
o

ro P.
28
co UJ

os ^
H

l M
Q H in en
LU uu

ESD-TR-68-I43, Vol. Ill

ESD RECORD COPY
RETURN TO

SCIENTIFIC & TECHNICAL INFORMATION DIVISION
(ESTI), BUILDING 1211

EVOLUTIONARY SYSTEM FOR DATA PROCESSING

THE CAINT EXECUTIVE LANGUAGE AND
INSTRUCTION G ENERATOR

Charles T. Meadow
Douglas W. Waugh
Gerald F. Conklin
Forrest E. Miller

January 1968

ESD ACCESSION LI SI
ESTI Call No, AL 61084

Copy No. /-
of / cys.

AL 6I08A

COMMAND SYSTEMS DIVISION
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
L. G . Hanscom Field, Bedford, Massachusetts

This document has been
approved for public release and
sale; its distribution Is
unlimited.

(Prepared under Contract No. F19628-67-C-0254 by Center for Exploratory
Studies, International Business Machines Corporation, Rockville, Maryland.)

AWOtHO

LEGAL NOTICE

When U. S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

FSC 68-0670/

ESD-TR-68-143, Vol. Ill

EVOLUTIONARY SYSTEM FOR DATA PROCESS I IMG

THE CAINT EXECUTIVE LANGUAGE AND
INSTRUCTION G ENERATOR

Charles T. Meadow
Douglas W. Waugh
Gerald F. Conklin
Forrest E. Miller

January 1968

COMMAND SYSTEMS DIVISION
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
L. G . Hanscom Field, Bedford, Massachusetts

This document has been
approved for public release and
sale; its distribution is
unlimited.

(Prepared under Contract No. FI9628-67-C-0254 by Center for Exploratory
Studies, International Business Machines Corporation, Rockville, Maryland.)

FOREWORD

This report presents the results of a study of the specifications
for an information system intended to support the design, production
and maintenance of large computer programming systems. Called
Evolutionary System for Data Processing, or ESDP, it was beeun as an
internal IBM project in 1965 by the Center for Exploratory Studies
of the Federal Systems Division and continued under Air Force
sponsorship during 1967 and early 1968.

This work has been performed under contract number Fl9622-67-
C0254 for the Electronic Systems Division, U.S. Air Force Systems
Command. The project monitor was Mr. John Goodenough, ESLFI.

The authors wish to express their appreciation fnr the encouraee-
ment and assistance provided by Dr. John Egan, formerly of ESI), and
their colleagues Dr. Harlan D. Mills and Mr. Michael Dyer.

This report is in four volumes: Volume 1, System Description:
Volume 2, Control and Use of the System; Volume 3, The CAV.TT Executive
Language and Instruction Generator: and Volume A, Programming Soecifica-
tions. This report was submitted on January 31, 1968.

This report has been reviewed and is approved.

I
SYfcVlA R. MAYER J WILLIAM F. HEISLF*., Col. UfAF
Project Officer Chief, Command Systems Divisi;

*\ ^3^-^U

11

ABSTRACT

BSDP is a proposed syst
store, retrieve, publish and
exclusive of graphics, concer
proqramming activity. Documen
onl v of -Final or formally publis
of working files, design and
manaaement reoorts—in fact, t
underlying a programming syst
concentrated on the means
documentation. Two ma-jor, compl
Tho first is called Program
£.£i£i£iin.2 documentation directl
second is called Computer Assist
of eliciting information dire
on-line communication terminals,
data about the program's s
explanatory material about all a
absence of canonical data, ma
information is well. The cone
ESDn is a feasible concept with
it will materially benefit usin
of nrograms and in guiding t
change. Its value will be
whoso internal communications di
gigantic inefficiencies. Its i
for such projects would regu
investment in order to produce
on the use of a comnuter system
ESDP.

em whose nu
dissem inat

ned with
tat ion is
he! after-t
change not

he entire
em. liaxiti
of accuir
ementary an
Analysi s

y from comn
ed Tnterroi
ctly from t

The forme
tructure.
spects of t
y provide
lusion o* t
present-day
g organizat
heir evolu
greater for
fficulties
mplementati
ire a sig
these bene

Jedicatc} s

rpose is to acquire
e all documentation

a large compute
deoinfl to consist, no
he-fact reports, bu
ices, informal drafts
recorlablp rational

urn attention has b >e
ing and oraanizir.
nroaches are proposed
and is a process o
leted programs. '''h
ation and is a proces
he programmer, throua
r proviies canonica
Thp latter provilo

he proarara, and in th
tentative struc+ura

he study group is tha
technology and tha

ions in thp proluctio
tion as requirement
larger oroanizations

tend to cause trul
on as a support syste
nificant guantum o
fits and is predicate
olely to thp ur>" o

in

Volume 3

The CAINT Executive Language and Instruction Generator

I Page

THE CAINT EXECUTIVE LANGUAGE 1

1. Introduction 1

2. Language Reguirements 1

3. Language Elements 3

U. Response Processing 7

5. Review and Update 9

6. Special Responses 10

7. Documentinq CEL Programs n

II

TECHNIQUES OF INTERROGATION 14

1. The Data Structure 14

2. interrogation Seguence 15

3. Considering the Responder 15

III

INSTRUCTION IN ESDP 20

1. Objective 20

2- An Instruction Generating Program 21

iv

TV

INSTRUCTIONAL PROGRAMS 27

1. Tho Proar^m loiel 27

2. An Example 28

?. Composition of a Question 31

4. Composition of thp Program 36

5. Using the System 36

v

BIBLIOGRAPHY 37

Figure ILLUSTRATIONS Page

1 A Sample Interrogation Program 5

2 Response Processing 8

3 Example Of CEL Program Documentation 12

4 A Question in CAI Form 26

5 A Question in PI Form 26

6 A Unit of Instruction or Question 29

I

THE CAINT EXECUTIVE LANGUAGE

1* Introduction. In this volume we describe the conversational
programming language, called the CAINT Executive Language or CEL,
and describe its application to interrogation and instruction.

The reason for developing CEL was to provide a facility
for programmers that would enable them to write conversational
programs easily. A conversational program in the context used
here is a computer program which carries on a conversation
between man and machine for the purpose of exchanging
information, and for which there is a need for generality in
expressing the conversational elements. Generally, in
conversational programming systems, interaction is between a
programmer or designer one hand and an operating system on the
other, and conversations are limited to computer programming,
graphic design, text editing, or whatever application has been
built in at the operating system level. In computer assisted
instruction, to which CAINT is similar, conversations cover a
wider range of topics and there is an intermediary program, the
course, written by someone other than the programmer of the
operating system. The student taking a CAI course, for all
practical purposes, is aware only of the course and the
particular limitations and capabilities it has. He is not
necessarily aware of the operating system.

In CAINT, as in CAI, the student, or responder or
documentor, deals not with the operating system but with a
program, or "course," written by an executive programmer.
Conversational technigues are the result of the style of thp
executive programmer, not the basic system logic.

Sections I and II of this volume are primarily devoted
to a description of the language and to technigues for its use in
interrogation. While its use in instruction imposes no
additional requirements or constraints, we have devoted most of
our effort on instruction to the generation of instruction
programs. Sections III and IV describe our approach to
instruction and the Instruction Generator, a CEL program that
produces CAI or PI courses. '

2. Langua_ge B£ailiE§5!^Ili§* A conversational programming
language, in this context, does nothing different from an
ordinary programming language. The difference is in emphasis and
in the relative ease of writing certain kinds of program
expressions or in accomplishing certain kinds of program steps.
The CAINT Executive Language is a general language and could be
used for almost any application, albeit inefficiently in most
cases. Similarly, almost any other language could perform the
logical functions of interrogation or instruction but, we think,
seldom with the ease and efficiency of this PL/I dialect.

