, it will be
shown that the critical point condition (36) can be interpreted in terms of a
lateral ray that leaves the source along v, " see Fig. 4-b -- is incident on
the interface at (x', y', 0), travels along the interface parallel to A and then
leaves the interface from the point (x'", y', 0) along the direction of Yoo
arriving at the observation point (x, y, z). While lateral ray contributions
can exist in both the € and €, media, the dispersion surfaces may be such
that these contributions are present in only one medium, or iu neither.

Since the segment of the lateral ray on the interface corresponds to
the Lth scattered ray at the critical angle, power flow on this segment will
be in the direction OfYL . Hence, lateral ray contributions will exist only for
XL . I—"L > 0 and one can replace the unit step function U[i (n s-n b)_! appear-
ing in (37) by U(l(, . I—"L ). Verification of this intuitive argument by analyti-

cal methods is involved and will not be considered.

Using the form of P(€ , 1 ) appearing in the scattered field integrals
(4), the critical point condition (36) becomes

anm ann anm ann dnb
- - ' ———— - ! ——— .
0=}(x +2z 3% z ag)+(y+z 3 z 3 ) &
n=n (§)
- 4 3,4 for z> 0
n=1,2;m=}_ _ . (38)
1,2 for z< O

In order to verify the ray interpretation of (38), recognize that since Y is

normal to A-A in Fig. 4-a, it is also normal to the branch curve n ='nb (£ ),
which is the projection of the rim A-A, and hence
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dn .- dn,\2
b b
v, ** (x> - %)/ (—aﬂ ' . (39)

= U ! = ! = [ R | Hy ! = -x'") 4+
If]:n x x +zoy Eoz'EL 5°(x x)+xo(y y)and-]:m:_(o(x x'")
zo(y- y'")+ z,% it is easily verified with the help of (16) and (39) that (38)
is equivalent to the condition v xL =v xL,6 =V x 1. =0 for the same
-n " =n =L =t =-m -m
. ’ i §

g - and N 2 with Xn En and -\im lim positive

Using the ray interpretation of (38), the various quantities appearing
in (37) can be expressed in ray-optical terms -- see Appendix E. Finally,

because the branch curve of xL is not the same as those of nm and % n’ this

branch curve does not appear in An or -ém and hence

e R

)
B.,/g_ o ﬁmyLmnAn; YLmn mn

we

(& ./"')

(40)

where I‘mn(g oMo Jg{‘ ) = I‘mn(g ,N ) in the vicinity of the branch curve of

" L With the help of (40) and (E-1), (E-5), (E-7) and (E-10) of Appendix E,

the lateral ray contribution to the scattered fields can be written as

(En.) o
=5y
B.C.
Y A e-jko(NnLn+NLLL+NmLm) -'Eb
ﬁz y z tmnn T 5mn

(%c.n c)
(41)

The first sum is over all critical points (§ M c) on those segments of the
branch curve of xL on which nL is real. The { summation is taken over
all branch curves for which £ # m, n and that are not also branch curves of
X O X o The sums on m and n indicate summation over the possible inci-

dent and diffracted segments of the lateral rays.
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The results given in (41) are not valid when the denominator goes
to zero. This can happen if | QL' E 1/./(33L/3§ )2 + (agL/BT] )2 = 0, which

corresponds to | £ cl ; I‘ncl = © along an open branch ofn =n (£ ). The
denominator is also zero if I-:L = 0, which indicates that a stationary point

of the m, n scattered rays lies on the branch curve of x L and occurs when

the observation point lies on the surface bounding the region in which the
lateral rays contribute to the field, Also, for some observation points it

can happen that (Eo x I:L ) . PL ik

when two critical points coalesce. The condition QL = 0 and (onI_J_L) .

D . : = 3 ;
W an (Eo X L, ) = 0 for I-:L # 0 correspond to shadow boundaries and i
caustics in the lateral ray field, singularities that do not exist in the lateral ‘

(4)

. (Eo x I:L) = 0 with I-:L # 0, which occurs

(26)

ray fields excited by line sources' ' o~ by point sources in isotropic media.

Since the lateral ray fields are of lower order in ko than the scattered
and direct ray fields, the latter will usually form thcz dominant contributions
to the far fields of the source. However, in geometric optical shadow regions,
the direct and scattered ray fields will be exponentially small (as will be all
the terms in the asymptotic expansion of the stationary point contributions)

so that the lateral ray fields, when present, form the dominant contribution.
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Chapter III

GROUP VELOCITY AND POWER FLOW RELATIONS FOR SURFACE
WAVES IN PLANE -STRATIFIED ANISOTROPIC MEDIA

A. INTRODUCTION

In this chapter two aspects of the power flow associated with electro-
magnetic waves in plane-stratified, anisotropic, dispersive media and their
application to surface wave propagation are considered. The first aspect is
that of the relation between the group velocity and the velocity of energ:
transport of surface waves; the second is the relation between a dyadic sur-
face impedance and the power flow and stored energy in the structure it re-

presents.

It is well known that monochromatic plane electromagnetic waves in
a homogeneous, dispersive, anisotropic medium that is also lossless and
linear, e.g., the ionosphere for small-signal propagation, carry power in
the direction of the normal to the plane wave dispersion surface. Specifically,
the velocity of energy transport of plane waves in such a medium is equal to
the group velocity, that is, the gradient in the wave number space of the fre-
quency.(15'23) As was seen in Chapter 1I, this relation between the group
velocity and the velocity of energy transport finds an important application

in the ray interpretation of the far fields radiated by sources in anisotropic

media.

It is shown here that an analogous relation involving the group velocity
holds for the case of surface waves in plane-stratified, dispersive, anisotropic
media that are also lossless and linear, in that the group velocity of surface
waves that can propagate in such a medium may be interpreted as the sur-
face wave energy transport velocity. For such surface waves, the direction
as well as the magnitude of the real part s of the complex Poynting vector is,
in general, a function of z, the coordinate in the direction of stratification.

(An example of this dependence is described in Chapter IV). Therefore, s

divided by the energy density cannot be identically equal to the surfac e wave
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group velocity, which is a vector independent of z. It will be shown, how-
ever, that the group velocity of the surface wave is identical to the velocity
of energy transport of the surface wave taken as a whole, i.e., the gradient
in the transverse wave number plane of the frequency is equal to the integral
over z of s divided by the corresponding integral over z of the stored energy
density. In a manner analogous to that for plane waves in anisotropic, homo-
geneous media, the relation between group velocity and energy transport
velocity for surface waves will prove useful in Chapter V where the ray in-

terpretation for the surface wave fields excited by a point source is formulated.

The proof of the relation between the group velocity and the energy
transport velocity is furnished for two configurations. In Section B, the case
considered is that of a plane-stratified medium filling all space, while
Section C contains the proof for the case of a plane-stratified medium filling

the half-space 2bove a perfectly conducting plane at z = 0.

In Section D, the relation between the dyadic surface impedance at
z =d, which represents a plane-stratified, lossless, anisotropic medium fill-
ing the region 0 < z < d and bounded at z =0 by a perfectly conducting plane, ]
and the power flow and stored energy in this region is considered. With the
help of the developments of Section B, it is shown that the power flow and
stored energy in the region 0< z < d are directly related to the derivatives
of the surface impedance, with respect to transverse wave numbers and fre-
quency, and to the components of the r.f. magnetic field transverse to z at -
z=d. The relation of power flow and energy to the surface reactance apply
for all frequencies and real transverse wave numbers, not just those asso-
ciated with surface waves. In particular, for surface waves propagating above
a dyadic impedance plar‘ie, the power flow and energy relations are shown to

be significant in calculating the energy transport velocity.

Section E is devoted to a discussion of the dyadic surface impedance
representation of a semi-infinite, plane-stratified, lossless, anisotropic
medium for ranges of frequency and transverse wave numbers for which the
fields in the medium are evanescent at infinity. Again the power flow and

stored energy relation involving the surface impedance are obtained. The
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power division between the space inside and outside of a surface wave guiding
structure is determined in terms of the dyadic surface impedances defined in

Sections D and E.

Appendix F treats briefly the dyadic admittance representation of a
medium above a perfectly conducting plane. At those values of frequency and
transverse wave numbers where the impedance formalism breaks down, the
admittance formalism may, in general, still be used. Power flow and stored

energy relations in terms of the surface admittance are given.

The results derived in this chapter, for plane-stratified media that
are uniform in the planes normal to the direction of stratification, are genera-
lized in Appendix G to configurations that are periodic in the planes normal
to the direction of stratification. For surface waves in periodic configurations,
a group velocity-energy velocity relation similar to that described above holds
for the averages (over the periodicity) of the Poynting vector and stored
energy density. Also, it is shown that the average energy flow and average
stored energy in periodic configurations represented by a dyadic surface
impedance are simply related to the derivatives of the impedance with respect

to transverse wave numbers and frequency.
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B. STRATIFIED MEDIUM FILLING ALL SPACE

A lossless, anisotropic, dispersive, plane-stratified medium is
assumed to fill al® space. It is uniform in the x and y directions and its
interaction with a monochromatic electromagnetic field can be described
in terms of the constitutive parameters of the medium, the dielectric ten-
sor € and the permeability tensor u. Since the medium is lossless, € and

(14,15) and because of the assumed uniformity in x and y,

u are Hermitian,
they are independent of these coordinates. The tensors € andy are analytic
functions of the angular frequency w and are assumed t; be co;tinuous
functions of z except for a possibly denumerable number of finite jumps.

The z dependence of ¢ andy is further assumed to be such that the medium
supports surface wav::s pro;agating transversely to z. Such surface waves

are solutions of the source-free Maxwell equations and have the form

E( .
_1 W) e(z; k .(u) 'Jl.‘t'ﬂ
e (1)

H(rik,w) hizik, w)
where e and h tend to zero as |z] approaches infinity. As used throughout
this chapter p = x x + ey is the position vector transverse to z and Et =
x k + T k is a real transverse wave vector. The vector amplitudes e and
-0 x y -
h are required to be such that the electric and magnetic energy densities, as
well as Re(e x h*), are integrable on the infinite interval -® < z< @, PBe-

-9 P

cause the dependence of E and Honx and y is e X =, the electric and mag-
netic energy densities and E x Ii* are independent of p. Furthermore, since
the field components transverse to z, & and Et must be continuous in z across

any jump in € or y , they must be continuous functions of z. For simplicity,

e and h are assumed to be Rms quantities.

In the absence of sources, Maxwell's equations in a medium described

by € andy are

(2)

e e T ]
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et has been suppressed. Substitut-

where the harmonic time dependence e
ing E and H from equation (1) into (2) results in six linear homogeneous
equations in the six unknown field components, four ordinary differential
equations in the variable z and two algebraic equations. For any particular
medium that can support surface waves, these six equations will have solu-
tions satisfying the cavity-type boundary conditions e =h = 0 at |z] ==, and
possessing the integrability nroperties described above, only for restricted

values of the Darameters‘ht and @ that some functional relation of the form

D (k,w)=0 (3)
where in general Ds is a regular function of Et and . Relation (3) is the

surface wave dispersion relation and determines the possible surface waves

that can propagate transversely to z in the particular plane-stratified medium.

Let Et and w be such as to satisfy the surface wave dispersion rela-
tion (3) and consider neighboring values Et + d‘lst and m + dw, also satisfying
(3). The fields of that surface wave pronagating with wave vector Et + dht
at the frequency m + dw are given, to first order in differential quantities,
by

E(r;k + dht' w+dyp) = E(S;Et' w) + ég(g:ht. w)

K
(4)

Ii(:;ht + dht, w + dy) = }_{(E;Et, w) + éli(s;ht, W)

where the variation § symbolizes the differential operation

9
5§=dk .V +dy —— A (5)
t Et dw

with ¢ + xo % ,» and the nartial derivatives of § and 5 are

p2 ol
k, =03k
-t X
evaluated at (Et. w)., Since I_?._t and Iit are continuous functions of z for both
sets of values (Et’ w) and (l_c_t + d_lst, w + dw ), it is seen from (4) that the varia-
tions & Et and 6 Et rnust also be continuous functions of z. The differential

equations that 6 E and 6 H satisfy can be found by applying the variation & to
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Maxwell's equations. Recalling (5) and because € and:; do not depend on

Et' the variation on Maxwell's equations results in

Awe
Vx 6 H-=jdvy 3:‘ +E+jme - S8E
(6)
duwt
V x 8E = jdw = P_{-J(UL-J- - 0H

Consider now the identity

3 i * %
-E-Jxéﬁ-vxbg-bg-Vxﬁ 5

* *
V. (Ex8H+%ExH )=6H: -YxE
(7)

With the help of equations (2) and (6), the right-hand side of (7) can be re-

written to give the relation

3 * dw € - A
v.(E x6§+6§x}_{)=-jd(u(§--a_'—:-§+l-_:l_-a—";-g) (8)

*«
when the assumption that € and iy are Hermiitian is used to write § E € . E

~ ~

* * *
as E . ¢ -6§and6}_{-u -g*asli*-u - 8H. The first term on the

right-hand side of (8) is twice the time average electric energy density we

while the second is twice the time average magnetic energy density wy .(14'15'27)

As pointed out, w. and w, are independent of p. In terms of the total energy

h
density w = Lo + Wi equation (8) can then be written

* * '
V.(E x6H+bExH )=-j2wdn . (9)

The divergence term on the left-hand side of (9) is now evaluated by
expanding 6 E and § H and subsequently applying the V operator. With the
help of (5) and (1), it is seen that

=J
6E = (te - jdk - pe)e

D

®

iy . (10)
6H = (th - jdk - p h)e

‘2

=
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The variations on the transverse vector amplitudes, 63t and éht. are con-
tinuous functions of z since 6§t' ) Iit. Et andbt are, a fact that will prove

useful later. Since e and h are independent of p, using the above relations
one has

% %
V.(E x6H+6ExH)

% * %k ]
=v .le'xbh+sexh -jdk-p(exh+texh )] (11)
=2 “RBl 4 e B e 20k -0 2 j2dk
=532, (e x6h+bexh)-j2dk o 5=(z -8)-j2dk . s

where s(z) = Re(e x lx*) is the real part of the complex Poynting vector

E x Ii*= ex h*. It is easily seen that the term z,- S is independent of z,
ie., b/az(io . 8) =0, since in a source-free region filled with a lossless
medium, the divergence of the real part of the Poynting vector is zero and,

for the plane-stratified medium under discussion, s is independent of p, so

) _ 3 P . i .
that b—x(-,so . 8)= B_y(xo -3) = 0. Thus with the aid of (11), equation (9) be-

comes

o *
- (e x62+6sxh)+d§to_s_=wdm ! (12)

OJIQ;
N

1
12

In the derivation of (12), the essential assumptions used are that the
medium be lossless and that it be plane-stratified so that waves of the form
given in (1) satisfy the source-free Maxwell equations. The assumption that
(Et' @) and (Et + dl_ct, w + dp ) satisfy the surface wave dispersion relation (3)
serves to restrict the changes d-lft and dw in l_<t and w to a surface in Et- w
space, so that 6Et and 6_}_x.t will be continuous functions of z for all -®» < z< =

and tend to zero as |z| -~ = .

Since the wave vector Et + dEt and the frequency » + dw satisfy the sur-
face wave dispersion relation, to first order dw = dht . th w(Et) where (Et)
is the solution of the dispersion relation (3). Using this expression for dw ,

and after rearranging, equation (12) becomes

Sa— (e x6h+6exh)—dk (kaw'3)° (13)

o e e e

Because e¢ and hy are continuous functions of z, 2, - 8 is a continuous function
of z and therefore a/bz(z + 8) cannot have a delta function behavior at the
jumps of € ory .
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The term on the left of (13) does not vanish identically so that in general
s # katw and hence in the surface wave case Vk w cannot be interpreted

=t
as a local velocity.

In order to eliminate the term on the left-hand side of (13), integrate

this relation over z to obtain

1 o) % *
] - S—— . = . V K -
i3 | 57 z,r(e'xth+sexh)dz =dk (W K s)
(14)
where —
@«
s=[ sa (15)
-
and
w=f wdz . (16)
-

Because s = 30 + 8 is independent of z, as discussed above, and is zero at
Izl =®, gince e and h are zero there, 92 is zero for all values of z. Thus

s, and hence S, are purely transverse vectors,

Recognizing that

* * * *
_z_o-(g x6_13+6£x_13)-30-(£t x6_}3t+6£txht) . (17)

and using the fact that & _}_lt. 6£t and 6ht are continuous functions of z, one
has ®
-]
d * % - %* *
J'3;30.(3,‘63+6ng)dz-go.(gtxbhtme_txht) ,
- -
(18)

which vanishes as a consequence of the boundary conditions on e and h at

|z] =«. Hence,
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. V - =
&, (WY, m: 3)=0 (19)
and, since S is a purely transverse vector and d-l-('t is arbitrary, it follows
that

v w=S/W . (20)
k

Althougn the real Poynting vector s can vary in magnitude and direc-
tion with z, the total real Poynting vector S is independent of z and represents
the total surface wave power flow across a strip normal to S, infinite in z and
having unit width. The term W represents the total stored energy of the sur-
face wave fields in an infinite cylinder, parallel to z, whose x -y cross section
has unit area. Equation (20) thus states that the group velocity of the surface
wave, Vhtw » i8 equal to the velocity of energy transport §/W of the surface
wave as a whole. This statement for the surface waves in plane-stratified

media replaces the relation ¥ = s/w for plane waves in homogeneous aniso-

K®
tropic media and will be used in Chapter V to interpret the surface wave con-
tributions to the fields excited by the point source of Chapter I in terms of sur-

face wave rays.
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C. STRATIFIED MEDIUM ABOVE A PERFECTLY CONDUCTING PLANE

The plane-stratified medium described in the first section is now
assumed to fill the half-space above a perfectly conducting plane at z = 0.
Again, assume that the z dependence of ¢ and u is such that surface waves
of the form given in (1) can propagate tr;nsver;ely to the direction of strati-
fication. The vector amplitudes e and h of these waves tend to zero as 2
approaches infinity and satisfy the boundary conditionst =0atz=0. The
electric and magnetic energy densities, as well as Re(e x h ), are now
assumed to be integrable on the semi-infinite interval 0< z < «, Asg dis-

cussed in the previous section, and }_1t must be continuous functions of z.

e
_t
Solutions of Maxwell's equations satisfying the above conditions occur only
for values ofl_<t and w that obey a surface wave dispersion relation,

Ds(ht. w) = 0, valid for the semi-infinite medium.

As in the previous section, the fields at two neighboring sets of values,
(l_ct, iw) and (Et + c'l_(t, w + dp ), both of which satisfy the dispersion relation,
are considered. Using equation (4), the fields E and H at (-lf-t + dl_tt, w+ dy)
are found, to first order, in terms of the fields and their derivatives, with
respect to kx. k and @, evaluated at (l_<t. w). Since the variations in the
fields, 8E and § H, in this problem aiso satisfy (6), equation (13) holds in
this case as well. Because the term on the left-liand side of (13) is, in
general, not zero, V_l&w again cannot be interpreted as a local surface wave
energy velocity. However, upon integration of (13) over the interval 0 < z<® ,
the left-hand side vanishes and v.lftm can again be interpreted as the velocity
of energy transport of the surface wave as a whole. To see this, one recog-
nizes that since (A =0atz=0, 6£t must also be zero there. Hence, using

equation (17) and recalling that e and h are zero at z =@, it is seen that

(- -]
r2 R Te Rk JdEEE e % 8k ¥ Ah G e kb ] k=@
I ROEL SO SLAEROEL S SER I
[0}

(21)
Defining
L. -]
w=f wdz (22)

(o]



and

s=j sdz (23)

(S being a purely transverse vector since s = 0) the integration of (13) over

the interval 0 < z < = gives, in view of (21),

0= (WY, W - ) 24
dk, (whtm §) (24)

Again, because dEt is arbitrary, it follows that

V_litm =§/W . (25)

That is to say, for surface waves about a perfectly conducting plane, the

group velocity V. w is equal to the velocity of energy transport S/W of the

kt
surface wave as a whole.

If a second perfectly conducting plane at z = d > 0 is present, it is easily
seen that (25) is still valid for the fields between the conducting planes if
S and W are now taken as (¢ d

§=I§dzandw=fwdz
o) o)

Thus for waves in a parallel plate wave guide filled with a plane-stratified,
lossless, anisotropic medium, the group velocity is equial to the velocity of
energy transport.
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D. SURFACE IMPEDANCE AND POWER FLOW RELATIONS

When formulating steady-state electromagnetic problems involving
fields of the form: given in (1) in a lossless, plane-stratified anisotropic
medium abcve a perfectly conducting plane at z =0, it is sometimes profitable Il“'
to reprerent the effect of the structure below a plane z=d > 0 on the fields
in the region z > d by a surface impedance dyadic at z=d. The impedance
dyadic Z may then be employed as an equivalent boundary condition at z=d
when sc:lving for the fields in the region z > d. In this section the relation
between the derivatives of the impedance dyadic, with respect to the spatial
wave numbers kx and ky' and the power flowing in the region 0 < z<d will
be established and the significance of this relation for surface waves supported
by such an equivalent impedance plane will be pointed out. The relation be-

tween 3Z /3w and stored energy in the region 0 < z < d will also be established.

In order to define Z and to find its relation to power flow and stored
energy in the region0< z < d, consideration is first given to the auxiliary
problem of finding the fields in this region when }_{t of the form given in (1)
is specified at z=d. Thus, one looks in the region 0 < z < d for the solution

of Maxwell's equations that satisfies the boundary conditions

E =0 (26)
at z=0 and

e - (27)

at z=d. All values ofl_<t and w, except those at which E is singular, are con-
sidered (for further discussion, see Appendix F). No restrictions are placed
on the fields in the region z > d. In fact, the medium filling the region above
the plane z =d may be taken to be arbitrarily stratified, since, with Et rigiai'y
prescribed at z =d, the medium does not affect the fields for 0 < z< d. The
medium filling the region 0 < z < d is assumed to be lossless, uniform in x

and y and characterized by ¢ andu which are analytic functions of w.
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Specification of the above boundary conditions is sufficient, in
general, to uniquely determine the fields, and hence the power flow and
stored energy, in the region 0 < z < d. Solving this auxiliary nroblem for
arbitrary polarizations of l_:d then permits a unique determination of the
dyadic surface impedance Z . Having determined Z from the auxiliary prob-
lem, one can now solve for~the fields above the im;edance plane z=d in
terms of Z, the excitation in the region z > d, and the boundary conditions
at z=o, ;‘he requirement that l;lt be continuous across z=d now permits

one to uniquely determine the fields, and thus the power flow and stored

energy, in the region 0 < z < d in terms of (}_-It)z _d+ and the given Z .

