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ABSTRACT

This is one of a series of tutorial reports deriving the discrete
recursive Kalman estimdtion equations. The serles progeeds from unweighted
to weighted least squares parameter estimation in a vector space setting to
the stage-wise updating, to time varying parameter or state variable esti-
mation, The derivations have been stage-wise tutorial in an attempt to make
the theory accessible to the "non-specialist" in optimization theory.
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INTRODIZTTAN

Modern state-vector recursive estimation theory (in the semse of Kalman)
has been derived from many viewpoints: conditional probability, orthogonal
projections, least squares, minimum varlance, maximum likelihood, etc. The
individual user of the theory may understand the derivation of the equations
obtained by any cne of the above theorles or possibly by a number of approaches
depending upon the individuals background.

This report is the third of a tutorial series deriving the estimation
equations in a vector space weighted:lease squares setting. The essential
areas for understanding the theory via this approach are:

1. Unvweighted Least Squares Parameter-Vector Estimation and the
Variance-cf-the-Estimate Matrix.

2, Discrete Matrix Recursive Methods apply to (i) for Real Time
{on line) Computer.Processing.

3. Weighted Least Squares Parameter Estimation and Variance-of-the-
Estimate Matrix for Correlated Noise,

4, Discrete Matrix Recursive Methods applied to (3) for Real Time
Computer Prccessing.

-5, Recursive Weighted Least Squares State-Vector Estimation Theory
(Kalman Theory).

Items 1 and 2.are completed and published in Reference 4. Item 3 is
completed and published in Reference 6, Item 4 is not completed yet,
Item 5 is the contents of the current report.

This report is restricted to full-rank matrices so that the reader may
understand the basic principles of the theory. Non-full rank matrices processed
recursively require a knowledge and background in Psuedc Inverses, and many more ,
sophisticated linear algebra concepts. The minimization criterion is derived by !
taking the partial derivative of a scalar with respect to a pxk weighting matirx- ‘
the classical gradient approach.

The derivations can be achieved completely algebraicly in terms of orthogonal
projections relating to spaces and sub-spaces. Many sophisticated paper exist in
the literature using this approach. The algebraic approach may not be as readily .
accessible to the engineer trained in clasaical mathematics. 4
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The notations used in the report is an effort to blend the rotation
of Friedman for inner-products and dyadic products with the current
journal-literature on vector-spaces, psuedo-inverses, state-vectors, etc.
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Scalar here is a "real field" element.

Consider the system of two vector equations

x(k> . O(k+?, k)@? + fb + @

and
z(k

where:

NOTATION

Cior ot i e o o IR oA R Ao

Capital letters designate matrices of size p rows and
k columns.

when p = 1, the matrix 1s called a column vector, and
we use Friedmans symbol to distinguish this matrix.

when k = 1, the matrix is a row vector of dimension p.
"inner—product' or scalar product. of two vectors.
"outer—product"” or dyadic product of two vectors.

3ecos tZEFja Matrix X partitioned into a row k-tuple of
column vectors from a p-space.

Matrix X partitioned into a p-column tuple of row
vectors from a k—-space

small x is a scalar
scalar from a column vector

scalar from a row vector

) m}gp(k)@ +@
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x(k . x(k{EEZB> are p-dimensional column vectors describing

the states at stage k and stage k+l.
is a pxp state transition matrix.

15 & p-dimeusional deterministic forcing vector for
which we can write a vector function. °

is a p-dimensional uncertainty or noise vector, it is
the composite of the random noises and the variables
we fail to model.

is the m~-dimensional obsecvation vector, m is less
than or equal to p.

is the known matrix describing how the state vector is
functionally related to the observation vector {if the
instruments were noise free).

is an m-dimensional additive instrumeant noise vector.
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1. ONE PARAMETER FAMILY OF DISCKETE TRAJECTCRIES

This section considers the one parameter family of i trajectories
generated by i different values of the initial condition paremeter x, (1).
Each of the 1 trajectories consists of a sequence of k different poifits

or stages.
We consider
(1) The homogeneous case
(2) The deterministically .forced case.

Homogeneous System

Consider the system of scalar equations
x(k+1) =Plr+1, K)x(k) + £k) + u(k)
2(k) = (k)x(k) + v(k)
where the following cénatrnints apply
£(k) = u(k) = v(k) = 0
h(k) = b, a constent
¢(k+1,k) = ¢, & constant
then equation (] J and (2) become
x(k+1l) = ¢, x(k)
z(k) = hy x(k)
It further, we consider the measuremeént to be exact
z(k) = x(k) ‘ '
or
hy = 1

then we need only conaider

x(k+1) = ¢px(k)

R LT S A

(1)
(2)

(3)
(4)
(5)

(6)
(7)

(8)

(9

(10)
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Case i. The most elementarv case occurs when
¢
then
 x(ke1) = x(x)
and for values of k
x(2) = x(1)
x(3) = x(2) = x(1)
‘x(k) = x(1)

hence we can plot

XK= X X x ¥ x x x

Fig. (1)

. If we vary the initial condition we obtain-a sequence of trajectories

"%, (k) = x, (1) (16)
for
xl(l), x,(1) +oe x,(1), 2, (1) e
as shown - in Fig. (2)
)(‘(,_l:_,z\ﬁ‘(“\)—\————e——o——@———@—-—-@—-—@———e—-'
XR=Xy {ET AT AR AT A
\{m,ﬁu\ KK H X AR
1, k
Fig. (2)
2

(1)

(12)

(13)
(14)

(15)




s T

-y e

For any constant ¢u: wa ~htain

I

{1) (17}

. gb x(2) =Qolfh x(1)) =g x(

“€5~

x(k) =57t x(1).

Irf is less than one,the trajectory of Equation ( ), for'a given ipitial
tion decreases, f%r -exanmple )

.[ f | ¢o = 1/2

L x(2) = 5 x(1)

x(3) = (2% x(2) = F x(1) (18)
;‘c(h) - %‘- x(1)

x(k) » (3 x(1)

The sequence of k vectors are

it e, e e D

1 ‘2 3 k
| REREE (19)
x(1)) - %x(l) | T1;;c(1; _ (%)k-lx(l)

which plot as shown in Fig. ( 3)

. X() %
n ¥t *

sz;(‘ &

Fig. (3 ) Contracting or Decaying Sequence PO = 1/2

3
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The first noisy observation is

an(l) = h(l) xj(l) + vn(l)

Using (3 ) and (¢ ) in ( ¢)

T,(1 0) = B Dx, @) -3, 0] + v, (1), ()
Using (7) in (5)
a1y 1) = R,01, 0) ¢ wDn(10x (1) = Ry(2, 0] + v (1) (®)

= [1 - w(D)r(2)] Ry(1, 1) + v(DRLx (1) + w(1) v (2.

We now define two new errors as differences of the previous variables.

@ -8, 0 =20, 0 | (9)
and
xJ(l) -Qan(l, 1) -';t‘dn(l, 1). ‘7 (10)

The variable x,{(l) is the actual (but unknown) process state variable that

exists on tradéctory J. The variable ﬁsn(l)l) is the estimate of xJ(l),

having used the first noisy observation.

Henceﬂ?'n(l, 1) is the error in our estimate of the state at stage 1 based
on one #easurement.

Erom equation (4+) we see that if our initial guess Q (1, 0) is wrong, then
z,(1, 0) will also be wrong and after our observatioﬂ z(1) comes in and
otir computed error ?3(1, 0) of equation (4) is large, then by equation (5)

we will have a correction term which is the product (w(l)?}(l, 1)) of a
large term times the weight value w(l).

