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ABSTRACT 

Invariant properties of the elastic coefficient matrices of laminated composite plates are 
presented. The use of these invariants in r .ateríais evaluation and design optimization is 
discussed. Simple formulas, based upon micromechanics results, are derived for the in¬ 
variants in terms of constituent material properties. 
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SYMBOLS 

AiJ* BIJ’ DiJ 

ij 

QiJ 

Ll' L2 

Uj. . . . u7 

'o [A.B.D] 

Vlt . . .V 
4 [a.BJ)] 

P P 
*1 ‘ ’ *6 

N, 

elastic constants of laminated composites, Equation 9 

elastic stiffness matrix of 3-dimensional bodies 

reduced stiffness matrix for bodies under plane stress 

invariants of 
QiJ 

coefficients of transformation equations in Table I, defined by 
Equation 14 

Constant terms in A^, B^, and defined by Equation 22 

integrals defined by Equation 23 

invariants of A^., and D^, defined in Equations 27 and 28 

stress resultants 

Mt 

ki 

m 

n 

h 

E 

G 

f j. Fr /8 

T 

V 

ai 

<i 

al 

stress couples 

components of curvature 

cos 0, or cross-ply ratio which is the ratio of the thickness of 0a to 
90° layers in a cross-ply composite 

sin 6, or number of layers in Equations 38, 39, and 40 

total thickness of laminated composites 

Young's modulus 

shear modulus 

functions defined by Equations 48, 49, and 50 

temperature 

volume fraction 

thermal expansion coefficients 

strain components 

stress components 
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y 

subscript f 

subscript m 

bar 

SYMBOLS (CONTD) 

Poisson's ratio 

angles of rotation 

pertaining to fibers 

pertaining to matrix 

average quantities or isotropic constants 

transformed component prime 
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SECTION I 

INTRODUCTION 

The superior performance of composite materials over lightweight metals has been well 
publicized in recent years. Composites have been claimed to possess improvements in stiff¬ 
ness and in strength of severalfold over ordinary materials. The claim, however, is based 
on either the properties of the fibers alone or the longitudinal properties of a unidirectional 
composite against those of the metals. Since composites are normally used in laminated forms 
which consist of unidirectional layers, a more realistic measure of the performance of the 
composites than that based on the fiber or longitudinal properties is needed. 

In this work, the transformation properties of unidirectional and laminated composites are 
derived in terms of multiple angles, instead of the classical relations using powers of sines 
and cosines. The effect of lamina orientation is then examined. It is shown that the invariant 
properties of both the unidirectional and laminated composites have the same components, 
and can be used as an effective measure of the performance of the composites. Simple 
formulas are derived, from which the Invariant properties of composites, irrespective of the 
lamina orientation, can be determined from the properties of the constituents. This work 
should be of value to system analysts who must evaluate the performance of composites, to 
structural designers who must establish a rational design procedure, and to materials engi¬ 
neers who may need guidance in the selection and fabrication of composite materials. 

The elastic moduli of laminated composites have been reported by many investigators in 
recent years, examples of which include Reissner and Stavsky (Reference 1), Dong, et al. 
(Reference 2), and Tsai, (References 3 and 4). The usual assumptions in all these studies are: 

(a) All layers are in a state of plane stress relative to the x-y or 1-2 plane, so that 

(I) crf « « a§ * 0 

(b) All layers are bonded together and the strain components in the 1-2 plane are linear 
functions of z. 

0 ^ * €, ♦ rt (2) 

where 1=1,2 refers to the normal components; i * 6, the engineering shear strain 
component. 

(c) All layers obey generalized Hooke's law, 

(3) 

With these assumptions, the constitutive equations for a laminated composite can be derived. 
The stress-strain relation for the assumed plane stress condition including the thermal effect 
for each layer is 
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where 

Q - C - 
ij ¡I 

Cl» Cl» 
Css 

= reduced stiffness motrik 

a j = anisotropic thermal etqi&nsion matrix 

T » temperature Increase from a reference (stress-free) 
temperature. 

