SCIENTIFIC REPORT NO. 3

AUTOMATIC QUESTION-ANSWERING OF
ENGLISH-LIKE QUESTIONS ABOUT
SIMPLE DIAGRAMS

by

Monfred Kochen

University of Michigan
Consultant to RCA Loboratories
Princeton, New sersey 08540

Prepared for the Air Force Office of Scientific Research of the Office
of Aerospace Research under Contract No. AF49(638)-1184.

PREFACE

This work was done during 1965 at RCA Laboratories in Princeton, N. J.
It is part of our continuing research in the area of question-answering
processes and their relationship to more general problems in machine problem
solving. An RCA Laboratories report covering most of the material described
here was issued in November 1965 under the title "Translation of English-like
Queries into Efficient Computer Search Programs for Question-Answering."
After several refinements and revisions the inftial report has evolved into
L its present form,and it is being finalized for publication. Since the material
presented here is relevant to much ongoing research, we are simultaneously
issuing it as a scientific report in order to speed up its availability to
the technical community.
Ssul Amarel

Princeton, N. J.
May 1968

i1

™

ABSTRACT

This paper presents a technique for translating certain English-like
questions into procedures for answering them in order to explore how large a
class of basic question types can be so processed. The English-like questioms
all pertain to simple diagrams built of elementary figures with relations
like "above' and '"larger than." The input to the program into which the
algorithm presented here could be implemented are questions suck as "Is it
true that in Fig. 1 each triangle is above a circle,”" and may include terms
like '"how," "when," '"what" in an interesting variety of interrogative rentence
types. The output of the program is 8 tflov diagram for another program to
answer the question by inference and search of a structured data base in
which representations of diagrams are stored.

The English-like source language of questions that the algorithm can
process, though restricted and fixed in syntax and domai. of discourse, has a
potentially wide scope in that it includes some of the fundamental question

types.

114

T Ne-m

P csdiansatilo o d

Section

TABLE OF CONTENTS

I. INTRODOCTION

I1. THE SOURCE LANGUAGE:

OF FORMATION

II1. THE SOURCE LANGUAGE:
ASSERTIVE QUESTIONS

VOCABULARIES AND FIRST RULES

e & s o ¢ o

FURTHER SPECIFICATIONS FOR

e o o o & 8 s e s s s s s e & s e

IV. DOMAIN UPON WHICH QUESTION-ANSWERING PROGRAMS OPERATE .
V. TRANSLATING ASSERTIVE QUESTIONS INTO PLOW DIAGRAMS . . .

Vi. QUESTIONS INVOLVING “WHAT," “WHERE,”™ AND "HOW"

ViI. EXTENDING THE SOURCE LANGUAGE TC QUESTIONS ABOUT CHANGE
VIII. CONCLUSION . . ¢ & & ¢ ¢ ¢ ¢ o o o ¢ s o ¢ s o s o o o

REFERENCES

Page

10
16
20
30
36
42
45

I. INTRODUCTION

When Turing (38) proposed a test for distinguishing between the verbal
behavior of a person alleged to betoken thinking and corresponding behavior
on the part of a machine, a challenge presented itself to computer
scientists. How can a computer be programmed to answer questions whi-h
resemble more and more the questions we ordinarily expect that only people
can understand? During the past decade several dozen question-answering
programs have been written, e.g., (16), (28), (29), (15), (9), (14), (33).
Concurrently with and independently of the work reported im this paper
(completed in 1965), a number of related studies appeared (10), (39),
3s5), @3n.

A recent critical review (18) of this literature pointed out some
major gaps in the theoretical underpinnings. This review concludes that
"the only hope for success in the near future is in well-structured data-
base systems, having a special internal structure appropriate to a specific
field, a reliable technical language, and a competent inference mechanism."

Presented here is an algorithm for processing English-like questions.
"Processing” as used above means: (a) parsing the question to analyze
its syntactic structure; (b) building up, as a by-product of parsing,
and simultaneously, the flow-diagram for a computer program; (c) the
program if run, would search a structured data base for the answer to
the question.

A typical question is: 'Is it true that in Fig. 1, each circle which
is inside a trisngle is above a rectangle." The domain of discourse to

which all questions and tiw data base is restricted consists of single

OLP
>p

FMg. }

diagrams composed of geometric figures arranged into various patterns like that
*
shown in Fig. 1. A data base of such figures, each represented for storage

by descriptive forms like H (3, V (4,5), 6)) for the following figure,

SRR '—r':.-"-._______—'"—,—‘
&

Fig. 2

for example, is vell structured. The quastions can be posed in teimws of
s mirimum vocabulary including the predicates: H(a,h) = "a is to tha left

of b". V(a,b) = "a ig above b" and I(a,b) = "a cucloses b", with a and b

befng the names of individual elementary figures. Our aim, however, is
to use the maximum, not the minimum, vocabulary for basic concepts that
are common to many ordinary questions, and to explore how large a class
of question types the slgoritha can process.

The rules of inference used here ars those of a ¢lassical applied
predicate calculus, because nothing more sophisticated (e.g., modal logic)

is required for the purpose on hand.

.'l’hh secns to have beon ueed first by Minsky, sad suhsequently in
(37), (20), (21), (29), (1), (27), (32).

While neither the class of problems studied here (19), (20), nor the {
methods of syntactic analysis and the accompanying translation techniques
35), (1), (2), (6), (M), (10), (34), (19), nor the use of rules of {nference
(5), (9), (12), (28) are novel, their combination is, and may suggest many

interesting extensions.