Continuing with the derivation of the weights, we cbtain the error term by
equation (8) in equation (i1 ) as

Fpals 1) = x (1) = (2, 1) = x, (1)-w(n(1)x, (2) (1)

*3 AN
[ (zew(1l)n(1)] xJ(l, 0) - w(l)vn(l).

or

"~
xdn(l, 1)

[1w(1R(][x, (1) = %, (1, 0] = w(D)v, (1), 02)

16
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Using equation (9) in equation (12)

/- -

L, i) - w(.L) vn(l). {13)

.

B AN /.\1'\"
& = WhNLJU VL /] K

J

If we square the error of equation (13)

'ij‘n(l, 1) = [1-w(3.)h(1)]’?'i‘j(1, 0) - 2w(1)vn(1>[1—w(1)h(1)]93(1. 0) (14)

+ ¥ (2)v 2().

If we take the partial derivative of equation (:4) with respect to w(1) and
eguar to zero we obtain

~e ~l
a_xﬁp.(l, 1) = 2[1 - w(1)h(1)] (—h(j:)) xJ(l, 0) (15)
o vil) - 2v, (1)1 - w(L)(1)]x,(1, 0)

+ 2w(l) vﬁ(l) =0

Taking the expected value over all experiments in which J and n are varying
we obtuin

% (1)
E{%‘H—Y—l;} = =[1 - w(1)h(1)] E{?&?(l,o)} h(1) (16)

+ w(1) E{vﬁ(l)} =0

Define the variances

2%, 0] =052, 0) = (1, 0 (7

efvin } = Oy, (18)

We follow a number of current Kalman papers and papers about Kalman
Estimation and designate the variance in state as p(l, 0).

The cross term of equation (i3) under the expectation operator is zero
when the following conditions hold,

ef 11 - wn) vy@) {a, 0 (19)
= 1 - wr] v, 5, oy

7y
We now assume that our initial guess of x(1,0) is independent of vn(l) as
n ranges over all allowable values, that is

E &n(l) ';:\J(l, o)i = 0, {(20)
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Under these assumptions equation (16) and (18) become
0= =[1 - w(2)n(2)In(1) p(1, 0) + w(l)();u(l)
or
-a(1)p(1, 0) + w(1)n°(1) p(1, 0) + w(1){ (1) = 0
or

w(1)[%(2) p(1, 0) +(T,(1)] = (1) p(1, 0)

w(1) = n(1) p(1, 0)[n%(1) p(1, 0) + @G (1))

The value of p(l, O) which by equation (17) is

p(1, 0) = B[ [x,(2) -QJ(:L, 0)12 b = guess

can be obtained by guess or by a "learning process", or by a-priori

knovledge about the system,

(21)

(22)

(23)

(24)

(25)

The variance of the estimate of state at stage 1 based on the observation

at stage one can also be obtained by equation (14) as

Bf2., 1] = (- vma)? E{ﬁ?u, 03} + v3(1) m[vi(lﬁ (26)

when the cross terms and zero, that is
A
Elv (1) xJ(l, o)l 2w(1)[1 - w(1)n(2)] = 0.
The variance terms of equation ( ) will be denoted as

0‘2{(1, 1) = Ei;in(l, 1)]-3 p (1, 1)
Eg_vi(l)} =0, (1)

The p(1l, 1) designation is in keeping with the now near classical
notation.

Expanding the terms of equation (26)
p(1, 1) = [1 - w(1)n(1))% p(1, 0) + w2(l)‘0_w’_l)
= [1 - 2w(1)h(1) + v2(1)h2(1)] p(1, 0) + w2(1) o,
= p(1, 0) - 2w(1)n(1) p(1, O)

+ W21 p(1, 0) +O, (1],

18
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{30)

e PR




e -

Consider the last term in equation (30) and use equation (24) for

w2(l), then

4

2(1)[n3(1) p(1, 0) +0,0) (31)

n2(1) p2(1, 0)[(n°(1) (1, 0) +(, (117% b¥(1) (1, 0) + (7 (1))

p2(1) p2(1, 0){K3(1) p(2, 0) *(Z;U(l)]'l

h(1) p(1, 0) g:?(l) p(1, 0) [5%(1) p(1, o)+c7;;u(1)]'l

Replacing the bracket term of equation (3l) by w(l) in equation (24)
we obtain

¥2(1)[n%(2) p(1, 0) +(, (2)] = b(1) p(1, 0) w(2) (32)
Using ( 32) in dquation (30) we obtain
p(1, 1) = p(1, 0) -2w(1) n(1) p(1, O) + n(1) p(1, 0) w(1) (33)
= p(1, 0) - w(1) n(1) p(2, 0).

p(1, 1) = p(1, 0)}[1 - w(1)n(1)]

also using equation (24) in equation (33) we can write p(l, 1) ss

p(1, 1) = p(1, 0) - p(1, 0)n(1)[n(1)p(1, 0)n(1) +0 (1)) p(1,0)n(1)

Equation ‘34) is the scalar variance (one dimensional uncertainty ellipsoid)
of the estimate of the state using all of the current observations.

We can now predict what the next state variable value should be by pro-
pogating forward with the known dynamics as

A A

x(2, 1) =43(2,1) x(1, 1) + £(1). (35)
The prediction of the next observation is

Nz, 1) = n(2) 2. (36)
The elliposoid of uncertainty of the predicted state is

p(2, 1) = E{?(?(z, 1)3 (37)
vhere

~ A :

x(2, 1) = x(2) - x(2, 1) (38)

19
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Using equation (1) and equation (35) in equation (38)

! X(2.2) =02, 1) T2, 1) ¥ D) (39)
j | : P2, 1) =iz, 1) Fa, 12, 1) + 242, 1) K, 1) (1) + w2(0) (40)
! The expected value over all experiments of equation (40) is '
z e} Fee, 1)]- p(2, 1) =@(2, 1) p(1, DP(2,.2) +0G,(1) (41) : .;j
; ; vwhere i
| O3 = En{ui(l)} (42)
Cross term statistical independence assumptions are g
ES_&‘(l, 1) u(l& = 0. (43)
ete.

In conhlunion, at stage one, ve do:
Given

Ot

guess or estimate

p(1, 0) andQ(l, 0)
compute

a1, o) = nw)y %, o) (44)

Measure and compute error

1, 0) = 2(1) -'3(1, 0) (45)
: Compute weight w(l) equation ( )
o w(1) = n(1) p(1, 0)(a(2)p(1, OIn(1) + G ™ (46)

T AR R T

" ! Updete or correct state-estimate

A
, 1 4‘(1, 1) = x(1, 0) + w(1) (2, 0) {47}
L -
o i Compute ellipsoid of uncertainty of state estimation {48) o

I T

p(1, 1) = p(1,0)[1 - w(1)n(1)]

R .
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Predict or propogate one stage into future with known dynamics the following
three variables:
4

Predict next stagé.
x(2, 1) = ¢{2, 1) x(1, 1) + 7{1) (49)
Predict next observation.
2z, 1) = n(2) X2, 1) (50)
Predict ellipscid of uncertainty in state
p(2, 1) = ¢(2, 1) p(1, 1) ¢(2, 1) + o (1), (51)
Wait for stage k = 2 and gecond observation to come in.
Stage k = 2,

The second observation is taken at stage 2 and is

an(Q) = h(2) x, (2) + vn(Q) (52)
vhere, as before, an(z) is known, but X (2) and-vn(2) are unknown.

