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1. Summary

This paper considers some aspects of a. discrete attack-defense

game in which there are targets for both the attacker and the

defender. In section two the basic game is described. Following

this there is a discussion of the relation of past results to

this game.

In section three the discrete game is examined in detail.

Expressions are obtained for the probability of victory by either

player at any step in the game, time to termination of the game,

and the mathematical expectation and variance of time to termination

for both fixed and mobile target for the attacker. For the case

of fixed target the space of strategies for each player is dis-

cussed along with several possible payoff kernels. Some conditions

are given which are sufficient to obtain a saddle point and minimax

solution to the game.

In section four-some examples of strategies are explored.

In section five extensions of the discrete game to the continuous

game are considered.



2. Description of the Game and Past Research

There are two versions of the attack-defense game with

targets. Both games will be defined here but only the first

version will be considered in Section 3.

The first version will be called the discrete game. It

can be described as follows. One is given a finite or infinite

grid of lattice points in E2 or E3 labeled O,1,2,...,N. The

two players are A, the attacker, and D, the defender. The target

which the attacker wishes to hit is X, which may be assumed to

be either stationary or mobile. Also, the initial positions of

A, D, and X are given. The initial position of D need not

coicide with the initial position of X.

The players, A and D, as well as X, are required to occupy

lattice points. Multiple occupancy of a lattice point is allowed.

The players move simultaneously at discrete times. The goal of

A is to occupy the same lattice point as X does on the same move

before the positions of A and D coincide. If this occurs, A

wins and the game ends. The goal of D is to occupy the same

lattice point as A does before the positions of A and X coincide.

If this occurs, D wins and the game ends. If A,D, and X occupy

the same lattice point simultaneously, then A wins, since D may

destroy A, but X will be destroyed in the process.

A time limit on the game, TL, is given. The game must end

by time TL. If by time TL neither A nor D has won, then the game

is declared over and neither player wins. The limitation TL can

be thought of as a fuel constraint on one or both of the players.
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An example of the initial positions occupied at the beginning

of the diacrete game in E2  is shown in the following diagram.

X 0

The second version of the game will be called the continuous,

or differential game. In this game the players move along continuousj

differentiaikpaths contained in some connected region (finite or

infinite) in E2 or E3 . The goals of the players remain, in

general, the same except that, because of the continuous nature

of the game, "zones of destruction" for each player need to be

introduced. These zones are specified by positive numbers, ab.

CA is such that if the Euclidian distance betweeii A and X is less

than CA . then X is considered to be destroyed and A wins;and if

the Euclidian distance between A and D is less than L., then A

is destroyed and D wins. As in the discrete game, the convention

is made that if both A and X lie within E. of D, then A wins and

the game is over.

The continuous vers:J.on can be seen to be quite analogous to

the discrete game and so-Me of the results for the discrete game

can be carried over to the continuous game.
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As noted in the first section certain simple pursuit-evasion

games have been analyzed in the existing literature. For example,

Karlin [10], Bellman [1, and Dresher [6] have considered scme

discrete pursuit-evasion games using the method of payoff kernels.

It is clear that the discrete game described in the section

contains, as special cases, games in which the strategies are

matrices. Such pursuit-evasion games have been studied by Cohen

['] and Dubins [7]. Charnes and Schroeder [3] considered some

special types of stochastic gamee relating to antisubmarine warfare.

It should be noted that most of these papers do not use the concept

of a target for the attacker, The few that do consider targets

for the attacker do not allow movement, but instead examine

certain allocation problems relating to offensive and defensive

units.

There have also been several studies of the classical pursuit-

evasion game in the continuous version. Some of vhese studies

are Issacs [9], Ho, c 4 [8], Cockayne [3], Berkovitz and

Fleming [2], and Pontryagin [11]. These papers, in addition to

not having a target for the attacker, present results based primarily

on solutions of certain types of differential equations with various

constraints and side conditions.



