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Radiation of a Hertz Dipole Moving

around a Conducting Sphere

John Lam

ABSTRACT

An exact expression is obtained for the field of a horizontal
Hertz dipole moving around a conducting sphere in a circular orbit.
This expression is in the form of a double series which, in the case
of a large sphere, is evaluated by the method of Watson transformation.
The geometrical optics field is separated out and its properties
examined. It is found that the incident and reflected waves are of

di fferent frequencies.




2.

l. Introduction

The problem of wave scattering by a spherical object occurs in
many branches of scieuce and engineering. In the majority of cases the
source of the wave is fixed relative to the sphere. A rigorous solution
is in general obtainable by the method of separation of variables,
giving the scattered wave as an infinite series of eigenfunctions. If
the radius of the sphere is large compared to a wavelength of the inci-
dent vave, the convergence of the series is very slow. The method of
Watson transformation is then applied to convert this series into a more
rapidly convergent series of "residue waves". This method of solution
can be carried over, with only minor extensions, to problems involving
moving sources. In this work we calculate the radiation field of an
oscillating electric dipole revolving around a perfectly conducting
sphere. This problem is an idealization of the situation of a transmit-
ting antenna carried by-an artificial satellite in an orbit around a

planet.

2. The Hertz Potential

We set up a spherical polar coordinate system whose origin coin-
cides with the center of the conducting sphere, the radius of the sphere
being b . The oscillating electric dipole revolves in a circular orbit
of radius a in the x-y plane, givenby r=a>b , 08 =1/2. To
simplify the problem we assume it to be polarized in the z-direction.
Without further loss of generality we can write down its electric polari-

zation as follows:
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P(r,t) = BE—— §(r-a) 5(0 - ) &(¢ - at) (2.1)
=E resin 0 = 2 E.‘

where p 1is its electric dipole moment, ? its frequency of revolution
around the sphere, and ER its proper frequency of oscillation increased
by the dilatation factor (1 - 0232/c2)-1/2.

To find the field of the moving dipole we first calculate the Hertz

potential [(r,t) which satisfies the vave equation

2 P(r,t)
(v¢ - 42 n(pe) = - == (2.2)
c2 31;2 =& eo

Because of our particular choice of the polarization this is really a

scalar equation with

Mr,t) = Mmz,t) e, (2.3)

The angular delta-function 6(¢ - Qt) is a periodic function and has the

Fourier series representation

§(¢ - at) = _ila-.;_ z eim(¢-m) (2.4)
oo Y

Putting (2.4) in (2.2) and expanding

o 1m¢-—:l(m°+ mQ)t
Mz,t) = ] N (r,0)e (2.5)
MBego
we obtain the equation
2 2
1 9 1 ] 9 m 2
= r+ = 8in 9 =— =« =——— 4+ k° | (r,0)
T ar® r2sin 0 ¥ _ ¥ +2s1n% e L
= - —Lz- 8(r-a) §(0 - %) (2.6)
2ne°a




For convenience we have defined the quantities
mm-wo'O-mﬂ - km=k°+mK

k°- tuo/c : K = Q/c (2.7)

To solve equation (2.6) we divide the whole space into regions 1 and

2 according to r <a or r > a , respectively. In these regions the

solutions of (2.6) are

“;(1‘.9) = ‘}:o A hil)(kma) Jz(kmr) P’:(cos Q), r <a
(2.8)

ni(r,O) = !.ZO B, Jz(kma.) hil)(kmr) P‘:(cos @), r>a

II:'l is chosen to be finite at the origin, and Hﬁ satisfies the radiation

condition at infinity. The constants A!.m and Bl.m are determined by

1 2

the boundary conditions™ on the sphere r=a . First NI and 1T are

continuous across the boundary, and e get

A, = B (2.9)

Second ve integrate both sides of (2.2) over the volume of a flat pill-
box of infinitesimal height bounded by the surfaces r = a - ¢ and

r=a+ ¢ . The second term on the left~-hand side gives negligible con-
tributions since N(r,t) is continuous across r = a . Using the Gauss

divergence theorem on the first term, we get
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. ” e%sin @ d0 ag [5% M2(e0t) | upye - 5= Hl(g,t)lr”‘_e] (2.10)

The contribution to the surface integral from the side of the pill-box

is negligible. On the other hand the right-hand side of (2.2) gives

ek
o

J‘ P(r,t)

i

2 - wot "
- [[ePotnoaw—Bre T se-Daw-m)  (2a1)

€ a
o

Comparing (2.10) and (2.11) we have the boundary condition

9 .2 ) 1
or i (-I:-‘t)lr-a-fe T or u (L’t)lr-a-e
. -iwot ¥
= —L-E e 5(e - -2-) 5(g - at) (2.12)
€ a

