INVARIANT PROPERTIES OF COMPOSITE MATERIALS

S. W. TSAI
Washington University

N. J. PAGANO
Air Force Materials Laboratory

TECHNICAL REPORT AFML-TR-67-349

MARCH 1968

> This document has been approved for public release and sale; its distribution is unlimited.

AIR FORCE MATERIALS LABORATORY

AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoover; and the fact that the Government may have formulated, furnishod, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

INVARIANT PROPERTIES OF COMPOSITE MATERIALS
S. W. Tsai, et al

Washington University
St. Louis, Missouri
March 1968

Processed for . . .

DEFENSE DOCUMENTATION CENTER DEFENSE SUPPLY AGENCY

INVARIANT PROPERTIES OF COMPOSITE MATERIALS

S. W. TSAI
Washington University
N. J. PAGANO
Air Force Materials Laboratory

This document has been approved for public release and sale; its distribution is unlimited.

FOREWORD

The work of S. W. Tsai, Washington University, St. Louis, Missourl, was sponsored by the Advanced Research Project Agency, Department of Defense, under an Office of Naval Research Contract No. N00014-67-C-0218.

The work of N. J. Pagano was sponsored by the Plastics and Composites Branch (MANC), Nonmetallic Materials Division, Air Force Materials Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio, and was initiated under Project 7340, "Nonmetallic and Composites Materials," Task 734003, "Structural Plastics and Composites."

This report covers research conducted during the period May through August 1967. The report was submitted by the authors in September 1967.

This technical report has been reviewed and is approved.

R. G. SPAIN

Acting Chief, Plastics and Composites Branch Nonmetallic Materials Division Air Force Materials Laboratory

ABSTRACT

Invariant properties of the elastic coefficient matrices of laminated composite plates are presented. The use of these invariants in materials evaluation and design optimization is discussed. Simple formulas, based upon micromechanics results, are derived for the invariants in terms of constituent material properties.

TABLE OF CONTENTS

SECTION PAGE
I INTRODUCTION 1
II TRANSFORMATION OF $Q_{i j}$ 3
III TRANSFORMATION OF A, B, D, MATRICES 7
IV SPECIAL PROPERTIES OF LAMINATED COMPOSITES 12
v ISOTROPIC CONSTANTS 16
VI SUMMARY 22
REFERENCES 23

SYMBOLS

$A_{i j}, B_{i j}, D_{i j}$	elastic constants of laminated composites, Equation 9
$\mathrm{C}_{i j}$	elastic stiffness matrix of 3-dimensional bodies
$Q_{i j}$	reduced stiffness matrix for bodies under plane stress
L_{1}, L_{2}	invariants of $\mathbf{Q}_{\mathbf{i j}}$
$\mathrm{U}_{1} \ldots \ldots \mathrm{U}_{7}$	coefficients of transformation equations in Table I, defined by Equation 14
$V_{0}[A, B, D]$	Constant terms in $\mathrm{A}_{\mathbf{i j}}, \mathrm{B}_{\mathbf{i j}}$, and $\mathrm{D}_{\mathbf{i j}}$ defined by Equation 22
$\mathrm{V}_{1} \ldots \ldots \mathrm{~V}_{4}[A, B, D]$	integrals defined by Equation 23
$\mathrm{P}_{1} \ldots \mathrm{P}_{6}$	invariants of $A_{i j}, B_{i j}$, and $D_{i j}$, defined in Equations 27 and 28
N_{1}	stress resultants
M_{1}	stress couples
k_{i}	components of curvature
m	$\cos \theta$, or cross-ply ratio which is the ratio of the thickness of 0° to 90° layers in a cross-ply composite
n	$\sin \theta$, or number of layers in Equations 38,39, and 40
h	total thickness of laminated composites
E	Young's modulus
G	shear modulus
$\mathrm{F}_{1}, \mathrm{~F}_{2}, \beta$	functions defined by Equations 48, 49, and 50
T	temperature
v	volume fraction
α_{i}	thermal expansion coefficients
C_{1}	strain components
σ_{1}	stress components

SYMBOLS (CONTD)

ν
θ, ϕ subscript f
subscript m
bar
prime

Polsson's ratio

angles of rotation
pertaining to flbers
purtaining to matrix
average quantities or isotropic constants
transformed component

SECTION I
 INTRODUCTION

The superior performance of composite materials over lightweight metals has been well publicized in recent years. Composites have been claimed to possess improvements in stiffness and in strength of severalfold over ordinary materials. The claim, however, is based on elther the properties of the fibers alone or the longitudinal properties of a unidirectional composite against those of the metals. Since composites are normally used in laminated forms which consist of unidirectional layers, a more realistic measure of the performance of the composites than that based on the fiber or longitudinal properties is needed.

In this work, the transformation properties of unidirectional and laminated composites are derived in terms of multiple angles, instead of the classical relations using powers of sines and cosines. The offect of lamina orientation is then examined. It is shown that the invariant properties of both the unidirectional and laminated composites have the same components, and can be used as an effective measure of the performance of the composites. Simple formulas are derived, from which the invariant properties of composites, irrespective of the lamina orientation, can be determined from the properties of the constituents. This work should be of value to system analysts who must evaluate the performance of composites, to structural designers who must establish a rational design procedure, and to materials engineers who may need guidance in the selection and fabrication of composite materials.