3. The Discrete Game

3.0. Notation and Basic Definitions

The following notation will be used extensively in this

section.

(3.0.1) A = attacker.

(3.0.e) D = defender.

(3.0.3) X = target for A.

(3.0.4) TL = time limit for the game.

(3.0.S) N = number of lattice points given.

(3.0.6) INA = position of A after the first move and before the

second move.

(3.0.7) IND = position of D after the first move and before the

second move.

(3.0.8) INX = position of X after the first move and before the

second move..

(3.0.9) T = termination time in the gameta raroco v4riabcir

(3.0.iu) 4= set of strategies for A.

(3.0.11) 4= set of strategies for D.

(3.0.12) J= set of strategies for X.

(3.0.13) The phrase "ST(A)=U' will mean "A follows strategy U"

(similarly for ST(D) and ST(X)).

Moves occur in the game at discrete times 1,2,...,t, t+l,...,TL.
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Define POSA, POSD, and POSX, functions of time, by

(3.0.14) POSA(t) = position of A at time t,

(3.0.15) POSD(t) = position of D at time t,

and

(3.0.16) POSX(t) = position of X at time t.

3.1 Discrete Game with Fixed Target for Attacker.

In this situation X cannot move, POSX(t) = INX for each

t > 1 and is a singleton strategy. Hence, it is not necessay

to consider j

5.1.1 Definition. Define functions TRANSA, TRANSD, PRAD1, PRAD2

as follows;

Let UEd4 , Vv i, and let i,j, and k be lattice points.

For ea,: time t with t - TL define

(3.1.1.1) PRAD1(i,j,t;U,V) = P[POSA(t)=i, POSD(t)=j, and

T > t I ST(A)=U and ST(D)=V],

(3.1.1.2) PRAD?(i,j,t;U,V) = P[POSA(t)=i, POSD(t)=j, and

T > t I ST(A)=U and ST(D)=V],

and for j/k ard tITL

(35.1.1.5) TRANSA(i,t+I;j,k,U) = P[PC A(t+l)=i I POSA(t)=j,

POSD(t)=k, and ST(A)=U]

and

(5.1.1.4) TRANSD(i,t+1;j,k,V) = P[POSD(t.1)=i I POSA(t)=j,

POSD(t)=k, and ST(D)=V].



Page 8

It should be noted that when the two players select strategies,

th3se strategies will determine the probabilities defined in 3.1.1.

For this reaso,. for any event C, denote PEC I ST(A)=U and ST'D)=V]

by P(C;U,V).

The first move of the players is to move onto INA and IND,

respectively. This might be termed a LeMans start for the game.

From the iLe~ans start the following lemma is immediately obtained.

5...~For U4. and f orV -e

'1 if i=INA and j=IND

(3.1.2.1) PRADl(i,j,l;U,V)=

~0 otherwise

0 If i=INA=IN~D=j

(3-1.2.2) ~ ~ ~ p-ZD(~jlUV

P-RAD1(i,.j,l; U,V) otherwise

(0 if INA=IND

(3-1.2-3) PAT > 1-UV]=

S1 otherwise.

An inductive method can now be used to determine the values

of the functions, PRAfli and PRAI)?.
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(3.1.3.1) PRAD1(i,j,t+1;U,V) = PRAD2(k,m,t;U,V)TRAN&(i,t+l;k,m,UT).
Mq

k4as
t * DtJ*JTRNSD(j,t+l ;k,m,V)

and

0 if i=j or if i=INX

(3.13.2 PRD2(ij~t1;UV)=PRD1(i,j,t+l;U,V) otherwise.