We compute the error signal

Eppl2s 1) =220 -2, (2, 1), | (53)

The sub~seripts j, n can now be dropped for simplicity of notation, where
1t is henceforth understood that X(2, 1) for example means the best
estimate of the true jth trajectory based on the sequence of instrument
noises<:i .
n

Using equation (50) and equation (52) in equation (53)
A
2(2, 1) = n(2)[x(2) - %(2, 1)] + v(2) (54)
ve now have computed the error in the observation,  hence we can correct
our estimate of what theastate variable should be based.on.the use of the
second. observation, that is

2e, 2y = N2, 1)+ wi2) Fe, 1), (55)

As before, ve now seek the "feed-back" or-correction weight w(2) at stage
2. Before deriving the w(2) expression, use (54) in (55)

Rz, 2) =Rz, 1) + w(2n(2)[x(2) - (2, 1)1+ w(2) v(2) (56)
Q(e, 2) = [1 - w(2)h(2)]/:§(2, 1) + w(2) n(2) x(2) + w(2) v(2). (57)
21
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From the error in stete estimation at stage 2 using the second observation
as hefore

%(2,2) = x(2) - R(2, 2) =[1-v(2) n(2)]%(2,1) + w(2) v(2) (58)
Multiply equation (58) by itself to obtain the square of the error term as
%3(2, 2) = [1 - w(2) n(2))2 522, 1) (59)
+ 2w(2) v(2)[1 - w(2) n(2)] X(2, 1)
+v2(2) v3(2).

Observe that the error and the square of the error in equation (59) is s
function of w(2).

In order to select a w(2) which will minimize the square of the error we
take the partial derivative of eguation (59) with respect to w(2) and
squate this "gradient" term to zero, hence

%l. -2n(2)[1 - w(2) n(2)] £(2, 1) (60)

+ 2v(2)[1 - w(2)n{2)] R(2, 1)

+ 2w(2) v(2) (- h(2)) (e, 1)

+ 2w(2) v3(2) = 0
Since we vant w(2) to be the same regardless of how many times we repeat
the experiment; or, fram a "single-test” stand-point, w(2) should be

selected to hold regardless of the unknown sequence driving the two
variables at this stage u .1(2) and vn(a). Consequengly'we take the ex-

pected value over all admissible vectors @. and {\r and obtain

E%%?—ﬂ}-tl - w(2) n(2)] (-n(2))p(2, 1)+ w(2)a  (2) = 0. (61)

The asswnption of statistical independence of ‘the variables %2, 1) and
v(2) {8 again assumed

E {2, 1) v(2)} =0 (62)
n
also the assumption about@

vn(l) [vn(l),. vn(2)]

E (63)
vn(2)
. u (1) vn(l) yn(l) vn(z) = ow(l) 0
B v, (2) v (1) v,(2) y (2) 0 ov'2)

22
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The assumptions of equation (63) can be relaxed but then one needs a

deeper knowledge of multi-linear algebras., matrix-packaginz and partitionine.
matrix psuedo-inverse, etc. Hence such "highly-colored" or correlated

noise cases will not be discussed in this paper. The. maJority of published
papers o Kalman thecory make the .uuyl;bu. Gaussian assumplions iwpliied by
equation (69) for arbitrary large k. Computer storage problems for
correlated noise for large k are.also a problem,

Solving equation (60) for w(2)
w(2)[n(2) p(2, 1) h(2) + g,¢2)] = n(2) pl2, 1) | (64)

or

w(2) = n(2) p(2,1) [a(2) p(2, 1) B(2) + o ()] (65)

2

The second weight can be computed since h(Z), CJ' (2) are assumed known and
p(2, 1) vas computed at stage 1.

We can now derive the expression for p(2, 2), using equation (65) and
taking the expected value over all experiments

p(2, 2) = B 622, 2)} = (1 - w(2n(2) ¥ p(2, 1) + vP(2)o, (2),  (66)

with assumptions

E {v(2) X(2, 1)} = 0, (67)
Expanding equation (¢s)

p(2, 2) = [1 - 20(2) n(2) + ¥*(2) n¥(2)] p(2, 1) + W (2)o_(2)  (68)

p(2, 2) = p(2, 1) - 2w(2) n(2) p(2, 1) (69)

+v2(2) [n(2) p(2, 1) n(2) + g, (2)]
Consider the last term of equation (69) using equation (65) for w(2)
v¥(2) [n(2) p(2, 1) n(2) + o (2)] (70)

=h®(2) pP(2, 1)[n%(2) p(2, 1) + o (T [n%(2)p(2,1) + o (2)]

= n2(2) p2(2, 1) [n%(2) p(2, 1) + o, (217"

23




, and by equation (65) for w(2) we obtain

2 “y e lan R e .
lednio) ple, 1) uis) v(j‘w(c)] = ni(z) plz, 1) w(4d) (71)

Using equation (7!) in equation (69)

S p(2,2) = p(2, 1) - 2w(2) h(2) p(2, 1) + h(2) p(2, 1) w(2) (72)
e

p(2,2) = p(2, 1) - p(2,1) n(2) w(2) (73)

p(2,2) = p(2, 1) [1 - w(2) n(2)] (74)

Equation (73) can also be written as by equation (65) in equation (73)

p(2, 2) = p(2, 1) - p(2, 1) [n%(2)p(2,1) +&()]1™ m(2)p(2, 1) (75)

We can now predict st stage k = 3 the state

'};(3. 2) = #(3, 2) &2,2) + 2(2) (76)
5 and the observation
A3, 2) = n(3) &3, 2) (77)
and the state-variance term
| »(3, 2) = B £33, 2)). (78)
I By equation (1) and equation (74)
EE x(3) = 6(3,2) x(2) + £(2) + u(2) (79)
1 ; ‘ 4(3.2) = §(3, 2) 2(2, 2) + £(2) (80)
; E and subtracting
l | x(3) -Q(s, 2) =%(3, 2) = ¢(3, 2) X(2, 2) + u(2) (81)
E i Squaring equation (g])
E! Y3, 2) =3, 2) P2, 2)(3, 2) " (82)
3 + 23, 2) ¥z, 2) u(2)
E 5 + u2(2).

24




i
|

Taking the expected value

E (£2(3. 2)) = 6(3. 2) B{¥(2, )} 6(3, 2) + B {m2(2))

or

p(3, 2) = ¢(3, 2) p(2,2) ¢(3, 2) + ouu(é‘)

Summarizing the steps at stage k = 2, then we:
measure and compute error
A
Z(2, 1) = z(2) ~ 2(2, 1)

compute weight w(2) by equation (&5)

v(2) = n(2) p(2, 1){n(2) p(2, 1) n(2) +07, (217

compute corrected estimate of state
Yz, 2) =82, 1) + w2) e, 1)
compute variance of state equation (74)
p(2, 2) = p(2, 1) - w(2) n(2) p(2, 1)
Predict (update) state via dynamics equation (80)
Q(s, 2) = ¢(3, 2) ':\:(2, 2) + f£(2)
Predict observation at next stage
'z‘(a, 2) = n(3) 4(3. 2)
Predict next stage state-variance
p(3, 2) = ¢(3, 2) (2, 2) ¢(3, 2) + o (2)

wait for next stage or third observation to arrive.

