



































4 BASIC QUALITATIVE CONSIDERATIONS

this motion at the item-cushion interface and as it proceeds further and further
into the item. _

The motion may be vibratory or it may constitute mechanical shock. Vibra-
tion is variation with time of the magnitude of a quantity. This quantity is
descriptive of the motion or position of a mechanical system and its magnitude
is alternately greater and smaller than some average value. Mechanical
shock, on the other hand, is characterized by significant internal forces in a
system resulting from sudden changes in excitation. Mechanical shock
exists when a force, position, velocity, or acceleration is suddenly changed,
exciting mechanical transients in a system.

The definitions of shock and vibration given in the preceding paragraph are
both accurate and inclusive; they are made to cover all cases in which the two
words can appear. For expository purposes, the thoughts of two authors are
borrowed.

Morrow [1] has defined shock as a pulse, a transient, or a change of accelera-
tion which stands out above the general vibration level and occurs in a
relatively short period of time. This particular view permits one to consider
a shock as a special case, warranting separate analysis, in the universe of
motions to which an assembly may be exposed.

Fung (2] prefers to consider four separate types of shock problem. These
depend largely on how the shock occurs and are:

1. Impact —This form of shock occurs in aircraft landings, in collisions, in
package handling, and the like. It is frequently characterized by a change of
velocity and was called velocity shock by Crede (3].

2. Imposed external loads - Typical examples are blast shock on buildings
and near-miss explosions in general.

3. Ground acceleration — Here the base (or substrate) undergoes a sudden
change in motion. Examples are buildings shaken by earthquakes, packages
rattling in a vehicle, or instruments mounted on a larger structure which
undergoes some form of shock.

4. Aecroelastic shock —Typical of this are gust loads on aircraft and ship
slamming.

At least part of the difficulty in achieving satisfactory definitions which
separate the meaning of "shock” from the meaning of “vibration” is that
essentially the same equation is used in both types of problem. Asan illustra-
tion, consider the simple systems shown in Fig. 2.2. In Fig. 2.2(a) a mass m
is supported on a fixed foundation by a spring and a dashpot. The mass is
then subjected to a force varying with time, Fi(¢). The equation of motion for
this system is

m%. + ¢ X, + kx, = Fi(t). 2.1

If the mass were simply displaced and then released and allowed to vibrate
freely, Fi(t) = 0 and Eq. (2.1) would become the classical equation for damped
free vibration.

Figure 2.2(b) is similar except that the excitation is the motion x,(¢) of the
foundation. The equation of motion for this system is

mx, + cxe + kxo = kx/(t). (2.2)




































16 THEORETICAL APPROACH TO STRESSES IN A CUSHION
with both a%v/a¢?® and a*w/dy? equal to zero, or
Vit =pulp

with d%u/ay* = 0.

In the former case, there are longitudinal waves traveling in the x-direction
with the velocity of dilatational waves; in the latter, the motion is transverse
and parallel to the wave front and moving with the speed of distortional waves.
This does not mean that waves of the two types cannot coexist in the same
solid, but it does mean that longitudinal motion is not affected by trans-
verse motion, and vice versa; this permits emphasis on motion in any chosen
direction.

Let us see how far this theory will go, when applied to cushions with finite
dimensions. Consider a cushion such as that shown in Fig. 3.2; the shape
of the upper surface being any closed curve whose area is A..

S3A ¢

T, Fic. 3.2. A finite cushion.
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When the stress is compressive, a plane wave obviously will no longer
exist if the column buckles. The maximum allowable stress [30] for a column
with unfixed ends is given by

_ wEl,
T A TY

where I, is the area moment of inertia and T. is the cushion thickness. In
practice, stresses less than this should be used. Assuming reasonably large
values of the dimensions in the y and z directions, Kerstner’s [31] rule of
thumb,

a

3.17

A > (1.33T.3, . (3.18)

proves satisfactory in practice.

Because of the boundary conditions imposed by the side walls, great theoret-
ical difficulties are encountered in considering a cushion as a bar or uniformly
stressed plate. The only complete theoretical treatments are concerned with
uniform bars of circular cross section. These solutions involve the frequency
and wavelength of the disturbance, the radius of the cylinder, the elastic
constants A and u, and the density p. Even these are not exact for cylinders
of finite length. When the length is very much larger than the radius, the
residual stress becomes very small. In the exact theory, the waves move with
the dilatational wave velocity. In the simplified solution (satisfactory only
when the wavelength is approximately ten times the radius), the wave velocity
is found to equal (E/p)"t. The Poisson effect is thereby ignored; actually it
is very small, sometimes negligible, for many cushions. From the definition
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of v in terms of Lamé’s constants (column 2 of Table 3.1) it can be seen that
a necessary condition for v = 0 is that A be zero also. With A zero, dilatational
velocity becomes (2u/p)'3, while E becomes equal to 2u. Thus, V; must
take on the value (E/p)'*, as indicated by the simplified theory. In other
words, when Poisson’s ratio is truly zero, the velocity given by the simpli-
fied theory will hold regardless of the dimensions of the top surface area,
A, up to the buckling stress limit.

For plane waves passing through plates (dimensions of A, are large com-
pared with T. as in Fig. 3.2), Bancroft [32] suggests a distinction between
those cases where lateral motion is inhibited and those where it may occur
without restriction. When lateral motion can occur freely, the operative
elastic constant will be E; where it cannot, it will be A + 2.

Soper and Dove [33] examined the problem from the standpoint of an in-
fluence zone adjacent to the free edge of a cushion undergoing an impulsive
loading. They considered a flat cushion confined top and bottom, as shown
in Fig. 3.3. The stress laws of the cushion are linear and isotropic, and the
system is infinite in the z-direction.

Ll x
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SIS

Fic. 3.3. Cushion system of Soper and Dove [33];
2-axis is normal to paper.

ool

The stress laws applicable to the material in Fig. 3.3 are
Eer=0:—vo, vo,,
Eey=0,— vo: — vo,, 3.19)
and
Ee; =0, — vor —va,.

Material deformation begins with an instantaneous compression in the
x-direction to a stress of o.. Immediately following compression, the state
of strain in the material is everywhere constant, since there has been no time
. for waves to travel from the stress-free edges into the material. The con-
ditions at this moment are

¢y=¢l=0v01=avv

from which we obtain, by substitution in Egs. (3.19),

o, (3.20)

and

“=—'F (3.21)
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Fio. 3.6. Typical stress-strain diagram
for an actual material under cyclic stress;
OA represents initial loading, and ABBA

is complete hysteresis loop.

A number of theories have been advanced to account for the phenomenon
sketched in Fig. 3.6. For organic materials, the causes have been traced to
the behavior of individual molecules; excellent discussions of these areas
may be found in Alfrey [15), Ferry [20], Houwink (23], and Tobolsky, Powell,
and Eyring [37]. In metals, a substantial cause appears to be the relative
motion of individual crystals of the material; here, Zener's text [38] is con-
sidered classic. Lazan and Goodman [39] summarize by pointing out that
damping may be associated with, but not limited to, plastic slip or flow,
magnetomechanical effects, dislocation movements, and inhomogeneous
strain. Kolsky [22] emphasizes the distinction between “static” hysteresis
(where the damping is practically independent of frequency) and frequency-
dependent energy losses (which may be considered viscous in character).