Let us consider briefly what the major conversational
functions are and then review each in greater detail. The
conversational programmer would like:

a. To be able to decide what question the machine
should ask of the man at any given point in the conversation and
to be able to do this on the basis of any definable function of
the program's data base, including, but not limited to, the
response to the last guestion.

b. Not to have to store the exact text of every
guestion before asking it. Hence, the program should be able to
assemble a question either from fragments or skeleton guestions
or from the data base.

c. To make actual presentation of the guestion
through a suitable output device, elicitation of an answer, and
storage of the answer as mechanically simple as possible because
these are such high freguency operations.

d. To permit a wide range of response types such as:
multiple choice, a single number, full text.

e. To have a simplified method for programming of
response analysis. The author should be able to decompose an
answer into an array of words, test a response against an array
of possible values, or perform any of a large number of other
text-handling functions with a minimum of orogramming effort.

f. To have a simplified logic for coping with
unrecognizable (unanticipated by the author) answers. This would
permit the writinq of extensive programs for keepinq track of
unrecoqnizable answers and varyinq the content of machine
initiated messages dependinq on the number of consecutive
unrecoqnizable responses.

g. To have a larqe number of functions on which
branchinq decision can be made. Branchinq within the
conversational proqram is, of course, a requirement. Branching
decisions should be able to be made on the basis of any definable
function of the data base.

h. To have any portion of the conversational program
able to be operated as a subroutine so that it may be executed in
other than its normal seguence. This permits reviews and
updating.

i. To have the student be capable of controllina
program execution, to some extent, by the use of non-responsive
answers to questions. A non-responsive answer is one which
substitutes a command for the response called for. Such commands
include: 30 TO, SIGN OFF, QUERY and BACK. The last of these
enables a responder to reverse the seguence of operation of the
program and step backward through the last n guestions. It can
be used to recover from the situation where the responder gives a

legal but incorrect response, then discovers that he did not mean
to give that answer and now wishes to pursue the logical path
which would have resulted had he given the correct answer the
first time.

3- Lananaas Elements. The basic language used for CEL is PL/I.
CEL is a subset of PL/I with several specialized subroutines,
also written in PL/I, and several usage conventions that simplify
programmer bookkeeping and review or updating operations. CEL
operates under Operating System/360 and can achieve multi-
terminal operation through the facilities of OS.

In experimental work to date, we have used the IBM 2260
cathode ray tube display terminal as the man-machine interface.
Hard copy terminals, such as the IBM 1050, can be used by linking
the PL/I programs with the Queued Telecommunications Access
Method (QTAM) of OS. This linkage will have to be accomplished
through an assembly language program. It has not been
accomplished to date, but there are no theoretical problems
anticipated in doing so. The desirability of having a hard copy
terminal in addition to a CRT is, we think, established. In
spite of the obvious speed advantage of the CRT there is often a
need to review a previous guestion or answer. If all reviewing,
however brief, reguires a guery instead of a glance up the page,
the responder must lose his train of thought.

a. The Question as a Unit of Programming

Programs in CEL are written in units called guestions.
As the name implies, a guestion is all the coding concerned with
eliciting an item of information or a response to one
interrogation guestion. There may be more than one
conversational exchange in a guestion, but there will normally be
only one data base element elicited. This may be an array of
elements but would not normally be a set of dissimilar items.
The guestion consists of a heading, text to be displayed by the
computer, elicitation and analysis of a response, and an ending.
A guestion as a unit of programming should only be entered at the
beginning, or heading, of a guestion, not its interior, although
no PL/I restriction reguires this. There are labels at the
beginning of a guestion and at several points within one. The
use of the latter is described below.

b. Subroutines

Let us consider a set of subroutines which perform some
of the basic tasks in the use of CEL. There are six major ones,
concerned with message transmission, response elicitation,
branching and program bookkeeping.

ASK assumes a message is stored in data item MSG. It
displays the message on the terminal indicated and elicits a
response. The response is stored in item RES. The program
author, then, deals only with MSG and RES and need not be
concerned with the mechanics of message transmission or receipt.

TELL causes the contents of MSG to be displayed, but
elicits no response.

TNIT is used in the heading of a question to initialize
a number of parameters used in program bookkeeping.

NEXT is used in the ending of a question to perform
bookkeeping functions and to branch to the next question to be
used. At many points within the question the decision on what
question to branch to next might be made, but rather than
performing the transfer, a variable is set to the address to
which transfer is made later. Actual branching from one question
to another is always done from NEXT.

[JNRECOG counts the number of successive unrecognizable
responses, provides a message to the console after each and, if
necessary, terminates the conversation. Provision is made for
having a different machine statement follow each successive
unrecognizable response.

A series of retrieval subroutines permits initial
storaqe, replacement, retrieval or deletion of an item or a
structure in the program data base on disk.

c. An Example

To write a guestion, the program author must have: a
label, a CALL to subroutine INIT and a CALL to subroutine AS?'.
Prior to ASK, he must have set the character string designated by
the label MSG egual to whatever message or guestion he wishes to
present.

Response analysis consists largely of a series of IF
statements, eich of which may have a THEN and an ELSE clause
following. Fiqure 1 shows an example from an instruction
executive program. In reading this condensation of a proar^m,
bear in mind that a branch command would normally occur within
each DO group.

LABEL: CALL INIT;

MSG = »IN WHAT YEAR DID THE CIVIL WAR BEGIN?1;

CALL ASK;

IF RES = '1865' THEN DO; ... END;

ELSE DO; ... END;

IF RES = '1861' THEN DO; END;

CALL ONBECOG;

Figure 1. A Sample Interrogation Program

Here, the program author anticipates responses of 136S
and lfl^l. Any other reply by a responder is unrecognizable. The
author could, of course, have anticipated a larger number of
answers, or he could have used ineguality matching and completely
precluded the possibility of an unrecognizable answer. Here, the
author may specify a set of commands to be executed if the answer
is correct, which may include a message to the responder, the
computation of a grade or the setting up of a switch for a later
branch to a new question. In the example, the author has chosen
to include a clause to be used in the event the correct answer is
not given, regardless of what other answers are given. This is
the ELSE following the 186*5 response test. Here again, he may
pass a message, compute a grade, prepare for a transfer, or
perform anv other function.

If the student's answer is unrecognizable, the
subroutine types out a message informing him of this. Some
authors may choose, at this point, to review the mechanics of
answering, assuming the cause of the error might have been a
keying error. With the second unrecoqnizable answer, the author
might give a hint, and with the third, he might warn that the
responder will be cut off if another unrecognizable reply is
given.

Within the DO ... END group, any assignment statements
or subroutine calls are permitted. The IF statements may be
complex, allowing nested logical expressions such as IF(A = '2')
5 (R = «3«) (C = »U») THEN PL/I allows for another IF in
the DO ... END group, but CEL does not permit this. In PL/T
notation 5 implies AND and means OR.

d . Labels

Labels on questions must be included in a label array.
We use the form LL(n). The variable n has many uses within a
proqram. For one, it becomes the means of communicating transfer
information. If, within an IF statement, it is decided that the
next guestion to be asked is question LL (X), a direct branch
cannot be made at this point. This, it will be recalled, can
only be done from NEXT. Instead, an index, 3, is set to the
value X and later, in NEXT, transfer is made to LL (q). Internal
labels within a question are explained in the section on
instruction.

One function of INIT and NEXT is to maintain a list o^
questions executed. This list, which neei not contain more than
about the last five questions executed, is used when the
responder calls for BACK. Typically, he would do this if he
realized he had qiven the wronq answer to a question and wants
the chance to answer again. By responding BACK to the next
question asked of him, he backs up to the previous question.
When that is asked, he can answer responsively or BACK aqain,
until he has found the question he wants or has reached the end
of the list. BACKing also reguires the removal of data base
elements that were inserted as a result of the wrong (but leaal)

answer.

**• 2§§£2S§§ EE22®ssina. Almost anywhere within a program an
author may enter processing statements. Usually, these will be
restricted to use just before the response is elicited or in the
DO groups following the string of IFs in response analysis. In a
program produced through the Generator (Section III.2) there are
more restrictions on placement.

Processing can consist of any assignment statements or
CALLs to subroutines. While a guestion is only intended to
elicit one information element, the author may include
instructions for several messages to be displayed to the
responder within one guestion unit, giving him instructions,
congratulating him (if a student) on a correct answer, and so on.

Figure 2 shows a short example of a guestion to
illustrate a typical response analysis.

figure.
The following comments are keyed to line numbers in the

I. The guestion label is LL (1). The first function
is initialization.

2,3 The first guestion is set up and asked.

U. Function MEMBER (A,B) returns 'l* if A is a member
of array B, '0' otherwise. If the name is known
to the roster:

5. Set BRL (branch label) to 2 to indicate that the
next question to be executed is LL (2).

6. Now branch, within the question, to LE(1) (E for
ending) .

8. This begins an ELSE clause, used when the name is
not on the roster.

9. This illustrates use of the data base in composing
a message. The message being formed here includes
the name just entered, concatenated (||) with the
text shown.