I1. THE SOURCE LANGUAGE: VOCABULARIES AND FIRST RULES OF FORMATION -

To specify, as a formal lnnguage: the class of questions which the
algorithm processes is to specify the quintuple: {VT. V“, 0, R, T}. Here:
VT iu the set of words and phrases - the vocabulary - with which
the questions are composed.

A is the set of "nonterminal” auxiliary symbols in terms of which
the formation rules for generating the questions are expressed.

Q 1is a special clement of VN’ vhich may be thought of as labaling
the class of well-formed questions,

R 4is the collection of formation rules, which look like

Q—> (QTRUE) (SENT) or QTRUE —» Is it true that.

Such rules tell us that, from the symbol at the left of the arrow
we may produce, generate, form, the "string” of symbols at the right. All
words in capitals, wvhich may be enclosed in parentheses, like Q, QTRUE,
SENT sre elements of V“: each is thought of as a single symbol. We can
form strings by concatenating - placing next to each other - such synbols,
being sure to preserve the order in which they appear. In a rule of the
second type, s phrase which is not all capitals appears to the right of
the arrow. It is an element of VT.

T 1s the collection of transformation rules, to be explained later.
Beginuing vith the symbol Q, the rules R atre.applied until only elements of

"l appear in the resulting string; i.e., until all non-terminal symbols

.This method or variants thereof, has been used in combinatorial lin-
guistics (19), in syntax-directed compilers (17), in mechanfcal translation
and language processing (4) (22) to mention but a few of tha applications
of this formal approach to linguistic systems first intrcduced in this way
by logicians (6) (though some of the ideas stem from thc 17th Century) and
further developed by linguists (8).

4

SO,

e AT~ S O PRI , et - e+ e, . . . -

like QTRUE, SENT etc., have been replaced by terminal vocabulary elements
according to rules that allow this. The set of all questions that may be
formed this way from the grammar G = {VT, Ve & R T} is called a formsl
language, LG'
The reverse proccss of gencrating all the sentences of LG from the
starting symbol Q is called parsing. Beginning with a string of elements
in V,r -~ a candidate question - we seek rules in R or T and try to apply
ther in a rujtable order so that the given sentence could have somehow
been gencrated from Q.
The grammar G for the source language we present next is restricted
in comparison with a graumar for Fnglish or even for other source languages
of question-answering algorithms, with regard to its syntax. Our aim,

however, is to introduce elements of V_ which represents concepts that are

T
fundamental to the content of a great variety of quastions., That i=,

thou;,h the class of questlens in L, are svatoctically all very sirmilar, they

G

can vary greatly in the'r lopical coutent.

In Tables I and II we present the vocabularies VI.r and V". The rules
are numbered F 1 to F 11 and each is subdivided, as P 4.1, F 4,2, etc,
Next to each vocabulary element i{s indicated the rule in which it is used.
Note rules labeled T 2.15,etc., sppear also. These are transformation rules
described later.
We proceed next to R, the set of formation rules.
(F 10.4) Q —> (QTRUE) (SENT)

The name or label of the rule by which we refer to it is written {n paren-

theses at the left. We cannot, of course, exemplify the usc of this rule

TABLE 1 TABLE I1

v i v

T ! N
Element (Word or Phrase) Rule Using It Element (Symbol) Mnemonic Ald Rule Using It
sbovc - FJla to intcr-
after Fl.21 pretation
and F1l.8 AFT after ? 10.17,10.19
an, F 1.5 AND and ? 4.5,10.5
a T 2,15 ANT antecedent ¥ 5.2,5.3,6.1,6,2°
befure F1l.,22 BEF before ¥ 10.17,10.20
below F 3.2 cnoc changes occur F 10.14
changes occur r1l.1? cL clause ¥ 6.2
circle T 2.1 CONS consequent F 4.3,4.5,4.6,7.1,
circular F 3.1} 9,10.1,14.2
darker than r 3.7 T 1.2,1.3
decrcased T 2,10 Do do P 10.17
decreases T 2.8, 2.6 FIG figure FSs.1
decrease T 2.9, 2,14, 2.12 FRWH from vhere P 11.1,11,3
decreasing T 2.13, 2.11 1 if ¥ 10.8,T 1.2
did T z.12 IMP implication ¥ 10.9,10.10
do F 1.24 IN in F s
each F1l.6 15 is ¥ 10.2,7.1,9,10,1?
enclosing F 3.5, TR 3.5 10.13
figure F 1.3 NI nare of an
from where F 1.18 individual r 4.1,5.1,10.1,
how F 1.15 10.12,10.3
if F 1,10 NOT not r 4.3,10.7
increased T 2.10 OR or ? 4.6,10.6
increates T 2.8, 2.5 POSPR2 2-place po-
incresse T 2.9, 2.14, 2.12 sitional
i{ncreacing T 2.13, 2.11 prodicate F 3.1, F 3.2
inside F 3.6 POST post~fix ¥ 10.15
in F 1.2 PRE pre-fix F 10.14
{. {t false that T 2.3 QUAL qualifier F 10.2-4,11.3,11.¢
1s 1t true that ¥ 1l.1 T1l.1,1.2,1.3,2.4
is there F 2.4 QUANT quantifier 4.2, T 1.2
ie Y l.a QUA universal
larger than T 3.9 quantifier ¥ 5.3,10.10
lighter than r 3.8 QuUE exist partial
moved T 2.1, quantifier F $.2,10.9, T1.3
moves T 2.3, 2.7 QTRUE 18 it true
nove T 2.9, 2,14, 2.12 that F 10,.2,10,4,10.3,
woving T 2.11, 2.13 Tl
not r1l.7 SENT sentence ¥ 10.1,10.2) T J.1
no T 2.2 Fll.1-4, T 1.1
object F 8.1 SHPR1 1-place sharp
or r1l.9 predicate F 4.4
rectanple T2.1 STDSENT "this sentence
rectangular F 3.12 is uttered,
related to ¥ 1l.16 standard
smaller then ¥ l.10 sentence ¥ 10.18-21
then ri.n THEN then F 10.8
this sentence §s uticred F 1,25 TOWH to where ¥ 11.2,11.4%
to the left of F 3.3 VAR variable Fé6.1, 11,3
to the tight of ¥ 3.4 WA what r 10,12, T 1)
to where rl.19 (1) 4 vhile F 10.18,10.21
trianele T 2.1 WHN wvhen P 10.16,10,07 101
trianpuler rin W wvhich r2.1T7T1.%
what F 1,13
vhen ?1.2
vhere F1l.14
wvhich F1.12
wvhile rFi.2
vill T2.9

