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ABSTRACT

This is one of a serieq of tutorial reports deriving the discrete
recursive Kalman estimation equations. The series proceeds from unweighted
to weighted least squares parameter estimation in a vector space setting to
the stage-wise updating, to'time varying parameter or state variable esti-
mation. The derivations have been stage-wise tutorial in an attempt to make
the theory accessible to the "non-specialist" in optimization theory.
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S• Modern state-vector recursive estimation theory (in the sense of Kalman)

has been derived from many viewpoints: conditional probability, orthogonal
- projections, least squares, minimum variance, maximum likelihood,-etc. The

individual user'of the theofy may unde~rstand the derivation of the equations
S~obtained by any one of the above-,theories or possibly by a number of approaches

depending upon the individuals background.

This report is the third of a tutorial series deriving the estimation
equations in a vector space weighted~lease squares setting. The essential
areas for understanding the theory via this approach are:

1.Unweighted Least Squares Parameter-Vector Estimation and the
Variance-of-tho-Estimate Matrix.

2. Discrete Matrix Recursive Methods apply to (1) for Real Time

(on line) Computer. Processing.

3. Weighted Least Squares Parameter Estimation and Variance-of-the-
Estimate Matrix for Correlated Noise.

4. Discrete Matrix Recursive Methods applied to (3) for Real Time
Computer Prceesetnig.

•5. Recursive Weighted Least Squares State-Vector Estimation Theory
(Kalmman Theory).

Items 1 and 2.are completed and published in Reference 4. Item 3 is
coupleted and published in Reference 6. Item 4 is pot completed yet.
Item 5 is the contents of-the current report.

This report is, restricted to full-rank matrices so that the reader may
understand the basic principles of the theory. Non-full rank matrices processed

I recursively require a knowledge and background in Psuedo Inverses, and many more
sophisticated linear algebra concepts. The minimization criterion is derived by
taking the partial derivative of a scalar with respect to a pxk weighting matirz-

the classical gradient approach.

The derivations can be achieved completely a~lgebraicl-v in terms of orthogonal
S projections relating to spaces and sub-spaces. Many sophisticated paper exist in

the literature using this approach. The algebraic approach may not be as readily
accessiblet to the engineer trained in classical mathematics. • i
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NOTATION

The notations used in the report is an effort to blend the notation
of Friedman fnr tnnAr-nrnA-r .Anti dyadic produs writh the Current
journal-literature on vector-spaces, psuedo-inverses, state-vectors, etc.

p, Capital letters designate matrices of size p rows and
X k columns.

when p w 1, the matrix is called a column vector, and
we use Friedmans symbol to distinguish. this matrix.

4(x when k - 1, the matrix is a row vector of dimension p,

"inner-product" or scalar product.of two vectors.

>y' : "outer-product" or dyadic product of two vectors.

p/ k Matrix X partitioned into a row k-tuple of
column vectors from a p-space.

Matrix X partitioned into a p-column tuple of row
#, vectors from a k-space

)x]

x small x is a scalar

x scalar from a column vector

x scalar from a row vector

Scalar here is a "real field" element.

Consider the system of two vector equations

and

where:
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X(k+> are p-dimensional column vectors describing
the states at stage k and stage k+l.

t(k+l, k) is a pxp state transition matrix.

""•>• i di a ... . .a deterministic forcing vector for

"7 which we can write a vector function.

u is a p-dimensional uncertainty or noise vector, it is
the composite of the random noises and the variables
we fail to model.

z is the m-dimensional observation vector, m is less
> than or equal to p.

•k) is the known matrix describing how the state vector is

functionally related to the observation vector (if the
instruments were noise free).

v(k) is an m-dimensional additive instrument noise vector.
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I. ONE PARAMETER FAMILY OF DISC1METE TRAJECTORIES

This section considers the one parameter family of i trajectories
generated by i different values of the initial condition parameter xi(1).
Each of the i trajectories consists of a sequence of k different points
or stages.

We consider

(1) The homogeneous case

(2) The deterministically forced case.

Homogeneous System

Consider the system of scalar equations

x(k+l) =4(k+l, k)4(k) + f(k) + u(k) (1)

z(k) = h(k)x(k) + v(k) (2)

where the following constraints apply

f(k) - u(k) -v(k) - 0 (3)

h(k) h0 a constant (4)

*(k+l,k) = a constant (5)

then equation (I) and (2) become

x(k+l) - ýO x(k) (6)
z(k) - ho x(h)

0 (7)

It further, we consider the-measurement to be exact

z(k) a x(k) (8)

or

ho 0 X1 (9)

then we need only consider

x~~ # '' ,x(k) (10)

1i
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Case i. The most elementary ease occurs when

,I then

x(k+l) X(k) ()

sad for values of k

x(2) - x(i) (13)

x(3) - x(2) -x() (14)

Sx(i)'- x(j) (15)

hence we can plot

Fig. (1)

If ye vary the initial condition we obtsin.•a sequence of trajectories

x IN i() (16)

for

x .(1), x() W , x W!, xi()".

a showmA-n Fig. (z)

' ' . .. '_

Fig. (2)

! i.



For any constsnt.A .ATU"

k1..

X%-k) 0 X~l).

les than onethe-trajectory of-Equation ( ) for-a given initial
c'oldltlon decreases, ior-example

$0=-1/2

x(2) - ½ x(1)

x(3) -(.132 X(l) 1 x(.1) €8

x(W) - • x(i)

x(k) = (.)k-. x(1)

The sequence of k vectors are

' 12 3 k

which plot as shown in Fig. ( 3)

Xji - - - - i i i

Fig. (3) Contracting or Decaying Sequence 0o 1/2
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The first noisy observation is

z jn(1) ih(l) x (.) +v n(1)

Using (3) and (') in ( )
z n (1, 0) =h(l)[x ( M - x j U, o)] + vn(l). (7)

Using (7) in (5)

A - A 0)X (1 0)] + VWlv (. 8in (1, 1) (1, 0) + w(I)h(l)[x W n(l) (8)

- I- w(l)h(l)] X 1(1, :1) + w(l)h(i)x (a) + w(i) vn(U).

We now define two new errors as differences of the previous variables.

0.(1) - (1, 0) = x U0, 0) (9)

and

x 1 (1) - in(1, 1) in X (1, 1). (10)

The variable x (1) is the actual (but unknown) process state variable that
exists on trajactory J. The variable ^x (1)1) is the estimate of x (1),

in )
having used the first noisy observation.

Hencex n(1, 2) is the error in our estimate of the state at stage 1 based
on one Measurement.

