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" ABSTRACT

An approximate solutios to the Navier equations of the three~
dimensional thaory of elasticity for an axisymmetric orthotropic circular

cylinder subjected to internal and external pressure, axial loads, and

"closely spaced periodic radial loads is introduced. Numerical comparison

with the exact solution for a transversely isotropic cyiinder subjected
to periodic band loads shows that very good accuracy is obtainable.

When the results of this approximate solution are compared with
previously obtained results of a Flugge-typc shell solution of a ring-
relnf;rccd orthotropic cylinder, it is found that the shell theory gives
a fairly accurate representation of the deformation except in the neighbor~
hood of discontinuous loads. The addition of transverse shear deformations
does not improve the accuracy of the shell solution.

When Hill's orthotropic yield criterion is applied, it is found
that ylelding could begin rather early at the inner surface of the shell
adjacent to the frame. It is noted that the transverse shearing stress

has no great effect on the initial yield pressure.
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' LIST OF SYMNBOLS
' AU elastic coefficients in stress=strain relations,
Eqs. (3.3b)
1
A2 arbitrary constants of integration in solution to
’ . 7
generalized plane strain problem, Eqs. (5.8a,b) ,
B, bund load, Eq. (2.1la)
| %
LA axially varying portion of band load (load i
for first problem), Eq. (2.2) ]
BU elastic constants in generalized plane strain
elastic law, Eqs. (5.2¢c)
|
C?j constants, Eqs. (4.13) !
. D half width of band load, Fig. | {
. DI nondimensional elastic constants appearing in
Navier equations, Eqs. (3.5c)
Er’ Ee, Ez, G radial, circumferential, ial and transverse ;
shear elastic moduli, respectively, Eqs. (3.2) 3
E elastic modulus of an isotropic material, Eq. (3.7)
E'}j exponential functions of shell geometry and JS’
Fourler index, Eqs. (4.13) :
G?j arbitrary constants of integration of asymptotic
solution to first shell problem, Eqs. (4.12)
u” nondimensional elastic constants relating asymp=
totic displacement solutions, Eqs. (k.12g)
ik - - Mi
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nondimensional Fourier coefficients of externally
applied loads and radial band load, respectively,
Eqs. (&.13) and {(2.1b)

constants appearing in plane-strain solutions,
Eqs. (5.8)

centsr=-to=center distance batween successive band
loads, Fig. 1

respective radial, circumferential, axia! and
transverss shear stress coefficients in tri-

gonometric series

nondimensional axial and radial displacements,
respectively, Eqs. (4.4)

radial, circunferential, axial and transverse
shear yield ctresses, respectively, Eq. (6.1)

radius of datum surface (usually mean radius),

Eqs. (&.2)

nondimensional elastic coefficients, Eqs. (4.8e)

classical radial, circumferential and axial
strain parameters, respectively, Eqs. (3.1)

Naperian logarithmic constant, Eq. (4.2c)
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r‘, ro

u, w

plastic potential function of the stresses,

Eq. {6.1)
radially varying functions in the solution
for the displacements in the first problem,

Eqs. (4.4)

asymptotic spproximations to f“ and 9y
respectively, Eqs. (4.10)

= nra/4, Eq. (&4.Uuc)
Fourler series index integer, Egqs. {(2.1)

uniform external and internal pressures,
respectively, Fig. 1

magnitude of band load, Fig. |

inner lateral surface pressure for plane
strain problem, Eq. (5.7b)

pressure at which yielding begins at the
position (r,z), Eq. (6.2)

radial coordinate, Fig. 1

internal and external surface radii, respectively,
Fig. 1

axial and outward radial displacements, respectively,
Fig. |

nondimensional radial and axial transformation
coordinates, Eqs. (4.2)
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values of x at outer and inner shell surfaces,
respectively, Eqs. (4.2)

axial coordinate, Fig. 1

roots of characteristic equation of asymptotic
Navier equations, Eqs. (4.12)

constants appearing in generalized plane strain
solution, Eqs. (5.6)

normalized exponents appearing in asymptotic :
solution to first problem, Eqs. (4.12) i

external-to~internal radius ratio, Eq. (5.8i) 4

PR et

classical shearing strains, Eqs. (3.1)
= 4/aan, Eq. (4.7¢) .
cylindrical ccordinate, Eqs. (3.1)

nondimensional exponent appearing in ortho-
tropic generalized plane strain solution, Eq.

(5.6f)

Poisson ratios, Eqs. (3.2a) and (3.7)

nondimensional radial transformation coordinate,
Eq. (4.6)
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S’ & ~values of € at outer and inner shell surfaces,
respectively
L ae, 2> Teg racial, circumferential, axial normal stresses

and transverse shear stresses, respectively
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1. INTRODUCTION '

To date, investigators of pressurized ring-reinforced circular

cylindrical shelis have employed shell theory in order to describe the
behavior (see, e.g., Ref. |). For thin-walled, isotropic shells, in which
the collapse mechanism is primarily a buckling instability, the results of

shell theory are generally quite satisfactory. However, in short, thick-

walled, filament wound composite cylinders, the collapse mechanism is quite
complicated (as yet no single description has been agreed upon). Examina-
tion of the ruptured composite test models indicate that failure is prob-
ably due to a transverse shear build up at the frame (Ref. 2), a phenomena :
not predicted by shell theory.

