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ABSTRACT 

The purpose of this discussion is to relate the previously developed 
matrix analysis of electromagnetic scattering explicitly to the experi- 
mentally measurable bistatic polarization matrix.   In addition, in order to 
perform the numerical computations more conveniently, a new matrix analy- 
sis is described, in which the constraints of reciprocity and energy conser- 
vation are employed in the course of obtaining a solution. 
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SECTION I 

INTRODUCTION 

The purpose of this discussion is as follows: 

(1) To relate the previously developed matrix analysis of 

electromagnetic scattering explicitly to the experi- 

mentally measurable bistatic polarization matrix. 

(2) To describe a new matrix analysis, suitable for numerical 

computation, in which the constraints of reciprocity 

and energy conservation are employed in the course of 

obtaining a solution. 

Description of the measurable far field quantities requires 

mapping a vector, the polarization of the incident plane wave, into 

another vector, giving the polarization of the scattered field; 

this operation is conveniently described by the dyadic amplitude F . 

In Section II the spatial electromagnetic fields are first set up in 

terms of a theoretical quantity, the transition matrix T  , then 

the dyadic amplitude is defined, and by specifying bases, e.g., 

linear-linear, the experimentally measurable bistatic polarization 

matrix P  is obtained.  Finally, the determination of the dyadic 

amplitude from the transition matrix is described. 

Section III gives the matrix analysis, in which contraints of 

reciprocity and energy conservation are incorporated into the 

theoretical/numerical determination of the transition matrix T . 



In practice, this approach may make feasible the employment of the 

existing MITRE computer program for a wider range of target sizes and 

shapes than heretofore possible. 

It should perhaps be pointed out that the discussion throughout 

is expected to be applicable to general radar targets with no energy 

dissipation in otherwise free space, although to date the requisite Q 

matrix of Section III has only been discussed for general conducting 

bodies and has only been implemented on the computer for conducting 

bodies having an axis of rotational symmetry. 



SECTION II 

THE BISTATIC POLARIZATION MATRIX 

We work in the matrix formalism described earlier L -'using the 

recent modifications.  A more detailed description of some of the 

quantities discussed below may be found in the references. 

An arbitrary monochromatic incident electromagnetic field (time 

dependence exp  (-iwt)  suppressed) with no singularities in the 

immediate vicinity of a conducting target may be described by the 

electric field vector (underline denotes vector quantity) 

F(r) =  I 
amn 

e (2n + l)(n - m)! 
m 
n(n + l)(n + m)! 

-1/2 
M    t   \ L K    N    (   \ a   -   (r) + b   -   (r) 

amn  amn —    amn  amn — 

(1) 

at any field point _r measured from an origin lying in the interior 

of the target.  The  a    and b    are complex expansion coefficients. 
amn       amn        r     r ' 

e   is the Neumann factor  e  =1,  e  = 2  otherwise, and the 
m o       m 

spherical partial waves are given explicitly by [2] 

M   = M   = Vx -amn  —emn 
o 

r_ cos m<|> P  (cos 6) j (kr) 
sin 

= [n(n + 1)]1/2 C^ (9,4.) jn(kr) 
o 



N_   =  N    =  (1/k) V x M —Omn    —exnn —emn 
o o 

n(n + 1) P emn (8,*) j  (kr)/(kr) 
o 

(2) 

+ [n(n + 1)]1/2 B^ (6,<j>) (1/kr) d[rjn(kr) ]/dr 
o 

The three indices run through values a  = e, o  (even or odd), 

m=0, 1, ... , n, and n = 1, 2, . The P   are associated n 

Legendre functions, and the j (kr)  are spherical Bessel functions, 

I 3 1 The vector spherical harmonics are defined by   [note that 

r = r(e,<|>)] 

P        (r) 
—emn 

o 

-  cos Dm     , . 
r     .     m*  P        (cos   6) 

sin     T      n 

B       (r) —emn 
o 

[n(n + 1)]  1/2  r V[c°s m<}.Pm    (cos  8)] 
sin n 

r x C 
—emn 

o 
(3) 

C       (r) 
—emn 

o 
[n(n + 1)]  1/2 V x  [r C°S m<t> Pm    (cos  9)] — sin     n 

r x B 
—emn 
o 

In similar fashion, the most general scattered wave satisfying the 

radiation condition at infinity may be written 

I (r) = I   i 
omn 

e (2n + l)(n - m)! m  
n(n + l)(n + m)! 