A
From equation (*.3) we see that if our initial guess x (1, 0) is wrong, then
Az (1, 0) will also be wrong and after our observatiog z(1) comes in and
oir computed error lz (2, 0) of equation (4) is large, then by equation (5)

we will.~ have a correction term which is the product (w(l)*Z"(1, 1)) of a

large term times the weight value w(l).

Continuing with the derivation of the weights, we obtain the error term by
equation (8) in equation (11) as

rA.. Axn(i , 1) x 2.(1) = x (l)-w(l)h(l)x,(1) (n)

A
or[(i-w(l)h(1)] x (1, 0) - w(1)Vn(1).

or

A
x jn(l, 1) [1-w(l)h(l)][x (I) X j(1, 0)] -w(Ovn(l)..

16



Using equation (9) in equation (12.)

-jn , 1 -- " . .] L(1, C) - n V . (13)

If we square the error of equation (13)

+ v2 (l)V 2(1).

If we take the partial derivative of equation (14) with respect to w(l) and
equaitto zero we obtain

^2 2
C'x (, 1) = 2[1 - w(l)h(l)] (-h(l)) x (1, 0) (15)

- 2v (1)[1 - w(1)h(l)]x (l, 0)

+ 2w(l) V (1) C 0

Taking the expected value over all experiments in which j and n are varying
we obtain

E = -[I - v(l)h(l)] E j (1,0 h(l) (16)

+w(l) n[v(1)) = 0

Define the variances

E{,(l, 0)3 =O-(i, 0) = p(l, 0) (17)

We follow a number of current Kalman papers and papers about'Kalman
Estimation and designate the variance in state as p(l, 0).

The cross term-of equation (>) under the expectation operator is zero

when the following conditions hold,

SE[[I - (1)h~l)] v n(2) *'(l 0)3 (9

U[1 -w(l)h(l)] E IV n(J.) x (1 )
We now assume that our initial guess of x(l,0)islndependent of vn(1) as

n ranges over all allowable values, that is

E n 1) (l, 0)= 0. (20)



Under these assumptions equation (16) and (18) become

o - -- i - v(l)h(1)Ih(1) p(l, 0) + w(1)07 (1) (?1)

or

-h(1)p(l, 0) + w(l)h Ci) p(i 0) + w(1)(i) 0 (22)

or

w()[h 2(1) p(1, 0) +J7 i)1 h(i) p(i, 0) (23)

w(i) - h(1) p(l, 0)[h 2 (1) p(l 0) +C(1)]-1 (24)

The value of p(l, 0) which by equation (17) is

p(l, 0)- Ef[x (1)- -X'(, 0)]2J (- guess (25)

can be obtained by guess or by a "learning process", or by a-priori
knowledge about the system.

The variance of the estimate of state at stage 1 based on the observation
at stage one can also be obtained by equation (14) as

a xjhl] E[(1, 03 + w 2(i) E v 2(l~ (26)

when the cross terms AMd zero, that is
A

E [n(I) xA( 1 , 0 )1 2v(i)[1 -w(i)h(i)] =0. (27

The variance terms of equation ( ) will be denoted as

1) - Exn(1, 1 i)j.p (1, 1) (28)

E iv2(1)} "-w(1) .0(29)

The p(1, 1) designation is in keeping with the now near classical

notation.

Expanding the terms of equation (26)

p(i, 1) - [i - w(1)h(1)] 2 p(l, 0) + w2 (V)O-l) (30)

- [1- 2w(I)h(i) + w2(1)h 2 (1)] p(l, 0) + w2(1) T W(1)

-p(l, 0) - 2w(l)h(l) p(i, 0)

+ w2 (l)[h 2 (1) p(i, 0) +•VV(1)

18



Consider the last term in equation (30) and use equation (24) for

w 2(1), then

w2(1)[h2(1) p(l, 0) +O..)] (31)VW

021 2l )[h'(1) p(l, 0) +÷a,(1)]- [h2(1) p(l, 0) + T (1)]

" = h2(1) p'(1, 0)(h2(1) p(l, o) +L-V (l)]-

' -h(1) P(1, o) ýh(i) P(l, 0) [h 2(1) P(l, 0) +0 ()-

Replacing the bracket term of equation (31) by w(l) in equation (24)
we obtain

w~2 (l)[h 2 (1) P(l, 0) +r(l)] * h(l) p(l, 0) w(l) (32)

Using (32) in iiquýLtion (30) we obtain

p(l, 1) - (l, 0) -2,(l) h(l) p(l, 0) + h(l) p(1, 0) w(l) (33)

- p(l, 0) - w(l) h(l) p(l, 0).

p(1, 1) u p(l, 0)[I - w(1)h(l)J

also using equation (24) in equation (33) we can write p(1, I) as

p(l, 1) p(l, 0) - p(l, O)h(l)[h(l)p(1, O)h(l) +O""(1)]lp(l,0)h(l) (34)

Equation (3 iso the scalar variance (one dimensional uncertainty ellipsoi4)
of the estimate of the state using all of the current observations.

We can now predict what the next state variable value should be by pro-
pogating forward with the known dynamics as

A 1)+f()
x(2, 1) -*(2,1) x(l, 1) + f(l). (35)

The prediction of the next observation is

A A
z(2, 1) - h(2) X(2,1). (36)

The elliposoid of uncertainty of the predicted state is

p(2, i) = Ef2(2, 1) (37)

where
x(2, 1) = x(2) A(2, 1) (38)

1( )
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I

Using equation (1) and equation (35) in equation (38)

x(2.1) -6(2. 1) 7(1. 1) 4. u•() (39)

f x 2 ) ý(,1 1, 1)x(, 1) + 2ý(2, 1)'~,1) u(l) + u() (0
The expected value over all experiments of equation (40) is

where

2
Ou(1) - En fun(l). (42)

Cross term statistical independence assumptions are

Ei'(I, i) u(13 - O. (43)

etc.

In cowlusion, at stage one, we do%

Given

guess or estimate

A
p(1, 0) and x(l, 0)

compute

A (44z(1, 0) = h(l x(, 0) 44)

Measure and compute error

z(,, 0) - -(.1 -A( 1, 0) (45)

Compute weight w(1) equation ( )

v(=) - h(l) p(l, 0)[h(l)p(l, O)h(l) + vv(lf,)]. (46)
"vV

Update or correct ,state-estimate

A A
X(l, 1) - X(l, 0) + W(l) '(l', 0) (47)

Compute ellipsoid of uncertainty of state estimation (48)

p(1, 1) = p(lO)[l -()h(2)]

SZO0



Predict or propogate one stage into future with known dynamics the following
three variables:

Predict next stage.

X(2, 1)-•(,) (I, l ~)(9

Predict next observation.