Because of the complicated failure mechanism of composite shells,
the need is obvious for an analysis which would yield a more accurate des=-
cription of the stress distrivution through the thickness than is presently
available through existing shell theories. The work presented by Klosner

and Levine (Ref. 3) on isotropic shells, and later extended by them (Ref. k)

ARSI RSk

to include transversally isotropic shells, consisted of an elasticity analy-

sis in which the stress functions suggested by Leknitskii (Ref.5) were used

to satisfy exactly the classical equations of elasticity. Their results
demonstrated clearly that, although the commonly used Donnell shell theory
gave excellent results throughout most of the shell, it could not accurately
predict the stress distriyutions at the frame. However, the Leknitskii
stress functions are useful only for the case of a transversally isotropic

(or isotropic) material. The cylindrically orthotropic nature of the filament
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wound composite shells can only Ye accounted for by seeking a solution to the
more complicated equations of elasticity for such a material. In the present
study an approximate solution for the displacements is used to solve the
axisymmetric Navier equations of equilibrium for an infinitely long, ortho-
tropic, hollow cylinder under external uniform pressure and closely spaced
periodically varying internal band loads. 1t is indicated how more accuracy
may be obtained by use of either a perturbation or iteration method.

It is found that the asympto 'c solution is quite accurate and
that the shell solution presented in Ref. | is in very good agreement with
the asymptotic solution, except in the vicinity of the frame. When trans-
verse shear deformations are considered in the shell theory no better agree-

ment is obtained.
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2.  FORMULATION

The shell of infinite length is subjected to an external hydrostatic
pressure load Po and internal, axisymmetric, periodically spaced band loads.

These band loads are described as (e.g., see Ref. L)

[+ -]
= oz |
B, = pc[ T H cos 1 a) (2.1a)
n=1
with
= 2 (_qyntl_.
Hy == (-N"""sin n7a (2.1b)
and
A=D/L (2.1¢)

where Pc is the magnitude of the band load, D is half the width of the band
load, 4 is half the distance between the centers of two successive band
lou_s; and z is the axial coordinate (see Fig. 1).

When the classical linear equations of three-dimensional elasticity
are used to Zdescribe the shell deformation, the solution may be taken as the
superposition of the following two solutions:

1. The solution of the shell subjected to an internal load des-

cribed by [ser Eqs. (2.1)]

£ H_cos E%E (2.2)
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corresponding to which the displacements can be taken as trigonometric series
in 2. In the ensuing analysis the classical elasticity equations are used
to find the coefficients in the latter series as functions of the thickness

coordinate r.

2. A generalized plane strain solution which includes uniform
lateral pressure loadings on the inner and outer surfaces [the inner surface
locad must, of course, include the term = PcA appearing in Eq. (2.1a)] as

well as a constant axial force.
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3. BASIC EQUATIONS

The classical strain=displacement equations used to describe the

‘axisymmetric deformations of a circular cyliindrical shell are

e = w’r s e = w/r (3.1a,b)
e, = u,z , 79 = 0 (3.1c,d)
Teg = Ut W, ) Yoz = O (3-1e, f)

in which a cooma followed by a subscripted variable denotes differentiation
with respect to that variable. 'r, 6 and z are the radial, circumferential
and axial coordinates, respectively, e.; e and e, are the corresponding
normal strains; 700 ez and 79, 2T the shear strains. w and u are the
displacements in the radial and axial directions, respectively. It should
be noted that both r and w are taken positive outward (Fig. 1).

The generalized Hooke's law for a cylindrically orthotropic,

homogeneous material is taken as

r \ . - N
Erer ! ’ Yo ’ Vrz { %
1 Eo% p = Vor | ’ “Voz ‘W % g
_E2%2 y Vzr 0 TV ’ ! % )
(3.2a)
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6.
TI’Z = G7rz s 1 ré =0 ) Toz =0 (3°2b}c)d)
where
o Yer | Ymlle | lullm 2
E "E ' E "F BT (5.2e
r (2] r 2 (2] 4

follow from symmetry of the stress and strain tensors. { } denotes a colum
matrix and ( ) denotes a square matrix. Ur’ 09 and g, are the normal stresses
in the radial, circumferential and axial directions, respectfvely; Trz is the
transverse shear stress. Er’ E9 and Ez are the elastic moduli in the radial,
circumferential and axial directions; G is the transverse shear modulus

and v and Vze are Poisson ratios. It can be seen

6’ Yor’ Vrz? Yzr’ Yoz
that Eqs. (3.2) contain 7 independant elastic constants.

The inverse relation is given by

\
for AH

{O‘ZJ -A3' ’ -A32 s A33 e (3'33)

where

Ay = Qevgvp JEN) 5 Ay, = (1= )(Eg/N) 5 Agz = (1=v gvg ) (E /) ’

erZI"

(continued on next page)




Rig =By == g+ v v ) (/M) Ayg= Ay = = (v, + v, v, ) (E, /)
Ayy = Asp = = Vo * Varvrz) (E,MN)
N=1=vgv, - "er("re + vrzvze) = Vor(VegVez Vrz) (3.3b)

The axisymmetric equilibrium equations are

(wr),r =gy *+ T,z = (] (3.4a)
ro'z’z + (r'rzr),r = 0 . (3.4b)

Equations (3.1), (3.3) and (3.4) are combined to yield the well=
known Navier equations for an orthotropic cylinder undergoing axisymmetric

deformations (Ref. 5).