6

+ ea o A WA T Te B e ks e e - - am O I L

until wve have introduced enough rules to define (specify what we can sub-
stitute for), QTRUE and SENT. The symbol SENT is a mnemonic lasbel for
all well-formed sentences. Yor completeness, however, we introduce two
variants.

(F 10.2) Q.~> (QTRUE) (QUAL) (SENT)

(F 10.3) Q —> (QUAL) (QTRUE) (SEXT)

(F 5.1) QUAL —> (IN) (FIG) (N1) ; OUAL is mnemonic for

"qualifying clause”

The next few rules, all labeled (F 1.X), relate to terminal vocabulary
wvords and phrases. We introduce only a partial list at this point, so
that we can i1llustrate their use and justify their selection.

(F1.1) QTRUE —~% 1Is it true that
(F 1.2) IN —> in

(F 1.3) FIG —» flgure

(F 1.4) IS —>» s

Rules labclled (F 2.X)denote all the individual constants: the under-
lined numbe:is labelling unique, specific geometric obLject like circles,
rectangles of which the patterns are built. No two circles, for example,
are given the same label, and all the figures which constitute patterns
enclosed in a rectangular frame, are also labelled: Pigure 1, etc.

(F 2.1) NI—> 1 1=1,2,3 -,

we used underlined numbers to label or refer to our figures and
building blocks or primitive objects.

The next set of rules, like (F 1.X) and (F 2.X), also point to terminal

words and phrases, but only to thosc indicating reclations, or predicates,

ST —

with which sentences - the assertive parts of each question - are formed. -
The first is:
(F 3.1) POSPR2 > above. (POSPR2 is mnemonic for a 2-
place position predicate)

We can.now illustrate the use of the rules presented so far. Applying

rules (F 0.1) (F 1.1) produces, starting with Q,
(Is it true that) (SENT)

We now jump to a rule for aentencehood:

(F 10.1) SENT ~—> (NI)(IS)(CONS)
(F 4.1) CONS ~—=» (POSPR2)(NI).

Substituting into (F 10.1) the result of rule (F 2.4) and into (F 4.1)
the result of (F 2.6), we have SENT —3 (4) (IS) (POSPR2) (6). Applying
(F 3.1) and (F 1.4) and combining, we have

"Is 1t true that 4 is ahove 6".
It 18 a well-formed sentence. With respcct to Figure 2, it can be
answered "Yes". With the help of rules (F 10.2), (F 1.2), (F 1.3) and
(F 2.2), we could also have formed the more precise question:

"Is it true that in Pigure 2 4 is above 6".

Had we used rule (F 10.3) rather than (F 10.,2) in the above production
process, we could have obtained:

"In Figure 2 is it true that 4 is sbove 6". This question s
related to the one just above by a simple transformation. Ve can express
it as:

(T 1.1) (QUAL) (QTRUE) (SENT) €> (QTRUE) (QUAL) (SENT).

Given (F 10.4), (F 10.2), and if we have (T 1.1), we no longer need (F 10.3). .

The set T of transformstion rules are all 1like (T 1.1) and serve to
rendexr the questions generated by F more English-like and to avoid very

avkward phraseology.

|

L v At

III. THE SOURCE LANGUAGE: FURTHER SPECIFICATIONS FOR ASSERTIVE QUESTIONS

By an assertive question we mecan one generated by rule F 10.2. It
begins with: "Is it true that...". Rule (F 4.1) has, so far, only enabled
us to make assertions about individual objects. To be able to pose a
question like, "Is it true that & is above every circle", we pick QUANT
a (non-terminal) label for the class of phrases like "every circle", It
is used in:

(P 4.2) CONS —> (POSPR2) (QUANT) (QUANT is mnemonic for a
clause with quantifiers)

(F 5.2) QUANT —) (QUE) (ANT)

(F 5.3) QUANT —» (QUA) (ANT)
(F 6.1) ANT —» VAR (ANT is mnemonic for "antecedent")
(F 6.2) ANT ——> (ANT)(CL) (CL reads "Clause'")

(F 7.1 CL —> (W)(IS)(CONS)

(F 8.1) VAR —> object. The word "object" is generic,
1ike the word "variable" for which VAR is mnemonic. We might have chosen to
treat "objecct" as a one-place predicate. Since our universe of discourse
however conzists only of simple eeometric figures which are individvally lahelled,
the word object is generic to thesc labels. That is, 1, 2, 3, ... are

specific to the word "object".