The right-hand side can be expanded into a series of spherical harmonics

by means of the orthogonality relation

' 1(m'm' )¢
J P’:(cos Q) Pl:.(cos Q) e an

L L+ m|)! '
o Hﬁ‘i’% Spar Syt (2.13) :

The result is as follows:
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-—Pe Yo 60 - 3) 8(9 - at)
e, 8
® f imf-iw t
--bs ] '21’:;—1' ((:: : )): PT(O) P':(cos Qe B (2.14)

c°a2 L=0 m=-2

Putting (2.5), (2.8), (2.9) and (2.14) into (2.12) we get

A ® ,;;Le: (2041) BetoHdt PhO) 1k lm| € 2
(2.15)
= 0 |m| > ¢
Here use has been made of the identity
3,2 1 (@) - g3 V) = L5 (2.16)

Hence we have

T (z,t) -
P t=|m|)!
( 2( )) L zzo mz-z (242) 13fanyt 7 (©) 15
nr,t

imf-iw t

h:]')(kma.) 3,0, r)
X P:(cos Q) e n (2.17)

3,0k 8) hil) (k_r)

We notice that the frequency spectrum of n(_x; ,t) consists of discrete lines

at um- w°+mn
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3. The Incident Field

The incident electric and magnetic fiells are derived from the Hertz

potential according to the equations

inc inc

E T  =9x(vxl) , cB = L

ot

o

vx 1 (3.1)

In what follows we only need to know the radial components. These are

given by

cB:"uc - 11 n
r re

ine [sinO 3> 2.cos 03 , 800 3

r "Tr wWw-_r o’ T2 %
Lm0 1 2 ,1n°_:a.-_1__af)]p (3.2)
2 " sln 690 90 5in2g 52

Substituting (2.17) into (3.2) we have

(k) 3,k 7)

o f imp-iut
cpine . 1 Y I Ay, TK Pf(cos Qe B
o e =] m=-f B (1)
J,'(kma) h, " (k r)
(1)
h'"'(k a) J'(k r)
> o o m o''nm -iw ¢t
Einc - - cgs Ao %o e °
340k 0) 0 (e z)
(1) ] J (k r)
“ k_(hit/(x a)) [ 2-1
1 m g m .
3 A, =2 (2=1)(2+|m|) Py . (cos ¥)
r Z mz-l. ia 2041 (Jz(kma) n] hgf?)_(k oyl 415
(k_r) ing -0 t
+ (242)(2=|m|+1) ( L. )P‘L_l(cos 0)] e R (3.3)
h(l)(k r)

L+l

T W

=



In deriving the expression for Einc we have used the identities

(1-22) P (z)..(l'i).(_"ﬂ"lllpm (z) _.(L"J."_‘Jﬂ-lpm (z) ,

o041 22+1 2+l

z Pylz) = ;:3 Ppa(2) + 259:1*1 Ppar(2)

Jpl2) J Lt Jz-l(Z)) 241 -’z+1(2))
\ 2541 201
hil) (z hﬁ'l)_(z) hi}_])_(z)

3, +(2)
1 2-1

Jp(z) a1 (2)
) (3.4)

-—A- ) +—l—-
hil)(z)) 2441 hﬁi(z) 2241 h’(’ﬁ(z)

After some rearrangement we can write E:lnc in the simpler form

3,0k r)

- g ' ing - 1o t

£ 1 [ ¢ ( ) )Pf(cos Qe E (3.5)
=] m=-§Q hil)(kmr)

vhere

n(1)
(241) (2= |m|) ( L 1“‘ ‘))

C, =k [A
w Cm|f-1,m 20 - 1 1y (a)

p(1)
L(2+|m|+1) ( Byel

L+l,m 28 + 3

(k !-'-) 1
}

+ A (3.6)

Jgeq (K 8)

Substituting (2.15) into (3.6) we get -
1
FL i-im})! (!.+1)(!.+|m|.) P° _(0) (hz-l(kma)) +
un LN 2+ |m|)! m -1 Jz 1(k 2)

(1)

h (k a)
+ 2(t-|m|+1) P’:ﬂ(O) [P ” (3.7)
Jen (@)1
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From the first and second identities of (3.L4) we get
(e+|m]) P} (0) = - (2-[m|+1) Py, (0)
= B (0) (3.8)
Also from the third and fourth identities of (3.L4) we get
nglilkge) By (kge)
(2+1) ( ) =
391 (kp8) J a1 (¥pe)
(1) .
[kmah2 (kma]
- 2l (3.9)
kpe [kma Jl(kma')]'
Using (3.8) and (3.9) we simplify (3.7) to the form
(1) .
i falyg cars . g [kjan, ™ (ka)]
o r e (ot ffEHE 2 ) S
Lo * Vkad,(k 8)]" (3.10)