Regardless of root causes, the engineer must realize that the comfortable
world of solids, liquids, and gases, with their well-defined laws of behavior,
does not necessarily exist. Explanations of energy losses in cushions are
forthcoming in the field of “viscoelasticity,” a coined work which describes the
fluid characteristics of deformed solids. Various aspects of viscoelasticity
will be discussed in the following sections, in order to establish a frame of
reference within which we may assess the current state of development of
cushioning theory and practice.

3.2.1. Basic Concept of Viscoelasticity. Solid materials which possess
certain fluid characteristics are called viscoelastic. They exhibit some
qualities of rigidity characteristic of solid bodies but, at the same time, they
flow and dissipate energy by frictional losses as do some fluids. Heat is
generated by friction; therefore, thermal effects accompany mechanical de-
formation and flow.

Investigations of viscoelasticity are not new. However, possibly because of
the demands of solid-propellant technology, what was once a quiet theoretical
backwater has become one of the most active fields of research in theoretical
mechanics. As an example of its activity, the files of the Defense Documenta-
tion Center produced about 300 abstracts of reports treating various aspects
of viscoelasticity which had appeared between 1961 and 1966.

































32 THEORETICAL APPROACH TO STRESSES IN A CUSHION
~w? Clo)r(w) =1, (3.53)
which may also be written
E*Y*=1. (3.54)

Note that complex modulus is defined as a real term multiplied by e®. Using
Euler’s rule, and other conventions, E* may take on any of several forms

E*=Ee®*=FE(os§+isind)=E,(1+itan 8)=E, +iE;, (3.55)
where
|E*| = (E,? + E4*)"2,
and

E., the real part, is called the storage modulus while E, the coefficient of the
imaginary part, is called the loss modulus.

The preceding approach to the concept of a complex modulus existing in the
presence of sinusoidal excitation is adapted from Fung’s text [11]. It was
chosen for use here to show that a complex modulus can be thought of as
existing for any material exhibiting creep or relaxation behavior.

For linear viscoelastic materials a more direct approach is possible using
Skudrzyk’s relation, Eq. (3.42). When stress varies sinusoidally as in Eq.
(3.45), the partial derivatives in this relation can be expressed as

"o

EYOR (iw)o,
5 (3.56)
e .o
Y (iw)me.
Thus, Eq. (3.42) becomes
o3 Adio)=e- S B (iw)m, (3.57)
n=0 =0
which may be written
xoT_blw)+ibw)
B = = ride (3.58)

where a'(w), a"(w), b'(w), and b"(w) are functions of the frequency. Since
the ratio of two complex numbers is a single complex number, there is a single
complex number for the complex modulus.

When a Voigt-solid model is used, complex compliance is the quantity
usually found first, while with a Maxwell model, the complex modulus is the
easier to find.

With the rules set forth in the previous section for establishing the re-
sponse functions of generalized Maxwell or Voigt solids, Skudrzyk's scheme of
presentation can be followed; then, after some manipulation of complex
numbers, a specific expression for the complex modulus or complex com-
pliance of any linear viscoelastic model can be derived. Some simple values
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are shown in Table 3.4. Generalized expressions, using the notation defined
in Fig. 3.13 are

E*=E#+i (_}_4._1_)—‘
! i E_; iwC'j ’
(3.59)
Y*=Y*+ 3 (E; + iwc)),
Jj=3

where the complex compliance or complex modulus for the first unit are taken
from the simple models in Table 3.4.

TaBLE 3.4. CoMpPLEX MobuLl AND COMPLIANCES
oF SOME SIMPLE VISCOELASTIC MODELS

Tvpe Solid Complex Modulus Complex Compliance

i
Ipe S0 Ex Ew Y« Yo

. 1
Elastic E, 0 E 0
Dashpot 0 c 0 51—‘
Maxwell we? B © B2 1 1

E|’+wc|’ E|’+w’ C]z E| Cy
, E wic

Voigt E ¢ B iaici| B toton

Consider the standard linear solid shown in Fig. 3.11(a). The stress law
applicable to this unit is

E-zo‘ + C-z('T = E|E') €+ C (E| + E)) €. (360)

From the sinusoidal stress input and strain response, the complex modulus is
found {47] to be

E*=F, l+%'—£";—-l—'+i%‘—l‘_l—v (3.61)
! wr'+w—r, ' wr' +——

where 7' = c,/E, and is the relaxation time of the system. From Eg. (3.55),
the real part of the complex modulus is

E,=E +E—"—, (3.62)
ot +—
wT
and the loss tangent is
tan § = B E 1 (3.63)
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Superposition is therefore acceptable even for nonlinear complex compliances
and moduli. Since Davis showed that linear complex moduli and com-
pliances were special cases of the nonlinear; it follows that mixed models can
be developed should the need arise. There is such a need —for materials
exhibiting a collapsing-column effect in compression, eg., foamed elastomers.

Relationships between complex moduli and complex compliances have been
derived. It has been shown that these derivations can be extended to non-
linear materials, and some examples have been given. The derivation of the
formal expressions for complex modulus and compliance began with the
concept of creep and relaxation functions which were shown to be interrelated
in section 3.2.2. Thus, all four functions are interrelated through simple
mathematical operations. Figure 3.17 summarizes these interrelations and
makes a fit ending to this section.

COMPLE X COMPLE X
COMPLIANCE [o—nLCEBRAIC MODULUS
Y INVERSION E*
s
b3 @
g8 |2
= clo
gle HE
ole ol Fic. 3.17. Block diagram of interrela-
= - tions among viscoelastic characteristics.
DiTaranto {78].
CREEP RELAXATION
FUNCTION INTEGRAL FUNCTION
cn TRANSFORMATION )

3.2.4. Time and Temperature Superposition. Equations (3.24) state
that stress is a function of strain, time, and temperature. In sections 3.2.2
and 3.2.3 the heat factor was ignored, although always with the tacit ad-
mission that any material constants developed would be affected by changes in
temperature. This section considers the effects of temperature on the per-
formance of viscoelastic materials.

Temperature changes affect the moduli of viscoelastic materials in very
much the same manner as changes in frequency. Figure 3.18 summarizes
this story and is typical of all materials with slight molecular cross-linking.
Performance is divided into three zones:

1. The glassy zone where the storage modulus is large and the loss modulus
is small, so that behavior resembles that of a stiff elastic material;

2. The rubbery zone, occurring at low frequencies or high temperatures,
where the storage modulus and the loss modulus are both small and, therefore,
energy dissipation is small; and

3. The transition zone, where the loss modulus peaks.
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Fic. 3.18. Frequency and temperature effects on complex
moduli.

Egq (dyne/sqcm)

c g
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Fic. 3.19. Approximate behavior of E, and loss tangent over a wide range of
frequency and temperature; sketches are based on experimental data for a
carbon-filled buna-N. Nolle [76].

Most practical shock and vibration problems are associated with the glassy
and transition zones.

The effects noted occur simultaneously and demand a three-dimensional
plot. Nolle’s work in this area [76] is a classic. He derived data for natural
rubber, buna-N, butyl, neoprene and GR-S; his results for carbon filled buna-N
are shown in Fig. 3.19.

Prolonged vibration at a given frequency will produce heat which will often
not dissipate as rapidly as formed. The result is an increase in the tempera-
ture of the material and, as Fig. 3.19 shows, a change in the mechanical
properties. Fortunately, in most cases this particular problem can be ignored.
Heat transfer and buildup is usually quite slow. However, in evaluating
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Fio. 3.21. Shear compliance of polyisobutylene: (a) original
data at 22 temperatures, and (b) reduced curve at 25°C {79).
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Fig. 3.26. Relation between model
density and parameter @; [90]. o.if
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These relations are reported as keeping the same general form even for
more complex foam lattice shapes. For example, when n randomly dispersed
threads enter each intersection and the intersection is approximated by a
sphere of surface area nD?, the density of the foam is still given by Eq. (3.102).