We nov add to our previously started partial 1list of rules that relate
to the terminal vocabulary- (F 1.X) for function words and (F 3.X) for

predicates:

10

(r 1.5)
(F 1.6)
(r 1.7
(r 1.8)
(F 1.9)
(F 1.10)
(r1.11)
(F 1.12)

QUE =) an (the existential quantifier)
QUA —> each (the universal quantifier)
T ——) not

AND —> and

OR ——> or

I —> if

THEN ——> then

W —3 which

This list will be completed in the section where the additional ones

are used.

So far, we could, from the sequence of rules (F 10.1), (F 2.1), (F 1.4),

(F 4.2), (F 3.1), (F

(starting with SENT):

(F 3.2)

(F 3.3)
(F 3.4)
(F 3.5)
(F 3.6)

S,: 1 is above each

A S,¢ 1 is above each

$.2), (F 1.5), (F 6.1), and (F 8.1) form the sentence

"1 is above an object.” If we wanted to improve

this stylistically, we would introduce the transformation "an object” ~—>

"something”. Next, we introduce more predicates:

POSPR2 — below (another 2-place position
predicate)

POSPR2 ——) to the left of
POSPR2 ——% to the right of
POSPR2 ——> enclosing

POSPRZ —-) inside

The reader can readily verify that from SENT, with the help of rules

(F 10.1) and (F 4.2), and other rules we cen form sentences like:

object

object which is enclosing 2.

11

Cemig e e e - [

: 1 is belov each object which is inside each object which is above 2.
S‘: 1 1is below an object which is to the left of each object which 1s
enclosing an object.
It is easy to see that an infinite number of well-formed sentences can
thus be generated, because there is no restriction on how often rules
(r 6.2), (F 7.1) and (F 4.2) can be reapplied. In a figure with a finite
number of objects, only a finite number, however, can be materially true,
if redundancies are not countrd. The clause "object which {s 1" can ob-
viously be replaced by "1". Some sentences express impossible configurations

1ike "1 fs sbove each object,” because 1 cannot be above itself.

(F 3.7) DKPR2 —» darker than (a 2-place intensity
predicate)

(r 1.8) DKPR2 ——> 1lighter than
(F 3.9) SZPR2 ——> 1larger than (a 2-place size predicate)
(¥ 3.10) SZPR2 ——> smaller than
(F 3.11) SHPRL —/> trisngular (s 1-place shape predicate)
(F 3.12) SHPRl —> rectangular
(F 3.13) SHPR1 ~—p circular
Quite & variety of interesting sentences can be generated at this point,
but they are stylistically awkward. The following transformations are of
general value in producing more English-iike sentences, and they improve
the sentences producible so far.
T 1.2. (QUAL) (QTRUE) (QUANT) (1S) (CONS)€-> (QUAL) (IS) (QUANT) (CONS)
Exsmple: "In Pigure] is it true that each circle which is inside a triangle
sbove a rectangle" €« "In rigure 1 is each circle which is {nside

e trisngle above a rectangle”.

12

Ve

PR e

eirc ire
(T 2.1) object which is < rectang> ular€p)rectang’> 1le
triang riang

(T 2.2) not an &»no
(T 2.3) not is it true that ¢>is it false that

(T 2.4) (QTRUE) (QUAL) an object is «—>i® there an object (QUAL)

circle circle
(T 2.15) an { rectangle{<—ya {recta: 131
circle trhn;le

The following formation rules permit us to enrich our class of questions
by incorporating the main d~vices of ordinary propositional logic.
(F 4.3) CONS ~——> (NOT) (CONS)
Together with (T 2.2), this rule could generate "above no object”,
"above no circle", ‘
(F 4.4) CONS ——3» SHPRI1
(F 4.5) CONS «—3p (CONS) (AND) (CONS)
(F 4.6) CONS ——3 (CONS) (OR) (CONS)
(r9) IMP 2 (ANT)(IS)(CONS). IMP is mnemonic for
"{mplication”, and 1f it 1s recalled that ANT suggests "antecedent"”
and CONS "consequent", this rule will be seen to stand out as one of the
most essential and powerful.

We finally augment our rules for sentence formation:

(F 10.5) SENT > (SENT) (AND) (SENT)

(7 10.6) SENT ——> (SENT)(OR)(SENT)

(F 10.7) SENT —— (NOT)(SENT)

(F 10.8) SENT —> (IF)(SENT) (THEN) (SENT)
(F 10.9) SENT ——> (QUE) (IMP)

(F 10.30) SENT ._9 (QUA) (IMP)

13

The following is a sample of 10 questions which can be generated from the

rules stated up to this point.

E.l.

B.2.

B.3.

E.4,

E.S.

E.6.

E.7.

£.9.

R.10.

In Fig. 1 i8 each circle which inside a triangle above a rectangle
Is there an object in Fig. 1 which 1s inside a circle which is inside
& rectangle

Is it false that in Fig. 1 a circle 1s above each triangle

Is it true that in Fig. lv no circle wvhich is larger than a circle
inside a triangle is to the left of a triangle which 1is above a
rectangle

If each circle is larger than 2 then is it true that in Fig. 1 each
eircle is sbove a triangle.

Is it true that in Fig. 1 if each triangle is above a circle then if
each triangle is inside a rectangle than a circle is inside a circle
then a circle is Larger than 3.

Is it true that in Fig. 1 a triangle is above a circle or a triangle
is below a circle.