The elastic modull of laminated composites have been reported by many investigators in recent years, examples of which include Reissner and Stavsky (Reference 1), Dong, et al. (Reference 2), and Tsai, (References 3 and 4). The usual assumptions in all these studies are:
(a) All layers are in a state of plane stress relative to the $x-y$ or 1-2 plane, so that

$$
\begin{equation*}
\sigma_{3}=\sigma_{4}=\sigma_{6}=0 \tag{1}
\end{equation*}
$$

(b) All layers are bonded together and the strain components in the 1-2 plane are linear functions of \mathbf{z},

$$
\begin{equation*}
c_{1}=c_{1}^{0}+2 x_{1} \tag{2}
\end{equation*}
$$

where $i=1,2$ refers to the normal components; $i=6$, the engineering shear strain component.
(c) All layers obey general!zed Hooke's law,

$$
\begin{equation*}
\sigma_{i}=c_{i j}, \tag{3}
\end{equation*}
$$

With these assumptions, the constitutive equations for a laminated composite can be derivod. The stress-strain relation for the assumed plane stress condition including the thermal effect for each layer is

$$
\begin{equation*}
\sigma_{i}=o_{i j} c_{j}-a_{i j} a_{j} T \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
& a_{i j}=c_{i j}-\frac{c_{i 3} c_{13}}{c_{33}}=\text { reduced stiffness motrix } \\
& a_{i}=\text { anisotropic thermal expansion matrix } \\
& T=\text { temperature increase from a reference (stress-free) } \\
& \text { temperature. }
\end{aligned}
$$

Stress resultants $\left(N_{i}\right)$ and stress couples $\left(M_{i}\right)$ can be defined as:

$$
\begin{equation*}
\left[N_{i}, N_{i}\right]=\int_{-h / 2}^{h / 2} \sigma_{i}[1, z] d z \tag{6}
\end{equation*}
$$

Substituting Equations 2 and 4 into 6 renders

$$
\begin{align*}
& \bar{N}_{i}=N_{i}+N_{i}^{T}=A_{i j} \epsilon_{j}^{0}+B_{i j} k_{j} \tag{7}\\
& \bar{M}_{i}=M_{i}+M_{i}^{T}=B_{i j} c_{j}^{0}+D_{i j}^{k j}
\end{align*}
$$

where

$$
\begin{align*}
& {\left[N_{i}^{\top}, M_{i}^{T}\right]=\int_{-h / 2}^{h / 2} 0_{i j} a_{j} T[1, z] d z} \tag{8}\\
& {\left[A_{i j}, B_{i j}, O_{i j}\right]=\int_{-h / 2}^{h / 2} 0_{i j}\left[1, z, z^{2}\right] d z} \tag{9}
\end{align*}
$$

The brackets above and for the remaining part of this report are symbolic rather than operational; the equality applies to the corresponding terms in the bracket. The limits of integration are from $-h / 2$ to $h / 2$, and remain the same unless otherwise specified.

The constitutive equations of laminated composites are given by Equation 7, and the material coefficients are expressed by the A, B, and D matrices. Our present work is concerned with the nature of the $\mathrm{Q}, \mathrm{A}, \mathrm{B}$, and D matrices.

SECTION II

TRANSFORMATION OF $Q_{i j}$

We would like to establish the transformation equations of the reduced stiffness matrix $Q_{i j}$. This can be done by the use of Equation 5 and the transformation equations for C_{ij} tabulated by Hearmon (Reference 5), and Tsai (Reference 4). A typical example is as follows:

$$
\begin{align*}
Q_{11}^{\prime}= & c_{11}^{\prime}-\frac{c_{13}^{\prime}}{c_{33}^{\prime}} \\
= & m^{4} c_{11}+2 m^{2} n^{2} c_{12}+n^{4} c_{22}+4 m^{2} n^{2} c_{68} \\
& +4 m^{3} n c_{16}+4 m n^{3} c_{26}-\frac{1}{c_{33}}\left(m^{2} c_{13}+n^{2} c_{23}+2 m n c_{36}\right)^{2} \\
= & m^{4}\left(c_{11}-\frac{c_{13}^{2}}{C_{33}}\right)+2 m^{2} n^{2}\left(c_{12}-\frac{c_{13} c_{23}}{c_{33}}\right) \\
& +n^{4}\left(c_{22}-\frac{c_{23}^{2}}{C_{33}}\right)+4 m^{2} n^{2}\left(c_{36}-\frac{c_{36}^{2}}{C_{33}}\right) \tag{10}\\
& +4 m^{3} n\left(c_{16}-\frac{c_{13} c_{63}}{C_{33}}\right)+4 m n^{3}\left(c_{26}-\frac{c_{23} c_{63}}{c_{33}}\right) \\
= & m^{4} Q_{11}+2 m^{2} n^{2} Q_{12}+n^{4} Q_{22}+4 m^{2} n^{2} Q_{66} \\
& +4 m^{3} n Q_{16}+4 m^{3} Q_{26}
\end{align*}
$$

The transformation of the other components of $Q_{i j}$ can also be shown. The transformation is a rotation through an angle θ about the 3 -axds, for which $C_{33}=C_{33}{ }^{\prime}=$ invariant, and $m=\cos \theta$ and $n=\sin \theta$. It is assumed that a plane of symmetry exists in the $1-2$ plane. Based on Equation 10 and similar results for the other components of $Q_{i j}$, we conclude that $Q_{i j}$ transforms the same as $C_{i j}$. Having established the transformation equations, we can apply the usual material symmetries like orthotropy, isotropy, etc., and the invariants of the transformation can be determined.

For our present study, it is more convenient to express the transformation equations in terms of multiple angles than the conventional powers of sines and cosines. The following trigonometric identities shown by Cox (Reierence 6) can be used:

$$
\begin{align*}
& m^{4}=(3+4 \cos 2 \theta+\cos 4 \theta) / 8 \\
& m^{3} n=(2 \sin 2 \theta+\sin 4 \theta) / 8 \\
& m^{2} n^{2}=(1-\cos 4 \theta) / 8 \tag{II}\\
& m n^{3}=(2 \sin 2 \theta-\sin 4 \theta) / 8 \\
& n^{4}=(3-4 \cos \theta+\cos 4 \theta) / 8
\end{align*}
$$

form of substitution of Equation 1 into the conventional transformation equations, a new form of the transformation equations for $Q_{i j}$ (also $C_{i j}$) can be derived with the results shown
in Table I.