Proof: (3.1.3.2) follows from (3.1.3.1) and (%3.1.1.?). Considar

(3.1.3.1). One has~by definition of PRAD1l that

(3.1.3.3) PRAD1(i,j,t+l;U,V)= P('POSA(t.+1)=i and POD(t.1)=j

T > t, ST(A)=U, ana ST(D)=VJ

-PCT > t I ST&(A)=U and ST(D)=V).*

The first term on the right hand side of (.3.)can be dez-cmDosed

as follows

(3.1.3.4) PEPOSA(t+1)=i and POSi)(t+l)=j I T > t, ST(A)=U, and c-,-)=Vl

= I ZPCPOSA(t+1)=i, POSD(t+1)cj, POSA(t)=k, and

SPOSD(t)=mj T > t, ST(A)=U, and ST(D)=V)

*PCPOSA(t+1)=i and POSD(t+1)=j I POSA(t)=k,

IVIPOSD(t)=n, T > t, ST(A)=U, and ST(D)=V)

JP-OSA(t)=k and POSD(t)=m I T > t,

ST(A)=U, and ST('D)=V)
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Substituting (7..1.3.4) into (..5)yields

(5.1.5.5) PRAD1(i,j,t+l;U,V)ZZ P[POSA(t+l)=i and POSD(t+l)=jl

(ks~ IPOSA(t)=k,
POSD(t)=m, T > t,ST(A):U, and

ST(D)=VJ.

P [POSA(t)=k and POSD(t)=mI

T > t, ST(A)=U arnd ST(D)=V]*

P IT > t 1 ST(A)=U and ST(D)=V]

and so,

(3.1.3.6) PRAD1(i,jlt+1;U,V)rl P [POSA(t+l)=i and POSD(t+l)=j
kr

4P,,JJOsA(t)=k, .PQSD(t)=m, T !>t

ST(A)=U, ST(D)=V].

*P[POSA(t)=k, PQSD(t)=m, and

T > t) ST(A)=Ujarid ST(D) = V].

Note now that the second probability inside the summations of

(3.1.3.6) is just PRAfl?(k,1,t;U,V). The first probability inside

the summations in (5.1.5.6) can be split into P [POSA(t+)=i I
POSA(t)=k, POSD(t)=m, ST(A)=U, and ST(D)=V] - P[POSD(t+1) =j I

POSA(t)=k, POSDk't)=m, ST(A)=U, and ST(D)=V] because tie events

POSA(t+l)=i and POSD(t+l)=j are conditionally independent given

the state of the game and position of the players in the t-th move.
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However, this product of probabilities is just

TRANSA(i,t+l;k,m,U,V) - TRANSD(i,t+l;k,m,U,V). Substitution of

these results into (3.1.3.6) gives (3...1).and so completes the

proof.

The expressions obtained in 3.1.5 can be employed to calculate

the probabilities that A(or D) will win in the t-th move, when

A and D are using strategies U and V, respectively. Since the

probabilities will be obtained inductively, the probabilities

for the first move are given in the following lemma, the proof

of which is immediate from the Lelans start of the game.

3.1.4 Lemma. For U61 and V4O

(0 if INA INX

(3.1.4.1) PEA wns at step

1 if INA INX

0  if INDIINA or if INA=IND=INX

(3.1.4.2) AD wins at step

1 otherwise.

For the general step the following theorem is obtained.
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3.1.i Theorem. For U0 V C, and t > 1

(3.1.5.1) P[A wins in the (t+l)-st move and T > t ;U,V]=

T TRANSA(INX, t+l ;iljU) PRAD2(i,j,t;U,V)

and C# WX

(3.1.3.2) PED wins in the (t+l)-st move and T > t ;U,Vj=

PRAD1(j,j,t+l;U,V).

Proof: Consider (5.1.3.1). Observing that A wins in the (t+l)-Oz

move if and only if POSA(t+1)=INX=POS(X), one has by decomposition

P[A wins in the (t+l)-st move and T > t ; U,V] =

- PEPOSA(t+I)=INX, POSA(t)=i, POSD(t)=j, and

T > t ; U,V].