Stress resultants (Nj) and stress couples (M^) can be defined as: 

h/t 

[N¡ • Mi ]2 / 
-h/t 

Substituting Equations 2 and 4 into 6 renders 

'1 ['•«] dz 

where 

5I * N. ♦ n|Ti a.j *|° + Bl| “l 

.h/t 

i"/."/] * I «„ 
* Ii/ä 

Ki*Bli,D||] * /h/, Ojj [«.*.**] d* 

(5) 

(6) 

(7) 

(8) 

(9) 

The brackets above and for the remaining part of this report are symbolic rather than oper¬ 
ational; the equality applies to the corresponding terms in the bracket. The limits of inte¬ 
gration are from -h/2 to h/2, and remain the same unless otherwise specified. 

The constitutive equations of laminated composites are given by Equation 7, and the material 
coefficients are expressed by the A, B, and D matrices. Our present work is concerned with 
the nature of the Q, A, B, and D matrices. 

» 
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SECTION n 
TRANSFORMATION OF 

by Hearmon (Reference 5), and Tsai (Reference 4). A typical example is as follows: 

= m4C(| ♦ 2m8n8C(t ♦ n4CM ♦ 4m8n8CM 

♦ 4mniCfi- (m8C|# ♦ n8CM 2mnCM)8 

) ♦ 2mV(Clt 

(10) 

) ♦ 4m8n8(C 

♦ 4m*n (C|g 

m\ * + "‘°.t+ «'"'»'o,. 

♦ 4 m*n 01Ä ♦ 4 mn*0M 

The transformation of the other components of can also be shown. The transformation is 

a rotation through an angle 9 about the 3-axis, for which C0„ = C0i = invariant, and 

m = cos Q and n = sin a . It is assumed that a plane of symmetry exists in the 1-2 plane. 
Based on Equation 10 and similar results for the other components of Q„, we conclude that 

Qtj transforms the same as C^. Having established the transformation equations, we can 

apply the usual material symmetries like orthotropy, isotropy, ate., and the invariants of 
the transformation can be determined. 

3 
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For our present study, It is more convenient to express the transformation equations in 
terms of multiple angles than the conventional powers of sines and cosines. The following 
trigonometric identities shown by Cox (Reference 6) can be used: 

m4 = (3 +4 cos 20 + cos 40)/8 

m*n s (2 sin 20 -t- sin 40)/8 

m2n* = ( I - cos 40)/8 
(ID 

mnB = (2 sin 20-sin 40)/8 

n4 s (3-4COS0 + cos 40)/8 

By direct substitution of Equation 1 into the conventional transformation equations, a new 
form of the transformation equations for Q.. (also C..) can be derived with the results shown 
in Table I. lJ 

TABLE I 

TRANSFORMATION EQUATIONS OF 0, 

Constant cos 20 sin 20 cos 40 sin 40 

il 

'22 

12 

20 
is 

201. 2S 

U 

u. 

-ü2 

0 

0 

2U( 

2U. 

2U( 

-2U, 

0 

0 

'U2 

-u. 

u. 

-u_ 

-u. 

2U 

-2U. 

U, 

-U 

-u. 

-2U. 

2 U. 

4 
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where 

U, = (30,, ♦ 3Qf2+ 20,2 ♦ AQtt)/8 

U2 = (0„ - 022)/2 

U» = (0,, ♦ 0„ - 20,2 - 40,.)/8 

U4 = (0,, ♦ 022 60,2 - 40.,)/8 

u. s <0„ ^ Qa* -20.t ^ 40«e,/8 

U. = (0,. ^ °26)/2 

(12) 

U7S (Q,6-°2.)/2 

From Table I and Equation 12, the following two invariants can be established by observation: 

L = 0' ♦O' + 20’. 
I II 22 12 

= 2 ( U, ♦ U4 ) 

0 ♦ Q ♦ 20 . wll w22 WI2 

Qa. * °.2 

(13) 

u - u D 4 

0 - 0 •• 12 

By combining Equations 12 and 13, we can show that among the U’s: 

U, = ( 3L, ♦ 4L2)/8 

U. 5 ( L, - 4L2)/8 

U# = ( L, ♦ 4L.) /8 

(14) 

5 
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* 

are invariant as expected because they are the constant terms in Table I. But only two of them 
are independent because 

U# * <U, -U4>/2 (15) 

^2' U3* U6’ ani^ U7» on the other hand, are not invariant. 

