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ABSTRACT

The radar cross section of a continuous, convex, body of revo-
lution composed of N sections, each section described by a second-
degree equation has been analyzed using the geometrical theory of dif-
fraction, Wedge diffraction has been applied to determine the scattered
field due to discontinuities in slope between sections of the target, and
creeping wave theory has been applied to determine the scattered field
due to propagation of energy around the target. A solution for the
diffracted field on an axial caustic is presented. An approximate
solution for the scattered field near and at the normal direction to a
conical generator is developed. A 'simplified ray path geometry"
for the creeping wave is presented and related to the scattering by
spheres and prolate spheroids. The H-plane field of the sphere is
calculated using creeping wave techniques for a ray geometry defined
by the Poynting vector at the shadow boundary. The approximate
creeping wave solution for the edge-on backscattering of disks is
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CHAPTER I
INTRODUCTION

A. Components of the Backscattered
Field from a Composite Target

The determination of the backscattered fields of a composite
conducting target is a practical problem of interest. Such a target
which may be composed of smooth surfaces, flat facets, edges, fins,
and cavities presents a formidable problem in analysis. An exact
solution using analytical techniques such as separation of variables
is, in general, impractical for such a target. Thus the usual
approach to the analysis is by summation of solutions for the back-
scatter of the component parts of the target. This approach has
enjoyed good success in determining the major scattering mechanisms
for complex targets. However, previous analysis has been devoted
to specified targets. An approach which will apply to a class of
targets whose individual characteristics may be varied at will is
needed. Several techniques have been developed for the analysis
of the general target. These consist of the point-matching computer
solution, and the wire grid model computer solution. Both of these

approaches yield good results for targets whose electrical size is



small, resulting in a set of N linear equations which are within the
capacity of present digital computers to handle. The "Third Gener-
ation'" computers with their greatly expanded capabilities promise
extension of these techniques to larger targets. However, the time
involved in such computations is great resulting in a high cost per
data point. Thus a relatively rapid and inexpensive technique would
be valuable, especially where real time simulation of radar problems
is desirable. An analysis based upon geometrical optics, and the
geometrical theory of diffraction, is presented herein which yields
approximate results with relatively little expenditure of computer
time. This technique is suited to real time computation for simu-
lation of radar problems.

Thus the task of this study consists of assembling known solu-
tions for the particular scattering mechanisms involved, extending
these solutions where necessary and applying the solutions in the
development of a computer program to determine the monostatic
radar cross section for a large class of axially symmetric targets.
Future problems involved in extending the computer program include
nonsymmetric targets and bistatic scattering. These problems are
discussed briefly and it is seen that such extensions are possible

using the solutions which have been applied to the restricted class



of targets. The objective of this study is to demonstrate the capabili-

ty of these techniques in a practical manner.

B. Description of the Principal
Backscattering Mechanisms

The principal backscattering mechanisms of a composite target
can best be illustrated pictorially. Figure 1 illustrates a composite
target viewed by an interrogating radar signal. The numbered po-

sitions on the target correspond to different scattering mechanisms

Fig. 1--A general target.



on the target which may contribute to the backscattered field. We

divide these mechanisms into five classes as follows:

1. The geometrical optics field

The geometrical optics field results from reflection of the
incident energy at the specular point on the target. The resulting
contribution to the backscattered field may be evaluated using geo-
metrical optics techniques involving the Gaussian curvature at the
specular point. The specular point is defined as that point in the
illuminated region where the surface normal is parallel with the
direction of incident wave propagation.

The geometrical optics field solution fails for some targets
such as the cone, cone sphere junction, and flat plates. For such
targets the physical optics solution is required.

2., Wedge diffracted fields

The wedge diffracted fields result from diffraction at slope
discontinuities on the target. This contribution can be evaluated
using the techniques of the Geometrical Theory of Diffraction
developed by Keller[ 1],

The effects of fins at aspects removed from the normal to the
plane of the fin may be evaluated using wedge diffraction techniques.

Normal to the plane of the fin the techniques of physical optics may



applied. However, the vertices of fins cannot be treated using the geo-
metrical theory of diffraction as the diffraction coefficient of a vertex
is not known.

3. Creeping wave fields

The creeping wave backscattered fields arise from that portion
of the incident energy which is trapped at the surface of the target,
and propagates around the target, eventually reradiating energy in the
backscatter direction. These fields may be computed using the geo-
metrical theory of diffraction and knowledge of the differential geome-
try of the target surface.

4, Cavity fields

The cavity fields are caused by concavities in the target which
may focus energy as for a corner reflector. The point matching tech-
nique[ 2] has been applied to the determination of cavity contributed
fields. In some cases these cavity contributions can be analyzed as
antenna contributions.

5. Antenna mode fields

The antenna contributions are due to antennas on the target which
receive and then reradiate energy in the backscatter direction. These

contributions can be treated using antenna scattering techniques[3, 4] .



It is apparent that an analysis which combines all the scattering
mechanisms listed above would be a truly formidable task. It is the
purpose of this study to treat the contributions due to the first four
mechanisms, i. e., geometrical optics fields, wedge diffracted fields,
fin diffracted fields, and creeping wave fields, for a general convex
second degree surface of revolution.

C. Superposition of the Geometrical

Optics, Wedge Diffraction and
Creeping-Wave Contributions

In order to obtain a solution for the backscattered fields, the
contributing mechanisms and their locations on the target must be
identified, Thus it is necessary to scan the surface of the target to
obtain the specular point, the location of wedges, and the points of
attachment and reradiation of the creeping waves. This portion of
the solution thus deals with the geometrical properties of the target.
In particular, the normal vector to the surface must be calculated in
order to determine the location of the specular point and the attach-
ment and reradiation points of the creeping waves. The normal
vector is also needed to identify the location and included angle of
the wedges. In order to calculate the creeping wave path lengths
the differential arc length on the surface is needed as well as the

principal radii of curvature at each point along the path. The



Gaussian curvature at the specular point is needed to calculate the
geometrical optics field.

Given the geometrical properties of the surface of the target,
the solutions for the scattered fields must next be obtained. The
specular scattered field is easily obtained from the Gaussian
curvature at the specular point. The wedge diffracted fields may
be obtained using the Keller[ 1] or Pauli[ 5] solution for wedge
diffraction and the ray techniques of the Geometrical Theory of Dif-
fraction. However the creeping wave contributions are not easy to
obtain since the complete creeping wave solution is available only
for the cylinder and sphere. The behavior of the creeping wave dif-
fraction and attenuation coefficients and the geodesic ray paths are
not known for a general body. Thus it is necessary to obtain an
approximate solution for the behavior of a creeping wave on a general
surface. The effects of ray path geometry on the sphere have been
examined in order to obtain an approximate simplified ray path for
a general target. Diffraction and attenuation coefficients have been
developed empirically for such a simplified ray path and have been
shown to yield good results for prolate spheroids, ogives, and disks.
The assumption of a simplified ray path on the surface reduces the
computation complexity and allows one to reduce the determination

of the ray path on a general target to a single numerical iteration of



the differential equation for the geodesic on a surface. In addition,
such a simplified ray picture allows one to take into account the
effects of intersections on the surface which have discontinuities in
the first derivative along the ray path. These effects are treated
only in the first order in this study but extension to higher order
effects is straightforward.

