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l. Summary

This paper considers some aspects of a. discrete attack-defense
game in which there are tareets for both the attacker and the
defender. In section two the basic game is described. Following
this there is a discussion of the relation of past results to
this game.

In section three the discrete game is examined in detail.
Expressions are obtained for the probability of wvictory by either
player at any step in the game, time to termination of the game,
and the mathematical expectation and variance of time to termination
for beth fixed and mobile target for the attacker. For the case
of fixed target the space of strategies for each player is dis-
cussed along with several possible payoff kernels. Some conditions
are given which are sufficient to obtain a saddle point and minimax
soiution to the game.

In section four -some examples of strategies are explored.

In section five extensions of the discrete game to the continuous

game are considered.




2. Description of the Game and Past Research
There are two versions of the attack-defense game with
targets. Both games will be defined here but only the first

version will be considered in Section 5.

The first version will be called the discrete game. It
can be described ss follows. One is given a finite or infinite
grid of lettice points in E? or E5 labeled 0,1,2,...,N. The
two plsyers are A, the attacker, and D, the defender. The target
which the attacker wishes to hit is X, which may be assumed to
be either stationary or mobile. Also, the initial positions of
A, D, and X are given. The initial position of D need not
coiuncide with the initial position of X.

The players, A and D, as well as X, are required to occupy
lattice points. Multiple occupancy of a lattice point is allowed.
The players move simultaneously at discrete times. The goel of
A is to occupy the same lattice point as X does on the same move
before the positions of A and D cecinecid=z. If this occurs, A
wins and the game ends. The goal of D is t» occupy the same
lattice point as A does before the positions of A and X coincigde.
If this occurs, D wins and the game ends. If A,D, and X occupy
the same lattice point simultaneously, then A wins, since D may
destroy A, but X will be destroyed in the process.

A time 1limit on the ganme, TL, is given. The game must end

by time TL. If by time TL neither A nor D has won, then the game

is declared over and neither player wins. The limitation TL can

be thought of as a fuel constraint on one or botn of the players.
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An exemple of the initial positions occupied at the beginning

of the discrete game in E? is shown in the following diagram.

L ] L . OA 4 L) . 2
[ ’ 4 e . L] v L4
N 0 L L ’ K 4
2 [ 4 Pd o ° Py

X D

The second version of the game will be called the continuous,

or differential game. In this game the players move along continuous,

differentiabk paths contained in some connected region (finite or
infinite) in E? or ES. The goals of the players remain, in
general, the same excelLt that, because of the continuous nature
of the ganme, "zones of destruction" for each player need to be
introduced. These zones are specified by positive numbers,f‘andtn.

& is such that if the Euclidian distance betweeun A and X is less
than £b , then X is considered to be destroyed and A wins;and if
the Euclidian distance between A and D is less than £,, then A
is destroyed and D wins. As in the discrete game, the convention
is made that if both A and X lie within &, of D, then A wins and
the game is over.

The continuous version can be seen to be quite analogous to

the discrete game and some of the results for the diserete game

can be carried over to the continuous game.
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As noted in the first section certain simple pursuit-evasion
games have been analyzed in the existing literature. For example,
Karlin (10], Bellman [11}, and Dresher [&] have considered scze
discrete pursuit-evasion games using the method of payoff kernels.
It is clear that the discrete game described in the section
contains, as special cases, games in which the strategies are
matrices. Such puvrsuit-evasion games have been studied by Cohen
[{5] and Dubins [?]. Charnes and Schroeder [3] considered some
special types of stochastic gamee relating to antisubmarine warfare.
It should be noted that most of these papers do nct use the concepnt
of a target for the attacker. Tae few that do consider targets
for the attacker do not allow movement, but instead examine
certain allocation problems relating to offensive and defensive
units.

There have also been several studies ¢f the classical pursvit-
evasion game in the continuous version. Some of <vhese studies
are Issacs [9], Ho, ¢t «1 [8], Cockayne [53], Berkovitz and
Fleming (7], and Pontryagin [11]. These papers, in additicn to
not having a target for the attacker, present results based primarily
on solutions of certain types of differential equations with various

constraints and side condivions.