Stage k.

~_~
(%)
~

(84)

(85)

(86)

(87)

(88)

(89)

(90)

(91)

The derivations of the equations will not be repeated for stage k, the
relations will be based on the mathematical process of reasoning by analogy.
The treatment of the multi-variable or vector case will derive the relations
at stage k, but will not develop the stage-wise logic at k = 1 and k = 2,

We have available from previous stage predictions

Q(k. k-1)
2(k, k-1)
p(k, k-1)

25




and stored %.k), ouu(k)

Measure and compute error

~ A

z(k, k-1) = z(k) - z(k, k-1) (92)
Gompute w(k)

w(x) = b(k) p(k, k-1)[B®(k) p(k, k-1) + aw(k)]-l (93)

Gompute corrected state -estimate
Ax, 1) =Rk, 1) + wie) Tk, x-1) (94)

Compute variance

p(k, k) = p(k, k-1) [1 - w(k) h(k)] (95)
Predict naxt state
Q(x +1, k) = ¢(k + 1, k) Q(x. k) + £(k) (96)

Predict next observation
Q(x + 1, k) = hik+l) Q(xu, k) (97)
Predict variance of state

p(k+l, k) = ¢(k+1, k) p(k, k) ¢(k¢1, k) + o (k). (98)

We define the noise variances in the notation of the many Kalman
-~oriented papers, that is

»

a:“h) = Q(k) . (99)
05, (k) = r(k) (100)

The three familiar equations can be written as
A
x(k+l, k+1) = $(k+1, k)/x\(k, k) (101)
+ p(k+1, k) h(k+1)[n(k+1) p(k+l, k) n(k+1) + r(k)]"t

[2(x+1) - n(k+1) ¢(x+1, k) '2(::, k)]
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p(k+1, k) = ¢(k+1l, k) p(k, k) ¢(k+l, k) + q(k)

p(k+1, k+1) = p(k+l, k) ~ p(k+l, k) h(k+l)

(h(k+1) p(k+l, k) h{k+l) + r(k)]r'x(lul) p(k+l, k)

(102)

(103)

We shall now define in words the meanings at stage k of the-variables and

revrite the equations using the distinguishing J and n.

x, (ke1) ad (k+1, k) xy (k) + £(k) + u,(k) (104)
zdn(k) = h(k) xJ(k) + v, (k) (105)
an(kﬂ, k+1) =@ (k+1, k) x (ks X) .

s p(k+l,k)h(k)[h (k+1) p(ke1) + r(k)]™t

[zdn(kd-l) - h(k+1)4>(k+1,k) ':c‘dn(k. k)] (106)
p(k+1, k) =P(k+d, k) plk, k)P (k+1, k) (107)
p(k+l, k+1) = p(k+l, k) - p(k+l, k) h(k+l) (108)

[h2(k41) plk+l, k) + r(k) 1™ n(k+l) ple+l, k)

x(k) = xd(k) is the true (unknown) value: of the process state at

stage k as a result of the unknowns uy (1), een vy k)
forcing the systen.
2 (k) = an(k) is measurement of the true noise-process xJ(k) with
additive unknown measurement noise v_ (k).
/\

(k, k) = x(k k) is the best estimate of the state at stage k of
the jth trajectory based on past observations

. ' up to stage k, that is recursively we have used
noisy -

(1) 2 (2) en 2, ()

Jn

made noisy by v (l), vor U (k).

x, (k+l k) = x(k+l, k) is the best estimate of the state of the jth
trajectory at stage k+l, based on observations
only up to k. Also interpreted a8 the predic-
tion of the state at next stage k+l, based on
current stage k and past measurements.
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I1I. VECTOR ESTIMATION EQUATIONS

This section derives the Kalman Estimation Equations for the multivariable

case using walrii analysis methods. The derivation tochnigues 2rs the game

as used in the previous scalar case. The essential difference lies in the
minimization methods. The variance of the estimate in state for the scalar

case is a scalar valued function of a scalar argument w(k). For the vector

case, the trace of the variance matrix of the estimate of state is like=

wise a scalar-valued function, but a function of & matrix of p rows and gn

columns Wik). The minimization of a scalar-valued function with respect

to th¢s matrix. ‘

One can arrive at the equations via strictly algebraic concepts of orthogonal
projection matrices etc., in which one does not have to enter intc discussions
of partial derivaties, continuity of continous variables and gradients.

Since the majority of expected readers &are assummed to be more familiar with
‘the least-squares criterion via gradients, this report will stick strictly
with this method.

The general linearized vector equations are

x(x+1)(p>= §(k+1, k) x(k)>+ B(k)r(}b + N(k)u(k) (1)
rXg pxq
z(kB@ = n(x) x(k > (2)

The deterministic k-varying vector r(kZSB> is of dimension,g less than or
equal to p, and gets distributed or crofis-coupled into ull p state
variables x(k+1) via the functional relations of B(k).

PXg

The same ntatements apply to the noise input vectoru(kiKE).

The reader should ka2vp in mind the families of trajectories accurately
described by the J and r indices, that is

x(kﬂ} = §(k+1, k) x(kgb + B(k)f(> + N(k)u(> 3
J J

zjh(k) = H(k) X(kg + V(k; (4)

As betore, the accurate descriptions designated by J and n will be dropped
for simplicity of representation.

The equations are developed as a "recursive process” or an "on-line"

processor; that is, as the observations "role in" the mechanized computer- t
estimator utilizes the data, and discards it or stores it on tape or what

- have you. All past data is sequentially accumulated in the "memory of the
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a8 used in the previous scalar case. The essential difference lies in the

minimization methods. The variance of the estimate in state for the scalar

case is a scalar valued function of a scalar argument w(k). For the vector :
case, the trace of the variance matrix of the estimate of state is like- : ‘
vise a scalar-valued function, but & function of a matrix of p rows and g

columns Wk). The minimization of a scalar-valued function with respect

to th¢s matrix. ‘

One can arrive at the equations via strictly slgebraic concepts of orthogonal
projection matrices etc., in which one does not have to enter intc discussions i
of partial derivaties, continuity of continous variables and gradients.
Since the mujority of expected readers &ae assummed to be more familiar with
‘the least-squares criterion via gradients, this report will stick strictly
with this method.

The general linearized vector equations are

x(k+1)(p>= §(k+1, k) x(k)>+ B(k)f(} + N(k)u( k) (1)
pxg pXq
z(kg@ = H(k) x(k}b + v(k}b (2)

+~ The deterministic k~-varying wvector f(kZSB> is of dimensionyg less than or
equal tc p, and gets distributed or crofs-courled into all’ p state
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3 3

(>= H(k) x(k)> + (@ 4

th X J v s ( )

As betore, the accurate descriptions designated by J and n will be dropped
for simplicity of representation.

The equations are developed as & "recursive process’ or an "on-line"
processor; that is, as the observations "role in" the mechanized computer- ¢
estimator utilizes the data, and discards it or stores it on tape or what

" have you. All past data is sequentially accumulated in the "memory of the
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math-ware” via up dated estimates and variance matrices etc.

Stage k.