The determination of the backscattered fields from a general
target is thus accomplished by utilizing geometrical optics and wedge
diffraction techniques for the illuminated portions of the target and an
approximate creeping wave solution for the contributions from the
shadow zone of the target. A computer program coded in Fortran IV
is the end result of this investigation. This program computes the back-
scattered fields of a general second order surface of revolution using
geometrical optics, wedge diffraction, and creeping wave techniques
for the case of parallel polafization, and geometrical optics and
wedge diffraction techniques for the case of perpendicular polari-
zation of the incident field. The program is suited for on-line simu-
lation of radar problems. This program has been tested for both
canonical shapes and complex targets and the results have been com-
pared to measured data of test targets. Results to date indicate that
the computer solution is accurate to within 3 dB of the measured

data in the regions where the solutions applied are valid.



CHAPTER II
GEOMETRICAL OPTICS

A. Ray Optics

The analysis of wave propagation using geometrical optics is
based upon the assumption that energy travels along straight lines,
called rays, except when modified by reflection or refraction. Or-
thogonal to the ray trajectories there exists a set of equiphase
surfaces, Figure 2 illustrates this orthogonal coordinate set, The
relation of geometrical optics to electromagnetic theory has been
derived by Luneberg 6] through the application of Maxwell's e-
quations and the boundary conditions. For the purposes of this
study a brief description of the methods required to calculate the
scattered fields of interest will be presented here.

In an isotropic, homogeneous medium the rays are straight
lines, and the law of reflection and Snell's law of refraction de-

scribe the behavior of the rays at a boundary.

(1) 8o =083y (Law of Reflection)
(2) Ney sin 8, =Ne€; sin €, (Snell's Law).

where €, ,¢€, are the permittivities of the media.

9
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L (x,y,2) =L,

L (x,y,2)=Ly+AL

Fig. 2--The relation of rays and wavefronts.
Figure 3 illustrates these laws; the incident, reflected, and re-
fracted rays and the normal to the surface at the point of encounter
are coplanar, In the investigation of scattering by conducting bodies
the law of reflection is used, However scattering by penetrable
bodies such as dielectric spheres requires use of Snell's Law.
Such analyses have been performed by Peters and Thomas[ 7],
Kouyoumjian, Peters, and Thomas| 8] , Swarner and Peters| 9] =

and Peters, Kawano, and Swarner[ 10] .
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REFLECTED
RAY

S
INCIDENT REFRACTED
RAY RAY

Fig. 3--Reflection and refraction at a boundary
between two media

In addition to specifying the ray trajectories it is necessary to
account for the amplitude behavior of the field. This is accomplished
by applying conservation of energy within the astigmatic flux tube
depicted in Fig. 4, It is assumed that the field associated with a

particular ray u(£) can be described as

(3) u(t) = Aoe”’ F(1) e K

where
A0 is the amplitude at a reference point,
¢ is the phase at the reference point,

F(£) 1is the spatial attenuation factor, and

o ik is the phase factor .
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CAUSTICS

Fig. 4--An astigmatic ray tube

F(£) is dependent upon the nature of the reference equiphase surface
and accounts for the convergence or divergence of the flux tube in the
direction £. The flux tube depicted in Fig. 4 is used to determine
F(2) as follows. It is seen that the principal radii of curvature of the
cross section do, are p; and p;. The field amplitude at the reference
point Ois taken to be Ay, and the field amplitude at the distance £ is
A. The energy in the wave is proportional to the square of the
amplitude. Applying conservation of energy within the flux tube we

have

2
(4) Adog = A%de = constant
where do is the cross section of the flux tube at £, having principal

radii of curvature p; + £ and p, + £.
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The ratio of their areas can be written as

do _(pa+t2)(pat?)

(5)
do, P1P2

Inserting this result into Eq. (4) yields

(6) F(1) = - St
Ao \(pr+4)(pt1)

The field u( £) is then

(7) u(£) = Agel®o P16 RRE
J(pl+1)(pz+1)
At the locations £ =-p; and £ =-p, the field given by Eq. (7) becomes
infinite, and the ray optics solution fails to obtain the correct value
of u(-py) or u( -p;). These locations are termed ''caustics'' of the
geometrical field. In order to calculate the field at such a caustic
point Kay and Keller| 11] have derived a caustic correction factor,
The derivation of such a correction factor proceeds from a solution
of the scalar wave equation, and will not be presented here. How-
ever, certain results of this derivation are necessary. It has been
demonstrated that in the region away from the caustics the geo-
metrical optics solution is correct if a phase shift of (— —121) is

introduced upon traversal of a caustic line. This phase shift is

accounted for by Eq. (7) if the sign of £ is preserved. If



14

-p, < £ < -py, i.e., the caustic line has been crossed, then

pp1+4 <0, p+4 > 0, and u( ) is

. ey
( 8) u(f) = A, %0 Pa.Pe o
-(p1*+L)(p2+1)
: L
= A, %o P1 P2 T2 ik

(p1+2)(p2t 1)

and the phase shift is apparent.

If a ray strikes a boundary, and is transformed into reflected
and refracted rays with directions specified by the laws of reflection
and refraction the values of Ay, ¢o, p1, and p;, must be determined
for both the reflected and refracted rays. In the general case the
reflection and transmission coefficients are polarization sensitive
except for normal incidence. This polarization sensitivity does not
concern us here as the targets to be treated are conducting bodies.
However, in the case of penetrable bodies these coefficients must be
evaluated ( see for example Thomas[ 12] ).

B. Specular Scattering of the
Reflecting Surface

Consider a ray incident upon a curved surface as shown in
Fig. 5. The two dimensional case is illustrated for simplicity.
The source of cylindrical rays is a point P located a distance £

from point Q, the intercept of the rays and the reflecting surface S.
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Fig.5--Reflection by a singly curved surface

The surface has a radius of curvature rg at point Q, and the angle be-
tween the incident ray and the surface normal at Q is 8. It is now a
geometrical problem to determine using the law of reflection, the
direction and divergence of the reflected rays. In order to determine
the spatial attenuation factor two rays originating at P are used.
These rays have a small angular deviation . Provided the angular

difference da of the reflected rays is small we have

A0, -a) A8+ )
(9) log—2— = p ———— =15 ba
cos Go cos Go
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Upon reduction one has

(10) i S N :
P1 Fe G0B Gy &g

Thus we have obtained the caustic distance p; of the virtual focus in
terms of the local radius of curvature of the surface, the reflection
angle and the caustic distance of the incident ray.

A similar situation exists for the case of a three-dimensional
problem. A three-dimensional problem will involve two caustics of
the reflected ray tube (which may not be coincident) similar to the
case shown in Fig. 6. The same procedure may be used to obtain
the caustic distances by separating the problem into two cylindrical
problems. In this case the two principal radii of curvature of the
surface at the reflection point are required. The principal radii of
curvature may be used in conjunction with Euler's theorem to de-
termine the radius of curvature in a direction which is not coincident
with a coordinate direction as noted in Appendix L

Once the reflection point, angle of reflection and the local
radius of curvature are known the divergence factor can be de-
termined. This information in connection with Eq. (10) allows the
reflected field to be calculated. In a later chapter it will be demon-
strated that these techniques are more generally applicable, specifi-
cally to the case of diffraction by a curved edge in connection with

the geometrical theory of diffraction.
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Fig. 6--Reflection by a double-curved surface,

Consider the situation depicted in Fig. 6. A spherical bundle of
rays originating at P is incident upon a three-dimensional surface S
at the reflection point Q. It is desired to obtain the scattered field
through the use of ray optics techniques., Let the coordinate system
describing the surface be the spherical system (r, 8,¢). The rays

bounding the incident flux tube can be taken to lie in the 6 and ¢
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planes respectively with no loss in generality. Thus the incremental

area of the surface about the reflection point can be written as
(11) do, = r’sin 0 d6 d¢

We may now separate the problem into two two-dimensional problems.