1/2 

f   M^3)(r) + g   N^3)(r) amn —Omn —   °omn —Omn — 

(4) 



in terms of the outgoing  spherical vector partial waves, obtained by 

replacing j (kr)  by h (kr)  (the spherical Hankel function of the 

first kind) everywhere in Equation (2). 

Because of the linearity of the problem, the coefficients 

f   , g    of the scattered wave must be obtainable by a linear 
omn  °omn 

operation on those of the incident wave:  one writes 

f = I       [T1 ,   ,   ,   a  ,   ,   ,  + T2 ,   ,   ,  b   ,   ,   ,] omn .   i   , omno  m n'     omn orano  m n       omn' 
o  m n 

I *       [T3 ,   ,   ,   a  ,   ,   ,  + 1k ,   ,   ,  b   ,   ,   ,] °omn omno nn      omn omno in      omn 
ai„i„i m n 

(5a) 

or, in an obvious matrix notation 

7>3    'j'U 

(5b) 

The matrices having elements  T ,, ,  T 1? , and so forth, 

where the indices  a, m, n have been reordered into a single index, 

or more briefly 

T» 1     T2 

(5c) 



will be called £tan6-ctcon ma&iix  .  Once obtained for a given target, 

it enables one to compute the scattered wave corresponding to any 

given incident wave (1), by applying Equations (4) and (5). 

In radar work one is primarily interested in the scattered far 

field due to excitation by a plane wave having specified direction 

of incidence and specified polarization.  Because we are interested 

in mapping a vector (the incident polarization) into another vector 

(the far scattered E     field) it is convenient to introduce the 

[4 51 ~ 
dyadic      ' J far field amplitude F_(k , k.)  describing the scattered 

electric vector far from the target (i.e.,  kr >> 1).  The directions 

of incidence and scattering (i.e., observation) are given by 

k. = k. (0., <|> )  and k = k (0 , <j> ) , respectively, and  e.  denotes 
1     111.       S     S   &    S 1 

the electric polarization vector associated with the incident wave. 

One then can write 

E (_r)  % (1/kr) exp(ikr) F (k ,k.) • e. as kr •*•  °° .   (6) 

Because both the incident wave and the far field E  are transverse 
-s 

to their directions of propagation, the dyadic amplitude may be 

constrained to satisfy 

F(k ,k.) * k. = k  • F(k ,k.) = 0 (7) 
=  S  1      1     S=S1 

thus having only four independent components.  In addition, the 

reciprocity theorem, relating to interchange of source and observation 

6 



point, requires that l ' 

F(ks,k.) = I
T(-k., -kg) (8) 

where the superscript T designates the dyadic transpose.  It may 

also be shown, as a consequence of energy conservation, that 

dO FT*(k.k,) • F(k,k.) = -2iri [F(k. ,k' ) - FT*(k'  k )]      (9) 
s=   si   =si        =ii   =    11 

where the integration is over the unit sphere of directions of k 

The relationship between the dyadic amplitude and its constraints, 

on the  one hand, and the transition matrix, on the other hand, will 

be made apparent shortly.  It is convenient first, however, to 

examine the  (2x2 complex)  bistatic polarization matrix.  One can 

define the vector scattering amplitude  e  to be just  E (r) 

exclusive of the radial factor  (1/kr) exp(ikr) , so that from Equa- 

tion (6) there results 

e = F(k ,k.) ' e. . (10) 
—s  = s  l   —i 

The incident polarization may be written 

e. = e.  G. + e .  (J>. (11) 
-1    6.1    <t>.  i 

l       l 



where if both components are real (or if both are complex, but with 

equal phase) the incident wave is linearly polarized.  Otherwise, the 

incident wave is elliptically polarized. 

In similar fashion the scattered polarization vector may be 

written 

e = e.  6 + ex  <h 
—s   6  s    d>  Ts 

s      Ts 
(12) 

and this of course will in general represent an elliptic state of 

polarization, even though the incident wave may be linearly polarized. 