Is it true that in Fig. 1 each circle is inside a triangle and each
ecircle is above each triangle.

Is it true that in Fig. 1 each rectangle which is inside a circle
and to the left of a triangle vhich is inside a circle is larger
than 3.

Is it true that in Fig. 1 each circle which is larger than) and
smaller than 4 is inside a circle which is larger than 4 and smaller

than 3.

14

- e,

Note that in E.9 we cannot specify whether the triangle is to be
inside the same circle as the rectangle. To do this we should say "inside
the circle" or "inside that circle" in place of the second occurrence of
"inside a circle.” This is an important device vhich has been dealt with

by Bohnart (5).

Note that E.10 can be answered "No" as if it were an analytic
sentence, To transform E.10 into an analytic sentence in which a logical

contradiction is formally derivable, it is necessary to substitute formal

definitions for "inside," "larger than" and "smaller than." One way to do

this is to introduce special "inference rules" which are implicit in the
data structure or in the algorithms for searching the data structures. For
example, each of the 10 dyadic predicates introdiced so far are transitive.
Rule 1: Let p denote any such predicate, e.g. "above." 1If x, y, z denote
any three objects, and "x is py,”" "y is pz" are both true, then "x is pz"
is also true.

is larger tha

Rule 2: If "x is inside fy"and "x [

n "
1s enclosing] t" are both true, and

X, ¥, = are all three circles or rectangles or triangles, then "y

[is larger th

m "
1s enclosing] t" must also be true.

Rule 3: If "x is inside y" and "y is qz" where q stands for any of the

ten predicates except "darker than,"” "lighter than," "larger than," "en-

closing,"”

then "x is qz" must be true.
If sentences derivable from these rules are combined by AND the
(declarative) sentence part of an assertive question-sentence can be shown

to be contradictory. That is, SENT has the form (s) (AND) (NOT) (s) where s

has the form SENT.

15

IV. DOMAIN UPON WHICH QUESTION-ANSWERING PROGRAMS OPERATE

The algorithm being described produces, for each question in the source
language, a flow diagram for a computer program, The computer program, 1if
ruon, would search a data base for the correct answer to the question. The
answer is obtained either by direct lookup or by inference from what can
be looked up, The rules of inference are embedded in the rules which translate

questions of the source lanpuage into flow diagrams.

To fix ideas, let us adopt a particular symbolic form for representing
stored data as seen by a programmer. The data base consists of a list of
descriptions of labelled figures. The figures are labelled - numbered -~
in the temporal order in which they are added to update the data base. Each
figure can be described by several different methods. Ome is graphical,
for easy visualization, as Figs. 1 and 2 at the beginning of this paper.

To describe the essentisl features of such a diagram completely enough
to make possible the answer of all questions in the source language, we
must adopt some representation. The choice of representation, particularly
with regard to its effectiveness and efficiency for updating and answering
of questions requiring inferences is a fundamental problem (3) (39) but not
focal to this paper, in which we aimat probing the non-syntactic boundaries
of our source language. The representation for storing diagram descriptions
we chose takes advantage of the fact that all the two-place relations we
used (1is above, is to the right of, is inside, is darker than, is larger
than) are transitive. To make this precise, let us symbolize, to indicate
to & programmer how to encode it for storage, our predicates in the

terminal vocabulary as follows:

16

PERIE o) L ST ORISR

H'(L,]) = "i is immediately to the lefc of §" = "{ {s immediately to
the right of 1"

R (4,1) = "1 is somewhere to the left of j"

"1 1s not to the left of and not to the right of i"

m
x
~
-
e
L}

Vi(4,1) = "i is immediately above " = "j is just below {."

V(4,)) = "iis sormewhere above §"

EV (4,)) = "i is not shove and not below {"

T '(4,3) = "1 is fmrmediately inside 1" = "1 is just enclosing i"
I(i,)) = "i1s enclosing 1" = "3 1s somewhere fncide 1"

EX (4,1) = "i is not enclosing and not inside {"

'(4,1) = "1 is just a shade darker than {"

D
D '(1,y) = "i is darker than j§"
£

o
o~
=
2
’

"1 is not darker than and not lighter than j"

S (4,0 = "i is just larger than {"

s (1,1 = "1 1s larger than {"

ES (4, = "1 1s not larger and not smaller than j"
R (D) » "i is rectangular"

T () = "{ {s triangular"

c () = "{ 18 circular"

To completely represent Fig. 2, we would use the expression:
FIG. 2 = 1'(2, H'(3, V'(1'(4,5),6))) & EH (4,6) & T(3) & R(4) & c(5) & T(6)
The & means "and"; it takes sll of these statements to describe thg_ugtxre

to wvit rect horizontal and vertical alignments. That is,

and m are considered f{dentical, and can both be veprescnted

17

by H'(1,1) & EV (1,1). We would call i above { only if each potnt of 1

is above each point of j. We would represent @ by R'(4,))

& V(4P | .

To answer the question, "In Fig. 2, is it true that 5 is inside 4",

ve interpret "inside" to be either "just inside” or “somewhere inside."

We search the data basc for a description of Figure 2, by going through 2

as an index term which points to the locatfon vhere the description is stored.
The descripticn, a coded version of Fig. 2, is retrieved and scanned for

1'(4,5). Since this 1s readily found, the scarch ends with a positive

Sotnsin o

ansvwer,

To answer the question, "In Fig. 2, i{s it true that 5 is above 6"
requires s more subtle search through the expression in Fig. 2. The search is
completed with a positive an-wer either {f we find: (a) V'(5,6) or
(b) V(5,6); rules of inference applying to these representations also
permit us to add conditions 1like: (C) V'(I'(41,5),6) as well as many other
conditicns which follow from an inference rule like: "any object inside
an object above 8 third object is above that third object.” All these

conditions are equivalent to V(5,6).