TABLE I
TRANSFORMATION EQUATIONS OF $0_{i j}$

	Constant	$\cos 2 \theta$	$\sin 2 \theta$	$\cos 4 \theta$	$\sin 4 \theta$
a_{11}^{\prime}	u_{1}	u_{2}	$2 u_{6}$	u_{3}	u_{7}
a_{22}^{\prime}	u_{1}	$-u_{2}$	$-2 u_{6}$	u_{3}	u_{7}
a_{12}^{\prime}	u_{4}	0	0	$-u_{3}$	$-u_{7}$
a_{68}^{\prime}	u_{3}	0	0	$-u_{3}$	$-u_{7}$
$2 a_{16}^{\prime}$	0	$2 u_{6}$	$-u_{2}$	$2 u_{7}$	$-2 u_{3}$
$2 a_{26}^{\prime}$	0	$2 u_{6}$	$-u_{2}$	$-2 u_{7}$	$2 u_{3}$

AFML-TR-67-349

where

$$
\begin{align*}
& U_{1}=130_{11}+30_{22}+20_{12}+40_{66} 1 / 8 \\
& U_{2}=\left(Q_{11}-Q_{22}\right)^{\prime 2} \\
& U_{3}=10_{11}+0_{22}-2 Q_{12}-40_{66} 1 / 8 \tag{12}\\
& U_{4}=\left(Q_{11}+Q_{22}+6 Q_{12}-4 Q_{66}\right) / 8 \\
& U_{6}=\left(0_{11}+\theta_{22}-20_{12}+40_{66}\right) / 8 \\
& U_{6}=\left(\theta_{16}+Q_{26}\right) / 2 \\
& U_{7}=\left(0_{16}-a_{26}\right) / 2
\end{align*}
$$

From Table I and Equation 12, the following two invariants can be established by observation:

$$
\begin{align*}
L_{1} & =0_{11}^{\prime}+0_{22}^{\prime}+20_{12}^{\prime} \\
& =2\left(u_{1}+u_{4}\right) \\
& =Q_{11}+0_{22}+20_{12} \tag{13}\\
L_{2} & =a_{66}^{\prime}-0_{12}^{\prime} \\
& =u_{3}-u_{4} \\
& =a_{66}-0_{12}
\end{align*}
$$

By combining Equations 12 and 13 , we can show that among the U's:

$$
\begin{align*}
& U_{1}=\left(3 L_{1}+4 L_{2}\right) / 8 \\
& U_{4}=\left(L_{1}-4 L_{2}\right) / 8 \tag{14}\\
& U_{8}=\left(L_{1}+4 L_{2}\right) / 8
\end{align*}
$$

AFML-TR-67-349

are invariant as expected because they are the constant terms in Table I. But only two of them are independent because

$$
\begin{equation*}
u_{5}=\left(u_{1}-u_{4}\right) / 2 \tag{15}
\end{equation*}
$$

$\mathrm{U}_{2}, \mathrm{U}_{3}, \mathrm{U}_{6}$, and U_{7}, on the other hand, are not invariant.
If $Q_{i j}$ is orthotropic.

$$
0_{18}=a_{28}=0
$$

from Equation 12, we see that

$$
U_{5}=U_{7}=0
$$

If $Q_{i j}$ is isotropic,

$$
\begin{align*}
& a_{11}=a_{22} \\
& a_{66}=\left(a_{11}-a_{12}\right) / 2 \tag{16}\\
& a_{16}=a_{28}=0
\end{align*}
$$

From Equation 12, we see that

$$
\begin{align*}
& u_{1}=a_{11} \\
& u_{4}=a_{12} \tag{17}\\
& u_{8}=10_{11}-a_{12} / 12=a_{16} \\
& u_{2}=u_{3}=u_{6}=u_{7}=0 .
\end{align*}
$$

The components of $Q_{i j}$ can be expressed in terms of engineering constants if and only if $Q_{i j}$ is
orthotropic:

$$
\begin{align*}
& Q_{11}=E_{11} /\left(1-\nu_{12} \nu_{21}\right) \\
& 0_{22}=E_{22} /\left(1-\nu_{12} \nu_{21}\right) \\
& Q_{12}=\nu_{12} Q_{22}=\nu_{21} Q_{11} \tag{18}\\
& Q_{60}=G_{12}
\end{align*}
$$

We have shown in this section the transformation equations of $Q_{i j}$ in terms of multiple angles, and the meaning of the coefficients U_{i}.

SECTION III

TRANSFORMATION OF A, B, D MATRICES

If a laminated composite consists of constituent layers of the same orthotropic material $\left(\mathrm{U}_{6}=\mathrm{U}_{7}=0\right.$) with arbitrary lamina orientations and thicknesses, the elastic moduli of the laminated composite, $A_{i j}, B_{i j}$, and $D_{i j}$, can be expressed from Equation 9 , for example, by

$$
\begin{equation*}
\left[A_{11}, B_{11}, D_{11}\right]=\int 0_{11}\left[1, z, z^{2}\right] d z \tag{19}
\end{equation*}
$$

where Q_{11} is a function of z, i, e. , it varies from layer to layer because of the varying lamina orientations. From Table I (where Q_{11} in Equation 19 is actually Q_{11}^{\prime}):

$$
\begin{equation*}
Q_{11}^{\prime}=U_{1}+U_{2} \cos 2 \theta+U_{3} \cos 4 \theta \tag{20}
\end{equation*}
$$

The transformation Equation 20 consists of one constant plus two cyclic terms. If the same material is used in a laminated composite, say, boron-epoxy composite, $\mathrm{U}_{1}, \mathrm{U}_{2}$, and $\mathrm{U}_{3} \mathrm{re}$ main constant for all the layers and Equation 19 can be expanded in terms of multiple angles as follows:

$$
\begin{align*}
{\left[A_{11}, B_{11}, D_{11}\right]=} & \int\left(u_{1}\left[1, z, z^{2}\right]+u_{2} \cos 2 \theta\left[1, z, z^{2}\right]\right. \\
& \left.+u_{3} \cos 4 \theta\left[1, z, z^{2}\right]\right) d z \tag{21}\\
= & u_{1}\left[n, 0, n^{3} / 12\right]+u_{2} \int \cos 2 \theta\left[1, z, z^{2}\right] d z \\
& +u_{3} \int \cos 4 \theta\left[1, z, z^{2}\right] d z
\end{align*}
$$

The same derivation can be applied to the other components of $A_{i j}, B_{i j}$, and $D_{i j}$, and the final relations are summarized in Table II.
table II
A, B, D MATRICES IN TERMS OF LAMINA PROPERTIES

