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NONTECHNICAL SUMMARY I

The fcllowing model is considered: A machine 1is inspected at the
beginning of discrete time periods and ite operating state (conditicn)
is determined. After each 1nspection & decision upon whether or not
to replace the machine at the end of the period must be made. If the
machine is replaced a new machine mus* be purchased. It is assumed
that it takes one reriod to purchase and install a new machine — during
this period the process is said to be in state 0. If the machine 1is
in operating state (condition) 4 and a decision not to replace is
made then there are known transition rrohabilities FiJ such that the
operating state of the machine at time t+1 will be J with probability
PiJ' Thus, for 1instance, Pi? 1s the probability that a machine in
operating state 1 will fail. If the machine does fail during a period

then it is removed at the end of the period and a new riachine must then

be purchased. As before this corresponds to being in state O.

It 1s supposed that each time a machine ie classified as being in
operating state 1 an operating cost C(i) i3 incurred. Also when-
ever the process 1s in state O a cost C(0) 1s incurred. This may
include btoth the costs due to buying, delivering, and installing a new
machine and glso a cost due to the fact that no machine is in use for
one period.

A policy is any rule for deciding when to replace the machine and
when to leave it alone. It is shown that if (1) C(1) - the operating
cost associated with state 1 - is increasing in 1 (for 1 > 0) and
if (2) the trensition into any higher block of states (K,K+l,...} is

more likely for a higher nuwivered state then for a lower numbered state,




then the policy which leads to the smallest (long-run) average cost : |

has a very simple form. Its form is that for some integer J 1t o ]

replaces when in operating state 1 if and only if 1 > J. | .
k. Methods for finding the optimal policy (or equivalently the critical

value J) are discussed and a numerical example is given.

Often in practice there is an additional cost incurred whenever - 1 4
a8 non-planned replacement — 1.e., a replacement caused by a failure -
occurs. It is shown that even iu this case the optimal policy has the
same form as before.

In the last section of this paper the case where more than one
machine may be purchesed at a given time is considered. Thus when a -
machine fails many machines may be purchased. One could then be put -~
in use and the others held as reserves. This might be desirable for |
(1) 1t might be less expensive to buy the units in quantity, (2) it

might cat down on delivery and installation costs, and (3) it would

cut down the number of periods during which no machine is in use. It -
is then shown that a multi-dimensional generalization of the optimal L

policy for the original (no reserves) problem is optimal for this

problem.
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A MARKOVIAN REPLACEMENT MODEL WITH A

GENERALIZATION TO INCLUDE STOCKING

by

Sheldon M. Ross

1. Model and Summary of Results.

This paper 1is concerned with the following countable state Markovian
Replacement Model: A unit (piece of equipment, system, etc.) is observed
at the beginning of discrete time periods t = 0,1,2,... and classified
as being in one of a countable number of states labeled by the non-
negative integers. After observing the state of the unit the observer
must choose one of two possible actions: Action 1 is to leave the unit
in service; Action 0 is to remove the unit from service at the end of
the period. It is assumed that & unit in state 1 will fail duriag
the period before the next observation with probability PiO' If a
unit fails it is removed at the end of the period. Whenever a unit is
removed from service (either by action O or by action 1 and a subsequent
failure) a new unit must be purchased. This corresponds to being in
state 0. Thus only one action 1s possible when in state O and that is
to purchase a new unit. It is assumed that it takee one time period
to purchase and install a newv unit.

If action 1 is chosen at time t then there are known tran-

sition probabilities PiJ i-1,2,... 3J=0,1,... such that
= = A = =
P{xt+l JIXt 1, &, 1} PiJ where
Xt = state.of the unit in use at time t, and
At = action chosen at time t.
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Of course, if action O 1s chosen at time t then Xt+1 =0 -

i.e.,

P{x l = let = 1’ A = OJ = l fOI' i=l’2,c¢o

t+ t

Also, when a new unit is purchased there 1s a kn 'm probability

distribution (Pilz_o over 1ts initial state — i.e., P(X

Thus, for instance, Pb may be interpreted as the probability that a

t+1=1lxt=0]=P1'

+—4

new machine will be inoperative.