When a random structure is stressed in tension, Young’s modulus is

Ey=En- 2 (3.103)
S m 2(1 + Ql), .
which differs from the previous value by a factor of 1/2.
Equations (3.102) and (3.103) indicate a relation between density and foam
modulus through the factor @,. Figure 3.26 plots the experimentally mea-
sured relationship and the theoretical relationship.

0.4

Fic. 3.26. Experimental relation between the
ratio of the Young's moduli of foam and solid
rubbers, E,/E ., and the volume fraction V, of
rubber in the foam; full curve is the theoretical
relation, and dashed curve represents the
limiting form of the theoretical relation for low-
density foams [90].
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TABLE 3.6. SoME RESULTS BY VENNING AND GUTTERIDGE

Pulse | Peak Peak
Material Length | Stress ea’

.. | Strain

(msec) | (psi)

4-pef rubberized hair 1256 0.58 | 0.23
4-pcf rubberized hair 214 1.03 | 0.38
2-pef polyester urethane 136 192 | 049
12-pcf open-celled polyvinyl chloride | 145 243 | 0.83
Cellulose wadding 152 142 | 0.92

The device used to obtain the results of Table 3.6 was a standard vibration
generator modified to provide a 2-inch stroke. A later modification, currently
being checked for performance, includes the use of air bearings to reduce
spurious chatter. The largest velocity which can be achieved with the
existing experimental rig is determined by the ratio of the peak force avail-
able to the total moving mass. On the currently available machine, peak
velocity is limited to about 20 inches per second, about one-fifth the velocity
attained in an 18-inch drop test.

Further, Venning's device starts with the compression platen in contact
with the cushion, applying a measured static stress. It is obviously impos-
sible to create a true-velocity step at the start of a compression stroke; this
would require infinite force. Figure 3.35 shows a comparison between
analog-computer results and test results at large strains. Venning attributes
the discrepancy to one or more of the following possible causes:

1. Low-frequency stiffness of the model being higher than that of the
actual sample;

2. Use of viscous damping elements in the model leading to higher fric-
tional forces than necessary; and

3. Compression velocity in the experimental measurements being too low
during the initial part of the compression stroke.
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Fi6. 3.35. Venning’s comparison [91)] between computed and
measured results at finite strains of a polyurethane foam.
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TaBLE 3.7. ScALING FacTORS FOR ELECTRICAL ANALOGS

Mechanical Quantity Electrical Quantity Relationships
Name Symbol Name Symbol

Mass m Inductance L m=S8,L
Displacement x Charge Q =8,Q
Time tm Time te tm=Ss3 t.
Velocity |4 Current I V=S8.1

Force F Voltage E F=S,E
Damping constant ¢ Resistance R c= SeR

Spring compliance | 1/k Capacitance c 1/k=8;C
Frequency [im Frequency fe fn= Sy fe

n84 = Sz/ss, 8, =8,8:/8;%, Ss = S|/S.1, S;=8;%8,, Ss = 1/8,.

Using an analog-computer representation requires selection of the correct
dynamic model. Soroka [94] shows many such analogies. The basic shift
from mechanical to electrical systems is attained by using the analogies
summarized in Table 3.7. Although eight scaling constants are shown, the
last five (as noted in the footnote to the table) are functions of the first three.
Note, further, that it is possible to slow down the time scale (S;) so that a
transient occupying a millisecond in real time can take a full second on the
computer, thus permitting the use of relatively inexpensive recording devices.

Osborn and his associates at Wilmot Packaging, Ltd. [95] are working on a
larger version of Venning's initial concept. This device will accelerate the
moving head before it comes in contact with the cushion surface, so that
higher initial velocities will be possible. Because of the general compact-
ness—as compared with a conventional drop tester or a pendulum impact
rig —accurate measures of deflection under dynamic load should be possible.
After making the necessary checks, we should obtain some interesting results
more closely approaching the velocity-shock situation.

Volz’ model [89] is shown in Fig. 3.36. This is more complicated than
Kosten and Zwikker’s model {65] (though less complicated than Venning's
[91).

The element K, represents the nonlinear static load deflection charac-
teristics of the foam. The changes in the Maxwell element are due to changes
in strain rate. These two elements, added together, produce the dynamic
stress-strain curve independent of any effects due to trapped air.

3

{89].

m
Fic. 3.36. Volz’ model L% _I_
of a polyurethane foam X :{( {P
i
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Chapter 4

PEAK SHOCK TRANSMITTED
BY A CUSHION

A designer must nearly always begin by evaluating the peak acceleration
at the interface between the cushion and the object he is trying to protect.
This chapter deals with this topic on the assumption that the system is under-
going velocity shock, i.e., that the state of motion of the system has been
suddenly changed, say by contact with a rigid surface after a free drop or, if
the systcm is at rest on the substrate (Fig. 2.1), by a sudden velocity change
by this substrate.

In practical terms, the condition to be analyzed is typical of those en-
countered by designers working in the following fields:

1. Package cushioning;

2. Aerial delivery, whether by free fall or parachute;
3. Near-miss shock absorbers;

4. Recoil pads; and

many others. Controlling the peak shock is often the limit of the designer’s
responsibility.

Most of the available data is concentrated in this particular area of interest,
thus providing an additional reason for devoting an entire chapter to this
single topic.

It is assumed that the designer has a realistic limiting value for allowable
peak acceleration. It has often been stated that this quantity is a prerequisite
for completely rational design; no matter how obtained, it is assumed to be
an input constraint.

For the sake of consistency, all equations have been written on the assump-
tion that the problem is to reduce the shock produced by falling from a height
h. In any equation where found, 2 may be replaced by V*/2g, where g is the
acceleration of gravity. In equations where g is given as a numerical con-
stant, the value 32.2 ft/sec? or 386.4 in./sec? has been used.

Occasionally the designer will be given the input shock as a peak accelera-
tion of so many g. Conversion to the equations used here is a reasonably
straightforward operation, provided that the input shock waveform is also
specified. Jacobsen [96] has recently published a slide rule and associated
instruction book which make conversion a routine exercise.

4.1. Historical Note

The beginning of a scientific approach to cushions is generally credited to
Mindlin’s classic paper of 1945 [97]. There is, however, evidence [98,99,100]

61
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Fic. 4.2. Janssen’s modulus versus apparent density of rubberized hair.
Hermansen, et al. [141]).

is shown in Fig. 4.3. Many of the principal papers containing such families
of curves are listed in Table 4.3.

In 1961 and 1962, Soper and Dove [33,67] showed that peak acceleration
should be plotted as a function of energy per unit volume and of a parameter
equalling velocity at impact divided by thickness of the pad. Their plots
thus took care of the material damping factor more compactly than the
Kerstner suggestion, which necessitates a multiplicity of curves. More
recently it has been shown by Mustin [171] that the two variables can be sepa-
rated, and, at least for optimum design points, two simple empirical functions
describe the behavior of 16 cushioning materials undergoing velocity shock.