The base vectors of Equations (11) and (12) appear the natural choice 

for a linear-linear basis, in terms of which the 2x2 bistatic 

polarization matrix P enables one to compute 

P P 
6     9       6    cp 

s     i       s   M. 

P P 
d>    8.       6    CQ. Ys     l      Ts   Ti 

(13a) 

in which 

s     i 

6    cp.      =     s       =        vi 
s      1 

p = *   • F • e. 
*s h        •     -      i 

(13b) 

A     Cp vs f± 
TS       1 



Two observations should be noted in the system of Equations 

(10 - 13).  First, the dyadic amplitude F is in a sense more general 

than, say, the  P  of Equation (13), in that  F provides a full des- 

cription of the problem without having specified the bases, e.g., 

linear-linear, circular-circular, linear-circular.  The other obser- 

vation is that, in considering the bistatic problem, one is led quite 

naturally to choose two distinct coordinate systems for the description 

of incident and scattered polarization states.  This has the notable 

consequence that when one specializes  P  to the monostatic case, 

choosing k = - k.  (for which one easily verifies that  6  = 9. , 
si ' si 

<j> = -<J>. ) the linear-linear polarization matrix, say for a conducting 

sphere, becomes  (  |a|2  = radar cross section) 

P = 
a  0 

0 -a 
(14) 

This result differs from the accepted (single coordinate system) des- 

cription of monostatic scattering, in which the minus sign is absent. 

Regardless of accepted convention, however, the two-coordinate system 

description giving rise to Equation (14) appears almost imperative 

wherever bistatic as well as monostatic measurements are being 

considered. 

So far we have seen how the dyadic amplitude  F  (k  , k ), 

which might be regarded as the basic quantity, relates to the bis- 

tatic polarization matrix P  and hence experimental measurement.  It 



only remains to relate F to the theoretical formulation of the 

problem, in particular to the transition matrix T .  The desired 

result is obtained almost immediately, by 1) introducing the 

appropriate plane wave expansion coefficients  * '    in the incident wave 

of Equation (1,2) employing the asymptotic form of the spherical 

Hankel functions valid at large distances from the origin     in the 

scattered wave of Equations (4), and finally, (3) comparing the result 

with Equation (6) to get 

1/2 

id   , io -    I     (-Dn 
= s 

omn 
o'm'n' 

£ (2n + l)(n - m)! 
m 

(n + m) ! 

(15) 

[C(ks)3  iB(kg)] 
C(k.) 

-iB(k.) 
U)n' 

e ,(2n' + l)(n* - m')! m '  
(n' + m')! 

1/2 

where summation indices have been suppressed in the expression in curly 

brackets for clarity.  This expression when written out consists of 

the sum of dyads of four types, the first of which is given by 

C   (k ) T    , , , C , , ,(k.) —own    s   omno mn -rj'nn  I 

and so forth. 

Because the spherical vector harmonics  C(k )  and  B(k )  have 
— s       — s 

no components in the observation direction k , the constraints of 

Equation (7) are seen to be satisfied by inspection.  Comparison of 

10 



Equation (15) with the reciprocity theorem Equation (8), however, in 

[3] 
view of orthogonality of the spherical vector harmonics    , leads to 

the requirement that the transition matrix be symmetric, i.e., 

T = T' (16) 

or, in more detail,  (T1)' = T1 , (T2)' = T3 , (T3)' = T2 , (Tu)' = l\ 

Finally, the energy conservation requirement (9) gives rise to the 

constraints that T be unitary-related, i.e., that 

T'*T = Re T . (17) 

11 



SECTION III 

SOLUTION OF THE SYSTEM OF MATRIX EQUATIONS 

Rather than deal with the transition matrix T , the procedure 

to be described is slightly more transparent if one employs the S- 

matrix defined by 

S = 1 - 2T . (18) 