at time t + 1 given that you don't replace and a failure doesn't occur.
2
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We shall call Xt the state of the process at time +t. Each ¥
time the process is in state 1 an expected cost C(i) is incurred. =
Thus, for 1 >0, C(1) may be interpreted as the expected operating I
cost incurred during one period by a unit which is in state 1 at the -
beginning of the period. C(0) 1includes the cost of buying and instal- -
ling a new unit; it may also include a cost due to the fact that no I |
unit 1s in use for that period.
A policy is any rule for choosing actions. In sections 3 and 4 ;
f of tnis paper under suitable conditions on the costs and transition .
probabilities (given in section 2), the structure of an optimal policy L
with respect to (1) the discounted-cost and (2) the average-cost criterion o
I is determined. Theorems %.2 and 4.2 of these sections generalize results =
given in [2]. This gererrlization is in two directions. Firstly, we 1
allow for a countable number of states (versus a finite number in [2])
and secondly we allow for a somewhat more general class of transition 1
probabilities. The other theorems in sections 3 and 4 are new and 1
further characterize the structure of the optimal policy. These theorems
show that the decision upon whether or not to replace at time t may l
' sometimes be determined solely by the conditional expected cost incurred
1
|




For example, it is shown that, under pure deterioration, the optimal

average-cost policy replaces only when this conditional expected cost
is larger than the optimal average cost per unit time. i
In section 5 methods for finding the optimal policy by exploiting
its known structure are suggested. A numerical example 1s given.
In section 6 it is shown how the previous results may be extended
to the case where there is a penalty cost incurred whenever a non-
planned replacement (i.e., a replacement caused bty a failure) occurs.
In section 7 the case where more than one unit may be purchased
dv @ miveh vaie lo colwidered wad IU 1o ouoWn that optimal policiles
exist and are analogous in structure to those of sections 3 and 4.
This is a Joint stocking and replacement model and the results generalize

those given in [3].




2. Conditions and Preliminary lLemma

We impose the following conditions on the costs and transition

probabilities:

Condition 1: (C(i)}:=l is a non-decreasing bounded sequence

Condition 2: (Pio]:;l is a non-decreasing sequence
oo
Condition 3: For each k = 1,2,... the function r (i) = 1/1-P, Z P
's ioj:k 1)

is a non-decreasing function of 1 for { = 1,2,...

(where 0/0 is taken to be ),

Thus Conditions 1 and 2 say that the operating cost and failure
probability are both non-decreasing functions of the state. Cordition 3
says that the conditional probability of a transition into any block of
states (k,k +1,...}, given that action 1 is chosen and a failure does
not ocecur, is a non-decreasing function of the present state 1 (for 1 > 0).

For notational ease we shall assume throughout that Pio <1 for all
i. It is quite easy to show that all of the results still hold even if
this is not the case.

The following lemma will be needed. Its proof may be found in [2]

Lemma 2.1: Condition 3 implies that for every non-decreasing bounded
sequence [h(J)]§=l the function k(i) = l/l-P10 z Pijh(J) 1s also non-

370
decreasing for 1 = 1,2,... .

3. Discounted-Cost Solution

We are interested in finding a policy RB such that

w(i,B,RB) = min ¥(1,8,R) for all 1 = 0,1,..., where
R

s — e ] oumg o L L o -
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V(L,88) = I B® Bgle(X,) [Xy = 1]

and where 0 <f < 1. BSuch a policy is said to be an optimal p-discount
policy or for short, a B-optimal policy.

Let RB be a B-optimal policy and let VB(i) = v(i,B,RB) i=0,1... .

Lemma 3.1: Under Conditions 1, 2, 3 [VB(i) - c(i)}";=l 15 a

non-decreasing sequence.

Proof: Let VB(i,l) = C(1) for 1 =0,1,... and define recursively

(1) v, (i,n)=min(Cc(1)+B Z P,V _(J,n-1);c(1)+ BV_(0,n-1)} for 1 >0
g 4=0 i3 B
and

VB(O,n) = ¢(0) + BaioPJVB(J’n-l)

(-]
We first show by induction that [Vs(i,n) - C(i)]i-l 18 a non-decreasing
sequence for each n. For n =1 1t follows trivially. Aassume then that

(v.(1,n-1) - c(1))5 is non-decreasing and let 0 < 1 < k. There are
B i=1
two cases:
Case 1: VB(i,n) =c(1) +p VB(O,n-l), which implies by (1) that
o0
(2) = PiJ VB(J,n-l) 3vs(o,n-1), or equivalently that
J=0

(3) 1/1-1=io Jf!o 1=iJ VB(J,n-l) 3vB(o,n-1).