5. The Discrete Game

5.0, Notation and Rasic Definitions

The following notatior will be used extensively in this

section.
(5.0.1) A = attacker.
(3.0.7) D = defender,
| (3.0.3) X = target for A.
E (3.0.4) T, = time limit for the game,

(5.6.5) N = number of lattice points given.

(5.0.6) INA = pesition of A after the first move and before the

At b oal oy tag

second move.
3 (5.0.7) IND = position of D after the first move and before the
second move.

(5.0.8) INX = position of X after the first move and before the

Ladma?on A T 2 aanet

second move..
(3.0.9) T

(3.0.1u) :;: set of strategies for A.

termination time ip the game(a randem variabie;

. AT

(3.0.11) 10= set of strategies for D.

{ (5.0.12) sz set of strategies for X,

(5.0.13) The phrase "ST(A)=U" will mean "A follows strategy U"
(similarly for ST(D) and ST(X)).

Moves occur in the game at discrete times 1,2,...,t, t+1,...,TL.
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Define POSA, PCSD, and POSX, functions of time, by

(5.0.14) POSA(t) = position of A at time t,
(5.0.15) POSD(t) = pesition of D at . time t,
and

(5.0.16) POSX(t) = position of X at " time t.

5.1 Discrete Game with Fixed Target for Attacker.
In vhls situation X cannot move, POSX(t) = INX for each
t>1 and J; is a singieton strategy. Hence, it is not necessary

to consider J; .

5.1.1 Definition. Define functions TRANSA, TRANSD, PRAD1, PRADZ
as follows:

Let Uedy , Vedy, and let i,j, and k be lattice points.

For eac: time t with t S T; define

(3.1.1.1) PRAD1(i,J,t;U,V) = P[POSA(t)=i, POSD(t)=j. and
T>t | SP(A)=U and ST(D)=V],
P(POSA(t)=i, POSD(t)=j, and

T>t | SP(A)=U and ST(D)=V],

(3.1.1.2) PRAD?(i,j,t;U,V)

and for jAk amd t<T
(3.1.1.5) TRANSA(i,t+1;j,k,U)

PIPC A(t+1)=1i | POSA(t)=j],
PUSD(t)=k, and ST(A)=U]
and

(5.1.1.4) TRANSD(i,t+1;3,k,V)

P(POSD(t+1)=i | POSA(t)=3,
POSD(t)=k, and ST(D)=V].
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It should be noted that when the two players select strategies,
thase strategies will determine the probesbilities defined in 5.1.1.
For this reason for any event C, denote PLC | ST(A)=U and ST{D)=V]
by pPlC;U,V].

The first move of the players is to move onto INA and IND,
respectively. This might be termed a LeMans start for the game.

From the LeMans start the following lemma is immediately obtained.

3.1.2. Lemma. For Ue€J, and for Vedg

{1 if i=INA and j=IND
(3.1.2.1) PRADL(i,j,l;U,V)= }
( 0 otherwise
0 15 i=INA=IND=j

(53.1.2.2) PRAD2(i,j,1;U,V)=
!
 PRAD1(i,j,1l; U,V) otherwise

/0 if INA=IND
(3.1.2.5) PI[T > 13U,V1= f
1

<~ 1 otherwise.

An inductive methnd can now be used to determine the values

of the functions, PRAL1 and PRADZ.
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(3.1.5.1) PRADI(i,j,t+1;U,V) = & 2 PRAD2(k,m,t;U,V)TRANSKi,t+1;k,m,U)e
[k m

gl
x¢ w2/ dTRANSD(j, t+1;k,m, V)

and
{0 if i=j or if i=INX
(3.1.5.2) PRAD2(i,j,t+1;U,V)=
PRAD1(i,j,t+1;U,V) otherwise.

Proof: (3.1.3.2) foliows from (5.1.53.1) and {5.1.1.2). Comsidsr
(5.1.5.1), One has,by definition of PRADL, that

(3.1.5.5) PRADL(i,J,t+1;U,V)= P{POSA(5+1)=i and POSD(t+1)=j |

T > t, ST(A)=U, ana ST(D)=V] -
+o[(? > t | SP(A)=U and ST(L)=V1.