To summarize the results of this section we write out in full the

expressions for the radial components of the incident fields:

L L ’

inc P L=im])! 2

B = == } 1 (241) TYTRE PI(O) mik
o =1 m=-¢

(1)
h)“'(k a) §,(k r)
x L n®! Jo ) P%(cos Q) e

1
3,(k8) hil)(kmr)

im@ - iwmt
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« % ik
inc 2= | 5
T WE:? P.Zl mz--z (e2x1) Ttapt By (©) 5+
[k an M (c a)1* 3, (k 7)
= im@-1iw t
X P:(cos Q) e & (3.11)

[kman(kma)]' hil)(kmr)

In the second equation Einc appears to be discontinuous on the sphere
*r=a . This discontinuity is only apparent. The difference in the
e'pressions for Einc on both sides of r = a 1is an infinite series

which can be shown to converge to zero everywhere except at the source.

L. The Debye Potentials

To describe the scattering of electromagnetic wuves by a sphere it
is most convenient to work with the Debye potentials u and v , from

vhich the fields are derived according to the formulas

¢B = - Vx(r x Vu - %'3!) (4.1)

E and B given by (L.1) are solutions of Maxwell's equations in free

space provided that u and v separately satisfy the scalar wave equation

) = 0 (4.2)

Writing out (4.1) in component form we get

2 2
) l 3
r ar2 c2 3t2
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E = ol ;_Bz(ru) N 2°(rv)

*] r sin @ ¢ 3t 9 r 9r 30

E = 11 3°(ru) . 1 22(xv)

1) r c 3t 90 r sin @ 23r ¢

2 2
or ¢ 9t

5 = L3°(ru) 11 3%(rv)

(¢] r Ir 98 r sin 0 c 3t ¢
cB. = 1 32(ru) _11 3% (xv)

@ r sin 6 3r 3¢ r ¢ ot 30 (4.3)

Thus u generates a magnetic wave and v an electric wave. It is also
clear that they are determined by the radial components of the magnetic and
electric fields respectively.

Since u and v are solutions of the scalar wave equation, they

have the eigenfunction expansions

°T Lzl mﬁ-zD‘m (

(1)
h;”’(x a) §,(x_r)
% )
. . ) P’:(cos Q) eim¢- lugt
3,0 8) ni (k1)

[k & hil)(kma)]'Jl(kmr)

°Z° f ) P ) img - iwmt
= E (]
v el Lm ‘ 2 cos e

[k 3,0c &)]1'hi ) (k x) (b.4)

To get Er and cBr we operate on ru and rv with the operator

N
ar o a2

as indicated in (L4.3). Because of the following equation, satisfied by

= M P




12.
the spherical Bessel and Hankel functions
2 2J,(2)
EDUTCETI e A0 PP (h.5)
922 22 zh, (z)

this operation merely brings in a factor £(2+l)/r2. Thus comparing
(3.11) and (b.4) we immediately obtain the expressions for the Debye
potentials of the incident fielad:

)
inc p 2841 (2=|m])1 2
U ® Tne ) 2(2+1) (2+(m[)1 P’Z"°) miky

0 i=]1 m=-%

hil)(kma) 3,(k )
x P?(cos Q) e
(1)
Jz(kmﬂ) hy (kmr)

im@ - 1wmt

©® [ A . ik
inc P 22+1 £=|m];! _m' m
vt g b LA GelaDr T O
(k.a v (k a))' 3. (k r)
m [) m [ m im¢- in t
x P:(cos Q) e
(kg 3, (k)1 n{ () (1.6)

5. The Scattered Field

The scattered field is determined by the boundary conditions on

the perfectly conducting sphere:

Btot w Binc - Bsc = 0
r r r

tot inc c
E° SEO +Eg:0

tot

Eg =Eén°+E;°=0, r=b<a (5.1)
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13.

The scattered electric and magnetic fields can be derived from a pair of

Debye potentials w’® and v*¢ which have outgoing-wave eigenfunction

expansions similar to (4.4) with unknown coefficients. These coefficients
are determined by putting uinc’ vinc and v°° into (5.1). 1In this way we

easily get

2 i
~ In Z Z 9.%31) i+: :PI:(O) mi kﬁ

€0 2=l m=-

x h2 (kma) ¥ 1 (kmb) hz (kmr) P:(cos 8) e
© ) ik
sc ) 24+1 2-|m ! 1 m
e b L D Wit O T
[k b J (k b)]'

« [ia h(l)(k a)]' — h{ (k) P(cos @)

[k b hm(k b))

imp-iw t
x e M, r>b  (5.2)

These solutions are exact.