	$V_{0}[A, B, D]$	$V_{1}[A, B, D]$	$V_{2}[A, B, D]$	$V_{3}[A, B, D]$	$V_{4}[A, B, D]$
$\left[A_{11}, B_{11}, D_{11}\right]$	U_{1}	U_{2}	0	U_{3}	0
$\left[A_{22}, B_{22}, D_{22}\right]$	U_{1}	$-U_{2}$	0	U_{3}	0
$\left[A_{12}, B_{12}, D_{12}\right]$	U_{4}	0	0	$-U_{3}$	0
$\left[A_{66}, B_{66}, D_{66}\right]$	U_{6}	0	0	$-U_{3}$	0
$2\left[A_{16}, B_{16}, D_{16}\right]$	0	0	$-U_{2}$	0	$-2 U_{3}$
$2\left[A_{26}, B_{26}, D_{26}\right]$	0	0	$-U_{2}$	0	$2 U_{3}$

where the U_{i} are the same as those in Equation 13 , and the $V_{i}[A, B, D]$ are defined as follows:

$$
\begin{align*}
& v_{0[A, B, D]}=\left[n, 0, n^{3} / 12\right] \tag{22}\\
& v_{1[A, B, D]}=\int \cos 2 \theta\left[1, z, z^{2}\right] d z \\
& v_{2[A, B, D]}=\int \sin 2 \theta\left[1, z, z^{2}\right] d z \\
& v_{3[A, B, D]}=\int \cos 4 \theta\left[1, z, z^{2}\right] d z \tag{23}\\
& v_{4[A, B, D]}=\int \sin 4 \theta\left[1, z, z^{2}\right] d z
\end{align*}
$$

Since the constituent layers are assumed to be (macroscopically) homogeneous, the integrals above can be replaced by the following summations:

$$
\begin{align*}
& v_{i A}=\sum_{k=1}^{n} w_{k}\left(n_{k+1}-n_{k}\right) \\
& v_{i B}=\frac{1}{2} \sum_{k=1}^{n} w_{k}\left(n_{k+1}^{2}-n_{k}^{2}\right) \tag{24}\\
& v_{i O}=\frac{1}{3} \sum_{k=1}^{n} w_{k}\left(n_{k+1}^{3}-n_{k}^{3}\right)
\end{align*}
$$

A FML-TR-67-349
such that, when

$$
\begin{aligned}
i & =1, & w_{k} & =\cos 2 \theta_{k} \\
& =2, & & =\sin 2 \theta_{k} \\
& =3, & & \cos 4 \theta_{k} \\
& =4, & & =\sin 4 \theta_{k}
\end{aligned}
$$

where k is the index of summation and n, the rumber of layers. Table II is not a transformation relation as in Table I, although the appearance is very similar. Table II is an expression of Equation 9 in terms of multiple angles and is valid for a laminated composite consisting of layers of the same material, otherwise the U's cannot be taken out of the integral signs. The purpose of expressing $A_{i j}, B_{i j}$, and $D_{i j}$ in this format is to aid the understanding of laminated composites which may not be as apparent by use of Equation 9. The derivation for the case of an anisotropic material $\left(U_{6}, U_{7} \neq 0\right)$ can be carried out in a similar fashion.

The transformation equations of $A_{i j}, B_{i j}$, and $D_{i j}$ can be derived by using the expressions in Table II. For example, A_{11}^{\prime} can be obtained by rotating the entire laminated composite through an angle ϕ. This is accomplished by substituting $(\theta-\phi)$ for θ. Thus

$$
\begin{equation*}
A_{11}^{\prime}=U_{1} h+U_{2} \int \cos 2(\theta-\phi) d z+U_{3} \int \cos 4(\theta-\phi) d z \tag{25}
\end{equation*}
$$

Since ϕ is constant for the entire laminated composite, thus, independent of z we get

$$
\begin{align*}
A_{11}^{\prime}= & U_{1} h+U_{2} \cos 2 \phi \int \cos 2 \theta d z+U_{2} \sin 2 \phi \int \sin 2 \theta d z \\
& +U_{3} \cos 4 \phi \int \cos 4 \theta d z+U_{3} \sin 4 \phi \int \sin 4 \theta d z \tag{26}\\
= & U_{1} h+U_{2} V_{1 A} \cos 2 \phi+U_{2} V_{2 A} \sin 2 \phi \\
& +U_{3} V_{3 A} \cos 4 \phi+U_{3} V_{4 A} \sin 4 \phi
\end{align*}
$$

where $V_{1 A}$, . . $V_{4 A}$ represent the integrals defined in Equation 23 or the summations in Equation 24, and the subscript A signifies that a component of $A_{i j}$ is being evaluated. Similar results can be obtained for the other components of $A_{i j}{ }^{\prime}$. The final transformation equations for $A_{i j}$ can be shown in tabular form (Table III).

TABLE III
TRANSFORMATION EQUATIONS OF A

	Constont	$\cos 2 \phi$	$\sin 2 \phi$	$\cos 4 \phi$	$\sin 4 \phi$
A_{11}^{\prime}	$U_{1} V_{O A}$	$U_{2} V_{1 A}$	$U_{2} V_{2 A}$	$U_{3} V_{3 A}$	$U_{3} V_{4 A}$
A_{22}^{\prime}	$U_{1} V_{O A}$	$-U_{2} V_{1 A}$	$-U_{2} V_{2 A}$	$U_{3} V_{3 A}$	$U_{3} V_{4 A}$
A_{12}^{\prime}	$U_{4} V_{O A}$	0	0	$-U_{3} V_{3 A}$	$-U_{3} V_{4 A}$
A_{66}^{\prime}	$U_{5} V_{O A}$	0	0	$-U_{3} V_{3 A}$	$-U_{3} V_{4 A}$
$2 A_{16}^{\prime}$	0	$U_{2} V_{2 A}$	$-U_{2} V_{1 A}$	$2 U_{3} V_{4 A}$	$-2 U_{3} V_{3 A}$
$2 A_{26}^{\prime}$	0	$U_{2} V_{2 A}$	$-U_{2} V_{1 A}$	$-2 U_{3} V_{4 A}$	$2 U_{3} V_{3 A}$