If Qjj is orthotropic, 

from Equation 12, we see that 

U = 0. 

If is isotropic. 
Q = Q 

II it 

0 « ( 0 - 0 )/2 
M II It (16) 

0*0 * 0. is ts 

From Equation 12, we see that 

U, 8 «.i 

"4 8 °,i 
(17) 

U =(0 — Q )/2*0 s II it ss 

Uf 8 U, * U# * UT * 0. 

The components of can be expressed in terms of engineering constants if and only if is 
orthotropic: U 

®n 8 Eu ^ * 1 " ^li Vil* 

0 * E /(I—y V ) 
it ii rii II 

0 * y 0 * y 0 
it I« it rii II 

(18) 

°SS8 °lt 

We have shown in this section the transformation equations of Q.. in terms of multiple angles, 
and the meaning of the coefficients ^ 

6 
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SECTION m 

TRANSFORMATION OF A, B, D MATRICES 

If a laminated composite consists of constituent layers of the same 
(U » U * 0) with arbitrary lamina orientations and thicknesses, the elastic moduli 

UmlMted composite. A,,. By. and Dy can be expressed from Button 9. tor example, by 

(19) 

»here qu Is a function of s. t.e., It varies from layer to layer because of the varying lamina 

orientations. From Table 1 (where Qu In Equation 19 is actually Qu): 

gjj • u, ♦ Ua cos2S ♦ U, cos 4S (20) 

The transformation Equation JO consisto of one constant plus two cyclic terms. 
material 1s used In a laminated composite, say. boron-epoxy composite. Uj. U2. and U3 re 

main constant tor all the layers and Equation 19 can be expanded In terms of multiple angles 

as follows: 

[A..»Bn t0,. ] 5 /W.l1»*’**] 4U2 

♦ Us cos 40 [l.r,**] )4i (2|) 

= u, [h.o.hViz] ♦ uf /00.20(1,2,21]^ 

V Uj J cos S0 [t. I, X1] dr 

The same derivation can be applied to the other components of Ay By and Dy and the 
final relations are summarlred In Table II. 

7 



AFML-TR-67-349 

TABLE H 

A » B » D MATRICES IN TERMS OF LAMINA PROPERTIES 

[V 

[A22’ B22’ D22] 

[AI2 ’ B(2 » °I2 ] 

[AM» D««] 

2[AI«’ 8I«» Dl»] 

2[A2«' ®2«» °2«] 

»[a.b.d] 

U. 

U, 

U4 

U, 

0 

0 

i[a,b,d] 

U2 

■U2 

0 

0 

0 

0 

[a.b.d] 

0 

0 

0 

-u. 

[a,B,o] 

U; 

-ua 

0 

0 

>[a,b,d] 

0 

0 

-2U. 

2Ui 

where the are the same as those in Equation IS, and the V{ ^ Dj are defined as follows: 

'o[a,B,o]* (22» 

'|[a,B,d]* /«"2« [».I,«*] B» 

'«[a.b.d]* /•*>*«[».«,«*]<»« 

'3[a.B.D]* (23) 

V4[a.B.0]* / - 

r™ O» ta «ÍSd'S;"! ^l^’wrat^toïï!Cr0800PlC,lly) h0m0i~OU*’ 