6. The Watson Transformation

If we have in mind the application of the solution of this problem
to the case of a dipole antenna travelling around a planet, the expres-
sions for the Debye potentials given by (5.2) are practically useless.

The reason is that in this situation kob >> 1 , and the convergence of

the geries is extremely slow. To get a good estimate of the sums we have
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to include terms up to values of ¢ of the order of kob + An alterna-
tive to direct summation is the method of Watson tra.nsformationl.

Let us first consider the total Debye potential of the magnetic

wave for r > a :

tot inc sc
u

v 2i+l (2'- )! 2
i 1T_—lnz o 221 2(2+1) (g+:)g P?(O) mikm x

(k b) ( imf- iw t
1) (1) m
x [Jz(kma) m) (k a.)] (kmr) Pt(cos Q)e
(6.1)
. The order of summation has been inverted so that m 1is now summed from
-» to ® ., This is permissible since P':(cos 8) = 0, (&|m|)! P’;’(O) is

finite for |m| > & . Using the addition theorem

-

Pz(cos Q@ cos 8' + 8in @ sin O' cos @)

L
- oy i
-1 A in L P%(cos 0) P(cos 0') '™ (6.2)
ve get
2n
!.+ = P‘“(o) Pm(cos Q) = —J Pz(sin Q cos ¢')eim¢ ag!' (6.3)
0
utOt can now be rewritten as
tot T 1 % p im(@-9")-dyt —
. u = E;PC—J ag! o7 z mi km e % a Sm (6.4)
° 5 m=-w m
vhere
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15-
. ( 12 (kp) e
. 2e1 | .(2) .
x hil)(kmr) Pz(sin @ cos ¢')(6.5)
We define
cos ¥y = sin 9 cos @' (6.6)
vo= oLz (6.7)

Then, since Pl(z) = (-l)z Pz(-z) for L an integer, S  becomes

I 4(2) )G b) (1) (1)
S =2 (k_a) - B (k_a) (kr) x
m w32 Vz_%[ § ”kb) a] v-2 m
v-3
x (1) %P (-cos ¥) (6.8)
V-

2

If each term is considered as a function of the complex variable v this

sum can be converted into a contour integral in the complex v~plane (see

Fig. 1):
(1)
S --i} l m H(l)(ka)] * % g x
= (k b) V s cos vm
x P (-cos y) dv (6.9)

The contour C encloses the positive real.axis along which are the posi-

tive poles of 1l/cos vn . All other singularities of the integrand are

to be excluded. The residues at these poles give back the sum (6.8),




b
[ |
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except for the contribution from the double pole at v = 1/2 which

we must subtract off. This is equal to

2 [ v [.(2) 2 D) ) (1)
x Pv--l-(- 08 w}\,..l. (6.10)
2 2

We ignore this term for the moment.

Let us consider the symmetry of the integrand in (6.9) with respect

to Vv . The Legendre polynomial can be defined in terms of the hypergeo-
metric function:

Pz(z) = 2F1(z+1,-z;1;1;—z) (6.11)

The hypergeometric function being symmetric with respect to the exchange

of its first two parameters, we get

P _(z) = P-v_%(z) (6.12)

that is, P Jb(-cos V) 1is an even function of v . From the relations
\’-
2

Hft)(z) - eivﬂ Hil)(z)
12 (z) = &1V7 5(2)(a) | (6.13)

We see that the factor involving the Hankel functions is also an even
function of v . Thus the entire integran'd is an odd function of v . In
this case the integration along the lower branch of the contour C can

be replaced by one along its image with respect to the origin in the second
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quadrant, as shown by the broken line in Fig. 1.

to be evaluated along a contour C

17.

The integral is now

lying just above the real axis:

1
(2)
(k_b)
(2) m (1)

S = i [H (k)--———H (k_a)]
i c[l Vg Ty voE

(l)l(k r)

V=g

x P 1(-cos ylav . (6.14)
cos vm

)

In a similar way we consider the total Debye potential of the electric

wave for r > a:

vtot‘. o Vinc " Vsc
Z 24+1 £-Im
" Tne om=~2;-1d“15 L+ |m

{0 3,0 b)]"

x |[ka ), (ka)l'-
[ L [k b hfll)(kmb)]'

ik
! [ ]
TPy (0) & x

[k a hgl)(kma)]'] n{ (e r) «

imf-iwt
x Pl:(cos Q) e R (6.15)
Using the addition theorem (6.2) we get
an
f=|m m' cos 0 -im@!
=TT Py () P‘:(cos Q) = J a(cos 77 Py(cos v)e” ag'
0 (6.16)
Thus
tot p T . ik im(g-9" )- lot 7 )
= Eweo I dg' —mg-n _a-e ‘/EBZcos !Ps Tm cos 9
0