2 2 2 =
UL Dyrw o = D+ Dyru o+ Dyru , =0 (3.5a)
and
2 2 2 -
D,r L Der,z + D7r U 22 +r Uy + U= 0 (3.5b)
where
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8.
Dy = Ap/Ayy s Dg = (G = Ay))/G r
03 = (G - AIB)/A‘I s 06 = (A52 - G)/6 (3.5¢)

It is noted that only five of the constants Dl’ cry D7 are independent, since

D3 = DID5 and 0, =(05 + 06)0l (3.5d)

Equations (3.5a) and (3.5b) are a set of second order, linear, homogeneous

partial differential equations with variable coefficients.

if the material is transversely isotropic,

D, =1 , n5=-n6 , D, =0 (3.6)

It follows that the number of independent eiastic constants reduces to

five.

If the material is isotropic,

E . =Bg=E =& » Vg =V =V, =V ™ Vg = Vg =V

(continued on next page)
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10.

4. AXIALLY VARYING LOADS

The first problem to be investigated is that of an infinitely long

‘circular cylinder with an internal load described by Eq. (2.2). For such a
loading the solution is any solution to the Navier equations, Eqs. (3.5),
which satisfy the conditions that:

on the outer surface of the shell

o =0 (4.1a)

. =0 (4.1b)

o % e
o, =p, I Hcos = (k.1¢)
n=1
Tez = 0 (&.1d)
o
The major difficulties in finding such a solution are caused by the fact 3

that the coefficients in the Navier equations are variable in r. |In order
to reduce the number of variable coefficients encountered (and at the same
time nondimensionalize the equations) the following well=known transformation

.

is introduced:

‘ x = 4n(r/a) (4.2a)

I I S




1. :

- z2/a (4.2b)

with the inverse r.:lation

r = ae® (%.2¢) D

ay (4.2d)

in which a is the radius to any selected datum surface such that rrsagr,. /

Hence, for relatively thin-walled cylinders x = (r/a) = 1, which is small

compared to unity. The Navier equations now become y "
7
2x X X _ 1
LI +De Wy Dw + Dje Uy + Dye u, = 0 (&.3a)
X X 2x §
- + + = . :
D5e w,xy 06e w’y D7e u’ vy U xx 0 (&.3b)

The separation of variables method is used to find a solution.

The assumed from of the displacements must reflect the symmetry of the load-

}

ing (Fig. 1). Thus, i
A”w © I
W= ;l-’:_ = nfi gn(x)coskny (4.4a) ’

fn (x)sinkny (4.4b)

R




12.

where

= Nra
ky = & (.kc)
;
and W and U are nondimensional displacements. Hence, the Navier equations 1
yie]d 3
- (kZD e 4 D,)Jg + kD e'f  + kD ef =0 (4.5a) i
Sn,xx ] 2’°n n'3 ‘n,x n 4 'n ’
X X 2x B
- knD5e gn,x + kn06e 9, - knD7e fn + fn,xx =0 . (%.5b)

A significant insight is gained into the nature of the functions 9, and fn .
upon the stretching of the x=coordinate through the introduction of the trans=

formation
£ = kx = (nra/g)x (%.6)

The Navier equations finally yield

28n§ 2 Bng sng |
n,ee ~ (D]e * 6n DZ)gn + 033 fn,g + 5,0ye fn =0 (%.7a)
Sng 8n§ zang
fn,éé ) D5e S, *8.0ge 9, - D7e fo =0 (&.7b)
where
y 5, = Wk, = Y/nra (&.7¢)

- . - R - ~
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13.

Equations (4.7a,b) are second order, linear, simultaneous,
ordinary differential equations with variable coefficients. These

equations can be uncoupled with the aid of integrating factors. How=-

ever, the resulting relations have complicated variable coefficients

and are singular for the not uncommon case o: a transversely isotropic
cylinder. The solution obtaired for transversely isotropic cylinders

in Ref. 4 (which, as mentioned previously, is formulated in terms of
stresses and solved with the Lehknitskii functions) is in terms of

Bessel functions. Accordingly, if Eqs. (3.6) are introduced into

Eqs. (4.Ta,b) and the resulting relations are uncoupled, the displacement
solution is also in terms of Sessel functions, which correspond to those
found in Ref. k.

The success of Klosner and Levine (Ref.l4) in using Bessel
functions for the transversely isotropic case tempts one to use a Frobenius
or other type of power series solution for the more complicated orthotropic
equations. However, & grows in proportion to n [Eq. (4.6)] and unless (as
in classical shell theory) the thickness-to=length ratio is very small
and the load converges quickly (i.e., is continuous and varies slowly with
y) & becomes large as n increases. The large values of k. (and hence of &)
which evolve from the short shells of interest here make a power series
solution impracti.al in that many terms are necessary for convergence.
Also, such solutions may give rise to small~difference terms, unless

appropriate asymptotic expansions can be obtained.
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On the other hand, whan kn is large, Bn is small [Eq. (4.7c)].
This suggests that a perturbotion or iteration scheme may yield a reason=-
able approximate solution. Any solution which capitalizes on the size of
Sn might also be thought of as an asymptotic expansion.