We assume that subroutines for searching a string like Fig. 1 for
the truth or falsity of V(1,{) are stored, can accept as input any such
string, and produce as output zither:

“Yes, ¥(1,§) {s true for input string FIG. 1" or
Mo, V({,1) 1s not true for input string FIG 1.”

We represent this subroutine by the following fragment of a flow

diagran: Y
—_—> | V(5,6

—»N

Pig. 1.
18

The domain upon which the question-answering program operates, then,
is the set of all acceptable strings like Fig. 1. The following simple
rules of formation can characterize this set:

S —> E/PI(N)/SES, when S is mnemonic for the set of well-

formed strings. The slash, /, means slternatives, i.e., "or."

E —» P2(A,A)

P2—> H'/V'/I'/EH/EV/E1 as defined before

A —> NE

P1—>> R/T/C as defined before.

We could develop a grarmar for generating Enzlish-]like declarative
sentences corresponding to these strings, and these declarative sentences
would all be nuch simpier thsn the quections in our source languape kecausa

they nced only provide min'ral irredondant descriptions of the figures.

The language generated by this simple grammar 1s infinite because
both E and S can appear infinitely often through the iterated use.hf Tules
(1c), (2) and (4b). That is, configurations of an arbitrarily large number
triangles, circles and rectangles of varying size and intensity combined
in an arbitrarily large and complex number of arrangements can constitute
any one figure being stored. The data base is a stored corpus of such

figures.

19

ot

N o e g e s SR MERT (1 € B R

V. TRANSLATING ASSERTIVE QUESTIONS INTO FLOW DIAGRAMS

Given a question in the source language, the first step of the
algorithm is to parse the question. This means the construction of a
phrase-marker or labelled bracketting of the question indicating which
rule of C is applied when. Let us illustrate with the question:

Q = "Is it true that in Figure 2 4 is enclosing 5."

We scan Q from left to right unti! we find a string whicih matches an argument
in Table I, looking for the longest possible match (11), (22). Thus,

though we can match "is" as the 4th entry in Table I, we match on "is

it true that", the 2nd item in Teble I. Table I tells us to apply rule

(F 1.1), which is QTRUE——>1is 1t true that. We thus bracket "is it true
that” in Q and indicate that it may have been generated from QTRUE.

We procced with our left-to-right scan, to bracket "in' and indicate
that it was produced frouw IN by rule (F 1.2). We indicate that this was
our second step by the circled 2, As we procead to step 7 in this way
we encounter rule (F 3.5), POSPR2—--> enclosing, we note*in Table I that

there 18 an accompanving translation rule TR 3.5. It is to form:

(TR 3.5) oY
1(5,0) E
2> My

PaseR

POSPR2 is the name of this box. 1Its input is labelled Q and represents
8 control signal to initiate the operation of searching a specified string
for the truth of V(s,0), after 8 and o have been specified. The output

is a decision, a conditional transfer. It i1s Y or N, depending on whether

*

Tahie I lists the translation rule for only "enclosiny,” as an cxample, bLut
does uot iudicate which translation rules goes with each word or phrase,

if any.

20

B L Lt ST

V(s,0) is true or false, Control is transferred from POSPR2 to the box to
wvhich the Y or N line, whichever is activated, points.

After we scanned Q from left to right and obtained a string Q, of
non-terminal symbols from which Q may have been generated, we scan Q' from
right to left. In step 9, the box previously named POSPR2 is renamed CONS

and 0 is set to 5. At step 10, the hox is again renamed SENT and we

set 8 to 4. At step 11, we form the box-yisearch the data base for I'-igure _Z_J-).

At step 12, these two boxes are joined to produce:

Y
Q—> | search for Figure 2 |—> SE?IJ‘E'Q'_S) N

Q

The entire flow diagram is now, in step 12, by (F 10.2), is labelled Q.

(Is i1t true that) (11-) (figure) (2) (&) (is) (enclosing) (5)
(Fl1.1) (FI.Z)][(FB)@} ; (F'! S)G%FI.S)

NI

QTRUE FIG NI NI POSPR2
(N.l)
CONS
AL (F5.1) (F10 1
(F10.2)

Next we descrlbe the translatfon rules accompanving the appropriate

forration rules.

21

TR 3.1 (with rule (F 3.1)): Form Qu{¥(s.0)] ;f ("1s
POSPR2

™ 3.2 (vith rule (7 3.2)): Porm —> (o0l 5, ("Is
POSPR2

™= 3.3 Form —> H(s,0)] ("1s

™ 3.4 Form —> [i(o.5)]

™ 3.5 Pora —> [[(s,0)] "1s

TR 3.6 Form —> [I(0,8)]

TR 3.7 Form —> [D(s,0)| "1s

TR 3.8 Form-—>[D(o0,8)| _

™ 3.9 Forn—>[Sa0)] - ("Is

TR 3.10 Porm —> [S(o,3)|

TR 3.11 Form —> [T(s) ("1s

TR 3.12 Porn—> [R(s) 1 . ("Is

above o")
below o")

to the left of o")

enclosing o")

darker than o")

larger than o")

triangular")

rectangular")

TR 3.13 Form -—%lCZuE l (Is 8 circular")

There are no translation rules with (F 1.X) except for "an" and "each,”

Yor (F 2.4), vhich 1s N1«~>3i, we have rules TR 2.i, for which we think of

{1 as & value of NI. We number the values of NI as these occur in Q'.from

left to right. TR 2.1 tells us to store the value of NI in a push-dowm

1ist, so that the right-wmost occurrence of NI {s on top.

is used in many other translation rules.