10. This message is displayed, but calls for no
response.

II. LL(99) is assumed to be a sign-off point.

14. The label LE(1) indicates the ending section of
the question.

1 LL (1) : CALL INIT;

2 HSG = 'WHAT IS YOOR NAME?';

3 CALL ASK;

4 IF MEMBER (RES, ROSTER) TF1EN DO;

5 BRL = 2;

6 GO TO LE (1) ;

7 END;

8 ELSE DO;

9 MSG = RES II'IS NOT ON ROSTER. PLEASE CHECK

WITH PROCTOR.•;

10 CALL TELL;

11 BRL = 99;

12 00 TO LE(1) ;

13 END;

14 LE (1) : CALL NEXT;

Figure 2. Response Processing

5« E§view and Ogdate. Whether in an instructional mode or an
interroqation mode, there is a need to be able, at any given
point, p, in a program, to execute selected questions and then
return to p. In interrogation, we do this in order to change the
contents of a data base item. Recall that our method of updating
(Volume 1, Section II.5) requires that questions concerning the
item to be changed be asked again and that a different path
through a set of related questions might result from the change
than was originally used. In instruction, at various points in a
course the author may wish to compute a set of review questions
based upon the individual student's performance. Aqain, given a
set of questions to be reviewed, the execution path through these
questions may be different than the original path throuqh them.

The reviewed portions may consist of a single sequence
of questions, or it may be an unconnected set of questions.
Presumably, the number of possible combinations is larqe or the
author could have set up the subroutines himself. Instead, he
programs criteria for selecting review questions as a function of
performance. In interrogation the same technique is used for
updating previously entered documentation. We have used the
principle that programmers make changes to documentation by
identifying the information element to be changed and then being
reinterrogated about that element.

Reinterrogation or review might result in execution of
a different sequence of questions than were oriqinally executed.
Hence, what the author specifies is not the actual sequence of
review questions but the beqinning and end points of a set of
questions. Questions are then executed in normal sequence until
the specified end point is reached anl return is made to the
sequence control point. Any number of such segments can be
specified by an author to satisfy any one review or
reinterrogation item.

At the end of each question, then, a test must be made
to see if the question was executed in sequential or review mode.
If sequential, the next question executed is that indicated by
the question's branch loqic which points to the next question to
be asked. If in a review mode, a branch is made out to the
sequence control routine which checks to see if this question
marks the end of a review sequence. If this is so, control
passes to the next review sequence or to the elicitation of a new
updating or review command. If it is not the end of a seguence,
control goes back to the NEXT subroutine and that routine
branches to the guestion indicated by BRL, a variable which is
set to the index value of the label to which it is desired to
branch.

6. Special ES§E2H5£§- T^e responder at a terminal can alter the
sequence of operation of an executive proqram and may interrupt
its operation and resume later. Whenever his keyboard is
unlocked the responder may give one of the responses listed below
instead of the reply requested. In experimental work these
responses have been prefaced with // so as not to be confused
with valid replies.

GO TO n causes the executive proqram to beqin executinq
question LL (n) and pickinq up future sequence commands from
thpre.

QUERY invokes an on-line retrieval system. The
responder may then query the data base on an information element
number (IFN) or a key word. An IEN is assiqned to each element
in the data bise. If a key word search is elected, the proqram
retrieves the list of IEN's in which the qiven word has occurred
and then executes a series of IEN searches. Upon completion of
the search, the executive proqram resumes with the question it
tried to execute when interrupted.

REPORT invokes a report qeneratinq proqram. As
presently written, this proqram gives the responder the option of
receivinq a standard, pre-desiqned report or desiqninq his own
report by specifying a set of IEN's. The report, in either case,
is printed on the hiqh speed printer and then the intprruptod
question is resumed.

BACK causes the executive proqram to return control to
the previous question executed. A short history of the last n
questions is naintained to allow backinq over several questions.

CHANGE indicates that the responder wants to stop
workinq on the present UOP and switch to a different ono--perhaps
to describe a new one he has just named for the first timp.

SIGN OFF terminates the executive proqram. The
responder is informed of the question number at. which hp
terminated and he may use this to resume in his next session.

The followinq responses are under author control but
are usually used as indicated.

NO siqnifies the responder does not wish to answer the
question. This is interpreted as meaninq that no answer is
currently available or that the question dops not apply. This
response is often used in design interroqations when full details
are not yet known.

END is used to siqnify the end of a list when an array
of responses has been elicited. A question is asked and the
responder gives one array element. After each element the
keyboard is briefly locked as the reply is stored. When the
keyboard is unlocked, the responder enters the next elempnt or
//END.

10

.j

HELP in effect means "dive me a restatement of the
question." When displaying to the relatively slow typewriter,
program authors may use terse wording to avoid boring the
responder. The responder, however, may then occasionally need
amplification of the question. The author, of course, must have
anticipated this and provided more than one version of the
question. This function has not been implemented yet.

HINT might be used to ask for assistance in answering a
question in an instruction proqram.

7. .Documenting CEL Programs. Interrogation and instruction
proqrams require documentation, just as do other forms of
computer programs. The structure of a CEL proqram is generally
far simpler than a typical computer program. The major point of
interest is what is said to the responder or terminal user and
what answers are anticipated from him. Hence, a different, fully
automatic form of documentation has been devised for these
programs.

Briefly, the documentation of an instruction course
will consist of a list of questions, the anticipated answers and
a summary of what is done if a given answer is received from the
terminal. This listing is in order of question number. The
listinq is followed by a key word index of all text of machine
utterances.

Sample output of a preliminary version of this
documentation is shown in Fiqure 3.

11

QUESTION NUMBER: 001
THE BINARY NUMBER SYSTEM.

THE BINARY NUMBER SYSTEM CONSISTS
OF TWO DIGITS, A ZERO AND A ONE.
THESE USUALLY REPRESENT THE OFF AND
ON STATES OF A BI-STABLE ELEMENT.
BY COMBINING THESE DIGITS IN STRING
FORM, NUMBERS OF INCREASING SIZE
CAN BE REPRESENTED.

SINCE ONLY TWO DIGITS ARE USED,
ALL NUMBERS CAN BE REPRESENTED.
TRUE OR FALSE?

NOT

ANSWER
TRUE
FALSE

BRANCH
001
002

TO

QUESTION NUMBER: 002

EACH PLACE IN A BINARY NUMBER
REPRESENTS A POWER OF TWO, WITH
THE RIGHT-MOST BEING TWO TO THE
POWER ZERO.

THE BINARY NUMBER 1010 IS THE
REPRESENTATION OF A DECIMAL:

A: ONE THOUSAND TEN
B: FOUR
C: TEN
D: ONE HUNDRED ONE
E: NONE OF THESE

ANSWER BRANCH
A 002
R 002
C 003
D 002
F 001

TO

Figure 3. Example of CEL Proqram Documentation.

12

KEY WORD INDEX

BINARY INS 001 INS 002
BI-STA INS 001
COMBIN INS 001
DECIMA INS 002
DIGITS INS 001
EACH INS 002
ELEME INS 001
FALSE INS 001
FORM INS 001
HUNDRE INS 002
NONE INS 002
PLACE INS 002
POWER INS 002
SIZE INS 001
STATES INS 001
STRING INS 001
SYSTEM INS 001
TEN INS 002
THOUSA INS 002
TRUE INS 001
USUAL! INS 001
ZERO INS 001 INS 002
1010 INS 002

Figure 3. Example of CEL Program Documentation (conclulo^)

13

II

TECHNIQUES OF INTERROGATION

1- lll£ 2§.ta Structure. From a programming point of view, the
object of an interrogation is to make entries in, or make changes
to, a data structure. This structure may be an image of a
report, the raw material from which a report is made up, a
computer file to be used only as input to another computer
program, or, is we shall describe in Section III, a computer
program, itself. The first step in creating an interrogation
program is to design the data structure that the program will
work with.

The requirements of the structure that CAINT is
designed to work with are that each element must have a unique
information element number, and that hiaher order elements (sets
of lower order elements) are possible and will have IFN's that
reflect this hierarchic relationship. Each item of information
which can be independently elicited or changed should have a
separate TEN. The nature of the information retrieval system
implemented for the experimental versions of CAINT requires that
retrieval be done on the basis of IEN's. Hence, any information
in the data base that is to be stored on, and retrieved from,
disk memory must be included in the TEN structure.

We have pointed out that any information in the data
base may be used within any question, to contribute to decision-
making, to assemble the text of a question, or as part of
response processing or student performance analysis. In any
given question, then, any number of information elements may be
retrieved, but only one should be stored. This information, such
as various program switches, constants, etc. , may be defined via
PL/I DECLARE statements at the discretion of the programmer.

every
examp
might
one
eleme
array
in it
the
array
and
struc

ele
le,
ass
inpu
nt o
, t
bee

use
. I
sour
ture

In setting u
ment or set of
if there is

ign it TEN 1.1
t, making th
f the array an
hen, might in
omes 1.1.1, th
of the nota

f we wish to f
ce of each

p an IE
elemen
to be

If w
e Name
IEN an

herit t
e secon
tion 1.
urther
input.