Once 94 and fn have been found, the stresses can be determined by

combining Eqs. (4.4%) and (3.3). Hence,

-5 E
1 n
g;' (e (9n,§ - alZSngn) - a|3fn]coskny (4.8a)

-5
né (alzgn’g - a,,89 ) - a25fn]coskny (4.8b)

g ® - ¢
Z _ . n
b = nEI g;[ e (:-.\]39"’g + a238ngn) + a33fn]coskny (%.8c)
T © ) 13 - .
Bl S 55]— [e M fn,E, gn]smkny (4.8d)
Pe n=1 "n
where
= MA@z =0 =Dy, Ay =D,
a23 = Du + Dl - Dj ) 335 = DTD] (u-se)




15.
The boundary conditions are satisfied by [see Eqs. (%.1) and
Eqs. (4.8a,d)]
e (Qn’g = a,0.9) - azf, = 0 (k.9a)
-xo
e fﬂ:ﬁ -g =0 (4.9b)
at the shell outer surface x = X 3 §o >0
and
- = )
¢ (%,g'BHQﬂJ -aDﬂ1=Hn (4 9d)

at the shell inner surface x = Xy £ = g] <0

If a perturbation solution is used in which the functions 9, and
fn are considered to be perturbed about about the solution of Eqs. (4.7)
with Sq set to zero, g, and fn may be expressed as

@©

T 90, (1-108)
i=

w
(]

[+ ¢]

i
ii:! i (g)sn {(4.10b)

-
il




16.

For i =1 (zeroth perturbation) the differential equations are

D,f

9nl,gg - Dlgnl + 3fnl,e = 0 (%.11a)

a~d

D,f

- DSin,g + fnl,gg = Dyfy = 0 (&.11b)

Equations (4.11), in which sn = p/nma = 0, correspond to the equa=-
tions of a doubly infinite flat plate (for which a -+ «) with a thickness

coordinate { = ax. The solution is written as

Lo g"
9,1 = '21 Gye (%.12a)
1=
b B
= I Hibne (4-120)
where
Br;’z = a],z(g 50) (u-]ZC)
B3, = =% (€ - €) (4. 12d)
and al and az are those roots of the characteristic equation
a“+(oo-o-o)a2+oo=o (k.12e)
i 35 7 1771 17 )
which are defined by
o , = -3 0P = Dy = 0)) 5 (@405 - D, = 0)) - u0|o7]'/2
(%.12F)

i WA e <

L)
1




L]
e M R e S i

17.
furthermore,
2
Q. <D D,
Hy = = (=D = () (4. 12)
3 Q. D
N {
a3’u= - 012’I (%.12h)

For the specific material properties considered subsequently,
) <
@, is real; moreover Q) o> 0 and @, € Q. in general, the nature of a.
J
is dependent only upon the elastic properties of the shell material. For
example, if the shell were isotropic, equal roots for the characteristic
equation would be found (i.e., ¢, =" 1). 1t should also be notea that
J

the roots of the characteristic equation do not change with n. The exponents

n

li
in the computations. The arbitrary constants G?i are obtained by satisfying

B? were selected to modify G.. in order to avoid numbers of excessive magnitude

the boundary condition Eqs. (%.9) which, when combined with Eqs. (4.12)

yields the matrix equation
(c;)067,3 = () ;= 1,2,3,b (%.13a)

where

-

cn° = [e o(ai'é

n
0 JEY (4. 13b)

n?12) = sty

=X
cgi (e °aiHli - I)E']‘i (4.13¢)
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?f;- '8-
i x,
; n _ _1yeh
g C3i = (e a.H, i)t’;2| (%.13d)
7 :
£
f? n -x] n . ,
g Cy; = le a-a,8) - aBH”]EZi (4.13e) ]
i ;
( also ’
i ?
% ‘
& n _ g _ .n _ N ;
‘g* By = g = B3 =By = 1 (.13F) ;
¥
¥ . .
¢ L az(gl go) - ea2km(x xo) (4.139)
: 137 %227 ¢
! a, (E.-£ )  ajk (x,=x_)
. €, =By =e | CaelM O (4. 13h)
3
¢
. For the loading of interest here [see Eqs. (4.9) and (4.13)]
;
’ H) = #y = H3 =0 (4.131)
i
n_ b 130
Hy = H (4.13))

0f course, these conditions may be easily altered to include other
loading conditions; a more detailed discussion on this and a means to inves-

tigate layered shells is offered in the Appendix.

£4
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Once the constants G?i have been determined from Eq. (4.13a), the

stresses may be obtained by substituting Eqs. (&.12) and (4.10) into Egs.