In practice, the auxiliary problem need be solved for only two linear-
ly independent polarizations of hd’ since the linearity of Maxwell's equations
permits the solution for any other polarization ofhd to be expressed in terms
of those for the two independent polarizations. Thus, at each of the values
ofl_ct and w to be considered, one solves for the fields in the region 0 <z <d
when h . takes on two linearly independent polarizations, e.g., hd = -!‘-o and

-d
Ed = xo Having found the fields, which will be of the form given in (1), for

both polarizations of hd' Z may uniquely be defined by requiring that the re-

lation

(Et)z=d=z'(£ox§t)z=d (29

be satisfied for both sets of fields. This requirement is equivalent to specify-_
ing four inhomogeneous, linearly independent equations from which the four
unknown elements of Z can be found. If one now wishes to solve for fields of
the form given in (1), ;n the region z > d, relation (28) may be used as a
boundary condition at z =d, which will ensure that the transverse fields connect
continuously to valid fields in the region 0 < z < d. That is, ifs and h in

the region z > d are such that (28) is satisfied, then, taking as (_llt)

Ed g= d+'
the corresponding e in the region 0 < z < d will be such that (st)z -d- =
(st) z=d*,

Having thus defined Z, the meaning of its derivatives with respect to

kx' ky and @ can be determined. To this end, assume that the fields in the




69

region 0 < z < d are known and hd of (27) has been selected such that the
derivatives of the fields with respect to kx' ky and ¢ exist. Egquation (12)
can now be employed where dht and dy in the variation 8 are arbitrary and
independent. Equation (12) is valid for the fields in the region0<z<d
since the assumptions used in deriving it are also satisfied in the present
case - see the text after (12). The restrictions placed on d}it and dw in the
first section are not necessary in the present discussion since, as previously
mentioned, solutions of Maxwell's equations for which e, and l_xt are con-
tinuous in z will exist in the region 0 < z < d for all Et and w (excepting the
singular points of Z, as discussed in Appendix F, thus ensuring that b_e_t and
6}_1t are continuous functions of z for all dl_<t and dw. Since the fields are
bounded as z approaches d and as z approaches 0, it is permissible to in-

tegrate (12) over the closed interval 0< z < d. Performing the integration

and using (17) yields the relation

1 * * 1
il (EtX62t+6£tx}—‘t)z=d_ dew dEt-gd. (29)
Here
d
wd=J' wdz (30)
o
and
d
54° [ saz . (31)
o

Mot it siee B & -9 520 andi) =0, s =0forall0<z<d
dz 2 - 2z'z2z=0 z
and hence -§d is a transverse vector.

Since E and H have the form given in (1), the impedance relation (28)

may be rewritten as

(e,) =Z . ( h) (32)

Eel2=a T % 2o X224

Applying the variation & to the above equation gives

((’:t)z=d B E ] (EOX6ht)z=d+ 6% .(on-ht)z=d u B




70

Using (st)z 5 from (32) and (63t)z s from (33), it can be verified that

s (87 w M b B e s Sl ) 1S B h))
Bt (g x 0, & g M le g™ THUES RV 08 Vil B

z=d
(34)
when the anti-Hermitain property of Z is uaed to write
[(z xh Je 2 (2 x 6_}1t)]z=d- [(on Sh) . 2" (2, xh )] g=q- Withre-
lation (34), equation (29) becomes
-5 [(z xh 82z xh )] =Wde-dk .S . (35

Since dkx, dky and dw are all independent, one finds that

az
j [(z xh ) . (z,xh )] a4 Sy
x
(36)
. 2 ]
j (th)-—.(th) . =S
3k z=d “dy
y
and that
« 232
-JZE(z xh )-—o--(_goxgt)]z=d=wd 5 (37)

It is thus seen that Wcl and §d can be found knowing only Z and

(Et)z =q° As previously pointed out, if fields of the form given in (1) exist
in the region z > d and satisfy the impedance boundary condition at z =d,

there will be unique fields in the region 0 < z < d that satisfy the continuity
conditions (Bt)z =q- - (Et) z=d* and (Et)z g B (st)z=d+ 5
continuity of ht at z =d, the power flow and stored energy associated with the

Because of the

The impedance dyadic Z is anti-Hermitian, i.e., the matrix representation
for Z has the property that the transpose conjugate Z+ is equal to -Z. This
property follows from the facts that s, = 0 for all z< d and that the tields

are contxﬂ%cius as z approaches d from below so that Re(e x h ) must
be zero.
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fields in the region 0 < z < d can be calculated from relations (36) and (37)

using (h ) = Lim h , i.e., the limit of h  as z approaches d from above.
2t'z=d f: LT 2t

Since the relations (36) and (37) hold for arbitrary l(-t and w, they
are valid, in particular, for values of -lst and w that correspond to a sur-

face wave. Thus relations (36) and (37), with appropriate values of Et and

w, furnish an alternative way of calculating that portion of the surface wave !
power flowing in the slab and that portion of the stored energy of the surface
wave which is in the slab

The relation between power flow and the derivatives of Z with re-
spect to kx and kY given in (36) does not appear to have been pr:viously re-
cognized. While the connection between stored energy and ag /3w, to the .
best of our knowledge, has not been shown explicitly for the case of traveling
waves, the connection between stored power and the impedance matrix of a

(29)

lossless junction is well known.

The consistency of relations (36) and (37) for surface waves with the
results obtained in the second section will now be shown. Consider a sur-
face wave propagating in a lossless plane-stratified medium above a surface
impedance plane at z=d. The surface impedance Z is assumed to be known
and to represent the effect of a plane-stratified, lo.;sless medium above a
perfectly conducting plane atz =0. The surface wave fields in the region z > d
are assumed to be of the form given in (1) with kt and w related through the
appropriate surface wave dispersion relation. The surface wave fields satisfy

(13), which, when integrated over the interval d < z < =, yields the relation

L ©
1 * *
- | — * - . v - o
iz, (Et xéht+ 6£txb-t)z=d dl(_t [Etw f wdz jgdz] (38)
d d

Since Et and ht satisfy the impedance condition (32), equation (34) holds,

Using (34) and the fact that for the surface wave dw = dkt «+ V. w, the above

k
: . =t
equation can be written as

——
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® 3z
o vy {[ woe-aflegn 20 5 e ] )
=d5t'{jd'dz+x l[(z x2 )°£ HiExk )]z=d
, 32
SRR S B I

As discus-led above, the terms containing ag /akx and ag /aky that
appear in (39) are equal to the x and y components of the puower flow _S_':l below
the plane z =d. Furthermore, the term containing 3Z/3y is equal to the
stored energy, per unit areain the x-y plane, below t;e plane z =d, namely,

Wd. Thus (39) may be written

dgc_t-vktw{.[:wd“wd} =d5t-{E_-_dz+§d} (40}

or, since dk is arbitrary.
{f wdz+Wd} f-dns . (41)

Finally, from the definition of W':l and §d given in (30) and (31), equation (41)

is seen to reduce to

@ -]
Vk ) J wdz=f_s_dz 5 (42)
=t o o

which is precisely the relation found to hold in the previous section for sur-
face waves above a perfectly conducting plane at z=0, Hence if a surface im-
pedance boundary condition representing a plane-stratified medium above a
perfectly conducting plane is used when solving for surface waves, the re-
sultant group velocity thm is equal to the energy transport velocity of the
entire surface wave, not to just that portion of the surface wave above the

impedance plane.

TR S N
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E. SURFACE IMPEDANCE FOR THE CASE OF EVANESCENT WAVES

In the derivation of the power flow and energy relations for a surface
impedance representing a plane-stratified medium above a perfectly conduct-
ing plane, the presence of the conducting plane served to ensure that M 0
and that the stored energy, per unit area in the x-y plane, and power flow are
finite in the region 0 < z < d for all possible polarizations of (ht)z -d and all
real values of Et and w. Since the fields of evanescent waves in a semi-infinite
plane-stratified medium also possess these two properties, one would expect

power flow and energy relations similar to (36) and (37) to exist in this case

for the surface impedance representing the semi-infinite medium.

Let a semi-infinite, plane-stratified, lossless, dispersive, aniso-
tropic medium fill the region above the nlane z=d. By analogy to the case of
the medium above a perfectly conducting plane, consideration is first given
to the auxiliary problem of finding those fields in the region z > d which satis-

fy the boundary condition

jlut -k, - p)
(B lyea T ¢ (43)
at z =d and the boundary conditions
Lim(E, H)=0 . (44)
VA -
G ®

In addition, it is required thatf sdz and_r wdz exist. The term ''evane-
d

scent', as used in the rest of this section, will refer to fields satisfying (44)
and the foregoing integral requirements. Evanescent fields will also have
the property that s, = 0. The auxiliary problem is to be solved for all polari-

aations of h . so that the surface impedance may be defined.

d
In general, only for limited regions in Et - w space will the auxiliary
problem have unique, non-trivial, evanescent solutions that satisfy (43) for
all hd and thus permit definition of the surface impedance %s' Other values
of Et and w will not be considered for one of two reasons. First, in media

having an appropriate z dependence, non-unique, cavity-type, evanescent

solutions satisfying (43) witn h . = 0 may exist for points lying on surfaces in

d
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ht - W space. In such cases, %s will have singularities on these surfaces.
(Discussion of such points and the derivation of a surface admittance forma-
lism that is, in general, regular at such noints, are analogous to those
given in Appendix F for a medium of firite thickness above a nerfectly con-
ducting plane.) Second, in some regions of Et - w space, fields satisfving
(43) will not be of the evanescent type for most or all polarizations of ﬁd'
Thus, unless alternate boundary conditions are specified at z = @, such as
the radiation condition, the fields, and hence %S, cannot be uniquely defined.
Even if boundary conditions are impose at z = ® and if %s is defined in this
case (it is no longer anti-Hermitian), the associated fields do not possess

the integration properties necessary to derive simple power flow and stored

energy relations.

Hence only those regions in Et - @ space in which the auxiliary prob-
lem has unique, non-trivial solutions satisfying (43) and (44) for all hd FO0
will be considered here. The regions where the auxiliary problem can be
solved, the nature of which depends on the particular medium under dis-
cussion, are assumed to exist ard to form open sets, i.e., not merely sur-
faces, so that kx, ky ,» and @ will be continuous, independent variables within

these regions.

Thus restricting Et and v to those regions where unique, non-trivial
solutions of the auxiliary problem are assumed to exist for all polarizations
of hd' the surface impedance dyadic .Z.,s can be defined for the semi-infinite
region, Since the linearity of Maxwell's equations permits the solutions for
all hd to be expressed as a superposition of the solutions for two linearly
independent polarizations of hd' one need consider only two such polarizations,
€e.8., hd =X and hd =Y, From the solutions of the auxiliary problem,
which will be of the form given in (1), for these two polarizations, ?'..s can be

found uniquely from the requirement that the relation

An example of a region where no evanescent waves exist is formed by the

2
points in and on the cone (,.2 = - lu (k: + ky ) when the medium being studied
is free space. Outside this cone ugique, non-trivial solutions of the auxiliary
problem exist for all hd'
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) (45)

( +(-z_xh)

etz d ...s -0 =t'z=d

*
be satisfied by the fields of both solutions.

By analogy to the discussion given in the previous section, Z S may
be used as a boundary condition at z =d when solving for the fields below this
plane. Also, requiring Et to be continuous at z =d uniquely determines the

fields above this plane when the fields below are known.

Assuming % i and the fields in the region z > d to be known, equation
(12) is employed in finding the power flow and energy relations in this region.
Equation (12) is valid for the fields in the region z > d since the assumptions
used in deriving it are satisfied in the present case - see the text after (12).
The differential quantities dht and dy in the variation § are arbitrary and in-
dependent since kx' ky and w are independent variables. Integrating (12)

from z =d toz == gives

in Pl b xR ) v Wk -k - B 46)
g E IR TR ™ 3t"—t)_d' v -k, B,
where
@
ws=_|' wdz (47)
d

and the purely transverse vector §s is
S = f sdz . (48)

In a manner similar to that of the previouns section, the term on the left-hand

side of (46) can be written in terms of §Z if the anti-Hermitian property of

Z 1is taken into account. That Z M is anti-Hermitian follows from the fact

P I . I T T I . T T T T . Lk ey

In the above relation, -z is used instead of 2z o 28 was used in (28) and (32)
for the medium above a perfectly conducting plane, because - Z, is the out-
ward unit normal for the configuration being considered. The convention of
using the outward unit normal in defining the impedance is based on the de-
sire to have the impedance matrix be positive-definite when loss is present
in the structure.

It
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that AL 0 for evanescent fields in a lossless, plane-stratified medium.
In terms of 6Z s (46) becomes
*

P . .
dg[iageh)c 0z, taxh,] e W de-dkis, . (9)

Since dkx. dky and dy are all independent, the above relation can hold only
if

i * a%.

[502 (-onht)' E; ' (-ioxht)
j_ * a%. -
* on('io"ht)' dk .(-ioxht)J _ =§l (50)
y z=d
and

j 4 * 2& h - 51

-JE[(-ioxht)° dw '(.iox—t)] F o 1oL}

z=d

The foregoing relations should be compared to (36) and (37). Note
that if z, instead of ' " had been used in (45), the above relations would

contain an additional minus sign.

The concept of a surface impedance to describe the effect of the medium
above the plane z =d on the fields below this plane can be employed to derive
the dispersion relation for surface waves. The physical configuration to be
considered here consists of a plane-stratified, lossless, anisotropic medium
above the plane z =d > 0 and a second plane-stratified, lossless, anisotropic
medium between a perfectly conducting plane at z=0 and the plane z=d. It
will be assumed that the values of Et and w of interest are such that the
medium above the plane z =d is representable in terms of an anti-Hermitian
surface impedance Es that satisfies (45). This restriction on Et and y is
equivalent to the requirement that the fields in the region z > d be of the sur-
face wave type for all (ht.)z =d" (In special cases, surface waves may exist

when the fields in the region z > d are of the surface wave type for only one
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polarization of (ht) Such cases are not included in the present dis-

z=d’
cussion.) The structure below the plane z =d is assumed to be represented

by the surface impedance Z that satisfies (32).

Since e, and ht for the surface waves are continuous functions of z,
these quantities must be the same in both (32) and (45). Thus subtracting
these two equations gives

(Z +2_)-(z_ xh) =0, (52)
z=d

which is a homogeneous set of two linear equations in the two unknown ele-

ments of (io xht)z For non-trivial solutions of (52) to exist one re-

quires that det(% + 'Z_.(:) = o, which gives the surface wave dispersion rela--
tion Ds(ht » ) =0, At those values of Et and w which satisfy the surface
wave dispersion relation, (Eo X ht)z ol can be found. If the partial deriva-
tives of % and ?’.s with respect to kx' ky and 'y are calculated, the power flow
and stored energy can now be found in each region by u-ing (36), (37), (50)

and (51).

Thus it is seen that the knowledge of Z.: and 'Z_.s for the lossless plane-
stratified structures previously described is sufficient to find the surface
wave dispersion relation and the division of power flow and stored energy be-
tween the two regions, Also, this procedure can be applied when the struc-
ture below the plane z =d is a semi-infinite medium whose regions in Et -
space, where the reactive surface impedance may be defined, intersect the

corresponding regions for the medium above the plane z =d.
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ChaEter v

SURFACE WAVES ON A UNIAXIAL PLASMA SLAB; THEIR
GROUP VELOCITY AND POWER FLOW

A. INTRODUCTION

The group velocity of a surface wave propagating in a plane-stratified,
anisotropic, dispersive medium that is also linear and lossless was shown in
Chapter III to be equal to the velocity of energy transport of the surface wave
as a whole. This velocity is defined as the integral of the real part of the
Poynting vector over the coordinate in the direction of stratification divided
by the integral of the stored energy density over this coordinate. In this
chapter the above relation is verified by direct calculation for the case of sur-
face waves supported by a uniaxial, cold-electron plasma slab. The plasma
slab is assumed to be of infinite extent and to be located in free space. A
static magnetic field of infinite strength and parallel to the interfaces between

the plasma and free space generates the anisotropy.

The characteristics of trapped surface waves propagating on aniso-
tropic plasma slabs have been discussed in the literature for various specific
directions of propagation relative to the static magnetic field. Wait(30) has
considered the surface waves propagating on a thin plasma slab with an
arbitrary static magnetic field., Requiring the plasma slab to be thin reduces
the effect of the static magnetic field to that which would be produced by the
component normal to the slab alone. Meltz and Shore(3 b discuss the excita-
tion of surface waves on a slab of arbitrary thickness when the static magnetic
field is perpendicular to the slab and of infinite strength. In both of these
cases, the anisotropy is such that the slab configurations have rotational sym-
metry about the coordinate normal to the slab and hence the characteristics
of the surface waves will be independent of the direction of propagation.
Furthermore, as in isotropic slab configurations, the velocity of energy trans-
port of surface waves on these slab configurations will be parallel to the

transverse wave vector.
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When the static magnetic field is parallell to the air-plasma inter-
faces, the effect of the resultant anisotropy is more striking since then the
characteristics of the surface waves on the slab depend on their directions
of propagation with respect to the static magnetic field. Also, the velocity
of energy transport will not be parallel, in general, to the transverse wave
vector. Examples found in the literature, of surface waves on slab con-
figurations with axis of anisotropy parallel to the interfaces, do not illus-
trate these anisotropic effects as they are restricted either to propagation

g(31' 32, 33) or normal(34)

alon to the static magnetic field. In either case,
the velocity of energy transport is parallel to the transverse wave vector.

In this paper, however, the surface wave fields are considered for arbitrary
directions of propagation with respect to the static magnetic field of infinite
strength. It will be shown that for this configuration, the velocity of energy
transport of each surface wave is not parallel, in general, to the transverse
wave vector, and that the direction, as well as the magnitude, of the real
part of the complex Poynting vector varies with the coordinate normal to the
slab. Thus the slab configuration provides a non-trivial example of the
equality of the surface wave's group velocity and its energy transport velo-

city. The excitation of the surface waves is not considered here.

In Section B the fields and dispersion relation of the E-type surface
waves, which have no component of R.F. magnetic field along the static
magnetic field, are found. A graphical procedure for solving the dispersion
relation and the properties of the dispersion curves are discussed in Section
C. Section D is devoted to an analytical verification of the equality of group
velocity and energy transport velocity for the surface waves. In Appendix H,
it is proved that the uniaxial slab configuration can support only the E-type

surface waves described in this chapter.

&



80

B. FIELDS AND DISPERSION RELATION

In this section, the fields and dispersion relation for surface waves
on a uniaxial electron plasma slab are found. The plasma within the slab
is homogeneous and the superimposed D. C. magnetic field, which is assumed
to be of infinite strength, is parallel to the y axis (see Fig. 1). In the linear
or small signal approximation, the interaction of the uniaxial plasina with a
monochromatic electromagnetic field may be described by a relative dielec-

tric tensor ¢’. Neglecting collision loss, when the D.C. magnetic field is

in the y direction, ¢’ takes the form(31’ 3z)
1 0 0

(el =0 1-X 0O (1)
0 0 1

where X = (u:p/w )2 and wp is the electron plasma frequency. Thus in the plasma
slab ¢ = ¢ ¢ ‘while in the air regions € = ¢ 1, where 1 is the unit dyadic.

-~ d

The permeability tensor 4 is given everywhere byu =u 5 uk

The surface wave fields, which decay exponentially in the air regions,
have transverse dependence e.j(kxx ¥ kyy)’ kx and k being real transverse
wave numbers. These fields will be constructed frorr): those plane wave solu-
tions appropriate to the plasma region and those appropriate to the free space

regions. The plane wave solutions appropriate to the plasma slab are those

E(r, k) e’ (k)
= e'jE' E (2)
H(r, k) h' (k)

which can propagate in an infinite homogeneous plasma described by the rela-

waves of the form

tive dielectric tensor ¢ ' given in (1). Similarly, the plane wave solutions
appropriate to the free space are those having the form given in (2) which can

exist when the plasma slab is absent.
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€01 Ko

Fig.IV-1 Anisotropic plasma slab configuration

The plasma plane waves are found by substituting E and H from (2)

into Maxwell's equations. The resultant equations are, when the time de-

Jwt

pendence e’ is suppressed,

I=

' '
= h
xe' =wu_h

[

I=

Xh' =-w€ e‘oe
- O~

Multiplying the first equation by kx and substituting the second gives

2
kx(kxe')=-k_ e'-e', with k: = wzeouo. Expanding the triple cross-

product, this equation may be written in dyadic form as

2
(kie'+kk-k1).e" =0 , (4)

which is equivalent to three homogeneous equations in three unknowns. For

there to be non-trivial solutions of (4), the determinant of the matrix repre-
2 2

sentation of the dyadic operator (ko e’ + kk - k " 1) must vanish. Letting

k=k +2z n, withk, =x k ty k , the vanishing of the determinant re-

- = =g -t =0 % o vy

sults in the plane wave dispersion relation Dp(h, w) = 0 for an infinitely ex-

tended, homogeneous, uniaxial plasma. This plane wave dispersion relation

may be solved for ® ., Four solutions result, which are
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+ \/kz-kz
lo} -t

Z 2. 2
+ J(I-X)(ko -k )k

The sign choice before each root refers to waves carrying power or decay-
ing in the positive or negative z directior. Substituting each of the four solu-
tions given in (5) into (4), the corresponding field vector e’ can be found.

Finally, the pertinent h' can be calculated from (3).

The above method may be repeated to find the plane wave fields Ela
and _}l'a for free space. Since ht must be the same for the entire surface
wave if the transverse fields are to be continuous everywhere across the
planes z = £d, it follows that the free space wave vector Ea = ht + Eoua'

Substituting the form of E and H given in (2) into Maxwell's equaticns for

free space gives

k xe' =wuy h’
—-a -a o—a

(6)
k xh’ =-me e’

From (6), the homogeneous equations that determine s'a are found, in

dyadic form to be

2 2 -
[(ko--lsa)}.-'.kaka] -sa-O ’ (7)

From the requirement that the determinant of the matrix representa-

tion of [(k2 - k2
o —a

one can solve for na as

)1 + _1§a ha] vanish for non-trivial solutions ofg'a to exist,

2 2
= % =
" ko Et . (8)
When these values Jf Ka are used, (7) reduces to Ea . Ea‘. =0, i.e., the

plane wave electric field is orthogonal to the wave vector ka’ a condition

that does not uniquely determine E’a' Commonly chosen solutions for 3;
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are those corresponding to TM and TE modes with respect to the . direc-
tion. Other possible choices for E; , which will prove more useful i this
analysis, are those of the so-called E-type and H-type modes, which are
appropriate linear combinations of the TM and TE modes. The E-type
modes with respect to y are characterized by the vanishing of the y com-
ponent of the magnetic field, while the H-type modes are characterized by

the vanishing of the y component of the electric field.

In each region, the surface wave fields will be a combination of the
plane wave solutions appropriate to that region, the relative amplitudes of
which can be found from the radiation condition and the continuity conditions
at z =+ d. Since the free space outside the slab is homogeneous, the sur-
face waves are characterized by an exponential decay of their fields away
from the slab. Such decay requires that e be imaginary and that for Region
1 the sign choice in (8) be taken to give n, = -jlnal , 8o that the fields will
decay in the positive z direction. For the plane waves in Region 3, the
sign must be taken so as to give i jln al » which will result in fields

that decay in the negative z direction.