Conditioningj one obtains

P[A wins in the (t+l)-st move and T > t ; UV] =

= 1 Z PPOSA(t+1)=INX i POSA(t)=i, POSD(t)=j,

T > t, ST(A)=U, and ST(D)=V]•

,PEPOSA(t)=i, POSD(t)=j, and T > t I ST(A)=U

and ST(D)-V].

Since the firpt probability inside the summations isz-TRANSAt[NX,

t+l;i,j,U) and the second is PRAD2(i,j,t;U,V), (3.1.5.1) is.obtained.

To verify (5.1.347), notice that D wins in the (t+4-st move

if and only if POSD(t+)=POSA(t+), POSA(t+4/INX, and T > t. Hence,

P[D wins. in the (t+])-st move and T > t ; U,V] = PLo.(t4I':P=?et(tI)

and T > t ; U,V]. Since the term inside the summation is

PRADIkj,j,t+l;U,V), the verification of (3.1.5.2) is complete.
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Expressions for the probability of termination at the (t+l)-st

move, and not before, can now be derived.

5.1.6. Corollary. For Ut! 4 , V, and t > 1

(5.1.6.1) P[T=t+l ; U,V] = TRANSA(INX,t+;ij,U)o

(jq.PRAD?(i, j,t;U,V) +jV
+ Z ?RAoa(Joi,t41a,,4.

Proof: it is clear that

PET=t+l ;U,V] = P[A wins at the (t+l)-st move and T > t; U,V] +

P[D wins in the (t+l)-st move and T > t; U,V].

(5.1.6.1) follows then from (5.1.5.1) and (5.1. .2).

The distribution of the random variable of termination

can now be determined whenever t < TL . For t = TL set

P[T=TL ; U,V] = 1- 2 P[T=t ; UV]

Also given strategies Ue4, and V-* the mathematical expectation

and variance of termination can be found.

3.2. Discrete Game witb Mobile Target for Attacker.

In this situation X, the target, is mobile. The assumption

is made that A,D, and X make independent movements at the (t+l)-st

move given their positions at the t-th move. The probabilities

that will be considered are first defined and then expressions

are derived inductively as in the previous part of this ,s:ection
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with a fixed target. It might be noted that this version of

the game can be viewed as a three person game with coalition

and with one of the players in the coalition acting evasively or

passively. The terms that are not defined in this section will

have the same mwdning as they had in 3.1.

3.2.1 D2:-t Let U.j, V r , r., and t be a time

< TL. Let i,j,k, and m be lattice points. The functions
PRADX1, PRADX2, TRANSA, TRANSD, and TRANSX are defined as follows.

(3.2.1.1) PRADXI(ij,k,t;U,V,W) = P[POSA(t)=i, POSD(t)=j, POSX(t)=k,

and T > t I ST(A)=U, ST(D)=V,

and ST(X)=Wt].
(3.2°1.2) PRADX2(i,j,k,t;U,V,W) = P[POSA(t)=i, POSD(t)=j, POSX(t)=kj

and T > t 1 ST(A)=U, ST(D)=V,

and ST(X)=W].
(3....3) TRANFA(i,t+l;j,k,mU)=P[POSA(t+l)=i I POSA(t)=j, POSD(t)=kj

POSX(t)=m, and ST(A)=U].
(5.2.1.4) TRANSD(i,t+I;j,k,m,V)=P[POSD(t+I)=i I POSA(t)=j, POSD(t)=V,

FO'0, ) TM,, ,I ."t = ..

(5.2.i.5) TRANSX(i,t+;j,k,m,W)=P[POSX(t+l)=i I POSA(t)=j, POSD(t)=k,

POSX(t)=m, and ST(X)=W].
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The following lemma is an immediate consequence of these

dof initions.