Referring to Eq. ( 10) we may determine the caustic distances in

terms of the principal radii of curvature re, rq) of the surface as

1 2 1
12 N e
e py T cos 8, ¥,

1 2 1
(13) = * o
P2 +® cos %o £

where 0, and ¢, are defined as in Fig. 5 (i. e., they are not polar

o

angles). Thus we may write the reflected (1. e., scattered) field as

1/2

jq)o P1pP2 e"‘jk*e

(p1 +2)(p2t 1)

(14) u(4) =Age

The case of backscatter (i.e., 8, = ¢, =0) results in

: rq)reli) e
(15) u(2) =a e%

(2204 £) (2P0 +0) (20 + %) (225 + 1Y

-1k £
eJk

For the case of an incident plane wave (£, — ®) the far-zone scat-

tered field (£ > > 0) is
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i -jk4
(16) u( L) =A-%e—— \lrerd) )

The spatial attenuation factor appearing in Eq. (15) is seen to be one
half the reciprocal of the square root of the Gaussian curvature of the
surface at the reflection point. Thus the problem of determining the
geometrical optics backscatter from a three-dimensional target re-
duces to the differential geometry problem of the determination of

the Gaussian curvature given in Appendix L



CHAPTER III
WEDGE DIFFRACTION

A. Single Diffraction

Consider the case of a perfectly-conducting wedge illuminated by

a monochromatic plane wave as illustrated in Fig., 7. According to

DIRECT RAY

Fig. 7--Geometrical optics rays for cylindircal
wave incidence on a wedge

the principles of geometrical optics two classes of rays may exist.
These are the direct rays A-B and the reflected rays A-C-B. The

behavior of these rays is determined by Fermat's principle which

20
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may be stated as follows: '""The time elapsed in the passage of light
between two fixed points is an extremum with respect to possible

1Al

paths connecting the points. Or equivalently that the value of the

integral between points P;, P, on a path s

=1
(17) k= S n ds

P,
where n is the index of refraction of the medium, be an extremum.
Keller[ 1] has extended Fermat's principle to edge diffraction in
three dimensions through the following assumption: ""A singly dif-
fracted ray connecting two points is a curve whose length is station-
ary among all curves connecting these two points and having one

point on the edge." As a consequence of this extended principle,

a ray normally incident upon the edge of a wedge generates a family
of diffracted rays which lie in a disc having the edge as its axis.
Also a ray incident obliquely to the edge of a wedge generates a
family of diffracted rays which lie on a cone having the edge as an
axis and a half-angle of the cone equal to the angle between the
incident ray and the edge. These two cases are shown in Figs, 8
and 9. In addition Keller[ 1] has shown that for diffraction in three
dimensions the two-dimensional diffraction coefficients must be

modified to take into account the distribution of energy in the cone

of diffracted rays.
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Fig. 8--Diffraction of a cylindrical wave by a wedge.
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Fig. 9--Three-dimensional picture of the rays
diffracted by a wedge.
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In the geometrical theory of diffraction the use of ray techniques
to describe energy flow is employed in the same manner as in geo-
metrical optics. In fact, the treatment is the same as in geometrical
optics, except for diffraction effects which are caused by discontinuities
of the structures involved. In conventional geometrical optics, illumi-
nation of structural discontinuities causes shadow boundaries about
which the field is discontinuous; its unperturbed value is on the illumi-
nated size of the shadow boundary and the null value is on the shadow
side. A similar situation exists for the reflected rays for which there
is also a shadow boundary. The geometrical theory of diffraction takes
into account the diffraction effect of a structural discontinuity by using
solutions of canonical problems, and expresses the field more exactly
by eliminating the apparent discontinuity of the field at the shadow
boundaries introduced by geometrical optics. In particular, the dif-
fraction by a wedge of perfect conductivity is one of the most important
canonical problems and is the one employed in this research. The dif-
fracted field introduced by the geometrical theory of diffraction is a
cylindrical wave emanating from the edge of the wedge and is de-
scribed by a diffraction coefficient obtained from the solution to the

perfectly conducting wedge problem.,
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For the two-dimensional case illustrated in Fig. 10, the far-
field diffraction for a unit cylindrical wave incident upon a perfectly
conducting wedge is given as a sum of geometrical optics (v*) and
diffracted (vg) rays as[ 5]
(18) u(€) = v (x0r &-a) T v (xg, E+a) + vp( 0, n, E-a)

g vg( X n, E+a) ,

where the choice of signs is determined by the appropriate boundary
condition ( - for u=0 and + for the normal derivative of u=0 on the
walls) and the variables are defined in Fig. 10. The individual terms

are given by[ 5]
Iexp[ jkr cos 6], -r+2mN< ¢< + 7+ 2mnN,

(19) vi(r,4) = N=0,1,2,...
lO, otherwise
and
1 < T 1
= 2 JZ — 3 .11
( 20) vglramé) =177 e (n s n)
[ ®
) 2
X 2| cos(Cb/Z)l eJkr EEE @ e 3T dr 1
T 1
cos;— i - [kr(1+<:os¢>)]‘2

+ [ higher order terms]
where r and ¢ are dummy variables. For large values of
[kr(1+ cos ¢)], vg can be expressed as
T -k
€ : e 7T -YIT sin %

,I‘—— ™ ¢
2w kr COS — - COS —
n n

X[l J7%e) ™ # 5ol

(21) vg(Tiné) =
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Fig. 10--Three-dimensional diffraction by a
wedge of finite edge length.

Using the first term in the asymptotic expansion given in Eq. (21) we

write the diffraction coefficient for plane wave incidence as

. .
- -ik 1
e Jd o JKT n Sin;rl'

JZ‘ITkr COS%—COS%’

The total diffracted far zone field for plane wave incidence is then

(22) D £50P) =

(23 up(r,n, #=[D(r,n,¢") ¥ D(r,n,0")] Yincident
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A detailed discussion of the diffraction coefficient is given in Appendix
Tk

The diffraction of a spherical wave by an edge has been studied
by Oberhettinger[ 13] and also by Nomura[ 14] . Oberhettinger has
obtained the diffraction by an infinite wedge for a point source utilizing
a Green's function technique. Nomura has obtained the solution for dif-
fraction by an infinite wedge for a dipole source. However the two-
dimensional diffraction solution can also be applied to wedge diffrac-
tion of a spherically incident field through the use of ray optic tech-
niques. That is, the magnitude of the incident ray is determined
using the spatial attenuation factor for a point source rather than that
of a line source, and the diffracted field in the plane of the point
source and the normal to the wedge is then obtained using Eq. ( 23).
The determination of the diffracted field in other planes requires an
extension of the two-dimensional solution to the three-dimensional
case. Keller has shown that the extension of Fermat's principle to
edge diffraction in three dimensions results in the multiplication of
the diffraction coefficient by a factor of 1/sin y to account for the

dispersion of energy in the cone of rays illustrated in Fig. 9.
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In addition the source of rays need not be isotropic, but may
have a field pattern in the general case. Thus in the application of
Eq. (23) to diffraction by a source with a nonuniform pattern, the
geometrical optics terms are multiplied by the pattern and the dif-
fraction terms are multiplied by the value of the pattern in the di-
rection of the edge[ 15] . Thus the far-field form of the diffraction
of a source, incident at an angle y with respect to the edge of a

perfectly conducting wedge, is given by

P(£)

(24) E(&) = o -

{V* ( X2 g -a) }

+ P(Zﬂ'g) {V* (xo, g+a)}
sin y

P(&,)

e {vp(xgsn,£-0) e vyl Xgs 05 E4a) iz
where P(£) is the pattern of the line source and §o =7+ a is the
direction of the edge. The phase reference for Eq. (24) is the edge
of the wedge. The pattern of the reflected term is P(2w-§). The
factor 1/sin y expresses the effect of conical diffraction and x is
the minimum distance from the source to the edge.