The first term on the right hand side of (5.1.5.3) can be deccmposed
as follows

(5.1.5.4) PLPOSA(t+1l)=1i and PGSD(t+l)=j | T > ¢t, SP(4)=U, and £TD)=V] =
b3 E_ P{POSA(t+1)=i, POSD(t+l1)=j, POSA(t)=k, ané

.\.“ P .
"k&rgk

POSD(t)=m§ T > t, ST(A)=U, and ST(D)=V]
; . PlPOSA(t+l)=i and POSD{t+1)=j | POSA(t)=k,
Wg.am POSD(t)=m, T > t, ST(A)=U, and ST(D)=V]
P[(POSA(t)=k and FOSD(t)=m | T > ¢, .

ST(A)=U, and ST{D)=V]
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Substituting (3.1.3.4) into (3.1.3.3) yields

(3.1.3.5) PRADl(i,j,t+1;U,V)=§£ PLPOSA(t+1)=1i and POSD(t+1)=j|
(k4w | POSA(%)=k,
POSD(t)=m, T > t,ST(A)=U, and
ST(D)=V].
-P [POSA(t)=k and PCSD(t)=nml
T > t, ST(A)=U and ST(D)=V]
‘P Ir >t | ST(A)=U and ST(D)-=V]

and so,

(5.1.5.6) PRADL(1,§,5+1;U,V) =2 Z P [POSA(t+1)=: and POSD(t+1)=] |
(kémg) POSA(t)=k, POSD(t)=m, T > t,
ST(A)=U, ST(D)=V].
-P[POSA(t)=k, POSD(t)=m, and

T> t) ST(A)=q,and ST(D) = V].

Note now that the second probability inside the summations of
(5.1.3.€) is just PRAD?(k,m,t;U,V). The first probability inside
the summations in (3.1.3.6) can be split into P [POSA(t+1)=i |
POSA(t) =k, POSD(t)=m, ST(A)=U, and ST(D)=V] - P(POSD(t+1) = § |
POSA(t)=k, POSD(t)=m, ST(A)=U, and ST(D)=V] because tae events
POSA(t+1)=i and POSD(t+l)=j are conditionally independent given

the state of the game and position of the players in the t-th move.
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However, this product of probabilities is Jjust
TRANSA(i,t+1l;k,m,U,V) - TRANSD(i,t+l;k,m,U,V). Substitution of
these results into (3.1.3.6) gives (3.1.35.1).and so completes the
proof.
The expressions obtained in 5.1.5 can be employed to calculate

the probabilities that A(cr D) will win in the t-th move, when
A and D are using strategies U and V, respectively. Since the
robabilities will be obtained inductively, the probabilities

for the first move are giver in the following lemma, the proof

of which is immediate from the LeMans start of the game.
5.1.4 Lemma. For Ue¢f, and Vel

0 if INA # INX
(3.1.4.1) PIA wins at step 1;U,V]=
1 if INA = INX

0] if INDAINA or if INA=IND=INX
(3.1.4.2) PI[D wins at step 1;U,V]=

1 otherwise.

For the general step the following theorem is obtained.
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3.1.5 Theorem. For Uel, Ved, and t>1
A 0,

(5.1.5.1) P[A wins in the (t+l)-st move and T > t ;U,V]=

2. T TRANSA(INX,t+1;i,3j,U) PRADZ(i,J,t;U,V)

CoLJ
and )

LgINX
(3.1.5.72) PI[D wins in the (t+l)-st move and T > t ;U,V]=

= 2 PRADL(J,j,5+1;U,V).

J# WX
Proof: Consider {3.1.5.1). Observing that A wins in the (t+l1)-5%
move if and only if POSA(t+1)=INX=POS(X), one has by decomposition

P[A wins in the (t+l)-st move and T > t ; U,V? =
= 2 2 PLPOSA{t+1)=INX, POSA(t)=i, POSD(t)=j, and

¢ J
Ly T>t ; U,V].
T

Conditioningbone obtgins
P(A wins in the (t+l)-st move and T > t ; U,V] =
= Z 2 PIPOSA(t+1)=INX | POSA(t)=i, POSD(t)=j,
‘:':ix T > t, ST(A)=U, and ST(D)=V]e