(4.8); this yields

s !
g; ot o ¥ “X n Br': z %
,\% ;;'= nE‘ iEl[e (ai-aIZSn)-aBHli]GIie cosk_y = n:‘:) SrnCOSkny (4.1%3) :3
£ ;
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. 19. ?
|
. y
!
BT 4 3 = :
= ¢ ¥ [-e (a,,a -a,,0 )-a ]G ;e cosky = T §, cosky (&.1%b) ;
Pe n=1 i=1 12717222%0 23 1i n n=1 en n é
;
g, o k4 " ﬁn © i
=== g L [-e (a,.Q +a, 8 ) + a ]G e 'cosk y= LS cosky (&.14¢) ;
Pe  n=l i=] 134 33" n=l Zn "
n
4 o ko g ®
SZ.p £ T (TaH I)G e Isink y= T § sink_y (4. 14d)
P | it “ Trz n
c n=1 i=] n=| n

If more accuracy is desired, the first perturbation can be applied

[i=2in Egs. (4.10) and (&.T)} This yields

9n2,te = D192 * O3fna ¢ = (20y9,403f ()8 - Dyf (4. 15a)

D,f . = (D

Ds9n2,6 * Taz,ee ~ Prfnz *+ 20,f))8 - Dgg (4.15b)

5°1,¢

An iteration technique may also be used. The first iteration con-
sists of Eqs. (¥.12), which corresponds to 8, = 0. Any further iteration
(g 0 f ) may be obtained by successively solving

zsg 5 ¢t S &

= - . h .n
= [D](e 1)+6> 2029 L t0g(lme T)E L e B Df L

gnl,gg-olgni+o3fni,§
(%.16a)

5n§ 5n§ 28n§
-Dﬁgni,§+fni,§§-07fni=05(e -l)gni_l,g-Bnbse gni-l+D7(e -1)f
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where the right hand sides are ohtained by inserting results of prior iterations.
in either the perturbation or iteration technique the stress components
corresponding to perturbations or iterations beyond the zeroth must vanish
on the boundaries. |In either approach, a correction term is only necessary
in the early terms of the trigonometric series given in Eqs. (&.%), (i.e.,
when n is relatively small), since 8n becomes smaller as n increases and,
therefore, the approximate solution represented by Eqs. (4.12) becomes more
accurate.
The selection of B? to modify the constants is indeed appropriate,
for as n grows large the coefficients may be closely approximated by simple
formulae which reveal the dependent of the trigonometric series convergence
on location through the shell thickness. Hence, as n becomes large, kn be-

comes large and [see Eqs. (4.13g) and (4.13h)]

B Egpr Eppy Epy = 0 (&.17a)
Therefore,
c'l‘3, c']‘h, c‘2‘3, cgh, cg‘, c'3‘2, c;‘”, cﬂz -0 (%.17b)

and Eqs. (4.13) may be replaced by

¢}, ¢, 0 o o), 0
n n n
Cap Cap O 0} |Gy 0
= (&.18a)

0o o ¢ " " [ 0

33 34 13

n n n
0 0 ChsChy G“U 4,
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3
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Thus, for large n (n > N say)

and

9ni

n
R

n

G 12 = 0

= G

n
¢ yH

g v

33
¢ _H

Gn = n
b 33351#»"3&33%

n 'az(g'gl) n 'a](g'gl) Hn

= [-Cye +Che G R
3 33 ©35ChuCu3t3y

n et | A

= (CqH)ge T Ca3fine

_ n ~X
= ['C3h('aée +a]3H]2)e

-al (g'g ) Hn

] (
033t ~Chs

0, (8-¢))

+ (<t e *+a. _H e
31 13711
3 3 N

- - n -X
= (-G ayp0pe THayh) ) )e

e 1O B
n
2311 c33cm-cf,\+3cf3fu

n
+ C33(a12a]e +a

)

n -X
[-C3u(al3a2e -a33H]2)e

'al(g"g ) ( Hn
03Chy~Cl3 3u)

+

n -
C33(al3a]e -a33Hll)e

Cn C” -CR3C
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(%.18b)

(4. 18¢)

(&.18d)

(4.19a)

(4.19b)

(%.19¢)

(4.19d)

(4.19¢)
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] (c'“'33' Gy . G

(%.19f)

-X

e -l)e

s = [-Cgu(azH‘ze-x-l)e

n
rz +c33 (aIH

For the problems under investigation in this report the stresses

converge as

e H cosk vy
n n

The convergence is fastest on the shell outer surface (§ = £, 2 0) and

slowest on the shell inner surface (& = §] < 0), where i. matches the

convergence of the applied load [Eq. (2.2)].
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5. SECOND (GENERAL!ZED PLANE STRAIN) PROBLEM

The second problem to be considered is that of an infinite, un-

supported shell subjected to internal and external pressure and an applied

external axial force. |If the radial displacement is assumed to be only a

function of r, and if the axial strain is assumed to be constant, the strain

displacement equations are given by Eqs. (3.1) in which now

where

(1]
]
c
i

zr Yz T Yor

const (5.1a)
=0 (5-1b)
Hooke's law [Eq. (3.2a)] reduces to

e =B,0 =B8,,0, - B]3ez (5.2a)

- B, 0 +8,,0 - B,e (5.2b)

22°6 237z

21

N ¢ = -
By = £ (=vv, )y By =By = £ (Vg * VigVae)

_ R I _ N
Big = Ve o By £, (1-vgvig) 5 Byz= vy (5.2¢)

and the equilibrium equations reduce to
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O

(ror)’r -0y =0 (5.3)

The governing differential equation is obtained from Egs. (3.1)

and (5.1) to (5.3); thus,

B 8,,-8
dAr(ro) 1 - B_;z]' (ro,) = (l%f)rez (5.4)

Also, the displacement equation may be obtained by using the plane strain :

assumptions in Eqs. (3.5); hence,

2 = =
r w,rr + rw)r - Dzw = Duezr (5.5)