For two-dimensional diffraction the foregoing technique yields

diffracted rays which are parallel, having been derived for an infinite

edge. This diffraction solution is not valid for a wedge having an edge
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of finite length. However it will be assumed that the diffraction pat-
tern in the plane containing the finite edge is the same as the radi-
ation pattern of a line source of finite length. The line source has

an excitation determined by the diffraction by an infinite wedge. This
assumption takes into account the distribution of energy in three
dimensions of the family of parallel diffracted rays due to an edge

of finite length. The effects of the finite edge upon the radiation pat-
tern in the plane containing the edge are then calculated by consider-
ing a travelling wave on the edge having a phase velocity of (kj cos y).
Ignoring end effects, the radiation pattern in the plane containing the
edge is that of the travelling wave antenna of length £ and phase
velocity (ko cos y). This pattern can be evaluated using the radiation
integral. Thus the total diffraction for a finite wedge shown in Fig. 10

can be approximated as

k £ sin Xo
(25) E(6,£) = E(£)
2 X
where E(£) is the excitation obtained using the diffraction

coefficient, and
kot (cos 8- cos y)
Z

P

This technique has been applied successfully in the computation of the
radiation pattern of a rectangular waveguide using diffraction tech-

niques[ 16] . The use of the diffraction coefficient in combination
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with the radiation integrals allows the determination of the scattered

field in three dimensions for a finite wedge.

B. Diffraction by a Pair
of Wedges

The process of diffraction by a pair of interconnected wedges is
shown in Fig. 1l. It is assumed that an incident plane wave strikes

the edge of each wedge of included angles @; and @,. The incident

. Upi (6)
ol gh Upa(6)

ul(gh

I x

e o ®

/Ilfffl!!!T?f!’!l!l!!!l\l!//

< L \
a,/ %

Fig. 11--Single diffraction by a pair of connected wedges.
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rays are diffracted giving rise to the singly diffracted rays Uy, and
Up,- These rays may be evaluated using the techniques previously
described. In order to calculate higher-order effects an extension
of the geometrical theory of diffraction is applied. Namely, dif-

fraction for cylindrical wave incidence is applied to determine the

interaction between the wedges.

Since the incident waves are plane waves the plane wave dif-
fraction coefficient is used to calculate the singly diffracted rays.

Taking wedge 1 as a phase reference we may write

6 e 1 7 1
(2) UDI( )_n_ISII'ln—l . 91-6
COS — - COS
ny ny
1
3 o 2w-0l- @
cos — - CO§ ———————
nj ny
and
1
(27) T 400 = i :
D = — sin— 0ol
i np nz cos L cos
nz nz
ik . S .
) 1 1 » s e-JkOI cos 6
+ T 0+ 01
COSs — - COS
Ny N,

where (2-n;)w =0,, (2-n3)w =03, S =4 cos 0! and the reference

for the angles ¢',¢+ is the common surface of the two wedges.
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-j +
The factor e j(kr +w/4) /N2wkr is omitted as only angular
variations are of interest. When the angle of scattering (6) is
equal to the angle of incidence (€) as in the case of backscatter,

Eqs. (26) and (27) become,

1 ™ 1 - 1
(28) Uy = = Bin— +
ng By | eed el cos F_ - cos 2W-28
ni ny n;
(29) T = g el !
n, n, |cos M -1 cos ™ - cos 28
n2 nz nz

-jkf cos 8 -jk{f cos 6
e e

Figure 12 illustrates the shadow boundary and the reflected waves
which exist for plane wave incidence upon the pair of wedges. In
the directions of the reflected fields and in the direction of the
shadow boundary care must be taken in the evaluation of the total
field. In these directions a geometrical optics field exists, and
the combination of the terms representing the geometrical optics
field and the singly diffracted field to obtain the total field is
specified in Appendix II. The behavior of the singly diffracted
fields for the case of backscatter when the incident angle 6
approaches w /2 is of interest as it is seen that the expressions

for the singly diffracted fields approach infinity as 6 approaches
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Fig. 12--Geometrical optics rays for a pair
of connected wedges

w/2. 1If the singly diffracted fields are written in the form of real

and imaginary parts, the combination of Egs. (28) and (29) re-

sults in
( 30) Real (UDl + UDz) = cos (kf cos 8)
LT 1 + 1
my e e T - T m+20N\ _ [n-20
cos — -1 2 s1n( )51
ny n, n;
1
+ —— sin-—— - &
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(31) Imaginary (Up, + UDz) = sin (k£f cos 0)
lsin Ll - 4 L
g = - - 20 =20
m Mcos = - 1 Zsin( )sin (Tr )
ny m ny
e 3 ;e 26
1z 2 cos—“—- 1 Zsin( L )sin( -“)
nz n; n,

When the real and imaginary parts are placed over least common
denominators and the limits taken through application of
L'Hospital's rule it is found that the real part diverges while for

{ = 0 - /2 small the imaginary part becomes

(32) Imaginary (Up, + Up,) = sin (k£ sin {)
1 1 - 1
5 = i + =
1 ny Mlcos T -1 2 sin(c’ “) sin(ni)
ny ny 1/ 7
1
" 1 - ™ 1 i 1
—_ 81N —— -
nz 3l sos —— 1 2 sin(Tr g)sin(}—)
n; np n / -

Taking the limit as { — small, Egq. (32) becomes

1 sin(k{ sin {)
2n;  sin (4/m)

{33) Imag (Up, +Up.)

1 sin(kf sin )
2y sin( ¢/np)

il
41

kf for L =0
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Keller[ 1] has examined this problem of determining the scattered
field in a geometrical optics region. He presents a solution[ 1] using
the ""Cross Section Theorem[ 1] " or "Forward Scattering Theorem|[ 15] "
that states that the forward scattering cross section Q is
( 34) Q = 4w /k Imag(£(0))
where f(0) is the scattered field amplitude in the forward (i. e., geo-
metrical optics) direction. Noting that the geometrical optics scat-
tered fields exists only in the forward and back directions, then
Im f(0) is the geometrical optics result. Using this theorem Keller[ 1]
demonstrates that the cross section obtained using single diffraction
may be obtained in this way. He further states that if the geometrical
optics terms are included in the evaluation of the scattered field the
singularities of the singly diffracted field on the shadow boundaries
are cancelled resulting in a finite expression for the scattered field.
The behavior of the total field on the shadow boundary is discussed in
Appendix IL The proper combination of the diffracted and geometrical
optics fields results in continuity of the field across the shadow bounda-
ry.