Now [VB(i,n-l) - C(i)];l nondecreasing implies that
(VB(:l,n—l)]"_;:l is nondecreasing, and so by Lemma 2.1 and (3)

k >1 >0 1implies

—" ...« ol it . £ Nl B
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Case 2:

(8) 1/1- Peo

(1) that

J,‘ Py Vg(dsn-1) 2V,(0,n-1), which implies by

(5) VB(k:n) - C(k) =B VB(O,n-l)
= VB(i,n) - ¢(1)
Va(i;n) = C(1) +8 Jio Pij VB(J;n'l)

and so by (1) we have that

(6) l/l-P (J,n-1) <V (O,n—l), now

10 J¥ iJ B
(1) Jz P, B(J,n RL) EUES s(°’“ -1) + (1-B,))1/1-B, J;:‘ Py 4V g(d,n-1)
+ (P )l/lP LP (§,n-1)
k0 F10 #o 1) Vg'ds
and so by Lemma 2.1 and (6) we have that
(8) (J,n-1) <P, V.(0,n-1) + (1-P )l/lP Z P, V.(J,n-1)
J‘Oi.jﬁ & 10'8'"’ K0, o k4 B’
(1>ko io)v (0,n-1)
= Z Pp V.(3J,n-1) , and so
J ki B
(9) V (1,n) - c(1) <B Z kJ 5(J,n -1) .
J=0

but from (1) we also have that
(10) vg(t,n) - (1) < B Vg(0,n-1)

and so from (9), (10) and (1) we get that

(11) Vg(1,n) - (1) < Vg(k,m) - C(K)

and 30 k >1 >0 dimplies that Va(k,n) - C(k) _>_VB(i,n) - c(1).

6
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.+ by induction [Vﬁ(i,n) - C(i)}:=l is non-decreasing for all n.

Now Vs(i,n) is the minimum expected discounted costs incurred over
n-stages given that you start in state 1. Since P <1 and costs are

bounded, it is easy to see that VB(i,n) —»Va(i) as n s o for each 1.

{Vﬁ(i) - C(i)];’=l is non-decreasing.

Q.E.D.

Remark: Since [C(i)):=1 is non-decreasing it follows that (VB(i)}:=l

is non-decreasing.

Definition: A policy R that replaces (takes action 0) at time t iff
Xt_z J for some J =1,2,...  1is called a control-limit policy. The

control-1imit policy with J = o 18 the policy hich never replaces.

Theorem 3.2: Under Conditions 1, 2, 3 there is a control-limit policy

which is B-optimal.

Proof: It is well known (see [1]) that VB(i) i=0,1,2, ... satisfies

oo

VB(i) = min(C(1) + B JEO PiJ vB

(§); c(1) + P Vg(0)} for 4 =1,2,.,
and any policy which chooses action 1 in state i when the first term is
the minimum and action O when the second term is minimum is B-optimal.

0
Let 1, == 1if £ P, V,(J) <V,(0) for all 1 >0, otherwise
3] 3=0 1y B - P

let 1

min{i: JEO Py VB(J) > VB(C)}

min{i:1/1-P, £ P
10 PYAREY

VB(J) 2 VB(O)]
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', by lemma 21 {1 >i  =31/1-P, L PIJ VB(J) >VB(°) or equivalently
0

10 34

g

that &£ P
30 1

VB(J) °> VB(O)

« « the policy which replaces whenever the process is in state 1 > iB

and doesn't whenever in state 1 < 1, 1is B-optimal.

B
Q.E.D.

Corollary 3.3: The control-limit policy which replaces in state 1 if

a0

; and only if JEO PiJ VB(J) > VB(O) is B-optimal.

Proof: Follows from theorem 3.l.

The next theorem further characterizes the stru:ture of the optimal policy.

Theorem 3.4: Under Conditions 1, 2, 3 if 1 1is such that

| 1/1-P;o I P;,0(J) < (1-B) Vg(0) (1 >0)

10 i

3o 1

then there is a B-optimel control-limit policy which does not replace when
the process is in state 1. Also, if the above inequality is strict then

any policy which replaces at state i is not P-optimal.
Proof: VB(i)‘S c(i) +B VB(O) for 1 =1, 2,

. 1/1-p, £ P,V

10 ;o 13 B

t Now suppose that L1/1-P, . Z£ P . C(J) < (1-8) v,(0)
10 420 1) B

(§) <1/1-p, E P,

c(J) + B v,(0)
io J#O J B

! o.u l/l"P

L P, V() <v.(0)
10 140 148 g
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e LR, Va(d) <V (0)

and so the first part of the theorem follows from Corollary 3.3.

To prove the second part suppose that

1/1-P, . L P,, ¢(3)) < (1-8) v_(0)
10 4o 1) B

Then, as above, this implies that

=z P, Vv.(3) <v_(0)
joo 148 B

Now let R be any policy which replace at state i
"« ¥(1,B,R) = c(1) + By(0,B,R)
>c(1) +8 VB(O)

>c(1) +8 L P, Vy(3) >V, (1)
o N B B

and so0 R 1s not B-optimal.

Q. E.D.

Often we deal with a process in whcih the unit in use can only deteriorate

in time. This is represented mathematically by the following:

Definition: If PiJ =0 forall 0< 3 <1 then we call the process a

pure deterioration process.