It will be shown later that a surface wave, whose fields in the plasma

slab are a combination of those plane wave fields corresponding to

2 2 2
n =% ﬁl- X)(ko - ky ) - kx , exists only for X > 1. In Appendix H it is
shown that H-type surface wave modes, characterized by the vanishing of
the y component of the electric field, cannot propagate on the uniaxial plasma

slab. The plane wave fields in the plasma region zorresponding to

2
w=ot J(I-X)(ko2 - kyz) - kx are E-type modes and have the form

) 2 2
e -A[iokxky Xo(ko-ky)+3°kyxj

(9)

h' 'Ame[xn-z k
- ol =0 -0 X

with A an arbitrary constant.
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As mentioned earlier, the only requirement on e'a is that Ea . Ela z

0. Hence, we may arbitrarily select the transverse part of_e_'a and then use
the requirement Ea . _e_'a = 0 to find the corresponding z .omponent ofg'a.

A particularly useful form of the transverse part of E,a is obtained by choosing
it to be identical with the transverse part of_g_' as given in (9). This choice
will be seen to simplify the application of the continuity requirement on the

transverse fields at z = + d. Following this procedure one finds

(4]
n

2 2
k - - k
—-a B[-,Eo kx y xo(ko ky)+-z-o yxa]

(10)

h"B:ue[xn -zk]

—a ol—0 a =0 x

with B an arbitrary constant. It is seen that the transverse part of h'a has
the same vector direction as the transverse part of h' . It will thus be

possible to satisfy the continuity conditions at z = + d using only the plane

waves exhibited in (9) and (10).

Since the wave number na must be imaginary, let I
(11)
Oyt = k2 - kz
t 0o

so that « i = % j& where a is real and positive. Then in Regionl, x« o =-ja ,

for decay in the positive z direction, and if p = X, X + Y,y the fields are

-jk 0
- 2 2 . oy oy £
I_B_-Bliokxky-zo(ko-ky)-io_]kya]e e

(12)
ik, 2
H=B:v€[-xja-zk]eaze t
- oL, o -0 X

while in Region 3, ws ® j&, and the corresponding fields are




-jk -p
2 2 Qz J—-t -—
= - = ik .l
E 133[50 Kk m Xk -k )tz gk o le e
(13)
az -jht. £
H =B, we [x a-z k ] . e
- 3 olL—o -0 X
The constants B1 and B3 have yet to be dete rmined.
For simplicity in what follows, define S as
2 2 2
8 —\/(1-)()(1(o -ky)-kx (14)

so that in (5) % =% £ . It will be shown that for a surface wave to propagate
on the slab 8 must be real. The fields in Region 2 will be the sum of the
fields of the two plane waves having the vector form displayed in (9) and

traveling in opposite directions along z. The most general form of such a

sum is
tz k8 (A . TE A, 82 )} e-jht L (15-a)
and
H=uw eo {508(A1 e-sz - Az esz)
-z k (A e 982 A, aite )} e-jht - (15-b)

with Al and Az to be determined from the boundary conditions at z =% d.

Requiring E_ and Iit to be continuous at z = £ d results in four homo-
genecous equations in four unknowns from which the relative amplitudes as
well as the surface wave dispersion relation can be found. The continuity

conditions at z =d given the equations
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-ad _ -j8d j8d
B1 e = A1 e + A2 e
(16-a)
) -ad _ -j8d j8d ~
- ja Ble -B(Ale -Aze )
while those at z = -d result in
- 1 s
B3e ‘. Ale‘]Bd +A2 e P
. (16-b)
- -ad _ i8d -jBd
je B3e -B(Ale -Aze )
Elimination of B1 from the first two equations and B3 from the second two
gives the set
_ -j8d B j8d i A
O'Ale (1+—ja)+A2e (1 ja)
» (17)
I T -8, B
O-Ale (1 ja.)+A2e (1+ja)

-

which has a non-trivial solution for A1 and A2 only if the determinant of
the coefficients is zero. The vanishing of the determinant yields the surface

wave dispersion relation

2
j48d jo + B _
e -(jd-8> =0 . (18)

If expressions (11) and (14) for @ and B in terms of kx' ky and ko = wa/ couo

are substituted into (18), the dispersion relation is seen to be of the form

DS(Et. w)=0.

L m— =" —
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C. PROPERTIES OF THE DISPERSION RELATION

As given in (14), B is either real or imaginary for all real kx and
ky. First, it is verified that no solutions of (18) exist for which B is imagi-

nary. If B is imaginary, i.e., B =%j|B| , then (18) becomes

- 2
+418]d _ aiIB’
e -<0.¥ B) (19)

The left-hand side is less (greater) than unity while the right-hand side is
greater (less) than unity. This contradiction verifies the assertion. When

B8 is real, however, both terms i{» (18) have magnitude unity so that a solution
is possible. In order to find the range of frequencies for which (18) has
solutions, based on the restriction that B be real, plot for all X > 0 those
regions in the kx- k plane where B is real and the region where @ is real
(see Fig, 2). From Fig. 2 it is seen that the regions where B is real and
the region where Q is real overlap only when X > 1. Hence the possibility
that surface waves can propagate exists only for X > 1. In passing, observe
that (18) remains invariant under the substitution of -8 for B . Thus it is
sufficient to consider only positive values of B. Since the slab configuration
has mirror symmetry in the plane z =0, the surface wave fields will corres-
pond to either an open=-circuit or a short-circuit bisection of the slab (even
and odd solutions in z). The dispersion relation given in (18) can be split in-
to two independent dispersion relations, one giving the open-circuit bisection

solutions and the other the short-circuit bisection solutions. These are

eJZBd i 2 H (20)

where the plus and minus signs correspond to short-circuit and open-circuit
bisections, respectively. Using the plus sign for the short-circuit bisection

case, the dispersion relation may be put in the form

a =-BcotBd , (21)

whereas if the minus sign is used, the dispersion relation for the open-circuit
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bisection case can bewritten

a=8tanB8d (22)

with @ and 8 as given in (11) and (14).

A graphical method for solving equations (21) and (22) is described
below. In order to show that equations (21) and (22) are satisfied for real
values of kx. ky and p < wp. i.e., X > 1, the plots of (21) and (22) in the
B -a plane are considered. Since @ and B have been taken to be positive,
only the first quadrant is of interest. Adding 0.2 to 82 gives 12+ 82 =
X(ky -koz) when (11) and (14) are used. Because ky2 > ko2 for surface waves,
as can be seen from Fig. 2, the plot of this relation in the 8 -& plane is a
circle whose radius is «/ X(ky2 - ko2 ). The intersection of this circle with
the plot of (21) or (22) gives @ and B from which kx can be found using

- i -S|
kx-iJ—X[(X-l)G -87] . (23)

But kx must be real so that in the first quadrant only those intersections for

which & > e B give values of @ and B which correspond to an actual
X-1 2 2
surface wave. Since @ and B depend only on ky and kx and not merely on

ky or kx, constant w surface wave dispersion curves will have mirror sym-
metry about the kx and ky axes in the kx- ky plane. Thus, knowing the re-
lation between kx and ky for kx, ky > 0 is sufficient to determine the entire

dispersion curve.

Figure 3 has been sketched to show the method outlines above for
finding that kx which satisfies (21) when ky and ko are given. Each branch
of -B cotB d depicted in Fig. 3 corresponds to a particular short-circuit
bisection surface wave mode. Since there are an infinite number of such
branches, there will be an infinite number of short-circuit bisection sur-
face wave modes when X(ky2 - ko2 ) -, For a finite value of X(k: - kj )

only a finite number of surface wave modes can propagate. For values of

@ and B in the shaded region of Fig. 3, kx, as found from
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hy

B REAL|FOR X>1—7

—>7B:0 FOR X >I

a@ REAL OUTSIDE

e 2
CIRCLE k_+k sk
ry B=0 FOR X<
qk’
B REA
FOR X<I
B =0 FOR X>I

—B REAL|FOR X >|

Fig.IV-2 Regions of real 8 and a in the kx-ky plane
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k =% \E—( [(x-1) e 82] , is imagiznary.z Thus it is seen that for fixed ko
each mode has a minimum value of ky > ko at which kx = 0 and below which
no real solutions for kx exist. The minimum value of ky for which a particu-
lar surface wave mode can exist is fourd from the condition that the circle

2
a2+ 82 = X(kj - ko ), the line @ = —-l—_B and that branch of @ =-8cot84d

JX-1
. . . 2
corresponding to the mode in question all intersect at a common point. As k

increases from its minimum value, ky and the coriesponding solutions for kx
for each branch of -8 cotBd trace out the surface wive dispersion curves in

the kx - ky plane of the short-circuit bisection modes.

In a similar fashion, Fig. 4 depicts the method for finding that kx
which satisfies (22) when ky and ko are given. ,From this figure and Fig. 3,
it is seen that the lowest surface wave mode on the slab, i.e., the one with
the smallest value of B , is that open-circuit bisectiorn mode corresponding
to the branch of 8tan8d starting at 8 =0. As in the case of the short-circuit
bisection modes, kx corresponding to values of B and @ in the shaded region of
Fig. 4 is imaginary. Thus for each of the higher open-circuit bisection modes
there will be a minimum value of kz > k: at which kx =0 and below which no
real solution for kx exists. For thz lowest open-circuit bisection mode
[a%-(e tan Bd)]s -0

lies in the shaded region of Fig. 4. Hence there will also be a minimum value

= 0 so that a part of the branch of 8tan8d starting at 8=0

of k: > ki for the lowest surface wave mode below which r;o real solution for

kx exists. As in the short-circuit bisection case, when ky increases from its
minimum value for a particular mode and for a fixed ko, ky and the correspond-
ing value of kx trace out the dispersion curve of that open-circuit bisection

mode.

In what follows, the basic properties of the surface wave dispersion
curves will be derived. For any one mode, these properties lead to the form
of the dispersion curves shown in Fig. 5, which has been drawn for two
different frequencies w, > W) In order to find the shape of the dispersion
curves of any one mode and for fixed w, consider the corresponding branch

of -8 cot8d in Fig. 3 or of Btan 8d in Fig. 4. As pointed out previously, the
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Fig.IV-3 Construction for finding solutions of the surface wave
dispersion relation for the short-circuit bisection case
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Fig. IV-4 Construction for finding solutions of the surface wave
dispersion relation for the open-circuit bisection case
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dispersion curves are symmetric about the kx and ky axes so that one
need find only that portion of the curves in the first quadrant of Fig. 5.
Also, as was previously discussed, in the first quadrant of Fig. 5, ky
takes on its minimum value, which is greater than ko at kx =0, i.e., where
the dispersion curve crosses the k axis. It will first be shown that in the
first quadrant, kx is a single-valu:d, monotonically increasing function of
ky. These two facts indicate that the inverse function, ky =ky(kx)' is
single-valued and monotonically increasing in the first quadrant as is de-
picted in Fig. 5. Other fundamental properties of that portion of the dis-
persion curve in the first quadrant of Fig. 5 that will be established are:
1) dky/dkx= 0atk =0; 2) asymptotically as k ==, k - kx/./'x-_l and
the dispersion curve everywhere lies above the asymptote ky= kx/ J_)(-_l;
3) the value of ky at kx = ), as well as the slope of the asymptote, in-
crease with w. One question that has not yet been answered analytically is

whether the surface wave dispersion curves have inflection points.

To see that in the first quadrant of Fig. 5, kx is a single-valued
function of ky' observe that for B > 0, @ > 0 each branch of -8 cot8d in
Fig. 3 and each branch of Btan 8d in Fig. 4 intersects the circle a.z + B
X(k)z' - kz) only once. Thus for a given :vp and for each value of ky and w
there will be only one set of values (B, @) for each mode and hence from (23)
only one value of kx > 0 for each mode. Therefore, in the first quadrant
of Fig. 5, kx is a single-valued function of ky. That kx is a monotonically
increasing function of ky can be inferred from the sign of dk /dk_. Since
k and ky satisfy the surface wave d1spersxon relatxon D (k y ) =

dk /dky for fixed w is given by dk /dky = S Using D as given

ak ak

in the left-hand side of (18), witha and 8 defmed in (11) and (14), it is
found that

dkx i k ad(X-1)+ k:/(kf,-k:)

dk
y

(24)

vl ¥

ad +1

From (24) it is seen that in the first quadrant of Fig. 5, dkx/dky > 0 and

hence, kx(ky) is a monotonically increasing function. Furthermore, (24)

—
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Fig.IV-5 Dispersion curves for a typical surface wave mode with
as a parameter
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shows that dky/dkx= 0 at kx = 0 as is depicted in Fig. 5.

As k ~ @, the value of B at the intersection of the circle c.z +8
X(k: - k:) and' any one branch of -8 cot8d in Fig. 3 or any one branch of
Btan Bd in Fig. 4 approaches a constant. Thus, since ko has been assumed
constant, az = in as ky - and hence, from (23), k in the first quadrant
of Fig. 5 is asymptotically given by k k JX-1 or conversely
k ~k /J_ That the dispersion curve hes above the asymptote line
ky = kx/JX_1 as shown in the first quadrant of Fig. 5, can be deduced
from the definition of B given in (12). Since £ is real for the surface waves
and X >1, (X-1) kz -ki = Bz + kz( X -1) > 0 and therefore in the first
quadrant ky > kx/ X -1, which proves that the dispersion curve lies above
the asymptote line. When w increases but remains below wp, X decreases
to unity and hence the slope of the asymptote, 1//X -1, increases as is de-
picted in Fig. 5. Furthermore, as w increases the slope of the line
a=8//X-1in Fig. 3 and Fig. 4 increases. Hence the values of B and @
at kx= 0 as determined from the intersection of the line @ =8/ m with
any branch of -Bcot8d in Fig. 3 or of Btan8d in Fig. 4, must increase.
Because ko increases with w and X decreases, the quantity %((az kR Bz) +
k: = k2 must increase and thus the magnitude of ky at kx= 0 increases with
w. The above-described variation with w of ky at kx= 0 is depicted in

Fig. 5.

Thus the fundamental properties previously stated for the surface
wave dispersion curves of any one mode are seen to hold. These proper-
ties indicate that the dispersion curves will have the form depicted in
Fig. 5, with the possible exception of inflection points, for two different
frequencies. From Fig. 3 and Fig. 4 it can also be seen that surface
waves exist for all w in the range 0 <y < wp. Lastly, since in the first
quadrant of Fig. 5, dky/dkx > 0, which follows from (24), and since the
dispersion curve for w =wz lies above that for w = w, < W, the x compcnent
of thw must everywhere be negative. That the dispersion curve for y =w,
lies above that for w = w, <w, follows from the fact that at kx= 0 the w =w,

2

curve lies above the w =w2 curve and the two curves never cross since
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Vk w, which is given in (42), is never infinite. The observation that
-t

X" Vk w > 0 is confirmed by the analytic expression for Vk

= =t =t

(42) and indicates that the surface waves are of the backward wave type

w given in

with respect to the x direction.
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D. GROUP VELOCITY AND ENERGY TRANSPORT VELOCITY

Having established the basic properties of the dispersion relation
of the surface waves on a uniaxial plasma slab, the equality of group velo-
city and energy transport velocity for these surface waves will be verified

by direct calculation. As derived in Chapter III, this equality states that

thw = fidz/f wdz (25)

%
where 8 represents the real part of the complex Poynting vector Ex H and
w the time average stored energy density. To this end, the relative field
amplitudes are first calculated. Since one of the coefficients Al' AZ' B1

and B. is arbitrary,for simplicity let

iBd

A1=-A°(B-ja)e (26)
where Ao is arbitrary. Then from (17) it is found that

Ay=-A(8+ ) o' P (27)
while from (1 6-a)

By=-20A ¢ | (28)

Using the dispersion relation in the form given in (18), which is valid for

both open-circuit and short-circuit bisection modes, it follows that

- B+jo _-j2Bd ad
83 ZBAO B j0 e e . (29)

With these expressions in equations (12), (13) and (15) for the fields in
the three regions, s in Region 1 is found to be

. 2.2 -2a(z - 4d) 2 2 2. .2
3-4|A°| 8" we_ e onx(ko-kyuxoky(a +kx)]
(30)

while in Region 3 it is

B T R —
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2 g2 2a(z +d) 2 2 2 2
= k (&
we e [x ke -k )ty k(@4k )] (31)
and finally in Region 2 it is

2 2 .2 2 .2 2 .2
s=lalwe @ +38 ){2[§°kx(ko-ky)+xoky(s +k0)] +

8+j0 j28(z-d) . B -ja -j28(z-d) 2 .2 2 .2
+[—L e y =B o ].[_)Sokx(ko K4y k (-8 ):]}

B - ja B +ja
(32)
@
The quantity S = I s8dz is now calculated to be
- ®
2
§=4|a |‘uwe (a2+82){-x k (k- k5)R 2 @)
= (o} o -0 X Yy o' a
1 .2 2 2
! et -}
Y, y[a K+ d(X =1k k)] (33)

In order to determine the stored energy, observe that in the plasma

slab
duwe dwe’ ! 0 0
=1 = = = + 0 .
S0 el 3 € 0 1+X (34)
0 0 1
! Thus in Region 2, the time averaged stored energy density, which is given
pyl14)s (15)
dwe
| _1 * - 2
| W_Z[g. - .1_~:_+uo|}_{l] ; (35)

is found to be
3 1 2 2 12 2 2 2 .2
|| w=z|a|%c @ +8 ){4(ky-ko)(}.(ky-ko)-
328(2 d) B -ja -j28(z-d) 2 .2.,.2 2 2 .2
B jo ].[(a -kx)(ko+ky)-(1+x)(ky-ko)]}.

B +ja

(36)
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Outside the slab, the time averaged stored energy density has the form

1 2 2
<k 7
w=3le |E["+u_l[HI ] (37)
so that in Region
2 el -
wet|n |e 82[(k2+k2)(k2+a2)+(k -kz)z]e Syid - 8 (38)
o o o 'y ''x y o

while in Region 3

2a(z +d)
e

b 2 2r.2 2.2 2 2 2.2
w=2lA_|%¢ 3 [(k°+ky)(kx+a ) + (k- k) ] (39)

Calculating W = J' wdz, it is found that

W= 4|A| € (a + B ){d(k ke )(x1< -k )+—[k k +(k -k:)z]}.

(40)

In deriving the above power and energy formulas, extensive use has been
made of the dispersion relation given in (18) and the formulas (11) and (14)
for 7 and 8. Using the above expressions for § and W, the energy transport

velocity is seen to be

2 2.1 2 2 .2
-x K (k -k )G +d)+y Kk [k o+ dX-1) (k] -k )
[ ) - ] (41)

s
w Mc2 K2y 2
d(k -x2 )(Xk T )+-Lk K% +(k -k7) ]

In order to compute the group velocity V. w, the formula VvV w =
3D Et kt

- Vk Ds / —awi from implicit function theory will be used where the function
t

D_{k,, w) is the left-hand side of (18). It is found that
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2
1 kxX
-x k (= +d)+y k [d(X-l)+—]
-0 x a L y °‘(°‘2+BZ)
V W =w 2 2 (42)
-t k™ k
QUREC k) 4 & (k2 D) b e g
y o a'y o a(kZ_kZ)
y o

If both the numerator and denominator of the above expression are multiplied

2 2
by (ky -ko ) and it is recognized that X(kf, - k:) = az + 82. Vk w will be seen

to be identical with §/W, as predicted in Chapter III. =%

The example worked out above also illustrated that fact that, in
general, the direction of s as well as its magnitude can vary with z. This
can be seen from equation (32) for 8 in Region 2 if it is recognized that the -
vectors [50 kx(k: - k;) DA ky(BZ + ki )] and [50 kx(k: o kf, ) + zoky(ki- sz)J
are parallel only for kx= 0. Since the coefficient of the first vector is inde=
pendent of z while the coefficient of the second vector depends on z, the direc-
tion of the vector sum, which gives 8, will depend on z for all surface waves

for which kxﬁ 0.

T il e
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ChaEter v

EVALUATION AND INTERPRETATION OF THE SURFACE WAVE
CONTRIBUTIONS TO THE FAR FIELDS

A. INTRODUCTION

In this chapter, the surface wave contributions to the far fields radi-
ated by a point source in the presence of a planar interface between two aniso-
tropic, lossless media are evaluated. The surface wave fields are found from
the asymptotic evaluation of the rigorous Fourier integral expressions for the
fields given in Chapter I. Using the group velocity-energy flow relation de-
rived in Chapter III for surface waves in plane-stratified, anisotropic, loss-
less media, the surface wave contributions to the point soirce fields are in-
terpreted as arising from surface wave rays. These rays are the two-
dimensional trajectories of total energy flow of the surfa~e wave propagating
along the interface. The surface wave fields are then cast into a ray-optical
form containing such physically significant quantities as ray length and ray-
refractive index. The asymptotic evaluation of the surface wave contributions

and their ray-optical interpretation are given in Section B.

As an illustration of the effects of anisotropy on the surface waves
radiated by a point source, a particular problem is considered in Section C.
The configuration studied consists of a homogeneous, gyrotropic, cold elec-
tron plasma above a perfectly conducting plane. The gryrotropic anisotropy
is assumed to be produced by a static magnetic field parallel to the conductor.
The source is taken as a small slot in the conductor in which the electric
field is specified. Strong angular dependence is found for both the surface
wave dispersion curve and the surface wave radiation pattern, which are
evaluated numerically for a particular choice of plasma parameters. The
direct ray radiation pattern is also evaluated. Note that since the source is
on the interface, all stationary point contributions will correspond to rays
proceeding from the source to the observation point. The presence of the
conductor will only influence the ray field amplitudes but not the ray struc-

ture.
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B. SURFACE WAVE CONTRIBUTIONS TO THE FAR FIELDS

The surface wave contributions to the far fields radiated by the
point source of Chapter I arise from the residues at certain poles, called
surface wave poles, in the n integration for the scattered field integrals
(II-4). The integration over & of the residues by the method of stationary
phase yields the surface wave contributions. The surface wave poles are
those points on the real n axis at which the common denominator 4(€, n ),
as defined in (I-47), of the scattering coefficients vanishes and the Fourier
transform of the total scattered field EI" as found by substituting (II-4) in-
to (II-3) and interchanging the order of summation and integration, is singu-
lar. Note that d(€, n ) will vanish at branch points of the n's at which » is
complex or imaginary. While the integrands of the individual integrals in
(I1I-4) will be singular at such points, no net contribution to EI‘ will come

from these points unless the Fourier transform of l-_:r. is itself singular.

In view of the above comments, the surface wave pole locus is de-
fined as the locus of points in the real (£, n) plane at which d(§, n) = 0 and
the Fourier transform of _E_?_I. is singular.* In order to interpret the surface
wave pole contributions in terms of surface waves, it is first necessary to
argue that the surface wave pole locus is the surface wave dispersion curve
in the sense defined in Chapter III, for the planar interface configuration.
In other words, it is necessary to show that for (£, n ) on the surface wave

pole locus, a solution of the source-free Maxwell equations exists having

~jko(Ex + ny)

transverse dependence e and such that the transverse electric

and magnetic fields are continuous across the interface and the fields decay

The presence of particular subscripts in the definition (I-47) for d(§,n ) im~
plies that only particular branches of the multivalued functions x(2 ,n ) for
each media be used in evaluating d(€ , ). However, in performing the
steepest descent integration of (II-4) over n, the complex n plane must be
viewed as a sixteen-sheeted Riemann surface with d(€, n ) defined on all
sheets. Thus, while d(g&, n ) is defined along the original integration

path, which lies on one of the Riemann sheets, such that at its real axis
zeros Re(-jx j,z) < O, d(g, n ) may have real axis zeros on other sheets

at which Re(-jn,z) > 0. Such zeros correspond to improper surface waves
that grow exponentially away from the interface and are not intercepted
during the deformation of the integration path for |y| >> |z|, |z'| , as
was assumed in Appendix B.
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away from the interface. The fact that d(€ ,n) = 0 on the surface wave
poie locus implies that a non-trivial solution of (I-42) for the bm's and

cm's exists when aio = a-z‘ = 0. Thus, for € andn on the surface wave

pole locus, there exist solutions of the source-free Maxwell equations

'jko(gx + nY)

having transverse dependence e and such that the transverse

electric and magnetic fields are continuous across the interface.