Suppuse we are at stage k and have computed during stage k-1, the following
A
x(k-1, k-1)
P(k-1, k-1)

and predicted via dynamics

Rk, k-1)>= Kk, k-1) Xlk-1, k->+ B(k-1) f(k—> (5)

2z, k-> ROk) (K, k-]> (6)
2(x, k-> = H(k) ¢(k, k-1) /:}(k-l, k-1>' + H(k) B(k-1) f(k:l> %)
P(k, k-1) = (k, k=1) P(k~1, k-1) éfk, k~-1) (8)
+ N(k-1) Q(k-1) N (k-1).
We nrow receive the kth observation

z(9= H(k) x(1> + v(l> (9

vhere z(k)> is known but x{k}> and v(k)> are unknown. We can compute an
observation error vector by equation 7) and () as

2k, k-> = H(k) [x(> x(k, k-1 ] + v(l} (10)

we now can correct the estimate in the state vector based on the observable
and computable estimate in the observation vector as

x(k k} x(k, k-l}}» * W(k) 20k, kel )} (11)
wvhere the weighting matrix w(k) at stage k has p rows and m columns.

We next geek a procedure for selecting af;#ach stage & pxm weighting
matrix W(k).

Using equation (JO) in equation (|})

x, B> = Xk, k—>+ wik) {H(k)[x(k > -, k—1>] + vk} (12)

= [ 1 - %k) H(k)] x(k k-> + w(x)n(xh(@ + W(k)v(>
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If we nov define the "unknown" error vectors

r.\ A/. .\\ My \

A\VR[ 7 = A\R, R} = X\K, V

a
x@- Rk, x—>- Xk, k-l>

then theoretically equation (12 ) in (13 yields

x(x, > - [I- w(k)li(k)]x(a- [1 - w)r(k)) Rk, k->
- W(k)v(EZ)

?'(x.}- (1 - W(k)H(k) %(x, k-> - W(k)v(>

Transposing ()6) we obtain
éx, h) -é(k, k-1) [1 = H (k) Wi(k)] - Q)WT(I;)

The dyadic product of equation ( 16) and {7 ) yields

Xk, KDPx(k, ®) = {{1 ~ W(k)H(k)] x(k, n-1>- w(k)v(>}

((x, k-1)[I - B (k) W (k)] - <k) W (k)}

‘[T - Wie)H(K) Tx(k, k-2 DAk, k-1)[T = HE (k)W (k)]

- [I - wik)H(X)]%(x, k--lx(k)ww(k)

- WOk, x-DIT - K )]
+ w(k)v(k)><(k)wT(k)

(13)

(14)

(15)

(16)

¢%))

(18)

The square of the magnitude of the error vector x(k g§:> is given as the
inner-product of equation (16 ) and equation (17) or,“as the trace of the

outer-product of equation (18) as

@. k)?(k,) <(k. k-1) ¥k, k-l> 2<(k, k-1)W(k)HX(k k->

+ &tk 1) WP e i, 9
a{k, k-1)W(k) v(?

» e, x-1H"0) WH(k) W(k) vu>

+ <(k) Wi(k) W(k) v(l>
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e

Equation (19) is a scalar valued function of a matrix argument W(k) of

aiza nvm  Wa ahall talka tha novtial dawivrntien A® tha ~snlom oddb mameas a

nvm the zoalar with rospoct
to the matrix W(k),

A
—3%7 <(k, k) x(k,» term by term.

By equation ( 19), there are six additive terms, each term will be handled
via the “"gradient" methods in Appendix B.

The first term is not a function of

W(k), hence

awa(kj @k, k-1) ';c’(k, k-> = [0] 20)

The second term is by equation §-61 )

N
? A~ ~ . A ¥ (Y
W{_‘EQ}" k-1) W(k) H(k) x(k, k-l/} -gn}{l()k)x(k,k-.}%(k,k-l) (21)

The third term is
5%{ %(k, kel1) B (k) Wi(k) Wik) H(k) xlk, k-l>} (22)
= 2H(k) %(k, k-1><$:‘(k, k=1) HY(k) W (k)

The latter derivation is based on equation (-gg ) and setting

& =é'(k, k-1) HY (k) (23)
b‘@ = H(x) ¥k, k-l>

The fourth term is by equatien (L-56) (24)

33; {-2<§Zk, k=1) W(k) v(k) >} = -2v(k><c~(k, k-1) (25)

The fifth term by equation bL-80 is

3= {2@'(1:, k=1) HY(k) Wi(k) W(k) v(x)>} (26)

= {H(k) X(k, ﬂ—l><(k) + v(k><:2‘tk, k-1)H'} WP
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in equation (b-80)

~
[}
~J
N

The sixth term is

;% (&vix) W(x) WK) w(x)>)} = 2v(kMk) e (k) (28)

Utilizing the above six expressions in equation (19 ) after the partial
derivative has been taken

-;%[@k. k) ;(k, k>} (29)
= ~2H(k) ¥k, k-l%'(k. K1)

+ 2H(k) ¥(k, k-1 ><3‘c"(k, K-1)H (k) T (k)

- 2v(k><"‘(k, k-1)
+ (H(k) %k, k—1><(k) + v(k><"(k, k-1)H ()} W (k)
+ 2v(k><r(k) Wik) = [0]

The expected value over all experiments and allowable values of jJ and n
yields

S 2Kk, 1) Flx k>} = -2H(k) E{x(k, k- %‘tk, k-1)} (30)

+2H(k) E(x(k k-l%?k, k-1)} H (k) W (k)

-2E(v(k><‘1k. k-1)}
+ [H(x) E{%(k, k-1)><(k) + v(k>éﬁk, k-1} H (k)] W (k)

+ 2E{v(k><r(k)} Wi(k) = [0]
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If we use the mtation

P(k, k) =$2£(k, k) = E {f(k,Nk. k}} (31)
P(k, k-1) =%(k, k-1) = B{x(k, k-Nk, k-1)} (32)

(k) = sue) > (33)
RlK) = B (D)) (34)

and assume that the conventional Qtatistical independence assumptidha hold,
E¥(k, k-%}>><é{f)} - [0] (35)
E{v(k) >¥(x-1)} = [0] (36)

E{v(ka)} = [0}, etec. 37

By equation (31 ) through (37 ) in equation (30)

X

a{tr P(k,k)} = -2H(k) P(k, k-1) 8
itr ¥ o (38)
+ 2H(k) P{k, k-1) H (k) W'{k)

+ 2}_“”(&) wi(k) = (0]

[H(k) P(k, k-1) H (k) + (0] Wi(k) = H(k) P(k, k-1)

(39)

P Traﬁsponing
o T - _ T
l W(k)[H(k) P(k, k-1) H" (k) + Xu(uk)] = P(k, k-1) H (k) (40)
: i Inverting
‘ ’ W(k) = P(k, k~1) Ho(k) [H(k) P(k, k-1) H(k) + (k)] (41)

? vV
& , or
; W(k) = P(k, k-1) H (k)[H(k) P(k, k-1)R (k) + R(k)]™} (42)
i Wi(k) = [H(k) Pk, k-1) K (k) + k(k)]™" H(x) P(k, k-1) (43)




: The pxp matrix variance of the estimate of state (the p-space ellipsoid of

!‘ unooots 4..4..\ a2 ba Ahbainaed. ‘Inw talkine the avnestad woalua Avar all avnaewrimanto
ceelng syxpzotec welus over a’l evnerimante

UL VWeasAwg f e

of the dyadic product of equation (18),
, P(k, k) 'E{(x(k. k) (k, k)} (44)
B = [T - w(k) H(k)] P(k, k-2){I = H (k). W (k)]

+ W(k) R(k) W-(k)

Multiplying out the terms of equation. (44 ) we obtain
P(k, k) = P(k, k=1) - P(k, k-1) H (k) W (k) (45)

w(k) H(k) P(k, k-1) + W(k) H(k) P(k, k-1) HY(k) W (k)

+

w(k) R(k) W-(k)

"

P(k, k-1) -« B(k, k-1) H T(x) Wh(k)
W(k) H(k) P(x, k=-1)

+ W()[H(K) P(k, k-1) E(x) + R(k)] W' (k)

Consider the last term of the above equation:and eguation (42 ) for W(k)
vith the transpose (43), then the last term.becomes

W(k)[H(x) P(k, k-1) H (k) + R(k)] W (k) (46)
‘wPlx, k1) HO(K)[H(k) P(k, k~1)H (k) + R(k)]"2[H(k)P(k k-1)H"(k)$R(k)]
x[H(x) P(k,k-1) H (k) + R(k)]" H(k) Pk, k-1)
= P(k,k-1) B (k)[H(K) P(k,k-1) + R(k)]™* H(k) P(k, k-1)
= W(k) H(k) P(k, k=1).