4.2. The Fundamental Equations of Velocity Shock Isolation

Consider the system shown in Fig. 4.4. At first ignore the mass of the
cushion so that the isothermal stress law is a continuous function

o=f(et), 0 € e<1.0,¢t>0. 4.1
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Equation (4.4) can also be solved for static stress. To the same degree of

accuracy as in Eq. (4.7), the result is

a.=%-D“om=é"--D“o,,,. (4.8)
With G and A given, T. is found from Eq. (4.7), and required static stress
from Eq. (4.8). A straightforward division of the weight of the cushioned
object by the required static stress gives the required cushion area.

Obviously T. is minimized as J is minimized. Most real materials show
minimal values of J and it is convenient to show the conditions under which
Jo, the minimum value of J, exists.

Since the function defining ¢/ is continuous, it is integrable. Assume that
it is differentiable (which is reasonable since it is a continuous function of
real variables). It is clearly evident from its definition, Eq. (4.6), that J
is some function of € and of ¢, since D-! o, contains these variables as does
on (Eq. (4.1)). For J to reach a single minimum value, it is necessary that

aJ _ 0 4.9)
ot ’

simultaneously. Working only with the partial derivative with respect to
strain, we obtain a locus of points in the J surface, each one of which is opti-
mum for a given value of the arbitrary function, ¥(¢).

For all practical purposes, then, J, must be accepted as a time-dependent
variable. If a real material shows a steady value for J, it must be regarded
as an exceptional case. Of course, the way in which time enters the relation
may, for some materials, have an effect that cannot be determined experi-
mentally so that constancy of J, may be a practical engineering approximate
assumption.

Nevertheless, it is useful to consider the consequences of the first of Egs.
(4.9). Differentiating gives

_ To _ f(io,t)
pod=D. 555 | = D it @10

where o, and ¢, are the dynamic stress and strain producing Jo. Setting
Eq. (4.10) equal to zero and simplifying leads to

(J'o2

Dq 0‘0

D1 Oy =

(4.11)

as a condition for the existence of J,.

Specific values for J, can be found by solving Eq. (4.11) for corresponding
€ and then substituting in the original elasticity statement and its integral.

Without an electronic computer and a large quantity of data, it would be
tedious work to apply the criteria just given, in all possible cases. Neverthe-
less, certain important conclusions can be drawn by considering various
classes of elasticity which are not time-dependent in their mathematical
statements; this is done in the next section.
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4.3. Some Computed Values of J, and the Consequences

The information contained in this section is an expansion of the work of
Yurenka and Giacobine [136] who considered tangent, algebraic, and loga-
rithmic elasticities. Mindlin [97] used a different approach for tangent
elasticity but the results are the same, thus buttressing confidence in the
results reported here.

Assume that the cushion consists of a real material with a strain that
cannot be exceeded, and call this strain the bottoming strain ¢,. Bottoming
strain is defined as the strain that would require an infinite stress to increase
it With this concept, rewrite the general stress law (Eq. (4.1)) to read

o={f(e/es, t),0 < /e, < 1.0, t = 0. 4.12)

But only non-time-dependent systems are to be considered, so, for purposes
of this section, write

o = f(e/ey), 0 < €/ep < 1.0, (4.13)

where the function is continuous and differentiable.

By the Weierstrass theorem, any nonperiodic function which is continuous
between limits can be represented to any degree of accuracy by a polynomial
of suitable degree. It is always tempting to try matching experimentally
determined stress-strain curves to a polynomial, especially when so many
electronic computers have “canned” routines for accomplishing the work in
minimal time. Accordingly, we start with an examination of the implications
of using polynomial elasticity statements to describe the behavior of cushions.

The generalized polynomial may be written

T=Ac+ 3 Ad (e, (4.14)
A=t

where the A, are independent of ¢/¢, and may have any finite value on the
real-number line.
The integral, considering €/¢, as the variable, is

D' o= Aole/ey) + i ni" (e/ep)n*t, (4.15)
n=1

1

Dividing Eq. (4.14) by Eq. (4.15) and separating into partial fractions pro-
duces

1 n ,.21 A, (eley)n!

= + n
(ele) o n+1)+ 3 A, (/e
n=1

(4.16)

It is clear by inspection that, so long as </ is a monotonic function, it reaches
its minimum when ¢/e, reaches its maximum of 1.0.

Values of J for a few classes of elasticity of interest are shown in Table 4.4.

The linear function is the most thoroughly analyzed and the least useful in
an immediate sense. Nevertheless, it forms a basis for the analysis of sys-
tems that are intrinsically nonlinear or have dissipative mechanisms that












SOME COMPUTED VALUES OF Jy AND THE CONSEQUENCES 73

Combining Eqs. (4.4) and (4.19), the reduced integral is
o.h

aoe’T.’

D-'¢' = (4.20)

ignoring the contribution of ¢ to the right-hand side. Solving with ¢, to pro-
duce o', leads to expressions for optimum initial slope, a’s. The results are
shown in Table 4.8.

TaBLE 4.8. OPTIMUM INITIAL STIFFNESSES

Opti Initial St;
Functi Value of Reduced P tmurr: Tm < 1ﬁ‘r:e;rs
u 10 YY) € c , € ¢
THOR | Integral, Da's | g, :;'—,h a'o %.T
Tangent 0.32 3.1 1.55
Algebraic 0.47 2.1 1.0
Logarithmic 0.54 1.9 1.33

Postulate, now, a linear material with the same initial stiffness a, as the
nonlinear material but without a bottoming strain. The applicable stress
law is

o1 =ay €, (4.21)
where ¢, is a fictitious strain that the material would assume. Keep static

stress, thickness, and drop height the same as before. Integrating over the
strain produces

1 R
D-1oy =§ a6 = UT“ . (4.22)
Substituting Eq. (4.22) in Eq. (4.20) produces
1 2
Do =D"‘oy == (ﬂ) : (4.23)
2 €
Dividing Eq. (4.17) by Eq. (4.21) results in
G o J_¢ (4.24)

Plots of the acceleration ratio as a function of e»/e, for several elasticities are
given in Fig. 4.6. For tangent elasticity, Mindlin (97] found that
G _ 26 [y = 1. (4.25)
G, me,
Simple expressions of this type are not compatible with the transcendental
integrals obtained from logarithmic and algebraic elasticities.
Now let the a, of the hypothetical linear material differ from the optimum
value of initial stiffness, a’s. Combining Eqgs. (4.20) and (4.22) gives

‘ 2
L (ﬂ) D-'o',. (4.26)
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The foregoing discussion of the effect of varying the initial material stiffness
for nonlinear materials while holding area and thickness constant is a general-
ization of the results for tangent elasticity obtained by Mustin {135].

The foregoing indicates primarily that a wide variety of materials may be
usable at a given thickness. There are two other potential benefits from the
range of usable values shown in Table 4.9. These other benefits are:

1. Stiffness of most materials is affected by temperature changes. The
surprisingly good performance of some materials at low temperatures may be
directly related to the range of usable values. Further discussion of this
point will be found in Chapter 7.

2. Most of the materials used in package cushioning vary in their pub-
lished properties because of manufacturing tolerances. The usable value
range permits use of the published values with more confidence that the
maximum G will not be exceeded.

The effect of varying the area of a given cushioning material with a fixed
supported weight can be estimated by looking at the effects of varying static
stress. Each class of elasticity examined so far has a J, corresponding to
an optimum static stress o', for the conditions of drop. Dividing each side
of Eq. 4.6 by these optimum values for each class of elasticity gives a relation
of the form [171]

J G (o h _
7."G" (a—',) TS a constant. {(4.29)

The results are plotted in Fig. 4.7. It is particularly noteworthy that the
curves practically coincide where o./0’, < 1.6 and are flat where 0.6 <
oo’y = 1.6.