V)A * J, 

V 
c 

V 
( 

V, 

V 

¡B 

iO 

tJ, wk‘V* (24) 

ks I 

# 
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such that, when 

¡ = I, wh = cos zQk 

= 2, = tin 20h 

= 3, s COS 

= 4, = sin 40k 

where k is the index of summation and n, the number of layers. Table II is not a transfor¬ 
mation relation as in Table I, although the appearance is very similar. Table II is an ex¬ 
pression of Equation 9 in terms of multiple angles and is valid for a laminated composite 
consisting of layers of the same material, otherwise the U’s cannot be taken out of the integral 
signs. The purpose of expressing A^, B^, and Djj in this format is to aid the understanding 

of laminated composites which may not be as apparent by use of Equation 9. The derivation 
for the case of an anisotropic material (Ug, U7 * 0) can be carried out in a similar fashion. 

The transformation equations of A^, B}j. and can be derived by using the expressions 

in Table II. For example, aA can be obtained by rotating the entire laminated composite 

through an angle </>. This is accomplished by substituting (6 ~4>) for 8. Thus 

a'h s Ui h * Ut / co* d* ♦ cos 4( 0 - ^ ) dz (25) 

Since 4*is constant for the entire laminated composite, thus, independent of z we get 

A'ii * Ui h + ut co# /co* * U* *in / *'n 

♦ u, cos 4 *1 cos40dz * U3sin 4^ J sin 40 dz 

(26) 

= U( h ♦ u2via cos - v2A.,n 24, 
* U5V3AC054<^^ USV4A,in4^ 

where V- ., . . . V.. represent the integrals defined in Equation 23 or the summations in 1A *kt\ 
Equation 24, and the subscript A signifies that a component of A^ is being evaluated. Similar 

results can be obtained for the other components of A'. The final transformation equations 
for Ajj can be shown in tabular form (Table III). 1 

9 
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TABLE m 

The transformation equations for BtJ and are the same as those shown in Table III except 

the must be replaced by VlB and V^. respectively, where 1 - 0,1, 2, 3, 4. Comparing 

idwtíõal If ** ** transformation relations are 
entical. Ug and U? do not appear in Table HI because we are investigating the case of Q 

being orthotropic. Thus transforms the same as Q^. Similarly, it can be shown that b|| 

and also transform like Q^. The transformaUon is needed for establishing the material 

symmetries^like orthotropy, isotropy, etc., and the invariants of this transformation From 
Tables II and HI and Equation 14, the foUowing invariants exist: 

pi 5 An + Aa* ♦ 2a.* s L,h * (Qm + Q u + 20,2 ) h 

p. * * «■,» = to,, - 0,,)h 

*Ttem relations can be shown in general bjr appropriate Integrations of 
mation equation of the elastic stiffness tensor. 

the tensor transfor- 

10 
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Similarly, invariants for and are: 

(28) 

p, = B„ + + 2B,» *0 

f, * BM - *1. * 0 
P, = 0,, + 0,, ♦ 20,, . L,p*/I2 . P, I.'/«* 

P s D - 0 * L h*/l2 * P h*/l2 • •• U i t 

There are several features of the invariants above. 

(a) The invariants of the A and D matrices are the same as those for the Q matrix except 
for correction factors Involving the thickness h. 

(b) The invariants of the A, B, and D matrices impose definite limits on the variability of 
their components. If A^ and A22 are selected to meet certain loading requirements, we no 

longer have any freedom in specifying A^2 and Agg because of invariants and P2> A similar 

statement can be made about the D matrix. 

(c) When B^ + B22 - 0, which occurs in a cross-ply composite (Reference 3), we know 

Immediately from Invariants Pg and P^ that 

B,t * B. 
« 0. 