(6.17)




18.
where
© [ Vk b H(z)(k b)]!
T,=21 o [[&_a-}l(a)(ka)]'- L
m \F3/2 V2- 1 m m (l)
i [ /T{nTH (k_b)]"
v m
(1) (1) "'Jz‘
« [ Via (kma)]'] n G Fe oo v
2 2
(6.18)

Tm can be converted into a contour integral by the Watson transformation:

'k b H(z)(k b))
. b (2) , ( m v ''m (1) ,]
Tm -1 i ve_ i; [[V‘kma H, (kma)] - [ kmb H?)(kmb)]' [v'kma H (kme.]
(1)
hv-l(kmr)
X e P (-cos ¥) dv (6.19)
cos vn \)-é’

-

The contribution from the douvle pole at y = %- to be subtracted off is

(o 12 (k b))
] v (2) m m (1)
= 2 o= Yk a H (k.a)]' - '} k a .]
m 3\*{”%[[ oy )] /g 1 e Vhat By (kg

(1)
x h (k. r) P (-cos ¢)
vk ol }v'% (6.20)

The integrand in (6.19) is again an odd function of v . The integral

can be evaluated along a contour lying just above the real axis:
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19-
(AT 59 (kb))
Wt 7 [lv’k"n‘?’m )l - —E Y m ]
n(1) (kmr)
x [@Hﬁl)(kma)]' = P J_(-cos v) av  (6.21)

cos VI v-3
2

We now consider the contribution from the pole at v = 1/2 ., After

some straightforward calculations we find that the parts of utOt and

v que to o, end 1 Jolntly give, upon substitution in (4.3), iden-
tically zero contribution to the total field. From now on these parts

will be discarded.

7. Separation of the Geometrical Optics Field

We want to evaluate the contour integrals (6.14) and (6.21) asymp-
totically in the limit 91‘ a very large sphere: ko'b >>1 . For this
purpose it is most elegant to use a method due to F‘ra.nz2 to separate the
total field into two parts. One part can be identified with the geomet-
rical optics field, and the other is in the form of a series of damped
"ereeping waves'.

As will be seen below, for kmb >> 1 , most of the contributions
to the integrals (6.1k) and (6.21) come from large values of v of the

order of kmb « From the identity

Pv(-cos V) = " Pv(cos V) =i sin w[Pv(cos v)-1 % Qv(cos v)l  (7.1)

and the asymptotic formulas




20.

2 1
Pv(cos v) v /ﬂ—v—s:n_; cos[ (v + E)w - )ll]

%Qv(cos ¥) /-—-‘— cos[ (v + %)w & {-] s |vsin y| >> 1 (7.2)
nv sin @

we get

1
ivw-i" i(v-2)
P (-cos ¢) ~ &l cos vy _ lr+e 2'p J.(cos v)

v-% \/21tvsinT v-3
|v sin y| >> 1 (7.3)

Thus for sin ¢ ¥ 0 we can substitute (7.3) into the integrals, each of

vhich is now separated into two parts:

s = 8B + gF
m m

m
~T e T8+ qtT (7.4)
where
» Visin v° s V-t N
1
(1) ivy
x h\,_l (kmr) e 'dv
2
-17 (AT 52 (kb))
5 F /— Y s r<i (2) '
Ifx '\/ﬂ siny e CJ v2:’ %[[ kma Hv (kma)] - [k : HTIT(k :)], U
1 m v m
« s H(l)(kma.)]'] n ) ) e av (1.5)

. v-2
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and

(2)
2 (k b)
s¢F = - J v [Hée)(k &) - T r( a)] x

m 2 1 m 1 m
Cl V- T Hv (kmb)
hi];);(kmr)
x 2 P l(cos V) eiv" d 3
co8 vm \)-‘é‘
(A 12 (k b))
o V- F [ b H ~(k b)]"
1
h(l)l(kmr)
< Ik nf,l’mman'] T2 b (s w) e av. (7.6)
cos VT v-32

In the next section it will be seen that Sg and Tg in (7.5) yield the
geometrical optics field.