Using the above expression for the last term in equation (45) we obtain

P(k, k) = P(k,k-1) - P(k, k-1) H (k) W (k) 47

- w(k) H(k) P(k, k-1) + w(k) H(k) P(k, k-1)

or

| P(k,k) = P(k, k=1) = P(k, k-1) H' (k) W (k) (48)

’ P(k,x) = P(k, k=1)[I = H-(k) W (k)] (49)
PXp pxXxm  mxXp :

5 : The matrix P(k,k-l_)-wa.s predicted and tomputed during stage k-1.
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We can now predict the next stage (k+l) state vector via the deterministic
process-dvnamics

A A
1, k k+1, , k . 50
x(k+ >- ¢(k+1, k) x(k >+ B(k) f(@ (50

The next stage prediction of the cbservation vector is

/z\(k«&l, »: H(k+1) Q(k-fl, 1>. (51)

The error in the state vector at stage k+l based on the prediction of
equation (50) is

.' | /;c/(k+.l,>- x(k+> = Q(k*’l, @ (52)
t

vhere the unknown state vector is

- x(k+> Pira, k)x(k> + B(k) r(> + N(k) u(> (53)

5 ?.nd t);e unknown error is by equation ( 50 ) and equation (53 ) in equation
o 52

x(k+l 9- d(k+1, k)x(> + B(k) f(k> (54)

{ + N(k) u(k> - c(k+1 k)x(k k)>> - B(k) r>

= ¢(k+1, k)[x(k> - x(k }} N(x) u(>

Using equation (|4 in equation 54

x(k+l,>‘ o(k+1, k) Xk, »“ N(“)““‘> (35)

! The trangpose of equation (55 ) is

T “ Q’(Ml, k) =<x, k) ¢ (k+1; k) +Qk) % (k) | (56)
- '

The dyadic product of equation (55 ) and-equation (56) is

l | X(k+1, Nkﬁ. k) (57)

g' i = §(kel, k)’;’(k. k><(k, k)ﬁ(ku, k)
P
! + (k41 k) X(k, RNI:) T (k)

+ H(k) ulk DRk, K (k41, k)

* 4 N(k) u(ka) §(x)

{
|y
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v Tompute weight matrix W(k) by equation (42)

The nrhpﬂfnfinn nvav all axpavimants o2 cquatici 0/ ) is
E(X{x+1, k><(k+l, k)} = P(k+l, k) (58)

= #o(k+l, k) E(X(k, k><x(x. k)} 7 (ksl, k)
+ N(k) -Eu(k) DG(x)} N (k).

The statistical independence assunption was. invoked:

E{x(x, xNk)} = [o].

Define the process noise variance matrix .

2a><utx) 1= a(k) (59)
and equation { 56 becomes

P(k+1, X): -@kﬂ k) P(k, x)f’(ku, k) + H(k) Q(k) No(k). (60)

We may nov summarize the equations and the computations ‘to-be performed at
the kth stage as the kth stage summa

e

We have available from stage k-1 .

A
x(k. k->
U, k-l> = H(k) Q(k. k-}'

' P(k, k—l), Y

Receive z(l> .
. v iy

Compute error in observacion

o i, x-:>- z(l>- 2(k, k-> (61)

-

1
W(k) = P(k, k-1) HY(k)[H(k) P(k, k-1) H (k) + R(k)] (62)

N COrrect state estimate by equation (11)

x(k k>- x{k, k—>+ W(k) z(k k-l> (63)

36




Compute new state variance by equation (49)

k) = Ple, k-1)[1 - 8 (k) wl(x)] (64)

i~y an au as

P(x
Predict to stage k+1, by equation (50)

n
. Q(m,>= TPRTRIRACS 9+ B(k) f<1> (65)

Predict observation by equation (51)

A A

z(k+l, k)>= H(k+l) x(k+l, k) (66)
Predict state variance by equation (60)

P(k+l, k) = ®(k+1, k) P(k, k) ¢ (k+1, k) + N(k) Q(k) N'(k) (67)
wait for stage k+1 and new measurement vector.

The equations can be substituted and Juggled around to obtain alternate
expressions for example using equation (42) and (61) in (63) we obtain

: _ x(k 1>=x(k k-> (68)

Pk, k=1) Ho(k)[H(k) P(k, kel) HT(k) + R(k)])™E

: x{z@-H(k) ok, k-l)/x\(m-l k- l>-H(k)B(k-1)f(k-1)

! ‘Many similar variations of the above systems of equations occur in the
’ literature.

Stage k = 1.

The vector starting system of equations can be derived from equation
for k = 1,

S /)}(1, >= intelligent guess (69)
: /z\(l,OP = H(1) ?(h@ (70)

P(1, 6) = intelligent guess based on experience about the process. (71)

, - Receive z(> .
S

f Compute error

Az’(l,>= z>-,z\(1, 9 (72)

%‘» 37
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Crmruta £ivat waicht
w(1) = P(1, 0) [H'(1) P(1, 0) H(1) + R(2)]™! (73)

Correct state

S, > . Q(l,} + w(1) ”;(1.> (74) _

Compute state variance matrix by equation 49 -{
P(1, 1) = P(1, 0) [ 2 K'(1) W' (1)) (75) |

Prediat stage 2 by equation (50 )

Q(z, >-§(2. 1) Q_(J..>+ B(1) r(1) (76)
Predict stage 2 observation

A A

:(2.}- B(2) (2, > (77)
Prodbol stane vorioe o anbeds byoequntion 67

p(2, 1) = #(2, 1) P(1, 1) &2, 1) + NQQN'(L) (78)

BETC.
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IV. EQUATION SUMMARY FOR COMPUTER APPLITATION

This srction summerizes the equations of the pravicus sections and poluis

out how to compute mechanize the estimation equations to recursively estimate
the state vector as the observations "roll into the computer'. Precomputation
of the sequence of weighting matrices for large dynamical systems is a necessity.