That the fields decay away from the interface can be shown from

the continuity condition

SN
ld S e = ) B V) (1)
3,4 12

i.e., from (I-42) for ar = a-2~ = 0. Forming the inner product, with respect

to Fz, of each side of (1) with itself and using the orthogonality condition
(I-28) gives

2 2
Yo ode 1M 8 =) b ISM_& . (2)
3,4 m

Since bn y % = Ounless x _is real, the sums in (2) reduce to the sums
m' m
over the upgoing propagating modes of the € s

media. But for x m real by direct expansion of

medium and the downgoing
propagating modes of the €1
Mm of (I-30), it can be shown that Mm = ZRe[Eo- (étm X J—":m )]. Thus,
for n-3° or n‘; real, M-3° or MZ is positive while for r.i' or n*z' real, MI‘ or
M'z' is negative. Because |cm|z, |bm|z > 0, the left-hand side of (2) is
greater than or equal to zero while the right-hand side is less than or equal
to'zero. Hence, the equality in (2) holds only when both sides are zero,
which implies that those cm's and bm's corresponding to real xm'g must be

zero on the surface wave pole locus.,

Thus, when a solution of the homogeneous equations (1) exists, the
only non-zero cm's and bm's are those corresponding to complex or imaginary
#_. Sincethec 's andb_ 's corresponding to realx 's are zero on the
m m m m

surface wave pole locus, those an's having the same values of m will be

finite on the surface wave pole locus 80 that no residue term will appear in

=
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the m integration of the integrands in (II-4) at which o is real. In other
words, the surface waves will contain only those modes of the € and €,
media that decay away from the interface - see previous footrote. This
completes the proof that the surface wave pole locus, as defined above, is

the surface wave dispersion curve of the planar interface configuration.

In the foregoing discussion it was shown that on those portions of
the surface wave pole locus at which a particular scattered wave number
% is real, the I-'mn's having the same m must be firite. However the dis-
cussion did not lead to the conclusion that if an incident wave number o
were real on a portion of the surface wave pole locus, the rmn's having
the same n must be finite there. Thus, if two wave numbers of the €1
media are real and two are complex or imaginary, and hence the conjugate
of each other, the upgoing propagating plane wave excited by the source may
excite a surface wave whose fields in the ¢, media are entirely those of the

sl
one evanascent downgoing plane wave.

1. Integration of the Residue Contributions Over £

Writing the scattering coefficients of (I-46) and (I-50) as

T (E.n)=y_ (E.n)/d(E.n) (3)

mn

and recalling the form of g(g » N) when the generic integral (II-5) represents

the scattered field integrals (II-4), _f(§ , N ) defined in (B-8) of Appendix B

is seentobe f(E,n)=6 Y A . Furthermore, P(£,n) for the integrals
- =m mn n

of (II-4) is P(E ,n) = Ex+ny + Cim_ (o nz'. Using these forms for f (£, n)

and P(f,n ) in (B-9) gives the surface wave pole contributions to the n inte-

gration in (II-4). Finally, writing the surface wave contribution (I )

mn'S. W,
to lmn of (II-4) as the integral over £ of the residues, and substituting this

expression into (II-3) gives the surface wave contribution to Epr. Since the
pole locationn p(§ ) in the n integration is the same for all m and n, and
since the Ymn's corresponding to a real Km are zero anyway, the summation
over the poles may be taken outside the summation over m and n. Thus, the

surface wave contribution to EF is
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@ _ - c ik n :
(EI‘) = -27j8gny \"J- S— émYmnAn . Jko(nmz Mz }e j O[Ex r\p(_)y] -
L) LT E T :
S.W. P m,n - e

(4)

where the order of summation over m and n and integration over £ have al-
so been interchanged. In (4), n=.1-‘, 2 and m=3. i forz> 0, while for

- ¢+
z<0, m=1, 2.

The integration over £ indicated in (4) is now to be carried out
asymptotically by the method of stationary phase. In performing this evalua-
tion, it will be assumed that Jx2+ y : is much greater than |z| or |z'| -
see Section 3 of Appendix B. Mathematically, the importance of this assumo-

tion is that the large parameter in the asymptotic evaluation can be taken as

J x% + yZ. When ,/ xz + yz is used as the large parameter in (4), the term

e-jko(nmz -nnz')

;J'ko[§X+ﬂp(%)yJ

for fixed z and z' will be slowly varying compared to
and may thus be considered as an amplitude function.
Thus, for./ x% + y2 > > |z| X |z'| the stationary points of (4) will be the same

for all m and n and will be the solutions of
x+y = n(5)=0 (5)
YaE p ’

The ray-optical significance of the assumption / x% + y2 << |z{, |z'|
is that for observation points satisfying it, the fields associated with the
pole contributions may be viewed as arising from propagating modal sur-
face waves. If the foregoing assumption is not made, the stationary points
are those of &x + npy + * oz M nz'. In this case the stationary points are,
in general, different for each m and n and are complex. Furthermore, the
ray interpretation would be in terms of complex rays, as discussed by
Keller and Kar1(35) for the pole contributions in isotropic media. Finally,
since the ray paths would be different, in general, for each m and n, the

modal character of the pole contributions would be lost.
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If Fp is a real solution of (5) andn = np(Ep) is the corresponding
P

value of n on the surface wave dispersion curve, then performing the sta-

(22)

tionary phase evaluation of (4) under the assumption x% + y2 > > |z| ,

|2'| gives to 0(1/ x% + v%)

(ER) ~
=T

S.W. ] q%n

ya -i(Ex+ny) -stgn(y—-‘e:Z j -jk (n_z=-u 2z')

(2m) e e d: o m n
-j —-sgnyZ Fe———F ? émYmnAne

./ko 5 dz(g .n)vlyd np/df. ' m,n

(%p.np)

(6)

In (6), the summation over p is taken over all points (€p, 'qD) satisfying (5)
on those portions of the surface wave dispersion curve for which the y com-
ponent of the real part of the total surface wave Poynting vector has the
same sign as the observation coordinate y - see text before (B-8) in Appen-
dix B. Expression (6) for (E

-F)Sv w.
points of the possibly multivalued function n= np(g), in which case two poles

is not valid for €p near the branch

are close together in the n integration and dzn /dg2 - o It will be seen in
the next section that this occurs when Iyl << |x| . However, this singu-
larity in (6) is introduced by the choice of the (x, y) coordinates and will not
be present when (6) is re-expressed in ray-optical terms. The actual sin-
gularities of the surface wave contribution to the far fields are considered

in the next section.

2. Ray-Optical Interpretation of the Surface Wave Contribution

In order to cast the surface wave contribution to EI‘ into ray-optical
form, first consider the ray interpretation of the stationary phase condition
(5). As demonstrated in Chapter III, a modal surface wave propagating with
transverse wave numbers £ andn will carry energy in the direction of the
normal to the dispersion curve at the point (E, 1 ). Let the unit normal to
the dispersion curve having the same sense as the energy flow of the corres-

ponding modal surface wave be i The normal v can be written as
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dn /d"\ 2
L dg -xo)/ dg vl (7)

where the minus (plus) sign applies for modal surface waves carrying
energy in the plus (minus) y direction. Using (7), it is easily verified that
the stationary phase condition (5) is equivalent to X, x p =0 where p =

X X + Y, Y is the transverse displacement of the observation point from the
source. In addition, the radiation condition, as applied in the residue
evaluation given in Section 3 of Appendix B, implies that !. +p >0. Thus,
surface wave contributions to EI‘ come from those points on the surface
wave dispersion curve at which X’ is parallel to and has the same sense

as the transverse displacement p.

In other words, while the source radiates a continuum of modal sur-
face waves corresponding to all points on the surface wave dispersion curve,
only those carrying energy in the direction of the transverse displacement
P will contribute to the fields at the observation point. This interpretation
is independent of z and z' so long as Jx2+ yz >>|z|, | 2] . That the ray
interpretation is independent of z and z' is to be expected since the surface
wave energy flow is the integral over z of the local Poynting vector.
Effectively, the radiated surface wave fields may be viewed as arising from
two-dimensional surface wave rays that are trajectories of energy flow.

In this view, the z and z' dependence of the surface wave fields merely

describe the local field strength and excitation.

With the above ray interpretation of the stationary phase condition
(5), the various quantities appearing in (6) can be cast into ray-optical
form. To this end, the curvature C. of the surface wave dispersion curve

is written as

2
d 3
C=—=—n (2 )cos ¢ - (8)
8 dgz P

where cos ¢ =y_. ‘X, At (;p, np). y =pcosd withp = |_o_| so that from
(8)
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2
dn 2
y—P-Z =p C [cos & (9)
s
dg
and hence
dzn
sgn(y—%)=sgn Cs 5 (10)
dg

Note that Cs is positive if the center of curvature is on the same side of

the dispersion curve V . and is negative otherwise.

Since the dispersion curve is the solution of d(€, ) = 0, the gradient
in the (£, n) plane of d(%, n) evaluated at points on the dispersion curve, is

parallel to Xs' Thus, on the dispersion curve

Xs=(§0dl+xod2)/Qs , (11)

where Qs =% J(dl)z + (dz)2 ,» the sign being chosen so that expression (11)
for 28 has the correct sense. From (11) and the definition of cos ¢, it is

seen that on the surface wave dispersion curve,

dz(g.n):Qs cos § . (12)

Defining the surface wave ray-refractive index Ns as

N =V .k (13)

where _l_(_t =X gp + xonp. the phase term gpx + npy in (6) is equal to N‘p :
Finally, recognizing that sgny = sgn(cos $) and using (9) and (12),

agn Y —— . (14)

dy(8,n) lya®n_rg° Qvelc,|
. (5_,n_) (5,0 _)
p''p ' 'p
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With the help of (13) and (14), the surface wave contribution (6) to

EI‘ can be rewritten in the from

(Ep) -
S.w.

‘Z“’ Z{

'Jk N of 'J‘Z SS“CS -ik (v _z-n _2z')

z émY mnAne - b g } !

s m,n (g'p'n'p)

(15)

-t -

where n = T. 2 andm = 3,4 for z > 0, while for z< 0, m=i.,.2-. In (15),
the summation over m is required by the fact that the fields of the surface
waves that can propagate on the interface are, in general a superposition

of the evanescent or inhomogeneous plane wave fields of the €1 and €,
media. The summation over n indicates that the surface waves are excited,
in general, by both modal fields incident on the interface. Finally, the
summation over the points (gp. np) indicates that a surface wave contribution
to I-_JI. arises from each point on the surface wave dispersion curve, which

may have several branches, at which zs is parallel to and has the same

sense as p.

The stationary phase condition (5) implies quadratic phase change
when the observation point moves parallel to the z =0 plane and perpendi-
cular tok . Thus, for o >> |z|, |z'| the surface wave fields may be
viewed as arising from surface wave rays whose fields are locally those of
modal surfaces waves. This view is supported by the 1/./p dependence of
the fields in (15), which implies conservation of modal surface wave energy
in a tube of surface wave rays, i.e., in a wedge region of infinite extent
along z. As in the case of the ordinary rays of geometrical optics, the
above ray interpretation of the surface wave fields should prove useful in
evaluating the surface wave contribution in problems not amenable to

rigorous analysis,

For p> > |z|, |z |, the direct and scattered ray fields found in
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Charler Il vary as 1/p. Thus, for observation and source points near the
interface the surface wave fields will form the dominant contribution to the

field.

Expression (15) for the surface wave contribution is not valid for
(f:'p. np) near an inflection point of the surface wave dispersion curve. At
such points, the curvature Cs s 0 and the corresponding observation points
lie near a shadow boundary of the surface wave fields. Also, for observa-
tion points such that (gp, np) is near a cusp or crossing of the dispersion
curve with itself, (15) may no longer be valid since Cs Qs ~ 0. For (gp. 'r]p)
approaching a branch curve of % = at which » o is real, (15) is no longer
valid. This is because d(£, n ) explicitly depends on the x m's of (15) and
for (gp. np) approaching a branch curve of " at which it is real, dl(g, n)
and dz(g, n) in Qs will approach infinity. However, the nature of the sin-
gularity in the surface wave fields given in (15) cannot be predicted in
such a case since Cs may approach zero. Similarly, (15) may not be valid
for (£ o’ np) approaching a branch curve of x n at which it is real since
dl(g, n ) and dz(g, n ) will approach infinity. In this case, however, An(g,'n )
also approaches infinity -- see (I-54) and footnote on page 32 of Chapter II -
so that the nature of the singularity cannot be predicted. Also, as lgpl ;
Inpl -~ ® along an open branch of the surface wave dispersion curve, C‘ will
approach zero. But since Qs may approach infinity in this case, the nature
of the singularity in (15) cannot be predicted. For those cases where the
nature of the singularity of (15) cannot be predicted, in general, the be-
havior of the first-order asymptotic expression for the surface wave fields

can be determined an any specific problem.

Unlike surface waves excited by a line source or by a point source
in isotropic mzdia, the possible variation of the quantities in (15), when

either the € media is anisotropic, indicate that the point source surface

32
wave field® may have a marked angular dependence aside from any asym-
metry due to excitation. This dependence can include singularities such as"
shadow boundaries. In the next section a specific configuration is con-

sidered in which the surface wave radiation pattern exhibits such an angular

dependence.



110

C. Surface Waves in a Gyrotropic Plasma Above a Perfect Conductor

As an illustration of the foregoing results for the surface wave cortri-
butions to the far fields radiated by a point source, these results will be
applied to a specific configuration. This configuration consists of a gyro-
tropic, homogeneous, cold, electron plasma filling the half-space above
a perfectly conducting plane. The static magnetic field that causes the
plasma to be gyrotropic is asaumed to be parallel to the conducting plane.
Excitation of the R. F. fields is by an electric field imoressed in a small

slot cut in the conducting plane.

This configuration has been chosen because it is known to support
surface waves. Furthermore, the analysis of the corfiguration for the sur-
face wave and direct ray fields is relatively simple for appropriate ranges
of plasma apd cyclotron frequencies. For these ranges of cyclotron and
plasma frequencies, no lateral rays will be present. Note that since the
source {s on the plasma-conductor interface, all rays associated with the
stationary point contributions will proceed directly from the source to the
observation point.

In studying propagation transverse to the static magnetic field in this

(36) (37)

configuration, Ishimaru and Seshadri found that a surface wave with

no phase variation along the static magnetic field §° can propagate in the

direction z x B _but not in the direction -z_x B . Adachi and Mushiake(se)
-0 —o -0 =0

represent the fields radiated by a phased line source along the static magnetic

field in terms of a Fourier integral and plot the phase velocity curve of the

[e2 . -2 - -1
surface waves (1/J/2°+ né as a function of the angle tan (£ /n )) for two
different sets of values of the ratios of plasma and cyclotron frequency to

wave frequency. They do not however evaluate the Fourier integral to ob-

tain the surface wave fields.

Because of the mechanism of excitation chosen in this example, the
double Fourier integral expression for the radiated fields is most con-
veniently expressed in a form that is somewhat different than that derived

in Chapter I. In Sectionl below, the form of the integral representation in
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terms of the transform variables £ and n is derived. Comparing this
form with that of the integrals in (II-4), the results of Chapter II and
Section A of this chapter are used to find the various contributions to

the fields radiated by the slot. In Section 2 below, results of numerical
evaluation of the surface wave and direct ray radiation patterns are pre-
sented for a particular set of values of the ratios of plasma and cyclotron

frequency to wave frequency.

1. Ray-Optical Expressions for the Radiated Fields

As depicted in Fig. 1, the z axis is chosen normal to the conducting
plane, the y axis is taken in the same direction as the static magnetic field
and the origin of the (x, y, z) coordinate system is located at the center of
the slot. For simplicity, the impressed electric field in the slot is taken

to be §°= Eoio with time dependence e‘]l‘t. The total fields radiated by

the slot must satisfy the boundary condition

Eo for (x, y) in the slot
E,(x,y,0) = (16)
0 for (x, y) out of the slot

and the radiation condition at infinity. If the slot is small compared to
wave length, the boundary condition (16) can be replaced by the approximate

boundary condition

I-_:t(x, y, 0) = Ao Eoé(x) 5y) . (17)

where Ao is the area of the slot.

As in Chapter I, the radiated fields may be represented as a double
Fourier integral transformation of the form given in (I-2). Furthermore,

from Chapter I it is seen that the transforms of the fields, é(g. n; z) and

M(€,n;z), will be superpositions of the modal fields ém(ﬁ, 'n)e.JkOKmz and

J_;m(e, 'n)e.‘]ko’tmz of the plasma medium. Because of the radiation condi-

tion at z = @, only the upgoing m =3, 4 modes of the plasma medium are

used in the superposition. Thus
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(5.,m) -jk (Ex+nyt+n z)

)
M m o m .
*_*(:)} 323 ” ’ (gn){ I (5 n)}e e

N - O

(18)
where the Am's are to be determined from the boundary condition (17) at

z=0,

Using the Fourier representation for 5(x) é(y) in (17) and using (18)

for I;.‘.t(x. y, 0), the boundary condition |
-jk_(Ex + ny)

7) becomes

r o
Y [T a_Ems, (e az dn
k 2 % -jk (2x +ny)
= A E(Z:) ”e 1 de dn . (19)

Because of the orthogonality of the exponentials on the infinite interval,
(19) implies that
- k 2
L AnEm) 8B =AE ) (20)

Crossing both sides of (20) with 5 3 and then § 3 and dotting with zZ, gives

k 2
A7 -4, ) zo (Gyg XE N 2, (8,3 x 8,3

k 2 (21)
AT Aolam) 207 (83 x )/ 2 - (3% 83)

Since the Am's of (21) have branch singularities of both "3 and "3 and can

have pole singularities, the integrals in (18) are of the form given in (II-4)

with z' set to zero, i.e, for the source at the interface,and A = z r A,
m mn n

n
This similarity permits the use of the results of Chapter II and Section A of

this chapter in determining the ray-ontical fields radiated by the slot.
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For z'= 0, the roots L ml and L m2 of (II-24) are zero and hence

L. o>L L m2 S° that 6m in (II-26) is given by (II-27). Thus, writing

L =L = /Z + yz + zz, since L is the same for all rays, and writing

6 mn 28 6m' the stationary point or direct ray contributions to (18) are

given by (II-26) with L -Oandzr A=A e,
q .
- émAmlcoseml e LN -z b
w, B 7 (et
S.P. o 3,15.P L Gm (Es'”s)
(22)

In (22), the stationary point summation is over all points on the mth branch
of the dispersion surface of the plasma medium at which Y is in the direc-

tion of the displacement from the slot to the observation point.

Since A-j and AZ of (21) have the same denominator, they can be

written as

A_(8,n)=a_(5,m)/dE,N) , (23)

where the poles of A are given by the zeros of (£, n). Thus, from (15)
for z'=0 and z Y An = a.m, the surface wave contribution to E of (18)

n
is

g 1
-Jk N p -Jz agnCs

) L“ )3/2 Z { -
S.W. QelcC T i1

(24)

Expressions similar to (22) and (24) hold for (Ii)s. P. and (Ii)s. w. with ém
replaced by ‘gm' For the choice of plasma parameters made in the next
section, (18) will have no lateral ray contribution. However, for other
choices of the plasma parameters, lateral ray contributions can exist and
would be given by (II-41) with z'= 0, i.e., with the incident segment L of
the ray set equal to zero, and z Y An = a with a defined BWomn A

n mn l’m Lm
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in analogy to (II-40).

In order to evaluate the ray-optical fields radiated by the slot, it
is necessary to know the functional form of the various quantities appear-
ing in (22 . o iti “
ing in (22) and (24). The modal quantitites Km' ém and gm are most

easily calculated if it is recognized that the modal or polarization vectors
' r

i ~jko Km ' x
ém and ém are those of a wave propagating as e , where
k =x £+y n+z x ,inthe plasma. Substituting this form into
“m =o o —om

Maxwell's equations gives

v -
kohmx‘(gm_wuo ém ‘
(25)
K ky X = -p € €&
o —m -m O~ —mM

In (25), ¢ is the relative dielectric tensor of the cold, electron plasma.

Crossing the first equation of (25) by lc_m and substituting the second into

the result, one obtains

2
[.e. +l—(mhm -l—(-m .1. ' &m ) (26)

n
o

For (26) to have a non-trivial solution ém' the determinant of the dyadic

2

[e+k k -k
~ -m-—-m -m

dispersion equation (I-24) from which "o\ can be found. The solution of

1 ] must be zero. This condition gives the plane wave

(26) for -ém is then found by substituting " into (26). The magnetic field

polarization vector é—‘m is then given by the first equation in (25).

In the small signal approximation, a cold, electron plasma with
static magnetic field in the y direction can be represented by the relative

dielectric tensor

r- -
el 0 e3
e =| O €, 0 , (27)
I L 0 €
- =

where
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e, =1+ —
Y -1
€, = 1-X . (28)
13 ¥ Y
# Yz-l

In (28), X = (wp/w )2 is the square of the ratio of the plasma frequency to

wave frequency and Y wC/w is the ratio of cyclotron frequency to wave fre-

quency. Note that wpz N:/eom where N is the electron density, q the
magnitude of the electron charge and m the electron mass. Also, w, =
qBo/m where the strength Bo of the static magnetic field is positive if the

field is in the plus y direction and minus otherwise.