The transformation equations for $B_{i j}$ and $D_{i j}$ are the same as those shown in Table III except the $V_{i A}$ must be replaced by $V_{i B}$ and $V_{i D}$, respectively, where $i=0,1,2,3,4$. Comparing Tables I and III, in conjunction with Table II, the corresponding transformation relations are identical. U_{6} and U_{7} do not appear in Table III because we are investigating the case of $\mathrm{Q}_{1 \mathrm{j}}$ being orthotropic. Thus $A_{i j}$ transforms the same as $Q_{i j}$. Similariy, it can be shown that $B_{i j}$ and $D_{i j}$ also transform like $Q_{i j}{ }^{*}$ The transformation is needed for establishing the materiai symmetries like orthotropy, isotropy, etc., and the invariants of this transformation. From Tables II and III and Equation 14, the following invariants exist:

$$
\begin{align*}
& P_{1}=A_{11}+A_{22}+2 A_{12}=L_{1} h=\left(Q_{11}+Q_{22}+2 Q_{12}\right) h \\
& P_{2}=A_{16}-A_{12}=L_{2} h=\left(0_{66}-Q_{12}\right) h \tag{27}
\end{align*}
$$

[^0]Similarly, invariants for $B_{i j}$ and $D_{i j}$ are:

$$
\begin{align*}
& P_{3}=B_{11}+B_{22}+2 B_{12}=0 \\
& P_{4}=B_{66}-B_{12}=0 \tag{28}\\
& P_{6}=D_{11}+D_{22}+2 D_{12}=L_{1} n^{3} / 12=P_{1} n^{2} / 12 \\
& P_{6}=D_{66}-D_{12}=L_{2} n^{3} / 12=P_{2} n^{2} / 12
\end{align*}
$$

There are several features of the invariants above.
(a) The invariants of the A and D matrices are the same as those for the Q matrix except for correction factors involving the thickness h.
(b) The invariants of the A, B, and D matrices impose definite limits on the variability of their components. If A_{11} and A_{22} are selected to meet certain loading requirements, we no longer have any freedom in specifying A_{12} and A_{66} because of invariants P_{1} and P_{2}. A similar statement can be made about the D matrix.
(c) When $\mathrm{B}_{11}+\mathrm{B}_{22}=0$, which occurs in a cross-ply composite (Reference 3), we know immediately from invariants P_{3} and P_{4} that

$$
B_{12}=B_{66}=0
$$

Thus, in a lamina optimization procedure of a given material, say, a boron-epoxy composite, bounds exist on the range of variability of the elastic properties. As shown in Table II, each of the six independent components of the A, B, D matrices is governed by a constant term, which is not affected by lamina orientation, and variable terms expressed by $V_{1}[A, B, D]$ in Equations 23 and 24.

SECTION IV

SPECIAL PROPERTIES OF LAMINATED COMPOSITES

We will examine a number of special laminated composites and hope to shed light on the nature of $V_{i}[A, B, D]$, in this section. Since the limits of integration are $+h / 2$, integration of an odd function (antisymmetric function with respect to $z=0$) will be zero; that of an even function, not zero. Let us examine the following cases:
(a) If θ is an odd function of z, which may be represented by a 2 -layer angle-ply with $\pm \theta$ orientation shown in Figure 1a, the following integrands are odd:

$$
\cos p \theta[z] \sin p \theta\left[1, z^{2}\right] .
$$

The following integrands are even:

$$
\cos p \theta\left[1, z^{2}\right] \sin p \theta[z]
$$

where p=2 or 4.
Thus, the following integrals among those in Equation 23 vanish:

$$
\begin{equation*}
v_{1 B}=v_{3 B}=V_{2 A}=v_{2 D}=v_{4 A}=V_{4 D}=0 . \tag{29}
\end{equation*}
$$

From Table II:

$$
\begin{align*}
& A_{16}=A_{26}=0 \\
& B_{11}=B_{22}=B_{12}=B_{66}=0 \tag{30}\\
& D_{16}=D_{26}=0
\end{align*}
$$

Hence, $A_{i j}$ and $D_{i j}$ are orthotropic.
(b) If θ is an even function of z, which is known as a symmetric laminate and may be represented by Figure 1b, the following integrands are odd:

$$
\cos p \theta[2] \quad \sin p \theta[2]
$$

The following integrands are even:

$$
\cos p \theta\left[1, z^{2}\right] \quad \sin p \theta\left[1, z^{2}\right]
$$

AFML-TR-67-349

Thus, the following integrals among those in Equation 23 vanish:

$$
\begin{equation*}
v_{1 B}=v_{2 B}=v_{3 B}=v_{4 B}=0 \tag{31}
\end{equation*}
$$

From Table II:

$$
\begin{equation*}
B_{i j}=0 \tag{32}
\end{equation*}
$$

which means that there is no coupling between bending and extension in the laminated composite. Furthermore, $A_{i j}$ and $D_{i j}$ are, in general, anisotropic.
(c) Let θ be a random function of z, i.e., layers are randomly oriented, as shown in Figure 1c, and define $\overline{\mathrm{V}}_{\mathrm{i}}$ as the space average of V_{i} (Reference 5):

$$
\begin{align*}
& \bar{v}_{i}=\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2} v_{i} d \theta \tag{33}\\
&=\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2} \int_{-h / 2}^{h / 2}(\cos p \theta)\left(1,2, z^{2}\right] d z d \theta \\
&\sin p \theta)
\end{align*}
$$

where p is even. We have dropped the second subscript in $V_{i}[A, B, D]$ since it is immaterial here. Interchanging the order of integration, we get

$$
\begin{align*}
\bar{v}_{i} & =\frac{1}{\pi} \int_{-n / 2}^{n / 2} \int_{-\pi / 2}^{\pi / 2}\binom{\cos p \theta}{\sin p \theta} d \theta\left[1, z, z^{2}\right] d z \\
& =0
\end{align*}
$$