This push-~dowmn

TR 4.1 (goes with CONS — (POSPR2)(NI)). POSPR2 is the name of a box

formed by one of the rules TR 3.1 - TR 3.10.

We now substitute for o the value of NI and we

rename the box CONS.

To introduce the othcr translation rules, it is best to proceed in a

certoin order, bepinning with:

22

TR 8.1 (goes with VAR—>object), Here, as in TR 2.1, we form a push-down
list Xpo Xgo Xgyeees assigning X for the left-most occurrence of
the word "object”" as we scan Q from left to right; x, for the
second occurrence of "object” in the left-to-right scan, etc.

TR 6.1 (goes with ANT—>VAR). When rule F 6.1 is applied to indicate that
ANT generated VAR, we asaign to ANT the variable of the top of the
push-down list. We csll this its main variable. To illustrate,

consider the phrase (ANT), "...object which is above each object..."

Th t*of
¢ concept o VAR W 1S POSPR2 QUA VAR
"main variable" will : \ x,
xi ANT
be used later in binding main var =
QUANT ar =X
all the variables by ANT
quantifiers. CONS

main \ var = xl cL

ANT
TR 6.2 (goes with ANT—>> (ANT)(CL)). If the box marked CL has s in {it,

substitute for s the main variable of ANT, say x Relabel the

X"
new hox ANT. Its main variable is also X

TR 7.1 (goes with CL—~3»(W) (IS)(CONS)). Substitute CL for CONS as the
label of the box and make the main varfable of CL the same as

that of COMS. First, we return to

TR 1.5 (with QUE —>an). Form the box Cl (QUE) o, - \tfq (QuE)
c, (@ l____ ¢, (QuE).

VE
By
This i3 an abbreviated version of those parts of the flow diagram

due to the prescnce of a quantifier in a search operation. In

more detafl this box is:

‘Thll concept, like several others pertaining to translation, from questions
to the predicate calculus, is described in unpublished work by S. Amarel.

23

jF1‘°”E) c“(ouz)

'nd 0

[gtart of Seprchl
] earch?

- “1ﬂcxt Search_ggggkﬁb

v
CQ(QUE) CY(QUB)

yes

Pig. 11IA

The input cl(QUE) is a control signal which starts the QUE routine
by initializing a search through a previously specified list. The input
c‘(QU!) is the control signal to initiate a test to determine if search
should continue or cease.

The output CQ(QUE) is the signal which transfers the input data -
the query specification - to a search routine, usually to a box labelled
ART. The output CY(QUE) is a signal indicating that as the search routine
to which QUE is coupled succeeded in "matching" the input data of the
question with something in the list being searched.

TR 1.6 (with QUA=2»each). same as TR 1.5.
TR 5.2 (with QUANT —> (QUE)(ANT)). The box labelled ANT, like all boxes

associated with a search routine have one input, Q(ANT) and two

outputs Y(ANT)
> ar [>)
—»N

and N(ANT) ; Q signals the start of

searching; Y signals success and N failure in searching. The

coupling between QUE and ANT to form QUANT is specified by:

Q(QUANT) = Cl(QUE Q(ANT) = CQ(QUE)
Y(QUANT) = Y(ANT N(ANT) - Cn(QUE)
N({QUANT) - C!(QUE) Main variable of QUANT = Main var. of ANT.

This may be clarified by the diaspram.

264

QuaNny ¢ (qua) NCLR (x Ryrpi(C] Y(ANT) | Y(QUANT)
C c (QUI-.) Y\QUE‘> u(mm R
4
QUART
\ -
Fig. IIB

In terms of the blow-up for QUE, this is

C, (QUE) C(QUE) Y(ANT) Y(QUANT)
WL)._I__.), Start of ‘Q ANT (e.g. FN
search "Is 5 inside lo'i (e.g. Yes, something

1s inside &)

Next search N(QUANT)
Y (e.g. No, nothing
Y ee is inside 4)
QUANT —>
Fig. 1IC
TR 5.3 (with QUANT —>> (QUA) (ANT))
Q(QUANT) = C,(QUA) Q(ANT) = CQ(QUA)
Y(QUANT) = C (QUA) Y(ANT) = Cn(QUA)
N(QUANT) = N(ANT) Mean Variable of QUANT = Main Var. of ANT

We show the conncctions in order to explain the next rule, TR 4.2,

as well,

25

UANT)

e e er G ernre e D BR et e o _ CPRDNR MNP e et WIS YoV i ity s o 2 PP

Cuewwn | Y(QUAYT)

TR 4.2

TR 4.3

T™®R 4.4

€, (QUA) N(ANT)
1 [V —) S N‘QUA&)
S [cmum “ewm | M e
(c,l,quA) ‘)
QUANT
L
Fig. 1ID

(with CONS —2» (POSPR2) (QUANT)). Here the connection marked X
in the above diagram of the QUANT box which was just wmade in
combining QUA with ANT, is broken to allow an insertion. This
also applies to the QUANT diagram for (QUE) (ANT). We replace the
coupling expressed by Q(ANT) = CQ(QUA) (or = CQ(QUE)) by
Q(P0SPR2) = Y(POSPR2)., 1In addition we have:
Q(CONS) = Q(QUANT) Y(CONS) = Y(QUANT)
N(CONS) = N(QUANT) = N(POSPR2)
Replace o in POSPR2 by the main variable of QUANT, and make this
also the main varisble of CONS,
(with CONS .— (NOT) (CONS))
This is a simple relabeling or inversion of output leads.
Y((NOT) (CONS)) = N(CONS); N((NOT)(CONS)) = Y(CONS)

Q((NOT) (CONS)) = Q(CONS)
An snalogous rule, T 10.7, also holds for SENT —»(NOT) (SENT)
(with CONS —> SHPR1)
Change the label of the box from SHPR1 to CONS and let the

main variable of CONS be that of SHPR1l; namely s.