«P[POSA(t)=i, POSD(t)=j, and T > t | ST(A)=U
and ST(D)=V],

Since the firet probability inside the summations is- TRANSA(QNX,
t+1;1,j,U) and the second is PRADA(i,j,t;U,V), (3.1.5.1) is.obtained.
To verify (3.1.5.7), notice that D wins in the (t+l-st move

if and only if POSD(t+1])=POSA(t+1), POSA(t+)AINX, and T > t. Hence,
PLD wins. in the (t+l}st move and T > t ; U,V] =J§'£:P0oﬂ(t*i‘=.'=Pr-‘st,(t+l)

and T > t ; U,V]. Since the term inside the summation is

PRAD1(j,J,t+1;U,V), the verification of (3.1.5.2) is complete.
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Expressicns for the probability of termination at the (t+l)-st

move, and not before, can now be derived.
5.1.6. Corollary. For Ued,, Ved), and t 21

(5.1.6.1) PIT=t+1 ; U,V] = 22 TRANSA(INK,t+1;i,3,0)-
((ywy PRAD2 (1,3, £5U,V) +
+ 2 PRADR(j.J 424,

Jtivx
Proof: It is clear that

PlT=t+1 ;U,V] = P[A wins at the (t+l)-st move and T > t; U,V] +
P(D wins in the (t+l)-st move and T > t; Y,V].

(3.1.€.1) follows then from (3.1.5.1) and {(3.1.5.2).
The distribution of the random variable of termination

can now be determined whenever + < TL. For ¢ = TL set

PIT=T, ; U,V] = 1- tZ P(T=t ; U,V]
(.T‘_

Also,given strategies Ued, and Vc{b the mathematical expectation

and variance of termination can be found.

-

5.2, Discrete Game witb Mobile Target for Attacker.

In this situation X, the targec, is mobile. The assumptiocn
is made that A,D, and X make independent movements at the (t+l)-st
move given their positions at the t-th move. The probabilities
that will be considered are first defined and then expressions

are derived inductively as in the previous part of this cection




Page 14

with a fixed target. It might be noved that this version of

the game can be viewed as a three Derson game with coalition
and with one of the players in the coalition acting evasively or
passively. ‘The terms that are not @efined in this section will

have the same meaning as they had in 3.1.

5.2.1 Definition, Let Uel, Ved, Wed, and t be a time
< TL. Let 1i,j,k, and m be lattice points. The functions
PRADX1, PRADX2, TRANSA, TRANSD, and TRANSX are defined as follows.

(3.2.1.1) PRADX1(i,j,k,t;U,V,W) = P{POSA(t)=i, POSD(t)=j, POSX(t)=k,
and T > t | ST(A)=U, ST(D)=V,
and ST(X)=W].

(5.2.1.2) PRADX2(i,J,k,t;U,V,W) = P[POSA(t)=i, POSD(t)=j, POSX(t)=k,
and T > t | ST(A)=U, ST(D)=V,
and ST(X)=W].

(5.7.1.3) TRANSA(i,t+1;],k,m,U)=P(POSA(t+1)=i | POSA(t)=j, POSD(t)=k,
POSX(t)=m, and ST(A)=U].

(3.2.1.4) TRANSD(i,t+l;j,k,m,V,=P[POSD(t+1)=i | POSA(t)=j, POSD(t)=v,

Fooxit)=mand T(L,=v], !
(5.2.1.5) TRANSX(i,t+1;J,k,m,W)=P[POSX(t+1)=1i | POSA(t)=j, POSD(t)=k,
POSX(t)=m, and ST(X)=W].
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The following lemma is an immediate consequence of these

definitions.

2.7.7 Lemma. For Uedy, Vel Wef, and for i,j, and k lattice

points

(3.2.2.1)

(3.2.2.2)

(3.2.2.3)

(Ba?c?aq’)

1 if i=INA, j=IND, and k=INX
PRADX1(i,Jj,k,1;U,V,W)=
0 otherwise,
+ 0 if i=INA=IND=j or 3:IJa=Iwy=k

PRADxa(i,j,k,l;U,v,W)=)

\I’KAL).i'i,f,s,l; 4 V1) otaer n.e,

1 if TINA=INX

P[A wins in 1st move;U,V,W]

1

TN —r—
(@]

otherwise,

if IND=INAAINX

b=

PI(D wins in lst move;U,V,W]

[t}

O otherwise,

( 1 if INA=IND or INA=INX
plT=1 ; U,V,V] =

C O otherwise.
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An inductive process can now be used to calculate the

values of the functions PRADXI and PRADX? using the result of

the following theorem.