Thus, in a lamina optimization procedure of a given material, say, a boron-epoxy composite, 
bounds exist on the range of variability of the elastic properties. As shown in Table II, each 
of the six independent components of the A, B, D matrices is governed by a constant term, 
which is not affected by lamina orientation, and variable terms expressed by V. r. R Di in 
Equations 23 and 24. I ’ ’ J 

S y 

11 
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SECTION IV 

SPECIAL PROPERTIES OF LAMINATED COMPOSITES 

We will examine a number of special laminated composites and hope to shed light on the 
nature of Vj this section. Since the limits of integration are * h/2, integration 

of an odd function (antisymmetric function with respect to 2 =« 0) will be zero; that of an even 
function, not zero. Let us examine the following cases: 

(a) If 0 is an odd function of z, which may be represented by a 2-layer angle-ply with ± 6 
orientation shown in Figure la, the following integrands are odd: 

cos P# [ z] P0 [l, z* ] . 

The following integrands are even: 

cos pfl [ I, i*] tin p0 [z] 

where p - 2 or 4. 

Thus, the following integrals among those in Equation 23 vanish: 

V 
IB 

V = V s V = V 
3B 2A 20 4A (29) 

From Table II: 

'is S AZ. = 0 

B.. = B 11 

it = D 

22 

26 

0I2 = 0M = 0 

0 

(30) 

Hence, A 
ij 

and D 
U 

are orthotropic. 

(b) If 0 is an even 
represented by Figure lb, 

function of z, which is known as a symmetric laminate and may be 
the following integrands are odd: 

cos »*[*] 

The following integrands are even: 

P0[ I, z* ] cos 

sin 

sin 

,e [«] 

pô[l, z* ] 

12 
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Thus, the following integrals among those in Equation 23 vanish: 

'IB 2 B 
= 7 SB 

: V = 0 
V4B 

(311 

From Table II: 

Bi, = 0 
(32) 

which means that there is no coupling between bending and extension in the laminated 
composite. Furthermore, and are, in general, anisotropic. 

(c) Let 0 be a random function of z, i.e., layers are randomly oriented, as shown in 
Figure 1c, and define Vj as the space average of \ri (Reference 5): 

TT/Í 

! V /., vide 
(33) 

ir/t ,h/t 

-ir/t 

where p is even. We have dropped the second subscript in Vj j since u is im* 

material here. Interchanging the order of integration, we get 

h/2 
/ (*in* 1 d0 [ l.z.z*] dz 

W ih/2 J-T/Z 

- 0 (34) 

Thus, for random orientation of the constituent layers, all the V. with the exception of 

the constant terms in Table II will vanish. The laminated composite becomes isotropic, 
since 

A = A = u h «I, 22 i 

A if s U4h (35) 

»„ -- U,h 

A = A = 0 !• 2« 

and from the above and Equation 15, 

A.. - A.. = 2A 11 12 • • (36) 

13 
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which satisfies the condition of isotropy of A^. The isotropy of A^ only implies that 

the moduli of a laminated composite are isotropic. The stress distribution, however, 
is not the same as that in an isotropic body. Similarly it can be shown that 

B.. = 0 
,J (37) 

D = A.. h*/l2 
Ü 'J 

Thus Djj is also isotropic. The laminated composite satisfies the condition of homo¬ 

geneity as well, although the stress distribution is different from that in a homogeneous 
material. 

(d) If a laminated composite has n equal layers (n > 2) and the orientation angles of the 
layers are at Increments of ▼/n, the integral V1A may be expressed as 

VjA s (cos 2ir/n+ cos 4ir/n ♦ • • • cos2ir)h/n (38) 

From Pierce’s table (4th Edition), Formula (639): 

sin(n+ -^)1 
cost + cos2* • ♦ cos n* = --—|- 

2sin s 

For X * 2ir/n 

V,A = 1/2 - 1/2 « 0 
IA 

(39) 

Similarly, from Pierce, Formula (637), 

sin * sin2x • • ♦ sin nx 

l+n n 
sin —g* * ■jT'* 

(40) 

For X a 2 ir/n 

0 

Using Equations 39 and 40, we can show for x » 4 ir/n: 