It = be shown that the integrands in (7.6) tend to zero at infinity
in the upper v-plane for r > a > b , except in the neighborhood of the
zeros of Hf)l)(kmb) or [&;‘5 Hil)(kmb)]'.3 For kb >> 1 these are

located approximately at

- 1/3 in/3
vg =k b+ As(kmb) e , 8=1,2.3, (7.7)
where the A's are real positive constants which are different for the
magnetic and electric waves. We observe that these zeros lie in a row

in the first quadrant (see Fig. 2). They are simple poles of the inte-
grands and are the only singularities in the upper v-plane. The straight

contour Cl can now be deformed to the contour C2 which encloses these
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poles, as shown in Fig. 2. The residues obtained from these poles form
an infinite series of "residue waves" which are rapidly convergent for
large kmb + Each term of the series can be interpreted as an exponen-
tially damped "creeping wave". It must be remarked that we have tacitly
tot tot
assumed that the main contributions to u and v come from terms
with small m's such that kmb = kob + mkb = kob > 1 .
In what follows we will confine our attention to the geometrical

optics field, since it is more interesting, besides being the dominant part

for kob >» 1,

8. The Geometrical Optics Field

We first consider the integral Sﬁ in (7.5). We will evaluate it
by the method of stationary phase. This integral in general has one or
two stationary points on the real axis in the neighborhood of v = kmb c
In order to simplify the problem we take the limit r >> a so that we will
be calculating the far }ield. It is now permissible to apply to Sg the
Hankel asymptotic formula

L
h(l) (kmr) A ei(kmr Ve T K) kr>> v (8.1)

kr
v-2 m

The case where r is of the same crder as a should present no special
difficulty; but the calculations that follow would be more cumbersome. Sub-

stituting (8.1) into Sg we get

ik r-i> = (2)

/ 2 e ™ 5 Vv (2) S (kmb) (1)

Slgn = m sin ¢ kmr I \)21) %- [H\) (kma) = Hzl;(k—b) HV (kma)
-00 \Y) m

iv(y - %)
x e av (8.2)
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To locate the stationary points we apply to (8.2) the Debye asymp-
totic formulas for the Hankel functions in the limit when v and =z

are large and comparable:

Hil)(z) . 2 a4 e:i(\/z2-v2 o e lz)- = il)
m (22_ 2)1/

s V < Z
H(Q)(z)
v
v+ v'vz- z 2 2
_ > 1 v &n = -VV -z
-— >
v +1 = > 2.1/ e s V z
(vVi- 2z
(8.3)
with the condition
0 <cos"l A A (8.4)
z 2

We split Sg into three integrals

L
ikmr - 12

g _ 2 e
Sm Vw sin ¢- kmr [Il * I2 * I3] (8.5)

where
r: iv(y - 5
1 - I LDy a) e 2" gy (8.6)
- ¥ F
o (2) n
n By U0 ) vy - 3
I, = -J H'™'(k_a) e d (8.7)
2 A 2 1 Hil)(kmb) v m v
m
kb (2) m
/\7 HV (kmb) (l) i\)(w - '2'
I3 = - J 5 1 HTl)(k = H (kma) e dv (8.8)
- VT m

Substituting the appropriate Debye asymptotic formulas in these integrals

ve get




2k,

n o 5
SER - -
1 ¥y 2 1,22 2,1/k dv
LaPVESET (kma. - V)
(8.9)
-iil = /o i['kfla?- N cos~t ﬁ-& v(yp- g—)]
I, =/2 C 1 m
2 2o L (k2.2 2,1/k © dv
kmb N ma = b
(8.10)
k b
m

N 1
2 %(kiaz_ v2)1ﬂ+

-
w
"
'
Pryy
o
(S
B
8 —

i[Vk a- v -2ka -~ vV =v cos -—v—a+2v cos L kb+v(w-—)]

m
x dv

ka>kb>»>1,., (8.11)
m m
In writing down the atcve expressions we have used the fact that Il and
12 have no stationary points to the right of kma c
Each of the three integrals has at most one stationary point. For

the integral I. the location of its stationary point is given by the solu-

1
tion of the trigonometric equation

cos-:L ¢y - L =0 (8.12)
Because of the condition (8.4), this equation hLas a solution only when
P < % . When this is the case we have

v = k asin y (8.13)
m
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Thus evaluating Il by the well-known method of stationary phase, we
get
5 -ikma cos ¢

I, = e ’ p <
(kma sin w)3/2

MBI

(8.1k)

roja

In the same way the location of the stationary point of I2 is given by

=1l v n
- — - - [
cos - + ¢ > 0 (8.15)

Because of (8.k4), this equation has a solution only when 1y > %-. Then

the stationary point is given by
v = kasiny (8.16)

This must be greater than kmb or else the point lies outside the lower
limit of integration. Hence we have the additional condition for the

existence of the stationary point:

sin y > > (8.17)
Therefore we get
1230 5 W<.g.
-ik & cos
) S e " » Fevem-etn 2
(k_a sin ¢)
m
= 0 s, W= sin~! §-< Ve

(8.18)
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The sum I1 + 12

optics. It represents the incident wave. ¢ as defined in (6.6) is the

has a very obvious interpretation in geometrical

angle between the directions (@,8') and (%30) . Suppose a point source
of frequency Wy is placed at the point (a,%,o) as shown in Fig. 3. The

geometrical shadow region is a cone with apex at the source and angle
nl 2

si el Inside the shadow region Il + 12 is zero. Outside this
region Il+ 12 contributes a term to Sg proportional to

l-e:Lkm(r - a cos V)

r

vhich indeed describes the far field of a point source displeced from the
origin by a distance a .
We now want to show that I3 gives rise to the reflected wave.