The cross section theorem expressed by Eq. (34) yields the

geometrical optics cross section if the imaginary part of the singly

diffracted field is known. This imaginary part of the field is obtained
o

e~)4
N 21k

the diffraction coefficient. The backscattered field in the specular

using the result of Eq. (33) and re-introducing the factor from
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direction by a body of revolution having the profile shown in Fig, 11,
may be obtained using the above results and the spatial attenuation
factor, The geometrical optics backscattered field in the specular
direction may thus be written as

F =k
(35) E( =E> i Nr—kl eIt e r(n)
2wk NT

where F(r) is the spatial attenuation factor. An approximate solu-
tion for the spatial attenuation factor for a conical generator is
presented in Appendix IIL. In the region close to the specular
direction the sin (x) /x pattern behavior indicated by Eq. ( 33) may

be used.

C. Multiply Diffracted Rays

Another class of rays which are of interest are the multiply-
diffracted rays. An example of multiple diffraction may be found
in the analysis of parallel-plate waveguides by Ryanand Rudduck| 18]
and in coupling between parallel-plate waveguides by Dybdal, Rudduck

and Tsai[ 19]. Figure 13 illustrates the doubly-diffracted rays
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Fig. 13--The multiply diffracted rays for a
pair of connected wedges.
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UDle (8) and Up,(8). These rays arise when a singly diffracted
ray is incident upon a wedge and is itself diffracted. In the case de-
picted in Fig. 13 the doubly diffracted rays may be expressed by as-
suming that the singly diffracted rays are cylindrical rays emanating
from the edge of the wedge. Using the wedge diffraction coefficient

for cylindrical fields we may write

( 36) Upgpi (8) = Up (O vE(£,ny, o) F vp(£,ny,61)]

and

(37) Up,pp( @) = Upy (1) [vg( £, 0 65%) # v (£,0p,0F)]
where ¢{)=¢?1=1r-0
¢oF =1 =8

For spacings between the wedges on the order of two wavelengths or
less the doubly diffracted rays are significant as has been demon-
strated by Ryan and Rudduck[ 16] , and Dybdal, Rudduck and Tsai[ 19].
It is noted that, just as the singly diffracted rays correct for the
discontinuities in the geometrical optics field which arise in the
directions of the shadow boundary and reflection boundaries, the
doubly diffracted fields correct for the discontinuities in the singly
diffracted fields. Thus it is seen in Fig. 13 that the singly diffracted

fields UD1( 8) and UDz( 8) have shadow boundaries at €= w and 0
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respectively. This process continues ad infinitum, that is, the
triply-diffracted rays correct discontinuities in the doubly-diffracted
rays and so forth. Yu and Rudduck| 19] have formulated a "Higher-
Order Diffraction' technique which allows the effects of all orders of
diffraction to be calculated. This self-consistent behavior was first
described by Karp and Russek[ 20] . This technique is a self-con-
sistent field technique which generates a system of linear equations.
This process can be illustrated using Fig. 13, where it is assumed
that the total field diffracted at each wedge can be expressed as the
singly diffracted field plus the diffraction field due to all higher

orders of diffraction in the form

(38) Upy(8) =D, (8)U + Vg( £, ny,1)Up,(0)
and
(39) Up,(8) = Dy(0) U + V( £, nz éz) Up, (m)
where
( 40) $; =7 -0

b, = 0

In Egs. (38) and ( 39) the known quantities are the diffraction coef-
ficients D1(0), Dy(0), Vg(4,n1,41), Vgl £,n,,9). Setting 6 equal

to m in Eq. { 38) and setting 6 equal to zero in Eq. (39) results in
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(41) Upy(m =Di(mU*+ Vg(£,n1,0)U (0)
( 42) Up,(0) =Dz(0) U + V(£,n,,0)Up, (m)
where
(kL +7/4 (
ik m/4) : ; X
(43) Di(m) = — sin — ] :
NI 1
2t ny N |cos - - cos T=8
m ng
sl g gl (
il w/4) ) ; : l
(44) Dy(m) = —==5him, Sy
V 2mkd N2 N2 |cos = - cos Ql_ J
™ n2

ol £ 0,

A set of two equations in the two unknowns Up, (m), and Up,(0) is
determined, thus a solution is obtained for the total diffraction pat-

tern
(45) Uiot( ©) = UDI( 0) + UDz( 0)

This form of solution can be extended to the interaction of any
number of wedges. In most cases of interest it is not necessary
to proceed past the evaluation of the doubly-diffracted fields in
order to obtain a satisfactory solution. However the higher order
diffraction solution is nearly as simple as the evaluation of the

doubly-diffracted rays and is thus the best technique in general.
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D. The Effects of Edge Curvature
on Diffracted Rays

In the examples of diffraction above only the case of a straight
edge was discussed. In order to apply the wedge diffraction coef-
ficient to more general cases it is necessary to describe the behavior
of the incident and diffracted rays for a curved edge. This has been
done by DeVore and Kouyoumjian[ 21| and Ufimtzev[22] for the
circular disk., It is assumed that in the case of the circular disk
shown in Fig. 14, the points of diffraction which contribute to the
scattered field in the x-z plane are located at & =0, w. It is further
assumed that the diffraction coefficient for the infinite edge given
previously can be assumed to be valid at points 1 and 2. This as-
sumption is consistent with the property of diffraction being a local
phenomenon. The effects of curvature on the behavior of reflected
rays has been described previously. This analysis can be extended
to diffracted rays using the extension of Fermat's principle. Refer-

ring to Fig. 15 we have, after Kouyoumjian| 23]

(46) cosf = §- ¢t , 0SSP <
AA
-sin®'= i+ n g —ESQ'SEE
2 2
A A
cos & = d°* n , ~m<&< T
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Fig. 14--Diffraction by a circular disk.
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Fig. 15--Vector relations for diffraction

by a curved surface.
A A A .
where t, u,b are the tangent, normal, and binormal vectors of the
edge with the tangent and normal vectors in the plane of the screen,
and where i, é, are the directions of incidence and diffraction. The
half cone angle of the diffracted rays about the positive tangent is f,

The distance p between the edge caustic and the second caustic is

given by Keller[ 1] as

(47) pr = -p, sin"B/(poB sin £ +cosy) .
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Kouyoumjian[ 23] has given this relation in the form

A A
(48) i_i_ n~(1-3)
p L Tp,_sin?p
Q
where PO is the radius of curvature of the edge at Q.

In the case of the circular disk shown in Fig. 14, the caustic

distances py, pz, can be obtained from Eq. (48). For an incident

plane wave {£; becomes infinite, and for backscatter § = w/2.
Thus
( 49) 1 _ sin 6+ sin 63 1 _ _ sin 8+ sin 6g

P2 z P2 a

The negative value of p; means that the caustic is between the edge
and the field point. Thus the scattered rays pass through the caustic
and a phase jump of /2 is expected to occur at the caustic, This is
automatically accounted for by the negative value of p,.