Substituting € from (27) into (26) and setting the determinant of the
dyadic equal to zero, one finds that the plane wave dispersion relation re-
duces to a bi-quadratic whose solution is

€ ='e e, te

- 1 2 1 2 2 2
Km- e2+ 2¢ i 2¢ L
1 1
€.=- € €. +e.=2€,¢€ 1/2
+ 1ze 2/n4-2n2 1 eZ-e 172 + 1 ' (29)
1 1 2

In deriving (29), use was made of the relation eg = -(¢ 1" 1Xe 1" €2 }, which
is easily verified from (28). For n real, the argument of the inner root is
taken as 0 or m/2. The plus sign is used for "3 and the minus sign for "3

The argument of the outer root is taken such that *3 and % 3 correspond to

upgoing waves,

Knowing % m’ the electric field polarization vector is found from (26)

to be




2 2 2
* 50”['Ii €3~ tpl€y -8 - "‘m)] . (30)

Using (30) in the fir.st equation of (25),
[ o 2 2 2 2 2
i‘mz Z{io[-xme3-gn 63-Km€1(€l-g =N -Km)J
2 2
tY, €3n(E -n )
2 2 2 2 2
+ Eo[g e3-nmn e3+§e1(el-§ -1 -nm)J} . (31)
Because Eo =X Eo' z - (thxgo) % -Eoéym’ and expanding
. - - 1
2% (ét3 X Qw)with the help of (30), the a 's and d(€, n) of (23) can be

written as

k2
- - e - o W
a3 (5. M) = A B 6)'4 (z7) Tegnlry -x3)

k2 (32)

= R d —o - - -
a;(é.ﬂ)-AoE06y3 (z=) /e3n (ng -x3)

and

2 2 2 2
d(€.n)=e3+§(n3 +nz)e3+(el-n )(el-g -n +x3 n;) . (33)

From (32) and (33) it is seen that (18) is invariant under the interchange
of 3 and 4. Thus, as argued in Section 2 of Appendix B, branch points of
x-3° and xz due to the inner root in (29) at which they are complex or imaginary,
and hence equal, will not be branch points of (18). Since the singularity

"3 =*g in (32) is of the branch type, i.e., ry =g approaches zero as
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Jn =n b this singularity will not appear in the fields. In the next section,
it will be argued that the apparent singularity 1 = 0 in (32) is not a singu-
larity of (18) and hence, the only pole singularities in (18) are due to zeros

of d(€,n ).

Knowing xm(g, n), the quantities cos 6 - Gm and Nm in (22) can be

found using (II-16), (II-17) and (II-18). Also, & - in (22) can be found from
2 2
# and P =z-—xn_ , and the stationary
2 m v 2 m
du dv
points (§B. n s) from (II-15) with z'= 0. From the solution of the pole locus

(II-14), where P =2z
uu

condition d(2, 1) = 0, the surface wave dispersion curve n =n p(% ) can be

found. The solutionn = np(%) can then be used to calcuiate Cs' Qs and Ns
in (24) from equations (7), (8), and (13) and the definition of Qs given after
(11). The point (%p. np) can be found from (5) using the solutionn =1 p(ff ).

2. Surface Wave and Direct Ray Radiation Patterns

For the sample calculation of the radiation patterns given here, the
plasma parametéra were taken as wp [v =5.0and Iwc/wl =1.5. This
choice was made as being representative of the range of X and Y for which
surface waves exist and only one direct ray, at most, reaches each observa-
tion point in the plasma, If the parameters had been chosen such that two or
more direct rays could reach an observation point, a beat pattern would exist
in the fields. This beat pattern would result from the fact that the wave vec-
tors of the several rays would not be the same. In this case, the direct ray

radiation pattern would not be independent of L.

For the above choice of parameters ¢, = 21, € _ = =24 and from (29)

1 2
and the text following, it can be shown that x 2 is complex or imaginary for

all real € andn. Moreover, from (29), the ;spersion surface is seen to be
a surface of revolution about the n axis. The plane curve whose rotation
about the n axis generates the dispersion surface is given in Fig. 2. This
curve has open branches extending to infinity along the asymptotes indicated

in Fig. 2.
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Because the plane wave dispersion surface is one of revolution,
its normal Vv at any point will lie in the plane containing n axis and the
point in question, i.e., in the plane of the generating curve. The sense
of the normal shown in Fig. 2 was taken in accordance wit! the fact that
for lossless media, the wave vector k and the real part s ¢f the complex
Poynting vector of the associated plane wave make an angle less than or
equal to 90°. From the sense of vV in Fig. 2, it is seen that "3 will be
negative for values of £ and n for which it is real.

As a point on the generating curve of Fig. 2 moves to infinity, the
angle betwe:nV at the point and the n axis will increase monotonically to
some maximum value. The maximum value of the angle between V and the
7 axis, which for the plasma parameters used here is 43.10, is the com~
plement of the angle between the asymptotes of Fig. 2 and the n axis. Thus,
since the dispersion surface is one of revolition about the n axis, all its
normals lie within the two sheets of a cone whose axis is the n axis and
whose half-angle is 43.1°. Because the direct rays excited in the plasma
by the slot are in the direction of vV, they all lie within that region above the
(x, y ) plane that is inside the two sheets of a cone whose axis is the y axis
and whose half-angle is 43.1°, Moreover, since the generating curve of
Fig. 2 has no inflection points, which can be demonstrated analytically,
and the dispersion surface is one of revolution, Gm ~ 0 only forn -+ =
and only one direct ray reaches each observation point in the illuminated
region. No propagating direct rays reach observation points outside the

illuminated region described above.

At the branch points of the inner root of (29), "3 is imaginary for

the plasma parameters used here. Thus, the branch curve of "3 at which

it is real is that corresponding to the outer root, and hence is the locus of
points at which u-:; = 0. Because of this, the branch curve of n-j at which
it is real will coincide with the generating curve of Fig. 2 when this curve

lies in the (£, n ) plane.
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The surface wave dispersion curve, which is given in Fig. 3, was
found numerically for Bo > 0 from the condition d(€,n ) = 0 with d(%, n)
as given in (33). Because n appears only in even powers in (29) and (33),
the surface wave dispersion curve is symmetric about the £ axis. For
Bo > 0, the dispersion curve crosses the € axis at € = -“/E—l , as can easily
be shown from (29) and (33). The surface wave dispersion curve termin-

ates on the branch curve "3 = 0 where it is tangent to the branch curve, as

*
is indicated in Fig. 3.

In addition to being zero on the surface wave dispersion curve of
Fig. 3, d(€,n) vanishes on the locus of points n = & W Z>0.
This locus of points, except for the two points where it is crossed by the
dispersion curve of Fig.3, is not part of the pole locus of (18). That these
points are not part of the pole locus follows from the fact that the form
given in (30) for é3 vanishes at these points. Thus, és , #3 » a3 and
d(€,n) all vanish as Qs » and hence the integrand of (18) is regular at
these points. Similarly, the locus of points n = 0, which from (32) appears
to be a pole locus, is not a locus of poles of (18), except for the single
point where the surface wave dispersion curve crosses the £ axis. For

n=0, é; given in (30) is zero and, as in the above discussion, the inte-

grand of (18) is regular.

For wp/w =10 and |wc/w| = 3, i.e., at an @ half that used in com-
puting the curves of Fig. 3, the value of./ §2+ nz calculated by Adachi and
Mushiake(38) on the surface wave dispersion curve is less than that for the
dispersion curve of Fig. 3 along any radius in the (£, n ) plane that inter-
sects both curves. That the value of ,,/ gz * nz on the dispersion curve in-
creases with w along any radius implies that the radial component of Vbtw
points away from the origin, where Et is the unnormalized transverse wave
vector ko(io g + xon). Si?ce the normal e to the dispersion curve is to
be taken in the direction df energy flow of the corresponding surface wave,

which itself is in the direction of thw ; Xs must have a positive radial

*
By straightforward calculation, it can be shown that dn _/dg = - dl/dz'
where d?.. and d; are the derivatives of d(§, n), is equal to dn/dE at the
termination of the surface wave dispersion curve.
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component. The sense indicated in Fig. 3 for Vet is seen to be in agree-
ment with the above requirement. While the foregoing assignment of the
sense of zs was not checked analytically for all points on the dispersion
curve because of the complexity of the functions involved, it has been veri-
fied analytically at the points where the dispersion curve crosses the § and

n axes.

From the approximation dn p/d§ salm p/Ag and the calculated values
of 'np(;! ), dn p/ df for n . > 0 was found to be a monotonically decreasing
function of € . Since dn p/d€ is a monotonically decreasing function of &
for np > 0, and because of the symmetry of the dispersion curve about the
€ axis, as a point on the dispersion curve moves away from the § axis, the
angle between the normal is at the point and the -€ axis increases mono-
tonically up to a maximum. The maximum occurs at the end point of the
dispersicn curve and for the curve of Fig. 3 was found to be 75.1°. Thus,
the propagating surface waves excited by the slot illuminate only those
points within a wedge-shaped region centered about the -x axis whose half-
angle is 75.1°. Furthermore, within this wedge, only one surface wave ray
reaches each observation point, and hence the sum over p in (24) reduces

to a single term.

The real part S of the total Poynting vector of the surface wave propa-

gating on th: plasma-conductor interface is, in accordance with Chapter III,

given by
s=[Rref(B) xm)® Ja . (34)
| S.W.. _S.W.

Substituting the expressions for the surface wave fields given in (24) into
(34), and recalling that only one surface wave ray, at most, reaches each
observation point, one find that

€x
3 i “jk (* =-u )z
_ (2m) ] * « "o mT*n
e k 2|C | J‘ Z Re{aman émxﬂne } -
e P Ql ] 9 m,n (35)

-p

(m,n=3,4%)

il — . s—— 6}
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evaluated at (& # n p). A polar plot of the surface wave radiation pattern
gs(‘t’).' 1.4, |§; p normalized to its maximum value versus the angle

Y = tan-l(-y/x), is given in Fig. 4 for wp/m = 5.0 and |wc/w| =1.5.
This plot is the surface wave radiation pattern of the plasma-conductor

interface for slot excitation with Eo = -’fo Eo.

As can readily be verified analytically, the radiation pattern of Fig.
4 is syrﬂmetric about ¥ = 0. Had the field in the slot been taken as §o=ono’
(Ez)s. W. and (Hy)s. Ww. would have odd symmetry about ¥ -0 and hence the
surface wave radiation pattern would have a null at ¥ = 0, although it would
still by symmetric about ¥ = 0. For Eo in some other direction, the radia-
tion pattern is not symmetric about ¥ = 0. As discussed previously, the
propagating surface wave contributions to the far fields exist only for

1¥| < 75.1°,

For the direct rays, the real part s of the local Poynting vector is

2 =Re[(E) x(H') ] - (36)
S.P. s. P.

Since only one direct ray, at most, reaches each point in the plasma, the

sums in expression (22) reduce to a single term having m =3 . Thus,

2 |A3 |z o6

PAsf 3 *
2 =(3) Re( g3 x 43 ) (37)
k LZIGgl 3 3

evaluated at (§.. n'). In Fig. 5, the direct ray radiation pattern 8y which
is defined as |s]| L2 normalized to the maximum value of |S| p for the

surface waves, is plotted for observation directions in the (y, z) plane.

The angle ¢ in the polar plot of Fig. 5 is defined as tan'l(z/y).

vanishes
o

Note that in the (y, z) plane, sin2§ = cos 263 so that from (37),
at = 0, 180°, as indicated in Fig. 4. Also,

Ba
84 is symmetric about § = 90
since the dispersion surface is aboutn = 0 and s is an even function ofna.
As discussed previously, the propagating direct rays illuminate only that
region between the conductor and the two sheets of the cone whose axis is

the y axis and whose half-angle is 43.1°. Thus g4 can be non-zero only for




observation directions making an angle less than or equal to 43. 1° with
the y axis, as is shown in Fig. 5. For ¢ approaching 43.1° from below

and approaching 136. 90 from above, is singular since for these direc-

&4
tions, the direct ray contribution comes from points lli'j | == on the

open branches of the dispersion surface where the Gaussian curvature

03 = 0. This singularity has been shown to result from the use of the

approximate boundary condition (17). For an actual slot of finite extent,
(39)

84 will have a maximum near ¢ = 43.10, 136.9o but will remain finite.

Since the plasma medium is rotationally symmetric about the y axis,
the pattern function of the terms |Re (53 x gs*)l /|03 | will also be ro-
tationally symmetric about the y axis. Thus, variations in the pattern of
84 in planes containing the y axis are produced only by the variation of
|A-3' |z cosze-:; . Note that since d(8, n , in the definition of Ag is not a
symmetric function of £, the radiation patterns in the planes x =0z and
x = =0 z will not be the same. Defining & = tan-l(A\/ x2+ 22/ y), in any plane
containing the y axis, 84 will be symmetric about § = 90° since Ag is a
symmetric function of n. Furthermore, in any plane containing the y axis,
g Will exhibit a singularity at # = 43.1°, 136.9° and will be zero for
43,1<¢¥ < 136.90. as was discussed for the direct ray radiation pattern in
the (y, z) plane. In the (x, y) plane g4 = 0 since for z=0,cos 0 i 0. In
Fig. 6 and Fig. 7, 84 has been plotted as a polar function of § for the

planes x = z and x = -z, respectively.
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SUMMARY

In Chapter I, the form of the double Fourier integral represen-
tation for the fields radiated by a point source in the presence of a planar
interface between two arbitrary, lossless, homogeneous, anisotropic
media was found. The stationary point and branch curve contributions to
the asymptotic evaluation of the Fourier integral representation were
considered in Chapter II. The stationary point contributions were inter-
preted in terms of direct, transmirted and reflected rays, which are the
trajectories of energy flow in lossless media, and the associated fields
were cast into ray-optical form. The ray-optical form of the fields dis-
closes the local nature of ray propagation. This local nature suggests
ways of extending the ray-optical results to geometries not amenable to
rigorous analysis. One such extension was considered in Chapter II,
where the fields reflected from and transmitted through a curved inter-
face between two anisotropic media were calculated.

In Chapte.r IO, the branch curve contributions were interpreted in
terms of lateral rays and the fields cast into ray-optical form. The
lateral ray is the trajectory of energy flow of a ray having three seg-
ments, one of which lies in the interface. While the branch curve contri-
butions are of lower order than the stationary point contributions, in
geometric-on“ical shadow regions where the stationary point contributions
are exponentially small in all orders, the lateral ray fields will form the
dominant contribution to the far fields. Unlike the lateral rays excited by
a line source or point-source lateral rays in isotropic media, the point-
source lateral ray fields in an isotropic media can have strong direc-
tional dependence other than that introduced by the source. This depen-
dence can include caustics and shadow boundaries.

The ray interpretation of the stationary point and branch curve
contributions to the far fields was basec on the fact that plane waves in
lossless media carry energy in the direction of the normal to the plane
wave dispersion surface. In order to interpret the real pole contributions

to the far fields in terms of surface wave rays, it was necessary to derive
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a relation between surface wave group velocity and energy velocity analo-
gous to that for plane waves. Such a relation was derived in Chapter III
for surface waves in arbitrarily plane-stratified, lossless, anisotropic
media. It was found that the surfar~» wave group velocity was equal to
the ratio of the integral, over the coordinate of stratification, of the real
part of the complex Poynting vector to the corresponding integral of the
energy density. Thus, the real part of the integrated Poynting vector of
a surface wave is in the direction of the normal to the surface wave dis-
persion curve. The necessity for integrating the local Poynting vector
over the coordiﬁate of stratification results from the fact that its direc-
tion, as well as magnitude, can vary with this coordinate.

The relations between the energy flow and stored energy in a
plane-stratified structure and the derivatives, with respect to the trans-
verse wave numbers and frequency, of the dyadic surface impedance
representing the structure were also determined in Chapter III. The
significance of these relations for surface waves on a dyadic surface
impedance plane was discussed.

As an example of the effect of anisotropic media on surface wave
propagation, the surface waves on a uniaxial plasma slab were found in
Chapter IV. The effect of the anisotropy is clearly seen in the surface
wave dispersion curve, which has an infinite number of open branches,
i.e., the branches do not encircle the origin. Furthermore, these sur-
face waves illustrate the fact that the direction of the Poynting vector
can vary with the coordinate of stratification.

In Chapter V, the real pole contributions to the far fields of a
point source in the presence of a planar interface between two aniso-
tropic, lossless media were evaluated. Using the relation between the
group velocity and the energy velocity of surface waves derived in
Chapter III, the real pole contributions were interpreted in terms of
surface wave rays, These rays are the two-dimensional trajectories of
energy flow in lossless media. In the far field, the surface wave contri-

bution at all points along a line perpendicular to the interface comes from
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the same surface wave ray. In effect, surface wave ray propagation is a
two-dimensional phenomenon, the variation in the third dimension merely
describing the local strength of the surface wave fields. For source and
observation points near the interface the surface wave contribution varies
as the inverse square root of the distance between these points while the
direct and scattered ray fields vary as the inverse of this distance. Thus,
for source and observation points near the interface, the surface wave
rays give the dominant contribution to the far fields.

Unlike the surface wave fields excited by a line source or a point
source in isotropic media, the surface waves in anisotropic media due to
a point source may have a directional dependence other than that introduced
by the source. This directional dependence can include such features as
shadow boundaries. As an illustration of the directional dependence of the
surface wave fields, a specific configuration was considered in Chapter V,
This configuration consisted of a gyrotropic plasma above a perfectly con-
ducting plane. The gyrotropic anisotropy was assumed to be produced by
a static magnetic field parallel to the conductor and excitation of the R. F.
fields was by an impressed electric field in a slot cut in the conductor. In
this configuration, the surface wave fields are confined to a wedge region
centered about the direction perpendicular to the static magnetic field and

lying entirely on one side of the static magnetic field.
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AEEe ndix A

EXCITATION COEFFICIENTS OF PROPAGATING
PLANE WAVES

For the case of point source excitation and real X it is possible
to find a particularly convenient form for the excitation coefficient An
given in (I-54). Substituting the form (I-36) for go(ht) into (I-54) gives,
for «_ real,

n
2

n  n\2n tV*n! M tVn) Ttz z|M n'

*
For lossless media, € is Hermitian so that g’tz in (I-6) is equal to E’zt 5

and hence from (I-11), (I-12) and (I-13) it is seen that

k
1 o
—_e -—z xk
€ ~tz wd =0 -t
22 o
W W = =w? (A-2)
tz 'z zt’
ko
—— xk O
we € -0 -t
o z2 J
L

Using (A-2), the product Y:(xn)-wtz Wz in (A-1) can be written as

+ X = . +
Yt(un) wtz wz - [wzt Yt(xn)] ’ (A-3)

But ‘Yt(nn) represents the transverse electric and magnetic field polari=

zation vectors of the plane wave propagating as exp [-jko(§ x+ny+ nnz) ]

The z components Yz(xn) of the polarization vectors of this plane wave ate

. given in terms of the transverse components by (I-52). Thus, with the

help of (A-3) an< (I-52), it is seen that the bracketed term in (A-1) can be

written as
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J J
+ =ot + oz| _ o, ¥ * ;
Yt(un). [Mot} t Yz(nn) [Moz} o -6-11 io +£n Mo =)

where & and _an are the polarization vectors of the plane wave fields.
Consider now the normalizing constant Mn in (A-1), which is
defined in (I-30). By direct expansion it is possible to show that for real

X
n

M =2Re[(§  xH# )z |=2s (A-5)

-0

where LT is the z component of the real part §: of the modal :omplex
%
Poynting vector -C-.-n x £n . Recoguizing that e, as defined in (I-41),

has the same sign as 8 . it is seen that

Mn/en = 2| cos Gn || Re (_an#_:) | (A-6)

. where Bn is the angle between the positive z axis and 8, Finally,
substituting (A-4) for the bracketed term in (A-1) and using (A-6), one

obtains

k 2

* * 5
An = (2_:) (én-_{o+1_;n-y_o)/2|cosen||Re(_6_n x_Jin)I (A-7)

which directly exhibits the dependence of the dependence of the excitation
coefficient An on the strength of the point source and the polarization

vectors -6-n and _J_&n of a propagating plane wave.
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Appendix B

STEEPEST DESCENT EVALUATION OF THE
INTEGRAL OVER 1

In order to asymptotically evaluate double integrals of the form given
in (II-5) by the method outlined in Section B of Chapter II, it is essential to

first evaluate
°’ -jk_ P(g,n)
[EEme dn (B-1)
g™
by the method of steepest descent. In performing the integration indicated
in (B-1), € is assumed to be real and is held constant. Also, xm and .
are assumed to be continuous functions for § and 1 real so that P(§,n)
will be continuous.

Because the various wave numbers 1 appearing in the factors of
(II-2) and (II-4) are ..ie roots of quartics, the complex 1 plane will con-
sist of four Riemann sheets in the case of the direct field integrals (II-2)
while for the scattered field integrals (II-4) it will consist of sixteen sheets
(as argued in Section 2, the x's are the only multivalued functions appear-
ing in the integrands of (II-2) and (II-4) ). The various Riemann sheets are
connected at the branch points of the x's and along the associated branch
cuts. With these comments in mind, the path of integration for (B-1) is
the real n axis on an appropriate Riemann sheet with suitable indentations
into the complex n plane about the branch point and pole singularities of
the integrand.

Since the Fourier integral representation for the fields was originally
defined with the summation signs of (I-55), (I-56) and (I-57) inside the inte-
gration signs, the branch cuts are the same for all direct field integrals
and for all scattered field integrals. In order to satisfy the radiation comn-
dition, the branch cuts originating at each real axis branch point of the x's
at which the wave number is real are taken such that on the indented por-

tions of about the branch points of the integrations paths for the various

D R e e
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scattered and direct field integrals -j .3 (z - 2') in (II-2) and -j n % OoF
jnnz' in (II-4) has a negative real part. Finally, the branch cuts may
not cross the real n axis since otherwise the continuity assumption
made above would be violated. While the foregoing restrictions on the
branch cuts are relevant to the stee;;eat descent evaluation of (B-1), the
ray-optical expressions for the far fields are formulated in such a way
that the branch cuts need not be considered.

The asymptotic evaluation of (B-1) has been considered by many
authors and only a brief discussion of the features of the evaluation perti-
nent to the present analysis is given here(n' 22'40). In particular, when
F(g,n) and P(§,n) are those of the integrands of (II-2) and (II-4), (B-1)
represents the direct or scattered portions of the fields radiated by a

(4)

phased line source along the x direction Appropriate to the present
analysis, only the contributions to (B-1) arising from real, isolated saddle
points, branch points and poles will be considered. In the phased line
source problem, the contributions from these points correspond to direct
and scattered rays, lateral rays and surface waves, respectively. . In
applying the steepest descent technique to the evaluation of (B-1), the
original path of integration in the complex N plane is deforr.ned into the

steepest descent path, taking due account of any intercepted singularities.

1) Real, Isolated Saddle Point Contributions
The saddle points in the 7 integration (for fixed €) are the

solutions of
a

P,(8,M) = 37 P(§,m) = 0. (B-2)
The real saddle points are the real solutions of (B-2) and the firlt-ofder

contribution to (B-1) from thece points is

E(&n,) -jk_P(€,n_) ~jzsgnP,(,n_)
Fi 4
(.r n) addle knz 4 ° 'e % ’ (B-3)

point . 'lpZZ(g'ns)I

where the sum is taken over all real saddle points n‘. In (B-3),
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2
Pzz(g.'ﬂ) 5-3—2 P(€,n) and the function sgnX = - 1 for X < 0, while for
n

X>0, sgnX =1 and for X =0, sgnX = 0. Expression (B-3)is valid
when the saddle points are isolated from each other and from the branch

points and poles of the integrand of (B-1).

2) Real, Isolated Branch Point Contributions

When the integrand of (B-1) represents that of (II-2) or (II-4),
the branch points in F(£,n) and P(£,n), considered as functions of n, are
those that occur in the solution of (I-24) for the single-valued functions
ztn(g.n). This is seen from the fact that the eigen or transverse polari-
zation vectors of (I-23) can be written as polynomials in £ , n and "
(any other normalizing factor in the mode vectors will cancel out among
the factors in (II-2) and (1I-4)). Hence, the z component of the polari-
zation vectors given in (I-52) is a polynomial in § , 1 and " Further-
more, the scattering coefficients of (I-46) and (I-52) and the excitation
coefficient An of (I-54) are ratios of such polynomials and thus have only
the branch points of the u's.