V = V = 0 
2 A 4 A 

Since (i * 0) vanish for this type of laminated composite, A^ is isotropic. The 

same relations as those in Equations 35 and 36 are obtained. This, of course, is the 
well-known result for in-plane quasl-isotroplc composites, where the lamina orien¬ 
tations are (-60) - 0 - 60, (-90) - (-45) - 0 - 45, etc., shown in Figures Id and le. 
B,, and D,, can be made quasi-iso tropic by more complex stacking sequences than that 

ij 
for A 

IJ 
ij' 

14 ! 
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Finally, the area under the A'tj versus d> curve from 4> = 0 to ¿ = 2 tr can be obtained by the 

integration of the transformation equations listed in Table III. Since, 

(41) 

where p is an integer, only the constant terms remain. Thus the areas under the are con¬ 

stant and the average numerical values are the isotropic constants in Equation 36for the 
randomly oriented lamina composites and those quasi-isotropic laminates described in the 
previous subsection. This leads to the conclusion that the invariant properties of constants U1 

and U-. U4 being dependent on Uj and U«.. may constitute a measure of the performance of 
orthotropic materials and laminates. Lamina orientation variations only change the shape of 
the Aj curve as <f> varies but the area under the curve remains constant. We can also conclude 

that the area under the curve is zero and that under D^', constant. 

15 
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SECTION V 

ISOTROPIC CONSTANTS 

flu^oX .woTXIS ¡SÄSr*“8 °f a “* *n- 

u. 

u. 

= (30m + 3Q22 + 
20,2 + ^06e,/8 

= (0m + 02* - 20,2 40m)/8 

(42) 

(43) 

For laminated composites, the same invariants exist, except that corrections for thickness of 

h/12i,mU8t be ^P1160 for the A and D matrices, respectively The invariants for B 
are identically zero, as shown in Equation 28. V me invariants lor 

If the material is isotropic, the resulting relations shown in Equation 17 are 

U. s 0 11 U : o 
8 (44) 

Because Uj and U5 reduce to the stiffness and shear rigidity of an isotropic material, we 

shall designate Uj and Ug defined in Equations 42 and 43 as the isotropic stiffness and iso¬ 

tropic shear rigidity, respectively. These isotropic properties, which are sneoifir 
eíSíwHH of orthotroPtc Properties, represent a realistic measure of the minimum süffness 
apability of composite materials, which can be compared directly with isotropic materials 

nranH11 as other orthotropie materials. This measure of stiffness is different from the common 
practice of comparing the longitudinal stiffness Qn with isotropic materials. Although Q 

weight aifaas?s0d this TsTifw ^ ** 8eVeral utlmes hi8her ^ lightweight metals on the eignt basis, this is not a fair comparison because the weakness of most composites in 
transverse stiffness and shear rigidity is ignored. composites in 

to a basis °f comparison with isotropic materials, the proposed use 
of invariant or isotropic properties may lead to a better understanding of the variability 

compoBite, fo "Xoh COmpOSlte "'“»rials. » we start initially wiUt a unidirectional 

ii ‘•li" 

any change in fiber orientation of some layers within the same composite will change A. ac¬ 

cording to Table II. These changes are governed by the integrals V , V V and V .while 

V0 remains invariant. The V’s dictate the magnitude of the variability in the elastic properties 

wmP08,ite variation oscillates above or below the isotropic constants 

oosine ^ 

16 
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The concept of invariant properUes may simplify the lamina optimization process. Struc¬ 
tural optimization can begin with the isotropic constants. They should represent the minimum 
stiffness of composite materials. Any lamina design that falls below the performance of that 
based on isotropic constants should be automatically rejected. 

z 

-0 

h/2 

- h/2 

i 
i_I-» 

-ir/2 tt/2 

a b 

c d,(n * 3) d , ( n = 4 ) 

Figure 1. Examples of Lamina Orientations 

Figure 2 shows the variation of A^ for various boron-epoxy composites, using the following 
data: 

Q() = 40 * 10* psi 

022 = 4 * I0# p*i 

0|2 s i.O * 10 p*i 

0.. s 1.5 « 10* psi 

(45) 