Thus, for random orientation of the constituent layers, all the \bar{V}_{i} with the exception of the constant terms in Table II will vanish. The laminated composite becomes isotropic, since

$$
\begin{align*}
& A_{11}=A_{22}=U_{1} n \\
& A_{12}=U_{4} n \tag{35}\\
& A_{66}=U_{6} n \\
& A_{16}=A_{26}=0
\end{align*}
$$

and from the above and Equation 15,

$$
\begin{equation*}
A_{11}-A_{12}=2 A_{66} \tag{36}
\end{equation*}
$$

which satisfies the condition of isotropy of $A_{i j}$. The isotropy of $A_{i j}$ only implies that the moduli of a laminated composite are isotropic. The stress distribution, however, is not the same as that in an isotropic body. Similarly it can be shown that

$$
\begin{align*}
& B_{i j}=0 \tag{37}\\
& D_{i j}=A_{i j} n^{2} / 12
\end{align*}
$$

Thus $D_{i j}$ is also isotropic. The laminated composite satisfies the condition of homogeneity as well, although the stress distribution is different from that in a homogeneous material.
(d) If a laminated composite has n equal layers ($n>2$) and the orientation angles of the layers are at increments of π / n, the integral $V_{1 A}$ may be expressed as

$$
\begin{equation*}
V_{1 A}=(\cos 2 \pi / n+\cos 4 \pi / n+\cdots \cos 2 \pi) n / n \tag{38}
\end{equation*}
$$

From Pierce's table (4th Edition), Formula (639):

$$
\begin{equation*}
\cos x+\cos 2 x \cdots+\cos n x=\frac{\sin \left(n+\frac{1}{2}\right) x}{2 \sin \frac{1}{2} x}-\frac{1}{2} \tag{39}
\end{equation*}
$$

For $x=2 \pi / n$

$$
v_{1 A}=1 / 2-1 / 2=0
$$

Similarly, from Pierce, Formula (637),

$$
\begin{equation*}
\sin x+\sin 2 x \cdots+\sin n x=\frac{\sin \frac{1+n}{2} x \sin \frac{n}{2} x}{\sin \frac{x}{2}} \tag{40}
\end{equation*}
$$

For $x=2 \pi / n$

$$
v_{3 A}=0
$$

Using Equations 39 and 40, we can show for $x=4 \pi / n$:

$$
V_{2 A}=V_{4 A}=0
$$

Since $V_{i A}(i \neq 0)$ vanish for this type of laminated composite, $A_{i j}$ is isotropic. The same relations as those in Equations 35 and 36 are obtained. This, of course, is the well-known result for in-plane quasi-isotropic composites, where the lamina orientations are (-60) $-0-60$, (-90) $-(-45)-0-45$, etc., shown in Figures 1d and $1 e$. $B_{i j}$ and $D_{i j}$ can be made quasi-isotropic by more complex stacking sequences than that for $A_{i j}$.

Finally, the area under the $A_{i j}^{\prime}$ versus ϕ curve from $\phi=0$ to $\phi=2 \pi$ can be obtained by the integration of the transformation equations listed in Table III. Since,

$$
\begin{equation*}
\int_{0}^{2 \pi}(\cos p \phi, d \phi=0 \tag{41}
\end{equation*}
$$

where p is an integer, only the constant terms remain. Thus the areas under the $A_{i j}$ are constant and the average numerical values are the isotropic constants in Equation 35 for the randomly oriented lamina composites and those quasi-isotropic laminates described in the previous subsection. This leads to the conclusion that the invariant properties of constants U_{1} and $\mathrm{U}_{5}, \mathrm{U}_{4}$ being dependent on U_{1} and U_{5}, may constitute a measure of the performance of orthotropic materials and laminates. Lamina orientation variations only change the shape of the $A_{i j}^{\prime}$ curve as ϕ varies but the ares under the curve remains constant. We can also conclude that the area under the $\mathrm{B}_{\mathrm{ij}}^{\prime}$ curve is zero and that under $\mathrm{D}_{\mathrm{ij}}^{\prime}$, constant.

SECTION V

ISOTROPIC CONSTANTS

We have shown that the elastic properties of a unidirectional composite are strongly influenced by two independent invariants,

$$
\begin{align*}
& U_{1}=\left(3 Q_{11}+3 Q_{22}+2 Q_{12}+4 Q_{68}\right) / 8 \tag{42}\\
& U_{5}=\left(Q_{11}+Q_{22}-2 Q_{12}+4 Q_{68}\right) / 8 \tag{43}
\end{align*}
$$

For laminated composites, the same invariants exist, except that corrections for thickness of h and $h^{3} / 12$ must be applied for the A and D matrices, respectively. The invariants for $B_{i j}$
are identically zero, as shown in Equation 28 .

If the material is isotropic, the resulting relations shown in Equation 17 are

$$
\begin{equation*}
U_{1}=Q_{11}, \quad U_{8}=Q_{86} \tag{44}
\end{equation*}
$$

Because U_{1} and U_{5} reduce to the stiffness and shear rigidity of an isotropic material, we shall designate U_{1} and U_{5} defined in Equations 42 and 43 as the isotropic stiffness and iso.. tropic shear rigidity, respectively. These isotropic properties, which are specific combinations of orthotropic properties, represent a realistic measure of the minimum stiffness capability of composite materials, which can be compared directly with isotropic materials as well as otherorthotropic materials. This measure of stiffness is different from the common practice of comparing the longitudinal stiffness Q_{11} with isotropic materials. Although Q_{11} for many modern composites can be several times higher than lightweight metals on the weight basis, this is not a fair comparison because the weakness of most composites in transverse stiffness and shear rigidity is ignored.

In addition to affording a basis of comparison with isotropic materials, the proposed use of invariant or isotropic properties may lead to a better understanding of the variability of lamina optimization of composite materials. If we start initially with a unidirectional composite, for which

$$
A_{i j}=0_{i j}{ }^{n}
$$

any change in fiber orientation of some layers within the same composite will change $A_{i j}$ according to Table II. These changes are governed by the integrals V_{1}, V_{2}, V_{3} and V_{4}, while V_{0} remains invariant. The V's dictate the magnitude of the variability in the elastic properties of a laminated composite and the variation oscillates above or below the isotropic constants. Since the absolute value of sine and cosine functions are bounded between 0 and 1 , the variability of the V's are also bounded.