5.2+5. Theorem. Let Uf,{;, V*.(Z, w(réx and suppose i,j, and k

are lattice points and that 1 < ¢ < TL.

GJJJ)HMM@JJ&M&KW=ZZ§PMMMm&m&mW-
e B |

-M:h
vﬂ‘;
*TRANSA(i,t+1l;m,n,q,U)-TRANSD(J,t+1l;m,n,q,V)"

*PRANSY(k,t+1l;m,n,q,W)

(o if i=j or i=k
(3.7.5.7) PRADX-(i,j,k,t+1;U,V,W) =}

LPRADXl(i,j,k,t+1;U,V,W) otherwise

Proof: This proof parallels the proof of theorem 3.1.5 and so

is omitted.
5.7.4. Theorem. For U‘.l‘, Vv.l'o, and W «dy

(5.7.4.1) P[A wins irn the (t+}-st move and T > t ;U,V,W] =

"

22 22 TRANSA(i,t+1l;3,k,m,U)e TRANSX(i,t+1;d,k,m,W)-
¢ ok

(2 «PRADX?(j,k,m,t;T,V,W),

” L7}
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Proof: The proof of {(3.7.4.1) is analogous to that of (5.1.5.1)
and is omitt2d. The probability on the left hand side in (3.7.4.7)
can be decomposed over all possible locations A and D can meet

and then decomposed over all possible prior positions of A,D, and

X so that one has

PL(D wins in the (t+l)-st move and T > t;U,V,W] =
=  P[POSA(t+1)=i, POSD(t+1)=i, POSX(t+l)#£i, and T > t; U,V,w]

> L g 2 PLPOSA(t+1)=i, POSD(t+l=i, POSX(t+1)£i | POSA(t)=j,
& A

i:* POSD(t)=k, POSX(t)=m, T > t, ST(A)=U, ST(D)=V, and
JE'EMm

ST(X)=W] - P[POSA(t)=j, POSD(t)=k, POSX(t)=m, and
T> ¢t ; UV,W.

Using the fact that the events POSA(t+l)=i, POSD(t+l)=i, and
POSX(t+1)#i are conditionally independent given the positions of
A,D, and X at time t one obtains (5.7.4.7).

The probability of termination along with the iathematical
expectation and variance of termination can be determined from

Ser.4 as was done in 5.1.
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5.5, Strategies for the Fixed Target Game.

Having derived expressions for the various probabilities
for the case of where X is fixed, it might be useful to consider
the spaces of strategies, J» and 20 . A partial ordering can be

induced on each of 1‘ and ID .

5.5.1.Definition. For U; and Uy in 1‘ define :c on 4, by

Up§ Uy if and only if
(3.5.1.1) P[A wins .en the t-th move and T > t; UVl 2

PLA wins on the t-th move and T > t; U,,V]
<

and
(5.3.1.2) PLD wins on the t-th move and T 2 t; U;,V] <
P[D wins on the t-th move and T 2> t; U?,V]

for all t £ TL and Veéy; .

4

5.3.7, Definition. For V, and V, in :fa define £ on o Dby

V:L % V; if and only if

(5.3.7.1) PLA wins on the t-th move and T 2 t; U,V;1 <
P(A wins on the t-th move and T > t; U,V.]

Qﬂd. c

(3.5.7.2) [Dwins en the t-th move and T > t; U,V.] >
P[D wins on the t-th move and T > t; U,V?]

for all ¢t £ 'I'L and U €g4,.
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A strategy, U, in 1‘ for which there is a stategy in J‘ difterent from¥
whichis2 U will be called strongly inadmissible in 4& . Similarly,

a strategy, V, in ;{0 for which there is a strategy inJodifferent

from V and 2 ¥ will be called a strongly indadmissible strategy

in 40 .
5.5.5 Lemma. ( Jﬁ S ) and (4, %, ) are partially ordered sets.