Equation ( 48) in combination with ray optics thus allow the
determination of the effects of edge curvature upon the diffracted rays.
Assuming that the edge diffraction coefficient may be applied at each
point along the edge the diffracted fields of a curved edge may be

calculated.
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E. Correction for Axial Caustics

In the case of diffraction by a circular aperture or circular
disk for an axially incident plane wave each point on the edge con-
tributes to the scattered field on the axis. Thus an infinity of dif-
fracted rays converge on the axis creating a caustic, This effect
is also present for the case of diffraction by a slope discontinuity
on a body of revolution. In the case of the circular aperture the
axis is also the direction of forward scatter and for the case of the
circular disk, the axis is the direction of specular reflection. The
forward scatter theorem| 19] allows the determination of the fields
in the geometrical optics regions if the diffracted field can be ob-
tained. Keller[ 1] has derived a 'caustic correction factor" using
an asymptotic solution of the scalar wave equation. By comparison
of this solution with the divergent result calculated using the dif-
fraction coefficient and ray optics, he has obtained a correction
factor which, when multiplied by the diffraction solution yields the
correct solution. This correction factor for a caustic on the z-axis
is

(50) Corr =%(anp sin 6) va secC [kp sin 8-(n+%)g]

J(kp sin 6)
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where p = r sin 6. If the solution is desired on the caustic (p = 0),
the diffraction solution is first multiplied by the correction factor
and the limit as p tends to zero is taken.

Another procedure for obtaining the field on the axis in the
geometrical optics region of the circular aperture or disk is to use
the equivalent physical optics fields over the aperture (or on the
disk) and evaluate the radiation integral for these fields. The case
of interest for backscatter is that of backscatter by a circular disk

of radius a, which results in the well-known formula

(51) ES

Ea 2J1(2ka sin 0)
Srs=== cos 6
2 ( 2ka sin 6)

The case of axial backscatter by a slope discontinuity on a
body of revolution can be treated using a combination of diffraction
theory and the radiation integral. The diffraction coefficients are
used to specify the diffraction at each point on the ""ring' and the
radiation integral is used to sum these contributions. In order to
obtain the individual contributions at each point the incident wave is
decomposed into tangential electric and magnetic fields in the x-y
plane at the edge of the ring shown in Fig., l6a, Taking the plane
of incidence to be the x-z plane we have for the {I}::I } incidence plane

- cos 0 sin ¢! . .
e 1 .

(52) E¢l _ ( e_]ka sin € cos ¢ ri
.l+ cos ¢'




Fig.

(b)

16--Coordinates for the ring source
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- cos ¢'
(53) H‘bl = e
- cos 8 sin ¢! H plane

jka sin 6 cos ¢' Hi E plane

Applying the diffraction coefficient to these tangential components of

the incident field we obtain for the scattered fields at the edge of the

ring
s - cos B8 sin ¢' .
( 54) Ey = [va(rim¢7) - vg(r,n,¢*) ] E
cos ¢
jka sin @cos ¢'
e
- cos ¢' .
5§ - - + i
(55) S [vg(rim ) +vplr,n g H
-cos 8 sin ¢'
ejka sin 6 cos ¢'
where LIJ+ =7+ 25 cos™! '/‘}'i . 4\1)
¢~ =0
A . . .
vi = incident unit vector
a = unit normal to the surface
1 it 'Q’i X1 is -/}\r directed
s = .

A A A
-1 if -v; Xn is +y directed

The scattered fields obtained using the diffraction coefficients can be
related to equivalent electric and magnetic currents at the edge of the

ring using the asymptotic form of the diffraction coefficients and the
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far fields of electric and magnetic current filaments[24]. For z-

directed filamentary currents we have

K
=J4 .

E -ZokIe - A e‘JkP

' N 2mkp

( 56) E

T
"4
2N 2wkp

_ m -jk
(57) H, = -YgkI e J%P

where Z, and Y, are the impedance and admittance of free space
respectively., Equating Eqs. (56) and (54), (57) and (55), and

using the asymptotic form of the diffraction coefficients given in
Eq. (22) results in
5 -cos O sin d)'l
= +
(58) I° = - = [G(n,47) -G(n, 4 )]
Zk cos ¢! J

. . . 8
oJka sin Ocos ¢ gl

i 5 -cos ¢! ]
(59) I = -5 [G(n, 4 7)+G(n, 4D ] :
s -cos 9 sin ¢>'l

ejka sin @ cos ¢' Hi

L
e—J4 -jkr
here D(r,n,y) = - G(n, ) 5
v N 2nkr

These equivalent currents on the edge of the ring apply to the diffracted

fields only and do not include geometrical optics terms.
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Richmond[ 25] has presented the radiation integrals for an e-

lectric current loop of radius a as

2w
( 60) Eg= - M e'jkro Sle(q,n) sin( $-4')
41rr° 0
ejka cos($-¢')sin O o'
2w
(61) Eg = - i‘:’:‘: e IKTo S I°(¢') cos(¢-9')
° 0
ejka cos(d-¢') sin 6 o'

We may apply the Duality Theorem to obtain the radiated fields in

terms of the magnetic current (I") rather than in terms of the e-

lectric current (I€), with the result

2w
(62) Ho= - 1202508 3 -jkrg {141 sin(o-0)
o 0
ejka cos($-¢') sin 6 do’
= -YOEd)
2m
(63) H, = - 22 B0 (1™ cos(e-)
© 0
ejka cos(¢-¢') sin 6 o

= YOEG
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In the case of backscatter close to the z-axis 8= 0" with 6 small, and
+ N N 3 . :

we take y = mw-2 cos-1l(z r/ﬁ (i. e., 8= 0) in the diffraction coef -

ficients. Substituting the edge currents given by Eqgs. { 58) and ( 59)

into the radiation integrals we determine the backscattered fields.

After some manipulation we obtain for the E-plane,

(64) Eg = -jaE! e;jkr {-cosz 8[ G(n, ¢ ") -G(n, y*) ] J‘u( !
+[G(n,¢7)+G(n, ") ] [J‘(u’ —Jz(u)]

and for the H-plane,

G5 H<1S> = -jaE!l o ~Jkr +c0s26[ G(n, 4 ")+ G(n, )] Jlu(u)

J
- [G(n,4) -Gln, pH) ] [% i Jz<u)]

where u = 2ka sin 0
For backscatter on the z-axis (i. e., on the Caustic) we have

e-jkr

(66) Eg = -jaEi G(n,¢™)

T

Thus, in the case of backscatter Egs. (51) and (66) allow the

computation of the axial scattered field due to a "

ring' slope
discontinuity. A similar integration could be performed for non-

circular slope discontinuities.
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If the z-axis is a geometrical optics region we must apply the
cross section theorem{ 1] in order to obtain the axial scattered field,
and thus determine the equivalent currents on the ring. In order to

do this we combine the integrals of Eqs. ( 60) and ( 63) to obtain for

the E-plane,
2w
5 _ ja -jkr 2 : s :
(67) Eg=-— e cos“ 0 sin ¢' sin(¢$-0')
2wr
0
1 _ 1 ejka sin 6cos ¢
cos =~ -1 cosI-cos"+Zc’
n n
1 1
+ cosd'cos(d-9') et
™ T w+ 20
cos — -1 cos— -cos—==
n n n
5 . i i . '
eJka sin Bcos ¢ eJka sin 6 cos($-9') d¢'}
where ¢ = sin'l( sin O cos ¢') .