.2 Lcmma. For U#J4 , V.*, W-O and for i.j, and k lattice

points

S'i k(1W)= 1 if i=INA, j=IND, and k=INX
(3.2.2.1) PRADXl (i, j,k,lIU,V,)

0 otherwise,

£ 0 if i=INA=IND=j or ijvj4Xlo:L

(3.2.2.2) PRADX2(i,j,k,l;U,V,)=,)

1 if INA=INX

(3.2.2.5) P[A wins in 1st r.ove;U,V,W] =

[ 0 otherwise,

fIif IND=INAIINX

(3.2.2.4) P[D wins in 1st move;U,V,W] = I O

0otherwise,

/ 1 if INA=IND or INA=INX

(.2.2.) P[T=I ; UVoe] =i (0 otherwise.
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An inductive process can now be used to calculate the

values of the functions PRADX1 and PRADX2 using the result of

the following theorem.

3.2.5. Theorem. Let U , VP, W 4 and suppose i,j, and k

are lattice points and that 1 < t < TL -

(3.2..1) PRADXI(i,j,k,t+l;U,V,W) =Z I PRADX2(m,n,qt;U,VW)°

•TRANSA(i,t+l;m,n,q,U)-TRANSD(j,t+l;m,n,q,V)
°

°TRANSX(kt+l;m,n,q,W)

( 0 if i=j or i=k

(3.7.3.r) PRADX2i,j,k,t-l;U,V,W4) =

LPRADX(i,j,k,t+l;U,V,W) otherwise

Proof: This proof parallels the proof of theorem 5.1.3 and so

is omitted.

3.. Theorem. For UQ., VfJ 0 , and W k

(5.2.4.1) PEA wins in the (t+I-st move and T > t ;U,V,W]

Z- TRANSA(i,t+l;jk,m,U).TRANSX(i,t+I;j,k,m, W)-

-PRADX2(jk,mt;U,V,4).
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Proof: The proof of (3.2.4.1) is analogous to that of (3.1.;.l)

and is omitted. The probability on the left hand side in (3.2.4.2)

can be decomposed over all possible locations A and D can meet

and then decomposed over all possible prior positions of A,D, and

X so that one has

FAD wins in the (t+l)-st move and T > t;U,V,W] =

= P[POSA(t+l)=i, POSD(t+l)=i, POSX(t+l)/i, and T > t; UVW]

= P[POSA(t+l)=i, POSD(t+)=i, POSX(t+l)/i I POSA(t)=j,

POSD(t)=k, POSX(t)=m, T > t, ST(A)=U, ST(D)=V, and

ST(X)=Wl] P[POSA(t)=j, POSD(t)=k, POSX(t)=m, and

T > t ; U,V,Wl.

Using the fact that the events POSA(t+l)=i, POSD(t+l)=i, and

POSX(t+l)/i are conditionally independent given the positions of

A,D, and X at time t one obtains (5.2.4.2).

The probability of termination along with the i athematical

expectation and variance of termination can be determined from

,.2.4 as was done in 3.1.
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3.3. Strategies for the Fixed Target Game.

Having derived expressions for the various probabilities

for the case of where X is fixed, it might be useful to consider

the spaces of strategies, * and * A partial ordering can be

induced on each of 4 and "

3.3.1. Definition. For U1  and U2 ,in 1 define on A by
4 A

UI w U, if az only if

(3.3.1.1) PEA wins c.n the t-th move and T > t; U1,V] >

PEA wins on the t-th move and T > t; U,,V]

and

(3.3.1.2) P[D wins on the t-th move and T > t; U1 ,V] <

P[D wins on the t-th move and T > t; U2,V]

for all t < TL and V*I .

5.5.2. Definition. For V1 and V, in j define < on .v by

V V, if and only if

(3.3.2.1) PEA wins on the t-th move and T > t; U,Vl] <

PEA wi4ns on the t-th move and T > t; U,VA]

(3.3.t.2) [Dwins an the t-th move and T > t; U,V1] >

P[ wins * n the t-th move and T > t; U,V2]

for all t < TL and U JA"
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A strategy, U, in 1A for which there is a stategy in d ir 14 t 0t'OM +- ,

wj,?_ U will be called stronplv inadmissible in J . Similarly,
14 A

a strategy, V, in 4for which there is a strategy inJidifferent

from V and e V will be called a strongly indadmissible strategy

in

3.3.3 Lemma. ) and ( , ) are partially ordered sets.

Proof: This is a direct verification.