The dynamical process is described by the state vector equation

x(k§> - o(k+l, k)x®> + Bf®> + Bf@> + N(k) 09 (1)

and a system of noisy instruments whose outputs are functionally related to
the states by the observation equation

23> - Hoox@> + v - @

The system of estimation equations are:

The state vector prediction equation

x<k+1,>> = O(k+L, k);((k>>+ B(k)f@» (3)

The observation prediction

2(k+1,>> - H(k+1);((k+1> . (4)

The Observation error

2(k+1,9- z(k+1> - £(k+1» (5)

and the correction to the predicted states at k+l after the (k+1)th
observation is available

X(k+1, k‘9> - ;{(k+l,>> + W(kHD) 2(k+1>> . (6)

The sequence of weighting matrices W(k) can be precomputed and stored in
memory. The weights are:
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W(k+1) = P(k+l, k)H(k+1) [H(k+1)P(k+1, KHT (k1) + R(kﬂ]‘l N
where
P(k+l, k) = &(k+L,k)P(k,k)0" (k+l, k) + N(k+1)Q(k+L)NT (k+1) . )

The block diagram is shown in Figure (1) 4s the conventional feedback
(discreet) system.

R4, kD> [qan M

lay
A

X(k+1, }
ﬁ(kﬂ, k [~

FIGURE (1) - DISCREET FEEDBACK BLOCK

By re-arranging the positions of the feedback blocks onc can obtain a
flow-block which looks more familiar to a digital programmer as shown in
Figure (2).

Tests or applications in which one can plan or design the experiment and
the times k, k+l, etc. at which instrument-data will be used to estimate
appear to admit of pre-computing the weights. If the estimation times are not
pre-designed one must compute the weights on-line.

— e, iY>

A
X(k, k)

1 Stage
Delay

Wi(k)Z(k+l, k) +

+
Carrected X(k+1, kb

Prediction

Figure (3) - Flow Block of Estimator
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APPENDIX A -~ MATRIX TRACE PROPERTIES

The trace of a matrix, the trace of the product of tvo matrices,
eand the trace of a matrix-sum are nsaful notisms io aid the development

of the topics of Appendix B.

Congider & matrix gn of p rows and m columns where m < pand a,
matrix B , then the product
mxp

Q, =A B
pxii pxm mxp

is a pxp matrix.

The matrices A and B can be partitioned into their row and column
spaces as shpwn - oo

A= }.... a( = é&

D
a

Buéﬂ.l}},...'} -

m
<
The product Q can be written as a matrix of inner-products

. b}. . b%
&

ad g

. {?@,‘...;@b}
& o

‘Q1=A_Bs

4]

(1)

(2)

(3)

(L)

(s)
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or as a sum of dyads {outer products)

« 1 ra “‘i

a}} |<Q£

Ql-A_B:

m
13

q, = a?éb + o +a>Qb

Iquation (7) expresses Ql as a sum of m rank~one matrices.

If we commute thie product we obtaln a square mxm matrix

Q A
mxvzr mxp pxm

and as before Q2 can be written as a matrix of inner-products

l S
Q, =| b D, ... al
mxx%x ( I‘_a/pl aﬂ

<
n%bﬂ} s v e J)h&%

m m
Qb u} , o+ » )b a(

e

or as a sum of dyadic products

Q, = b? N b(p l?a
| &

(1)

(8)

(9)

(20)

(11)




Clearly matrix multiplication is not commutative, that is

AB ¢ BA
pXp mxm

~

in fact the matrices are not even of the same gize.

However the trace of both products are equal, that is

er(an) = er(ag) | (13)

The following will clarify the above relation.

1f we have a column vector x and a row vector <gZ§ of the same
dimension p then the dyadic product is the square, rank-bne, matrix D of p rows
and p columns

xly xly
1 e P
s - DG - "
pxp xpyl C e xpyp

If we commute the product of Equation (14) we obtain

- - 1 2 P
181 {“) YXTEYE ke by (15)

a scalar.

When the elements Yy and xi are real field elements the products
commute, hence

i 4y
y X = XYy (16)
and Equation (15) [the inner product] can be written as the sum of the main

diagonal terms of B><f, which the converitional definition of the t -ace (tr) of
a matrix, hence

tr N - 4> (17)

The dyadic product is not as mysterious as many novices might
imagine; in fact, if we write Equation (1)) as

o >-Q -iﬁ}: ;;ya (18)

we see that the matrix D when partitioned into its column space is a row
of p parallel column vectors - all p of the vectors lie on a line, hence

?{ is said to have rank one - that is, there is only one linearly
ndependent vector in the row "package" of column vectors.
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; APPENDIX B
' GRADIENTS OF SCALARS WITH RESPECT TO MATRICES

This appendix develops the gradient of a scalar-valued function with
respect to a vector variable and alsc with respect to a matrix variable.

Case 1. q= 4); x(>. Consider the scalar q which is the inner-

product
q= <)a (> (b-1) '

where < is & fixed p dimensional row vector and > is a varisble column

vector, or q is sald to be a acalar-valued variable which is a function
of the vector variable }.

In equation (b-1) q may be considered to have vector factors < and >
It we have a dyed

Q= PG (b-2)

then it was shown in appendix A that

tr Q= q (b-3)

| or

[P - <> - -

The differential of equation (b-2) is

ie=BG (b-5)

and the trace of (b-5) is

| tr dQ = tr [@{:} EP =u (b-6)

We may now ask to express the differentiul matrix dQ in terms of vector
factors and a gradient vector, that is

dq = &é (v-7)

such that the trace of equation (b-7) is
: dg = tr 4Q = tr M-{%; (b=8)

. m
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If we take the trace of AB by Equation ( %) as the sum of diagonals
we obtain

\ Pr N
LE(AB) = i%z? DL?> + - +<&n)a b£j> (12)
p

If we take the trace of dyadic sum decomposition of AB given by
Equation ( 7) we obtain

s -of e 1
m

The trace of a sum of matrices 1s the sum of the traces, hence by
Equation (17

tr(AB) = tr a><> + tr a\(b doeeeeeer 4 tr a%b (14)
tr(AB) {b a} {b a> doae. {b a> (15)

Equation (1) 1s a sum of p lmncr-~products of m-dimensional vectors and
Bquation (15) 1s a sum of m inner-products of p-dimensional vector.

The sum of the main diagonal terms of Equation (4 ) is

tr(ta) = {b a} b e {b a} (16)
1 m

which by Equation (15 and Lqguation (15

tr(ﬁ#) = trggﬁ ()
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By equati 1 (b-T) and (b-5) we can state

9 =
<:§; ‘ig (v-9)
We arrive at the result of equation (b~9) directly from (1)

aq = € B -é% @ | (v-10)

hence ‘

<@ -<-§§ . (b-11)

Also one can consider the gradient as an operator <:£%

& -0~ <B¢]

The dyadic~type operator

><; . () % C . 'a%?) (b-13)
2

- ax’ 35} 2551
. L] » -
X, 3x, =y (5-14)
axP axf
ax 9x
1
L Ry

when the coordinates arc independent of each other, then

)é; = 1. (-15)
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Hence

1% &<

In conclusion:

ifq= &>

& -<

Case 2, g = <§ g).

N

>

then

When q is quadratic we can write q a8 the trace of the dyad

=<

for
tr@=tr (DE) =D =q.
The differential of the dyad
4 PE P
dq = tr 4q = <d3> +<x>=2<c q>=<-§§ %
hence

Case 3, q=<a>

For this case we have two different matrices

q = ﬁ;><£
%= >

and

47

(p-16)

(b-17)

(b-18)

(vb-19)

(b=20)

{b-21)
(b-22)

(v-23)

(b-2k)

(p-25)

(b-26)




. which under the trace operation map down to the same scalar
s\
q®trQ =trQ, =By {(b-27)
The differential of QE = Qs >

aQ = @@ +><@s | (0-28)

' The trace of {b-28) is

br o= <& &>+ Gx B (b-29) :]‘

The differential of (v-2h) is

dq'@®+<l3®=tr<2 (b=30)
aq * B’ @ + <B 9 (b-31)
dq = 4 E; + Bﬂ d> (v-32)

we have 4‘
2 ]
da =<§ @ (b-33)

and by (b-32) and (b-33) ’

G- <] ‘

and for symmetric B

' % B = BT (b=35)
- then

. | /\% - zé (L-36)
_ Cuse 4. q= <)up§mb(> (b=37)

The scalar g is a function of the matrix X of p-rows and m columns.