Figure 4.7 indicates that the designer has considerable latitude in selecting
a conveniently dimensioned actual area in order to achieve desired shock
levels within engineering limits of accuracy.

40 (D LOGARITHMIC ELASTICITY
@ TANGENT ELASTICITY
(@ ALGEBRAIC ELASTICITY
30 He-ORQO
It
S o)
10 " [ | i { 1 M

04 o8 12 1.6 20 24 28 32
LWL

Fic. 4.7. Effect of varying surface area.

44. Effects of Damping

In the previous section, material damping was not considered i deriving
the equations for J and JJu. Since it has previously been shown that damping
has a gignificant effect on the behavior of materials, let us see what we can
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learn about the behavior of real cushions from the rather limited literature on
damping effects in velocity shock.

For simplicity, begin with the familiar Voigt solid sketched in Fig. 4.8.
It is simple to show [97] that the equation of motion for such a cushion is given
by

€+2B8, wpé+w.te=0, (4.30)
where
o, = FA: _ [Eg
mT, o,T.
cA. ¢
8 d

2m Wy 20.1 w".

Equation (4.30) is analogous to Eq. (2.10).

m Fic. 4.8. Linear massless cush-

ioning with viscous damping
P ZE

(Voigt solid).
Proceeding as outlined in section 4.2, we find that peak acceleration is given
by

=~ \";"1?2;)12 e Beunt 008 (wnt V1 — B2+ y), (4.31)
where
2821

o BV B

Mindlin’s results for various values of the critical damping ratio (8.) are
shown in Fig. 4.9.

With the hypothetical undamped linear cushion defined in Eq. (4.21),
consider the effect of damping on peak acceleration. When ¢t = 0,

F\ = 260, (4-32)
and, after ¢t =0,

G, = € feunim, (4.33)
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Fic. 49. Effect of cushion damping on acceleration. Mindlin [97].

where the time of maximum acceleration ¢, is given by
1-48.: .
B (3 — 482
The larger of the two values obtained from Eqs. (4.32) and (4.33) is plotted
against 8. in Fig. 4.10. Note that this figure is also a plot of J, versus damp-

ing fraction, since there is a direct relation between J and G at equivalent
drop heights and thicknesses.

tan wut, = (4.34)

T 1

MAXIMUM OCCURS MAXIMUM OCCURS I
AFTER t:0 AT t:0
T

2 —

AN O Y T T I B

0 01 02 03 04 05 06 07 o8 09 10
ﬂc {FRACTION OF CRITICAL DAMPING)

Fic. 4.10. Effect of cushion damping on peak acceleration.
Mindlin {97}
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4.5. Effects of the Mass of the Cushion

Explicit formulations of the effects of cushion mass on the acceleration
response to velocity shock seem to have been explored only for linear elas-
ticity [97].

Consider the system shown in Fig. 4.15. Assume that the conditions for
one-limensional waves are met (see section 3.1.3), so that

6’ g u

Sap=Vi o (4.36)

where

V:;2 =

© |,

,,. .mC' ’

TTTT 7T
Fic. 4.15. Undamped llnear cushioning with
distributed mass.

The initial and boundary conditions are

[u]i-o =0, [ﬂ]l:" =-—V=- \/Eg—h,

at

EA. [?9_:],: =—m [‘j:t,] , [u]r=0 =0,

from which the complete solution is found to be

x 2V, sin 2 V % sin wit
3
(w, T(' . 2(0[ T(')’
=1 @i

u=-— (4.37)

Vv, +2 Va

where w; is the ith root of the transcendental equation

wi T(‘ tan Wi Tr=_ﬁ

V-; V.1 m ’

The acceleration at x = T, i.e., the acceleration of mass m, is then obtained
by double differentiation of Eq. (4.37) and is

(4.38)
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From this general scaling law they derived a specialized scaling law, valid
for a broad number of practical problems:

a ( mv: V )
s

veeT. \ea T T (4.44)
Note that, in this law, area of the cushion may be varied independently of
the thickness, thus providing design flexibility. In order to be valid, the
configuration must be such that the local stress state in the cushion depends
only on the angle at which the stress is applied, the coefficient of friction, time,
strain, and the constants of the material’s stress-strain function. Con-
figurations for which the specialized law is valid (not necessarily exhaustive)
include:

1. Material thickness everywhere very small relative to dimensions of
the cushioned article, and no slippage at one or both interfaces;

2. Flat, uniform cushion, laterally confined or possessing negligible
Poisson effect; and

3. Flat uniform cushion and lubricated surfaces.

Cases 2 and 3 obviously do not involve a friction component. Hence, for a
plane cushion, where most of the data gathering has occurred,

a _/mv? Vv
vareT, | (ZA,T,’ Tr)' (4.45)
By definition,
0," A(‘
a, = p—— (4.46)
80 chat Eq. (4.45) becomes
[V ™ v sz _Y_ 7
mVI2AT, ¢ “f(zA,T; T,)' (4.47)
which may be written
h o h
J = f("T T)' (4.48)
If the material is undamped, then the term h/T vanishes and
/U ;I‘!
J= f(—T—) (4.49)

which is the expression for J originally found by Janssen {122] and derived
in general terms in section 4.2.

Soper and Dove have shown that the peak response of an impulsively loaded
cushion system is a function of only two variables: energy per unit volume and
an initial-strain rate. Their results require, for complete accuracy, that the
systems be geometrically similar and that the effects of gravity and cushion
mass be practically negligible. Under certain circumstances, fortunately
the most common, the requirement for geometric similarity may be relaxed
to permit varying cushion thickness independently of other dimensions.
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Based on these findings, Soper and Dove recommend that a single family of
curves (one for each value of V/T.) could suffice if the ordinate were J or
GT./h and the abcissa o, A/T.. The compactness inherent in this schema,
as compared with Fig. 4.3 is obvious. For the designer, however, the advan-
tage is ephemeral since his unknowns are T. and o, while acceleration and
velocity change (or height of drop) are the knowns. Working from such
curves, with T, appearing in the ordinate, the abcissa, and the individual
curves, the only possible design technique is successive approximation.

The possibility of simplifying the relationship for preliminary design
purposes has been investigated recently [171]. The treatment is largely
limited to simplification with respect to the minimum point on the J curve
which, by definition, is the optimum point of the design. The treatment
is far from rigorous, but the attainment of useful results justifies the line
followed.

As was made clear in Eq. (4.47), energy per unit volume appears on both
sides of the functional relation. Hence, it seems logical to write

““h h
ov=0'y Gy= f(g.‘T_‘, T’) (4.50)
Dividing through by o', leads to
h

Substitute for J, its equivalent from Eq. 4.7. Dividing both sides by
energy per unit volume gives

GoT* _ h 452
7= (T.) 452
which may be further simplified and written as
=f(c —h-) (4.53)
o= o Tp . .

By means of least squares, the 16 materials identified in Table 4.10 have
been fitted to straight lines

h
Gy = a(Tr-) +b. (4.54)

Values of the constants a and & are shown in Table 4.11 along with a standard
deviation for each regression line and various statistical operations (such as
Chi squared test, correlation coefficient and Students ¢ test) designed to test
the goodness of fit. Note that 19 materials are listed in Table 4.11. Mate-
rials 15, 16, and 17 are three different densities of polystyrene foam. The
Forest Products Laboratory [148] combined data concerning the same mate-
rials into a single set, identified as material 4. Data concerning materials.
15, 16, and 17 are combined into 18; then all of 18 and 4 are combined into 19.