The effect of this partial ordering is to eliminate from

consideration those strategies for both players which behave

"badly" at every time against every strategy of the opponent.

*Several payoff kernels will now be presented along with

some discussion of their imDortance. Define KAl a function

fom. x l,2,...,TL into [-1,1] by

(5.5.4.1) KAI(U,V,t) = P[A wins in t-th move and T > t;U,VJ -

P[D wins in thc: t-th move and T > t; U,VJ

fror all UJJ4 V,.4c )and t.

Defi ne KA -0 f'unctJon from i X.I, to El by
AA

( 5. . K KA,; (11V)--= - KA , I ( U' V ' t )

f,, .- ll rJ nr, 1 V 6
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Set KD,1 = -KA, and = -KA,?. The game with the

payoff kernel, KA?,2 for the attacker is a two person zero-sum

game. This payoff kernel seems intuitively appealing when one

considers the goal of the attacker: the attacker seeks a strategy

that will maximize the probability that he wins and will minimize

the probability that he loses to D. This would be reflected in

A's efforts to maximize, for every choice of strategy in 4
the expression in (3.5.4.2). The defender will attempt to do

the opposite.

If the players wi to consider strategies that will do

well at each move, they might use the payoff kernel KA,1 o

Each strategy in either space of strategies

is really a sequence and can be represented as a vector, say

U = (Ull. ...,T ') A and V = (VI, . Then the

players are really making sequential decisions and at the t-th

move A will seek a strategy which maximizes the probAblllty that

he win s in this move. Using the payoff kernel KAI1, this is

reflected in A's efforts to maximin the expression in (5.3.4.1).

If termination at the early stages of the game is important,

then the attacker could attach a weighting to the summands in

(5.3.4.2). The general payoff kernel, KA,3jwould be defined by
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(3.3.4.3) KA,(UV) = a t KA , (UVt)

with at > 0 for all t > 1 Yat <
t4t "

Inequalities for the above payoff kernels can be obtained.

3.3.5,Lemma. For KA,IP KA,7, and KA,3 as defined in (3-3.4.1),

(353.4.e) and (3.3.4.3) respectively

(5.3.5.1) -1 < KA,l(U,Vt) < 1

(3-3.13.2) -TL < KA4,,(U,V) < TL

(33.5-.3) - ja < KA(U,V) < a

for all UFV* and t.

The following theorem can then be obtained for conditions

on the value of the game.

3.3.6. Theorem. If there exists a real number s and strategies

t. .4 and VO EJ, such that

KA,(Uo,V,t) > s for all V 4

azid

KA I(U, Vo,t) _ s !for all U*4,

then min max KA,1 (U,Vt) = KA (UoVot) =

max min K A,I(UVt).

Similar statements hold for KA 2 and KA,.
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Proof: The proof is straightforward and so is mitted. A proof

also appears in Karlin [10].

Let us now consider the payoff kernels considered in other

sources. Charnes and Schroeder in [3] considered a payoff function

for a pursuit-evasion game that depended not only of the strategies

of each player and the time t, but also on the position of the

players at time t. This approach also appears in other sources.

It would seem that, in the game considered in this paper, the

players should seek strategies that maximize their probability

of victory and minimize their probability of defeat (perhaps,

at each stage). Where the players win or lose should be irrelevant.

If position was important, this could be built into the strategies

and transition probabilities at the outset of the game.

A few remarks might now be made concerning the version of

the discrete game with mobile target for the attacker. The

basic payoff kernels would seem at first glance to generali

to this situation. However, before any such step can be made,

explicit statements concerning the amouht and nature of inter-

action between D and X need to be made. With certain assumptions

the generalization should be possible.