A A (0
z(2, 1) - h(2) x(2, 1) (50)

Predict ellipsoid of uncertainty in state

p(2, 1) - 0(2, 1) p(l, 1) 0(2, 1) + auu(i). (51)

Wait for stage k - 2 and second observation to come in.

Stage k = 2.

The second observation is taken at stage 2 and is

z (2) - h(2) x, (2) + (2) (5Z)
in

where, as before, z n( 2 ) is known, but x (2) and v (2) are unknown.
in i n

We compute the error signal

'z (2, 1) - z (2) - n (2, i) ( 53)
in inn

The sub-scripts J, n can now be dropped for simplicity of notation, whereA
it is henceforth unddrstood that x(2, i) for example means the best
estimate of the true Ath trajectory based on the sequence of instrument
noises<

n

Using equation (50) and equation (52) in equation (53)

'T(2, 1) = h(2)[x(2) -_ (2, 1)] + v(2) (54)

we now have computed the error in the observation, hence we can correct
our estimate of what the state variable should be based. on. the use of the
second. observation, that is

A A
X(0, 2) - x(2, 1) + w(2) 'I'(2, 1). (55)

As before, we now seek the "feed-back" or-correction-weight w(2) at stage
2. Before deriving the w(2) expression, use (54) in (55)

AA A
X(2, 2) = X(2, 1) + w(2)h(2)[x(2) - x(2,1),+ w(2) v(2) (56)

A A
X(2, 2) = (1 - w(2)h(2)] x(2, 1) + v(2) h(2) x(2) + w(2) v(2). (57)

21



From the error in state estimation at stage 2 using the second observation
as before

T'(2,2) - x(2) - x(2, 2) -[l-v(2) h(2)1'(2,1) + w(2) v(2) (58)

Multiply equation (58) by itself to obtain the square of the error term as

x (2, 2) - [1 - v(2) h(2)] x (2, 1) (59)

+ 2w(2) v(2)[1 - v(2) h(2)] *'(2, 1)

+ w2(2) v2(2).

Observe that the error and the square of the error in equation (59) is a
function of v(2).

In order to select a w(2) which will minimize the square of the error we

take the partial derivative of equation (59) with respect to w(2) and

equate this "gradient" term to zero, hence

a -2h(2)[1 - w(2) h(2)] x (2, 1) (60)Dlv(2) "

+ 2v(2)[l - w(2)h(2)] 'O(2, 1)

+ 2w(2) v(2) (- h(2)) 2'(2, 1)

+ 2w(2) v2 (2) 0 o

Since we want w(2) to be the same regardless of-how many times we repeat

the experiment; or, from a "single-test" stand-point, w(2) should be
selected to hold regardless of the unknown sequence driving the two

variables at this stage u (2) and vn( 2 ). Consequently we take the ex-
, a n

pected value over all admissible vectors and a and obtain

- w() h()] -h(2))p(2, l)-+ v(2)co (2) a 0. (1
vv

The assumption of statistical independence of the variables 'x(2, 1) and
v(2) is again assumed

E {x(2, 1) v(2)} - 0 (62)
n

also the assumption about

[~tn~)~ v2)I~(63)
v(2)

(1) vn(l) Vn 'n(2) a (1) 0
,n(2) v (1) vn(2) Vn(2j

.22



The assumptions of equation (63) can be relaxed but then one needs a
deeper knowledge of multi-linear algebras. matrix-Dackazine and partitinninn.
matrix psuedo-inverse, etc. Hence such "highly-colored" or correlated
noise cases will not be discussed in this paper. The majority of published

an Kaln ..coymlc the im ied Gaussian ...u.pt.uu implied by
equation (63) for arbitrary large k. Computer storage problems for

* correlated noise for large k are-also a problem.

* Solving equation (60) for w(2)

w(2)[h(2) p(2, 1) h(2) + oa42)] = h(2) p(2. 1) (64)

or

Th V (2) -h(2) p(2,l) [h(2) p(2, 1) h(2) + a v (2)I) (65)

The second weight can be computed since h(2), •0 (2) are assumed known and
p(2, I) was computed at stage 1.

We can now derive the expression for p(2, 2), using equation (65) and
taking the expected value over all experiments

p(2, 2) - E (12 (2, 2)) = (1 - w(2)h(2)] p(2, 1) + v2(2)o (2), (66)

with assumptions

E {v(2) "(2, 1)) = 0. (67)

Expanding equation (66)

p(2, 2) = [1 - 2w(2) h(2) + w (22) h (2)] p(2, 1) + w (2)o,.(2) (68)

p(2, 2) = p(2, .l) - 2w(2) h(2) P(2, 1) (69)

+ w (2) [h(2) p(2, 1) h(2) + c., (2)]

Consider the last term of equation (69) using equation (65) for w(2)

w (2) [h(2) p(2, 1) h(2) + a (2)) (70)

sh(2) p (2, l)[h (2) p(2, 1) + o (2)1'E[h(2)p(2,l) + aw(2)]

. h(2) p2 (2, 1) [h2 (2) p(2, 1) + a (2)]-1

23



and by equation (65) for w(2) we obtain

I L I I. , , , -J ,,I L -kCJ j V iJ ~. j = n P , L) V(Z) (71)

Using equation (7_) in equation (69)

p(2,2) - p(2, 1) - 2w(2) h(2) p(2, 1) + h(2) p(2, 1) v(2) (72)

or

p(2,2) - p(2, 1) - p(2,1) h(2) w(2) (73)

p(2,2) - p(2, 1) [1 - w(2) h(2)] (74)

Equation (73) can also be written as by equation (65) in equation (73)

p(2, 2) - p(2, 1) - p(2, 1) [h2 (2)p(2,1) +41(2)]1- h(2)p(2, 1) (75)

We can now predict at stage k a 3 the state

A A(3. 2) a #(3, 2) x(2,2) + f(2) (76)

and the observation

Z(3, 2) - h(3) x(3, 2) (77)

and the state-variance term

p(3, 2) m E {2(3, 2)). (78)

By equation (1) and equation (76)

x(3) = #(3,2) x(2) + f(2) + u(2) (79)
A AX(3,2) - 4(3, 2) x(2, 2) + f(2) (80)

and subtracting

Ax(3) - (3, 2) -x•(3, 2) # *(3, 2)l(2, 2) + u(2) (81)

Squaring equation (81)

1 20, 2) -+(3, 2)1(2, 2)<(3,, 2) (82)

+ 2(3, 2) T(2, 2) u(2)

2+ u (2).