Y
O
(o}
L

This is a direct verification.

The effect of this partial ordering is to eliminate from
consideration those strategies for both players which behave
"badly" at every time against every strategy of the opponcnt.

several payoff kernels will now be presented along with
zome discussion of their importance. Define KA,l’ a function
fronm ,z;x P x{l,?,...,TLg into [-1,1] by
73.3.4.1) KA,l(U,V,t) = P[A wins in t-th move and T 2 t;U,V] -

P[(D wins in the t-th move and T > t; U,V)

for all U‘-J‘ Vey, 2nd t.

Dafinn KA ~y o function from 4 x4 to E1 by
e A [/

5. 5.6.2) K, (U V)= 7K UV, t
(/ 7 ) A,r( ] ) 'C?TL A,l( y ¥ )

o 1] « nrny 3 .
for all 1] j‘ and \/(Jb
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Set KD,l =Ky 1 and KD,? = —KA’?. The game with the

payoff kernel, KA,?’ for the attacker is a two person zero-sum
game. This payoff kernel seems intuitively appealing when one
considers the goal of the attacker: the attacker seeks a strategy
that will maximize the probability that he wins and will minimize
the probability that he loses tc D. This would be reflected in
A's efforts to maximize, for every choice of strategy in J; ,
the expression in (3.3.4.2). The defender will attempt to do
the opposite.

If the players wish . to consider strategies that will do
well at each move, they might use the payoff kernel K

A,1°
Fach strategy in either space of strategies

is really a ;equence and can be represented as a vector, say

U = (Ul""’“'r,_) 6!“ ‘and V = (Vl,...,y&)‘)‘, . Then the

players are really making sequential decisions and at the t~th

move A will seek a strategy which maximizes the probebllity that

he win s in this move. Using the payoff kernel KA,l’ this is

reflected in A's efforts to maximin the expression in (5.3.4.1).
If termination at the early stages of the game is important,

then the attacker could attach a weighting to the summands in

(5.3.4.2). The general payoff kernel, KA 5“would be defined by
9
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(3.3.4.3) ¥, 5(U,¥) = tzETaHl(uv»c)

with a . 2 0 for all t21 Zat<aa.
T

Inequalities for the above payoff kernels can be obtained.
53.3.5, Lemma. For KA. 1{ KA ~, and KA,B as defined in (53.53.4.1),
(

5.3.4.7) and (5.3.4.3) respectively,
(3.5.5.1) -1<K, l(UVt)<l
(3.3.5.2) =T < KA’?(U,V) < T

(3.3.5.3) =~ Za, 45UV < Za
td. TS

for all Uq' Veédyand t.

t

The following theorem can then be obtained for conditions

on the value of the game.

5.5.6, Theorem. If there exists a real number s and strategies

U, el‘ and Ve, such that
KA’]_(UO,V,t) 2 s for all Ved,
and

x(A UV ,t) < s ‘for all Ue‘[”

’...

then mi ax K, ,(u,v,t) =K t) =
Vlﬁx; .l«nu, 2,167, t) 2,105 Vo)

max min K, l(U,V,t:).

“‘J‘ J‘Jb ’

Similar statements hold for K, . and K, -.
A,2 A,>
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Proof: The proof is straightforward and sc is mitted. A proof
also appears in Karlin [10].

Let us now consider the payoff kernels considered in other
sources., Charnes and Schroeder in [3] considered a payoff function
for a pursuit-evasion game that depended not only of the strategies
of each player and the time t, but also on the position of the
playzers at time +t. This approach also appears in other sources.
It would seem that, in the game considered in this paper, the
players should seek strategies that maximize their probability
of victory and minimize their probability of defeat (perhaps,
at each stage). Where the players win or lose should be irrelevant.
If position was important, this could be built into the strategies
and transition probabilities at the outset of the game.

A few remarks might now be mesde concerning the version of
the discrete game with mobile target for the attacker. The
basic payoff kernels would seem at first glance to generali-
to this situation. However, before any such step can be made,
explicit statements concerning the amount and nature of inter-
action between D and X need to be made. With certain assumptions

the generalization should be possible.