17 
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A'm / h» '0*P*i 

The unidirectional and Isotropic composites are shown in both diagrams. On the left diagram, 
two cross-ply composites with cross-ply ratio m equal to 1 and 3 are shown. Cross-ply ratio 
is the ratio of the thickness of the 0-degree to 90-degree layers. On the right diagram, two 
angle-ply composites with helical angle a equal to 30 degrees and 45 degrees are also shown. 
Angle-ply composites consist of equal numbers of layers oriented at + a and -a. These dia¬ 
grams illustrate that the areas under all the curves are the same. If a cross-ply with 

1 "J* an angle-ply with a = 45 degrees, the resulting composite is isotropic. 
This agrees with the conclusion of the previous section and is shown in Figure le All the 
cross-ply composites have the same value at <£ « 45 degrees. This can be shown from the 
transformation equation. Finally, when the number of lamina orientations increases, the re- 
¡ÍSycomposite will approach the isotropic state. Thus, depending on the nature 

f T0” e?ectivtlamina optimisation program may be achieved by begin¬ 
ning with the isotropic laminate, rather than the unidirectional composite. K 

It may be useful to determine approximately the numerical values for the invariant pron- 
ertles represented by Equations 42 and 43. We will define P F 

u, 8 E . U# » 6 (46) 

For the highly orthotropic composites like glass-epoxy and boron-epoxy composites 

0 a E h h 0 a E a* it (47) 
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because the minor Poisson ratio is usually less than 0.1. If is 0.3« 1 

The approximation of Equation 47 introduces an error less than 3%. From elasticity solutions 
by Adams and Doner on longitudinal shear (Reference 7) and transverse loading (Reference 8) 
of a unidirectional composite, we have 

0«/6m = G„/6m= F, ' VGm'V 

0 /E = E / E = F ( E. /E , I 
22 m 22 m a f m f 

(48) 

(49) 

Although E22 siso depends upon the Poisson ratios of the constituents, this dependence is not 

considered in Equations 48 and 49 since representative values of the Poisson ratio for typical 
plastic matrix composites were assumed in Reference 8. We also assume that small changes 
in constituent Poisson ratios do not greatly affect the transverse modulus E22. Let 

F. = 

where /3 is a function of constituent stiffness ratio and fiber volume fraction. By comparing 
Figure 5 of Reference 7 and Figure 4 of Reference 8, it can be seen that 

1 < ß < \ (50) 

for a fiber volume of 70% or less. Since 

6m s Em'2(' + ■'m* (51) 

we obtain from Equations 48 and 49, for * 0.33, 

Hence, if we substitute 

o : A. /3e 
w6« 8 H 22 (52 ) 

h 

12 

•a 

= E . = * II ’ ~ 22 “22 

V . Q = 0.25E. 
12 22 

0 = — ÛE 
12 8 ^ 22 

22 
(53) 

into Equations 42 and 43, we obtain approximately 

E 'TE" + 

G « 4- E.. ♦ -—(I ♦ 3/3)E 
8 » 16 '22 

(54) 
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Since E22 < Ejj for fiber-reinforced compositeo, the error introduced by putting - 1 in 

Equation 54 is quite small. For example, if =» 10, the maximum possible errors are 3.3 
22 

and 0.9% in G and E, respectively, owing to variations in /9. Setting /3=1 then, yields 

Isotropic stiffness 

Isotropic shear rigidity 

E 

6 

K, 

T E„ 
(55) 

(56) 

These approximate equations are simple to use and give reasonable values to represent the 
invariant properties. 

Cox (Reference 6) derived isotropic constants for randomly oriented flberous composites as 

E = E,/3. G = E((/8 (57) 

These values are lower than those of Equations 55 and 56. Loewenstein (Reference 9) also 
showed the 3/8 factor for in-plane random orientation (the transverse stiffness is taken to be 
zero). Bishop (Reference 10) also derived a theory which has results similar to that reported 
by Loewenstein (Reference 9). Both References 9 and 10 may be considered as having 

(58) 

The conditions implied by this equation, however, are not reasonable for modern fiber- 
reinforced composites. The transverse and shear moduli are significant quantities in de¬ 
termining the elastic behavior of composite materials. 