Theorem 3., : In a pure deterioration process, under Conditions 1, 2, 3,

the control-1imit policy which replaces at those states i for which

1/1-P, L P c(J) > (1-B8) v_(0) 1is B-optimal.

io

==




Proof: BSuppose that 1/1-P,. L P,, C(J) > (1-B) v.(0), suppose further
i0 J%O iJ =]

that there is an optimal policy which does not replace at state i

oo v(1) =c(1) + B ; P,, V.(J)
B o 11 B

c(1) + B P (0) +Bp L F,,C(J)+B L Pid(VB(J)-C(J))

v
18P sfo 1 340

>c(1) +B P,V (0) +B(1-P, )(1-B)V_(0) + B ; P, (V_(3)-c(
10 'p 10 B e p(3)-C(8))

20(1) + B Py Va(0) + B(1-Py ) (1-B)Vg(0) + B(1-P, ) (Vg(1)-C(1))

vhere the last inequality foliows from Lemma 3...
o'o - - +
(1-8+BP V(1) >(1-8+B P, )C(1) +8Vy(0))
or VB(i) >c(1) +8 VB(O)
which 18 a contradiction, and so every optimal policy replaces at state i

and the result follows from Theorem 3.k.

Q.E.D.

Thus, in a pure deterioration process, the P-optimsl policy replaces at
time t whenever the conditional expected cost at time t + 1, given that
you don't replace and a failure doesn't occur, is greater than (l-B)VB(O).
The significance and intuitive content of Theorems 3.4 and 3.5 become

clearer when we consider them in connection with the average-cost criterion.

4. Average-Cost Solution

For the average-cost criterion we are interested in a policy R*

such that o(i,R*) = min @(i,R) for all i = 0,1,2,...

R
n

where ®(1,R) = 1lim & ER[c(xt)lxo =1i]/n .
n - o t=0

10
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Such a policy R*, 1if it exists, is said to be optimal.

We shall need To assume the following:

Condition 4: a = min(PO,PlO] > 0.

In order to prove the analogues of Theorem 3.2, 3.4, and 3.5 we define
the following process. Consider a new process (the prime process) with

identical state and action spaces, with the same cost structure, but

with transition probabilities now given by

Ii%%ﬁ for J £ O

P' = I‘OI‘ all J=O,l,.-; i >O
13
P, -
0 tor §=0
1-a -
P
T4 for J£O
P =
J P, -Q
L -
1 - for J =0

We shall make use of the following result given by Ross (see [5]):
The optimal 1-0 discount rule for the prime process is also an optimal
policy (in the average-cost sense) for the original process; and
s ' 1 -
g =0 vl-a(o) where Vlda(o) is the optimal discounted-costs for the

prime process and g 1s the optimal average-cost for the original

process. — i.e.,
Vi _o(0) = s v (0,1-0,R")
g = min ¢(1,R) for all 1 =0,1,...

R

The following lemma 1s needed and its proof is immediate.

11




Lemma 4.1: If Conditions 1, 2, 3 hold for the original process then they

hold for the prime process.

The following analogue of Theorem 3.2 is thus immediate.

Theorem 4.2: Under Conditions 1, 2, 3, 4 there is a control-limit policy
vhich is optimel in the average-cost sense.

Also noting that 1/1-P! L P! c(J) = 1/1-p,. £ P,, C(J)
10 340 1J 10 340 i)

and (1 - (l-a))V'l_a(O) =« Vi-a(o) = g we get the following analogues

of Theorems 3.4 and 3.5.

Theorem i4.3: Under Conditions 1, 2, 3, 4 if 1 is such that

1/1-P P,C(Y) <&

10 JFZO J
then there is an average-cost optimal control-limit policy
which does not replace at state 1. Also if F, >0 and
the inequality is strict ther any policy which replaces

whenever ir. state 1 18 not ortimal.

Theorem 4.4 : Under Conditions 1, 2, 3, 4 if Pi,j =0 forall 0< <1

i =1,2,.. (pure deterioration) then the control-limit policy which
replaces at state 1 if and only 1if

1/1-p, T P, . C(J) >¢g

c
10 4y 1

is optimal in the average-cost sense.

Thus Theorem 4.3 may be interpreted as saying that if the conditional
expected cost for the next stage, given that we don't replace and a

failure doesn't occur, is no larger then the optimal average cost then

12
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we should not replace. Theorem L.. says that, under pure deterioration,

this is the only time we should not replace.

5. Computation of Optimal Policy

We have shown that under Conditions 1, 2, 3, 4 the optimal (discount
or average-cost) policy exists and has a simple structure. In this sec-
tion we discuse possible methods for calculating the optimal policy.