Those branch points of the x's at which the wave number com-
plex or imaginary need not be considered since they are not branch points
of the total Fourier field transforms as given in (I-55), (I-56) and (I-57).
This is seen from the fact that at a branch point, two solutions of (I-24)
for the x«'s of the €, medium are equal or two solutions of (I-24) for the

x's of the €, medium are equal. If the two x's that are equal at the

2
branch point are complex or imaginary, they both correspond to upgoing

» = -

or to downgoing waves, i.e., at the branch point x7 = 5 or x‘i = K‘é

or x3 = a7, or "3 = x“i . Thus, such a branch point connects two

Riemann sheets on which x is an upgoing or downgoing wave number. But

(I-55), (I-56) and (I-57) are invariant under the interchange of 1 and 2 ,
- - - —
the interchange of 1 and 2 , the interchange of 3 and 4 and the inter-
- -
change of 3 and 4 . Hence, the branch points at which the »'s are com-

plex or imaginary do not appear in the total fourier field transforms. Any

contribution to one of the integrals defined in (II-2) or (II-4) arising from

el il
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branch points of one of the x's at which x is complex or imaginary will
be canceled by a similar contribution to another of the integrals(”. I
P(E,n) is complex at some branch point, the contribution from this branch
point will be exponentially small so that only the branch points of the x's
on the real axis and at which P(§,n) is real need be considered. Such
branch points will be called real. Note, branch points at which
Re[-jP(§,n)] is positive cannot be intercepted in th: deformation of the
original integration path since they lie in hill regions.

The real branch points of * and e appearing in P(§,n) are
not intercepted in deforming the original integration path into the steepest
descent path since the radiation condition requires that the original inte-
gration path be indented about them in such a way that -jxn(z-z') in (II-2)
and -jnmz or ju.nz' in (II-4) have negative real parts. Furthermore
di/dn — = at a branch point of x so that -jP/£,n) will have a negative real
part on the indented portion of the integration path about the branch points
of " and % even if the real part of -jny is positive there. Because of
this, the indented portions of the original integration path will lie in the
valley regions to start with, and hence the real branch points of P(§,n)
will not be intercepted. When the integrand of (B-1) représents that of
the direct field integrals (II-2), no branch point contributions will arise
since F(E,n) contains only the branch points of that " appearing in
P(§,n). However, rmn in the scattered field integrals (II-4) depdends on
all the x's so that these integrals may have branch point contributions.

For those real branch points interceoted in the deformation of
the original integration path, the branch cut may be chosen to lie along the
steepest descent path through the branch point. With this choice of the
branch cut, the principal contribution to the branch cut integral will come
from the vicinity of the real branch point. In the vicinity of an isolated
first-order, real branch point n = nb of F(£,n), the dependence of £(§,n)
on M can be exhibited as F(€,n) = F(§,n, v/n - nb) where 3£/6n is
regular at the branch point. Assuming F(€,n) itself to be bounded at

branch points that are not also branch points of P(£,n), to first order in
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the vicinity of Ny

g(a.n)~£<§.nb)+—a—‘n—<n-nb)+mdn-nb (B-4)
b

!

with only the last erm contributing to the branch cut integral. In the
definition of E and in (B-4), »/W is assumed positive for n- n, poFfi-
tive real and the branch cut for this root is taken along the cut originally
used in defining F(Z,n).

Assuming that the branch point s is not a branch point of
P(Z,n) and that no saddle points are near the branch point, P(f,n) may

be approximated to first order in the vicinity of n, as

P(E,n) = P(§.nb) ¥ Pz(f:'-.nb) (n-nb) (B-5)

with Pz(é .‘nb) # 0. Because the principal contribution to a branch cut
integral comes from the vicinity of the real branch point, the approximate
expressions (B-4) and (B-5) for F(§,n) and P(§,n) may be used in the
integration.
If Pz(g.‘nb) is positive (negative), using (B-5) in (B-1) it ie
seen that the valley region in the vicinity of " lies below (above) the real
n axis. Thus, using the approximations described in the previous para- !

graphs, the branch cut integral becomes

°F -k P r”b""’g“pz -3k _P, (n-n,)
2 — e J Jn-n_ e dn (B-6)
dJn-m, n
b
dF
where ———— , P(§,n) and Pz(g.‘n) are evaluated at N = n,: The path
3J/n-n,

of integration in (B-6) is along the right-hand side of the branch cut of
Jn- Ny which is taken here as lying along Ren= Ny, - The integral in
(B-6) can easily be evaluated using the substitution s = jko(‘n - 'nb) pz(g,nb)

where s is positive real. With this substitution and recalling the
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definition of /1 - u in the previous paragraph,

n
Jn=n,_ =Js/k [P,[ exp (-j7sgnP,).
Performing the integration indicated in (B-6) arid summing over

the various real branch points of F(€,7) that are not also branch points of

) . 3/2
P(€,n), the real branch point contributions to (B-1) are given to 0(1/&o )
by

- -ijk P 3
OF o -j=— sgnP
_JR [ - e 4 2
(fd“)branch 377 2 § UL, ”b?] 32 ©
; K dWn-n_ |P,|
point o b b 2 =n
b
(B-7)

Expression (B-7) is valid when the branch points are isolated from each
other and from the saddle points. The Heaviside unit step function
U[i(m - nb)] is included in (B-7) to indicate that a particular branch point
will be intercepted during the deformation of the integration path only for
certain values of- n. (the value of Tl. depends on: £ and on the coordinates
of the observation point). The choice of the plus or minus sign can be
determined in any particular problem. Strictly speaking, the single step
function is not sufficient to describe when a particular branch point is
intercepted if (B-1) has several real saddle points. However, for conve-
nience the single step function of (B-7) is retained here but is replaced in
Section E of Chapter II by a ray-optical expression that is valid no matter

how many saddle points occur in (B-1).

3) Surface Wave Pole Contributions
Net pole contributions to the total radiated fields can occur only
in the scattered fields. These pole contributions are associated with those
zeros of the common denominator d(£,n) of the scattering coefficients at

which the Fourier transform of the total scattered field EI‘
-jk (Ex + ny)

within the factor e , the Fourier transform of EI‘ is the inte-

grand found by substituting (II-4) into (II-3) and interchanging the order of

is singular., To

summation and integration. The integrands of the individual integrals in
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(1I-2) and (II-4) can also have pole singularities in the N plane at those
branch points of the x's at which ¢ is complex or imaginary. However,
any contribution from such branch points to one of the integrals (II-2) or
(II-4) -- except when this point is also a pole of the transform of -E-I‘ .-
will be canceled by a similar contribution to another integral. Thus, only
contributions from those poles of the integrands of the integrals of (II-4)
that are poles of the transform of E . need be found.

r
The poles giving a net contribution to E_ that are of interest

here are those poles, called surface wave poles, lr;'ing on the real n axis
on that Riemann sheet on which the original integation path is defined
since only these poles give rise to surface waves propagating along the
interface. # In order to satisfy the radiation condition for |y| = o , the
surface wave poles intercepted during the deformation of the integration

path must be such that the y component of the total modal surface wave

power, i.e., ‘[ e’ s8dz where 8 is the real part of the complex
- ®

Poynting vector associated with the modal surface wave fields for (£,n)
appropriate to the pole, has the same sign as y. The above requirement
is satisfied if the original integration patl} is deformed above (below) those
surface wave poles contributing for y positive (negative). That these
indentations are correct is seen from the fact that for y positive (negative),
the integration in (B~1) could be carried out by deforming the integration
path into the lower (upper) half of the n plane. With the foregoing inden-
tations about the surface wave poles, it is seen that the integration about
the poles contributing for y positive (negative) is to be taken in the clock-
wise (counter-clockwise) sense about the poles.

For reasons that will be discussed at appropriate points in this

analysis, the surface wave ccntribution will be considered only for obsecr-

vation points such that \/xz + yz' >> |z| , |z'] . Since the choice of the

5 In limited regions of space poles corresponding to other wave types,

(41,42)

e.g., leaky waves » may be intercepted. Such pole contributions

are not considered here.
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(x,y) coordinates is arbitrary, under the above restriction the (x,y) coor-
dinates can always be chosen such that |y|> > |z|, |2'|, which insures
that all surface wave poles appropriate to the sign of y are intercepted
during the deformation of the integration path. To see that all appro-
priate surface wave poles will be intercepted for ly|>> |z|, |2'|, recog-
nize that for this case the saddle points will coaless with certain branch
points of "m and " appearing in P(%,n). Thus, if the branch curves
associated with these branch points are taken along the steepest descent
paths through the branch points, the steepest descent path for y positive
(negative) is the same as obtained by deforming the original integration
path in the lower (upper) half-plane, in which case all appropriate surface
wave: poles are intercepted.

Writing g(g,n) as
F(E,n) = §&,n) / d(,n) (B-8)

where the poles of E(g,n) are given by the zeros of d(§,n), for
|y| >> |z| » |2'| so that all appropriate surface wave poles are intercepted

for y 20, the surface wave pole contributions to (B-1) are

R F L VR G
(Idn)pole = - 2m j sgny% T e (B-9)

'ﬂ-'ﬂp

where the sum is taken over the contributing surface wave poles and

dz(g,n) = Bin d(€,n). If |y| is not taken sufficiently large, some or all
of the surface wave poles will not be intercepted in the deformation of

the original integration path. This reflects the fact that in such a case,
exponentially small errors in the saddle point evaluation (due to the finite
radius of convergence for the series expansion of F(£,n) about the saddle

point) are larger than the pole contribution.
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AEEe ndix C

SCATTERED RAY TANGENCIES TO A CAUSTIC
AND EXPRESSIONS FOR &

In Section 1 of this appendix expression (II-14) for & is established
and is then used to derive (II-20), which applies when P(£,n) is the phase
function found in the direct ray integrals (II-2). The properties of the

roots L and Lm of (II-24) are considered in Section 2. First, the

1
conditio::; under whizch the roots are real are found. For those condi-
tions under which the roots are certain to be real, the number of positive
roots is determined, i.e., the number of scattered ray tangencies to an
actual caustic. These results are presented in Table C-1, which also
contains the value of 6mn along the scattered ray. In Section 3 it is
shown that the change in 6mn along a scattered ray, as a point of tan-
gency to a caustic is crossed, can be found from the ray direction, the

normal to the caustic and the shape of the mth branch of the dispersion

surface.

1) Verification of (II-14) and (II-20)
In establishing (II-14), recognize from (II-13) that

2
5 = (sgn PZZ)[I +sgn (P, P, - plz)] . (C-1)

The second derivatives of the phase P(£,7) in the generic integral (11-5)
contain only z, z' and the second derivatives of o and "o Since e
and w are point functions, pll' pZZ and plZ are the elements of a
symmetric second-rank tensor. Thus if the (u,v) coordinate rystem,
rotated from the (§,n) system by an angle ¢, is such that at the station-
ary point in question I='uv = 0, where the u and v subscripts indicate
partial differentiation, then

P.,P P 4 P P (C-2

11 72277127 Tt wv sl

and
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2 2
= s1 ¢ . -2-b
P22 sin © P‘.m + cos QP (C )

Therefore, if both P‘.m and va are positive (negative), then

P“P 2> 0and P,_>0 (P22 < 0) so that from (C-1) one finds that

20" Fig 22 Y
= =] Is i i = <
6 =2 (6 2). If Puu and va are of opposite sign, P“P22 P12 0

and from (C-1), 6 = 0. These cases can be summarized in the form
6 = sgn Puu + sgn PW. (C-3)

as was to be shown.

In order to show that for the direct rays

6 = sgnK , +sgn K, (C-4)

as stated in (II-20), where Kn and Kn are the principal curvatures of

1 2
the nth branch of the dispersion surface, recall that in the (u,v) coordi-

2 2

3 " 3 gn
= -zt = -zt
nate system P‘.m (z=~-2") 3 va (z-~2") > and

du dv

al,

" - - n i th
0 puv (z~2 )m . The Gaussian curvature of the n branch of

the dispersion surface is the product of the principal curvatures and can

be written a.(ZS)
azun az”’n 4
C'n = Knl an o] | 2 2 vnz (C-S)
du dv

while twice the mean curvature is the sum of the principal curvatures and

can be written(zs)
) 2 2
dx 2_3% 3 2.37n 3
My SRy TR ’ “(av) au2+[l+(a“)]a ¥l Vae
v
* (C-6)

Here, v =z v and the principal curvatures are positive or nega-
nz =o -

tive as the corresponding centers of curvature lie on the same or opposite

side of the surface as the normal v Since the sense of Yo is taken to

be the same as that of the power flow of the corresponding plane wave,
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(z -2')and v have the same sign. Thus P and P are both posi-
nz uu vv

tive (negative) when K and Kn are both positive (negative). Also

and K
n

ml 2
Puu and va are of opposite sign if Kn

(C-4) and (I11-20).

are, thus verifying

1 2

2) The Nature of the Roots L and L
m m

1 2

In studying the roots L and Lm of (II-24) for the rays scattered

ml 2
from a planar interface, those combinations of signs of the principal cur-
h ] . .
vatures of the mth and nt branches of the dispersion surfaces for which
the roots are real and those combinations for which the roots can be com-

2 . 3 J
P is an invariant, it

plex are first found. Since the Hessian Pll P22 - P,
can be evaluated in the (0,7T) coordinate system defined by the require-
2
d 1

ment that ao—a:n = 0 at the stationary point in questior. With this choice

of the (0, T) system

2 2 2 nm Km I Iaxmann n a”x'l
PSSP _s=P_ .2\l +L v 2! +
T2 il m mz aoz 612 m mz aoz aT2 aTZ ao2
2 az"'n aznn az"‘n. ’ p
1] = -
. Hel oz e\ (&N

Consider now the (s,t) coordinate system defined by the requirement that
=,
-as—a: = 0 at the stationary point. If ¢ is the angle between the s and o

and if a = cos @, then

azn azn az,.,
n 2 n 2 n
5 = a > + (1 -a) >
d0 9s ot .
D (C-8)
L 3% k.
n 2 n 2 n
t ° (1 -a’) 5 +a 5
3T ds ot
and
azn azn azn 2 > " azn
n n - n = n n (C")
2 900T 2 g °
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With (C-8) and (C-9), (C-7) can be rewritten

azn 2%u 32% 3y
P . P -PZ"LZV 2 m m+lz,|2 n n
11 - -10
22 12 "m'mz 5 2 5 2 NN (C-10)
2 2 2 au 2
+L |2 Vo [(l az) +a ——2 +v z 2% 2——-'1‘(1 az)
- st e ™R et at?
which will have real roots L and L if its discriminant is positive.
ml m2

The hybrid notation in (C-10) is used since the signs of the second deriva-
tives of . and x ~can easily be related to the signs of the corresponding

principal curvatures only when the mixed second partial derivatives are
' 2 2 2

: STNEL 8%, %,
zero. Defining B = ;n and B £ ; Zn » the discrimi-
3 c T ds At

nant of (C-10) will be positive if

a=a*(q_-1%(q, -1)% - 20%(q_-1)a_-1)a_q_+1)+(q_q_-1)? (C-11)

is positive. _

At any particular stationary point, 9. 9, and a are known so that
Q is known. However, for the present study it is more convenient to
consider Q as a quadratic in az with U and q as parameters and to
investigate the sign of Q in the interval 0 iaz < 1 corresponding to real

angles . At az =0

Q=(q q - 1)230 (C-12)

while at az &1 1

Q=(q -9q)" >0. (C-13)

2
As a function of a , Q has a minimum value of

- 4qrnqn (C-14)

min

occurring at
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2 qmqnf 1
R ROV I VI Al
UIm 9,
From (C-5), when represented in the (0, T) coordinate system for
2
37y
which == = 0, it is seenthat G_ and q__ are of the same sign. Simi-
dc AT m m

larly, Gn and q are of the same sign. Thus, using these relations and
(C-14) and (C-15) and the fact that Q > 0 at az = 0,1, the signof Q in

the interval 0 < az < 1 can be determined for the three separate cases that
must be considered.

Case I Gm and Gn positive

In this case 9 and q are both positive an(zi from (C-15) the minimum
value of Q occurs outside the interval 0 <a < 1. Since Q> 0 at

az = 0,1 the value of Q in the interval 0 f_ o.z f_ 1 is always greater than
or equal to zero and hence only for real values of Lm will pIIPZZ- Pl: = 0.
Case II: Gm and Gn of opposite sign

In this case - and q are of opposite signzso that the minimum value of
Q, as given in (-14), and hence Q for all a , is greater than or equal to

zero. Again, P,.P o ¢ . 0 only for real values of Lm.

117227 712
Sase II: Gm and Gn negative

In this case 9, and q are both negative and the minir;mm value of Q,
which i8 now negative, occurs within the interval 0 f_a f_ 1. Thus, for
this combination of signs of the Gaussian curvatures, and for values of
¢ such that cosch lies between the roots of (C-11), the values of Lm

for which PIIPZZ- Pl; = 0 will be cornplex and consequently (1I-24) will

have complex roots L and L. _. For real » and when cosch is not
ml m2

between the roots of (C-11), Q is the positive and P“PZZ- Pl: will
vanish fc  real values of Lm

In summary, only for that combination of signs of the principal
curvatures of the mth and nth branches of the dispersion surfaces

indicated in the last case of Table C-1 can the roots L and L be
ml m2

complex.

For those combinations of signs of the Gaussian curvatures for
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which (II-24) is certain to have real roots Lml and LmZ' the number of
positive roots, i.e., the number of times a ray scattered from a planar
interface is tangent to an actual caustic, can now be determined. The
results are summarized in Table C-1. From this table it is seen that a
simple inspection of the dispersion surfaces for the signs of the principal
curvatures is sufficient to determine, in all but one case, the number of
times a scattered ray is tangent to a caustic. For the case when Knl and

K . are of opposite sign and K are also of opposite sign, it

n2 ml 2
is not longer possible to predict the nature of Lml and LmZ from a simple

and K
m

inspection of the mth and nth branches of the dispersion surfaces since

the nature of the roots depends not only on the shape of the two branches of

the dispersion surfaces but also on their orientation, as was shown above.
Te derive the number of tangencies of the scattered ray to an actual

caustic, as given in Table C-1, it is necessary to consider the signs of

the coefficients in (C-10) for the various cases appearing in Table C-1. To

facilitate these considerations, observe from (C-5) and (C-6), when repre-

2
3 x
. m _
sented in the (0,T) coordinate system for which 537 - 0, 'tha.t
a’ al
" 3
| P acz and - ' Tz will both be positive (negative) if Kml and
sz are both positive (negative) and will be of opposite sign if Kml and
22, I
K are. Similarly, since for the scattered rays v__ > 0, 2 and
m2 nz 3 82

2%y

2 will both be positive (negative) if K . and K , are both positive
3 tZ nl n2

(negative) and will be of opposite sign if Kml and sz are.

Case I: K » K » K
— m n

ml 2 1
For |af <1, i.e., for real angles o, all the coefficients in (C-10) are

’ an positive

positive so that (C-10) will have no positive roots.
Case II: Kml' sz, Knl' an negative
Again, for |a| <1 the coefficients in (C-10) are positive and hence

(C-10) will have no positive roots.
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The Number of Tangencies to an Actual Caustic of a Point

Source Ray Scattered by a Planar Interface and the Value

of émn Along the Scattered Portion of the Ray

Signs of Km

Signs of Kn

Number of

Value of & (L
mn m2

1 1 .
and K and K Ul et assumed to be greater
m2 n2 to S, )
Caustic m
both positive both positive 0 2
both negative both negative 0 -2
both positive both negative 2sgnK ., 0<L <L 1
(negative) (positive) 2 - ol - -
0 L <L <Lk
ml "m "m2
>
ngnKml ’ Lm LmZ
both positive one positive 0, o< Lm< LmZ
or and 1
2 ) >
negative one negative sgnKml Lm Lmz
one positive both positive 2sgnK ., 0<L <L
and or 1 " .
’ g 0, L_>L
one negative negative m ~m2
one positive one positive solve
and and (C-10) for |- Use (II-14)
one negative one negative roots
T——— W
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Case III: K K positive (negative) and Krl' an negative (positive)

ml’ "m2
The coefficient of Lni in (C-10) and the constant term are positive but the
coefficient of Lm is negative so that both roots of (C-10) are positive.

Case IV: Km and Kn of opposite sign

and K of the same sign and K
m n

1 2 1 2
In this case the coefficient of Ll:l in (C-10) is positive while the constant
term is negative and hence there will be one positive and one negative root
of (C-10) independent of the sign of the coefficient of Lm.

Case V: K and K
— m

‘ of opposite sign and Knl and an of the same sign

2
Now the coefficient of erz1 is negative while the constant term in (C-10)
is positive and hence (C-10) will have one positive and one negative root.
The value of bmn along the rays scattered from a planar interface
is displayed in Table C-1 for all but the last combination of signs of the
principal curvatures of the mth and nth branches of the dispersion sur-
faces under the assumption that the roots of (C-10) are ordered such that
A g

ml m2’
a) it can change value only at the tangencies to a caustic; b) it can take

The evaluation of 6mn is based on the following properties:

mn
These properties have been dis-

on only the values +2 or 0; c) for L — =, & = sgnK_ ~ + sgnK ;
== m ml m2

for Lm =0, bmn = sgnKnl + sgnan.

cussed in Section C of Chapter II and are easily seen to lead to Table C-1.

When K and K _ are of opposite
m n

1 and sz, as well as Knl 2

sign, bmn = 0 if the scattered ray is never tangent to an actual caustic

surface, i.e., when Ln are negative real or complex. If

1l 2
the scattered ray is tangent to a caustic, it will have two points of tan-

and L
m

gency and bmn = 0 between the interface and the first point of tangency
as well as beyond the second point of tangency. Between the two points of
tangency, bmn is either +2 or -2 and is most easily determined from
(II-14).

3) Determination of the Change in 0 By When the Normal to the
Caustic Is Known -

It will now be shown that the change in bmn' as the ray tangency to
a caustic is crossed, is ngnCm where Cm is the curvature at the point

im of the curved formed by the intersection of the mth branch of the
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dispersion surface and the plane parallel to e and to the normal n to
the caustic surface at the point of tangency. The point hm in k space
is determined by the wave numbers (E,n,nm) of the scattered ray. The
virtue of this formulation for the change in 6mn is that it depends only
on the caustic surface and the dispersion surface of the scattered ray and
is valid irrespective of how the caustic is produced, e.g., this formula-
tion holds for the rays scattered at a curved interface, as is discussed in
Section D of Chapter II,

At the point of tangency of the scattered ray to the caustic either
puu or va is zero. For definiteness, assume that va = 0 at the tan-
gency point in question. The change in sgnF’VV across the tangency
point, as one proceeds in the direction of Yo along the ray, is simply

dP
vV

dz
change A0 in the value of & across the tangency point is
mn mn

) evaluated at the tangency point. # Thus the

equal to 2sgn (sz

Ad = 2sgn [v — P (2 )] where z, is the value of z at the tan-

mn mzdz " vv'1l 1
gency point. Since the (£,1) coordinate system is arbitrary, let it be
such that the (u,v) coordinate system coincides with it for z = z,. Note
that the (u,v) coordinate system will vary along the ray if the coordinate
systems in which the mixed second-partial derivatives of R and e
vanish are different. Using the fact that va is eigenvalue of the sym..
metric matrix whose elements are pll' P22 and plZ' it is easily

2

3 n

—;3 so that

an

- d _
established that i Pw(zl) =

nb_ = 2sgn(v__ (C-16)

mn

an

The curvature C’m of the plane curve formed by the intersection of the

the mth branch of the dispersion surface with the constant £ plane

#

It is assumed that dPW/dz # 0 since otherwise the tangency point would
be a focus.