24



i.1
Taking the expected value

E-2(. 2)) =(3. 2) 2 EI. ... ,% I

or

p(3, 2) = *(3, 2) p(2,2) 0(3, 2) + a (2) (84)

Summarizing the steps at stage k = 2, then we:

measure and compute error

A
"Z(2, 1) - z(2) - z(2, 1) (85)

compute weight w(2) by equation (65)

w(2) - h(2) p(2, l)[h(2) p(2, I) h(2) + " $ (2)]-1 (86)

compute corrected estimate of state

X(2, 2) - x(2, 1) + ,(2) '"(2, 1) (87)

compute variance of state eqUe.on (74)

p(2, 2) = p( 2 , 1) - v(2) h(2) p(2, 1) (88)

Predict (update) state via dynamics equation (80)

A A
x(3, 2) = *(3, 2) x(2, 2) + f(2) (89)

Predict observation at next stage

A A(Z(3, 2) - h(3) x (3, 2) (90)

Predict next stage state-variance

p(3, 2) = *(3, 2) p(2,, 2) 0(3, 2) + au(2) (91)

wait for next stage or third observation to arrive.

Stage k.

The derivations of the equations will not be repeated for stage k, the
relations will be based on the mathematical process of reasoning by analogy.
The treatment of the multi-variable or vector case will derive the relations
at stage k, but will not develop the stage-wise logic at k * 1 and k a 2.

We have available from previous stage predictions

X(k, k-1)Az(k, k-.1)
p(k, k-1)



and stored 4:'k), auu(k)

Measure and compute error
A

"z(k, k-1) = z(k) - Z'(k, k-i) (92)

Gompute v(k)

v(k) - h(k) p(k, k-1)[h 2 (k) p(k, k-i) + aý(k)- (93)

qampute corrected state estimate

A A Px(k, k) - x(k, k-i) + v(k) z(k, k-1) (94)

Compute variance

p(k, k) - p(k, k-i) [i - v(k) h(k)] (95)

Predict next state

I(k + 1, k) - 4(k + 1, k) x(k, k) + f(k) (96)

Predict next observation

A Az(k + 1, k) - h(k+l) x(k+1, k) (97)

Predict variance of state

p(k+l, k) a *(k+i, k) p(k, k) *(k+1, k)+ Oauu(k). (98)

We define the noise variances in the notation of the many Ks.aman
-oriented papers, that is

Ou(k)a q(k) (99)

jr,(k) - r(k) (100)

The three familiar equations can be written as

X(k÷l, k+i) - *(k+i. k)x(k, k) (101)

+ p(k+i, k) h(k+l)[h(k+l) p(k+l', k) h(k+l) + r(k)F1_

[z(k+1) - h(k+l) *(k+i, k) (k, k)A
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p(k+l, k) 0 (k+l, k) p(k, k) 4(k+I, k) + q(k) (102)

p(k+l, k+l) = p(k+l, k) - p(k+l, k) h(k+l) (103)

[h(k+l) p(k+l, k) h(k+l) + r(k)]h(k+l) p(k+l, k)

We shall now define in words the meanings at stage k of the-variables and
rewrite the equations using the distinguishing j-and n.

x (k+l) -•(k+l, k) xj(k) + f(k) + u a(k) (104)

z (k) - h(k) x (k) + Vn(k) (105)jn

xin(k+l, k+l) =ý(k+l, k) x n(k, k)

+ p(k+l,k)h(k)[h
2 (k+l) p(k+l) + r(k)]-V

[z (k+1) - k)) (106)

p(k4l, k) a (k~i, k) p(k, k)o(k+1, k) (107)

p(k+l, k+l) a p(k+l, k) - p(k+l, i) h(k+l) (108)

[h(k+l) p(k+l, k) + r(k)]- h(k+l) p(k+l, k)

x(k) - x (k) is the true (unknown) value, of the-process state at
stage k as a result of the unknowns u4 (1),... •jk)
forcing the system.

z (k) z (k) is measurement-of the true noise process x (k) with
additive unknown measurement noise v W().

n
X n(k, k) = (k, k) is the best estimate of the state at stag•e k of

,heth trajectory based on past observations
up to stage k, that is recursively we have used
noisy

Z n(1)' Z n(2) ... Zn(k)

jnnin 1
made noisy by vn(1), ... un(k).

A
x in(k+l, k) x(k+l, k) is the best estimate of the state of the Jthtrajectory at stage k+l, based on observations

only up to k. Also interpreted as the predic-
tton of the state at next stage k+l, based on
current stage k and past measurements.
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III. VECTOR ESTIMATION EQUATIONS

This section derives the Kalman Estimation Equations for the multivariable
ease uuIrg suialriA anualysis nuethods. TI'he Uderivsation techniques mare the sa~me
as used in the previous scalar case. The essential difference lies in the
minimization methods. The variance of the estimate in state for the scalar
case is a scalar valued function of a scalar argument v(k). For the vector
case, the trace of the variance matrix of the estimate of state is like-
wise a scalar-valued function, but a function of a matrix of p rows and ft
columnsW k). The minimization of a scalar-valued function with respect
to thfo matrix.

One can arrive at the equations via strictly algebraic concepts of orthogonal
projection matrices etc., in which one does not have to enter into discussions
of partial derivaties, continuity of continous variables and gradients.
Since the majority of expected readers a&o, assummed to be more familiar with

'the least-squares criterion via gradients, this report will stick strictly
with this method.

The general linearized vector equations are
x(k+l -(k+l, k) x(k)> . B(k)f(k)• + N(k)u(k)()

Spxg /- pxq

z(k> = H(k) x(k)• + v(k> (2)
mxp

The deteruinistic k-varying vector 1(k) is of dimension~g less than or
equal to p, and •ts distributed or cro~s-coupled into aUll p state
variables x(k+l) ý; via the functional relations of B(o).

pxg

The same statements apply to the noise input vector u(k >

The reader should kiwp in mind the families of trajectories accurately
described by the j and r, indices, that is

x (k+l * (k+l, k) x(k~~ + B(k)f(> +. N(k)u(>k (3)

zH(k) x(>k) + v(> (4)

As beforeN the accurate descriptions designated by j and n will be dropped
for simplicity of representation.

The equations are developed as a "recursive process" or an "on-line"
processor; that is, as the observations "role in" the mechanized computer-
estimator utilizes the data, and discards it or stores it on tape or what
have you. All past data is sequentially accumulated in the "memory of the
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III. VECTOR ESTIMATION EQUATIONS

This section derives the Kalman Estimation Equations for the multivariable
case using matrix analysis methudm. he der-ivation techniques are thoe a-a-c

as used in the previous scalar case. The essential difference lies in the
minimization methods. The variance of the estimate in state for the scalar
case is a scalar valued function of a scalar argument w(k). For the vector
case, the trace of the variance matrix of the estimate of state is like-
wise a scalar-valued function, but a function of a matrix of p rows and V%
columns W~k). The minimization of a scalar-valued function with respect '1to thfs matrix.