We have shown in section 4 that any method of solution for the
discounted-cost problem is also a method for the average-cost problem.
This is so because the average cost problem can be converted into a

discounted-cost problem by defining the prime transition probabilities

P P
13 —
l-a J#O l-¢ J¥O
Bhe = and P! =
H Pio - @ ! Po- @
=~ J:=o0 J=0
1l-a 1-a

where Q = min{Po,Plo].
The optimal 1 - a discount policy for the prime process is the optimal
average-cost policy for the original process.

Similarly, any method of solution for the average-cost problem is
also a method for the discounted-cost problem. We show this by defining

a new proces (the star process) with identical state, action, and cost

spaces but with transition probabilities now given by

)
PiJ J#o0 BPJ J£o

P"i*J= and P* =
1-B+BP, J=0 J 1-B+BP =0

13

s




Then it is easy to see that Conditions 1, 2, 3, 4 are satisfied in the
star process and it again follows from Ross' result (see [5]) . that
o*(0,R) = (1-B)¥(0,B,R) for any (stationary deterministic) policy R.

Thus the optimal average-cost policy for the star process is a
P-optimal discount policy for the original process if this process starts
in sv2te 0. However, it is easy to see that this policy will, in most
cases, be P-optimal independent of the initial state. This is so, for
example, if all states communicat« (Pi >0 for all 1 is sufficient).

Thus any general method fo: solving the discount-cost problem may be
regarded as a general method for solving the average-cost problem and
vice versa (assuming, of course, Conditions 1, 2, 3, 4).

We shall now discuss possible approaches for determining the optimal
policy. The first two will be discussed in the discounted-cost framework

and the last in the average-cost framework.

Method 1: Policy-improvement Method (B-discount)
We initially choose & policy R and calculate ¥(i,B,R) for each
1 = 0,1.. . We then "improve" R by forming a new policy R which

which takes action 1 at state 1 if

z
3=0
E R ‘V(J:B:R) >“'(O’B;R)
=0 M

PiJ v(J,8,R) < v¥(0,B8,R) and action O if

Then it can be shown that V(1,B,R) < V¥(1,8,R) for all i = 0,1,..

We then improve ﬁ, etc. When no further improvement can be made

we have the optimal policy.

14
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To take into account the structure of the optimal policy it is sug-
gested that the initial R be chosen to be a control-limit policy.
However, though one would hope that the improved policies would also

be control-limit policies, this is .ot nccessarily the case.

Method 2: Successive Approximations (B-discount)
Let B(I) = space of all bounded functiors on the non-negative
integers.

Define the operator T: B(I) = B(I) by

- -]
(TU) (1) = c(1) + B min(U(Q), L P1J u(s)} 1>0
J=0
-]
(Tu)(0) =c(0) +B L PJ u(y)
3=0
Then Vg = (V4(1))]_, 18 the unique function such that
TVB = Vg; also 1lim T'U = V‘3 for any U (under the supremum norm).
Thus VB may be obtained by successively applying the operator T

to any initial vector U. The optimal policy may then be gotten by
applying Corollary 3.53.

In order to take advantage of the known structure of V., (Lemma 3.1)

p
it 1is suggested that the initial U-vector has the property that

(1) [l(i)]ai:l is a non-decreasing sequence

s

(11) wu(o) =c(o) + 8 ; PJ u(y)
J=0

It is easy to check that T"U also has property (1).

Method 3: Analytic Method (average-cost)
We assume that the process starts in state 0 and let T = time at

which the process returns to state 0

15




o 'b" FROPIVPL I 3 LU P17 30w o0 s

i.e. T =min{t:t >0, X, = 0)

t

Then it is well known that for any (stationary) policy R

T-1
By [tzo c(xt)lxo-o]

when ERT is finite by Condition 4.

Let R, = control-limit policy which replaces whenever in states

i
i’i+l’lot .

-1
E F c(x,)|x =o]
Ry lyg b0

Then g = min ®(R) = min T
R 1=1,2,..® R,

and it is sometimes analytically possible to determine the above
minimum and the minimal value of 1. One possible approach, which
is sometime applicable, is to treat q;(Ri) as & continuous function

of { and try to minimize it by using differential calculus.

Example.5.1: Consider a process for which & unit in state i, if not
replaced, either remains in state i or fails. Also suppose that the
failure probability is independent of the state and also equals the
probability that a new unit is defective.

0.0 P =l'a P =Q i=l,2-oo

i1 i0
Po=a
i-1 ©
c(o) + 1/a £ P, C(3) + Z P, C(J)
g=1 ? j=y
Then o(R,) = ] =
1+1/a £ P,+ £ P
gL 9 =1
16
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Now suppose C(J) = M(1-(1/2)9) 4 =1,2,...