N struc
ts must
an elera
e then
item a

d the a
he numb
d eleme
1. n to
extend
we wo

ture
hav

ent
wish
n ar
rray
er 1
nt 1
deno
the
uld

the
e a
called
to al

ray, w
, itse
. L and
.1.2,
te the
array,
requi

ma jo
uniq
Nam

low
e mu
If,
the
etc
nth
by

re

r rule i
ue IEN.
e of Inp_
for more
st assig
an TEN.
first o

Me
element
listinq

the fol

s tha t
For

ut, we
than

n each
The

lement
permit.
of a n
name

lowina

1

1.1

INPUT

ARRAY OF 'INPUT NAMES AND SOURCES

1.1.n NAME AND SOURCE OF INPUT N

14

1.1-n.l NAME OF INPUT N

l.l.n.2 SOURCE OF INPUT N

In the interrogation program reference may be made to IEN
1-1-3.2, which is the source of the third input. It should be
apparent that a change in the file structure may induce a chanqe
in the interrogation program and vice versa. It should also be
apparent why indiscriminate changes cannot be made in data base
structure without consultation among all programmers of CEL
programs using the affected data items. Mention was made of this
restriction in Volume 2, Section II.2.

2- interrogation Sequence. Having decided upon the data
structure to be used, the CEL programmer must then consider what
questions to ask, under what conditions to ask them, and in what
order to ask them. The first of these considerations is largely
one of how to communicate with the responder and we shall discuss
it in qreater detail in Section II. 1.

Not all questions are used in every interrogation. As
a simple example, if a programmer taking an interrogation has
just replied that a particular data item is alphabetic, we do not
ask him whether he will use fixed or floating point
representation. Each response received should be used to the
qreatest possible extent to by-pass irrelevant questions and to
make relevant ones more specific.

There is no requirement that the s
interroqation, or presentation of questions, follow th
of storaqe of information in the IEN structure. A CEL
may choose to follow one item to its comoletion, say
information about one UOP before proceeding to the ne
may choose to qet a little information about each
qettinq the detail on any of them. He may elect to s
or to allow the responder to make the choice as to top
insurinq that some record is kept available to the
what IEN's are covered and which ones remain to be com

equence of
e sequence
proqrammer
to qet all

xt, or he
HOP before

kip around
ic covered,
proqram of

pleted.

3. Consj.
is carry
object of
informa ti
must co
interroqa
would lik
proqrammi
convent io
proqrammi
com munica
and takin

deri
inq
thi

on,
nsid
tion
3 tO
nq
nal
nq
tion
q in

ng th
on

s con
the j
er w
, how
work
does
proqr

ski
of i
terro

e Resp_
a con
versat
ob is
hat t
fast

, and
not

amminq
11.
deas t
qation

onder.
versatio
ion to a
by no me
he resp
he is pr
how easi

come
. It re
skill
o people
s.

Writinq
n vica
cquire
ans tri
onder
obably
ly he c

autom
quires
in wr
— and e

an in
riousl
a spec
vial,
knows
able t
an be
at ical
a mixt
itinq
xperie

terroq
y. S
if ic.
The C
when

o work
bored,
ly f
ure of

or
nee in

atio
ince
comp
EL
he

, ho
Sk

rom
co

spe
bot

n p
it

lex
proq
tak

w fa
ill
ski

nvp>n
akin
h w

rogram
is the
set of
rammer
es an
st he
in CEL
11 at.
tiona1
g--the
ritinq

15

a. The Scope of the Question

por reasons having to do with initialization of
programs, we have suggested restricting a guestion to the
acguisition of a single information element. Tn practice, a CEL
programmer must consider carefully how much information to put
into a single IEN and must consider the effect on the responder
of askina either too much or too little at one time.

If too little is elicited, the responder will become
bored and will lose the train of his thought. If, for example, a
date were elicited by three guestions asking, 'DAY ', 'MONTH
 ', 'YEAR ', the responder may be expected to show
irritation at the slow pace. If, on the other hand, the program
asks, "Rive all twelve information items about each of the inputs
you have mentioned." the responder may well forget some of them
and lose his place in the seguence. The ideal interrogation
program will help the responder to remember, by cueing him
occasionally, will recognize that the responder is learning
technigue and can improve his performance with practice, yet will
see to it that each guestion is answered before going on to the
next.

To assist the CEL programmer we have developed a
guestion modification technigue and have considered use of a
second one, not yet implemented. The first is based on the
programmed instruction concept of a fading cue, [1] which, in our
context, means reducing the amount of explanation given with each
successive use of a guestion. Recall that in interrogation
programs, the responder is going to see the same basic set of
questions over and over again, as he reports on different HOP'S
and data items. The first time, or the first few times, he seps
a guestion he needs an explanation of what it means, and of where
the answers fit in the overall data base and reports. After a
few times, particularly when using a typewriter terminal with its
slow output nte, the responder needs only to be reminded of what
guestion is being asked, not necessarily given the full statement
of the guestion.

At. oresent, we allow for three different versions of a
guestion and shift from version one to two and then to three
after a predetermined number of uses. After a programmer has
answered the guestion, "What is the function of this UOP?"
several times, he need only be asked, "Function" to know how to
respond. Eventually, we would allow a responder to recall
version one in case he forgets its meaning, by responding //HELP
to the short form of the guestion.

The second technigue is to enable the CEL programmer to
combine several guestions into one, in the manner of a fading
cue, based upon repetition of the guestions. A succession of
guestions might be these:

16

First iteration: WHAT IS YOUR NAME?

WHAT TS YOU." RANK?

WHAT TS YOIIP SEPIAL NUIBEP?

Second iteration: GIVE YTTT! NAME, 3ANK, \VD
SEHTAL N'JMBEP SEPA8AT.ED 3Y /

Thirl iteration: NAME/RANK/SERIAL MO.

In anv updating activity, a return to the separate questions is
required.

b. leant ion Times

luch is saii and written on the subject of response
tines in man-machine systems, although little has been -irmlv
established. »° have not don'1 any fonal experimontation in this
area, but we have developed some convictions. Not surnrisinaly,
we find that rosponders react differently to delays at different
points in a conversation. We may classify these approximately as
fol lows:

(1) within a au^stion. As a function of both
programming and hardware, some systems impose delays, or
otherwise encumber the resnonder, durina the printing o^ a
macliine utterance or the entry of data bv thp man. "or example,
the 1140 CAT system with which WR did our parly experimentation
impos"^ a fix-id, one-second delay at the end of my line of
print, even if in the mi Idle of a sentence. We found this to be
disconcerting to the reader. Some versions o* the sam^ system
require the responder to depress a request key each time he*
wishes to make a response, then waif a variable lenoth or tin^,
r^relv exceodina about two seconls, hr the keyboard to he
unlocked. This is also bothersome because it delays the nan -just
at the point where he knows what he wants to do or sav anl is
ready, but finds the machine not ready. The conclusion is that
these delays ire least tolerable of all--machanical delays that
interrupt the loaical process.

(2) AftSE 1 service messan^. A service message is
one that asks a procedural or administrative question, not i
substantive one concerned with the data base. It might ask,
"What subject do you want to consider next?" We use the tarm
§.CL1LG.1 2.U£2.li2H ^Y analogy with the term service traffic in
communications, referrinq to messages about the operation of the
communications network over which sent. These questions have
little intellectual content and require little thought bv the
responler. Ha would not like to be delave} by such a messaao or
by the process of having that message ac^ol upon.

(3) hl^er a substantive resoonse. When a
substantive question has be^n asked and the answer given, a unit
of work has been performed. The rosnorder now knows the subject

17

matter will change, at Ipist slightlv, and hp is prepared to
accept a smill delay. Tt may bo necessary because it is likely
tvat some lata has to be stored at. this point, and the program
may impose a lelay to \o so.

(U) After a short g.ii2LX* tfher the responder asks
f})•-•> comnuter i question, which ho feels is a simple one, (such as
//q»Tr>^ or "r.»trieve TEN 1.2.""') h^ expects quick response, delay
possibly in terms of seconds, hut not minutes. These arc short,
precise ouostions. Me knows what the answers will look like ml
nee-is only the content.