The scalar ¢ can be written as the trace of the matrix

Q- b(><)a X (b-138)

oty
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The differential of Q is

aQ =>< ax (~39) |
By equation (b~37), differentiating

S -

dg e )"y = tr aQ. {p-L0)
We seek a gradient matrix 9 of m rows and p columns as one of the factors ‘
ax
of aQ that is ‘
daQ = ax (p-k1
mxm 3')9(' pam )
e

such that

trdQ = dq = <dx> (b-42)

Clearly by equation (b-39) and (b--41) ir
-g—% = bh><'a (b=l3)
mp

then (b-42) is satisfied.

An alternate, more direct, approach is given below., Partition X into
a row of column vectors (all " contravariant." vectors), then

q=<)a [:x(? ) een i(‘%]bk} fbobl)
| =[<l>,¢§>,...4m>]b(>
| [€3 €3 <P 1:7

e« o o O

o
)
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q=<é;>bl+<£§>b2+. ..+<§>MW
et TR “n ‘
(b=4y)
=9 (> + . .+ qm(>}
1 o}

wvhere each 9y ie a function of a single column vector >

i
The scalar differential of q is

WL g B9 oy
SRR ST S
ml*E?%ﬁ(%?; ...<3%.]

{(b-li7)

L' —
‘ Lquation (b-h7) can be written as -j
| da = tr o Ext} Ce m}} (b-hts)
X
] . v
. >

')-33

N
@%,. . \/\p$ (b=h3)

Y

= tr

;g




The differential of X is a row of column vectors

~— . P |
d)émrdex({D, .. dx(IEJ

and the gradient matrix is a column of row gradient-vectors.

3 (’i ~W

)¢

]
&

From the foregoing we write

dQ = 3g dx
3X
mxp

dq = tr dQ = [__g dx:]

By equation (b-45), (b=-46) and (b=16)

)3-9‘ eSS =bla
9x X

PRI

d I
& <& e

(b-50)

(b-51)

{b-52)

(v-52)

(b-53)

Packaging the row vector gradients of (b-53) into the column of (b-51)

we obtain

3 (ﬂbl<§j;\ (rb.\w<éf;
o 4

"
R

bl;é) a v
Oy LSl y,

(b-54)

-
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hence in conclusion

ifq= <§Da X b€5>
pxm

then _g;%xp= b(><)a.

Cnge 5, = Ja X
. b pxm m¥p °§5>

For this case we set

B a(p> = b(3>

mxp

as in equation (b-56), then
q= <G X b

and we obtain the case l, hence

g,
B 2R

£ 0 = Qg dep P

then _g_% =m§P a.(><)a

mxp

or
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(=2
i
\n
(%)
—

(b=56)

(0-5T)

(p=58)

(b-59)

(p=60)

(v-61)




Case 6. Q= & x be?;>

fa 7
{p2. (b-62)
—_ N pxm mxp /7

( h'fh“ case is the matrix analog of the quadratic vector case of equation
b-? o '

We can partition X into its column space and XT into ites row space and

o q'.Qa E:(?. S x(?] 4&: b(> (b-63)

P

n

<
and q= é x(?é/)x S x?%)ﬂ b@ (b-64)

Digtributing the two end vectors over the dysdic-sum decomposition
of XXT we obtain ‘ '

EPLP 4PEP e EPE> T e

Because of inner-product commutativity

<i>-¢i> - (b-66)
henc‘e . 4?@% . *4?4% (b67)

= Pl(?) ql(?) .4 pm(‘?) q’“(%)

hence the scalar q is a sum of producte of scalars Py -

We have as before

N .
dq-[-g-&,-g%....-g% d.> = tr 4Q (b=68
n
K4
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where dQ is as in equation (b—hl):
(p;a,) P, A
14 i I
é% = ax U ax  tPy Tay (0-69)
- - N - e
B 4 > ' (b-70)

P
._;i. - < (b-T1)

iqi = g P (b-72)

Q
).é;i. - {)b (b=73)

Using (b-T0), (b-T1), (©-72), (b=T3) in (b-69)

| <% . q <+ pﬁi (o-7h)
| TITTRL

L & resel
Packaging (b-75) into the gradient matrix of equation (b-51)

L '_%[>< + N] ) (6-76)

nxp

o &[>< <]
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or

3 - @7[}@%}

m

<€)x

3 - A Pgrpg ]
In conclusion

if q= <i}a X X% o

P mXp

"R <]

In a similar fashion it can be shown that

; T
o= @k L

then ga%p,[:%@b + er&:
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(b=~78)

{b=79)
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i
)

) Consider the pxp matrix L which has factors as shown

L=3 X
PXp pxk kxp (v-81)

b

{

1

{

g vhere X is a variable matrix.
i

If ve factor B into its column space and X into its row space

— 1 -

L-[b}....b(] x (b-82)
pec P |

oo k
- ra |
1 k
= §z§> Elx + . . .+ §E>> )x (v-83)
>< k
The trace of L 131

k
trlstagdr. .. + &D (b-84)
1

X

The differential of (ba» is

dL = B 4 X. (b-85)

The factors of 4L can also ba expresscd as

dL o1 2022L) (b-86)
%, B

vhere the pxk gradient matrix is

-:—% = ['g‘z"(). g—xl'(>, “ o @ %&}] ('b-B'T)
pxk 1 2 k

S
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The differential of Equation (b-§ is

d{tz L) = dL = dg

u
/AN
iy

where
LN, Ef; )
3 ) )
A N
9 :
k k
and

+

1

Ir

L= 3 X
pxp (pxk)(kxp)

trh) _
A . s

pxk

then

pxk

L] . . +

k
%%:) + ...+ <§£
1

dlk

SO

(b-88)

(b~89)

(-90)

(v-91)

(v-92)

(0-93)




APPENDIX C

MINIMIZATION l

Consider the linear surface

.' 2 -<;> (1)

and the quadratic surface

q =xac> (

and the difference

~n
~

q_),.@, (3)

If L is a constant, & = L0, then we seek a vector ?tha‘h lies on
the 1linear surtace and on the quadratic surface such that difference in
the linear surface and the quadratic surface is a minimum,

| Differentiating
f d¢ = dq - di (%)
and
/22 '
y | d¢ <§x dx> (5)

] {2 by
o g _ /L
N NN
; or 2 A
. g X F% ~\3x (8)

It we equate the gradient vector to zero

g for
2 <§x. (9) |
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By equation P) and equation

e

a-&

and solving foré

or

then

Multiplying equation (1l) by l>a;nd using equation (¢}

41:)-( g;l b= Lo

&g

i

Using (13) in (11)
é = Lo <£ g"l
. <bq‘1

Ir

Lo

&

= ]

4

<

Py

- Lo
R R

b>-

(10)

(11)

(12)

(13)

(1k)

(15)
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