It should be noted that no matter which of Egs. (5.4) or (5.5)
is utilized, the previously mentioned singularity, which cccurs for either
a transversely isotropic or an isotropic material, persists in the generalized
plane strain equations (i.e., when Dk = 0 and D2 =1 or 823 = B _ and

13

B,, = 822). This singularity, which determines whether or not the differen=

11

tial equation is homogeneous, is reflected in the solution. The solution

of the present problem is

o = Alrk-] + Azrm)"-I - a:ez (5.6a)

0, = MA, >~"-Azr"‘“')-o:;’;"eZ (5.6b) i
o = (B,.#+AB. JA, P 14(8, A8 )A r M (e (B, 4B ) Je.  (5.6c)

z 13782304 137823)A; 2% (B 5tBy3) te, O
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A oty
W= (A8, =B, A, r"=(AB,,+B, )A,r -(l—.D-—-z-)rez (5.6d)
u = ze (5.6e)

in which
= \I B, /By, = J D, (5.6f)
2
(8‘3-823)/(1-k )B22 , when A # 1
a-k -
()
0, when A = | (transversely isotropic or isotropic)
(5.69)
. DM/O-DZ)’ when A # |
(..&_ * _
I-Dz
0, when A = | (5.6h)
The three conditions to determine A], A2 and e, are the boundary
conditions

o = =P, at r =r_ ( outer surface), (5.7a)
o = =p, =" (pi + Apc) at r = r, (inner surface) (5.7b)
and the prescribed axial force condition

Ir o rdr = % (r‘zpi - rozpo) (5.7c¢)
]

T,
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Substitution of Eqs. (5.6) into (5.T) results in three linear algebraic

equations which may be solved to yield

A = J!/J , A, = JZ/J s E, = J3/J (5.8a,b,c)
where
M
-\ % w_o% - -) - P - -
R G Maep 108, (7 1450805 g 1008, (1 a5 P g,
! (5.84)

M x % - k3
I R LAl AN N AT P AR B TN A PN CL D) P

1
(5.8¢)
M 3 W - v -
7 0 R TN Tt C Wy L DB I A W PRI
! (5.8f)
oY A~ v v - -1 “A- -
3= o M0 O™« 0 ) M e 0P 07 M) (5.89)
1,2 2
Mo =2 (1P = 7y Py (580
y "o'lrl (5.8i)
B,x + AB
By = 2 (5-8))




[ A

(BI} )/(l-k) , when M # 1

w
N
i

0 , when a =1

1l

i k1
53 E{E - ao(s|3 + 825)]

z
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(5.8k)

(5.8¢)

The stresses and displacements of a pressurized cylinder subjected

to periodically spaced band loads may now be obtained by superposing the

individually developed solutions [see Eqs. (4.4),

sults in

D

W= (By,-By)A, o - (MByy+B,)A, T (1 D " et

I i=]

ap ® 4 B

(4.8), and (5.6)]; this re-

n
C

—_— 7 6 T G‘ e 'cosk Y

2 AN =t i
(5.9a)
ap, © L Bn -
u=eay+= L 8 T H“Gi .e SInkny (5-9b)
Il n=1 i=1
o b n
o =A™ lea e M e +p £ ¥ (e (a,-a,,0 )-a ]G e | cosk v (5:9¢)
rol 2 0z "¢ ) ioy i "127n 13 li
® "
_ 1 =h=1 =X no T
Og = X(A]r AT )< e P, nzl iE] e (alzal 25,8 )- 823H]i]G|ie cosk_y
(5.9d)
"o = (B,x*AB,2)A r)"-I + (B,2-AB,)A r-k-} + 2B.e
z 137723 13 772372 3z
= o B
* P, nEI iEI (a %%, 6n) + aj}”li}Glie cosk y (5.9e)
© L Bn
T, = PO, E T (e a H, —I)G sunkny (5.9f)
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6. YVELD CRITERION

Any elasticity solution is valid only up to the pressure at
which yielding begins at some point on the shell. |t is therefore of
great interest to attempt to find this initial yeild pressure.

R. Hill, Ref. 9, developed a plastic potential function f
for the determination of that combination of stresses for which an ortho-
tropic material would begin to yield. This function of the stresses is

defined to be

] ] ] ] 2. .1 ] ] 2
fFeglhe L - B2 G+ L - Ho,0)
2 @2 ZZ x2 6 2z z2 XZ 82 zZ r

2 2 2

T T T
+ —%-- Jié(cr-oe)z + gz + Z; + ;6} 6.1)
e YA R S T

]
+ (=
XZ

in which X, 8, Z are the radial, circumferential and axial yield stresses,
respectively, and R, 5, T are the appropriate shear yield stresses. The
criterion for yielding to begin is that f = 1.

The stresses in Eqs. (5.9) could be substituted to leave an expres-

sion for the pressure poy(r,z) for which yielding would begin at the position

(r,2)

p g o o o
Py e e 2, 1 0y %2 e
p. (r;z) = UG+ 5 -3 (= -+ (5+ 5 -5 - =)
oy pc @2 2 X2 Pe P¢ 2 X2 82 Pe  Pe
g g T 2
1 ] 1 8,2 ~-1/2
MRSl e M 3 (6.2)
X 2] Z o c pC )

.
W g e o gt

i}
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6. YIELD CRITERION

Any elasticity solution is valid only up to the pressure at
which yie'ding begins at some point on the shell. |t is therefore of
great interest to attempt to find this initial yeild pressure.