152

passing through the point ‘i-m can be put into the form

n
c, =m0, 3, %, 332 (C-17)

when the sense of the normal to the plane curve is assumed to be that of
the projection of ¥m into the constant £ plane and the usual definition of
the sign of the curvature holds. Thus, from (C-16) and (C-17) it is seen
that
) z . -1
A _— 2 sgn Cgm ‘ (C-18)

In order to show that sgn Cgm = sgnCm, with Cm as previously
defined, it is first shown that the normal n to the caustic at the tangency
point has no component along X, The stationary point condition

= Z - .
Pl = Pz = 0 and the caustic condition Pll lf’z2 12 = 0 may be viewed as
giving points on the caustic surface in parametric form, where the wave

numbers & and n are the parameters. Using this parametric representa-

tion of the caustic, it is possible to show that the normal n is in the

direction

dz ' dz dz
ﬁo,(pzz'ai 12 an) YY1, P Tt Pra s

Ay dn Ay
n dz m 3z m 9z m dz

Py ot 2~ 0 o 3 on E)] S
with 2(2,n) as found from the caustic conditions Panz PI: =0, At
2 =2, the (§,n) and (u,v) coordinates coincide so that pZZ = va =0
and PIZ = Puv = 0 and from (C-19) it is seen that the x, component of

n is zero. Thus, n is parallel to the constant £ plane passing through
the point l.f.m' and hence a line parallel to n and passing through the
point &m lies in this plane. This line also lies in the plane normal to
Yo, XD and passing through B’-m and is therefore the intersection of the
constant £ plane and the plane normal to -\-)-m xn, Furthermore, since n
is perpendicular to zm (n is normal to the caustic and Yoo is tangent to

it), the line of intersection of the two planes is tangent to the mth branch
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of the dispersion surface. Because of this C§m = cos Y Cm where Y is

the angle between ¥m and its projection into the constant £ plane.

Since Y < 90°, sgnC‘=m sgnCm and hence (C-18) can be written

e
mn

2sgnC (C-20)
m

While (C-20) is difficult to apply in general, it is quite easily used
when the principal curvatures of the mth branch of the dispersion sur-
faces have the same sign. In this case, the sign of Cm is simply that

of the principal curvatures, e.g., in isotropic media Cm is negative.
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ABEendix D
DIVERGENCE COEFFICIENT FOR POINT-SOURCE RAYS
SCATTERED AT A CURVED INTERFACE

In this appendix the flux tube divergence factor for rays scattered
from a gently curved interface between two lossless, anisotropic media
is derived. The method used here requires a knowledge of the point of
intersection of the scattered rays with a constant z plane in terms of the
incident ray wave numbers. The divergence factor is then expressed in
terms of the Jacobian of this transformation. It has been verified that
the result derived here reduces properly: a) when the interface is
planar; b) when the media are isotropic;(43'44) c) for the transmitted
rays when the two media are identical.

The steps used in calculating the divergence factor are first out-
lined and then the complete algebraic steps necessary for this calcula-
tion are given. For convenience and clarity, quantities related to the
incident rays and quantities related to the scattered rays are indicated
by the superscripts i and s, respectively, rather than the subscripts n

and m used elsewhere.

1) Outline of Procedure
Step 1: Assume that a ray from the source is incident on the
interface z = f(x,y) at the point [xo,yo,f(xo,yo)] -- see Fig. D-1. This
ray is defined by its wave numbers [Ei,ni,xi,(gi,ni)] where xi(éi,ni) is
one of the real solutions of the dispersion relation (I-24). Since the ray
travels in the direction of the normal g_i to the dispersion surface, the

x and y coordinates of the point of incidence are given by the solution of
x4+ £0x%,y%)- 2t (8T m) =y O+ [1x%,y%)- 2 |, m) = 0 (D)
where the 1 and 2 subscripts refer to the partial derivatives of % (£,7).

Step 2: ing th 1 he i f h i
e Knowing the norma Ee to the interface at the point

of incidence, the scattered ray wave numbers can be found from Snell's
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Fig. D-1 Ray scattering by a curved interface
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law n x (_l_c_s - kl) = 0. If the scattered ray wave numbers are

[gs.ns.us(és.ns)] then Snell's law can be expanded to

n

_::s . gl =[Ks(gs.ns) - Ki(gi.ni)]n_ox_
oz

’ (D"Z)

T Y
ns - Tll =|-Ks(gs’ns) _ y1(51’n1)]n_ox
oz

which can be solved for és and 'r]S as functions of S’ and T]l.

Step 3: The normal XS to the x° branch of the dispersion
surface at the point [£°,7n°,%x%(2%,1°%)] is from (II-16)

g°=i[5°ni’(§s.ns)+xou§<és.ns)-gol/ ig(&%m )] L .ns)]2+ 1
(D-3)
with the partial derivatives u?(és,ns) and uZ(%s.ns) evaluated at
(§s.ns). Since the vector ks * io(x - xo) + xo(y - y°)+£0[z-f(x°,y°)]
from the point of incidence to an observation point along the scattered
ray must be parallel to _\J_s, the coordinates of the observation point must
satisfy
(- x®)+[ 2 8%y ]t n®) =ty -y +[ 2 - 1%,y | x5(8% %) =0 .
(D-4)
Step 4: For fixed z, (D-4) may be solved for x and y, which
are seen to ultimately be functions of £ e and 'r] Considering the pencil
of inciaent rays whose El and 'r]i wave numbers lie in some elemental
region having area déi d'r]i, the corresponding scattered rays will pass
through a small region in the constant z plane whose area is
d% dn J(x,y:8 ,n ) where J(x,y;S ,'r] ) = ax —L-E‘-—L is the
B; a'r] b'r] ag?
Jacobian of the transformation. Note that the Jacobian is a function of
z and hence of the distance L° = |_I:s | along the scattered ray pencil.

The ray divergence factor is defined in (II-30) where da(Lm) is the
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normal corss-sectional area of the scattered ray flux tube. Alternatively,

DSi(Ls) = /daz(Ls) / da7(0) where daz(Ls) is the cross-sectional area of
the ray tube in a constar;t z plane. Thus DSi(Ls) will be the square root
of the ratio of J(x,y;%i.ni) at Ls to J(x,y;%i,ni) at Ls = 0. Since the

ray structure is independeni of the choice of the (x,y,z) coordinate system,

so is the value of DSI(LS).

2} Details of the Calculation

The details of the calculation for the partial derivatives 3x/5§i I
3x/3'r]i : aylaii and aylbni appearing in the Jacobian will now be consid-
ered. Because of the length of the expressions involved, only 5x/3§i is
calculated. The remaining derivatives are listed in (D-15),(D-16) and
(D-17).

Solving (D-4) for x gives

x=x% -z - °y%)] ) (8°,0°) (D-5)

from which one obtains for constant z

dx x° o ay° 3

3" o et ¥ a2 (D-6)
where

d 8,.8 S s .8 8 3§s s .8 8.3n°

— 1 6" = 8%y = 48T L (D-7)
14 14 3E

and fxo = 0f/3x evaluated at (xo,yo) and similarly for fyo. Taking the

partial derivatives of the equations (D-2) with respect to gt yields
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.14 rs,s 8§,,8 8 ans i_i i1 "ox
3 =K(§ + (g ,T])_.-K(’B,T])—
ag ¥y a§1 "y agl 1 ]noz
n
K(g%n®) - e n)_| = (=)
3z Moz
(D-8)
an® ul ]n_oz
* (%.n) +u(§ .n)—-u@ )
agt [1 ag . 2l ! -
Mool B R i) @ /3’1)
+|% (§.T] )"((b’n . \n

st

and this set of equations may be solved for 3%Z°/3¢" and 3n°/2t', Since

n, is given by

2 2
Il_o=(-3c_o fxo -xofy°+£o)/J(fxo) +(fyo) +1 (D-9)

it is found that

n o
= (22X) = - (o0 X+ 10 o_L)
agt \n, el XY el
(D-10)
n o (o]
L.(_Z°)=-(fo c>aii+foo—L )
3g' Moz XY ag' YV 3
Finally, 3x°/3¢" and ay°/a§‘ can be found from (D-1) and are the solutions of
Y i
the set of equations
Ax° i 3x
X [0y 2 e et - (£ 024 £ 02kt oy
ag ag’ ¥V 3¢
)D-11)

2y° 30N, e
;:T - [0y - 2 Ju 087 ) - \f°> Hptpingts )
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The solutions of (D-11) for bxolbgl and ay°/a§‘ can now be substituted

into (D-10) and these expressions substituted into (D-8). The solutions

. . . a
of (D-8) for 33%/3¢! and 3n'/32" can be used to find — x *(£°,71°) in
3=l 1

(D-6), which together with axo/aii and byolaii from (D-11) gives
axlaii.

Instead of going through the above procedure in an arbitrary
(x,y,z) coordinate system, the calculations are simplified if a particular
(x,y,z) system is used. Choosing the (x,y,z) system such that at the
point of incidence, the interface is tangent to the z = 0 plane, i.e.,

f(x°,y°) = 0 and fo0=f0=0, thenn =z . Inthis case (D-11)

becomes
L O
dx i1 i
_i = z’Kll(E ln)
35
o . (D-12)
ax° i,.1 i
- J g
2l SPALELE
2
Since R | noy =0, (D-2) gives §s = 51 and ns = nl so that with the help
of (D-10) the solutions of (D-8) are
3z ® s i i i
2 - - 4 -
a=i 1-2'(n =y )(fxoxo 1 + fxoyo "12)
(D-13)
2n° (A% o) eI g b R 0y 0 u B
o AT IO M T O M2
S i i i i | B . g
whecre » , n, 11 and ", are evaluated at (£ ,n). Using (D-13) in

(D-7) and with the help of (D-12), (D-6) becomes

8% . . i s 5, S i)[ 8 i i s i i
i = (2 T lel)+zz(u -x xll(fxoxo ull+fxoyou12)+u12(fxoyoul1+fyoyox12):l S
(D-14)

In a similar manner the other derivatives appearing in the Jacobian

can be evaluated and can be shown to be
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il--(zx -zn12)+zz(x - )[ull(fOOi&Z-f-foox22)+x12(fooxlz+foo )J
(D-15)

az=li- 8 1g_i)[8 i i s if .'::]
= (2% 5=z F 22007 -x ), o(E009  +00m 5 ,(E00n)  +E00x)5)

(D-16)
and

_aL= ] i- -] ? l- i 8 i i 8 i i .
ot (2352 1pp M 221X ")[“12(§c°x°"1z”x°y°”22)+"22(fx°y°"1z”y°y°"22)]

(D-17)

With the above expressions for the partial derivatives, the Jacobian can

be written as

8.2

i
J(xoY;gp 'ﬂi) = [(Z'nni - lei)(z'uzzi- zng)-(z'xlz- zulz)

2 i2
YT ""[11"22 -(045) ][’&1‘°°+2"1z§¢°°”22f°°.] (D-18)

Sy, '8 L e, 8
- 220 KN 1 gyl 5) ]._"11f°°+2"12§¢°°+"22f°°]

2000 Ty ) I ) Jeoetoe-
+2°2% ) "11"22 ("12 11"22 ("12) Aosiap (f°y°)]
with ns, Kx and their derivatives evaluated at (El.nl). Symbolizing the
Jacobian in (D-18) as J(z) to indicate its z dependence, the divergence

coefficient D'i for the point-source rays scattered at a curved interface
is

p*t = Iz T 307 . (D-19)

The Jacobian (D-18) could be rephrased in terms of the ray-
optical quantities; a) the principal curvatures of the ns. x" and f(x,y)
surfaces; b) the angles between the directions that define the orientation

of these surfaces; c) the normal distances z = a L® and

z’ = Ei; d) the normal wave numbers x® =n_. _lgs and xi of T k

i

However, such a representation for J(z) is probably not the most
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convenient form for calculating it and therefore is not given here. Note
that the first term in (D-18) is the Hessian for the rays scattered by a
planar interfacc, the other terms being corrections due to the curvature
of the interface. From (D-18) it is seen that the divergence factor is
quadratic in z, indicating that the rays scattered from a curved inter-

face may be at most twice tangent to a caustic.
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Appendix E
RAY-OPTICAL REPRESENTATION FOR THE LATERAL RAY FIELDS

The ray-optical interpretation of the critical point condition given
in Section E-2 of Chapter II permits the re-expression of the various quan-
tities appearing in (I1I-37) in ray-optical terms that are invariant under a
rotation of the (x, y) plane. At the critical point, the phase function P(¥,n)

of the integrands of (II-4) can be written as

P(Ec, n c) [ﬁcx' + 'qcy'- "z 'J +[§c(x"-x')+ nc(y"-y')]+[?C(x-x")+'qc(y-y")+nmz ]

N,L *+N, L +N_L_ (E-1)
where Nn' NLand Nm are the ray-refractive indices given in (II-17) of the
various branches of the dispersion surfaces at the critical point and

L=lL oL =g landr =lL |.

It will now be shown that the quantities Pg(dZP/dgz), |agL/6n| /|P2|
sgn(dzP/dEZ) and exp[-j(%r- sgn P2 -arg [3g/3dn )] appearing in (II-37) can

also be expressed in ray-optical terms. From the conditioniﬁ x L =
i

-m
v X I_.,n = 0 and the form of P(§, n), it is easily shown that
= st sl s o = pillt - il g >
L, =x"-x"=P/(8_,n ) Lw y'-y'=P, (8 ,n) . (E-2)
. 2 2 . :
Expanding d P[ﬁ. nb/(g)] / d&~ and using (E-2) one finds
2
2 dn
ap _ 2 2 3 b
P, dgz_LLy Prlirt L Ly Fro t Ly Pt Ly - (%83)

at the critical point. Since 3& is normal to the curve g (&, n) = 0,it can be

= = & / Z 2 . g
written as l{, QL (io gu+x° ng) where QL 1/ gl + gz ,» the sign being

chosen such that this expression for 2& has the proper sense. Also,

gJ:%. ﬂb(g)] # 0 so that all its derivatives with respect to € are zero.

Using the above form for XL and the first two derivatives of gL[E, nb(i)] ,
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it can be shown that

2

dn Q

b L 2 2

z T3 (8 11Vey " 28112 1x eyt Br22Vex! tE=¢)
)

de
) y

Finally, at the critical point, v = = EL /LL so that substituting (E-4) into

L

(E-3) gives

2

d P - .
275 lzox L) Dimn (20 % L) L
(8 m)

. . . . +

where l?.{,mn is the symmetric dyadic having elements (Pij LL QL gLij)

with i, j=1, 2. Hence P:(dZP/dEZ) at the critical point is independent of
the choice of the (x, y) coc: Zinate system. Since P; > 0, at the critical

point
2 2 2 42 2
sgn(d P/dZ ") = sgn[Pz(d P/dg )] = sgn (on LL)' DLmn . (onI:L)]

(E-6)

and is also independent of the (x, y) coordinates. Furthermore, using (E-2)

and the foregoing expressions for v , at the critical point

L

’ (E-7)

|3g, /3| EIgLZI .

2

[ 2" v,la,l

which is independent of the (x, y) coordinates.

The remaining quantity to be considered is

exp[-j(-:;—n sgn P2 -arg /agt/an)] . As was argued in Section E-2 of Chapter
II, sgn L!.y Ly so that from (E-4), sgn pz(;c. nc) = sgn vLy' Also,
in Section E-1 of Chapter II, arg JagL(;. nb)/an was defined to be

arngL re, ‘nb+A] where A is a small positive quantity -- see text after

= sgnv

(II-35). Thus, at the critical point
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L. [ + 5 [ A 3
7 SgnP, -arg BgL/BT]- 73 sgnvLy arg gL(gc,nc+. ). (E-8)

Using (E-8), the invariance of exp[-j(3—;r sgn PZ -arg /agL/an)] will be

shown by considering the sign of v, and the shape, near the critical point,

Ly
of the trace of the KL and u.p branches of the dispersion surface in a con-

stant € = €c plane passing through the critical point. The four possible com-

binations of the sign of v, and shape of the foregoing curves are depicted

Ly
in Table E-1. The arrows in Table E-1 indicate the direction of the projec-

tion into the constant £ = gc plane of V corresponding to a wave carrying
energy in the plus z direction. The sign of vl,y at the critical point is as

specified for each case. Recall that near the branch curve, KL ) g: & v'-g: --

see text before (II-33) -- where arg JgL is assumed to be taken such that

the plus sign applies if x, corresponds to an upgoing wave and the minus

L
sign applies otherwise. The value of g: at the critical point is indicated in

Table E-1. Furthermore, the values given in Table E-1 for arngL(gc,nc+ A)

satisfy the above assumption on arg A/g!’ for 'q.q'qc'l»A . Using (E-8), it is
easily verified for each case in Table E-1 that at the critical point

ex'p[-j(%;l sgn P, - arg ,ag{’/an)] = exp[j%(Z- sgn CL):] (E-9)

where CL is the curvature of the curves in Table E-1. But sgn CL is inde-

pendent of the angle between V and the constant § =§c plane passing through

L
the critical point. Thus sgn C, , and hence the left-hand side of (E-9), will

L
be independent of the (x, y) coordinate system. For convenience, let

Spimn “g“[(io ELhy) P - 5 ® I-i:,)] - {R-0ERE)) - (e
The terms of the sum indicated in (II-37) have thus been shown to be
independent of the choice of the (x, y) coordinate system and to be expressible

in ray-optical form.
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AEBendix B

A SURFACE ADMITTANCE REPRESENTATION FOR
PLANE-STRATIFIED CONFIGURATIONS

In order to define that Z which represents a plane-stratified, loss-
less, dispersive, anisotropic r:medium above a perfectly conducting plane,
the auxiliary problem, with boundary conditions (III-26) and (III-27), was first
considered. For most values of the parameters l(-t and w, the auxiliary
problem will have unique non-trivial solutions of the form given in (III-]) for
all h # 0. At the remaining values of k, and w, which lie on surfaces in
Et - w space, non-unique cavity-type solutions will exist for hd = 0 and no
solutions satisfying the boundary condition (III-27) will exist for all hd# 0.
The non-unique solutions exist when the plane z =d corresponds to a magne-
tic field null and would give infinite values for some or all of the components |
of the impedance dyadic ? . For this reason such values of Et and ¢ are ex-
cluded from the consideration of % Although the surface impedance

formalism breaks down at these values of kt and w, a surface admittance

formalism will in general remain valid.

The surface admittance Y is the inverse of Z, when both Z and its

~ ~

inverse exist, and is regular at those values of Et and w for which % can-
not be defined. In studying the properties of Y, one would consider the
fields in the region 0 < z < d with Et’ rather t‘;lan Iit’ specified at z =d.
Thus to find the admittance, one requires that Y be such as to satisfy the
relation

(z_ xh ) =Y «(e,) (F-1)
= tz=d - z=d

for two field solutions in the region 0 < z < d. The two field solutions to be
used are those satisfying the boundary condition
wt -k, -p0)
(E,) ze. e (F=-2)

at z =d with €4 taking on two linearly independent forms. If (F-1)is satisfied
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for these two field solutions, because of linearity, it will be satisfied by

the solutions for all possible e Those values of Et and @ for which non-

du

trivial solutions exist when e 0 are excluded from consideration. The

-d
impedance formalism may, however, be used, in general, at such values.

The energy and power relations containing Y can be derived from

reasoning similar to that used for Z. They are

ap x °F s
le_ﬁt' 3k 'Et] " Pdx
X
z=d
(F-3)
T .
IZLEt T 3k Et] dy
y z=d
and
Y
T e
IS T %l = Wq -
z=d
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ABEe ndix G

GROUP VELOCITY AND POWER FLOW RELATIONS FOR
SURFACE WAVES IN PERIODIC CONFIGURATIONS

In this appendix the power flow and energy relations derived in
Chapter III for plane-stratified media are generalized lossless struc-
tures that are stratified in one direction and periodic in planes transverse
to the direction of stratification. The fundamental translation vectors
describing the periodicity of the structure in the planes perpendicular to
the direction of stratification are assumed to be the same for all planes.
In their most general form, the structures treated here consist of a
periodic array of identical perfectly conducting scatterers imbedded in a
periodic, lossless, dispersive, anisotropic medium which may be bounded
by a perfect conductor of periodic shape. Moreover, the fundamental
translation vectors need not be orthogonal.

It is first shown for surface waves propagating in such structures
that the group velocity is equal to the velocity of energy transport -- see
Section 1. For the periodic structures considered here, the velocity of
energy transport is the ratio of the integral over the coordinate of strati-
fication of the period average of the real part of the complex Foynting
vector to the integral of the period average of the stored energy density.
A proof of this relation for surface waves propagating on a periodic,
anisotropically conducting surface has previously been given by

Gans(.45) Also, Kay(46) has shown that the group velocity is in the

direction of energy flow for the specific case of surface waves in
air above a finned conducting surface. However, the problem con-
sidered by Kay is highly restricted in that no power flows between

the fins to within the approximations used in the derivation.

The relations between power flow and stored energy in a periodic
structure and the dyadic surface impedance representing the structure,
when such a representation is possible, are derived in Section 2,  These

relations are similar to (III-36) and (III-37). It is possible to represent a
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periodic structure by a dyadic surface impedance when the media above the
structure is uniform in the planes parallel to the planes of stratification of
the structure and when the transverse wave numbers and frequency are such
that at the plane on which the surface impedance is defined, the fields can

be approximated by the fundamental space harmonic.

1) Group Velocity and Energy Velocity

The most general form of the configurations covered by this analysis
consists of a periodic array of identical perfectly conducting scatterers
imbedded in a periodic, anisotropic, lossless, dispersive medium which
may or may not be bounded from below by a perfectly conducting surface
having periodic shape. The periodicity in 7, i.e., in the planes of con-
stant z, is assumed to be described by the fundamental translation vectors
a and b. These vectors, which need not be orthogonal, have the property
that, when viewed from any point p + z,2 the configuration looks the same
as when viewed from the points p + na + mb + z.z where n and m are
integers. The vectors a and b describe a unit cell which is a cylinder
parallel to the z axis, and extending from z = - ® to z =®, and whose
cross-section in any constant z plane is a parallelogram having sides
formed by a and b -- see Fig. G-1. If the configuration is periodic in
one direction only, the other translation vector may be taken arbitrarily.
The case of a configuration uniform in p is also covered here when both
a and b are taken arbitrarily.