Working primarily with high-energy absorptive materials, Soper and Dove
[33) found that J, tended to become constant and postulated this tendency as
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TaBLE 4.12. SoLUTIONS TO THE STATIC-STRESS EQUATION

Material No. of Standard | Computed Mazximum
No Data ¢ d Deviation x? X
' Points P =0.99
1 16 0.80 | —0.23 0.025 0.035 5.229
2 19 0.35 | —0.41 0.016 0.065 7.012
3 27 0.21 | —0.26 0.017 0.106 12.198
4 22 6.81 { —0.40 0.070 0.134 8.897
5 26 0.37 | —0.13 0.052 0.297 11.524
6 16 041 | —-0.12 0.038 0.097 5.229
7 16 0.11 | -0.18 0.009 0.028 5.229
8 16 0.20 | —-0.23 0.017 0.072 5.229
9 28 0.72 | —043 0.011 0.032 12.879
10 28 11.86 | —0.48 0.190 0.754 12.879
11 16 0.091{ ~0.15 0.009 0.030 5.229
12 8 0.069| —0.18 0.004 0.005 1.239
13 12 1.00 | —0.23| 0.022 0.019 3.053
14 7 031 | -0361 0.016 0.023 0.872
15 15 3.54 | -031 0.101 0.157 4.660
16 21 4.76 | —-0.32 0.196 1.088 8.260
17 20 3.72 | -0.29 0.137 0.417 7.633
18 56 3.68 | —0.29 0.164 1.843 27.012
19 78 4.36 | —0.32 0.156 2.240 43.054

“From Fisher’s tables.

It is evident from Tables 4.11 and 4.12 that reasonably acceptable fits to
the data have been obtained. No one, however, should leap to the conclusion
that the empirical fits are the true measure of the variation in J, and o',.
All that has been proved is a strong probability that these variations can be
expressed as continuous functions and that two sets of functions have been
found that are reasonably satisfactory for engineering purposes.

Equations (4.54) and (4.56) are plotted for a single material in Fig. 4.18.
It is evident that, with these two curves, the designer can operate near opti-
mum no matter what the drop height.

It must be noted that Birnbaum [175] mentioned some possible straight-
line relationships in 1950. Apparently the wrong variables were sought,
with unfruitful results, and the effort was abandoned.

The same 16 materials were also examined in the light of Eq. (4.29). The
envelope of results is plotted in Fig. 4.19. Most of the materials developed
what appeared to be a single curve independent of the parameter 4/T. but
the rubberized hairs did not. Though an interesting topic for investigation,
this area was not explored; in the face of the finding it was found that all
curves practically coincide in the stress ratio region where 0.4 < o./o’, < 1.5
and are flat where 0.7 < 0./o', < 1.3.

Figure 4.19 demonstrates that wide static-stress variation from optimum
can occur without significant effect on peak acceleration. This and the


































































































































































































































































































































































206 VIBRATION ISOLATION
Since the period has been doubled,
Cw* = 2Dn*. (6.81)

The increment in the variance, divided by the frequency increment, remains
approximately constant, or

SIC 2D
ﬂ_LJui_lﬂwm (6.82)

Aw wo

where W(wn) i8 called the discrete power spectral density of the quantity
represented by the variable y.

As the length of the loop is increased, |C.*|? decreases correspondingly but
W(wm) remains finite. Inthe limitingcase, as T — = or Aw — 0, the spectrum
becomes continuous and the discrete values of W(w.) approach the smooth,
continuous, power-density spectrum, defined as

= lim _—. =
W((ﬂ) Aw 0 A(l) dw; (683)
or
¥i= L W(w)do. ©6.84)

In other words, the variance of y(¢) can be found by determining W(wn) at
various frequencies and then summing.

In practice, W{w), is estimated by feeding the sample record through a
spectrum analyzer that transmits only those frequency components within
the passband

1

w* - Aw.

N

The output of the analyzer, Ay?, is indicated by a mean-square meter, and the
mean-power spectral density is computed by dividing the meter reading
by Aw; this operation can be incorporated in the calibration of the meter.
The complete power spectral density can be estimated by changing the
passband central frequency, w. A typical set of passbands in a commercially
available instrument is shown in Table 6.1.

The principle of determining a power spectral density spectrum is relatively
simple. There are some experimental pitfalls, but most of these have been
recognized and procedures are fairly standard.

Note that, in all of the foregoing, the fluctuating quantity y was perfect-
ly general. Hence, there can be several different types of power spectral
density derived for the same motion. The more common forms are absolute
displacement (input and output), relative displacement, and acceleration
(input and output). Uses of specific forms are diacussed in the remainder
of this chapter.

6.4.3. Response of a Simple Resonator to Random Excitation. For a
simple harmonic function, it was shown in section 6.1 that
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[268)), it can be seen that it is logical to write the following power spectral
density ratios for a simple resonator

Wa.r(w) = Woa(w) -
Widow) Wi(w

W, w) _ l
whl( w) wn‘

Wedw) [ w\*,
Wilw) B (wn) H

Subscripts i and ¢ stand for input and output, respectively. Where the
subscript r is used, the power spectral density refers to relative motion
x, = xo — %xi. The additional subscripts x and a denote displacement and
acceleration, respectively. Equations (6.87) thus describe the interrelations
between five different kinds of power spectral densities.

Combining Eqs. (6.84) and (6.87) produces

T?,

-H, (6.87)

and

-_x? =f T2 - Widw) 'dwo
{

x?= ﬁ; : Widw) - d, (6.88)

0 Wy

and

.1.'02 =f T2 . Wm(w) ‘ d(d.
0
Other combinations are possible but these are the ones most frequently used.
In evaluating the foregoing integrals, note that the units used for power
spectral density in writing Eqgs. (6.87) are square inches/radian/second or
g¥/radian/second. If the input data are in terms of square inches/cps or
g*/cps, each w must be multiplied by a constant, 1/2+.
If the instantaneous value of the input i8 Gaussian, then the instantaneous
value of the output must also be normally distributed. Using Eq. (6.74)
gives

P(x.]) = erfﬁx';. (6.89)

Similar relations can be written for x, and ¥..

Expose the simple resonator to white noise, that is, excitation with equal
power spectral density at all frequencies. Denote the acceleration power
spectral density for this white noise by Wi.(c). Then the relative-motion
response can be shown to be

pour SO S =79 W

x,.’ = 4ﬂw,,3 Wm( C) 2(&!”3 Wm(c)- (690)
Similarly, for absolute motion,

=T W) = e . o, (6.91)
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6.8. Data on Real Materials

Despite the wealth of tools available for analysis, there are few data avail-
able in the literature in a form usable by designers. It seems that most of
the vibration testing which has been performed is related to specific design
projects, and the results are not readily retrievable. This paucity of informa-
tion and many putative reasons for it have been discussed by Zell [179].

It will have been noted that all of the theoretical formulas depend on an
assumption that the “spring” will operate in tension as well as compression.
This is not necessarily true of cushions. The following include some of the
variations from the ideal:

1. The cushion is bonded to the exciting surface and the load. In effect,
the cushion becomes the elastomeric element in a mount. If the disturbances
are small, tension and compression moduli are substantially equal and the
test results can be analyzed by conventional theory. If the disturbance is
large, however, and if the cushion is a foam or otherwise exhibits a collapsing-
column effect, then the compression and tension moduli are different, as shown
in Section 3.5. Several resonant points may appear because of the differences
in moduli; these resonances would not be related to the wave-effect phcnomena
predicted by Snowdon {61].