(*}) AI.112E ID. 2itil!l^iX2 JLUflllY.* When, on the oth^r
band, \ question is asked that is of an analytic nature, such 1
"•;;i <t proqrams make use o* file A for input anl do
error routine?" the requestor is probably willinq to
lenqthy delay, even of several minutes. Here,
ant i rioafe th a n s w o r. T'e does not know if there is
H« knows h^ will have to wait before he can proceed.
inclule other requests in this catecorv, such as
aenoration of a report.

not hav= an
tolerate i
hp does not
in a nsw »r.
We can also

requests for

c. 'iser Control of the Interroeation

The CEL programmer can delegate a qroat leal of control
over AT\ interroqatior to the responder, something he will be nur^
inclined to do if he knows he is workinn with experienced people.
All the user control techniau^s have bean described elsewhere,
but wo shall briefly review them here.

on
(1) H£datin<!. Once a responder establishes a file

his major tonic (program or data file) he can operate entirely
in an nn'.it in i mode thereafter. Th i ir e a n: . e specifies what
topics he wi3hes to bQ be interrogated upon Find he restricts the
conversation to these items only.

(?) The CH_AM3_F response. At arv time luring a
proqram loqic description, the responder can change the nop he is
lescribira by answerinq //CHANGS to any question, He then
provides the name of the fJOP he wants to switch to. In this wiy,
ho is free to document UOP's in any sequence that is meaningful
to him, unconstrained by what the c17!, proqrammer mav have thought
best, 'he !L proqrammer may, however, disallow this response.

The £T0

it were a
'0 response. T1

program statement.
respon

Tt
(3)

same effect as if
transfer to the named question in the interrogation program,
is available mainly for d^hug-jing purposes.

;e has the
causes a

Hit

(4) The RACK re_sp_ons2. "his is another v =) y the
responder can transfer to a different question, in this case to
any question of the last n previously asked.

18

(s) Ill£ 2I13EI 3.!!^ EKPQPT responses- Thesp enable
a rosnonilfr to interrupt the interrogation t.o ask for information
from the data base. Data will be returned at the terminal in
resoonse t.o a O'JEPY or at the line nrinter in response to a
PFPOP'

7
'.

19

TIT

INSTRUCTION IN ESDP

1- Qi>i£ctive. A major obj
inteqrated instructional

ective of
subsyste

behind thi s objective is that large
have probl ems cause! by turnover of
in the p roqramming ranks and in
operators of the resulting system.
pro ject to have a comp rehensive
personnel that is addressed to the
mechanics of programming the com
com ponent. It is rarer for such
effect ivo an! up to date. The i
here is one which can satisfy
relatively inexpensive to o perate an

S pecifically,
system are:

ESDP has been to include an
m. Briefly, the rationale
programminq projects always
personnel and expansion, both
the ranks of the managers and
It is rare for a programminq

training program for new
system rather than to the
puter or to operating some

a curriculum to be both
nstructional system described
these requirements, yet be
d maintain.

the objectives of the ESDP instructional

a. To enable the transformation of ESDP-acquired
documentation into effective instructional text, both rapidly and
easily.

b. To enable instructors (authors of instructional
text) to prepare original traininq material not copied from
existing text, rapidly and easily, when either the requisite
documentation does not exist, or, in the opinion of the
instructor, it is not of instructional quality.

c. To enable instructors to prepare either computer
assisted instruction or programmed instruction courses (i. •». ,
instruction presented in printed form, off-line) at their option.

In 1966, be
conducted a short e
instructional text f
was to embed the docurn
successively present t
a topic title (take
text supplied by the p
standard question ca
had just read, then a
the original program
and still are consider
documents.) The stud
answered correctly, th
with the proqrammer'
the discrepancy. His
to review by in instru
given the next topic
number of different po
his response to it.

fore the s
xperiment
rom ESDP d
entation i
he student
n from the
rogrammer
lling for
summary of
mer-docume
ed a usefu
ent was
at is, if
s summary,
answers an
ctor at a
in sequenc
ints in th

the stud

tart of the present contract, IBM
in automatic production of

ocumentation. The approach taken
n a standard format that would
, through a terminal device, with
headinqs in an ESDP report), the

in documentinq his program, a
the student to summarize what he
the previous text supplied by

ntor. (Summaries of topics were
1 documentation device for ESDP
then asked to judge whether he
his summary substantially aqreed

If not, he was asked to explain
d explanations would be subject
later time. The student was then
e and the process repeated. At a
e presentation of material and
ent could ask for a review of any

20

previously covered material. Thus, if he had forgotten the
definition of a data item previously explained, he could, before
answering the current question, ask for a review of the item
definition. The student was able to select his own path throuah
the instructional material on the basis of major subdivisions.
If there were several major subjects, he could select the order
of considering them, but within a major subject he had to follow
the prescribed order of presentation of minor topics.

A computer program to generate such instruction
programs was written and made operational. The results were
found to be unsatisfactory. Mainly, this was because the student
was left on his own to judge his ability to recognize ind
interpret the important concepts in a paragraph with the result
that effective feedback to the student was not provided. One
major change was required: the ability to tailor the question to
the text, and to enable this to be done without the course author
or instructor having to completely retyoe or regenerate the
documentation or to become too entangled in computer programming.
Other requirements to be levied on a new instruction generator
were the ability to generate a program that would, without
modification, reflect minoor changes in the source documentation,
and the eventual interconnection of the generator with the ESDP
data base to allow students to ask information retrieval queries
of that data base while taking instruction.

An instruction generator that can test these concents
has been designed and a preliminary model made operational. The
assumptions underlying this design are the following:

a. Tn most cases ESDP documentation will exist before
the instruction course is written or compiled and most of this
documentation will be used as text material in the course.

b. The courses will be assembled by people familiar
with the object program system, programming in general, and
instructional technique. It is not expected that each object
system programmer will compile his own training materials. While
much mechanical assistance will be provided to the instructors,
there will be no diminution of the requirement for instructional
skill on their parts.

c. The object system programs that form the basis of
the instruction can be expected to change; therefore, the problem
of keeping the course up to date will always be present.

2. An Instruction Generating Program. Two models of an
instruction qenerator have been designed and the first of these
has been male operational. The purpose of the first model
program was to test the feasibility of the approach and to serv<=>
as a test vehicle for future experiments.

21

a. The Initial Model

The program has the following features and limitations:

(1) The generator is an interrogation program
written in the CAINT Executive Language. The object program
(resultant instructional program) is in the same language. The
object proaram is generated through an interactive process in
which the conversation between the generator and instructor is in
near natural language. Little programming skill is reguired of
him, but the facility is available for those who are skilled to
enter PL/I statements of their own into the generated instruction
program.

(2) If an ESDP data base is available, the
generator can make use of it. An instructor can incorporate any
portion of the base into his program by identifying that portion;
he need not copy it. If such data is not available, or if there
is any segment of it the instructor does not choose to use, ho
may compose his own text.

(3) Only multiple choice guestions can be used
(in Model 1). A guestion is identified as being true/false,
yes/no or other multiple choice, and the student is then
restricted to answering true or false, y.es or no, or a, b, c, d,
..., j. Any answer other than one of these anticipated answers
is unrecognizable.

(4) An instructor may insert PL/I language
statements to analyze or process responses, but ho is able to
compile a fully operable and meaningful course without recourse
to any programming whatever. The generator assists in computing
a student's grade, and counting unrecognizable answers. It can
be made to store responses and type out special messages, all
reguiring of the instructor only that he specify what is to be
done, not how.

(5) The course checks for unrecognizable answers
and offers the student three chances to change an unrecognizable
reply to a recognizable one. If, after three tries, an answer is
still unrecognizable, the course cuts the student off the
computer. The course also keeps track of student progress ani
allows him to log on and off, resuming where he left off.

b. The Second Model

A second model of the program would expand on the basic
system, primarily enlarging the number of possible answer types
and corresponding response analyses. It would provide the
following features beyond those offered in the first model.

(1) In addition to multiple choice, instructors
could allow for:

22

o item responses (one or more
distinct fields of information in
the reply)

o phrase response (short, natural
language replies)

o text responses (long natural lan-
guage replies)

o lists of item responses.

Each guestion may be of a different type.

(2) Key word extraction routines will be
available for call by the instructor in conjunction with phrase
or text responses. These enable him to make some checks on
extent of subject coverage in a response, (e.g., did the student
mention "end of file,") but still, of course, does not judge the
adeguacy of the content of the reply.