The derivation of a matrix equation for the determination of S has 

been discussed elsewhere.  Specifically, one has 

QS = -Q* (19) 

where the matrix elements of Q are explicitly known.  To this 

equation may be adjoined the constraints due to Equations (16) and 

(17), which are readily seen to be 

S = S' (20) 

and 

S'*S = 1 (21) 

i.e.,  S is symmetric and unitary, respectively.  Two extremes of view 

with regard to the system of Equations (19) , (20) and (21) are as 

follows:  First, one might truncate the infinite matrix Equation (19), 

12 



solve numerically by digital computer, then compare the resulting 

solution with Equations (20) and (21), the latter thus being employed 

as consistency checks.  On the other hand, one might attempt to treat 

all three equations from a unified point of view from the onset, 

obtaining a solution in some sense of Equation (19) subject to the 

constraints (20) and (21) .  The first approach has been employed up to 

now on the computer for bodies of rotational symmetry, and works quite 

satisfactorily for a restricted range of body shapes and sizes.  The 

second approach is proposed in an effort to extend the range of 

bodies that can be handled, in view of the fact that the constraints 

2 
essentially determine three quarters of the solution [i.e., of the 2N 

real parameters appearing in the N x N  (truncated) complex matrix  S , 

it can be shown that only N(N + l)/2 are independent, if S satisfies 

(20 and 21) ]. 

To develop a unified analysis, observe first that if S could 

be constructed in the form 

S = U* U (22) 

where  U  is unitary, then both constraints would be satisfied by 

inspection.  This suggests that, rather than inverting  Q directly 

in Equation (19), it be made unitary.  Thus, consider the upper tri- 

angular matrix M  (i.e., all elements are zero below the main diagonal) 

which, by premultiplication, makes  Q into a unitary matrix Q  .  , 
'  y r unit 

13 



vi£ 

MQ = Q  .„ ^umt (23) 

Premultiplying Equation (19) by M , one can write 

Q  . S = - MQ* = -MM*  Q*  . xunit      x x unit (24) 

Upon solving for S  there now results 

S = -Q'*  .  (MM* 1) Q*  lfc unit unit 
(25) 

Substituting this result in Equation (20), the symmetry constraint, it 

follows without difficulty that the matrix product MM*   must be 

symmetric.  But each of the matrices appearing in the product is 

upper triangular, and their product is again upper triangular.  Con- 

sequently, the product must be a diagonal matrix.  Further, the 

diagonal elements can be written out explicitly, giving 

MM* -1 

M /M *    0 
ir ii 

0 M /M * u n22' 22 

14 



If next we can arrange to choose the diagonal elements of M to be 

real, then 

MM* l  = 1 . (25) 

From Equation (24) the S-matrix is now given by 

S = - Q1*  .  Q*  . (26) x unit x unit 

which is of the required form (22).  Substituting Equation (26), 

along with the identity  Q'*  .  Q  .  = 1 back in Equation (18), 
'  x  unit xunit 

the desired transition matrix is finally given by 

T = Q'*unit Re (Vit> • (27) 

Returning to M for a moment, Equation (25) states simply that 

M is real.  Thus, the process may be summed up in the (formal) 

theorem:  Given the matrix Equation (19) , with constraints (20) and 

(21) on the solution, it follows that the given matrix Q cannot 

be arbitrary, but must be such as to be factorizable into the product 

of a real upper triangular matrix and a unitary matrix, namely 

Q = M"1 Qun.t . (28) 

15 



In order to carry out numerically the above analysis, which is 

formal in the sense that infinite matrices have been treated without 

rigorous verification of the consequent limiting processes involved, 

it is of course necessary to truncate  S  and  Q  at a finite number 

N  of rows and columns.  Having done this, construction of the 

N x N unitary matrix Q     is done by Schmidt orthogonalization 
unit ' & 

of the N vectors given by the rows of Q , beginning with the bottom 

row and working up.  Thus, writing CL^     for the N  component vector 

obtained from the bottom row, ci   is first normalized to unit length 

by multiplying by 

<v • v"1/2 N 

I   , Q*Nn QNn 
n = 1 

-1/2 

This constant, which is real by definition, is just the last diagonal 

entry M^N  of the triangular matrix, whereas the normalized vector 

constitutes the bottom row of  Q       Next one chooses a linear 
unit 

combination of £^    and the vector ^u,  •.  obtained from the next 

to last row, so that the resulting vector is orthogonal to £^  anc* 

so forth. 

A brief numerical investigation of this procedure has been per- 

formed in order to ascertain its feasibility and usefulness in the 

computer program for electromagnetic scattering.  Results indicate more 

rapid convergence, versus truncation size N, than is obtained by 

straightforward numerical solution of Equation (19) employing matrix 

inversion. 
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