One can arrive at the equations via strictly algebraic concepts of orthogonal
projection matrices etc., in which one does not have to enter into discussions
of partial derivaties, continuity of continous variables and gradients.
Since the majority of expected readers w• assummed to be more familiar with

'the least-squares criterion via gradients, this report will stick strictly
with this method.

The general linearized vector equations are
x(k+l -(k+l, k) x(k> +pxB(k)f(k) + xN(k)u(k)(i

zI(k) H(k) x(k) + v(k• (2)
mxp

The deterministic k-varying vector f'(k) is of dimension~g less than or
equal to p, and ets distributed or cr>5-coupled into a•ll p state
variables x(k+l)• via the functional relations of B(k).

pxg

The same statements apply to the noise input vector u(k .

The reader should k,'ýp in mind the families of trajectories accurately
described by the j and r indices, that is

x~k+)> f(k+l, k) x(kj~i + B(k)f(> + N~k)U(>J (3)

z n(k H(k) x(,>k)+ v(>k (4)

As bef'ore the accurate descriptions designated by J and n will be dropped
for simplicity of representation.

The equations are developed as a "recursive process" or an "on-line"
processor; that is, as the observations "role in" the mechanized computer-
estimator utilizes the data, and discards it or stores it on tape or what
have you. All past data is sequentially accumulated in the "memory of the
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math-ware" via up dated estimates and variance matrices etc.

Stage k.

Suppune we are at stage k and have computed during stage k-1, the following

P(k-i, k-i)

and predicted via dynamics

A kNl A,
x(k, k (k, k-)(k-l, k-1 2 + B(k-l) f(k (5)

A ->1 A>
z(k, k-92 H(k) x(k, k-i)> (6)

Z>k, k_ - H(k) *(k, k-i) X(k...l k-1> + li~k) B(k-l) f(k->, (7)

P(k, k-i) - F(k, k-i) P(X-l, k-1) j(k, k-i) (8)

+ N(k-l) Q(k-l) NT(k-1).

We now receive the kth observation

z(k)ý = H(k) x(k>) + v(k (9)
where z(k> is known but x(>k> sad v(k are unknown. 'We can compute an

observation error vector by equation ý7) and (•) as

z(k, k-> H(k) [x(~$ - A k-l)> I+vk) 10

we now can correct the estimate in the state vector based on the observable
and computable estimate in the observation vector as