= AN (1-0)(1/2)¢ 3 =1,2,...

N L o(r) - SO)mLa/a1-(1/2) /5 /31 /) T e (-0) ((1/2) T (1/2) (a/8) TN
L 1+ 1-a/al1-(1/2)171) + (1-0)(2/2)Yt 4

e To find the value of 1 which minimizes the above we differentiate, set
equal to zero, and solve for 1.
For N = 100, C(0) = 200, & = .l. The minimum value of i lies between
2 and 3. Thus it seems reasonable that the optimal policy should be
either R2 or R,. !

3
To check we first convert to the discount (prime) problem.

R =l 1=1,2,...
P} = Pi/l-a = (1/2)" 4 . R
B = l-a = 09

then ¥'(0,8,R,) = /o @(R,) = 777

v'(1,8,R,) = 500

v'(14,8,R,) = 100(1-(1/2)%) + .9 ¥'(0,8,R,)  1=2,3,...

699.6 + 100(1-(1/2)})

The improved rule is the one which replaces at state i if and only if
v (4,8,R;) >v'(0,B,R,)

.". the improved rule is Rj'

17 { 1




Now w'(o,a,lg) = 1/a “’(Ra) = 770

‘V'(lJB;Ra) = 500
‘V'(Q)B)Rj) = 750
v (14,8,R;) = 100(1-(1/2)) + .9(770)

693 + 100(1-(1/2)1)

.. the improved rule is again Ri'

.. R, 1is the optimal average-cost policy — i.e., the optimal policy

3

replaces at states 3,4,5,... — and the optimal average cost = T77.

Q.E.D.

Example 5.2: By making use of the "star" process and the idea of method

3 we can sometimes get a closed-form expression for the expected dis-

counted costs. Suppose we have (as in example 5.1)

P, =1, Py =0 i=1,2,..

Py =0

Let P4, =8(l-a), Py =1-p + 0B
Ppopr By B o

then V(0,8,R,)= 1/1-B 9*(0,R,)

i-1 ®
c(0) + 1fa* £ P¥cC(3) + £ Pt C())
. ) j=1 J i 9
where Q*(O,R ) = -1 S
i 1+ l/a* L P*+ I P*
J:l J J:i 'j

and where o* =1 -8 + 08.

-

l
l
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6. Extension to Penalty Costs

One possible extension of the above theory is to include a penalty
cost A which 1s incurred whenever the process goes to state O without
the replacement action being chosen — 1.e. whenever a non-planned replace-
ment occurs. This cun be treated by letting the coet function depend not
only on the state but also on the =~tion chosen.

Thus let C(1,J) = expected cost incurred when the process 1s in state i
and action § 1s chosen, 1 >0, §J = 0,1.
However, the value of C(i,J) depends upon whether we are in the dis-

count or average-cost case.

Discount Cas2: In the discount case

c(1,1) = c(1) + B A Py 1>0

c(1,0) = c(1)

This is so since the expected cost of not replacing when in state i
includes the operating cost plus an expected penalty cost which is dis-
counted since it 1s incurred at the next stage. It can be shown, in
exactly the same manner as before, that Theorem 3.2 remains true. Sim-

ilarly Theorems 3.4 and 3.5 can be shown to remain true under the oproviso

that
1/1.1’10[ E PiJ c(y) + A P, ] replaces
3#0
1/1-P, . £ P,, c(J) 1in the statement of these theorems.
10 1]
J#o
Average-cost Case: In the average-cost case
c{i,1) = c(1) + A P 1 >0
i0
c(1,0) = c(1) 1>0.
i




It can then be shown that Theorem 4.2 remains true and that Theorems 4.3

and k.4 remain true under the proviso that 1/1-P, [ Z P,, C(J) + AP, ]
10 ' gy 13 10

replaces 1/1-P £ P,, C(J) 1in the statement of these theorems. This
10 1o "4

is shown, as before, by reduction to the discount case via the prime prob-
lem. Theorems 4.3 and 4.4 follow, for instance, from the discounted
results by noticing

that C(1,1)

c(i) + A Pio

c(i) + A((l-a)Pio + )

c(i) + A'(l-a)Pio

P

4
(1-a)P}, +a T-a 140
"= -
where A A [ (T-q)F ] and PiJ )
10 P o
i0
l-a §=0

The results then follow by further noticing that

1/1-p' [ £ P!, C(J) +A'P! ) =1/1-P, T P,, C(J) +A'P! /i-P!
10 340 13 10 10 140 13 10 10

l/l—PiO[ £ P

j40 RS
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7. Generalization to Include 3tocking of Reserve Units.