4, Examples of Strategies in the Discrete Game.

Several examples will be considered in this section. The
first will be the case where A acts ballistically and so in a
completely nonrandom manner. Another example is the case of
completely randomized strategies by one or both players. The
thrid example that will be examined is the case where one or
both of the players randomize over all lattice points in the
sector formed by a certain arc deteirmined by the position of
the players.

Suppose that the attacker A acts in a completely nonrandom
manner. If A is not employing any evasive tactics, then D will
attempt to predict the future position of A and will then attempt
to intercept A. This game would involve some interesting problems
in information theory. If, as seems more likely, A employs some
type of nonrandomized evasive maneuvers, then A's strategy is fixed
and D will attemp* to select a strategy maximizing the probability
of capture before A annihilates X.

A second oxample of possible strategies is the case of where
either or both players act in a completely randomized fashion.,

The most elementary example of this type occurs when each player
sinply counts the number of lattice points to which he can move

and assigns equal probability tc each .attice point. The game

ther reduces to one where two blindfoided football players are
hopping about a large checker board withkx (A) *rying to reach the
goal line (X) and the other player (D) trying to tackle A before

A reaches X. This case¢ where both players a.t completely independ-

ently of each other is amusing but not very useful.
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A slightly less trivial strategy is obtained by having the
players randomize as long as they are far enough apart, but by
requiring that they act using the knowledge of the position of
each other when "close enough" together. Proximity can be
measured by the usual Euclidian metric superimposed on the
lattice structure.

The third example is one in which either or both players
; employ(s) "arc randomization" strategies. Suppose one is given

the following diagram describing the position of the players

at time ¢t.

v
‘\
3 {o‘
3 R \‘ )
g b

e =

The defender is at i and the attacker is at Jj. The position

of X is assumed to be fixed at 0. D will draw the line connecting
i to j. His strategy, determined before the game, will prescribe
an arc of say 90, which he will use to construct the two lines
about z; given irn the diagram above. D will then randomize
according as his strategy dictates, over the points accessible

from his position and within the arc.

T
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The attacker will be given two angles, « and B, by his
"arc randomization" strategy. A will draw the lines joining
j to 0 and joining j to i and will construct sectors determined
by the angles a and B about the lines ji; and JT; respectively,

as in the following diagram.

INX (0)
A will randomize with his strategy over all accessible points that

lie in the sector determined by B and not in the sector determined
by a. If, as is the case when D lies between X and A and B and
a, there are no pcints in this set, A's strategy might be to perform
some evasive maneuver directed away from D.
The "arc randomization" seems to be a reasonable strategy
in the sense that it takes into account the positions of the
players and « the target. To take into account the distance
between the players and the target the strategy could make the
angle(s) depend on the distances involved.
5. Extensions to the Continuous Game.
Many of the results in section 5, as well as the examples
in section 4, can be carried over into the continuous game.
However, instead of considering the probabilities that two or

more players occupy the same lattice point, one would have to
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consider the probabilities that two or more players lie in

certain regions. This would invoive replacing multiple summation
over discrete lattice points by multiple Riemann-Stieltj es integrals
over regions in E? or EB.

If it should happen that the game is being played on a closed,
bounded region in E? or EB, then, using a compactness argument,
only a finite number of probabilities would have to be calculated.
Restricting the game to such a region might be done through the
introduction of reflecting or absorbing barriers.

As in the discrete game, it should be possible to consider
different partial orderings on the spaces of strategies and
different payoff kernels. 1In the discrete game the partial
orderings involve inequalities among certain probabilities depending
on lattice points. The partial orderings in the continuous
game would involve inéqualities among probabilities of player
occupation of spneres in the appropriate space. The payoff
kernels would become multiple integrals over certain regions.

The examples of strategies remain virtually intact. The
ballistic missiie case remains the same. The example where one or
both players employ the "arc randcmization" also remains about
the same in that the distance is r.ow the usual Euclidian distance
and the randomization can now be dcae by imposing a probability
distribution function on the region bounded by the arc and a fixed

distance from the position of the player(s).
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