Expressing the diffracted fields in terms of real and imaginary parts

and applying the cross section theorem[ 1] results in

2w
j 2 1 1
(68) ES =2 gikro S‘ -cos? 0 sin%e’ -
enr 0 cosT-1 cos® -cos————g—"+Z
n n n
1 1 . . ,
+ cos¢’ - + TFIT sin( 2ka sin 6 cos ¢')
cioE == 1 cos% - cos

do!
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Taking the limit as 0 — 0, and performing the integration results in

_J-kaz e—jkro
2 To

( 69) Eg =

Which agrees with the physical optics on-axis result for a disk given
by Eq. (51). The physical optics solution is accurate within 3 dB

for a/X > 0.5[23].

The scattered field predicted for a ring, as given by Eq. ( bb),
may be in error if higher-order diffraction terms are significant.
However these terms can be evaluated and their contribution computed
in the form of Eq. (66).

A particular case of interest is where several "rings' contri-
bute to the near-on-axis field., Such a case is illustrated by a cylin-
der, or by a conically capped cylinder. For the case of the cylinder
the specular return from the flat end would te dominant, and the
contribution of the rear "ring' can be neglected. In the case of the
conically capped cylinder, the contribution from the cylinder end
can be significant with respect to the contribution from the "ring"
formed by the cone-cylinder junction. In such a case the total field
is the sum of the individual contributions of the '"rings', In
evaluating the contribution from each ring the integration limits
must define the illuminated region. Thus in the case of the rear

"ring" of a cylinder these limits would be . For "rings'" of

I E|
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radius a separated by a length £ as illustrated by Fig. 16b the scat-

tered field is then

S _ .S 1 -j2k!f cos 8 _g
( 70) E§=Eq ,*+5 ¢ E§ ,

where the subscripts 1 and 2 refer to the front and rear rings re-

S

spectively and E7 |
0,i

is defined by Eq. (64), and the phase reference
is at the front "'ring" .

If the on-axis field is desired, the limit of Eq. (70) as 6 —~ 0
may be taken. Equivalently, the incident field specified by dif-
fraction along the shadow boundary (i e, , .;_ Ei) may be used and
the integration limits extended to 0-2w. In the second case it is
necessary to evaluate the scattered field at a small angular distance
from the axis in order to avoid higher order diffraction from the
Eremt, Yacing™ .

If the radii of the rings differ, as for a conical frustrum, the

contribution of the second ring must be evaluated using an integration

over the illuminated portion of the ring.



CHAPTER IV
CREEPING WAVE ANALYSIS OF
BODIES OF REVOLUTION

A. The Creeping Wave Concept

The concept of creeping waves was introduced by Franz and
Depperman| 26, 27] for the interpretation of the scalar solution
for diffraction by a circular cylinder or a sphere. Senior and
Goodrich[28] have obtained a representation similar to that of
Franz and Depperman through the application of the Watson trans-
formation to the Mie series solution for the sphere,

Kouyoumjian[ 29] has presented a creeping wave solution for the
sphere which includes all higher-order modes.

A general illustration of the creeping wave format is shown
in Fig., 17. An incident plane wave is diffracted at a point of
tangency (designated A) on the target. A portion of the diffracted
energy is trapped at this point, resulting in a wave which propa-
gates on the surface of the target, shedding energy by radiation
as it progresses. Finally, this wave reradiates at B in the scat-
tering direction of interest. This '"creeping wave' can thus be

described by diffraction coefficients at the points of diffraction and
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Fig. 17--General concept of the scattered field
due to creeping waves,
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reradiation, by an attenuation factor to account for radiation losses,
and by a description of the ray path geometry on the target traversed
by the creeping wave. Thus we write, a2 general form for the creeping

wave scattered field as

B
( Y('s) ds
(71) E§W=DADB G(s) ¢ “A
where Eiw is the creeping-wave scattered field

Dp  is the diffraction coefficient at A

DR is the diffraction coefficient at B

Y(s) 1is the creeping-wave propagation factor

s is the arc length along the path

G(s) is the convergence factor for the surface rays.
The primary task is the determination of these diffraction, attenu-
ation and ray path factors for a general body. However this does
not appear feasible. Thus it is necessary to evaluate these factors
for canonical targets whose exact solutions are available, i.e., the
cylinder and sphere. In order to obtain a more general solution
for these factors it is necessary to utilize experimental data to
obtain an empirical solution for more general targets such as the
prolate spheroid. It is the purpose of this chapter to examine

both the exact and empirical solutions for the sphere in order to
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formulate a solution for the more general target. It will be demon-
strated that a rather simple approach yields accurate results for a
large class of targets.

The form of the simplified creeping wave analysis desired is
such that the convergence factor expressed in Eq. (71) may be taken
equal to unity, i. e., no convergence or divergence of rays need be
considered. In addition, it is desired to evaluate the creeping wave
contribution due to all creeping waves by evaluation of Eq. (71) for
a single equivalent creeping wave. The simplified analysis thus
uses a single equivalent non-divergent (or non-convergent)
creeping wave to construct the approximate solution for the scat-
tered field. In order to demonstrate the validity of the simplified
creeping wave solution it is necessary to identify the major creeping
wave contributors in existing creeping wave solutions. Consequently
the surface fields of a target, for which the exact surface fields are
known, has been examined. In particular, the solution of interest is

that for the sphere.



59

B. The Creeping Wave Solution
for Scattering by a Sphere

The analysis of the scattering by a sphere has been one of the
most important problems in electromagnetic theory. The classical
solution of Mie using separation of variables and series techniques
is the basic starting point for casting the exact solution into the
asymptotic form on which the creeping wave format is based. The
analysis of Senior and Goodrich[ 27] is an illustration of this adaption.
A recent paper by Hong[ 30] gives a derivation which is more closely
related to the geometrical properties of the ray paths, deriving the
attenuation and diffraction coefficients based upon the properties of
the ray paths from the exact solution. Hong's analysis yields the
higher-order correction terms for the cylinder and sphere but is not
applicable to more general bodies. Hong restricts the ratio of radii
of curvatures in the propagation and orthogonal directions to be less
than or equal to unity, This restriction limits his analysis to the
cylinder and sphere. Keller and Levy[ 31, 32] have also treated this
problem. Kinber[ 33] has developed a general technique using a
""semi-geodetic' ray coordinate system which applies to bodies of
revolution and has used this technique to develop a creeping wave

analysis of the spheref 34] . Moreland, Peters, and Kilcoyne[ 34]
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have adopted a different approach which is empirical in nature and
utilizes a simplified ray path geometry. These solutions and their
adaption to more general targets will be discussed briefly.

The analyses of Kouyoumjian[ 29] and Hong[30] are based upon
the concept that the incident energy is diffracted at the shadow bounda-
ry, and a portion of this energy becomes attached to the surface of
the sphere. This trapped ( or creeping) wave traverses the sphere
on a geodesic (a great circle route) specified by the direction of the
incident ray shedding energy tangentially as it progresses, finally
contributing to the backscattered field as depicted in Fig. 18, The
great circle paths are assumed to intersect the back point of the
sphere, forming a caustic at that point. A consequence of this ray
path picture is that in the directions of axial scatter a line caustic
is formed. In the analysis of Keller this requires the evaluation of
a ""caustic correction factor' for axially scattered fields. Also this
picture does not account for the magnitude of the field in the minor
creeping wave plane as noted by Kazarinoff and Senior[36]. In
each of these analyses the results for the echo area of the sphere
are in good agreement with the exact solution. The diffraction
and attenuation coefficients derived by Keller and Levy[ 31,32] are

carried out to first order while the forms given by Hong[ 30] and
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Fig. 18--Creeping waves on the sphere.