It has been assumed up to now that each time a unit fails or 1is
replaced & new unit must be purchased and a cost C(C) 1is incurred.
This cost ((0) 1ncludes both tre cost of buying, delivering, and in-
stalling the new wiit acd also a cost due to the fact that no machine
is 1n use for & period. e shall row, however, allow for the possibility
of purchasing more tran one unit and keeoine some in reserve. This
might be desirable for (1) it might be less expensive to buy the units
in quantity, (2) 1t mighr cut down or delivery and installation costs,
and (3) it would cut down the cost due to idieness (no units in use).
The state space wiil consist of states O and (n,i) 1=1,2,...n=0,1,...N-1.
The process will be said to be in state (n,1) when the unit in use
is in operating state 1 and there are n units 1n reserve. State O
corresponds to the situation where there are no units in reserve and
no (operating) unit in use. If the process is in state (n,i) at time
t then one of two possible actions must be chosen. Action 1 leaves
the unit in use alone end actisn O replaces it. If the unit in use
is in operating state 1 and a2"ion 1 is chosen then the unit will

fall before the next observation with probability Pi If the unit

o
fails, and reserve units are on hand, then the unit will be replaced
at the end of the period. When the process is in state O there ere N
possible actions - Bpyeees8y ~ where action aK corresponds to pur-

chasing K new units. Whenever a new (or reserve) unit is put in use

then we again assume that there is a probability distribution [Pi):—l
over its 1nivial state. However, we shall now suppose that there 1s

zero probability of a new unit being (initially) inoperaiive. This

2l




et

condition is not essential but it will simplify notation and it also
clarifies the above formulation. The transition probabilities will

thus be as follows:

P(Xyyy = (md)]X, = (1), 8, = 1) =P, OSngN1 1,930
P(Xeyy = (-1,0)[X, = (ny1), B, = 1) = PP, 1Sn<N-1 4,4 >0
Mo =% = (01 & 2= Foo 1>0
P(xm. = (n-l,J)lxt = (n,1), b, = 0} = PJ 1<n<N-1l 1,5 >0
P(xti-l = OIXt = (0,1), At =0) =1 i{i>0
P(X ,; = (K-1,3)[X, =0, 8 =8 = P, 1<K J>0

00 o0

where T PJ =1, T PiJ =1 i>0.
J=1 J=0

The costs are as follcws: Whenever the'process is in state (n,1) an
expected cost C(n,i) is incurred. C(n,i) includes the.expected
operating cost of a unit in state 1 and the inventory costs involved
in holding n units in reserve. When the process i1s in state 0 and
action aK isbchosen then there is a cost C(K) incurred — this in-
cludes the cost of buying, installing, and delivering K new units;
it may also include a cost due to no unit being in use for a period.

We shall now determine the structure of the optimal policy. In
the B-discount case the results follow in an almost identical manner as
in section 3. However for the average-cost case the method of section &

no longer works and a new method of attack is developed.
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Consider the following condition:
Condition 1': (C(n,i)J:=l is a non-decreasing bounded sequence for
each n =0,1,...,N=-1.

(-]
For eny policy R, let V(Z,B,R) = I BtER[C(Xt’At)IXO =Z)
t=0

where Z =0, (n,1) 1 >0, n<N-1; and where
c(x,) for X, £0

c(xt,At) = . Let vh(z) = min ¥(2,B,R).
c(Kk) for X, =0, 8, =8, R

Lemna 7.1: Under Conditions 1',2,3 (Vg(n,1) - c(n,i)J"i"=l is a non-

decreasing sequence for each n = 0,1,...,N-1.
Proof: Same as proof of Lemma 3.1. Q.E.D.
Definition: A policy R 1is said to be a generalized control-limit

policy if there exists integers (possibly infinite) 1 ani

0’ iy

an integer K, 1 <K N, such that R chnooses action 0 when in

IN

state (n,i) iff i

v

1n and R chooses action ay whenever in
state O.
Theorem 7.2: Under Conditions 1',2,3 there is a generalized control-

limit policy which is P-optimal.

o«
Proof: ( C(n,i) +B8 ¥ P,. V,(n,J) +B Ber 2 BT (n-1,3)

ij B* JB

JFO §=1

Vb(n,i) = min
C(n,i) +8 jZI Pj Vb(n-l,j)

The argument now follows as presented in theorem 3.2. Q.E.D.