An estimate of the performance of fiber-reinforced composites is shown in terms of in¬ 
variant properties in Figure 3. The normalized E is derived from 

E / E s I- (E / E) m 0 ti m + T<E„/Em 
: A- f(j_w ) ♦ V E /E 1 + — F 

8 I f f f mJ 8 t 

where the rule of mixtures equation is used: 

E„ 8 (,-VEm * "fEf 

(59) 

(60) 

and F g is expressed in Equation 49, the numerical values of which are obtained from 

Reference 8. From Equation 56, using /3= 1 as discussed earlier, 

G/G : 
m 

2.66 

8 
E,/EJ ♦ (61) 
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where Equation 51 is used with um = 0.33. Comparing Equations 59 and 61, we notice that 

E/Em » G/G,,, fn cu (62) 

I* igure 3 shows the normalizeo E and G for fiber-reinforced composites with = 70 and 

40%. For convenience, absolute units for Ë are also shown for boron-aluminum, glass-epoxy, 
and boron-epoxy composites. Figure 3 represents the minimum capabilities of the composite 
materials; the advantage of designed anisotropy to meet a specific loading condition has not 
been claimed. 

Figure 3. Isotropic Constants of Fiber-Reinforced Composites 
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SECTION VI 

SUMMARY 

anrieRhian«J»Í!!?^at tran8for^atlon equaUons of tensors can be expressed in multiple 
♦hf1?8 l^tewl °f U8Ual P°wer8 of sines and cosines. In the multiple angle representation 
tï.t«ÏÎÎBfOrSatl0nnPrOpertie8 con8i8t of ‘“variant terms, which correspond to the isotropic 
constants, and cyclic terms, which control the variation and directionality of properties due 
to anisotropy. The transformation equations for the moduli of two-dimensioil lasers (Q ) 
and laminated composites (A^, and D^) can be readily derived. Y (Q‘J) 

in T^L«lí?tÍÍKPr0PertÍeS 0f larinated comP°8ite8 as functions of lamina orientation are shown 
able II. The components of A^.B^.and are governed by invariant terms, plus variable 

terms in terms of integrals V{. It is proposed that isotropic properties for anisotropic 

materials be used as a measure of the minimum stiffaess capability. They mav be considered 
intrinsic properties of me material because they are inde^ndent of toe iZL ortoïtafioÎ? 
Direct comparisons of the stiffness represented by E and C with isotropic materials appear 

determined directly from Figure 3 which should be of value to materials engineers. 

* Üia?y’ ba8ls °{ lamlna optimization may be more easily carried out and better undur- 
JZ?Lhy relations than toe oomtioiul trwtmSt iidMSScÆl 
-.illty cu. be determined from tee value, of Ute Integrals V,. If anlXp¿ te to Ätfldil 

for a given lowllng condition, the performance of the composite should In all cases exceed that 

often isotropic laminate. 11«. optlmisaUon cm. begte^teta iXmlc ¿o^tnSi^ 
tropic consunto, the Integral, V, and the intmrtoS. P, should bf^S^Â^d 

^ lamina oPj^^tton procedures. For practical design, the number of lamina 
The ^atfonÍnofath^lnatoí«COn,P08ÍÍÍ may h® kept to' 8ay- 00 ““>» than four orientattons. 
nif« îf1 f ? properties may be more effectively controUed through toe lamina toick- 
Pfmnn«anMthei or!entation- ^ wducUon in lamina orientations maySroduce immediate 
ofT^^ irr“7818' d®8ign Procures, and automated fabrication techniques 

TS pi?8ent ?nC®pt lead to “ 0P“inu® design based onstaatn 
whlch, advantage of anisotropy in a composite material mav be readilv 

po^dbieh f0r 8pecific load condltlons- A similar approach to the problem of strength seems 
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