Voltmer[ 37] incorporate higher-order correction terms. A com-

parison of the results of Keller and Levy[ 31, 32] and Voltmer[ 37]

is given in Table I which has been prepared by Voltmer| 87

An approach to the general formulation of the creeping wave

paths on bodies of revolution has been developed by Kinber| 851 -

Kinber has shown that the wave equation may be expanded in a set

of ""ray coordinates' in which the solution can be written in a form

whose magnitude is dependent upon the cross section of the ray tube
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and whose phase is dependent only upon the propagation constant and
the path length traversed. In particular he seeks a solution of the
form

(72) w= e Ewig-g, n-1)

where £, {, n are the ray coordinates. In the case of the sphere the

ray coordinate system obtained by Kinber [34] is shown in Fig. 19.

P
GI // l T)I:CG
L =cF+PF
/ L'-ce+6Q
Q S =4.6Q0

Fig. 19--The ray coordinate system developed by Kinber.
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Here it is seen that the ray path does not intersect the back point but

is instead tangent to a cone whose cone angle can be written as

(73) P, = sin~! (m/ka)

for a source field having an SR azimuth dependence. The cone
angle is dependent upon the mode order (m). The analysis of Kinber
for an arbitrary incident field requires a summation of modes. As
the ray coordinates used for each mode differ the task of constructing

the surface field at a given point on the sphere is formidable. For

the case of plane wave incidence of the form
Heg, cos ¢' ik(€ -n")
2 e
(74) ( ) = -( )K P} e
Eo sin ¢' (€' -7")
the analysis for the scattered field is simplified resulting in a solution

for the scattered field of the form

: 2 3k
) (H§)=<P) ¢ CoNacos b el[k(g+g,)_3_Y3 %]
2

E¢ m NTMh( € - 1)
0
Vl Z, Yl’
@D
where p,m are electric or magnetic dipole moments
respectively
h is the distance to the observation point

Y =kh/M, Y'=kh'/M
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This solution is similar to that of Kouyoumjian[ 29] and
Hong[ 30] , the primary difference being in the ray path geometry
used. A complete discussion of this solution is given by Kinber[ 34].

To date the above solutions have not been applied to the task of
determining the surface fields on the sphere. Kazirinoff and
Senior[ 36] have attempted to apply creeping wave theory to calcu-
late the major and minor axis surface fields. While the agreement
in the major axis is good, the minor axis fields have not been
satisfactorialy calculated.

The empirical approach adopted by Moreland, Peters, and
Kilcoyne[ 35] utilizes the known E-plane field to determine
appropriate attenuation and diffraction coefficients. This approach
is of interest in that it lends itself to extension to more general
targets. It proceeds by assuming that the surface field shown in
Fig. 18 in the shadow region of the sphere can be represented as

the sum of two creeping waves as
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(76) Hy =H %_(jko‘“ ag) a(w/2 - 6)
(o]

+e4ﬁo+%>awm+eﬂ

and the radial electric field may be written as

) Ep =B E'(jko +a;) a(w/2 - 6)

_ewﬁo+%>avm+ed

Now H, and E, are chosen to match the exact solution as closely as
possible for some value of kja. A value of kja = 10 was chosen.
Then, assuming ag to be modified by a constant from the value of that

given by Keller and Levy[ 32] for the cylinder, one obtains
(78) @iy =0 84 al”

in order to fit the curves of Fig. 20.

It is seen that fields of the form given in Eqgs. (76) and (77)
are a reasonable approximation to the exact fields. The back-
scattered fields due to the creeping wave may be written as

j ] -jkaR
-j2k -(jk_ + jko
{7 Ez = inDZSe Jetsed o (jk, + ag)ma e
R

where R is the observation distance from the center of the sphere.

The magnitude and phase of the creeping wave obtained using Eq.

(79) can be compared to the magnitude and phase of the exact
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creeping-wave fields obtained by subtracting the specular point contri-

bution of the physical optics term from the exact scattered fields; i. e. ,

exact exact 1 a
80 E =E k.a) + = s
(80) o (ko2) j2koa/) 2

where the factor e-JkoR /R has been suppressed. The value of D?‘S is
adjusted by a constant to agree with the exact backscattered fields for
1

: 2, S 2
a radius of 1. ON. The form of Dy is also modified by a factor of A% in

order that Eq. (79) be dimensionally correct, resulting in

_J'TT/IZ

2
3

1
(81) D?-S=0.27p?>\ e

The magnitudes of the exact and approximate creeping-wave com-
ponents as a function of radius are compared in Fig. 21 and their
phases are compared in Fig., 22. The agreement is good for a wide
range of kya values.

Moreland, Peters, and Kilcoyne[ 35] have also applied this
form of solution to the problem of bistatic scattering in the E-plane
with excellent results,

The analysis of Moreland et. al. [35] is a simplified creeping
wave analysis. It uses a single non-convergent (and non-divergent)
ray path together with approximate diffraction and attenuation co-

efficients to construct an approximate solution for the scattered field
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due to creeping waves propagating in each direction along the ray path.
The path chosen is the path traversed by the "major' ray (i. e. the path
corresponding to the E-plane of the sphere). This analysis suggests
that an approximate picture of scattering by a sphere can be con-
structed by neglecting the creeping waves which have a radial
magnetic field (i. e. the ""minor' creeping waves) and by considering
only the creeping waves which have a radial electric field (i. e.

the "major'" creeping waves).

The analyses outlined above do not allow the determination
of the fields in the minor axis because of the ray geometry
which has been assumed. The analysis of Kinber [34] may allow
such a calculation but this has not yet been performed.

A new approach to the determination of the ray paths and the
surface fields on the sphere is considered here. It will be assumed
that all the modes may be lumped into a single traveling wave or
that only a single mode is dominant. In order to determine the path
followed by such a creeping wave the results of the exact Mie series
solution are used to compute the real part of the Poynting vector

at the shadow boundary, i.e.,
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It is assumed that a creeping wave originating at a point on the
shadow boundary (m/2,¢) propagates in the direction of Real (S)at that
point and thereafter follows a great circle route around the sphere,
The result of such an assumption is shown in Fig. 23 where it is

seen that the ray paths do not intersect the back point of the sphere,
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and indeed miss the back point by varying amounts. In addition to
the ray paths the creeping wave fields have been calculated along

the ray path in the form

2 )4
(83) Hew = (Hg cos ¢)1r/2' e e = - (1)

$
where the factor cos ¢ accounts for the tangential component of the
incident magnetic field at the shadow boundary and where the exact
0g is used and { is measured along the great circle specified by the
Poynting vector. The calculations were performed using a computer
program. For the case of the ka = 10 sphere the intersections of the
ray paths in the ¢ = 0°, 90° planes have been plotted in Figs. 24 and
25. In addition the angles at which the ray paths cross the axes
are plotted in Figs. 26 and 27. As seen from Fig. 23 the Heplane

magnetic field can be written as

-(jko *+ ag) 4

(84) Hg=H,cos ¢ F(L) e sin 6

where & is the angle between the ray and the H-plane and where
the attenuation constant ag is the attenuation constant for the
"hard'" sphere given in Table L Using the intersection and angle
data from Figs. 25 and 27 it is possible to determine F({), £, and?®
for each ray which intersects th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>