A A
* ~~~x(k, k> ~ = x(k, k-i) + W(k) z(k, k-1>. (1

where the weighting matrix W(k) at stage k has p rows and m columns.

We next seek a procedure for selecting atach stage a pxm weighting
matrix W(k).

Using equation (10) in equation (jI)
A N.. A 1(k k-A]+ ~x(k, =x(k, k->) + W(k) {H(.k)[x(k>?-xk -i 2 )~ (12)

-[I- W(k) H(k)] x(k, k-i) + W(Y.)H(k)x(k> + W(k)v(>
pXp pXoa mxP>
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If we now define the "unknown" error vectors

JL\ JIL/ >111-x~, (13)

and

r x( k, k X(k, k-i) (14)

then theoretically equation (12 ) in (1) yields

OV AX(k, > ([I - W(k)H(k)]x(k)-[I - W(k)H(k)) x(k, k-l (15)

- W(k)v(>

x(k ". [I - W(k)H(k)]'x(k, k>• - W(k)v(> (16)

Transposing (w6) ye obtain

k) , ck1-k, k-1) [I - HT(k) wT(k)]- <O)wT(k) (17)

The dyadic product of equation (16) and k7 ) yields

(R, k 1(k, 10 - F1 -. W(k)H(k)] T(k, k- >- W(k)v(>k) (18)

k-1)(I - HT (k) w (k)] - k) wT(k),

(I - W(k)H(k)l'x(k, k.l i(k -l)[I H T T)-
a(I - WkH k)12( 2Xk.. (k. (k) (k)

- W(k)v(k))k, k-l)[I - HT(k)WT(k)]

+ W(k)v(k )k-wT(k) •

The square of the magnitude of the error vector 'k. ;k) is given as the
inner-product of equation (16) and equation (17) or, as the trace of the
outer-product of equation (18) as

,• k, ) x(kj, m , ••>k-) .k, k-i> - 2x(k, k-l)W(k)I(k,k-l>
+<•_k,k-1 )HT(k)VWH(k) X'(k, k>l (19)

- k, k-l)W(k)v(k

+ 3K(k, k-l)H T (k) WT(k) w(k) -(k

+ <k) wT(k) W(k) ,
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Equation (19) is a scalar valued function of a matrix argument W(k) of

to the matrix W(k),

- ( k, k) x(k, term by term.

By equation (19), there are six additive terms, each term will be handled

via the "gradient" methods in Appendix B.

The first term is not a function of

W(k), hence

Wk k, k-l) x(k, k - [01 (20)

The second term is by equation C-61 )

< k2 , k-1) W(k) H(k) (k, k -2H(k)x'O(k,k ( k,k-1) (21)

The third term is

k,~ k-1) H T(k) W T(k) W(k) H(k) `xk, k-l} 22

2H(k) x(k, k- k, k-1) H (k) w (k)

The latter derivation is based on equation 6-80 ) and setting

kk-1) II (k) (23)

b H(k) kx'(k, k-i

The fourth term is by equation (b-56) (24)

(-2 1 k, k-1) W(k)k) Z(k, k-i) (25)

The fifth term by equation b-80 is

(2 (e(k, k-i) H (k) W (W) W(k) V(k) (26)(2 (k
,,(H(k) 7'(k, {- k) + v(k k, k-l)H T) WT
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in equation (b-80)

The sixth term is

. {j( )v(k) w(k) W(k) v(k>} 2v(k) k) wT(k) (28)

Utilizing the above six expressions in equation (19) after the partial
derivative has been taken

iaij k, k) xk, k> (29)

* -2,,(k) `(k, k-2l>) %k, k-1)

+ 2H(k)'O(k, k-l) I'fk, k-.l)H(k) WT(k)

- 2v(k) k, k-i)

+ {H(k) •(k, k-l>K(k) + v(k 3 X'•'k, k-l)HT (k)) WT(k)

+ 2v(k) <(k) wT(k) = [0]
mxp

The expected value over all experiments and allowable values of j and n

y s-x(k, k) '(k k)j.H---1(k) E{x"(k, k-l)-k, k-1)) (30)

+211(k) E~x(k, k-1) k, k-1)) HT(k) wT(k)

-2E {v(k)•': k, k-1)) •

+ [H(k) E({"(k, k-l (k) + v( (k, k-i) HT(k)] wT(k

+ 2E{v(M)<v(k)} WT(k) - [01
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If we use the zrtation

P(k, k) =*z (k, k) E {~kk, ý <Vk k) 1 (31)

P(k, k-1) (k, k-i) E{x(k, k 1) kKN k-1)) (32)

Q(k) W EMu(k)• 1 (33)

R(k) - {E(v( k)) (34)

and assume that the conventional statistical independence assumptions hold,

E{f(k, k-l (k)} = [0] (35)

E(v(k) (k-1)) - [(0 (36)

H(v(k) Wk)) - [0), etc. (37)

By equation (31) through (37 ) in equation (30)

a(tr P(k,k)} - -2H(k) P(k, k-i) (38)
T T

+ 21i(k) P(k, k-1) H (k) WT(k)

+ 2 4,(k) WTk = ( 0]

[H(k) P(k, k-i) HT(k) +;_v,(k)] wT(k) = H(k) P(k, k-i) (39)

Transposing

W(k)[H(k) P(k, k-i) HT(k (k) P(k, k-1) HT(k) (40)
' U

Inverting

W(k) -P(k, k-l) HT(k) [H(k) P(k, k-i) H(k) +* (k)]-4 (41)

or vv__

I W(k) - P(k, k-i) HT(k)[H:(k) P(k, k-l)HT(k) + R(0)--ýI (42)

wT(k) - LH(k) P(k, k-i) HT(k) + R(k)]"' H(k) P(k, k-i) (43)
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The pxp matrix variance of the estimate of state (the p-space ellipsoid of
"--*.-:t---ty, --- •- ^ -- •. -- +-, - • . ... --- -- - -.--.. ..- .. .1 v • +

of the dyadic product of equation (18),

P(k, k) =Et(x(k, ký/>,k, k)) (44)

(I - W(k) Hl(k)] P(k, k-1) I 1 (0HTc). wT(k) ]

+ W(k) R(k) WT(k)

Multiplying out the terms of equation..(44 )we obtain

P(k, k) - P(k, k-1) - P(k, k-1) HT(k) wT(k) (45)

-W(k) H(k) P(k, k-1) + W(k) H(k) P(k, k-i) HT(k) wT(k)

,W(k)R(k) WT(k)

* P(k, k-i) - P(k, k-i) HT(k) wT(k)

-W(k) H(k) P(k, k-i)

+ W(*)[H(k) P(k, k-i) HT(X) + R(k)] wT(k)

Consider the last term of the above equation and equation (42) for W(k)
with the" transpose (43), then ,the last term becomes

W(k)[H(k) P(k, k-i) H T(k) + R(k)] WT(k) (46)

.- P(k, k-i) HT(k)[H(k) P(k, k-1)HT(k) + R(k)]-F[H(k)P(k,k-l)H (k)+R(k)]

x[H(k) P(k,k-i) HT (k) + R(k)]-fl'(k) P~k, k-1)

- P(k,k-l) H T(k)[H(k) P(k,k-i)'+ R(k)]'" H(k) P(k, k-i)

- W(k) H(k) P(k, k-i).

Using the above expression for the last term in equation (45) we obtain

P(k, k) - P(kL,k-1) - P(k, k-1) HT(k.) WT(k) (47)

- W(k) H(k) P(k, k-1) + W(k) H(k) P(k, k-i)

or

T T
P(k,k) - P(k, k-i) - P(k, k-i) H (k) wT(k) (48)

P(k,k) - P(k, k-1)[I - HT(k) WT(k)] (49)
pxp pXM mxp

The matrix P(k,k-1).was predicted and tomputed during stage k-1.
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We can now predict the next stage (k+l) state vector via the deterministic
Drocess-dvnamn iea

> ~k1, f(k+l, k) Ck, k- B(k) f()

The next stage prediction of' the observation vector is

A A•Z(k+l. H(k+l) X(k÷1 l,(i

The error in the state vector at stage k+l based-on the-prediction of
equation ( 50 ) is

SA
x(k+,>.2 X(X+>y -x(k+l, >(52)

where the unknown state vector is

x(k+>uI ý(k+1t k)x(~ + B(k) f> + N(k.) u(>k (53)

and the unknown error is by' equation ( 50 ) and equation (53 ) in equation

52)x5)'(k+l, 4)-(k÷l, k)x(• + B(k) f(>) (54)

+ N(k) u(k> - 4(k+i, k)`x(I, 3 - B(k) >k

0 $(k+l, k)[x(k> - x(Ik,3]+ N(1) u(ý>

Using equation (14+ in equation k54
AO(Xk+l, - 0(k+l, k) 'X(k, + N(k),u (55)

The transpose of equation (55 ) is

k+.,, k) k) T (k+li k) + N(k) (56)

The dyadic'product of equation (55 ) and-equation (56) is

!(k+., k (k+, k) (57)

, (k+i, Ix(k, k)(k k)(k+, k)

+ *(k+1, k) 'x(k, kLX.u<k) N (k)

+ N(k) u40 2k, k) (k+l, k)

+ N(k) u(k> k) iT(k)
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EIlk+l, kX) -k+l, k)) - P(k+l, k) I rM

-(k+1, k) E{Z(k, kLX k, k)1 ,T(k+l, k)

+ N(k)E(U(k)<> k)) NT(k).

The statistical independence assumption was. invoked:

E.{;(k, k)1k)) - [0].

Define the-process noise variance matrix
E(u(Xk u(k) )- Q(k) (59)

ad equation (La becomes

P(k+l, k).u(k+l, k) P(k, k) T(k+l, k)'+ N((k) Q(k) NW(k). (60)