This integral has a stationary point given by

-1 _v -1l v LA
-cos -+ 2cos Erty-3 0 (8.19)
m m
We denote the solution by
v = kbsiny, 0<y<§ (8.20)

Then Y 1is the angle of reflection for a ray scattered into a direction
inclined at an angle  with the x-axis. This can readily be seen from
the ray diagram, Fig. 3. Without loss of generality we have taken the

z-x plane to be the plane of reflection. From this diagraan we get
bsiny = asina (8.21)

vhere a 1is the angle the incident ray makes with the x-axis. Using this
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result in (8.19) we get

a=-2y+y= 0 (8.22)

which is just the law of reflection. Eliminating o from (8.21) and

(8.22) we obtain

M = % (8.23)

sin ¥y

This is a quartic equation in sin vy which can always be solved. The
exact expression for the solution, however, is too complicated. For

Y > that is, inside the geometrical shadow region (8.19) has no solu-

n
5 ’

tion and there is no stationary point. Thus we have

b cos Y

3 3/2 /
(kb31nY) 2 az_bsiny-bcosY
ikm(\/aé- b2sin’y - 2b cos Y) 1

x e y 0 < § <m-sin

® o

= 0 s ﬂ—Sinl%<w<ﬂ

(8.24)

Summarizing the foregoing results we have

ik r r

€ oy m /8_ 1 1 e-ikma cos ¢ i
m r n sin ¢ k5/2 |~(a. din ‘#)3/2
m
- ikm(VaE-bzsinéy - 2b cos Y)]
(b sin y)3/2 J2Ja b! sin!Y - b cos Y

O <y <nw - s8in

-1b
a

WA
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= 0 . n-sin12<¢v<ﬂ (8.25)

For the electric wave we get in a similar manner

o8 eikmr /—8—— \/kma [ -1 cos V¥ -ikma cos ¥
= -1 5 o € *
m r 1 sin w kZ/Z (a sin w)3/‘

2 .2 2
ﬁ el e 1km(\/a -b°sin® -2bcos v)]
3/2
a(b sin v) 2#&2 besin Y-Dbcos ¥y

0 <y <m - sgin

-]__b_
a

= 0 . m - sin” 1§<q;<1r

(8.26)
From this we get

3 -8 eikmr 8 Vkma. -kma cos V¥ -ikma cos ¥
alcos v ) m o ey Vﬂ sin ¢ k5/2 (a sin ¢)3/2 ¢ +
m

kY2 b2sindy 1k (V/a®-b2sin® - 2b cos v)]
m b cos " m
a siny (b sin 7)1/2 2 /a!- basinzv -bcos Y

0<w<1r-sin"l

P |

= 0 , n-sin1£-<w<n. (8.27)

In the above we retained only the highest order terms in kma .

Substituting (8.25) into (6.l4) we get for the incident part

i[kmr -wt-kacosy+ m(@g-¢')]

' (-]
uinc- p Jdﬂ lz in_:_e

bn eora2 sinzw <

(8.28)
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where the integral is taken only over the illuminated region, that is,

over the range

1l -Vae- b

a sin @

-cos

From (8.28) we get

i(kor-— wot - koa cos V)

) inc P 9 J e
— ru = — dg*
ir brwe a2 £l sinzw
1 2 im(Kr - @t - Ka cos ¢ + ¢ - ¢@')
x 5= X e (8.29)
m= =

By (2.4) we have

1 o im(Kr - Qt - Kacos ¢ + ¢ - @')
T
ms=c
= §(Kr - Qt = Kacos ¢y + ¢ - ¢') (8.30)
The position of the peak of the delta-function is given by the solution of
the equation

Kr - it - Kasin @ cos ¢' + 9 - @' = 0 (8.31)

In most situations Ka = %% <<l . (8.31) can be solved by iteration:

@' = @+Kr - Qt - Ka ein O cos(@+Kr = Qt) + ¢e¢ (8.32)

In what follows, for simplicity, we will ignore all terms in Ka. Therefore,

(8.29) becomes
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i[kor- ot = k. a sin@ cos(@+ Kr-0t)]

. 9 ine P 3 ]e
w2 20 2 (8.33)
hweoa 1 - 8in“Q cos“(@ + Kr - Qt)

when @ + Kr - it lies in the illuminated region and zero otherwise.