R. Hill, Ref. 9, developed a plastic potential function f
for the determination of that combination of stresses for which an ortho-
tropic material would begin to yield. This function of the stresses is

defined to be

Lol o Lo lyio o) s Lo Ly -g)?
f=3 {(62 + -2 XZ)(GQ 0, ) +(5 + 5 - 3)(g,~0)
. 2 2 . 2
1 _ ] 2 Tez T 8
+ (-12-+ = = (0 -0)" + 22 + Z; + =4 6.1)
X © z R T

in which X, €, Z are the radial, circumferential and axial yield stresses,
respectively, and R, S, T are the appropriate shear yield stresses. The
criterion for yielding to begin is that f = 1.

The stresses in Eqs. (5.9) could be substituted to leave an expres=

sion for the pressure poy(r,z) for which yielding would begin at the position

(F,Z)

P g ] o o
. oY Lol hee o 2 L, L1y z_ 2
p_ (r,2z) = NG+~ (= -+ 3+ = -5 (- )
oy Pe 82 Z2 X2 Pe  Pe L X2 62 Pe  Pe
g g T 2
1 1] 0,2 , Tzr_.-~1/2
vt et M w1 (6.2)
X e 7z Pc P p.’S
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In the filament wound composite, the radial yield stress X is
essentially that of the resin and is small compared with the axial and

circumferential yield stresses. This enables the approximation

(1/82) << (I/Xz) s (1/22) << (]/xz) (6. 3a,b)
, O %8 1 a2 %% %
Poy(r72) = Klpoy/RIMG G * 7 (50 =5, * 3!

(6.3¢)

From either of Eqs. (6.2) or (6.3) it can be clearly seen that the

transverse shear term can serve to decrease the yield pressure.
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7. NUMERICAL COMPUTATIONS AND DISCUSSION

The approximate solution to the three-dimensional Navier equa-

. tions of an orthotropic, infinite circular cylinder requires numerical

verification before it can be used. For this reason the first set of
numerical computations (which were all performed on the IBM 360/50 ccm-
puter located at the Polytechnic Institute of Brookiyn) were devoted to
comparing the apprcximate results developed here with the exact solution
to a transversely isotropic cylinder subjected only to periodically spaced
band loads. The exact results were given to the author by H. Levine, who

The cylinder constants

used the exact analysis described in Ref. k.

are

E = Ey=2E » G, = Er/5.28 s vV, = 0.16 s Vg = 0.30
g=A=02 L=02 f—‘~=08 5, = 0.0616
L ’ ' oor ’ r ) ’ 1 )
0 0
(7.1)

The comparison is shown in Figures 2 and 3. The results indicate
that although a correction tem [of the type obtained from the solution of
either of Eqs. (4.15) and {4.16)) is desirable, the zeroth-approximation
solution gives results which would be satisfactory to the designer. This
solution gives a fairly accurate representation of the stress distributions
through the thickness in that it demonstrates the nonlinear variation of
The tendency of the shear stress to 'peak’ in the

the normal stresses.

vicinity of the load discontinuity is predicted.
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The second set of computations utilizes the approximate three-

" Lt
A MY N e, S e .

dimensional elasticity solution of an orthotropic shell, subjected to ex=-

ternal pressure and an axial force in addition to prescribed periodically

: g spaced band loads. The results offered by the shell theory developed in Ref. | é
; are compared to the more exact results obtained here. %
F in Ref. 1, the band loads were due to pericvdically spaced elastic ‘2
i ring supports. The radial displacement of a ring was found as « function

of the magnitude of the band load (pc) in a separate analysis (either ring ]
f theory or an orthotropic Lame analysis). The ratio po/pC was then obtained

by matching the radial displacements of the ring and the shell at the ring-

p—p—

shell interface. In the present analysis, the ratio po/pC is assumed to

. # AP T 12y

have the same numerical values as those determined in Ref. 1.

1]
When Flugge-type shell theory was applied to a corresponding

o v

ring-supported orthotropic shell it was found that po/PC = 1.11. The addi=~

i tion of transverse shear deformation to this analysis resulted in po/pc = 1.03. ‘
Gbviously, the results of the present three-dimensional elasticity solution do not :
reflect the restraining effects of the ring. In order to correct this it :

would be necessary to include an analysis of the ring and then match dis=~ %

" - - o T
¢ Q.wgm'wfm,« WW‘%WWWF b LR SEEN o]

3 placements at the ring=shell interface. %
The cylinder constants are’ é

‘ _ 6 . 6 . ; 6 .
E. = 2.49 x 10 psi s Ey = 6.14 x 10° psi s E, = 4.74% x 107psi :

G_=0.7x !06 si = 0.136 = 0.176 %é

rz P ’ V2 T V" ’ Yoz = 7" i

i

Vzr T 0.5 éf

' “Letter dated March 24k, 1964 from Mr. W.P. Couch, David Taylor Model Basin

-~ bR Aot s o o
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: Y=0a755 , L-oeam7 , r =338 , r =3in.

8, = 0.0769

X =0.22x10%si , ©=1.7%x10%si , Z=1.0x i0%psi

S = 0.09 X 10%psi (7.2)

The transverse constants Er’ Grz and v, were not available, as they are
extremely difficult to obtain (Ref. 6) and were simply given values that

were felt to be representative of this type of material (e.g., see Ref. 7).