We MAW now suumarize the equations and the computations to-be-performed at
the kth stage as the kth stage summarZ.

We have available from stage k-1

A N
x(k, k1

'Z(k, k-l~ H(k) x(k k->

S " P(k, k-1).

Receive z(kh

Compute error in oservation.

'(k, k-,>- z(>• - (k, k-1) (61)

'Compute-weight matrix W(k) by-equation (42)

T TIW(k) - P(k, k-1) H (k)[H(k) P(k, k-li) HT(k) + R(k)] (62)

Correct state estimate by equation (11)

X(k, k>0X(k, k-l>+ W(k) l(k, IL-> (63)
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Compute new state variance by equation (49)
nfl.• • i..ir-r _ T JT• lý1 (64)

Predict to stage k+l, by equation (50)

Predict observation by equation (51)

A N.A
z(k+l, H(k+l) x(k+l, k)> (66)

Predict state variance by equation (60)

P(k+l, k) = 0(k+l, k) P(k, k) ,T(k~l, k) + N(k) Q(k) NT (k) (67)

wait for stage k+l and new measurement vector.

The equations can be substituted and Juggled around to obtain alternate
expressionsfor example using equation (4Z) and (61) in (63) we obtain

A N.A

T T1+ P(k, k-i) H (k)[H(k) P(k, k-Ij h (k) * R(k)]-

x{z( ,>H(k) O(k, k-i) 'X(K-1, k-i>H(k)B(k-l)f(k~>

Many similar variations of the above systems of equations occur in the
literature.

Stage k = 1.

The vector starting system of equations can be derived from equation
for k = 1,

A N
x(l, 02= intelligent guess (69)

=I•, H(l) x,o (70)

and

P(l, O) = intelligent guess based on experience about the process. (71)

Receive z(>)b

Compute error

l,> z> A- , (72)
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w(0) -P(., 0) [.HT( 1 ) P(1, 0) HT(1) + R(1)] 1- (73)

Correct state

Compute state variance matrix by equation 49

T TP(i, 1) a P(i, 0) (1 I H (1) w (1)] (75)

Prediat stage 2 by equation (50

x2> + ,1 4,> +B(l) f(j>, (76)

Predict stage 2 observation

. . 'i. . , ' : , u t : 6 7

P(2, 1) - 0(2, 1), ) + N(1)Q(I)NLCL) (78)
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IV. EQUATION SUMMARY FOR COMPUTER APPLiCATION

This srction summarizes the equa.•tos of the previous -- ti•. and puliLs
out how to compute mechanize the estimation equations to recursively estimate
the state vector as the observations "roll into the computer". Precomputation
of the sequence of weighting matrices for large dynamical systems is a necessity.

The dynamical process is described by the state vector equation

X(k> - 4(k+l, k)X>( + Bf3 + Bfk + N(k)U> (1)

and a system of noisy instruments whose outputs are functionally related to
the states by the observation equation

zI -Hk)X> + V>. (2)

The system of estimation equations are:

The state vector prediction equation

X(k+l - 0(k+l, k)X(k> + B(k)f>( . (3)

The observation prediction

i(k+l, - H(k+l)X^(k+l> (4)

The Observation error

ý(k+l, - Z(k+l> - i(k+1>h 1

and the correction to the predicted states at k+l after the (k+l) th

observation is available ,1

X(k+l, k> - X(k+l 1> + W(k+ 11) ý(kc+l9~. (6) 'I
The sequence of weighting matrices W(k) can be precomputed and stored in 'i

memory. The weights are:

Ii



w(k+l) - P(k+l, k)H(k+l) IN(k+I)P(k+l, k)H T(k+l) + R(k+ 1]'1 (7)

where

P(k+1, k) - 0(k+l,k)P(k,k)0 (k4.l, k) + N(k+l)Q(k+l)N T k+l) .(8)

The block diagram is shown in Figure (l) as the conventional feedback
(discreet) system.

FIGURE (1) - DISCREET FEEDBACK BLOCK

By re-arranging the positions of the feedback blocks onc cam obtain a
flow-block which looks more familiar to a digital programmer as shown in
Figure (2).

Tests or applications in which one can plan or design the experiment and
the times k, k+l, etc. at which instrument-data will be used to estimate
appear to admit of pre-computing the weights. If the estimation times are not
pre-designed one must compute the weights on-line.

Coreced lk

Predictiontag

Figur (3)- Flw Blck o Estmato



APPENDIX A - MATRIX TRACE PROPERTIES

The trace of a matrix, the trace of the product of two matrices,and the trace of a matrix-sum aro-u,,44u, ne'÷•-.- to-A 4•.- .
of the topics of Appendix B.

Consider a matrix A of p rows and m columns where a c p emd a,
matrixB, then the product

Qu-A B
, pxm•p mp

is a pxp matrix.

The matrices A and B can be partitioned into their row and column
spaces as shpvn

A •(2)

B " 4 •)b (L3) . . (

The product Q can be written as a matrix of inner-products

= AB = <N)a [I ), • .b (41)

F. p
< a
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or as a sum of dyads router products).' r

a(- a( b + ... + b (7)

Equation (Cr) expresses QI as a sum of m rank-one matrices.

If we commute the product we obtain a square inxin matrix

B A
m2xp pxm

and as before Q2 can be written as a matrix of inner-products

Q2 <•b, [a ... a (8

mXRn 1 ii

Ab

i n.. , >(9)

<) aý <b n >

or as a sum of dyadic products

" b +. . . + b aii
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Clearly matrix multiplication is not commutative, that is

A 4 BA

in fact the matrices are not even of the same size.

However the trace of both products are equal, that is

tr(A) - tr(BA

The following will clarify the above relation.

If we have a column vector x(> and a row vector 'y of the same
dimension p then the dyadic product is the square, rank~ne, matrix D of p rows
and p columns (l

px (14)

If we commute the product of Equation (14) we obtain

d YX> " Y + Y2X 2 +..y+ Xp (15)
xl~li p

a scalar.

When the elements yl and x are real field elements the products
commute, hence

Yix xi (16)

and Equation (15) [the inner product] can be written as the sum of the main
diagonal terms of ><, which the conventional definition of the t.'ace (tr) of
a matrix, hence

The dyadic product is not as mysterious as many novices might
imagine; in fact, if we write Equation (11) as

*>~
""X >Yl) Y2 ••'Y(.)

we see that the matr x D when partitioned into its column space is a row
of p parallel column vectors - all p of the vectors lie on a line, hence
k<• is said to have rank one - that is, there is only one linearly
Independent vector in the row "package" of column vectors.
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APPENDIX B

GRADIENTS OF SCALARS WITH RESPECT TO MATRICES

This appendix develops the gradient of a scalar-valued function with
respect to a vector variable and also with respect to a matrix variable.

Case 1. q - 4)a x(>. Consider the scalar q which is the inner-

product

q 0 <c)a X(> (b-1)

where < is a fixed p dimensional row vector and > is a variable column

vector, or q is said to be a scalar-valued variable which is a function
of the vector variable >.

In equation (b-1) q may be considered to have vector factors • and P.

If we have a dyad