(3) The course author will be given more response
checking alternatives since a response no longer would be
reguired to match exactly one of a limited set of stored answers,
as in multiple choice. Instructors would be offered range
checks, absolute value checks, inegualities, exact eguality, etc.
Also, they could provide their own response processing, before
and after response testing, to allow for far more sophisticated
response analysis than can be explicitly anticipated in design of
the generator. For example, an instructor can make use of a
combination of the student's performance (grade) thus far in the
course and his latest answer to decide what to do if that answer
has particular characteristics.

(4) The capability to back up, or retrace a path
will be provided when the author replies BACK to a guestion.

(5) With Model 1 there are several subroutines
available for author use. These, for example, enable him to
program transmission of a messaqe to a student by entering only
message text as a parameter. The later model will enable thp
course author to "write" his own subroutines which may then be
called anywhere in his program. For example, he may wish to use
a text analysis routine of his own design. He can indicate to
the Generator that he wishes to compose a subroutine, name it,
compose it, then assume it is available for his use whenever
convenient.

(6) Model 2 will have a full capability to handle
program changes after the course has been generated or partially
generated. This will be done by having the author specify the
operation (add, change, delete) and identify the location within
the course. He then resumes the course-generating interroqation
to supply new coding.

23

A qener
specifications sh
would be a siqnif
itself, a CAINT
self-qenerating,
interrogation pro
solely within the
significant beca
information elemen
the original locum
when chanqes are
manner of interrog
with instruction m

ator program capable
ould be capable of gene
icant milestone, because
interrogation program, a

then it should be able
gram as well as any instru
context of instructional
use instructors may wis
ts, just for instructional
entation interrogation of

to be made in the ESDP
ation, these can be accompl
ore easily.

of meeting
rating itsel
the genera

nd if it can
to genera

ction proqra
systems,

h to have
use, elicite
programmers.
data base o

ished and in

f.

tor
be

te
m.
this

these
This
is,

made
an y

Even
i s

specia 1
d durinq

Then,
r in the
tegrated

will
provid
copyin
IEN, a
state m
time.
would
effort
option
and in
origin

c. Handling Changes in Documentation

An option with either version of the generator program
be to allow the instructor to make use of documentation
ed by the programmer who wrote a program without actually
g the text. The instructor will identify the text by its
nd the generator will respond by placing appropriate PL/T
ents to retrieve the text into the object program at. object

Tn this way, documentation changes made by the programmer
be reflected in the instruction course without additional
on the part of the instructor. The instructor retains the
of not using the programmer's text, for whatever reason,

stead supplying his own text or a paraphrase of the
al.

This technigue handles one aspect of chanqing
documentation. Through its use, instruction programs
automatically adjust to small changes made in documentation
without, for example, invalidating a course because the
programmer changed the spelling of a word or amplified an
explanation. Another aspect of changing documentation is found
when the originating programmer changes the structure of the
documentation for a program. This may imply a change in
structure of the program being described, as well. For example,
the proqrammer may add a new subroutine, or divide an existing
procedure into two procedures, or simply make use of an
additional data item in an existing calculation. Such chanqes do
not simply cause a replacement of an existing documentation it^m
by a new one, but cause additions or deletions to arrays of
program elements, or possibly change the relationship amonq
existing elements of an array. A course generated through the
techniques discussed here cannot automatically adapt to this form
of chanqe. When major documentation changes are made, ESDP has
the capability to store the fact of this change and, when an
instruction course is to be taken, make known to the student the
fact that the course is out of date. In a large number of cases,
this will make little difference, for one change in the
subroutine structure or introduction of another data item will
generally have little impact on the student's understanding of

the basic concepts of the program and its overall structure. A
regular program of review and revision of generated courses can

24

keep the complete instructional system reasonably up to date.

Both instructors and students must be aware that an
instructional system is different from an information retrieval
system; they are not interchangeable with each other.
Instruction concentrates on manner of presentation and attempts
to ensure that its users gain a good general understanding.
Retrieval has the mission to provide up to date information, and
may presume that its user can manipulate the system and interpret
its output with skill.

Another approach to automatic updating of instructional
material is to hold the programmer who writes the documentation,
or changes it, responsible for updating the instruction. While
this approach would work well mechanically, it reguires only a
few more guestions to be asked of the programmer as he makes his
documentation changes, we do not feel that programmers in general
are necessarily gualified instructors. Skill in writing and in
instruction is reguired.

d. Production of Programmed Instruction Courses

The current experiment in producing instructional text
is not concerned with programmed instruction (PI), but an example
is offered below to show that the ability to produce CAI courses
by computer can easily yield PI courses as well.

A typical guestion, or unit of instruction, generated
by the ESDP instruction generator, would have approximately the
form shown in Figure U.

This is an abbreviated version of the coding for a
guestion, but shows most of the essential elements. The same
guestion and branching decisions could be used in a PI format,
which might be as shown in Figure 5.

T
CAI format
arithmetic,
ability, d
instructor
that PI co
program. W
with the ES
would, in
take the co
prepares a
and run to
ready to
documentati

he on ly real difference between this
is that all "processing" is done by
The same branching techniques are

uring generation, to retrieve TEN
suppl y it is neede d. The major diffe
urses are printed directly, not compi
e anticipate that use of the PI optio
DP instruction generator would p rod uc
turn. produce the PI text when the st
urse. That is, j ust as with CAI,
n ob ject program, but this obje ct pr
produce PI text on iy when the stud
take the course in order th at al
on be a utomaticall y incorporated in t

PI format
messages,
used, the
text or ha

rence is
led as a co
n in conn
e a proqram
udent is re

the inst
ogram is co
ent is ac
1 late chan
he printed

and a
not by

same
ve the
really
mputer
ection
which

ady to
ructor
mpile:1
tuallv
ges in
text.

25

INS(l): *MSG = 'IS THE PERSONNEL FILE SEQUENCED BY NAME?';

CALL ASK;

IF RES = 'YES' THEN DO; GRADE (1) = 1;

MSG = 'GOOD'; CALL TELL; BRL = 2;
GO TO INS (1) ; END

IF RES = 'NO' THEN DO; GRADE (1) = -1;
NSG = 'WRONG, TRY AGAIN'; CALL TELL:
GO TO INS(l) ; END

* The ASK/TELL series of subroutines assumes
the text of the message to be displayed is
in data item MSG. If a response is called
for (it will be in the ASK subroutine if
used) the response will be in RES.

Figure 4. A Question in CAI Form.

INS(l) Is the Personnel File sequenced by NA1E?

If your answer is YES, go to INS (2)

If your answer is NO, go to INS (3)

TN5(2) Good, the correct answer is YES.
Now, the next question ...

INS (3) Wrong. To review, we said earlier
(text of earlier IEN)

Now qo on to TNS (2)

Figure 5. A Question in PI Form.

26

IV

INSTRUCTIONAL PROGRAMS

1- !Ii£ £L22EiI M2isl« Tne basic model of the instruction
program is that of a branching type program, the creation of
which is generally attributed to Norman Crowder.[2,3] The other
major programmed instruction model, a linear or Skinnerian model,
[3,4] is included as a subset within the overall model. A linear
model is one which always branches to the next instructional
frame or question, regardless of student response, while a
branching program has the option of going to a diffferent
successor for each different recognizable student response. In
practice, the branching type programs are usually multiple
choice, while the linear programs use a constructed response
where the student must compose the answer, rather than having
several possibilities presented to him for his consideration.
One advantage of computer assisted instruction is that a great
many constructed response answers can be anticipated by the
instructor, so that the branching technique may be combined with
the constructed response technigue, giving greater flexibility to
the course author and more feedback to the student.

We define the basic unit of an instruction proqram to
be a question or unit of instruction. The term question is
slightly ambiguous, but is handier to use. Within the question
(used here as a synonym for unit of instruction) there can be a
question (used here as an interrogatory sentence). The unit of
instruction consists of the elements listed below, some of which
may be omitted. This is a slightly more rigid organization than
specified for CSL programs in general, in Section I.

a. Heading

This is a call to a subroutine provided by the
generator. Generally, the instructor does not control the
heading. The subroutine called handles certain internal
"housekeeping" details needed by the instructional program.

b. Title

At the option of the instructor, the UOI or question
may have a title, which may be the title of the U3P being
described or any other title provided by the instructor.

c. Text

Again at the option of the instructor, there may be a
text portion which would normally be used to present the
documentation text provided by the programmer when he documented
his program. Alternatively, the text can be provided by the
instructor. The text part of a question is displayed to the
student but does not elicit a response from him.