While the discussion given in this section applies to configurations
with a periodic array of scatterers and a periodic medium, it is also valid
when no scatterers are present and when the medium is uniform in p. The
discussion is also valid when the medium, in any of the above cases, is
bounded from below by a perfectly conducting surface whose shape may be

a periodic function of p. The medium is assumed to be described by the

Hermitian tensors ¢ and y which, when the medium is periodic, are

periodic functions of p. They are further assumed to be continuous func-
tions of position except for finite jumps on a set of zero volume and are

allowed to be functions of w, The only restriction on the z dependence of
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Fig.G-1 Cross-section of a unit cell
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the configuration is that it be such that surface waves, of the form
described in the following paragraph, be solutions of Maxwell's equations.

The surface wave solutions that are assumed to exist have the

form
E(r,_.x) elp, 2._.L)
-jkt )
e ’ (G-l)
Hir: k) ha,2:i k., w)
where Et =§o - 1 k is a real wave vector and e and h are periodic

functions of p whose perxodicity is described by the fundamental transla-
tion vectors a and b. This form of the fields is consistent with Floquet's
theorem for waves in periodic configurations. The r dependence of E
and H is further assumed to be such that they approach zero as |z] = =
and E xﬂ*, as well as the electric and magnetic energy densities, are
integrable over a unit cell. Note that the entire foregoing description of
the fields applies when the configuration includes a perfectly conducting
bounding surface if the fields below the surface, which are unrelated to
those above, are taken as zero. Also, if the configuration is uniform in
some direction, e and ﬁ are independent of the coordinate along that
direction.

In addition to the above-described requirements on the spatial depen-
dence of E and H, their tangential components must satisfy appropriate
boundary conditions on the surface of the perfectly conducting scatterers
and on the bounding surface, when either of these are present, and on the
discontinuity surfaces of € and y At the surface of the scatterers and on
the bounding surface n xE = 0, and hence nxer= 0, where n is the
normal to the surface. The vectors nx E and nx ﬂ, and hence nxe
and n xh, must be continuous across those surfaces at which £ and 4
are discontinuous, n being the normal to these surfaces.

As in the case of a medium uniform in p, Maxwell's equations have

solutions of the form described above only for those values of the
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parameters Et and v satisfying some relation Ds(ht,w) = 0, which is
called the surface wave dispersion relation. Let (Et,w) be one set of
values satisfying the dispersion relation and (Et i dl_(t. @+ dw) be a
neighboring set of values also satisfying the dispersion relation. Then,
to first order, the fields associated with the latter set of values are
given by

E(r ;Et + dbt’ w + dw)

E(rik,w)+0H(r;k ,u)
’ (G'Z)

g - , 5 . m
H(rik,+dk, w+dw) = H(r i k ,w)+SE(r;k ,u)

where the variation 6 symbolizes the differential operation

) #
6 = dEt . + du-aE . Since E x H , for both sets of values of wave

VEt v
vector and frequency, is integrable over a unit cell, E X SE and
6£ xﬂ* are also integrable over a unit cell. Similarly, because of the
boundary conditions E and H are required to satisfy, it is seen that
nxO0E is zero on the surface of the scatterers and on the bounding sur-
face, when these are present. Furthermore, nx 6£ and n x 6& must
be continuous functions across the discontinuity surfaces of ¢ and y. Finally 0E
and 6H satisfy the differential equations (III-6).

Consider now the quantity V . (E* x 65 + GE x E*). In Chapter III,
by expanding the divergence of the cross-products and using (III-2),

(III-6) and the Hermitian properties of ¢ and u, this quantity was shown

to be equal to -j.wdw at points within a lossless medium, where

1 _* 3w * 3
. K EE e E'*%H . Tuf' * H is the energy density. At points

% 3¢
within and on the scatterers and the bounding surface, E x 6H+%E+H
and the stored energy density w are both zero. Hence, for all points,
the relation

% %
v (E x6§+ GEXH ) = -j2wdw (G-3)

holds. From the form of E and H in(G-1), w is seen to be a periodic
function of o .

Alternatively, using the form of E and H in (G-1), 6E and 6E
may first be expanded as
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-ik, - 0p
OE = (be-jdk - pe)e
’ (0'4)
ik, 2
6H = (bh-_ydht-gh)e

where 63 and 62 are periodic in 9. From the above equations, it is
recognized that ¢ must satisfy the boundary condition n x be = 0 on the
scatterers and on the bounding surface. Also, nx %e and n x 6h must
be continuous across the discontinuity surfaces of ¢ and 1. With the

above forms for GE and 65, (G-3) becomes
%k *
-jewdw =V'[S x6£+ 6£x£ -Zjdht'gi] (G-5)

or, since in a lossless medium the divergence of the real part 5 of the

complex Poynting vector is zero,
_ * *
-jewdw = -jZd&t +8+9V.(e xOh+bexh ). (G-6)

Note that 8 is a periodic function of p .
Solving the surface wave dispersion relation for w = w(gt), to first

order dw = dkt PO and (G-6) may be written

=

* *
dEt'(kaw-§)=j%V'(s x6£+6£x£). (G-7)

-t

] *
In general, V-(e x0%h+dexh )#0 so that the group velocity V. ¢
=it
is unequal to the local energy velocity i/w. It is for this reason that

(G-7) is integrated over the volume of a unit cell, since then the right-
hand side of the resultant equation, as argued below, is zero.

The volume integral of the right-hand side of (G-7) over the unit
cell is converted into a surface integral over the surface of the cell
using the divergence theorem. The contribution to the surface integral
from the end faces of the unit cellat z = - ® and z = ® is zero since e,
h, 63 and 62 are zero there. Next, consider the contribution from the

two side walls parallel to the vector a. On one of these side walls, the
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unit normal vector is n =z x a/|a| while on the other it is

n=-z xal|a| -~ see F:g. G-1, Bec:;uae of the periodicity of e, h,

6e and bh, the value of e xSh+bexh atapoint p + z z onone side
wall is equal to its value at the corresponding point o0 + b + z zon the
opposite side wall. Thus, for each contribution to the surface integral of
n. (g* x éh +0e x h*) from one of the side walls, there will be a contri-
bution of equal magnitude but opposite sign from the other, and hence the
sum of the surface integrals over these two side walls is zero. Similarly,
the sum of the surface integrals over the two side walls parallel to b is

also zero. Therefore, the integral of (G-7) over a unit cell reduces to

dEt - Vl—(tw J;dz “Q wda = dEt . idz ”E da (G-8)
- P L P

where f da stands for integration over a constant z cross-section of the
p

unit cell,
In order to properly interpret the above equation, some properties

of the integral of s must be established. It will first be shown that for

any value of z, ffszda = 0, To see this, consider the surface integral of
P

8 * n over the surface enclosing that portion of a unit cell lying below
some constant z plane. Since the medium is lossless, V - 8= 0 and
hence, using the divergence theorem, the surface integral is zero. The
integral of 8° n on the end face at 2 = - ® is zero because 8 is zero
there. Using the same arguments given previously for the surface inte-
gralof n. (3* x 6h + be x h*), the integral over the side walls can be
shown to be zero. Thus, the surface integral on the top face of the region,

where n = Eo' must be zero. Since the value of z on the top face was

arbitrary, IJ szda = 0 for all z. The significance of this result is that
P

the triple integration of s indicated on the right-hand side of (G-8)

results in a purely transverse vector. Because of this and the fact the

kx and ky can vary independently, (G-8) implies that
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u)j:dz .rwda= j?dz.”.sda. (G-9)
t - a0

J
P P

k

The triple integral of w in the foregoing equation is seen to be the
electromagnetic energy in the unit cell. The meaning of ths integral of
8 is shown below to represent the average power flow in the surface
wave times the cross-sectional area of the unit cell. In demonstrating
this, the (u,v) coordinate system, in the (x,y) plane, is introduced.
The u coordinate is taken in the direction of the translation vector a
and v is taken in the direction of b -- see Fig. G-1. This coordinate
system has the property that for a given value of u, the quantities w
and 8 are periodic functions of v with period b = I_bl » while for a
given value of v, they are periodic functions of u with period a = |3| !

Let By T E/a be the unit vector along u and - B/b be the unit
vector along v. Also, let b and Y. be a reciprocal set of vectors to

u_and 2 having the properties that IR AR S P 0 and

u, . Eo SEyT g =1, In the (u,v,2z) coordinate systemn, £=Bosu+!osv+iosz'

where su =84, sv =g*v, and 8 =8°*2 , The area element da can

- =1 = =g

be expresscd in terms of du and dv as da = a—: du dv, where

A = ab lEo x 10' is the area of any constant z cross-section of a unit
cell. Recalling that ” s, da = 0 for all z and defining the triple integral

of s appearing on the right-hand side of (G-9) as AS , for reasons that

will become apparent later, it is seen that

= % T b 3
5= dquvJ.(Eo s ty s )dz. (G-10)
o 0 -®
o
Note that since 8, and hence I 8dz, are periodic functions of v, their
-

integral over a period in v is independent of where the start of the period

@
is taken. Similarly, s, and hence rdv Ii dz, are periodic functions of
[o} -0

u so that their integral over a period in u can be started from any point.

For convenience, the periods have been taken as starting at u=0and v=20
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in (G-10).

E o As an aid to the interpretation of (G-10), it will be proven that

Idvf sudz is independent of u. Consider a region formed from that
[o) -l
portion of a un’ cell lying between the plane u=0 in the (u, v, z) coordinate

system and the plane u=a < a -- see Fig. G-2. In this regionV.8=0 80
that the integral of 5 - n over the surface of the region is zero. The in-
tegrals over the end faces at |z| =® are zero and the integrals over the
side walls at v=0 and v=b cancel because of the periodic dependence of 8
on v. On the side wall u=a, the normal is given by ﬂ=31/ IBII , while on
the side wall at u=0, n= -EI/IBII . Thus, the surface integral over the

infinite cylinder, whose cross-section is shown in Fig. G-2, reduces to -

b o b o
1 1
T_T dv | (8 ) dz - T——r dz | (s ) dz=0 . (G-11)
21 J.o _£ Y u=a £ J; _£ % u=0

b ]
But a is arbitrary so that J.'va‘su dz is independent of u. A similar argu-

0 .o 2
ment can be used to prove that I dufsvdz is independent of v. Using
o ®

these two facts, S given in (G-10) is seen to be

20 b @® XO a ®
5 =TJ'ova' s dz+—= [du[s az . (G-12)
- [e] O )

It will now be shown that § as given in (G-12) can be interpreted as
the average power in the surface wave. Consider the planar surface lying
‘between the two lines u = al, v =81 and u = az, v =Bz. which are parallel
to the z axis. In order to calculate the total power P passing through the
above planar surface, construct an infinite cylinder of triangular cross-

section between this plane and the two intersecting planes u =a_ and v= Bl =

2
see Fig. G-3. The total power P is the surface integral of 8 - Vv, where v
is the unit normal indicated in Fig. G-3. Again, the fact that V. 8 =0 re-

quires that P be equal to the power entering the triangular cylinder through
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v
b
Y,
0 a — )
Y,

Fig. G- Cross-section of cylinder used in proving th-t .;r va oud; is

o -®

independent of u

(@, B8) @B

Vs |

Fig. G-3 Cross-sgection of the triangular cylinder
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u=0a_ and v = 8, sides of the cylinder.

2 1
The unit normal on the u=a, side of the cylinder is 21/ |31| and
that on the v =8 side is v / lel so that
Bz © c’l ©
P"-—T-l "va"(s ) dz+-|-—|-l _[du_[(s )  dz  (G-13)
21 J Y us=a I V=8
81 - 2 a, - 1

where 8,8 u ands_=8.v.. Ingeneral, 8

1 v 2
an integral number of periods along v and hence the first integral in (G-13)

- Bl will not correspond to

cannot be exactly replaced by

& b o
iz—bi—‘]. dvjsudz c
0 .

which, as previously proved, is independent of a However, the absolute

error introduced by making this replacement is azlways less than or equal
to some fixed number which is independent of Bl- BZ' i.e., it is independent
of the length L in Fig. 3. The error is due to the deviation of the actual
power associated with the leftover fraction of a period from that same frac-
tion of the power associated with a complete period. Since the absolute
error i as a fixed upper limit, the relative error decreases as L increases.

In the same way, the relative error involved in replacing the second integral

of (G-13) by
a _a a o

1 zfdu_rs dz ,
a v

(o] -0

which is independet of Bl' can be made arbitrarily @mall by selecting L large
enough. To within the above-described approximations, P can be written

B,-8, b =

§ ") “17% ¢ op
P = mfodv I sudz + E‘FT J‘duJ‘ Svd'.'. . (G'14)
= 0O e

In order to find 82- Bl and 0,1-0.2 in terms of L and v, the law of

sines, which can be written as
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o xwg) 2y Logxtzoxu] 2, - by, xz, xw]

L 32-31 0.1-0.2

z
)

’ (G'ls)

is used. From (G-15) it is found that

—TEJ—— =L2.20 H —Tx_l'—=L¥-\_)o . (0'16)

P=Lv.S . (G-17)

Equation (G-17) serves as the basis for interpreting § as the average power
flow for the surface wave as a whole, in the sense that the power passing
through any plane surface infinite in z and lying between two lines parallel
to the z axis is given approximately by the normal component o£_§_ times

the width of the surface. Further, the relative error in the approximation

decreases as the width increases.

Defining w by the equation

W‘=1-AfdzJ‘ wdz , (G-18)
-t p

W is seen to represent the average energy in cylinders infinite in £, parallel
to the z axis and having normal cross-sections of unit area. Finally, re-
calling the definition ofE -- gsee text before (G-10) -- (G-9) can be written

as

v, w=S/wW . (G-19)

Thus the energy velocity E/W of surface waves in periodic configurations

is equal to the group velocity.
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2) Surface Impedance Representing a Periodic Configuration

In many configurations of the type described in the previous sec-
tion, the entire region above some plane z =1 is filled with a medium which
is uniform in p rather than periodic. In such cases, it is sometimes possible
to represent the effect of the structure below a plane z=d > 1 on the propa-
gation of fields having the form (G-1) in the region z>d by a dyadic surface
impedance defined at z=d. This impedance representation is possible in
those ranges of values of Et and w for which the higher space harmonics
that go to make up e and h in (G-1) will have decayed sufficiently so that e
and h can be approximated at z =d by the zero-order space-harmonic fields,
which are independent of p. Note that in this discussion Et and w are inde-
pendent variables, i.e., they are not required to satisfy a surface wave dis-

persion relation.

As in the case of a plane-stratified medium above a perfectly con-
ducting plane, which was discussed in Section D of Chapter III, two linearly
independent solutions of the form given in (G-1) in the region z <d are
needed to uniquely define the dyadic surface impedance Z through the re-
lation

) =Z .(z2 xh,) p (G=-20)
zzd ~ g z=d

In writing (G-20), is assumed to be sufficiently large so that &, and b-t are
indeed independent of p. Moreover, it is assumed that none of the linearly
independent solutions in the region z<d has a magnetic field null of the
fundamental space harmonic at z=d, since otherwise Z could not be uniquely
defined. However, when such a null exists at z=d, it is in general possible
to fc;rmulate a dyadic surface admittance representation for the structure

in a manner similar to that given in Appendix F for the case of plane-
stratified configurations. Relation (G-20) can now be used as a boundary
condition at z =d when solving for the fields in the region z > d and ensures

that the transverse fields for z> d will connect continuously to valid solu-

tions in the region z<d -- see Section D of Chapter III.
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When the structure below the plane z=d is such that Z is anti-
Hermitian, it will be shown that the power flow and stored energy below
the plane z =d can be computed from relations analogous to those of
(I1I-36) and (III-?7). The dyadic surface impedance will be anti-Hermitian,
if, as will be assumed, the region in which the waves exist is bounded
from below by a perfectly conducting, possibly periodic, surface. Note
that the presence of the bounding conductor is sufficient to ensure that Z
is anti-Hermitian but is not a necessary condition. The presence of the
bounding conductor ensures that the average power in the z direction is
zero, i.e., that ﬂszda =0, as can be seen from the proof given in the

P
previous section. At z=d, e, and ht are independent of p so that s, is

independent of p and must therefore be identically zero. This last fact

implies that Z will be anti-Hermitian.

As in the previous section, the fields at neighboring sets of values
(_l_(_t. w) and (£t+d_l_c_t, w +dw), where d_l_(_t and dw are now independent, are
considered. Requiring the derivatives of E and H with respect to kx, ky
and w to exist, the fields at (_l_<_t+d5, w+ dw) are again givern to first ordev
by (G-2). Expansion of the quantity V. (E*x6l_{_+ 8Ex I'_-I_*) leads, as before

to (G-6), which may be written as

—

wd -dk +§ = j2 9. (¢*x 8h+bexh’) . (G-21)
Equation (G-21) is now integrated over the volume of the region composed
of that portion of a unit cell lying below the plane z=d. Taking the fields
below the perfectly conducting surface, which are unrelated to those above,
to be zero, the z integration may be taken from z=-® to z=d. The volume
integral of the right-hand side of (G-21) is converted to a surface integral

using the divergence theorem. As previously argued, the net contribution

from the integrals over the side ‘walls is zero because of the periodic nature

of e, h,be and 62. Since the fields are zero at z = -», the contribution

from the end face at z = - is zero, and hence the integration over the
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entire surface reduces to the integral over the end face at z =d of the
quantity z,: (E*x dh+ ésxh*)z=d. But, by assumption, this quantity is
independent of p for z=d, and hence its integral is equal to the product
of the area A of the end face and the quantity z, ¢ (S*x 6h+ Bsxh*)Fd.
If the operation & is applied to (G-20) and the resultant equation
for (f;st)z=d is used together with (G-20) itself and with (III-17) and the

anti-Hermitian property of Z, it is seen that

* %
z (e xbh+sexh) . = -[(onht)- 5§.(onht)]z=d. (G-22)

Thus the integration of (G-21) over the region described above leads to

the relation

1 * — 2=
-,_[(z xh, ) 5§.(30x§t)]z_d- W ode-dk -5, . (G-23)
where
d
4 i r
W,=3 IdzJ wda (G-24)
-® P
and the transverse vector §d is given by
d
_
By=x Jdz[[saa . (G-25)

Because dkx, dky and dw are independent variations, (G-23) implies

that
ol * 3 _
Jz[‘io"ht ) 3 2 -(EQ*BJ] =S ax
b'q z=d
(G-26)

2 *3 }
E[(onht : B—R; g:. (onﬁt)] z=d- de

and that
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.1 % 3 _
-Jg[(goxht)- £ §o(goxht)] =W, . (G-27) 1

z=d d

From the definition of Wd' the term on the left-hand side of (G-27) is

seen to represent the average electromagnetic energy stored in cylinders
parallel to the z axis, extending from z=-« to z=d and having cross-
sections of unit area. The interpretation of Sd' and hence the terms on
the left-hand side of (G-26), as the average power flow below the plane
z=d is similar to that given in the previous section for surface waves in
periodic configurations. That is, the power passing through any plane sur-
face extending from z = - to z=d, and lying between two lines parallel to
the z axis, is approximately given by the normal component of§d times the
width of the surface, where the relative error in the approximation de-
creases as the width increases. Proof of the validity of this interpretation
of §d follows exactly that given in the previous section for E, with the end
face at z == replaced by the end face at z=d. The replacement of the end
face at z == by that at z=d is possible since the only property of the end
face at z == that was used in the discussion of 5 was that 5, =0 there; in

the present problem s = 0 at z=d.

Thus, for structures that are periodic in two dimensions and that
can be represented at some plane z=d by an anti-Hermitian dvadic surface
impedance Z, the average power flow S and average stored energy Wd in

the structure can be found knowing only Z and (ht) _—
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Appendix H

ON THE POSSIBLE EXISTENCE OF H-TYPE SURFACE WAVES
ON A UNIAXIAL PLASMA SLAB
The purpose of this appendix is to investigate the possible con-
tribution to a surface wave field from the plane wave fields in the plasma
that are associated with the solutions » = = kz - 5:' of the plasma wave
dispersion relation. The vector character of these plasma waves is that
of H-type modes and has the form

’

e = C[g:_ox -Eokx]

(H-1)
h' =e9-[-x k k +y (kz-kz)-z wk ]
= wuo =0 Y X o o Y | =0 ¥

with C an arbitrary constant. The vector character of those plane waves
in the air regions that have the H-type mode form, and will thus allow a

simple application of the continuity conditions at z = #d, is

Blxg %y = 2ok

-—a

(H-2)
., _ D 2 .2
B [-5okykx ty (k- ky) - 3o"aky]

(o]

with = 2 ja and a as defined in Eq., (IV-11). Note that x =+ ja also.

In Region 1, ® ~must be taken as -jato ensure that E and H are
zero at z = ®, Similarly, in Region 3, N must be taken as ja. Denot-
ing the amplitudes in Regions 1 and 3 as D1 and D3. respectively, and

letting C, and C, be the amplitudes of the plasma plane waves corre-

1 2
sponding to x = -ja and x = ja, respectively, the continuity conditions

at z = d result in the equations

(H-3)

when the fields in Region 2 are assumed to be the sum of the two H-type

plane waves. The continuity conditions at z = = d can be written as
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D3 e-a'cl = -C1 ea'd + Cze.a'cl
(H-4)
-ad _ ad -ad
D3e = Cle + Cze

These equations have only the trivial solutions C, = C2 = D1 = D3 =0

and hence no surface wave can exist whose fields in the plasma are a

sum of the two H-type plasma plane waves, which propagate as x = +ja.
The physical reason why no surface wave exists that contains the

above-mentioned plane waves is that the waves of this polarization do not

''see'' the plasma, since the infinite D.C. magnetic field along y prevents

the electrons from moving in response to an R.F. electric field that, as

in this case, is purely transverse to y. In effect, for waves of this

polarization, no slab on which to have surface waves is present.
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A description of the far fields radiated by an electromagnetic point source
n the presence of bounded, lossless, anisotropic media is formulated in terms of ray
ptics. The ray-optical description is a generalization of classical geometrical optic
nd has previously been used to describe the fields radiated in isotropic media and
hose radiated by line sources in anisotropic media. In formulating the ray-optical

scription, the fields radiated by a point source in the presence of a planar interface

tween two homogeneous, lossless media of arbitrary anisotropy are first presented
n terms of a double Fourier integral. This rigorous integral representation is then
valuated asymptotically to find the first-order stationary point, branch curve and su
ace wave pole contributions.

13 ABsSTRAL Y,

Using the equality of group velocity and velocity of energy transport for

ane waves in anisotropic media, the stationary point contributions are interpreted in

rms of direct and scattered (transmitted and reflected) rays and the associated field
re cast into ray-optical form. Locally, the direct and scattered ray fields are those
f plane waves carrying energy in the ray direction and are scattered at the interface
ccording to Snell's law. The ray-optical forms of these ray fields exhibit their
ependence on properties local to the ray path, thus permitting the extension of the
ay-optical results to problems not amenable to rigorous analysis./ Such an extension
s considered for the case of scattering at a gently curved interface between two

mogeneous anisotropic media. The branch curve contributions are interpreted in

¢ of lateral rays whose fieldu also are locally those of plane waves carrying energy
n the ray direction.
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