Qu~)4(b-2)

then it was shown in appendix A that

trQ =q (b-3)

or

t r = q(b-4)

T'he differential of equation (b-2) is

dQ z d>< (b-5)

and the trace of (b-5) is

tr dQ = tr [d#cJ-4 dq (b-6)

We say now ask to express the differential matrix dQ in terms of vector
factors and a gradient vector, that is

dQus (b-7)

such that the trace of equation (b-T) is

dq tr Q t r (b-8)
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If we take the trace of AB by Equation (5) as the sum of diagonals
we obtain

LL.,(A) +.. += +44) býn
P

If we take the trace of dyadic sum decomposition of AB given by
Equation (7) we obtain

Lr(AB) < p < b++a>( (13)

The trace of a sum of matrices is the sum of the traces, hence by
Equation (17)

tr(AB) tr a> + tr a b + +....... + tr a)t b (i4)

tr(AB) - b a(> + b a > + ........ +< b a,(p (15)
tm

Equation ( 15 ) is a sum of p i nner-products of m-dimensional vectors and
', quation (15) in a sum of m inner-products of p-dimenuional vector.

The sum of the main diagonal terms of Equation (9) is
tr(IIA)-• a + ..... + < b a> (A6)

which by Equation (15) and Equation (CI)

PP
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By equati i (b-7) and (b-5) we can state

x (b-9)

We arrive at the result of equation (b-9) directly from (1)

dq (b-10)

hence

Also one can consider the gradient as an operator

The dyadic-type operator

a . . . X (b-13)

(-13)i

xp

1 1 x17
ax ax ax (-li

axp axp

ax1 2y

when the coordinates are independent of each other, then

=I . (b-15)
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Hlence

In conclusion:

i f < > - -( b -1 7 )

Case 2. q <

When q is quadratic we can write q as the trace of the dyad

Q s ~ 4 (b-19 )
for

The differential of the dyad

dQ = ><x+ >.4d 
(b-21)

dq =tr Q <d> <Ix>= <xd>-(b-22)

hende

2 < (b-23)

Case 3. 
( 

x 
b24)

For this case we have two different matrices

(b-25)
and

Q2 ><B(b-26)

47

I



which under the trace operation map down to the same scalar

q*tr tr q2 a 1b-'B

dTho dfterpntial of 0- = 0 in

dQ- d> 13+ > B (b-25)

The trace of (b-28) is

tr dQ= B d>+ <dx B> (b-29)

The differential of (b-24) is

dq - 4x B> + <B > = tr Q (b-30)

d q _<BT d> + <~B (b- 31)

we have

dq (b-33)

and by (b-32) and (b-33)

+ ~(b-.34)

and for symmetric B

T3 B (b-35)

then

Case 4. q aXb( (b-3y)

The scalar q is a function of the matrix X of p-rows and m columns.

The scalar q can be written as the trace of the rmatrix

Q =b( X (b-38)
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The differential of Q is

dQ .>~dX (b-39)

By equation (b-37), differentiating

d- r~ (b-40)

We seek a gradient matrix A of m rows and p columns as one of the factors
ax

of dQ that is

dQu dX (-1

such that

trdQ = dq = <dX> (b-42)

Clearly by equation (b-39) and (b.-l) if

S(b-43)

then (b-42) is satisfied.

An alternate, more direct 4 approach is given below. Partition X into
a row of column vectors (all " contravariant'" vectors), then

b a US Ob-44)

b2

m
b
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J ~>b + ea'Y> b' + + . a2>~
"1 12 in

e4 (b-•+ O)

where each qi is a function of a single column vector >

The scalar differential of q is

Equation (b-47) can be written as

dq, =tr d

50
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The differential of X is a row of column vectors

d.XdxýI (b-50)
- In-I

and the gradient matrix is a column of row &radient-vectors.

(b-51)

XBX

From the foregoing we write

Q =3a Rx (b-52)
ax
amxp

and
dq tr dQ tr D. dX 1  (b-52)

By equation (b-45), (b-46) and (b-16)

4 4
Packaging the row vector gradients of (b-53) into the colwan of (b-51)

we obtain

1 .'b )a b I
ax2 2(b5)

Lb<)a b (b54

....................................- -------



•ax

3X "' '

hence in conclusion

pxm

(b-56)

For this case we set

B a(> = b (b-58)
mxp

as in equation (b-56), then
q pXn (

and we obtain the case e, hence

Ba( "ubp a (b-58)

or

then a = B~~)a(b-61)

mxp

52 i e i b ,
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I

Caeie 6 . a a u•) a X xJb(!. (b-I2

This case is the matrix analog of the quadratic vector case of equation
(b-24).

We can partition X into its column space and XT into its row space and
obtain

q =. a.,.xb> (b-63)

m
x

L and
q• )<x + + X <x b> (b-64)

Distributing the two end vectors over the dyadic-em decomposition
of XXT we obtain

ILIl = % >4., c M>(b-65)

Because of inner-product commutativity

b (b-66)

hence
q <b + +... 4(b-> 7-)

hence the scalar q is a sum of products of scalars pi qj"

We have as before

dq ax ax . 4j tr dQ (b-68,

I-3
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where dQ is as in equation (b-hi).

P aq
K <( ax~ q~ 3x <p 4 -- (b-69)

and (-o
P, "(b-T7)

X <
qi ! <)b(b-72)

i b (b-73)

Using (b-70), (b-Ti), (b-72), (b-73) in (b-69)

q, <+ Pi(b-li)

Packaging (b-75) into the gradient matrix of equation (b-51)

- iL >>4] (b-76)

NIIP
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I

or OFF

IX [><a U (b-77)

~ax

x T [> +(b-78)

In conclusion

if q ah~ T
mxp

(b-79)
then T~

MXP mxp

-4-

In a similar fashion it can be shown that
-• if q -64)c XT X b€•(.o

-"mxp Px) (b-8)

then m=Lc> b + .
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Consider the pxp matrix L which has factors as shown

L. L-B .-X (b-81)Spxp pxk kp

where X is a variable matrix.

If we factor B into its column space and X into its row space

Lu [b b 4)x (b-82)1 ,L
> k

1 k

The trace of L is

tr L a A + * + (b-84)

1k

The differential of is

dLw B d X. (b-85)

The faqtors of dL can also be expressed as

dL (-6

where the pxk gradient matrix is

a-x " ) , ( b-87)
pxk1 2k

56

I. . .. , , , , ., . . .

I.



1

The differential of Equation

d L(•.L) di- dt + + db8

(b-89)

where

K (b-90)
k1 1

k k k k k

and

Ica• . . pxlc (b-91)
ax - 1>> xSi k

In summary,

if

L = B (b-92)pxp (pxk)(kxp)

B )(b-93)x pxk
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APPENDIX C

MINIMIZATION

Consider the linear surface

and the quadratic surface

q ~cQ~>(2)

and the difference

If L is a constant, L - to, then we seek a vector x that lies on
the linear surface and on the quadratic surface such t;iat difference in
the linear silrface and the quadratic surface is a minimum.

Differentiating

do dq,- dt •

and

do dx-

If we equate the gradient vector to zero

4- -. (6)-

iAl
ax x~

ftio

%A



I
By equation and equation

2<x (10)

and solving for<

MultiPlying equation (11) by b and using equation (C4

ex b (12)2
or

1 Lo
1 toc (13)

Using (13) in (ii)

lc~xa LO(14)
" <bq'lb>

if

then 00.1 .,•

4Q71

Ii
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