27

d. Question

This pa
the text he has ju
break between te
draw this distinct
text supplied by
question will be s
were composinq h
distinction, \nd c
as well. A que
use is optional,
displayed to the
without considerin

rt of the fJOI
st read. Norm
xt and questi
ion because of

someone oth
upplied by the
is own text an
ould treat the
stion elicits
If not used,
student and t

q any response

asks the student SOUP
ally, there need be
on in proqrammed instr
ten the text will be
er than the instructor
instructor. Tf the

d questions. he need n
question as containin

a response f rom the st
only the title and

he course proceeds as

thing about
no sharp

uction. We
a copy of
, while the
instructor

ot make the
g the text
udent. Its

text are
proqrammed,

e. Response Analysis

This portion of the UOI tests the student's response
for compliance with predicted responses or functions of responses
or on other data items, stores the student response and decides
where in the course to branch next.

f. Endinq

The ending is analogous to the heading in that much of
it is supplied automatically by the qenerator proqram and is used
for program housekeepinq activities. It may also contain
processing st*ps to be performed reqardless of what response the
student qave to the question, and hence is separated from the
response analysis section. For example, a branchinq decision
could be made on the basis of previous response patterns or total
score.

2. An Ex3.m_p_l.e_" Fiqure 6 shows an example of the coding of a
question in the object instructional proqram. Labels shown on
codinq are labels that miqht actually appear in the PL/T codinq.

28

1 INS(l): CALL INIT;

2 MSG = 'INPUT';
3 CALL TELL;

4 XT(1): CALL RETRV(IEN);
5 CALL TELL;
6 XQ(1): MSG = 'WHICH OF THESE FILES IS UPDATED DAILY?
7 A PERSONNEL
8 B PAYROLL
9 C NEITHER OF THESE';
10 XA (1) : CALL ASK;

11 IF RES = 'A' THEN DO; GRADE (1) = 1;
12 !1SG = 'GOOD' ;
13 CALL TELL;
14 BRL • 2;
15 GO TO XE (1) ;
16 END;

17 IF RES = 'B» THEN DO; GRADE(l) = -1;
18 3(1) = B(l) + 1;
19 MSG = 'CAREFUL...TRY AGAIN';
20 GO TO XA(1) ;
21 END;

22 IF RES = 'C THEN DO; GRADE (1) = -1;
23 MSG = 'READ THE TEXT AGAIN,

CAREFULLY';
24 CALL TELL;
25 GO TO XT (1) ;
26 END;

27 CALL UNRECOG;
28 XE (1) : CALL NEXT;

Figure 6. A Unit of Instruction or Question.

29

The following comments are keyed to line numbers in
Figure 6.

I The label of the question is automatically
composed, and fits the requirements of a label in
a PL/I label array. A CALL is inserted to the
standard bookkeeping routine.

2,3 The title "INPUT" is displayed. This title was
composed by the instructor, or course author;
otherwise, a retrieval call would be here that
would retrieve the title from a list in memory.
The subroutine TELL does not call for a response.

4 The label here is an internal label, internal to a
question, and has the same subscript as the main
question label. The "T" denotes start of the text
presentation. The call to subroutine RETHV will
cause the text stored under that given IEN to be
retrieved and stored in data item MSG.

6-9 Here the question is being posed. The text has
been supplied by the instructor, in the form of a
multiple choice guestion.

10 The label denotes the beginning of the response
acquisition and analysis section. The ASK
subroutine elicits a response from the student and
places that response in data item RES.

II The first response checked for is A; this being
automatic if a multiple choice question form has
been selected. If this answer has been qivon, a
grade for the question is assigned. The value of
the grade is determined by asking the instructor
during the generation of the course whether the
answer is correct or not. If correct, the student
gets +1, if not, -1. It is not necessary that
each question be identified as either riqht or
wronq.

12, 11 The instructor has chosen to "reward" th<=>
student with the comment "GOOD."

lu The instructor has stated that he wants to qo next
to question 2, which is at label INS(2).
Branching out of the question is done only at the
end of the question. Here, the value* of 3RL
(branch label) which will be used to index a label
variable is set to 2.

IS Transfer is now made to the ending routine for thn
guestion, XE (1).

30

17 "B" is a wrong answer, hence the grade is set to
-1.

18 The instructor wants to know how often this answer
was given, so he introduces his own counting
variable, B (1) .

19,20 The student is told to answer the guestion
again, and is branched to the beginning of the
response analysis area. The guestion will not be
repeated, but the branch is to a CALL ASK
statement.

2S Here, in the analysis of the third recognizable
answer, the instructor feels the student must have
qrossly misunderstood the text to have given this
answer, so he is going to force a review by
repeating the text by a branch to the beginning of
the text presentation area, XT(1).

27 If no recognizable answer is given, a call is nude
to subroutine UNRECOG which will converse with the
student, try to get a recognizable answer from him
and, if it cannot, cut the student off.

28 The label XE (1) denotes the endinq of the UOT.
The subroutine NEXT performs the actual branching
to the next guestion.

3. Composition of a Question. More specifically, the functions
and options available for each component of a question are:

a. Heading

All questions must have a heading, hence the heading is
not under control of the instructor. Included are the label for
the guestion (the label of the PL/I code group associated with
the guestion). All such labels are part of a PL/I label array
and consist of an alphabetic prefix, INS, followed by a subscript
generated by the generator program. Next, the documentation to
which the guestion pertains is ascertained. This is elicited
from the instructor, as the composition of each question starts,
by the computer askinq him what IEN his question is associated
with. Finally, the headinq concludes with a call to the
INIT (ializinq) subroutine which records, for the object proqram,
which label is beinq executed and resets various counters and
reqisters.

b. Title

The title is entirely under control of the instructor
and is optional. Upon being asked for a title, the instructor
may respond:

31

IEN=n

//NO

(title)

The first of these responses directs the generator to place in
the ob-ject program the coding needed to retrieve the title that
corresponds to the IEN he has selected. This will be the title
used with the ESDP standard report form. For example, he -nay
insert TEN=1.2 where 1.2 is the TNPDT DATA DESCRIPTION in the
standard report. In that case, the object program will contain a
call to a subroutine that retrieves the stated title at objact
time. If no title is to be used, the instructor replies //NO.
If, when the instructor is asked for a title, he gives any other
response, that response is used in the object program. He miqht,
in the earlier example, have used INPUT, preferring the shorter
version of the standard title. In this case, the actual text is
compiled into the object program.

c. Text

Essentially the same options are available to the
instructor when text is called for by the generator program. Tn
this case, if he replies IEN=n, the programmer-supplied text
associated with n is implicated, not the title of n. Again, a
call to a subroutine that will retrieve the text at object time
is inserted into the object program, rather than the actual text.

d. Question

Questions will not have been stored by programmers
before the instruction course is composed, so the instructor will
always compose his own question, if he wants to use one. He may
respond, then, with the text of the question or with //NO which
means no question is to be asked.

o. Response Analysis

This is the most complex of the question components.
First, the generator ascertains what form of question is to he
used: multiple choice, etc. Then, a different set of
interroqations may follow dependinq on what form of question is
used. As an example, assume a true/false form is to be used.
Then the qenerator automatically starts the response analysis
component with the strinq:

IF RES = 'T' THEN DC;

where RES is the data item which contains the student's answer to
the question.

For each test of an anticipated answer (such as T for
TRUE) there is an associated THEN DO...END clause and an optional
ELSE DO...END clause. The combined clauses are referred to as an

32

answer set: the set of code concerned with analyzing one
anticipated answer. There is an answer set for each anticipated
answer and one for unrecognizable answers.

The instructor is asked if TRUE is a correct answer to
the question. If so, the next string generated is

GPADE(LABEL) = 1

where GRADE is an array of one-character, decimal items and LABEL
is the suhscript on the label array. If the answer were deemed
incorrect, GRADE would be set to -1.

When the author selects multiple choice as a guestion
form, the array of possible answers is elicited from him, to
assist him in compiling the question. As soon as he selects the
multiple choice mode, he is shown a display similar to

A.ENTER VALUE

The author then enters the first of the answers he wants his
student to consider. The process is cumulative. As soon as the
author gives a reply, that reply is displayed and a new line is
created asking for the next possible answer. The sequence is
terminated by //END and might take this form:

A. ENTER VALUE _ABRAHAM LINCOLN

A. ABRAHAM LINCOLN
B. ENTER VALUE _GEORGE WASHINGTON

A. ABRAHAM LINCOLN
B. GEORGE WASHINGTON
C. ENTER VALUE _//END

Now the instructor is asked about any additional
processing he may want done by the object program at the point
where the student has responded with a TRUE. His options are:

Execute an assignment statement

Type out a message

Count (i.e., add 1 to a designated data item)

Sum (i.e., add RES to some designated data item)

Store (i.e., store the contents of PES in a
standard location, indexed by LABEL)

The count and sum options are intended for arithmetic
processes other than keeping track of the student's grade. Using
them does not require that the instructor enter a full PL/I
statement, only that he designate which item is to be
incremented.