(8.33) is equivalent to

ine _ _P sin © sin(@ + Kr-Qt)
lureoa. l- sin29 c082(¢+ Kr - Qt)

ru

) ei[kor-wot-koa sin O cos(@+ Kr- it)]
(8.34)

Carrying out the same calculations for the reflected part we get

' fe. p sin @ sin(g +Kr-Qt) \/a sin ¥ b_cos Y

bne a 2 b sin v 2;/5,2- bésinEY ~-bcosy

o 1l-8in“Q c032(¢+Kr-m:)

ei[kor-wot+ko(\laz- bzsin Y-2b cos Y)] (8.35)

x

The angles Y and ¢ are to be evaluated at @' = @ + Kr - @t . The
whole expression is zero in the shadow region. Similarly for the electric

vave we get

inc ) cos @ sin @ cos(@ + Kr - Qt)
rv * -~ Tre a 2 2
o 1-38in°“6 cos“(¢ + Kr - Qt)

. ei[kor- wt-k.a sinQcos(@+Kr-0t)] (8.36)
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2 s
cos @ /l- 9-2— sinzY
ref P a a 8in ¢ b cos Y
A 2 2 b sin ¥y 555

ei[kor-wot+ kL(Va - b“8in“Y = 2b cos Y)]

(8.37)

9. Nature of the Solution

We recall that the solution is zero when the direction (9,8 + Kr- Qt)
lies inside the shadow cone of Fig. 3. @ + Kr - @t is Jjust the difference
between the azimuthal angle @ of the direction of observation (0,#) and
the retarded azimuthal angle Q(t--’c:-) of the revolving dipole. Thus we
hav> the simple conclusion that the total field is zero when the observa-
tion point lies inside the retarded shadow region of the dipole.

inc ine ;.
We substitute ru and rv in (8.34) and (8.36) into (%.3) and

obtain the asymptotic form of the incident field in the illuminated region:

inc % inc = cBinc- cB:l.nc = 0

Er E¢ r (=]
2
pk ik r-w t-k a sin@cos(@f+ Kr-1t))
Einc - cB1nc'_ S ginoe o] o o]
0 v kne r
o (9.1)

When 2 = 0 these field components coincide with those of a Hertz dipole
fixed at the point x=4a,y = 0, 2 = 0 and oriented parallel to the
z-axis. We can define an instantaneous frequency of the incident wave by

differentiating the exponential with respect to t :

Pl w1 + 8 stn @ sin(at - Kr - ¢)] (9.2)

where

N
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B = = (9.3)

Here fa 18 just the velocity of the dipole, and sin @ sin(ft - Kr - @)
is the cosine of the angle between the velocity of the dipole and the
direction of observation at the retarded time t - -E . (9.2) therefore
agrees with the Doppler formula for the frequency shift of a moving source.
Similarly we calculate the far field of the reflected wave in the

b g f
illuminated region from ru™®" and rv'° in (8.35) and (8.37):

Eref - cBref = 0

r r
k2

ref ref P 0 b sin y b cos Y

Ey =CB¢ *Trer a sin ¢ X
o] 2/a - b sin"Y - b cos Y

sin @ sin2¢' + c0329 sin ¢'l/1- 22- sinQY

= a8

x X
sinzw
ilk r-w t+k ( a2~ v2s1n%Y - 2b cos Y))
o o o
x e
pk°
E;ef - _cBgef = o ‘/I;?. :i.xr: l b cos Y
hﬂsor 2Ja"=- b°sin Y - b cos Y
——
cos O sin @'(sin @ cos ¢'- - = sin”Y)
X 2 s x
siny

i[kor- w°t+k°(»/a.2- bzsinév - 2b cos Y)) (9.4)
e

x
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The angles ¢, Y and @' are defined in terms of r, 0, § and t by
(6.6), (8.23) and (8.32) respectively. The instantaneous frequency of

the reflected wave is given by

ref

w = wo[l + B'sin @ sin(Qt - Kr - ¢)] (9.5)
where
gt « Ssiny (9.6)

c sin y

Thus the reflected wave is not of the same frequency as the incident wave.
Unlike B in (9.3) B' is a periodic function of time. The quantity

b sin v/siny is the intercept of the ray —eflected into the direction

(0,4) when projected backwards, on the retarded radius vector of the moving
dipole as can be seen from Fig. 3. Despite the apparent similarity of (9.2)
and (9.5) it does not seem to be possible to interpret the reflected wave

as due to a virtual moving point source.
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