The results are presented in Figures & to 10. Shell theory gives
excellent results at midbay, but can only approximate the actual state of
stress at the frame. The yield pressures predicted by shell theory [using
the criterion in Eqs. (6.1) with f = 1] are fairly accurate. Although
the present results given more accurate stress distributions for the band
load problem, it does not necessarily follow that the band load problem
exactly reflects a ring-shell interaction problem.

Klosner and Levine (Ref. 4) found that transverse-shear-deformation
shell theory did not lead to improvement over classical shell theory. Such
observations can also be made from the present calculations (see Figures
4 and 5). Furthermore, these results indicate that, at a sufficient dis-
tance away from the band load, the shear stress can be approximated with a
parabolic function. However, the results displayed in Figs. % and 8 show
that the axial displacement and axial stress vary cubically (at least)
through the shell thickness. Hence, in the vicinity of the band load, where
the axial displacement reaches its largest value, plane sections do not re=

main plane and the transverse shear stress can not be assumed to vary para=

R

e
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bolically through the thickness. The cubic and higher order thickness terms

combine to result in the 'peaking' shown in Figure 6. ;;

The Hill yield criterion Eq. (6.2) predicts that yielding begins :
at a fairly low pressure (3500 psi) near the inner surface at the load dis- g
| continuity. Actual tests (Ref. 2) indicate that the shells do fai}l at the |
frame near the inner surface; but at a significantly higher pressure (12200 psi).

The low theoretical yield pressure results from the low value of the resin

Ry

yield stress. When this yield stress was increased (i.e., X was set equal

5

to 1.0 X 107 psi) the lowest value of the theoretical yield pressure was 3

found to be poy(r], L/2) = 16323 psi.

R R )

One might speculate that the resin yields at a very low pressure

e O et e et Sy, 7 e N AN . o

after which the load is resisted by the glass fibers. |If this is the case,

the work done here might be extended to a layer analysis (see Appendix),

L et Py

which could be used to approximate the stresses after yielding has begun. :

% It appears from these results that the transverse shear stiress ;
distribution has very little effect on the low pressure at which the resin
begins to yield (which was also predicted by the shell theory). However,
as is pointed out in Ref. I, the actual stresses in the individual con=-
stituents of the nonhomogeneous filament wound composite shells must be v

obtained by multiplying the stresses obtained here by suitable stress- ¥

§ g e S P

concentratior factors. This procedure gives rise to substantial changes
in the magnitude of the initial yield pressure (e.g., see Ref. 1).

It is interesting to note that the shell wall gets thicker
under pressure (see Fig. 9). This can be traced to the Poisson effect

of the rather large compressive axial and circumferential stresses.

B IR AR SR ST i 2
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In general, the numerical results obtained here indicate that the
approximate elasticity solution developed here to satisfy the orthotropic
Navier equations gives a satisfactory description of the stress distribution
through the shell thickness. However, before this technique can be success-
fully applied, the transverse elastic constants must be experimentaily deter-
mined. The low yield pressures obtained here may correspond to the 'initial
yielding' state described by Tsai (Ref. 8) in which the load deformation
curve of a similar shell subjected to internal pressure was observed to
have a sudden change in slope at a low pressure. |f this is the case, the
layer analysis suggested in the Appendix of this work would certainly be

appropriate.
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APPENDIX

it may be desirable to prescribe a variety of combinations of
radial stress, shear stress, axial displacement and radial displacement as
periodic functions of z on either of the shell surfaces (for example, the
ring supported shell may be analysed by matching ring and shell displacements).
Therefore a more general discussion of possible boundary conditions is offered.
On each shell surface {outer and inner), any two of the following

four quantities must be prescribed:

o
.g (e l@zi-ﬁnalz) - aDH“]G?iEli = H? (radial stress) (A1a)
=1 2 b
A
' .ZI (e lai}*l”--l)G';iE]i = H; (transverse shear stress)
|u z 3 (Alb)
T qu = ¢ (radial displacement)
‘:‘ (Alc)
T H,.G. =F" (axial displacement) (Ald)

-—
—

where H?, 6" and F” are Fourier series coefficients obtained by expanding
the prescribed functions of z.

It is possible to perform a layer analysis by matching the four
quantities listed in Eqs. (Al) across each interface. If a shell consists
of m layers, 4m arbitrary constants Qould have to be determined The inter-

action equations, which would be lm=4 in number, could be obtained from
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) = () (A2a)
j-! j

(Hy) = (H3) (A2b)
IR

G?_‘ = G? (A2¢)

Fiy = F (A2d)

where j = 2, **°, m. The subscripts | and m correspond to the inner and
outer shell layers, respectively. The remaining 4 equations are found by
applying two of Eqs. (A1) on layers | and m. The corresponding generalized
plane strain problem must also be solved layer by layer with the radial
stress and both displacements being matched at each interface.

If the layers were permitted an axial motion relative to each
other (as might occur after initial yielding) Eqs. (A2b) and (2d) could be

replaced by

(Hg) = 7" (A2'b)
j=1

n n '
(Hj)j =T (A2'd)

n . .
where T would be a constant corresponding to a maximum shear stress at

resin yield.
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