2. The load is sandwiched between two layers of cushioning. Here the
cushion acts in compression in both directions. When the test is run with the
elements of the response system arranged vertically, then the downward
force exerted by the load is greater than the upward force because of gravity.
When the cushion is precompressed, the force on the cushion being compressed
during a given cycle is increased by relief of the compression stress in the
other cushion. Nevertheless, this configuration is reasonably typical of real
packages and was selected as the test configuration by Zell (179]. There are
further complexities involved in this configuration; they are discussed in
Section 6.8.2.

3. The cushion is placed under a small, known precompression and vi-
brated by a moving head in such fashion that the head never leaves the
cushion surface. This method is valid only for small inputs, but many
valuable data can thus be obtained. Venning’s [91] method of obtaining
complex elastic moduli for the first portion of the curve for polyurethane foam
is based on this technique.

Data obtained by any of these techniques are only as valid as the test
technique allows them to be. Some form of vibration testing of individual
designs will probably always be required.

6.8.1. Cushion Mounts. For the purpose of this monograph, a cushion
mount is any combinatisn of cushion and face plates for which vibration
data have been obtained in compression and tension. In practice, these
mounts are also loaded in shear and, where shear data are available, the
results are also summarized.

What is perhaps the most comprehensive effort to use foam cushions for
shock and vibration protection of installed equipment has been led by per-
sonnel of the Naval Air Development Center at Johnsville This work in-
cludes laboratory evaluation and design studies; also, service test under
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speeds are 8o high and rail anomalies 80 unpredictable that random-vibration
technology is the only useful analytical tool. Burgess [281] has described the
environment and developed [282,283] a resilient slipper for these sleds to
reduce the generally Gaussian input from the rails. Because of the heat of
friction, the resilient material used was stainless-steel knitted wire mesh
bonded to stainless-steel backing sheets. Figure 6.29 shows rms accelerations
versus sled velocity for the conventional slipper without isolator and for the
proposed resilient slipper. The acceleration values shown were obtained by
numerically integrating the response acceleration spectral-density curves
and taking the square root of the result.

Burgess [62] has also investigated the problem of distributed media for
shock and vibration isolation of installed electronic equipment. In this
work he determined complex moduli for certain solid elastomers, some with
very small closed holes scattered throughout the matrix, Jacobsen’s [192]
silastic with Teflon inclusions, a polyurethane foam, and a fibrous silicone
rubber. He noted that thickness to achieve a specified natural frequency was
given by

Er Er
T,,=Z;-§Tf"2=9.86 p— s (6.157)

On this basis, for the materials investigated, he computed the values shown
in Table 6.4. Using these results, and considering the weight penalty
involved, he concluded that only foams and similar materials offered real
promise as distributed shock and vibration isolators.
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Fic. 6.29. Rms acceleration versus sled velocity: A with conventional
slipper, and B with resilient slipper. Burgess [282].
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the design has been set close to the optimum point. The “safe” temperature
for a package designed to operate at room temperature was defined as the
lowest temperature achieved before drastic increase in peak acceleration
begins. This definition led to the compilation shown in Table 7.1. Letchford
{302] noted similar effects and his results are also included in Table 7.1.
All three authors cautioned that their data were valid only for materials
that are substantially dry initially and throughout the test program.

Mazzei [303] has examined the effects of wetting rubberized hair and test-
ing at room temperature and after freezing the drip-dry matrix at —40°F.
At ambient temperatures, water actually lowered optimum peak acceleration
but, after freezing, produced a drastic increase in the optimum room-tem-
perature loading range. However, at high static loadings (say, double the
optimum), lower accelerations were recorded, indicating that ice could play
a beneficial role under certain circumstances.

Tolley [304] has asked this question: Can static tests be used to predict
low-temperature dynamic performance? Using a polyurethane foam, he
showed that a number of static properties changed drastically at a tempera-
ture that seemed characteristic of that foam. For polyurethane foam he
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Fic. 7.1. Static properties of a polyure-
thane foam versus temperature: (a) initial
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268 DRIFT AND CREEP
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Fic. 84. Creep of cushions with static stress
sufficient to cause 20 to 25 percent initial strain.
Eller, Stein, and Chatten [308].

results are shown in Fig. 8.4. Note the sharp rise in the polyurethane creep
values. For a cushion with a constant-stress plateau, such as polyurethane
foam, static stress close to the knee will eventually creep over the knee and
then proceed across the plateau at least until the stiffening portion of the
stress-strain curve is reached.

When a resilient polyurethane foam with a pronounced knee in the static
stress-strain curve is loaded close to the knee and the stress is not uniform,
a catastrophic failure can occur quite rapidly. If one corner of the pad is
overstressed, this corner will creep to failure first. The overstress is then
gradually transferred across the pad, and the entire pad is reduced in thick-
ness by about 70 or 80 percent. Design shock and vibration isolation char-
acteristics, of course, are substantially lost. It is particularly important,
therefore, to ensure good balance on polyurethane foam cushions. Indeed,
this is a goal that should be sought for all cushions, since both static and
dynamic properties depend on uniformity of stress.

Creep performance of cushions required to support a static load may well
be a more limiting factor in design than either: (a) the optimum static stress
for minimum shock acceleration, or (b) the vibration isolation characteristics
of a pad with certain dimensions. The data available are scanty, and do not
give a firm picture of the allowable static stresses for certain materials; nor
do they provide means of evaluating creep at different temperatures.




























































NOTATION 289
W(w.)  Power spectral density in the neighborhood of w,
Wi«(c)  Input power spectral acceleration density for white noise
Wi.«(f)  Input power spectral acceleration density (g*/cps)
Wis(w) Input power spectral density
Wi.(wB) Input acceleration spectral density in bandwidth B
Wi-(w)  Input motion power spectral density
W.lw)  Output acceleration power spectral density
W.-(w) Absolute output motion power spectral density
W, (w) Relative motion power spectral density