33

Similarly, indication that a message is to be typed out
requires only that the instructor enter the message, not that he
enter a PL/I statement that would type out the message.

The only option that requires the instructor to enter
actual programming statements is the assign option. This was
included for those cases not covered by the more simple
operations just described. If the assign option is used, the
instructor enters a PL/I statement which is checked for validity
by the generator. He must assume the responsibility for its
correct application, but the generator assures him that only
legal PL/T commands are put into the object program. While this
feature has many uses, it should be apparent that fairly
elaborate instructional programs can be composed without using
it. The statement validity-checking subroutine is not yet
implemented. At present, any character string entered in
response to the guestion is accepted and assumed to be a PL/I
sta tement.

The final step in each clause of an answer sot is to
find where the instructor wants to branch if the student has
given the answer used in the test. (One restriction being
imposed on the initial version of this program is that, there may

Back to a previous label (the label
given must be on a list of
generated labels)

Forward to a new label (the label
given may not have been generated
yet)

Forward to the next sequential
guestion (with this choice it is
not necessary to give the actual
label)

Then there are several options for branching to other
points within the current question. These are:

Back to the text, so the student
gets the entire tutorial section
over again

Back to the question, so the
question is repeated but not the
tutorial text

34

Back to response analysis, so a new
answer is elicited and all analysis
performed on it, but none of the
foreqoing text or question material
is repeated

When branching to a different question, entry can only
be made at the "top" of that question. The author cannot skip
the headinq.

Lists are maintained of all qenerated labels and all
future labels (those indicated as forward branch labels at a
branch point). Whenever the instructor goes on to a new
question, he will be qiven a list showinq from where else he
branched to the same label. If he finds he has made a mistake
and did not intend to qo to the same label from two different
points, he may chanqe his most recent decision.

Branching is not actually done from the IF statement to
the desiqnated label. The IF statement will contain an
assiqnment statement that stores the label to which hranchinq
outside the boundary of the UOI is to be done, then actual
hranchinq is to the endinq component of the question.

As many IF statements, or answer sets, are qenerated as
there are possible answers to check. Up to ten are allowed in a
multiple choice. When full constructed item response analysis is
implemented, there will be no limit except that imposed by memory
con siderations.

After all the answer sets are qenerated, an
unrecognizable response answer set is inserted. In its general
form this routine counts the number of successive unrecognizable
answers, and prints out a different message for each. After
three consecutive unrecognizable answers the student is cut off
from the course (or the instructor from the use of the
generator). The instructor provides the messages for the
qenerated course. For example, if a True/False question is used
and the student replies IRUR this answer would be unrecoqnizable.
A messaqe to this effect would be typed out and then another
message, specific to the question and supplied by the instructor.
For example, the student miqht see:

ANSWEB UNRECOGNIZABLE

YOU MUST ANSWER TRUE OR FALSE

The first of these is inserted into the object course
automatically by the generator, the second is provided by the
instructor. If the student cannot qive a recoqnizable answer in
three tries, he is assumed to have qrossly misunderstood the
instructions or to be playing games, a common, apparently
irrestible, urge among CAI students. The instructor may compose
his own unrecognizable answer routine.

35

f. Ending

The ending routine gives the instructor the opportunity
to do processing that applies to all answers, whether or not they
match any of the anticipated answers, resets various counters,
and performs the actual branch to the selected next question.
The reason for doing the branching in this way is to enable the
question to be operated as a subroutine, if necessary, or to be
part of a sequential program, depending upon the value of some
stated item. That is, if the student is in a review mode, he nay
be routed to a given question, then back to the review control
question, regardless of this answer. In CAINT courses, we use
this technique also for interrogating a programmer only on
selected questions when he is updating files.

U. Composition of the Program. An object instructional program
consists of up to 999 questions of the form just described (the
number 999 being completely arbitrary, but some limit is
necessary). When all the questions have been compiled, the
generator program must generate introductory and terminal
material for the object course.

Introductory material consists of reguired labels and
statements of PL/I, such as data declarations. These are
generated from lists of data items generated in the main body of
the course. The terminal part of the course consists of a
standard grade-computing routine, one that gives not only a count
of right and wrong answers, but also a list of the number of
unrecognizable answers at each question, and could be extended to
give qrades within major sections of the course. The terminal
section also contains subroutines, completely pre-written, that
must be a part of any object program.

The final result of operation of the generator program
is a complete, syntactically valid PL/I program, together with
all subroutines and specification statements. There can be no
guarantee that the course will execute successfully, because the
instructor "ay have inserted invalid or meaningless statements,
but thp course should always compile.

S. Using_ the System. The Instruction Generator is a new concept
which offers a significant improvement in the potential for using
CAI and PT for on-the-job training. Certainly, more time is
needed to complete the generator and to test it, both as a
program to be debugged and as an educational tool.

36

BIBLIOGRAPHY

[1] Hughes, J. L. £E29.E.11S.^1 Instruction for Schools
Indust ry. Science Research Associates, Chicago, 1962, p

and
63.

[2] Crowder, Norman A., "Automatic Tutoring by Intrinsic
Programming," in Teaching Machines and Programmed Learning:
h. Source Book, A. A. Lunsdaine and R. Glaser, Eds. , National
Education Association, Washington, D.C. 1960, pp. 286-29R.

[3] Lysaught, Jerome P. and Clarence H. Williams, A Guide to
E£2.2E3.mmed Instruction, John Wiley & Sons, Inc., New York,
1963 (a general survey of the subject).

[4] Skinner, B. F., "The Science of Learning
Teaching," in Teaching Machines, p. 100.

and the Art of

37

Security Classification

DOCUMENT CONTROL DATA -R&D
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report Is classified)

l. ORIGINATING A c Tl V l TY (Corporate author)

Center for Exploratory Studies
International Business Machines Corporation
Rockville, Maryland 20850

2a. REPORT SECURI TY CLASSIFICATION

UNCLASSIFIED
2b. GROUP

N/A
3 REPORT TITLE

EVOLUTIONARY SYSTEM FOR DATA PROCESSING
THE CAINT EXECUTIVE LANGUAGE AND INSTRUCTION GENERATOR

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Nnnp
5 AUTHOR(S) (First name, middle initial, last name)

Charles T. Meadow
Douglas W. Waugh
Gerald F. Conklin
Forrest- E. Millftr

6. REPORT DATE

January 1968
la. TOTAL NO. OF PAGES

42
7b. NO. OF REFS

8a. CONTRACT OR GRANT NO.

FI9628-67-C-0254
b. PROJEC T NO.

9a. ORIGINATOR'S REPORT NUMBER(S)

ESD-TR-68-I43, Vol. Ill

9b. OTHER REPORT NOISI (Any other numbers that may be assigned
this report)

10. DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is unlimited.

11- SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Command Systems Division, Electronic Systems
Division, Air Force Systems Command, USAF,
L G Hanscom Field, Bedford, Mass. 01730

13. A6STRAC T

ESDP is a proposed system whose purpose is to acquire, store, retrieve, publish and disseminate
all documentation, exclusive of graphics, concerned with a large computer programming activity.
Documentation is deemed to consist, not only of final or formally published after-the-fact reports,
but of working files, design and change notices, informal drafts, management reports—in fact, the
entire recordable rationale underlying a programming system. Maximum attention has been
concentrated on the means of acquiring and organizing documentation. Two major, complementary
approaches are proposed. The first is called Program Analysis and is a process of extracting
documentation directly from completed programs. The second is called Computer Assisted
Interrogation and is a process of eliciting information directly from the programmer, through on-line
communication terminals. The former provides canonical data about the program's structure. The
latter provides explanatory material about all aspects of the program, and in the absence of
canonical data, may provide tentative structural information as well. The conclusion of the study
group is that ESDP is a feasible concept with present-day technology and that it will materially
benefit using organizations in the production of programs and in guiding their evolution as
requirements change. Its value will be greater for larger organizations, whose internal communica-
tions difficulties tend to cause truly gigantic inefficiencies. Its implementation as a support system
for such projects would require a significant quantum of investment in order to produce these
benefits and is predicated on the use of a computer system dedicated solely to the use of ESDP.

DD FORM 1473 Unclassified
Security Classification