Thus the B-optimal policy purchases KO units when in state 0, and
when there are n units in reserve it replaces the unit in use if its

operating state is larger than some preassigned number in-l.
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For any Z =0, (n,i) 1 >0, n <N-1, let
I |
®(Z,R) = 1lim I E [C(X ,2)|x = 2]
mowt=0 R ERIEAN O

A policy R¥ 1is sald to be average-cost optimal if

»(Z,R*) = min ¢(Z,R) for all states Z.
R

We shall need the following:

Condition 4': PlO >0

Lemma 7.3: Under Conditions 1',2,3,4', for any (stationary) policy R,
MZO(R) < N/Plo for all states 2=0, (n,1) 1 > 0, n < N-1;
vhere M70(R) denctes the mean recurrence time to go from
state Z to state O when policy R 1is employed.

Proof: Let Yt = number of units in reserve at time t. Then since

P,y 2P, for all 1>0 it follows that P.(Y . =n-1][Y =nl}>P

for any policy R. The lemma follows immediately. Q.E.D.

Theorem 7.4: Under Conditions 1',2,3,4' there exists bounded numbers

g, f(n,i) n =0,1,...,N-1, 1 > 0 such that

(1) (£(n,1) - C(n,i)]:=1 is non-decreasing for each n=0,l,...,N-1

(11) () g = min {c(x) + <= PJ f(K-1,3))
1<K<n J=1
(b) g + f(n,1) = ¢(n,1) +min( & P, .f(n,3) +P T P,.f(n-1,3)
340 14 10 jo1 3

L P, f(n-1,))
31

(where f(-1,3) =0 for all }J)

it
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(11) (¢) The policy R* which when in state (n,i) takes action
1 when the first term of (b) is minimum and action O other-
wise, and which when in state U selects the action which
minimizes (a) is average-cost optimal.

(111) o(Z,R*) = g for all states Z.

Proof: The proof of (ii) and (1i1) follows from Lemme 7.3 and Theorems
1.1,1.2, and 1.4 of [5]. (1) follows from Lemma 7.1 and the remark

following the proof of Theorem 1.1 of [5]. Q.E.D.

Corollary 7.5: Under Conditicns 1',2,3,4' there is a generalized

control-limit policy which is average-cost optimal.

Proof: From (11) of Theorem 7.4 the policy which replaces when in

state (n,1) iff

1/1-P z P, f(ny)> = P f(n-1,3)
10 3k M j=1

is average-cost optimal. The result then follows from part (i) of
Theorem 7.4 and Lemma 2.1. Q.E.D.

We now prove the analogues of Theorems 4.3 and 4.4

Theorem 7.6: Under Conditions 1',2,3,4' if (n,1) 1s such that

1/1-P,. & P,, C(n,J) < g then there is an average-cost optimal
10 J}O i -

generalized control-limit policy which does not replace at state (n,1).

Proof: From (ii) of Theorem 7.4 we have that

g+ f(n)j) < C(“:J) + & P

f(n‘l’J)
)
J=1

¢(n,J) + Z ij(n-l,J)

. g+ 1/1-P P, f(rn,J) <1/1-P P
t 10 yko 3=

0,
jko 1
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.. 1/1-P r P, c(n,3) <g =11-p LP f(n-1,J)< I P f(n-1,J)
- 10 1 =

The Theorem follows from Corollary 7.5 Q.E.D.

Theorem 7.7: Under Counditions 1',2,3,4' if P1J =0 for all 0<J <1

(pure deterioration) then the generalized control-limit policy which

replaces at state (n,1) 1iff

l/l-Pih L F_. ¢lu,j) -~ g is average-cost optimal.

Yako M
Proof: Suppose that l/l—FiC L Pij (n,)) » g& and suppose further
C 1o
that
1/1-P E B E () S B R R n -y )
10 so 1 ja 9
.p + f(n,1) = C(a,i) + I Py f(n,d) + Py T P, £f(n-1,J)
JEo j=1 ¢
=C(n,i) + & P, C(n) + T P (f(n,3) - C(n,3))
1 1J
JAO JFO
]
+ P L P, f(a-1,3)
10 =1 J
> C(n,1) + g(1-P ) + {(1-7, ){(£(n,1) - C(n,1))

0

+ F xn B e, )

10 51 J
‘. g + f(n,1) >C(n,1) + T PJ f(n-1,3)
J=1

which is a contradiction by Theorem 7.4 (11)
oG
", 1/1-P L P, f(n,3)> & P, f(n-1,3)
i0 i ’ .
sbo j=1
‘. The result follows from Corollary 7.5 and Theorem 7.6. Q.E.D.

Corollary 7.8: Under the conditions of Theorem 7.7 if ¢{n,i) is monotone

non-decreasing in n for i1 [ixed then there 1s an optimal

generalized control-limit policy such that 1(:il:"'iN 1

Proof: Follows from Theorem 7.7.
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