The concept of invariant properties may simplify the lamina optimization process. Structural optimization can begin with the isotropic constants. They should represent the minimum stiffness of composite materials. Any lamina design that falls below the performance of that based on isotropic constants should be automatically rejected.

-

b

c
$d,(n=4)$

Figure 1. Examples of Lamina Orientations
Figure 2 shows the variation of A_{11}^{\prime} for various boron-epoxy composites, using the following data:

$$
\begin{align*}
& Q_{11}=40 \times 10^{6} \mathrm{psi} \\
& Q_{22}=4 \times 10^{6} \mathrm{psi} \tag{45}\\
& Q_{12}=1.0 \times 10^{6} \mathrm{psi} \\
& Q_{66}=1.5 \times 10^{6} \mathrm{psi}
\end{align*}
$$

The unidirectional and isotropic composites are shown in both diagrams. On the left diagram, two cross-ply composites with cross-ply ratio m equal to 1 and 3 are shown. Cross-ply ratio is the ratio of the thickness of the 0 -degree to 90 -degree layers. On the right diagram two angle-ply composites with helical angle α equal to 30 degrees and 45 degrees are also shown. Angle-ply composites consist of equal numbers of layers oriented at $+\alpha$ and $-\alpha$. These diagrams illustrate that the areas under all the A_{11}^{\prime} curves are the same. If a cross-ply with $\mathrm{m}=1$ is combined with an angle-ply with $\alpha=45$ degrees, the resulting composite is isotropic. This agrees with the conclusion of the previous section and is shown in Figure $1 e$. All the cross-ply composites have the same value at $\phi=45$ degrees. This can be shown from the transformation equation. Finally, when the number of lamina orientations increases, the resulting laminated composite will approach the isotropic state. Thus, depending on the nature of the design data, a more effective lamina optimization program may be achieved by beginning with the isotropic laminate, rather than the unidirectional composite.

It may be useful to determine approximately the numerical values for the invariant properties represented by Equations 42 and 43. We will define

$$
\begin{equation*}
U_{1}=\bar{E}, \quad U_{8}=\bar{G} \tag{46}
\end{equation*}
$$

For the highly orthotropic composites like glass-epoxy and boron-epoxy composites

$$
\begin{equation*}
Q_{11} \cong E_{11}, \quad Q_{22} \cong E_{22} \tag{47}
\end{equation*}
$$

because the minor Poisson ratio ν_{21} is usually less than 0.1 . If ν_{12} is $0.3,1-\nu_{12} \nu_{21}>0.97$. The approximation of Equation 47 introduces an error less than 3%. From elasticity solutions by Adams and Doner on longitudinal shear (Reference 7) and transverse loading (Reference 8) of a unidirectional composite, we have

$$
\begin{align*}
& Q_{06} / G_{m}=G_{12} / G_{m}=F_{1}\left(G_{f} / G_{m}, v_{f}\right) \tag{48}\\
& Q_{22} / E_{m}=E_{22} / E_{m}=F_{2}\left(E_{f} / E_{m}, v_{f}\right) \tag{49}
\end{align*}
$$

Although E_{22} also depends upon the Poisson ratios of the constituents, this dependence is not considered in Equations 48 and 49 since representative values of the Poisson ratio for typical plastic matrix composites were assumed in Reference 8. We also assume that small changes in constituent Poisson ratios do not greatly affect the transverse modulus E_{22}. Let

$$
F_{1}=\beta F_{2}
$$

where β is a function of constituent stiffness ratio and fiber volume fraction. By comparing Figure 5 of Reference 7 and Figure 4 of Reference 8, it can be seen that

$$
\begin{equation*}
\frac{3}{4}<\beta<1 \tag{50}
\end{equation*}
$$

for a fiber volume of 70% or less. Since

$$
\begin{equation*}
G_{m}=E_{m} / 2\left(1+v_{m}\right) \tag{51}
\end{equation*}
$$

we obtain from Equations 48 and 49 , for $\nu_{m}=0.33$,

$$
\begin{equation*}
Q_{66}=\frac{3}{8} \beta E_{22} \tag{52}
\end{equation*}
$$

Hence, if we substitute

$$
\begin{align*}
& Q_{11}=E_{11}, Q_{22}=E_{22} \\
& Q_{12}=\nu_{12} Q_{22}=0.25 E_{22} \tag{53}\\
& Q_{66}=G_{12}=\frac{3}{8} \beta E_{22}
\end{align*}
$$

into Equations 42 and 43, we obtain approximately

$$
\begin{align*}
& \bar{E}=\frac{3}{8} E_{11}+\frac{1}{16}(7+3 \beta) E_{22} \tag{54}\\
& \bar{G}=\frac{1}{8} E_{11}+\frac{1}{16}(1+3 \beta) E_{22}
\end{align*}
$$

Since $E_{22}<E_{11}$ for fiber-reinforced composites, the error introduced by putting $\beta=1$ in Equation 54 is quite small. For example, if $\frac{E_{11}}{E_{22}}=10$, the maximum possible errors are 3.3 and 0.9% in $\overline{\mathrm{G}}$ and $\overline{\mathrm{E}}$, respectively, owing to variations in β. Setting $\beta=1$ then, yields

$$
\begin{array}{ll}
\text { Isotropic stiffness } & =\bar{E}=\frac{3}{8} E_{11}+\frac{5}{8} E_{22} \\
\text { Isotropic sheor rigidity } & =\bar{G}=\frac{1}{8} E_{11}+\frac{1}{4} E_{22} \tag{56}
\end{array}
$$

These approximate equations are simple to use and give reasonable values to represent the invariant properties.

Cox (Reference 6) derived isotropic constants for randomly oriented fiberous composites as

$$
\begin{equation*}
\bar{E}=E_{11} / 3, \quad \bar{G}=E_{11} / 8 \tag{57}
\end{equation*}
$$

These values are lower than those of Equations 55 and 56. Loewenstein (Reference 9) also showed the $3 / 8$ factor for in-plane random orientation (the transverse stiffness is taken to be zero). Bishop (Reference 10) also derived a theory which has results similar to that reported by Loewenstein (Reference 9). Both References 9 and 10 may be considered as having

$$
\begin{equation*}
0_{22}=0_{12}=0_{66}=0 \tag{58}
\end{equation*}
$$

The conditions implied by this equation, however, are not reasonable for modern fiberreinforced composites. The transverse and shear moduli are significant quantities in determining the elastic behavior of composite materials.