26

e R TR e gt

TR 4.5 (with CONS —> (CONS) (AND) (CONS)) .

Q(cs

This rule is identical with TR 10.5, that corresponding to

SENT —> (SENT) (AND) (SENT) and is obvious to anyone familiar with
propositional logic. It i{s best stated in a diagram, in which
CS1 stands for either the first CONS or SENT on the right-
hand-side of the formation rule, and CS2 stands for the second

occurrence. €S is the result of combining (CS1)(AND)(CS52).

Y(CS1) Y(CS2) Y(CSL)
csl > Tcs2 > - N(cs':l) N(CS2) "E;S’
} L u(\csz) Q(CS). al cs1 cs2
a(csy) Q(es1)
NeesL_,, > Y(cs1) Y(cs2) Y(c$)
N{(CS) L —>
AND OR
Fig. IIE

TR 4.6 (with CONS—>(CONS)(OR) (CONS)). See diagram, identical with

TR 9

rule TR 10.6.
The next rule is most important.

(with IMP-—>(ANT)(1S)(CONS)). The rule is:

Q(IMP) = Q(ANT) Y(ANT) « Q(CONS)
Y(IMP) = Y(CONS) N(ANT) = Y(CONS)
N(IMP) = N(CONS) Hain Variable of IMP = Main. Var. of ANT

and the main variable of IMP {¢ s wherever s appears in CONS.
This corresponds to the usual definition of implication, as {if
IMP ~—% (NOT) (ANT) (OR) (CONS) .

We are now in a positio~ to complete the flow diagram by giving

the rules that go with forming sentences and assertive questions.

27

T e I AL T

TR 10.9 (with SENT—%(QUE) (IMP))

Q(SENT) = C,(QUE) QIMP) = C,(QUE)
Y(SENT) = Y(IMP) N(IMP) = C_(QUE)

N(SENT) = CY(QUE)
This rule should bind the only remaining variable.
TR 10.10 (with SENT—2(QUAY(IMP)). Same as TR 10.9 with QUA in place

of QUE

We need no translation rules for F 10.1 except to relabel the
box from CONS to SENT: for F 10.4 the QTRUE prefix indicates
marely that we have an assertive question, and that the algorithm
developed up to this point applies. The translation rule to go
with F 5.1 narrows the part of the data base to be searched
by search routines. This rule then allows us to completa the
flow diagrams when we apply F 10.2 or F 10.3.

TR 10.8 (with SENT —~3 (IF) (SENT) (THEN) (SENT))
This is best shown in the diagram, with S1 and S2 denoting the
first aud second occurrence of SENT to the right of the arrow

in P 10.8. It {s "not S1 or S2".

s1 M s2 X

N
1,
r—— !
Q N Y? |= Y
>

This concludes the set of translation rules to be used in forming a

flow diagram as a by-product of parsing an assertive question. To

summarize the algorithm: (1) the question is parsed; (2) with each

28

formatfon rule, starting first from left to rizht, then back from right

to left, back and forth, a corresponding translation rule is applied; (3)
the result of applying a translation rule inserts a box into the flow
diagram, assipgns variables and constants to the appropriate search routines;
(4) when parsing is completed, so is the flow diagram; all variables are

quantified by iterative scans.

All inferences are inhereat in the representation of stoced data,

not in the source language of questions. Computing these inferences is

——>
implicit in search boxes, like —} H(s,0) ,, and would be the subject

of separate study.

Storing the translation rules so that they can be used to implement
this algorithm somewhat resembles storing the rules of formation and
transformation. The latter involve replacement instructions, such as
“STRING 'PATTERN' = 'SUBSTITUTE'" {n SNOBOL. The translation rules
involve primarily the coupling of connections: The instructions would
resemble those for wiring a circuit or a configuration of logic modules.

To ifllustrate how the algorithm works consider a cypical assertive
question. The diagrams show how the flow diagram builds up as we parse,
Fig. III shows the phrase marker and Fig, IV shows the completed flow

diagram for the program to answer the question.

29

VI. QUESTIONS INVOLVING "WHAT," "WHERE," AND "HOW"

With the preceding groundwork, we are now in a position to pursue
our primary aim of showing that we can build upon our primitive aslgorithm
so that it can handle questions in an enriched source language. The
universe of discourse remains the same and the syntax is basically
unchanged. The vocabulary is extended only slightly, but profoundly.

In this section, we "enrich" the source language by admitting questions
like, "In Figure 2 what object is darker than 3",
We first augment our basic vocabulary rules.
(F 1.)3) WHA—>vuhat.
(F 1.14) WHE —>where.

(F 1.15) HUCW—~>ho-r

(F 1.16) REL -~ relasted to
and our query-formation rules
(F 10.11) Q> (QUAL) (WHA) (I