4. Examples of Strategies in the Discrete Game.

Several examples will be considered in this section. The

first will be the case where A acts ballistically and so in a

completely nonrandom manner. Another example is the case of

completely randomized strategies by one or both players. The

thrid example that will be examined is the case where one or

both of the players randomize over all lattice points in the

sector formed by a certain arc determined by the position of

the players.

Suppose that the attacker A acts in a completely nonrandom

manner. If A is not employing any evasive tactics, then D will

attempt to predict the future position of A and will then attempt

to intercept A. This game would involve some interesting problems

in information theory. If, as seems more likely, A employs some

type of nonrandomized evas.ve maneuvers, then A's strategy is fixed

and D will attempt to select a strategy maximizing the probability

of capture before A annihilates X.

A second example of possible strategies is the case of where

either or both players act in a completely randomized fashion.

The most elementary example of this type occurs when each player

simply counts the number of lattice points to which he can move

and assigns equal probability to each -attice point. The game

then reduces to one where two blindfolded football players are

hopping about a large checker board with (A) trying to reach the

goal line (X) and the other player (D) trying to tackle A before

A reaches X. This case where both players a,. t completely independ-

ently of each other is amusing but not very useful.
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A slightly less trivial strategy is obtained by having the

players randomize as long as they are far enough apart, but by

requiring that they act using the knowledge of the position of

each other when "close enough" together. Proximity can be

measured by the usual Euclidian metric superimposed on the

lattice structure.

The third example is one in which either or both players

employ(s) "arc randomization" strategies. Suppose one is given

the following diagram describing the position of the players

at time t. j

The defender is at i and the attacker is at j. The position

of X is assumed to be fixed at 0. D will draw the line connecting

i to j. His strategy, determined before the game, will prescribe
0

an arc of say , which he will use to construct the two lines

about V given in the diagram above. D will then randomize

according as his strategy dictates, over the points accessible

from his position and within the arc.
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The attacker will be given two angles, a and 0, by his

"arc randomization" strategy. A will draw the lines joining

j to 0 and joining j to i and will construct sectors determined

by the angles a and 0 about the lines jO and j,i respectively,

as in the following diagram.

/
I

A will randomize with his strategy over all accessible points that

lie in the sector determined by 0 and not in the sector determined

by a. If, as is the case when D lies between X and A and 3 and

cX, there are no points in this set, A's strategy might be to perform

some evasive maneuver directed away from D.

The "arc randomization" seems to be a reasonable strategy

in the sense that it takes into account the positions of the

players and a the target. To take into account the distance

between the players and the target the strategy could make the

angle(s) depend on the distances involved.

. cExtensions to the Continuous Game.

Many of the results in section 3, as well as the examples

in section 4, can be carried over into the continuous game.

However, instead of considering the probabilities that two or

more players occupy the same lattice point, one would have to
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consider the probabilities that two or more players lie in

certain regions. This would involve replacing multiple summation

over discrete lattice points by multiple Riemann--Stieltj es integrals

23over regions in E or E

If it should happen that the game is being played on a closed,

bounded region in E2 or E3, then, using a compactness argument,

only a finite number of probabilities would have to be calculated.

Restricting the game to such a region might be done through the

introduction of reflecting or absorbing barriers.

As in the discrete game, it should be possible to consider

different partial orderings on the spaces of strategies and

different payoff kernels. In the discrete game the partial

orderings involve inequalities among certain probabilities depending

on lattice points. The partial orderings in the continuous

game would involve inequalities among probabilities of player

occupation of spheres in the appropriate space. The payoff

kernels would become multiple integrals over certain regions.

The examples of strategies remain virtually intact. The

ballistic misse case remains the same. The example whei'e one or

both players employ the "arc randomization" also remains about

the same in that the distance is Low the usual Euclidian distance

and the randomization can now be d(ne by imposing a probability

distribution function on the region bounded by the arc and a fixed

distance from the position of the player(s).
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