w Deflection in the z-direction

x Cartesian coordinate

Xi Input or excitation motion

xi* Complex input motion

xi(t) Time varying input motion

Xim Maximum value of an input motion
Xo Absolute output motion

xo* Complex output motion

Xom™ Xome'®

xo(?) Time-varying absolute output motion
Xom Maximum value of x,

xr xy — x;; relative motion

x:(¢) Time-varying relative motion

Xrm Maximum value of x,

X Maximum equivalent static motion

x,,x:,x3 Dimensions

Xi Input velocity

Xo Output velocity

X, Relative velocity

Xq Average height of input acceleration pulse
X Input acceleration

Xo Output acceleration

Y Compliance, 1/E

Y* Complex compliance
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General properties plus static stress-strain curves for several material
densities.
E. O. Lieberg, "Wood Fiber Felts for Protective Packaging,” Forest
Products Research Soc., Memphis, Tenn., 7th National Meeting,
June 1953
Static stress-strain data, curve of apparent density of material vs
recovery after 2/3 compression, and recovery after repeated impact
loads.
M. Masel, Modern Packaging, 26 (9), 133 (May 1953)
Derives simple mathematics of behavior of cushioning materials.
Has some data on effects of precompression and of cushion on top of
object as well as on its bottom.
I. McNamee, “Space and Natural Frequency Requirements of Some
Shock and Vibration Isolators,” NBS Corona, Rept. 1243, Jan. 1954
Extends Mindlin by including effects of acceleration of gravity.
G. S. Mustin, “Use of the Energy Method in the Design of Package
Cushions,” Wayne Univ., Detroit, Joint Ind. Conf. on Cushioning in
Packing, Dec. 7-8, 1953
Early attempt to use cushion-energy methods in the case of the
rotational drop test. In the light of present knowledge, the attempt
failed.
G. S. Mustin, “An Introduction to Shock and Vibration for Package
Designers,” Wayne Univ., Detroit, Joint Ind. Conf. on Cushioning in
Packing, Dec. 7-8, 1953
A completely tutorial lecture on fundamentals of shock and vibration
isolation. Stresses item response.
S. J. Ruffini, “Packing Design Parameters for Fragile Items Using Non-
linear Cushioning Materials,” Picatinny Arsenal, Feltman Res. and
Eng. Labs., Tech. Note, June 31, 1959
Uses tangent-elasticity function as a basis for design. Several prac-
tical design examples. Static curves for severa' materials, identi-
fied by code.
F. Stowell, H. C. Pusey, and K. N. Carr, Flow, p. 136 (Oct. 1954)
A tutorial-type paper emphasizing some of the basic engineering
principles of package cushioning.
A. M. Underhill, Modern Packaging, 19 (12), 141 (Aug. 1946)
Short basic discussion of some of the general principles of package
cushioning.
A. M. Underhill, Basic Principles of Package Cushioning, Packaging
Series No. 33, American Management Assoc., New York, 1950
Ref. 117 expanded and brought up to date.
d. L. Gretz, Modern Packaging, 25 (8), 129 (April 1952)
Introduces concept of cushion efficiency as a means of optimizing
a design.
J. L. Gretz, Flow, 7 (7), 100 (Agril 1952)
Essentially same information as in Ref. 119.
J. L. Gretz, Principles of Cushioning, Proc. of Short Course, Soc. Ind.
Packaging and Mat. Hand. Engs., Boston, Oct. 1953
Essentially same information as in Ref. 119.
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A short, lucid review of the problems of determining equipment fra-
gility; this cannot be separated from cushion performance.

G. J. O'Hara, J. Acoust. Soc. Am., 31 (10), 1300 (1959)

Points out that envelope shock spectra are very dangerous as design
limits, particularly for large equipment. The envelope concept
assumes foundation impedance to be very large compared to item
impedance; this is not true with heavy loads. Several examples
illustrate the point.

M. Gertel and R. Holland, Shock and Vibration Bull. No. 35, Pt. 6,

249 (April 1966)

Excellent short review of the use of shock and Fourier spectra in the
analysis of transient disturbances. Several examples plus an esti-
mate of the very small error in O’'Hara’s recursion method for com-
puting Duhamel’s integral.

S. O. Rice, Bell Sys. Tech. J., 23, 282 (1944) and 24, 46 (1945)

The basic, and still classic paper establishing the foundations of
random-vibration theory.

J. D. Robson, An Introduction to Random Vibration, Edinburgh Univ.

Press, 1964
An excellent treatise on the foundations of random-vibration theory
and practice.

J. W. Miles and W. T. Thompson, “Statistical Concepts in Vibration,”

Ch. 11 in Shock and Vibration Handbook (C. M. Harris and C. E.

Crede, eds.) McGraw-Hill, New York, 1961
Short review of the fundamentals of random-vibration theory.
Introduces fatigue concepts.

G. S. Mustin and E. D. Hoyt, “Practical and Theoretical Bases for a

Transportation Vibration Test,” Reed Research Rept. 1175-36, Feb. 25,

1960
Derives response to a narrow-banded random-input function.
Equates “sinusoidal” to “random” through fatigue methods. Pro-
poses a single test on admittedly arbitrary grounds.

G. 8. Mustin and E. D. Hoyt, Shock and Vibration Bull. No. 30, Pt. 3,

122, (Feb. 1962)

A condensation of the essential points from Ref. 269.

E. J. Gumbel, Statistics of Extremes, Columbia Univ. Press, New York,

1958
A complete, though difficult, treatise on the statistics of extreme
values where the variable may follow one of many distribution
functions, or even where the initial-distribution function is un-
known.

C. L. Gray, Shock and Vibration Bull. No. 35, Pt. 4, 99 (Feb. 1966)
Considers the probability of the first occurrence of extreme amplitude
of a Gaussian random variable.

J. A. Skoog and G. G. Setterlund, Shock and Vibration Bull. No. 26,

Pt. 2, 315 (Dec. 1958)

Analyzes space requirements for equipment mounted in a structural

space.
H. Himelblau and L. M. Keer, J. Acoust. Soc. Am., 32 (1), 76 (1960)
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Derives probability of collision of a mounted item with its own
base and with an adjacent oscillator excited by the equipment base
E. L. Hixson, Mechanical Impedance and Mobility, Ch. 10 in Shock
and Vibration Handbook (C. M. Harris and C. E. Crede, eds.) McGraw-

Hill, New York, 1961
Concise introduction to the concepts of mechanical impedance and
mobility. Contains many simple models and shows how tc construct
more elaborate ones.

Specification MIL-C-172, Cases; Bases, Mounting; and Mounts, Vibra-

tion (For Use with Electronic Equipment in Aircraft)

A general specification, with test methods, covering the area implied
in the title.

A. A. Cohen, "“Final Report on Phase A and Phase B, Development

of a Multifunctional Isolating Barrier for Shock and Vibration,” Naval

Air Development Center, Rept. NADC-EL-6159, Oct. 17, 1961
A summary report of the extensive development and testing con-
ducted on polyurethane-foam shock mounts. Many transmissibility
curves.

P. C. Calcaterra, "Design Guide for Polyurethane Foam Isolation

Systems,” Naval Air Development Center, Rept. NADC-AE-6522,

Dec. 2, 1965
Compares behavior of foam mounts to buckling isolators, gives some
hints on designing foam mounts. Several questions admittedly
unanswered.

P. C. Calcaterra, “In-Flight Evaluation of Conventional and Foam

Shock and Vibration Isolation Systems,” Naval Air Development Cen-

ter, Rept. NADC-AE-6506, L5, Sept. 1965
Compares performance of certain foam isolators installed at various
locations in an A-3D aircraft with the performance of conventional
isolators.

Y. Hiroshige and S. Taylor, “Secondary Isolation System For the

High Speed Track Research Testing,” Air Force Flight Test Center,

Edwards Air Force Base, Rept. AFFTC-TN-57-12, April 1957
Describes development and performance of polyurethane-foam cush-
ioning system for the telemetering equipment used on high-speed
track sleds.

J. C. Burgess, Shock and Vibration Bull. No. 27, Pt. 3, 1 (June 1959)
Describes the random-vibration acceleration spectral densities
measured on a number of high-speed tracks.

J. C. Burgess, "Resilient Slippers for High Speed Track Sleds,” Ed-

wards Air Force Base, Interim Tech. Rept. PTFST-TOR-61-1, April

1961
Describes a woven stainless-steel mesh resilient liner for track
slippers and compares performance.

J. C. Burgess, “Development of Resilient Slippers for High Speed Track

Sleds,” Edwards Air Force Base, Rept. FTC-TDR-62-19, May 1962
Final report on project discussed in Ref. 282.

Military Standard, MIL-STD-810,

A series of environmental test procedures.
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