An estimate of the performance of fiber-reinforced composites is shown in terms of invariant properties in Figure 3. The normalized \bar{E} is derived from

$$
\begin{align*}
\bar{E} / E_{m} & =\frac{3}{8}\left(E_{11} / E_{m}\right)+\frac{5}{8}\left(E_{22} / E_{m}\right) \\
& \left.=\frac{3}{8}\left[i!-v_{f}\right)+v_{f} E_{f} / E_{m}\right]+\frac{5}{8} F_{2} \tag{59}
\end{align*}
$$

where the rule of mixtures equation is used:

$$
\begin{equation*}
E_{11}=\left(1-v_{f}\right) E_{m}+v_{f} E_{f} \tag{60}
\end{equation*}
$$

and F_{2} is expressed in Equation 49, the numerical values of which are obtained from Reference 8. From Equation 56, using $\beta=1$ as discussed earlier,

$$
\begin{equation*}
\bar{G} / G_{m}=\frac{2.66}{8}\left[\left(1-v_{f}\right)+v_{f} E_{f} / E_{m}\right]+\frac{5.32}{8} F_{2} \tag{61}
\end{equation*}
$$

where Equation 51 is used with $\nu_{m}=0.33$. Comparing Equations 59 and 61 , we notice that

$$
\begin{equation*}
\bar{E} / E_{m} \cong \bar{G} / G_{m} \tag{62}
\end{equation*}
$$

Figure 3 shows the normalized \bar{E} and \bar{G} for fiber-reinforced composites with $v_{f}=70$ and 40\%. For convenience, absolute units for \bar{E} are also shown for boron-aluminum, glass-epoxy, and boron-epoxy composites. Figure 3 represents the minimum capabilities of the composite materials; the advantage of designed anisotropy to meet a specific loading condition has not been claimed.

Figure 3. Isotropic Constants of Fiber-Reinforced Composites

SECTION VI

SUMMARY

We have shown that the transformation equations of tensors can be expressed in multiple angles instead of the usual powers of sines and cosines. In the multiple angle representation the transformation properties consist of invariant terms, which correspond to the isotropic constants, and cyclic terms, which control the variation and directionality of properties due to anisotropy. The transformation equations for the moduli of two-dimensional layers $\left(Q_{i j}\right)$ and laminated composites ($A_{i j}, B_{i j}$, and $D_{i j}$) can be readily derived.

The elastic properties of laminated composites as functions of lamina orientation are shown in Table II. The components of $A_{i j}, B_{i j}$, and $D_{i j}$ are governed by invariant terms, plus variable terms in ierms of integrals V_{i}. It is proposed that isotropic properties for anisotropic materials be used as a isieasure of the minimum stiffness capability. They may be considered intrinsic propertios of the material because they are independent of the lamina orientations. Direct comparisons of the stiffness represented by \bar{E} and \bar{G} with isotropic materials appear to be more realistic than the use of the longitudinal stiffness of unidirectional composites. Approximate expressions for these isotropic constants are shown in Equations 55 and 56 and their numerical results in Figure 3. The results may be helpful in systems application of composite materials. The relative merits of controllable variables like E_{f} / E_{m} and v_{f} can be determined directly from Figure 3 which should be of value to materials engineers.

Finally, the basis of lamina optimization may be more easily carried out and better understood by the multiple-angle relations than the conventional treatment. The degree of variability can be determined from tise values of the integrals V_{i}. If anisotropy is to be beneficial for a given loading condition, the performance of the composite should in all cases exceed that of the isotropic laminate. Thus optimization can begin with the isotropic constants. The isotropic constants, the integrals V_{i} and the invariants P_{i} should be considered as additional constraints to lamina optimization procedures. For practical design, the number of lamina orientations in a laminated composite may be kept to, say, no more than four orientations. The variation of the properties may be more effectively controlled through the lamina thickness than the orientation. The reduction in lamina orientations may introduce immediate simplification in structural analysis, design procedures, and automated fabrication techniques of laminated composites. The present concept may lead to an optimum design based on strain energy from which the advantage of anlsotropy in a composite material may be readily established for specific load conditions. A similar approach to the problem of strength seems
possible.

REFERENCES

1. E. Reissner, and Y. Stavsky, "Bending and Stretching of Certain Types of Heterogeneous Aeolotropic Elastic Plates," J. Appl. Mech. , 28, 402 (1961).
2. S. B. Dong, K. S. Pister, and R. L. Taylor, "On the Theory of Laminated Anisotropic Shells and Plates," J. Aero. Sci., 28, 969 (1962).
3. S. W. Tsai, "Strength Characteristics of Composite Materials," NASA Report CR-224 (1965).
4. S. W. Tsai, "Introduction to Mechanics of Composite Materials, Part II - Theoretical Aspects," A FML-TR-66-149, Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohlo (1966).
5. R. F. S. Hearmon, An Introduction of Applied Anisotropic Elasticity, Oxford (1961).
6. H. L. Cox, "The Elasticity and Strength of Paper and Other Fibrous Materials," Brit. J. Appl. Phys., 3, 72 (1952).
7. D. F. Adams, and D. R. Doner, "Longitudinal Shear Loading of a Unidirectional Composite," J. Composite Materials, 1, 4 (1967).
8. D. F. Adams, and D. R. Doner, "Transverse Normal Loading of a Unidirectional Composite," J. Composite Materials, 1, 152 (1967).
9. K. L. Loewenstein, "Glass Systems," Chapter V, Composite Materials, L. Holliday, Ed., Elsevier (1966).
10. P. H. H. Blshop, "An Improved Method for Predicting Mechanical Properties of Fibre Composite Materials," Royal Aircraft Establishment, RAE Technical Report No. 66245 (1966).

UNC LASSIFIED

Security Classification

[^0]: *These relations can be shown in general by appropriate integrations of the tensor transformation equation of the elastic stiffness tensor.

